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Abstract 

The amount and complexity of software applications for the building industry is increasing 

constantly. It has been a long term goal of the software industry to support integration of the 

various models and applications. This is a difficult task due to the complexity of the models 

and the diversity of the fields that they model. As a result, only large software houses have 

the ability to provide integrated solutions on the basis of a common information model. Such 

a model can more easily be established since the different software is developed within the 

same group. Other software suppliers usually have to revert to importing and exporting of 

data to establish some form of integration. Even large software houses still sometimes make 

use of this technique between their different packages. In order to obtain a fully integrated 

solution, clients have to acquire complex and expensive software, even if only a small 

percentage of the functionality of this software is actually required. A different approach to 

integration is proposed here, based on providing an integration framework that links different 

existing software models. The framework must be customisable for each individual's unique 

requirements as well as for the software already used by the individual. In order for the 

framework to be customisable, it must either encompass the information requirements of all 

existing software models from the outset, or be flexible and adaptable for each user. 

Developing an encompassing software model is difficult and expensive and thus the latter 

approach is followed here. The result is a model that is less general than BIM-style models, 

but more focussed and less complex. The elements of this flexible model do not have 

predetermined properties, but properties can instead be added and removed at runtime. 

Furthermore, derived properties are not stored as values, but rather as methods by which 

their values are obtained. These can also be added, removed and modified at runtime. 

These two concepts allow the structure and the functionality of the model to be changed at 

runtime. An added advantage is that a knowledgeable user can do this himself. Changes to 

the models can easily be incorporated in the integration framework, so their future 

development is not limited. This has the advantage that the information content of the 

various applications does not have to be pre-determined. It is acknowledged that a specific 

solution is required for each integration model; however the user still has full control to 

expand his model to the complexity of BIM-type models. Furthermore, if new software 

models are developed to incorporate the proposed structures, even more seamless and 

flexible integration will be possible. The proposed framework is demonstrated by linking a 

CAD application to a cost-estimation application for buildings. A prototype implementation 

demonstrates full integration by synchronising selection between the different applications. 
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Opsomming 

Die hoeveelheid en kompleksiteit van sagteware programme vir die bou industrie is konstant 

aan die vermeerder. Dit was nog altyd 'n lang termyn doelwit van die sagteware industrie om 

integrasie van die verskeie modelle en programme te ondersteun. Hierdie is 'n moeilike taak 

as gevolg van die kompleksiteit van die modelle, en die diversiteit van die velde wat hierdie 

programme modelleer. Die gevolg is dat net groot sagteware huise die vermoë het om 

geïntegreerde oplossings te bied op die basis van 'n gemeenskaplike inligting model. So 'n 

tipe model kan makliker bymekaargestel word siende dat al die verskillende sagteware binne 

dieselfde groep ontwikkel word. Ander sagteware verskaffers moet gewoonlik gebruik maak 

van sogenaamde uitvoer/invoer tegnieke om 'n mate van integrasie te verkry. Selfs groot 

sagteware huise maak ook gebruik van hierdie tegnieke tussen hulle verskeie pakkette, in 

plaas van om die programme direk met mekaar te koppel. Om 'n vol geïntegreerde 

oplossing te verkry, moet kliënte komplekse en duur sagteware aanskaf, selfs al word net 'n 

klein gedeelte van die funksionaliteit van hierdie sagteware gebruik. 'n Verskillende 

benadering word hier gevolg, gebaseer op 'n integrasie raamwerk wat verskillende 

bestaande sagteware modelle met mekaar koppel. Die raamwerk moet aanpasbaar wees vir 

elke individu se unieke opset. Vir die raamwerk om aanpasbaar te wees, moet dit óf alle bou 

industrie inligting inkorporeer van die staanspoor af, óf dit moet buigbaar en aanpasbaar 

wees vir elke gebruiker. Om 'n model te ontwikkel wat alle bestaande inligting inkorporeer 

van die staanspoor af is moeilik en duur, dus word die tweede benadering gevolg. Die 

eindresultaat is 'n model wat minder omvattend is as BIM-tipe modelle, maar eerder gefokus 

en minder kompleks. Die elemente van hierdie buigbare model het nie voorafbepaalde 

eienskappe nie, eienskappe kan bygevoeg en weggevat word terwyl die program hardloop. 

Verder word afgeleide eienskappe nie gestoor as waardes nie, maar eerder as metodes wat 

gebruik word om hulle waardes mee af te lei. Hierdie konsepte laat toe dat die struktuur en 

funksionaliteit van die model verander kan word terwyl die program hardloop. 'n Verdere 

voordeel is dat 'n kundige verbruiker die veranderinge self kan doen. Veranderinge in die 

modelle kan maklik ingesluit word in die integrasie model, so toekomstige ontwikkeling word 

nie beperk nie. Dit beteken dat die inhoud van die modelle nie vooraf bepaal hoef te word 

nie. Al het die raamwerk 'n gespesialiseerde oplossing vir elke gebruiker tot gevolg, het die 

gebruiker nogtans volle beheer om sy model uit te brei tot die omvattendheid van BIM-tipe 

modelle. Indien nuwe sagteware modelle ontwikkel word met die integrasie raamwerk in 

gedagte, kan nog gladder en buigbare integrasie moontlik wees. In hierdie tesis word 'n 

tekenprogram met 'n kosteberaming program gekoppel om die voorgestelde raamwerk te 

demonstreer. 'n Prototipe implementering demonstreer volle integrasie deur seleksie binne 

die programme te sinchroniseer.  
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Introduction 

New software applications are constantly being developed for the building environment. The 

functionality of existing software is also constantly being expanded. The result is an ever 

increasing amount of applications, with ever increasing functionality. Along with the 

increased functionality comes increased complexity. In most cases these software tools 

operate within a specific environment, and each has its own information structure. Often 

some information has to be shared between the various applications. Usually the user has to 

either import/export between the environments or re-enter the information completely from 

scratch. 

A typical example is when quantity surveyors use 3D CAD models, created by architects, to 

create  Bills of Quantities. Sharing information by exporting and importing of data results in 

multiple files sharing similar information. If not done correctly, which is often the case, this 

result in loss of data integrity (Section 1.3). 

Originally, different software houses developed software packages that suit the needs of the 

different professions. For example, one software house developed software for Quantity 

Surveyors; another developed CAD software for architects; another developed finite element 

method software for structural engineers, etc. In some cases integration was possible 

between the packages by importing and exporting of files. However, essentially all these 

packages functioned in separate environments. 

In response, large software developing companies started to grow their software packages 

to address all possible needs of professions in the building environment and then attempted 

to integrate the different packages. The advantage being that software integration can more 

easily occur within one company than between different software developing companies. 

Integration techniques involved creating a common information model shared by all the 

different packages. However, an information model that addresses all software needs in the 

building environment is extremely complex. As an intermediate result, so-called integration 

still involved some kind of import/export technique. This does not represent seamless 

integration. 

In recent years attempts have been made to create building information models that store 

information required by all software packages used in the building environment. The aim was 

to integrate different applications seamlessly on the basis of this common information model. 

After examining these common information models (refer Section 1.2) it is found that data 
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integrity is often compromised (Section 1.3). Furthermore, developing applications based on 

such a complex model is an expensive process. 

Smaller, more specialised applications often provide efficient solutions for certain problems. 

These applications are developed by small-scale developers who cannot afford to integrate 

their applications with the larger common information models. While complex common 

information models have its place in facilitating larger, main-stream building environment 

applications; it is also desirable for smaller, more specialised applications to operate within 

an integrated environment. 

If a user desires an integrated software environment, different existing applications can also 

be linked with each. Applications can in this way be integrated according to the custom 

needs of a specific user. It is hypothesized that the combined information requirements of 

these different applications will be less complex than the all-encompassing common 

information models of larger main-stream applications. Furthermore, if the applications that 

the user already uses can be integrated with each other, there is no need for the user to 

convert to new software applications.  

Each user will then require a custom integration solution. A framework is required that allows 

different applications to be linked with each other in such a way that information is efficiently 

managed. To enable customisability, the framework will have to be flexible. This framework 

will allow specialized software to run in an integrated environment without the need to be 

integrated into a large all-encompassing software package.  

This thesis will demonstrate a prototype of a flexible modelling framework that allows 

integration of several existing applications. Since the purpose of this framework is to 

integrate existing software, each with its own user interface, the main focus will be on the 

internal architecture of the framework. Only a basic flexible user interface is developed to 

demonstrate the different functions of the framework. 
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Definitions 

While the terms defined in this chapter can have different arbitrary definitions; in the context 

of this thesis, these terms should be interpreted as defined here. To prevent incorrect 

interpretation of some of the terms, the reader is referred to in-depth discussions of these 

terms in specified sections, rather than providing full discussions here. 

- Data Integrity: The term database integrity is used in various different software 

disciplines, each with its own definition. In its broadest meaning it refers to the "… 

trustworthiness of system resources over their entire life cycle" (Wikipedia, 2011). In 

the context of this thesis, it will be used to describe data in a computer model that 

accurately reflects data 

- Seamless integration: Refers to integration between programs in such a way that 

changes in one program are immediately reflected in all the other programs. 

- Building environment: The Building Environment refers to all parties directly and 

indirectly associated with the construction industry. This includes, but is not limited to; 

contractors, civil and structural engineers, architects, project managers and quantity 

surveyors. 

- BIM/IFC: Building Information Modelling, or BIM, refers to the concept whereby every 

aspect of a building through its entire life cycle is modelled; while Industry Foundation 

Classes, or IFC, is an open standard for BIM controlled by the international 

organisation buildingSMART. 

- Integration model: see Section 1.3 

- Abstraction: see Section 1.5 

- CAD: Computer Aided Design (CAD) describes software applications used to create 

computer models consisting of the geometrical information of a building. 

- BoQ: The Bill of Quantities (BoQ) to a document containing all pricing information for 

a building projects. All aspects of the project that contribute to its cost, e.g. tasks, 

materials, equipment hiring, etc., are each listed as an Item in the Bill of Quantities. 

- Derived attributes: An attribute whose value is derived by an algorithm using the 

values of other attributes. 
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- Functionalities: In this dissertation, the word functionalities refer to specific uses of 

an application, an object or an entity. For example, the functionalities of a CAD-

application will include amongst other functionalities: drawing a line, offsetting a line, 

creating a rectangle, inserting a dimension, defining a plot area, saving a drawing 

into a file, exporting a drawing to a supported format. A functionality of line object in a 

CAD application would be to calculate its length.  

- Core-model and supplementary models: See Section 4.3. 

- GUI: Graphical User Interface. The part of an application displayed on the computer 

screen, allowing the user to interact with the application. 

- MVC: Model-View-Controller. See Section 1.6. 

- UML: Unified Modelling Language. For a basic description of the UML concepts used 

in dissertation please refer the online article written by Donald Bell (Bell, 2004). 
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1 Overture 

This chapter introduces key concepts required to understand this thesis. Existing software 

solutions are also discussed and a case study that will be referred to throughout the thesis. 

The prototype implementation for this thesis is based on this case study. The chapter ends 

off with the objectives of this thesis. 

1.1 Case study 

In order to better illustrate the concepts of the software framework being developed, a 

prototype integration framework was developed for a specific case study. The most 

important aspects of the framework will be explained in the light of this case study. This is 

done to assist the reader in grasping the key concepts. It is very important to note that the 

proposed framework is not intended as a solution to only this case study, but rather for all 

cases similar to it. 

The case study is as follows: 

An integrated solution has to be developed for a building company that specialise in small 

housing projects. The company works with 2-dimensional drawings (building plans), and 

wants to be able to integrate it with a program that assists in compiling and reconciling the 

Bill of Quantities of each project (call it the BoQ program). Users want to be able to select a 

component in the electronic drawings, and then the bill of quantity items relevant to this 

object must be selected and displayed in the BoQ program. After a project is completed, the 

pricing information for the project is stored in a database. The prices for the different items 

for the different completed projects can then be viewed by the project managers in order to 

better estimate prices for future projects. 

The aforementioned problem requires firstly a highly customised solution, and secondly, 

integration on an intricate level. This will emphasize the two most important requirements of 

the proposed framework, namely flexibility and seamless integration. 

The case study requires the following deliverables: 

- Applications are required to manage electronic drawings and Bills of Quantities, 

which must be integrated with each other and linked to a database. 

- The Bill of Quantity items has to be linked to electronic drawing components, and 

selection synchronised between the items and components. 
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1.2 Existing software solutions 

For the purpose of emphasizing the stated problems, a discussion follows of existing 

software packages that could possibly address the requirements of the case study. 

One of the largest software houses specializing in building environment software is run by 

Autodesk, Inc. Software from this software house includes (but is not limited to) applications 

such as  

- Autodesk Revit Architecture: software designed for use by architects to create 3-

dimensional building models.  

- Autodesk Revit Structure: software quite similar to the suite above but for structural 

engineering purposes. 

- Autodesk Quantity Takeoff: designed for quantity surveyors to compile Bills of 

Quantities from various different formats of construction drawings. 

- Autodesk Navisworks: designed to integrate different software to assist in controlling 

building projects. 

- Autodesk Vault: used for managing data produced by Autodesk's BIM applications. 

Only the applications most relevant to the case study are listed above.  

To ensure the different applications are relevant to all individuals involved in the construction 

process, each application contains an extensive amount of functions. An individual might 

require only a small percentage of these functions.  

In the case study example, only a limited amount of functions from these applications will be 

used as demonstrated now. Firstly, the company uses 2-dimensional drawings, whereas 

these suites work mostly with 3-dimensional models. The Quantity Takeoff program allows 

Quantity Surveyors to compile Bill of Quanitities from various sources – 3-dimensional BIM 

models, 2-dimensional drawings in different formats, photos, etc. The company in the case 

study only works with 2-dimensional drawings in a specific format. This application contains 

a host of functionalities useful only to Quantity Surveyors and not this company. While the 

company only requires 2-dimensional drawings (and probably only has the skills to use 

these), it has to choose between two very complex 3-dimensional modelling tools. The same 

is relevant to the Naviswork and Vault applications. Furthermore, information exchange 

between the different applications can mostly only be established by exporting data from the 

one application and then importing it to the other. 
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Bentley Systems Inc. is another large software house with quite similar applications. The 

same complexity is experienced here. 

Of course the case study company can use smaller more specialized applications such as: 

- Several light-weight and some even open source 2-dimensional drawing programs 

such as AutoCAD Lite (also by AutoDESK), software by Caddie Software, 

Microstation (by Bentley Systems, Inc.). 

- WinQS: a highly specialized Quantity Surveying application designed specifically for 

Quantity Surveying within the Southern African environment. 

