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Abstract

Universal Scaling and Dynamics at Quantum Phase Transitions
in the Kitaev Chain

E.C. King

Department of Physics
Stellenbosch University

Thesis: MSc (Theoretical Physics)

December 2021

Experimental advances in ultracold gases present physicists with the opportunity to explore a diverse
range of new phenomena in a controllable manner. In turn, this has fuelled significant interest in the field
of non-equilibrium quantum many-body dynamics. A common theme in several theoretical studies has been
the dynamics that emerge when a quantum system is driven out of equilibrium through a continuous ramp, or
sudden quench, of a control parameter in the system’s Hamiltonian. Of particular interest is the case where
the ramp results in the system approaching, or crossing, a quantum phase transition, and where properties of
the associated critical point are then imprinted on the system’s dynamics. A classical version of this notion
was already proposed by Kibble and Zurek in the 1980s in the context of thermal phase transitions. There it
was shown that the equilibrium critical exponents of the phase transition govern certain scaling laws which
emerge following a parameter ramp across a phase transition. This mechanism subsequently also received
considerable attention in the context of zero-temperature quantum phase transitions. Fundamental to this
framework is the breakdown in adiabatic evolution at the critical point, leading to the production of exci-
tations. The scaling of the resulting excitation density with the ramp rate, and how the equilibrium critical
exponents are encoded in this scaling law, are some of the central predictions of the Kibble-Zurek framework.

We study extensions of this framework and investigate parameter ramps at finite temperatures, as well
as ramps of the temperature itself, in the vicinity of a quantum phase transition. The overarching goal is
to formulate scaling laws and identify universal features resulting from such ramps. We single out the one-
dimensional, long-range fermionic Kitaev chain as a setting for this investigation. The quadratic nature of
this model makes it amenable to both analytic and numeric treatments, even after introducing a coupling to
a thermal bath within the Lindblad formalism. We derive analytic scaling laws for the excitation density
resulting from ramps to the critical point, both for an isolated chain and for one in contact with a thermal
environment. In the former case, our results are found to agree with the predictions of the Kibble-Zurek
framework, except for the case of long-range hopping along the chain. Despite this, we find excellent agree-
ment between our analytic scaling predictions and exact numeric results obtained from solving the relevant
equations of motion. For the open Kitaev chain the scaling of, and competition between, the contributions of
the coherent and incoherent excitation mechanisms is analysed in detail. To support our analytic predictions,
we exploit the superoperator formalism of Prosen to solve the Lindblad master equation numerically for
chains with several thousand sites. We also consider the cooling of the system towards the quantum critical
point, and investigate how the final residual excitation density scales with the cooling rate and the initial
temperature. This work presents new results for these temperature ramps towards critical points, and extends
several other results appearing in the literature.
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Uittreksel

Universele Skalering en Dinamika by Kwantum Faseoorgange
in die Kitaev Ketting

E.C. King

Departement Fisika
Universiteit Stellenbosch

Tesis: MSc (Teoretiese Fisika)

Desember 2021

Eksperimentele vooruitgang in ultrakoue kwantumgasse bied fisici die geleentheid om ’n uiteenlopende
reeks nuwe verskynsels op ’n beheerbare wyse te ondersoek. Hierdie vooruitsig het ook aansienlike belang-
stelling in nie-ewewig veeldeeltjie kwantumdinamika aangewakker. ’n Sentrale tema in verskeie teoretiese
studies is die dinamika van ’n kwantumsisteem wat uit ewewig gedryf word deur ’n kontinue of skielike
variasie van ’n kontroleparameter in die sisteem se Hamiltoniaan. Van besondere belang is die geval waar die
parameter variasie daartoe lei dat die sisteem ’n kwantum-faseoorgang nader of oorsteek, en waar eienskappe
van die gepaardgaande kritiese punt dan in die dinamika vervat word. ’n Klassieke weergawe van hierdie idee
is reeds in die negentien-tagtigs in die konteks van termiese faseoorgange deur Kibble en Zurek voorgestel.
Daar is gevind dat die ewewig kritiese eksponente van die faseoorgang ’n rol speel in sekere skaleringswette
wat na vore kom na ’n parameter variasie wat die faseoorgang oorsteek. Hierdie meganisme het sedertdien
ook aansienlike aandag in die konteks van nul-temperatuur kwantum-faseoorgange geniet. ’n Fundamentele
aspek van hierdie raamwerk is hoe adiabatiese evolusie by die kritiese punt afbreek wat dan lei tot die skep
van opwekkings. Die skalering van die resulterende opwekkingsdigtheid met die tempo waarteen die param-
eter gevarieer word, asook hoe die ewewig kritiese eksponente in hierdie skaleringswet verskyn, is van die
sentrale voorspellings van die Kibble-Zurek raamwerk.

Ons bestudeer veralgemenings van hierdie raamwerk en ondersoek kontroleparameter variasies by eindige
temperature, asook temperatuur variasies na aan ’n kwantum-faseoorgang. Die oorhoofse doelwit is om
skaleringswette te formuleer en universele kenmerke te identifiseer. Ons fokus op die een-dimensionele,
langreikwydte fermioniese Kitaev ketting as ’n konteks vir hierdie studie. Die kwadratiese aard van hierdie
model maak beide analitiese en numeriese ondersoeke moontlik, selfs wanneer dit aan ’n termiese bad gekop-
pel word binne die Lindblad-formalisme. Ons lei analitiese skaleringswette af vir die opwekkingsdigtheid
wat volg uit parameter variasies wat eindig by die kritiese punt, beide vir ’n geı̈soleerde sisteem asook vir
een wat in kontak met ’n termiese omgewing is. Vir die geı̈soleerde sisteem stem ons resultate ooreen met
die voorspellings van die standaard Kibble-Zurek raamwerk, behalwe in die geval van langreikwydte hop-
prosesse in die ketting. Ten spyte hiervan vind ons steeds uitstekende ooreenstemming tussen ons analitiese
voorspellings en eksakte numeriese resultate wat verkry word deur die relevante bewegingsvergelykings op
te los. Vir die sisteem wat in kontak met ’n termiese bad is ontleed ons beide die skalering van die koherente
en nie-koherente bydraes tot die opwekkingsdigtheid, asook die kompetisie tussen hierdie bydraes. Om ons
analitiese resultate te ondersteun gebruik ons die superoperator formalisme van Prosen om die Lindblad-
meestervergelyking numeries op te los vir kettings met ’n paar duisend eenhede. Ons beskou ook die afkoel
van die sisteem na die kwantum kritiese punt, en ontleed hoe die finale oorblywende opwekkingsdigtheid met
die afkoeltempo asook die aanvanklike temperatuur skaleer. Hierdie werk bevat nuwe resultate vir hierdie
temperatuur variasies by kritiese punte, en brei ook verskeie ander resultate uit wat in die literatuur verskyn.
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Chapter 1

Introduction

This thesis investigates the non-equilibrium dynamics of quantum many-body systems in the vicinity of
quantum critical points, with a strong focus on Kibble-Zurek (KZ) physics and realisations thereof in the
Kitaev chain. The overarching goal is to formulate scaling laws and identify universal features that arise
either when ramping a coupling constant, or control parameter, across a critical point at finite temperature, or
when cooling a quantum system towards criticality. Drawing inspiration from the dynamic KZ scaling results
for the closed fermionic Kitaev chain, the non-equilibrium dynamics of the chain in the presence of weak
dissipation is studied. This provides an interesting setting for exploring the interplay between quantum and
thermal fluctuations, and the connection between the dynamical and equilibrium properties of quantum crit-
ical systems. Section 1.1 will introduce important theoretical concepts that are used extensively throughout
this thesis. This is followed by a brief literature review on the adiabatic dynamics of isolated and dissipa-
tive open quantum systems in Section 1.2. In Section 1.3 we summarise the aims and applications of this
research. The chapter ends with Section 1.4 in which an outline of the thesis is provided.

1.1 Theoretical background
This section provides some essential theoretical background on quantum phase transitions, the Landau-Zener
problem, the Kibble-Zurek Mechanism (KZM) and open quantum systems.

1.1.1 Quantum phase transitions
Phase transitions are of paramount importance in many fields within the physical sciences and play an es-
sential role in nature [1, 2]. A phase transition marks an abrupt and fundamental change in the state of a
system [1], which is often characterised by non-analytic behaviour in the system’s free energy [3]. Funda-
mental changes from one phase of matter to another can be seen everywhere [1]. Everyday examples include
the freezing of rivers, the boiling of water or the melting of ice. This macroscopic change that occurs when
a physical system crosses the boundary between distinct phases of matter is driven by microscopic fluctu-
ations [2, 4]. Traditionally, phase transitions are classified as either first-order or continuous. This work
concentrates on continuous (second-order) phase transitions, where the two phases do not co-exist at the
transition point [2].

The notion of a continuous phase transition was first introduced by Andrews in 1869 [5, 6]. Andrews’
discovery of critical opalescence in carbon dioxide [5] led to the first observation of a diverging correlation
length at a continuous phase transition [5, 6]. Over the past century, scientists have delved deeply into this
topic, leading to an expansive understanding of critical phenomena. Presently, many systems that display
second-order phase transitions are known to exhibit universal features close to critical points. These universal
features are independent of the particular microscopic details of the system. Amongst these universal features
are the critical exponents that characterise divergences in time and length scales at the critical point [7].

More recently, considerable progress has also been made in the field of quantum phase transitions
(QPTs) [2, 7, 8]. While classical (thermal) phase transitions1 and QPTs share some similarities, QPTs are
fundamentally different to their classical counterparts [2, 8]. QPTs are driven by microscopic quantum fluc-
tuations (as opposed to thermal fluctuations) [4, 6, 8], typically at very low temperatures where thermal

1The terms classical phase transition and thermal phase transition will be used interchangeably. It can be justified that all thermal
phase transitions are indeed classical. Refer to the work published in Ref. [6] for a discussion on this.

1
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(a) True level-crossing

(b) Avoided level-crossing

Figure 1.1: (Reproduced from [7]) (a) A
true level-crossing, which is often char-
acteristic of a first-order quantum phase
transition. (b) An avoided level-crossing,
signifying a second-order quantum phase
transition.

Figure 1.2: (Reproduced from [7]) The r-axis corresponds to the sys-
tem’s zero-temperature phase diagram, with the critical value of r mark-
ing the quantum phase transition. The dashed lines are not phase transi-
tions, but crossovers at T ∼ |r − rc|νz with critical exponent νz. These
crossovers between the semi-classical (∆ > kBT ) and quantum critical
(∆ < kBT ) regions are based on a comparison of the temperature T
with the system’s excitation gap ∆.

fluctuations are largely absent [4, 7]. As a result, QPTs are accessed at zero absolute temperature by varying
a non-thermal control parameter, for example pressure, an external magnetic field or the chemical potential
[2, 6]. When the control parameter is varied across a critical value, the properties of the ground state change
in a non-analytic way.

When the existence of QPTs was first predicted by the physicist John Hertz in 1976 [9], the study of
critical phenomena in quantum mechanical systems at zero temperature was believed to be of purely aca-
demic interest [6]. This belief was reasonable since (i) QPTs are accessed strictly at zero temperature, which
is inaccessible in an experiment, and (ii) QPTs occur at a precise, critical control parameter value [2, 6].
However, in recent years, QPTs have attracted attention in both theoretical and experimental settings. After
the experimental realization of a quantum phase transition from a superfluid to a Mott insulator in a gas of
ultracold atoms [4, 10], condensed matter physicists have become intrigued by the important — and experi-
mentally relevant — consequences of QPTs [6]. Despite being a very active field of modern physics research
over the past decade, quantum phase transitions and critical phenomena continue to challenge physicists’
understanding of condensed matter systems.

In this thesis a quantum phase transition will be formally defined as any point of non-analyticity in the
ground state energy or ground state properties of a quantum system [2, 7]. Points of non-analyticity could
arise from either an actual level-crossing or an avoided level-crossing (see Fig. 1.1), where the latter is more
commonly observed [7]. To describe these level-crossings, consider a many-body system with Hamiltonian
H(r), whereH(r) varies as a function of a control parameter (coupling constant) r [2, 7]. For a finite system,
the ground state energy ofH(r) as a function of r will typically be a smooth, analytic function [7]. However,
for the case where r couples solely to a conserved quantity, it is possible that a previously excited level
becomes the ground state at some point r = rc. This is known as a true level-crossing, and at the transition
point the level-crossing produces a non-analyticity in the ground state energy as a function of r [2, 7]. If
the excited level cannot become equal in energy to the ground state, i.e. they cannot cross, then it is known
as an avoided level-crossing. The point at which an avoided level-crossing occurs is commonly referred to
as a quantum critical point (QCP)2. This avoided level-crossing becomes sharper with an increase in system
size [3, 7], resulting in a point of non-analyticity in the thermodynamic limit, i.e. an infinitely sharp transition
is obtained in the limit of an infinite system size [2].

2Formally, a QCP is a point at which the correlation length diverges upon variation of the control parameter r at exactly zero
temperature [3]. In some cases a QCP is at a physically inaccessible parameter value [7].
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It is requisite to point out that according to the definition above QPTs occur strictly at zero temperature.
Focusing on second-order phase transitions, these transitions can be loosely characterised by an energy gap
between the ground state manifold and the rest of the spectrum [7, 11] which vanishes as the critical point
is approached. More specifically, second-order QPTs involve a characteristic energy scale, say ∆, where
∆ → 0 as r → rc [11]. However, the inaccessibility of zero temperature in experimental settings motivates
the expansion of this theory to also include transitions and crossovers at T > 0. At finite temperatures a
second important energy scale enters, namely kBT [7]. It is the comparison of the competing energy scales
∆ and kBT that leads to the diagram in Fig. 1.2. This figure combines the system’s zero-temperature phase
diagram and the the crossovers resulting from the comparison of the competing energy scales. The smooth
crossover lines at T ∼ |r − rc|νz , with critical exponent νz, separate the semi-classical regions from the
quantum critical region. The so-called quantum critical region, where ∆ < kBT , will play an important role
in this thesis. Within this region both quantum and thermal fluctuations impact on the system dynamics [7].
This fascinating interplay between quantum and thermal fluctuations will be further explored, with a focus
on the universal features which may arise in the vicinity of QCPs. An important tool for understanding how
the universal properties of QPTs imprint on the system’s dynamics, and the extension of this idea into the
finite-temperature domain, is the so-called Kibble-Zurek mechanism. Fundamental to the KZ mechanism is
the breakdown of adiabaticity at the critical point. A simple, paradigmatic example of this breakdown of
adiabaticity is the Landau-Zener model [12], which we consider next.

1.1.2 The Landau-Zener problem
During the late 1920s there was considerable interest in the crossing of energy levels. According to the
adiabatic theorem [13], a system governed by a time-dependent Hamiltonian H(t), with the initial state
being a stationary state, will pass through all the corresponding stationary states of H(t) for all t, provided
that the Hamiltonian varies infinitely slowly. However, when the spectrum is no longer gapped, as is the case
when crossing a second-order phase transition [7], there will be a deviation from the adiabatic dynamics no
matter how slowly the Hamiltonian changes. These ideas can be straightforwardly demonstrated using the
Landau-Zener (LZ) problem3, a well-known and extensively studied paradigm in quantum physics [18, 19].

The LZ model is a two-state (two-level) quantum mechanical system described by the time-dependent
Hamiltonian

H(t) =

[
ε(t) ∆̄
∆̄ −ε(t)

]
(1.1)

in the diabatic basis {|1〉 , |2〉}. Here ∆̄ ≥ 0 is a constant coupling and ε(t) is the energy level spacing (or
detuning). The solution |ψ(t)〉 of the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (1.2)

can be written in the form
|ψ(t)〉 = C1(t) |1〉+ C2(t) |2〉 . (1.3)

Here the probability amplitudes C1(t) and C2(t) of the diabatic states |1〉 and |2〉 satisfy [11, 19, 20]

i
d

dt
C1(t) = ε(t)C1(t) + ∆̄C2(t) and i

d

dt
C2(t) = ∆̄C1(t)− ε(t)C2(t). (1.4)

Since only the characteristics in the vicinity of the crossing are of interest to us, the detuning is chosen to
have a linear time-dependence, ε(t) = ϑt [15, 18], which is a realistic approximation for many physical
problems [18]. Here ϑ can be regarded as the ramp rate for the variation of ε(t) with time. At t = 0 the
detuning vanishes and produces for ∆̄ = 0 a true crossing of the energy levels, while for ∆̄ > 0 the coupling
between diabatic states results in level repulsion and an avoided level-crossing.

At any given time, the Hamiltonian has two instantaneous eigenstates (adiabatic states): the ground state
|g(t)〉 and the excited state |e(t)〉 [11]. The adiabatic states written in the diabatic basis {|1〉 , |2〉} of the
Hamiltonian are [11, 18]

|g(t)〉 = cos(θ/2) |1〉 − sin(θ/2) |2〉 and |e(t)〉 = sin(θ/2) |1〉+ cos(θ/2) |2〉 , (1.5)

3As early as 1932, Landau [14] and Zener [15] (see also work published in Refs. [16, 17]) rigorously derived an analytical description
of the excitation probability for this model when it is driven through an avoided level-crossing by adiabatic variation of a control
parameter. This excitation probability later became known as the LZ transition probability.
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LZ tf→∞ result

Numeric results
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Figure 1.3: (a) The excitation probability as a function of time. At late times there is good agreement with the LZ result.
Parameters are chosen as follows: ∆̄ = 0.5 and ϑ = e−1. (b) The eigenenergies as a function of time, showing the
instantaneous excitation gap ∆(t) which is minimal at t = 0.

where tan(θ) = −∆̄/ε(t), 0 ≤ θ ≤ π. The corresponding eigenenergies are

E±(t) = ±
√
ε2(t) + ∆̄2, (1.6)

hence the instantaneous energy gap ∆(t) = E+ − E− is minimal at the avoided level-crossing, where
ε(t) = 0, with a value of ∆min = 2∆̄ [18]. The LZ model is exactly solvable, making it useful to understand
the breakdown of adiabaticity due to the vanishing energy gap.

In the LZ problem the system is typically prepared in the instantaneous ground state |g(ti)〉 at some initial
time ti. The solution to the differential equations (1.4) can be used to determine the probability p(tf ) that
the system is excited at some final time tf [11]. Using the state of the system introduced in Eq. (1.3), the
probability to undergo a transition is

p(tf ) = |〈e(tf )|ψ(tf )〉|2 = 1− |〈g(tf )|ψ(tf )〉|2 . (1.7)

In the limit tf → ∞ this non-adiabatic transition probability p(tf ) is given by the well-known exponential
Landau-Zener formula [21]

pLZ = e−π∆̄2/ϑ, (1.8)

assuming the system was initially prepared in its ground state at time ti → −∞. Figure 1.3a shows the
numeric results obtained from solving Eq. (1.4), together with the LZ result in Eq. (1.8). At late times the LZ
formula accurately approximates the exact excitation probability. The minimum in the system’s excitation
gap at t = 0 (see Fig. 1.3b) results in a breakdown of adiabaticity if the adiabatic-following condition4

√
ϑ� ∆(t)/2 (1.9)

is violated in the neighbourhood of t = 0. This leads to the excitation probability increasing rapidly close to
t = 0 before stabilising to its long-time value given by the LZ formula. For a true closing of the excitation
gap, i.e. when ∆min = 2∆̄ = 0, we have pLZ = 1 regardless of how slowly the Hamiltonian is varied. In other
words, the violation of the adiabatic-following condition is unavoidable if the excitation gap truly vanishes.

Generalisation of this two-state case can be achieved for several integrable spin models by using a Jor-
dan–Wigner transformation to perform a mapping to non-interacting fermions [11]. In a translationally
invariant system of non-interacting fermions, a phase transition can be viewed as a set of independent LZ
avoided crossings [11]. The details of this general LZ argument are summarised in work by Dziarmaga [11],
with useful technicalities addressed in Refs. [19, 20]. Of particular interest is the expression for the proba-
bility pk that an excitation mode with momentum k of the final Hamiltonian at t → ∞ is excited after the
system has passed through a phase transition as a result of ramping some control parameter. In general, this
probability is given by [11]

pk = e−πτQ∆2(k)/a(k), (1.10)
4Refer to Appendix A for details on the derivation of this condition.
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1.1. Theoretical background 5

where ∆(k) is the minimal gap function and a(k) is a model-dependent parameter. The ramp rate τ−1
Q

plays the role of ϑ above, and characterises the rate at which the control parameter in the Hamiltonian is
varied. Averaging the excitation probability in Eq. (1.10) over the first Brillouin zone gives the density of
quasiparticle excitations in the final state at the end of the parameter ramp as5

nex =
1

L

∑
k

pk ≈
∫

ddk

(2π)d
pk, (1.11)

where L is the system size (number of lattice sites) and d is the system’s dimensionality [11, 22, 23].

