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Abstract

Determining optimal primary sawing and ripping
machine settings in the wood manufacturing chain

B.G. Lindner (15150526)
Department of Industrial Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Industrial Engineering)
March 2014

For wood manufacturers around the world, the single biggest cost factor is
known to be its raw material. Thus maximum utilisation, specifically volume
recovery of this raw material, is of key importance for the industry. The wood
products industry consists of several interrelated manufacturing steps for con-
verting trees into logs and logs into finished lumber. At most primary and
secondary wood processors the different manufacturing steps are optimised in
isolation or based on operator experience. This can lead to suboptimal de-
cisions and a substantial waste of raw material. The objective of this study
was to determine the optimal machine settings for two interrelated operations,
namely the sawing and ripping operations which have traditionally been opti-
mised individually.

A model, having two decision variables, was developed which aims to satisfy
market demand at a minimal cost. The first decision was how to saw the log
supply into different thicknesses by choosing specific sawing patterns. The sec-
ond was to decide on a rip saw’s settings, namely part priority values, which
determines how the products from the primary sawing operation are ripped
into products of a certain thickness and width.

The techniques used to determine the machine settings included static simula-
tion with the SIMSAW software to represent the sawing operation and mixed
integer programming to model the ripping operation. A metaheuristic, namely
the Population Based Incremental Learning algorithm, was the link between
the two operations and determined the optimal settings for the combined pro-

ii

Stellenbosch University  http://scholar.sun.ac.za
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cess.

The model’s objective function was formulated to minimise the cost of pro-
duction. This cost included the raw material waste cost and the over or under
production cost. The over production cost was estimated to include the stock
keeping costs. The under production cost was estimated as the buy-in cost of
purchasing the under supplied products from another wood supplier.

The model performed well against current decision software available in South
Africa, namely the Sawmill Production Planning System package, which com-
bines simulation (SIMSAW) and mixed integer programming techniques to
maximise profit. The model added further value in modelling and determining
the ripping priority settings in addition to the primary sawing patterns.
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Uittreksel

Bepaling van optimale primêre -en kloofsaag
masjienstellings in die houtvervaardigingsketting

(“Determining optimal primary sawing and ripping machine settings in the wood
manufacturing chain”)

B.G. Lindner (15150526)
Departement van Bedryfs Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Bedryfs Ingenieurswese)
Maart 2014

Die grootste enkele koste vir houtprodukvervaardigers wêreldwyd is dié van
hulle roumateriaal. Die maksimale gebruik van rou materiaal, of volume her-
winning, is dus van primêre belang vir hierdie industrie. Die vervaardigingspro-
ses in die houtprodukte-industrie bestaan uit ‘n verskeidenheid interafhanklike
stappe om bome na stompe te verwerk en stompe na eindprodukte. By meeste
primêre -en sekondêre houtvervaardigers word die verskillende vervaardigings-
stappe in isolasie ge-optimeer. Hierdie praktyk lei tot sub-optimale besluite
en ‘n vermorsing van roumateriale. Die doelwit van hierdie studie was om die
optimale masjienverstellings vir twee interafhanklike prosesse, die primêre -en
kloofsaag prosesse, te bepaal. Tradisioneel word hierdie twee prosesse indivi-
dueel optimeer.

‘n Model met twee besluitnemingsveranderlikes is ontwikkel wat poog om die
markaanvraag te bevredig teen ‘n minimum koste. Die eerste besluit was wat-
ter saagpatroon gekies moet word om die stompe in die regte dikte produkte
te saag. Die tweede besluit was wat die kloofsaagstellings, ook bekend as pri-
oriteitswaardes, moet wees sodat die regte wydte produkte gesaag word.

Die tegnieke wat gebruik is sluit statiese simulasie met SIMSAW sagteware in
om die primêre saagproses te modelleer en gemengde heelgetalprogammering
(“mixed integer programming”) om die kloofsaagproses te modelleer. ‘n Me-
taheuristiek genaamd die “Population Based Incremental Learning” algoritme,
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was die skakel tussen die twee operasies om die optimale masjienstellings vir
die proses te bepaal.

Die model se doelfunksie was geformuleer om die koste van produksie te mini-
meer. Hierdie koste sluit die roumateriaal afvalkoste en die kostes van oor -en
onderproduksie in. Die oorproduksiekoste was ‘n skatting van die voorraad-
kostes. Die onderproduksiekoste was ‘n skatting van die koste om voorraad
van ‘n ander verskaffer aan te koop.

Die model het goed opgeweeg teen die beskikbare besluitnemingssagteware in
Suid Afrika, die “Sawmill Production Planning System”, wat ‘n kombinasie van
SIMSAW en ‘n gemengde heelgetalprogrammeringstegniek is. Die model het
verder waarde toegevoeg deur die kloofsaag se prioriteitswaardes te modelleer
saam met die primêre saagpatrone.
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Chapter 1

Introduction

For wood manufacturers around the world, the single biggest cost factor is
known to be its raw material (Lundahl, 2007; Buehlmann et al., 2011; Crick-
may and Associates, 2013a). Thus maximum utilisation, specifically volume
recovery of this raw material, is of key importance for the industry. The wood
product industry consists of several interrelated manufacturing steps for con-
verting trees into logs and logs into finished lumber (Faaland and Briggs, 1984;
Todoroki and Rönnqvist, 1999; Wessels et al., 2006). A generalised manufac-
turing environment is illustrated in Figure 1.1.

Figure 1.1: Illustration of important manufacturing operations in the wood supply
industry. Operations one and two are the focus areas in this study.

The wood product industry can be separated into primary and secondary wood
products. Primary products include products that are produced directly from

1
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logs, including paper, lumber, plywood and composite materials such as parti-
cleboard and orientated strand board. Secondary products are produced from
primary products and include flooring, cabinets, furniture, doors and windows
(Buck, 2009).

As mentioned the single biggest cost for wood manufacturers is known to be
its raw material. However the wood industry wastes a lot of its raw material.
South Africa (SA)’s national volume recovery for the formal sawmilling sector
is shown in Figure 1.2. Also included is the estimated cost breakdowns of the
formal sawmilling sector. Saw logs (raw material) is the biggest cost factor by
far.

Figure 1.2: SA sawmilling volumetric recovery and cost breakdown (Crickmay and
Associates, 2013a)

As seen in Figure 1.2 less than half of the log volume is converted into timber
products, the rest being chips, shavings, and shrinkage. Chips and sawdust
produced by the saw blades are commonly referred to as “waste”. This is be-
cause its selling price is extremely low in comparison to that of solid wood.

For wood manufacturers the economic benefits of increasing volume recovery
of its raw material can be substantial. Van Zyl (2011) estimated that for a
medium-sized South African sawmill, having an annual log intake of 100 000
m3, a 1% increase in volume recovery will result in additional profit of about
R2.2 million annually. Prior to the sawmilling process there is volume loss
with trees being converted into logs and after the sawmilling process further
volume losses occur during secondary manufacturing. In the secondary man-
ufacturing environment raw material costs can comprise 40 to 70 % of total
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manufacturing expenses (Buck, 2009). It is estimated that for a secondary
manufacturer increasing volume yield by 1% can potentially save 2% of total
production costs (Buehlmann et al., 2003)). Koch et al. (2009) estimated this
1% waste represents a loss of e 45 000 per year for an international secondary
manufacturing firm.

Apart from the economic advantages there are also environmental benefits
linked to volume recovery improvements. If there is more raw material recov-
ered, i.e. less waste from the tree, then there is in turn less consumption of
trees to meet the proposed demand (Van Zyl, 2011).

The important question is what is preventing manufacturers from increasing
their volume recovery by as little as 1%? One influence is the saw kerf (blade
thickness) size. Studies have shown a difference in theoretical yield lying be-
tween 2.4% and 3.7% when a 4.8 mm saw kerf size is replaced with a 2.8 mm
saw (Lundahl, 2007, 112). Another influence is shape characteristics of the
logs supplied, such as diameter, taper and sweep. However the most challeng-
ing problem is the complexity inherent in optimally matching the naturally
varying log supply to the fluctuating wood product demand.

Sawmills constantly struggle to maximise value yield and reduce the effects
of the “sawmill paradox”. This is the problem that only about half of the
logs’ volume will be sawn into wood products, the rest being chips or sawdust
and that half of the sawn wood products will become low priced products due
to low demand (Lundahl, 2007). Figure 1.3 illustrates this more graphically.
In addition wood products are produced within a hybrid batch/flow process
environment from a highly variable natural resource with often unpredictable
processing characteristics (Kapp, 1997, 8).

In this study “optimisation” or Operations Research (OR) techniques are ex-
plored to assist with processing decisions for the linked operations scoped,
namely the primary sawing and ripping of wood material. The aim is to sat-
isfy market demand optimally, namely at the maximum volume recovery.

1.1 Background
At sawmills logs are converted, or broken down, into boards by a series of
sawing operations (Todoroki and Rönnqvist, 1999). As illustrated in Figure
1.1 the log breakdown can be viewed as a two stage process. Logs are sawn
into slabs of wood known as flitches during the primary stage and flitches are
further processed to produce edged (sawn length-wise) and trimmed (sawn
width-wise) pieces (Todoroki and Ronnqvist, 1997). The term flitch refers to
a piece primarily sawn from a log having two sawn faces and two waney/bark
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Figure 1.3: There are many ways to convert a circular log into demanded rectangu-
lar wooden products of certain dimensions. Each of these is described as a different
Sawing Pattern (SP). Each SP will produce different products and volume output.

(outer layer of tree) edges. The sawing operations in the wood manufacturing
industry are of a sequential nature and they need to be optimised simultane-
ously to attain a global optimal recovery (Todoroki and Rönnqvist, 1999).

Secondary manufacturers of solid wood products, saw kiln-dried flitches or
lumber boards into dimension parts of specified sizes, qualities and quantities
according to customer orders (Buehlmann et al., 2011). Secondary manufac-
turers are also referred to as rough millers in the United States (Buehlmann
et al., 2011). It is important to note that the differentiation of sawmillers and
secondary manufacturers in Figure 1.1 is not always so clear. Sometimes the
sawmill will do the ripping operation as well. Also the forestry or forest prod-
ucts industry, is seen to include the sawmill process (Rönnqvist, 2003).

This project focusses on the South African (SA) pine manufacturing chain.
The South African sawmilling industry is unique in that it obtains virtually
100% of its raw material supply from exotic plantations. New Zealand is sec-
ond with 97% (Bredenkamp et al., 2012, Ch. 8.7). South Africa’s total forest
plantation area constitute 1.3 million hectares. These areas are either intensely
managed softwood (51%) and/or hardwood plantations (Van Zyl, 2011). The
hardwoods used in South Africa include eucalyptus and wattle species, and are
used mostly for pulp and board mills (Du Plessis, 2010). Softwoods are mostly
used for dimensionally sawn timber processed into standard sizes, which is in
turn commonly used in the construction industry and the manufacturing of
solid wood products (Du Plessis, 2010). The plantation softwoods processed
in South Africa is collectively known as SA Pine, which includes five differ-
ent species. These plantations are managed by the forestry industry, which
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are usually separate profit centres from the sawmillers, or separate companies
(Wessels et al., 2006).

There are a few different sawing techniques used at the primary breakdown
stations of sawmills. The most common patterns include cant, live, quarter,
grade and radial sawing amongst others. These sawing operations are illus-
trated in Figure 1.4.

Figure 1.4: Log sawing methods (Van Zyl, 2011).

As mentioned this project focusses on the South African (SA) pine manufac-
turing chain. Specifically manufacturers utilising live sawing patterns at the
log breakdown operation. This study might also find application for hardwood
manufacturers (Wessels et al., 2006) and/or those utilising other sawing pat-
terns and subsequent ripping operations in other countries. For example New
Zealand uses live sawing for log breakdown of pine material (Todoroki and
Rönnqvist, 1999).

As illustrated in Figure 1.3 and Figure 1.5 the way in which the saws and their
spaces relative to each other are set is described as a Sawing Pattern (SP).
This is an important decision, machine setting, to be optimised at the primary
sawing station. Determining the optimum sawing patterns can be seen as a
three-dimensional knapsack problem. The primary breakdown of the log can
be formulated as the well known one-dimensional knapsack problem. Further
breakdown of boards and/or flitch assortments into boards can be formulated
as a two-dimensional knapsack problem. The latter can be thought of as the
problem of fitting rectangles of various dimensions and values into a circle
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in such a way that the total value of the circle is maximised (Reinders and
Hendriks, 1989). Optimising the sawing patterns has been of interest to various
researchers for decades (Faaland and Briggs, 1984; Geerts, 1984; Hallock et al.,
1979).

Figure 1.5: Example of two possible sawing patterns for a certain sized log at the
primary sawing operation. Each pattern will produce different dimensioned products
and volume outputs.

There are many models and software programs available to help improve the
industry in optimising its decisions as described in the literature review. Most
notably in South Africa is the SIMSAW and Sawmill Production Planning
System (SPPS) packages, with similar packages existing worldwide. SIMSAW
6 is a sawing simulation tool which predicts the sawn product (board) recovery
from logs, given certain inputs (Wessels et al., 2001). User inputs include the
possible sawing patterns, log shape characteristics and some machine settings
for the primary and secondary log breakdown machines. The SPPS package
uses simulation data from SIMSAW and with the use of linear and mixed inte-
ger programming techniques, maximises the total profit of a sawmill, subject
to constraints set by the user (Wessels et al., 2006). A screen-shot of the SIM-
SAW package is shown in Figure 1.6.

Secondary manufacturers, sometimes referred to as rough millers in America,
saw solid wood parts from kiln-dried lumber boards bought from sawmills and
other wholesalers. These lumber boards are further processed so that the spec-
ified part sizes are obtained and defects are sawn out. The processed products
are then used for final assembly of furniture, cabinets, doors, windows and
other products (Buehlmann and Thomas, 2001).
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Figure 1.6: Screen shot of SIMSAW 6 software package.

The industry’s rip and chop saw machines have changed from using extensive
manual decision sawing systems to machines capable of automated decision
making in an effort to increase yield, amongst other objectives (Zuo, 2003).
These sophisticated scanning and computerised systems for the rip (and chop)
saw machines have been developed to optimise the value of lumber for sec-
ondary manufacturers (Cothrell and Higgins, 2003). These machines are com-
monly referred to as “optimisers” in the industry. One the most important
decisions that these “optimising” machines try to solve is illustrated in Figure
1.7.

Although secondary manufacturers have started to incorporate a large amount
of automatic and computerised equipment, especially in gang-rip first pro-
cesses, many of the process settings still rely on human decision making. Ex-
amples include: choosing the appropriate grade of lumber for processing; de-
signing the optimal arbour for the gang-rip saw; and defining suitable part
priority values for the chop saw (Zuo, 2003). Currently industrial optimising
chop saws use a part-priority approach to optimise for a production run. With
this approach the operator manually sets priorities for certain difficult-to-cut
parts (Maness et al., 2009). Recently these priority approaches have been in-
corporated into modern ripping machines (Cothrell and Higgins, 2003).

One of the methods used to optimally rip (or chop) an incoming board/flitch,
is to have each product possible to be ripped have an assigned priority value,
sometimes called the dollar or decision value. Depending on this value the ma-
chine’s computer will determine which combination of parts can be ripped out
of the board and the combination with the highest value is chosen (Cothrell
and Higgins, 2003). These part priority values thus force the machine to rip
more of one product than the other. These values are usually determined ac-
cording to the supply of products needed to fulfil expected demand.
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Figure 1.7: Example of two ways to rip a flitch at the ripping operation. Each with
different volume and product outputs. Priority settings/values usually determine
which products to rip out.

Wood product parts that are in higher demand are given a considerably higher
priority value and less desirable parts are given a lower value in comparison.
However, the values are usually assigned arbitrarily, since in reality it is diffi-
cult to determine the actual value of any part flowing through the mill. Thus
value strategies are very dependent on the assumptions of the person run-
ning the ripping simulation. In addition these static part valuation strategies
lack the ability to consider diminishing need as parts are sawn (Thomas, 1996).

Determining what the priority value settings should be at the ripping operation
is one of the two key decision variables to be optimised in this study. The other
being the combined optimal sawing patterns at the primary sawing operation.

1.2 Problem Statement
Modern lumber manufacturers are becoming increasingly like other processing
industries, characterised by large, continuous flows of raw materials through
its supply chain (Lundahl, 2007). Sustainable usage of raw material, its ris-
ing cost, and increasing international competition are some of the reasons
why sawmills must improve their production practices (Vuorilehto, 2001).
Most modern sawmills use optimisation techniques to maximise yield from
logs (Todoroki and Rönnqvist, 2002). However process optimisation tools in
sawmills have not followed the rapid development of automation and increased
production speed. Each machine and monitoring system is commonly viewed
as a detached system rather than as part of the same process (Lundahl, 2007)
with each operation optimising its functionality in isolation from the preceding
and subsequent operations (Wessels et al., 2006).
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Modern machine centres with their sophisticated optical scanners and powerful
computers performing optimisation techniques, usually only find an optimum
solution in isolation. They thus tend to maximise value for a single processing
piece and do not consider how the solutions fit into the overall production plan
(Turner, 2010). A series of local optimum processes will rarely lead to a global
optimum for a system.

As highlighted in the literature there is substantial research and development
on modelling wood processing operations. Most notably is the software avail-
able for SA sawmillers to compute optimal sawing patterns, namely SIMSAW
and SPPS. These programs are tailored more specifically to the primary saw-
ing operations (Figure 1.1). The biggest lack in the existing work is that of
integrating the operations performed by sawmillers and secondary manufac-
turers, specifically the ripping operation.

Although SIMSAW’s edging simulation can be manipulated somewhat to rep-
resent the ripping operation, with simulated results then exported to SPPS,
which in turn finds the optimal assignment of sawing patterns (sawing deci-
sions/settings). This edging operation is simulated to only maximise volume
(or length) of lumber products. This optimisation strategy fails to take the
market demand of specific sized products into account.

Ripping machines within the industry aim to maximise recovery whilst try-
ing to meet the market demand by assigning priority (or decision) values to
lumber products (Turner, 2010). This operation and its priority values are
not incorporated in SIMSAW and subsequently the SPPS software package.
There is thus a need to determine the sawing patterns in combination with rip
machine settings, namely the part priority values.

1.3 Objective
There is a need to determine the appropriate settings at the sawing and rip
machine centre optimisers that are used extensively within the industry. The
main decisions for the sawing and ripping machines are the sawing patterns
and the priority values respectively. The decision variables or settings to be
optimised in this study are illustrated in Figure 1.8.

The purpose of this thesis is to develop a method to find optimal sawing pat-
tern and ripping priority value choices, given a specific log supply and product
demand scenario. This is expected to improve upon traditional methods which
usually determine these decision variables in isolation. These results will be
compared to that of the SPPS software package, which determines optimal
sawing patterns but does not cater for the ripping priority value’s decision
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Figure 1.8: Proposed wood sawing operations to model in this study.

variables as well. This being because the ripping (“edging” in SIMSAW) opera-
tion’s optimisation strategy is to maximise volume, leaving no setting available
to adjust what products should be ripped according to demand.

1.4 Thesis Overview
In order to solve the problem stated and determine the mentioned objectives,
the rest of this study is structured in the following way:

• Chapter 2 reviews the current research and development applied to the
sawing and ripping operations for the wood industry.

• Chapter 3 highlights the materials and methods used in this study.
Specifically the approach taken to solve the problem stated and the op-
timisation techniques that were used.

• Chapter 4 shows how the model solved the problem that was formulated
and the modelling software tools used.

• Chapter 5 describes how the important parameters of the model were
estimated from real case company data.

• Chapter 6 discusses the results.

• Chapter 7 draws conclusions and proposes future work.
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Chapter 2

Literature Study

The wood products industry is a unique processing environment. The produc-
tion of square dimensional lumber from round uneven logs and further pro-
duction of dimensional wood products from lumber lumber is a manufacturing
step unknown to other industries (Buehlmann et al., 2003). Therefore the
literature reviewed focusses on modelling techniques specifically for the wood
manufacturing industry, although there are many similar modelling techniques
applied to other industries, for example the cutting stock problem for paper
manufacturers.

