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Abstract

We investigate the ultraspherical spectral element method for solving second-order partial

differential equations in two dimensions. Moreover, a novel coordinate transformation is

introduced to broaden the scope of the method, making it applicable to rectangular domains

with circular holes (square donuts), as well as certain types of curved boundaries. The

presented method is an integration of two approaches, namely the ultraspherical spectral

method and the hierarchical Poincaré–Steklov (HPS) scheme. The ultraspherical method is

a Petrov–Galerkin scheme that presents operators in the form of sparse and almost-banded

matrices, enabling both stability and computational efficiency. The HPS method is a recursive

domain decomposition strategy that enables fast direct solves. It merges solution operators

and Dirichlet-to-Neumann operators between subdomains, enforcing continuity of the solution

and its derivative across domain boundaries. The fusion of these two methods, combined with a

bilinear mapping, results in an accurate discretisation with an explicit direct solve that can be

applied to problems on arbitrary polygonal domains with smooth solutions. A major advantage

is the reuse of precomputed solution operators facilitated by the HPS scheme, enhancing the

efficiency of elliptic solves within implicit and semi-implicit time-steppers. Additionally, the

approach is highly parallelisable, allowing for efficient computation time. An implementation

of the method is established as a software system, ultraSEM, which employs the HPS method

to solve on rectangular and polygonal domains. We extend this implementation to allow for

solving on domains with circular cavities. This extension relies on a nonlinear coordinate

mapping and proves to work effectively, achieving near machine level precision accuracy.

On some simple test problems, we demonstrate geometric convergence for refinement of

the polynomial degree and algebraic convergence for domain refinement. Furthermore, we

show that execution times scale comparably to those achieved for a rectangular domain. We

demonstrate the application of the method on various time-dependent and fluid dynamics

examples, including contaminant transport and reaction-diffusion systems, and underscore

the practical applicability of the methodology and the new domain.
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Opsomming

Ons ondersoek die ultrasferiese spektrale element metode vir die oplossing van tweede-

orde parsiële differensiaalvergelykings in twee dimensies. ’n Nuwe koördinaattransformasie

word voorgestel om die omvang van die metode te verbreed en dit van toepassing te maak

op reghoekige gebiede met sirkelvormige gate, sowel as sekere tipes gekurfde grense. Die

voorgestelde metode is ’n integrasie van twee benaderings, naamlik die ultrasferiese spektrale

metode en die hiërargiese Poincaré–Steklov (HPS) skema. Die ultrasferiese metode is ’n

Petrov–Galerkin-skema wat operatore skep in die vorm van matrikse wat effektief is om mee

te werk en goeie stabiliteit bied. Die HPS-metode is ’n rekursiewe gebied-ontbindingstrategie

wat vinnige direkte oplossings moontlik maak. Dit weef oplossings-operatore en Dirichlet-

na-Neumann-operatore tussen subgebiede saam. In die proses word die kontinuïteit van

die oplossing en sy afgeleide, oor gebiedsgrense afgedwing. Die samesmelting van hierdie

twee strategieë, gekombineer met ’n bilineêre afbeelding, lei tot ’n direkte strategie om

akkurate oplossings te genereer vir probleme op veelhoekige gebiede met gladde oplossings.

’n Groot voordeel is die hergebruik van voorafberekende oplossings-operatore wat deur die

HPS-skema gefasiliteer word. Dit verbeter veral die doeltreffendheid om elliptiese probleme

op te los binne implisiete en semi-implisiete tydstappers. Daarbenewens is dit ook moontlik

om die benadering in parallel toe te pas en dus ‘n doeltreffende berekeningstyd moontlik te

maak. ’n Reedsbestaande implementering van die metode bestaan wel as ‘n sagtewarestelsel

genaamd ultraSEM. Hierdie sagteware gebruik die HPS-metode om oplossings op reghoekige

en veelhoekige gebiede te vind. Ons brei hierdie implementering uit om die oplossing op

gebiede met sirkelvormige holtes moontlik te maak. Hierdie uitbreiding maak staat op ’n

nie-lineêre koördinaat afbeelding en word bewys om effektief te werk. Met ’n paar eenvoudige

toetsprobleme word die metode gedemonstreer. Dit vertoon geometriese konvergensie wanneer

die polinoomgraad verfyn word en algebraïese konvergensie vir gebiedverfyning. Verder groei

die berekeningstyd teen ‘n vergelykbare tempo as dit wat vir ’n vierhoekige gebied behaal

word. Ons demonstreer die toepassing van die nuwe metode op verskeie tydafhanklike en

vloeidinamika voorbeelde, insluitend kontaminant vervoer en reaksie-diffusie stelsels. Met

hierdie voorbeelde word die praktiese toepaslikheid van die metodologie en die nuwe gebied

onderstreep.

iii

Stellenbosch University https://scholar.sun.ac.za



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Nick

Hale, for his invaluable guidance, mentorship, and expertise throughout the entire research

process. Nick’s quick wit, clever problem-solving, and unwavering willingness to assist have

made the experience of working with him genuinely delightful. His insightful feedback and

constructive criticism have also played a pivotal role in shaping the quality of this thesis. I

express my appreciation to his dog, Roxy, whose tail wags and cheerful greetings served as

emotional support, helping me to persevere throughout this project.

I am indebted to the Wilhelm Frank Trust for their generous support. Their financial

assistance enabled me to concentrate on my research and academic pursuits with greater focus

and dedication.

Furthermore, I would like to acknowledge my fellow students and lecturers at the Applied

Mathematics division of Stellenbosch University. Their presence and encouragement fostered

a supportive environment in which I could freely seek guidance, ask questions, and remain

motivated to complete the work. Their understanding and acceptance of the inevitable ups

and downs of the research process allowed me to progress with confidence and resilience.

Finally, I would like to express my sincere appreciation to my partner, Louis, as well as my

friends and family, who demonstrated remarkable patience while I frequently complained

about this thesis.

iv

Stellenbosch University https://scholar.sun.ac.za



Dedication

In memory of my mom, whose pride in this work would have meant the world to me.

Your absence is felt every day.

v

Stellenbosch University https://scholar.sun.ac.za



CONTENTS

1 Introduction 1

1.1 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Project outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Existing methods for ODEs and PDEs . . . . . . . . . . . . . . . . . . . . . . 3

2.2 An overview of spectral techniques . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The spectral Galerkin approach . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The ultraspherical spectral method 15

3.1 Constructing the operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Solving a BVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Time-dependent problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Nonlinear problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Two-dimensional problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 The HPS method 35

4.1 Domain decomposition for modal discretisation . . . . . . . . . . . . . . . . . 36

vi

Stellenbosch University https://scholar.sun.ac.za



4.2 Outline of the HPS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Two “glued” squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 The hierarchical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Non-rectangular elements 51

5.1 Quadrilateral elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Squonuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Results 62

6.1 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 Conclusion 71

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Code Extracts 79

vii

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1

INTRODUCTION

Ordinary and partial differential equations (ODEs and PDEs) are fundamental tools in the
modelling of physical systems that evolve in space and/or time. They provide a framework
for understanding a wide range of phenomena in fields such as fluid dynamics, oceanography,
aerodynamics, electrostatics, thermodynamics, image processing, and topology [1, 8, 10, 69, 75].

When modelling real-life phenomena with ODEs and PDEs, problems arise where analytical
solutions are either unavailable or intractable due to the complexity of the equations [9]. In
many such cases, one turns to numerical methods to find approximate solutions. Typically,
these numerical approaches entail discretising the equation and ultimately solving large
systems of linear equations. Methods for solving linear systems of equations fall into one of two
categories: direct or iterative methods. While iterative techniques tailored for specific problems
can outperform direct methods in certain scenarios, they lack the generality and robustness
that direct methods provide [32]. Interest in fast direct solvers has significantly grown in
recent years, largely fuelled by the advancements in computational capabilities and fast direct
methods over the past two decades [27]. Despite the increased computational resources,
the use of direct methods for large-scale computations necessitates efficient algorithms that
capitalise on sparse and structured matrices.

In this project, spectral methods are presented as an appropriate method for solving ODEs
and PDEs since they are known for providing accurate solutions and stable algorithms [8, 75].
However, two obstacles remain when it comes to developing an efficient, yet general, spectral
solver. The first is that many spectral techniques are based on dense matrices, leading to
expensive computations [8, 75]. Secondly, spectral methods are typically only applied to
regular domains, making it difficult to design a solver that can handle problems on any
geometry [60].

In this work, we combine two recent strategies, namely the ultraspherical spectral method [58,
73] and the hierarchical Poincaré–Steklov method [4, 28, 29, 52], to overcome some of these
challenges. The ultraspherical method is recognised for producing sparse matrices, ensuring
reliability and stability, and offering efficient computational complexity. Partitioning the
domain into smaller elements extends the applicability of the method. The hierarchical
Poincaré-Steklov scheme is then used as a convenient and efficient direct method to recombine
the partitions. To expand this capability even further, we aim to develop a new domain, with
a novel mapping, which is built into an existing implementation.

By focusing on the integration of these two strategies, this thesis aspires to bridge gaps and
extend the reach of spectral methods to a broader spectrum of practical applications.
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CHAPTER 1. INTRODUCTION 1.1. Aims and objectives

1.1 Aims and objectives

This thesis aims to explore an existing direct spectral method and extend the implementation
thereof to incorporate a new domain. This new domain is designed to address problems on
rectangular geometries with circular holes, such as a perforated plate.

There are several building blocks in achieving this aim. A first objective is to explore,
understand, and implement the ultraspherical spectral method for solving ODEs and PDEs on
regular domains, as introduced by Olver and Townsend [58, 73]. This includes investigating
its application to one- and two-dimensional problems, and approaches for applying it to
time-dependent problems, systems of equations, and nonlinear problems.

Building on this foundation, the second objective is to incorporate the use of a domain
decomposition technique, known as the hierarchical Poincaré–Steklov method, to transform
the solver into a spectral element method. This includes an in-depth investigation into the
structure of an existing implementation by Fortunato et al. [23], based on the work of Gillman
and Martinsson [28, 29, 52].

With all the structures in place, the final objective is to design and implement a new domain,
based on a novel mapping, that extends the applicability of the existing method. This domain
will allow the software to solve problems on geometries with circular holes and certain domains
with curved boundaries.

1.2 Project outline

This thesis is structured as follows. In Chapter 2, we commence by providing an overview
of existing spectral methods for solving ODEs and PDEs. Chapter 3 follows, wherein the
essential operators for the global ultraspherical spectral method is constructed in both one
and two dimensions. We supplement this with practical examples for better clarification.
Additionally, we explore approaches for applying this technique to address time-dependent
problems, systems of equations, and nonlinear problems. Subsequently, Chapter 4 explores the
necessity of domain decomposition strategies, and introduces a specific approach, called the
hierarchical Poincaré–Steklov method. This method allows for solving on irregular geometries
by decomposing them into rectangular subdomains, effectively breaking down large problems
into more manageable pieces. We investigate transformations essential for accommodating
non-rectangular geometries in Chapter 5. Extending that work, we develop a novel mapping
to facilitate computation within domains containing curved boundaries, thus enhancing the
method’s adaptability. We then showcase the versatility of this new transformation through its
application to various practical problems in Chapter 6. To validate the method, an in-depth
analysis of results obtained from test problems is presented, underlining its effectiveness
and practical utility. We conclude in Chapter 7 by summarising our findings and proposing
potential directions for future research and advancements in the field.

2
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CHAPTER 2

BACKGROUND

2.1 Existing methods for ODEs and PDEs

When simulating real-world phenomena using ODEs and PDEs, challenges arise due to the
complexity of the equations or the domain geometry, making analytical solutions either
impractical or unavailable. Typically, numerical methods offer an avenue to approximate
solutions in such scenarios. Numerical methods work by discretising a continuous problem as
a discrete set of equations that can be solved using computational techniques. Among the
numerous classes of numerical methods available for solving two-dimensional ODEs and PDEs,
three stand out as the most widely used: finite difference methods, finite element methods,
and spectral methods. Each of these approaches possess distinct strengths and weaknesses,
and the choice of the best method depends on the specific problem at hand. Additional
factors, such as the complexity of the domain, available computational resources, and the
required level of accuracy, play significant roles in determining the most suitable approach.

Finite difference methods (FDM) offer good computational efficiency by utilising local
approximations and low-order polynomials [9, 47, 49]. In FDM, the domain is typically
discretised into a grid of points at which an approximate solution is sought. Derivatives at
these grid points are approximated by using finite difference formulas, and the differential
equation is transformed into a system of algebraic equations, often involving sparse matrices.
Due to their straightforward nature, FDM are relatively easy to implement and find common
usage in problems on regular grids with simple geometries. They serve as valuable tools
widely employed in computational fluid dynamics, heat transfer, and other fields [48, 55].
Nonetheless, their simplicity often leads to approximate solutions with limited accuracy, and
they can pose challenges when applied to complicated geometries [8].

Finite element methods (FEM) are versatile numerical techniques widely employed to
solve ODEs and PDEs [18, 20, 41, 47]. In these methods, a weak form of the differential
equation is constructed by multiplying it with a test function and integrating over elements.
The test function allows the differential equation to be satisfied in an average or weighted
sense over each element, rather than pointwise. Local solutions are approximated on each of
the elements using piecewise polynomials, referred to as shape functions. A global system of
algebraic equations is then formed by assembling the weak form equations across elements.
The decomposition into multiple elements provides FEM with the flexibility to handle complex
geometries and irregularly shaped domains, making it ideal for structural analysis, solid
mechanics, and fluid dynamics applications [34, 60]. A typical example of its application is

3
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CHAPTER 2. BACKGROUND 2.1. Existing methods for ODEs and PDEs

the modelling of the shell of an auto-mobile. However, FEM’s drawback lies in its relatively
low accuracy due to the use of low-degree polynomials on the elements [8].

One of the key distinctions between spectral methods and FEM lies in the degree of the
polynomials used to approximate solutions. While FEM, similar to FDM, employ low -
degree polynomials and local approximations on each element, spectral methods utilise global
functions of high degree [8]. This distinction is illustrated in Figure 2.1.

Figure 2.1: This visual representation contrasts three types of numerical algorithms for solving differential
equations. Finite difference methods exhibit a localised nature, where the approximation at a specific point is
influenced solely by neighbouring point values. On the contrary, spectral methods have a global influence,
with the solution at a point being impacted by values across the entire domain. In finite element methods and
spectral element methods, approximations in a particular subdomain are influenced only by points within
that subdomain. Source: Adapted from [8].

Spectral methods (SM) employ polynomials of high degree across the entire computational
domain [10, 45, 62, 75]. The discretisation process involves working with either values at grid
points (nodal) or coefficients in a series expansion (modal). In both scenarios, differentiation
matrices are employed for approximating derivatives. While it is true that these matrices
are typically dense due to the global approach inherent to SM, the pay-off is generally high
accuracy. Spectral methods often attain ten digits of accuracy in scenarios where FDM or
FEM typically reach only two or three digits [62]. Moreover, at a lower accuracy, spectral
methods often demand less computer memory compared to other approaches [75].

Another advantage of SM is that they are defined throughout the entire computational domain,
thus enabling easy evaluation of the function under consideration at any point within the
domain. This feature proves especially valuable when graphical representations of the solution
are needed. Additionally, assessing the accuracy of coefficient based spectral methods becomes
straightforward by examining the decrease of the coefficients. This obviates the need for
multiple calculations with varying resolutions, as is commonly done in FDM and similar
methods to estimate “grid-convergence” [45].

4
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CHAPTER 2. BACKGROUND 2.2. An overview of spectral techniques

Spectral element methods (SEM) were developed with the aim of combining the domain
flexibility provided by FEM with the accuracy characteristics of SM [10, 39, 40]. In SEM, the
domain is partitioned into elements, similar to finite elements, while employing sufficiently
high-degree polynomials. SEM typically employ the weak form of the differential equation,
distinct from the strong form traditionally used in SM. Nevertheless, a significant portion
of the underlying theory in SEM closely resembles that of global SM [8]. In the upcoming
sections, our focus will primarily revolve around explaining global SM concepts, with a more
detailed exploration of domain decomposition into elements to follow in Chapter 4.

When dealing with smooth solutions and simple geometries, spectral methods are usually
the preferred choice [8, 62, 75]. In such circumstances, spectral methods are known to
offer heightened efficiency and achieve considerably higher accuracy compared to alternative
approaches, all the while remaining relatively straightforward to implement. In complex
geometries, transitioning to spectral element techniques proves beneficial [39]. For this
reason, the spectral technique employed in this project represents a hybrid approach, sharing
characteristics with both global SM and SEM. It involves partitioning domains into elements
while still operating within the framework of the strong form of the equation.

2.2 An overview of spectral techniques

Spectral methods encompass various classifications, with ‘Galerkin’, ‘tau’, and ‘collocation’ (or
‘pseudospectral’) methods being the most common distinctions [75]. The former two methods
fall into the category of modal approximations, since they operate with the coefficients of a
global expansion in some prescribed basis. Whereas the latter is nodal in nature, dealing with
values at specific nodes or points, referred to as collocation points [45].

In collocation methods, the approximate solution is tailored to satisfy the differential equation
precisely at appropriately chosen collocation points. To achieve this, a polynomial interpolant
is constructed using the unknown solution values at these points and a differentiation matrix
is generated to calculate approximate derivative values. Because the collocation points
correspond to physical positions in space, it is conceptually straightforward to visualise and
address aspects such as boundary conditions [51]. The downside of collocation strategies
are that the differentiation matrices are typically dense, leading to similarly dense resulting
operators, which are often ill-conditioned [75].

On the other hand, Galerkin-type spectral methods often employ sparse matrices, resulting
in faster computations compared to the collocation strategy [8, 75]. In this approach, the
polynomial interpolant is approximated by a linear combination of basis functions or modes.
These basis functions are usually chosen to be orthogonal, such as trigonometric functions,
Legendre polynomials, or Chebyshev polynomials. The solution is then represented by the
coefficients in this linear combination [10, 31].

The tau method is a variant of the Galerkin method designed to enhance the accuracy of the
solution even further [45]. It introduces a correction term, known as ‘tau’, into the Galerkin
formulation, allowing the use of basis functions that do not satisfy the homogeneous boundary
conditions. Tau methods are particularly used for specific nonlinear problems where Galerkin
methods are insufficient [8].

5
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CHAPTER 2. BACKGROUND 2.3. The spectral Galerkin approach

Due to their advantage of employing sparse matrices, offering faster computations and better
conditioning, the solver in this project is built on Galerkin methods, which will be the focus
of the coming sections.

2.3 The spectral Galerkin approach

In the development of a Galerkin method, the choice of basis functions (or modes) is an
important consideration. Certain choices of expansion functions offer more advantages than
others [16]. When it comes to approximating a function as a series expansion, there are three
key properties that the basis functions should possess: (i) being easy to evaluate, (ii) rapid
convergence of expansion coefficients, and (iii) representing any solution to arbitrarily high
accuracy by taking enough terms in the expansion [8, 45].

In solving one-dimensional (1D) periodic problems, the Fourier basis emerges as an appropriate
choice. The Fourier series exhibits rapid convergence, especially for infinitely differentiable
functions, and benefits from the efficiency of the fast Fourier Transform (FFT) algorithm
for the calculation of sums or coefficients [8]. However, its effectiveness wanes when deal-
ing with nonperiodic problems, as it typically introduces Gibbs oscillations at the domain
boundaries [62]. Alternative basis functions are needed for nonperiodic domains.

Both Chebyshev and Legendre polynomials are commonly favoured in Galerkin spectral
methods for nonperiodic domains due to their rapid convergence and numerical stability [76].
However, the Chebyshev polynomials can be viewed as a cosine Fourier series in disguise.
Consequently, it shares some valuable properties with the Fourier basis, such as the utilisation
of the FFT algorithm, and more specifically the Discrete Cosine Transform. This feature allows
for optimised and efficient evaluations. Algorithms are available that make fast computations
practicable for Legendre interpolants as well [64]; however, Chebyshev remains the more
straightforward case. There are other types of spectral Galerkin methods, such as radial basis
functions [7] and wavelet-based methods [56], but we do not consider those here.