In the past two decades, the LZ formalism has been applied extensively in quantum optics [24–27], atomic
and molecular physics [28] and condensed matter physics (see for example work published in Refs. [29–36]).
Remarkably, physicists continue discovering more systems that are governed by (or well approximated by)
the LZ problem. In the context of quantum non-equilibrium dynamics, the two-level Landau-Zener model is
also a powerful tool for exploring Kibble-Zurek physics.

1.1.3 The Kibble-Zurek mechanism
The Kibble-Zurek mechanism (KZM), a powerful theory describing the universality of dynamical behaviour
near a phase transition, has brought about substantial development in the study of slow passages through
critical points. This theory was originally introduced by Kibble [37] in the context of the formation of
domain walls, strings and monopoles in the early universe due to the occurrence of symmetry breaking
phase transitions [37, 38]. Zurek identified that similar behaviour is observed in phase transitions taking
place in the laboratory [39]. Subsequently, Zurek recast the theory for application in the study of critical
phenomena in statistical mechanics and condensed matter physics. In the years that followed, experiments
in superfluid helium and liquid crystals shed light on the dynamics of the defect formation process [38]. A
plethora of experiments in condensed matter systems have since rigorously tested the dynamical KZM for
classical phase transitions [11], and shown results to be consistent with the theory. Today, the KZM is a
well-established theory for the prediction of how the number of defects generated in a system being driven
through a continuous finite-temperature phase transition scales with the driving rate [40].

Although the KZM was first proposed for classical phase transitions, the concepts have since been ex-
tended to include quantum phase transitions. Generalization to the quantum setting was achieved by the
work of Zurek [41], Polkovnikov [42] and Dziarmaga [43]. The quantum version of the KZM is similar to
its classical (finite-temperature) counterpart in that the excitations scale with a power of the driving rate [11].
The fundamental differences reside in the underlying physics. To thoroughly understand the mechanism at
zero temperature, consider a quantum condensed matter system that is driven (or ramped) slowly across a
critical point r = rc at T = 0 by varying the coupling constant r.6 Near the isolated critical point there is a
divergence in the system’s reaction time τ and correlation length ξ [7, 11]. More specifically, τ and ξ diverge
as [11]

τ ∼ |ε|−νz and ξ ∼ |ε|−ν , (1.12)

where
ε =

r − rc
rc

(1.13)

is a dimensionless distance parameter describing the proximity of r to its critical value [21], ν is the corre-
lation length critical exponent, and z is the dynamical critical exponent. Both ν and z are determined by the
universality class of the underlying phase transition. Note that the reaction time, which governs how quickly
the system can respond to external perturbations, is set by the inverse energy gap, τ ' ∆−1 [11]. It then
follows from Eq. (1.12) that

∆ ∼ |ε|νz. (1.14)

The vanishing of the gap results in non-adiabatic system evolution near the critical point, no matter how slow
the driving speed (ramp rate) [11].

5Note that (i) the integral approximation in Eq. (1.11) only becomes accurate in the thermodynamic limit L → ∞, and (ii) the
dominant contributions to nex come from the long-wavelength modes [11, 22].

6In the context of our work, the slowness of the driving or ramping is understood by comparing the relevant timescales in the problem
when we are far from the QPT. Therefore, ‘ramping slowly’ should be interpreted as follows: away from the QCP, the control parameter
or coupling constant is varied on a timescale that is much longer than the typical timescales of the system, i.e. it is possible for the
adiabatic-following condition to be satisfied.
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Figure 1.4: (Reproduced from [11, 21]) The reaction time τ(' ∆−1) and the inverse transition rate |t| as a function of
the dimensionless parameter εwhich indicates the distance from the critical point. The energy gap ∆ equals the transition
rate at the crossover points ε(−t̂) and ε(t̂). These boundaries differentiate between the impulse and adiabatic stages of
evolution. Starting in adiabatic stage I, the system evolves adiabatically until ε(−t̂) is reached, where the impulse stage
is entered. This impulse stage lasts until the reactions of the system again become faster than the transition rate.

The study of linear ramping protocols constitute a great proportion of the literature, and will also be the
focus of this thesis. However, it is possible to implement a slow nonlinear ramp across a quantum critical
point. The first theoretical investigation of the production of defects as a consequence of a nonlinear ramp
was conducted by Sen et al. [44]. In what follows, the parameter ε will be varied linearly at a finite ramp rate
set by the ramp timescale τQ =

∣∣ dε
dt

∣∣
t→0

∣∣−1
[11, 21]. We write this as

ε(t) = − t

τQ
. (1.15)

The system is prepared in the ground state at t → −∞, and evolves with varying ε. There are three dis-
tinct stages for the system’s evolution: adiabatic stage I, impulse, and adiabatic stage II [21], as shown in
Figure 1.4. Initially, the system’s state will follow the instantaneous adiabatic ground state since the reaction
time is fast enough or, equivalently, the gap ∆ is large enough. The relative rate of change of the energy gap,
|∆̇/∆|, is introduced as a qualitative measure of the rate at which the Hamiltonian is changing. This measure
is referred to as the transition rate, and from Eqs. (1.14) and (1.15) it is postulated that [45]

|∆̇/∆| ' |ε̇/ε| = |t|−1. (1.16)

Therefore, the first adiabatic stage lasts until the inverse reaction time ∆ (1.14) equals the transition rate (1.16)
at an instant t = −t̂. This leads to the freeze-out time [21]

t̂ ∼ τ
νz

1+νz

Q . (1.17)

After t = −t̂, the impulse stage is entered (see Figure 1.4). Adiabaticity breaks down since the system’s
reaction time is too slow. In the adiabatic–impulse approximation, the evolution becomes impulse, i.e. the
state becomes ‘frozen’ and does not change until adiabatic evolution resumes at time t̂ [11]. Close to the
freeze-out time, −t̂, the system is in its instantaneous ground state with correlation length ξ̂ [11]. According
to the definition in Eq. (1.12), this correlation length is given by ξ̂ ∼ |ε(−t̂ )|−ν . It follows from the definition
of the parameter ε (1.15) and the freeze-out time (1.17) that

ξ̂ ∼ |ε(−t̂ )|−ν ∼ τ
ν

1+νz

Q . (1.18)

This ground state, which gets ‘frozen’ exactly at −t̂, becomes an excited initial state for the system’s evolu-
tion after the transition into the final adiabatic stage at t̂ [11]. While the simplification made by the adiabatic–
impulse approximation captures the important details of the non-equilibrium dynamics, strictly speaking, the
evolution in the system does not stop [21]. During the impulse stage the system’s state will still evolve as
dictated by its Hamiltonian, but ceases to be adiabatic. Sufficiently long after passing the critical point, the
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1.1. Theoretical background 7

system can ‘catch up’ locally.

The characteristic timescale t̂ (1.17) and correlation length ξ̂ (1.18) predicted by the KZ mechanism can
be used to estimate other physical observables [11, 21]. In this work, the focus is on the scaling of the density
of quasiparticle excitations generated during the slow passage through a quantum phase transition. In the
limit of long ramp timescales, i.e. slow ramp rates, the density of excitations nex is expected to scale as [11]

nex ' ξ̂−d ∼ τ
− dν

1+νz

Q = v
dν

1+νz , (1.19)

where d is the (spatial) dimensionality of the system, v = τ−1
Q is the ramp rate and dν

1+νz is the KZ scaling
exponent. While the KZM does not provide an exact prediction for the excitation density, it does predict that
nex obeys a power law in the ramp rate, where the power exponent is given in terms of the critical exponents
associated with the phase transition. This prediction reflects an element of universality in the non-equilibrium
dynamics of systems in the vicinity of QCPs.

At the end of Section 1.1.2 it was claimed that the Landau-Zener model is a powerful tool to explore
Kibble-Zurek physics. Recently, work by Damski [12] showed that the Kibble-Zurek theory of the production
of defects, which was introduced above, gives an accurate account of the quantum non-equilibrium dynamics
across a LZ transition. This intriguing connection between the KZM and LZ crossing has subsequently
been verified experimentally, with results published in Refs. [46–48]. As a result, the two-level LZ model
is useful to gain new insight into the non-equilibrium dynamics of quantum phase transitions. Undoubtedly,
most important many-body quantum systems, such as spin systems and cold atoms in optical lattices, are
substantially more complex than the LZ model [12]. However, the generic nature of avoided level-crossings
at a second-order QPT suggests that changes to the system’s properties incurred during a phase transition can
be qualitatively described by the Landau-Zener problem [11, 12].

1.1.4 Open quantum systems
Over the past decade, open many-body quantum systems have received considerable attention. Despite the
formidable challenges, the theoretical study of open quantum systems is warranted by the major role these
systems play in numerous applications of quantum physics [49]. This wide-spread applicability can be at-
tributed to the fact that the perfect isolation of quantum systems in experimental settings is not viable [49, 50].
Any realistic system will be in contact with some uncontrollable environment which may significantly alter it,
as well as its dynamics. Consequently, it is necessary to understand the highly non-trivial interplay between
unitary quantum dynamics and dissipation [51] in order to address pertinent questions about quantum phe-
nomena and the dynamics of open systems. To this end, many noteworthy experiments have been conducted
in atomic and molecular optical systems and superconducting circuits [52, 53]. The ability to experimen-
tally control both coherent and dissipative dynamics will allow for exciting future developments in the field
of general open-system quantum simulation. However, modeling open quantum system dynamics from a
theoretical standpoint presents several difficulties. Two notable issues are (i) the numeric description of
many-body quantum systems requires significant computational power, with the computational complexity
increasing exponentially with the number of particles, and (ii) the tools used to describe isolated quantum
systems cannot trivially be extended to deal with open systems.

1.1.4.1 Quantum master equations

One of the most well-known approaches for treating open quantum systems is through a quantum master
equation [49], which is an equation of motion for the system’s density matrix, %(t) [49]. Such an equation of
motion is useful for (approximately) describing the time evolution of an open system, as well as understand-
ing its dynamics. Under the assumption that the total quantum system (the system plus the environment) is
closed and the environmental correlation times are short (the Markovian assumption), the Markovian quan-
tum master equation is [49, 54, 55]

d%(t)

dt
= L̂%(t), (1.20)

where L̂—the Liouvillean or the Liouville (super-) operator—is the generator of the quantum dynamical
semigroup [54]. A general expression for the generator L̂ can be derived from first-principles under the Born–
Markov and rotating wave approximations (refer to Refs. [49, 54, 55] for detailed discussions). Omitting the
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specific details of the derivation, the widely used Markovian Lindblad master equation is [49, 54, 55]

d%(t)

dt
= L̂%(t) = −i[HS +HLS, %(t)] +

∑
α

γα

(
Lα%(t)L�

α −
1

2

{
L�
αLα, %(t)

})
(1.21)

where the operators Lα—commonly referred to as Lindblad bath operators—encode information about the
system’s couplings to the bath(s). The system–bath couplings describe how the system interacts with the
bath(s), as well as the strength of the interaction. Note that the first term of the generator in Eq. (1.21)
accounts for the unitary part of the dynamics generated by the effective Hamiltonian, HS +HLS [55], which
is a combination of the system Hamiltonian HS and the Lamb-Shift Hamiltonian HLS. The remaining terms
are responsible for the non-unitary (dissipative) evolution [55]. Finally, it is important to note that Lindblad
master equations can be restrictive due to the various assumptions and approximations introduced in the
description of both the system and the environment [49, 54, 56].

In this thesis a simple model of a quadratic quantum many-body system in the presence of a thermal
bath will be treated within the Lindblad formalism using a quantum master equation of the form given in
Eq. (1.21). D’Abbruzzo and Rossini’s recent paper [51] provides a self-consistent microscopic derivation of
this Markovian master equation for open quadratic quantum systems. Following this approach, the Lindblad
bath operators for quadratic fermionic or bosonic models can be found. In some cases, local master equations
may violate the second law of thermodynamics, fail to accurately describe the dissipative dynamics, or result
in unphysical behaviour (refer to work by Konopik and Lutz [57] for an in-depth discussion). Importantly, the
derivation in the work published in Ref. [51] leads to a non-local form of the master equation. Solving this
master equation is computationally infeasible for very large systems since the dimensionality of the problem
increases exponentially with the system size. In Refs. [58, 59] a general method to solve master equations
for quadratic open Fermi systems is presented, where computational complexity increases only linearly with
system size. Using this approach of “third quantisation”, numeric calculations for larger systems can be
performed. We will present this approach in Section 3.1.

1.2 The adiabatic dynamics of isolated and open dissipative quantum
systems

With the advancement of experimental platforms in the past two decades came a succession of noteworthy
experiments on the non-equilibrium dynamics of many-body systems [60–67], and in particular highly con-
trollable ultracold atomic gases [4, 68–73] (refer to [74] for an extensive review). These experiments probed
various many-body critical phenomena and shed light on out-of-equilibrium quantum dynamics of various
different systems. Inevitably, this swiftly stirred up fresh interest in the theoretical study of the dynamics of
isolated (closed) quantum many-body systems. Most of the theoretical studies have been devoted to one sim-
ple approach: the controlled variation (hereafter referred to as ‘ramping’) of a parameter or coupling constant
in a Hamiltonian. These ramping protocols can be split into two broad categories: sudden ramps (quenches)
and slow (adiabatic) ramps. Over the years many studies on sudden quenches have been conducted, for exam-
ple: the study of universality in the quench dynamics [75, 76], the evolution of entanglement entropy [77, 78]
and the use of work statistics to formulate descriptions of generic sudden quenches [79, 80]. In this thesis the
focus will be on parameter ramps in which the ramp rate is slow compared to the other relevant timescales of
the system.

The adiabatic dynamics of a system become particularly fascinating when a critical point is traversed.
The breakdown of adiabaticity in the vicinity of a critical point results in interesting out-of-equilibrium dy-
namics and the formation of (topological) defects. Many tools have been developed for the theoretical study
of the non-equilibrium physics of interacting systems, including, but not limited to, the density matrix renor-
malization group, the Keldysh technique, quantum kinetic equations and functional integral methods [45].
This work focuses on another one of these tools, the so-called Kibble-Zurek mechanism (KZM) which was
introduced in Section 1.1.3.

When the KZM was first generalised to the quantum setting, explicit calculations were only performed
for the Quantum Ising model [41, 43] and Boson Hubbard model [42]. For these models it was success-
fully shown that the excitation density scaling is compatible with the general KZM theory [41–43]. Subse-
quently, KZ scaling laws have been observed for various other models. More recently, this has been extended
to also include long-range systems. Work by Puebla et al. [81] explored the Kibble-Zurek physics in a
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one-dimensional transverse-field Ising model with algebraically decaying long-range interactions. The non-
equilibrium behaviour was found to obey the predicted scaling laws. In work by Dutta and Dutta [22] the
effect of long-range interactions on the non-equilibrium dynamics of a p-wave superconducting chain was
studied. The scaling of the defects generated was found to be universal and the KZ scaling exponents dictat-
ing the power-law decay of the defect density were extracted. For the short-range model the scaling exponent
turns out to be 1/2, a well-known result for the nearest-neighbour Kitaev chain [22]. For long-range interac-
tions the scaling exponent depends non-trivially on the long-range parameter [22]. Recent work published in
Ref. [82] focused on signatures of universality that are beyond the KZM. Experimental verification that the
distribution of topological defects can be determined by the universality class of the underlying phase transi-
tion is a powerful extension of the KZ theory, with potential applications in adiabatic quantum computation
error analysis [82].

The discussions above focused on unitary, non-dissipative dynamics of quantum systems at zero tem-
perature, under the implicit assumption that the system is initially prepared in the ground state. Strictly
speaking, QPTs occur only at zero temperature, as discussed in Section 1.1.1. However, it is well-known that
in equilibrium the universality of the scaling governed by QCPs extends into the finite-temperature domain
within the bounds of the quantum critical region (refer to Fig. 1.2) [7, 8]. It is anticipated that this is also the
case for non-equilibrium systems. Therefore a natural question that arises is how the investigations discussed
above can be extended to the finite-temperature domain. On this point, two interesting questions are (i) how
would finite-temperature effects in isolated systems modify the response of the system, and (ii) how would
dissipation, or the coupling to some thermal bath, affect these non-equilibrium processes. These remain very
much open questions.

The work published in Refs. [83, 84] provides some insight into the first question, and gives finite-
temperature generalisations of sudden quench dynamics, with a focus on the sine-Gordon model. Finite-
temperature generalisations to slow adiabatic dynamics are somewhat less explored, with recent investiga-
tions published in Refs. [23, 50, 85, 86]. In the work published in Refs. [23, 50, 85], the critical point is
approached by ramping a control parameter r → rc at T > 0. The finite temperature introduces thermal
fluctuations, which impact on the system’s dynamics. Despite the sensitivity of the dynamics to these fluc-
tuations for generic open quantum systems, the defect formation resulting from the parameter ramp obeys
a general scaling law characterised by the equilibrium critical exponents. A QCP can also be approached
by cooling a system towards criticality, i.e. T → 0 at r = rc [2]. By lowering the temperature at r = rc,
the QPT is approached and both 1/kBT and τ will diverge. It is expected that both quantum and thermal
fluctuations will impact on the dynamics. To the best of our knowledge, results for such a protocol in which
systems are cooled towards the critical point are reported for the first time in the present thesis.

1.3 Aims and applications
With the experimental advances in ultracold gases comes a need for a better theoretical understanding of the
non-equilibrium dynamics of quantum systems. One promising avenue of investigation is the identification
of universal features in systems which are driven through, or towards, a quantum phase transition. It has
already been established that close to critical points systems exhibit a breakdown in adiabaticity, resulting in
the production of excitations when control parameters are varied [42]. The overarching goal of this thesis
is to formulate scaling laws for the excitations generated when slowly ramping coupling constants in the
Hamiltonian at finite temperatures, and ramps of the temperature itself, in the vicinity of QCPs. Accordingly,
we study three ramping protocols in detail: the standard zero-temperature quantum KZ protocol, parameter
ramps at finite temperatures and the cooling of systems at the critical point.

In line with our main aim, we will first study the standard quantum KZ ramping protocol to establish a
framework for the study of parameter ramps at finite temperatures. This KZ protocol is performed at zero
temperature, and the density of excitations is expected to show signatures of the quantum phase transition
and exhibit universal features. After establishing this foundation, we aim to understand the impact of the
presence of dissipation on the universal scaling that emerges in closed systems. To achieve this, we couple
systems to thermal baths, which are effectively described in the Lindblad formalism, and develop scaling
theories for certain aspects of the non-equilibrium physics.

The final part of this research will involve a detailed investigation into the analytic scaling arguments,
using as a model system the one-dimensional, long-range Kitaev chain. This model is amenable to (partially)
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analytic calculations—even in the presence of a bosonic bath. As such, it is an ideal choice to make further
quantitative statements on the scaling laws and their regimes of validity, as well as numerically support the
analytic results by using an exact numeric treatment of an appropriate Lindblad master equation. Hereby we
aim to verify the scaling behaviour in both weakly long-range and short-range regimes.

In addition to the fundamental theoretical interest of this research, the study of the dynamics associated
with QPTs and universal features in quantum systems may have an impact on future technologies [45].
Systematically understanding the breakdown of the adiabatic dynamics across quantum critical points will
provide useful insights into adiabatic quantum state preparation for quantum simulation [11]. This work
could also contribute towards developing techniques for engineering interesting many-body quantum states
in experimental settings, studying ultracold quantum gases and better understanding the cooling of systems
to lower temperatures.

Another potential application is adiabatic quantum computation [11]. Two of the main driving forces
behind the successful realisation of quantum computing are (i) the fast speed at which certain problems
can be solved when compared to using known classical methods [87], and (ii) problems believed to be
intractable on classical computers may be solvable with a quantum computer [88]. Advances in conventional
quantum computing have been hindered by the decoherence caused by unavoidable interactions with the
environment [87–89]. Scientists have looked to adiabatic quantum computation as a means to overcome the
challenges associated with noise and flaws in quantum computers. By encoding the solution to a problem in
the ground state of some suitably engineered Hamiltonian, the adiabatic theorem can be exploited to extract
the solution [87]. This is possible since the quantum state remains close to the instantaneous ground state of
the Hamiltonian governing the evolution, provided the evolution is sufficiently slow [88]. Our work, which
focuses on traversing or approaching quantum phase transitions by adiabatically ramping parameters in the
system Hamiltonian, is qualitatively very similar to adiabatic quantum algorithms. Consequently, the work
may facilitate a better understanding of these algorithms. Gardas et al. [89] have also shown that adiabatic
quenches of exactly solvable many-body systems may be used to study defects in quantum computers by
quantifying the extent to which the quantum computer is imperfect [89].