This chapter provides background on existing modelling research of the wood
sawing operations as shown in Figure 1.1. This includes sawing the logs into
flitches/boards, as performed by the sawmill and ripping these flitches/boards
into lumber, typically performed by a secondary manufacturer. The process
of optimally chopping the lumber into desired length wood products is also
included, even though it was not modelled in the study. This is because this
process faces the same problem as the ripping process, namely that of choosing
what products to saw that will fit into the incoming material. Also this is where
priority optimisation strategies were first created and have only recently been
incorporated into modern ripping machines (Cothrell and Higgins, 2003). It is
also a subsequent process after ripping for most secondary manufacturers and
is usually modelled in conjunction with ripping operations (Ye and Maness,
2006).

2.1 Operations Research in the Sawmilling
Industry

OR, sometimes referred to as management science, is a scientific approach
to decision making that seeks to best design and operate a system. This is
usually under conditions requiring the allocation of scarce resources (Winston
and Goldberg, 2004). Another description defines OR as the art of giving bad

11

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 12

answers to problems to which otherwise worse answers are given (Saaty, 2004).
The objective of OR is to provide a scientific basis to the decision maker for
solving the problems involving interaction of various components of a system
to find a solution which is in the best interest of the system as a whole. The
best solution obtained is known as the optimal decision (Murhty, 2007).

The term Operations Research was coined when British military leaders asked
scientists and engineers to analyse several military problems such as the de-
ployment of radar and the management of convoy, bombing, antisubmarine,
and mining operations during World War II. This scientific approach to deci-
sion making usually involves the use of one or more mathematical models. A
mathematical model is a mathematical representation of an actual situation
that may be used to make better decisions or simply to understand the actual
situation better (Winston and Goldberg, 2004).

Applying OR techniques to the forest and wood product industry has been
utilised extensively. D’Amours et al. (2008) highlights that the literature deal-
ing with OR in the forest and forest products industry can be divided into two
categories:

• Forestry, particularly forest management, harvesting and transportation.

• Supply chain planning for the different products/ markets, such as pulp
and paper, bio-fuel, lumber, and engineered wood products.

This project will fall under the supply chain planning of lumber and engi-
neered wood products. Engineered wood products are a range of derivative
wood products bounded together with adhesives to form composite materials.

Since the 1960’s researchers have looked at the sawn timber recovery optimi-
sation problem from different angles (Du Plessis, 2010). The research methods
to date can be crudely categorised under the following headings (Du Plessis,
2010):

• Empirical, where real logs are sawn using a number of processes and
where the processes are evaluated.

• Theoretical, where the recovery is calculated mathematically. This in-
cludes linear and dynamic programming amongst others.

• Simulation studies, where the sawing process is simulated using artifi-
cially created or scanned images of real logs and recovery is calculated
based on different input variables set by the user. Metaheuristics are
usually combined with simulation to optimise the input variables.
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This study will follow the theoretical and simulation route. Different OR
techniques applied to the sawn timber recovery problem are described in the
following chapters, specifically those for the sawmilling industry and those for
secondary manufactures, specifically the ripping operations.

2.1.1 Linear and Integer Programming

Linear Programming (LP) is a tool for solving optimisation problems (Win-
ston and Goldberg, 2004). Linear programming uses a mathematical model to
describe a theoretical problem. Linear means that all the mathematical func-
tions in this model are required to be linear functions. The word programming
does not refer to computer programming; rather, it is essentially a synonym for
planning (Hiller and Lieberman, 2010). In 1947, George Dantzig developed an
efficient method, the simplex algorithm, for solving linear programming prob-
lems (Winston and Goldberg, 2004). The development of linear programming
has been ranked among the most important scientific advances of the mid-20th
century Hiller and Lieberman (2010).

It is interesting to note that while linear programming has been employed
most heavily in industries other than wood products, most notably in the
petrochemical industry, the industry in which it was first applied was in fact
the wood products industry. Leonid Kantorovich, a Russian mathematician,
was given the task of optimising production in the Russian plywood industry
and in the course of this work effectively invented what we today call linear
programming. For this he was awarded the Nobel Prize (Turner, 2010).

As early as 1972, Laurens developed a linear programming approach for the
normative production planning of a South African Pine sawmill. By using OR
methods, particularly linear programming, he developed production planning
techniques for a Natal sawmill with an annual intake of 75 000 m3. Results
obtained were useful in developing operational and sawmill design plans. It
was however stated that only larger, more efficient mills would benefit from
these techniques. It was also recommended that Monte Carlo (MC) simulation
methods be used to simulate production and further improve the production
planning technique.

An Integer Programming (IP) problem is an LP in which some or all of the
variables are required to be non-negative integers. A pure IP problem is one
where all the variables are required to be integers. When only some of the
variables are required to be integers it is specifically called a Mixed Integer
Programming (MIP) problem (Winston and Goldberg, 2004).
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Linear and integer programming techniques are typically used in conjunction
with simulation data. For example the Sawmill Production Planning System
(SPPS) package is a decision making system that uses static simulation data
from SIMSAW and with the use of linear and mixed integer programming
techniques maximises the total profit of a sawmill, subject to constraints set by
the user (Wessels et al., 2006). The SPPS package and other related packages
are described in more detail under Section 2.2.

2.1.2 Dynamic Programming

Dynamic Programming (DP) is an OR technique for making a sequence of
interrelated decisions. Basically it provides a systematic procedure for deter-
mining the optimal combination of decisions (Hiller and Lieberman, 2010). In
most applications, DP finds solutions by working backward from the end of a
problem toward the beginning. It breaks up a large, unyielding problem into
a series of smaller, more traceable problems (Winston and Goldberg, 2004).

In 1984 Geerts developed a mathematical solution for optimising the sawing
pattern of a log given its dimensions and its defect core. Geerts constructed the
model as a two-stage guillotine type. He modelled the first breakdown of the
log into flitches as a one-dimensional dynamic programming algorithm. The
next breakdown of the flitches into timber assortments formed the second level
of optimisation. Here the value of the timber assortments was the variable to
be maximised. Figure 2.1 illustrates this graphically. Option A maximises the
total value (determined by fixed price for a certain assortment) whilst option
B maximises the volume (no grade prices). Optimisation was done by nesting
the two levels which means the output of level two becomes the input to level
one and backtracking at each level until the optimal solution is found.

Faaland and Briggs (1984) similarly used dynamic programming techniques
to integrate the traditionally separated production steps of producing shorter
logs out of tree stems (“log bucking”) and the conversions of these logs into
lumber (Figure 2.2).

Faaland and Briggs (1984) also modelled the ripping operation, referred to as
the composite board problem (Figure 2.2). This was formulated as a standard
integer knapsack with general integer variables and solved by DP. A static
value, typically the price, was assigned to each product ripped. This project
is different in that it tries to determine what this value should be, a priority
value instead of a priced value, to produce parts that meet market demand at
a minimal cost.

Reinders followed heavily on the work done by Geerts (1984) and Faaland
and Briggs (1984). In Reinders’ PhD (1989) he developed a decision support
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Figure 2.1: Optimising the sawing pattern of a log given its dimensions and its
defect core (Geerts, 1984). Option A - Optimisation by value (price); Option B -
Optimisation by volume.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 16

Figure 2.2: Lumber manufacturing modelled by Faaland and Briggs (1984).

Figure 2.3: Conversion processes modelled by Reinders (1992) from tree trunk to
boards.

system for wood processing entitled IDEAS (Integral Decision Effect Anal-
ysis System) for integral logistics in centralized wood processing. Reinders
and Hendriks (1989) described their study as Lumber production optimisation.
This optimisation focussed specifically on volume maximisation in conjunction
with production planning (Reinders, 1992).
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Similarly to Geerts (1984), Reinders and Hendriks (1989) used nested dynamic
programming sub algorithms for the different processing levels (Figure 2.3).
The criterion used by Reinders and Hendriks (1989) to select a typical sawing
pattern was maximization of the value of the timber on the basis of a given
list of prices and dimensions of boards to be sawn. This project differs in that
it tries to determine what these value should be, a priority value instead of a
priced value, to produce parts that meet market demand at a minimal cost.
In a simplified manner Reinders and Hendriks (1989) described the problem
as:

• Function: How many assortments of logs out of which trees should be
made and purchased? And how many board types (dimension and
grades) should be made, in what week during which days? This ac-
cording to a number of objectives. In such a way that value recovery is
maximum, service rate is maximum, production cost, inventory cost and
cost of labour are minimum. This all anticipating future demand.

• Goal: Integrated optimisation

• Input: Cross-cutting and sawing patterns as defined by company and
scenario data

• Output: a multi period production plan

Similarly this project’s function is to maximise value recovery by minimising
raw material waste cost, maximising service rate by minimising under produc-
tion cost, and minimising inventory cost with the anticipated future demand.
The input includes possible sawing patterns to choose from and the ripping
“patterns” possible.
Todoroki and Ronnqvist (1997) viewed the conversion of logs into lumber as
a two-stage process. Logs supplied by the forestry industry are first sawn into
slabs of wood, known as flitches (operation one in Figure 1.1). This operation
is commonly referred to as the primary breakdown (Todoroki and Ronnqvist,
1997). In their research they addressed the secondary breakdown problem,
which further processes flitches into edged (sawn length-wise) and trimmed
(sawn width-wise) wood pieces. They modelled the secondary breakdown as a
set packing problem where the objective was to maximise value. The problems
was solved using DP techniques.

Following this Todoroki and Rönnqvist (1999) used linked dynamic program-
ming to combine the primary and secondary log breakdown (Figure 2.5). This
again is similar to the way Geerts (1984), Faaland and Briggs (1984) and Rein-
ders and Hendriks (1989) solved the log breakdown steps. As seen in Figure
2.6 either volume or value can be maximised, where the value coefficients are
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Figure 2.4: Example of possible outputs of algorithm developed by Reinders and
Hendriks (1989).

set as the fixed price of lumber assortments. This project mimics these optimi-
sation approaches but it differs in that it tries to determine what these static
values should be (priority values) to ensure market demand is optimally met
at minimal cost.

Figure 2.5: Sawing operations modelled and analysed by Todoroki and Rönnqvist
(1999).

Todoroki and Ronnqvist (2001) and Todoroki and Rönnqvist (2002) further
improved their previous models by having these value coefficients updated
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Figure 2.6: Example of flitch and secondary log breakdown modelled and analysed
by Todoroki and Rönnqvist (1999).

whilst sawing, causing the model to learn and adapt its current supply and
demand. Thus these values become dynamic in that they change over time.
As they stated that although log throughput is an important consideration for
sawmills, the “effectiveness” of the sawmill as a whole is equally or even more
important. However the term “effectiveness” is itself subjective. For example
they state that volume optimised solutions try to maximise utilisation of each
log, value optimised solutions try to maximised value recovery from logs, and
a hybrid value optimised solution is a compromise between the two (Todoroki
and Rönnqvist, 2002). However each of these approaches does not taken into
account the most important aspect of a sawmill, customer demand, since they
assume a perfectly elastic demand for each and every timber product. Fol-
lowing this they developed a new optimisation approach which has the value
change over time (dynamic), so as to meet market demand, they compare
this with previous approaches namely volume and value optimisation as well.
These three optimisation approaches are summarised below:

1. Volume Optimisation

2. Value/Grade Optimisation

3. Product Optimisation

Methods 1 and 2 above are similar to the previous optimisation methods by
the same author (Todoroki and Rönnqvist, 1999). They found that method

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 20

3 reduced overproduction and eliminated underproduction of target products.
The optimisation approach was formulated as a set packing problem and solved
using dynamic programming. It was also implemented in a log sawing simu-
lation system called AUTOSAW. This system is explained in more detail in
Section 2.2.3.

To explain the 3 different methods an example is explained courtesy of Todor-
oki and Rönnqvist (2002). Imagine that at some stage through the optimisa-
tion process the ones of thousands combination given by the two edged pieces
in Figure 2.7 is evaluated. The full length board E2 is shown as the lower
edged piece. E1 on the other represents the upper edged piece that requires
trimming to remove excess wand (depicted by the shaded areas of the flitch
denoting the presence of the original under bark surface). The boards B1 (con-
taining one know) and B2 (free of defects) which will be the trimmed products
from E1 and will be evaluated separately.

Figure 2.7: Example flitch consisting of two edged pieces, E1 and E2, with E1
trimmed to produce two boards, B1 and B2 (Todoroki and Rönnqvist, 2002).

Volume Optimisation:
Continuing with the the optimisation problem example above, if the objective
is to maximize volume then the value or cost-coefficient associated with edged
piece E1 is equal to the sum of the two board volumes:

coeffE1 = volumeB1 + volumeB2 (m3) (2.1.1)

This is how SIMSAW and subsequently the SPPS package model the edg-
ing/ripping operation. This project differs in that it assigns priority values,
similar to the optimisation technique explained below, where static values are
assigned to each lumber product and maximised.

Value/Grade optimization:
With value or grade maximisation, first the grade and dimensions of B1 and
B2 are determined, then its value is found according to a timber price list for
that product. Typically these prices are subject to premiums where more is
paid for wider boards. Suppose B1 is graded as “Knotty” and B2 as “Clear”.
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Further suppose that timber prices are given per cubic metre of sawn timber.
For value grade maximization the coefficient then becomes:

coeffE1 = volumeB1 × timberpriceKnotty+
volumeB2 × timberpriceClear ($)

(2.1.2)

Product Optimisation:
In the second method described above the cost coefficient’s value coeffE1 re-
mains static, it does not change over production time. However for the product
optimisation method, previous production of boards influences this coefficient
and it thus becomes dynamic:

coeffk
E1 = remaining demandKnotty + remaining demandClear

= coeffk−1
Knotty − productionk−1

Knotty + coeffk−1
Clear − productionk−1

Clear

(2.1.3)

Here productionk−1
Grade represents the volume already sawn of a product of

a given grade. These values are usually initialised as zero production, i.e.
productionk−1

Grade = 0. However in cases where stockpiles of timber are already
present, these can be set as the initial values. Initial values for the cost coeffi-
cients have been shown to influence results when applied to a 1D cross-cutting
problem (Ronnqvist & Gustafsson 1999). In this application, coefficients for
each of the grades, coeffk−1

Clear = 0, are initialized with the corresponding order
given by the order book. Once demand has been met the value of a product
is set to zero.

The formulation for the flitch edging, trimming and grading sub problem was
written as a set packing problem in the following way:

Maximize
m∑
i=1

n∑
j=1

cijxij (2.1.4)

where:
m = the number of width classes
cij = the value of an edged piece of width wi

The decision variables are given by:

xij =

{
1 if an edged piece of width wi is cut at level j
0 Otherwise (2.1.5)

These cost coefficients values can either be updated on a piece-by-piece basis,
or flitch by flitch, or log by log, or even after processing a given number of logs.
The log-by-log option was selected since the procedure was required not only
to be effective, but also to provide solutions in real time. Also it seemed an
appropriate time to check production and update tallies for timber of differing
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qualities.

Simulations were repeated for each of the three sawing strategies, namely vol-
ume, value and product optimization, and the system was tested against three
case studies given by order books 1, 2, and 3 (Table 2.1). The product opti-
misation strategy outperformed the others for all three order book scenarios.
For Order book 2 both volume and value optimisation strategies failed to fulfil
all orders with the 430 logs that were available for the simulations.

Table 2.1: Number of logs processed to satisfy product demands in each of the
different supply scenarios, called order books (Todoroki and Rönnqvist, 2002).

Sawing Strategy Orderbook 1 Orderbook 2 Orderbook 3
Volume Optimisation 375 >430 424
Value Optimisation 378 >430 409
Product Optimisation 321 332 373

Unlike the dynamic values, this project attempts to meet market demand
by assigning static values for a certain run (batch of logs). Similar to the
value/grade optimisation approach above (Method 2). But instead of having
these values be the price of products, they are any priority values necessary to
obtain a good production mix which reflects the market demand.

2.1.3 Simulation

Simulation is defined as a technique that imitates the operation of a real-world
system as it evolves over time (Winston and Goldberg, 2004). This usually
involves using a computer to imitate (simulate) the operation of an entire pro-
cess or system (Hiller and Lieberman, 2010).

Simulation models can be either static or dynamic. Static simulation mod-
els represent a system at particular point in time, this is usually referred to
as a Monte Carlo (MC) simulation. In contrast dynamic simulation models
represent a system as it evolves over time. Within these two classifications,
simulation models may be either deterministic or stochastic. Deterministic
simulation models are ones that contain no random variables. Stochastic sim-
ulation models contain one or more random variables (Winston and Goldberg,
2004).

Simulation has been used to design and analyse sawmills for over two decades
(Dogan et al., 1997). The primary benefit being that there are substantial
cost savings compared to experimenting with the real system. Other benefits
include the ability to compare suggested systems, to observe circumstances
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rarely available, and to experiment with alternative characteristics of material
(Dogan et al., 1997). Dogan et al. 1997 identified the data requirements for a
sawmill simulation to be log population characteristics, process times, buffer
capacities, and product output characteristics.

Determining the optimum sawing patterns and positioning methods for logs
using simulation software has been studied extensively since the 1960’s by sev-
eral researchers (Peter and Bamping, 1962; McAdoo, 1969; Hallock and Lewis,
1971). In 1976 Hallock et al. took their Best Opening Face (BOF) procedure
further in a simulation study with the title is there a “best” sawing method.
Further research has followed through the decades (Lewis, 1985; Steele and
Wengert, 1987; Maness and Donald, 1994; Chang et al., 2005).

Since early 1970 the VTT (Technical Research Centre of Finland, Wood Tech-
nology) has developed simulation and optimizing software systems for the me-
chanical forest industry. These initiatives are to increase the value yield and
profitability for wood conversion companies (Usenius, 1996; Usenius et al.,
1996).

Usenius (1996) developed an optimising software system to “create new prof-
itable operation activities for the wood conversion chain, from forest to the
end products”. The system aimed to optimally control the number and vol-
ume of extra timber products inherently produced from converting the non-
homogeneous tree. Additional problems that the optimising system could solve
include: how to select wood raw materials into various processes; how to cross
cut the stems; how to split and convert the wood in the optimum way into
various products according to the demand profile; how to sort and grade the
wood raw material and products. The mathematical models were found to
simulate real situations and applying their results was estimated to increase
the economic yield by 10 to 20%. An advantage of these models are that they
provided an overall view of the processes, even if there was no physical pro-
duction. The model aimed to calculate optimal values but most importantly
provide management with a sound basis on which to make decisions, such that
“man always makes the final decisions” (Usenius, 1996).

Following extensive research described on simulating sawing operations, there
have been many software programs developed for practitioners in the industry
around the world. This includes SIMSAW in South Africa and SAWSIM in
America amongst others. These software packages also sometimes include
support features that try and optimise decisions for the user. This includes
Sawmill Production Planning System (SPPS) for SIMSAW and SAWSIM-LP
for SAWSIM. These packages are thus by definition Decision Support System
(DSS) and are further expanded upon in the following Section 2.2.
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2.2 DSS in the Sawmilling Industry
A Decision Support System (DSS) is an interactive computer-based system
to help managers use data and models to support (rather than replace) their
decision making (Hiller and Lieberman, 2010, Ch. 13). For the wood product
industry the function of a DSS, specifically for production planning, is to help
the decision maker to match the resources to the demanded products (Rein-
ders, 1993).

In 1992 Erasmus developed a decision support system for the management of
lumber mill production in South Africa. As he states, the number of influencing
variables and processing alternatives makes production planning a formidable
task and it is practically impossible to find the optimal solution without com-
puter support. Erasmus implemented this DSS for an existing mill. This
included a linear programming model, data base software to generate data for
the LP model and a spreadsheet aid for detailed production scheduling. Dur-
ing the first two months of the system’s use a foremen reported the following
improvements: the number of backlog orders were reduced; the production
of undesirable products were reduced; there was a marked improvement in
the volume recovery. In addition Erasmus showed through sensitivity anal-
ysis, specifically interpreting the dual values (Winston and Goldberg, 2004),
that by increasing one facility’s production capacity and by lowering a certain
product’s minimum demand constraint profits could be substantially increased.