2.3.1 Chebyshev polynomials and points

The Chebyshev polynomials of the first kind Tk(x) are the polynomials of degree k defined by

Tk(x) = cos(k cos−1(x)), k = 0, 1, 2, . . . , (2.1)

and which are orthogonal on [−1, 1] with respect to the weight function w(x) = (1−x2)−1/2 [57].
Figure 2.2 displays the first few polynomials, which satisfy the recurrence relation,

T0(x) = 1

T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x), k = 1, 2, . . .

(2.2)

6
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CHAPTER 2. BACKGROUND 2.3. The spectral Galerkin approach

The Chebyshev points of the second kind, alternatively known as Gauss–Lobatto, Chebyshev
extrema, or simply Chebyshev points, are given by

xj = cos
(
jπ
n

)
, j = 0, 1, . . . , n, (2.3)

on the interval [−1, 1]. These nodes commonly serve as grid points for spectral collocation
schemes. Their clustering around the endpoints of the interval, visualised on the right in
Figure 2.2, ensures that their polynomial interpolations remain stable, a property that proves
beneficial when it comes to approximating solutions [76]. Furthermore, their inclusion of
the interval endpoints simplifies the implementation of boundary conditions when solving
problems, as we shall see in Section 3.2.1.

Figure 2.2: The first five Chebyshev polynomials of the first kind are displayed on the left side. On the
right, the Chebyshev points of the second kind are shown for n = 10, calculated using formula (2.3).

2.3.2 Approximating functions

The basis of the spectral methods we consider in this thesis is the approximation of solutions
as linear combinations of Chebyshev polynomials. Theorem 1 is helpful in this regard.

Theorem 1. [76, Thm 3.1] If f is Lipschitz continuous on [−1, 1], it has a unique represen-
tation as a Chebyshev series,

f(x) =
∞∑
k=0

akTk(x),

which is absolutely and uniformly convergent, and the coefficients are given for k ≥ 1 by the
formula

ak =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx,

and for k = 0 by the same formula with the factor 2/π changed to 1/π.1

1A function f is Lipschitz continuous on a domain Ω if there is a constant C such that |f(x)− f(y)| ≤
C |x− y| for all x, y ∈ Ω.

7
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CHAPTER 2. BACKGROUND 2.3. The spectral Galerkin approach

We consider two approaches to approximate such a function f : truncation and interpola-
tion [76]. The approximation to f obtained by truncation or projection of the series to degree
n is given by the polynomial

fn(x) =
n∑

k=0

akTk(x),

where the first n+ 1 coefficients are the same as those of f itself. The alternative, which is
to approximate f by the degree n polynomial obtained by interpolation in the Chebyshev
points, is

pn(x) =
n∑

k=0

ckTk(x), such that pn(xj) = f(xj), j = 0, 1, . . . , n+ 1.

Both the interpolation strategy with the polynomials {pn}, and the truncation approach with
the polynomials {fn}, provide good approximations to f . This is reinforced by Theorem 2,
which asserts that if f is analytic on [−1, 1], then both ∥f − fn∥∞ and ∥f − pn∥∞ decrease
geometrically to 0 as n→∞.2 Geometric convergence means that the error decreases at the
rate O(C−n) for some constant C > 1.

The concept of a Bernstein ellipse is needed for Theorem 2. A Bernstein ellipse, denoted by
Eρ, is an ellipse in the complex plane with foci at −1 and 1, with ρ equal to the sum of the
lengths of the semimajor and semiminor axes. Typically, ρ > 1.

Theorem 2. [76, Thm 8.2] Let a function f analytic in a neighbourhood of [−1, 1] be
analytically continuable to an open Bernstein ellipse Eρ, where it satisfies |f(z)| ≤ M for
some M . Then for each n ≥ 0 its Chebyshev truncations fn satisfy

∥f − fn∥∞ ≤
2Mρ−n

ρ− 1
.

and its Chebyshev interpolants pn satisfy

∥f − pn∥∞ ≤
4Mρ−n

ρ− 1
.

Theorem 2 further supports the Chebyshev polynomials as an appropriate choice for the
expansion functions. The fast convergence of the Chebyshev basis for analytic functions is
not only demonstrated by the rapidly converging error according to Theorem 2, but also by
the rapid decay of the Chebyshev coefficients in an expansion. Theorem 3 gives a theoretical
upper bound on the value of the k-th Chebyshev coefficient of an analytic function. The
observed geometric convergence demonstrates that a solution can be accurately represented
by a Chebyshev series when using a sufficient number of terms in the expansion.

2The notation ∥f∥∞ represents the infinity norm or supremum norm of the continuous function f , calculated
as the maximum absolute value on a closed and bounded interval.

8

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 2.3. The spectral Galerkin approach

Theorem 3. [76, Thm 8.1] If f has the properties of Theorem 2, then its Chebyshev coefficients
satisfy

|ak| ≤ 2Mρ−k,

with |a0| ≤M in the case k = 0.

As an example, consider the Runge function f(x) = (1 + 25x2)−1, which has poles at x = ± i
5

and is thus not analytic at those points. The largest Bernstein ellipse in which the function
is analytic has a semiminor axis of 0.2 and a semimajor axis of approximately 1.02, and is
sketched on the left in Figure 2.3. When the Runge function is approximated by an interpolant
expanded as a Chebyshev series, the expected geometric convergence from Theorem 2 is
observed. We also see the rapid decrease in the magnitude of the coefficients in the expansion
predicted by Theorem 3. This is demonstrated in Figure 2.3.

Figure 2.3: The image on the left displays the Bernstein ellipse Eρ with a value of ρ ≈ 1.22. The ellipse
has foci at −1 and 1, and its semiminor axis measures 0.2. This is the largest ellipse contained within
the analyticity of the Runge function in the complex plane, thus governing its convergence, as outlined in
Theorems 2 and 3. In the centre image, we observe the magnitude of Chebyshev expansion coefficients ak,
satisfying the theoretical upper bound specified by Theorem 3. On the right, the practical error is presented,
calculated as the infinity norm of the difference between the Chebyshev expansion and the Runge function.
A comparison with the theoretical convergence rate predicted by Theorem 2 reveals a matching slope. The
presence of a plateau is attributed to rounding errors at around the level of machine precision.

There exists ample evidence supporting the effectiveness of the Chebyshev basis in approxi-
mating analytic functions. However, it is worth considering the expected performance when
dealing with non-analytic functions. The Jackson theorems [13] established a bound for
polynomial approximations of non-analytic functions. It asserts that if a function f is ν times
continuously differentiable on [−1, 1], then its best polynomial approximations converge at
the algebraic rate O(n−ν).

However, this bound can be better addressed for Chebyshev polynomials by using a concept
called bounded variation. A function is deemed to have bounded variation if its total variation,
V , is finite [76].3 The finiteness of V allows Chebyshev approximations to converge at a rate
faster than predicted by the Jackson theorems. An improved bound is given by Theorem 4.

3The total variation of a function f is the 1-norm of the derivative, V = ∥f ′∥1.
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Theorem 4. [76, Thm 7.2] For an integer ν ≥ 1, let f and its derivatives through f (ν−1) be
absolutely continuous on [−1, 1] and suppose the νth derivative f (ν) is of bounded variation V .
Then for any n > ν, its Chebyshev projections, fn, and its Chebyshev interpolants, pn, satisfy

∥f − fn∥∞ ≤
2V

πν(n− ν)ν
, and ∥f − pn∥∞ ≤

4V

πν(n− ν)ν
.

It is evident that smoother functions exhibit faster convergence of their approximations. To
demonstrate this in the context of a non-analytic function, we consider f(x) = | sin(5x)|3.
The third derivative of f has discontinuities at x = 0 and x = ±π/5, implying that it is
three times differentiable, but only two times continuously differentiable. As per the Jackson
theorems, this would predict convergence of order two. The convergence of the Chebyshev
interpolant pn of the function f is depicted on the right in Figure 2.4. On the same graph,
the theoretical bound for pn is shown, which is computed using a total variation of V ≈ 16500
for the third derivative of f . It is clear that in this example even the stricter bound provided
by Theorem 4 is a conservative estimation of the convergence, which is at least of order three.
On the left in Figure 2.4, the function f is plotted together with its 50 term Chebyshev
approximation.

Figure 2.4: The image on the left displays the non-analytic function f(x) = | sin(5x)|3, together with its 50
term Chebyshev approximation, p50(x). On the right, the infinity norm of the error of this approximation
is depicted. This practical error demonstrates a cubic convergence rate, which aligns with the slope of the
theoretical bound provided by Theorem 4 and shown by a blue line. This convergence is faster than the
quadratic convergence suggested by the Jackson theorems.

2.3.3 Calculation of Chebyshev coefficients

Consider the degree n polynomial interpolant to a function f(x)

f(x) ≈ pn(x) =
n∑

k=0

ckTk(x).

When evaluating f(x) at a single point, x0, the approximation can then be expressed as:

f(x0) = c0T0(x0) + c1T1(x0) + c2T2(x0) + . . .+ cnTn(x0).
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Extending this to a set of distinct points x0, x1, . . . , xn, yields the square matrix equation:
T0(x0) T1(x0) . . . Tn(x0)
T0(x1) Tn(x1)

...
...

T0(xn) T1(xn) . . . Tn(xn)



c0
c1
...
cn

 =


f(x0)
f(x1)

...
f(xn)

 .

The matrix on the left is known as the Chebyshev–Vandermonde matrix. Determining the
coefficients ck from the function values f(xk) requires the inverse of this matrix, which
typically has complexity O(n3).4 On the other hand, determining the function values when
the coefficients are known involves multiplication by this matrix, which has a computational
complexity of O(n2).

However, if the points {xj}nj=0 are strategically chosen, for example, the Chebyshev points as
given in formula (2.3), then eq. (2.1) can be utilised to simplify the entries in the matrix to:

Tk(xj) = cos
(
k cos−1

(
cos

(
jπ
n

)))
= cos

(
kjπ
n

)
.

With the expansion functions now simplified to cosine functions, the conversion between
function evaluations and expansion coefficients can be performed via the Discrete Cosine
Transform (DCT). This transformation improves the computational complexity of switching
between coefficients and values to O(n log n) [61].

2.3.4 Ultraspherical polynomials

When employing spectral methods to solve differential equations, a crucial consideration is
the computation of derivatives. The derivative of a Chebyshev polynomial can be expressed
in terms of the Chebyshev polynomials themselves [53],

dTk(x)

dx
= 2k

k−1∑
r=0

k−r odd

Tr(x),

where the factor 2k is changed to k when r = 0. However, implementing this formula results
in an upper triangular differentiation matrix.5 For a more efficient approach, an alternative is
to express the derivative in terms of the ultraspherical polynomials [8, 75], which will produce
a banded differentiation matrix.

The ultraspherical polynomials or Gegenbauer polynomials, denoted as C
(λ)
k (x), are a set of

orthogonal polynomials defined on the interval [−1, 1] with respect to the weight function
w(x) = (1− x2)λ−1/2 [57].

4In practice, instead of inverting the matrix directly, one would use an operator in standard software for
solving linear systems, such as ‘backslash’ in Matlab.

5Further elaboration on the construction of the differentiation matrix will be provided in Section 3.1.1.
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These polynomials are characterised by the recurrence relation:

C
(λ)
0 (x) = 1

C
(λ)
1 (x) = 2λx

C
(λ)
k (x) =

1

k

[
2x(k + λ− 1)C

(λ)
k−1(x)− (k + 2λ− 2)C

(λ)
k−2(x)

]
,

(2.4)

with k ≥ 2. Here, λ ≥ 1 is a real parameter, known as the order of the ultraspherical
polynomial. Notably, when λ = 1, these polynomials become the Chebyshev polynomials of
the second kind.

The derivatives of the Chebyshev polynomials can be elegantly expressed in terms of the
ultraspherical polynomials of the first order:6

dTk

dx
=

{
kC

(1)
k−1(x), k ≥ 1

0, k = 0.
(2.5)

This relationship proves useful in deriving a simple expression for the derivative of a Chebyshev
series, which will be an improvement on classical spectral methods which represented differen-
tiation as dense operators [8, 75]. Additionally, an almost equally simple recurrence relation
exist that describes the Chebyshev polynomials in terms of the ultraspherical polynomials of
the first order [57],

Tk(x) =


1
2

(
C

(1)
k (x)− C

(1)
k−2(x)

)
, k ≥ 2,

1
2
C

(1)
1 , k = 1,

C
(1)
0 , k = 0,

(2.6)

which facilitates easy conversion between the two bases. If higher order derivatives are involved
in an equation, then the formula for the λth derivative of the Chebyshev polynomials proves
to be helpful [57],

dλTk

dxλ
=

{
0, 0 ≤ k < λ,

2λ−1k(λ− 1)!C
(λ)
k−λ, k ≥ λ,

(2.7)

where C
(λ)
k is the degree-k ultraspherical polynomial of order λ ≥ 1. The ultraspherical

polynomials abide by an analogue of (2.6) for conversion between higher orders:

C
(λ)
k (x) =


λ

λ+k

(
C

(λ+1)
k − C

(λ+1)
k−2

)
, k ≥ 2,

λ
λ+1

C
(λ+1)
1 , k = 1,

C
(λ+1)
0 , k = 0.

(2.8)

These simple relationships offer a means to construct sparse operators for the spectral method
under consideration in this project. Further elaboration on the construction and application
of these operators is presented in Section 3.1.

6Hereafter the term ‘Chebyshev polynomials’ will exclusively denote the polynomials of the first kind.
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Representing the solution in one basis while expressing the differential equation in another
basis is a defining feature of Petrov–Galerkin methods. Typically, the selection of bases in
these methods are influenced by the imposed boundary conditions [33, 68], but this can pose
challenges for devising a universal solver. In this project, we prioritise preserving sparsity,
aligning with similar methodologies in existing studies [19, 70]. As a result, the bases are
contingent on the order of the differential equation, rather than being dictated by the specific
boundary conditions [58].

2.3.5 Scaling to other domains

Up to this point, we have discussed only the Chebyshev polynomials and points as they are
defined within the range of [−1, 1]; nevertheless, they can be employed on intervals other than
[−1, 1]. To adapt the Chebyshev points to a general finite interval [a, b], an affine change of
variables is applied to (2.3), giving [75]:

xj =
1

2
(a+ b) +

1

2
(b− a) cos

(
jπ

n

)
.

When referring to the Chebyshev polynomials on intervals other than [−1, 1], we generally
mean adapting or extending their properties to a different interval, rather than the polynomials
themselves existing on other intervals in their original form. This involves a transformation
to shift and scale the polynomials to fit the desired interval, which is described by

T̂k(x) = Tk

(
2x− (a+ b)

b− a

)
.

While the original Chebyshev polynomials are specifically defined for [−1, 1], the properties
and mathematical principles associated with them can be extended and adapted to other
intervals through appropriate transformations. For the remainder of this thesis, T̂k(x) indicates
a Chebyshev polynomial scaled to the appropriate interval, where the interval itself should be
clear from the context.

Given that the ultraspherical polynomials are a generalisation of the Chebyshev polynomials,
the same transformation is required to adjust them to a specified interval, and their general
properties still hold true.

2.3.6 Tensor product formulation in higher dimensions

Univariate polynomials are commonly used in higher dimensions to approximate solutions due
to their adaptability and ease of computation [8]. These univariate polynomials are typically
employed in a tensor product fashion, where multidimensional basis functions are constructed
as products of univariate polynomials in each dimension. For example, if in two dimensions
one has univariate polynomials ϕi(x) and ϕj(y), then the bivariate basis functions would be
given by ϕij(x, y) = ϕi(x) · ϕj(y).
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Note that the univariate polynomials employed in different dimensions do not necessarily
have to be of the same type. The selection of polynomial families for each dimension depends
significantly on the specific geometry of the problem at hand. For instance, Fourier–Chebyshev
bases have been used for solving problems in circular domains using cylindrical coordinates [33].
In such cases, univariate functions in the Fourier basis are used to discretise the periodic
component (e.g., θ), while the Chebyshev basis is employed for the nonperiodic component
(e.g., radial direction). It remains a challenge to make an optimal choice of basis functions
when dealing with irregular domains, however, there have been some recent developments in
employing shifted Jacobi polynomials with different parameters to effectively handle triangular
domains [59].

In cases where the domain is regular, the Chebyshev polynomials continue to be a favoured
choice due to their advantageous features, which includes numerical efficiency, good convergence
properties, stability, and the ease of transforming spatial coordinates into coefficients [8]. In the
two-dimensional (2D) context, this involves expressing the bivariate basis as a tensor product
of Chebyshev series in the x- and y-directions. A function f(x, y) is then approximated as a
linear combination of these basis functions:

f(x, y) ≈
ny∑
i=0

nx∑
j=0

XijTi(y)Tj(x).

Here, nx and ny represent the degrees of the polynomials in each dimension, while Xij

constitutes the matrix of coefficients characterising the solution. As in 1D, the DCT can be
used to transform between function evaluations and coefficients. This 2D transform requires
the sequential application of the 1D transform row-by-row and then column-by-column, leading
to a complexity of O

(
n2 log n

)
when nx = ny = n [61].

In higher dimensions, the computational cost can increase significantly due to the increased
number of basis functions and coefficients. Therefore, efficient algorithms and techniques, such
as sparse grids and hierarchical representations, become crucial to manage the complexity
and enhance the performance. In the upcoming chapter, we explore the fundamentals of
a particular Galerkin method known as the ultraspherical spectral method. This method
effectively utilises sparse operators and incorporates specialised techniques to preserve and
leverage this sparsity, ultimately enhancing computational efficiency.
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CHAPTER 3

THE ULTRASPHERICAL SPECTRAL METHOD

The ultraspherical spectral method was introduced by Olver and Townsend [58]. It is a
Petrov–Galerkin scheme that optimally leverages ultraspherical polynomial bases to represent
differentiation operators with maximum sparsity. This method capitalises on the insight
that the derivatives of Chebyshev polynomials become diagonal when expressed in terms of
higher-order ultraspherical polynomials, as described in eq. (2.7). In 1D, the ultraspherical
spectral method results in almost-banded linear systems that can be efficiently solved with
linear complexity.

Following the initial application of this method to solve linear ODEs, Townsend and Olver
extended its utility to linear PDEs defined on rectangular domains [73]. Subsequently,
researchers have built upon their work, broadening the method’s applicability. These extensions
include adapting the method to solve nonlinear time-dependent PDEs [14], refining it for
self-adjoint problems [3], and exploring its implementation in spectral element methods [23].

This chapter provides an overview of the fundamental components underlying the ultraspherical
spectral method. The tools required for solving linear ODEs are outlined in Section 3.1,
with an illustrative example showcased in Section 3.2. In this example, the optimisation of
solutions via preconditioners and specialised techniques designed for sparse structures are
considered. Additionally, the extension of the method to address time-dependent problems
is considered in Section 3.3, as well as applications to systems of differential equations in
Section 3.4, and nonlinear problems in Section 3.5. Finally, leveraging tools from preceding
sections enables the 2D problem-solving approach for PDEs to be explored in Section 3.6.

3.1 Constructing the operators

Consider the one-dimensional linear ODE of Kth order with variable coefficients defined on
[−1, 1] of the form:

K∑
λ=0

aλ(x)
dλu

dxλ
= f(x), (3.1)

along with K linear constraints. When utilising the ultraspherical spectral method to solve
equations such as (3.1), the solution is approximated as a Chebyshev expansion, with the
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primary objective being to determine the expansion coefficients uk:

u(x) =
∞∑
k=0

ukTk(x). (3.2)

To this end, we formulate the differentiation of the solution and the multiplication by a
variable coefficient in terms of operators acting on these coefficients. The key essence of the
ultraspherical spectral method lies in its ability to render these operators sparse, and as a
result reduce (3.1) to a sparse system of linear algebraic equations to be solved. Note that the
operators developed in the upcoming sections are designed for the interval [−1, 1], as this is
the primary focus in our approach. However, they can be applied to different intervals when
an appropriate scaling factor is incorporated.

3.1.1 The differentiation operator

The relationship (2.5) from Section 2.3.4 provides a simple expression for the derivative of a
Chebyshev polynomial. Implementing this derivative in the differentiation of eq. (3.2) scales
the coefficients and changes the basis function as follows:

u′(x) =
∞∑
k=1

ukT
′
k(x) =

∞∑
k=1

ukkC
(1)
k−1(x),

where C(1) are the ultraspherical polynomials of order λ = 1. Thus, the vector of coefficients
describing the derivative u′(x) in a C(1) series is given by D1u, where D1 is the banded linear
operator,

D1 =


0 1

0 2
0 3

. . . . . .