- Cademia: an open-source freeware 2D CAD application that is very basic, but 

extremely light weight. Several other open-source CAD programs exist, however 

Cademia has been used as an example implementation in this dissertation since it is 

developed in Java. 

- Several existing programs can be used to create and manage a database. Since 

Microsoft Access is normally readily installed as part of the Microsoft Office suite, it 

was used to create the database for the prototype. 

The problem occurs when integration is desired. It would be a far reaching goal to find a 

combination of existing software for the case study example that can export and import 

between each other; not to mention seamless integration. 

Thus the company would be forced to convert to the Autodesk products or something 

similar. These applications are all complex, requiring extensive training and expensive 

hardware resources, as well as software licensing expenses. 

1.3 Ensuring data integrity 

One of the most important rules of maintaining data integrity is: store data only once. If the 

same data is stored in more than one location, data from one location can become 

inconsistent with data from the other locations. Once an inconsistency can occur, data 

integrity is compromised. 

This rule implies that if two different files share certain information, data is being stored in 

more than one location and therefore data integrity can be compromised.  

In mathematical terms, let the set   be the set of applications for the building environment. 
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In the case study example,   might consist of two applications: a CAD application and a Bill 

of Quantities application. 

Let the object set       contain the objects (information) stored be the application   . Each 

of these sets is analogous to the underlying information model of the different applications. 

                                                            

The set   contains the conglomerate of all the information of the building environment, and 

will be the union of all the sets      : 

        

 

 

Let the set   contain all the applications utilised by a specific end-user. This set will be a 

subset of  . 

    

Where: 

                                                     

Some information is shared between the various applications and is collected in set   as 

follows: 

        

 

 

If information shared by one or more applications is stored separately for each program, the 

result is that certain information will be stored in more than one place. This means data 

integrity is being compromised. 

One solution is to store all information for all applications in the same standard file format. 

This file format will have to cater for all information in  . The amount of information 

contained in   is massive and therefore extremely complex. This set is also continuously 

growing as new software is developed constantly. Therefore, this file format would have to 

be changed frequently to accommodate new or improved applications. Changing such a 

complex format is a lengthy and expensive process that will have to be managed by a 

centralised committee. 
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Another approach involves developing an integration model analogous to the set  . This 

model serves to collect all information that is shared by the applications being utilised by the 

user, ensuring that data integrity is always maintained. A model that readily integrates all 

existing software applications would be as complex as the IFC model. However, if this 

integration model is flexible, it can be adapted and customised for every individual's 

requirement, while keeping it as simple as possible. With the case study, this integration 

model has to collect the geometric data (refer to Figure 1). 

Unfortunately it is not always possible for all data to be stored in one place only. Take the 

above example, if all common data were to be stored in the integration model, the internal 

structure of the CAD program would have to be changed to retrieve and store geometric 

data from the integration model instead of its own CAD model. It is desirable to use the 

existing CAD program without having to change its internal structure. 

If the same data is stored in more than one location, a controller must ensure that the data in 

the different locations is always synchronised. In this case the Integration model serves a 

different purpose – to control the shared information ensuring that both the CAD-model and 

the BOQ-data are in-sync with each other. 

Another way in which data integrity can be compromised involves the storage of derived 

attributes. Derived attributes are attributes that are calculated from, or influenced by, other 

attributes. In other words, a derived attribute depends on other attributes. If a derived 

attribute is stored together with the attributes it depends on, an inconsistency can occur 

whenever one of these attributes are changed without the derived attribute being updated. 

Take the example of storing information for a Wall element. One could store attributes as 

follows: 

- length 

- width 

- height 

- surface area 

In the simplest form, the surface area is calculated as the product of the length and the 

height, thus it is a derived attribute. When the length or height is changed without updating 

the surface area, an inconsistency occurs. Ultimately, the method by which the surface area 

is achieved should be stored, instead of the value of the derived attribute. 
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Figure 1 Storage of building information 
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A system that can guarantee 100% data integrity at all times is not always possible, but this 

situation should be strived towards when designing a new system. The two concepts 

described above can be used as benchmarks, and whenever it cannot be reached, a check 

should be built into the system to ensure data integrity. 

1.4 Flexible and customisable as a solution to complexity 

The building environment includes a great range of software applications to cater for every 

discipline involved. Most of these applications will share some information and functionality 

with each other (refer Figure 1). As before, let the set   be the set of applications for the 

building environment. 

                                                         

The set       is the set of functionalities that the application    provides. 

                                                                    

The set   is the set of functionalities required by a specific user.       is the set of 

functionalities that a specific user requires from application   , where       is a subset of 

     . The set       can be an empty set. 

                                                         

                                                                                      

Where: 

            

With: 

        

 

 

The set   contains all the applications which the user utilises. The applications of this set are 

such that the corresponding set       is not empty.  

    

Where: 
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The set       consists of all the functionalities provided by the software utilised by the end-

user. The set   (functionalities required by the user) is a subset of the set      . 

            

 

 

        

What this boils down to is that the total amount of functionalities that user will be faced with, 

set      ; will contain functionalities that is not necessarily required by him. 

In most circumstances the complexity of applications increase with the amount of 

functionalities provided by them. Functionalities require information that is stored in an 

information model, in this case the underlying building model of each application. The 

amount of information of these underlying models will therefore increase with the amount of 

functionalities that require information from it. Complexity will increase with the amount of 

information stored in the model. An engineering model that stores information for all the 

functionalities in set       can be compared to the IFC-style building models. These models 

will be the largest (and therefore most complex) models since it stores information for all 

possible functionalities required by the building environment. 

In theory, the complexity of a building model can therefore be lowered by decreasing the 

amount of functionalities it has to cater for. One way of lowering the amount of functionalities 

is by only integrating the functionalities of set  . However, it is not always possible to 

separate the functionalities of each application and only utilise the required ones. For this 

reason, integration will occur for the functionalities in set      . The process of selecting only 

the functionalities required by a specific end-user is a customisation process. 

The amount of functionalities in       can be further reduced by ensuring the complement of 

       , in other words the functionalities not being utilised by the end-user, is as low as 

possible. More specialised applications will contain less functionalities that is not utilised by 

the user. Applications that are customised for the user's needs will contain even less 

unutilised functionalities. For this reason it is important to use smaller more specialised and 

customised applications. 

Currently, mainstream IFC-style models are moving in a direction where the information for 

all applications is stored in one general model. The result is a large and complex model with 

each user only utilising a small portion of the model. Only large software houses have 

sufficient resources to create such a large model. Furthermore, to aid in usability, the model 

is split between applications for the most common portfolios, e.g. the architecture application 

Stellenbosch University http://scholar.sun.ac.za



13 
 

is kept separate from the structural design application, which is separate from the quantity 

take-off application. In this way integration is possible within each discipline – one 

application is utilised for all tasks within each discipline. However, information exchange 

between the applications still occurs by exporting and importing files. The result is that the 

models for the different applications are saved separately, resulting in duplication of 

information and loss of data integrity. Furthermore, seamless integration is not possible 

across the different applications. 

In some cases, especially in smaller companies, individuals have to perform tasks from a 

wider portfolio. They will require basic functionality from more than one of these IFC-style 

applications. In other words, they will require a bigger set of applications to work from ( ), 

and fewer functionalities from each application (     ). If they were to use these large IFC-

style applications, they will be faced with a large amount of functionalities that they do not 

utilise. Furthermore, the final set of applications will not be seamlessly integrated. 

For these individuals, the mainstream IFC-style models do not provide an integrated 

solution. A better approach would be to select smaller, more specialised applications with 

only the functionalities required by the individual and creating an integration model 

customised for each individual. For an integration model to be customisable, it will have to 

be flexible. 

1.5 Abstraction to achieve flexibility 

According to (Google Inc., n.d.), abstraction is "[The] process of considering something 

independently of its associations, attributes, or concrete accompaniments". In more practical 

terms, the abstraction process commonly involves modifying objects to be applicable to 

more situations similar to the one it was originally intended for. This is achieved by reducing 

the information defined by an object to only the information of specific relevance to that 

object. 

An example within the context of the case study would be as follows. It could be argued that 

a typical building model consists of walls, windows and foundations (to name only a few). All 

of these entities have a name and location, aside from other properties specifically relevant 

to each entity. The name and location are properties that these entities have in common.  

It can also be argued that walls, windows and foundations are building elements, and all 

building elements by default have a name and location. Since walls, windows and 

foundations are building elements, they inherit the name and location properties. Now when 

defining the properties of a wall, window or foundation; it is not necessary to specify that it 
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has a name and location. Only the information specifically relevant to each of these entities 

has to be defined. For example, a wall can be defined as consisting of a length, height and 

width; but since it is a building element, it will automatically also have a location and name. 

The result is that the amount of information in the definition of a wall object is reduced. A 

building element is an abstract object and cannot exist on its own – a non-abstract object 

might be a wall, which is a building element.  

After this abstraction process, it can be argued that a building model consists of building 

elements, which can be walls, windows or foundations. If a programmer or user wants to 

define a new type of building element, say a roof; the programmer does not have to define 

the name and location properties. A roof is a building element, which implies that it has these 

properties. The programmer can therefore focus on the information that differentiates a roof 

from a wall, window or foundation. This makes it easier to define new building elements, and 

thus makes the integration structure more flexible. 

The "is a" relationship between walls, windows and foundations, and building elements; is 

analogous to generalisation/specialisation in programming terms. The wall, window and 

foundation objects are instances of the classes Wall, Window and Foundation. The structure 

of the BuildingElement object can be defined in an abstract or non-abstract class, in which 

case (sub)classes Wall, Window and Foundation will have to extend this (super)class. A 

BuildingElement can also be defined in an interface, in which case the classes Wall, Window 

and Foundation will have to implement this interface. An interface can only define certain 

methods that these classes (or their subclasses) must implement; it cannot define attributes 

and implemented methods. The structure developed by this thesis follows Java-style single-

inheritance, where a class can only extend one other class. Classes can, however, 

implement more than one interface. 

The following UML-diagram demonstrates the specialisation process for the wall, window 

and foundation entities described above. 

Stellenbosch University http://scholar.sun.ac.za



15 
 

No Abstraction

Abstraction using a 
BuildingElement class

-location
-name

BuildingElement

-height
-width
-type
-location
-name

Window

-length
-height
-thickness
-location
-name

Wall

-shape
-depth
-location
-name

Foundation

-shape
-depth

Foundation

-length
-height
-thickness

Wall

-height
-width
-type

Window

 
Figure 2 Basic specialisation example 

This example, and further examples that demonstrate how abstraction can increase 

flexibility, are discussed in more detail in Sections 2.2 and 2.4. 

1.6 Model-View-Controller architecture with the emphasis on Model 

Model-View-Controller (MVC) is a term used for a software architecture utilised by most GUI 

based software applications. It is a proven architecture and holds several advantages for the 

framework developed in this thesis. 

MVC architecture separates the software into three separate parts, the Model, View and 

Controller. According to Eckstein (Eckstein, 2007), the Model "represents data and the rules 

that govern access to and updates of this data. In enterprise software, a model often serves 

as a software approximation of a real-world process." In short the Model consists of the part 

of the application that changes for every new problem. This is the part of the application that 

will be saved in a file. In the building environment, the objects in the Model will represent 

entities of a real world building project. It is always preferable for files to be backwards 

compatible – files saved using older versions of an application must be compatible with 

newer versions. Therefore, while changes can easily be made to the other parts of an 

application, the structure of the Model must preferably change as little as possible. The view 

consists mostly of the GUI and provides a view on the information stored in the model. The 

user interacts with the Controller, which then modify the Model based on the input from the 

user. 
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The following diagram shows how the different parts interact with each other. 

View

Controller

Model

Listener

Listener

 
Figure 3 Model-View-Controller architecture 

The Model and View are directly associated with the Controller, this means that the 

Controller can directly invoke methods on the View and Model. However, methods are 

invoked in the Controller using a Listener pattern; usually as a result of user input. The 

Controller then chooses how to react to this input. The Model is also directly associated with 

the View and it can therefore directly acquire information from the Model; however methods 

are invoked in the View also by means of a Listener pattern. 

The Model and Controller are the most important parts of the application and form the core 

of the application. It is hard to make changes to these parts. The View is the first part to be 

adapted for customisation purposes since it is the part of the program that the user has 

direct interaction with.  

As mentioned in Section 1.4, a customised application can help in reducing the complexity of 

an application. Creating a customised application involves consultation with the end-user 

and then creating a GUI with only the functionalities required by the user. 

If customisation requires changes to the core of either of the applications, a new version of 

the application is created in the process. It is not hard to imagine how different versions of a 

program can cause confusion. Furthermore, interoperability between different versions of a 

program can lead to unexpected problems. Customisation should therefore be managed in 

such a way that it adds on, or plugs into, a stable core framework. 

The process of customisation is mainly a commercial exercise and if the Model and 

Controller is flexible enough to support such customisation, this can be an inexpensive 

process. Of academic value is creating a Model, Controller and basic View that is flexible 

enough to easily support customisation. 
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1.7 Thesis objective 

Wikipedia (Wikipedia, 2011) defines a software framework "… is an abstraction in which 

software providing generic functionality can be selectively changed by user code, thus 

providing application specific software."  

In the context of this definition, the focus of this dissertation can be described as follows: 

Designing a software framework that provides a basis for integrating applications in the 

Building Environment. This basis must consist of a flexible Model, Controller and basic View; 

and support efficient customisation for the integration of specific applications. 

Another point worth mentioning is that users of software in the Building Environment are 

commonly engineers and technical personnel with some programming knowledge. For these 

individuals it is not cost effective to program applications from the ground up. However, their 

basic programming skills may be sufficient to further modify the software for individual 

needs. For this reason, certain parts of the framework can be exposed to the end-user to 

support this additional modification. This would significantly increase the flexibility of the 

framework. The exposed parts are simplified through abstraction techniques in order for it to 

be easily understandable. 

The focus of the framework is not on creating a GUI and therefore only a basic GUI will be 

created to demonstrate the flexibility of the underlying core. Furthermore, a complex 

application can be perceived as simple by the user as a result of a good user interface. A 

complex underlying core can in this case hamper customisation and cause unexpected 

problems. An emphasis is therefore placed on ensuring the simplest possible underlying 

core that inherently ensures data integrity at all times. 

The goals of the framework can be summarised as follows: 

- Models based on this framework must be less complex than BIM-style models. 

- It must be flexible enough to allow efficient customisation. 

- Customisation should not necessitate changes to the core of the framework. 

- It must allow end-users with basic programming skills to customise models based on 

this framework. 