1.4 Thesis outline
We conclude this chapter by summarising the content of the remaining chapters. In Chapter 2 the Kitaev
chain model is introduced, as well as a description of its coupling to a thermal bath. We exploit the quadratic
nature of the model Hamiltonian and map it to a free-quasiparticle system by performing a Fourier transform
followed by a Bogoliubov transformation. Since our focus is to study the non-equilibrium dynamics of sys-
tems in the vicinity of QCPs, we also provide brief discussions on the zero-temperature phase structure of
the Kitaev chain and how the phases are distinguished, as well as the properties of the model’s low-energy
spectrum. The open system dynamics is then formulated in terms of an appropriate Markovian Lindblad mas-
ter equation, with the environment consisting of identical, independent bosonic baths and a linear coupling
between these baths and the sites of the fermionic chain. A careful analysis of the environment correlation
functions and eigenoperators of the system Hamiltonian leads to a dissipator in Lindblad form.

Chapter 3 focuses on an approach to solve the Lindblad dynamics of the Kitaev chain. We start by
summarising the general method of “third quantisation”, which was introduced by Prosen [58] to solve master
equations for quadratic fermionic problems. Within this formalism, we derive a matrix differential equation
that governs the time evolution of particular correlation functions. This is useful for studying the dynamic
response of systems. We proceed by focusing specifically on the Kitaev chain model. It is shown that this
model reaches the expected thermal steady state in the long-time limit, with the expectation values of the
steady state (of which only the occupation numbers are non-zero) tending to the Fermi-Dirac distribution
associated with the thermal baths. The excitation density dynamics for the Kitaev chain is described using
the matrix differential equation for the correlation functions. To reduce computational complexity, these
correlation functions are reformulated in terms of Fourier Majorana fermions, resulting in a convenient block-
diagonal structure for the relevant matrices.

In Chapter 4 we study the dynamic KZ scaling for the isolated Kitaev chain using the tools introduced
in previous chapters. We start with a general description of the standard quantum KZ ramping protocol,
followed by a detailed derivation of the scaling laws. These scaling laws are derived directly from the
Landau-Zener theory and later compared to the Kibble-Zurek scaling predictions. A numeric treatment of
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the Kitaev chain is used to verify the analytic scaling results, with good agreement observed for both weakly
long-range and short-range systems. The concepts and results of this chapter are used as building blocks to
later study the universal features of the dissipative open Kitaev chain.

Chapter 5 further develops the work on dynamic scaling laws to include the scaling behaviour of the
open Kitaev chain. There are two time dependencies of interest to us: µ(t) and T (t), where µ is the chemical
potential in the system Hamiltonian and T is the temperature of the thermal bath to which the system is
coupled. First we consider the finite-temperature ramping protocol, whereby the chemical potential µ is
ramped towards the quantum critical point at T > 0. Provided the temperature is sufficiently low, the system
will still “feel” the presence of the quantum critical point and universal scaling is expected. Thereafter
we investigate the cooling of the Kitaev chain towards quantum criticality, where critical slowing down is
expected once the temperature is sufficiently low. For both ramping protocols we derive a set of analytic
scaling laws, which are supported by numeric results.

Finally, in Chapter 6 we provide a summary of the work in this thesis, together with possible future
avenues of investigation. A natural extension of the work in Chapter 4 and Chapter 5 could be research
focused on the strongly long-range Kitaev chain, which is intriguing since we expect it to exhibit a topological
quantum phase transition at finite temperatures. The use of novel non-local observables, which are sensitive
to the proximity of the topological critical point, should allow us to identify signatures of the transition
and investigate potential universal behaviour. The solvability of the Kitaev chain can also be exploited to
study non-equilibrium stationary states within the framework we developed in Chapter 2 and Chapter 3.
Although unrelated to the Kitaev chain, we also mention the possibility of exploring systems that exhibit true
finite-temperature phase transitions, with a focus on identifying how the scaling behaviour differs in weakly
long-range versus strongly long-range regimes.
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Chapter 2

The Kitaev chain and its coupling to a
thermal bath

In this chapter we introduce the long-range Kitaev chain. This is a simple model of spinless fermions under-
going hopping and pairing processes on a one-dimensional lattice. The strength of the hopping and pairing
terms decay in a power-law fashion with distance. In later chapters the Kitaev chain will be used to investigate
the validity of scaling relations and for benchmarking analytic results against numeric data. After introducing
the model in Section 2.1, we will consider the coupling of the chain to a thermal bath. This will enable us to
address whether universal scaling relations, similar to those emerging in closed systems at zero temperature,
exist in the context of such an open quantum system. The open system dynamics can be described by an
appropriate Markovian Lindblad master equation, with important details summarised in Section 2.2.

2.1 The Model
In this section we start by providing a definition of the Kitaev chain. This model is exactly solvable. We first
outline a general procedure to obtain the spectral decomposition of generic fermionic quadratic Hamiltonians
and then apply this to the Kitaev chain. This is followed by discussions on the zero-temperature phase
structure of the model, how the various phases can be distinguished, and the properties of the low-energy
spectrum.

2.1.1 Definition of the Kitaev chain Hamiltonian
The Hamiltonian for the Kitaev chain of spinless fermionic particles on a closed one-dimensional lattice of
length L, with long-range hopping and pairing, is [22, 90]

HLRK = J
L∑
j=1

bL/2c∑
l=1

d−φl

(
c�jcj+l + c�j+lcj

)
︸ ︷︷ ︸

Hhop

+
∆

2

L∑
j=1

bL/2c∑
l=1

d−αl

(
cjcj+l + c�j+lc

�
j

)
︸ ︷︷ ︸

Hpair

+ 2µ
L∑
j=1

c�jcj︸ ︷︷ ︸
N

, (2.1)

where c�j (cj) creates (annihilates) a fermionic particle at lattice site j [91] and satisfies the standard anticom-
mutation relations [58]

{ci, cj} = 0, {c�i , c
�
j} = 0, {ci, c�j} = δi,j , i, j = 1, . . . , L. (2.2)

We have implemented periodic boundary conditions, that is

cj+L = cj , j = 1, . . . , L, (2.3)

which give rise to translational invariance. In Eq. (2.1) J is the hopping parameter, ∆ is the pairing parameter,
µ is the on-site (local) chemical potential, and φ and α are the distance decay (or long-range) parameters [22,

13
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14 2. The Kitaev chain and its coupling to a thermal bath

92]. The hopping and pairing terms, Hhop and Hpair respectively, decay with distance

dl =

{
l if l < L/2

21/ζ l if l = L/2
(2.4)

in a power-law fashion characterised by the long-range parameter ζ = φ, α [22, 90]. In the limit φ, α → ∞
only nearest-neighbour terms are present.

2.1.2 Diagonalisation
The Kitaev chain constitutes a paradigmatic example of an exactly solvable quantum many-body system,
which can be described in terms of free quasiparticles. While this implies that such models are not truly in-
teracting, a wealth of insight can still be acquired from the study of such systems. In Section 2.1.2.1 the pro-
cedure for diagonalising a generic quadratic fermionic Hamiltonian is summarised. We then take advantage
of the quadratic nature of the Kitaev chain Hamiltonian HLRK to explicitly diagonalise it in Section 2.1.2.2.

2.1.2.1 A generic fermionic quadratic Hamiltonian

The spectral decomposition of a generic fermionic quadratic Hamiltonian [90, 93]

HS =
L∑

i,j=1

[
c�iQijcj +

1

2

(
c�iPijc

�
j + h.c.

)]
(2.5)

is obtained through a Bogoliubov transformation. Note that the anticommutation relations in Eq. (2.2) and
the Hermiticity of HS impose the following conditions on the coefficient matrices [51, 93]:

P = −P T (antisymmetric matrix) and Q = Q� (Hermitian matrix). (2.6)

We define the 2L-dimensional Nambu field vectors as [51]

c =

[
~c
~c �

]
and c� =

[
~c �

~c

]T

, (2.7)

where the column vector ~c (~c �) of fermionic operators ci (c�i ) is defined as

~c = [c1, c2, . . . , cL]T
(
~c � =

[
c�1, c

�
2, . . . , c

�
L

]T)
. (2.8)

In this notation, the anticommutation relations read [51]

{cµ, c�ν} = Jµν , where J ≡
[

IL 0
0 −IL

]
, (2.9)

with IL the L× L identity matrix. Now the quadratic Hamiltonian can be written in the compact form

HS =
1

2

(
c�Hc + Tr[Q]

)
, where H = HBdG =

[
Q P
−P ∗ −Q∗

]
(2.10)

is the Bogoliubov–de Gennes (BdG) Hamiltonian.

We can introduce a new set of fermionic operators, {η�k, ηk}, through the linear canonical transformation

cj =
∑
k

(
Vjkηk + Sjkη

�
k

)
, (2.11)

or, equivalently,

c =

[
~c
~c �

]
= T

[
~η
~η �

]
where T =

[
V S
S∗ V ∗

]
. (2.12)

The anticommutation relations impose the conditions

V V � + SS� = I, V ST + SV T = 0, V �V + STS∗ = I, and STV ∗ + V �S = 0 (2.13)
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on the V and S matrices. It is possible to choose V and S such that T�HT is diagonal. This can be achieved
through an appropriate singular value decomposition (SVD) of the matrix Q+ P [93]. After performing the
SVD, we obtain the diagonalised form of the Hamiltonian as

HS =
∑
k

λkη
�
kηk +

1

2

(
Tr[Q]−

∑
k

λk

)
, (2.14)

where {λk ≥ 0} is the spectrum of excitations and η�k (ηk) is the creation (annihilation) operator of a
quasiparticle excitation with energy λk.

2.1.2.2 The Kitaev chain Hamiltonian

Following the general procedure in the previous section, we show how the Hamiltonian in Eq. (2.1) can be
solved exactly. First we introduce the Fourier transforms of the fermionic site operators through

ak =
1√
L

∑
j

eijkcj such that cj =
1√
L

∑
k

e−ijkak. (2.15)

Here the lattice momenta k ∈ {2πn/L : n ∈ ZL} run over the first Brillouin zone. Based on Eq. (2.15), the
matrix Ac→a which transforms between the site and Fourier fermions is[

~a
~a �

]
=

[
A1 0
0 A∗1

]
︸ ︷︷ ︸

Ac→a

[
~c
~c �

]
(2.16)

with entries A1(k,j) = 1√
L
eijk, j = 0, 1, . . . , L− 1. In terms of the Fourier fermion operators, the hopping,

pairing and chemical potential terms in the Kitaev chain Hamiltonian (2.1) are

Hhop = J
∑
k

gφ(k)(a�kak − a−ka
�
−k + 1), (2.17)

Hpair = i
∆

2

∑
k

fα(k)(a�ka
�
−k − a−kak), (2.18)

N = µ
∑
k

(a�kak − a−ka
�
−k + 1), (2.19)

where

gφ(k) =

bL/2c∑
l=1

d−φl cos(kl) and fα(k) =

bL/2c∑
l=1

d−αl sin(kl). (2.20)

Neglecting the constant terms in Hhop and N , the Hamiltonian in terms of the Fourier fermions has a conve-
nient block-diagonal form

HLRK =
∑
k

[
a�k a−k

] [ Jgφ(k) + µ i∆/2fα(k)
−i∆/2fα(k) −(Jgφ(k) + µ)

] [
ak
a�−k

]
. (2.21)

The final diagonalisation step uses the Bogoliubov transformation[
η�k
η−k

]
=

[
cosβk i sinβk
i sinβk cosβk

] [
a�k
a−k

]
(2.22)

with the Bogoliubov angle βk defined by tan(2βk) = −∆fα(k)
2Jgφ(k)+2µ . This transformation relates the Fourier

fermions to those of the free quasiparticle ηk modes of the diagonalised Hamiltonian. Considering all the
modes, the transformation is given by[

~η
~η �

]
=

[
B1 B2

B∗2 B∗1

]
︸ ︷︷ ︸

Ba→η

[
~a
~a �

]
(2.23)
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Figure 2.1: (a) The functions gφ(k) (2.20) and g∞φ (k) (2.28) as functions of the lattice momentum k for nearest-
neighbour pairing and various values of φ. Data points correspond to gφ(k) with a system size of L = 250, while the
L → ∞ results are given by the solid lines. The locations of the roots of the function are dependent on the long-range
parameter φ. (b) fα(k) (2.20) and f∞α (k) (2.29) for nearest-neighbour hopping and various values of α > 1. The data
points correspond to fα(k) with a system size of L = 250, and the solid lines represent the L → ∞ results. There are
two roots: one at k = 0 and the other at k = π.

where B1(k,k′) = δk,k′ cosβk and B2(k,k′) = −iδk,−k′ sinβk. It can be shown that B1B
�
1 + B2B

�
2 = IL

and B1B
T
2 +B2B

T
1 = 0, which ensures that the η fermions satisfy the canonical anticommutation relations.

Combining the Fourier and Bogoliubov transformations in Eqs. (2.16) and (2.23) yields[
~c
~c �

]
= A∗c→aB

�
a→η

[
~η
~η �

]
=

[
A∗1B

�
1 A∗1B

T
2

A1B
�
2 A1B

T
1

]
︸ ︷︷ ︸

T

[
~η
~η �

]
, (2.24)

from which we identify V = A∗1B
�
1 and S = A∗1B

T
2 from Eq. (2.12). This transformation then brings

HLRK (2.1) into a diagonal form as [22, 90]

HLRK =
∑
k

λφ,α(k)

(
η�kηk −

1

2

)
. (2.25)

The dispersion relation for the ηk fermions is [90]

λφ,α(k) =
√

(2Jgφ(k) + 2µ)2 + (∆fα(k))2. (2.26)

In the thermodynamic limit L → ∞ the lattice momentum k assumes continuous values, and the dispersion
relation becomes [22]

λ∞φ,α(k) =
√

(2Jg∞φ (k) + 2µ)2 + (∆f∞α (k))2, (2.27)

where [22, 90, 94]

g∞φ (k) = lim
L→∞

gφ(k) =
1

2

∞∑
l=1

eilk + e−ilk

lφ
=

1

2

(
Liφ(eik) + Liφ(e−ik)

)
(2.28)

and

f∞α (k) = lim
L→∞

fα(k) =
1

2i

∞∑
l=1

eilk − e−ilk

lα
= − i

2

(
Liα(eik)− Liα(e−ik)

)
. (2.29)

The function Liζ(z) =
∑∞
l=1 l

−ζzl above is the polylogarithmic function of order ζ [22, 94]. Figure 2.1
shows the gφ and fα functions for various long-range parameter values.

2.1.3 Zero-temperature phase structure
Studying the phase structure of the Kitaev chain will provide insight into the location and nature of the
quantum phase transitions in this model. The Kitaev chain exhibits second-order phase transitions at zero
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(a) (b)

Figure 2.2: (a) The phase boundaries for the Kitaev chain with short-range pairing and a range of long-range hopping
parameter values. For φ � 1 the locations of the critical lines tend towards µ/J = ∓1 for the 0 and π modes,
respectively. When there is long-range hopping, the phase boundaries deviate from the µ/J = ∓1 lines. (b) The phase
boundaries for the Kitaev chain with short-range hopping and a range of long-range pairing parameter values. The phase
boundaries occur at µ/J = ∓1 for the 0 and π modes, respectively. In both (a) and (b) the solid lines correspond to a
system size of L = 1500, while the dashed lines give the results in the thermodynamic limit.
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Figure 2.3: (a) The dispersion relation of the nearest-neighbour Kitaev chain as a function of k, centered around the
critical mode kc = 0. The gap in the spectrum closes for the k = 0 mode when µ/J = −1. The pairing parameter is
set to ∆ = 1. (b) The dispersion relation as a function of k, centered around the critical mode kc = π. The gap in the
spectrum closes for the k = π mode when µ/J = 1. Parameters are set as in (a).

absolute temperature.1 A second-order quantum phase transition is commonly signaled by the closure of
the excitation gap in the system’s spectrum. If we denote the minimum excitation gap of the Kitaev chain
quasiparticle spectrum by ∆̆ = mink λφ,α(k), then the spectrum is gapless when ∆̆ = 0. Therefore, from
Eq. (2.26), we require fα(k) = 0 and −gφ(k) = µ/J for ∆̆ = 0.2 The lines along which these conditions
are simultaneously satisfied correspond to the phase boundaries.

To determine the location of the phase boundaries, note that fα(k) vanishes for all α > 1 at k = 0
and k = π (see Fig. 2.1b). This signals the existence of two critical lines in the φ − µ/J and α − µ/J
planes: one corresponding to −gφ(0) = µ/J and the other to −gφ(π) = µ/J . The phase diagrams are
provided in Fig. 2.2. We split these phase diagrams into two regions, short-range and weakly long-range,
based on the values of the distance decay parameters. If φ > 2 (α > 2) we consider the hopping (pairing)

1The identification of topological phase transitions at finite temperatures requires tools which are beyond the scope of this thesis.
See the work published in Ref. [95] for further details.

2We will disregard the null-pairing case here.
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18 2. The Kitaev chain and its coupling to a thermal bath

to be short-range. Setting µ = ∓J in the Kitaev chain with nearest-neighbour hopping and arbitrary range
pairing results in a gapless spectrum for the k = 0 and π modes, respectively (see Fig. 2.3). Consequently,
the critical lines in the short-range regimes are either located at, or tend towards, µ/J = ∓1 for the critical
modes kc = 0, π. However, in the φ−µ/J plane the critical lines deviate from µ/J = ∓1 when the hopping
starts becoming longer ranged. More precisely, for weakly long-range hopping, i.e. when φ ∈ (1, 2), gφ(0)
diverges as φ → 1, which results in µc = −Jgφ(0) → −∞. Subsequent discussions will focus only on the
QCP associated with the k = 0 mode, which is at µ = −Jgφ(0).

2.1.4 Distinguishing the phases
The Kitaev chain with nearest-neighbour hopping and pairing is equivalent to the transverse field Ising model
through a Jordan–Wigner transformation [96]. Applying the Jordan–Wigner transformation [96]

σ+
j = c�j exp

(
iπ
∑
l<j

c�l cl

)
, σzj = 2c�jcj − 1, (2.30)

where σ+
j = (σxj + iσyj )/2, allows us to map the fermionic operators onto the spin operators. Taking as an

example the case where ∆ = −2J , this produces3

HTFIM =
∑
i

[
−µσxi + Jσzi σ

z
i+1

]
. (2.31)

The first term describes the interaction of the spins with an external field pointing along the x-direction,
and the second to a ferromagnetic (J < 0) or anti-ferromagnetic (J > 0) interaction between neighbouring
spins. When |µ| < |J | this model’s ground state exhibits (anti-)ferromagnetic ordering of the spins along
the z-directions. This suggests the introduction of a local order parameter which is sensitive to this ordering,
and which will be non-zero in this phase. When |µ| > |J | the spins instead align along the field direction,
leading to the order parameter vanishing.

Using the Jordan–Wigner transformation (2.30), such an order parameter can be translated into the
fermionic language, and used to distinguish the phases of the Kitaev chain. However, the non-local na-
ture of the transformation in Eq. (2.30) means that this order parameter will necessarily be non-local in the
fermionic site operators. Furthermore, the equivalence between the Ising model and the Kitaev chain breaks
down when the latter contains hopping or pairing terms with finite values for φ or α. The use of an order
parameter derived from the magnetic model therefore might not be appropriate in this case. In fact, it does
not seem possible to identify a local fermionic order parameter for distinguishing the two phases of the chain.
For this reason the Kitaev chain’s phase transition is often described as being topological in nature, and it is
from this perspective that the model has received considerable attention. See the work published in Ref. [98]
and references therein.

Topological quantities have been proposed with which to characterise the two phases. These include a
winding number derived from the Bogoliubov–de Gennes matrix in Eq. (2.21), as well as the fermionic parity
of the ground state [99]. Both these quantities only assume discrete values, and vary discontinuously at the
phase boundaries. We will be focussing on the dynamics of the excitation density, and so will not investigate
the topological classification of the phases further. An interesting extension of this work would be to inves-
tigate how the topological phase transition imprints itself on the dynamics of suitable non-local topological
quantities due to a finite-temperature ramp. Questions surrounding the finite-temperature signatures of this
topological phase transition have already been considered in the literature [95].

