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Abstract 

Diuraphis noxia Kurdjumov (Russian wheat aphid (RWA)), is an economically important 

agricultural pest that causes substantial losses in small grain production, particularly 

wheat and barley. Approaches that can be taken to manage this invasive pest include the 

cultivation of RWA resistant cultivars. The development of new RWA biotypes, virulent 

against previously classified resistant wheat cultivars presents, an additional problem to 

the goal of reducing crop losses. Therefore, studying the underlying molecular genetics 

of the RWA brings us closer to understanding wheat resistance to the RWA and ultimately 

battling this pest in small grain fields. The objectives of this study were: to study the sex 

(X) chromosome of the RWA by karyotyping and isolation using flow cytometry; to 

sequence the X chromosome; and then to map it against the reference genomes of the 

RWA and Acyrthosiphon pisum (pea aphid). Since aphids reproduce via 

parthenogenesis, mapping populations reliant on sexual recombination are not available, 

and therefore information about the locations of genes on chromosomes is completely 

lacking. To this end, reference mapping against the X chromosome of Drosophila 

melanogaster (fruit fly) was conducted to identify orthologous regions spanning the X 

chromosome of RWA. The results confirmed that the RWA karyotype consists of a diploid 

chromosome number of 10, with a large X chromosome pair and four autosomal 

chromosome pairs. Flow sorting yielded 2,047,296 X chromosomes and sequencing 

produced a total read count of 136,814,894 with a Q20 score of 96.32%. The X 

chromosome had a higher mapping percentage to the RWA genome (82.88%) compared 

to that of the pea aphid (51.3%). Interestingly, a high mapping coverage across the entire 

genome of both aphids was observed, suggesting that flow cytometry did not separate 

the X chromosome from the rest of the chromosomes of the RWA but allowed unintended 

chromosomes to contaminate the series. Mapping against the fruit fly X chromosome 

produced eight orthologous regions of which six was confirmed to be present in the RWA 
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karyotype through in situ hybridization, while a protein BLAST of the fruit fly X 

chromosome against the RWA genome aided in determining approximately 67.42% of 

the length of the RWA X chromosome. 
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Uittreksel 

Diuraphis noxia Kurdjumov, algemeen bekend as die Russiese koringluis (RWA), is ‘n 

ekonomiese belangrike landboupes wat ‘n groot afname in klein graangewas produksie, 

spesifiek koring en gars, veroorsaak. Metodes wat geiimplementeer kan word om hierdie 

indringer pes te beheer en gewas verliese te verhoed, sluit die kultivering van RWA 

weerstandbiedende kultivars in. Die ontwikkeling van RWA-biotipes, wat luis populasies 

is virulent teen   voorheen   weerstandbiedende koring kultivars, dra addisioneel tot die 

probleem by. Daarom is dit belangrik om die onderliggende molekulêre genetika van die 

RWA te verstaan, sodat ons ook koring weerstand tot RWA kan begryp om uiteindelik 

graangewasse teen die pes te beskerm. Die doel van hierdie studie is: om die seks (X-) 

chromosoom van die RWA te bestudeer deur kariotipering en  te isoleer deur van 

vloeisitometrie gebruik te maak; die X-chromosoom se volgorde te bepaal; en om dit dan 

teen die verwysings genome van RWA en Acyrthosiphon pisum (ertjieluis) te vergelyk. 

Aangesien hierdie luise ongeslagtelik voortplant, bestaan daar nie karteringspopulasies 

vir RWA nie, en daarom ontbreek inligting oor die ligging van gene op die chromosome. 

Ten einde die studie doel te bereik, was verwysingkartering teen Drosophila 

melanogaster (vrugtevlieg) se X-chromosoom gedoen met die doel om 

ooreenstemmende areas oor die X-chromosoom te identifiseer. Die resultate het bewys 

dat die RWA-kariotipe uit ‘n diploïde chromosoomgetal van 10 bestaan, met ‘n groot X-

chromosoompaar en vier outosomale chromosoompare. Vloeisortering het 2,047,296 X-

chromosome opgelewer en volgordebepaling het ‘n totale leesraam-telling van 

136,814,894 teen ‘n Q20-telling van 96.32% gelewer. Die X-chromosoom het ‘n hoër 

ooreenstemming teenoor die genoom van die RWA (82.88%), in vergelyking met die 

ertjieluis (51.3%) vertoon. Beide luise het n hoë karteringdekking oor hulle hele genoom 

gehad. Dit was onverwags en dui daarop dat vloeisitometrie nie spesifiek genoeg was vir 

net die X-chromosoom nie en het dus nie-geteikende chromosome deur gelaat wat die 
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monster gekontamineer het. Kartering teenoor die vrugtevlieg X-chromosoom het agt 

ooreenstemende streke geproduseer waarvan ses bewys was om voor te kom in die 

RWA kariotipe deur in situ hibridisering, terwyl ‘n proteïen BLAST van die vrugtevlieg X-

chromosoom teenoor die RWA genoom bygedra het tot die bepaling van minstens 

67.42% van die lengte van die RWA X-chromosoom. 
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1.1 Introduction 

Diuraphis noxia (Kurdjumov, Hemiptera, Aphididae), frequently referred to as the Russian 

wheat aphid (RWA), is a severe agricultural pest of many cereal crops, such as wheat 

(Triticum aestivum L.) and barley (Hordeum vulgare L.) and has had a significant 

economic impact worldwide especially on wheat. The RWA is characterised by its ability 

to develop virulent biotypes that are capable of feeding on former resistant wheat cultivars 

(Burd et al. 2006), thus counteracting the host’s defensive responses. Therefore, it is 

crucial to research and understand the constant evolutionary struggle between the RWA 

and wheat (Botha 2013). 

Cytogeneticists have been using aphids as a model group more frequently in the twentieth 

century, with numerous species within the Aphididae family that have already been 

karyotyped. The results show a big inconsistency in chromosome number and 

morphology between and even within the species (Novotná et al. 2011). Furthermore, 

most of the studies on chromosomes of aphids only mention the diploid chromosome 

numbers without providing further information on their karyotypes (Samkaria et al. 2010).  

Aphids have holocentric chromosomes that lack centromeres and therefore display 

kinetic activity along most of the chromosome length (Blackman 1987). The absence of 

centromeres makes it almost impossible to distinguish between aphid chromosomes of 

similar size, mostly because in karyotype studies the centromere is an important 

identification feature (Novotná et al. 2011).  

In the RWA, the karyotype differs between sexes, with females showing a diploid 

chromosome number of 2n = 10 and males 2n = 9. Furthermore, the chromosomes are 

classified by size into three groups: a pair of large chromosomes, three pairs of middle-

sized chromosomes, and one pair of small chromosomes. The male RWA only has one 

copy of the X chromosome, whereas the female has two copies (Novotná et al. 2011). 
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The large size of the X chromosome in the RWA makes it an ideal candidate to isolate 

and characterise in silico. Flow cytometry sorting is a method that is successful in isolating 

chromosomes of interest, especially if it can be distinguished from other chromosomes in 

the karyotype. Sorting of chromosomes play a particularly important role in the analysis 

of nuclear genome structure and the study of specific and unusual chromosomes (Doležel 

et al. 2012). 

Therefore, the aim of this study was to verify the karyotype of the South African RWA by 

investigating the chromosomal ultrastructure, where after we wanted to characterise the 

X chromosome of the RWA through the analysis of chromosomal properties and with high 

resolution mapping techniques. In order to reach these research goals the following 

objectives were set. Firstly, to construct the RWA karyotype through fluorescent 

microscopy using mitotic chromosomes obtained from whole RWA embryos. Secondly, 

to isolate the X chromosome of the RWA using a flow cytometry approach, thereby 

obtaining DNA from only the X chromosome, to sequence it. Thirdly, to map the 

sequenced reads obtained from the X chromosome against the genomes of the RWA 

(SAM_Contigs_Version 1.1; GCA_001465515.1; Botha et al. 2016 – in press) and 

Acyrthosiphon pisum (pea aphid) (Acyr_2.0; GCA_000142985.2; The International Aphid 

Genomics Consortium 2010). Fourthly, to align the well characterised X chromosome of 

Drosophila melanogaster (fruit fly) (BDGP6; Adams et al. 2000) against the RWA 

genome, in order to identify orthologous regions with high similarity. Lastly, to perform 

fluorescent in situ hybridization (FISH) with probes derived from the X chromosome of 

the fruit fly that is suspected to also hybridize to the X chromosome of the RWA. 
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1.2 Thesis outline 

The thesis consist of four chapters. Chapter 2 contains a brief summary of literature on 

the RWA, its relationship to wheat, virulent biotypes, the RWA karyotype, RWA 

reproduction, sequencing platforms and single-chromosome isolation techniques. 

Chapter 3 focuses on the research conducted in this study and consists of the 

constructed karyotype of the RWA, the isolation of the X chromosome of the RWA through 

flow cytometry, bioinformatic analysis of the RWA X chromosome through reference 

mapping against the RWA genome, pea aphid genome, and the X chromosome of the 

fruit fly, and then finally also FISH studies. 

Appendix A contains tables and supplemental folders of flow cytometry gating strategies 

and results, raw data and mapping comparisons of the isolated X chromosome of the 

RWA against the RWA and pea aphid genomes, raw data of the alignments of the RWA 

genome against the X chromosome of the fruit fly, and also figures related to FISH. 

Chapter 4 contains a summary of the main findings of this study and the implications 

thereof. 

1.3 Preface 

The findings obtained and presented in this thesis are the results of a study undertaken 

between January 2014 and July 2016 in the Department of Genetics, Stellenbosch 

University, under the supervision of Professor Anna-Maria Oberholster. 

1.4 Research outputs 

The following outputs were achieved: 

Steyn, L. J., A. Bierman, and A. M. Botha, 2016 Karyotyping and in silico characterisation 

of the chromosomes of Diuraphis noxia (Hemiptera: Aphididae). Biennial 
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International Plant Resistance to Insects (IPRI) conference. International oral 

presentation, Cape Town, South Africa – award for first runner up in M.Sc. 

student’s category. 

Steyn, L. J., A. Bierman, N. F. V. Burger, and A. M. Botha, 2016 Partial characterisation 

of the X chromosome of Diuraphis noxia (Hemiptera: Aphididae). Chromosome 

Research – in preparation. 

Botha, A. M., N. F. V. Burger, W. Cloete, L. van Eck, K. Breeds, L. J. Steyn, et al., 2016 

Draft genome of female Diuraphis noxia (Hemiptera: Aphididae) reveals high 

levels of genetic diversity despite parthenogenecity and hypomethylation as a 

mean to enhance genomic plasticity. Genome Biology – in press. 
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2.1 Insect pests 

An insect is characterised as a pest if it has an impact on human lifestyle, natural habitats, 

or ecosystems (Meyer 2007). One of the main problems associated with insect pests 

include the damaging effects on crops and subsequently a decrease in food production 

(Bailey et al. 2010). There are approximately 6 million species of insects, of which 50% 

are known to be herbivorous (Schoonhoven et al. 2005). Different insect pests use 

various approaches to salvage nutrients from plants. All known plant feeding 

(phytophagous) insects cause mechanical damage to plant tissues, but the degree of 

injury varies between different species of insect, mainly because of their contrasting 

strategies of feeding (Howe and Jander 2008).  

The majority (60%) of herbivorous insect species have been identified as leaf-eating 

beetles (Coleoptera) or caterpillars (Lepidoptera) that mainly cause damage with their 

mouthparts which have evolved for chewing, snipping, or tearing (Schoonhoven et al. 

2005). Other insects like thrips and spider mites, suck the liquid content from lacerated 

cells through tube-like structures, whereas leaf miners develop and feed on soft tissue 

between epidermal cell layers. Aphids, whiteflies, and other Hemiptera insert specialized 

stylets between cells to create a feeding site in the phloem (Howe and Jander 2008). 

2.2 Insect-plant interactions 

In the course of insect-plant interactions both partners send and receive chemical cues 

that influence the outcome of the interaction. Contact chemoreceptors on the insect 

mouthparts, antennae, and tarsi, measure the suitability of the host as a food source. In 

opposition, plant cells detect and respond to insect movement, wound trauma caused by 

feeding, and compounds in insect oral secretions (Howe and Jander 2008).  

The choice of an insect to reject or accept a host plant is influenced by a number of 

chemical deterrents and attractants. A considerable amount of specialised plant 
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compound (secondary metabolites) diversity, is a result of the co-evolutionary struggle 

between insects and plants (Becerra 2007).   

2.3 Aphids 

The Aphididae family consists of approximately 4700 aphid species of which 450 have 

been identified as small grain pests. One hundred of these aphids have taken advantage 

of the monoculture environment of modern agriculture, resulting in extensive economic 

damage globally (Van Emden and Harrington 2007). 

Aphids have small soft bodies and belong to the order Hemiptera (Sternorrhyncha) that 

also include whiteflies, mealybugs, and psyllids. The insects that belong to this order are 

all evolutionary adapted to consume phloem sap as a main or only food source. Aphids 

are further grouped into two subfamilies namely, the Aphididae that comprise of “true” 

aphids, as well as the Aphidinae that consist of several aphid pests of food crops (De 

Jager et al. 2014).     

Aphids are dispersed worldwide and are specialised phloem feeders that cause severe 

damage to numerous cultivated plants (Tagu et al. 2008). The devastating impact of 

aphids is associated with their efficient colonization and settlement traits, because of 

several advantageous biological characteristics. Firstly, parthenogenesis allows a double 

intrinsic rate of increase and a shortened reproductive time. Secondly, the aphids can 

colonize new host plants through winged adults while the wingless adults invest more of 

their energy in reproduction. Thirdly, they cause a significant nutrient withdrawal from 

sieve tubes, because of high population densities and, lastly, they transmit numerous 

phytoviruses (Giordanengo et al. 2010).  

The survival of aphids depend on their ability to access phloem bundles, disrupting and 

evading the plant defence responses, and their capability of keeping the phloem cells 

functioning while withdrawing their liquid diet. In contrast to grazing insects that remove 
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big sections of plant tissues, aphids only cause minor physical damage. Aphids insert 

long and flexible stylets that primarily move in the cell wall apoplasm, between cells, to 

access the sieve tubes (Tjallingii 2006).   

The best studied aphids and their hosts include, Schizaphis graminum (greenbug) that 

feed on winter and spring grain (Kindler et al. 2002), Acyrthosiphon pisum (pea aphid) 

that feed on legume crops (Edwards 2001), and Diuraphis noxia Kurdjumov (Russian 

wheat aphid) that feed on wheat and barley (Botha et al. 2005). All of these host-specific 

aphids are considered as agricultural pests and are highly adapted to their specific 

environmental conditions. 

2.4 Russian wheat aphid (RWA) 

2.4.1 Host plant 

Bread wheat (Triticum aestivum L.) was one of the first domesticated crops and is the 

most recent polyploid species among the agricultural crops. Wheat is classified as a major 

food source, as it is one of the world’s leading crops and holds the record for the highest 

trade value amongst the cereal species (Gill et al. 2004). A total area of approximately 

218.46 million ha of the world is occupied by wheat production with a grain yield of around 

713.18 million tons and an average yield of 2,900 kg/ha (Khan et al. 2015). Wheat has a 

higher nutritive value than other grains, and together with other major crops like rice and 

maize, supplies almost two thirds of the world’s daily calorie and protein intake. It is an 

important source of protein, vitamins, and minerals and serves as the staple food source 

of 30% of the human population. Wheat thrives in temperate regions unlike other similar 

cereal crops, rice and maize, that is best adapted for tropical environments (Gill et al. 

2004).  

Over 600 million tons of wheat is harvested annually, but the yield must rise exponentially 

(2% per annum on an area of land) over the next 50 years in order to meet the ever 
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increasing human demand. Food security is projected to become more critical as a result 

of population growth (Gill et al. 2004). Therefore a multidisciplinary, combined approach 

to crop enhancement is necessary to guarantee sustainability. To reach this objective, 

high-production irrigated regions will carry on to play a key role, but the total yield will 

mostly be affected by genetic potential, the level of diseases, and pests (Duveiller et al. 

2007). Wheat is susceptible to many kinds of insects, but the few species with damaging 

effects on yields are especially presenting a challenge to farmers. It has been calculated 

that pest infestations on average cause 20-37% wheat yield loss worldwide. This 

calculation translates to approximately $70 billion a year (Dilbirligi et al. 2004).  