,
and u is the vector of Chebyshev expansion coefficients of u(x). In the process of discretising
higher order derivatives, formula (2.7) for the λth derivative of the Chebyshev polynomi-
als proves to be helpful. Based on this relationship, one can deduce that the λth order
differentiation operator takes the form:

Dλ = 2λ−1(λ− 1)!


0 . . . 0 λ

λ+ 1
λ+ 2

. . .


λ times︷ ︸︸ ︷

, (3.3)

for λ ≥ 1. For the case of λ = 0, we set D0 to be the identity matrix. The matrix Dλ transforms
a Chebyshev coefficient vector into a vector containing C(λ) coefficients corresponding to
the λth derivative. Note that this differentiation operator is sparse and banded, making it
an improvement over the conventional dense Chebyshev differentiation matrix commonly
employed in spectral collocation methods [75].
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3.1.2 The multiplication operator

In addressing the variable coefficients within eq. (3.1), it is helpful to find a representation
that treats the multiplication of two Chebyshev series as an operator acting upon coefficients.
For this purpose, we initially explore the handling of the most basic, non-constant form of
the function a(x), namely a(x) = x. By expressing u(x) in terms of its Chebyshev series and
then multiplying it with x, one obtains

xu(x) =
∞∑
k=0

ukxTk(x). (3.4)

Recalling that xTk(x) is a component in the recurrence relation depicted in eq. (2.2), one
recognises its reordering as:

xTk(x) =
1

2
(Tk+1(x) + Tk−1(x)) ,

which, when substituted into (3.4), yields

xu(x) =
∞∑
k=0

ukxTk

= u0xT0 +
∞∑
k=1

uk
1

2
(Tk+1 + Tk−1)

= u0T1 +
1

2

∞∑
k=2

uk−1Tk +
1

2

∞∑
k=0

uk+1Tk

= u0T1 +
1

2
u1T0 +

1

2
u2T1 +

1

2

∞∑
k=2

(uk−1 + uk+1)Tk

=
1

2
u1T0 +

1

2
(2u0 + u2)T1 +

1

2

∞∑
k=2

(uk−1 + uk+1)Tk.

(3.5)

Consequently, one can construct an operator, denoted by J0, which maps the Chebyshev
coefficients of the function u(x) to the Chebyshev coefficients of xu(x), as defined by

J0 =
1

2


0 1
2 0 1

1 0 1
. . . . . . . . .

.
If u is the Chebyshev coefficients of u(x), then J0u returns the Chebyshev coefficients of
xu(x). This matrix J0 is commonly referred to as the Jacobi matrix and acts as an operator
for multiplying by x. Since x2 can be expressed as the product of x with itself, x2 can be
discretised using J2

0 . The same principle applies to higher powers of x.

If a(x) is a polynomial of degree m, then, by definition, a(x) can be expanded as a power
series, i.e., a(x) = a0 + a1x+ a2x

2 + . . . amx
m. Thus, multiplication by a(x) can be discretised
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by replacing the powers of x with powers of the Jacobi matrix. However, the evaluation of
power series expansions are generally considered to be less robust [8]. Hence, we prefer to
express a(x) as a polynomial expansion by utilising, for instance, the Chebyshev polynomials,

a(x) =
m∑
k=0

akTk(x). (3.6)

If a(x) is not a polynomial, but rather a general function, then it can be approximated by the
degree m polynomial in (3.6), for sufficiently large m. Theorem 3 can assist in estimating m
for functions that are analytic or many times differentiable.

To create the multiplication operator for a(x) in this form, each polynomial Tk(x) must be
expressed using powers of the Jacobi matrix. These polynomials should then be scaled by
their corresponding coefficients and summed, producing the multiplication operator:

M0[a(x)] =
m∑
k=0

akTk(J0). (3.7)

Thus, M0[a]u returns the Chebyshev coefficients of a(x)u(x). To calculate this summation
efficiently, one can employ Clenshaw’s Algorithm [15], a recursive technique used to compute
the weighted sum of a finite series of functions or matrix functions. It constitutes a broader
version of Horner’s method and is particularly effective for evaluating linear combinations
governed by a three-term recurrence relation.

Algorithm 1 Clenshaw’s algorithm for Chebyshev polynomials
Sm+1 ← 0
Sm ← 0
for k in m− 1,m− 2, . . . , 1 do

Sk = ajI + 2J0Sk+1 − Sk+2

Sk+2 = Sk+1

Sk+1 = Sk

end for
M = a0I + JS1 − S2

Algorithm 1 outlines the specifics of Clenshaw’s summation, particularly tailored to the
recurrence relation of Chebyshev polynomials and adapted for use with the Jacobi matrix
for x multiplications. The advantage of this approach is that it eliminates direct dependence
on the basis functions, obviating the need to compute these functions via their recurrence
relations prior to summation. As a result, enhanced computational efficiency is achieved.

The multiplication operator in (3.7) exclusively acts on and returns coefficients in the Cheby-
shev basis. To address multiplications involving coefficients in a C(λ) series, one must formulate
a λth order multiplication operator. This would enable one to determine the C(λ) coefficients
of a(x)u(x) when u(x) is described in the C(λ) basis.
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Recall the recurrence relation for ultraspherical polynomials given in eq. (2.4), which, for
k ≥ 1, can be reordered as:

xC
(λ)
k =

1

2

(
k + 1

k + λ
C

(λ)
k+1 +

k + 2λ− 1

k + λ
C

(λ)
k−1

)
.

This subsequently paves the way to follow the same steps as in eq. (3.5) to compute the λth
order Jacobi matrix,

Jλ =
1

2



2 2λ
1+λ

0 0 1+2λ
2+λ

2
1+λ

0 2+2λ
3+λ

3
2+λ

0
. . .

. . . . . .


.

The multiplication operator of order λ can then be computed using Algorithm 1, with J0
substituted for Jλ, resulting in the general expression:

Mλ[a(x)] =
m∑
k=0

akTk(Jλ). (3.8)

This operator can accept either the function a(x) or its Chebyshev coefficients a = [a0, a1, . . . am]
⊤

as input and will have a bandwidth of m, which is determined solely by the number of expan-
sion terms necessary to accurately approximate a(x). A smoother function a(x) will result in
a smaller bandwidth m.

One final ingredient is required. While the differentiation operator alters the basis of the
coefficients it operates on, the multiplication operator does not. This gives rise to a compli-
cation in differential equations such as u′′ = a(x)u, as the differential operator on the left
transitions the coefficients into a C(2) basis, while the coefficients on the right remain rooted
in the Chebyshev basis. To address this discrepancy, the solution necessitates an operator
that can map coefficients from the Chebyshev basis to the C(λ) basis. These specific operators
are known as conversion operators.

3.1.3 The conversion operator

To construct an operator facilitating the conversion between the Chebyshev and ultraspherical
bases, one can leverage the recurrence relation (2.6) expressed in Section 2.3.4. With this
relation in hand, a few steps can be applied to transform the Chebyshev series expansion of
u(x) into an ultraspherical expansion:

u(x) =
∞∑
k=0

ukTk(x) = u0T0(x) + u1T1(x) +
1

2

∞∑
k=2

uk

(
C

(1)
k (x)− C

(1)
k−2(x)

)
=

1

2
(2u0 − u2)C

(1)
0 (x) +

1

2

∞∑
k=1

(uk − uk+2)C
(1)
k (x).

(3.9)
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This conversion can be encoded in the form of a sparse and banded operator, S0, that translates
a vector of coefficients of a Chebyshev series into coefficients of a C(1) series:

S0 =
1

2



2 0 −1
1 0 −1

1 0
. . .

1
. . .
. . .

. (3.10)

If higher-order derivatives are involved, it is advantageous to formulate a more comprehensive
conversion matrix, denoted as Sλ, which facilitates the transformation of a vector of C(λ)

coefficients into a vector of C(λ+1) coefficients. Utilising the formula (2.8) the same steps as
used to construct S0 can be followed, resulting in the sparse matrix,

Sλ =



1 0 − λ
λ+2

λ
λ+1

0 − λ
λ+3

λ
λ+2

0
. . .

λ
λ+3

. . .

. . .

. (3.11)

This signifies that if u is the Chebyshev expansion coefficients of u(x), then the sequence of
matrices Sλ−1 . . . S1S0M0[a(x)]u returns the C(λ) expansion coefficients of a(x)u(x).

With the differentiation, multiplication, and conversion operators in our toolbox, we can
discretise the general ODE provided in (3.1) as:

(
MK [aK ]DK +

K−1∑
λ=0

SK−1 . . . SλMλ[aλ]Dλ

)
u = SK−1 . . . S0f ,

where f and u contain the Chebyshev coefficients of the function f(x) and the solution
u(x), respectively. Since all the operators are banded, the resulting matrix on the left of
this equation will be similarly banded. In most instances, the bandwidth is determined
by the multiplication operators. If mλ denotes the number of expansion terms needed to
accurately approximate the variable coefficient aλ(x) in (3.1), then the bandwidth of this
system will be m = maxλ = {m1, . . . ,mK}. The consequence is that the less smooth the
variable coefficient functions are, the larger the bandwidth of the system. In the upcoming
section, we demonstrate the application of the constructed operators and elucidate the solution
process using an example.
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3.2 Solving a boundary value problem

Consider the 1D boundary value problem (BVP) given by the Airy equation,

εu′′(x)− xu(x) = f(x), (3.12)

on the interval [−1, 1] and subject to the Dirichlet boundary conditions

u(−1) = Ai
(
−ε−1/3

)
, u(1) = Ai

(
ε−1/3

)
.

Here, Ai(x) is the Airy function.1 With f(x) = 0, the solution to (3.12) is given by
Ai(xε−1/3). Discretising (3.12) involves employing the operators introduced to represent
differentiation (3.3), multiplication by variable coefficients (3.8), and conversion between
bases (3.11). This leads to the matrix and vector equation,(

εD2 − S1S0M0[x]

)
u = S1S0f , (3.13)

where u and f are vectors composed of Chebyshev expansion coefficients representing the
functions u(x) and f(x), respectively. Importantly, the premultiplication of f by conversion
matrices is a result of the basis change introduced by the differentiation operator on the left.
To ensure the existence of a unique solution to this equation, the given boundary constraints
of the problem must be imposed.

3.2.1 Implementing boundary conditions

The values of Tk(x) and its first-order derivative T ′
k(x) at x = ±1 play a crucial role in defining

Dirichlet and Neumann boundary conditions. They are expressed as follows:

Tk(±1) = (±1)k, T ′
k(±1) = (±1)k+1k2.

To enforce boundary constraints, a matrix that acts on the Chebyshev coefficients is required.
For Dirichlet boundary conditions at x = ±1, such a matrix can be written as:

BD =

[
T0(−1) T1(−1) T2(−1) . . .
T0(1) T1(1) T2(1) . . .

]
=

[
1 −1 1 . . .
1 1 1 . . .

]
,

and for Neumann conditions at x = ±1 it will be:

BN =

[
T ′
0(−1) T ′

1(−1) T ′
2(−1) . . .

T ′
0(1) T ′

1(1) T ′
2(1) . . .

]
=

[
0 1 −4 9 . . .
0 1 4 9 . . .

]
.

1In Matlab the Airy function is given by airy(x).
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General boundary constraints, for example Robin conditions, can be encoded in a similar
manner. In fact, any boundary condition that exhibits linear dependence on the solution’s
coefficients can be imposed in an automated manner [58]. It is important to assume that the
boundary constraints are linearly independent; if not, at least one of them can be eliminated
while preserving the uniqueness of the solution [73].

The matrices BD and BN operate on the coefficient vector u to return the values of the
solution (or its derivative) on the boundaries. In the case of the Airy equation example,
the ensuing linear system ensures that the solution evaluated at ±1 satisfies the boundary
conditions:

BDu =

[
Ai(−ε−1/3)
Ai(ε1/3)

]
.

In general, one imposes K boundary conditions in the form Bu = b upon the linear system.
By redefining the vector f in (3.13) to represent the coefficients of f(x) within the C(2) basis
and introducing L = εD2 − S1S0M0[x], one can reformulate eq. (3.13) as the sparse linear
system Lu = f . Combining the boundary conditions with those of the differential operator,
one arrives at the infinite system of equations,[

B
L

]
u =

[
b
f

]
. (3.14)

An advantage of enforcing the boundary constraints in this manner is that the structure of
the linear system is independent of the specific boundary constraints that are applied [58].

3.2.2 Solving the equation

Solving an infinite dimensional linear system is difficult. Olver and Townsend [58] suggest an
adaptive QR approach which does so in a forward-solve like manner, terminating when the
magnitude of the computer solution coefficients becomes sufficiently small. However, here we
consider a simpler approach of taking a finite section approximation of (3.14), that is the first
n columns is extracted from B, and from L the first n columns and n−K rows are extracted.

Next, a matrix A is defined as a square operator of size n×n, with its first K rows constituting
the dense rows of the finite matrix B, and the remaining rows derived from the finite banded
matrix L. Note that one could potentially have made this system overdetermined, but doing
so would result in a more computationally expensive solution procedure without guaranteeing
higher accuracy.

The vector f contains the first n−K coefficients of f(x) in the C(2) basis. In practice, one
can approximate these coefficients by interpolating at n−K Chebyshev points, then applying
the Discrete Cosine Transform (DCT), and finally employing conversion operators to obtain
coefficients in the C(2) basis. Similarly to A, the vector is redefined to include the boundary
values b in its first K entries. This finally results in a sparse linear system Au = f .
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Figure 3.1: The left image depicts the distribution of nonzero entries in a finite section of the linear
system (3.14). The matrix exhibits an almost-banded structure, that is, it is banded with the exception of the
densely populated top rows, a result of incorporating the boundary constraints. Special techniques exist for
solving this system efficiently. The figure on the right illustrates how such a matrix will be partitioned when
using the Schur complement method for more efficient solves.

This system exhibits a distinctive almost-banded structure that is characteristic of linear
systems within the ultraspherical method [23]. This structure is illustrated on the left in
Figure 3.1. The K dense upper rows within the matrix can potentially hinder the computational
efficiency of solving the linear system. Nevertheless, specific strategies have been devised to
handle the inversion of such matrices while leveraging their inherent sparsity.

One effective technique known as the Sherman–Morrison–Woodbury method stands out in
this context. It involves isolating the K densely-populated upper rows of the almost-banded
matrix A from the remaining elements. This isolation is achieved by expressing A as a rank-K
update of a banded matrix Â. That is A = Â+ UV ⊤, where both A and Â assume square
dimensions of size n×n, and U and V are n×K matrices. Let IK denote the identity matrix
with dimensions K ×K and assume that both (IK + V Â−1U) and Â are nonsingular, then
the inverse of A can by calculated as [30]:

A−1 = Â−1 − Â−1U(IK + V ⊤Â−1U)−1V ⊤A−1.

The advantage of this approach lies in the faster computation of the inverse of the banded
matrix Â when compared to the inverse of the almost-banded matrix A. If Â has a bandwidth
of m, the computational complexity for solving Â−1U would be in the order of O(m2n).
Additionally, computing the term (IK + V ⊤Â−1U)−1V ⊤ would introduce an additional com-
plexity of approximately O(K2n) operations, resulting in an overall complexity in the order
of O(m2n) +O(K2n).

Another noteworthy approach to consider is the Schur complement, which is frequently
employed in the solution of systems of linear equations. This method involves partitioning
a matrix into four submatrices, a configuration that proves advantageous when the leading
submatrix is relatively small, thus making the computation of its inverse efficient.
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Suppose one partitions a square matrix A of dimensions n× n into four submatrices, each of
which are nonsingular. Then the Schur complement of A can be expressed as [78]:

A−1 =

[
E F
G H

]−1

=

[
S−1 −S−1FH−1

−H−1GS−1 H−1 +H−1GS−1FH−1

]
,

where S = E−GH−1F is also a nonsingular matrix. In cases where A has K dense boundary
rows at the top, it would be partitioned such that the leading submatrix E assumes dimensions
K × K. Then F will be K × (n − K), G is (n − K) × K, and H is (n − K) × (n − K).
This partitioning is visually depicted on the right in Figure 3.1. Given that the matrix H is
banded with a bandwidth of m, determining H−1G requires O(m2n) operations. Moreover,
assuming S has dimensions K ×K, solving S−1F would involve a computational complexity
in the order of O(K2n). This is equivalent to the computational cost expected from the
Sherman–Morrison–Woodbury formula.

Figure 3.2 on the left illustrates performance in terms of execution time of both strategies
when employed to solve the linear system resulting from the Airy equation with ε = 1. As
expected, they show comparable performance. It is clear that they significantly outperform
the utilisation of Matlab’s backslash operator, which uses a sparse representation but
does not exploit the system’s almost-banded structure. Note that decreasing the value of ε
significantly increases the number of terms n required to resolve the solution. However, it
does not impact the bandwidth of the problem [58]. The approximate solution, computed
through the Schur complement approach, is presented on the right in Figure 3.2, alongside
the exact solution provided by Matlab’s Airy function, airy(x). The geometric convergence
of this approximation is shown in Figure 3.3.

Figure 3.2: The left graph displays the execution time (in seconds) required for solving the almost-banded
linear system (3.14) for increasing n using various approaches. In this case, these values of n are far larger than
required to solve the ODE to machine precision (see Figure 3.3). However, these solution times are independent
of ε, and as ε decreases, discretisations of this size are soon required. The Sherman–Morrison–Woodbury
formula (green) and the Schur complement method (red) exhibit similar performance levels, both outperforming
Matlab’s backslash operator (blue). On the right is the spectral solution to the Airy equation (3.12) with
ε = 0.0002 depicted in blue, exhibiting a clear agreement with the analytic solution shown in black.

When addressing linear systems such as (3.14), another critical factor to consider is the
condition number of the matrix A. This number provides insight into how close the matrix
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is to singular and gives an indication of the forward accuracy to which the linear system
can be solved. Generally, a large condition number indicates closeness to singularity and
ill-conditioning of the linear system [9]. One way around this, is the use of preconditioners.
Preconditioners serve as transformations that reconfigure a problem to a form that is more
suitable to solve. The primary aim is to reduce the condition number of the problem.

The preconditioning process involves finding an approximate inverse P−1 of the original
matrix A that satisfies two essential criteria. First, the matrix P−1A should have a reduced
condition number compared to A. Second, solving linear systems involving P−1A should be
computationally more efficient than solving systems directly with A.

Various preconditioning approaches are available, including diagonal, block-diagonal, and
approximate inverse preconditioning [58]. The selection of a preconditioner in direct spectral
methods is important, as the effectiveness of different techniques are usually based on the
specific characteristics of the problem at hand.

In their work [58], Olver and Townsend demonstrate the existence of a diagonal preconditioner
that ensures the preconditioned linear system resulting from the ultraspherical spectral method
maintains a bounded condition number in the 2-norm. Specifically, for matrices with K
boundary conditions (dense rows), they propose a diagonal preconditioner given by

P−1 =
1

2K−1(K − 1)!
diag

(
1, . . . ,

1

K
,

1

K + 1
, . . .

)
. (3.15)

The impact of preconditioning on the condition number of the linear system in (3.14) is
illustrated in Figure 3.3, depicting a clear preservation of bounded condition numbers when
preconditioning is used.

Figure 3.3: On the left side, the variation of the condition number of the system (3.14) with ε = 0.01 is
depicted as n is increased. Observe that the application of the preconditioner in (3.15) appears to constrain
the condition number at a constant value of 72.6. This behaviour was predicted by Olver and Townsend [58],
and is in contrast to the rapid increase of the condition number when no preconditioning is employed. On the
right, the geometric convergence with ρ ≈ 10 of the solution to the Airy equation with ε = 1 is depicted. The
roundoff plateau at roughly 10−16 is due to the accuracy reaching the level of machine precision. Fifteen digits
of accuracy is attained when n = 16, however, if ε = 0.0002, then n = 100 is needed for the approximation to
achieve the same accuracy. The value of ε impacts n, but does not affect the bandwidth of the linear system.
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3.3 Time-dependent problems

The ultraspherical spectral method can be embedded in the method-of-lines type technique
to offer an efficient extension for solving time-dependent problems [14]. To demonstrate, we
consider solving the well-known heat equation on the interval [0, L] over the time span [0, T ],

∂

∂t
u(x, t) = c2

∂2

∂x2
u(x, t), (3.16)

with an initial condition u(x, 0) = (1 + x2) e−2x2 and the Dirichlet boundary conditions
u(±1) = 2e−2. This equation can model heat propagation in a uniform bar, where c represents
a positive constant determined by material thermal properties like conductivity.