(Kapp et al., 1999) presented a feasibility study on the development of an
integrated manufacturing planning and control system for the South African
sawmilling industry. (Kapp, 1997, 33) states that the lack of an integrated
manufacturing planning and control system is a major obstacle to improving
the competitiveness of the industry. The central theme of his thesis is that of
“virtual supply chain integration”, and he proposed that this concept will pro-
vide improvement opportunities for all supply chain participants. Kapp et al.
argued that the sawmill supply chain must operate in an integrated fashion,
namely for the sake of gaining competitive advantage through cost and value
differentiation. The system was designed generically for the average South
African sawmilling environment and was intended to provide a sound basis
for further investigations of a more detailed nature. The most relevant devel-
opment recommended by Kapp is described in the next subsections, namely
SIMSAW and other related software.

Price et al. (2002) looked at using modelling and integrated forestry and
sawmill software systems to value the pruned log resource. It was concluded
that modelling gives a relatively accurate result of industry’s actions. However
by virtue of the assumptions made in creating the model, the results should
not be regarded as absolute.
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2.2.1 WOODCIM

Since the early 1970s the WOODCIM (Usenius, 1999) package, which is an
integrated optimising software system, has been under development at the
Technical Research Centre of Finland (VTT). It consists of several software
modules for the sawmill that support research including (Pinto, 2004, 24):

1. Software for optimum selection of stands and bucking of tree stems

2. Program for optimising the number of sawlog classes needed

3. Simulation program for predicting the sawn product yield in sawmilling

4. Software for optimising the manufacturing of components

5. Sawing model based upon linear programming techniques

This project compares its results to a similar software program (SPPS) which
uses linear and integer programming (point 5 above) based on Simulation data
from the SIMSAW program which also predicts the value yield in sawmilling
(point 3). This project also tries to optimise the manufacturing (ripping) of
wood products (point 4).

2.2.2 SAWSIM and SAWSIM-LP

SAWSIM is a flexible computer program that models the breakdown of logs in
any sawmill (HALCO Software Systems Ltd., 2006). This sawing simulation
program is capable of producing logs and lumber of various grades depending
on the quality of trees generated (Middleton and Zhang, 2009). These trees
can be generated and combined with inputs with the Tree and Stand Simulator
(TASS) (Middleton and Zhang, 2009).

The SAWSIM-LP optimisation systems were developed to help sawmillers de-
termine “sawing pattern recipes”, which is the optimum mix of sawing patterns
to convert a known supply of logs to a specific production mix. In addition to
assisting the sawmiller with these shorter term production planning decisions,
the system can also be used to evaluate longer term marketing and log procure-
ment questions, such as: at what price does a new product opportunity become
profitable for us and at what price premium should we pay for ‘premium” log
diameter/length classes? (HALCO Software Systems Ltd., 2006)

2.2.3 AUTOSAW

At the New Zealand Forest Research Institute in 1981, Dr. Oscar Garcia con-
ceived the idea of a glass or see-through log displayed on a computer screen.
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Figure 2.8: SAWSIM: Cant breakdown (Turner, 2010).

Figure 2.9: SAWSIM 3-D view (HALCO Software Systems Ltd., 2006).

He further developed this, using data and specifications from Jim Park, to pro-
duce the prototype pruned log sawing simulator, SEESAW (Todoroki, 1996).
In 1990 SEESAW became part of the much more powerful AUTOSAW sim-
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ulation system and has been studied and applied abundantly by researchers
(Todoroki, 1996).

2.2.4 SIMSAW and SPPS

As mentioned there are countless options open to a sawmiller, making it dif-
ficult for his decision to be optimal (Singmin, 1978). This caused Reynolds
(1970) to propose the principle of how to saw one log in different ways in his
simulation study. This further led Dirk van Niekerk in South Africa to develop
SIMSAW, a sawing simulation tool (Singmin, 1978). The first version of the
SIMSAW program was developed by the CSIR in South Africa in 1975, and
the latest versions have the ability to simulate three-dimensional log images
(Wessels, 2009b). SIMSAW 6 is the latest free-ware version available to the
industry. It is as a simulation tool which predicts the end-product (board)
recovery from logs given certain inputs (Wessels et al., 2006).

Figure 2.10: Screen shot of SIMSAW 6 software package, freely available to the
industry.

The Sawmill Production Planning System (SPPS) is a decision making system
to maximise the total profit, product value less log costs, fixed costs and the
cost of buying in timber, subject to constraints set by the user (Wessels et al.,
2006). These constraints include kiln drying capacities and fixed market de-
mand. Simulation data from SIMSAW is exported to SPPS which uses linear
and mixed integer programming techniques to generate an optimal solution.

Currently a system is being developed and tested to optimally integrate tree
harvesting and sawmill operations (Wessels et al., 2006). This consists of using
three integrated software models: Pre-Harvest Quality Assessment (PHQA)
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Figure 2.11: Screen shot of SPPS software. Downloaded from
http://ffp.csir.co.za/products/spps.html

software, a sawmill simulation package (SIMSAW 6) and a Sawmill Produc-
tion Planning System (SPPS) (Figure 2.12).

Figure 2.12: Information flow in an integrated decision support system for the
entire lumber production chain in South Africa (Wessels et al., 2006).

However results generated from SIMSAW and SPPS are typically reserved for
sawmilling operations and it is difficult to interpret these results to the sepa-
rate optimising sawing machines found in secondary manufacturing industry.
Specifically the machine’s setting regarding the priority of certain products.
Priority settings are value/cost coefficients typically found on these optimising
sawing machines which increase or lower production of certain products (Ye
and Maness, 2006; Maness et al., 2009). These values will force the machine
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to cut more or less of the valued products even though this does not produce
the optimum volume recovery. This is to minimise over or under production
of certain products which will occur if the machine’s only objective is to max-
imise volume recovery of products. This is one of the key objectives of this
study as shown in Figure 1.8.

2.2.5 Metaheuristics for the Log Positioning Problem

A heuristic method is a procedure that is likely to find a very good feasi-
ble solution, but not necessarily an optimal solution, for the specific problem
being considered. A meteaheuristic is a more specific solution method that
provides both general structure and strategy guidelines for developing a spe-
cific heuristic method to fit a particular kind of problem. For OR practitioners
metaheuristics have become one of the most important techniques to date
Hiller and Lieberman (2010).

There have not been many metaheuristics applied specifically to the problem
of finding optimal decisions for sawing and rip machine settings to the best
of the author’s knowledge. The most relevant work found was done by Fathi
and Aksakalli (2004) where heuristics methods, based on the principles of local
improvement, simulated annealing, and genetic algorithms were used for the
ripping operation. This is described further in Section 2.3.2.

However there has been studies conducted on using metaheuristics in the opti-
misation of log position during sawmill processing. A real log is not a perfect
cylinder and has certain asymmetrical shape characteristics influenced by the
tree’s growth as illustrated in Figure 2.13. Thus depending on which way a
log is positioned whilst being sawn, the yield of dimensional wood products
will differ.

In his thesis Du Plessis (2010) investigated the use of meta-heuristics in the
optimisation of log position during sawmill processing in SA. This includes
well known algorithms such as the Particle Swarm Optimisation, Simulated
Annealing, Genetic Algorithm (GA), and the PBIL. Wessels et al. (2011) de-
veloped a search (tentacle) algorithm to determine the optimal log position
before being sawn (Operation 1 in Figure 1.1) and it to these various algo-
rithms. This is summarised in Figure 2.14.

Van Zyl (2011) followed by determining the optimal log position during pri-
mary breakdown using internal wood scanning techniques and meteaheuristic
algorithms. Van Zyl (2011) found that a maximum increase in product value of
8.23% was possible when internal knot, branches of the tree, data was consid-
ered compared to conventional log positioning rules. When only external shape
was considered a maximum increase in product value of 5% was possible com-
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Figure 2.13: Typical log shape characteristics (Du Plessis, 2010). Sweep and taper
are of concern in this study.

Figure 2.14: Comparison of metaheuristics for the cant sawing log position opti-
misation by Wessels et al. (2011).

pared to using conventional log positioning rules. The algorithms applied in
the study include the GA, Simulated Annealing, PBIL, Cross-Entropy Method
and an alternative self developed algorithm. He also evaluated the investment
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decision to purchase an internal log scanning and positioning system.

2.3 Rip and Chop Saw Operations
Most of the literature described above focusses on the sawing operations and
their machine centres, namely the sawmill’s primary and sometimes secondary
log breakdown operations. Secondary breakdown refers to the process of break-
ing down flitches (outputs from the primary log breakdown) into square boards
(Todoroki and Ronnqvist, 1997). This is done by the operation referred to as
edging and cross-cutting/trimming. SIMSAW and subsequently SPPS do have
edging, which can be seen as ripping operations, however it solely tries to max-
imise volume for its edging operation. Todoroki and Rönnqvist (1999), who
combined primary and secondary log breakdown does maximises value, where
a cost is assigned to each product edged. However this project treats this
value as a decision variable to meet market demand, similar to Todoroki and
Rönnqvist (2002) method as described in Equation 2.1.2. These are commonly
referred to as priority values. How this decision affects how the machine saws
parts and research regarding this process is describe further in this section.

Secondary manufacturing, sometimes referred to as rough milling, includes
ripping and cross-cutting operations which have changed from using extensive
manual decision sawing systems to machines capable of automated decision
making in an effort to increase yield, amongst other objectives Zuo (2003).
Secondary manufacturers’ operations have received unabated attention from
researchers and industry over the last several decades. This is primarily due to
the high percentage of total product cost incurred in such operations (Thomas
and Buehlmann, 2007).

Secondary manufacturers have to decide whether to rip first or cross-cut (chop)
first (Figure 1.1). Determining whether to rip or chop first has been consid-
ered one of the most important decisions in the rough mill and has been an
ongoing debate since the 1970’s (Zuo, 2003, 7). There are many good reasons
why the question “Should we be chopping or ripping first in our rough mill?”
still exists for many mills. The manufacturer’s layout depends on many fac-
tors and some of the more important ones are subject to change from day to
day or at least year to year (Wiedenbeck, 2001). For many years boards were
first chopped to length, then ripped to appropriate widths. This method was
efficient and practical whilst yield was not terribly important and automation
options were limited for the time. However as lumber became more expensive
and automated material-handling systems were developed, rip first systems
gained more prominence.

A gang ripsaw saws boards into strips, which are then sawn to required lengths.
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Numerous studies have shown that this strategy produces superior results in
comparison to the cross-cut first system (Ferrar and King, 1999). This project
focusses on secondary manufacturers that rip first since the rip-first process
has become the dominant layout in new rough mills during the 1990’s (Zuo,
2003, 9).

Today’s rip-first rough mills include highly technical operations using scanners
and computers to control important steps in the process (Zuo, 2003). The rip-
ping machines are commonly referred to as gang saws (Buehlmann, 1998).
There are many types of gang saws but the gang saws having multiple moving
blades produce the greatest recovery, assuming that they are equipped with
an accurate scanning system (Zuo, 2003). The difference between conventional
fixed blade, fixed blade gang rip, and moveable blade gang rip saws are illus-
trated in Figure 2.15, 2.16 and 2.17 respectively. An important component of
rip saws is the arbour. An arbour consists of a series of saws and saw spacings
that overlap and interact (Gatchell, 1996).

Figure 2.15: Conventional fixed blade set-up for rip saws (Weining Group)

Rising raw lumber costs have initiated the development and use of advanced
techniques and equipment to increase rough mill conversion efficiency. The typ-
ical technologies used to enhance gang-rip saw operations are: lumber scanning
systems; movable fences or moving blade saws; and simulation capability (Zuo,
2003, 20). This study focusses on the simulation capabilities and subsequent
optimisation techniques. Current simulation capabilities and optimisation of
the ripping operation are described further in the following subsections.

2.3.1 Simulators and DSS

Before the use of computers, manufacturers of dimension wood parts relied on
traditional methods and their own experience to estimate yield and to find the
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Figure 2.16: Fixed blade gang rip saw operation (Fathi and Aksakalli, 2004)

Figure 2.17: Gang rip saws-movable blade and arbour set-ups (Weining Group)

best cut-up solutions for particular boards for a specific order. Today, due to
the lack of general applicable pure mathematical models to solve the problem
of cutting lumber, computer simulation techniques are widely used to simu-
late rough-mill processing and lumber yield (Buehlmann and Thomas, 2001).
As early as the 1960’s (in North Carolina State University) work on com-
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puter based solutions to the cutting-pattern problem has been developed. The
most significant algorithms that followed from then were the Yield, MULRIP
and RIPYLD programs. However none of these early programs simulated the
rough milling process exactly and had other limitations. The CORY program
(published in 1984) was the first program that contained a part prioritisation
strategy for the selection of parts to be cut (Buehlmann and Thomas, 2001).

Today, the two most significant programs that simulate the lumber cut-up are
the Rip-X program by Harding and Steele and the ROugh MIll RIP-first sim-
ulator (ROMI-RIP) by Thomas Buehlmann and Thomas (2001). ROMI-RIP
is the first rough mill simulation tool that reflects most accurately the oper-
ations of an actual mill. It allows the user to select from among six priori-
tization strategies, two cutting sequences, and seven arbour setups, arbours
are the axis on which the saw blades that rip the boards into smaller strips
are attached (Buehlmann and Thomas, 2001). In summary the Rough Mill
Simulator (ROMI Version 3.0) is a computer software package that simulates
industry’s current practices for rip-first and chop-first lumber processing (Weiss
and Thomas, 2005).

Figure 2.18: Main ROMI-3 interface window (Weiss and Thomas, 2005)

2.3.2 Optimisation

Fathi et al. (1996) used linear programming for gang-rip saw arbour design and
scheduling. This is for fixed-blade arbour gang ripsaws (Figure 2.16). The op-
timal combinations of widths for each possible incoming board of a certain
width was solved, which can be referred to as a cutting pattern. Fathi and
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Aksakalli (2004) further used heuristics methods, based on the principles of
local improvement, simulated annealing, and genetic algorithms for the gang-
rip saw arbour design and scheduling. Fathi and Aksakalli’s (2004) study on
fixed saw blade saws found that: the local improvement methods produce fast
and efficient heuristics; GA is also an efficient alternative to local improvement
methods but the results obtained are not as good; Simulated Annealing finds
high quality solutions, its computational requirements are somewhat excessive.

Figure 2.19: Patterns of channel widths, if embedded in an arbour, that would
realise the optimal ripping solution, wi is the ith distinct width (inches).

Although this study focusses on moveable blade gang-rip saws (Figure 2.17
as opposed to these fixed blades (Figure 2.15 and 2.16), Fathi and Aksakalli’s
(2004) study could help for choosing an appropriate optimisation algorithm
for the moveable rip saw model.

For the chop saw operation, which is a similar cutting stock problem to the
ripping operation, Maness et al. (2009) used linear and dynamic programming
to determine the real-time optimal chopping of boards into dimension parts
in a production optimisation system. Typically in a rough mill, the boards,
or rough lumber, is firstly marked by a grader before being sent to the chop
saw. The grader draws a line on the boards with a reflective crayon to identify
defects and separate the waste from the blanks, which are clear length sections
marked out of the boards as illustrated in Figure 2.20. The task of these
optimising chop saws are then to detect marks on the incoming boards through
the use of a scanning unit and chopping the blanks in a such a way as to
obtain all the wood product parts listed in a cutting list, with the overall
objective of minimising cost. To achieve all these task, chop saw systems
typically use an optimiser and automated optimization algorithm. There are
different approaches and algorithms to achieve this, i.e. increase the part yield
or decrease the waste to fill a given order (Maness et al., 2009). Most of these
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optimising saws assign some sort priority value to each product to be sawn
(ripped or chipped).

Figure 2.20: Optimising chop saws found in the industry (Maness et al., 2009).

2.3.3 Priority Values

Currently industrial optimising chop saws use a part-priority approach to op-
timise for a production run. With this approach the operator manually sets
priorities for certain difficult-to-cut parts (Maness et al., 2009). Recently
these priority approaches have been incorporated into modern ripping ma-
chines (Cothrell and Higgins, 2003).

There are two basic priority value set up modes: static and dynamic. The static
priority mode uses only one value for each product during the ripping process,
unless changed manually by the operator (Ye and Maness, 2006; Maness et al.,
2009). Static values are the conventional value setup system and are split up
into two criteria: value and yield (Zuo, 2003, 59). The yield method maximises
the part yield, based on the surface area without considering the demand re-
quirements and does thus not employ any value system. Such yield-based
methods tend to rip or chop products that best fit into the sawing decision,
making it difficult to meet a specific market demanded production mix. Var-
ious static priority value setup algorithms have been proposed. The simplest
rule is to apply the surface area of each part size as its priority value; e.g.,
length x width where a constant thickness means this just represents the vol-
ume. This is similar to the volume optimisation method modelled by Todoroki
and Rönnqvist (2002), Equation 2.1.1. This is also how SIMSAW and subse-
quently SPPS models the ripping operation.
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Value methods, on the other hand, maximise total part value from each strip,
based on the part values assigned to each part size. This method is more com-
monly used in rough mills when the goal of the cutting is to satisfy demand
(Zuo, 2003, 59). This is similar to the value optimisation method modelled
by Todoroki and Rönnqvist (2002), Equation 2.1.2. However Equation 2.1.2
assigns a value based on the product’s price, this project attempts to include
these values as a decision variable, as to meet market demand more accurately
(priority values), in conjunction with the optimal sawing patterns (Figure 1.8).

Some programs prioritise parts based on a priority (sometimes called a dollar
or decision) value. Wood product parts that are more desirable are given a
considerably higher value. However, the values assigned to these parts are
often arbitrary. It is often difficult to determine what the actual value of any
single part flowing through the mill should be. This makes value strategies very
dependent on the assumptions of the person performing the simulation. In ad-
dition, the part valuation strategy also lacks the ability to consider diminishing
need as parts are sawn (Thomas, 1996). This is why dynamic value strategies
have been developed. See for example Todoroki and Rönnqvist’s 2002 product
optimisation strategy (Equation 2.1.3). However this study focusses on static
priority values for a production run since they are the conventional value setup
system (Zuo, 2003, 59).

2.4 Conclusion
As highlighted in the literature there have been many models developed for
the wood sawing operations. However they are usually focussed on sawmilling
or secondary manufacturing in isolation. Most of the mathematical models
and simulation software developed for the sawmilling industry do include edg-
ing/ripping operations. However, for secondary manufacturers their ripping
machines and optimisation strategies differ in that a priority value is manually
assigned to each product as to somehow meet the market’s products demanded.

The reason sawmills don’t necessarily use the priority value optimisation ap-
proach is because they traditionally produce lumber products, that will stand
in stock and be sold when demanded by the market (i.e. open market condi-
tions). Thus value optimisation will be more based on the price the timber can
be sold. This is how most of models developed by researchers under Section
2.1 (Figure 2.6) and DSS such as SPPS optimise. “If open market conditions
are assumed when maximising volume or value yields, overproduction of some
products and underproduction of others may result” (Todoroki and Rönnqvist,
2002).
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Secondary manufacturers do not have the luxury of producing (sometimes over-
producing) the products that will have the highest selling price. They produce
different sized dimensional stock that are crucial for assembly of final products
(cabinet, furniture, doors, window, etc.). Thus their ripping machines have
priority (dollar or decision) values, which force the machines to saw certain
products more than others. This is done mainly to ensure that there is no
excess of one product to another in relation to demand needed for subsequent
assembly.