2.4.2 RWA background 

Russian wheat aphid (RWA) is an economically important agricultural pest that causes 

substantial losses in small grains, particularly wheat (Lapitan et al. 2007), but also 

damages barley, rye, oats, and other triticale crops (Webster et al. 1987). It is an 

elongated small insect, relatively 1.5 to 1.8 mm in length. This phloem-feeding pest is a 

lime-green colour and its body is spindle shaped. The RWA has short antennae and when 

it is viewed from the side, a characteristic double tail can be seen (Figure 2.1) (Stoetzel 

1987). 

 

 

 

 

 

 

Figure 2.1: Physical characteristics of the RWA (Stoetzel 1987). Side and top view displaying the 
distinct morphological features of the RWA. 

Side view 

Top view 

Stellenbosch University  https://scholar.sun.ac.za



  Chapter 2 

13 
 

The RWA is native to southern Russia and central Asia, from where it dispersed to all 

cereal producing areas of the world, with the most severe cases occurring in South Africa, 

USA, Canada, and South America (Burd et al. 2006; Jankielsohn 2011). The RWA is 

characterised as an invasive species and was reported for the first time in South Africa in 

1978 in an area around Bethlehem in the eastern Free State, from where it spread to the 

western Free State and parts of Lesotho. It was also present in small areas of Gauteng, 

the North West province, as well as Kwazulu-Natal (Walters et al. 1980), and more 

recently it has been reported in the Western Cape (Jankielsohn 2011). 

Cilliers et al. (1992) predicted that the economic damage caused by the RWA in South 

Africa would amount to approximately R30 million in 1993, with almost half of that sum 

being spent on chemical control. The yield losses caused by the RWA are severe with 

recorded crop losses of 35-60% in South Africa for wheat alone (Robinson 1992). In the 

United States (US) damage has been estimated at $890 million from 1987-1993 (Morrison 

and Peairs 1998) with more recent research showing that in the US, the RWA can reduce 

wheat grain yield up to 82.9% and vegetative biomass up to 76.5% in Texas and the 

Oklahoma Panhandles (Mirik et al. 2009).  

2.4.3 RWA feeding 

The RWA feeds on phloem and maintains the interaction at a specific feeding site (Goggin 

2007; Giordanengo et al. 2010). This must be done without killing the phloem cells, in 

addition to avoiding and disrupting plant defences (Powell et al. 2006). Before the RWA 

can establish a suitable relationship with its host, the aphid must firstly differentiate 

between host and non-host. The RWA inserts its stylet, comprised of two outer 

mandibules and two inner maxillae, into the host epidermal apoplasm, initiating shallow 

probes that last briefly (< 2 minutes), but result in host recognition by the aphid. This 

provokes the feeding response or host rejection that ultimately stimulates the flight 
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response. The flight response is a physiological reaction that occurs in response to a 

perceived harmful event, attack, or threat to survival (Tjallingii and Esch 1993; Will and 

Van Bel 2006).   

As soon as the RWA have identified a suitable host, the adjustable stylets puncture further 

into the plant tissue, while proteinaceous gelling saliva is secreted. This forms a firming 

and lubricating sheath around the stylets (Tjallingii 2006). The RWA probe the internal 

chemistry of cells with the stylets throughout the transit to the phloem by briefly inserting 

and withdrawing the stylets into various cells (Tjallingii and Esch 1993; Giordanengo et 

al. 2010). This probing function is essential in locating the position of the phloem as well 

as to determine the progress of the stylets within the plant tissue (Giordanengo et al. 

2010).  

When the sieve tube elements are reached they are punctured and sap is ingested 

passively due to the high endogenous pressure in the cell (Will et al. 2009). Prior to 

feeding, the RWA injects the tubes with watery saliva that is known to mostly counteract 

the plant’s defence mechanisms, causing the sap to flow uninterrupted (Will and Van Bel 

2006). This factor allows the aphid to feed at a single site for many hours (Goggin 2007). 

The phloem sap that is ingested by the aphid is full of nutrients such as sugars, but low 

in nitrogen in the form of free amino acids. The amino acids existing in the phloem sap 

are inadequate to meet the nutritional requirements of the aphid. Therefore, the RWA 

have acquired an endosymbiont, Buchnera aphidicola (coccoid у-proteobacterium), 

which utilizes the sucrose and aspartate present in the sap to biosynthesize essential 

amino acids (Miles 1999; Will et al. 2007). This symbiosis allows aphids to use a 

nutritionally imbalanced food source such as phloem on which other organisms cannot 

survive. B. aphidicola is maintained between generations within aphid produced cells 

called mycetocytes/bacteriocytes. Research suggests that B. aphidicola of different RWA 
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biotypes display small amounts of variation in sequence and have contrasting plasmid 

copy numbers (Swanevelder et al. 2010).  

2.4.4 Symptoms of RWA infestation 

While the RWA feeds it injects eliciting agents into the host plant, causing chloroplast and 

cellular membrane breakdown in the host plant and activating pathogenesis-related (PR) 

genes (Botha et al. 2005). The RWA feeds on the most recent plant growth and ultimately 

causes chlorophyll production standstill in those leaves (Botha et al. 2011). Damage 

symptoms of RWA infestations on susceptible wheat cultivars include stunted growth of 

the plant, chlorosis, leaf rolling, head trapping, and white, yellow, and in winter, purple 

longitudinal streaks on the upper side of the leaf surface (Figure 2.2)(Lapitan et al. 2007).  

 

 

 

 

 

 

The occurrence of chlorotic streaking inhibits normal growth of the host plant, which can 

result in death in the case of extreme infestations. There are two different types of leaf 

rolling in host plants that can be induced by the RWA (Goggin 2007). One is where the 

edges of fully expanded and mature leaves curl inward around the RWA colony, 

protecting it against natural enemies, climate, and insecticides. Another, is where the 

RWA decreases the size of newly formed leaves that are then prevented from unfolding. 

This action can result in stunted growth of the entire plant. Head trapping usually occurs 

later in the season, where infested leaves trap the emerging crop heads, preventing good 

B C A 

Figure 2.2: Symptoms of RWA infestation. A) Leaf rolling (http://californiaagriculture.ucanr.org). 
B) Chlorotic streaking (http://entomology.k-state.edu). C) Head trapping (http://www.fao.org). 
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grain fill and ultimately affecting the yield production of the crops (Botha et al. 2005; Jyoti 

et al. 2006).  

Approaches that can be taken to manage this pest to reduce crop losses include a mixture 

of contact and systemic insecticide, the cultivation of RWA resistant cultivars as well as 

the introduction of natural biological control agents such as predators, parasitoids, and 

pathogens which are also used to control aphid numbers when they are protected in the 

leaf sheath (Carver 2009; Webster et al. 1987).   

2.4.5 RWA-wheat interaction 

The RWA affects wheat throughout the growth season and infestations would usually 

commence from the appearance of the crop in autumn straight through to crop maturity 

(Shea et al. 2000). RWA infestations can result in 100% reductions in wheat yield or 

cause death of the plant, especially if the pest is abundant (Elliot et al. 2007). Therefore, 

early detection and timely controls are very important especially during the winter and 

spring growing seasons (Pike et al. 1989).  

Host plants react to RWA infestations according to three categories. These can be 

defined as: (1) tolerance, i.e. the host withstands conditions of infestations which will 

severely harm susceptible plants; (2) antibiosis, i.e. the capability of the host plant to 

fatally change the biology of the pest; and (3) antixenosis, i.e. the disfavour or non-

preference of plants for insect oviposition, shelter, or food (Painter 1958).  

Wheat resistance to RWA can occur through one or a combination of factors. Firstly, the 

pest may not recognise the plant as a suitable host, because it is less attractive or 

distasteful, which is expressed as reduced feeding and oviposition. Preformed barriers 

and defence molecules may prevent attack and plants may initiate defence responses 

against the pest once it has been recognised. That negatively impacts the pest 
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performance, which is expressed as longer larval development time, mortality, and 

reduced larval mass (Hammon-Kosack and Jones 1996).  

Resistance (R-) genes also confer resistance to the RWA in wheat (Dogimont et al. 2010). 

The genetic employment of R-genes in wheat is an efficient, economical, and well-tested 

method in controlling insect pests (Dilbirligi et al. 2004). Presently, 14 R-genes conferring 

RWA resistance have been identified in wheat and its relatives, and are titled as Dn 

(Diuraphis noxia) genes. These Dn genes are designated as follows: Dn1 and Dn2 (Du 

Toit 1987; 1988; 1989), dn3 (Nkongolo et al. 1991a), Dn4 (Nkongolo et al. 1991b), Dn5 

(Marais and Du Toit 1993), Dn6 (Saidi and Quick 1996), Dn7 (Marais and Du Toit 1993), 

Dn8 and Dn9 (Liu et al. 2001), Dnx (Harvey and Martin 1990), Dny (Smith et al. 2004), 

Dn2414 (Peng et al. 2007), Dn626580 (Valdez 2012), and DnCI2401 (Fazel-Najafabadi 

2015). Each R-gene may provide resistance to a single or to multiple biotypes, which is 

the case in wheat containing the Dn7 resistance gene, the only recorded germplasm line 

resistant to all South African RWA biotypes (Dogimont et al. 2010; Jankielsohn 2011).  

The mode of response of these genes has been determined as well as the location for 

some of these genes on wheat chromosomes. The majority of these genes are located 

on either chromosome 1B or 7D in hexaploid wheat (Botha et al. 2005; Dogimont et al. 

2010).  

2.4.6 RWA biotypes 

A RWA biotype is a population of aphids that can damage a wheat cultivar that was 

previously reported resistant to other biotypes of RWA (Burd et al. 2006). There is an 

arms race between plant resistance and aphid virulence. RWA adaptation results in new 

biotypes that are morphologically alike to the original biotypes, but different in their 

behavioural performance, such as their preference for different host genotypes (Lapitan 

et al. 2007). New RWA biotypes are likely due to the diversification theory – two 
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subpopulations live in different environments that select for different alleles at a particular 

locus – however, new aphid biotypes still show little nuclear and mitochondrial sequence 

variation. RWA biotypes are not differentiated on morphology, but on their potential to 

overcome resistance, their fecundity, and the destruction they cause to a plant differential 

(Swanevelder et al. 2010).  

The observation of newly emerging RWA biotypes is a growing concern amongst farmers, 

especially in areas where resistant wheat cultivars are now put at risk because of new 

biotypes (Botha et al. 2005). The appearance of new RWA biotypes implies either new 

introductions or adaptations and diversification of existing populations. It is very important 

to research new sources of resistance that can be implemented immediately for more 

durable resistance (Haley et al. 2004). Biotypes can be differentiated from one another 

according to two types of existing classification systems. In the two-category system the 

aphids are categorized as virulent or avirulent, whereas in the three-category system the 

aphids are classified as virulent, intermediate, or avirulent. Classification of these systems 

is exclusively based on the phenotypic response of the host as a direct result of aphid 

feeding (Burd et al. 2006; Puterka et al. 2012).  

A RWA biotype virulent to cultivars carrying the Dn4 resistance gene was discovered in 

2003 in south-eastern Colorado in the US (Haley et al. 2004). In South Africa four new 

RWA biotypes have been reported since 2005. The first resistance-breaking biotype 

against cultivars containing the Dn1 resistance gene was reported in 2005 in the eastern 

Free State (Figure 2.3) and is known as SA2 (South African biotype 2) (Tolmay et al. 

2007). Shortly thereafter, in 2009, a second resistance breaking biotype emerged that 

exhibited virulence to the same resistance sources as SA2 (Dn1, Dn2, Dn3, and Dn9) as 

well as virulence against Dn4, known as SA3 (South African biotype 3) (Jankielsohn 

2011). During 2011, SA4 (South African biotype 4), relatively unaffected by the Dn5 

resistant gene, was discovered (Jankielsohn 2014). The SA2, SA3, and SA4 RWA 
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biotypes are highly virulent when compared to the original South African biotype, SA1 

(Jankielsohn 2016). SA1 infestations do not cause damage to resistant wheat cultivars, 

except in the germplasm containing the dn3 gene.  

 

 

 

 

 

 

 

 

 

The South African mutant biotype, SAM, was developed from SA1 after laboratory 

induced selective pressure on Dn resistant cultivars (Swanevelder et al. 2010). SAM 

causes symptoms in all known resistant wheat cultivars including those containing Dn7. 

2.4.7 RWA karyotype 

Cytogenetic research was restricted in aphids in the past and confined to counting and 

size-sorting of the chromosomes. However, presently aphids are a popular model group 

among cytogeneticists (Novotná et al. 2011). The interaction between histones and non-

histone proteins leads to the formation of chromosomes (Margueron and Reinberg 2010; 

Zhou et al. 2011). Even though there is no noticeable connection between genome size 

and the amount of chromosomes (Heslop-Harrison and Schwarzacher 2011), Schubert 

et al. (2001) believed that large genomes must be spread into a number of smaller 

Biotype 1 Biotype 2 Biotype 3 

Figure 2.3: A general distribution map of the four RWA biotypes found in South Africa 
(Jankielsohn 2016). 

Biotype 4 
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chromosomes, ultimately because chromosome size has an upper boundary. The 

karyotype of aphids has been shown to vary in chromosome number and morphology 

between and even within the species (Novotná et al. 2011).  

The female karyotype of the RWA (2n = 10) consists of 4 autosomal chromosome pairs 

as well as a pair of large X (sex) chromosomes (Figure 2.4). The male karyotype of the 

RWA (2n = 9) consists of 4 autosomal pairs, but only a single large X chromosome. The 

4 autosomal chromosome pairs present in both sexes of the RWA can be classified 

according to size into 2 classes: 3 pairs of middle-sized chromosomes, and 1 pair of small 

chromosomes. The X chromosome/chromosomes are classified as the largest 

component of the karyotype (Novotná et al. 2011).  

 

 

 

 

 

 

 

 

 

The estimated genome sizes of the female and male RWA is 2C = 0.86 pg and 2C = 0.70 

pg, respectively. The differences, with regard to the DNA content, of the two genders 

proposes that the X chromosomes occupies approximately 35% (1C = 0.43 pg) of the 

female haploid genome. The X chromosome in the RWA is one of the largest sex 

Figure 2.4: Female RWA karyotype. A) Two large X (sex) chromosomes. B) and C) four autosome 
chromosome pairs (Novotná et al. 2011). 

X chromosomes (A) 

Middle autosome chromosomes (B) 

Small autosome chromosomes (C)  
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chromosomes in the animal kingdom, measuring approximately 10 µm (Novotná et al. 

2011).  

Large X chromosomes are described in several aphid species. The Neuquenaphis 

(Neuquenaphidinae) have X chromosome sizes ranging from 11 to 15% of the total 

genome (Blackman et al. 2003), and for the related Myzus persicae, the X chromosome 

reaches almost 27% of the genome size (Blackman and Takada 1976). Several papers 

have presented data on large heterochromatin blocks and highly repetitive sequences in 

the X chromosomes of some aphid species (Mandrioli et al. 1999). 

Karyotype variation is likely due to the holocentric chromosomes of the RWA. Holocentric 

chromosomes lack primary constrictions (centromeres) and thus have multiple sites of 

attachment to the spindle (Figure 2.5). Therefore, these holocentric chromosomes have 

kinetic activity spanning across most of the chromosome axis (Monti et al. 2012).  

 

 

 

 

 

 

 

In the course of mitotic anaphase, these chromosomes’ sister chromatids disconnect in 

parallel and display a ‘holokinetic’ movement (Pérez et al. 1997). The kinetic activity along 

the chromosome causes chromosomal fragments to bind to the microtubules which 

causes them to move into the daughter cells during cell division (Blackman 1987). In 

Figure 2.5: Monocentric (A) and holocentric (B) chromosomes. A) Single site of chromosomal 
attachment to the centromere. B) Multiple sites of chromosomal attachment.   

A 

B 
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contrast, these chromosomal fragments may be lost during mitosis and meiosis in 

monocentric chromosomes (Figure 2.5), because chromosomes attach to microtubules 

at a certain region (the centromere) and move in the direction of the pole during anaphase 

with the centromere in front (Monti et al. 2012).  

The position of the centromere in organisms with monocentric chromosomes is a valuable 

descriptive factor. The fact that the aphid chromosome lacks a centromere makes 

chromosomes of similar size almost indistinguishable within the species (Novotná et al. 

2011). 

2.4.8 RWA reproduction 

In places where the RWA is indigenous, right before winter, males and females will mate 

and lay eggs. These eggs will stay as eggs for the whole winter, and then hatch in the 

spring. However, male RWA rarely develop and only exist in colder climates (Hodgson 

and Karren 2008).  