The Java programming language is designed to be used across all computer platforms. This 

would simplify cross-platform integration. After more than 15 years in use it may be 

considered a mature programming language. It is used by a wide variety of software 
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developers and vendors, which means it is well supported. A wide variety of existing open 

source code and examples allows applications to be developed at a rapid pace. For these 

reasons the framework prototype is developed in the Java programming language, although 

the concepts could easily be transferred to other object orientated languages as well. Unified 

Modelling Language (UML) diagrams are used, allowing the concepts to be understandable 

to a wide audience. 

As mentioned, a prototype implementation was developed to demonstrate the key concepts 

of the framework. In order to keep the prototype as basic and understandable as possible, 

only functionalities that demonstrate key concepts were implemented. The source code was 

created with the idea in mind that the reader should be able to easily understand it upon 

examination. Therefore, and in order not to divert attention from the key concepts of this 

thesis; only brief descriptions are given at the end of most chapters to introduce the reader 

to the source code. The reader is advised to examine the accompanying source code if 

further clarification is required. 
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2 Creating a flexible Model 

The most important part in a Model-View-Controller architecture is the Model since the View 

and Controller follows from that. As mentioned in Section 1.5, the goal is to create a flexible 

and abstract Model for the integration framework. It is hard to achieve high levels of 

abstraction before first understanding the main problems that the Model must address. 

Therefore, a basic model is created first of all, which is then abstracted to achieve desired 

levels of flexibility. The chapter ends of with a brief introduction to certain parts of the source 

code.  

2.1 Basic model 

The more closely the objects of a software model resemble entities from the real world, the 

more understandable the model becomes.  

Starting off then with the real world situation, the company from the case study will be 

working with small housing building projects. Essentially each project will consist of a house, 

which can be broken up into walls, windows, foundations, etc. For the sake of simplicity the 

structure of the model will be demonstrated using only these three entities and new types of 

entities can be defined at a later stage with no loss of generality. More importantly, the 

additional entities can be defined when the application is customised. 

Based on the assumptions above, the most basic software Model can consist of a Building 

object, which comprises of Wall, Window and Foundation objects. The Building object can 

contain information such as the physical address, client, and budgeted price. Each of the 

Wall, Window and Foundation objects will consist of some unique and some similar 

information.  

Figure 4 consists of two parts; the first part shows a UML class-diagram of these objects and 

their attributes. The second part displays instances of an example project consisting of a 

Building object, BoschendalStreet; two Wall objects, WallEast and WallNorth; one Window 

object, WallEastWindow1; and two Foundation objects, FoundationEast and 

FoundationNorth. 

The Wall, Window and Foundation objects are similar to ones described in Section 1.5, 

Figure 2. Aside from attributes that are specific to each of these objects, all of them have a 

name and a location. If the programmer wishes to store these objects in one set in the 

Building object, these objects will have to be stored as objects of type Object. If this is the 

case, simply retrieving the information stored in the name and location attributes will require 
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expensive reflexion techniques. The following code snippets demonstrate the difference for 

the simple process of retrieving a specific Wall object by specifying its name. 

Using reflexion: 

public Wall getWall(String name) { 

 Set<Object> elements = getElements(); 

 for(Object element: elements) 

  if(element instanceOf Wall) { 

   Wall wall = (Wall) element; 

   if(wall.name==name) 

    return wall; 

  } 

 return null; 

} 

Without reflexion: 

public Wall getWall(String name) { 

 Set<Wall> walls = getWalls(); 

 for(Wall wall: walls) 

  if(wall.name==name) 

   return wall; 

 return null; 

} 

With the reflexion process an additional check (element instanceOf Wall) has to be 

performed and the returned object first has to be casted as a Wall object. 

To prevent this, the Building object consists of a set for each of these component objects 

(sets walls, windows and foundations). If a new object is required for customisation reasons, 

e.g. a Roof object, a new separate set will have to be created for storing the Roof objects, 

requiring a change within the core of the program. Customisation should preferably not 

change the core of an application. If different customised applications share the same core 

structure, interoperability between them is easier. 
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Figure 4 Basic model 

2.2 First abstraction 

As discussed in Section 1.5, it is desirable to define the attributes that are similar in classes 

Wall, Window and Foundation in a separate superclass, thus reducing the amount of 

information defined in each class. Figure 5 demonstrates this structure. 

Classes Wall, Window and Foundation now only define the attributes that are unique to 

each. A further advantage is that these objects can be stored in one set within the Building 

object. Custom BuildingElement objects can also be stored within this set as long as it 

extends the class BuildingElement. This means that custom type objects can be created and 

stored in the Model of the application without any change to the core of the application. 

The most important advantage of this abstraction is that when building elements are created, 

only their defining attributes and methods have to be specified. More complex methods and 

attributes might be required by the application, for example an effective hashCode-method 

using a unique persistent identifier. By creating these methods and attributes in the 

BuildingElement class, the user or programmer does not have to do it every time a custom 
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BuildingElement is created. This allows any programmer or user to define his own custom 

building elements without having to understand the intricacies of the application. 

-length
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-height
-width
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Window

-shape
-depth

Foundation

1

-elements*

+hashCode()

-name
-location
-uniquePersistantId
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-physicalAddress
-datumPoint
-client
-budgetedPrice

Building

 
Figure 5 First abstraction 

2.3 Examining object-oriented models 

The structure at this point is essentially similar to most other BIM-style object models. Some 

of the components of the model are predefined and custom components can be defined by 

extending another component. In order to obtain a more flexible system, the method by 

which objects from the real world is mapped to software models has to be examined. 

In a real world situation complex systems are broken down into simpler, more 

understandable entities. It is quite clear how a building can be broken down into its different 

parts such as walls, windows, foundations, roofs, columns, beams, slabs, etc. However, 

more abstract concepts such as a Bill of Quantities can also be broken up into entities. A Bill 

of Quantities does not necessarily consist of wall and foundation entities; rather it would 

consist of masonry, concrete and reinforcement items. Entities can be split up into two parts, 

namely properties and functionalities. Examples of properties are length, height, window 

type, unit rate, task duration, etc. In terms of functionality, Bill of Quantity items are used to 

calculate the price of the project. The properties can assume different values, for example 

two beam entities will both have a length property, but the value of the length for each can 

differ. It is said that the entities are equivalent and characteristic of type beam. 
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In mathematical terms, let the set   collect all entities related to the Building Environment.  

                                                   

The set       is the set of functionalities of the entity    and       is the set of properties of 

entity   . 

                                                      

                                                 

Two entities    and    are of the same type (equivalent) if the set       consists of exactly the 

same functionalities as set      ; and the set       consist of exactly the same properties as 

the set      , even though the values of the properties in       can differ from the values of 

the properties in      . In other words for two entities to be of the same type, the two entities 

must consist of the same functionalities and properties, but the values of the properties can 

differ. If two entities are of the same type, and in addition the values of the properties are 

equal, the two entities equal. Entities are therefore defined by their sets of functionalities and 

properties. 

In object-oriented programming, software models comprise of objects. The objects are 

normally defined to resemble real world entities (refer Section 2.1). Objects are defined in 

classes. Classes specify certain attributes and methods that an object must have. 

Attributes or data fields are used to represent the properties of real world entities. Methods 

are used to represent the functionalities of the object. 

As an example, consider the real world entity "item". Each item has a specific unit rate and 

quantity, and it is used to calculate the price of a project. In a software model, this entity can 

be represented by an Item object. An Item object will have two attributes, namely unitRate 

and quantity; and a method calculateItemPrice, which calculates the price of the item as 

unitRate × quantity. By summation of item costs, the total price of the project can be 

computed. 

In mathematical terms, let the set   collect all objects in a software model.  

                                           

The set       is the set of methods of the object    and       is the set of attributes of object 

  . 
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Similar to entities, objects     and    are equivalent if set       consists of exactly the same 

methods as set      ; and the set       consist of exactly the same properties as the set 

     . Objects are equal if, in addition to the above conditions, the values of the properties 

are equal as well. 

2.4 Second Abstraction 

A problem with models created using object-oriented programming techniques is that all 

attributes and methods have to be defined in the source code of the program. Once the 

application has been compiled, the attributes and methods defined by the different classes 

are fixed. To change them requires a new version of the application, which can result in 

problems between different versions of the application. 

Another problem is that classes often contain attributes and methods that do not directly 

resemble any properties and functionalities of entities in the real world. In most cases this 

situation is unavoidable as these attributes and methods are required by more intricate 

methods in the core of the application. To programmers in charge of customisation and end-

users without knowledge of the intricacies of the core, these attributes and methods can be 

confusing. 

In order to address these problems a new class is created, namely the Feature class. Each 

element of the BuildingModel comprises a set of Feature objects. These Feature objects 

more directly represent the properties of the entities in real world. Feature objects do not 

replace the attributes of the objects, but should rather be used in conjunction with attributes. 

An Element object is therefore not anymore defined only by its methods and attributes, but 

rather by its methods, attributes and features. In keeping with the terms laid out in Section 

2.4, let the set       collect all the features of object   . 

                                                

Objects     and    are now equivalent if set       consists of exactly the same methods as 

set      ; and the set       consist of exactly the same properties as the set     ; and the 

set       consist of exactly the same features as the set       . Objects are equal if, in 

addition to the above conditions, the values of the properties as well as values of the 

features are equal. 
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Properties and attributes are characterised by a name and a value. For example a wall entity 

has a length of 12.5 m. It therefore has a property named "length" with a value of "14.6" 

assigned to it. Similarly, Feature objects consist of a name and value. Implementing this into 

the model demonstrated in Figure 5, the structure defined in Figure 6 is achieved. 

1
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Figure 6 Second abstraction 

In Figure 6 the eastern wall entity of the Boschendal Street building has a length of 14.6 m, a 

height of 2.4 m and a thickness of 0.23 m. It therefore has properties length, height and 

thickness. It can be represented by the object AttributeWall, which uses attributes to 

represent the properties of the entity. It can also be represented by a Wall object. The class 

Wall extends the class BuildingElement. BuildingElement defines an object attribute called 

featureSet, which is a set that stores Feature objects. Since the class Wall is a subclass of 

class BuildingElement, the WallEast object inherits this set and stores three different 

features in this set: length, height and thickness. The values of these features are 14.6, 2.4 

and 0.23 respectively.  The Wall object still has other attributes as well, such as the 

uniquePersistantId, but these are not of interest to the end-user. 
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The set of features can be expanded at runtime. The user can decide to add another feature, 

e.g. a feature to represent the thermal efficiency of the wall. This new feature will form part of 

the definition of the object along the other standard features. Customisation can now be 

achieved at runtime, instead of within the source code. 

2.5 Feature objects 

Objects that have feature sets have to be differentiated from objects that do not. A new class 

is created for this purpose – class FeatureObject. The term "feature objects" will be used for 

the remainder of this thesis to describe these objects. The exact definition of feature objects 

follows later in this section after another concept is introduced. 

As mentioned in Section 2.3, standard software objects are defined using a class. The class, 

together with its superclasses, defines the object's attributes, set      . Furthermore, the 

class along with its superclasses define the methods of the object, set      . If a class 

implements an interface, the interface will prescribe certain methods that the class must 

implement. Interfaces therefore also influence the set of methods of an object. 

A new concept has to be introduced to define default features of feature objects, namely the 

concept of a "family" and its "members". A family has a set of features, called traits, that its 

members must have. Differently put, if a feature object is a member of a certain family, it 

has all the traits of that family. 

The member of relationship between a feature object and its family is analogous to the 

instance of relationship between an object and its class.  

Feature objects are members of a family regardless of their methods and attributes. This 

means that objects that are instances of two different classes can be members of the same 

family. 

A formal definition of feature objects now follows: 

Feature objects are objects that have a set of features. A feature object is a member of one 

and only one family. A family has a set of traits that all of its members have in their sets of 

features. 

The above definition only describes the concept of feature objects and the relationship 

between them and their families. A software structure has to be developed that support this. 

Starting off then, the classes FeatureObject and Family will be used to represent feature 

objects and families. A FeatureObject object has a set that stores Feature objects, it also 
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has a Family attribute called family. It has methods for adding and removing features from its 

feature set. In this way features can be added and removed at runtime. A Family object has 

a set of prescribed features, called traits. Figure 6 is revisited below, now incorporating the 

feature object concept. 
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Figure 7 Feature objects and families 

As demonstrated in Figure 7, a Building object still consists of BuildingElement objects; 

however the BuildingElement class now extend the FeatureObject class. The WallEast entity 

is represented by a BuildingElement. Since a BuildingElement is a FeatureObject, it has an 

attribute called family. In the case of object WallEast, its family attribute is the family Wall, 

whose traits are length, height and thickness. 

2.6 Feature types 

When defining attributes, it is useful to be able to define the datatypes of properties. For 

example, the height of a wall is a number, while the name of the object is represented with 
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text. In order to distinguish between different kinds of features, different types of Feature 

objects are necessary. For example, a building element entity is either finished or still 

unfinished, a feature that can be represented with a Boolean (true or false). 

A typed feature is a feature whose "value" attribute is of a specific data type. For example a 

NumberFeature can be used to represent numerical properties. A double attribute can be 

used to store the value of a NumberFeature. 

As a basis, the three most common data types are: text, numbers and Booleans. Three 

different types of Feature objects are used to represent these in the framework: TextFeature, 

NumberFeature and BooleanFeature. All three of these are subclasses of the class Feature. 

The value-attribute of a TextFeature is of type String, the standard datatype for text in Java. 

The NumberFeature has a Java primitive double as its value-attribute. The BooleanFeature 

has a Java primitive boolean as its value-attribute. The value-attribute of standard Feature 

objects is of type Object. All objects in Java extend this class by default, and therefore any 

type of object can be stored in this Feature object. This is done to allow users to store 

custom object-types in features as well.  

The different types of Feature objects are deliberately not called StringFeature and 

DoubleFeature or IntegerFeature, since an end-user might not recognise or understand 

these names. The ideology behind Feature objects is to allow the end-user to do some 

customising as well, in other words to bring the inner workings of the application closer to the 

nonprogrammer end-user. For this reason their names are kept as close as possible to real-

life counterparts. Furthermore, a parseString-method is included for each that converts text 

to a value that can be stored in the value-attribute. Reason being that most input from an 

end-user will be in the form of text input. 

A programmer can create his own Feature object types by extending the standard Feature 

object. 

2.7 Prototype source code of relevance to this chapter 

Of specific relevance to this chapter is the object types FeatureObject and Feature. Both 

these are defined not using classes, but rather using interfaces. This allows a programmer to 

create customised objects and implement the functionality in his own way. Furthermore, a 

programmer might want existing classes to implement this functionality without having to 

extend the FeatureObject or Feature classes. This is especially relevant to Java where 

polymorphism is not allowed – the existing class might already extend another class. If a 

programmer does not want to implement functionality himself, abstract classes was created 
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that implement some of the most intricate functionality. This pattern is repeated at numerous 

other places in the source code. 