When addressing problems in the time domain, there are many available strategies, including
high-order Runge–Kutta methods [12], exponential integrators [72], and fractional-step meth-
ods [44]. These approaches are typically categorised as explicit, implicit, or a combination of
both. Explicit methods project the system’s state into the future based on its present state,
while implicit methods find solutions by solving equations involving both the current and
future states.

Implicit methods have the additional computational cost of solving a linear or nonlinear
system at each step and can present greater implementation challenges. Nevertheless, they
prove significantly more efficient for solving stiff problems compared to explicit methods,
since they are not constrained by severe time-step restrictions [38]. Defining precisely what
constitutes a “stiff” equation is difficult, but it essentially implies that the equation contains
terms that can lead to rapid variation in the solution. When explicit methods are employed
for stiff problems, they often necessitate excessively small step sizes to uphold error limits
and method stability. For such problems, achieving a desired level of accuracy with explicit
methods demands considerably more computational time, making implicit methods with
larger time steps a more efficient choice, even when factoring in the additional solve at each
time step [4].

For linear time-dependent problems, we will employ an implicit, single step method named
backward Euler, which is known to have an error of order one in time [9]. Backward Euler
is chosen for its simplicity in both implementation and description, however the approach
we describe could easily be extended to alternative implicit discretisations, such as Crank–
Nicolson [17] A time step ∆t = 0.01 is introduced, along with time points tn = n∆t for integers
n ≥ 0. The approximate solution at time ti is denoted by u[i]. Discretising in time using a
finite difference approximation and treating all other terms implicitly results in equation (3.16)
becoming a steady-state PDE in u[i+1],

u[i+1] − u[i]

∆t
= c2

∂2u[i+1]

∂x2 . (3.17)

With implicit time-stepping stability is provided for all step sizes, avoiding the step-size
limitations inherent to explicit methods. Rearranging (3.17) yields(

1− c2∆t
∂2

∂x2

)
u[i+1] = u[i].
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Discretising in space using the spectral operators from Section 3.1 leads to:(
S1S0 − c2∆tD2

)
u[i+1] = S1S0u

[i], (3.18)

where conversion matrices are necessary due to the basis change induced by the differentiation
operator. Since the operators are all banded, the resulting matrix on the left also maintains a
banded structure. Implicit time-stepping requires that this linear system be solved at each
step in order to calculate the solution at the next time step. To initiate the scheme, we
compute the Chebyshev coefficients of the initial condition using the DCT and set these as
our starting solution, denoted as u[0]. We assume that the given initial condition is consistent
with the boundary conditions, that is

Bu[0] = b,

where B is the Dirichlet boundary condition matrix constructed in Section 3.2.1, and b
contains the boundary values. When calculating the new solution at each step, one must
ensure that the solution continues to satisfy the boundary constraints. To achieve this, the
last two rows in the resulting matrix on the left of (3.18) is replaced with B, and the last
two entries in the previous solution, denoted as u[i], with b. The inclusion of the dense rows
in B results in the system exhibiting an almost-banded structure. Given that the matrix
on the left remains constant across time steps, one can compute the LU decomposition for
more efficient solving, particularly when dealing with numerous time steps. At each step, the
righthand side must be updated to reflect the new solution, with the corresponding entries
replaced by the boundary values. To visualise the solution at specific time steps, as shown on
the left in Figure 3.4, the Chebyshev coefficients in the vector u can be transformed back
into values at the Chebyshev points using the inverse DCT.

Figure 3.4: The left graph illustrates the spectral solution of the heat equation (3.16) with c = 1 at
various time steps. The right graph depicts the solution to the set of coupled ODEs in (3.19). For both of
these instances, the solution values at the Chebyshev points were computed from the Chebyshev expansion
coefficients using the Discrete Cosine Transform (Section 2.3.3).
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3.4 Systems of equations

The ultraspherical spectral method can be extended to handle systems of linear equations.
We examine a simple set of coupled linear ODEs on the interval [−1, 1] as an example:

u′′(x) = v(x) + f(x)

v′′(x) = u(x) + g(x),
(3.19)

subject to Dirichlet boundary conditions. The approach to solving this system is almost
equivalent to that of a single differential equation, albeit with the linear system’s size being
twice as large. Discretising both equations using the operators outlined in Section 3.1 and
combining them into a single system, one obtains:[

D2 −S1S0

−S1S0 D2

][
u
v

]
=

[
S1S0f
S1S0g

]
, (3.20)

where u and v contain the Chebyshev expansion coefficients of the solutions u(x) and v(x).
Similarly, f and g denote the Chebyshev expansion coefficient vectors for approximating the
functions f(x) and g(x), respectively.

Figure 3.5: The distribution of nonzero entries in the linear system (3.19) before reordering (left) and after
reordering (right) for n = 60. The fully and partially dense rows at the top of each of the matrices arise from
enforcing the boundary constraints. Comparatively, the matrix on the right exhibits a significantly smaller
bandwidth than the one on the left, signifying a more efficient structure for computational operations.

Incorporating boundary conditions similarly as before involves introducing four boundary
rows that are partially dense, rather than two fully dense rows. Specifically, the last two
rows in both the upper and lower halves of the matrix on the left in eq. (3.20) are removed.
Following this, two partially dense rows are added at the top of the matrix to enforce the
boundary conditions for u, succeeded by an additional two partially dense rows to impose
boundary conditions for v. The arrangement of nonzero entries in the resulting matrix is
illustrated on the left in Figure 3.5. While this matrix is visibly sparse, it lacks the almost-
banded structure with a small bandwidth that was observed earlier. A reordering technique,
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specifically interlacing the u and v coefficients, can improve the structure and restore the
almost-banded shape, as evidenced on the right in Figure 3.5. During this procedure, the
corresponding entries on the righthand side are substituted with the boundary values and the
vector is appropriately reordered.

With this arrangement in place, the strategies from Section 3.2.2 can be employed to efficiently
compute the matrix inversion to solve the linear system. Note that since the resulting solution
has been reordered, it must be transformed back to its original configuration before extracting
the initial n entries as coefficients of u and the latter n entries as coefficients of v. These
approximations for u and v are jointly plotted in Figure 3.4 for the case where f(x) = 2 and
g(x) = −x2, with u(±1) = 1 + e±1 and v(±1) = e±1 as boundary conditions.

The accuracy of the solution reaches roughly 10−15 when using 15 terms in the expansion.
The approximate solution is compared to the exact solution given by u(x) = e−x + x2 and
v(x) = e−x. The accuracy is determined by calculating the 2-norm at 50 Chebyshev points.

3.5 Nonlinear problems

To demonstrate the applicability of the ultraspherical method to nonlinear problems, we
consider a simple example on the interval [−1, 1] defined by the following nonlinear differential
equation:

u′′ + xu2 = 1, u(±1) = ±1. (3.21)

In this example, we employ Newton’s method, a widely used iterative root-finding algorithm
falling under the category of fixed-point iteration. Other examples of fixed-point iterations
include Halley’s method [8] and specific variations of Runge-Kutta methods [2].Newton’s
method proves successful in handling nonlinear problems by breaking them down into a series
of linear problems. This involves first linearising the equation, and thereafter discretising it
using spectral matrices. One can define an operator F to be a function of the solution u, such
that

F(u) = D2u+M(x)u2 − I,

where D,M and I are continuous operators that represent their counterparts in (3.21). The
derivative of F with respect to u is known as the Fréchet derivative [65]. In the present
context, it functions equivalently to a Jacobian with respect to u, and hence we will adhere
to the more familiar terminology. The Jacobian function J is defined as

J (u) = ∂F(u)
∂u

= D2 + 2M(x)u.

From this relationship one can define a small update in the solution, δu, as

δu = J (u)−1F(u).

Next we discretise these operators using our spectral tools, leading to a discrete function for
F in terms of the Chebyshev coefficient vector of u,

F (u) = D2u+ S1S0M0[x]M0[u]u− S1S0e1,
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where e1 denotes first column of the identity matrix of size n× n. The nonlinear term, u2,
is seen as a multiplication of u by itself, and can thus be discretised using a multiplication
operator, as constructed in Section 3.1.2. Furthermore, conversion matrices are applied to
ensure a consistent basis for solving. The Jacobian is discretised in a similar manner, leading
to the matrix

J(u) = D2 + 2S1S0M0[x]M0[u].

We let u[i] be the Chebyshev coefficients describing the solution at step i, which is updated
every iteration using the formula:

u[i+1] = u[i] + δu[i],

where the update δu[i] at step i is a vector determined by δu[i] = J(u[i])−1F (u[i]). The process
is initiated with an initial approximation, u[0], and iteratively updated it to converge towards
the accurate solution. The initial guess is selected to satisfy the boundary conditions. In this
example, u0(x) = x is chosen as a suitable starting point, resulting in u[0] = [0, 1, 0, . . .]⊤ as
the initial Chebyshev coefficient vector.

To ensure that the update does not alter the boundary conditions, zero boundary conditions
is imposed on the coefficients of the update. This is achieved through the boundary condition
matrix B, by setting Bδu[i] = 0 at each time step. This constraint is incorporated into the
matrix J by replacing the last two rows, while zeros are substituted into the corresponding
positions in F .

Four iterations of this strategy is applied while taking n = 21. This yields an approximation
with roughly 13 digits of accuracy when compared to the solution generated by an open-source
software system called Chebfun [63]. The approximation and solution is depicted in Figure 3.6,
accompanied by the error after each iteration in Table 3.1.

Figure 3.6: The approximate solution
to (3.21) is showed to align with the exact so-
lution.

Iteration i 2-norm error
1 4× 10−4

2 5× 10−5

3 6× 10−11

4 3× 10−13

Table 3.1: The 2-norm error after each it-
eration, measured at 50 Chebyshev points, is
roughly quadratic.
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3.6 Two-dimensional problems

Extending the ultraspherical spectral method to handle problems with higher spatial dimen-
sions comes with increased computational demands, both in terms of storage and execution
time [45]. However, it does not introduce significant additional conceptual complexity. To
illustrate this, let us consider the extension of the method to solve a system of linear equations
in two dimensions. The 2D analogue of the general form given in eq. (3.1) is expressed as:

Lu(x, y) = f(x, y), L =

Ky∑
i=0

Kx∑
j=0

aij(x, y)
∂i+j

∂yi∂xj
.

Here L represents a linear partial differential operator (PDO), Kx and Ky are the differential
orders of L in the x- and y-variables respectively, and f(x, y) and aij(x, y) are given functions
defined on [−1, 1]2. Additionally, standard linear constraints, such as Dirichlet, Neumann, or
Robin boundary conditions, are often prescribed along the domain edges.

We seek to compute a matrix U of bivariate Chebyshev expansion coefficients of the solution
u(x, y), satisfying:

u(x, y) =
∞∑
i=0

∞∑
j=0

UijTi(y)Tj(x), (x, y) ∈ [−1, 1]2. (3.22)

3.6.1 The operators

Applying operators for derivative approximations and multiplications now require them to
act in either the x- or y-direction. When addressing y-derivatives or multiplications involving
y, the operator is applied to the columns of the coefficient matrix U , thereby necessitating
premultiplication by the operator. Conversely, for x-derivatives or multiplications with x, the
operator acts on the rows of U , which mandates postmultiplication by the transpose of the
operator.

In instances where a variable coefficient a(x, y) in the differential equation is separable, i.e.,
a(x, y) = g(x)h(y), the discretisation of a(x, y)u(x, y) can be managed by premultiplying U
by M0[h] and postmultiplying by M⊤

0 [g]. In cases where a(x, y) is not separable, additional
steps are required. The first is to find a low rank approximation to the function, that is,

a(x, y) ≈
N∑
r=1

gr(x)hr(y). (3.23)

The open-source software package Chebfun2 [63] is a convenient tool for calculating low rank
approximations of functions of two variables. It determines the approximation by means of an
algorithm that can be viewed as an iterative application of Gaussian elimination with complete
pivoting [74]. If a(x, y) is approximated by the sum of several separable functions, as in (3.23),
then the discretisation of a(x, y)u(x, y) can be approximated by

∑N
r=1M0[hr]UM⊤

0 [gr].
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It is sensible to ensure that when the Chebyshev polynomials dependent on x in eq. (3.22)
are converted to ultraspherical polynomials, the Chebyshev polynomials dependent on y must
be converted to the same basis. This requires premultiplication and postmultiplication by
the conversion matrices (or their transposes), as computed in Section 3.1.3. To illustrate the
application of these operators in 2D, we solve a Poisson-like equation with variable coefficients:

a1(x, y)
∂2u

∂x2
+ a2(x, y)

∂2u

∂y2
= f(x, y). (3.24)

For the sake of simplicity, we assume the coefficients are separable functions, i.e., a1(x, y) =
g1(x)h1(y) and a2(x, y) = g2(x)h2(y), leading to the discrete form:

S1S0M0[h1]UD⊤
2 M

⊤
2 [g1] +M2[h2]D2UM⊤

0 [g2]S
⊤
0 S

⊤
1 = S1S0FS⊤

0 S
⊤
1 , (3.25)

where F is the expansion coefficient matrix of the function f(x, y), calculated using the 2D
DCT. This equation falls under the category of Sylvester equations [24], for which special
methods exist to solve them efficiently [58]. However, these strategies are limited in the types
of equations they can be applied to. Hence, a more general approach will be considered for
solving (3.25).

To align with the 1D strategy, the matrix U is converted to a vector u of size n2 × 1 by
stacking the columns from left to right. One can express this conversion of a matrix to a
vector by u = vec(U). Kronecker products are then utilised to enable the matrices in (3.25) to
act on the vector u. Setting f = vec(S1S0FS⊤

0 S
⊤
1 ), and defining the discrete linear operator

L to be the n2 × n2 matrix:

L =
(
D⊤

2 M
⊤
2 [g1]

)
⊗

(
S1S0M0[h1]

)
+
(
M⊤

0 [g2]S
⊤
0 S

⊤
1

)
⊗

(
M2[h2]D2

)
, (3.26)

establishes the matrix and vector equation Lu = f , as required. As previously discussed,
all operators in this equation exhibit a banded structure, with the multiplication operator
contributing the largest bandwidth. If m represents the highest polynomial degree required
to approximate any of the variable coefficient functions, g1, g2, h1, h2, then this system would
be block-banded with a bandwidth of O(mn). If the variable coefficients in the problem are
smooth and can be approximated by polynomials of degree m≪ n, then the system would be
sparse. In the upcoming section the boundary constraints are enforced in order to determine
a nontrivial solution.

3.6.2 2D boundary conditions

The application of general boundary constraints in two dimensions is more complex than in
one dimension [8]. Suppose the boundary conditions are supplied as linear constraints of the
form Bxu(x, y) = g(y) for left and right boundaries and Byu(x, y) = h(x) for bottom and top
boundaries. One can discretise these conditions as

UB⊤
x = G⊤, ByU = H,
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where G is of size Kx × n and H has size Ky × n, and they contain the first n Chebyshev
coefficients of the functions in g(y) and h(x), respectively. Furthermore, Bx and By take
on the same dimensions as G and H, respectively. If, for example, Dirichlet conditions are
enforced on the four sides of the domain, then both Bx and By would be equal to the matrix
BD, constructed in Section 3.2.1. Note that for the constraints to be consistent, the matrices
must satisfy the following compatibility conditions [73]:

HB⊤
x = (ByU)B⊤

x = By(UB⊤
x ) = ByG

⊤.

In the case of Dirichlet constraints on the reference square, the compatibility conditions
are satisfied if the boundary data match at the four corners of [−1, 1]2. To incorporate the
boundary conditions into the discrete operator in (3.26) two things are needed. Firstly, the
conditions must be rewritten as Kronecker products to include them into the differential
operator of size n2 × n2. To do this, the new constraints are expressed as:

(Bx ⊗ I)u = g, (I ⊗By)u = h, (3.27)

where vectors g and h contain the stacked coefficients of G and H, respectively, resulting in a
length of nKx for g and nKy for h.

Secondly, the rows in L that correspond to the smallest coefficients in U must be removed
in order for the system to remain square after incorporating the boundary constraints.
The Ky bottom rows of U contains the smallest coefficients in the y-series, while the Kx

rightmost columns contains the smallest coefficients in the x-series. If the entries of U are
labelled 1 to n2, down the columns and from left to right, and Ix denotes the indices that
correspond to the smallest x-coefficients in U , then Ix = {n2 − nKx + 1, . . . , n2}. Similarly,
Iy = {n−Ky + 1, . . . , n, 2n−Ky + 1, . . . , 2n, . . . , n2 −Ky + 1, . . . , n2}. The rows Ix ∩ Iy are
removed from L and the corresponding entries are removed from f .

Finally, the constraints expressed in (3.27) are appended at the top of L and at the top of f .
Once these conditions are incorporated, the linear system will have an almost block-banded
structure, which can be solved in O(n4) operations using one of the techniques described in
Section 3.2.2, or an alternative, such as the adaptive QR method [68]. More advanced solvers
also exist that can reduce this complexity to O(n3) [58].

3.6.3 Example: Poisson’s equation in 2D

Using the procedure outlined above, we solve for the constant coefficient Poisson equation
∇2u = −1, with zero Dirichlet boundary conditions on [−1, 1]2. For comparison, we consider
the Fourier series solution given by:

u(x, y) =
∞∑
j=1

∞∑
k=1

fjk
(j2 + k2)π2

sin(jπx) sin(kπy),

where an explicit formula for fjk can be computed by substituting in f(x, y) = −1

fjk = 4

∫ 1

0

∫ 1

0

f(x, y) sin(jπx) sin(kπy)dxdy =
16 ((−1)j − 1)

(
(−1)k − 1

)
jkπ2

.
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We regard this Fourier series, truncated at j = k = 104, as the ‘exact’ solution and compare
our approximate solution to it at values on a grid of Chebyshev points. The 2-norm error is
displayed in Figure 3.7. As anticipated for smooth solutions, fast convergence is observed
as the polynomial degree n in the ultraspherical spectral approximation is increased. The
accuracy reaches a plateau at roughly 10−11. The solution is depicted on the left in the same
figure.

Figure 3.7: The left side illustrates the solution to the constant coefficient Poisson problem, ∇2u = −1,
under zero Dirichlet boundary conditions. On the right, the fast convergence of this solution is depicted. The
error was computed as the 2-norm difference compared to the Fourier series solution at Chebyshev grid points.
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CHAPTER 4

THE HPS METHOD

The spectral method explored thus far is known for its ease of implementation and impressive
convergence properties. However, it comes with a limitation – it is primarily suitable for
rectangular domains, thereby limiting its ability for solving problems on more irregular
geometries. Over the last two decades, research on spectral methods has made significant
strides, such as the introduction of the ultraspherical method [58], advancements in adaptive
strategies [58], and the development of new techniques for unbounded domains [71] and
time-dependent formulations [38]. Nevertheless, most optimal techniques are tailored for
rectangular domains due to the challenge irregular geometries pose in terms of accuracy and
efficiency [8]. New strategies for problem-solving on irregular domains are needed.

To overcome some of these challenges, domain decomposition emerges as a strategic solution,
broadening the scope of domains where spectral methods can be effectively applied while
breaking down the linear system into more manageable components [11]. An added advantage
is the incorporation of parallelism facilitated by high-performance computing clusters, thus
enhancing computational efficiency [23]. This approach also offers a means to optimally utilise
computational resources and memory, particularly in the context of large-scale simulations.

Domain decomposition entails splitting a larger, potentially complicated, domain into smaller
subdomains. The concept revolves around computing solutions for a given differential equation
within each subdomain and subsequently recombining these solutions to derive a solution
across the overarching domain. This transition signifies a shift from global spectral methods to
the notion of a spectral element method. The approach allows for the solution of problems on
more interesting geometries and, hopefully, a more resource-efficient computational process.

This chapter explores, in particular, a specific methodology known as the hierarchical Poincaré–
Steklov method [4, 51, 52]. This strategy entails a multidomain spectral method grounded
in a recursive domain decomposition approach. The essence of this technique lies in “gluing”
solutions at the interfaces of elements through the application of Poincaré–Steklov operators.
This hierarchical approach contributes to memory optimisation by segmenting the domain
into smaller elements and employing localised operators, thus streamlining memory usage.