There are no male RWA present in South Africa (Webster et al. 1987) and colonies are 

established by apterous virginopara (wingless parthenogenetic females) (Jyoti et al. 

2006). Various reproductive and dispersal strategies are used by the RWA that finally 

result in their abundance (Goggin 2007). Parthenogenesis and vivipary, which are the 

primary modes of RWA reproduction, impart a highly efficient colonisation habit of new 

hosts to these aphids. Parthenogenesis is reproduction through development of 

unfertilised eggs. These unfertilised eggs will usually only give rise to females. Vivipary 

is the ability of each female RWA to give birth to live daughters (Goggin 2007; 

Giordanengo et al. 2010), and these daughters are already pregnant with embryonic 

granddaughters (Michaud and Sloderbeck 2005). These abilities of the RWA shortens 

the time between generations, allowing nymphs to reach maturity and reproduce at a 

rapid rate – a factor implicated for their large economic impact (Giordanengo et al. 2010).  
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Another effective method the RWA uses to colonize is through the winged dimorphism, 

which enable winged adults to colonize new, distant hosts during unfavourable seasons 

or in situations of high population densities, while the wingless adults redirect the energy 

required for producing flying organs into their reproductive cycles (Goggin 2007). 

2.4.9  RWA sex chromosome system 

The sex chromosome system for RWA has been identified as XX/XO, as seen in a 

number of different aphid species. This system never possesses a Y chromosome and is 

essential for parthenogenesis. Crucial biological processes like sex determination, 

imprinting, speciation, and genomic conflicts are all influenced by the sex chromosomes. 

Sex chromosomes display many unusual characteristics like inheritance patterns, 

reduced recombination, and hemizygosity, which all play a big role in their response to 

evolutionary factors (Jaquiéry et al. 2012). 

The RWA male that has the sex-chromosome constitution XO can only be produced 

through modified mitosis by parthenogenetic XX females. During this process one of the 

X chromosomes is discarded to create eggs that consist of a single X chromosome as 

well as two autosomal sets. Thereafter while the autosomes divide or disconnect 

independently, the two X chromosomes are linked with one another at a single end, unlike 

normal mitosis which forms a C-shaped structure. Thereafter one of the X chromosomes 

is discarded from the complement and the sister chromatids of the other X chromosome 

move to the daughter cells (Orlando 1974; Blackman and Hales 1986). 

One of the most prominent distinctions between RWA and other XX/XO organisms such 

as nematodes, insects, or molluscs is their unusual pattern of inheritance of the X 

chromosome during a life cycle where asexual and sexual reproduction is combined. 

Figure 2.6 displays the life cycle of the RWA and shows that it consists of numerous 

events of apomictic parthenogenesis, proceeding with a single round of sexual 
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reproduction in autumn. After 10-20 generations of apomictic parthenogenesis, asexual 

reproduction finally leads to the production of sexual RWA individuals, where the male 

aphids randomly inherit only one of the X chromosomes of the asexual female (Wilson et 

al. 1997; Caillaud et al. 2002).  

 

 

 

 

 

 

The male RWA produces gametes that are haploid for the X as well as autosome 

chromosomes. Therefore, when the male and female gametes fuse the diploidy of the X 

and autosome chromosomes are restored to generate an asexual female. This means 

that after sexual reproduction the asexual progeny inherited half of the autosomes and X 

chromosomes from the mother and the other half from the father (Figure 2.7).  

 

 

 

 

 

Figure 2.7: Inheritance of the X chromosome in XX/XY, standard XX/X0, and aphid-like XX/X0 
sex-determining systems. In aphid-like XX/X0 systems the male transfer its X chromosome to 
100% of its progeny, giving rise to only asexual daughters (Jaquiéry et al. 2012).  

Figure 2.6: The yearly life cycle of the aphid and ploidy levels for autosomes (A) and sexual 
chromosomes (X) (Jaquiéry et al. 2013). 
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The RWA pattern of X chromosome inheritance is different from standard XX/XO or 

XX/XY systems where the female offspring inherits one X chromosome from each parent 

(mother and father), but where males only receive a copy of the X chromosome from the 

mother. As explained previously, during RWA sexual reproduction male aphids transmit 

their X chromosome to 100% of their progeny, ultimately only producing asexual 

daughters (Figure 2.7) (Jaquiéry et al. 2012). 

2.5 Insect genomes 

Over the last few years of declining DNA sequencing cost as well as more accessible 

sequencing services in primary laboratories and companies, it has become more 

economical for many entomologists to make use of de novo genome sequencing and 

assembly methods for insect species.  However, in order to produce a high quality 

reference genome, sequence generation alone is not enough, and in various cases, 

extremely fragmented genome assemblies prevent high quality gene annotation and 

other sought after analysis of sequencing data (Richardson and Murali 2015).  

The de novo assembly of insect genomes is often hampered by high polymorphism, the 

lack of ability to breed for genome homozygosity, and finally the small physical size of 

insects that ultimately limits the amount of DNA to be extracted from a single individual. 

Modern improvements in sequencing technology and assembly strategies allows insect 

genomes to be studied more effectively (Richardson and Murali 2015). 

Arthropod genome sizes exhibit considerable diversity, with the largest reported to date 

being that of the grasshopper (Orthotera: Neoconocephalus triops L.) (1C = 7 125 Mb 

(male)/7 752 Mb (female); 7.93 pg) and the smallest being the two spotted spider mite 

(Trombidiformes: Tetranychus urticae) (1C = 90.7 Mb; 0.09 pg) (Hanraham and Johnston 

2001; Johnston et al. 2007). 
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Drosophila melanogaster (fruit fly) was the first arthropod high quality, complete genome 

to be sequenced using shot-gun sequencing (BDGP6; Adams et al. 2000), and presently 

the model dataset for whole genome assembly amongst insects (Myers et al. 2000). The 

genome of the fruit fly has been determined to be 180 Mb in size, of which a third consists 

of centric heterochromatin. The 120 Mb of euchromatin is located on the sex chromosome 

and two large autosomal chromosomes, whereas the fourth small chromosome only 

comprises of 1 Mb of euchromatin. The heterochromatin mainly includes short, simple 

sequence elements repeated for many bases, which is occasionally interrupted by 

inserted transposable elements, and tandem arrays of ribosomal RNA genes (Adams et 

al. 2000). 

The first aphid genome to be sequenced belonged to the pea aphid, Acyrthosiphon pisum 

(Acyr_2.0; GCA_000142985.2; The International Aphid Genomics Consortium 2010). It 

was also the first published whole genome sequence of a basal hemi-metabolous insect, 

in contrast to the numerous published genomes of homo-metabolous insects. The pea 

aphid that is commonly used in laboratory research is a pest of legume crops (Fabaceae) 

and is very closely related to many significant crop pests, such as the RWA as well as 

the green peach aphid (Myzus persicae) (Von Dohlen et al. 2006). The 464 Mb draft 

genome assembly of the pea aphid, together with the genomes of its dependant bacterial 

symbionts (Shigenobu et al. 2000; Degnan et al. 2009; 2010), offers important information 

that will enable researchers to discover the genetic basis of co-evolved symbiotic 

associations, of host plant specialization, of insect-plant interactions, and of the 

developmental causes of extreme phenotypic plasticity.  

The International Aphid Genomics Consortium (2010) discovered that there was a major 

gene duplication in the pea aphid genome that seemed to come from the time around the 

origin of aphids. They also revealed that the pea aphid genome has more coding genes 

than any previously sequenced insects, with the high gene number being an indication of 
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both extensive duplication as well as the presence of genes with no orthologs in other 

insects. There are more than 2,000 gene families (for example chromatin modification, 

miRNA synthesis, and sugar transport) expanded in the aphid lineage, relative to other 

published genomes (The International Aphid Genomics Consortium 2010). 

Recently, the genome sequence of the RWA (GCA_001186385.1) was published for the 

first time by Nickolson et al. (2015). The assembled genomic scaffolds cover 393 Mb, 

which is equal to 93% of its estimated 421 Mb genome and contained 19,097 genes. The 

authors determined that the RWA has the most AT-rich insect genome that have been 

sequenced to date, reaching 70.9%, with a bimodal CpG distribution and a whole set of 

methylation related genes. Nickolson et al. (2015) determined that the genome of the 

RWA has a prevalent, general reduction in the number of genes per ortholog group, which 

include defensive, detoxification, chemosensory, and sugar transporter groups when 

compared to the pea aphid genome, as well as a 65% decrease in chemoreceptor genes. 

Thirty of 34 known RWA salivary genes were found in the genome assembly that 

exhibited less homology with the salivary genes commonly expressed in insect saliva, 

including glucose dehydrogenase and trehalase. However, greater conservation was 

displayed among genes that are expressed in RWA saliva, but which is not detected in 

the saliva of other insects. Genes that are involved in insecticide activity and 

endosymbiont-derived genes were also discovered in the assembly, along with genes 

involved in virus transmission, even though RWA is not a viral vector (Nickolson et al. 

2015). 

The mitochondrial genomes of insects are closed, double stranded, and circular. Their 

sizes range between 13-20 kb, while their gene content is well conserved and they have 

a low rearrangement rate. These features make mitochondrial genomes of insects a very 

valuable tool to study deep divergences and molecular evolution (Hu et al. 2009). The 

insect mitochondrial genome characteristically encodes 37 genes that include 13 protein-
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coding genes, 2 ribosomal RNA, and 22 transfer RNA. The whole insect mitochondrial 

genome is compactly arranged with very limited intergenic nucleotides, overlapping 

neighboring genes, and no introns (Chai et al. 2012). Furthermore, the gene order of 

mitochondria in aphids, psylids, and many whiteflies is known to resemble the projected 

Insecta ancestral gene order, with a mitochondrial sequence divergence of only 13.1% 

for aphids which is significantly less than that of psylids and whiteflies (Baumann et al. 

2004). 

Nucleotide diversity in aphid mitochondrial genomes has been extensively studied, even 

though only three genomes are currently available which includes the RWA. The 

complete RWA mitochondrial genome is 15,721 bp long and is comprised of 38 genes 

which is characteristic within most insects. These 38 genes consist of 20 different transfer 

RNA genes, 13 protein-coding genes, and 2 ribosomal genes (De Jager et al. 2014). The 

mitochondrial genome size of the RWA falls in the range of animal mitochondrial genomes 

(~16,000 bp) and corresponds to that of the ancestral aphid species (Crozier and Crozier 

1993). 

2.6 Single-chromosome analysis 

Genomes may be large and complex, because of a high content of repetitive and 

duplicated sequences or as a result of ploidy. Even though it is not a problem to fingerprint 

the large numbers of clones necessary to create a physical map (Luo et al. 2003), and to 

sequence billions of DNA bases (Metzker 2010), the problem is to assemble the large 

number of fingerprints and short reads into an unambiguous order that correctly 

represents the genome (Wei et al. 2009; Alkan et al. 2011; Treangen and Salzberg 2012). 

These factors hinder the construction of clone-based physical maps, positional gene 

cloning, and de novo genome sequencing. One solution is to reduce the sample 

complexity by dissecting the genomes to single chromosomes. Another area which will 
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benefit from the analysis at single-chromosome level is the assembly of haplotype-

resolved genome sequences (Yang et al. 2011). 

Most of the cells in an organism contain chromosomes that are at interphase. Their nuclei 

consist of decondensed chromosomes that make it impossible to separate from one 

another. Separation is only possible when chromosomes are more condensed during the 

metaphase stage of cell devision (Doležel et al. 2012).  

The utility of isolated, separated chromosome fractions is determined by their purity and 

quality of DNA. Purity depends on the degree to which the chromosome of interest can 

be resolved from other chromosomes, chromosome clumps, chromatids, and 

chromosome fragments in the sample (Doležel et al. 2012). Currently different methods 

of chromosome isolation exist, which include the following: micromanipulation, gradient 

centrifugation, magnetic chromosome separation, flow cytometry, etc. 

2.6.1 Micromanipulation/Microdissection 

Initial isolations of single chromosomes from spreads of metaphase chromosomes of 

dividing cells made use of a micromanipulator (Chambers and Sands 1923; Barigozzi 

1939; Scalenghe et al. 1981; Schondelmaier et al. 1993). This device is used to physically 

interact with a sample under a microscope, where a level of precision of movement is 

required that simply cannot be achieved by the unaided human hand. Originally, the 

process of microdissection involved isolating the chromosome by using glass 

microneedles, which was a technically challenging task (Scalenghe et al. 1981). The 

introduction of laser microbeams in microdissection (Monajembashi et al. 1986) improved 

the isolation procedure, however it still involved the use of the glass microneedles to 

collect the chromosome isolated via the laser (Zhou and Hu 2007). More recently, the 

PALM® Robot-Microbeam system was introduced, that uses a laser to cut chromosomes 

from microscope slides as well as to catapult fragments into a collection tube (Olofsson 
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et al. 2012). This resulted in the negation of the glass needles and improvement of 

accuracy. One of the most prominent advantages of this technique is that the individual 

operating the micromanipulator can clearly identify the chromosomes to be isolated. A 

disadvantage is that only a few chromosomes can be collected or isolated at a time 

(Hobza and Vyskot 2007) which affects the quality of the chromosomal DNA making it 

only suitable for basic types of analysis (Ma et al. 2010). Ultimately, microdissection 

cannot meet the requirements for sequencing complete chromosomes because of low 

coverage. The latest developments in the area of isolating chromosomes through 

micromanipulation include the atomic force microscope nanolithography that makes the 

dissection/extraction of fragments as small as 0.4 µm possible (Di Bucchianico et al. 

2011).  

2.6.2 Gradient centrifugation 

Another method that is presented to isolate chromosomes in large numbers is by making 

use of relative density by gradient centrifugation. Chromosomes are obtained from 

populations of dividing cells in an aqueous suspension. This method however only allows 

the large and small chromosomes to be separated from one another and is therefore not 

a viable option to isolate selected chromosomes within these fractions (Stubblefield and 

Oro 1982). 

2.6.3 Magnetic chromosome separation 

Magnetic sorting is a method that is used to separate cells, cell organelles, and 

microorganisms (Molday et al. 1977; Owen 1983). The process of magnetic sorting entails 

an affinity couple, usually an antibody that is covalently bound or physically absorbed to 

magnetic microspheres. Ugelstad et al. (1988) designed polysterene magnetic 

microspheres or beads for this purpose. Magnetic beads contain iron oxide (Fe3O4) (Lea 

et al. 1985; Howell et al. 1988), and by binding the chromosome of interest to these beads 

Stellenbosch University  https://scholar.sun.ac.za



  Chapter 2 

31 
 

trough an antigen-antibody approach and using a simple permanent magnet (Figure 2.8), 

enables large amounts of the chromosome to be sorted in a short time (Dudin et al. 1988). 

It is recommended to isolate and extract chromosomes from an unperturbed system or 

cell line (Vitharana and Wilson 2006). 

 

 

 

 

 

The positive aspect of using magnetic beads is that it makes use of a probe that is specific 

to the chromosome of interest, eliminating the non-specific methods used to identify 

certain chromosomes through fluorescent dyes – DNA binding or intercalating (Vitharana 

and Wilson 2006). However, a disadvantage of this approach is that it suffers from lower 

purities in isolated fractions and target sequences must be available (Doležel et al. 2012). 

2.6.4 Flow cytometry 

Presently, the most effective and universally common method for separating 

chromosomes on a large scale is flow cytometry, which is an approach that studies and 

analysis the optical parameters of miniscule particles while they pass through a narrow 

stream of liquid. Flow cytometry analysis cells and cell organelles at rates of 102–104/s. If 

a chromosome of interest can be identified from other chromosomes based on its optical 

properties (light scatter, fluorescence), it can be purified in large quantities (Doležel et al. 

2012).  

Figure 2.8: Process of magnetic sorting. The particle of interest is covalently bound with magnetic 
beads and sorted using a simple magnet. 

a b c 
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This method of chromosome isolation is normally used with mitotic preparations, because 

using suspensions of meiotic chromosomes is not practical (Bartholdi 1990). The tissues 

and cell cultures used to prepare the samples must be utilized in such a manner to 

produce the highest proportion of cells in metaphase. It has been determined that roughly 

95% of animal cells can be accumulated in metaphase (Carrano et al. 1976, 1979), 

whereas in plants the value of metaphase cells decrease to round about 50% (Vrána et 

al. 2000; Vláčilová et al. 2002). The chromosomes are released into an appropriate 

isolation buffer from the enhanced metaphase cell population, where after the 

chromosomal DNA is stained with a DNA-specific fluorochrome, allowing the 

chromosomes to be identified according to their level of fluorescence intensity (DNA 

content) (Doležel et al. 2012).  