In the case of the object type FeatureObject, the abstract class AbstractFeatureObject 

readily implements the interface FeatureObject and some of the functionality required by the 

interface. A user can easily extend this abstract class and complete the abstract methods.  

 In the case of the Feature object type, no abstract class was created. If the programmer 

wants to create custom Feature objects without implementing the Feature interface, he can 

extend the class StandardFeature and override methods as necessary. 

Interface FeatureObject and class AbstractFeatureObject is in the package model, while 

interface Feature and class StandardFeature is in the package model.features. Of specific 

importance is the clone-method in Feature objects. The family traits are stored as a set of 

Feature objects. Whenever a new FeatureObject object is created, the traits of its family are 

cloned and added to its set of features. 

In the prototype implementation, a FeatureObject object with a "null" family attribute is 

interpreted as a FeatureObject object that does not belong to a family. In the 

AbstractFeatureObject class, the getFamily-method returns null, and should be overridden if 

the programmer desires an object to belong to a family. The reason for this is that, because 

of the usefulness of the feature object concept, many objects within the prototype implement 

this functionality. This allows the user to add features not just to the components of the 

models but to all other objects that implement the feature object functionality.  

As an example, Family objects are also FeatureObjects, allowing a user to add features to 

Family objects. A user can therefore add collective features, shared by all members of a 

family, to the family object instead of its individual members. The mass of a wall per unit 

volume, for instance, is the same for all wall entities; and should rather be stored as a 

feature of the "Wall" family. The difference between features of a family and features of its 

members is similar to the difference between static and object attributes. Class Family is 

located in the package model. 
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3 Enhancing the Model 

This chapter enhances the model created in Chapter 2 by introducing a better way of 

modelling derived features that ensures data integrity. The structure of the model is further 

improved by adding child-parent structural concepts. The result is a more efficient and 

logical model structure. 

3.1 Derived features 

Section 1.3 explains how incorrect storage of derived attributes can lead to loss of data 

integrity. The same argument is valid for features.  

As an example, take the wall entity represented in Figure 7 by the feature object WallEast. 

The mass of a wall is equal to the product of the length, height, thickness and density of the 

wall. The mass is therefore a derived property that depends on the length, height, thickness 

and density of the wall. If any of these properties change, the mass must also change. 

In the software model, the mass property can be represented by an attribute of the Wall 

object; however, if this is the case, an inconsistency can occur between the mass and the 

attributes or features that it depends on. A better way of representing the mass of an entity is 

to create a method that calculates the mass instead of storing it as an attribute. Every time 

the mass of the object will be required, this method has to be called, which will calculate the 

mass correctly according to the current state of the object. The problem with using methods 

to represent derived properties is, as with attributes, that methods have to be defined within 

the source code. Methods cannot be added to objects after creation. 

In the proposed integration framework, derived properties have to be stored as a different 

type of feature. These features must not store values, but rather the methods by which the 

values of the features are obtained. The question is how can the methods be stored. 

In normal programming procedures, the user creates source code, which basically is a set of 

instructions for the computer to perform. The source code is created in a language such as 

C#, Java or Basic to name only a few. Depending on the language, the code is either 

interpreted or compiled, or a combination of both, in order for the computer to perform the 

set of instructions. 

In order to create a way in which the methods behind derived features can be stored, the 

process described above has to be modelled somehow, albeit on a much smaller scale than 
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is the case for normal programming purposes. The programming process consists of three 

steps as shown in the UML State chart of Figure 8. 

SourceCode MachineInstructionsMethods

Step 1:
Create source 

code

Step 2:
Compile and/
or interpret 
source code

Step 3:
Execute 

instructions

 
Figure 8 Programming process 

In order for the process to be imitated, an interpreter or compiler object is needed to carry 

out Step 2 in Figure 8. The function of the interpreter or compiler is to convert the source 

code created by the user into a set of instructions that the computer can perform. Since the 

interpreter or compiler must "understand" the source code created by the user, the user will 

have to create source code in a certain programming language. An interpreter that can 

understand that language must then be used to create computer instructions. 

Since the framework is modelled in a Java environment, it was decided to use an interpreter 

that can interpret source code written with in the Java programming language. The 

BeanShell interpreter created by Pat Niemeyer is a "small, free, embeddable Java source 

interpreter" (BeanShell, n.d.). The advantage of the BeanShell interpreter is that it runs 

within the same program environment as the application, which means the objects of the 

application can be directly referenced and used. Furthermore, the BeanShell interpreter also 

supports some scripting features such as an extensible set of shell-like commands and also 

optionally typed variables. This makes it easier for novice programmers to put methodology 

into source code, which makes it more accessible to end-users. 

Even though normal Java programming procedures are simulated with the BeanShell 

interpreter, it differs in the way it converts source code into instructions executed by the 

computer. In normal Java programming procedures, step 2 involves compiling the source 

code to byte code, which is code that the Java virtual machine can interpret. The Java virtual 

machine is an application that simulates a universal computer platform regardless of the 

operating system. This allows the same byte code to be executed on any platform without 

any conversion necessary. For all intents and purposes the Java virtual machine can be 

seen as the computer in Step 3 of Figure 8. The BeanShell interpreter is a subsystem of the 

application used to create the model. It interprets source code inserted by the user and 

directly uses this code as a set of instructions (script) for the computer (Java virtual machine) 
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to execute. Figure 9 is a UML sequence diagram that shows in more detail the sequence of 

events from creation of the application up to its end. 

Programmer User Computer

interact

SourceCode Compiler MachineCode

new()

compile(sourceCode)

this

new()

read

BeanShell

execute(instructions)

interpret(userInput)

St
e

p
 1

St
e

p
 2

St
e

p
 3 execute

 
Figure 9 Event sequence from creation to execution of an application 

In Figure 9, a programmer creates source code which is then compiled using a compiler. 

The compiler uses the source code and generates machine code, or in Java terms byte 

code. As soon as the application is started, the computer reads the instructions in the 

machine code and starts to execute them. As the computer executes the instructions, it 

interacts with the user. Some of the interactions might include the user creating source code 

for the BeanShell interpreter to interpret. As soon as the BeanShell interpreter has 

interpreted the newly created source code, it directly instructs the computer what to do; 

without first creating machine code. 

The BeanShell interpreter can therefore be used to change a program without having to 

change the source code. A further advantage is that it operates within the application's 

environment, i.e. it can directly access the objects within the application and call methods on 

these objects and modify their attributes. 
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To incorporate the BeanShell interpreter in the framework, two new object types are 

required. The DerivedFeature object is a special type of Feature object used to represent 

derived properties. It is a subclass of class Feature. The class BeanShellFeature is a 

subclass of class DerivedFeature. An object of this class has a BeanShell interpreter that it 

uses to compute its value. Whereas normal Feature objects store values assigned to them 

directly as value-attributes, BeanShellFeature objects store its methods in the form of 

scripts. A script is text that formulates the instructions that the computer must carry out to 

derive the value of the feature. Each interpreter will have its own format in which this text 

must be. With the Beanshell interpreter this text will resemble normal Java source code.1 

When the getValue-method is called on a BeanShellFeature object, the interpreter evaluates 

the text in the script by interpreting it and instructing the computer to carry out the steps 

documented in the script. 

As an example, say the user wants to create a derived feature that represents the surface 

area of a wall. The surface area is calculated as: 

                          

The script that the user has to insert is simply: 

value = length * height; 

The getValue-method in class BeanshellFeature is as follows: 

public Object getValue() { 

 . . .      // Code left out for demonstration purposes 

 interpreter.eval(script); 

 . . .      // Code left out for demonstration purposes 

 return value; 

} 

Some code has been left out to better illustrate the interpreter concept. Each interpreter will 

differ in the way it is stored, called, created, etc.; therefore only key concepts is shown in the 

code snippet above. 

Although a Java-based interpreter was chosen for the prototype of the framework created by 

this thesis, a different interpreter could be used with as much success. There exist several 

interpreters similar to the BeanShell interpreter that can be used. A programmer can also 

                                                
1
 Refer to the BeanShellFeature class description at the end of this chapter for a more in-depth 

explanation of how the BeanShell interpreter is utilised in this class. 
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create his own scripting language and interpreter and incorporate it into the application 

similarly to how the BeanShell interpreter was incorporated.  

3.2 Child-parent structures 

The child-parent structure is a useful structure that can be used to simplify large object 

models. The concept is that a parent has several child objects. Each of the child objects can, 

in turn, consist of several other child objects, etc. The parent and child objects can be the 

same object type. The resulting structure resembles a tree as shown in Figure 10. 

WallTN : BuildingElement BeamTN : BuildingElement WallBN : BuildingElement BeamBN : BuildingElement

TopFloor : BuildingElement BottomFloor : BuildingElement

BuildingRoot : BuildingElement

child

parent

child

child

parent

child

parent

child child

 
Figure 10 Child-parent structure example 

It comes quite naturally to divide entities in the real world into groups of similar entities, then 

to further divide these groups into more specialised groups, and so forth. As an example, it is 

easy to understand how a building can be divided into different floors, and then divide the 

different floors into beams, columns, slabs, walls, windows and doors. If desired, each of 

these entities can also be divided into more specialised entities. In this way, a complex 

concept can be made more understandable. Figure 10 shows how BuildingModel objects 

can be subdivided to better resemble their real world counterparts. 

In theory, if all the objects in the tree are of the same type, each of these objects has a 

parent object and a set of child objects. One way of implementing this structure is to add two 

attributes to the objects in the tree; a parent attribute and a set of children objects. The 

problem with this structure is that an inconsistency can occur between the parent attribute of 

the children of an object and its set of children. Referring to Figure 10 as an example, the 

"TopFloor" object might have object "WallTN" in its set of child objects, but the object 

"WallTN" has "BottomFloor" as its parent attribute. Then according to "TopFloor", "WallTN" is 

one of its children, while according to "WallTN", its parent is "BottomFloor". 
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To avoid this, the child-parent structure, that is built into the core of the framework, has an 

internal structure that passively prevents inconsistencies, as described below. The relation 

between children and parents is an example of a "many to one" relation. One parent can 

have many children, but a child can only have one parent.  

The map concept also represents a "many to one" relation. A map consists of key-value 

pairs. A key can only occur once in a map, and can therefore only be associated with one 

value. Two different keys can however be associated with the same values. If a map is used 

to model the child-parent relation, where the child objects (keys) are mapped to parent 

objects (values), it would be impossible to create a structural inconsistency. As shown in 

Figure 11 it is impossible for "TopFloor" to have "WallTN" as a child if "WallTN" maps 

"BottomFloor" as its parent. 

WallTN

BeamTN

WallBN

BeamBN

TopFloor

BottomFloor

BuildingRoot

BottomFloor

TopFloor

Keys Values

KeyValue pairs:
WallTN, TopFloor
BeamTN, TopFloor
TopFloor, BuildingRoot
BottomFloor, BuildingRoot
WallBN, BottomFloor
BeamBN, BottomFloor

 
Figure 11 Using a map to model many-to-one relations 

Several classes that model the map concept exist within the standard Java libraries, among 

these the HashMap. A HashMap uses hashing techniques to efficiently retrieve the value 

associated with a given key. A problem with standard maps is that they only provide 

functionality for retrieving the values of a given key. It is not possible to retrieve or access 

the keys of a specific value. This functionality is required for the child-parent relation since it 
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is necessary to be able to find the children (keys) of a specific parent (value). For this 

purpose a special type of Map is required for the integration framework, call it a 

ReverseAccessMap. A ReverseAccessMap has the functionality to return a set of keys that 

map to a specified value in addition to functionality of a normal map. 

The map that controls the child-parent relations must be stored in one central object, such as 

the Building object. 

To avoid confusion all BuildingElement objects must by definition have a parent 

BuildingElement object assigned to it. If it is desired that a BuildingElement object must have 

no parent assigned to it, it is assigned the "BuildingRoot" object. In order to ensure that all 

BuildingElement objects have a parent BuildingElement object assigned to it, all 

BuildingElement objects must be present in the keyset of the parent-child map. Instead of 

using a special set to collect all the BuildingElement objects in the building model, they are 

collected directly in the keyset of the child-parent map. 

As can be seen in Figure 12, if an extra set is used to collect all objects in the Building 

object, this set will be redundant. All the keys of the childParentMap already represents a set 

and all BuildingElement objects must by definition be contained in this set. 
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Figure 12 Collecting BuildingElement objects in a map’s keyset 

3.3 Child-parent structure for classifying Family objects 

Just as child-parent relations can be useful to structure the BuildingElement objects, it can 

also be useful to structure the different Family objects. As an example, in a similar fashion to 

the structure used in Figure 10, the Beam and Wall families are "children" of the Floor family. 

Figure 13 shows the structure of the different Family objects as well the BuildingElement 

objects of Figure 10. This time the objects are arranged in a more logical top-down manner. 
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family : Family = Wall

WallTN : BuildingElement

family : Family = Beam

BeamTN : BuildingElement

family : Family = Wall

WallBN : BuildingElement

family : Family = Beam

BeamBN : BuildingElement

family : Family = Floor

TopFloor : BuildingElement

family : Family = Floor

BottomFloor : BuildingElement

family : Family = RootFamily

BuildingRoot : BuildingElement

child

parent

child

child

parent

child

parent
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Wall : Family Beam : Family

Floor : Family

RootFamily : Family

child child
parent

child

parent

 
Figure 13 Top-down examples of child-parent structures 

The relations on parent Family objects and their children objects should not be confused with 

the inheritance relationships between superclasses and their subclasses or interfaces and 

their implementing classes. Inheritance relationships imply that the subclass or implementing 

class inherits the attributes and methods of the superclass and the interface. This is not the 

case for child-parent relations between families. The children Family objects do not inherit 

the attributes, methods or traits of its parent Family object. Furthermore inheritance 

relationships represent "is a" relationships. If class BuildingElement extends class 

FeatureObject, it is implied that a BuildingElement object "is a" FeatureObject. A wall is not a 

floor, even though the Family object "Wall" is a child of Family object "Floor". In Java 

programming, coherent classes are grouped into packages, which resemble files in different 

folders. This is done to create a more understandable structure within the source code. The 

child-parent classification system resembles this type of structure. 

All the families of a model have to be collected in a centralised object. Once again, as in the 

case of child-parent relationships between BuildingElement objects, a map can be used to 
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serve the dual purpose of collecting all the Family objects and controlling the child-parent 

relations between them. 