More specifically, we explore a variant of the hierarchical Poincaré–Steklov scheme that adopts
the ultraspherical spectral method as an alternative to collocation for element discretisation,
as introduced by Fortunato et al. [23]. This method was originally developed by Gillman
and Martinsson [28, 29] for nodal discretisations, and so our initial focus is on explaining the
fundamentals of the domain decomposition implementation within the modal framework.
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4.1 Domain decomposition for modal discretisation

Several intricacies arise when tailoring the hierarchical domain decomposition approach
introduced by Gillman and Martinsson to a modal discretisation. To facilitate our explanation,
we consider a simple domain that has been partitioned into two subdomains, such as the
1D and 2D examples shown in Figure 4.1. When solving smooth PDEs on such domains,
one can anticipate a smooth solution across the interface. For second order operators, it
suffices to enforce that the global solution and its normal derivatives are continuous across
the interface [29].

Figure 4.1: 1D and 2D examples of a domain partitioned into two subdomains, E1 and E2. In the modal
setting, functions on each element are not directly communicating with each other, but rather interacting
with an interface function on their shared boundary.

In the context of nodal discretisation, it is intuitive to categorise the nodes on each element
into “interior” and “exterior” classes. At the interface where two elements meet, the values
along that boundary are shared between the elements, making it straightforward to ensure
that both elements yield the same solution at such points. Similarly, enforcing matching
derivatives of the solution at the interface nodes is conceptually straightforward. However,
in the modal setting, the coefficients within a Chebyshev expansion lack spatial positions,
making it less intuitive to classify interface nodes. Instead, one needs to enforce that the
bivariate Chebyshev expansions on each element yield identical solutions at their interfaces.
To accomplish this, it is helpful to envision bivariate functions on each element not directly
communicating with each other, but rather interacting with univariate functions at each
interface [23], as illustrated in Figure 4.1. These univariate interface functions facilitate the
classification of Chebyshev coefficients into similar groups as in nodal discretisation, allowing
one to impose the joining conditions.

Constructing a linear system for a decomposed domain involves integrating three main
components. The first component encompasses the equations that govern the solution within
the domain, typically represented as a linear system Au = f . The second component is to
incorporate linear boundary constraints in a similar manner to the global spectral method
discussed in Chapter 3. Specifically, constraints on the exterior boundaries (excluding the
interface boundary) are included as Beu = b. The third component incorporates the joining
conditions, crucial to the setup, acting on the interface boundary. These values are denoted
by Bi and the derivatives by Di. These components collectively form the linear system:
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Here, the subscripts indicate the index of the element it is applicable to. From this schematic,
it is evident that the linear system could have been decoupled if not for the joining conditions.
These conditions necessitate that the large linear system cannot be divided into smaller,
independent parts for individual solving. The same principle applies to any number of
subdomains. Every subdomain introduces interior, boundary, and joining conditions to the
matrix depicted above, expanding its size significantly to kn2×kn2 for k subdomains. Solving
such large systems efficiently poses a challenge, prompting us to explore a specific domain
decomposition strategy that leverages a fast direct algorithm for efficient solves.

4.2 Outline of the HPS method

We introduce a specific domain decomposition strategy referred to in the literature as the
hierarchical Poincaré–Steklov (HPS) approach, which we will apply to the spectral domain
decomposition problem from the previous section. Our approach closely follows that introduced
by Fortunato et al. [23] for modal discretisations and Gillman and Martinsson [28, 29] for
nodal discretisations. The HPS strategy recursively joins together solutions at the interfaces
between subdomains using Poincaré–Steklov operators. A broad outline of the method is:

1. A given domain is divided into a hierarchical tree of rectangular patches. The patches
on the finest level are referred to as leaf patches, or simply leaves.

2. During the “initialisation stage” (Section 4.4.1) two local operators on each of the leaves
are constructed – a solution operator, which computes the local solution to the PDE
on the leaf when given Dirichlet data, and a Dirichlet-to-Neumann operator, which
computes the outward flux of the local solution when given Dirichlet data.

3. The scheme then enters the “build stage” (Section 4.4.2), where local patches are merged
pairwise to create parent patches in an upwards pass through the tree. Creating a
parent patch consists of forming its solution operator and Dirichlet-to-Neumann operator
by enforcing continuity of the solution and its derivative at the interface between its
children. Merging continues until only a single global patch remains.

4. Once the solution operators for the entire hierarchy of patches has been created, we
enter the final stage of the scheme, called the “solve stage” (Section 4.4.3). Here, we
provide boundary conditions of the global domain to the global solution operator to
retrieve the unknown interface data. This is repeated at every level of the tree in a
downward pass through the tree. Ultimately, when the boundary data of the smallest
patches are known, then it can be passed on to the local solution operators to solve the
PDE.
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To understand this method, we start by working through the simple domain decomposition
setting of two square-shaped elements that are “glued” together.

4.3 Two “glued” squares

The domain decomposition setting with two square patches that are “glued” together is
depicted in Figure 4.2. We wish to use the ultraspherical spectral method to solve on the
domain Ω = [−2, 2]× [−1, 1], which is decomposed into elements E1 = [−2, 0]× [−1, 1] and
E2 = [0, 2]× [−1, 1]. The problem setup is:

∇2u1 = f1 in E1,
∇2u2 = f2 in E2,

u1 = g1 on ∂E1 ∩ ∂Ω,

u2 = g2 on ∂E2 ∩ ∂Ω,

u1 = u2 on Γ,

∂u1

∂n1

=
∂u2

∂n2

on Γ,

(4.1)

where Γ is the interface between the two elements, f and g are given functions, and fi = f |Ei
for any function f . The concept of a pairwise merge in this model problem plays a fundamental
role within the framework of the HPS scheme.

Figure 4.2: A problem setup with two “glued” patches, E1 and E2. The interface Γ is shared by the two
elements. On Γ the solution on both patches must satisfy the joining conditions.

One can represent the solutions u1 and u2 on the two subdomains using n × n Chebyshev
coefficient matrices.1 As in our global spectral approach from Section 3.6, these matrices
are compiled into vectors u1 and u2 of size n2 × 1. The functions f1 and f2 can be similarly
discretised and converted into vectors, namely f1 and f2. Figure 4.3 provides an illustration
of the discrete version of the problem.

1In practice, the discretisation need not be the same on each patch, but we consider this case here for
simplicity.

38

Stellenbosch University https://scholar.sun.ac.za
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Figure 4.3: The discrete problem setup for the “glued” patches example. Vectors ci contain the Chebyshev
coefficients of the univariate function on side i.

In Figure 4.3, each vector ci contains the n Chebyshev coefficients describing the univariate
function of Dirichlet data on its corresponding side. Additionally, we create the vectors cE1
and cE2 to contain the Dirichlet data on the respective edges of each element, ordered as left,
right, bottom, and top. That is:

cE1 =
[
c1, c2, c3, c4

]⊤
, cE2 =

[
c5, c6, c7, c8

]⊤
.

The vectors c1, c3, c4, c6, c7, and c8 are determined from the provided boundary conditions.
Vectors c2 and c5, however, cannot yet be determined because they describe the unknown
function on the interface Γ. To ensure continuity, one must have c2 = c5 = cΓ, where cΓ is
the Chebyshev coefficient vector describing the interface function on Γ.

Once cΓ is determined, the two elements can be treated independently, and their solutions
can be calculated separately. To calculate cΓ, we construct an interfacial solution operator SΓ

that takes in coefficients from the boundary of Ω. This can be expressed as:

cΓ = SΓ

[
c1, c3, c4, c6, c7, c8

]⊤
.

To compose such an operator on Ω, we first develop local direct solvers on E1 and E2.
Components of these solvers are then utilised to construct the interfacial solution operator
SΓ. Once the interface function is determined, the two subproblems in (4.1) can be decoupled
and independently solved by applying the local solvers. By using the direct solvers for the
subproblems to build a direct solver for the global interface problem, it is clear that extending
the strategy to multiple elements will follow readily.

4.3.1 Constructing the local operators

To establish a solver for (4.1), our initial step involves constructing operators that solve
the local PDE within each of the elements E1 and E2. These operators, known as solution
operators, are designed to process Dirichlet boundary data specific to each element and
produce the corresponding PDE solution for that particular element. If the solution on an
element E is represented using a n× n coefficient discretisation, then the dimensions of the
corresponding solution operator, SE , will be n2 × (4n+ 1).
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In the context of quadrilateral domains, the solution operator on E takes as input the
four univariate functions representing the Dirichlet data along its four sides, which is given
by cE . The product SEcE yields the Chebyshev coefficients of the bivariate function that
approximately solves the PDE on E . On each element, SE can be deconstructed into four
distinct operators, namely S1

E , S
2
E , S

3
E , S

4
E , each of size n2× n, along with an additional column

vector denoted as Srhs. This decomposition is structured in such a way that:

SE =
[
S1
E S2

E S3
E S4

E Srhs
E

]
.

On an element with boundary conditions described by vectors c1, . . . , c4, the solution is
described as a superposition of these vectors:

uE = S1
Ec1 + S2

Ec2 + S3
Ec3 + S4

Ec4 + Srhs
E .

If each of the boundary condition vectors are set to zero, i.e., c1 = . . . = c4 = 0, then
uE = Srhs

E . This means the vector Srhs
E is the solution to the PDE on E with homogeneous

boundary conditions, i.e.,
∇2urhs = f |E , urhs|∂E = 0,

and can therefore be seen as a particular solution to the problem. The vector Srhs
E is thus

defined by:

Srhs
E = vec(X), urhs(x, y) =

n−1∑
k=0

n−1∑
ℓ=0

XkℓT̂k(y)T̂ℓ(x). (4.2)

Despite it not being the conventional approach in most of the existing HPS research, we adopt
the practice of including the particular solution within the solution operator. This choice
is made to avoid repetitive descriptions of the linear algebra procedures when constructing
the particular solution separately, and because it aligns with the implementation strategy
outlined in the work by Fortunato et al. [23].

The last column of the local operator SE was determined by setting homogeneous boundary
conditions. Following a similar strategy to determine the individual components Si

E , we set a
homogeneous righthand side, i.e., f = 0, and zero boundary conditions on all sides, except on
side Φi of E . Determining column j of this operator Si

E requires solving:

∇2uj = 0|E , uj|Φi
= T̂j−1(x),

thereby defining each column of Si
E as

(
Si
E
)
:,j

= vec(Xj), uj(x, y) =
n−1∑
k=0

n−1∑
ℓ=0

Xj
kℓT̂k(y)T̂ℓ(x).

Thus, the jth column of the solution operator associated with the ith side of element E is
represented by (Si

E):,j. Such a column is constructed by solving the homogeneous variant of
the problem, with Dirichlet boundary conditions on all sides except on side Φi, on which the
boundary condition is Tj−1.

Constructing the complete solution operator entails solving a total of 4n+ 1 problems, each
sized n2 × n2. Among these, 4n are equivalent homogeneous problems, differing only in their
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boundary conditions. Consequently, efficient solving can be achieved using matrix factorisation
techniques like LU factorisation or by storing the Schur complement factors in Sylvester form.
If the problem can be formulated as a generalised Sylvester equation with a splitting rank of 2,
the generalised Bartels–Stewart algorithm or the generalised Hessenberg–Schur algorithm [25]
can be applied to solve each problem in O(n3) operations. This approach results in an overall
complexity of O(n4) for solving n problems and constructing the operator SE . While this
process needs to be repeated for each patch, the independence of the process for each patch
allows for straightforward parallelisation.

It is worth noting that the Dirichlet data utilised in this construction process may exhibit
discontinuities at the corners of the domain, introducing inconsistent boundary conditions.
To guarantee compatibility, each function ci is projected orthogonally onto the function space
that preserves continuity at the corners prior to solving the PDE. For a more comprehensive
explanation, refer to [23, Sec. 3.2.1].

At this stage, given the Dirichlet data on the boundaries, the solution for each individual
element can be determined using their corresponding solution operators. In order to merge
two elements or patches, the continuity conditions must be enforced. To achieve this, an
operator is required to translate Dirichlet information into Neumann data, specifically along
the boundaries of the elements. This operator, known as the Dirichlet-to-Neumann map on
an element E , denoted by ΣE , maps Dirichlet data on each side of E to the normal derivative
or outward flux of the local solution to the PDE on each side of E .
To construct such an operator, we consider how to calculate the normal derivatives on the
edges of the reference square, i.e., at x = ±1 and y = ±1. As usual, the generalisation to
arbitrary regular domains can be handled by affine transformations. The extension to more
complex domains is discussed in Chapter 5. From the expansion of the solution u on this
domain, discretised with the Chebyshev coefficient matrix U , we have:

∂

∂x
u(±1, y) =

n−1∑
i=0

Ti(y)
n−1∑
j=0

UijT
′
j(±1),

∂

∂y
u(x,±1) =

n−1∑
j=0

Tj(x)
n−1∑
i=0

UijT
′
i (±1).

Furthermore, we introduce:

D±1 = ±
[
T ′
0(±1) T ′

1(±1) . . . T ′
n−1(±1)

]
, T ′

j(±1) = (±1)j+1j2,

and define di to be the Chebyshev coefficient vector describing the normal derivative of the
solution on side i. This enables the definition of the normal derivatives on the four sides as:

left: d1 = UD⊤
−1,

right: d2 = UD⊤
1 ,

bottom: d3 = D−1U,

top: d4 = D1U.

Note the additional minus incorporated into the definition of D±1 to account for normal
derivatives in the negative x- and y-directions. As is demonstrated in the 2D approach
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detailed in Chapter 3, constraints are transformed to operators acting on the vector u through
Kronecker products. The result is the normal derivative operator on the reference square,

D[−1,1]2 =


D−1 ⊗ I
D+1 ⊗ I
I ⊗D−1

I ⊗D+1

 ,

where I is the n× n identity matrix. Such an operator must be applied to the coefficients of
the solution and should thus be coupled with the solution operator of the element to produce
the Dirichlet-to-Neumann map, ΣE = DESE . As needed, the Dirichlet-to-Neumann map acts
on the Dirichlet information on the boundaries and returns Neumann data:


d1

d2

d3

d4

 = ΣE


c1
c2
c3
c4
1

 . (4.3)

The scalar entry in the vector on the right is a result of including the particular solution as
the last column of the solution operator.

4.3.2 Merging operators

Having constructed local operators on each element E1 and E2, the aim is now to build a
global solution operator, SΓ, from these local operators to solve for the coefficients of the
unknown interface function, cΓ.

To do this, one partitions the boundary vectors in eq. (4.3) into “interior” and “interface”
data. For an element E , let cΓE and dΓ

E be vectors containing the coefficients describing the
local Dirichlet and Neumann data, respectively, corresponding to the shared boundary Γ.
Additionally, let cLE and dL

E contain the coefficients describing the local Dirichlet and Neumann
data corresponding to the unshared boundaries. For element E1, that has c2 on its interface,
this would mean:

cΓE1 = c2, cLE1 =
[
c1, c3, c4

]⊤
,

dΓ
E1 = d2, dL

E1 =
[
d1,d3,d4

]⊤
,

and similarly, for element E2 with c5 on the interface:

cΓE2 = c5, cLE2 =
[
c6, c7, c8

]⊤
,

dΓ
E2 = d5, dL

E2 =
[
d6,d7,d8

]⊤
.

Based on the interaction between the Dirichlet-to-Neumann map and the Dirichlet data on Γ
in eq. (4.3), the rows and columns of the local operators ΣE1 and ΣE2 can be partitioned into
“interior” and “interface” blocks using the same notation.
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This gives the partitioned version of eq. (4.3) on E1 as:

[
dL
E1

dΓ
E1

]
=

[
ΣL,L

E1 ΣL,Γ
E1 ΣL,end

E

ΣΓ,L
E1 ΣΓ,Γ

E ΣΓ,end
E

]c
L
E1

cΓE1
1

 , (4.4)

and similarly on E2 as:

[
dL
E2

dΓ
E2

]
=

[
ΣL,L

E2 ΣL,Γ
E2 ΣL,end

E2

ΣΓ,L
E2 ΣΓ,Γ

E2 ΣΓ,end
E2

]c
L
E2

cΓE2
1

 . (4.5)

Here, superscripts denote row and column indices for slicing a matrix or vector and “end”
denotes the index of the last column of a matrix. The last column of the matrices in (4.4)
and (4.5) encode the contribution from the particular solution. For the continuity condition
to be satisfied, the derivatives at the interface must be equal on both patches, thus dΓ

E1 = dΓ
E2 .

Setting these parts of the above equations equal, yields:

−
[
ΣΓ,L

E1 ΣΓ,Γ
E1 ΣΓ,end

E1

] c
L
E1

cΓE1
1

 =
[
ΣΓ,L

E2 ΣΓ,Γ
E2 ΣΓ,end

E2

] c
L
E2

cΓE2
1

 ,

and isolating the unknown interface coefficients cΓ gives:

−
(
ΣΓ,Γ

E1 + ΣΓ,Γ
E2

)
cΓ =

[
ΣΓ,L

E1 ΣΓ,L
E2 ΣΓ,end

E1 + ΣΓ,end
E2

] c
L
E1

cLE2
1

 .

This means the interfacial solution operator can be defined by:

SΓ = −
(
ΣΓ,Γ

E1 + ΣΓ,Γ
E2

)−1 [
ΣΓ,L

E1 ΣΓ,L
E2 ΣΓ,end

E1 + ΣΓ,end
E2

]
,

and will produce the n Chebyshev coefficients of the solution to the PDE on the interface Γ
when given the Dirichlet data on the boundary of the merged domain, that is:

cΓ = SΓ

c
L
E1

cLE2
1

 . (4.6)

Using this, one can construct a new Dirichlet-to-Neumann operator on the global domain, ΣΩ.
Since (4.4) and (4.5) already provide equations for dL

E1 and dL
E2 , one can extract these parts

and separate the terms containing cΓ:

[
dL
E1

dL
E2

]
=

[
ΣL,L

E1 0 ΣL,end
E1

0 ΣΓ,L
E2 ΣΓ,end

E2

]c
L
E1

cLE2
1

+

[
ΣL,Γ

E1

ΣΓ,Γ
E2

]
cΓ.
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Substituting (4.6) into this equation gives the global Dirichlet-to-Neumann map on Ω as:

ΣΩ =

[
ΣL,L

E1 0 ΣL,end
E1

0 ΣΓ,L
E2 ΣΓ,end

E2

]
+

[
ΣL,Γ

E1

ΣΓ,Γ
E2

]
SΓ,

which will produce a vector representing the normal derivatives of the solution to the PDE on
the six edges of Ω when given the Dirichlet data on these edges:

[
dL
E1

dL
E2

]
= ΣΩ

c
L
E1

cLE2
1

 . (4.7)

The key takeaway from this section is that one can leverage the Dirichlet-to-Neumann operators
of two patches to eliminate their shared interface data and create a merged solution operator
for their parent patch, which in turn is used to create a Dirichlet-to-Neumann operator for
the parent patch.

4.3.3 Computing the solution

With all the needed ingredients to compute the solution to (4.1), we start by solving for
the interface function on Γ. That is, we compute the n Chebyshev coefficients in the vector
cΓ via the matrix-vector product involving the global solution operator in (4.6). Now that
the Dirichlet data is established on all four sides of each element E1 and E2, the application
of local solution operators, SE1 and SE2 , is possible. These operators return the n2 × 1
coefficient vectors u1 and u2, which can be reordered to n× n coefficient matrices and used
to approximate the solutions u1 and u2, respectively, satisfying (4.1).

4.4 The hierarchical scheme

The model problem of Section 4.3 showed how to construct local operators on two elements,
E1 and E2, and how to “glue” these operators together to provide similar operators on the
global domain Ω. The merged solution operator, SΓ, solves for the unknown interface inside Ω,
and the merged Dirichlet-to-Neumann operator, ΣΩ, maps boundary data to outward fluxes
on Ω. These operators encapsulate the needed knowledge to solve the PDE on Ω. Essentially,
Ω now resembles the original elements E1 or E2, thereby enabling the treatment of it as yet
another element that can be merged again with a new domain. This will be the case after
every merge – the resulting domain can be seen as a self-contained unit with access to its
local operators. This framework embodies the HPS scheme.