2.1.5 Properties of the low-energy spectrum
The properties of the low-energy spectrum of the Kitaev chain will be central to our derivation of various
scaling relations in later chapters. We focus on the critical line associated with the k = 0 mode. Close to this
line, the small-k modes that are in the neighbourhood of the zero mode are also the modes with the lowest
energies. We will therefore use the terms small-k and low-energy synonymously in this section.

3There are some technicalities related to the boundary conditions on the chain which we will ignore here. See Appendix A of the
work by Calabrese et al. [97] for details.
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Figure 2.4: (a) The absolute value of the errors introduced when approximating the function f∞α (k) by its leading-order
expansion in Eq. (2.34) for α ∈ (0, 5.2). The errors are noticeably larger around α = 2 where the powers of the
dominant terms are competing, and large-k modes (high-energy modes) consistently have larger errors. (b) The absolute
value of the errors introduced when approximating the function g∞φ (k) by its leading-order expansion in Eq. (2.38) for
φ ∈ (0, 4.8). When the powers of the dominant terms are competing, i.e. around φ = 3, the errors are noticeably larger.
As expected, the larger-k modes (higher-energy modes) are not well approximated by the small-k expansion.

First it will be useful to study the small-k behaviour of the f∞α (k) and g∞φ (k) functions in Eqs. (2.29)
and (2.28) which appear in the dispersion relation (2.27). The main results are summarised in Section 2.1.5.1
and Section 2.1.5.2. This provides us with the necessary tools to approximate the Kitaev chain’s dispersion
relation at low energies for different distance decay parameters. The expressions in Section 2.1.5.3 will be
used in Chapter 4 and Chapter 5 to derive scaling relations for the excitation density.

2.1.5.1 Small-k behaviour of f∞α (k)

For α /∈ Z, we expand the function f∞α (k) in Eq. (2.29) around the critical mode k = 0 as

f∞α (k) = a1(α)kα−1 + a2(α)k + a3(α)k3 +O(k5), (2.32)

where the coefficients ai(α) are given by

a1(α) = cos
(πα

2

)
Γ(1− α), a2(α) = ζ(α− 1) and a3(α) = −ζ(α− 3)

6
. (2.33)

Here Γ and ζ are the standard Gamma and Riemann-Zeta functions. When considering small-k modes, the
first and second terms in Eq. (2.32) will be dominant for α ∈ (0, 2) and α > 2, respectively. This suggests
that, to leading order in k, we can approximate f∞α (k) by

f∞α (k) ≈


a1(α)kα−1, 0 < α < 2

a2(α)k, α > 2

k, α =∞
. (2.34)

The leading-order approximation for nearest-neighbour pairing in Eq. (2.34) is obtained from the small-k ex-
pansion of sin(k). In Fig. 2.4a we show the absolute errors introduced by the small-k approximations (2.34)
of f∞α (k). These approximations work well, provided the parameter α is not within the regime where the
powers of the dominant terms are competing, i.e. around α = 2. To accurately describe the function in this
regime, a linear combination of the terms is required:

f∞α (k) ≈ a1(α)kα−1 + a2(α)k. (2.35)
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20 2. The Kitaev chain and its coupling to a thermal bath

2.1.5.2 Small-k behaviour of g∞φ (k)

A similar small-k expansion can be performed for the function g∞φ (k) in Eq. (2.28). For φ /∈ Z, we have

g∞φ (k) = b1(φ) + b2(φ)kφ−1 + b3(φ)k2 + b4(φ)k4 +O(k5) (2.36)

with the coefficients

b1(φ) = ζ(φ), b2(φ) = sin

(
πφ

2

)
Γ(1−φ), b3(φ) = −ζ(φ− 2)

2
and b4(φ) =

ζ(φ− 4)

24
.

(2.37)
The powers of k in the expansion (2.36) suggest that when φ ∈ (0, 3) the first and second terms in the
expansion of g∞φ will be dominant, while for φ > 3 the first and third terms will make the most significant
contribution. As a result, to leading-order in k, g∞φ (k) can be approximated by

g∞φ (k) ≈


b1(φ) + b2(φ)kφ−1, 0 < φ < 3

b1(φ) + b3(φ)k2, φ > 3

1− 1
2k

2, φ =∞
. (2.38)

The leading-order approximation for nearest-neighbour hopping in Eq. (2.38) is obtained from the small-k
expansion of cos(k). Figure 2.4b shows the errors introduced by the leading-order approximation (2.38). We
observe that the approximation in Eq. (2.38) well approximates g∞φ (k) for small-k modes, provided that φ is
not within the vicinity of φ = 3 where the powers of the dominant terms are competing.

In Chapter 4 and Chapter 5 we will use the properties of the low-energy spectrum at the critical point
µ = µc to extract scaling laws, and to determine the dynamical critical exponent z for the long-range Kitaev
chain. From Eq. (2.27) we write the Kitaev chain dispersion relation at the critical point as

λ∞φ,α(k) =
√

(2Jg∞φ (k) + 2µc)2 + (∆f∞α (k))2. (2.39)

The small-k behaviour of the term containing f∞α (k) has already been addressed in Section 2.1.5.1, with the
remaining term being (2Jg∞φ (k) + 2µc). Based on the discussion in Section 2.1.3, the QCP associated with
the k = 0 mode is at µ = µc = −Jg∞φ (0). In the nearest-neighbour case, where φ = ∞, this simplifies to
µc = −J . Therefore, using the small-k approximation (2.38), we write (2Jg∞φ (k) + 2µc) to leading order
in k as

(2Jg∞φ (k) + 2µc) ≈


2Jb2(φ)kφ−1, 0 < φ < 3

2Jb3(φ)k2, φ > 3

−Jk2, φ =∞
. (2.40)

2.1.5.3 Low-energy approximation of the dispersion relation

We combine Eqs. (2.34) and (2.40) to acquire the low-energy spectrum of the Kitaev chain on the k = 0
critical line shown in Fig. 2.2:

λ∞φ,α(k) ≈


|∆||k| for nearest-neighbour hopping and pairing (φ, α =∞)

|∆a2(α)||k| for short-range hopping and pairing (φ, α > 2)

|∆a1(α)||k|α−1 for nearest-neighbour hopping and long-range pairing (φ =∞, α < 2)

|2Jb2(φ)||k|φ−1 for long-range hopping and nearest-neighbour pairing (φ < 2, α =∞)

.

(2.41)

Figure 2.5 provides comparisons between the approximations above and the exact dispersion relation for
small-k modes, with the approximations for long-range hopping and pairing rapidly deteriorating outside the
immediate vicinity of k = 0. We emphasise that this low-energy approximation is derived in the large-L
limit, and to leading order in k. Scaling relations for the excitation density derived using these expressions
will eventually be benchmarked against exact, finite-L numeric calculations. The agreement we will observe
there will be determined, in part, by how well the low-energy spectrum of the finite chain is described by these
expressions. Two factors are expected to play a role here. The first is how well fα and gφ are approximated
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Figure 2.5: The dispersion relation λφ,α(k) as a function of the lattice momentum k for small-k modes. We show three
choices for the distance decay parameters: (i) φ, α = ∞ which corresponds to nearest-neighbour hopping and pairing,
(ii) α = 1.5 with φ = ∞ which corresponds to a Kitaev chain with long-range pairing and nearest-neighbour hopping,
and (iii) φ = 1.5 with α = ∞ which corresponds to long-range hopping and nearest-neighbour pairing. For each case
the solid line is the exact dispersion relation (2.27) in the thermodynamic limit, and the dashed line is the corresponding
low-energy approximation from Eq. (2.41).

by their L → ∞ versions f∞α and g∞φ . Figure 2.1 suggests that already at L = 250 this agreement will be
quite good. A more subtle issue is that these leading-order expansions might only be accurate for very small
values of k, especially if the leading-order and next-to-leading order terms are of roughly the same power
in k. Since the k discretisation is set by 2π/L, it could require an extremely large value of L and a very
slow ramp rate to ensure that the modes which make the dominant contribution to the excitation density have
energies which follow the behaviour in Eq. (2.41). Indeed, this turns out to be one of the major challenges
in the benchmarking of the analytic scaling results for long-range hopping and pairing parameters within the
range φ, α ∈ (0, 3).

2.2 Coupling to a bath
We will now focus on deriving a Markovian Lindblad master equation to study the open system dynamics of
the Kitaev chain when it is coupled to a thermal bath. In Section 2.2.1 we briefly discuss the general form
of the master equation and the system–environment interaction. Thereafter, the remainder of this chapter is
dedicated to the derivation of the dissipator and Lindblad operators specifically for our model.

2.2.1 The Lindblad master equation
The open system dynamics is formulated in terms of an appropriate Markovian Lindblad master equation.
Our system and thermal environment together form an isolated (closed) quantum system which evolves
unitarily according to the Hamiltonian

H = HS ⊗ IE + IS ⊗HE +Hint (2.42)

with the system Hamiltonian HS = HLRK from Eq. (2.1), the environment Hamiltonian HE and the system–
environment interactionHint [49, 51]. The identity operators IS and IE act on the system and the environment,
respectively. In this case, the environment consists of a set of NB independent thermal baths, indexed by n.
Each thermal bath is modeled as a large collection of uncoupled harmonic oscillators with mode frequencies
ωn,q . We also associate with each bath the temperature Tn and chemical potential µn. The Hamiltonian of
the n’th thermal bath is

HB,n =

∫
dq ωn,qb

�
n,qbn,q, (2.43)

where bn,q and b�n,q, which satisfy the standard bosonic commutation relations [51, 100]

[bn,k, bm,q] = 0, [b�n,k, b
�
m,q] = 0 and [bn,k, b

�
m,q] = δnmδ(k − q), (2.44)
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22 2. The Kitaev chain and its coupling to a thermal bath

Figure 2.6: Schematic image of the system–environment interactions. The gray dots represent the Kitaev chain lattice
sites, while the coloured squares are the independent external baths. Each lattice site is coupled to its own bath, and all
the baths together compose the environment.

are the bosonic operators associated with the n’th bath. The resulting environment Hamiltonian is [51]

HE =

NB∑
n=1

HB,n. (2.45)

For the system–environment interaction we consider a linear coupling between the bosonic baths of the
environment and the sites of the fermionic chain. When each site of the system (site fermion) is coupled to
its own independent bosonic bath (see Fig. 2.6), the general interaction Hamiltonian is4 [51]

Hint =
L∑
n=1

On ⊗Rn =
L∑
n=1

[ (
cn + c�n

)︸ ︷︷ ︸
On

⊗
∫
dq gn,q

(
bn,q + b�n,q

)
︸ ︷︷ ︸

Rn

]

=
L∑
n=1

∫
dq gn,q

(
cn + c�n

)
⊗
(
bn,q + b�n,q

)
, (2.46)

whereOn acts on the system andRn acts on the environment. Here gn,q determines the system–bath coupling
strength (interaction strength) between the q’th mode of the n’th bath and site fermion n [51].

The density matrix %SE(t) of the combined system and thermal environment evolves unitarily according
to the von Neumann equation [49]

i
d%SE(t)

dt
= [H, %SE(t)], (2.47)

with H the Hamiltonian in Eq. (2.42). We assume that the baths are prepared in thermal equilibrium states at
a temperature Tn, and that their coupling to the system has a negligible effect on their dynamics. Based on
this we write

%SE(t) ≈ %(t)⊗ %E, (2.48)

with %(t) the system’s density matrix and %E being the stationary thermal state of the environment. We
insert this form of %SE(t) into the von Neumann equation (2.47), and then trace out the environment degrees
of freedom. After a standard series of approximations [49, 54], this leads to a description of the system’s
dynamics in terms of the master equation

d%(t)

dt
= L̂%(t) = −i[HS +HLS, %(t)] +D[%]. (2.49)

We write the dissipator D[%] as [49, 51, 54]

D[%] =
∑
α,β,λ

Γ̄αβ(λ)
[
2Oβ(λ)%O�

α(λ)− {O�
α(λ)Oβ(λ), %}

]
, (2.50)

where

Γ̄αβ(λ) =
1

2

∫ ∞
−∞

dτ eiλτ 〈R̃�
α(τ)Rβ〉 with R̃α(τ) = eiHEτRαe

−iHEτ (2.51)

are the Fourier transforms of the environment correlation functions, and Oβ(λ) are the eigenoperators of

4Note that a consequence of choosing each site fermion to be coupled to its own independent bath is that the number of thermal baths
NB is equivalent to the number of lattice sites L in the system. Hence, taking the upper limit of the summation to be L is no different
from using NB.
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HS [49, 51]. The dissipator (2.50) accounts for the non-unitary (dissipative) evolution of the system [55].
In comparison, the first term of the generator (2.49) accounts for the unitary part of the dynamics generated
by the effective Hamiltonian, HS + HLS [55], which is a combination of the system Hamiltonian HS =
HLRK (2.1) and the Lamb-shift Hamiltonian HLS. We write the Lamb-shift Hamiltonian in terms of the
eigenoperators Oβ(λ) as

HLS =
∑
λ

∑
α,β

Sαβ(λ)O�
α(λ)Oβ(λ), (2.52)

where Sαβ(λ) = 1
2i

(
Γ̄αβ − Γ̄∗βα

)
is the imaginary part of Γ̄αβ (2.51).

In Section 2.2.2 and Section 2.2.3 the environment correlation functions and eigenoperators of HS are
calculated explicitly. These results are used in Section 2.2.4 to bring the dissipator (2.50) into Lindblad
form, and extract the Lindblad bath operators. We end the chapter with a brief discussion in Section 2.2.5
on the Lamb-shift Hamiltonian (2.52). The work in these sections closely follows work by D’Abbruzzo
and Rossini [51]. Before proceeding, we specialise our general description of the thermal environment and
the system–environment interaction (2.46). In particular, we will consider identical thermal baths fixed at a
temperature of T and with zero chemical potential. The mode frequencies of each thermal bath are therefore
also identical, and will be denoted by ωq . Finally, we choose the system–bath coupling strength gn,q to be
equivalent for each interaction, such that gn,q = gq .

2.2.2 Environment correlation functions
The one-sided Fourier transforms (2.51) of the environment correlation functions are [49, 51]

Γ̄nm(λ) =
1

2

∫ ∞
−∞

dτ eiλτ 〈R̃�
n(τ)Rm〉, (2.53)

where, from Eq. (2.46),

〈R̃�
n(τ)Rm〉 =

∫
dk

∫
dq g∗kgq

〈
eiHEτ (bn,k + b�n,k)e−iHEτ (bm,q + b�m,q)

〉
. (2.54)

In Eqs. (2.53) and (2.54), 〈•〉 = TrB[•%E] is the expectation value calculated by tracing over the bath degrees
of freedom, %E is the thermal equilibrium state for the environment and R̃n(τ) = eiHEτRne

−iHEτ [49, 51].
Now Eq. (2.54) is simplified using the Baker-Campbell-Hausdorff (BCH) formula [101]. For two generic
operators X and Y , the BCH formula states that [101]

eXY e−X = evY if [X,Y ] = vY, v ∈ C. (2.55)

Noting that the bath operators satisfy

[HE, bn,k] = −ωkbn,k and [HE, b
�
n,k] = ωkb

�
n,k, (2.56)

it follows that
eiHEτ (bn,k + b�n,k)e−iHEτ = e−iωkτ bn,k + eiωkτ b�n,k, (2.57)

resulting in

〈R̃�
n(τ)Rm〉 =

∫
dk

∫
dq g∗kgq

(
e−iωkτ

〈
bn,k(bm,q + b�m,q)

〉
+ eiωkτ

〈
b�n,k(bm,q + b�m,q)

〉)
. (2.58)

Under the condition that baths are strictly independent and identical, the two-point expectation values for the
bath operators are [51]

〈bn,kbm,q〉 = 〈b�n,kb
�
m,q〉 = 0 and 〈b�n,kbm,q〉 = δnmδ(k − q)nBE(ωk), (2.59)

where nBE(ωk) =
(
1− eωk/T

)−1
is the Bose-Einstein distribution. The environment correlation functions

can be simplified using these two-point expectation values, giving

〈R̃�
n(τ)Rm〉 = δnm

∫
dk |gk|2

(
e−iωkτ (nBE(ωk) + 1) + eiωkτnBE(ωk)

)
. (2.60)
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24 2. The Kitaev chain and its coupling to a thermal bath

Performing a one-sided Fourier transform of 〈R̃�
n(τ)Rm〉 results in a diagonal matrix with entries Γ̄nm(λ) =

δnmΓ̄(λ). The diagonal entries Γ̄(λ) are

Γ̄(λ) = π

∫
dk |gk|2

(
δ(λ− ωk)(nBE(ωk) + 1) + δ(λ+ ωk)nBE(ωk)

)
= J (λ)(nBE(λ) + 1) + J (−λ)nBE(−λ), (2.61)

where
J (λ) = π

∫
dk |gk|2δ(λ− ωk) (2.62)

is the density of states associated with each identical bath. Assuming the mode frequencies are non-negative,
Γ̄(λ) (2.61) can be expressed as

Γ̄(λ) =


J (λ)(nBE(λ) + 1) if λ > 0

J (−λ)nBE(−λ) if λ < 0

J (0)(2nBE(0) + 1) if λ = 0.

(2.63)

2.2.3 Eigenoperators of the system Hamiltonian
The eigenoperators On(λ) associated with the operator On are found by decomposing the interaction Hamil-
tonian (2.46) into eigenoperators of the system Hamiltonian HS. Suppose the spectrum of HS is discrete and
that {|x〉 = |xk1 , . . . , xkL〉} is the orthonormal basis of the diagonalised quadratic Hamiltonian in Eq. (2.14),
with xkn = {0, 1}, where kn = 2πn/L, being the occupation number associated with the ηk mode which
has an excitation energy of λk. We denote the eigenvalue of |x〉 with respect to HS by E(x) =

∑
k xkλk.

Now the eigenoperators On(λ) of the system associated with On = (cn + c�n) are

On(λ) =
∑
x,y

δE(y)−E(x),λ |x〉 〈x|
(
cn + c�n

)
|y〉 〈y| , (2.64)

where the delta function restricts the sum to pairs of HS eigenstates with a fixed energy difference of λ.
Making use of the connection between the cn and ηk fermions in Eq. (2.11), we find that

〈x| cn |y〉 =
∑
k

(Vnk 〈x| ηk |y〉+ Snk 〈x| η�k |y〉). (2.65)

The expression for 〈x| cn |y〉 can therefore only be non-zero if the states |x〉 and |y〉 differ in the occupation
of a single ηk mode. Consequently, when we have non-zero values for the matrix elements 〈x| cn |y〉 and
〈x| c�n |y〉, the energy difference E(y) − E(x) in Eq. (2.64) will be either λk or −λk. Now we can substi-
tute Eq. (2.65) into the expression for On(λ). The result is simplified using the resolution of the identity,∑

x |x〉 〈x| = I and
∑

y |y〉 〈y| = I, yielding

On(λ) =
∑
k

(
Vnkδλ,λkηk + Snkδλ,−λkη

�
k

)
+
∑
k

(
S∗nkδλ,λkηk + V ∗nkδλ,−λkη

�
k

)
=
∑
k

(
φnkδλ,λkηk + φ∗nkδλ,−λkη

�
k

)
, (2.66)

where
φ = V + S∗. (2.67)

2.2.4 Calculation of the dissipator and Lindblad bath operators
In Section 2.2.2 we found that the matrix comprising of the environment correlation functions is diagonal,
with the entries δnmΓ̄(λ) given by Eq. (2.61). The dissipator in Eq. (2.50) therefore acquires the form

D[%] =
∑
n,λ

Γ̄(λ)

[
2On(λ)%O�

n(λ)︸ ︷︷ ︸
(a)

−{O�
n(λ)On(λ), %}︸ ︷︷ ︸

(b)

]
. (2.68)

In the calculations that follow it will be important to account for the presence of degenerate single quasipar-
ticle eigenenergies. For the Kitaev chain the degeneracies come in pairs, where the energy associated with
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2.2. Coupling to a bath 25

the k and −k modes are the same. We will group the ηk modes according to their energies λk, and let Am
denote the set of modes with energy λm. Here the index m = 1, . . . ,M keeps track of the sets of modes
with the same energy, and M is the number of unique eigenenergies in the energy spectrum. Assuming for
the moment that there are no zero-energy modes, the first term in the square brackets of Eq. (2.68), which is
denoted by (a), is

On(λ)%O�
n(λ) =

M∑
m=1

∑
k,q∈Am

(
φnkφ

∗
nqδλ,λmηk%η

�
q + φ∗nkφnqδλ,−λmη

�
k%ηq

)
, (2.69)

where the result for the system eigenoperators On(λ) in Eq. (2.66) has been used. Following a similar
approach, the second term in the square brackets, denoted by (b), is given by

{O�
n(λ)On(λ), %} =

M∑
m=1

∑
k,q∈Am

(
φ∗nkφnqδλ,λm{η

�
kηq, %}+ φnkφ

∗
nqδλ,−λm{ηkη�q, %}

)
. (2.70)

Combining Eqs. (2.69) and (2.70), the dissipator now reads

D[%] =
∑
n;m

∑
k,q∈Am

[
ΦnkqΓ̄(λm)(2ηk%η

�
q − {η�qηk, %}) + ΦnqkΓ̄(−λm)(2η�k%ηq − {ηqη

�
k, %})

]
(2.71)

with
Φnkq = φnkφ

∗
nq and Φnqk = Φn∗kq = φnqφ

∗
nk. (2.72)

The dissipator D[%] in Eq. (2.71) can be brought into Lindblad form by enforcing a set of constraints
on the V and S matrices. In Eq. (2.13) we provided the conditions imposed on V and S by the canonical
anticommutation relations. Additional constraints are placed on the V and S matrices by the symmetries
of the Kitaev chain Hamiltonian. The relevant symmetries here are particle-hole (PH) symmetry and time-
reversal (TR) symmetry. It is shown in Appendix B that these symmetries impose the condition

V �S∗ + STV = 0. (2.73)

Using these constraints on V and S, we show that φ is unitary:

φ�φ = (V � + ST)(V + S∗) = (V �V + STS∗) + (V �S∗ + STV ) = I. (2.74)

Noting that the n summation index only enters in the Φnkq = φnkφ
∗
nq factors in Eq. (2.71) allows us to use

Eq. (2.74) to simplify the dissipator D[%]. Let us first write the dissipator as

D[%] =
∑
m

∑
k,q∈Am

[(∑
n

Φnkq

)
Γ̄(λm)(2ηk%η

�
q−{η�qηk, %})+

(∑
n

Φnqk

)
Γ̄(−λm)(2η�k%ηq−{ηqη

�
k, %})

]
.