3.4 Prototype source code of relevance to this chapter 

The BeanshellFeature class located in package model.features demonstrates the use of the 

Beanshell interpreter. Each BeanshellFeature object has its own Interpreter object. The 

interpreter allows certain attributes in the script to be predefined.  For example, the value-

attribute is set to the represent the value-attribute of the feature. The FeatureObject object 

that consists of the BeanshellFeature is the BeanshellFeature's host. All of the features of 

the host are also predefined as attributes that can be used in the script. As a demonstration, 

refer the following script: 

value = height * length; 

The interpreter will interpret the script as follows: Set the value-attibute of the 

BeanshellFeature object to the value of the "height" feature of the host FeatureObject object, 

multiplied by the value of the "length" feature of the host FeatureObject object. Whenever 

the getValue-method of the feature is called, the interpreter will interpret the above script and 

then return whatever is stored in the value-attribute. 

The initializeScript-method within class BeanshellFeature establishes these mappings. 

The ReverseAccessMap used to collect the Family and Element objects are located in the 

package util. It uses two maps to maintain its data – a mainMap and a reverseMap. It is an 

observable map and all registered listeners are notified as soon as changes occur in it. 

Objects with child-parent relations described above implements the ChildParentObject 

interface in the package model. The class that contains the map used to control the child-

parent relations implements the ChildParentController interface, also in the package model. 

The Family objects and BuildingElement objects of Figure 13 are examples of 

ChildParentObject objects. They would share the same ChildParentController, namely object 

"Building". 
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4 Structuring supplementary models 

Building on the concepts of the previous Chapters, this Chapter focusses on the internal 

structure of the applications that will be integrated with each other. The core model and 

supplementary models concept is discussed, however the applications required by the case 

study are examined first in order to gradually introduce abstract similarities between the 

applications being integrated. Ultimately, for seamless integration to take place, these 

structures have to be linked with each other. However, before the structures can be linked, 

the objects that must be associated with each other have to be defined. In line with the case 

study, two ways of defining these objects are demonstrated. Firstly, a basic BoQ program 

structure is defined from the ground up, demonstrating how the principles of the previous 

chapters can be incorporated from the beginning. Secondly, a structure is defined that 

operate alongside an existing structure of a CAD application. This demonstrates how 

existing applications can be brought into the flexible integration environment. The next 

chapter will demonstrate how these structures can be linked with each other. 

4.1 Case study: Bill of Quantities 

The company from the case study requires a basic Bill of Quantities application; namely the 

BoQ program. To understand how such a program can be integrated with other engineering 

applications, the real world entities that it represents must first be examined. 

A Bill of Quantities essentially comprises a list of items. All aspects of the project that 

contribute to its cost, e.g. tasks, materials, equipment hiring, etc., are listed as items in the 

Bill of Quantities. In order to add structure to the document, it is divided into different 

categories, each of which is in turn divided into subcategories, and so forth up to the level 

where the actual items are listed.  

The BoQ program follows the structure suggested by the JBCC (Joint Building Contracts 

Committee, n.d.). According to this structure, a Bill of Quantities document is divided into 

different sections. Each of these sections is divided into different bills. Two different sections 

can contain the same bills, for example two sections can be used to represent two phases of 

the project, with each section consisting of the same bills. A bill in turn is subdivided into 

different headings, which is subdivided again into subheadings. Finally, the actual items are 

listed under the subheadings. Figure 14 shows how this structure can be modelled using 

conventional object oriented methods. At the most basic level, it can be said that one 

BillOfQuantites object consists of many Item objects. Section, Bill, Heading and Subheading 

objects are added to assist in classifying the different Item objects. 
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An item has a unit rate, a quantity and a unit. Its rate is calculated as the product of its unit 

rate and quantity. A subheading has a subtotal, which is the sum of the items listed 

underneath it. A heading's subtotal is the sum of the subtotals of its subheadings, and so 

forth for the sections and bills.  

BoschendalStreet : BillOfQuantities

Phase1 : Section Phase2 : Section

name = "Earthworks ..."

Bill1 : Bill

name = "Concrete, Formw..."

Bill2 : Bill

name = "Excavations"

Excavations : Heading

name = "Excavation in earth..."

SubHeading1 : SubHeading

name = "Unreinforced Concrete"

UnrfCncr : Heading

name = "10Mpa/19mm concrete"

SubHeading2 : SubHeading

name = "Steps, cupboards..."

StepsCupPlat : Item

name = "Surface blinding under..."

SurfaceBlin : Item

name = "Trenches"

Trenches : Item

Part 2: Some of the objects in an 
example Bill of Quantities

+total()

-name

BillOfQuantities

+subtotal()

-name

Section

+subtotal()

-name

Bill

+subtotal()

-name

Heading

+subtotal()

-name

SubHeading

+rate()

-name
-unit
-unitRate
-quantity

Item

1

*

1

*

1

*

1

*

1

*

Part 1: Conventional object oriented 
model for a Bill of Quantities

 
Figure 14 Examples of Bill of Quantity models 

When defining software objects for the entities described above, these objects can benefit to 

a great extent from the structures built into the BuildingElement objects as described in 

Chapters 2 and 3. For example, class Item can be a specialisation of class FeatureObject, 

and its quantity property can be defined using a Feature object. If the user at a later stage 

wants to insert a custom method to be used for calculating the quantity of the item, he can 

do so by simply changing the type of feature used to represent the quantity of the item. 
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Upon closer examination of the structure of the Bill of Quantities, it resembles the same 

structure used to represent the model described in Chapters 2 and 3. Whereas a Building 

object consisted of different BuildingElements, similarly a BillOfQuantities object consists of 

several BoQElement objects. The child-parent relationships used between the different 

BuildingElement objects can now be used to categorise the BoQ items into different 

subheadings, headings, bills and sections. The family concept can be used to differentiate 

between Item objects, Subheading objects, Heading objects, Bill objects and Section 

objects; and to define the standard features of each.  

Figure 15 shows how the concepts of features, families and child-parent relationships can be 

used to create the Model part of the BoQ program. The basic structure is the same as the 

one displayed in Figure 7, with the Building object replaced by a BillOfQuantities object and 

the BuildingElement objects replaced by Element objects. A BillOfQuanities object consists 

of Family objects – "Section", "Bill", "Heading", "Subheading" and "Item". It also consists of 

Element objects, which can be a member of either of the above families. Each of the Family 

objects consists of a set of Feature objects, and if any of the Element objects is a member of 

a Family, it must have these types Feature objects in its feature set.2 In order to avoid 

overcomplicating the figure, the child-parent relationships are not shown.3 The object 

"Phase1", which is a member of Family object "Section", has the object "Bill1" as one of its 

children objects. "Bill1" again has the object "Excavations" as one of its children objects. 

This pattern repeats itself up to object "Trenches", which has no children objects. The object 

"Trenches" is a member of the "Item" family, which means it has a feature "quantity". If the 

user so desires, this feature can be changed at runtime. 

The Bill of Quantities can therefore be constructed in two different ways: using a traditional 

object oriented modelling approach, with attributes and methods; or using the flexible 

modelling approach based Feature and Family objects. The latter approach, as per its 

design requirements, will bring more flexibility into the system and will enable the user to 

accomplish further customisation at runtime. 

                                                
2
 See Section 2.5 for a detailed definition of the "member of" relationship between a FeatureObject 

and its Family object 
3
 Child-parent relationships is defined in Section 3.2 
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Using Features and Families to define 
the objects of a Bill of Quantities 
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families : Map

Section : Family

Bill : Family

Heading : Family

Subheading : Family

Item : Family

rate : Featurequantity : Featureunit : Feature unitRate : Feature

subtotal : Feature

subtotal : Feature

subtotal : Feature

subtotal : Feature

elements : Map

BoschendalStreet : BillOfQuantities

Phase1 : Element

Bill1 : Element

Excavations : Element

Subheading1 : Element

subtotal : Feature

subtotal : Feature

subtotal : Feature

subtotal : Feature

Trenches : Element

rate : FeatureunitRate : Featureunit : Feature quantity : Feature

 
Figure 15 Features and families in the BoQ Program 

4.2 Drawing application 

In order to demonstrate the framework developed this thesis, a free CAD application called 

Cademia is used for the drawing part. Cademia is an open source 2D CAD application 

developed in Java (Cademia, n.d.).  

Although different terms can be used to describe the lines and shapes that make up an 

electronic drawing, the term used by Cademia is components. Any line, rectangle, ellipse, 
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polygon, dimension, etc. in a Cademia drawing is therefore a component entity. At the most 

basic level, a drawing consists of components. 

Cademia, as with most other CAD applications, allows plugins to be created allowing for 

custom components to be defined. A Component interface is provided that all custom 

components must implement. It is quite useful to create custom Component objects that 

more directly represent real life counterparts. As an example, the normal LineComponent 

class can be extended to define objects that represent wall entities. As with the BoQ 

program it can be quite useful to introduce the concepts developed for the model described 

in Chapters 2 and 3 to the different drawing components. 

In order to illustrate the concept of custom drawing components, a custom Component 

object was developed for the framework that can be used in a wide variety of situations. This 

Component object is used to group different existing Component objects, call it the 

IntelligentComponent. An IntelligentComponent object comprises a set of Component 

objects. When a user selects either of these objects, the IntelligentComponent object is 

selected, instead of the individual objects in the set. A command is used that adds existing 

Component objects to an IntelligentComponent object. A user can therefore load an existing 

electronic drawing in Cademia and then convert the drawing components to intelligent 

components. An IntelligentComponent is upon creation associated with a CademiaElement 

object, which is similar to BuildingElement and BoQElement objects. These objects are 

stored in a centralised CademiaModel object using child-parent concepts.4 Using the family 

and feature concept combined with the child-parent concepts developed in Chapters 2 and 

3, these CademiaElement objects can be classified according to the user's liking. 

Figure 16 shows a structure quite similar to the one in Figure 7. The Building object is 

replaced by a Drawing object, which consists of CademiaElement objects. 

                                                
4
 See Section 2.5 for a description of a FeatureObject, and Section 3.2 for a description of child-

parent relationships 
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Figure 16 Structuring the CAD model 

It should be pointed out that the CAD application still has its own internal model, indicated by 

the subsystem CAD-Model in Figure 16. Component objects contained in this structure has 

to be added to the Drawing object, in which case these Component objects will be contained 

in both the internal CAD Model as well as the Drawing object. The Drawing object only 

contains the Component objects that the user wants to link with other objects. The 

CademiaElement objects can be regarded as wrapper objects, wrapping objects from within 

the internal structure of an existing application. The wrapping process allows the different 

objects to be linked with objects from other applications.5  

                                                
5
 Chapter 5 discusses how the objects are to be linked. 
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Since Cademia runs within the Java virtual machine, its objects can be directly accessed 

and used. This might not always be possible. In this case the wrapper objects will have to 

replicate the objects in the application. Systems will have to be put into place that ensures 

the wrapper objects are synchronised with the actual objects they replicate. 

4.3 Third abstraction and the model concept 

Before proceeding with the third abstraction process, the model concept has to be 

considered. In this chapter three different models are under discussion, while a fourth model 

is discussed in chapters 2 and 3. 

The BoQ program has a model of its own. This model consists of a BillOfQuantities object, 

which consists of Element objects. This model is used to manage the pricing information of a 

project. The BillOfQuantities model is a supplementary model. 

In addition to the BoQ program model two models are defined for the CAD application. The 

first is the internal model of the CAD application, the structure of which is not important. This 

model manages geometric information about the project. Another structure is defined to 

operate alongside the CAD model, call it the Drawing model. This model wraps the objects 

of the CAD model. It allows objects from other applications to be linked with the objects in 

the CAD model. In essence, the Drawing model rearranges the geometric information from 

the CAD model in such a way that it can be interpreted, used and modified by the other 

applications within the integration framework. Once this wrapper model is established, the 

internal CAD model is not directly used anymore and can be ignored. The Drawing model is 

also a supplementary model. 

Finally, a core-model is discussed in chapters 2 and 3. Before discussing the purpose of this 

model, another type of model has to be described. The concept of a model can easily be 

confused with a 3-dimensional model created by an advanced 3D CAD application. These 

models typically do not manage only geometric information about a project. The idea behind 

BIM is to expand 3-dimensional models to include the information of all applications in the 

building environment. However, it is not necessary to have a 3-dimensional model as the 

basis for a building project. This is what the purpose of the core-model is. It serves as the 

basis model that connects the different supplementary models with each other. The 

elements of the Drawing model represent the shapes of real world entities. In contrast, the 

elements of the core-model are intended to directly represent real world entities. All 

supplementary information, including information in the Drawing model, can be reached 

through the core model.  
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Using the core-model as the basis model, different electronic drawings can be linked to it. 

This is useful since more than one construction drawing is normally used to depict a building 

element. This structure also allows different building elements to be represented by the 

same drawing element. This is useful since it is common practice to create one drawing 

element for a series of similar building elements. 

The structure of the supplementary models is almost exactly the same as the structure of the 

core-model. Instead of redefining this structure for every supplementary, it should rather be 

defined as an abstract structure. Due to the similarities, the third abstraction process only 

involves renaming the objects from the original core model to more generic names. 

The Building object from Figure 7 can better be described as a Model object. The 

BuildingElement objects are also specialised examples of Element objects. The objects of 

the supplementary models extend these objects and add attributes, methods and features 

required by their corresponding applications. 

Figure 17 shows the structure of the framework after the third abstraction process. The top 

half displays the static structure, while the bottom half displays object instances of the three 

different Model classes, together with their standard sets of Family objects for each of these 

Model classes. Due to the high level of abstraction, the structure of the models does not 

have to be defined only in classes. Classes are useful to define methods and attributes used 

internally by the applications. The structures that directly represent real world structures 

should rather be mapped using the Family objects, together with their traits.  

To better explain the difference between defining structure using classes and using Family 

objects, take the following two examples.  

Example 1: Each of the elements has a unique id that is used internally by the application to 

manage data exchange between the different elements. This id is managed by the 

application and should never be changed by the user. The id is best defined using an 

attribute. Reason being that it is something that does not directly represent a real world 

property of an entity, and it is managed and used internally by the application.  

Example 2: A user requires functionality that calculates the surface area of a wall. Initially, he 

requires this surface area to be calculated as the product of the length and height of the wall. 