The flow cytometer is fitted with a single laser that is used as a light source (Figure 2.9 

A). During flow cytometry the chromosome of interest is labelled with a biotin- or 

fluorochrome-labeled chromosome-specific probe (Dudin et al. 1988; Vitharana and 

Wilson 2006) by initially staining the suspension of intact chromosomes with a DNA-

specific dye. The sample is then introduced to the flow chamber of the instrument from 

where the chromosomes will be transported in a narrow stream of liquid (Figure 2.9 B). 

The chromosomes are individually measured and quantified by the laser beam, scattered 

light, and emitted fluorescence. During sorting the liquid stream containing the 

chromosome of interest is broken into droplets and electrically charged. The chromosome 

droplets are then sorted by electrostatically charged deflection plates and collected in 

suitable containers (Figure 2.9 D) (Meksem and Kahl 2005). Fundamentally, when the 

chromosomes have been analysed, the flow karyotype is generated (Figure 2.10). The 

flow karyotype consists of a histogram of fluorescence intensity, forming peaks for each 

chromosome relative to its DNA content (Meksem and Kahl 2005). Flow cytometry allows 

for the investigation of large populations of organelles in brief periods of time and 
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represents the output data in flow karyotypes (Figure 2.10). Flow karyotypes illustrate the 

distributions of chromosomal DNA content where each chromosome is represented by a 

distinctive peak. The peak/chromosome location is relative to fluorescence intensity and 

the volume indicates the rate of occurrence of that specific chromosome. It is possible 

that some chromosome peaks may overlap due to their similar sizes and total DNA 

content, making it very difficult to resolve the chromosomes from one another (Doležel et 

al. 2012). 

 

 

 

 

 

 

 

 

 

 

 

Flow cytometry software allows for gating strategies to sort particles of interest. Gating 

allows for the selection of single chromosomes through graphic depictions by identifying 

doublets (which are two chromosomes stuck together), clumps (which are more than two 

chromosomes stuck together), as well as debris that contaminate the series. Doublet and 

A - Laser 
C – Droplet formation 

B – Sample stream 

Sorted particles Sorted particles 

D – Deflection plates 

Figure 2.9: Schematic view of the components used by the flow cytometer during sorting of 
particles. The particles move through the sample stream (B) where a charge is pulsed at the 
break-off point, the precise area where the selected particle is formed into a droplet (C). Two 
charged deflection plates (D) situated below the break-off point deflect the charged droplets 
containing the particles of interest towards a collection tube, and the uncharged droplets are 
collected into a waste tube. 
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clump discrimination are very important to prevent any chromosomes that are not of 

interest from passing through to sample collection (Kron and Husband 2015).  

 

 

 

 

 

2.7 Sequencing 

2.7.1 Sequencing platforms 

Frederick Sanger and his associates developed the first method of determining the exact 

sequence of single stranded DNA molecules in 1977. The method became known as 

Sanger sequencing and is based on the selective incorporation of chain terminating 

labelled dideoxynucleotides by DNA polymerase during in vitro amplification (Sanger et 

al. 1977). In 2005, next generation sequencing (NGS) technologies were introduced and 

have since transformed genomic research. The development of NGS technologies were 

catalysed by the great demand for revolutionary methods that deliver rapid, low-cost, and 

accurate genome information. The inexpensive production of large volumes of sequence 

data - in some cases in excess of one billion short reads per instrument run - is the primary 

advantage over conventional methods (Metzker 2010). NGS methods overcome the 

limited scalability of traditional Sanger sequencing by either creating micro-reactors 

and/or attaching the DNA molecules to be sequenced to solid surfaces or beads, allowing 

for millions of sequencing reactions to happen in parallel (Reis-Filho 2009).  

Figure 2.10: Example of a flow karyotype generated during flow sorting. The peaks represent the 
positive datasets. In this case the chromosomes of interest. 
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There is a wide selection of different major NGS technologies, such as Roche’s 454 

pyrosequencing, Illumina’s MiSeq/HiSeq/NextSeq, Applied Biosystems’ SOLiD, Ion 

Torrent’s PGM, and the PacBio system (Table 2.1). These NGS platforms are different in 

many ways, including read length and the number of DNA molecules they sequence in 

parallel. Traditional Sanger sequencing machines analyse terminally labelled DNA 

strands and can read about 800 bases of 100 DNA molecules at the same time. The NGS 

platforms however, read numerous DNAs in parallel but have smaller read lengths. For 

instance, 454’s machine reads 400,000 DNAs that are each about 250 bases in length; 

Illumina’s MiSeq can produce paired-end reads that are 300 bases in length each while 

the platform with the greatest output overall is the HiSeq 2500, generating 4 billion 

fragments in a paired-end approach with 125 bases for each read in a single run. Illumina 

has also developed the HiSeq X Ten, which is an array of 10 HiSeq machines sold as a 

unit, for higher throughput than ever achieved in the past (Hodkinson and Grace 2015). 

NGS platforms also differ in cost per base: the 454 machine sequences are about ten 

times cheaper than traditional Sanger technology, and Illumina and ABI are 100 times 

cheaper (Von Bubnoff 2008). All of these technologies have different advantages and 

disadvantages (Table 2.1) 

Chen et al. (2008; 2010) suggested that NGS of chromosomes provide a well-designed 

approach toward identifying the chromosome composition as well as to map 

chromosomal breakpoints with an error margin of less than 1,000 bp. Sudbery et al. 

(2009) determined with studies on mice that sequencing entire chromosomes permits the 

generation of condensed maps of genetic variation between diverse genotypes. They 

also confirmed that it is a powerful tactic to discover single nucleotide polymorphisms 

(SNPs) to derive high resolution images of quantitative trait locus (QTL) regions.   
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Table 2.1: Advantages and disadvantages of various NGS platforms (Van Dijk et al. 2014). 

NGS Platform Advantages Disadvantages 

Roche’s 454  

The long reads (1 kb maximum) are easier to map to a 
reference genome, and are an advantage for de novo genome 
assemblies or for metagenomics applications.  

Relatively low throughput (about 1 million reads, 700 Mb 
sequence data) and high reagent cost.  

High error rates in homo-polymer repeats. 

Run times are relatively fast (23h). Roche announced that it will discontinue 454 and stop 
supporting the platform in 2016. 

Illumina’s 
MiSeq/HiSeq 

Most library preparation protocols are compatible with the 
Illumina system. 

Overloading results in overlapping clusters and poor 
sequence quality. 

Illumina offers the highest throughput of all platforms and the 
lowest per-base cost.  

Sequence complexity - low-complexity samples such as 16S 
metagenomics libraries must be diluted or mixed with a 
reference PhiX library to generate diversity. 

Read lengths of up to 300 bp, compatible with almost all types 
of application. 

Sample loading is technically challenging.  

ABI’s SOLiD 

Second (after Illumina) highest throughput system on the 
market.  

Shortest reads (75 nt maximum) of all platforms, and relatively 
long run times.  

The SOLiD system is widely claimed to have lower error rates, 
99.94% accuracy, than most other systems owing to the fact 
that each base is read twice. 

Less-well-suited for de novo genome assembly.  

The SOLiD system is much less widely used than the Illumina 
system and the panel of sample preparation kits and services 
is less developed. 

Ion Torrent’s 
PGM 

Semi-conductor technology, no requirement for optical 
scanning and fluorescent nucleotides. 

This technology suffers from the same issue as 454 with high 
error rates in homopolymers. 

Fast run times and a broad range of applications.   

PacBio 
system 

Extremely long reads of 20 kb and even longer make this 
technology an ideal tool to finish genome assemblies or to 
improve existing draft genomes.  
Run times are fast (typically a few hours). 

High cost, $2–17 per Mb, high overall error rates (14%). 

Lowest throughput of all platforms (maximum 500 Mb).  

Limited range of applications. 
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2.7.2 Next generation sequencing (NGS) analysis 

Sequencing the chromosomes of organisms with available reference genomes is a fast 

approach to study variation at DNA level. Single chromosome sequencing not only 

decreases cost, but it also simplifies data analysis compared to whole genome 

sequencing (Doležel et al. 2012).  

The advent of NGS technologies is accompanied by the development of many whole-

genome sequence assembly methods and software, especially for de novo fragment 

assembly. Selecting a suitable assembler becomes a tough task as computational time, 

access to maximum random access memory (RAM), assembly accuracy, and integrity 

should be considered (Zhang et al. 2011). 

Pevzner and Tang (2001) as well as Pevzner et al. (2001) pioneered short read assembly 

that is based on de Bruijn graphs (Table 2.2). Other methods beside the de Bruijn graph-

based method include prefix tree-based approaches (Warren et al. 2007) plus overlap-

layout-consensus approaches (Hernandez et al. 2008). The genome size as well as the 

sequencing error rate both have an impact on the speed at which these programs function 

(Li and Durbin 2009). 

Alignment-based methods were often used as a substitute when data volume produced 

by larger eukaryotic genomes became an obstructing factor. Therefore, Simpson et al. 

(2009) developed assemblers that ran the task in parallel, which increased the memory 

for assembly and consequently permitted the use of much larger data sets. An alternative 

method to construct functional sequence scaffolds from shorter reads is to make use of 

alignment-based approaches and comparisons to known reference genomes. The 

Burrows-Wheeler transform (BWT) algorithms (Table 2.2) have demonstrated to be very 

effective by means of collapsing exact reads together and not aligning reads against 

simpler copies (Li and Durbin 2009). 
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The k-mer is a very important parameter in sequence data analysis. The k-mer is defined 

as a short DNA sequence consisting of a fixed number (K) of bases. In other words it 

refers to all the possible substrings of length k that are contained in a string (S). 

Detemining k-mer occurrence in numbers, is known as k-mer counting. K-mer counting 

is essential, because various genome assemblers use this parameter to identify overlaps 

in sequence and a genome size estimation can be made with the k-mer count statistics 

(Marçais and Kingsford 2011). The likelihood of sequencing errors are assessed by using 

k-mer frequencies (Kelley et al. 2010). These frequencies are also used to identify 

candidate regions in de novo repeat annotation (Campagna et al. 2004; Healy et al. 

2003). KmerGenie (Chikhi and Medvedev 2014) and Jellyfish (Marçais and Kingsford 

2011) are two of the more popular k-mer counting algorithms.  

Several strategies are available to estimate the genes present in a sequencing data set. 

Genes have long been regarded as discrete entities located linearly along chromosomes, 

but recent investigations have demonstrated extensive transcriptional overlap between 

different genes (Denoeud et al. 2007). An experimental approach is described by Vossen 

et al. (2013) in which degenerate primers are designed for specific motifs associated with, 

for instance, resistance genes. This method of profiling permits gene candidates to be 

amplified as well as either analysed on a gel, cut out, and sequenced. Alternatively, NGS 

platforms can be used to directly sequence the polymerase chain reaction (PCR) 

products. Another approach allows protein coding genes (PGS) to be explored using 

software packages like FunCat (Functional Catalogue) that classify proteins from whole 

genome data (Ruepp et al. 2004) or Gene Ontology (GO) (Ashburner et al. 2000). The 

vast majority of the biology of a newly sequenced genome is inferred from the set of 

encoded proteins. Predicting the gene set is therefore invariably the first step that is taken 

after the genome sequence has been determined (Harrow et al. 2009). 
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There are also numerous sequencing studies that prefer to use manual data mining 

implementing BLAST algorithms to compare genome sequence data to known genes in 

databases such as Ensembl (http://ensemblgenomes.org/; Thole et al. 2012), SwissProt 

(Vitulo et al. 2011), and GenBank UniGene (Vitulo et al. 2011).  

Table 2.2: Methods for alignment, assembly, and annotation. 

Objective Approach Software Reference 

de novo contig assembly de Bruijn graphs 
SOAPdenovo Luo et al. 2012 

Velvet Zerbino and Berney 2008 

Similarity searches and 
assigning gene ontology 

Local alignment 
geno ontology 

BLAST Altschul et al. 1997 

FASTA Pearson and Lipman 1988 

Alignment of larger scale 
sequence comparisons  

Burrows-Wheeler 
transform (BWT) 

BWA Li and Durbin 2009 

Bowtie Langmead et al. 2009 
 

In the present study, the following NGS platform and software will be used to assemble 

and characterise the X chromosome of the RWA: Illumina® HiSeq™ platform as well as 

BWA -, KmerGenie -, SOAPdenovo -, and BLAST software. 
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3.1 Introduction 

Arthropods are known as the most speciose clade of animals on earth. The Insecta class, 

which is the majority of arthropods, is hypothesized to hold 75% of all animals (Gaston 

1991). Hemipterans contain three important families, the Phylloxeridae, the Adelgidae, 

and the Aphididae. The Aphididae family (order Hemiptera) represents the largest group 

of aphid species comprising approximately of 4,500 extant species (Miller et al. 1994; 

Davis 2012). In general, the piercing-sucking behaviour of aphids during feeding together 

with their ingestion of phloem sap results in extensive plant damage due to either direct 

feeding or indirect transmission of plant viruses (Tagu et al. 2008).     

Diuraphis noxia Kurdjumov, more commonly known as the Russian wheat aphid (RWA), 

is one of the main insect pests that affect Tritucum aestivum L. (bread wheat). The RWA 

belongs to the family Aphididae and is characterised as an invasive pest with a major 

economic impact on wheat production (Haley et al. 2004; Burd et al. 2006; Jankielsohn 

2011). It has the potential to cause considerable yield losses, mainly because it 

reproduces parthenogenically and has an exceptionally high intrinsic rate of increase 

(Merril et al. 2009). In areas where the RWA is considered to be endemic, it can also 

reproduce sexually. The change between sexual and parthenogenetic reproduction 

includes chromosome behavioural changes that take place in response to environmental 

stimuli, facilitated by endocrine factors. Notable differences take place, in the ways in 

which aphid chromosomes pair and segregate during sex determination and meiosis, 

even within closely related species, with consequences that can affect the inheritance of 

all – or parts of – the genome (Manicardi et al. 2015). Asexual reproduction permits for 

non-recombinant vertical gene transfer from mother to offspring through successive 

generations allowing little genetic variation in the RWA (Tagu et al. 2008).  
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Nevertheless, new RWA populations or biotypes still develop despite the lack of sexual 

recombination. RWA biotypes are categorised according to the varying level of damage 

that they inflict while feeding on wheat cultivars containing different resistance (R-) genes. 

This classification, based on aphid virulence, depends on the plants’ response to RWA 

feeding being either susceptible, intermediate, or resistant (Puterka et al. 2012). Biotypes 

overcome host-plant resistance and feed on previously resistant cultivars. The constant 

development of virulent RWA biotypes calls for the continuous identification and 

introduction of new R-genes into susceptible wheat cultivars (Bouhssini et al. 2011). 

Fundamentally, this protects the wheat against the current RWA biotypes and prevents 

large scale agricultural losses (Jankielsohn 2011).  

The karyotypic structure of the aphid genome has been found to vary substantially among 

the species. In some aphid genera the chromosome number seems to be stable, but in 

others it differs greatly, mainly because of successive autosomal dissociations with slight 

or no accompanying morphological or biological change (Manicardi et al. 2015).  

RWA chromosomes, like the chromosomes of other aphids and some hemipteroid 

insects, are holocentric. Holocentric chromosomes lack localised centromeres – with 

centromeric activity being diffused along the length of the chromosome. As a result, 

during the later stages of prophase and metaphase, every condensed chromosome looks 

like a simple rod, or, if treated with colchicine, as a pair of chromatids aligned in parallel 

with a uniform gap width between them (Blackman 1987). Holocentric chromosomes 

present a big disadvantage for cytogenetic studies and karyotype comparisons in that 

they do not possess any primary and/or secondary constrictions. This means that 

conventionally stained preparations can only be identified on the basis of size. Thus, the 

only factors that can be used to detect differences in karyotype structure are the number 

of chromosomes or measurable structural heterozygosity (Manicardi et al. 2015). 
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Novotná et al. (2011) established that the karyotype of female RWA consist of 10 

chromosomes (2n = 10) with four pairs of autosome chromosomes and a pair of large sex 

(X) chromosomes. They also noted that the male RWA only possess one sex (X) 

chromosome and therefore has a karyotype of 2n = 9. For that reason the RWA sex 

chromosome system has been identified as XX/X0, as in a number of aphid species. This 

system never has a Y chromosome, which is essential for parthenogenesis or asexual 

reproduction (Kuznetsova and Shaposhnikov 1973). Aphids are known for their large X 

chromosomes as reported by Novotná et al. (2011) for RWA. The reason for the existence 

of large sexual chromosomes relative to the autosomes in aphids and their origin, are still 

unknown (Mandrioli et al. 1996; Bizzarro et al. 2000).  