(2.75)
Now we use Eq. (2.74) to show that∑

n

Φnkq =
∑
n

φnkφ
∗
nq =

∑
n

φT
knφ
∗
nq = (φ�φ)∗kq = δkq, (2.76)

which leads to the simplified form of the dissipator

D[%] =
∑
k

[
Γ̄(λk)(2ηk%η

�
k − {η

�
kηk, %}) + Γ̄(−λk)(2η�k%ηk − {ηkη

�
k, %})

]
. (2.77)

Here the k summation index runs over the first Brillouin zone.

The final task of this chapter is to extract the Lindblad operators. Using the general form of the master
equation (2.49) and the dissipator (2.77), the full master equation for the Kitaev chain in Lindblad form is

d%(t)

dt
= −i[HLRK +HLS, %(t)] + γ

∑
k

∑
σ=±

[
Lk,σ%(t)L�

k,σ −
1

2

{
L�
k,σLk,σ, %(t)

}]
, (2.78)
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26 2. The Kitaev chain and its coupling to a thermal bath

where the Lindblad bath operators are

Lk,+ =
√

Γk,+η
�
k and Lk,− =

√
Γk,−ηk, (2.79)

with bath coupling constants

Γk,+ = 2Γ̄(−λk) = 2J (λk)nBE(λk) and Γk,− = 2Γ̄(λk) = 2J (λk)(nBE(λk) + 1). (2.80)

In Eq. (2.78) we have made the system–bath coupling γ explicit by factoring it out of the spectral density
function. In the majority of our work, and in particular the numeric calculations, we choose the spectral
density function to be ohmic. This leads to

J (λk) = πδλke
−λk/λc , (2.81)

with dimensionless parameter δ and cutoff frequency λc.

The results in Eqs. (2.78)–(2.80) are valid provided that the energies of the ηk-modes are strictly positive.
For the Kitaev chain the closure of the excitation gap at one of the critical points results from the energy of
either the k = 0 or k = π mode vanishing. If we suppose that λ0 = 0 then, by following the same series of
steps as before, we would obtain a modified k = 0 contribution to the sum which defines the dissipator in
Eq. (2.77). This takes the form

D0[%] = Γ̄(0)
[
2(η0 + η�0)%(η0 + η�0)− {(η0 + η�0)2, %}

]
, (2.82)

which suggests that there is now a single Lindblad operator L0 =
√

2Γ̄(0)(η0 + η�0) associated with this
mode. While the difference in the k = 0 terms in Eqs. (2.77) and (2.82) would affect some aspects of
this mode’s dynamics, it can be shown that these two dissipators generate exactly the same evolution of the
mode occupation 〈η�0η0〉. Since the latter is our primary quantity of interest, the Lindblad master equation in
Eq. (2.78) will suffice to treat all modes, including the zero-energy mode at the critical point.

2.2.5 The Lamb-shift Hamiltonian
While the dissipation is of primary interest to us, it is worth mentioning some details about the unitary
dynamics of the system, which is described by the first term in the Lindblad master equation (2.78). The
Hamiltonian governing the unitary dynamics is the free system Hamiltonian HLRK with a Lamb-shift cor-
rection HLS. The Lamb-shift Hamiltonian (2.52) amounts to a bath-induced modification of the system’s
unitary dynamics. The form of HLS can be simplified through an identical series of steps as was used for the
dissipator in the previous section. This produces

HLS =
∑
k

[S(λk)− S(−λk)] η�kηk, (2.83)

where S(λ) = Im[Γ̄(λ)], with Γ̄(λ) given in Eq. (2.63). We first note thatHLS is diagonal in the ηk fermions,
and therefore commutes with the system Hamiltonian. This ensures that HLS will not introduce any non-
trivial “mixing” of the system’s elementary excitation modes. Instead, it introduces a shift of order γ, the
system–bath coupling strength, into the mode energies appearing in the unitary part of the master equa-
tion (2.78). The potential impact of this shift on the quantities we consider later is as follows. In Chapter 4
we focus on the dynamics of the closed Kitaev chain, in which the Lamb-shift Hamiltonian is completely
absent. Bath-induced excitations are considered in detail in Chapter 5, but for the class of observables we
study the Lamb-shift also plays no role. It is only in the coherently generated excitations at finite temper-
ature, which result from a breakdown of adiabaticity, that the Lamb-shift could have an impact. However,
we consider a weak system–bath coupling throughout, which is also consistent with the assumptions under
which the master equation is derived. This suggests that the coherent excitation density will be dominated
by the dynamics resulting from the system Hamiltonian. In the chapters that follow we will therefore neglect
the contribution of the Lamb-shift Hamiltonian (2.83) to the master equation (2.78).
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Chapter 3

Solving the Lindblad dynamics of the
Kitaev chain

This chapter commences with a summary of Prosen’s method of “third quantisation” [58], a general technique
of canonical quantisation in Liouville space [102]. This approach allows one to solve master equations for
quadratic fermionic problems, making it applicable to the study of the Lindblad dynamics of the Kitaev chain.
After establishing some important preliminaries in Section 3.1, we use the third quantisation formalism to
study the dynamics of two-point correlation functions in Section 3.2. Section 3.3 and Section 3.4 apply
the general methods of the preceding sections to the Kitaev chain, which provides insight into the model’s
equilibration and excitation density dynamics.

3.1 The method of third quantisation
Consider a general quadratic system of L interacting fermionic modes. These modes are coupled to a general
set of Markovian baths, written in terms of Lindblad operators that are linear in fermionic variables. Under
these conditions, work published in Ref. [58] shows that the Liouvillean L̂ can be diagonalised. In this
section a summarised version of this method of “third quantisation” will be presented, which closely follows
work by Prosen [58].1 To be consistent with Ref. [58], we work with a master equation of the form

d%(t)

dt
= L̂%(t) = −i[H, %(t)] +

∑
µ

[
2Lµ%(t)L�

µ −
{
L�
µLµ, %(t)

}]
, (3.1)

where ~ = 1 and H is the Hamiltonian. In Section 3.3 we will tailor this method to treat the Kitaev chain
master equation (2.78).

The HamiltonianH and Lindblad operators Lµ in the master equation (3.1) can be expressed in quadratic
and linear forms, respectively, in terms of 2L anti-commuting Hermitian Majorana operators wj , satisfying

{wj , wk} = 2δjk with j, k = 1, 2, . . . , 2L. (3.2)

We write the Hamiltonian and Lindblad operators in terms of these Majorana operators as

H =
2L∑

j,k=1

wjHjkwk = w ·Hw and Lµ =
2L∑
j=1

lµ,jwj = lµ · w, (3.3)

where lµ,j are the bath coupling constants. Here x = (x1, x2, . . .)
T denotes a column vector of either scalars

or operators. The 2L × 2L matrix H is chosen to be antisymmetric, such that HT = −H. The Majorana
fermions wj introduced in Eq. (3.2) can be expressed in terms of canonical (Dirac) fermions dm as

w2m−1 = dm + d �
m and w2m = i(dm − d �

m), m = 1, 2, . . . , L, (3.4)

1The formalism considers time-independent Hamiltonians and Lindblad operators, but can be generalised for the treatment of Hamil-
tonians and Lindblad operators depending explicitly on time [58, 102]. In work by Prosen and Žunkovič [102] the treatment of time-
dependent master equations written in third-quantised form is briefly discussed.

27
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28 3. Solving the Lindblad dynamics of the Kitaev chain

where the Dirac fermions satisfy the standard anticommutation relations. While Majorana fermions can be
expressed in terms of the Dirac fermions, the two are fundamentally different. In the case of a Dirac fermion,
the creation and annihilation operators, d �

m and dm, are distinct. In comparison, a Majorana fermion is
mathematically equivalent to its antiparticle. This is consistent with Eq. (3.4) where w2m−1 = w�

2m−1 and
w2m = w�

2m.

Now define a 4L dimensional vector space K of operators, spanned by a canonical basis
∣∣Pα〉, with

Pα1,α2,...,α2L
:= 2−L/2wα1

1 wα2
2 · · ·w

α2L

2L , αj ∈ {0, 1} (3.5)

forming a complete orthonormal basis with respect to the Hilbert-Schmidt inner product 〈x|y〉 = tr[x�y].
Elements of this vector space K of operators acts on the system’s fermionic Fock space F , and the system’s
density matrix % = |%〉 is an element of K. We now define on K a set of adjoint creation and annihilation
superoperators as

ĉ�j
∣∣Pα〉 = δαj ,0

∣∣wjPα〉 and ĉj
∣∣Pα〉 = δαj ,1

∣∣wjPα〉 , (3.6)

which satisfies the canonical anticommutation relations

{ĉj , ĉk} = 0, {ĉ�j , ĉ
�
k} = 0, {ĉj , ĉ�k} = δjk, j, k = 1, . . . , 2L. (3.7)

In turn, we can now introduce 4L Majorana (superoperator) maps

â2j−1 :=
1√
2

(ĉj + ĉ�j) and â2j :=
i√
2

(ĉj − ĉ�j), (3.8)

which satisfy âr = â�r and the anticommutation relation {âr, âs} = δrs. Using these Majorana maps, the
master equation (3.1), which governs the time evolution of % = |%〉, can be expressed in the Liouville-Fock
picture as

d |%〉
dt

= L̂ |%〉 = (â · Áâ−A0I) |%〉 . (3.9)

If we restrict ourselves to study only observables which are products of an even number of Majorana opera-
tors, then the 4L× 4L antisymmetric complex structure matrix Á of the Liouvillean has entries

Á2j−1,2k−1 = −2iHjk −Mkj + Mjk,

Á2j−1,2k = 2iMkj ,

Á2j,2k−1 = −2iMjk,

Á2j,2k = −2iHjk + Mkj −Mjk, (3.10)

where
M :=

∑
µ

lµ ⊗ l
∗
µ (3.11)

is the 2L× 2L Hermitian Lindblad bath matrix encoding the Lindblad operators, and A0 = 2tr[M].

Under the assumption that the structure matrix Á in Eq. (3.9) can be diagonalised, there exists 4L linearly
independent vectors vq , q = 1, . . . , 4L, with corresponding eigenvalues r1,−r1, r2,−r2, . . . , r2L,−r2L.
Hereafter the eigenvalues rj will be referred to as rapidities. It can be shown that these rapidities coincide
with the eigenvalues of the 2L× 2L non-Hermitian matrix [59, 103]

X = −2iH + 2Mr, (3.12)

where H is defined in Eq. (3.3) and Mr = Re[M] is the real part of M in Eq. (3.11). The vectors vq are
ordered according to the real parts of the rapidities, such that Re[r1] ≥ Re[r2] · · · ≥ Re[r2L] ≥ 0. The
normalisation condition imposed on vq is

vq · vs = Jqs, where J = I2L ⊗ σx = I2L ⊗
[

0 1
1 0

]
. (3.13)

Now using the 4L linearly independent vectors, the 4L × 4L matrix V́ can be constructed, where its q’th
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3.1. The method of third quantisation 29

row is given by vq . The normalisation condition in Eq. (3.13) reduces to V́V́T = J, and the matrix V́

diagonalises Á such that
V́−TÁV́T = D, (3.14)

where D = diag{r1,−r1, r2,−r2, . . . , r2L,−r2L}.

The construction of the V́ matrix is such that it diagonalises the structure matrix Á, as demonstrated
in Eq. (3.14). We can therefore introduce a new set of superoperators in terms of which the Liouvillean L̂
is diagonal. This allows us to explicitly calculate the complete spectrum of the Liouvillean, as well as the
equilibrium expectation value of any quadratic observable wjwk, using the rapidities and matrices defined
previously. Given a sequence of occupation numbers ν = (ν1, ν2, . . . , ν2L) with νj ∈ {0, 1}, the complete
spectrum of the Liouvillean is [104]

λν = −2
2L∑
j=1

rjνj . (3.15)

The non-equilibrium steady states |NESS〉 represent the stationary solutions of the Liouville-Fock Lindblad
equation (3.9), and satisfy

L̂ |NESS〉 = 0. (3.16)

If, and only if, the rapidity spectrum {rj} does not contain zero, i.e. r2L 6= 0, the non-equilibrium steady
state is unique. Under this assumption, the expectation value of any quadratic observable wjwk in the unique
NESS is

〈wjwk〉NESS = δjk + 〈I| ĉj ĉk |NESS〉

= δjk +
1

2

2L∑
m=1

(v2m,2j−1 − iv2m,2j)(v2m−1,2k−1 − iv2m−1,2k), (3.17)

where |I〉 represents the identity operator acting on the fermionic Fock space F and vx,y denotes the entry of
the matrix V́ in row x and column y. Expectation values of more general observables which are even in the
fermionic operators can be determined using Wick contractions. Refer to the work published in Refs. [105,
106] for more detail.

Up to now, the ordering of the Majorana superoperators, â2j−1 and â2j , has been â = (â1, â2, · · · , â2L)T.
By introducing a second convenient ordering, we can bring the Á and V́ matrices into a useful block-
structured form. If we define the mappings (2j − 1) → (1, j) and (2j) → (2, j), the Majorana superopera-
tors (3.8) can be relabeled as [59, 103]

â1,j = â2j−1 and â2,j = â2j , (3.18)

which obey the anticommutation relation {âν,j , âν′,j′} = δνν′δjj′ . This relabeling of the Majorana superop-
erators in Eq. (3.18) leads to the ordering â = (â1,1, â1,2, · · · , â1,2L, â2,1, · · · , â2,2L)T. Implementing this
ordering convention in Eq. (3.9) results in a structure matrix of the form [59]

A = PÁPT =

[
−2iH + 2iMi 2iM
−2iMT −2iH− 2iMi

]
, (3.19)

where P is the 4L× 4L permutation matrix encoding the mappings (2j− 1)→ (1, j) and (2j)→ (2, j) and
Mi = Im[M] refers to the imaginary part of the matrix M. Similarly, transforming V́ with the permutation
matrix P yields

V = PV́PT =

[
Va Vb

Vc Vd

]
. (3.20)

Using the submatrices of V, the expectation values 〈wjwk〉NESS in the unique NESS can be calculated as

〈wjwk〉NESS =

[
I2L +

1

2
(Va − iVb)(Vc

T − iVd
T)

]
jk

. (3.21)

This second ordering convention for the Majorana maps, as well as the A and V matrices in Eqs. (3.19) and
(3.20), will be used extensively in our application of this general method to the Kitaev chain.
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30 3. Solving the Lindblad dynamics of the Kitaev chain

3.2 Correlation function dynamics
Within the third quantisation formalism, we can study the dynamics of two-point correlation functions in
quadratic open quantum systems [103]. In this section we summarise the approach of Kos and Prosen [103].
This approach will be used in Section 3.4 to study the time dependence of the correlation functions for
the Kitaev chain, which will provide insight into the dynamic response of the system to various ramping
protocols. In the summary of the work published in Ref. [103] below we will consider only two-point
correlation functions, since higher-order correlations can be determined directly from the former using Wick
contractions.

The two-point correlation functions can be combined into a correlation matrix C(t) with entries

Cjk(t) = Tr(wjwk%(t))− δjk = 2 〈I| â1,j â1,k |%(t)〉 − δjk. (3.22)

To describe the dynamics of C(t), which follows from the Liouville-Fock master equation (3.9), the time
derivative of Eq. (3.22) is computed. After some manipulation, the matrix differential equation governing the
time evolution of the two-point correlation functions is [103]

− 1

2

dC(t)

dt
= XTC(t) + C(t)X + 4iMi, (3.23)

where X = −2iH + 2Mr is the matrix that was introduced in Eq. (3.12), and Mi is the imaginary part of
M in Eq. (3.11). The time evolution of the correlation functions is considered to be closed and Markovian,
since the evolution only depends on the instantaneous correlation matrix C(t) and not the entire history of
the density matrix. We now express the correlation matrix as

C(t) = C∞ + (C(t)−C∞), (3.24)

where C∞ is the stationary solution of the matrix differential equation (3.23). This stationary solution, which
is associated with the NESS, is defined by dC∞

dt = 0, which results in

XTC∞ + C∞X + 4iMi = 0. (3.25)

Inserting Eq. (3.24) into the matrix differental equation (3.23) yields the general solution for C(t), which is
given by

C(t) = e−2tXT
(C(0)−C∞)e−2tX + C∞ with Cjm(0) = tr[wjwm%(0)]− δjm. (3.26)

It is possible to solve for C∞ from Eq. (3.25) by diagonalising X. This leads to a convenient expression for
the two-point equilibrium correlations in the NESS. We therefore express C∞ as

C∞ = P-T(PTC∞P)P−1 with (PTC∞P)kl = −4i
(PTMiP)kl

Λk + Λl
, (3.27)

where the spectral decomposition of the matrix X (3.12) is used to define P and Λ as

XP = PΛ with Λ = diag(. . . , rj , . . .). (3.28)

The entries of the diagonal matrix Λ are the rapidities rj .

The result in Eq. (3.26) provides important information about the dynamics in quadratic open quantum
systems. From this result we can also extract the relaxation times of the correlation functions. Performing a
basis transformation

G(t) = PT(C(t)−C∞)P, (3.29)

the time evolution of the correlations is described by a simple propagation of the initial condition in the new
basis as

Gjm(t) = e−2(rj+rm)tGjm(0). (3.30)

This shows that the correlation functions will relax on timescales set by the real parts of the rapidities. The
overall relaxation time can be bounded by calculating minj,m(rj + rm).
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3.3 The Kitaev chain: Equilibration
The Lindblad master equation governing the time evolution of the density matrix %(t) of the Kitaev chain, of
which the final form appears in Eq. (2.78), can be treated using the method of third quantisation outlined in
Section 3.1. Here we will apply this method to determine the steady state solution of the Kitaev chain master
equation, and subsequently verify that the steady state corresponds to a thermal equilibrium state. From this
we can confirm that at late times the system produces the equilibration we would expect.

We start with the diagonalised Kitaev chain Hamiltonian in terms of the Dirac fermions from Eq. (2.25),
which is given by

HLRK =
∑
k

λφ,α(k)

(
η�kηk −

1

2

)
. (3.31)

Using Eq. (3.4), the Dirac fermions in the expression for HLRK above can be expressed in terms of the Majo-
rana fermions as

w2n−1 = ηkn + η�kn and w2n = i(ηkn − η
�
kn

), (3.32)

which satisfy the anti-commutation relation {wi, wj} = 2δij with i, j = 1, 2, . . . , 2L. In Eq. (3.32) we
introduced the notation kn to be consistent with the labeling of the Majorana fermions. These kn subscripts
of the Dirac fermions are directly related to the n labels through kn = 2πn/L. In this notation, the Hamilto-
nian (3.31) is written in terms of the Majorana operators (3.32) as

HLRK =
i

2

L−1∑
n=0

λφ,α(kn)w2nw2n−1. (3.33)

The specific form of the master equation in Eq. (2.78) suggests that the various ηk modes equilibrate indepen-
dently, and the system therefore factorises into L copies of a single fermion in a bath. To this end, studying
the trivial single-fermion example first will be useful.