There are many models and research on modelling the sawing and ripping
operations. However there was not any found specifically having the decision
variables as set out in this project’s objectives (Figure 1.8), namely the sawing
patterns in conjunction with rip part priority values.
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Chapter 3

Materials and Methods

This chapter describes the way the project’s problem was approached, whilst
Chapter 4 describes the formulation of the model in detail. The key com-
ponents of any OR problem is described, namely the objective function(s),
decision variables and constraints. The techniques chosen to solve the prob-
lem are expanded upon, namely log volume calculations, simulation data from
SIMSAW, Mixed Integer Programming (MIP) and an appropriate metaheuris-
tic, namely the PBIL algorithm. The chapter finally provides a summarised
proposed model with important tools, software and techniques used. Also a
strategy is developed to compare the model’s results.

3.1 Modelling Components
The scientific approach to decision making usually involves the use of one or
more mathematical models. A mathematical model is a mathematical repre-
sentation of an actual situation that may be used to make better decisions or
simply to understand the actual situation(s) better (Winston and Goldberg,
2004).

A prescriptive model includes the following components (Winston and Gold-
berg, 2004), which are key components in the optimisation model proposed by
this project:

• objective function(s)

• decision variables

• constraints

3.1.1 Objective Function(s)

In most models, there will be a function to be maximised or minimised. This
function is called the model’s objective function (Winston and Goldberg, 2004).

39
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There can be many different ways to represent the objective function of a real
world problem, which the model will try to minimise or maximise. There are
also instances where there are more than one objective, this is referred to as
multiple objective decision making (Winston and Goldberg, 2004). This the-
sis’s model uses a single objective cost or profit function, since this was route
taken by related studies, two of which are described below.

The objective of the SPPS model is to maximize the total profit, i.e. the sum
of product value less log costs, fixed costs and the cost of buying in timber
(Wessels et al., 2006).

Maness et al. (2009) states the overall cost associated for a secondary manufac-
turer (specifically the chop saw operation) is mainly composed of the following
factors:

1. cost of raw materials

2. cost of holding inventory for overproduced parts

3. replacement cost for under-produced parts

4. cost of disposing the waste

5. processing cost

The cost objective function to be minimised in this model includes the first
three items above. The cost of disposing the waste and associated processing
cost are outside the scope of this study, but should not be ignored and hopefully
can be incorporated into future work.

3.1.2 Decision Variables

Decision variables in a model are the variables whose values which can be con-
trolled and influence the performance of the system (Winston and Goldberg,
2004, Ch. 1).

Important decision variables for the sawing operations include the optimum
production options, production line sawing patterns, to use in the sawmill
(operational planning) (Wessels et al., 2006). In a typical sawmill, logs are
sorted in the yard to many diameter and/or length sorts (classes). The mill
is then given the task of satisfying sales commitments. The question then be-
comes: what sawing pattern (or patterns) should be used for each log class, to
produce the required production mix in the most efficient way? (Turner, 2010).

For the ripping operation the most important parameters which drive the op-
timisation decisions are the “decision” or priority values, which are the product
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values specified for the different lumber products defined to the optimizer (an
optimising rip or chop saw system) (Turner, 2010).

Thus the decision variables to be solved for this study are:

1. The sawing patterns per log class

2. The linked priority values of the different ripped lumber widths

3.1.3 Constraints

In most situations only certain values are possible for the decision variables in
a system. These restrictions on the values on the decision variables are called
constraints (Winston and Goldberg, 2004).

For the SPPS package there are several types of constraints namely (Wessels
et al., 2006):

• Log volume constraint: This limits the volume of logs available per log
sorting class in the sawmill

• Timber demand constraint- this is the minimum and maximum volumes
of each board product (dimension and grade) that are required to satisfy
the market demand.

• Available processing time constraint: Each production option has a through-
put (m3/hr) associated with it. Each production line has limited pro-
duction time available and the sum of the time needed to complete the
optimum production options must be less than or equal to the total
processing time available.

• Integer shift volume constraint: Most of the machines used in the sawmill
industry have very long set-up times and therefore production options
(i.e. sawing patterns) can only be changed between shift changes. This
constraint is necessary to forces the volume of logs to be sawn to be a
multiple of the log input volume that can be processed during a single
production shift with a specific production option.

• Drying constraint: This constraint ensures that the products manufac-
tured stay within the limits of the (kiln) drying capacity of the sawmill.

The model proposed in this study focusses on two of these constraints, namely
the log volume constraint and integer shift volume constraint. Namely that
there are a certain amount of logs available (a parameter in the model) and a
log diameter class can only be assigned to one sawing pattern.
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For the ripping process typical constraints to be enforced would be making
sure that number of many width products that may be ripped from a flitch do
not exceed the usable width as illustrated in Figure 2.2 (Faaland and Briggs,
1984). Another constraint of the ripping process is the limit on how many
widths may be ripped, this is dependent on the machine’s design, namely the
number blades and spacers and the length of the arbour.

3.1.4 Operations Research Techniques

There are a full range of OR methods that have been proposed to support plan-
ning problems in the forest products industry. Rönnqvist (2003) presented a
series of typical planning problems found in the forest products industry, with
comments about the time available for solving each of these problems. Opera-
tional planning problems usually need to be solved rapidly, within seconds or
minutes, and thus heuristics, meta-heuristics and easy-to-solve network meth-
ods are generally used for such problems. Strategic planning problems can
be solved over a longer period of time, sometimes taking many hours, thus
MIP and stochastic programming methods are better for tactical and strate-
gic planning problems. Many of the OR models are usually implemented as
industrial DSS, integrated with application specific databases holding all the
information needed for the models (D’Amours et al., 2008).

What further limits the possible pool of OR techniques available is that when
one is trying to model the sawing operations it is very difficult to develop
equations that would predict the expected volume of each lumber item as a
function of lumber values, machine penalties and other parameters. Firstly
this is because of the continuous nature of lumber values, there are an infinite
number of lumber-value and machine parameters. Second, the non-linearity
described above makes it impossible to write an equation that could realis-
tically be solved using standard mathematical tools. When one is trying to
predict the outcome of a system with the non-linear nature of a sawmill, sim-
ulation is often the best alternative. The simulator needs to be able to predict
what products will be recovered when using the same set of parameters as the
mill (Turner and Rapoport, 2010)

The ripping process is easier to model since the shape of flitch is much less
complex than that of a log. It can be modelled as a packing problem, and
solved using integer programming (described further in Section 3.4) instead of
using simulation techniques.

Thus to summarise, instead of trying to solve the problem through analyti-
cal techniques, the strategy was to use available simulation methods (namely
SIMSAW) for the primary sawing operation and linear/integer programming
techniques for the ripping operation. The decision variables for both opera-
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tions however need to interact with each other producing dependent output
variables. With this in mind one of the best ways to find the optimal decision
variables for the two operations is through the use of an appropriate meta-
heuristic. The metaheuristic is thus the link between the simulation of the
sawing operation (SIMSAW data) and the ripping operation (MIP).

3.2 Logs Shape Characteristics
One of the most important aspects influencing the volume recovery of wood
products from a sawmill is the irregular shape characteristics of its raw mate-
rial, its logs. Logs are produced from harvested trees, cross-cut by the foresters.
They are transported from the plantations to a sawmill’s log deck where they
are typically sorted according to log classes (Du Plessis, 2010, 16). These
classes are mostly dependent on the log’s diameter but characteristics such
as sweep, length and absence of certain defects can also be incorporated (Du
Plessis, 2010, 16). These shape and knot (which stem from the branches of a
tree) characteristics are illustrated in Figure 3.1).

Figure 3.1: Typical log shape and knot characteristics (Du Plessis, 2010). Sweep
and taper are of concern in this study.
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3.2.1 Calculating the Log Volume

In the SA forestry industry a Log’s Volume (LV) is calculated to represent
that of a cylinder as shown in Figure 3.2.

Figure 3.2: Log volume calculation (Huber’s method)

The cross-sectional area of a log can be measured at the mid-length of the
log (b1/2) or alternatively as the average of the small/thin end (bt) and the
large/thick end (bT ). Another method is to measure all three positions and
determine a weighted average, as (bt+4b1/2 + bT )/6. The first method is most
commonly used and is known as Huber’s method (Bredenkamp et al., 2012,
239).

Log Volume (Huber) =
d21/2πl

4
(3.2.1)

However Huber’s formula above cannot be exactly determined when logs are
stacked on top of each other as is usually the case in industry, since it is difficult
to measure the mid-length diameter (d1/2). Because of this a compromise is
made where the under-bark diameter is measured at the thin end (dt). Log
diameters are usually measure in centimetres at the thin-end and rounded
down to the closest uneven number. Assuming constant, uniform taper, the
diameter at mid-length can be estimated and thus volume calculation becomes:

Log Volume (Huber) =
(dt +

l
2×taper)

2πl

4
(3.2.2)

Nationally the taper for softwoods (pines) is normalised to 1 cm/m (hardwoods
are at 0.8 cm/m), the volume (m3) of logs for softwood then becomes:
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Log Volume (Huber) =
(dt +

l
2
)2πl

40000
(3.2.3)

3.2.2 Logs Generated

Logs were virtually generated in SIMSAW, where a user can generate a popula-
tion of logs, following a certain distribution for appropriate log characteristics,
namely the thin end diameter, length, taper and sweep.

The thin end diameters were generated either normally or uniformly within the
log classes. The number of logs to generate for a production time period was
according to data collected from the project’s case company (following Section
5). Logs were generated having a fixed length, since the case company only
receives fixed 3 meter length logs. However the model does cater for varying
length classes (explained later, Equation 4.1.2).

The taper of logs was distributed normally, 95% within 8-11 mm/m limits. The
sweep of logs was distributed normally, 95% within 0-15 mm/m limits. These
values were chosen since these are the default values in SIMSAW and South
Africa’s national taper is normalised to 1 cm/m for softwoods (Bredenkamp
et al., 2012, 240).

3.3 Sawing Operation: Simulation Data
Live sawing patterns saw logs through-and-through, meaning that all saw cuts
are parallel (Figure 3.3). They have the advantage that they are fast and mini-
mize log turning; however, every flitch sawn from the log requires more edging.
Other sawing methods are quarter sawing, grade sawing and cant sawing. Each
of these sawing patterns are depicted in Figure 3.3. The quarter sawing pattern
is a specialized sawing pattern that finds application with hardwoods, since it
shows off the grain of decorative timbers. The log is primarily sawn into quar-
ters and each quarter is further broken down to produce boards. However it
is a slow procedure. Grade sawing, whilst also characterized by relatively slow
throughputs due to log turning, involves sawing around the log, with the aim
of maximizing the grade yield of high-quality boards. It is specifically suited
to the sawing of pruned logs. The fourth cutting pattern, cant sawing, is ap-
plicable to both pruned and un-pruned logs and suits high-production mills,
especially those with a gang-saw downstream (Todoroki and Rönnqvist, 2002).

For the primary breakdown of logs, most pine sawmills in South Africa use
a framesaw as the preferred sawing machine (Figure 3.4). These framesaws
make use of either the cant or the live sawing method. Cant sawing is the most
common sawing pattern used in softwood (pine) sawmills in South Africa (Du

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. MATERIALS AND METHODS 46

Figure 3.3: Log sawing methods (Van Zyl, 2011).

Plessis, 2010). The model can cater for both cant and live sawing methods, but
the case company uses live sawing methods and was thus the method chosen
for this project.

Figure 3.4: Framesaw

A framesaw consists of a number of fixed blades that move up and down in
a frame at a high speed (Figure 3.4). The log is fed through the framesaw,
which then produces various boards, referred to as flitches (Figure 1.1). One
major issue of a framesaw is that the dimensions of the boards sawn cannot
be changed during production. This is because to change these dimensions, a
whole new blade setup on the framesaw has to be done (Van Zyl, 2011, 24).
A saw’s spacer setup is referred to as a specific sawing pattern which are the
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decision variables for this operation in this project.

It is important to note that this study focusses on live sawing, and subsequent
ripping. There is not much research on modelling or optimising these specific
operations and some of their decisions. Live sawing is the preferred method
researched in New Zealand (Todoroki and Rönnqvist, 1999).

3.4 Ripping Operation: Integer Programming
Secondary manufacturing (referred to as rough milling in America) includes
ripping and chopping operations. These operations have changed from us-
ing extensive manual decision sawing systems to machines capable of auto-
mated decision making in an effort to increase yield, amongst other objectives
(Zuo, 2003). The ripping machines are commonly referred to as gang saws
(Buehlmann, 1998). There are many types of gang saws but the ones having
multiple moving blades saws produce the greatest recovery, assuming they are
equipped with an accurate scanning systems (Zuo, 2003).

The operating principle of scanning and optimisation systems in the industry is
generally the same, regardless of the machine or machine centres. The solution
decision process usually follow the following principles (Turner and Rapoport,
2010):

1. Scan the incoming flitch/board piece optically to determine the geomet-
ric, and in some cases biological characteristics.

2. Consider all the possible ripping solutions for the flitch/board piece (this
usually takes place in several hundred milliseconds).

3. Select the solution with maximum ’value’ for the given flitch/board piece.

Instead of determining all the possible combinations of products possible to
be ripped, and then selecting the one with the maximum value yield, integer
programming was used to find this maximum yield combination.

Most of the optimising chop saws use priority rule calculations to determine
which products to cut, which have recently been incorporated into modern
ripping machines as well (Cothrell and Higgins, 2003). There are two ba-
sic priority value set up modes: static and dynamic. The static priority mode
uses only one value for each product during the ripping process, unless changed
manually by the operator (Ye and Maness, 2006; Maness et al., 2009). Static
values are the conventional value setup system and are split up into two crite-
ria: value and yield. The yield method maximizes the part yield, based on the
surface area without considering the demand requirements and does thus not
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employ any value system. Such yield-based methods tend to rip products that
best fit into the cutting decision, making it difficult to meet specific market
demanded products. This is, however, how SIMSAW and subsequently SPPS
models ripping decisions are made. Value methods, on the other hand, max-
imize total part value from each strip, based on the part values assigned to
each part size. This method is more commonly used in rough mills when the
goal of the cutting is to satisfy demand (Zuo, 2003).

The optimising machines have different strategies for how they should rip
based on priority of parts. The case company’s ripping machine’s optimisation
strategy is shown in Appendix B. Other types of ripping machine optimisation
strategies could be of further interest but fall outside the scope of this study.

3.5 Metaheuristics for Optimising the Decision
Variables

Metaheuristics are usually used when a model cannot be clearly stated in math-
ematical terms, and thus OR techniques such as linear, non-linear, dynamic
techniques cannot be used. Metaheuristics are especially useful in conjunction
with simulation, where the parameters of the model can be varied and through
evaluating the outputs for each change, try and find better solutions (Figure
3.5).

Figure 3.5: Principle of simulation and optimisation with metaheuristics (Bekker
and Olivier, 2008).

As highlighted in the literature there have been many heuristics and meta-
heuristics applied to the wood manufacturing industry. For the ripping opera-
tion Fathi and Aksakalli (2004) used heuristic methods for gang-rip saw arbor
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design and scheduling. These heuristic methods were based on the principles
of local improvement, simulated annealing, and genetic algorithms. Although
this study focusses on moveable blade rip saws, Fathi and Aksakalli’s (2004)
study on fixed saw blade saws concluded that: the local improvement methods
produce fast and efficient heuristics; GA is also an efficient alternative to lo-
cal improvement methods but the results obtained are not as good; simulated
annealing finds high quality solutions, but its computational requirements are
somewhat excessive.

Figure 3.6 shows the results of different metaheuristics and other algorithms
for the optimisation of cant sawing log positioning in a sawmilll (Wessels et al.,
2011).

Figure 3.6: Comparison of metaheuristics for the cant sawing log position optimi-
sation by Wessels et al. (2011).

Although this project’s problem does not involve the log positioning problem it
is related in that it involves simulating a sawmill’s sawing process. The results
from the log positioning problem by Wessels et al. (2011) could possibly help
in determining the appropriate metaheuristic. Besides the developed Tentacle
algorithm, the standard PBIL faired well and because it is based upon the GA
which faired well in Fathi and Aksakalli (2004)’s fixed blade gang rip study, it
was chosen as the appropriate metaheuristic. Other metaheuristics could be
of further interest but are outside the scope of this study.
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3.6 PBIL Algorithm
The Population Based Incremental Learning (PBIL) algorithm was developed
by Shameet Baluja (1996) and was based upon the genetic algorithm. It uses
an updated Probability Vector (PV) as a basis for generating a population
of solutions. The PV is updated by it learning or striving toward the fittest
solution in the population.

Population 1
SV=1 O 0 1 1

2 1 1 0 0
3 1 1 1 0
4 O 0 0 1

2/4 2/4 2/4 2/4

Probability Vector 1
0.5 0.5 0.5 0.5

Population 2
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 1
4/4 3/4 0/4 1/4

Probability Vector 2
1 0.75 0.0 0.25

Population 3
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1
2/4 2/4 2/4 2/4

Probability Vector 3
0.5 0.5 0.5 0.5

Figure 3.7: Populations and Probability Vectors (PV) in PBIL. Baluja (1994). SV
= Solution Vector, where the number of vectors is equal to the population size.

The PBIL algorithm operates very similarly to the GA algorithm in terms of
how solutions are structured. The decision variables of the problem are en-
coded as binary values to form a complete binary string, which is called a SV
(Figure 3.7). The SV’s string length is mostly determined by the nature of
the decision variables it represents. For example for decision variables having
a decimal range of 0-100, a seven binary digit string (0-128) is sufficient. The
values in the solution vector’s string are randomly assigned binary values (0
or 1). The probability that a bit in the string is assigned a 1 depends on
the population’s PV (Figure 3.7). For example suppose that the PV for the
second bit in population 2 in Figure 3.7 is 0.75, then the probability that a
SV’s second bit will be assigned a 1 is 75%. A finite set of SVs forms a popu-
lation of possible solutions which are evaluated individually to determine the
fittest/best SVs. The size of the population is an important parameter that
the analyst must select (Bekker and Olivier, 2008).

For this project’s model a SV containing a string of binary digits will represent
one or more decision variables to be run through the model.

3.6.1 Initialisation

The initial population generated is distributed according to a certain value,
usually 50% (Bekker and Olivier, 2008).
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3.6.2 Learning

Once an initial population of SV has been generated, the fitness of each solution
vector is evaluated. For this project it is the cost associated with implementing
the sawing patterns and priority values for manufacturers. The PBIL algo-
rithm generates the next population based upon the fittest individual found
in the previous population. It does this by making it PV (a representation
of the population’s solution vector) strive towards the fittest SV as shown in
Equation 3.6.1.

PVgb ← Pgb(1− LR) + BSVgb(LR) (3.6.1)
where:
PVgb= Probability Vector’s value of the b-th cell in the g-th generation
LR= Learning rate
BSVgb= Best Solution Vector’s value of the b-th digit in the solution vec-
tor (binary-0 or 1) yielding the maximum/minimum evaluation (the current
"best"), in the g-th generation

3.6.3 Mutation

While the PBIL algorithm is searching for more optimum solutions, the role
of mutation becomes more important at later stages of the process. This is
because as the algorithm is striving to converge on upon better solutions,
diversity is inversely lost in the population. Many optimisation algorithms use
a mutation operator to ensure that an algorithm does not get stuck in a local
optimum solution. However in the PBIL algorithm mutation does not play
such a crucial role as it does in GAs, but it does aid the PBIL algorithm in
finding better solutions (Bekker, 2012). On each of the cells in the probability
vector, mutation is done as follows (Bekker, 2012):

PVgb ←
{

PVgb(1−MS) + (Rand1)(MS) Rand2 <=MP
PVgb Otherwise (3.6.2)

where:
MS=Mutation Shift
MP=Mutation Probability
Rand1= A random number generated from a uniform distribution (0-1)
Rand2= An independent random number generated from a uniform distribu-
tion (0-1)

3.6.4 Termination

The PBIL can be terminated in two ways. The first method stops the algorithm
when it starts to converge, meaning that the values in the PV converge to either
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0 or 1 values (Bekker and Olivier, 2008). Usually threshold values are set so
that when the values in the PV are either less than a set low threshold or higher
than a set high threshold the algorithm is terminated. These threshold values
are chosen beforehand and are typically 0.05 (low threshold) and 0.095 (high
threshold) (Du Plessis, 2010; Bekker and Olivier, 2008). The other method is
used when the algorithm has been running for too long. After a set number
of generations, specified by the user (e.g. 300), the algorithm is terminated.
With this method there is of course a risk that the algorithm can be stopped
prematurely while it is still converging to better solutions (Bekker and Olivier,
2008).