The surface area is a property of a wall entity, therefore it is best represented in the model 

using a Feature object. By adding a surfaceArea Feature object to the Wall family's set of 

traits, the structure of the Wall objects is changed. Wall objects are now required to have a 

surfaceArea Feature object in its feature set. If the user wants to change how the surface 
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area is calculated, the script of the surfaceArea Feature object can be changed at runtime. If 

the surface area was modelled using an object method, the source code would have had to 

be changed. Changing the script of a Feature object means changing the functionality of the 

model. Adding or removing Feature objects means changing the internal structure of the 

model. Therefore the functionality and the structure of a model can be changed at runtime, 

by the user himself. 
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Figure 17 Third abstraction 
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4.4 Prototype source code of relevance to this chapter 

The classes relevant to the BoQ program can be found in the package BoQ, while the 

classes relevant to linking the Cademia application can be found in the package cademia. 

During the early stages of a project, the exact items and their unit rates and quantities are 

normally not known. The BoQ program was designed in such a way that the user can insert 

an estimated quantity and unit rate for each of the BoQElement objects. The user can select 

the subtotal for each BoQElement to be equal either to the product of the estimated quantity 

and unit rate, or to the sum its children's subtotals. A user can therefore start off by 

assigning estimated unit rates and quantities for the different sections. As the project 

progresses through its planning phases, estimated unit rates and quantities can be assigned 

to the bills. The user can then select the subtotal for the sections to be equal to the sum of 

the subtotals of its bills, which would at that stage respectively be equal to the sum of the 

estimated unit rates and quantities. At a later stage, this process will be repeated for the 

headings, subheadings and finally the items.  

IntelligentComponent objects have methods getLength and getArea. The getLength-method 

returns an array of doubles containing the lengths of each of the Component objects it 

consists of. The getArea-method returns a double-array with the areas of the Component 

objects it consists of. A CademiaElement object is associated with one and only one 

IntelligentComponent. This component is stored as an attribute in the CademiaElement 

object. These objects have two DerivedFeature objects, length and area. By default the 

length is calculated as the average of the double returned by the getLength method of the 

associated IntelligentComponent object, though this script can be changed by the user. The 

area is calculated similarly. 

The development of plugins for CAD programs usually involves defining new custom 

components according to the requirements of the user. For instance, a user might rather 

want to insert a "Wall" than physically drawing lines and shapes that represent walls. 

Whenever the "Wall" is inserted, the program readily inserts a Component object that 

resembles a wall. Although the IntelligentComponent can be used for a wide variety of 

situations, it is still useful to develop customised Component objects according to the user's 

requirements. The visual part of a component has to be defined in a way that the drawing 

application can interpret. This information therefore has to be defined using attributes and 

methods in a Component class. However, components often contain information other than 

the visual information. Examples of this information are methods to calculate its area or 

length. This information should preferably be defined using Feature objects in the 
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component's associated CademiaElement object to allow users to customise it at a later 

stage. 
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5 Control, bringing everything together 

Once supplementary models have been structured according to the guidelines of Chapter 4, 

elements of these models can be directly linked with each other. A central controller is 

required to manage these links, which forms part of the Controller portion of the MVC 

architecture. The Controller portion includes structures for a command system, managing 

unique identifiers, updating of derived features and database integration. 

5.1 Controller: Class Workspace 

Before being able to link various elements from the different models with each other, a class 

has to be established that controls the different models and their elements. From Figure 17 it 

becomes clear that the framework is designed to deal with many different models, each with 

their own elements. Furthermore, different applications will be accessing and modifying 

these models, each with its own user interface. A class is required that manages the 

different models and user interfaces. For this purpose, the Workspace class is created. In 

the sections that follow, functionalities that demonstrate the importance of this class will will 

be described. 

Whereas different models can be dynamically created and destroyed during a session, a 

constant designated class is required where these models can be registered as they are 

created or destroyed. If a model has to be loaded or created, it has to be registered with this 

class. All classes must be able to reach this class, therefore it has to be centralised. For this 

reason, all the methods and attributes of the Workspace class are static. This allows the 

methods and attributes to be called directly on the class itself, instead of by reference to an 

instance of this class. An object therefore does not need a direct reference to a Workspace 

object to enable it to call the methods of this class. 

5.2 Element associations 

Once the structures from Chapter 4 have been established, the elements of the 

supplementary models can be linked directly with each other. This means that information 

can be exchanged directly between the different elements. 

To demonstrate how elements can be linked directly with each other, take the example 

shown in Figure 18. Say the northern wall on the top floor of the building is represented by 

the core-model element "WallTN", which is a member of the "Wall" family. The Bill of 

Quantities has an item "Two-brick walls", and consequently the supplementary BoQModel 
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has a "TwoBrickWall" element. Furthermore, the user added a LineComponent object in an 

electronic drawing to an IntelligentComponent object. This object is supposed to be a 2-

dimensional plan-view representation of e.g. the northern wall of the top and lower floor. In 

the real world, a wall entity has properties length and height. The "WallTN" object therefore 

requires two features, length and height. 

The quantity of the item "Two-brick walls" is based on the surface area of the wall, equal to 

the product of the length and height. The quantity of object "TwoBrickWalls" therefore 

depends on the length and height of object WallTN. The length of object WallTN must be 

retrieved from the "NorthWallsPlan" object. These dependencies are depicted with dashed 

lines in Figure 18. Clearly the objects NorthWallsPlan, WallTN and TwoBrickWall must 

somehow be associated with each other. Somehow therefore, BoQElement objects must be 

associated with core-model Element objects, which in turn must be associated with 

IComponent objects. 

Elements associated with the northern top 
floor wall of project Boschendal Street

BoschendalStreet : Model

WallTN : Element

FloorPlan : Drawing

NorthWallsPlan : IComponent

BoschendalStrBoQ : BillOfQuantities

TwoBrickWalls : BillOfQuantities

length : Feature

length : Feature

quantity : Featureheight : Feature

elements elements elements

 
Figure 18 Element-Element dependencies 

Due to the third abstraction process6 these objects are all specialised types of Element 

objects. The BoQElement-Element association as well as the Element-BoQElement 

association can therefore all be described as Element-Element associations. A structure is 

therefore required that allows different elements to be associated with each other. This will 

not only cater for Item-Element, or Element-BoQElement associations, but for all Element-

Element associations. This means that any Element object can be associated with any other 

Element object, which allows more flexibility than a structure that only cater for say an items 

and its associated core-model elements. 

It is useful for the association between elements to be bidirectional. This, for example, allows 

a BoQElement object to reach an associated Element object, while at the same time 

                                                
6
 See section 4.3 
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allowing the Element object to reach the BoQElement objects. The problem is that one 

Element object can be associated with more than one BoQElement object, while a 

BoQElement object can be associated with more than one Element object. Take for example 

the WallTN object. The TwoBrickWalls object is already associated with it; however a "Paint" 

item must also be associated with the same WallTN object. Furthermore, the WallTN object 

is not the only object that contributes to the quantity of the TwoBrickWall object. 

As with child-parent relationships, due to the associations between different Element objects 

being bidirectional, inconsistencies can occur if not managed correctly.  However, unlike 

one-to-many child-parent relationships, these associations are many-to-many relationships. 

They can therefore not be controlled using mappings. Consider the objects in Figure 19. The 

associations between them are indicated with arrows. Each object is also listed together with 

its associated objects below the diagram. 

WallTN

WallTInner

WallUnpaintedIn

TwoBrickWalls

OneBrickWalls

WallPaint

WallTN : WallPaint, TwoBrickWalls
TwoBrickWalls : WallTN
WallTInner : OneBrickWalls, WallPaint
OneBrickWalls : WallTInner, WallUnpaintedIn
WallUnpaintedIn : OneBrickWalls
WallPaint : WallTN, WallTInner

 
Figure 19 Many-to-many Element-Element relations 

Adding an association or removing it is in every case a two step process. Say, WallTInner 

has to be associated with TwoBrickWalls instead of OneBrickWalls. OneBrickWalls can be 

removed from WallTInner's set of associated elements, and TwoBrickWalls can be added to 

it. However, OneBrickWalls will still have WallTInner in its set of associated elements, and 

TwoBrickWalls not. 

Clearly then, if the association are not handled properly, inconsistencies can easily occur in 

the structure. As with child-parent relationships, these associations form part of the core 

structure and should be controlled in such a way that inconsistencies cannot occur. Similarly 

to child-parent relationships, an object has to be used that controls Element-Element 

associations. A map, however, can only control many-to-one relationships, not the many-to-
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many relationships required by these associations. A special class was created for this 

purpose – the JunctionTable. 

A JunctionTable instance manages many-to-many associations between objects of the same 

type. Associations can be added or removed from a JunctionTable object. In both cases the 

JunctionTable object will ensure the different sets associated objects are synchronised. 

Since one JunctionTable instance will have to control all Element-Element associations, this 

object has to be kept in a central location. The Workspace class therefore contains this 

JunctionTable object that controls all Element-Element associations. 

5.3 Command system 

An important programming practice, that supports Undo and Redo functionality, is that of the 

Command system. Instead of calling methods directly on the objects in an application's 

model, a Command object is created that performs all the required steps. A Command 

object has a doCommand method, which executes the methods that modify the model in an 

exact sequence.  

As a demonstration, say the user wants to add a Feature object to the traits set of a Family 

object. Technically speaking all objects that are members of this family has to add this same 

feature to its feature set, otherwise they will not be members of the family anymore. Two 

steps have to be performed whenever a feature is added to a family, i.e. adding the feature 

to the family's trait set, and adding the feature to the feature sets of the members of the 

family. Somehow it must be ensured that these two steps are always performed when 

adding features to a family's traits. A Command object can be created that performs the two 

steps whenever its doCommand method is called. Instead of adding a feature directly to the 

objects in the model, a Command object is used that ensures all necessary steps are 

performed. 

The steps described above can be built into the structure of the model, however in some 

cases it might be desired to add a feature to a family's traits without adding it to the 

members as well. If the structure ensures that the feature is added to its members as well, 

the feature will have to be removed from the members after adding it to the family's traits. A 

better practice therefore is to create a Command object for each case. It is not always clear 

whether to build a check into the structure or using Command objects to ensure all 

necessary steps are performed when the model is modified. In general, however, a more 

flexible system is achieved while checks are still maintained by using Command objects. 
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The command system furthermore allows undo and redo of actions. If a Command object 

implements an undo method in conjunction with a redo method, these methods can be 

called whenever a user wants to reverse a command, or re-execute a reversed command. 

The undo method must change the model back to the state it was before the command was 

executed. The redo method will only be called if the undo method has been called. It must 

ensure the system is changed back to the state it was in after the command was performed 

the first time.  

In order for a sequence of commands to be undone, they must be stored in a command 

manager. This object has to be maintained for the duration of a session. For this reason the 

Workspace class controls this object and the commands that it executes. Class Workspace 

has a static method doCommand that receives a Command object. It then decides whether 

this Command can be executed and passes it on to its CommandManager attribute. It is 

therefore not necessary to directly have a reference to the CommandManager object since 

the Workspace class manages the execution of commands and this object internally. 

5.4 Unique identifiers and a collaborative environment 

To allow further flexibility into the framework, especially if the framework is to be used in a 

collaborative environment, the concept of unique identifiers has to be introduced. A unique 

identifier is assigned to an object to allow the object to be retrieved using only the value of 

the identifier. An identifier is usually in the form of a String, and in some cases represents 

the name of the object. 

If an Element object can be reached using an identifier, it is not necessary for Element-

Element associations to be made directly between two Element objects. The association can 

be made on the basis of their unique identifiers. In this way an element can be associated 

with another element, before either of them has been created. Upon creation, the first 

Element object does not necessarily have to call methods on the second. By the time it has 

to call methods on the second Element object, this object would have been created.  

In a collaborative environment, in most cases it becomes unavoidable to have different 

versions of the same model within the team. Two or more members might be working on 

different parts of the same model. The result is that two or more versions of the same object 

can exist. In effect, each version of the object is an object instance of its own. If the different 

versions of the object can be reached by specifying the object's identifier, the different 

versions can easily be reconciled with each other. 
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In Java, Strings are immutable and unique in the sense that more than one instance of the 

same String cannot exist. For this reason, String identifiers are used in this framework. This 

would allow, for example, a user to add a feature to an Element object by specifying its 

identifier String. The user does not have to search through a list of Elements to be able to 

specify the Element object. 

Ensuring that the assigned identifier Strings are unique can become hard. If a user has to 

assign names to each of the elements of a model, the user would soon run out of names. 

Furthermore, two different projects can both have a "Wall North", even though these two 

elements are not supposed to be the same objects. One way around this problem is to let 

the computer generate random Strings for identifiers. However, since these random Strings 

will be unrecognisable to the user. A user is unlikely to memorize random Strings to be able 

to reach an object quickly. To solve this problem, an algorithm is used to assign unique 

identifiers to objects that resemble a name. For example, the name generated for the first 

Element object, member of Family "Wall", added to the core-model for project 

"BoschendalStreet" is: "BochendalStreetWall1". The next Element object added would have 

the identifier String: "BoschendalStreetWall2". In this way the identifiers are unique and also 

recognisable by the user. 

It is not only the Element objects that implement the concept of identifiers. Model and Family 

objects also implement this concept, allowing them to be identified by the user. This means 

that no two objects of type Model, Family or Element can share the same identifier String. By 

introducing the identifier concept to these objects, users can share and exchange 

information with each other without having to exchange complete models with each other. If 

one user wants to share a change in an Element object, he only has to send the updated 

Element object to the other user. 

All objects that implement the identifier concept implements the NamedObject interface. 

These objects are all stored in the Workspace class, which means they can easily be 

reached by calling a static method on the Workspace class. The Workspace class 

associates the identifier with the object. In response certain commands, the Workspace will 

associate the identifier with another object. This new object might be an updated version of 

the previous object. When the original identifier is specified, the updated version of the 

objects will be returned. This means is that NamedObject objects must never be directly 

referenced in the source code; their identifiers should rather be used to reach them. This 

ensures that the correct version of the object is used at all times. For example, Element 

objects must not be directly inserted into the in the Model object's child-parent map. Instead, 

it contains the identifiers of the Element objects in the model. 
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5.5 Updatable derived features 

In order to improve the efficiency of the framework, the concept of an 

UpdatableDerivedFeature object was introduced. This structure can compromise data 

integrity though – if used incorrectly. 

UpdatableDerivedFeature objects are DerivedFeature objects that calculates its value and 

then stores it. Whenever the getValue method is called, the stored value is returned. 

Whenever one of the features or attributes it depends is changed, its stored value must be 

recalculated. To ensure that the stored value of these Feature objects remain valid, a special 

listener object listens for changes to the Feature objects that they are dependent on. As 

soon as a Feature object is changed, the listener is notified and the update method is called 

on the Feature objects that are influenced by this change. The sequence in which the 

Feature objects are updated is important. For this purpose another structure has to be built 

into the control system.  