The computational complexity for constructing the solution operator on an element is calcu-
lated as O(n4). Similarly, the Dirichlet-to-Neumann operator on an element can be computed
as a matrix product in O(n4) operations [23]. These estimations aid in determining the
computational complexity of the HPS method. We will now proceed to outline the complexity
for each of the three stages that encapsulate the HPS method, starting with the initialisation
stage.
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4.4.1 The initialisation stage

The HPS scheme commences with the initialisation phase, during which a global domain Ω is
decomposed into a mesh of M elements, E = {Ei}Mi=1. The example in Figure 4.4 illustrates the
decomposition into rectangular elements if M = 4. Subsequently, local solution operators and
Dirichlet-to-Neumann maps are constructed for each element Ei, according to the guidelines
provided in Section 4.3.1. Since the steps executed at this stage pertain exclusively to each
element, the algorithm performing these operations can be executed in parallel across the
various elements.

Figure 4.4: During the initialisation stage of the HPS method, a domain is divided into a number of
subdomains, called leaves. On each of the leaves, a solution operator and a Dirichlet-to-Neumann operator is
constructed.

As the solution and Dirichlet-to-Neumann operators are each computed once for every element,
the overall computational cost of the initialisation stage will scale as:

Mn4 ≈ Nn2,

where N ≈Mn2 is the number of degrees of freedom. This is calculated as the product of the
number of coefficients describing each patch and the total number of patches.

4.4.2 The build stage

Once the initialisation of local operators has been accomplished for each leaf, the methodology
proceeds to the build stage. Typically, the mesh of elements is accompanied by a set of
indices that detail the order of merging. Such a sequence comprises a series of pairwise
merging instructions starting with the leaves and subsequently encompassing parent patches.
Adhering to this order, we traverse through the hierarchical structure, starting at the leaves
and building up to the global domain.2 Along the way, the merged parent patches retain
their newly calculated solution operators and Dirichlet-to-Neumann mappings, as described
in Section 4.3.2. This procedure is graphically depicted in Figure 4.5.

2The concept of ‘leaves’ is standard in domain decomposition terminology. However, since the ‘tree’ is
usually as depicted in Figure 4.5, they might be better named ‘roots’.
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Figure 4.5: During the build stage of the HPS method, local patches are merged pairwise in an upwards
pass though the tree. This merging involves using the local operators of the children to construct a solution
operator and Dirichlet-to-Neumann operator for the parent patch. Merging continues until only the global
domain remains.

The computational cost of the build stage [23, Sec. 3.4] scales as

n3M3/2 ≈ N3/2,

and results in the construction of a global solution operator capable of operating on the entire
mesh. It takes in Dirichlet data from every boundary of Ω and in return provides the solution
to the PDE along the merged interface of the highest level of the hierarchy.

4.4.3 The solve stage

The final phase within the HPS scheme is the solve stage. During this stage, the merged
solution operators are used to calculate the unknown interface data at each level in a downwards
traversal through the hierarchy. The initial step involves employing the global solution operator
constructed in the build stage on Dirichlet data from every boundary of the global mesh.

If Neumann data is provided on the boundaries instead of Dirichlet conditions, it is necessary
to translate this information into Dirichlet conditions before applying the global solution
operator. Fortunately, we have devised the global Dirichlet-to-Neumann map, which can be
inverted to convert Neumann data into Dirichlet data. Once this conversion is accomplished,
the global solution operator can be effectively applied and the subsequent process remains
identical to when Dirichlet conditions were imposed.

The global solution operator will return the Chebyshev coefficients representing the solution at
the merged interface of the highest level of the hierarchy. These coefficients then serve as the
basis for Dirichlet data on the subsequent level to be used once again with solution operators
to calculate the unknown interface data for the next level of subdomains. Eventually, the
lowest tier is reached, which consists of the leaves. At this point, the solution is known at
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every interface connecting the elements and the localised solution operators SEi can be put
into action to compute the bivariate solution in the interior of each element Ei. This procedure
is depicted in Figure 4.6.

The computational cost of the solve stage [23, Sec. 3.4] scales as:

n2M logM + n3M ≈ N logM +Nn,

giving the overall complexity of the method as:

Nn2 +N3/2︸ ︷︷ ︸
initialisation & build

+N logM +Nn︸ ︷︷ ︸
solve

≈ Nn2 +N3/2. (4.8)

For comparison, the HPS scheme based on spectral collocation typically achieves an overall
complexity of O(Nn4 + N3/2) [52], making (4.8) a notable improvement, particularly in
the high n regime. It is clear that the majority of the computational work is done in the
initialisation and build stages. Since the boundary conditions of the problem are only imposed
in the solve stage, solving the same problem multiple times with varying boundary data
becomes cost-effective, as it only requires re-executing the solve stage [52].

Figure 4.6: During the solve stage of the HPS method, the boundary conditions are provided to the global
solution operator to retrieve unknown interface data. This is repeated at every level of the tree in a downward
pass. At the lowest level, the local solution operators of the leaves are employed to calculate the solutions at
the interior of the subdomains.

An effective strategy also exists for solving the same problem but with different righthand
sides f . Recall that all the columns in the local solution operator, except the last one,
were determined by solving homogeneous problems. The righthand side only contributed
to calculating this last column by solving eq. (4.2). Thus, if the righthand side changes, it
is only this column in the solution and Dirichlet-to-Neumann operators of the leaves that
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requires updating. Instead of solving 4n+ 1 problems to construct a new solution operator,
one only needs to solve a single problem to update the operator, resulting in a reduced
complexity of O(Nn) for the initialisation stage. To carry this update through the entire
hierarchy, a modified build stage must be conducted. In this process, the last column of the
interfacial solution and Dirichlet-to-Neumann operators are updated instead of recalculating
them completely. The modified build stage would have complexity O(NM1/2), giving the
overall complexity as O(Nn+NM1/2). This strategy is particularly beneficial when implicit
time-stepping schemes are applied and numerous iterations with changing righthand sides
need to be calculated [5].

4.5 Refinement

In FEM and SEM, there are two main types of refinement used to improve the accuracy
of a discretisation: h-refinement and p-refinement. These refinements can be uniform or
global, meaning they are applied in the same way across the entire domain, or they can be
local, meaning they are applied only to a small number of elements. Applying p-refinement
to an element involves increasing the polynomial degree,3 while h-refinement would involve
partitioning the domain into smaller subdomains (with the same polynomial degree as the
original element). In this context, h refers to the minimum average element width in the
discretisation.

Typically, to increase accuracy in the vicinity of complex geometries, such as reentrant corners,
local refinement applied to the surrounding elements will provide the best results [42]. Adaptive
refinement strategies exist that automates the mesh or polynomial degree adjustments based
on error criteria, optimizing computational resources to achieve accuracy with minimal user
involvement. Geldermans and Gillman present one such scheme [26], however our focus here
is on manual refinement, reliant on user-guided decisions.

Figure 4.7: Image (a) depicts an example of uniform refinement of a quadrilateral, which connects the
midpoint of each edge to the centre of the shape to produce four quadrilateral subdomains. In (b) and (c)
non-uniform/local refinement strategies are presented, as suggested by [23], for the refinement into corners and
around points, respectively. These schemes aim to avoid hanging nodes. Image (d) depicts a local h-refinement
strategy resulting in hanging nodes.

Local h-refinement of a domain risks creating nodes in the mesh that occur in the middle of
an element boundary. Such points are called “hanging nodes”, and are demonstrated in image
(d) in Figure 4.7. While hanging nodes may be handled in the HPS scheme through the use

3In FEM/SEM the polynomial degree of an element is usually indicated by p, whereas in spectral methods
n is typically used (as in Chapter 3).
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of interpolation operators [26], it is simpler to design a local refinement scheme that avoids
such occurrences. Examples of such schemes, suggested in [23], are demonstrated in image (b)
in Figure 4.7 for local refinement into corners, and image (c) for refinement around a point.

Applying uniform h-refinement results in scaling the number of patches in the mesh as
M = O(22r), where r represents the refinement level. The refinement level start at r = 0
signifying no domain refinement and then advances with r = 1 as the domain is partitioned
into four subdomains. Image (a) in Figure 4.7 demonstrates one level of refinement of a
quadrilateral domain. This example shows a possible global refinement approach for non-
rectangular elements. It connects the centre of the element to the midpoints on each of the
edges, resulting in four new quadrilaterals as subdomains.

4.6 Software

The ultraspherical spectral element method discussed in this chapter was originally introduced
by Fortunato et al. [23] and has been implemented as an open-source software system named
ultraSEM [22]. This software closely adheres to the steps of the HPS method and provides a
user-friendly platform for performing spectral element computations within Matlab. Here,
we provide a brief overview of how this software can be utilised.

Users create a domain using the ultraSEM.Domain class, which encodes information about
the domain shape and position. The software has several standard domains built-in, including
rectangles, quadrilaterals, and triangles. Rectangular domains are dealt with via the process
described above. Quadrilaterals and triangles require the addition of appropriate mappings,
which we discuss in the following chapter.

It is possible to merge multiple domains (of either the same or differing types) to form larger
domains using the ‘&’ operator in Matlab. During this process, merge indices are saved to
reflect the order introduced by the sequence of ‘&’ operations. Alternatively, a more extensive
mesh can be constructed by initially creating a domain dom and then applying h-refinement
to it using the refine(dom) function. Importing meshes from specialised meshing software is
supported to a limited extent.

The implementation is designed to accommodate second-order PDOs, specified by coefficients
in the format {{uxx, uxy, uyy}, {ux, uy}, u} to represent the equation:

uxx
∂2u

∂x2
+ uxy

∂2u

∂x∂y
+ uyy

∂2u

∂y2
+ ux

∂u

∂x
+ uy

∂u

∂y
+ uu = rhs.

These coefficients and the righthand side, rhs, can be either a scalar or a function handle. To
construct an ultraSEM object, the domain, PDO, righthand side, and polynomial order are
provided.

Upon invoking the ultraSEM constructor, local operators on each element are initialised
and represented as ultraSEM.Leaf objects in the hierarchy. During an upward pass, the
hierarchy of merged operators is constructed using the build command, creating a tree of
ultraSEM.Parent objects. If the build stage is not explicitly invoked, it automatically takes
place when the user requests a solve operation.
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For solving, boundary conditions need to be provided, either as a scalar or a function handle,
specifying the boundary conditions on the entire domain, or as an array containing the
conditions for each edge separately. The solve stage is executed using the solve command
(or alternatively, the ‘\’ operator). This computes the solution by applying the hierarchy of
operators in a downward pass. The solution is then returned as an ultraSEM.Sol object, which
offers various functions for plotting, such as plot and contour, and options for evaluation,
like feval and norm.

Below, we demonstrate the syntax of ultraSEM for solving the inhomogeneous Helmholtz
equation ∇2u+ 50u = −1 on a square with zero Dirichlet boundary conditions. The resulting
solution is visualised in Figure 4.8. Further examples are provided in Appendix A.

% construct domain
v = [-1 1 -1 1];
dom = ultraSEM.rectangle(v);
n = 21;
% PDO
pdo = {{1 ,0 ,1} ,{0 ,0} ,50};
% boundary conditions
bc = 0;
% righthand side
rhs = -1;
% solve
S = ultraSEM(dom ,pdo ,rhs ,n);
u = S\bc;
% plot
plot(u)

Figure 4.8: The solution to the constant coef-
ficient Helmholtz equation ∇2u + 50u = −1 on
[−1, 1] subject to zero Dirichlet boundary condi-
tions is depicted. The syntax for calculating this
solution using ultraSEM is displayed on the left.
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CHAPTER 5

NON-RECTANGULAR ELEMENTS

In the preceding chapter, we explored the domain decomposition strategy known as the HPS
method, which expanded the capabilities of spectral methods to include a wider range of
domains. This approach, as described thus far, only allows for decomposition into rectangular
subdomains. In this chapter, we describe how the method can be extended to more complex
geometries by applying coordinate transformations. We first investigate an existing transfor-
mation for general quadrilaterals in ultraSEM and, subsequently, introduce a new geometric
shape (the “squonut”), for which we have designed a novel mapping.

Given that spectral methods typically operate on square reference domains, our decision to
investigate quadrilaterals over triangles stemmed from the more intuitive mapping it offers.
Nevertheless, it is worth noting that mappings from the square to the triangle do exist, with
the Duffy transform being one example [60]. Additionally, triangles can be constructed using
quadrilaterals through the use of ‘kites’, as demonstrated in Figure 5.1. Quadrilaterals play
a significant role in ultraSEM since the default approach for problem-solving on polygons
involves their subdivision into quadrilateral elements. Furthermore, when importing meshes
for spectral element approximations, the majority of mesh generation programs tend to
produce either quadrilateral or triangular elements [45].

5.1 Quadrilateral elements

Typically, utilising spectral methods on irregular geometries involves creating a coordinate
transformation that maps points on a reference square to points on a shape in the physical
domain [45]. Once the mapping between the physical and reference spaces is established, the
next step is to adapt the PDE to accommodate these mappings.

5.1.1 The mapping

Let Q denote a straight-sided quadrilateral element within the physical space, and let
R = [−1, 1]2 represent the reference square. In the reference space, the coordinates (r, s) is
used, while in the real space, the coordinates are denoted by (x, y). Suppose the corners of
both shapes are numbered counterclockwise, as shown in Figure 5.1.
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Figure 5.1: A mapping from the reference square R to a quadrilateral Q in physical space is depicted. This
transformation is described by the bilinear mapping in (5.1) that maps points (r, s) to points (x, y).

To facilitate the mapping from the reference space (r, s) ∈ R to the quadrilateral (x, y) ∈ Q,
a bilinear transformation is employed [23], expressed as:[

r
s

]
7→

[
ax0 + ax1r + ax2s+ ax3rs
ay0 + ay1r + ay2s+ ay3rs

]
=

[
x
y

]
. (5.1)

In this transformation, the coefficients ax0 , . . . a
x
3 , and ay0, . . . a

y
3 are determined by solving the

linear system: 
1 r0 s0 r0s0
1 r1 s1 r1s1
1 r2 s2 r2s2
1 r3 s3 r3s3



ax0 ay0
ax1 ay1
ax2 ay2
ax3 ay3

 =


x0 y0
x1 y1
x2 y2
x3 y3

 . (5.2)

It is worth noting that the techniques we employ assume that the boundaries of the quadri-
lateral domain are smooth, except at the four corners. While it is feasible to create smooth
mappings for non-smooth boundaries by solving elliptic systems of PDEs [45], such advanced
methods fall outside the scope of our current discussion.

As the transformation from the physical domain to the reference square aligns boundaries with
boundaries, applying boundary conditions does not become significantly more complicated.
When the boundary constraints are constant values, they remain unchanged by the mapping.
However, if a boundary condition is a function, it must be transformed to constrain the
solution on the reference square. Likewise, the PDO, which is defined in physical space, must
undergo transformation to the reference space where spectral methods can be utilised.

5.1.2 Transforming the equations

To apply a global spectral method onR to a PDE defined in real space, we need to transform the
differential operator L, the righthand side f(x, y), and any nonconstant boundary conditions
in the reference space.
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The coordinate transformation affects the differential operator via the chain rule. For a
function u(r, s) defined on R, the first- and second-order derivatives in x and y are:

ux = rxur + sxus,

uy = ryur + syus,

uxx = (rx)
2urr + 2rxsxurs + (sx)

2uss + rxxur + sxxus,

uxy = rxryurr + (rxsy + rysx)urs + sxsyuss + rxyur + sxyus,

uyy = (ry)
2urr + 2rysyurs + (sy)

2uss + ryyur + syyus.

(5.3)

The function f(x, y) can be converted into a function f(r, s) by utilising the bilinear trans-
formation in (5.1). When nonconstant Dirichlet boundary conditions are provided, they are
transformed in a similar manner as f . However, if Neumann conditions are specified, their
derivatives must be transformed using (5.3).

One typically knows the transformation from the reference square to the physical space, but
the reverse transformation, i.e., from the physical domain to the reference space, is frequently
more complicated and lacks an explicit formula. In most cases, attempting to find the inverse
mapping by directly inverting the original mapping function is impractical [23, 45]. As a
result, we compute the first-order Jacobian factors rx, sx, ry,, and sy in eq. (5.3) through the
use of the inverse function theorem. It shows that the Jacobian matrix Jrs = ∂(r, s)/∂(x, y)
can be expressed as Jrs = (Jxy)

−1, where Jxy = ∂(x, y)/∂(r, s). Explicitly writing out the
Jacobians, we derive the following expression for the first-order factors:[

rx ry
sx sy

]
=

[
xr xs

yr ys

]−1

=
1

det(Jxy)

[
ys −xs

−yr xr

]
, (5.4)

where det(Jxy) = xrys − xsyr. Utilising the chain rule with these definitions allows one to
derive the formulas for the second-order factors rxx, rx,y, ryy, sxx, sxy,, and syy. These factors
will be rational functions instead of polynomials due to the division by det(Jxy), det(Jxy)2, and
det(Jxy)3 during their calculation. Consequently, the coordinate mapping introduces rational
variable coefficients into the differential operator. These more complicated coefficients lead
to a larger bandwidth when discretising the linear system. Scaling the differential operator
L and the righthand side f(r, s) by the factor det(Jxy)3 addresses this aspect and recovers
sparsity [23].

Figure 5.2: On the right, the solution to the constant coefficient Helmholtz equation ∇2u+ 1000u = −1
with zero Dirichlet boundary conditions on a pentagonal domain is displayed. On the left, the diagram
demonstrates the polygonal decomposition into quadrilaterals performed by ultraSEM in order to solve.
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Having determined the transformed PDO, the global spectral method from Chapter 3 can be
employed to solve on R. Finally, the solution is mapped back to the physical domain using
the mapping in (5.1), with coefficients ax0 , . . . a

x
3 , and ay0, . . . a

y
3 calculated according to (5.2).

In Figure 5.2, the image on the right presents the solution to the inhomogeneous Helmholtz
equation ∇2u+ 1000u = −1 subject to zero Dirichlet boundary conditions on a pentagonal
domain. The syntax for solving this problem in ultraSEM is supplied in Appendix A. Regular
polygons of this nature are built-in domains within the framework. The approach for solving
on these domains involves partitioning them into quadrilateral elements, as demonstrated on
the left in Figure 5.2.

5.2 Squonuts

Having considered the extension of the spectral method from the reference square to a general
quadrilateral domain, we are prepared to explore more complex geometries. Specifically, we
turn our attention to rectangular domains with circular holes, a configuration which is of
significant engineering interest. These domains find utility in various scenarios, including the
simulation of fluid flow around circular obstacles [45] and the calculation of stress distributions
in perforated plates [34]. Additionally, optimisation problems sometimes involve determining
the optimal placement of holes, requiring stress and elasticity calculations around such circular
boundaries [50]. We focus on a domain consisting of a square with a circular hole in the
centre. Due to its unique shape, we refer to it as a square donut. Figure 5.3 sheds some light
on the resemblance.

Figure 5.3: The right image depicts a literal square donut. The left illustration shows the domain we refer
to when using the phrase “square donut”.

We reserve the obvious contraction, “squonut”, to refer to a subregion of this domain, which
we discuss below. The innovative aspect of this project revolved around the integration of the
squonut domain into the ultraSEM framework. Achieving this requires the development of an
algebraic transformation, akin to the one used for the quadrilateral mapping.
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5.2.1 The mapping

To begin, we divided the square donut into smaller, bite-sized pieces. Figure 5.4 shows a
specific slice, which is one eighth of the square donut. By replicating, reflecting, and rotating
this piece, one can assemble the square donut. Our primary focus was on this specific segment
because, with the HPS scheme, one could merge and reconstruct the entire domain. We refer
to this slice of a square donut as a “squonut” and denote it by S. Our aim is to establish a
mapping from the reference square, [−1, 1]2, to the squonut.

Figure 5.4: A square donut domain is shown on the left. It is partitioned into eight equal-sized parts. One
of the slices of the square donut, which is nicknamed a squonut, is shown on the right, together with the
parameters that define its size and location.

Our implementation offers the flexibility to create a general squonut, with the only predefined
parameter being the angle subtended at the centre of the hole, which is set to π

4
. Users can

customise the shape using various input constants. These include the radius of the circular
hole, denoted as R, along with its centre position, represented as C = [Cx, Cy], and the height
of the left boundary, labelled as h (refer to Figure 5.4). The length of the base is defined
as b, which is equal to h+R. Moreover, users can specify additional parameters to achieve
rotation and reflection of this shape, this is discussed further in Section 5.2.2.