3.6.5 PBIL Steps

Summarising the above descriptions, the PBIL algorithm in pseudo code is
shown in Figure 3.8.

Figure 3.8: PBIL algorithm in pseudo code (Bekker, 2012)

How the PBIL algorithm was applied to the model is shown in Figure 3.9.

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. MATERIALS AND METHODS 53

Initiate Probability Vector (PV)

Generate Population (p) with v=number of solution vectors, from 
probabilities in Probability Vector (binary number)

Evaluate “fitness” of each Solution Vector (SV)

Update Probability Vector

Mutate Probability Vector

Did Probability Vector converge

If converged, optimal (binary) answer = Round (Probability Vector)
If terminated, optimal (binary) answer = best solution found

Usually 0.5

Simulation:
Sawing & Ripping Operations

Leaning Rate (LR)

Mutation Shift (MS)
Mutation Probability (MP)

No

Or terminate after maximum 
number of generations reached

Yes

Figure 3.9: Diagram of PBIL steps executed within the model, built upon notes
courtesy of Bekker (2012).

3.6.6 PBIL Parameters

There are four parameters that can be adjusted in the PBIL algorithm and
the typical values suggested by some authors are illustrated in Table 3.1.

Table 3.1: PBIL Parameters suggested and tested in different studies: 1-(Baluja,
1996); 2-(Van Zyl, 2011); 3-(Wessels et al., 2011); 4- (Bekker, 2012).

Parameter 1 2 3 4
Population Size 100 10-20 10 30-100
Learning Rate 0.1 0.1-0.4 0.1 or 0.2
Mutation Shift 0.05 Not applied 0.05 or 0.1 0.05
Mutation Probability 0.02 Not applied 0.03 or 0.1 0.02

3.7 Proposed Model
The proposed model to solve this project’s optimisation problem is summarised
in Figure 3.10. SIMSAW data was used as parameter values in the model. The
output of this operation becomes the input for the ripping operation, which
models the operation as a MIP. The decision variables for these two operations,
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the sawing patterns and part priority values, are encoded as binary strings for
the PBIL which strives to find the optimal solution (near optimal solution).
The fitness function with which the PBIL algorithm strives to minimise is
the cost associated with wasting raw material (recovery), over production of
certain parts, and under production of certain parts. Various constraints are
also of importance and are explained fully in Section 4.

OPERATION 1
SAWING

OPERATION 2
RIPPING

LOGS FLITCHES LUMBER
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Decisions/Settings

Sawing
Patterns

Priority
Values

SIMSAW Data
Mixed Integer 

Programming (MIP)

Binary Assignment Parameter Values in MIP

Metaheuristic's (PBIL) Decision Variables

Fitness Function = Raw Material Waste + Over Production + Under Production

Figure 3.10: Tools and techniques used in this project.

3.8 Software Used
The model, including the decision variables of the meteaheuristic was run in
the Advanced Interactive Multidimensional Modelling System (AIMMS) 3.13
modelling environment. AIMMS is an advanced integrated multidimensional
modelling software for building decision support and optimization applications
(www.aimms.com). However the parameter representing the output of flitches
after the sawing operation was determined via the SIMSAW 6 simulation pack-
age.

3.9 Comparison Strategy
The model was first developed after consulting the literature and industry
(case company) on its objectives and its operating procedures. Also the neces-
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sary parameters were estimated after data collection from the case company.

The model was tested under different supply and demand scenarios and com-
pared to SPPS’s answers. The model is formulated in more details in the
following Chapter.

3.10 Conclusion
This chapter provided the methods used to solve the project’s problem stated.
The artificial logs generated in SIMSAW will have their volume calculated ac-
cording to Huber’s formula. The subsequent sawing operation’s output will
be formulated as a proportion, this proportion will be determined via simu-
lation data. The subsequent ripping operation will be formulated as a MIP
problem. The PBIL algorithm was chosen as an appropriate metaheuristic
to link and optimise the decision variables (machine settings) of the sawing
and ripping operation. The cost objective to be minimised consists of the raw
material waste cost, over production cost and under production cost. The
software used to develop the model include SIMSAW 6 and AIMMS 3.13. The
proposed model and its results was compared to the SPPS package’s similar
results under the same conditions.
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Chapter 4

Model Proposed

This chapter describes how an appropriate model was formulated that links
the two decision variables of wood processing operations, namely the primary
sawing of logs and subsequent ripping of flitches/boards. Simulation data,
from SIMSAW, was used to represent the sawing operation. Mixed Integer
Programming (MIP) was used to model and solve the ripping operation opti-
misation problem. An appropriate metaheuristic, namely the PBIL algorithm
was used to link the models and optimise the decision variables, namely the
sawing patterns and the rip part priority values. The objective function or the
fitness function for the PBIL algorithm was defined as a single cost objective,
composed of the three important aspects, namely raw material waste cost,
under production cost and over production cost.

4.1 Formulating the Model
This section describes how the two operations were formulated with relevant
equations.

4.1.1 Operation 1: Sawing the Logs

Logs are trees that have been cross-cut into appropriate lengths, usually spec-
ified by the sawmill. The inputs for this operation are the number of logs
supplied by foresters falling within specified log diameter classes.

Logs are usually classified in such a way that specific sawing patterns can be
assigned to them, yielding better results for that specific class. For example
a log class having 35-36.9 cm diameter logs will be sawn (or broken down)
differently than a log class containing 19-20.9 cm diameter logs (Du Plessis,
2010, 17).

56
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Thus an appropriate decision variable for this operations is the sawing pat-
terns assigned to the specified log classes, similar to the SPPS package. A
parameter of this operation was the possible sawing patterns pre-determined
by management. Usually sawing patterns yielding the highest recovery rates
and an appropriate mixture of products demanded are selected based on expe-
rience. The decision variables represent which sawing pattern will be assigned
to which of the set log diameter classes, Equation 4.1.1.

Figure 4.1: Two possible sawing patterns for a certain log class at the sawing
operation. Each pattern will produce different dimensioned products and volume
outputs. The labels are introduced in the equations below.

The outputs from this operation are a number of unedged boards, called flitches
(Equation 4.1.8). For this project the flitches were classified by their maxi-
mum edged board widths (Equation 4.1.6), meaning its edges were straight
and there is no bark or wane. This value is dependent on the logs taper and
sweep as shown in Figure 4.2. Instead of determining each log’s sawn output
mathematically and, so to speak, re-invent the wheel, existing simulation soft-
ware (SIMSAW 6) was used as an estimation of the flitches’ maximum edged
board width. With SIMSAW the user can generate logs with varying taper
and sweep (Figure 3.1), which will affect the flitches’ maximum edged board
width as shown in Figure 4.2. By specifying possible sawing patterns it then
simulates the board output for each log class and sawing pattern. The logs
were simulated through the set sawing patterns and the number of flitches
with a set maximum edged board width (Equation 4.1.7), were used as a data
parameter in the optimisation model.

Let:

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. MODEL PROPOSED 58

Ydc =

{
1 Log diameter class d is assigned to sawing pattern c
0 Otherwise (4.1.1)

Mh = Length of log within set length h (4.1.2)

Md = Diameter of log within set log diameter class d (4.1.3)

Sdh = Number of logs supplied having diameters that are within
set log class d and having set log length h (4.1.4)

Mt = Thickness of flitch within set thickness t (4.1.5)

Mtf = Flitch’s maximum edged board width within
set thickness t and flitch board width f (4.1.6)

Figure 4.2: Flitch’s maximum edged board width (Mtf ) dependent on the log’s
sweep and taper. This was determined via SIMSAW.
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SIMdctf = Simulated proportion of flitches, having set thickness t
and flitch board width f sawn if

log class d is assigned to sawing pattern c
(4.1.7)

The proportion of flitches (Equation 4.1.7) was determined through simulating
a 1 000 logs, having a normal taper distribution 95 % within 8-11 mm/m limits
and a normal sweep distribution 95 % within 0-15 mm/m limit within each
log class d through each possible sawing pattern c. This proportion of flitches
having a set thickness t, board width f produced for each log class d and
sawing pattern c was determined from SIMSAW data and used as a parameter
value (data) in the model. This is further explained in Section 4.3

Stfh =
∑
d

∑
c

YdcSIMdctfSdh (4.1.8)

Equation 4.1.8 then calculates the supply (Stfh) or number of flitches hav-
ing thickness t, board width f and length h by multiplying the proportion of
flitches expected (SIMdctf ) times the number of logs supplied (Sdh) and the
binary variable determining if the logs are assigned to the set sawing pattern
c (Ydc). This becomes the input material for the next operation (ripping).

Constraint 4.1.9 is required to ensure that all logs falling within the set log class
d are assigned to only one sawing pattern c. This constraint was forced into
the model by manipulating the PBIL’s probability vector. This is explained
further in Section 4.2.2 ∑

c

Ydc = 1 ∀d (4.1.9)

4.1.2 Operation 2: Optimally Ripping the Flitches

The second operation was formulated as a Mixed Integer Programming (MIP)
problem. This formulation is similar to Todoroki and Rönnqvist’s (1999)
method which uses dynamic programming (Todoroki and Ronnqvist, 1997)
to solve the problem.

Let:

Mtw = Width of lumber within set thickness t and width w (4.1.10)

Ptw = Priority value of lumber ripped with thickness t
and width w (4.1.11)

The priority values are usually percentage values so they typically have a range
between 0-100.
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Figure 4.3: Two ways to rip a flitch at operation 2. Each with different volume
and product outputs. Priority values (settings on the machine) usually determine
which products to rip.

Xtfw = Number of components having set width w ripped from
flitch having set thickness t and flitch board width f (4.1.12)

Xtfw is integer (4.1.13)

K2 = Kerf, thickness of saw blades, at operation 2 (4.1.14)

As mentioned in the literature there are many different machines with many
different saw blade and arbor setups and further combinations of algorithms
used for ripping optimisation strategies. For this project the type of machine
and its algorithm was specifically modelled for the case company. The ma-
chine’s optimisation strategy and settings for the case company is shown in
Appendix B. Thus the objective function for operation 2 was modelled as:

Max V =
∑
t

∑
f

∑
w

MtwPtwXtfw(MtMh) (4.1.15)

For the project’s ripping formulation the thickness is predetermined by the
sawing operation and is thus constant in the equation above (Mt). Also the
length of the flitch stays the same during the ripping operations in this project’s
model formulation (Mh). Thus these two constants do not necessarily need to
be included in the maximisation problem above. However they are added in
Equation 4.1.15 to show that V in fact represents the volume (MtwMtMh)
of the product ripped (Xtfw) times the products priority value (Ptw). This
is similar to Todoroki and Rönnqvist’s (2002) value optimisation method for
secondary log breakdown (Equation 2.1.2) where the timber price in Equation
2.1.2 is similar to the priority value (Ptw). For this project, priority values are
however not set by the timber price but can be changed (decision variable) by
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the operator as to meet market demand more accurately.

Subject to the following two constraints:∑
w

Xtfw ≤ 3 ∀(t, f) (4.1.16)

∑
w

XtfwPtw + (
∑
w

Xtfw − 1)K2 ≤Mtf ∀(t, f) (4.1.17)

Constraint 4.1.16 is to ensure that a maximum of three products are ripped per
flitch. Please note this value can change depending on the machine’s design
and settings. Constraint 4.1.17 is to ensure that the sum of all the products
ripped out (

∑
wXtfwPtw) and the sum of all the blades’ (

∑
wXtfw − 1) kerfs

(K2) fit into the maximum edged board width of the flitch (Mtf ).

The optimal ripping pattern (mixture of product widths) for each flitch f is
thus found and after all the flitch boards f have been virtually ripped, the
total supply (Stwh) of lumber having thickness t, width w and log length h is
determined as:

Stwh =
∑
f

XtfwStfh (4.1.18)

Stw =
∑
h

Stwh (4.1.19)

The Total Lumber Supply Volume (TLSV) is calculated as:

TLSV =
∑
t

∑
w

Stw (4.1.20)

4.1.3 Fitness Cost Functions

As mentioned earlier in Section 3.1.1, the objective function for a wood man-
ufacturer can consist of three expected costs amongst others to be minimised:

• Raw Material Waste Cost

• Over Production Cost

• Under Production Cost

The Total Raw Material Volume (TRMV) is the volume of all logs supplied.
This is done by calculating each log diameter class’s (d) associated volume
per log and multiplying this log volume by the number of logs (Sdh) supplied.
A Log Volume Conversion (LVCdh) variable from Huber’s formula (Equation
3.2.3) is calculated:
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LVCdh =
(Md +

Mh

2
)2πMh

40 000
(4.1.21)

The Log Volume (LV) per log class d and length h is then:

LVdh =
∑
d

∑
h

SdhLVCdh (4.1.22)

TRMV =
∑
d

∑
h

LVdh (4.1.23)

The Total Raw Material Wasted (TRMW) is then:

TRMW = TRMV− TLSV (4.1.24)

The Raw Material Cost Rate (RMCR) is the estimated value of the raw mate-
rial for a wood manufacturer. How this value was estimated is further explained
in Section 5.2.1.

The Total Raw Material Waste Cost (TRMWC) is then:

TRMWC = (TRMW)(RMCR) (4.1.25)

To determine over and under production cost we need to first know what the
expected demand is, so we define:

Dtw = Demand of lumber having set thickness t and width w (4.1.26)

Note that the length of the product demanded is not included in the equation
above since chopping the lumber material into demanded lengths occurs at the
next operation (which was not modelled in this study).

The Over Production Volume (OPVtw) of each lumber product having set
thickness t and width w is:

OPVtw =

{
Stw −Dtw Stw > Dtw

0 Otherwise (4.1.27)

The Over Production Cost Rate (OPCR) is the estimated value of overstock-
ing, this includes stock keeping and warehousing cost amongst other. How this
value is estimated is further explained in Section 5.2.3.

The Over Production Cost (OPCtw) is then:

OPCtw = (OPVtw)(OPCR) (4.1.28)

The Total Over Production Cost (TOPC) is then:
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TOPC =
∑
t

∑
w

OPCtw (4.1.29)

The Under Production Volume (UPVtw) of each lumber product having set
thickness t and width w is:

UPVtw =

{
Dtw − Stw Stw < Dtw

0 Otherwise (4.1.30)

The Under Production Cost Rate (UPCR) is the estimated value of under
stocking certain parts. This is usually equal to the cost of buying in these
products from another supplier. How this value was estimated is further ex-
plained in Section 5.2.2.

The Under Production Cost (UPCtw) is then:

UPCtw = (UPVtw)(UPCR) (4.1.31)

The Total Under Production Cost (TUPC) is then:

TUPC =
∑
t

∑
w

UPCtw (4.1.32)

The Total Fitness Cost (TFC) function to which the metaheuristic is improved
upon is then the summation of the above 3 costs:

TFC = TRMWC+ TOPC+ TUPC (4.1.33)

4.2 PBIL Algorithm
This section describes how the PBIL algorithm was encoded to link and opti-
mise the sawing and ripping operations as formulated above.

4.2.1 Formulation of Decision Variables as Bits

With the PBIL the identified decision variables of the problem are encoded
as adjacent binary values to from a complete binary string, which is called a
Solution Vector (SV) (Figure 3.7). The decision variables of the model, namely
the binary assignment of log classes to sawing patterns (Equation 4.1.1) and
the priority values of lumber products to be ripped (Equation 4.1.11) were
coded into binary format. To illustrate how this was done consider the exam-
ple shown in Table 4.1 where there are 21 log classes (d), 4 sawing patterns
(c), 2 thickness classes (t) and 12 width classes (w).
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The sawing operation’s decisions is represented in binary format (0 or 1), where
a 1 means the bit’s associated log class (d) is assigned to the bit’s associated
sawing pattern (c). Alternatively a 0 means the log class is not assigned to
the sawing pattern.

For the ripping operation’s decisions each priority value for all the lumber prod-
ucts ripped having set thickness t and width w were encoded as a 7 bit/string,
which represent decimal values ranging from 0-128.

Matrix multiplication was used to convert each solution vector (containing b
bits) into the associated binary solution for the sawing operation’s decisions
(straight 1 to 1 conversion) and the decimal solutions for the ripping decisions
(7 bit binary conversion), this is explained with example given in Table 4.2.

4.2.2 Model’s Constraints within PBIL

The Constraint 4.1.9 (
∑

c Ydc = 1), to ensure that all the logs falling within the
set log class d are assigned to only one sawing pattern c, was enforced into the
model by manipulating the PBIL probability vector for the bits representing
the sawing decisions (Table 4.3).

To explain how this was done look at the example of log class d = 1 in Table
4.3. The probability vectors (chances that the solution vectors will contain a 1
or 0) for c = 1, 2, 3, 4 are 0.3, 0.8, 0.2 and 0.1 respectively (shaded in Table 4.3).
Accumulating these values gives the regions 0-0.3, 0.3-1.1, 1.1-1.3 and 1.3-1.4
respectively. Only one of these four sawing patterns (c) must be assigned for
the log class (d). A random number is chosen (0.62) which is normalised to
the total region (1.4) described above to 0.868 (0.62x1.4). This falls within
the range 0.3-1.1 (c = 2), so sawing pattern 2 is assigned (=1).

4.3 Simulation of Flitches’ Maximum Edged
Board Width

The value in Equation 4.1.7 (SIMdctf ) was determined through static simula-
tion techniques.

The number of flitches in Equation 4.1.7 was converted to represent a propor-
tion of flitches. Within each log diameter class d a 1 000 logs, with distributed
taper and sweep values, were virtually generated and sawed within SIMSAW
through each of the 4 possible sawing patterns c. The proportion (SIMdctf ),
sometimes resembling a distribution of some sort, of boards (flitches maximum
edged board width) produced per log class was calculated by dividing the sum
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of boards produced (output) by the 1 000 logs sawed (input). Appendix D
contains the various data.

4.4 Modelling Software Used
Except for SIMSAW 6 determining the simulated proportion of flitch boards
variable in Equation 4.1.7 (data parameter in model) all equations were mod-
elled in the AIMMS 3.13 modelling environment. The MIP problem for the
ripping was solved, through the commercial CPLEX 12.4 solver licensed within
AIMMS, within the PBIL’s execution code. The model’s complete code was
executed in AIMMS and is provided in Appendix E.

4.5 Conclusion
The whole model is summarised in Figure 4.4. As shown the metaheuristic
(PBIL) strives to find better (fitter) solutions in terms of low raw material
waste, under and over production costs. The decision variables for the sawing
operations is the assigned sawing patterns to log classes (Ydc), which are bi-
nary (0 or 1) values. The sawing operation was represented by SIMSAW data.
The decision variables for the ripping operation are the part priority values for
lumber able to be ripped (Ptw). The ripping operation is modelled and solved
through a MIP solver, namely the CPLEX 12.4 solver found in AIMMS.

One of the key achievements of this chapter was having the parameter values
(Ptw) of the MIP becoming decision variables for the metaheuristic. Thus every
time the metaheuristic produces a new solution vector the MIP’s parameter
values are changed and what products to be ripped is solved for the different
priority values (Ptw). Another achievement was incorporating the constraint
that only one sawing pattern may be assigned to a log class (Constraint 4.1.9)
in the PBIL’s code. This was described in detail under Section 4.2.2.
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Chapter 5

Parameter Estimation from Case
Data

The case company is a pine and hardwood wood product manufacturer in
South Africa. Data for the model was captured with the help of management
and the company’s Enterprise Resource Planner (ERP).

5.1 Possible Sawing Patterns
Management usually has four sawing patterns setups available to choose from,
Figure 5.1 illustrate the four possible live sawing patterns management chooses
from.

5.2 Financial Parameters
Table 5.1 shows the parameters that were estimated and used in this model.
The South African (SA) Lumber Price Index (LPI) is an industry standard
estimation of what the nominal price of lumber is. How and why these values
were estimated are explained in the following subsections.