In this study, the chromosomes of biotypes SAM, the most virulent RWA biotype recorded 

(Botha et al. 2013), and SA1, one of the least virulent biotypes (Jankielsohn 2011), were 

studied. The aim of this study was to verify the karyotype of the RWA and to characterise 

the sex (X) chromosomes of the RWA. To achieve these aims, female RWA were 

dissected in order to obtain the embryos which were used to make chromosome 

squashes. The squashes were used to determine the RWA karyotype. Additionally, the 

metaphase X chromosomes were examined separately from the autosome chromosomes 

by means of flow cytometry. Next generation sequencing (NGS) of the separated X 

chromosomes of biotype SAM was conducted and used to map against the genomes of 

the RWA (SAM_Contigs_Version 1.1; GCA_001465515.1; Botha et al. 2016 – in press) 

and Acyrthosiphon pisum (pea aphid) (Acyr_2.0; GCA_000142985.2; The International 

Aphid Genomics Consortium 2010). Orthologous regions spanning the X chromosome of 

the RWA was also identified through reference mapping against the well characterised X 

chromosome of Drosophila melanogaster (fruit fly) (BDGP6; Adams et al. 2000). 
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3.2 Materials and methods 

This study made use of adult female aphids of the South African mutant RWA biotype 

(SAM), and its parent South African biotype 1 (SA1). The female RWA specimens were 

obtained from the Department of Genetics, Stellenbosch University, Cereal Genomics 

Laboratory. The biotypes were kept on SST 387 RWA resistant wheat cultivars in 

separate BugDorm® Insect cages (MegaView Science Co. Ltd, Taiwan) to prevent cross 

contamination with other biotypes. Aphids were kept at 20 °C ± 2 °C with continuous 

artificial fluorescent lighting.  

3.2.1 Karyotyping of RWA chromosomes 

In the following section the procedure for obtaining representative karyotypes for the 

biotypes SAM and SA1, is described. 

3.2.1.1 Slide preparation 

Mitotic chromosomes were obtained from whole embryos dissected from adult female 

RWA (Figure 3.1). The chromosome spreads were prepared according to a procedure 

adapted from Novotná et al. (2011). In brief, a Hund WETZLAR Wiloskop stereo-zoom-

microscope (Labotec®), was used to dissect 15 embryos into a physiological solution for 

Ephistia kuehniella (Lockwood 1961) that consisted of 0.9% (m/v) NaCl, 0.042% (m/v) 

KCl, 0.033% (m/v) CaCl2.H2O, 0.02% (m/v) NaHCO3, and 0.25% (m/v) glucose, where 

after the embryos were treated with a hypotonic solution (0.075 M KCl) for 10 minutes 

and fixed for 15 minutes in Carnoy fixative (Traut 1976). The freshly prepared Carnoy 

fixative consisted of 100% ethanol, chloroform, and glacial acetic acid (1 N) in a 6:3:1 

ratio. The embryonic cells were separated in 60 µl of 60% glacial acetic acid (1 N) with 

the assistance of a wooden micropestle and fixed on the slide using a heating plate at 

45 °C. 
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3.2.1.2 Chromosome staining and visualisation 

After the slides were prepared as described (Section 3.2.1.1), the samples were stained 

for 5-8 minutes with Hoechst 33342 (Sigma) solution (10 mg/ml) that was diluted 1:100 

to a final concentration of 0.01 mg/ml. The stained slides were then briefly submerged in 

distilled H2O and left to dry at room temperature (RT). 

The chromosomes were visualised with a Zeiss LSM780 ELYRA PS.1 (Zeiss Germany) 

confocal microscope. Images were edited on Zen Lite Software (Zeiss Germany) in order 

to visualise the karyotype and determine the size of the different chromosome pairs using 

a scale bar (Central Analytical Facility (CAF) fluorescent microscopy unit, Stellenbosch 

University, South Africa).  

The different sized chromosome pairs were then subjected to two-sample t-tests to 

determine if their sizes were statistically different from one another. The t-tests were 

performed firstly between the large chromosome sizes (Group 1) and the middle 

autosomal chromosome sizes (Group 2); then between the middle autosomal 

chromosome sizes (Group 2) and the small autosomal chromosome sizes (Group 3); and 

lastly between the large chromosomes (Group 1) and the small autosomal chromosomes 

Figure 3.1: Two embryos (as indicated by arrows) dissected from an adult female RWA. 
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(Group 3). Fundamentally, three t-tests were performed (Group 1 vs Group 2; Group 2 vs 

Group 3; Group 1 vs Group 3). 

3.2.2 Flow cytometry of RWA chromosomes 

In the following section a procedure is described for the isolation of the RWA sex 

chromosome in order to obtain DNA suitable for next generation sequencing (NGS). 

3.2.2.1 Preparation of mitotic chromosome suspension 

The RWA chromosome suspensions were obtained using an adapted procedure as 

described by Doležel and Bartoš (2005). Briefly, 20 female RWA were collected in a 1.5 

ml Eppendorf tube. The tube containing the aphids was frozen using liquid nitrogen, 

where after 200 µl of ice-cold Otto buffer I (0.1 M C6H8O7, 0.5% (v/v) Tween 20, 1% (v/v) 

Triton X-100) was added. The aphids were crushed in the tube using a small micropestle 

and incubated at RT for 5 minutes with occasional shaking. The suspension of crushed 

RWA was centrifuged through a 40 µm polypropylene nylon mesh cell strain filter 

(Fisherbrand®) at 10,000 revolutions per minute (rpm) for 30 seconds. Thereafter, staining 

solution containing 800 µl Otto buffer II (0.4 M Na2HPO4 12H2O), 0.5 mM propidium iodide 

(PI), 40 µg RNase A, and 1.6 µl 2-mercaptoethanol, was added to the sample. After 

staining for 10 minutes at RT, the sample was vortexed and the suspension was 

transferred to a 5 ml round-bottom polystyrene tube (Falcon™) ready for flow sorting. 

3.2.2.2 Flow cytometry optimization: Gating 

Gating allows for the selection of single chromosomes through graphic depictions by 

identifying doublets, which are two chromosomes stuck together, clumps, which are more 

than two chromosomes stuck together, as well as debris that contaminate the series.  

Doublet and clump discrimination are very important to prevent any chromosomes that 

are not of interest from passing through to sample collection (Kron and Husband 2015). 
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Gating was applied through the FACSDiva version 6.1.3 software (BD biosciences, USA) 

at the CAF fluorescent microscopy unit at Stellenbosch University, South Africa. 

Figure 3.2 displays a gating strategy used in flow cytometry analysis known as a singlet 

gate scatter plot. This strategy is used to gate-out unwanted doublets and clumps. All 

singlets are identified according to where they cluster on the graph, which should be in a 

diagonal straight line. The singlets are then surrounded by a gate, allowing the flow 

cytometer to only sort the chromosomes included in the gating area (Figure 3.2). 

 

 

 

 

 

 

 

 

Figure 3.3 displays a chromosome gate scatter plot that allowed for further selection of 

the chromosomes of interest. The graph makes use of SSC (side scatter) and 

fluorescence area. SSC is the light scattered at large angles and is proportional to the 

complexity of a particle, while fluorescence area is the amount of fluorescence a particle 

produces and is proportional to fluorescence intensity. In this graph the chromosomes of 

the same size will cluster together (Lo et al. 2008).  

The approach in Figure 3.3 was used to distinguish between the sizes of chromosomes. 

Each chromosome size was assigned a colour to aid in identification. Cyan separated the 

Figure 3.2: The singlet gate scatter plot was used to exclude doublets and clumps from the 
analysis. Gate A is an area that is straight, diagonal, 45º, and passing through zero (yellow dotted 
line), which includes all the single chromosomes of interest while all the particles outside the gate 
are excluded, as they consist of doublets, clumps, or debris. 

A 
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middle sized autosomal chromosomes at a fluorescence of 28,000-58,000, while blue 

separated the large sex chromosomes at a fluorescence of 68,000-98,000. The red and 

green areas in Figure 3.3 designate all the particles that are not included in this (Figure 

3.3) and the previous gating strategy (Figure 3.2), respectively. Therefore, all the 

chromosomes that clustered in the respective colours (Figure 3.3) were sorted 

accordingly. 

 

 

 

 

 

 

 

3.2.2.3 Flow sorting 

The sample containing the chromosomes as described in Section 3.2.2.1 was measured 

on a FACSAria flow cytometer (BD biosciences, USA) at the CAF fluorescent microscopy 

unit at Stellenbosch University, South Africa. Data was presented using the FACSDiva 

version 6.1.3 software (BD biosciences, USA). The flow cytometer charges each 

chromosome depending on its fluorescence intensity, which is proportional to the size of 

the chromosome. Propidium iodide (PI), the dye the chromosomes are stained with, is 

excited at 488 nm and emits at a wavelength of 617 nm. The large and middle 

chromosome fractions were collected separately in 5 ml polystyrene round-bottom tubes 

(Falcon™) containing Otto Buffer II (Section 3.2.2.1) and stored at –20 ˚C at the 

Department of Genetics, Stellenbosch University, Cereal Genomics Laboratory.  

Figure 3.3: The chromosome gate scatter plot was used to identify the chromosome sizes based 
on fluorescence intensity. The different sized chromosomes were given a random colour to aid in 
identification.  
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3.2.2.4 DNA purification 

The different size fractionated frozen chromosomal samples (Section 3.2.2.3) were 

removed from the –20 ˚C freezer and thawed in a water bath at RT. After thawing, the 

samples were centrifuged at 12,000 rpm for 20 minutes at 8 ˚C. The supernatant was 

aspirated down to approximately 50 µl, where after the chromosomal pellet was 

resuspended. A total of 100 µg proteinase K was added to digest any contaminating 

proteins and the sample was incubated at 55 ˚C for 1 hour. The DNA was precipitated by 

adding 200 µl ice-cold 100% ethanol to the sample and incubated overnight in the –20 ˚C 

freezer. The sample was thawed at RT, centrifuged at 12,000 rpm for 15 minutes at 6 ˚C, 

and the supernatant discarded. The resulting pellet was allowed to dry for 10 minutes and 

resuspended in 25 µl distilled H2O. DNA concentrations were quantified using the Qubit® 

2.0 Fluorometer (Invitrogen) at the CAF Analytical Services Unit, Stellenbosch University, 

South Africa. The five samples with the highest DNA concentrations were pooled. The 

DNA concentration of one pair of large X chromosomes could be determined as follows: 

 

 

3.2.2.5 Estimation of RWA genome size 

Using the measured sizes of the different chromosome sets (Section 3.2.1), the number 

of different size chromosome pairs (Section 3.2.1), and the contribution of the X 

chromosome (Section 3.2.2.4), 1C of the RWA can be calculated as follows: 

 

 

 

The genome size of the RWA was calculated using the following assumption: 1 pg DNA 

= 0.978 x 109 base pairs. Based on the consideration that AT:GC = 1:1, ignoring the 

X chromosome pair   =   
Total DNA (ng)

Number of X chromosome pairs
   

1C   =   [X chr (pg)]  +  [(number of middle chr pairs) (
middle chr (µm)

X chr (µm)
)  (X chr (pg))]  

  +  [(number of small chr pairs) (
 small chr (µm)

X chr (µm)
)  (X chr (pg))]  
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presence of modified nucleotides (Doležel et al. 2003;  Doležel and Bartoš 2005; Doležel 

et al. 2012). 

3.2.2.6 Sequencing 

Sodium acetate (1M) was added to the pooled sample of X chromosome DNA (Section 

3.2.2.4) and the 1.5 ml Eppendorf tube was filled to 1 ml with 100% ice-cold ethanol. The 

samples were packaged and sent to Macrogen (Korea) for sequencing. 

3.2.3 Next generation sequencing (NGS) and bioinformatic analysis of 

the RWA sex chromosome fraction 

The RWA chromosome fraction obtained through flow cytometry was sequenced on an 

Illumina® HiSeq™ platform and aligned to the reference genomes of the RWA and pea 

aphid. In addition, the annotated X chromosome of the fruit fly was aligned to the RWA 

genome in order to annotate corresponding regions located on the sex chromosome of 

the RWA. 

3.2.3.1 Next generation sequencing 

The X chromosome DNA fraction isolated through flow cytometry (Section 3.2.2.4) was 

sent for sequencing to Macrogen (Korea) where amplification was performed prior to 

sequencing using the TruSeq Nano DNA Library Preparation Kit (Illumina FC1214001). 

Paired-end sequencing was performed using the Illumina® HiSeq™ 2000 system. 

Sequence read length consisted of 101 bp and library insert sizes of 350 bp. 

3.2.3.2 Reference mapping of the RWA X chromosome sequence data set to that 

of the whole genome of the RWA and pea aphid. 

Sequencing reads obtained from the Illumina® HiSeq™ 2000 platform were aligned to the 

reference genomes of the RWA (SAM_Contigs_Version 1.1; GCA_001465515.1; Botha 

et al. 2016 – in press) and the pea aphid (Acyr_2.0; GCA_000142985.2; The International 
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Aphid Genomics Consortium 2010) using Geneious v7.1.7 (Kearse et al. 2012) (Figure 

3.4). 

Raw sequencing reads were verified for quality using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). The first 18 bases displayed 

biased sequence composition at the start of the reads. These poor quality reads were 

filtered and trimmed by making use of FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) to ensure that for a pair of paired-end reads 

each data set had 90% or more bases with a phred score greater than or equal to Q20 

(Figure 3.4). 

Quality trimmed reads were aligned to the RWA reference genome 

(SAM_Contigs_Version 1.1; GCA_001465515.1; Botha et al. 2016 – in press) as well as 

to that of the pea aphid (Acyr_2.0; GCA_000142985.2; The International Aphid Genomics 

Consortium 2010) using Burrows-Wheeler aligner (BWA) with default parameters (Li and 

Durbin 2010). The quality of the alignments was assessed by using Qualimap (Garcίa-

Alcalde et al. 2012) (Figure 3.4). 

 

 

 

 

Figure 3.4: Workflow of the quality filtering and alignment of the raw reads obtained from 
sequencing at Macrogen (Korea) to the RWA and pea aphid genomes. Where raw read alignment 
was done using the Alighn to reference tool in Geneious (v7.1.7) and quality filtered reads were 
aligned using Burrows-Wheeler aligner (BWA). Raw reads were quality filtered using FastQC and 
FastX-Toolkit. 
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Figure 3.5: Workflow of k-mer analysis and SOAPdenovo of the raw reads obtained from 
sequencing at Macrogen (Korea) to generate contigs and scaffolds. 

In order to determine the optimum k-mer size for de novo assembly and sequencing 

depth, raw sequencing reads were subjected to k-mer analysis by using KmerGenie 

(http://kmergenie.bx.psu.edu/; Chikhi and Medvedev 2014) (Figure 3.5).  

The raw sequencing reads were assembled using SOAPdenovo 

(http://soap.genomics.org.cn/soapdenovo.html). This software package makes use of the 

de Bruijn graph algorithm to ultimately simplify the assembly of the contigs and scaffolds 

(Li and Durbin, 2010) (Figure 3.5).  

 

 

 

3.2.3.3 Physical mapping against the X chromosome of the fruit fly 

The coding sequence (CDS) and proteins of the annotated  X chromosome of the fruit fly 

(BDGP6; Adams et al. 2000) were retrieved and aligned to the CDS and proteins of the 

well-annotated RWA genome (SAM_Contigs_Version 1.1; GCA_001465515.1; Botha et 

al. 2016 – in press) using Geneious v7.1.7 (Kearse et al. 2012) (Figure 3.6).  

 

 

 

 

 

 
Figure 3.6: Workflow of bioinformatics analysis of the fruit fly X chromosome against the RWA 
genome. The coding sequences were aligned using BLASTn and the proteins were aligned using 
BLASTp. 
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The data was processed on Microsoft Excel (Microsoft Office 2010). For the CDS BLASTn 

the selection criteria was strict where only sequences with a 70% or more query coverage 

and identity were included. The protein BLASTp selection criteria included proteins with 

40% or more query coverage and identity. 

3.2.4 Fluorescent in situ hybridization 

3.2.4.1 Fluorescent probes 

In order to generate probes to hybridize against the RWA sex chromosome, orthologous 

regions were identified by aligning the X chromosome of the fruit fly to the RWA genome 

(as seen in Section 3.2.3.3). Primers were designed from target regions on the RWA 

genome that aligned to X chromosome genes of the fruit fly using Geneious v7.1.7 

(Kearse et al. 2012). The eight primers used in the study were selected according to the 

percentage identical sites and the region with a BLAST hit (Table 3.1). Two probes as 

used by Novotná et al. (2011) were included as positive controls (i.e. 18S rRNA and 

histone H4).  