Consider the TwoBrickWalls object from Figure 18. Its quantity feature depends on the 

length and height features of the WallTN object. Graph theory can be used to model the 

dependencies between different features. A graph consists of a set of vertices and edges. A 

directed graph has directed edges, which are edges with a specific direction. The first part of 

Figure 20 repeats the Element objects and their Feature objects from Figure 19, the second 

part shows a directed graph. The directed graph consists of 4 vertices, a, b, c and d; and 

directed edges going from a to c, c to d, and b to d. It becomes clear that dependencies are 

similar to the directed edges of the graph. 

WallTN : ElementNorthWallsPlan : IComponent TwoBrickWalls : BillOfQuantities

length : Feature

length : Feature

quantity : Featureheight : Feature

a

c

b

d

Part 1: NorthWallsPlan, WallTN, 
TwoBrickWalls and their features

Part 2: Directed graph

x Vertex

Legend:

Directed edge

 
Figure 20 DerivedFeatures and directed graphs 
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When modelling the dependencies using graph theory, the vertices represent the Feature 

object and directed edges are used to represent the dependencies between Feature objects. 

In Figure 20, if the feature represented by vertex a is changed, the features represented by 

vertex c and d has to be updated in sequence. If the feature represented by d is updated 

before c, the value stored in that feature will be incorrect.  

A path is formed by traversing from one vertex to another via directed edges. The length of a 

path equals the number of edges it traverses. A vertex is termed an ancestor of another 

vertex if there is a path going from it to the other vertex. A vertex is termed a direct ancestor 

of another if there is a path of length one from it to the other vertex. Vertex a is therefore an 

ancestor of vertex d and a direct ancestor of vertex c. 

In order to determine the correct update sequence, the graph has to be topologically sorted. 

A topological sorting assign ranks to each of the vertices (Pahl & Damrath, 2001). In 

laymen's terms, the rank of a vertex is the length of the longest path to it, measured from a 

vertex without an ancestor. For more precise definitions, see Pahl & Damrath (2001). In 

effect the rank of a vertex corresponds to the step in the update sequence that its associated 

Feature object must be updated. Figure 21 shows a directed graph before and after it has 

been topologically sorted. 

a

c

b

d

e

f

a c

b

d

e

f

Step 0 Step 1 Step 2 Step 3 Step 4

 
Figure 21 Topological sorting of graphs 

Only acyclic graphs can be topologically sorted. Acyclic graphs are directed graphs that 

does not contain any cycles. In Figure 22 an example is shown where the user introduced a 
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Feature object to represent the cost per square meter of a wall. He then calculates the wall 

surface area by dividing the rate from the Bill of Quantities with this feature. The result is a 

cycle is formed, clearly seen between vertices e, b and d. Programmatically an infinite loop 

is formed. 

a

e

b

value = surfaceArea

quantity : Feature

value = 100.00

unitRate : Feature

value = quantity * unitRate

rate : Feature

value = rate / costPerSqM

surfaceArea : Feature

value = 120.00

costPerSqM : Feature

c

d

Where:
Vertex a  represents   costPerSqM
Vertex b        “       quantity
Vertex c        “       unitRate
Vertex d        “       rate
Vertex e        “       surfaceArea  

 
Figure 22 Cycles in an update sequence 

The example in Figure 22 demonstrates bad programming procedures. The cost per square 

meter of a wall is similar to the unit rate. The same information is therefore stored twice, and 

the figure also demonstrates how an inconsistency is formed between the two features. 

For the purpose of managing the updating of Feature objects, one central graph is required 

in the framework. This graph must contain vertices for every Feature object in every model, 

i.e. including the core model and all supplementary models connected with it. Whenever one 

of the Feature objects is updated, a sub-graph has to be created containing all the vertices 

that either directly or indirectly depends on the Feature object. This sub-graph has to be 

topologically sorted, and the dependent Feature objects updated in the correct sequence. 

The graph is managed by an UpdateManager object, located in the Workspace class. All 

Feature objects are observable. Whenever a Feature object's value is changed it will fire an 

event to all registered Listener objects. Whenever a Feature object is added the 

UpdateManager object has to be registered as a listener to this object. Furthermore, 

whenever a DerivedFeature object is added, a check first has to be performed to ensure that 

no cycles are formed due to the addition of the DerivedFeature object. 
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One of the advantages of using UpdatableDerivedFeature objects over the basic 

DerivedFeature objects of Section 3.1 is that cycles are detected before the object is added. 

This prevents the computer from going into an infinite loop when calculating the value of a 

DerivedFeature. If the value of the rate feature in Figure 22 were to be calculated, the 

computer would enter an infinite loop.  

Another advantage is in the form of efficiency. Say feature a is dependent on feature b, 

which is dependent on feature c. With basic DerivedFeature objects, whenever the value of c 

is calculated, the getValue method of b will be called, which will calculate the value of b. 

When calculating the value of feature b, the getValue method of feature a will be called, 

which will recalculate the value of feature c. Thus the process of getting the value of feature 

c involves 3 calculation processes. With UpdatableDerivedFeature objects, the values are 

calculated and stored when a feature object is added or changed; from thereon end the 

getValue method merely returns the stored value. 

The problem with UpdatableDeriveFeature objects is that listeners cannot be added to 

normal object attributes and DerivedFeatures can be dependent on these as well. This 

means an attribute can be changed, but since no event is fired for this change, the features 

that depend on it will not be updated. There are ways to solve this problem; however the 

programmer will have to consciously put a system in place to avoid inconsistencies. Such a 

system might involve declaring all attributes as private, with setter methods that fire update 

events. 

Another problem with UpdatableDerivedFeatures is to detect its ancestors. Attempts were 

made to detect the ancestors directly from the BeanShell script; however the process 

became cumbersome and ineffective. The creator of the feature will therefore have to 

declare all ancestors. While the concept of ancestors can be easily grasped by 

programmers, the possibility exists that users will not declare ancestors correctly. 

UpdatableDerivedFeatures can be used effectively by experienced users for features that 

have cumbersome derivations. However, the programmer in charge of customising the 

framework will have to ensure that the correct systems are in place to detect changes in 

attributes. Furthermore, if an algorithm can be created that can detect ancestors from the 

derived feature's script; this type of derived features can become more accessible to end-

users. 
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5.6 Database integration 

As projects of the case study are started and completed, the information in each must be 

stored in one database. Since the Workspace class stays constant, while different models 

are registered and unregistered; this class must be used to manage any database. 

Databases are normally fully customised and influenced to a great extent by the individual 

requirements of a company. For the case study, a basic database was designed for 

demonstration purposes. The entities of this database can be used as a basis when creating 

a customised database. The data entities somewhat resemble the objects in the Bill of 

Quantities application, however there is a difference in the way the unit price and rate of 

items are stored. 

Different projects and also different sections of the same project can have the same items; 

however the unit rate and quantity of an item will differ for each project and section. In the 

database, a Project entity consists of more than one Section entity. The relation between 

Item entities and Section entities is a many-to-many relation. An intersection table, table 

Item_Section, is used for this relation. Each entry in this table has a unitRate and quantity. 

An item can therefore be associated with more than one Section, and for each association a 

different unit rate and quantity is recorded. 

An Item entity is associated with a Subheading entity, which is associated with a Heading 

entity. A Heading entity is associated with a Bill entity. Each of these relations is many-to-

one relations. The association between Section entities and Bill entities should not be 

included in the database structure since it can be derived. The Item_Section table must 

rather be used to find the Item entities associated with a particular Section entity. By using 

the Subheading entity associated with an Item entity, and then using the Heading entity 

associated with the Subheading entity, and so forth; the Bill entity that contains the Item 

entity can be derived. Figure 23 illustrates the relations between the entities. 
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Figure 23 Database for storing Bill of Quantities information 

5.7 Prototype source code of relevance to this chapter 

The Workspace class is located in the package control. Class JunctionTable is located in the 

package util and Class NamedObject is located in the package model. 

Since the software developed for this thesis is only a prototype implementation, a 

CommandManager class was not created. Provision was made for it in the Workspace class 

– all commands are executed using the executeCommand-method in the Workspace class. 

Currently this method directly executes the command by calling the doCommand method 

directly on the command. If a CommandManager is to be used, only this method should be 

changed to rather send the command to the CommandManager for execution than executing 

it directly. An existing CommandManager from one of the applications can readily be used. 

This would mean that one integrated command sequence will be managed for all the 

different applications by one CommandManager. This might not be desirable for the user, 

therefore Undo/Redo actions should be customised with thorough consideration of user 

requirements. 

Different commands are located in the package control.commands. An important command, 

called BuildingModelCreator, is located in package customisation. When the user runs the 

prototype implementation, this command instantiates all the objects. Any command can 

execute several other commands, as illustrated by the BuildingModelCreator command. 

Most of the commands in the prototype implementation are demonstrated in the 

BuildingModelCreator class. 

Another command of note is the command CreateFamilyFromPath located in package 

control.commands, which reads a text file and then creates a Family object with attributes 
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and traits as specified in the file. This command allows users to define families in text files as 

classes are defined in .java files. For the correct format of the text contained in these files, 

refer to the package BoQ.families, which contains the files that define the families of the BoQ 

program.  

A single Feature can also be created using a text file. The length and area features of the 

CademiaElement objects are declared in files "length" and "area", located in package 

cademia.components. The BuildingModelCreator command demonstrates how these files 

are used to create the features. 

 Class UpdateManager, located in package control, makes use of a graph implementation 

project called Plep2011 (Eygelaar, 2008). UpdatableFeature objects are added to this class, 

which will then check whether any cycles result from the UpdatableFeature object's addition 

to the update graph. The UpdateManager registers a listener to each of the 

UpdatableFeature object's predecessors. Predecessors can be of type Feature, or 

FeatureObject. The listener will react if a Feature object notified it of its value changing, and 

it will react if a FeatureObject object notified the listener that any of its attributes changed. 

The listener will react by updating all successors of the notifying Feature or FeatureObject. 

For the link between a Java application and a Microsoft Access database file to function 

properly, certain drivers need to be setup first on the computer on which the software is 

executed. Since the prototype is meant to be executed on different computers, and also due 

to the high degree of customisation is involved in creating a database, this part of the 

framework was excluded from the prototype. However, on a Microsoft Windows computer, a 

Microsoft Access database file was successfully linked with a Java application using 

Microsoft ODBC. It could not be established whether this would be possible on a different 

platform. 

For a database to be linked with a Java application, a Connection object is required. This 

object connects with a specified database, given the correct drivers are installed. In the case 

of linking a Java application with a Microsoft Access database, a JDBC driver is required. 

The Connection object is then used to execute normal SQL-queries on the database. Class 

Workspace provides a central location from where all objects of importance to the database 

can easily be accessed. It also provides a persistent location from where a database can be 

managed as different models of different projects are loaded. 
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6 Basic GUI 

A basic view is discussed in this chapter that allows a user to view information of the 

different models. In addition, the view allows the user to directly access and modify the 

features in the feature objects contained in each model. In order to demonstrate the 

functionality of the view, a BoQ program based on the view is also discussed. 

6.1 Basic view 

Most of the functionality of the framework lies in integrating applications with each other. 

Integration occurs primarily on a "behind-the-scenes" basis. Once the framework has been 

customised by a programmer, the end-user will interact mainly with the applications. Special 

commands can be added to the applications in plug-in packages, which interact with the 

underlying core model. As an example, a command might be included in the CAD plug-in 

that creates a 2D representation of a wall consisting of two lines. This CAD application 

command can include core model commands that create and links a core model element, 

which is a member of the "Wall" family. 

It is useful, however, to have a basic view of the underlying core model in order to directly 

control interactions between the different models and their elements. A CAD application is 

used to convert information into a visual form. Even though it displays lines, shapes, etc. on 

screen, the information used to create the display is still stored as numbers, text and 

Booleans in an information model. The view of the framework will have to display the vast 

amounts of information stored in the core-model and supplementary models. 

The most common way to display large amounts of information is by using a table. Figure 24 

shows a screenshot of a table displaying Bill of Quantity information. Users would easily 

grasp an interface based on a table, since it is the underlying structure of spreadsheets. 

Spreadsheets are widely used for technical information processing. Elements of a model can 

be displayed as rows in a table, with each column displaying a property of the element. A 

table can soon become overpopulated, resulting in a confusing number of rows. A tree can 

be used to reflect the child-parent relationships between the elements and can also assist to 

simplify the information displayed in the table. Figure 25 shows how a tree can be used to 

display the elements of a model and the child-parent relationships between them. A 

combination of a tree and a table would form an efficient basic view of the different models.  
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Figure 24 Bill of Quantities displayed in a JTable 

 

 
Figure 25 Screenshot of a basic JTree 

6.2 Combining a tree with a table 

In Java, JTable instances are used to display information in a table format, while JTree 

objects are used to display tree structures.  A combination of the two, where the resulting 

view consists of a table as the basis, with the first column resembling a tree; would allow the 

user to expand and contract sets of rows. This concept is explored in a series of articles 

published by the Sun Developer Network entitled "Creating TreeTables in Swing" (Milne, 

2003), "Creating TreeTables: Part 2" (Violet & Walrath, 2003) and "The Swing HTML Parser" 

(Violet, 2003). The combined viewer is termed a JTreeTable. Figure 26 shows how the Bill of 

Quantities table from Figure 24 can be simplified by contracting some of the rows. 
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Figure 26 Bill of Quantities displayed in a JTreeTable 

As with all Java viewers, a JTreeTable viewer has its own model instance. A JTreeTable 

object has a TreeTableModel instance, which contains information such as the names of 

each column, the structure of the tree and the information for each cell of the table. A 

JTreeTable consists of TreeNode objects. The TreeNode objects are used to create the tree 

in the first column as well as populating the cells of the table. Each row uses a TreeNode 

object to populate the row's cells. By expanding a row, its children rows are displayed 

directly beneath it. Any object can implement the TreeNode interface. A TreeNode object 

must have a method that returns its children objects, a method returning its parent object 

and a method that returns whether it is a leaf or not. A leaf is a TreeNode object with no 

children. 

As mentioned before, the framework consists of different models. For example, the 

screenshot in Figure 26 is a view of the elements of the BillOfQuantities model. The 

elements of this model contain all the information necessary to create the tree of a 

JTreeTable, as well as populating the cells of the table part. In some ways therefore it 

resembles a TreeTableModel; however it only contains some of the information of a 

TreeTableModel instance. It does not contain information such as the size of each column or 

row, the names of the columns and rows, etc. This information is specific to the JTreeTable 

viewer, and not the rest of the framework. It is therefore preferable to keep a viewer's model 

instance separate from the core-model and participating models; whether it be a 

TreeTableModel, TreeModel, ListModel, etc. Furthermore, it would be advantageous to 

enable more than one viewer to view the contents of a model. Each must be able to manage 

its own viewer specific information, such as column name, row size, etc. On the other hand, 

the different elements in the model readily implement the structure and methods required of 

TreeNode objects. If these elements are directly used as the TreeNode objects of a 
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TreeTableModel, information is not duplicated. The Element class therefore implements the 

TreeNode interface to make this possible. A JTreeTable viewer of the different families can 

also be useful, therefore the Family objects also implement the TreeNode interface. 