3.3.1 Trivial example: A single fermion in a bath
In Ref. [58] the method of third quantisation is demonstrated using a single fermion in a thermal bath. We
will outline the results given in Ref. [58] for this simple example, but in a notation that will allow for these
results to be extended to the Kitaev chain. In addition, we supplement the results with a brief discussion on
the relaxation of the single-fermion system, which will be useful when looking at the per-mode equilibration
of the Kitaev chain.

The most general single-fermion Hamiltonian is

HSF = −ihw1w2 + c1 = 2hc�c+ c2, (3.34)

where c1, c2 and h > 0 are constants. For this trivial case the Lindblad operators are

L1 =
√

Γ−c =
1

2

√
Γ−(w1 − iw2) and L2 =

√
Γ+c

� =
1

2

√
Γ+(w1 + iw2). (3.35)

As in the full Lindblad master equation (2.78), the bath coupling constants Γ± encode information on the
system–bath coupling and the properties of the bath. In particular, the bath temperature T is set by the ratio
of these coupling constants as Γ−/Γ+ = e2h/T . Following the method outlined in Section 3.1, the structure
matrix of the Liouvillean L̂ in Eq. (3.9) is found to be

A = −hR + BΓ1,Γ2 , (3.36)

where

R :=


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 , BΓ1,Γ2
:=


0 i

2Γ1 − i
2Γ2

1
2Γ2

− i
2Γ1 0 1

2Γ2
i
2Γ2

i
2Γ2 − 1

2Γ2 0 i
2Γ1

− 1
2Γ2 − i

2Γ2 − i
2Γ1 0

 , (3.37)

and Γ1,2 = Γ+ ± Γ−. It is also found that A0 = Γ1, while the rapidities are given by r1,2 = 1
2Γ1 ± ih.
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32 3. Solving the Lindblad dynamics of the Kitaev chain

Applying Eq. (3.17) we find that in the steady state

〈c�c〉 =
1

2
− i

2
〈w1w2〉 =

1

2

(
Γ1 + Γ2

Γ1

)
=

(
Γ−
Γ+

+ 1

)−1

, (3.38)

which reduces to the expected Fermi-Dirac distribution nFD = (e2h/T + 1)−1. The single-fermion system
will therefore relax to a thermal equilibrium state at a rate set by the real part of the rapidities.

3.3.2 Per-mode equilibration of the Kitaev chain
The diagonalised Kitaev chain Hamiltonian (3.33) can be viewed as a sum of L independent single-fermion
Hamiltonians of the form in Eq. (3.34). The bath operators (2.79) are given in terms of the η Majorana
fermions as

Lkn,− =
√

Γkn,−ηkn =
1

2

√
Γkn,−(w2n−1 − iw2n) (3.39)

and
Lkn,+ =

√
Γkn,+η

�
kn

=
1

2

√
Γkn,+(w2n−1 + iw2n). (3.40)

Following the steps in Section 3.1, with the notation â = (â1,1, â2,1, · · · , â1,2L, â2,2L) for the vector of
superoperators (3.18), and drawing inspiration from the single-fermion example, the structure matrix is found
to have a simple block-diagonal form:

A =


A0 0 0 · · · 0
0 A1 0 · · · 0
0 0 A2 · · · 0
...

...
...

. . .
...

0 0 0 · · · AL−1

 , (3.41)

where

An = −λφ,α(kn)

2
R + γBΓkn,1,Γkn,2

, n = 0, . . . , L− 1. (3.42)

The matrices R and BΓkn,1,Γkn,2
are defined as in Eq. (3.37), with Γkn,1 = Γkn,+ + Γkn,− and Γkn,2 =

Γkn,+ − Γkn,−. The 2L rapidities are found to be

r±,n =
1

2

(
γ(Γkn,+ + Γkn,−)± iλφ,α(kn)

)
=

1

2

(
γΓkn,1 ± iλφ,α(kn)

)
. (3.43)

The V matrix is constructed from the eigenvectors of A (3.41), ordered by the real parts of the rapidi-
ties (3.43). To obtain the correct ordering of rows in V, we calculate the overlap between all eigenvectors of
A and pair those which have the largest overlap. This is consistent with pairing the eigenvectors correspond-
ing to the rapidity pairs rj ,−rj , as discussed in the work published in Ref. [58]. Using the block-diagonal
form of A in Eq. (3.41), V is constructed as

V =


V0 0 0 · · · 0
0 V1 0 · · · 0
0 0 V2 · · · 0
...

...
...

. . .
...

0 0 0 · · · VL−1

 , (3.44)

where

Vn =


1
2ζn,−(1 +

Γkn,2
Γkn,1

) − i
2ζn,−

i
2ζn,−(1 +

Γkn,2
Γkn,1

) 1
2ζn,−

1
2ζn,−

i
2ζn,−

− i
2ζn,−

1
2ζn,−

− 1
2ζn,+(1− Γkn,2

Γkn,1
) i

2ζn,+
i
2ζn,+(1− Γkn,2

Γkn,1
) 1

2ζn,+

− 1
2ζn,+

− i
2ζn,+

− i
2ζn,+

1
2ζn,+

 (3.45)

with

ζn,− =

√
Γkn,1

Γkn,1 − Γkn,2
and ζn,+ =

√
Γkn,1

Γkn,1 + Γkn,2
. (3.46)
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It can be shown that the matrix V in Eq. (3.44) satisfies the normalisation condition VVT = J = I2L ⊗ σx
from Eq. (3.13). The condition introduced in Eq. (3.14) is also satisfied, such that the matrix V (3.44)
diagonalises A (3.41) as V-TAVT = D, where D is a diagonal matrix with the rapidities (3.43) on the
diagonal.

Recalling from Eq. (3.17) that the expectation values 〈wjwk〉 are given by

〈wjwk〉NESS = δjk +
1

2

2L∑
m=1

(v2m,2j−1 − iv2m,2j)(v2m−1,2k−1 − iv2m−1,2k), (3.47)

a matrix W with entries Wij = 〈wiwj〉, i, j = 1, . . . , 2L, can be constructed. This matrix has a simple
structure, and only depends on the ratios of the bath coupling constants, Γkn,1 and Γkn,2. Compactly, we
write

W =


W0 0 0 · · · 0
0 W1 0 · · · 0
0 0 W2 · · · 0
...

...
...

. . .
...

0 0 0 · · · WL−1

 , (3.48)

where

Wn =

[
1 i

Γkn,2
Γkn,1

−iΓkn,2
Γkn,1

1

]
. (3.49)

The entries of W reduce to hyperbolic tangent functions with arguments depending only on the bath temper-
ature T = β−1 and the dispersion relation (2.26). More precisely, we have

Γkn,2
Γkn,1

=
Γkn,+ − Γkn,−
Γkn,+ + Γkn,−

= − tanh

(
λφ,α(kn)β

2

)
. (3.50)

Using the entries of W, the equilibrium (steady state) expectation values of the fermionic number operators
〈η�knηkn〉 can be calculated as

〈η�knηkn〉 =
1

2

(
1 + i〈w2nw2n−1〉

)
=
(
eλφ,α(kn)β + 1

)−1

. (3.51)

In equilibrium the expectation values of the number operators therefore reduce to the Fermi-Dirac distribu-
tion, nFD(λβ).

3.4 The Kitaev chain: Excitation density dynamics
In Section 3.2 we introduced a matrix differential equation (3.23) that describes the dynamics of the two-
point correlation functions 〈wjwk〉. One challenge is that the dimension of the correlation matrix C(t)
increases linearly with the system size. For the Kitaev chain we can overcome this challenge by exploiting the
properties of momentum conservation. Due to momentum conservation in our model, the same factorisation
as observed in Section 3.3 will enter in the matrix differential equation (3.23). We therefore reduce the
full matrix differential equation into a set of 4 × 4 matrix differential equations, which are easier to treat
numerically. From the solutions of these 4 × 4 matrix differential equations, the excitation density of the
system will be extracted.

We will first reformulate the correlation functions (3.22) in terms of the Fourier Majorana fermions, and
then derive the set of 4× 4 matrix differential equations. Switching to the Fourier Majorana fermions will be
convenient in the subsequent chapters, where we implement ramping protocols to study the non-equilibrium
dynamics of the Kitaev chain. This is due to the Fourier operators ak and a�k remaining unaffected by any
change in the ramping parameter. Now define the Fourier Majorana operators for the k and −k modes as

w1 = ak + a�k, w2 = i(ak − a�k),

w3 = a−k + a�−k, w4 = i(a−k − a�−k). (3.52)

We will use the definitions above, together with momentum conservation, to write the H, M and X matrices
in block-diagonal form, where each submatrix on the diagonal corresponds to a particular {k,−k} mode
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34 3. Solving the Lindblad dynamics of the Kitaev chain

pair. To determine the general 4 × 4 submatrices on the diagonal of H, which are denoted by H{k,−k}, we
write the diagonalised Hamiltonian (2.25) in terms of the Majorana fermions (3.52) by using the Bogoliubov
transformation (2.22). Now based on the definition in Eq. (3.3), the general 4 × 4 submatrices H{k,−k} for
the {k,−k} mode pairs on the diagonal of H are found to be

H{k,−k} =
i

4
λφ,α(k)


0 − cos(2βk) − sin(2βk) 0

cos(2βk) 0 0 sin(2βk)
sin(2βk) 0 0 − cos(2βk)

0 − sin(2βk) cos(2βk) 0

 . (3.53)

Here βk is the Bogoliubov angle, which is defined below Eq. (2.22). The 0 and π modes2 are special cases
for which the following 2× 2 submatrices are computed:

Hk=0 =
i

4
λφ,α(0) cos(2βk)

[
0 −1
1 0

]
and Hk=π =

i

4
λφ,α(π)

[
0 1
−1 0

]
. (3.54)

The general 4 × 4 submatrix M{k,−k} on the diagonal of M can be constructed directly from the Lindblad
bath operators Lk,± (2.79). After rewriting the ηk fermion operators in terms of the Fourier fermion operators
as

η�k = cos(βk)a�k + i sin(βk)a−k and ηk = cos(βk)ak − i sin(βk)a�−k, (3.55)

Eq. (3.52) can be used to obtain the Lindblad operators in terms of the Fourier Majorana fermions. We find
that

Lk,± =
1

2

√
Γk,±

(
cos(βk)(w1 ± iw2)± i sin(βk)(w3 ∓ iw4)

)
. (3.56)

Making use of Eq. (3.56) above and the definition in Eq. (3.3), we find the submatrix

M{k,−k} =
γ

4


Γk,1 −iΓk,2 cos(2βk) −iΓk,2 sin(2βk) 0

iΓk,2 cos(2βk) Γk,1 0 iΓk,2 sin(2βk)
iΓk,2 sin(2βk) 0 Γk,1 −iΓk,2 cos(2βk)

0 −iΓk,2 sin(2βk) iΓk,2 cos(2βk) Γk,1

 . (3.57)

Again the 0 and π modes will be treated separately. For these we find

Mk=0 =
γ

4

[
Γ0,1 iΓ0,2

−iΓ0,2 Γ0,1

]
and Mk=π =

γ

4

[
Γπ,1 iΓπ,2
−iΓπ,2 Γπ,1

]
. (3.58)

Based on Eq. (3.12), a submatrix of X now follows directly from H{k,−k} (3.53) and M{k,−k} (3.57), giving

X{k,−k} = −2iH{k,−k} + 2Re[M{k,−k}]. (3.59)

In this formulation the correlation matrix entries are

[C{k,−k}(t)]ij = tr(wiwj%)− δij , (3.60)

where wi, wj , with i, j = 1, . . . , 4, are the Fourier Majorana fermions introduced in Eq. (3.52). We can
therefore write the set of 4× 4 matrix differential equations as

− 1

2

dC{k,−k}(t)

dt
= XT

{k,−k}C{k,−k}(t) + C{k,−k}(t)X{k,−k} + 4iIm[M{k,−k}], (3.61)

which can be solved numerically. An analogous expression holds for the k = 0, π cases.

The solution to Eq. (3.61) provides two-point correlation functions for the Fourier Majorana fermions.
However, in the study of the excitation density dynamics it is the occupations of the ηk modes, which cor-
respond to the elementary excitations of the system, that are of interest. We can use a series of linear trans-
formations to relate the occupations 〈η�kηk〉 to the correlation functions of the Fourier Majorana fermions in

2The π mode is present only when the number of lattice sites L is even.
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C{k,−k}(t). Combining the transformations
w1

w2

w3

w4

 =


1 1 0 0
i −i 0 0
0 0 1 1
0 0 i −i


︸ ︷︷ ︸

Q−1


ak
a�k
a−k
a�−k

 and
[

ηk
η−k

]
=


cos(βk) 0

0 i sin(βk)
0 cos(βk)

−i sin(βk) 0


T

︸ ︷︷ ︸
RT


ak
a�k
a−k
a�−k


(3.62)

allows us to write [
ηk
η−k

]
= S

[
w1 w2 w3 w4

]T
with S = RQ. (3.63)

From this we can express the correlations of the ηk fermions in terms of the Fourier Majorana correlations as

〈η�qηq′〉 = S∗qi〈wiwj〉Sq′j . (3.64)

Hence, the excitation probability for a {k,−k} mode pair is

〈η�kηk〉+ 〈η�−kη−k〉 =
∑

q={k,−k}

S∗qiSqj〈wiwj〉 = Tr
[
STS∗C{k,−k}(t)

]
+ 1. (3.65)

The tools developed in this section will be used in the subsequent chapters to study the dynamics of the
Kitaev chain and the Kibble-Zurek physics associated with various ramping protocols. It is important to
mention that when we numerically solve the matrix differential equations (3.61) to study the dynamics of the
Kitaev chain, we require the initial condition C(0). In our work we will initialise the system in a thermal
state, and therefore the initial condition C(0) in terms of the Fourier Majorana fermion correlations can be
found from the transformation in Eq. (3.64).
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Chapter 4

Dynamic Kibble-Zurek scaling for the
isolated Kitaev chain

In this chapter we study the non-equilibrium dynamics of the isolated long-range Kitaev chain. In particu-
lar, we implement what we call the standard quantum Kibble-Zurek (KZ) protocol. This ramping protocol
describes a procedure in which a control parameter or coupling constant in the isolated system’s Hamilto-
nian is varied, or ramped, continuously. The dynamics becomes particularly fascinating when the control
parameter or coupling constant approaches a critical value associated with a QPT. For the Kitaev chain we
focus on ramping the chemical potential µ, which enters through the dispersion relation λφ,α of the system
Hamiltonian (2.25). During the ramp we will monitor the density of excitations E , which is expected to
display universal scaling behaviour following a sufficiently slow ramp of µ through, or towards, the QCP. A
ramp is regarded as sufficiently slow when only the low-energy modes—for which the energies λφ,α(k) are
accurately described by a power law in terms of the critical exponents—make a significant contribution to
the excitation density.

The universal behaviour emerging in quantities such as the excitation density has already been studied for
various models, including the short- and long-range Kitaev chain. In work by Dutta et al. [22] the role of long-
range pairing on the non-equilibrium dynamics of the Kitaev chain is studied, with a focus on deriving the
KZ scaling exponent that dictates the power-law behaviour of the excitation density. This scaling exponent
is found to depend non-trivially on the distance decay parameter α of the pairing term. In this chapter we
extend the results published in Ref. [22] to also include the case of long-range hopping, and provide a more
general derivation of the scaling relations which does not depend on the asymptotic Landau-Zener transition
probability (1.10).

In Section 4.1 we start with an introduction to the standard KZ protocol, and then illustrate the breakdown
of adiabaticity in the vicinity of the QCP using numeric results for the Kitaev chain. Section 4.2 makes use of
the Landau-Zener model introduced in Section 1.1.2 to derive a set of scaling relations for the isolated Kitaev
chain. These analytic scaling predictions are subsequently supported by numeric results. We conclude with
Section 4.3 in which we provide a brief summary of this chapter.

4.1 Standard quantum Kibble-Zurek protocol
In the context of the Kitaev chain Hamiltonian (2.25), the quantum Kibble-Zurek protocol describes the
ramping of the chemical potential µ towards its critical value µc. We ramp the chemical potential linearly at
a constant rate v, such that

µ(t) = vt+ µi, (4.1)

where the ramp starts at some large negative initial value µi and ends at µf . At µi the system is prepared in
the many-particle ground state, which, for the diagonalised Kitaev chain Hamiltonian (2.25), is the vacuum
state of the η-quasiparticles. At early times, the system will remain in its instantaneous ground state, and no
η-quasiparticle modes are excited. Hence, the quasiparticle occupations 〈η�kηk〉 remain zero. However, if we
ramp in the vicinity of the QCP, the inherent timescale of the system’s dynamics becomes very long, referred
to as critical slowing down. As explained in Section 1.1.2 and Section 1.1.3, this results in a breakdown of
adiabaticity whereby the system is unable to transition through a sequence of instantaneous ground states
and, as a result, will start populating exciting states.

37
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Figure 4.1: The excitation density E of the nearest-neighbour Kitaev chain during a ramp as a function of the chemical
potential µ(t). Results are shown for three different ramp rates, v = 0.1, 0.05 and 0.01, with faster ramps resulting in
the system being pushed further out of equilibrium. Parameter values are set to L = 450, J = 1, ∆ = 1, µi = −5 and
µf = 0.

The loss of adiabaticity associated with this critical slowing down can be observed by monitoring the
excitation density during the ramp. We will define the excitation density as the sum of the occupation numbers
(excitation probabilities) Pk(t) = 〈η�kηk〉(t) over all the instantaneous quasiparticle modes at time t, divided
by the system size L. We write this compactly as

E(t) =
1

L

∑
k

Pk(t) =
1

L

∑
k

〈η�kηk〉(t). (4.2)

In the thermodynamic limit L → ∞ the lattice momentum k assumes continuous values and Eq. (4.2)
becomes

E(t) =
1

2π

∫ π

−π
dkPk(t) =

1

2π

∫ π

−π
dk 〈η�kηk〉(t) (4.3)

for the one-dimensional chain. The excitation probability Pk for each k-mode can be computed directly
from the time-dependent correlation functions C{k,−k}(t) using Eq. (3.65) in Chapter 3. Upon application
of Eq. (4.2), we can then determine the excitation density. Numeric results for E are presented in Fig. 4.1
for the nearest-neighbour Kitaev chain. The figure illustrates the generation of excitations—and subsequent
breakdown of adiabaticity—when the critical point at µc = −1 is traversed during the ramp. For faster ramp
rates the loss of adiabaticity sets in earlier, i.e. at smaller values of µ, and the system is driven further out
of equilibrium. This can be understood through the condition for adiabatic evolution, which for a particular
k-mode is1

√
v � λφ,α(k). (4.4)

For lower-energy modes this condition is violated more readily, leading to the generation of excitations.
Furthermore, the unavoidable closure of the energy gap for the k = 0 mode in the Kitaev chain spectrum
means that condition (4.4) cannot be satisfied at the QCP, no matter how slow the ramp. The density of
excitations that emerge as a result of the breakdown of adiabaticity at the phase transition is expected to
scale universally with the ramp rate v. We regard the scaling as universal, since the scaling laws describing
the functional relationship between the excitation density and ramp rate depend only on the equilibrium
critical exponents. These critical exponents, which describe the behaviour of physical quantities near a QPT,
are independent of the model’s specific details [107, 108]. This allows us to group a collection of models
with similar behaviour and general features into a single universality class, where all the models within this
prescribed class share the same critical exponents [107, 108]. As such, the behaviour of systems in the
vicinity of QPTs can be deduced without any comprehensive knowledge of the details of the system itself. In
the next section we derive scaling relations that describe the universal behaviour of the density of excitations.