In order to generate unlabelled probes, polymerase chain reactions (PCR) using the 

primers listed in Table 3.1 were conducted. The 20 μl PCR master mix contained 1X PCR 

buffer (Thermo Scientific), 2 U Taq polymerase (Thermo Scientific), 0.2 mM dNTP’s mix 

(Thermo Scientific), 500 nmol of each primer, and 100 ng of template genomic RWA DNA. 

The PCR reaction conditions were as follows: 5 minutes at 95 °C, 35 cycles of 15 seconds 

at 94 °C, 15 seconds at 57 °C, 60 seconds at 72 °C, followed by a final elongation step 

of 10 minutes at 72 °C. PCR products were separated on a 2% agarose (SeaKem®) gel 

at 90 volts for 80 minutes and was visualised on a Gel Doc EZ imager (Bio-Rad) at the 

Department of Genetics, Stellenbosch University, South Africa. The PCR products (Table 

3.1) were cleaned using a Qiagen MinElute® Reaction Cleanup Kit and labelled by PCR 

re-amplification with a dNTP mix containing 0.35 mM biotin-16-dUTP (Roche). 
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Table 3.1: Primer sequences used to generate probes for FISH. Expected product size and gene of origin in the RWA genome are given. Primer X 
probe 18S rRNA and X probe H4 (Novotná et al. 2011) were used as positive controls.  

 

 

Primer Sequence Expected product size Description Accession number (RWA genome)

F 5'-CCTGAGAAACGGCTACCACATC-3'

R 5'-GAGTCTCGTTCGTTATCGGA-3'

F 5'-TSCGIGAYAACATYCAGGGIATCAC-3'

R 5'-CKYTTIAGIGCRTAIACCACRTCCAT-3'

F 5'-TCAGAATCCGACAACTAAACACA-3'

R 5'-AGCCTCACATTGAAGTTGAGACT-3'

F 5'-GATACGGATCCACGCGAACT-3'

R 5'-ACCACACTCTGACCACGTTC-3'

F 5'-ACGAGTTCCGATGTGCCAAT-3'

R 5'-ACCACCTGTCCACTTTCATCC-3'

F 5'-GGCTACTGCTGCTTCTTCCA-3'

R 5'-GGAATGTAGGCCTAATGCATTGG-3'

F 5'-CTGGGGGATTCGTTGGTCAT-3'

R 5'-TCGAGCTGAAAGGAATAGTCACT-3'

F 5'-TCATCTATAACTGTAGTCCTGCAC-3'

R 5'-ATCCCCCAGCCCTGACTAAT-3'

F 5'-AAGACTCTGGGCAACGGAAG-3'

R 5'-TGCACAAACACCAAAAATATCCCA-3'

F 5'-ATTGGTATCGATCGGTGCCG-3'

R 5'-CACACAACGCACTTACGCAC-3'

RWA probe Name

P9 X probe scaf_13192 895 bp

P10 X probe scaf_17249 499 bp

P7 X probe scaf_6337a 500 bp

P8 X probe scaf_6337b 498 bp

P5 X probe scaf_1960 944 bp

P6 X probe scaf_4125 641 bp

histone H4

heat shock protein cognate 3 precursor

 low-density lipoprotein 

actin 5C, isoform B

P1  X probe 18S rRNA 1,051 bp

P2 X probe H4 210 bp

P3 X probe scaf_1481 1460 bp

P4 X probe scaf_1801 433 bp

actin (ACYPI006035)

alpha-actinin, sarcomeric-like isoform 2

107165916

107167901

g943.t1

g1176.t1

g1279.t1

g2500.t1

g3570.t1

g3569.t1

g5957.t1

g7053.t1

 inhibitory POU protein-like

actin-42A-like isoform 1

hypothetical protein LOC100168805

18S rRNA X-elimantion
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3.2.4.2 Slide preparation and treatment 

Slides with mounted chromosomes were prepared as previously discussed in Section 

3.2.1.1 with modifications as described by Sahara et al. (1999), Fuková et al. (2005) and 

Novotná et al. (2011). Briefly, chromosomes were dehydrated by passing them through 

an ethanol series (70%, 80%, and 96%, for 30 seconds each) and aged at -20 °C 

overnight. The chromosomes were passed through the ethanol series and air-dried at RT. 

In order to remove excess proteins, the chromosome slides were baked for 4 hours at 65 

°C and incubated in 100 µg proteinase K (Fermentas) in 100 ml 1X Phosphate-buffered 

saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 1.8 mM KH2PO4; pH 7.4) 

for 5 minutes. The chromosomes were washed twice in 1X PBS. RNA was removed by 

treating the chromosomes with 20 µg RNase A (Thermo Scientific) in 100 µl 2X Saline 

sodium citrate (SSC) (0.3 M NaCl and 0.03 M Na3C6H5O7; pH 7.0) for 1 hour, followed by 

washing twice in 2X SSC. The chromosomes were finally incubated in 5X Denhardt’s 

solution (Sigma) for 30 minutes. All the wash steps and incubation periods were 

performed at 37 °C. Denaturation of the chromosomes was performed at 68 °C for 3 

minutes and 30 seconds in 70% deionized formamide (Merck) in 2X SSC. The prepared 

slides were subjected to a final ethanol dehydration series and air-dried at RT. 

3.2.4.3 Probe denaturation and hybridization  

Labelled probes (50 ng/µl) in Section 3.2.4.1 were mixed together with 25 µg of competitor 

sonicated salmon sperm DNA (Sigma), where after 20 µl of cold 100% ethanol was also 

added. Probes were allowed to precipitate at -80 ºC for 30 minutes and subsequently 

centrifuged at 13,000 rpm for 20 minutes. The supernatant was discarded and the pellet 

was washed with cold 70% ethanol and once more centrifuged at 13,000 rpm for 10 

minutes. The supernatant was carefully discarded by pipetting and the sample was 

allowed to air-dry at 37 ºC. Once the sample was dry, it was dissolved in 5 µl pre-warmed 

deionized formamide (Merck) at 37 ºC for 30 minutes with vortexing every 10 minutes, 
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where after 5 µl 20% (w/v) dextran sulphate (Sigma) pre-warmed to 37 ºC was added to 

form the hybridization mix. Probes were denatured by heating the hybridization mix to 

90 ºC for 5 minutes, where after the hybridization mix was immediately chilled on ice for 

10 minutes before applying to the chromosomal slides. 

The hybridization mix (10 µl) was spotted onto the prepared slide (Section 3.2.4.2) and 

covered with a 22x22 mm cover glass slip. The cover glass was gently pressed down to 

avoid any bubbles and the edges were completely sealed with PVC-U cement (Tangit). 

The slides were incubated overnight at 37 ºC. 

3.2.4.4 Probe detection and signal enhancement 

The PVC-U cement (Tangit) was carefully removed from slides (Section 3.2.4.3) by using 

forceps and slides were submerged in 50% (v/v) formamide (Merck), allowing the cover 

slip to detach. The labelled chromosome slides were then subjected to wash steps as 

follows: three times with 2X SSC containing 50% (v/v) formamide (Merck) at 46 ºC for 

5 minutes; five times with 2X SSC at 46 ºC for 2 minutes; three times with 0.1X SSC at 

62 ºC for 5 minutes; and finally once with 4X SSC containing 0.1% (v/v) Tween® 20 

(Merck) at RT for 5 minutes. 

To enable probe detection, 450 µl of 2.5% Bovine Serum Albumin (BSA) (Sigma) 

dissolved in 4X SSC was dropped on each slide, covered with a 22x50 mm cover glass 

slip, and incubated at RT for 20 minutes. From here on incubations were performed in a 

dark room. Labelled chromosomes were then submerged for 1 minute in 2X SSC to 

remove the BSA and allow the cover glass to detach. Thereafter, 100 µl Cy3-streptavidine 

(Jackson Research Laboratories) was dropped onto each slide, covered with a 22x50 

mm cover glass, and once again incubated at RT for 30 minutes, followed by a 1 minute 

submersion in 2X SSC to remove the Cy3-streptavidine and detach the cover glass. The 

labelled chromosomes were subjected to three washes with 4X SSC containing 0.1% 

(v/v) Tween® 20 at 37 ºC for 3 minutes. 

Stellenbosch University  https://scholar.sun.ac.za



  Chapter 3 

75 
 

To enhance the probe signals, 450 µl of 2.5% BSA dissolved in 4X SSC was dropped on 

each slide, covered with a 22x50 mm cover glass, and incubated at RT for 10 minutes, 

followed by a 1 minute submersion in 2X SSC to remove the BSA and detach the cover 

glass slip. Thereafter, 50 µl Biotinylated antistreptavidine (Vector) was dropped onto each 

slide, covered with a 22x50 mm cover glass, and incubated at 37 ºC for 20 minutes, 

followed by a 1 minute wash with 2X SSC to remove the antistreptavidine and cover glass. 

The slides were subjected to three washes with 4X SSC containing 0.1% (v/v) Tween® 

20 at 37 ºC for 3 minutes. The probe detection and signal enhancement steps were 

repeated once more to obtain optimal signal enhancement. 

3.2.4.5 Slide staining and visualisation 

Labelled samples were stained for 5-8 minutes with Hoechst 33342 (Sigma) solution (10 

mg/ml) that was diluted 1:100 to a final concentration of 0.01 mg/ml. The stained slides 

were then briefly submerged in distilled H2O and left to dry at RT in the dark. 

After staining, the chromosomes were visualised using a Zeiss LSM780 ELYRA PS.1 

(Zeiss Germany) confocal microscope equipped with Zen Lite Software (Zeiss Germany) 

(CAF fluorescent microscopy unit, Stellenbosch University, South Africa).  
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3.3 Results 

3.3.1 Karyotyping of RWA chromosomes 

The karyotype was constructed to determine the number and appearance (size and 

shape) of chromosomes in the nucleus of a RWA cell. 

 

Figure 3.7 displays the chromosomes as seen on the Zeiss LSM780 ELYRA PS.1 (Zeiss 

Germany) confocal microscope. The Hoechst 33342 (Sigma) stain bound to the RWA 

DNA and stained the chromosomes fluorescent blue. The chromosomes appear to be 

long, slender rods of DNA which lack constriction sites or centromeres. Figure 3.7 

displays different sized chromosomes that cluster together. The length of the 

chromosomes can be compared to the 10 µm bar present in each image. There are no 

observable morphological differences between the chromosomes of RWA biotype SAM 

and SA1.  

 

Figure 3.7: The RWA chromosomes are stained with Hoechst 33342 to enable their detection 
through the confocal microscope. The chromosomes of biotype SAM and SA1 are compared. A 
10 µm bar is indicated in each image. 

SA1 SAM 

SAM 
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The karyotype of the female RWA biotype SAM consists of a diploid chromosome number 

of 10. The chromosomes were divided into size groups according to their length. The 

results produced  two large sex chromosomes and four autosomal chromosome pairs, of 

which three homologous pairs are middle sized and one homologous pair is smaller 

(Figure 3.8; Table 3.2). The chromosome groups varied remarkably in their length and 

the smallest autosome chromosome pair as well as the X chromosomes were easily 

Figure 3.8: The karyotype of a female RWA showing the complete set of chromosomes of 2n=10 
[2 sex chromosomes (X) and 8 autosomes (6 middle size and 2 small size chromosomes)]. 
Indicated is a 10 μm bar, as well as the average sizes of each of the different chromosomes, 
respectively. 

 

6.11 µm 

4.20 µm 

3.13 µm 
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identifiable, because of their lower number. However, the remaining three middle sized 

autosome chromosome pairs were difficult to pair and to distinguish from one another, 

because of their high number and similar size (Figure 3.7; Figure 3.8). 

Table 3.2: The mean lengths of the chromosomes were determined by measuring ten specimen 
of each size. 

 

From the results, the lengths of the three chromosome groups were determined by 

measuring ten chromosomes of each size. The data showed that the approximate length 

of the chromosomes were as follows: the X chromosome at 6.11 μm (SD = 0.13 µm), the 

middle sized chromosome at 4.20 μm (SD = 0.15 µm), and the smallest chromosome at 

3.13 μm (SD = 0.09 µm) (Table 3.2; Figure 3.8; Figure 3.9). These results suggest that 

the X chromosome contributes approximately 28% of the total DNA based on length.  

Table 3.3: t-Tests were performed to test if the different size chromosome groups are statistically 
different (Table A1, Table A2, and Table A3). 

t-Test: X chromosome - middle chromosome p = 1.89 x 10-16 

t-Test: middle chromosome - small chromosome  p = 5.42 x 10-13 

t-Test: X chromosome - small chromosome p = 9.42 x 10-22 

 

The chromosome size groups were shown to be statistically different from one another in 

Table 3.3 (as calculated in Table A1, Table A2, and Table A3), with p < 0.05 for all the 

size comparisons. Figure 3.9 displays a chart that demonstrates the clear differences in 

X chromosome (µm) Middle chromosome (µm) Small chromosome (µm)

6.14 4.32 3.33

5.85 4.27 3.09

6.23 3.81 3.25

6.12 4.36 2.99

6.21 4.35 3.10

6.23 4.22 3.12

6.26 4.21 3.12

5.98 4.19 3.08

6.03 4.08 3.12

6.00 4.20 3.07

Mean 6.11 4.20 3.13

SD 0.13 0.15 0.09

* SD = standard deviation 
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size. The X chromosome is nearly twice the size of the small chromosome and almost 

1.5X the size of the middle chromosome, making it by far the largest chromosome in the 

karyotype of the RWA (Figure 3.9).   

3.3.2 Flow cytometry separation of RWA chromosomes 

Because of the size differences, flow cytometry offered an attractive protocol that could 

be used to isolate chromosomes from one another. In this study the method is 

implemented to separate the different sized chromosome groups of RWA biotype SAM. 

All of the flow cytometry results obtained during the study can be found in a supplemental 

file named Folder A1 (see attached CD). 

Figure 3.10 displays a single-parameter histogram that measures the relative 

fluorescence area (PE-Texas Red-A) on the x-axis versus the number of events 

(chromosome count) on the y-axis. The histogram in Figure 3.10 shows the total number 

of chromosomes that possess the physical properties – relative area and fluorescence - 

selected for. The peaks with the desired characteristics, in this case the middle- and large 
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Figure 3.9: The bar chart is a visual representation of the size differences of the RWA 
chromosomes. 
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chromosomes, were identified as the positive datasets. The left middle chromosome peak 

display a higher count (500), which is approximately 5X higher than that of the large 

chromosome, but with a lower fluorescence (31,000-61,000).  The large chromosome 

peak on the other hand has a lower count (100), but higher fluorescence (69,000-

101,000). The histogram did not display a positive peak for the small autosome 

chromosomes (Figure 3.10), mostly because they were too small to be distinguished from 

cell debris. Therefore, the small autosome chromosomes could not be separated from 

the other size chromosome groups through flow cytometry.  

 

 

 

 

 

 

 

 

Table 3.4 displays the summarized data from a flow cytometry run. The populations were 

determined through the gating strategies as described in Section 3.2.2.2. The data in 

Table 3.4 shows that each subsequent gating strategy or population (black to red to green 

to cyan and blue) allowed for more stringent flow sorting, only selecting the chromosomes 

of interest, ultimately making the run more specific.  From the results it was noticed that 

the middle sized chromosome had the highest percentage parent (73.5%), while the large 

sex chromosome had a low percentage parent (15.6%) (Table 3.4). Percentage parent 

Figure 3.10: The single-parameter histogram displays positive peaks for both the middle- and 
large chromosomes. 
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refers to the percentage of gated particles. Table 3.4 also displays an average 

fluorescence of 40,394 for the middle chromosome and 78,095 for the large chromosome.  

 

 

 

 

  

 

 

 

3.3.3 Chromosomal DNA concentration 

The DNA from the sorted X chromosome had to be extracted before sequencing (Table 

A4). 

Table 3.5: The X chromosomes of the samples were pooled together and the DNA concentration 
was determined (Table A4). 

Biotype Ploidy Number of X chromosome pairs Total DNA (ng) 

SAM 2C 2,438,044 889.5 
 

After flow sorting, the number of X chromosomes (2,047,296) resulted in a total amount 

of 889.46 ng of DNA which was sufficient for sequencing later (Table 3.5). The DNA 

concentration of an X chromosome pair equated to:  

 

 

This means that a single X chromosome was 0.18 pg. 