Similar to the approach with quadrilaterals, our mapping ensures that corners and boundaries
on the reference square align with those in physical space. A property prioritised in our
mapping to the three straight edges of the squonut was the ability to maintain uniform
spacing. That is, when points are uniformly distributed along a certain boundary in the
reference space, the mapping guarantees that they will also be uniformly spaced along the
corresponding boundary in the physical domain. This uniformity is particularly valuable
for domain refinement and merging with other domains. Merging the squonut with circular
domains at its curved edge is a lower priority, therefore uniformly spaced points on the
reference square do not transform into uniformly spaced points on the curved boundary.1
Figure 5.5c illustrates how uniformly spaced straight lines in the reference square map to
corresponding lines and curves in the squonut.

1This does not preclude merging the squonut with a circular shape at its curved boundary, but it means
that refining such a merged shape must be done carefully.
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(a) (b) (c)

Figure 5.5: Image (a) shows how vertical lines within the reference square map to straight lines traversing
through the centre of the squonut. Image (b) illustrates that horizontal lines within the reference space
transform into curves within the squonut. The complete mapping process is elucidated in image (c), where one
also observes that evenly distributed points on the left, bottom, and right boundaries of the square correspond
to evenly spaced points along the three straight edges of the squonut.

To establish a mapping,M, that preserves uniform spacing, the bottom edge of the reference
square, which has a side length of 2, is scaled proportionally to match the base of the squonut,
which has a length of b. Consequently, a displacement ∆r along the bottom edge of the
reference square corresponds to a displacement ∆x along the bottom edge of the squonut, both
measured from the left corner. The relationship between these displacements is ∆x = b∆r

2
.

Figure 5.6: A squonut centred at (Cx, Cy) containing a point (x, y). A distance ∆x at the base of the
squonut subtends an angle θ at the centre.

For the explanation that follows we set [Cx, Cy] = [0, 0], and will expand in Section 5.2.2 on
how to translate the shape when a different centre is used. We introduce θ, which is the angle
subtended at the origin by the distance ∆x. Additionally, ∆y denotes the distance on the
adjacent side of the resulting triangle, as illustrated in Figure 5.6.
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With these definitions in place, we can express:

tan(θ) =
∆x

∆y
=

b∆r/2

b
=

∆r

2
=

r + 1

2
, (5.5)

where ∆r = r + 1 since r is a coordinate in the range [−1, 1]. Now, for a point (x, y) within
the squonut, one can define the relationship as follows:

tan(θ) =
x

−y
=⇒ x = −y tan(θ) = −y

(
r + 1

2

)
. (5.6)

This equation demonstrates how the x- and y-coordinates are linked in our mapping. The
dependence of this relationship on the r-coordinate corresponds to the lines shown in Fig-
ure 5.5a. To complete the mapping, we need a relationship that depends on the s-coordinate,
as depicted in Figure 5.5b.

The bottom boundary of the squonut forms a straight horizontal line, while the top edge is an
arc with radius R centred at the origin. Naturally, a good mapping would incorporate both
of these characteristics. We express y as a weighted sum of a straight line, yℓ, and a curve, yc:

y = αyℓ + βyc, (5.7)

where the coefficients α and β should ensure that y(r,−1) = yℓ and y(r, 1) = yc. The
horizontal lines yℓ have no gradient and depend solely on the s-coordinate. We determine this
relationship by scaling the length of the left side of the reference square to match the left
edge of the squonut:

yℓ =
h(s+ 1)

2
− (R + h) =

h(s− 1)

2
−R, (5.8)

where the subtraction of R + h is necessary to adjust for the negative y value measured from
the origin. Additionally, one must define yc, which represents the curves centred at the origin
with radii Rs based on the parameter s. These curves align with the points on the left edge
of the squonut, akin to yℓ. Therefore, the radius of yc should mirror the magnitude of yℓ, just
with opposite sign

Rs = R + h− h(s+ 1)

2
= R +

h(1− s)

2
.

For points (xc, yc) located on these curves, we must have:

x2
c + y2c = R2

s.

Substituting Rs and using the relationship in (5.6) yields:

y2c =

(
R + h(1− s)/2

)2
1 + (r + 1)2/4

.

As y is negative, we assign the negative sign in front of the square root and solve for yc as:

yc = −
2R + h(1− s)√
4 + (r + 1)2

. (5.9)
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To determine the coefficients α and β in (5.7), we enforce that the mapping should transform
uniform points on the left and right boundaries of the square into uniformly spaced points on
the left and right edges of the squonut. On the left edge, where both yℓ and yc have been
chosen to scale uniformly, one must set α+ β = 1 to ensure that y scales uniformly as well.
Uniformly spaced points on the right edge of R should transform to uniformly spaced points
on S given by

y =
1

2
(s+ 1)

(
R + h−

√
2R

)
− (R + h),

which is determined via trigonometry. Thus, when r = 1 then α and β should satisfy

y(1, s) = α

(
h(s− 1)

2
−R

)
− β

(
2R + h(1− s)

2
√
2

)
=

1

2
(s+ 1)

(
R + h−

√
2R

)
− (R + h),

which can be solved to find:

β =
R +Rs

2R + h− hs
, α = 1− β. (5.10)

Having established the mapping,M, from the reference square to the squonut, the derivatives
in the PDO can be transformed using the chain rule in (5.3) and the Jacobians in (5.4). Similar
to the quadrilateral mapping, the PDO is scaled by the Jacobian determinant det(Jxy)3 in
order to recover sparser matrices. The global spectral method from Chapter 3 can then be
used to solve on S. Finally, the solution is mapped back to the physical domain using the
transformation described in (5.7)–(5.10).

5.2.2 Translations, rotations, and reflections

To simplify our derivation, we assumed that the centre of the square donut is located at the
origin, however, this does not need to be the case in general. Translating the element from
the origin does not impact the calculated α and β coefficients, and, more importantly, it has
no influence on the derivatives of the mapping. To incorporate a translation, we shift the
existing mapping by the coordinates of the new centre, (Cx, Cy), such that:[

x∗

y∗

]
7→

[
Cx + Cy

(
r+1
2

)
+ x∗

Cy + y∗

]
=

[
x
y

]
, (5.11)

where (x, y) denote the coordinates of the translated squonut and (x∗, y∗) are the coordinates
of the squonut centred at the origin.

To build the full square donut domain depicted in Figure 5.4, we must be able to rotate the
squonut element. The rotation matrix R(ϕ) rotates a set of coordinates counterclockwise by
an angle ϕ about its centre. It is defined as

R(ϕ) =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

Applying R(ϕ) to the coordinates (x∗, y∗) of a squonut results in a new set of coordinates that
represent the squonut rotated counterclockwise by ϕ. Typically, one first rotates the squonut
before translating it to a new position, as rotations around the origin are simpler.
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Both the rotation and the translation of the squonut after its original mapping can be seen as
secondary mappings. The sequence of coordinate transformations can be expressed as:[

r
s

]
M17−−→

[
x∗

y∗

]
M27−−→

[
x
y

]
,

whereM1 is the squonut mapping derived in Section 5.2.1 andM2 the mapping representing
rotation or translation (or both).

Another crucial step in constructing the full square donut involves creating a version of the
squonut that is mirrored across the y-axis. To achieve this, we consider a copy of the reference
square reflected across its left boundary, denoted as Rrefl = [−1,−3]× [−1, 1]. Applying the
mappingM1 to Rrefl results in the reflected squonut, Srefl, as illustrated in Figure 5.7.

Within the ultraSEM framework, all transformations are defined from the reference square.
Consequently, the sequence of coordinate mappings to the reflected squonut are as follows:

R M07−−→ Rrefl
M17−−→ Srefl.

Here,M0 can be defined as the operation:[
r
s

]
M07−−→

[
−2 + r

s

]
=

[
rrefl

srefl

]
, (5.12)

which is responsible for mirroring the reference square along its left boundary.

Figure 5.7: The reference square R is transformed into its reflection using the mapping M0. Subsequently,
the reflected square Rrefl is transformed by the mappingM1 to produce the reflected squonut Srefl.
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5.2.3 Refinement

The squonut, like quadrilateral or triangular domains, can undergo refinement using either
p-refinement or h-refinement. When applying p-refinement, the polynomial degree of approxi-
mation on the reference square is increased before mapping the solution back to the squonut.
Additionally, we employ a uniform h-refinement strategy, which includes dividing the domain
in the reference space into four equal partitions and mapping each of these to subdomains of
the squonut within the physical space. We refer to squonut subdomains as “subsquonuts”. In
this h-refinement strategy, the number of sub-elements M in a squonut with refinement level
r scales as M = 22r, where r = 0 implies no refinement.

Figure 5.8: A visual representation of the h-refinement strategy employed to refine squonuts. It entails
uniformly refining the reference square and mapping the resulting subdomains to corresponding subsquonuts.
Note that the points in this illustration serve as a visual aid and do not represent collocation points.

The partitioning for one level of h-refinement can be observed in Figure 5.8. Our choice of
this refinement strategy is motivated by two key considerations. Firstly, it simplifies the
merging of refined squonuts with other refined shapes along the straight-sided edges. Secondly,
given that the mapping from the square to the squonut is known, deducing the mapping of a
subdomain from the square to the corresponding subsquonut is straightforward.

However, because all transformations in ultraSEM are performed on the reference square, we
first establish a mapping, denotedM0, from the reference square R to one of its subdomains,
represented as Rsub. Afterwards, we apply the standard mappingM1 to return a subsquonut
Ssub:

R M07−−→ Rsub
M17−−→ Ssub.

IfM0 represents the mapping that returns the left bottom subdomain of the square, it would
be given by: [

r
s

]
M07−−→ 1

2

[
r − 1
s− 1

]
=

[
rsub

ssub

]
. (5.13)

Mappings to the other subdomains of the reference square would follow a similar pattern. The
derivatives within the subsquonuts remain consistent with those in squonuts, essentially making
subsquonuts functionally equivalent to squonuts, and thus they are treated by ultraSEM as
such.
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5.2.4 Software

Our implementation serves as an extension of the existing ultraSEM package in Matlab [23].
The primary objective of this extension is to establish a framework for addressing problems
in domains featuring circular holes, by leveraging the efficient and user-friendly structure
provided by ultraSEM.

The new transformation is encoded as an ultraSEM.Mapping object, accessed during the
construction of an ultraSEM.squonut domain. Nearly all the functionality available to
existing domains within the framework has been implemented for the squonut. For instance,
the squonut can be merged with copies of itself or with any other domain type using the ‘&’
operator. It supports refinement, either independently or as part of a merged domain, up
to a specified refinement level r. Once the squonut domain is constructed, it can be visually
represented via the overloaded plot function.

To solve on the squonut, a user follows the same process outlined in Section 4.6 for rectangular
domains. This involves defining the PDO by specifying its coefficients in the form of a list.
This list, along with the domain, righthand side, and polynomial degree, is then passed to
the ultraSEM constructor. This constructor, in conjunction with the boundary conditions, is
then employed to yield the solution in the form of an ultraSEM.Sol object. The boundary
conditions are used, together with this constructor, to yield the solution in the form of an
ultraSEM.Sol object, which can also be visualised using the plot function. In Figure 5.9,
we present a demonstration of the syntax of our implementation to solve the Poisson equation
∇u = −1 on a square donut subject to zero boundary conditions.

% construct domain

R = 1; h = 1;

C = [0 ,0];

S = ultraSEM.squonut(R,h,C);

n = 21;

% PDO

pdo = {{1 ,0,1} ,{0,0} ,0};

% boundary conditions

bc = 0;

% righthand side

rhs = -1;

% solve

A = ultraSEM(S,pdo ,rhs ,n);

u = A\bc;

% plot

plot(u)

Figure 5.9: The solution to the Poisson problem
∇2u = −1 on the square donut is depicted. Zero
Dirichlet conditions are enforced on all domain bound-
aries. The syntax for calculating this solution using the
extended version of ultraSEM is displayed on the left.
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CHAPTER 6

RESULTS

In this chapter, we assess the accuracy and efficiency of our approach before applying it
to a range of practical applications. We begin by solving a standard test problem with a
known exact solution on the squonut and evaluating the performance. Our analysis includes
a comparison of results, such as convergence rates and execution times, with those observed
by Fortunato et al. on a rectangular domain [23]. The goal is to evaluate the performance
of our method in terms of both accuracy and computational cost, thereby determining its
potential as a valuable extension to ultraSEM.

While our approach was not originally tailored for fluid dynamics problems, we find practical
value in applying it to model fluid flow over and around circular boundaries. Numerous other
approaches, including the marker-and-cell method, the vorticity stream function method,
and the immersed boundary method, exist specifically for simulating fluid flow over complex
immersed bodies [35, 37, 43]. Our approach, on the other hand, is designed for general use,
but we demonstrate its efficiency and applicability through these fluid flow problems in various
scenarios.

The first practical application we consider involves modelling the transport of contaminant
concentration. Following this, we explore solutions arising from a system of reaction-diffusion
equations. Subsequently, we investigate the dynamics of the well-known 2D wave equation and
apply our method to the 2D Burgers equation. However, before looking into these applications,
we first turn our attention to a few numerical experiments.

6.1 Numerical experiments

For our analysis, we compare our approximate solution on the squonut to the exact solution
of a Poisson test problem given by:

∇2u = f(x, y), (6.1)

where the righthand side is defined as:

f(x, y) = −2x3 − 18x2y − 28x2 − 18xy2 + 2x− 2y3 − 4y2 + 2y + 4,

subject to zero Dirichlet boundary conditions. This problem is engineered to possess the
analytical solution:

uexact = −x(x+ y)(y + 2)(x2 + y2 − 1).
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The approximate solution on the squonut is computed with ultraSEM and is presented visually
on the right in Figure 6.3. As an initial experiment, the execution time is recorded for each
stage of the HPS method:1 initialising operators on leaves, building operators hierarchically
on parents, and passing boundary conditions down the hierarchy to solve. In Chapter 4
we discussed the anticipated complexity for these stages when solving within a rectangular
domain. For the squonut, one can expect to encounter similar complexity trends, albeit slightly
heightened due to the non-trivial derivatives of the coordinate mapping. In Figure 6.1 (left),
execution times are displayed for increasing values of n, which is referred to as p-refinement,
representing the refinement of the polynomial degree. On the right, the time taken for various
levels of uniform domain refinement is presented, known as h-refinement. The number of
sub-elements M in a squonut with a refinement level r scales as O(22r). This can be related
to the minimum average element width, h, in terms of which M will scale as O(1/h2).

Figure 6.1: The execution time in seconds for the different stages of the HPS scheme when solving Poisson’s
equation on a squonut. On the left p-refinement is applied, and as predicted based on the analysis of Section 4.4,
a rate of increase of O(n2) for the build and solve stages is observed, while the initialisation stage has a higher
rate of O(n4). On the right, h-refinement is applied. The stages all increase at a rate of O(1/h2).

In both illustrations, it is evident that the initialisation stage consumes the largest proportion
of time. This aligns with our expectations, since a substantial computational workload is
required to construct operators on each patch. When p-refinement is applied, the execution
time of the initialisation stage increases at a rate of O(n4), while for the build and solve stages,
the time appears to increase following O(n2). However, it is worth remarking again that the
initialisation stage is trivially parallelisable. These rates for the squonut are consistent with
the complexities calculated for the rectangular element, albeit with a constant scaling factor.
When refining the domain, the rate of increase for the different stages adheres to O(1/h2),
aligning with expectations derived from rectangular elements.

For error calculations, we construct a mesh of 20 × 20 Chebyshev points on the reference
square, subsequently mapping them to points in the physical space. The approximate solution
is then compared to the exact solution at these mapped points, and the 2-norm is computed.
We conduct error computations for three different refinement levels, r = 0, r = 1, and r = 2,
and increasing polynomial degrees. A refinement level of zero indicates no domain refinement,

1Experiments were performed on a 1.80GHz Intel Core i7 16GB RAM device with Matlab R2022b.
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while r = 1 implies the domain has been partitioned once, resulting in nelem = 4. Our
refinement scheme uniformly partitions the reference square, akin to how ultraSEM operates
for rectangles, causing the number of elements to scale as O(1/h2). If N represents the
number of degrees of freedom in our approximation, then N scales as O(n2/h2).

The spectral method applied to the squonut demonstrates geometric convergence for p-
refinement. This is clearly depicted on the left in Figure 6.2, showing the convergence of three
distinct refinement levels. A higher refinement level noticeably accelerates the convergence
rate; however, it also comes at the expense of increased computational costs.

In cases without any domain refinement, the error reaches 10−13 at a polynomial degree of
approximately n = 20. Notably, the solution uexact is a bivariate polynomial of degree four
in both x and y. Consequently, it can be precisely represented as a bivariate Chebyshev
expansion of degree four. Given this, one might anticipate that an approximate solution should
converge and provide close to 16 digits of accuracy at around n = 4. However, even though
a bivariate polynomial approximation is employed on the reference domain, the nonlinear
property of the mapping, particularly its non-polynomial nature, implies that the basis used
for approximating the solution is not polynomial. Consequently, larger values of n is required
for the solution to be accurate. Nonetheless, this does not pose a problem, as solutions in
general are not polynomial.

Figure 6.2: On the left is the convergence of ultraSEM on the squonut under refinement of n for different h
values. The plateau observed for each of the refinement levels is contributed to rounding errors. On the right
is the convergence under refinement of h for different n values.

For a constant polynomial degree, algebraic convergence is observed as h is refined. The right
image of Figure 6.2 displays the convergence when n = 5, n = 7, and n = 10. The observed
error scales roughly as O(hn−1), consistent with the analysis on the rectangular domain [23].
For this example, it appears the estimate holds true for lower values of n but becomes less
accurate as n grows.

For this simple problem that possess a smooth solution, the no h-refinement strategy (r = 0)
manages to capture all essential details of the solution while demanding a lower computational
cost than the alternatives, at most p-values at least. This means, that in this case where the
solution is not too complicated, p-refinement seems to be a better choice than h-refinement.

64

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. RESULTS 6.2. Applications

However, this might not always be the case for more complicated problems, for example
domains with re-entrant corners, where a higher spatial resolution may be needed.

To compare the performance of various combinations of h- and p-refinements, we consider the
total flop count of each refinement strategy and the accuracy it achieves. Typically, employing
a combination of h- and p-refinement is referred to as a hp-refinement strategy [6, 42]. In most
element methods, determining an optimal refinement combination for attaining high accuracy
at low computational cost is challenging. Some methods implement adaptive strategies [73],
often involving refining specific elements repeatedly instead of the entire domain to enhance
accuracy with minimal additional cost.

One can anticipate the total complexity of solving on the squonut to be close to that of
rectangular domains, i.e., Nn2 +N3/2. We use this as an estimated number of floating-point
operations (called flops) to compare the performance of different refinement combinations.
Typically, an hp-adaptivity strategy is determined, that specifies an optimal combination of
h- and p-refinement that should be used to reach a certain accuracy. From our results, we
observe that a strategy exist for which the error decays super-algebraically in the total flop
count C, roughly following O(e−0.9C0.32

). This is depicted on the left in Figure 6.3. However,
we have not explored further into describing a general strategy in detail.

Figure 6.3: On the left, we observe an hp-adaptivity strategy for solving Poisson’s equation on the squonut
subject to Dirichlet boundary conditions. In this strategy, it appears the error decays super-algebraically in
C, which denotes the number of floating-point operations. On the right, the solution for the Poisson problem
on the squonut is displayed, computed for r = 1 and n = 15.

.

6.2 Applications

We now dive into various time-dependent applications within our new domain. In Chapter 3,
a backward Euler time-discretisation was employed for linear problems due to its simple and
stable nature. However, in the ensuing examples, we encounter nonlinear problems, involving
both linear and nonlinear terms, prompting us to consider different discretisation approaches.
Implicit-explicit (IMEX) schemes present a suitable strategy, widely utilised by researchers,
particularly in conjunction with spectral methods [10, 44]. These schemes prove effective
when portions of the equation are stiff and linear, while others are nonlinear and possibly less
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stiff. IMEX approaches are favoured over fully implicit discretisations, which face challenges
in constructing iterative solvers due to the properties of the matrix to be inverted [2]. In this
work, we adopt an IMEX approach that employs a finite difference scheme to approximate
the time derivative and discretises linear terms implicitly and nonlinear terms explicitly.