Table 5.1: Financial monthly rates used by the model, costs were estimated by
company’s management accountants from ERP data and the SA LPI.

Measurement Value Unit Source
Raw Material Cost Rate (RMCR) 2 175 R/m3 ERP: May 2013
Over Production Cost Rate (OPCR) 138 R/m3 ERP: May 2013
Under Production Cost Rate (UPCR) 2 367 R/m3 LPI 2013

68
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Figure 5.1: Four possible sawing patterns. The dimensions are in millimetres (mm)
and represent the dry thickness the lumber product will be after being kiln dried.

5.2.1 Raw Material Waste Cost

As mentioned throughout the study raw material cost is by far the most sig-
nificant cost for sawmillers (Figure 1.2) and secondary manufacturers (Maness
et al., 2009). For secondary manufacturers the raw material costs can com-
prise 40 to 70 percent of the total manufacturing expenses (Buck, 2009). For
sawmills the raw material is the logs supplied by the foresters. The average
prices for South Africa’s logs differs depending on the industry’s traditional
log classes as shown in Table 5.2 (Bredenkamp et al., 2012, Ch. 8.7). The
average prices calculated by Crickmay & Associates for these logs are shown
in in Table 5.3. Weighting these values accordingly the average roadside price
of logs was calculated as 511.06 R/m3.
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Table 5.2: Traditional sawlog classes in SA. (Bredenkamp et al., 2012, Ch. 8.7)

Log Class Length Thin-end diameter
A 1.8 m to under 3.6 m 130-179 mm
B1 1.8 m to under 3.6 m 180-259 mm
B2 3.6 m and longer 180-259 mm
C1 1.8 m to under 3.6 m 260-339 mm
C2 3.6 m and longer 260-339 mm
D1 1.8 m to under 3.6 m 260-339 mm
D2 3.6 m and longer 340 mm

Table 5.3: Weighted average pine sawlog prices at roadside, second quarter 2013
(Allpass, 2013).

Log Weighted Ave. Industry Weighted Ave.
Class of 3 Lowest Weighted of 3 Lowest

Prices Average Prices
A 170 382 481
B1 183 410 563
B2 293 455 559
C1 246 484 687
C2 440 569 698
D1 324 551 732
D2 499 658 832

Average Roadside prices: 511.06 R/m3

However in this study the raw material cost was rather taken as the cost at
which the sawmill sells its lumber to its secondary manufacturers. This is seen
as the lost opportunity cost if the manufacturer wastes lumber it could have
recovered. This was estimated from the ERP system of the case company as
being 2 175 R/m3 (Table 5.1).

5.2.2 Under Production Cost

Under production of wood product parts can delay assembly or delivery of the
final product (Maness et al., 2009). Some companies incur an extra cost to fill
their orders by purchasing the under produced parts from alternative sources
(Maness et al., 2009).

In the model the under production cost was this estimated buy-in cost of lum-
ber for the case company. The SA LPI was used as the under production cost
rate. The LPI is an industry standard estimation of what the nominal price
of lumber is. It is estimated by Crickmay & Associates who conduct bench-
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marking comparisons amongst forestry contractors and sawmills in a monthly
publication (Crickmay et al., 2004).

A lumber buy in price of 2 367 R/m3 was used by the company at the time
data was collected, which was very similar to the national lumber price index
as shown in Figure 5.2.

Figure 5.2: SA LPI September 2013 (Crickmay and Associates, 2013b).

The SPPS similarly has a buy-in cost parameter that the user can change for
each dimensional wood product.

5.2.3 Over Production Cost

Over production of wood product parts incur handling and damage cost amongst
others (Maness et al., 2009). The over production cost estimate includes ware-
housing and related costs necessary for overproduced lumber.

The SPPS package does not have a cost factor for overproducing, instead it
has a constraint option, where the user can specify the maximum amount of
products allowed to be sawn. This was however left as unconstrained when
this project’s model was compared to the SPPS, since determining what this
maximum value of production should be would be another study of its own,
unless a manufacturing company has a mandate or policy on the allowable
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overproduction.

For the case company it was estimated that its over production cost, which in-
cluded its stock keeping and warehousing costs was 138 R/m3 per month. This
was calculated by dividing all the costs (Rand) at the company’s warehouse
by the volume (m3) of lumber it holds on average for a month.

5.3 Machine Parameters
The machine parameters of interest included the blade’s kerf measurements
for the saws at operation one and two. Saw kerfs are the width of the path
cut by the saw teeth as the saw blade moves through a log or piece of wood
material Vuorilehto (2001).

Figure 5.3: Side and front views the framesaw’s teeth. For this project only the
kerf (k) is of interest. (Wessels, 2009a)

Table 5.4: Kerf of blades for machines at operation 1 and 2

Measurement Value Unit
Kerf for saw blades at sawing operation (K1) 5.0 mm
Kerf for saw blades at ripping operation (K2) 4.7 mm
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The values in Table 5.4 were determined after consulting the manufacturer’s
technicians for the mentioned sawing and ripping machine. A 4.7 mm kerf
is also very similar to the common kerf thickness simulated by the ROMI-3
rough mill simulator, which are 0.125 inches (3.17 mm) and 0.1875 inches (4.76
mm) (Weiss and Thomas, 2005, 74). In some other studies it is stated that
the edger’s kerf width is typically 2.0-3.0 mm wide (Todoroki and Rönnqvist,
2002). The kerf of the saws of the ripping machine was a parameter in the
model, which can be changed by the user. It might be of further interest to
analyse how much improvement can be expected if this value is decreased,
since this will translate into significantly less wood chip waste.

5.4 Supply and Demand Scenarios
For the varying supply and demand parameter values of the model, three sce-
narios (time periods) were chosen to be run through the model and compared
to SPPS.

Table 5.5: Different supply and demand scenarios run through the model.

Scenario 1 Scenario 2 Scenario 3
Log Supply Mar. 2013 Feb.-Jun. 2013 Jul. 2012-Jul. 2013
Avg. Monthly Vol. 4 499 m3 4 815 m3 4 794 m3

Lumber Demand Jan.-Dec. 2012 Feb.-Jul. 2013 Jul. 2012-Jun. 2013
Avg. Monthly Vol. 2 451 m3 3 071 m3 2 329 m3

Avg. Vol. Recovery 54.48% 63.78% 48.58%

The different supply and demand scenarios are shown in Figures 5.5 to 5.10.
All the logs were supplied at a length of 3 meters for the case company. The
average (mean) monthly values were the deterministic values run through the
model. Box plots are used to represent the variance of the data and is explained
in the example figure below:
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Figure 5.4: Example to show the different values indicated in the box plots used
in Figures 5.5 to 5.10.
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Figure 5.5: The number of logs supplied to the case company’s sawmill. Total
volume = 4 499 m3.
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The first scenario’s data was the initial data used to test the model. This
was the number of logs supplied for March 2013. The demand of lumber
represents the expected demand the ripping operation was to supply on average
per month for the 2012 year. This scenario and its results was published as a
paper in the 42nd Annual Conference of the Operations Research Society of
South Africa (ORSSA) (Lindner et al., 2013), which should be published by
the 20th of December.
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Figure 5.6: Average monthly volume of lumber products supplied by the secondary
manufacturer.
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Figure 5.7: Box plots of monthly number of log classes supplied to the case com-
pany’s sawmill. Total volume = 4 815 m3.

For Scenario 2, the number of logs supplied were the average values for 1
February - 30 June 2013, which represents the case company’s last 5 months
of operation for its 2012 financial year (July 2012 - June 2013). The demand of
lumber represents the ripping operation’s supply for the months ranging from
1 February 2013 - 31 July 2013.
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Demand Scenario 2: 1 February - 31 July 2013
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Figure 5.8: Box plot of monthly volume of lumber supplied by the secondary
manufacturer.

For Scenario 3, the number of logs supplied were the average values for 1 July
2012 - 30 June 2013, which represents the case company’s 2012 financial year.
Similarly the demand of lumber represents the ripping operation’s supply for
months ranging from 1 July-30 June 2013.
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Figure 5.9: Box plots of monthly number of logs classes supplied to the case
company’s sawmill. Total volume = 4 794 m3.
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Figure 5.10: Box plot of monthly volume of lumber supplied by the secondary
manufacturer.
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5.5 Conclusion
This chapter determined what the important parameter values of the model
proposed in Chapter 4 should be. This included the financial parameters,
namely the raw material waste, over and under production cost rates and
the machine parameters, namely the kerf (saw blade teeth’s thickness) for the
sawing and ripping operations. Three different supply and demand scenarios
were proposed to evaluate the model. Since the model is deterministic, where
there was variance, the average values were used.
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Chapter 6

Results and Discussion

This chapter discusses the most important results found after running the
model proposed in Chapter 4 with the case data and parameters estimated in
Chapter 5. Most of the discussion revolves around the results provided in the
tables and figures throughout this chapter. Also further concluding remarks
can be found in Chapter 7.

The model’s results were compared to the SPPS package since it is the most
similar modelling tool or technique used in South Africa. However, it differs
somewhat in its problem formulation. It determines optimal sawing patterns
assuming that edging/ripping maximises volume. In this project’s model the
machine’s part priority value settings were included as decision variables, where
value was maximised instead of volume in an effort to satisfy the market de-
mand optimally.

6.1 Supply and Demand Scenarios
Different supply and demand scenarios were run through the model as sum-
marised in Table 6.1.

For the different scenarios the sawing and ripping machine’s saw kerf (K1 and
K2) were kept constant throughout as 5 and 4.7 mm respectively. Similarly
the financial cost rates, namely the raw material waste cost rate, the over
production cost rate and the under production cost rate were kept constant
throughout the three scenarios as 2 175, 138, and 2 367 R/m3 respectively.

For scenario 2 and 3, the four live sawing patterns as shown in Figure 5.1
were used. For Scenario 1 slightly different patterns were used, where the 1st
pattern saws 1 x 38 mm thick flitches in the middle of the log with subse-
quent increases until the 4th pattern which saws 4 x 38 mm thick flitches from
log. The reason for this difference is because these were the possible sawing

82
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Table 6.1: Different supply and demand scenarios run through the model and
compared to the SPPS package results

Parameters (unit) Scenario 1 Scenario 2 Scenario 3
Machine saw kerfs Sawing blades (K1) - 5 & Ripping blades (K2) - 4.7
(mm) Table 5.4
Financial Rates RMCR - 2 175; OPCR - 138; UPCR - 2 367
(R/m3) Table 5.1
Sawing Patterns # 38s - 1,2,3,4 # of 38 mm products sawn - 2,3,4,5

Figure 5.1
Log Supply Mar 2013 n Feb-Jun 2013 u Jul 2012-Jul 2013 u

(Avg. #/month) Figure 5.5 Figure 5.7 Figure 5.9
Lumber Demand 2012 Feb-Jul 2013 Jul 2012-Jun 2013
(Avg. m3/month) Figure 5.6 Figure 5.8 Figure 5.10
n Normally generated (in SIMSAW) within each log diameter class d
u Uniformly generated (in SIMSAW) within each log diameter class d

patterns used by management at the time the data was collected. The 1st
Scenario’s data was collected and run through the model slightly earlier to the
subsequent scenarios and thus had slightly different sawing patterns.

The average number (#) of logs supplied and the average volume (m3) of lum-
ber products demanded varied according to time periods chosen for Scenarios
1 to 3 as illustrated in Figures 5.5 to 5.10. The actual log diameters were
distributed normally within the log diameter classes (e.g. 27-28.9 cm) for Sce-
nario 1. Whilst for Scenarios 2 and 3 the actual diameters were distributed
uniformly within the log diameter classes (d).

The 1st Scenario’s data and its results was accepted as a paper in the 42nd
Annual Conference of the ORSSA (Lindner et al., 2013), which should be
published by the 20th of December.

6.2 Model’s Best Solutions Found
Firstly, the different PBIL’s parameter settings mentioned in Table 3.1, namely
the Learning Rate (LR), Mutation Shift (MS) and Mutation Probability (MP)
were tested and evaluated under different user defined combinations. The best
parameter combination found, after the maximum number of generations (set
at 300 in study) was reached or the probability vector converged (termination
criteria described in Section 3.6.4), was then re-run a further 500 generations
to see if a better solution would still be found by the algorithm.

The absolute best solution found was then compared to the SPPS package’s
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solution as indicated in Tables 6.2 to 6.4. Also included is the best solution
found by having the model randomly search within the decision space. This is
equivalent to letting the PBIL algorithm run with 0% LR, MS and MP values
respectively (0-0-0). This was done to see what would happen if the model
was left to explore the decision space at random (Figure 6.4). More results on
the PBIL’s different parameter values and associated results are explained in
Section 6.3.

Table 6.2: Results found by the model’s best PBIL parameters (30-5-5) and the
model randomly searching (PBIL0−0−0), compared to SPPS’s solutions. Scenario 1

Measurement Model’s Best Model Random SPPS
PBIL30−5−5 PBIL0−0−0 MIP Solver

Total Fitness Cost R5 303 046 R6 065 040 R6 445 488
Raw Material Waste Cost R4 372 138 R4 422 040 R4 574 444
Under Production Cost R874 626 R1 550 065 R1 775 162
Over Production Cost R56 281 R92 517 R95 882
Lumber Recovery 55.30% 54.8% 53.23%
Run time ±1 hour ±1 hour ±1 sec.

Table 6.3: Results found by the model’s best PBIL parameters (30-5-5) and the
model randomly searching (PBIL0−0−0), compared to SPPS’s solutions. Scenario 2

Measurement Model’s Best Model Random SPPS
PBIL30−5−5 PBIL0−0−0 MIP Solver

Total Fitness Cost R6 041 017 R7 052 429 R8 520 947
Raw Material Waste Cost R4 645 099 R4 724 771 R4 921 419
Under Production Cost R1 370 912 R2 256 102 R3 469 006
Over Production Cost R25 005 R71 555 R 130 521
Lumber Recovery 55.58% 54.81% 52.99%
Run time ±1 hour ±1 hour ±1 sec.

Table 6.4: Results found by the model’s best PBIL parameters (50-5-5) and the
model randomly searching (PBIL0−0−0), compared to SPPS’s solutions. Scenario 3

Measurement Model’s Best Model Random SPPS
PBIL50−5−5 PBIL0−0−0 MIP Solver

Total Fitness Cost R5 394 696 R5 947 627 R7 277 559
Raw Material Waste Cost R4 624 468 R4 708 305 R4 898 814
Under Production Cost R684 098 R1 132 379 R2 220 234
Over Production cost R86 129 R106 943 R158 511
Lumber Recovery 55.61% 54.81% 53.00%
Run time ±1 hour ±1 hour ±1 sec.
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As can be seen for all three scenarios the model’s best solution found was much
better (lower) for all the cost functions proposed, where it produced a 18%,
29% and 26% lowering of the Total Fitness Cost (TFC) for Scenarios 1,2 and
3 compared to SPPS respectively (calculated from Tables 6.2 to 6.4).

The model outperformed the SPPS most significantly for the Total Under Pro-
duction Cost (TUPC), where it produced a 51%, 60% and 69% reduction in
this cost for Scenarios 1, 2 and 3 respectively. This improvement was expected
since the model tries to satisfy market demand better by having priority values
for each ripped product, which the SPPS package does not have. The SPPS
package maximises volume at the ripping operation (i.e. no priority part val-
ues).

The model saved a lot of costs by still increasing the volume recovery, inversely
lowering the Total Raw Material Waste Cost (TRMWC), where it produced
a 4%, 6% and 6% reduction in this cost for Scenarios 1, 2 and 3 respectively.
The volume recovered stayed quite similar for each of three methods for all
three scenarios. For example the SPPS usually recovered ±53% lumber vol-
ume, with the best solutions found by the model randomly searching being
±1.7% higher and model’s best (optimal) solution found was usually ±2.5%
higher.

Although the cost savings aren’t that much in comparison, the model also al-
ways improved on the Total Over Production Cost (TOPC). Where it produced
a 41%, 80% and 46% reduction in this cost compared to SPPS for Scenarios 1,
2 and 3 respectively. The reason the second scenario’s improvement value was
much higher in comparison (80%) was because for the second scenario there
was a considerable increase of lumber volume demanded, namely a 63.78% vol-
ume recovery (Table 5.5) was expected from the log material supplied. Thus
the model rarely overproduced on any products. However the SPPS did un-
necessarily oversupply on certain products, specifically wider products since
its ripping strategy tries to just maximise volume (this is explained more in
Section 6.5).

As can be seen in Figure 6.2, the Under Production Cost (UPC) affected the
metaheuristic’s “fitness” function the most. This was especially evident early
on in the generated populations (Figure 6.2). However the raw material cost
was by far the highest, but it did not increase or decrease that much in com-
parison. The over production cost was minimal in comparison, since its cost
rate was low (138 R/m3 compared to 2 174 and 2 367 R/m3).

Tables 6.2 to 6.4 also include the estimated time it took for the two programs
to find their “optimal” (best) solutions. These values are not entirely accurate
as they were run under slightly different computing powers, however the esti-
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mated or average time it took is indicated as to show that the better solutions
found by the model’s PBIL algorithm took much longer than the SPPS. How-
ever this substantially longer solving time was not of that much importance
since the production plan was for a month’s time period and an hour or two
should be sufficient for month to month planning. However if shorter planning
production time periods are desired (week to week or day to day), then this
relatively longer solving time might become a problem.

6.3 PBIL’s Best Parameters Found
Firstly, the different PBIL’s parameter settings mentioned in Table 3.1, namely
the LR, MS and MP were tested and evaluated under different user defined
combinations. The best parameter combination found was then re-run a fur-
ther 500 generations to see if a better solution would still be found by the
algorithm. The absolute best (optimal) solution found was then compared to
the SPPS package’s solution as already discussed and indicated in Tables 6.2
to 6.4.

As can be seen in Figures 6.1, 6.5 and 6.7 the higher the learning rate the
sooner the algorithm converged to lower cost functions. However there is a
tipping point, e.g. 30% in Scenario 2 (Figure 6.5) and 50% in Scenario 3
(Figure 6.7), where higher learning rates, actually find inferior (higher) cost
solutions. This is probably because there was not enough diversity (exploring
slightly mutated/different solutions) for each population generated.

As can be seen in Figures 6.1, 6.5 and 6.7 higher MS and MP values (e.g. 10%)
resulted in the algorithm finding inferior solutions. This is because higher MS
and MP forces the probability vector, which produces a population of solu-
tion vectors, to randomly mutate and thus choose other values as opposed
to those that usually produce good solutions (converging). This is the com-
mon trade-off that most algorithms face, where exploitation, meaning more
convergence to best solutions found (i.e. a higher learning rate in the PBIL
algorithm), means less exploration of the search space and vice versa. This
argument is inversely substantiated in Figure 6.5 where the PBIL algorithm
had a LR=50%, MP and MS = 0% (50-0-0) which caused the algorithm to
converge on a good solution vector already within the 20th generation and was
subsequently terminated from exploring the search space further. The PBIL
algorithm was thus terminated because the Probability Vector (PV) converged
onto values that were either less than 0.05 or greater than 0.95 (for more on
this termination rule refer back to Section 3.6.4).

The model even found better results when it randomly searched within the
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decision space (0-0-0 LR, MS and MP). As seen in Figures 6.4 and 6.7 when
the model randomly searched it produced results that hovered above and be-
low the SPPS package’s solution (specifically highlighted in Figure 6.4). This
was because there was always one sawing pattern selected (constraint 4.1.9)
and thus sometimes a relatively good volume was selected for the 30 solution
vectors within every population generated. Also because there is a maximising
value problem formulated at the ripping operation (Equation 4.1.15), relatively
good volume recovery was expected, only slightly affected by the priority val-
ues chosen. Because the SPPS package does not cater for priority values, even
just choosing random priority values sometimes improved upon the over and
under production costs. All of these of factors then lead to the model some-
times “randomly” selecting good solutions as can be seen in Figure 6.4 and 6.7.