Table 3.4: The summarized data measured after gating allows for the calculation of the number 
of events passing through, percentage parent, as well as fluorescence. Each block represents 
the results after that gating strategy has been implemented. 

X chromosome pair   =   0.36 pg   

X chromosome pair   =   
889.5

2,438,044
   

#### - not measured/not included in gating areas 
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3.3.4 Estimation of RWA genome size 

An estimate of the size of the RWA genome was calculated by using the lengths of the 

chromosome groups (Section 3.3.1), the number of different chromosome pairs (Section 

3.3.1), the DNA concentration of a single X chromosome (Section 3.3.3), as well as the 

assumption that 1 pg DNA = 0.978 x 109 base pairs (Doležel et al. 2003; Doležel and 

Bartoš 2005; Doležel et al. 2012).  

1C was determined as follows: 

 

 

 

 

 

Thus, the estimated genome size was calculated as follows: 

 

 

Therefore,  

 

 

 

 

 

3.3.5 Next generation sequencing (NGS) and bioinformatic analysis of 

RWA X chromosome 

Using the Illumina® HiSeq™ 2000 platform offered by Macrogen, NGS produced a total 

of 13,818,304,294 bases from the RWA sex chromosome fraction with a read count of 

136,814,894 (Table 3.6). The resulting NGS reads were of high quality as revealed by a 

Phred score of 96.32%. The GC content of the sequence data of the sex chromosome 

1C   =   [0.18]  +  [(3) (
4.20

6.11
)  (0.18)]  +  [(1) (

 3.13

6.11
)  (0.18)]  

1C   =   0.18  +  0.37  +  0.09  

1C   =   0.64340425 pg 

1 pg =   0.978  × 10
9
 base pairs  

        =   1C  ×   (0.978  × 10
9
) 

        =   0.64340425  ×   (0.978  × 10
9
) 

        =   629 Mb 
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was 35.44% (Table 3.6) corroborating the low GC percentage found in RWA (Botha et al. 

2011; 2015; Nicholson et al. 2015). 

Table 3.6: The tabulated results obtained from the NGS including the sequencing platform used, 
number of bases, read count, GC percentage, and Q20 percentage. 

Sequencing platform Number of bases Read count GC% Q20 (%) 

Illumina® HiSeq™ 2000  13,818,304,294 136,814,894 35.44 96.32 
 

In order to assess the quality of the obtained NGS data, a FastQC analysis was 

performed. The complete results obtained during the FastQC analysis are included in 

Folder A2 (see attached CD). The y-axis of the graphs displayed in Figure 3.11 indicates 

the quality scores per base of sequence. The FastQC results presented in Figure 3.11 

shows that the sequences produced by Macrogen had high base quality mostly with little 

degradation as the run progressed at the end. Figure 3.11 (A) represents the forward 

sequence of the RWA X chromosome, while Figure 3.11 (B) represents the reverse 

sequence of the RWA X chromosome. 

 

 

 

 

 

 

 

The graphs in Figure 3.12 are very similar with both the forward sequence (A) and reverse 

sequence (B) displaying AT-richness. The GC% is indicated in the graphs in Figure 3.12. 

Figure 3.12 also displays phasing at the start of the reads.  

 

Figure 3.11: The quality of the sequence bases were assessed using FastQC. The y-axis of the 
graph is divided into three regions; good quality calls (green), reasonable quality calls (orange), 
and poor quality calls (red). Graph A represents the forward sequence, while graph B represents 
the reverse sequence of the RWA X chromosome. 

A B 
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KmerGenie estimated the best k-mer length for genome de novo assembly to build 

contigs and scaffolds from the NGS raw reads for the X chromosome of the RWA (Folder 

A3 – see attached CD). The y-axis of the graphs in Figure 3.13 represents the number of 

k-mers, but it can also be interpreted as the estimated size of an assembly of this dataset. 

Figure 3.13 displays a plot with multiple local maxima’s for k-mer size.  

 

 

 

 

 

   

 

Figure 3.14 displays three k-mer histograms, where A represents the KmerGenie 

recommended k-mer size of k=27 for the forward sequence, B represents the KmerGenie 

recommended k-mer size of k=25 for the reverse sequence, and C represents the k-mer 

size k=27 for the reverse sequence that was self-selected, because the same k-value 

was needed for both the forward and reverse sequences of the RWA X chromosome to 

Figure 3.13: Genomic k-mers versus k-mer size. Graph A represents the forward sequence, while 
graph B represents the reverse sequence of the RWA X chromosome. 

A B 

Figure 3.12: The plot indicates the percentage ATGC content per base in the sequence with the 
red line representing %T, blue %C, green %A, and black %G. Graph A  represents the forward 
sequence, while graph B represents the reverse sequence of the RWA X chromosome. 

A B 
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build the contigs and scaffolds. Therefore k=27 (A and C) was selected as the best fit for 

the paired-end reads.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The reads that were subjected to de novo sequence assembly using SOAPdenovo 

(http://soap.genomics.org.cn/soapdenovo.html) produced 1,059,574 contigs for the 

sorted RWA X chromosome fraction, with the longest contig being 7,071 bp (N50 = 314). 

The GC content of the built contigs were 30.05%. A total of 671,410 bp (N50 = 1,367) 

scaffolds were obtained, with the longest being 46,046 bp. The GC content from the built 

scaffolds was 30.13% (Table 3.7; Folder A4 – see attached CD). 

Figure 3.14: The graphs (A – C) embody k-mer abundance histograms. A represents the k-mer 
size that was used for the forward sequence of the RWA X chromosome, while B and C represent 
the k-mer sizes for the reverse sequence of the RWA X chromosome. A and B was recommended 
by KmerGenie for the forward and reverse sequences respectively, but C (self-selected) was 
used for the reverse sequence. Therefore, A and C was used. 

A B 

C 
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Table 3.7: The tabulated results produced by SOAPdenovo presenting the contig and scaffold 
assemblies. 

Number Mean Size Median Size Longest Sequence Shortest Sequence GC% 

Contigs 

1,059,574 260 198 7,071 100 30.05% 

Scaffolds 

671,410 677 320 46,046 100 30.13% 
 

3.3.6 Mapping of the X chromosome reads to the reference RWA and 

pea aphid genomes 

The reads from the RWA X chromosome fraction was aligned and mapped to the 

reference genomes of the RWA (SAM_Contigs_Version 1.1; GCA_001465515.1; Botha 

et al. 2016 – in press) and the pea aphid (Acyr_2.0; GCA_000142985.2; The International 

Aphid Genomics Consortium 2010). The Qualimap results of the RWA were compared to 

that of the pea aphid. Table 3.8 displays that the raw reads of the sex chromosome had 

a much higher mapping percentage to the RWA reference genome (82.88%) compared 

to that of the pea aphid (51.3%).  

Table 3.8: The tabulated results produced by Qualimap analysis highlighted the differences in 
mapping percentage, coverage, and mapping quality between aligning the RWA and pea aphid 
genomes against the sorted X chromosome of the RWA. 

  Russian wheat aphid Pea aphid 

Number of reads  139,472,676 137,070,267 

% Mapped reads  82.88% 51.30% 

% Unmapped reads  17.12% 48.70% 

% Paired reads  82.88% 51.30% 

GC%  35.03% 35.15% 

Mean coverage (x) 35.66 6.84 

Mean mapping quality  36.12 7.95 
 

This also indicates that there was a much higher coverage to the RWA genome (roughly 

5X higher coverage) and that the mapping quality to the RWA was also better. Table 3.8 

also shows that the RWA and pea aphid have similar ACGT content, both with AT-rich 

reads.  
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A Qualimap analysis was also conducted (Folder A5 – see attached CD), which displays 

plots for the RWA and pea aphid, each consisting of two figures (Figure 3.15). The upper 

figures provide the coverage distribution (red line) and coverage deviation across the 

reference sequences, where coverage is presented along the y-axis and coverage 

deviation along the x-axis. The lower figure shows GC content, measured in percentage, 

across reference genome together with its average GC%.  

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 3.15, both plots show complete coverage across the genomes of the RWA and 

the pea aphid. Figure 3.15 also displayed GC content (30%) that is very similar between 

the two aphid species as indicated by the lower figures on each plot. 

Figure 3.15: Coverage deviation and GC content of the alignment of the X chromosome reads of 
the RWA and the reference genomes of RWA (top) and pea aphid (bottom). 

Russian wheat aphid 

Diuraphis noxia 

Pea aphid 

Acyrthosiphon pisum 

 

Coverage Deviation 

Coverage Deviation 

GC content 

GC content 
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Complete genome coverage was also supported by the results following the alignment 

done in Geneious (v7.1.7) of the raw reads from the RWA X chromosome to the reference 

genome of the RWA (SAM_Contigs_Version 1.1; GCA_001465515.1; Botha et al. 2016 

– in press). The data is presented in Folder A6 (see attached CD). 

 

3.3.7 Physical mapping of the X chromosome of the fruit fly to the 

available X chromosome sequences of the RWA 

Table 3.9 displays a comparison between the genome and X chromosome of the fruit fly 

against that of the RWA genome and X chromosome. The RWA has a much larger 

genome size compared to the fruit fly and has five chromosome pairs, while the fruit fly 

has seven chromosome pairs (Lemeunier et al. 1986). Furthermore, the estimated RWA 

X chromosome size (176,040,000 bases) is so big that it is larger than the complete 

genome of the fruit fly of 143,725,995 bases.  The fruit fly’s X chromosome equates to 

16.3% of its total genome, compared to the RWAs 28%. The RWA also has a much lower 

GC percentage across its genome and X chromosome compared to that of the fruit fly.  

 
Table 3.9: The genome and X chromosome of the fruit fly is compared to that of the RWA by 
looking at size- and content differences.    

  Fruit fly Russian wheat aphid  

Database version 84.6 1 

Genebuild version dmel_r6_FB2014_05 SAM_Contigs 

Estimated genome size (pg) 0.18 0.64 

Assembled genome size 143,725,995 629,048,261 

Genome GC% 42.10% 29.50% 

# of contigs 2,442 186,003 

Genome coding genes 13,918 35,492 

      

# of chromosome pairs 7 5 

# of chromosome fragments 1 1,466 

X chromosome size 23,542,271 176,040,000 

X chromosome GC% 42.50% 30.40% 
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The results in Table 3.10 show that when the coding sequence of the fruit fly’s X 

chromosome was mapped against the RWA genome, that only 8.31% of the length of the 

RWA X chromosome was aligned. However, when the proteins of the fruit fly X 

chromosome was mapped against the RWA genome, the results were much better with 

67.42% of the proteins of the RWA X chromosome being reported. The complete dataset 

obtained during the BLASTn and BLASTp analysis is presented in spreadsheet format in 

Folder A7 (see attached CD). 

Table 3.10: The fruit fly X chromosome CDS and proteins were aligned against the RWA genome 
CDS and proteins in order to characterise the RWA X chromosome. 

Fruit fly X chromosome CDS vs. RWA genome CDS (BLASTn) 

Total length of RWA X chromosome aligned 14,631,822 

% aligned 8.31% 

      

Fruit fly X chromosome proteins vs. RWA genome proteins (BLASTp) 

Total length of RWA X chromosome aligned 118,687,515 

% aligned 67.42% 
 

3.3.8 Fluorescent in situ hybridization (FISH) 

3.3.8.1 Probe generation for the RWA sex chromosomes 

The primers that were ordered for probe generation were verified as correct through gel 

electrophoresis to test if they amplified the correct product sizes.  

All of the primers produced single bands of the correct size (Table 3.1) and no 

contamination was visible in the series (Figure 3.16). 
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3.3.8.2 Visualisation 

FISH with the control probe 1 (18S rRNA) displayed co-localization of hybridization 

signals (red fluoresence) at one end of the X chromosome of the RWA female (Figure 

3.17 – Probe 1). Control probe 2 (histone H4) also displayed signals, but the chromosome 

images had a low resolution, therefore exact localization on the chromosomes could not 

be determined. The same occurred using the other probes – probe 3 (X probe scaf_1801), 

probe 5 (X probe scaf_1960), probe 6 (X probe scaf_4125), probe 7 (X probe 

scaf_6337a), probe 8 (X probe scaf_6337b), and probe 10 (X probe scaf_17249) – where 

Figure 3.16: Gel electrophoresis was carried out on a 2% agarose gel at 90 volts for 80 minutes 
to determine if the primers amplified the correct product sizes. Probe 1 and 2 were used as 
positive controls. A 1 kb (Promega™) DNA ladder was used. Refer to Table 3.1 for probe names. 

Probes 1 kb Ladder 

500 bp 

1,500 bp 

1,000 bp 

1,000 bp 

700 bp 

500 bp 

P1 P2 P3 P4 P5 L 

P10 P9 P8 P7 P6 L 
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localization of probes did occur, but visual confirmation of the chromosomes and probe 

binding location was lacking (Figure A1). Probe 4 (X probe scaf_1801) and probe 9 (X 

probe scaf_13192) did not display any hybridization signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17: Mitotic chromosome complements of RWA after differential staining and FISH. Probe 
1 and 2 was used as controls and the other probes were derived from the fruit fly X chromosome. 
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3.4 Discussion 

3.4.1 RWA karyotype and genome size estimation 

In RWA embryonic tissue, cells are constantly in the process of multiplication and 

differentiation. Therefore, a proportion of the cells are in late prophase or metaphase of 

mitosis, when the number and relative sizes of their chromosomes can be observed. RWA 

embryos were used in the study, because most of the cells are multiplying and 

differentiating constantly, meaning a large proportion of them will be in late prophase or 

metaphase of mitosis, when chromosomes can be best observed (Novotná et al. 2011).  

Hoechst 33342 (Sigma) is a membrane permeant dye that binds to adenine-thymine-rich 

regions of DNA in the minor groove. Botha et al. (2012) found that the RWA has the most 

AT-rich insect genome sequenced, therefore enabling the Hoechst that was used to stain 

the RWA slide preparations to bind to the entire chromosomes as presented in Figure 

3.7. 

The chromosome preparations that were obtained from RWA biotype SA1 and SAM after 

staining did not display any variations in chromosome number, size, and shape. This 

might be, because SAM was developed from SA1 after laboratory induced selective 

pressure (Swanevelder et al. 2010), leading to no differences in these areas. Also, the 

fact that the RWA reproduces asexually contributes to the lack in chromosomal 

differences. During asexual reproduction the traits of only the female RWA is passed on 

to progeny, resulting in identical offspring with a lower genetic diversity. These factors 

could be the reason that the chromosomes between these two RWA biotypes are visually 

identical as seen in Figure 3.7.    

The results of this study indicated that the X chromosome of the RWA is 1.5X the size of 

the middle sized chromosomes as well as twice the size of the smallest chromosomes, 

therefore it is easy to identify the chromosomes based on their size (Figure 3.7, Figure 
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3.8, Table 3.2, and Table 3.3). The X chromosome pair and small autosome chromosome 

pair are easily distinguished, because of their size and low numbers (Figure 3.8), however 

the three remaining middle autosome chromosome pairs are difficult to separate and 

identify, because of their similar size and the fact that RWA chromosomes lack 

centromeres. Apart from the lengths of the chromosomes, there are no other 

morphological features that would aid in the identification of different chromosomes 

(Figure 3.8).  

The statistical investigations into X chromosome sizes of aphids are somewhat 

uncommon. The only data available is for a few species of the genus Neuquenaphis 

(Neuquenaphidinae), where the sizes of the X chromosomes vary from 11 to 15% of the 

total genome (Blackman et al. 2003), and for the related Myzus persicae species, where 

the size of the X chromosome almost reach 27% of the genome (Blackman and Takada 

1976). In 2011, Novotná et al. compared female and male RWA genome sizes. They 

found the female genome size to be 2C = 0.86 pg, while the male genome size was 2C 

= 0.70 pg. The difference in DNA content between the males and females suggested that 

the RWA X chromosome occupies around 35% of the female haploid genome (1C = 0.43 

pg), making it one of the largest sex chromosomes in the animal kingdom. The assembly 

of the karyotype (Figure 3.8) and statistical investigation (Table 3.2, Table3.3, and Figure 

3.9) confirms that the X chromosome is by far the largest element in the karyotype of the 

RWA. The results in this study further suggests that the DNA content of a single X 

chromosome is 0.18 pg (Section 3.3.3) while the genome equates to 1C = 0.64 pg 

(Section 3.3.4), suggesting that the X chromosome contributed approximately 28% of the 

total DNA, which is slightly less than that measured by Novotná et al. (2011), but very 

close to that of the related green peach aphid, where the X chromosome reaches almost 

27% of the genome size (Blackman and Takada 1976). 
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Arthropod genome sizes exhibit considerable diversity, with the largest reported to date 

being that of the grasshopper (Orthotera: Neoconocephalus triops L.) (1C = 7 125 

(male)/7 752 (female) Mb; 7.93 pg) and the smallest being the two spotted spider mite 

(Trombidiformes: Tetranychus urticae) (1C = 90.7 Mb; 0.09 pg) (Hanraham and Johnston 

2001; Johnston et al. 2007). In this study, the genome of the female RWA is estimated to 

be 629 Mb (Section 3.3.4), which is more than the 421 Mb that Novotná et al. (2011) 

predicted using flow cytometry. The genome of the model aphid, pea aphid, is 517 Mb, 

roughly 17.8% smaller than the RWA genome size predicted in this study. 