1

-elements*

IntelligentComponent

Drawing

Family

1

-families*

Element

Model

BoQElement

BillOfQuantities

1

-elements*

1

-components*

+getParent()
+children()
+isLeaf()

«interface»
TreeNode

1

*

JTreeTable

1 1

+getColumnCount()
+getColumnName()
+getValueAt()
+getRoot()

TreeTableModel

 
Figure 27 Implementing the TreeNode interface 

A special implementation of the TreeTableModel was created that allows columns to be 

added dynamically. When adding a column, the name of a feature must be specified. Each 

row will then display in this column, the value of its feature for the Element the row 

represents. Since BoQElement and IntelligentComponent objects extend the class Element, 

these objects can readily be used as TreeNode objects in this dynamic TreeTableModel 

object. 
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6.3 Bill of Quantities demonstration 

In order to demonstrate the functionalities of the TreeTable concept, the viewer of the Bill of 

Quantities application is based on a JTreeTable. A Bill of Quantities is normally displayed in 

table format and therefore the JTreeTable concept can be used to great effect. 

Figure 28 shows a screenshot of an example Bill of Quantities. When the a cell in the 

Quantity column is clicked, a script editor dialog opens, that allows the user to edit the script 

of the Quantity feature of the selected BoQElement object.  

The screenshot shows item "One brick walls" selected and its script is displayed in the editor 

window. The script calculates the quantity as the sum of the Length features in an array 

called elements. This array is predefined and contains the Element objects associated with 

the item, namely WallTN, WallTS, WallTE and WallTW. These objects are displayed as the 

BoQElement object's leaves. 

 
Figure 28 Script editor screenshot 

The user can change the script of the quantity feature to be equal to the surface area of the 

item's associated walls. Only one of the lines of code has to be modified. Originally this line 

reads: 
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q += elements[i].get("length"); 

This line must be modified to: 

q += elements[i].get("length") * elements[i].get("height"); 

At a later stage, the user might require the surface area of all openings in the wall, such as 

window and door openings, to be subtracted from the quantity. Depending on how these 

openings were incorporated in the structure of the models, this change can be added as 

seamlessly as demonstrated above. 

The viewer displayed in Figure 28 is an instance of object type ModelPanel, which is a 

subtype of Class JPanel. A ModelPanel is created by simply specifying the Model object that 

it must display and the required columns of the table. This object can then be added to any 

Container as desired. 

6.4 Main model viewer 

In addition to the windows of the applications being integrated with each other, an additional 

window was developed to provide functionality for directly viewing and manipulating the 

contents of the core-model as well as the supplementary models. This window is an instance 

of the class IntegrationFrame. 

The content pane of the IntegrationFrame is divided into two areas – a main area with a 

tabbed pane for viewing the different models, and an auxiliary panel for viewing more 

specific information of selected objects and also where wizards are executed. The following 

two screenshots of the IntegrationFrame shows some its functionality. 

 
Figure 29 Screenshot of the IntegrationFrame 
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Figure 30 Screenshot showing an active wizard 

Figure 29 shows the model "Boschendal Street Core Model" being displayed in the main 

area. The element "WallTN" is selected and its features are displayed in the auxillary panel. 

The element is associated with elements "Drawing11" and "One-brick walls", which are 

displayed as its leave objects. 

In Figure 30, the model "Boschendal Street Bill of Quantities" is displayed in the main area. 

As can be seen, the ModelPanel displayed in this time differs from the one displayed in 

Figure 28 – it has fewer columns and it also displays the different families in the model. 

Essentially, the ModelPanel instance displayed in the main area can be modified, at runtime, 

to include the the columns of the ModelPanel instance displayed in Figure 28. 

The auxillary pane displayed in Figure 30 shows a wizard that will create an Element object 

according to the parameters specified by the user. A programmer can easily create custom 

wizards by extending the abstract class ParameterAction. Class ParameterAction is a 

subtype of the interface javax.swing.AbstractAction, which is used to create objects such as 

buttons, menu items, etc. Among other information, an Action object specifies the name of 

the button or menu item, and also what must happen when it is pressed. In other words, 

when a programmer creates a custom ParameterAction object, this object can be used to 

create a button. Whenever this button is pressed, the application will automatically create a 

wizard according to the parameters specified by the custom ParameterAction object, and 

when "Finish" button on the wizard is pressed, the ParameterAction object will be notified. 

The wizard in Figure 30 displayed as a result of the "Create Element" menu item being 

pressed. This menu item was created using a CreateElementAction object, which is a 

subtype of class ParameterAction. The CreateElementAction object specifies that it requires 

four parameters. The first is of type String, the other is of type Model, the third of type Family 
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and the fourth of type Element. The application creates ParameterRenderer objects for each 

of these parameters according to their type. For example the ParameterRenderer for 

parameter of type Model comprises a combobox with the models in the workspace. Once 

again a programmer can create custom ParameterRenderer objects. He can then specify the 

object type this custom renderer must be used for with the method setDefaultRederer in 

class ParameterWizard. 

Figure 31 shows three different windows next to each other. To the left is the 

IntegrationFrame, with the Cademia application in the upper right portion and the BoQ 

program in the lower right portion. The Cademia application has a toolbar on the right-hand 

side that contains a ModelPanel instance showing the elements of the Cademia 

supplimentary model. Whenever an IntelligentComponent object is selected in the drawing 

pane, its associated DrawingElement object will be selected in the toolbar. Selection is 

synchronised by default between all ModelPanel objects, meaning if an Element object is 

selected in one, the same Element object will be selected in all other ModelPanel instances 

containing the object. Furthermore, if there are any Element objects associated with the 

selected one, these will be selected in the other ModelPanel instances. For example, as 

soon as the appriate component is selected in the Cademia drawing pane, "Drawing13" 

CademiaElement will be selected in all ModelPanel instances that displays Cademia model. 

Furthermore, its associated Element object, "WallTE" will also be selected in the ModelPanel 

of the IntegrationFrame. The same happens vice versa, selecting Element "WallTE" will 

result in Element "Drawing13", resulting in its associated IntelligentComponent object also 

being selected in the Cademia drawing pane. The same is also valid between the 

IntegrationFrame and the BoQ program. 

To further illustrate integration between the applications, drag-and-drop is possible between 

the different ModelPanel instances. For example, if a user drags Element "Drawing15" from 

the Cademia toolbar to element "WindowLN" in the main area of the IntegrationFrame, the 

two will be associated with each other. In other words, after the dragging and dropping, 

"WindowLN" will be associated with "Drawing13" and vice versa - ergo selecting one will 

result in the other being selected. 
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Figure 31 Screenshot of the integrated applications next to each other 

Selection is coordinated in class Workspace, and any object implementing SelectionListener 

interface will be notified of selection events once registered in class Workspace. The 

ParameterRenderer objects, for example, are also SelectionListeners and as soon as a 

selection event occurs react accordingly. 

The ModelPanel class readily provides great functionality to a programmer wanting to 

integrate applications with each other. As the Cademia toolbar demonstrates, by 

incorporating it into the applications somehow, functionality for viewing and modifying 

internal model information is immediately at the fingertips of the user. 

6.5 Prototype source code of relevance to this chapter 

The package view.treeTable contains the classes used to create the JTreeTable and 

ModelPanel objects. The IntegrationFrame is contained in package view. The 

CreateElementAction class is located in package view.actions, which also contains class 

ParameterAction. Parameter renderer source code is located in package view.wizard. 

Furthermore, the BoQ program is displayed in an instance of class BoQFrame, located in 

package BoQ. 

A basic JEditorKit (JSyntaxPane, 2011) is used to display and edit scripts. 
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7 Results 

A framework was created that can be used to model entities of a building project. Entities are 

modelled as Element objects that use features, instead of attributes and methods, to 

represent properties of real life entities. This means that attributes and methods can be used 

exclusively for application specific functions, which end-users do not have to interact with. 

This allows end-users to create and customise Element objects to model real-life entities 

according to unique requirements, without requiring knowledge of application specific 

attributes and methods. The end-user therefore only has to deal with the information relevant 

to his unique requirements. As a result models based on this framework are only as complex 

as the user requires, and significantly less complex than all-encompassing BIM-style 

models. These models are also flexible enough to allow customisation, even by the end-user 

at runtime. 

The features of Element objects can contain scripts, which are sets of instructions that the 

computer must perform to calculate the feature's value. By integrating appropriate 

interpreters into the integration environment, the scripts can resemble source code in 

standard programming languages. As with standard features, these types of feature objects 

can be added or removed at runtime. This means that functionality can be added to the 

model at runtime, with no modification to the source code. End-users with basic 

programming skills are thereby enabled to customise the functionality of the model. 

The objectives of the thesis were therefore fully met.7 

For demonstration purposes, an implementation of the framework was created in Java to 

address the problems for an example case study.8 

A basic application was created with which a Bill of Quantities can be managed. A plug-in 

was created for a CAD application that allows its drawing components to be linked to items 

in the Bill of Quantities application. Functionality was added that synchronises selection 

between the applications. A database was designed that stores the pricing information of 

completed projects contained in the Bill of Quantities application. It was also demonstrated 

how objects can execute queries directly on this database. 

The deliverables required by the case study were therefore also met. 

                                                
7
 Refer Section 1.7 

8
 Refer Section 1.1 

Stellenbosch University http://scholar.sun.ac.za



75 
 

The addition of script features ensures data integrity between the different applications is 

maintained. Furthermore, a system was created that allows derived properties to be updated 

as soon as one of its dependents is changed. This ensures data is concurrent at all times. 
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8 Recommendations 

While the objective of the thesis was to create a flexible, integrated modelling framework; 

some recommendations follow on how a model based on this framework should be 

implemented.  

As mentioned before, the software environment must be customised for individual 

requirements; and the customisation process would normally involve creating a customised 

view. It is recommended that the view allows buttons, menus and toolbars to be added 

dynamically at runtime. To support this, the creation of buttons, menus and toolbars must be 

accomplished using commands. These commands can then be executed at runtime. 

Furthermore, a type of macro command can be implemented to make further use of the 

script concept. The idea of the macro command would be to allow the user to create a 

custom command that executes a user-defined script. The customised view can allow menu 

items and buttons to be associated with this command, thus allowing the user to add 

personalised functionality to the view. These macro commands might require user input for 

some of its parameters. It is therefore recommended that the view incorporates a standard 

command line or wizard interface that will allow parameter values to be specified when 

executing macro commands. Also, standard scripts can be defined as predefined methods, 

similar to functions used in spreadsheets. An example of such a standard method would be 

calculating the average value of a specified feature in associated Element objects. 

It is further recommended that all implementations operate on a client-server basis, where all 

models are located on a central server and is modified by commands from the client. This 

would allow different individuals in a collaborative environment to operate on one central 

model. The result is that duplication of data is minimised and therefore data integrity 

improved.  

A client server approach also supports applications to be created for mobile devices. These 

mobile devices can be used on the building site to update the building model. A user can for 

instance mark certain building entities as complete while on site. These changes are then 

uploaded to the model on the server, which generates payment certificates accordingly. 

Feature objects can be created that allow photos captured on site to be attached to the 

different Element objects. While the prototype for the framework was created with 

collaboration in mind, this concept is not demonstrated in the prototype. Persistent 

identification allows the information of persistently identified objects to be exchanged. 

However, care has to be taken when exchanging feature objects to ensure the relations 
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between the updatable features of Section 5.5 are managed correctly. When replacing one 

Element object with another, its Feature objects must be removed from the UpdateManager 

object and replaced with the new Element object’s features. 

Whenever models are defined, it is recommended that all properties of real life entities be 

modelled as Feature objects. This enables them to be easily modified for future purposes. 

Furthermore, the updating system described in Section 5.5 can be used to manage 

information in a more effective manner. 

When saving the different models, it should be kept in mind that each model consists of two 

parts, the Element objects and the Family objects. The Family objects contain information 

about the structure of the customised models. The Element objects contain information 

relevant to each building project. Files for different projects will therefore mostly contain the 

Element objects of the models. A customisation file will contain information about the 

families, amongst other. The control part can be modified to ensure that child-parent 

relations between Element objects reflect those between the corresponding Family objects. 

Thereby, the child-parent structure of the Element objects is contained as part of the 

information contained in the Family objects. 

Customisation is often achieved at the expense of standardisation. Standardisation is 

important to enable interoperability between individuals in the same company, as well as 

interoperability between different companies. For standardisation between different 

companies, a common core object structure will have to be utilised by all companies. 

Customisation for different companies can be achieved by means of plug-ins or extensions 

of this structure, together with the usual custom family definitions. However, interoperability 

between individuals of the same company requires a higher level of standardisation. It is 

recommended that individuals of the same company operate on applications that are similar 

at least on source code level. Individuals can still define custom Family objects. 
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Conclusion 

An integrated modelling environment can be achieved without a complex all-encompassing 

building model. The applications used to create these complex models often provide 

functionality not required by smaller companies, thus overcomplicating the building model 

faced by the end-user. While these models can provide integrated solutions to larger 

companies with extensive software requirements, it is possible for smaller companies to 

create integrated modelling environments using more specialised applications. 

In order to achieve integration of small-scale applications, the model-concept must be 

perceived in a different manner. While models were originally perceived as 2D, 3D or even 

4D CAD models containing mostly geometric information; building models have grown to 

include information from a much wider spectrum. The 3D building components of the most 

common CAD models have grown to include ever-growing lists of additional information, 

such as pricing, scheduling, structural design information, etc. It is not necessary for the 

geometric components to be the basis of a building model; rather focus can be shifted away 

from this portion to the additional information associated with building models. Once this is 

achieved the applications that create and manage the additional information can be 

effectively integrated, along with the CAD applications, into a single multi-facetted model.  

Furthermore, the perception must also be changed that building models are predefined and 

fixed. Flexible, dynamic building models, allowing customisation for unique requirements, 

can reduce complexity. Flexibility in a building model has the further advantage of reducing 

the effort required to incorporate future additions. 

While customisation has a role in reducing complexity, the role of standardisation to assist in 

interoperability across company boundaries must not be disregarded. In order to accomplish 

standardisation, custom building models will have to be created in accordance to a single 

flexible integration framework. 
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terms that could have been arbitrarily defined is in line with industry norms. 
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