In summary the best combination of PBIL parameters found for Scenario 1
was: LR = 30%; MS = 5% and MP = 5% (Figure 6.1). The best combination
of parameters found for Scenario 2 was: LR = 30%; MS = 5% and MP = 5%
(Figure 6.5). The best combination of parameters found for Scenario 3 was:
LR = 50%; MS = 5% and MP = 5% (Figure 6.7). In summary the best PBIL
parameter values found across all three scenarios was a LR of 30-50%, a MS
and MP of 5%.

6.4 PBIL’s Parameter Values Re-run
Figure 6.6 shows results for re-running the best parameter values for Scenario 2
(30-50-5). As can be seen the first time the model’s PBIL algorithm ran these
values it “luckily” found a very good solution early on, which it converged upon
and produced populations having similar decision variables. Re-running the
exact same parameter values twice produced results that unfortunately did not
find such a good solution as in the previous run.

The last two re-runs did follow or converge to similar results (Figure 6.6),
which offers some validation to the model developed.
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6.5 Supply versus Demand Results
Figures 6.8 to 6.10 compare the supply results for the model’s best solution
found to the expected demand and the SPPS package’s supply. The obvious
result to note in the figures is that the SPPS package usually over supplied on
the wider widths (25x224 mm, 38x148). This is because its ripping optimising
strategy is to maximise volume.

The model proposed in this study has the added benefit of assigning priority
values to the ripped products and in contrast its ripping strategy is to maximise
value. This then translated into satisfying market demand more evenly as is
evident in Figures 6.8 to 6.10. This is because the model tries to lower the
associated under and over production costs in Tables 6.2 to 6.4, i.e. a solution’s
“fitness” within the PBIL algorithm is evaluated on meeting demand as best
as possible (over and under production “penalty” costs) and at a minimal raw
material waste cost.

6.6 Model’s Optimum Decision Variables
Tables 6.5 to 6.9 show the optimum decision variables for the minimum cost
solutions found. As can be seen the model’s PBIL algorithm fulfilled the con-
straint (4.1.9) that only one sawing pattern is allowed to be assigned to a log
class, i.e. summing across the log diameter classes (d) always equals 1 in Ta-
bles 6.6, 6.8 and 6.10.

The proposed model satisfied market demand better than the SPPS package
and still produced a higher recovery (inversely a lower raw material waste cost).
This is because it has a value optimisation strategy for the ripping operation
with added priority value decision variables. For example for all three scenarios
the proposed model assigned more logs (classes) to the last sawing pattern
(d = 4). Note that the latter sawing patterns have a higher volume recovery
because less blades are used for the increased number of thicker flitches sawn
from the centre of the log (Figure 5.1). Thus the proposed model could choose
sawing patterns with higher recoveries and manipulate the ripping operation
subsequently to satisfy market demand. The SPPS package on the other hand,
rips for maximum volume, and thus it only has the sawing patterns (with set
ripping decisions to follow maximum volume recovery) as a decision variable.
This concept is further illustrated in Figure 6.11.
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6.7 Conclusion
The proposed model outperformed the SPPS package in satisfying market de-
mand better, namely at a lower production cost in this case. This was because
the proposed model has the added decision variable of assigning priority values
to the ripped products. This allowed maximisation of total value (affected by
the priority values assigned) as opposed to just maximising volume, as is the
case with the SPPS package.
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Chapter 7

Conclusions and
Recommendations

This chapter concludes the study and discusses its key findings. It includes how
well the proposed model’s optimal solution found compared to other related
modelling software, namely the Sawmill Production Planning System (SPPS)
package. The practical aspects and limitations of implementing such solutions
is also discussed. Further possible improvements that would add more value to
the model and its implementation are proposed and discussed in short detail.
Finally the study concludes with summarising the work done to what was
expected and its contribution.

7.1 Improved upon SPPS
The proposed model outperformed the SPPS package in all of the specific
cost functions proposed. This means that the model satisfied demand better,
namely at a lower production cost. This is attributed to the model having a
different optimisation strategy, specifically for the ripping operation.

The SPPS package (and other related research and developments) typically
determine optimal sawing and ripping decisions in isolation. For example the
SPPS package determines optimal sawing patterns but has the subsequent rip-
ping operation’s strategy maximise volume, without any decision variable(s)
to influence the ripping operation. This project’s optimisation strategy used
differs in that it forces the ripping machine to saw products according to
part priority values assigned. This is then an extra decision variable that is
optimally determined in combination with the previous operation’s decision
variables, namely the sawing patterns per logs. Determining these priority
values (settings) as well as the combined sawing pattern decisions at the pri-
mary sawing operation, is what differentiates this project’s model from most
others. Having this extra decision variable (setting) helped the model satisfy

104
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market demand better, specifically at a much lower raw material waste, over
and under production cost as shown in Tables 6.2 to 6.4.

As mentioned the proposed model outperformed the SPPS package for the
specific cost functions formulated. This however does not mean the model
outperforms the SPPS package in general, especially with regard to the raw
material cost, since both have slightly different optimising objectives. The
SPPS’s objective function represents the estimated profit, which it maximises
instead of just minimising the three cost functions proposed in this study.
Also it can take into account other constraints, such as production and kiln
drying capacities. More results and comparisons would further substantiate
the model’s performance. However the model added great value by taking into
account over production costs, while only an under production cost is used in
the SPPS’s objective function. This being said, there is a maximum volume
demand constraint that can be adjusted in the SPPS package.

7.2 Implementing Solutions and a Possible DSS
The model’s solutions were shown to the management of the case company
and they were impressed with the outcomes. Despite this, it was felt that
the model did not satisfy demand well enough, sometimes not supplying some
products at all (Figures 6.8 to 6.10). Management felt that current practices,
though not “optimal”, were preferable. Three reasons are proposed why the
model did not satisfy demand as well as would be expected by the management
of the case company.

Firstly, the industry’s ripping machine takes into account the subsequent chop-
ping operation, which tries to optimally chop the lumber length-wise into de-
manded wood products. The proposed model does not take this into account,
i.e. it keeps the length as a constant in the ripping operation’s optimisation
strategy (Equation 4.1.15). Adding the possible length of the product sawn
into the maximising value Equation (4.1.15) would vary the mixture of prod-
ucts ripped. This is explained further in Section 7.3.4.

Secondly the model’s ripping operation works with a flitch’s maximum edged
board width, which is maybe not a good assumption when mimicking the real
world where a flitch has irregular width characteristics, due to taper and sweep
of the log. Because of this, the industry tries to also recover side edged lumber
within these irregular shaped flitches (illustrated later in Figure 7.2). Because
of this extra side edged lumber option that can be recovered, different product
widths can be fitted into the flitch. This would then yield a different mixture
of products ripped, even with similar part priority values. This is further dis-
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cussed in Section 7.3.5.

Thirdly and probably most importantly, the model is based on a long static
time period of a month. In the industry, management and machine operators
can change the sawing and ripping decisions on a daily (or evenly hourly) basis.
Thus the decision maker would see that too much of one product is being pro-
duced and thus will change its priority value or even de-activate the product.
It is felt that a more dynamic model would be of greater value. Such a model
could represent the weekly or even daily changing processing environment as
opposed to the model’s current static monthly environment.

With that in mind an Excel spreadsheet was created where a user could change
the two decision values, namely the sawing patterns and priority values for
ripped products. This is according to a set number logs supplied and lumber
demand expected, which the user can change manually. Similar to the model
proposed (executed in AIMMS), SIMSAW data is used to determine the saw-
ing operation’s output and Excel’s Solver is used to determine the ripping
operation’s output (modelled as a MIP problem). Excel’s Solver is called con-
secutively (for each flitch ripped) and run via an external application, namely
through the Visual Basic Application (VBA). Thus the project’s PBIL algo-
rithm tries to find good solutions that are used as a guideline (starting point)
for a decision maker. The decision maker can then test these optimal solutions
found and any other values in this Excel model. The development and appli-
cation of such a Decision Support System (DSS) at the case company is still
under investigation (Figure C.1 in Appendix C).

7.3 Further Modelling Improvements
As mentioned, further improvements to the model would be: including the sup-
ply of logs as a decision variable; expanding it to include the third operation
(chopping) and its machine priority settings; more evaluation of the number
and possible sawing patterns; and formulating more accurate cost equations -
there is for example a greater cost involved with over production than just the
warehouse cost used in this study.

Finally, the model and its results are from deterministic inputs. Techniques
such as Monte Carlo (MC) simulation could be useful for the naturally varying
log supply and fluctuating market demands. This would make the model
and its results stochastic, adding more value to the decision maker. These
improvements are all explained further in the following subsections.
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7.3.1 Supply of Logs as another Decision Variable

In this project the number of logs supplied was a parameter for the developed
optimisation model. What might be of great value is having this very impor-
tant decision, namely how many logs need to be processed to meet demand as
a decision variable to be optimised as well. In the SPPS package this is the
case, where the user just has to define a minimum and maximum amount of
logs allowed to be processed. This variable is very important since if a pro-
posed solution does in fact translate into higher volume recovery then in fact
less logs are needed to satisfy demand, and as mentioned raw material costs
are by far the biggest cost factor.

7.3.2 Stochastic Model

At the moment the model is deterministic (using average values though vari-
ance occurs). The model could however utilise stochastic modelling for uncer-
tainty. As can be seen in the fluctuating (box plots illustrate the variance)
supply and demand values in Figures 5.5 to 5.10, the average value is not
necessarily the most accurate deterministic value to use. Running the model
under many different scenarios or parametric values (probably following some
distribution) could be of further value to the decision maker.

7.3.3 Dynamic Model

At the moment the model is static, since the variables do not represent se-
quences of decisions over multiple periods (Winston and Goldberg, 2004, Ch.
1). The decision variables are changed for a “snap shot” (one month), how-
ever in the ever changing production environment, these decisions are made
weekly or even daily. To solve the optimal decisions for multiple periods a
dynamic model could be used. Also dynamic modelling could model the in-
ventory problem more accurately, since this project’s static model does not
take into account how fast the overstocked products are demanded over time.

7.3.4 Operation 3: Optimally Chopping the Lumber

It would be of further value to incorporate subsequent operations in this
project’s model. Specifically the operation where lumber is optimally chopped
length-wise (Figure 7.1).

This operation resembles the ripping operation and could be formulated sim-
ilarly, where the supply of lumber (Stwh), which is the output of the ripping
operation (2) becomes the input for this third operation.

Let:
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Figure 7.1: Two possible length sawing decisions at operation 3, commonly referred
to as chopping.

Mtwl = Length of product with set thickness t,
width w and length l (7.3.1)

Ptwl = Priority value of products chopped with set thickness t,
width w and length l. (7.3.2)

Ztwl = Number of products having set length l chopped
from lumber having thickness t and width w. (7.3.3)

Ztwl is integer (7.3.4)

K3 = Kerf, thickness of saw blade, at operation 3 (7.3.5)

Then the objective function for operation 3 is similarly formulated to operation
2 as:

Max B =
∑
t

∑
w

∑
l

MtwlPtwlZtwl(MtMtw) (7.3.6)
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7.3.5 Recovering Side Edged Products

In this project’s model only the flitches’ maximum board material (Mtf ) is
ripped into lumber. However the ripping operation also recovers extra mate-
rial from flitches, called side edged lumber as shown in Figure 7.2. This will
influence the ripping decisions, namely what products will be ripped. It will
also probably increase the volume of lumber recovered and can be included
into future work.

Figure 7.2: Side edged lumber recovered due to sweep and taper of logs.

7.3.6 Quality Tolerances: Bark/Wane and Knots

In this study no allowance was made for wane, which is the presence of bark
or lack of wood on lumber edges (Figure 7.3). However in industry it can
be tolerated on some products (Todoroki and Ronnqvist, 1997). Having this
allowance bought into the model will influence the optimal decisions. Todor-
oki and Ronnqvist (1997) determined that when the allowance of wane was
increased to 5 mm and 10 mm, flitch volume recovery increased by 2.4% and
4.6% respectively.

Also this project did not include quality aspects such as the presence of knots
amongst others, which will influence the sawing decisions and results. Knots
are shapes or points left on a piece of wood from where a stem or branch was
growing from the tree.
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Figure 7.3: Partial board product demonstrating wane (shaded region). Todoroki
and Ronnqvist (1997) found that increasing the tolerance increased volume recovery
significantly.

7.3.7 Objective Function(s)

As mentioned the three simple cost functions (raw material waste, over pro-
duction and under production) do not represent all the factors which determine
optimal sawing and ripping decisions. There are other cost functions such as,
processing time costs that could be included.

Also, depending on the objectives or strategy of the wood manufacturer, some
costs are of more importance than others. For example a company might
have a policy of zero tolerance on under supplying (as this affects customer
satisfaction) or reducing production as much as possible (which is in line with
Theory of Constraints and Lean thinking). In such a case it could be of interest
to add weights to each of these three cost functions. For example Equation
4.1.33 could become:

TFC = w1TRMWC+ w2TOPC+ w3TUPC (7.3.7)

where:
w1,2,3 = weight parameters values that users can change for each of the three
cost functions.

Besides the above mentioned cost “weighting” approach, multiple objective de-
cision making might be of great value. For example two appropriate objectives
could be the service rate and the associated production cost, which are usually
inversely related.
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7.4 Final Remarks
The model developed was able to link two important operations in the wood
manufacturing chain that are usually optimised in isolation. Operations Re-
search (OR) can be defined as the art of giving bad answers to problems to
which otherwise worse answers are given (Saaty, 2004). The simulation and
optimisation techniques helped the model give better answers compared to
those offered by other optimisation software used in this case study. Using a
different optimisation strategy, in this case the strategy on how to optimally
rip (saw) flitch/board material into demanded lumber, can greatly influence
the system and its expected results. Additional studies would further validate
and substantiate this project’s model.
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Appendix A

Volume of Logs Supplied for
Different Scenarios

Using Huber’s log volume Equation (3.2.3) and the data of the number of
small end diameter logs supplied in Section 5.4 and the fact that all logs are
supplied in 3 meters lengths, the average monthly log volume per log diameter
class was appropriately calculated and is illustrated in the figures below.
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Figure A.1: Average monthly volume of logs supplied to the case study sawmill
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Figure A.3: Average monthly volume of logs supplied to the case study sawmill
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Appendix B

Ripping Machine’s Optimisation
Strategy for Case Company

Figure B.1: Ripping machine’s optimisation strategy for case company. Email
correspondence via case company and operating machine’s customer support. Note
some information has been removed as too keep anonymity of case company and
machine supplier.
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Appendix C

Decision Making for Case
Company

Figure C.1: Decision making for case company. Correspondence via management
of case company. Note some information has been removed as too keep anonymity
of case company.
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Appendix D

Flitches’ Maximum Board Width
Simulated

For each log diameter class (d) a 1 000 logs with varying taper (distributed
normally: 95 % within 8-11 mm/m) and sweep (distributed normally: 95 %
within 0-15 mm/m) were virtually sawed in SIMSAW. This was through each
of the 4 possible sawing patterns (Figure 5.1) for Scenarios 2 and 3. This
was done to determine the sawing operation’s output, namely flitches with
thickness t and width f for each possible Sawing Patterns (SPs) to choose
from (c). This represents the SIMdctf variable in Equation 4.1.7.
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Appendix E

Model’s Code in AIMMS 3.13
Environment

The project’s model was encoded and run in the Advanced Interactive Multidi-
mensional Modelling System (AIMMS) modelling environment and the entire
code is shown below. The first part shows the declaration of the variables,
parameters and constraints followed by the main execution procedure of the
model.
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MAIN MODEL Main_1 

 

  DECLARATION SECTION PBIL 

 

    SET: 

       identifier   :  Vector 

       index        :  v 

       order by     :  val(v) 

       definition   :  data{1..30} ; 

 

    SET: 

       identifier   :  Bit 

       index        :  b 

       order by     :  val(b) ; 

 

    SET: 

       identifier   :  Generations 

       index        :  g 

       order by     :  val(g) ; 

 

    PARAMETER: 

       identifier   :  Component_Gene 

       index domain :  (t,w,b) ; 

 

    PARAMETER: 

       identifier   :  Initial_Probability_vector 

       index domain :  (b) 

       definition   :  0.5 ; 

 

    PARAMETER: 

       identifier   :  Learning_Rate ; 

 

    PARAMETER: 

       identifier   :  Mutation_Shift ; 

 

    PARAMETER: 

       identifier   :  Mutation_Probability ; 

 

    PARAMETER: 

       identifier   :  Priority_bin_dec_conversion 

       index domain :  (t,b) ; 

 

    VARIABLE: 

       identifier   :  Cutting_Values 

       index domain :  (g,v,d,c) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Cumulative_Probability_Vectors 

       index domain :  (g,b) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Solution_Vectors 

       index domain :  (g,v,b) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Probability_vectors 

       index domain :  (g,b) 

       range        :  free ; 

 

    VARIABLE: 
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       identifier   :  Updated_Probability_Vectors 

       index domain :  (g,b) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Population_binarys 

       index domain :  (g,b) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Sum_Solution_Vectors 

       index domain :  (g,b) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Rand 

       index domain :  (g,v,d) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Count_vectors 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Count_bits 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Convergence 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Component_Priority_Values 

       index domain :  (g,v,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Component_Out_Values 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Component_Values 

       index domain :  (g,v,t,f,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Component_Supplies_V 

       index domain :  (g,v,t,w,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Component_Supplies_pieces 

       index domain :  (g,v,t,w,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Component_Volumes_Out 

       index domain :  (g,v) 

       range        :  free ; 

 

  ENDSECTION  ; 
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  DECLARATION SECTION SAWING 

 

    SET: 

       identifier   :  Thickness 

       index        :  t 

       order by     :  val(t) ; 

 

    SET: 

       identifier   :  Height 

       index        :  h ; 

 

    SET: 

       identifier   :  Flitch 

       index        :  f 

       order by     :  val(f) 

       definition   :  data {1..600} ; 

 

    SET: 

       identifier   :  Log_class 

       index        :  d 

       order by     :  val(d) 

       definition   :  data {1..21} ; 

 

    SET: 

       identifier   :  Cutting_Pattern 

       index        :  c 

       definition   :  data {1..4} ; 

 

    PARAMETER: 

       identifier   :  Raw_Material_Cost ; 

 

    PARAMETER: 

       identifier   :  M_Log_Dia 

       index domain :  (d) ; 

 

    PARAMETER: 

       identifier   :  S_Logs 

       index domain :  (d,h) ; 

 

    PARAMETER: 

       identifier   :  M_Log_Height 

       index domain :  (h) ; 

 

    PARAMETER: 

       identifier   :  M_Flitch_board_width 

       index domain :  (t,f) ; 

 

    PARAMETER: 

       identifier   :  SIM_Flitches_Proportion 

       index domain :  (d,c,t,f) ; 

 

    VARIABLE: 

       identifier   :  LV 

       index domain :  (d,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Count_log_classes 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Count_cutting_patterns 
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       range        :  free ; 

 

    VARIABLE: 

       identifier   :  TRMV 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Cutting_Values 

       index domain :  (g,d,c) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Cutting_Value 

       index domain :  (d,c) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Flitches_Out_pieces 

       index domain :  (t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Flitches_Out_Volumes 

       index domain :  (t,f,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Flitches_Outs_pieces 

       index domain :  (t,f,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Flitches_Out_Volume 

       index domain :  (t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Flitches_Out_Volume_all_t 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Answer_Framesaw_Recovery 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Flitches_Outs_pieces 

       index domain :  (g,v,t,f,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Flitches_Out_pieces 

       index domain :  (g,v,t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Flitches_Out_Volumes 

       index domain :  (g,v,t,f,h) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Flitches_Out_Volume 

       index domain :  (g,v,t) 

       range        :  free ; 
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    VARIABLE: 

       identifier   :  Flitches_Out_Volume_all_t 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Framesaw_Recovery 

       index domain :  (g,v) 

       range        :  free ; 

 

  ENDSECTION  ; 

 

  DECLARATION SECTION RIPPING 

 

    SET: 

       identifier   :  Width 

       index        :  w 

       order by     :  val(w) ; 