1In Appendix A we provide details on the derivation of the adiabatic-following condition for the Landau-Zener problem, which
was introduced in Section 1.1.2. Within the context of the Landau-Zener model and Section 4.2.1, the results in the appendix can be
generalised to the isolated Kitaev chain to obtain the condition in Eq. (4.4).
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4.2 Scaling relations for the coherent excitation density
The excitations that are generated during the KZ ramping protocol are expected to scale with the ramp rate
in a power-law fashion. In Section 4.2.1 we study the single-mode excitation probability for the Kitaev
chain within the Landau-Zener picture. This will provide us with several important tools for deriving scaling
relations for the density of quasiparticle excitations in Section 4.2.2. In preparation for the work that follows
in Chapter 5, we consider ramps ending at the critical point. The scaling exponents are found to exhibit
a non-trivial dependence on the long-range parameters φ and α, where φ, α = 2 pinpoints the boundary
between the short- and long-range scaling behaviours. In Section 4.2.3 the Kibble-Zurek scaling predictions
are derived and compared to our analytic results. We observe agreement with these predictions, except for the
case of long-range hopping. Finally, Section 4.2.4 presents numeric results to verify the analytically derived
scaling relations.

4.2.1 Single-mode excitation probability within the Landau-Zener picture

The evolution of the excitation probability 〈η�kηk〉(t) for a single ηk-mode in the Kitaev chain can be de-
scribed by mapping this problem onto the Landau-Zener model introduced in Section 1.1.2. This important
link between the fermionic and Landau-Zener pictures is discussed further in Appendix C. The two-level
description of the excitation probability dynamics in the LZ language forms the basis from which we will
derive scaling relations for the density of quasiparticle excitations in Section 4.2.2.

The 2 × 2 matrices defining the system Hamiltonian HLRK in Eq. (2.21) are used to map the single
ηk-mode excitation probabilities of the Kitaev chain onto the two-level LZ model. In the diabatic basis
{|1〉 , |2〉}, this two-level representation for a single ηk-mode is described by the time-dependent Hamiltonian

Hk(t) =

[
Ak(t) iBk
−iBk −Ak(t)

]
, (4.5)

with eigenenergies

± λk(t) = ±
√
A2
k(t) +B2

k, (4.6)

where Ak(t) = A−k(t) = 2Jgφ(k) + 2µ(t) and Bk = −B−k = ∆fα(k). The coupling Bk is time-
independent, while the energy-level spacing has a linear time dependence given by µ(t) in Eq. (4.1). The
two-level Hamiltonian (4.5) governs the evolution of the time-dependent state |ψk(t)〉 of the system. This
state is given by

|ψk(t)〉 = uk(t) |1〉+ vk(t) |2〉 , (4.7)

where |1〉 =
[

1 0
]T

and |2〉 =
[

0 1
]T

. From the Schrödinger equation (1.2), together with Eqs. (4.5)
and (4.7), we find the equations of motion governing the dynamics of the state |ψk(t)〉 to be

i
d

dt
uk(t) = Ak(t)uk(t) + iBkvk(t) and i

d

dt
vk(t) = −iBkuk(t)−Ak(t)vk(t). (4.8)

At any given time, the Hamiltonian Hk(t) in Eq. (4.5) has two instantaneous eigenstates. The −λk and
+λk eigenstates of Hk(t) will be denoted by |g(t)〉 and |e(t)〉, respectively. We can therefore write the
transition amplitude at time t in terms of the system’s state |ψk(t)〉 and the instantaneous eigenstate |e(t)〉
as 〈ψk(t)|e(t)〉. This transition amplitude will depend on the various parameters entering through the Ak
and Bk functions. In the work that follows, it will be convenient to formulate this amplitude in terms of
dimensionless parameters. To this end, we introduce

χ(k, t) =
Ak(t)√

2v
=

2Jgφ(k) + 2µ(t)√
2v

and ω(k) =
Bk√
2v

=
∆fα(k)√

2v
, (4.9)

where v is the ramp rate. In terms of the dimensionless parameters χ(k, t) and ω(k), we write the probability
amplitude as

A[χ(k, t), ω(k)] = 〈ψk(t)|e(t)〉 . (4.10)

An exact expression for A[χ(k, t), ω(k)] can be derived, provided we have the initial conditions at the initial
time ti. In our analytic work we start in the ground state |g(ti)〉 = |1〉 at µ(ti) = µi = −∞. To obtain the
probability amplitude A[χ(k, t), ω(k)] (4.10), we first solve for uk and vk in Eq. (4.8) in terms of parabolic
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Figure 4.2: (a) The dimensionless eigenenergies ±λk(t)/
√

2v as functions of χ, showing the instantaneous excitation
gap which is minimal at χ = 0 with a value of 2ω. (b) The excitation probability P (χ, ω) as a function of χ for
ω = 0.25, 0.5 and 0.75. P (χ, ω) increases rapidly close to the avoided level-crossing at χ = 0 before stabilising to its
long-time value.

cylinder functions Dn(z), which are solutions to the Weber equation [15, 20, 109]. It is then possible to
calculate the inner product in Eq. (4.10). Details on the solution to the differential equations (4.8), as well as
the derivation of the probability amplitude, are provided in Appendix C. This leads to

A(χ, ω) =
1√
π

(1 + i)2−2+ iω2

4 e−
3πω2

8 + i
2

×
[
(1− i)

√
1 +

χ√
χ2 + ω2

Γ

(
1− iω2

2

)(
e
πω2

2 D iω2

2 −1
((1− i)χ) +D iω2

2 −1
((−1 + i)χ)

)
− iω

√
1− χ√

χ2 + ω2
Γ

(
− iω

2

2

)(
D iω2

2

((−1 + i)χ)− eπω
2

2 D iω2

2

((1− i)χ)
)]
. (4.11)

Using the result above, we now write the occupation 〈η�kηk〉(tf ) of the ηk-mode at a final time t = tf as

pk = 〈η�kηk〉(tf ) = |A[χ(k, tf ), ω(k)]|2 =: P [χ(k, tf ), ω(k)]. (4.12)

The behaviour of the excitation probability P (χ, ω) will be essential for making a series of sensible approx-
imations in Section 4.2.2 to extract the scaling of the excitation density with v.

Our understanding of the behaviour of P (χ, ω) will rely heavily on the physical interpretation of the
dimensionless parameters χ and ω. The parameter χ is an effective measure of the closeness to the avoided
level-crossing at χ = 0, and ω is an effective measure of the minimum value of the excitation gap. Using
Eqs. (4.6) and (4.9), we express the excitation gap of Hk in terms of χ and ω as

λk(t) =
√

2v
√
χ2(k, t) + ω2(k). (4.13)

This excitation gap is illustrated in Fig. 4.2a, with the minimum gap occurring at the avoided level-crossing.
This minimum in the system’s excitation gap at χ = 0 corresponds to a slowing down of the system’s dynam-
ics. Subsequently, there is potentially a breakdown in the adiabatic evolution, as discussed in Section 1.1.2
for the LZ model. This leads to the excitation probability increasing rapidly close to χ = 0 before stabilising
to its long-time value, as observed in Fig. 4.2b where we used the exact analytic expressions (4.11) and (4.12)
with various choices for ω. As discussed earlier, the value of ω impacts on the size of the gap in the excitation
spectrum at the avoided level-crossing. Since the gap closes with decreasing ω, a smaller ω value results in a
noticeably larger excitation probability, as observed in Fig. 4.2b.

We now discuss some qualitative trends of the function P (χ, ω), which will be important for deriving
scaling relations in subsequent sections. These discussions will closely reference Fig. 4.2, and rely on the
physical interpretation of χ and ω in the previous paragraph. First note that the ramps are terminated at
the critical point µc at a final time tf , where µf = µc = −Jgφ(0). As a result, χ(k, tf ) < 0 for all
k 6= 0 modes. The zero mode is a special case for which χ(0, tf ) = 0. When χ is identically zero we are
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Figure 4.3: (a) P (χ, ω) is a strictly decreasing function of χ for χ ≤ 0. (b) P (χ, ω) is an increasing function of ω for
χ ≤ 0 and small ω, and a decreasing function of ω when ω is large.

stopping the ramp at the avoided level-crossing, as illustrated in Fig. 4.2a. In all other cases χ is strictly
negative, implying that the ramp is terminated before the level-crossing for the mode in question is reached.
The further χ is from the level-crossing, the easier it becomes to satisfy the adiabatic-following condition in
Eq. (4.4). We therefore expect the excitation probability P (χ, ω) to be small for sufficiently large negative
χ. This is equivalent to stating that P (χ, ω) is small for the high momentum modes. In fact, the excitation
probability for increasingly high momenta quickly becomes negligible, allowing it to be safely neglected in
later calculations. However, when χ is in the neighbourhood of χ = 0, the condition in Eq. (4.4) is potentially
violated, resulting in a breakdown of adiabaticity and subsequently non-negligible excitation probabilities. It
is therefore the low momentum modes which will contribute significantly to the excitation density. This is
supported by Fig. 4.3a, where P (χ, ω) is shown to be a decreasing function of χ when χ ≤ 0.

The behaviour of the excitation probability P (χ, ω) with ω is more subtle. Recall that ω is an effective
measure of the closure of the excitation gap. Based on this interpretation and Fig. 4.2a, it is unsurprising
that P (χ, ω) is a decreasing function of ω at χ = 0. Both the figures in 4.3 show this trend. For χ < 0,
P (χ, ω) is an increasing function of ω when ω is small, and a decreasing function when ω is large. This is
supported by Fig. 4.3b, confirming that the low momentum modes will correspond to the largest excitation
probabilities. In the next section we will use these qualitative trends of the excitation probability P (χ, ω) to
derive asymptotic scaling relations for the coherent excitation density.

4.2.2 Derivation of asymptotic scaling relations for the coherent excitation density
In the previous section we focused on the single-mode excitation probability within the Landau-Zener picture.
The exact analytic expression for the excitation probability in the two-level representation will now be used to
study the coherent excitation density Ecoh. Using the notation introduced above and the definition in Eq. (4.3),
the density of excitations is

Ecoh =
1

2π

∫ π

−π
dk P (χ(k, tf ), ω(k)) =

1

π

∫ π

0

dk P (χ(k, tf ), ω(k)), (4.14)

where we exploited the k ↔ −k symmetry of the modes. According to the integral expression above,
the excitation density Ecoh is determined by the values of the excitation probability P (χ, ω) along the curve
{(χ(k, tf ), ω(k)) : k ∈ [0, π]} in the χ−ω plane. Figure 4.4a shows three such curves for different distance
decay parameters. To eliminate the simple, but ultimately very important dependence of χ and ω on the ramp
rate v we have chosen to scale the two axes by factors of

√
v. This emphasises that curves for different ramp

rates just differ by a simple rescaling. In all cases the curves start at the point (χ(0, tf ), ω(0)) = (0, 0), and
terminate at a point (χ(π, tf ) < 0, 0). As was argued in the previous section, we expect the low momentum
modes to make the dominant contribution to Ecoh. Figure 4.4b reiterates this by illustrating that P (χ, ω)
will be negligible for the high momentum modes. In the context of Fig. 4.4a, it is the modes for which
(χ(k, tf ), ω(k)) lies close to the origin for which the excitation probability P (χ, ω) will be non-negligible.
Since both χ(k, tf ) and ω(k) are proportional to v−1/2, the range of contributing modes is expected to shrink
with decreasing v, as illustrated in Fig. 4.4b. More precisely, only the modes in a small neighbourhood of
k = 0 contribute to Ecoh when the ramp rate is very slow. This motivates the introduction of the lowest order
in k approximations of χ and ω.
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Figure 4.4: (a) Three curves {(χ(k, tf ), ω(k)) : k ∈ [0, π]} in the χ−ω plane, parametrised by k, for different distance
decay parameters. The two axes are scaled by factors of

√
v to eliminate the dependence of χ and ω on the ramp rate v.

For the low momentum modes, for which (χ(k, tf ), ω(k)) lies close to the origin, the curves are well approximated by
the lowest order in k approximations in Eq. (4.15), which are indicated by the dashed curves. (b) An indication of the
range of contributing modes to P (χ, ω) for three ramp rates, v = 0.005, 0.01 and 0.025. The range of modes which
contribute significantly shrinks with decreasing v, and the dominant contribution to the excitation density Ecoh will come
from modes around k = 0, where P (χ, ω) is noticeably larger.

For sufficiently slow ramp rates, χ and ω in Eq. (4.9) can be replaced by their lowest order in k approxi-
mations

χ(k, tf ) ≈ χ0(k) = −G(φ)√
v
ka and ω(k) ≈ ω0(k) =

F(α)√
v
kb, k ≥ 0, (4.15)

as motivated above. Here the a and b exponents are the powers of the leading-order terms in the small-k
expansions of g∞φ (k) and f∞α (k) in Eqs. (2.40) and (2.34), while G(φ) and F(α) are φ- and α-dependent
coefficients. Replacing χ(k, tf ) and ω(k) in P (χ, ω) by their approximations in Eq. (4.15) results in the
approximate excitation probability P (χ0(k), ω0(k)). We expect P (χ0(k), ω0(k)) to agree with the exact
excitation probability for low momentum modes, where the contribution to Ecoh is largest. This is validated
by Fig. 4.4a where χ(k, tf ) and ω(k) are shown to be well approximated by χ0(k) and ω0(k) for the low mo-
mentum modes. In addition, we note that the magnitudes of χ0(k) and ω0(k) grow with increasing k. Hence,
in the regions where χ(k, tf ) and ω(k) are not well approximated by their lowest-order approximations, i.e.
for large-k modes, the contribution of P (χ0(k), ω0(k)) to the excitation density will be negligible. Based
on these observations, we extend the upper bound of the integral in Eq. (4.14) to ∞, and replace χ(k, tf )
and ω(k) in the integrand by their lowest order in k approximations, χ0(k) and ω0(k), from Eq. (4.15). This
leads to

Ecoh =
1

π

∫ ∞
0

dk P [χ0(k), ω0(k)] =
1

π

∫ ∞
0

dk P

[
−G(φ)√

v
ka,
F(α)√
v
kb
]
. (4.16)

For the sake of clarity, we write the a and b exponents in the leading-order approximations (4.15) in terms of
the distance decay parameters from Eqs. (2.40) and (2.34) as

a =

{
φ− 1, 1 < φ < 3

2, φ > 3
and b =

{
α− 1, 1 < α < 2

1, α > 2
. (4.17)

The small-v asymptotic behaviour of Ecoh in Eq. (4.16) varies depending on the values of the hopping and
pairing parameters, φ and α. In Section 4.2.2.1 we will study the small-v asymptotic behaviour of Ecoh
for short-range hopping (φ > 2) and arbitrary-range pairing (α > 1). Following the same procedure in
Section 4.2.2.2, we derive exact asymptotic results for the scaling of Ecoh when the Kitaev chain hopping
term is long-range (1 < φ < 2) and the pairing term is short-range (α > 2).
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4.2.2.1 Asymptotic scaling relation for short-range hopping and arbitrary pairing

For short-range hopping (φ > 2) and arbitrary pairing (α > 1) we have that b ≤ a from Eq. (4.17). The
change of variable k → [

√
v/F ]1/bk in Eq. (4.16) then leads to

Ecoh =
1

π

[√
v

F

]1/b ∫ ∞
0

dk P

(
−G
Fa/b

√
v

(a/b−1)
ka, kb

)
. (4.18)

To extract the small-v asymptotic behaviour of Ecoh from the expression above we require that the v → 0
limit of the integral exists and is finite. Provided these requirements are met, the dominant scaling behaviour
will come from the prefactor in Eq. (4.18). We will motivate that the integral has a well defined v → 0
limit by first considering the small-v behaviour of the integrand in Eq. (4.18). Based on earlier discus-
sions on the excitation probability, the integrand P

(
−G
Fa/b
√
v

(a/b−1)
ka, kb

)
will be a decreasing function of

G
Fa/b
√
v

(a/b−1)
ka. More precisely, the integrand increases as the ramp rate v slows down. However, it is

important to mention that the integrand does not increase indefinitely, since it is bounded from above by its
v → 0 value of P

(
0, kb

)
. The integral therefore exists, and the leading-order result for the excitation density

is written as

Ecoh = v1/(2b)

[
F−1/b

π

∫ ∞
0

dk P
(
0, kb

)]
, (4.19)

which scales with the ramp rate v as Ecoh ∝ v1/(2b). A necessary condition for the integral in Eq. (4.19) to
converge is 4b > 1, since it can be shown that P (0, ω) ∼ 1/ω4.

4.2.2.2 Asymptotic scaling relation for long-range hopping and short-range pairing

In this section we will consider the small-v asymptotic behaviour of Ecoh for long-range hopping (1 < φ < 2)
and short-range pairing (α > 2). According to Eq. (4.17), long-range hopping and short-range pairing
translates into the condition that b > a. We now perform the change of variable k → [

√
v/G]1/ak in

Eq. (4.16) which gives

Ecoh =
1

π

[√
v

G

]1/a ∫ ∞
0

dk P

(
−ka, F

Gb/a
√
v

(b/a−1)
kb
)
. (4.20)

Extracting the small-v asymptotic behaviour of Ecoh from the expression above is slightly more difficult than
in the previous case.

In order to follow the same procedure as in Section 4.2.2.1, we reformulate Eq. (4.20) as

Ecoh =
1

π

[√
v

G

]1/a

vb/a−1

∫ ∞
0

dk v1−b/aP

(
−ka, F

Gb/a
√
v

(b/a−1)
kb
)
. (4.21)

Unlike in Section 4.2.2.1, the function P
(
−ka, FGb/a

√
v

(b/a−1)
kb
)

does not behave in a simple, monotonic

way as v → 0 or, equivalently, as ω → 0. See for example Fig. 4.3b. If we identify ω = F
Gb/a
√
v

(b/a−1)
kb

in the excitation probability function P in Eq. (4.21), then it follows that v1−b/a ∼ 1/ω2. From Fig. 4.5
we observe that the integrand ∼ P (χ, ω)/ω2 in Eq. (4.21) is a monotonically decreasing function of ω. As
discussed previously, the integrand therefore increases with decreasing v, but is bounded from above by its
v → 0 value of

lim
ω→0

P (χ, ω)

ω2
=

1

8πχ2
h(χ), (4.22)

where h(χ) is a function of χ containing parabolic cylinder functions and their derivatives. The exact ex-
pression for h(χ) is provided in Appendix G. Based on the arguments made above, the dominant scaling
behaviour will reside in the prefactor of Eq. (4.21), and the exact small-v asymptotic result for the excitation
density when b > a is

Ecoh = v(1+2b)/(2a)−1

[
F2

8π2
G−1/a−2b/a

∫ ∞
0

dk k2(b−a)h (−ka)

]
. (4.23)

As expected, Ecoh scales with v as Ecoh ∝ v(1+2b)/(2a)−1. The scaling prediction (4.23) is only valid when
the condition for integral convergence, 6a− 2b > 1, is met.
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Figure 4.5: P (χ, ω)/ω2 as a function of ω for a series of χ ≤ 0 values. The function P (χ, ω)/ω2 is monotonically
decreasing with ω for all χ ≤ 0.

4.2.2.3 Summary of scaling relations

In the preceding sections we derived asymptotic scaling relations for the coherent excitation density for vari-
ous distance decay parameter values. These results, as given in Eqs. (4.19) and (4.23), can be reformulated in
terms of the Kitaev chain distance decay parameters φ and α using Eq. (4.17). In summary, the exact v → 0
asymptotic results are

Ecoh ∝


v1/2 if φ, α > 2

v1/[2(α−1)] if φ > 2, 0 < α < 2

v3/[2(φ−1)]−1 if α > 2, 3/2 < φ < 2

. (4.24)

Based on the theoretical scaling predictions (4.24), we expect the scaling exponent to saturate to the short-
range value of 1/2 for φ, α > 2. In contrast, the scaling exponent for the long-range hopping and pairing
cases will depend non-trivially on the distance decay parameters. For long-range pairing the predicted scaling
exponent of 1/[2(α − 1)] is in agreement with the results published in Ref. [22]. We extended the results in
Ref. [22] to also consider long-range hopping, for which the scaling exponent is 3/[2(φ−1)]−1. Both of the
long-range scaling exponents reduce to the short-range value of 1/2 when φ, α → 2, marking the boundary
between the short- and long-range scaling behaviours.

The asymptotic results in Eq. (4.24) are only applicable in the limit of very slow ramp rates. It is therefore
important to question the extent to which this scaling behaviour will emerge if the ramp rate v is finite. This
will depend on the magnitudes of the sub-leading terms that were neglected in multiple steps of our derivation.
A more detailed analysis on the expected range of validity for the scaling in the nearest-neighbour Kitaev
chain for finite v appears in Appendix D. We find that, in the majority of cases, a necessary condition for the
predicted scaling in v to materialise in Ecoh is

v � 2π2∆4

J2
. (4.25)

As expected, the scaling emerges when the ramp rate v is sufficiently slow.