Both backward Euler and IMEX methods necessitate solving one linear system per time step.
In the upcoming examples, it becomes evident that the righthand side of the linear system
changes at each step, while the operator on the left typically remains constant. In cases like
these, ultraSEM offers a built-in function called updateRHS, designed to facilitate efficient
updates. This function enables an object to be updated inexpensively to solve with a new
righthand side. Recall that in every solution operator and Dirichlet-to-Neumann operator, the
last column is calculated from the particular solution. When employing a new righthand side,
a new particular solution must be calculated. This is done in updateRHS, which then updates
the last column of each of the operators on the leaves and then executes a modified build
stage to update the interfacial operators. Figure 6.5 (right) demonstrates the efficiency of the
updateRHS function when employed to calculate the solution of the contaminant flow problem
in Section 6.2.1. From this illustration, it is evident that when dealing with a significant
number of time steps, utilising updateRHS is advisable.

6.2.1 Transport of a contaminant concentration

As a first problem, we solve a convection-diffusion equation used for modelling the transport
of a contaminant concentration within a fluid flow. This model [46] was utilised by Fortunato
et al. [23] to show that ultraSEM can solve time-dependent problems on simple rectangular
domains. We now introduce a cylindrical obstacle to the domain and use the extended software
to solve

ut = κ∇2u−∇ · (b(x, y)u),

on the domain Ω over the time span [0, T ]. The initial condition is set to be

u(x, y, 0) = e−4(x−1)2−4y2 ,

along with zero Dirichlet boundary conditions. Additionally, we set the diffusivity to
κ = 0.01 and the convective velocity b(x, y) = (1 − eγx cos 2πy, γ

2π
sin 2πy), where

γ = Re/2−
√

Re2/4− 4π2 and Re = 100 is the Reynolds number. This velocity field b(x, y)
corresponds to the analytical solution for the Kovasznay flow on a rectangular domain [46].2

Figure 6.4: The refinement scheme of the domain Ω, with labels indicating the merging order.

2Clearly, the domain in this case is not rectangular, hence the model here is not physically accurate. Rather
than solve for the velocity field on this domain, we accept this physical inaccuracy so that we might more
readily compare the performance of the method with the example from [23].

66

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. RESULTS 6.2. Applications

We denote by u[i] the approximate solution at time t = i∆t for integers i ≥ 0 and a time step
∆t. Discretising in time using the backward Euler method yields a steady-state PDE in u[i+1],(

1 + ∆t∇ · b+∆tb · ∇ −∆tκ∇2
)
u[i+1] = u[i], (6.2)

which must be solved at every time step to calculate u[i+1] from u[i]. We solve on the domain
Ω, which is a rectangle [0, 10]× [−1, 1] that contains a cylindrical obstacle with radius R = 0.3
centred at (5, 0). The domain is refined to produce subdomains as illustrated in Figure 6.4,
labelled to indicate their merging order.

Using a polynomial degree of n = 21 and a time step ∆t = 0.1, the solution is computed
using the extended version of ultraSEM. The solution at time points t = 0, t = 3, and t = 5
is displayed on the left in Figure 6.5. Initially, the concentration is confined to the left side of
the domain. As time progresses, it gradually disperses, flowing and spreading through the
fluid and around the circular obstacle at the centre.

Figure 6.5: On the left the computed solutions at time steps t = 0, t = 3, and t = 5 for the contaminant flow
problem in (6.2) are presented. The backward Euler method with a time step of ∆t = 0.1 was employed for
time discretisation. The solutions were obtained using the extended version of ultraSEM with a polynomial
degree of n = 21. The domain refinement scheme is depicted in Figure 6.4. On the right, the effect of using
updateRHS is illustrated.

6.2.2 Gray–Scott equations

Reaction-diffusion equations have been extensively investigated by researchers in biology,
chemistry, physics, and computer science to elucidate the formation of patterns in various
phenomena such as hair follicle spacing, specific types of coral growth, chemical reactions,
zebrafish pigmentation, and more [54]. They are renowned for generating dynamic and
captivating patterns and behaviours. The Gray–Scott equations are a set of nonlinear coupled
reaction-diffusion equations which are used to describe changes in chemical concentrations
over time [67]. They serve as a mathematical model to depict how two chemicals could interact
while diffusing through a medium. They are given by

ut = ε1∇2u+ b(1− u)− uv2,

vt = ε2∇2v − dv + uv2,
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where here we set the diffusion constants to ε1 = 0.002 and ε2 = 0.0001, and the constants
influencing linear growth or decay as b = 0.04 and d = 0.1. The coupling between the two
equations is provided by the nonlinear term, uv2, which transfers energy from u to v.

We solve on the square donut domain with a side length of two and a central circular cavity
with radius R = 0.3. Zero boundary conditions are imposed on all edges, including the curved
boundary.

To discretise in time the linear terms in both equations is treated implicitly, and the nonlinear
terms explicitly, resulting in the IMEX scheme:

(1 + ∆tb−∆tε1∇2)u[i+1] = u[i] +∆tb−∆tu[i]
(
v[i]

)2
,

(1 + ∆td−∆tε2∇2)v[i+1] = v[i] +∆tu[i]
(
v[i]

)2
,

(6.3)

which uses the solutions from the previous time step, u[i] and v[i], in the nonlinear term to
calculate the solution at the following time step, u[i+1] and v[i+1]. A spatial discretisation is
applied by employing spectral operators with a polynomial degree of n = 35. Starting with
the initial conditions v = e−80((x+0.5)2+y2) and u = 1 − v, the evolution of the solution v is
depicted at different times in Figure 6.6.

Figure 6.6: The evolution of the v solution in the Gray–Scott equations (6.3) is depicted at time steps
t = 200, t = 1000, and t = 2000. An IMEX scheme is employed for the time discretisation with a time step of
∆t = 2. The polynomial degree is n = 35 and a refinement level of h = 1 is used in ultraSEM to solve in space.
The initial conditions v = e−80((x+0.5)2+y2) and u = 1 − v were used, along with zero Dirichlet boundary
conditions.

6.2.3 The wave equation

The wave equation is a well-known hyperbolic PDE that describes linear, nondispersive wave
propagation. It arises in numerous applications, with a classical example being the vibration
of an ideal membrane or drum [21]. In 2D, the wave speed is represented by c and the equation
takes the form

utt = c2∇2u.
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This equation is solved on the square donut domain with a side length of two and a circular hole
with radius R = 0.3 at the centre. We impose zero Neumann conditions on the top, bottom,
and curved boundaries, and zero Dirichlet values on the right edge. Along the left edge, we
introduce a plane wave via a time-dependent boundary condition: u(−1, y, t) = e−t/∆t. This
models an initial wave entering the domain from the left. Despite the lack of clarity regarding
the well-posedness of the wave equation with such boundary data [66], we proceed with it
nonetheless.

To discretise in time, a second-order central difference formula is employed and the spatial
derivatives is treated implicitly, resulting in the equation:(

1− (∆t)2c2∇2
)
u[i+1] = 2u[i] − u[i−1]. (6.4)

Here, one must save the solutions from not just one but two previous time steps to calculate
the solution at the next step. A time step of size ∆t = 0.01 and a polynomial order of n = 45
is used in our computations. The simulation commences with zero displacement and velocity.
The solutions at two different times are depicted in Figure 6.7. In this scenario, a wave
advances from the left and encounters the circular boundary. It generates a reflected wave
that propagates back to the left, forming an arc-shaped pattern, while the main body of the
original wave continue to propagate to the right, bypassing the hole.

Figure 6.7: The solution to the wave equation (6.4) with c = 1 at time steps t = 1 and t = 1.3 is depicted. A
right-moving wave collides with the circular boundary and forms an arc-shaped reflected wave. The solution
was computed using n = 45 and ∆t = 0.01. A second-order central difference formula was employed for time
discretisation. Zero Neumann conditions are imposed on the top, bottom, and curved boundaries, and zero
Dirichlet values on the right edge. Along the left edge, a decreasing time-dependent boundary condition,
u(−1, y, t) = e−t/∆t, is enforced. The simulation commences with a zero initial condition.

6.2.4 Burgers’ equation

Burgers’ equation is a nonlinear PDE of second-order used in various fields to model physical
phenomena such as boundary layer behaviour, shock wave formation, turbulence, mass
transport, traffic flow, and acoustic transmission [48, 77].
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CHAPTER 6. RESULTS 6.2. Applications

The 2D viscous Burgers’ equations are given by:

ut + uux + vuy =
1

Re
∇2u,

vt + uvx + vvy =
1

Re
∇2v,

where here the Reynolds number is taken to be Re = 30. We consider the square [0, 2]2

containing three circular holes, each with radius R = 0.15, centred at (0.5, 1.5), (1.5, 1.5)
and (1.5, 0.5). This domain is used as a proxy for modelling the flow of shallow water past a
collection of cylindrical pillars.

As previously, our time discretisation treats the nonlinear terms explicitly and the linear
terms implicitly, giving the system(

1− ∆t

Re
∇2

)
u[i+1] = u[i] −∆tu[i]u[i]

x −∆tv[i]u[i]
y ,(

1− ∆t

Re
∇2

)
v[i+1] = v[i] −∆tu[i]v[i]x −∆tv[i]v[i]y .

To solve at each time step, the derivatives of the solutions at the previous time step must be
calculated. This functionality is built into ultraSEM in the form of functions diffx and diffy
that operate on ultraSEM.Sol objects. We set ∆t = 0.05, n = 21, and enforced zero Neumann
boundary conditions. The simulation was initiated using u = v = e−10(0.5−x)2−10(0.5−y)2 and
the solution u is depicted at three different times in Figure 6.8.

Figure 6.8: The solution to the 2D Burgers equations at time steps t = 1.5, t = 3.5, and t = 9 is depicted.
∆t = 0.05 is used for the time discretisation and n = 21 is the polynomial degree for the spatial discretisation.

For reproducibility, the syntax for generating each of the examples in this chapter is provided
in Appendix A. These examples highlight the ease and efficiency of the extended software in
solving complex time-dependent and fluid dynamics problems, and underscore the practical
applicability of the methodology and the new domain.
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CHAPTER 7

CONCLUSION

7.1 Summary

This thesis explored spectral methods for the solution of ordinary and partial differential
equations. Such equations provide a fundamental framework for modelling diverse phenomena
ranging from fluid dynamics and thermodynamics to quantum mechanics and image processing.
However, analytical solutions for these equations are often unattainable or impractical due to
their complexity, leading to the adoption of numerical techniques.

At the heart of our exploration was the ultraspherical spectral method – a recent advancement
in spectral methods. This approach is noted for its sparse linear systems and potential for
solving a variety of problems, from linear ordinary differential equations to nonlinear partial
differential equations. Yet, like many conventional spectral methods, it is constrained to
rectangular domains.

As a first step to overcome this limitation, we investigated the hierarchical Poincaré–Steklov
domain decomposition strategy. This approach enhances computational efficiency by segment-
ing larger domains into manageable components, optimising memory usage, and embracing
parallelism, especially in the context of large-scale simulations.

Further extending our exploration, we addressed the constraint of rectangular subdomains
by introducing coordinate transformations. In particular, emphasis was placed on the trans-
formation to general quadrilaterals and the introduction of a novel geometric shape – the
“squonut”. We incorporated this new domain into an existing open-source software package,
called ultraSEM, which was established for flexible, user-friendly spectral element computa-
tions in Matlab. We demonstrated the feasibility of this extension for solving on rectangular
domains featuring circular holes.

To validate our approach, we evaluated its performance and efficiency. Starting with solving
a standard test problem, we progressed to practical applications, including modelling contam-
inant concentration, reaction-diffusion systems, and various systems of differential equations.
These applications underscored the practical utility of our extended spectral method.
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CHAPTER 7. CONCLUSION 7.2. Future work

7.2 Future work

This thesis sought to offer a contribution to spectral methods for solving ordinary and partial
differential equations. The presented developments aim to bridge gaps in adaptability to
diverse geometries and computational efficiency. The ultraspherical spectral method and the
investigated hierarchical Poincaré–Steklov approach have showcased promise in broadening
the range of problems amenable to spectral solutions.

However, our work is not exhaustive, and there exist promising avenues for future research.
One potential direction is the design of an advanced, non-uniform refinement scheme for the
squonut, akin to the scheme implemented by Fortunato et al. [23] for refining into domain
corners. Such a scheme would enable the solver to specifically target corners or points where
the solution experiences singularities or rapid changes. Achieving this is challenging, as
it requires finding a compromise between creating subdomains with known mappings and
ensuring that the sides of the squonut will be uniformly partitioned. This refinement scheme
would also help facilitate the integration of an adaptive hp-refinement strategy, allowing users
to specify accuracy levels and thereby enhancing the software’s usability.

Exploring additional coordinate transformations for incorporation into the ultraspherical
framework offers another possible avenue for advancement. This could potentially broaden
the spectrum of domains that can be effectively addressed even further, and enable efficient
evaluation on domains whose geometry made it impractical to solve on previously. Shifting
the focus towards time-dependent problems and implementing more sophisticated time
discretisation schemes, such as higher order IMEX [2] or Runge–Kutta [12] methods, could
also expand the application range.

Regarding the ultraSEM framework, a natural progression would be extending the methodology
to three dimensions, similar to what has been done for collocation methods in the HPS
framework [36]. Additionally, investigating the use of impedance-to-impedance mappings [36],
especially in scenarios where artificial resonances might be induced during operator merging,
has emerged as another feasible extension.

In conclusion, this thesis represents only a fraction of the ongoing evolution and refinement
of numerical methodologies, always striving towards the design of accurate, efficient, and
versatile numerical solvers.
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APPENDIX A

CODE EXTRACTS

Helmholtz equation on pentagon

% Spatial discretisation:
dom = ultraSEM.polygon (5);
dom = refine(dom);
n = 20;

% PDO:
pdo = {{1,0,1}, {0,0}, 1000};

% RHS:
rhs = -1;

% Boundary conditions:
bc = 0;

% Initialise:
S = ultraSEM(dom , pdo , rhs , n);

% Solve:
u = S \ bc;

% Plot:
plot(u)

Transport of a contaminant concentration

% Time discretisation:
dt = 0.1; T = 10;
nsteps = ceil(T / dt);

% Spatial discretisation:
sq = ultraSEM.squonut (0.3 ,0.7 ,[5 ,0]);
rect1 = ultraSEM.rectangle ([0 4 -1 1]);
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rect2 = ultraSEM.rectangle ([6 10 -1 1]);
dom = rect1 & sq & rect2;
dom = refine(dom);
n = 21;

% PDE parameters:
kappa = 0.01; % Diffusivity
Re = 100; % Reynolds number

% Kovasznay flow velocity field:
gamma = Re / 2-sqrt(Re^2 / 4+4*pi^2);
bx = @(x,y) 1-exp(gamma*x).*cos (2*pi*y);
by = @(x,y) gamma / (2*pi)*exp(gamma*x).*sin (2*pi*y);

% Compute the divergence of the velocity field:
x = chebfun2 (@(x,y) x, rect);
y = chebfun2 (@(x,y) y, rect);
divb = diffx(bx(x,y)) + diffy(by(x,y));
db1dx = @(x,y) -gamma.*exp(gamma .*x).*cos(2*pi.*y);
db2dy = @(x,y) gamma.*exp(gamma.*x).*cos(2*pi.*y);

% Backwards Euler:
pdo = {-dt*kappa , {@(x,y) dt*bx(x,y), @(x,y) dt*by(x,y)},

@(x,y) 1+dt*divb(x,y)};

% Initial and boundary conditions:
u0 = @(x,y) exp(-4*((x-1) .^2+y.^2));
bc = @(x,y,t) 0*x;

% Initialise:
u = ultraSEM.Sol(u0, n, dom);
S = ultraSEM(dom , pdo , 0, n);

% Run a simulation:
t = 0;
for i = 1: nsteps

% update RHS
S.rhs = u;

% solve
u = S \ bc;

% update time step
t = t+dt;

end

% Plot the final solution:
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plot(u)

Gray-Scott equations

% Time discretisation:
dt = 2; T = 200;
nsteps = ceil(T / dt);

% Spatial disretisation:
R = 0.3; h = 0.7;
sq = ultraSEM.squonut(R,h,[0 ,0]);
dom = refine(sq);
n = 35;

% Initial conditions:
u0 = @(x,y) 1-exp ( -80*((x+.5) .^2+(y).^2));
v0 = @(x,y) exp ( -80*((x+.5) .^2+(y).^2));

% PDE parameters:
b = 0.04; d = 0.1;
ep1 = 0.002; ep2 = 0.0001;

% IMEX scheme:
pdou = ultraSEM.PDO({-ep1*dt, 0 ,-ep1*dt}, {0,0}, 1+dt*b);
pdov = ultraSEM.PDO({-ep2*dt, 0 ,-ep2*dt}, {0,0}, 1+dt*d);

% Initial and boundary conditions:
u = u0; v = v0;
bcu = 0; bcv = 0;

% Initialise:
Su = ultraSEM(dom , pdou , 0, n);
Sv = ultraSEM(dom , pdov , 0, n);

% Run a simulation:
t = 0;
for i = 1: nsteps

% update RHS
Su.rhs = @(x,y) u(x,y) - h.*u(x,y).*v(x,y).^2 + dt*b;
Sv.rhs = @(x,y) v(x,y) + h.*u(x,y).*v(x,y).^2;

% solve
u = Su \ bcu;
v = Sv \ bcv;
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% update time step
t = t+dt;

end

% Plot the final solution:
plot(v)

The wave equation

% Time discritisation:
dt = 0.01; T = 2;
nsteps = ceil(T / dt);

% Spatial discretisation:
h = 0.7; R = 0.3;
sq = ultraSEM.squonut(R,h,[0 ,0]);
dom = refine(sq);
n = 45;

% Backwards Euler:
pdo = {-dt^2, 0, 1};

% Initial condition:
u0 = @(x,y) 0;

% Initialise:
u = ultraSEM.Sol(u0, p, dom);
S = ultraSEM(dom , pdo , 0, n);

% Boundary conditions - manually specify:
bc = BCGUI(L);

% Run a simulation:
t = 0;
for i = 1: nsteps

% update time -dependant bc
for idx = [7]

bc(idx).val = exp(-t / dt);
end

% solve
unew = S \ bc;

% update previous solution
uprev = u; u = unew;
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% update RHS
S.rhs = (2*u-uprev);

% update time step
t = t+dt;

end

% Plot the final solution:
plot(u)

Burgers’ equations

% Time discretisation:
dt = 0.05; T = 9;
nsteps = ceil(T / dt);

% Spacial discretisation:
R = 0.15; h = 0.35;
sq1 = ultraSEM.squonut(R,h ,[1.5 ,0.5]);
sq2 = ultraSEM.squonut(R,h ,[1.5 ,1.5]);
sq3 = ultraSEM.squonut(R,h ,[0.5 ,1.5]);
rect = ultraSEM.rectangle ([0 1 0 1]);
dom = sq1 & sq2 & sq3 & rect;
n = 21;

% PDE parameters:
Re = 30; % Reynolds number

% IMEX scheme:
pdou = ultraSEM.PDO({-dt / Re ,0,-dt / Re}, {0,0}, 1);
pdov = ultraSEM.PDO({-dt / Re ,0,-dt / Re}, {0,0}, 1);

% Initial conditions:
u0 = @(x,y) exp ( -10*((0.5 -x).^2 + (0.5-y).^2));
v0 = @(x,y) exp ( -10*((0.5 -x).^2 + (0.5-y).^2));

% Zero Neumann boundary conditions:
bcu = ultraSEM.BC(0,0,1);
bcv = ultraSEM.BC(0,0,1);

% Initialise:
u = ultraSEM.Sol(u0, n, dom);
v = ultraSEM.Sol(v0, n, dom);
Su = ultraSEM(dom , pdou , 0, n);
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Sv = ultraSEM(dom , pdov , 0, n);

% Run a simulation:
t = 0;
for i = 1: nsteps

% update derivatives
dudx = diffx(u); dudy = diffy(u);
dvdx = diffx(v); dvdy = diffy(v);

% update RHS
Su.rhs = u.*(1-dt.*dudx) - dt.*v.*dudy;
Sv.rhs = v.*(1-dt.*dvdy) - dt.*u.*dvdx;

% solve
u = Su \ bcu;
v = Sv \ bcv;

% update time step
t = t+dt;

end

% Plot the final solution:
plot(u)
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