3.4.2 Flow cytometry and next generation sequencing 

Ultimately, the flow cytometry that was used to isolate the X chromosomes of the RWA 

also proved to be a method to identify the X chromosome based on its relative size and 

fluorescence. Figure 3.10 presented that the X chromosomes had a higher fluorescence 

than the middle chromosomes, because of its bigger surface area. A larger surface area 

allows for more fluorescent dye, in this case propidium iodide (PI), to bind to double 

stranded DNA by intercalating between base pairs. The results of the histogram in Figure 

3.10 compares with the karyotype of the RWA. The karyotype of the female RWA consists 

of 10 chromosomes – two large sex (X) chromosomes, six middle autosome 

chromosomes, and a single set of small autosome chromosomes (Figure 3.8). The 

histogram in Figure 3.10 supports this data by the two distinct peaks. The large 

chromosomes have a larger area than the autosome chromosomes resulting in a higher 

fluorescence peak. However, the fact that the RWA possesses more middle 

chromosomes in their karyotype resulted in the peak with the higher count particles 

passing through the instrument (Figure 3.10). The small chromosomes did not generate 

a peak, because of its small size and low fluorescence, causing the instrument to classify 

the small autosomes as debris and sorting it under the negative dataset with the 

undesired characteristics (waste). Table 3.4 also linked in with the karyotype when the 
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percentage parent was studied. In this case, the large chromosomes had a lower 

percentage parent (15.6%) compared to the middle chromosomes (73.5%), because of 

their frequency - two out of ten chromosomes are large. Furthermore, Table 3.4 also 

shows that the X chromosome is almost 1.5X times the size when the fluorescence 

intensity was calculated correlating with Figure 3.9. 

The samples collected during flow cytometry for DNA extraction were chosen based on 

the trails (Folder A1) that presented the best peaks and physical properties selected for 

as seen in Figure 3.10. The samples all contained a large amount of chromosomes and 

had sufficient DNA concentrations and the samples were pooled together. 

The NGS results produced by Macrogen were subjected to further analysis. It is stipulated 

that in a random library there should be little to no difference between the different bases 

of a sequence run (i.e. A, T, G, and C). In other words, the lines in the plot presented in 

Figure 3.12 were expected to run parallel with one another as close as possible. However, 

the results in Figure 3.12 is explained in a study conducted by Botha et al. (2012), and a 

more recent study by Nicholson et al. (2015) where they showed that the RWA has the 

most AT-rich insect genome sequenced to date. Briefly, Botha et al. (2012) reported it to 

be comparable to the GC content described in A. pisum (pea aphid) (29.6%) (The 

International Aphid Genomics Consortium 2010) and A. mellifera (honeybee) (33%) (The 

Honeybee Genome Sequencing Consortium 2006). The high AT-rich genomes of the 

RWA and the pea aphid contradict the hypothesized positive correlation between insect 

genome size and AT content. This AT-richness of the RWA genome has also recently 

been reported by Nicholson et al. (2015) and according to them the RWA genome is 

composed of 29.1% GC and 70.9% AT which is the lowest GC% of any currently-

assembled insect genome including the pea aphid. The data (Figure 3.12, Table 3.6, 

Table 3.7, and Table 3.8) in this study correspond with these findings. The high AT-

richness within aphid genomes may be evidence of relaxed GC biases and previous 
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mutational hotspots (Rocha et al. 2010) which may be indicative of RWA genome 

plasticity. 

3.4.3 Bioinformatic analysis and reference mapping 

Libraries produced by amplification such as in this case through using the Truseq Nano 

DNA Sample Prep Kit (Illumina) inherit an intrinsic bias in the position at which reads start 

(Figure 3.12). This bias does not concern an absolute sequence, but instead provides 

enrichment of a number of different k-mers at the 5' end of the reads. According to Chikhi 

and Medvedev (2014), in cases like these, the statistical model in KmerGenie does not 

always correctly fit the input data for some values of k. KmerGenie software suggests that 

the plot in Figure 3.13 should ideally be concave with a smooth curve and a clear global 

maximum (Chikhi and Medvedev 2014). However, Figure 3.13 does not display a smooth 

curve, but rather a plot with multiple local maxima’s for k-mer size. Therefore, the best k-

mer value that KmerGenie predicted may be suboptimal. Subsequently, KmerGenie 

recommends that in later analysis (e.g. de novo assembly), a larger k than the one 

predicted by the software should also be attempted. In principal, when the number of 

predicted genomic k-mers remains high during a large range of k's, the largest k value in 

this range is likely to be a better choice (as indicated by the red circles in Figure 3.13), 

resulting in the selected k=27 rather than k=25 (Figure 3.14). 

The mapping (Table 3.8) and coverage (Figure 3.15) results of the RWA and pea aphid 

were compared, because the pea aphid is closely related to the RWA and well 

characterised. Figure 3.15 displays coverage - if one genomic region has a coverage of 

10X, it means that, on average, 10 different reads are mapped to each nucleotide of the 

region. The data presented an expected outcome with higher mapping percentage, 

coverage, and quality to the RWA. These results are due to the fact that the X 

chromosome is isolated from the RWA. Because of the close relation between these two 

Stellenbosch University  https://scholar.sun.ac.za



  Chapter 3 

97 
 

species, mapping and coverage against the pea aphid also produced high quality results 

as well as conformation that the RWA and pea aphid have nearly similar AT content. 

However from the results in Figure 3.15 it can be concluded that mapping coverage 

stretches the whole genome of the RWA and pea aphid, suggesting that the RWA X 

chromosome fraction sent for sequencing was contaminated with other autosome 

chromosomes, resulting in whole genome coverage. Therefore, the process of flow 

cytometry is not considered specific enough as it does not allow sorting of only the 

chromosome of interest, in this case the X chromosome. 

3.4.4 Physical mapping of the X chromosome 

The fruit fly is a well-known model organism, because of its abundance, simplicity to breed 

and that they are low cost subjects. What is more important is that mapping populations 

exist to enable for physical mapping. The fruit fly X chromosome is well characterised and 

studied with its coding genes, non-coding genes, and pseudogenes identified. Mapping 

the X chromosome of the fruit fly to the RWA genome allowed for some characterisation 

of the RWA X chromosome. The X chromosome of the fruit fly aided in the alignment of 

67.42% of the proteins of the RWA X chromosome by using the proteins of the fruit fly 

and determining on which contigs of the RWA these proteins were mapped. This 

information will aid in the identification of these proteins and what their functions are. 

As an additional means of X chromosome characterisation, fluorescent in situ 

hybridization (FISH) was conducted to identify regions of interest on the sex chromosome. 

The probes were chosen based on mapping the X chromosome of the fruit fly against the 

RWA genome to identify possible orthologous regions. The gene descriptions are 

presented in Table 3.1. After the product sizes of the probes were confirmed the 

hybridization was conducted to obtain the images in Figure 3.17. Probe 1 (18S rRNA) 

and 2 (histone H4) were used as controls in the study.  
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In aphids, nucleolus organiser regions (NORs), i.e., clusters of genes for 18S rRNA 

(Probe 1), have been examined not only as chromosomal markers, but also for their 

possible role in X-chromosome elimination in oocytes destined to develop as males. 

During this process one of the X chromosomes is eliminated to generate eggs with two 

autosomal sets and a single X chromosome (Orlando 1974; Blackman and Hales 1986). 

It has been shown that the prometaphase X chromosomes are connected by a narrow 

protein-DNA bridge carrying the NOR (Mandrioli et al. 1999). From the results in Figure 

3.17, it can be observed that probe 1 localized a terminal cluster of rRNA on the X 

chromosome in female RWA. This confirmed that the RWA X chromosome bears the 

NOR. Novotná et al. (2011) confirmed that the H4 probe also localizes a single cluster of 

histone genes at the end of the X chromosome. In Figure 3.17 it can be seen that probe 

2 (H4) localization definitely occurs, however in these cases the localization area cannot 

be confirmed. The same results can be observed in the other probes (3, 5, 6, 7, 8, and 

10) where localization takes place, but resolution in the images were insufficient to allow 

for separation of single chromosomes on a spread. Despite this limitation, it was 

nonetheless confirmed that these genes are also present in the RWA X chromosome data 

set. 
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3.5 Appendix 

Table A1: t-Test with two samples assuming equal variances (X chromosome vs. Middle 
chromosome). 

  X chromosome Middle chromosome  

Mean 6.11 4.20 

Variance 0.02 0.03 

Observations 10 10 

Pooled variance 0.02 

Df 18 

t stat 28.58 

P(T<=t) one-tail 9.45 x 10-17 

t critical one-tail 1.73 

P(T<=t) two-tail 1.89 x 10-16 

t critical two-tail 2.10 
 

 

Table A2: t-Test with two samples assuming equal variances (Middle chromosome vs. Small 
chromosome). 

  Middle chromosome  Small chromosome 

Mean 4.20 3.13 

Variance 0.03 0.01 

Observations 10 10 

Pooled variance 0.02 

Df 18 

t stat 18.09 

P(T<=t) one-tail 2.71 x 10-13 

t critical one-tail 1.73 

P(T<=t) two-tail 5.42 x 10-13 

t critical two-tail 2.10 
 

 

Table A3: t-Test with two samples assuming equal variances (X chromosome vs. Small 
chromosome). 

  X chromosome Small chromosome 

Mean 6.11 3.13 

Variance 0.02 0.01 

Observations 10 10 

Pooled variance 0.01 

Df 18 

t stat 56.75 

P(T<=t) one-tail 4.71 x 10-22 

t critical one-tail 1.73 

P(T<=t) two-tail 9.42 x 10-22 

t critical two-tail 2.10 
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Table A4: The DNA concentration of an X chromosome pair was determined as follows, where the total DNA concentration of the flow cytometry trails 
were divided by the number of X chromosome pairs sorted. 

Biotype Sample # # of chromosome pairs [DNA] (ng/ul) Total DNA (ng) Total DNA (pg) Total DNA (pg)/# of chromosome pairs 

SAM Sample #5 251782 0.95 20.90 20900 0.08 

SAM Sample #6 138966 0.38 8.36 8360 0.06 

SAM Sample #10 425200 6.10 134.20 134200 0.32 

SAM Sample #11 459050 9.10 200.20 200200 0.44 

SAM Sample #12 416004 8.90 195.80 195800 0.47 

SAM Sample #13 631000 7.80 171.60 171600 0.27 

SAM Sample #14 116042 7.20 158.40 158400 1.37 

SAM Total 2438044 40.43 889.46 889460 0.36 

SAM Average 348292 5.78 127.07 127065.71 0.36 
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Flow cytometry data and trails included in the study can be found in a supplemental file 

named Folder A1 (see attached CD). 

FastQC results achieved from assessing the quality of the data obtained from the NGS 

analysis can be found in a supplemental file named Folder A2 (see attached CD). 

KmerGenie estimated the best k-mer length for genome de novo assembly to build 

contigs and scaffolds from the NGS raw reads for the X chromosome of the RWA and 

can be found in a supplemental file named Folder A3 (see attached CD). 

The tabulated results produced by SOAPdenovo presenting the contig and scaffold 

assemblies can be found in a supplemental file named Folder A4 (see attached CD). 

Qualimap results obtained from mapping the flow sorted RWA X chromosome against 

the RWA genome and pea aphid genome can be found in a supplemental file named 

Folder A5 (see attached CD). 

Physical mapping of the flow sorted X chromosome against the RWA genome can be 

found in a supplemental file named Folder A6. All of the data is presented in a spread 

sheet format obtained from Geneious (v7.1.7) (see attached CD). 

Physical mapping of the fruit fly X chromosome against the RWA genome can be found 

in a supplemental file named Folder A7. All of the data is presented in a spread sheet 

format (see attached CD).  
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Probe 5 Probe 7a 

Probe 8 Probe 7b 

Figure A1: Mitotic chromosome complements of RWA after differential staining and FISH. Probe 1 and 2 was used as controls and the other probes 
were derived from the fruit fly X chromosome. 
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4.1 Summary 

Aphids are recognized as global agricultural pests that cause significant economic losses 

worldwide with devastating effects on crop production. Diuraphis noxia Kurdjumov, more 

commonly known as the Russian wheat aphid (RWA), is a widely distributed pest of, 

especially wheat, Triticum austivum L., (Stoetzel 1987) mostly because of the 

development of new RWA biotypes that are virulent to different deployed resistant wheat 

cultivars. RWA biotypes have raised major concerns regarding durability of future RWA 

resistance sources (Haley et al. 2004). 

Over the past 100 years aphids have been extensively studied as a popular model group 

among cytogeneticists and thus far approximately a 1000 species have been karyotyped, 

of which numerous show big differences in chromosome number and morphology 

(Kuznetsova and Shaposhnikov 1973; Blackman 1980). The chromosomes of aphids 

have been shown to be holocentric, meaning that they lack centromeres and display 

kinetic activity along the length of the chromosome (Blackman 1987). This makes 

chromosomes of similar size and shape almost identical, making it impossible to 

differentiate from one another. However, since then modern technology has afforded 

scientists an opportunity to isolate specific DNA sequences in aphids. Molecular 

techniques along with fluorescent in situ hybridization (FISH) have allowed the 

localization of rRNA, satellites, and telomeric (TTAGG)n repeats (Spence et al. 1998; 

Bizarro et al. 2000). Furthermore, advances in science has also contributed to answering 

the research questions presented in this study. 

In order to address the first research question relating to the composition of the karyotype 

of the RWA and identifying the large X chromosome from the other autosome 

chromosomes, the embryos of female RWA were dissected to isolate differentiating cells 

that are mostly in metaphase when chromosomes can be best observed. The karyotype 
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was constructed from these samples and it was shown that the female RWA does, in fact, 

possess a diploid (2n) chromosome number of 10, corroborating with results 

demonstrated by Novotná et al. (2011). The X chromosomes were shown to be the largest 

chromosomes in the karyotype and could easily be distinguished from the other 

chromosomes. 

The successful differentiation of the RWA X chromosome led to the next research 

question, which was the physical contribution of the X chromosome to the genome of the 

RWA. To address this, an attempt was made to isolate the RWA X chromosome using 

flow cytometry. The RWA chromosomes were sorted from one another based on their 

size, however the small autosome chromosomes could not be separated from the debris, 

because of their small size and low fluorescence. The flow cytometry results displayed 

successful separation of the large X chromosomes and middle autosome chromosomes. 

Using the size differences and the measured lengths of the chromosome pairs, the size 

of the X chromosomes were calculated to be 0.18 pg (equating to 176.9 Mb). 

The next question then was to conduct physical mapping on the sorted chromosomes. 

To accomplish this, the DNA from the isolated X chromosomes was sequenced.  

Bioinformatic analysis confirmed that the RWA genome is AT-rich. Physical mapping of 

the proteins of the RWA against the proteins of the fruit fly X chromosome aided in further 

characterisation of the RWA X chromosome, resulting in the alignment of 67.42% of the 

length of the RWA X chromosome. Fluorescent in situ hybridization also confirmed 

orthologous regions of the fruit fly X chromosome to be present in the RWA karyotype, 

which ultimately suggested that these PCGs are present in the RWA X chromosome data 

set. 

In conclusion, it is clear from the karyotype results obtained in this study that the RWA X 

chromosome is really large compared to the other autosome chromosomes and that 
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further investigation of the RWA X chromosome through flow cytometry, sequencing, and 

FISH, allowed for the determination of important characteristics like genome size, X 

chromosome protein content, and possible X chromosome genes. The results in the study 

also suggested that the X chromosome occupies more than a quarter of the RWA 

genome, suggesting that more investigation studies into X chromosome genetic variability 

would be beneficial and might even help with future resistance programmes.  
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