 

    PARAMETER: 

       identifier   :  S_Flitches_Supplied 

       index domain :  (t,f,h) ; 

 

    PARAMETER: 

       identifier   :  M_Lumber_width 

       index domain :  (t,w) ; 

 

    PARAMETER: 

       identifier   :  P_Lumber_Priority 

       index domain :  (t,w) ; 

 

    PARAMETER: 

       identifier   :  K2_Kerf2 ; 

 

    VARIABLE: 

       identifier   :  In_Volumes 

       index domain :  (t,f,h) 

       range        :  free 

       definition   :  

S_Flitches_Supplied(t,f,h)*M_Flitch_board_width(t,f)/1000*val(t)/1000*M_Log_Height(h) 

; 

 

    VARIABLE: 

       identifier   :  In_Volume 

       range        :  free 

       definition   :  sum[(t,f,h), In_Volumes(t,f,h)] ; 

 

    VARIABLE: 

       identifier   :  Value 

       index domain :  (t,f,w) 

       range        :  {0..3} ; 

 

    VARIABLE: 

       identifier   :  Supply 

       index domain :  (t,w) 

       range        :  free 

       definition   :  

sum[(f,h),Value(t,f,w)*S_Flitches_Supplied(t,f,h)*(M_Lumber_width(t,w)/1000)*val(t)/10

00*M_Log_Height(h)] ; 

 

    VARIABLE: 

       identifier   :  Supply_pieces 
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       index domain :  (t,w,h) 

       range        :  free 

       definition   :  sum[f,Value(t,f,w)*S_Flitches_Supplied(t,f,h)] ; 

 

    VARIABLE: 

       identifier   :  Out_Volumes 

       index domain :  (t,f) 

       range        :  free 

       definition   :  sum [(w,h), 

Value(t,f,w)*S_Flitches_Supplied(t,f,h)*(M_Lumber_width(t,w)/1000)*val(t)/1000*M_Log_H

eight(h)] ; 

 

    VARIABLE: 

       identifier   :  Out_Volume 

       range        :  free 

       definition   :  sum [(t,f,w,h), 

Value(t,f,w)*S_Flitches_Supplied(t,f,h)*(M_Lumber_width(t,w)/1000)*val(t)/1000*M_Log_H

eight(h)] ; 

 

    VARIABLE: 

       identifier   :  Out_Value 

       range        :  free 

       definition   :  sum [(t,f,w), 

Value(t,f,w)*P_Lumber_Priority(t,w)*M_Lumber_width(t,w)] ; 

 

    CONSTRAINT: 

       identifier   :  Spacers 

       index domain :  (t,f) 

       definition   :  sum[w, Value(t,f,w)]<=3 ; 

 

    CONSTRAINT: 

       identifier   :  Fit 

       index domain :  (t,f) 

       definition   :  sum[w, Value(t,f,w)*M_Lumber_width(t,w)]+(sum[w,Value(t,f,w)]-

1)*K2_Kerf2<=M_Flitch_board_width(t,f) ; 

 

    MATHEMATICAL PROGRAM: 

       identifier   :  Most_Out 

       objective    :  Out_Value 

       direction    :  maximize 

       constraints  :  AllConstraints 

       variables    :  AllVariables 

       type         :  Automatic ; 

 

  ENDSECTION  ; 
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 DECLARATION SECTION PBIL_Results 

 

    PARAMETER: 

       identifier   :  Lumber_Cost_Over_Production 

       index domain :  (t,w) ; 

 

    PARAMETER: 

       identifier   :  Lumber_Cost_Under_Production 

       index domain :  (t,w) ; 

 

    PARAMETER: 

       identifier   :  D_Demand_Lumber 

       index domain :  (t,w) ; 

 

    VARIABLE: 

       identifier   :  Answer 

       index domain :  (b) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Component_Supplies 

       index domain :  (g,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Component_Priority 

       index domain :  (t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Component_Supply 

       index domain :  (t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Component_Supply_Demand 

       index domain :  (t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Overs 

       index domain :  (t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Unders 

       index domain :  (t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Overs_Unders 

       index domain :  (t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Over 

       index domain :  (t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Under 

       index domain :  (t) 

       range        :  free ; 
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    VARIABLE: 

       identifier   :  Converged_Cost_Over_Under 

       index domain :  (t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Over_all_t 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Under_all_t 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Over_Under_all_t 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Cost_Raw_materials 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Recovery 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Converged_Total_Cost 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Population_Priority_W 

       index domain :  (g,v,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Population_Priority_W 

       index domain :  (g,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Overs 

       index domain :  (g,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Unders 

       index domain :  (g,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Overs_Unders 

       index domain :  (g,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Over 

       index domain :  (g,t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Under 

       index domain :  (g,t) 
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       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Over_Under 

       index domain :  (g,t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Over_all_t 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Under_all_t 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Over_Under_all_t 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Costs_Raw_material 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Fitness_Function 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Fitness_Function 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Recovery 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Best_Recovery 

       index domain :  (g) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Costs_Overs 

       index domain :  (g,v,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Costs_Unders 

       index domain :  (g,v,t,w) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Cost_Over_Unders 

       index domain :  (g,v,t,w) 

       range        :  free ; 

 

    VARIABLE: 
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       identifier   :  Costs_Over 

       index domain :  (g,v,t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Costs_Under 

       index domain :  (g,v,t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Costs_Over_Under 

       index domain :  (g,v,t) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Cost_Over_all_t 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Cost_Under_all_t 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Cost_Over_Under_all_t 

       index domain :  (g,v) 

       range        :  free ; 

 

    VARIABLE: 

       identifier   :  Costs_Raw_materials 

       index domain :  (g,v) 

       range        :  free ; 

 

  ENDSECTION  ; 

 

   

 

 

 

 

 

PROCEDURE 

    identifier :  MainInitialization 

 

  ENDPROCEDURE  ; 
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PROCEDURE 

    identifier :  MainExecution 

    body       :   

       

 

empty AllVariables; 

 

Rand(g,v,d):= Uniform(0,1); 

Count_vectors:=Count(v); 

Count_bits:=Count(b); 

Count_log_classes:=Count(d); 

Count_cutting_patterns:=Count(c); 

LV(d,h):= 

S_Logs(d,h)*3.143*(M_Log_Dia(d)*100+M_Log_Height(h)/2)^2*M_Log_Height(h)/40000; 

TRMV:=sum [(d,h), LV(d,h)]; !Total Raw Material Volume supplied 

 

for g do; ! For each g (Populations/Generation) do 

 

if val(g)=0 then 

Probability_vectors(g,b):= Initial_Probability_vector(b) else  !initite first 

population's probability_vector (= paramter, usually 50%) 

Probability_vectors(g,b):= Probability_vectors(g-1,b)*(1-

Learning_Rate)+Best_Population_binarys(g-1,b)*Learning_Rate;  !normal Learning Rate 

Probability_vectors(g,b):=Probability_vectors(g,b)*(1-

Mutation_shift)+(round(Uniform(0,1)))*Mutation_shift Onlyif (Uniform(0,1)<= 

Mutation_Probability); !Mutate 

endif; 

 

 

 

for d do 

for b|val(d)*4-3<=val(b)<=val(d)*4 do 

if val(b)=val(d)*4-3 then 

Updated_Probability_Vectors(g,b):=Probability_Vectors(g,b); 

else 

Updated_Probability_Vectors(g,b):=Probability_Vectors(g,b)+Updated_Probability_Vectors

(g,b-1); 

endif; 

 

endfor; 
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endfor; 

 

for v do ! For all Solution Vectors (Population size) do 

 

for d do 

 

for b|val(b)<=Count_log_classes*Count(c) do 

 

if val(b)=val(d)*4-3 then 

if Rand(g,v,d)*Updated_Probability_Vectors(g,b+3)<= Updated_Probability_Vectors(g,b) 

then 

Solution_Vectors(g,v,b):=1; 

endif; 

endif; 

 

if val(b)=val(d)*4-2 then 

if Updated_Probability_Vectors(g,b-1)< 

Rand(g,v,d)*Updated_Probability_Vectors(g,b+2)<= Updated_Probability_Vectors(g,b) then 

Solution_Vectors(g,v,b):=1; 

endif; 

endif; 

 

if val(b)=val(d)*4-1 then 

if Updated_Probability_Vectors(g,b-1)< 

Rand(g,v,d)*Updated_Probability_Vectors(g,b+1)<= Updated_Probability_Vectors(g,b) then 

Solution_Vectors(g,v,b):=1; 

endif; 

endif; 

 

if val(b)=val(d)*4 then 

if Updated_Probability_Vectors(g,b-1)< Rand(g,v,d)*Updated_Probability_Vectors(g,b) 

then 

Solution_Vectors(g,v,b):=1; 

endif; 

endif; 

 

 

endfor; 

endfor; 

 

 

 

endfor; 

 

 

for b|val(b)> Count(d)*Count(c) do !for bits representing ripping decisions (priority 

values) 

for v do 

if Uniform(0,1) < ( (Probability_vectors(g,b)*Count_vectors-

Sum_Solution_Vectors(g,b))/(Count_vectors-val(v)+1)) then 

Solution_Vectors(g,v,b):= 1; Sum_Solution_Vectors(g,b):=Sum_Solution_Vectors(g,b)+1; 

!else 

endif 

endfor; 

endfor; 

 

for d do 

for c do 

for b|val(b)=(val(d)-1)*4+val(c) do 

Cutting_Values(g,v,d,c):=Solution_Vectors(g,v,b); 

endfor; 

endfor; 

endfor; 
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Flitches_Outs_pieces(g,v,t,f,h):=round(sum[(d,c), 

Cutting_Values(g,v,d,c)*SIM_Flitches_Proportion(d,c,t,f)*S_Logs(d,h)]); 

Flitches_Out_pieces(g,v,t):=sum[(f,h), Flitches_Outs_pieces(g,v,t,f,h)]; 

Flitches_Out_Volumes(g,v,t,f,h):=Flitches_Outs_pieces(g,v,t,f,h)*val(t)/1000*M_Flitch_

board_width(t,f)/1000*M_Log_Height(h); 

Flitches_Out_Volume(g,v,t):=sum [(f,h), Flitches_Out_Volumes(g,v,t,f,h)]; 

Flitches_Out_Volume_all_t(g,v):=sum[t,Flitches_Out_Volume(g,v,t)]; 

Framesaw_Recovery(g,v):= Flitches_Out_Volume_all_t(g,v)/TRMV; 

 

Population_Priority_W(g,v,t,w):= 

sum[b,Solution_Vectors(g,v,b)*Priority_bin_dec_conversion(t,b)*Component_Gene(t,w,b)]; 

!convert from binary to decimal 

 

 

for v do 

P_Lumber_Priority(t,w):= Population_Priority_W(g,v,t,w); !variable becomes the 

parameter for MIP solver 

S_Flitches_Supplied(t,f,h):=Flitches_Outs_pieces(g,v,t,f,h);  !variable becomes the 

parameter for MIP solver 

 

solve Most_Out; 

 

 

Costs_Overs(g,v,t,w):= (Supply(t,w)-

D_Demand_Lumber(t,w))*Lumber_Cost_Over_Production(t,w) Onlyif 

(Supply(t,w)>=D_Demand_Lumber(t,w)); 

Costs_Over(g,v,t):=sum[w, Costs_Overs(g,v,t,w)]; 

Cost_Over_all_t(g,v):=sum[t, Costs_Over(g,v,t)]; 

 

Costs_Unders(g,v,t,w):= (D_Demand_Lumber(t,w)-

Supply(t,w))*Lumber_Cost_Under_Production(t,w) 

Onlyif(Supply(t,w)<=D_Demand_Lumber(t,w)); 

Costs_Under(g,v,t):=sum[w, Costs_Unders(g,v,t,w)]; 

Cost_Under_all_t(g,v):=sum[t, Costs_Under(g,v,t)]; 

 

Cost_Over_Unders(g,v,t,w):= Costs_Overs(g,v,t,w)+Costs_Unders(g,v,t,w); 

Costs_Over_Under(g,v,t):= Costs_Over(g,v,t)+Costs_Under(g,v,t); 

Cost_Over_Under_all_t(g,v):=Cost_Over_all_t(g,v)+Cost_Under_all_t(g,v); 

 

Costs_Raw_materials(g,v):= (TRMV-Out_Volume)*Raw_Material_Cost; 

 

Recovery(g,v):= Out_Volume/TRMV; 

 

Fitness_Function(g,v):= Cost_Over_Under_all_t(g,v)+ Costs_Raw_materials(g,v); 

 

if val(v)= 1 then   !Find Best Vector(v) in Population(p) 

Best_Fitness_Function(g):=Fitness_Function(g,v); 

Best_Fitness_Function(g):= Fitness_Function(g,v); 

Best_Population_binarys(g,b):= Solution_Vectors(g,v,b); 

Best_Population_Priority_W(g,t,w):= Population_Priority_W(g,v,t,w); 

Best_Cutting_Values(g,d,c):= Cutting_Values(g,v,d,c); 

 

Best_Component_Supplies(g,t,w):= Supply(t,w); 

 

Best_Costs_Overs(g,t,w):= Costs_Overs(g,v,t,w); 

Best_Costs_Unders(g,t,w):= Costs_Unders(g,v,t,w); 

Best_Costs_Overs_Unders(g,t,w):=Cost_Over_Unders(g,v,t,w); 

 

Best_Costs_Over(g,t):= Costs_Over(g,v,t); 
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Best_Costs_Under(g,t):= Costs_Under(g,v,t); 

Best_Costs_Over_Under(g,t):=Costs_Over_Under(g,v,t); 

 

Best_Costs_Over_all_t(g):=Cost_Over_all_t(g,v); 

Best_Costs_Under_all_t(g):=Cost_Under_all_t(g,v); 

Best_Costs_Over_Under_all_t(g):=Cost_Over_Under_all_t(g,v); 

 

Best_Costs_Raw_material(g):= Costs_Raw_materials(g,v); 

Best_Recovery(g):=Recovery(g,v); 

 

else 

if Fitness_Function(g,v)< Best_Fitness_Function(g) then 

Best_Fitness_Function(g):=Fitness_Function(g,v); 

Best_Fitness_Function(g):= Fitness_Function(g,v); 

Best_Population_binarys(g,b):= Solution_Vectors(g,v,b); 

Best_Population_Priority_W(g,t,w):= Population_Priority_W(g,v,t,w); 

Best_Cutting_Values(g,d,c):= Cutting_Values(g,v,d,c); 

 

 

Best_Component_Supplies(g,t,w):= Supply(t,w); 

 

Best_Costs_Overs(g,t,w):= Costs_Overs(g,v,t,w); 

Best_Costs_Unders(g,t,w):= Costs_Unders(g,v,t,w); 

Best_Costs_Overs_Unders(g,t,w):=Cost_Over_Unders(g,v,t,w); 

 

Best_Costs_Over(g,t):= Costs_Over(g,v,t); 

Best_Costs_Under(g,t):= Costs_Under(g,v,t); 

Best_Costs_Over_Under(g,t):=Costs_Over_Under(g,v,t); 

 

Best_Costs_Over_all_t(g):=Cost_Over_all_t(g,v); 

Best_Costs_Under_all_t(g):=Cost_Under_all_t(g,v); 

Best_Costs_Over_Under_all_t(g):=Cost_Over_Under_all_t(g,v); 

 

Best_Costs_Raw_material(g):= Costs_Raw_materials(g,v); 

Best_Recovery(g):=Recovery(g,v); 

 

endif; 

endif; 

 

 

 

Component_Priority_Values(g,v,t,w):=P_Lumber_Priority(t,w); 

Component_Values(g,v,t,f,w):=Value(t,f,w); 

Component_Out_Values(g,v):=Out_Value; 

Component_Supplies_pieces(g,v,t,w,h):=Supply_pieces(t,w,h); 

Component_Supplies_V(g,v,t,w,h):=Component_Supplies_pieces(g,v,t,w,h)*M_Lumber_width(t

,w)/1000*Val(t)/1000*M_Log_Height(h); 

Component_Volumes_Out(g,v):=Out_Volume; 

 

 

endfor; 

 

 

 

Answer(b):= Round(Probability_vectors(g,b)); 

Converged_Component_Priority(t,w):=sum[b,Answer(b)*Priority_bin_dec_conversion(t,b)*Co

mponent_Gene(t,w,b)]; 

 

for d do 

for c do 

for b|val(b)=(val(d)-1)*4+val(c) do 

Answer_Cutting_Value(d,c):=Answer(b|val(b)=(val(d)-1)*4+val(c)); 

endfor; 
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endfor; 

endfor; 

 

 

for b do 

if 0.05 < Probability_vectors(g,b) < 0.95  then 

Convergence(g):= Convergence(g)+1 

endif; 

endfor; 

 

 

 

StatusMessage(val(g)); 

DialogProgress("Number of Bits Converging (%)", ! (input) string expression 

[(Count_bits-Convergence(g))*100/Count_bits]); ! (optional) integer expression); 

 

 

if Convergence(g) <= 0 then 

break 

endif; 

 

 

 

endfor; 

 

!Final Answer 

 

 

 

Answer_Flitches_Outs_pieces(t,f,h):=round(sum[(d,c), 

Answer_Cutting_Value(d,c)*SIM_Flitches_Proportion(d,c,t,f)*S_Logs(d,h)]); 

Answer_Flitches_Out_pieces(t):=sum[(f,h), Answer_Flitches_Outs_pieces(t,f,h)]; 

Answer_Flitches_Out_Volumes(t,f,h):=Answer_Flitches_Outs_pieces(t,f,h)*val(t)/1000*M_F

litch_board_width(t,f)/1000*M_Log_Height(h); 

Answer_Flitches_Out_Volume(t):=sum [(f,h), Answer_Flitches_Out_Volumes(t,f,h)]; 

Answer_Flitches_Out_Volume_all_t:=sum[t,Answer_Flitches_Out_Volume(t)]; 

Answer_Framesaw_Recovery:= Answer_Flitches_Out_Volume_all_t/TRMV; 

 

 

 

S_Flitches_Supplied(t,f,h):=Answer_Flitches_Outs_pieces(t,f,h); 

P_Lumber_Priority(t,w):= Converged_Component_Priority(t,w); 

 

solve Most_Out; 

 

 

 

 

 

 

 

 

Converged_Component_Supply(t,w):= Supply(t,w); 

Converged_Component_Supply_Demand(t,w):= Converged_Component_Supply(t,w)-

D_Demand_Lumber(t,w); 

 

 

Converged_Cost_Overs(t,w):= (Supply(t,w)-

D_Demand_Lumber(t,w))*Lumber_Cost_Over_Production(t,w) Onlyif 

(Supply(t,w)>=D_Demand_Lumber(t,w)); 

Converged_Cost_Over(t):=sum[w, Converged_Cost_Overs(t,w)]; 

Converged_Cost_Over_all_t:=sum[t, Converged_Cost_Over(t)]; 
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Converged_Cost_Unders(t,w):= (D_Demand_Lumber(t,w)-

Supply(t,w))*Lumber_Cost_Under_Production(t,w) Onlyif 

(Supply(t,w)<=D_Demand_Lumber(t,w)); 

Converged_Cost_Under(t):=sum[w, Converged_Cost_Unders(t,w)]; 

Converged_Cost_Under_all_t:=sum[t, Converged_Cost_Under(t)]; 

 

 

Converged_Cost_Overs_Unders(t,w):=Converged_Cost_Overs(t,w)+Converged_Cost_Unders(t,w) 

; 

Converged_Cost_Over_Under(t):= Converged_Cost_Over(t)+Converged_Cost_Under(t); 

Converged_Cost_Over_Under_all_t:=Converged_Cost_Over_all_t+Converged_Cost_Under_all_t; 

 

 

Converged_Cost_Raw_materials:= (TRMV-Out_Volume)*Raw_Material_Cost; 

Converged_Recovery:= Out_Volume/TRMV; 

 

 

Converged_Total_Cost:=Converged_Cost_Raw_materials+Converged_Cost_Over_Under_all_t; 
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