4.2.3 Kibble-Zurek scaling prediction
In Section 1.1.3 we showed that the general Kibble-Zurek scaling result predicts that the density of excitations
scales in a power-law fashion with the ramp rate v. More precisely, according to Eq. (1.19) we have

Ecoh ∝ v
dν

1+νz . (4.26)

For the Kitaev chain d = 1 is the number of space dimensions, and the critical exponents ν and z need to
be determined. It is possible to obtain these critical exponents by determining the universality class of our
model. Here we will use a different approach, whereby the exponents are extracted via the asymptotics of
the dispersion relation (2.26). The relevant energy scale, which is given by λφ,α(k) in Eq. (2.26), vanishes
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for the k = 0 mode as the critical value µc is approached. This energy gap that vanishes can be related
to the reaction time τ (1.12), which governs how quickly the system can respond to external perturbations,
as τ−1 ' λφ,α(0). Using Eq. (1.14), the critical exponent νz is therefore determined directly from the
dispersion relation at k = 0 as

λφ,α(0) ∼ |µ− µc|zν = |µ− µc|, (4.27)

which leads to zν = 1. Work published in Ref. [110] notes that at a quantum critical point the dynamical
critical exponent z is a property of the gapless dispersion relation. To this end, we extract the exponent z
from the dispersion relation (2.26) by considering the leading-order behaviour in k at the critical point where
µ = µc. In general we have

λφ,α(k) ∼ kz (4.28)

at the quantum critical point [50, 110]. With reference to the low-energy approximations (2.41) of the dis-
persion relation, a combination of Eqs. (4.27) and (4.28) leads to

z = ν−1 =


1 (SR pairing and hopping)
α− 1 (LR pairing and SR hopping)
φ− 1 (LR hopping and SR pairing)

, (4.29)

where SR and LR denote short-range and long-range, respectively. It follows from Eqs. (4.26) and (4.29)
that the predicted Kibble-Zurek scaling is

Ecoh ∝


v1/2 if α > 2 and φ > 2 (SR pairing and hopping)
v1/[2(α−1)] if 1 < α < 2 and φ > 2 (LR pairing)
v1/[2(φ−1)] if α > 2 and 1 < φ < 2 (LR hopping)

. (4.30)

The scaling laws derived using the LZ model in Section 4.2.2 are in agreement with the Kibble-Zurek
scaling predictions for the Kitaev chain with short-range hopping (φ > 2) and arbitrary-range pairing
(α > 1). When considering the Kitaev chain with long-range hopping, i.e. φ ∈ (1, 2), the scaling exponent
(3/[2(φ− 1)]− 1) in Eq. (4.24), which was derived from the exact expression for the excitation probability,
differs from the KZ prediction of 1/[2(φ− 1)] in Eq. (4.30). This discrepancy may be a consequence of the
point at which the ramp is terminated. For short-range systems it is known that the end point of the ramp—
whether that be at the critical point or after leaving the quantum critical region—does not alter the scaling
laws [111]. For sufficiently long-range systems, however, it has been shown in work by Defenu et al. [111]
that ending the ramp at different points can lead to the emergence of different scaling laws. In our work
we terminate the ramp exactly at the critical point, where the correlation length diverges. This is different
from the KZ argument, where the ramp is terminated after passing through the QCP in a region where the
correlation length is finite. It is therefore not surprising that the results differ. Further investigation into the
Kitaev chain’s spatial correlations and correlation lengths is required to provide further insight on this matter.
Despite the discrepancy, Ecoh is still expected to scale universally with the ramp rate. In the next section we
show that the numeric results for the Kitaev chain support the analytic scaling laws (4.24), including the case
of long-range hopping.

4.2.4 Numeric results
In this section we will benchmark our analytic predictions for the scaling behaviour of the excitation density
against results obtained by evaluating the integral expression in Eq. (4.16) numerically. The latter represents
the excitation density in the L → ∞ limit. This calculation requires an efficient means of evaluating the
excitation probability P (χ, ω), for which different techniques were used depending on the regime of χ − ω
parameter space we were considering. It was found that using the analytic expression in Eq. (4.11) was not
always tractable, due to the parabolic cylinder functions being slow to evaluate. In the region χ < −5 or
ω > 5 the excitation probability is small and varies slowly, which allows it to be calculated using interpolation
on a set of data points obtained from solving the differential equations (4.8) numerically. When −5 < χ < 0
and 0 < ω < 5 the excitation probability is large and varies rapidly, and so in this regime we use the analytic
result for the probability amplitude in Eq. (4.11). Combining these two approaches enables us to efficiently
compute the integral for the excitation density in Eq. (4.16).

In Fig. 4.6 the excitation density Ecoh is shown as a function of the ramp rate v for a series of long-range
pairing and hopping parameters, all greater than the boundary value of 2. The a- and b-dependencies, or
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Figure 4.6: (a) The excitation density Ecoh as a function of the ramp rate v for a series of pairing parameter values,
α > 2, with the hopping parameter fixed at φ → ∞ (nearest-neighbour hopping). The dashed lines correspond to the
analytic scaling result in Eq. (4.24). (b) The same as (a), but for a series of hopping parameter values, φ > 2, with the
pairing parameter fixed at α → ∞ (nearest-neighbour pairing). The remaining parameters in both (a) and (b) are set to
L =∞, J = 1, ∆ = 1, µi = −∞ and µf = µc = −1.
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Figure 4.7: (a) The excitation density Ecoh as a function of the ramp rate v for a series of long-range pairing parameter
values, 1 < α < 2, with the hopping parameter fixed at φ → ∞ (nearest-neighbour hopping). We terminate the ramp
at the critical point, corresponding to µf = µc = −1. The dashed lines are the analytic scaling prediction in Eq. (4.24),
which depends non-trivially on the pairing parameter α. (b) The same as (a), but for a series of long-range hopping
parameter values, 1 < φ < 2, with the pairing parameter fixed at α→∞ (nearest-neighbour pairing). Here the ramp is
also terminated at the critical point where µf = µc = −g∞φ (0). The remaining parameters in both (a) and (b) are set to
L =∞, J = 1, ∆ = 1 and µi = −∞.

equivalently the φ- and α-dependencies, of the predicted scaling in Eq. (4.19) suggest that for φ, α > 2
the scaling exponent saturates to 1/2 in the limit of slow ramp rates and that the intercept of the scaling
function changes with α only. This is evident in the numeric results, where Fig. 4.6a illustrates that changing
α produces a shift in the excitation density data, and the intercepts of the analytic scaling predictions differ
for the various α values. In contrast, Fig. 4.6b demonstrates a certain φ-independence where the excitation
density data collapses onto the same curve at slow ramp rates, and the intercepts of the analytic scaling
predictions remain unchanged. The deviations from the predicted scaling at fast ramp rates are expected,
since the scaling predictions only hold for sufficiently slow ramp rates. Additionally, as φ, α approach the
boundary separating short- and long-range scaling behaviours, the expected scaling will only emerge for very
slow ramp rates.

The numeric results exhibiting long-range scaling behaviour are shown in Fig. 4.7. For both long-range
pairing and hopping the numeric data shows a clear dependence on the distance decay parameters. The data
is also in good agreement with the analytic results (4.24), indicated by the dashed lines in Fig. 4.7.
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4.3 Conclusion
The aim of this chapter was to study the non-equilibrium dynamics of the isolated long-range Kitaev chain.
We started with a general description of the quantum KZ ramping protocol, which describes a procedure
in which a control parameter or coupling constant in the system’s Hamiltonian is varied continuously. For
the Kitaev chain we focused on ramping the chemical potential µ linearly from an initial value µi to its
critical value µc, according to Eq. (4.1). Of primary interest was the dynamics of the chain, and the universal
behaviour thereof, in the vicinity of the QCP associated with the QPT for the k = 0 mode. To study the
universal behaviour, we looked at the density of excitations Ecoh, as defined in Eq. (4.3).

The universal scaling behaviour emerging in the coherent excitation density Ecoh following a sufficiently
slow ramp of µ towards the QCP was studied both analytically and numerically. Our analytic results were de-
rived in Section 4.2.2 within the Landau-Zener picture. The scaling laws, which are summarised in Eq. (4.24),
agree with the results in the publication by Dutta et al. [22], where a more restrictive approach was followed.
In comparison, our more general derivation in Section 4.2 does not depend on the asymptotic Landau-Zener
transition probability (1.10), and is based on weaker hypotheses.2 For both long-range hopping and pairing
we found that the scaling exponents depend non-trivially on the distance decay parameters φ and α. Com-
parisons between the asymptotic scaling relations (4.24) we derived and the Kibble-Zurek predictions (4.30)
are consistent in the majority of cases. The discrepancy arising between the long-range hopping scaling ex-
ponents is expected to be a consequence of the point at which the ramp is terminated, but requires further
investigation. Finally, in Section 4.2.4 a numeric treatment of the Kitaev chain was used to verify the analytic
scaling results (4.24), with good agreement observed for both weakly long-range and short-range systems.
We will use the concepts and results of this chapter as building blocks to study the universal features of the
open Kitaev chain with dissipation in Chapter 5.

2Details on the asymptotic Landau-Zener transition probability for the Kitaev chain are included in Appendix C.
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Chapter 5

Dynamic scaling relations for the
dissipative open Kitaev chain

In this chapter we study the dynamic scaling of the dissipative open Kitaev chain. In the past, most studies
assumed unitary Hamiltonian dynamics, and little was known about the adiabatic dynamics of open systems
close to criticality. More recently, there has been renewed interest in open system dynamics, since it is
crucial to understanding the effect of an external environment on the dynamics of a system. This is important
in a variety of contexts, including adiabatic quantum computation, state preparation and for overcoming
the challenges associated with decoherence, which is present due to the unavoidable system–environment
coupling. Pioneering work in Refs. [23, 50, 85] has led to general scaling laws for the density of excitations
generated when a system is driven across a QCP by slowly ramping a parameter of the Hamiltonian at finite
temperature. It was found that the excitation density scales universally as a function of the ramp rate and the
bath temperature—even in the presence of dissipation [50]. The scaling laws have been verified for the XY
spin chain locally coupled to bosonic baths by numerically solving a set of kinetic equations [23, 50], and
for a one-dimensional fermionic wire in the presence of dissipative mechanisms, including local pumping,
decay and dephasing [85]. In our work, we extend the existing results to also include scaling laws for the
cooling of systems in the vicinity of the QCP.

The primary focus of this chapter will be studying a class of scaling relations in the open Kitaev chain
using the “third quantisation” framework introduced in Chapter 3. There are two time dependencies of
interest to us: µ(t) and T (t), where µ is the chemical potential in the system Hamiltonian (2.1) and T is
the temperature of the thermal bath to which the system is coupled. In the third quantisation formalism the
bath temperature enters through the Lindblad bath coupling constants in Eq. (2.80). Section 5.1 focuses

Figure 5.1: An illustration of the three ramping protocols studied in this thesis on the finite-temperature crossover phase
diagram in the vicinity of the quantum critical point. Arrow (a) corresponds to the standard quantum Kibble-Zurek
protocol, which was addressed in Chapter 4, (b) is the finite-temperature ramping protocol which involves the ramping
of the parameter µ across its critical value at some non-zero temperature, and (c) represents a ramp of the temperature
from T > 0 towards T = 0 at the critical value µc. The values µi and µf correspond to the start and end points of the
ramp, respectively, for protocols (a) and (b).

49
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on a finite-temperature ramping protocol, whereby the chemical potential µ is ramped towards the quantum
critical point µ = µc at T > 0. Provided the temperature is sufficiently low, the system will still be sensitive
to the presence of the quantum critical point, and universal scaling of the excitation density is expected. In
Section 5.2 the cooling of the long-range Kitaev chain towards quantum criticality is studied. In this protocol
the temperature is ramped from some finite value T > 0 towards zero absolute temperature at the critical
point. Critical slowing down is expected once the temperature is sufficiently low. These ramping protocols
are summarised in Fig. 5.1 on the finite-temperature crossover phase diagram which appeared in Fig. 1.2.

In Section 5.1 and Section 5.2 the above-mentioned protocols are applied to the one-dimensional, long-
range Kitaev chain in the presence of a bosonic bath. Although we restrict the majority of our discussions
to this one model, it should be possible to extend our results to be applicable to other models with similar
system–bath couplings. For each ramping protocol, we will derive a set of analytic scaling relations using
the definitions and methods introduced in Chapter 2 and Chapter 3. To support the scaling arguments, we
treat the Lindblad master equation (2.78) numerically to study the excitation density dynamics, where our
approach follows the methods outlined in Section 3.4.

5.1 Parameter ramps at finite temperatures
Parameter ramps at finite temperatures involve a slow variation of a parameter or coupling constant in the
Hamiltonian across its critical value while keeping the temperature fixed at some low, finite value. In this
work, the chemical potential µ(t) is ramped linearly from µi to µf at a constant rate v as

µ(t) = vt+ µi. (5.1)

The system is initialised at µi in equilibrium with the bath at temperature T . As the chemical potential
approaches its critical value µc, the system will be sensitive to the presence of the quantum critical point, and
excitations will be generated.

In this ramping protocol there are two mechanisms contributing to the total excitation density: the co-
herent contribution and the incoherent contribution. The coherent contribution Ecoh results from the unitary
dynamics generated by the system Hamiltonian and the breakdown of adiabaticity, while the incoherent con-
tribution Einc refers to the thermal excitations that are introduced through the coupling to the bath. We will
derive scaling laws for Ecoh and Einc by considering the two contributions separately. While these contribu-
tions are studied in isolation for the analytical scaling analysis, they cannot in general be disentangled to
write the total excitation density Etot as the sum

Etot = Ecoh + Einc. (5.2)

Although Eq. (5.2) is expected to hold approximately for sufficiently weak system–bath coupling (γ � 1),
a numeric treatment of the full Lindblad master equation (2.78) is required to get a complete and accurate
understanding of the total excitation density Etot.

In Chapter 4 the coherently generated excitations for the long-range Kitaev chain were studied in detail,
hence the remainder of this section will focus primarily on the incoherent contribution. For our model and
choice of system–bath coupling, which are discussed in Section 2.1 and Section 2.2, the thermal excitations
contributing to Einc can be described by a set of rate equations, one for each ηk mode. This rate equation
is derived in Section 5.1.1 by explicitly “turning off” the unitary dynamics in the master equation (2.78).
Equipped with the rate equation description of the incoherent excitation density, we show that Einc scales
with the ramp rate and the bath temperature in a power-law fashion, characterised by the equilibrium critical
exponents. To arrive at these analytic scaling laws, several approximations are made. Based on these ap-
proximations, the validity of the open Kitaev chain scaling laws is found to be restricted to certain regimes
of parameter space. In Section 5.1.3 the regimes in which scaling is expected, and where it breaks down, are
discussed. We also define a quantitative crossover rate that distinguishes between the regions in which the
two mechanisms of excitation dominate. Section 5.1.4 focuses on verifying the analytic scaling results for
the short- and long-range Kitaev chain using the set of 4× 4 correlation matrix differential equations (3.61)
in Section 3.4.
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5.1.1 Incoherent contribution to the excitation density
The thermal excitations generated by the bath can be studied in isolation by turning off the unitary dynamics.
In practice, this is achieved by adding a “correction term” to the correlation function matrix differential equa-
tion (3.61) and setting all the entries of the H matrix, as defined in Eq. (3.3), to zero. We show that this leads
to a rate equation, providing a convenient, numerically efficient description of the incoherent excitations.

First recall from Section 3.4 that the matrix differential equation (3.61) for a {k,−k}mode pair is formu-
lated in terms of the two-point correlation matrix C{k,−k}(t) for the Fourier Majorana fermions. Here we are
interested in the correlation functions of the ηk fermions. It will therefore be convenient to perform a series
of transformations to recast the matrix differential equation (3.61) as one which describes the dynamics of
the correlation matrix

N (t) =
1

4
Z(C{k,−k}(t) + I)Z� =


〈η�kηk〉 〈η�kη−k〉 〈η�kη

�
k〉 〈η�kη

�
−k〉

〈η�−kηk〉 〈η
�
−kη−k〉 〈η

�
−kη

�
k〉 〈η

�
−kη

�
−k〉

〈ηkηk〉 〈ηkη−k〉 〈ηkη�k〉 〈ηkη�−k〉
〈η−kηk〉 〈η−kη−k〉 〈η−kη�k〉 〈η−kη

�
−k〉

 , (5.3)

where C{k,−k}(t) is defined in Eq. (3.60), I is the 4 × 4 identity matrix and the entries of N (t) are time-
dependent correlation functions of the ηk fermions for a particular {k,−k} mode pair. The matrix

Z =


cosβk i cosβk i sinβk sinβk
−i sinβk − sinβk cosβk i cosβk

cosβk −i cosβk −i sinβk sinβk
i sinβk − sinβk cosβk −i cosβk

 (5.4)

performs a linear transformation between the Fourier Majorana fermions and the ηk fermions, with the time-
dependence entering through the Bogoliubov angle βk(t) = βk defined by

tan(2βk(t)) =
−∆fα(k)

2Jgφ(k) + 2µ(t)
. (5.5)

With the definitions in Eqs. (5.3) and (5.4) we write the 4× 4 matrix differential equation for the correlation
matrix N (t) for a {k,−k} mode pair as

dN (t)

dt
= −

[(
ZXTZ�︸ ︷︷ ︸

1

−1

2
ŻZ�︸︷︷︸

2

)
N (t) + N (t)

(
ZXZ�︸ ︷︷ ︸

1

−1

2
ZŻ�︸︷︷︸

2

)
−1

2
Z(X + XT − 4iMi)Z

�︸ ︷︷ ︸
3

]
, (5.6)

where X ≡ X{k,−k} from Eq. (3.59) and M ≡ M{k,−k} from Eq. (3.57), with the subscript i referring to
the imaginary part of the matrix M. The subscripts {k,−k} have been suppressed in Eq. (5.6) for notational
simplicity. The additional terms in the matrix differential equation (5.6) emerge due to the time-dependent
transformation Z applied to the correlation matrices C{k,−k}(t).

Systematically studying the terms appearing in the matrix differential equation (5.6) will allow us to
identify which parts contribute to the unitary dynamics. This identification will provide a means of turning
off the unitary dynamics, resulting in a matrix differential equation that governs the evolution of only the
thermal excitations generated by the bath. We will discuss each of the unique terms in Eq. (5.6), denoted
by 1 , 2 and 3 , to understand which matrices, or parts thereof, contribute to the unitary dynamics of the
Kitaev chain:

1. The diagonal matrices denoted by 1 in Eq. (5.6) are defined as

ZXTZ� = (ZXZ�)∗ = diag [γΓk,1 − iλ, γΓk,1 − iλ, γΓk,1 + iλ, γΓk,1 + iλ] , (5.7)

where Γk,1 = Γk,+ + Γk,− is a combination of the Lindblad bath coupling constants Γk,± (2.80), γ
is the system–bath coupling and λk = λ is the mode energy (4.6). We can distinguish between the
unitary and dissipative dynamics through the γ-dependence that enters in the matrix. More precisely,
the “turning off” of the unitary dynamics in the ZXTZ� and ZXZ� matrices involves dropping the
terms with no γ-dependence. This amounts to setting H = 0, which eliminates the complex iλs in
Eq. (5.7).
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2. The matrices denoted by 2 in the matrix differential equation (5.6) appear as a result of the time-
dependence of the transformation matrix Z (5.4). The time derivative of Z will introduce derivatives
of the Bogoliubov angle βk, leading to

ŻZ� = −ZŻ� = 2
dβk
dt


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 . (5.8)

The ŻZ� and ZŻ� matrices can be viewed as Bogoliubov coupling terms in the matrix differential
equation (5.6). Since there is no γ-dependence, these terms will not impact on the dissipative dynamics
of the system.

3. Term 3 in Eq. (5.6) can be written in terms of the system–bath coupling γ and combinations of the
Lindblad bath coupling constants as

3 = −1

2
Z(X + XT − 4iMi)Z

�

= −γ diag [(Γk,1 + Γk,2), (Γk,1 + Γk,2), (Γk,1 − Γk,2), (Γk,1 − Γk,2)] (5.9)

= −2γΓk,1 diag
[

1

2

(
1 +

Γk,2
Γk,1

)
,

1

2

(
1 +

Γk,2
Γk,1

)
,

1

2

(
1− Γk,2

Γk,1

)
,

1

2

(
1− Γk,2

Γk,1

)]
, (5.10)

where Γk,1 and Γk,2 are defined in terms of the bath coupling constants (2.80) as

Γk,1 = Γk,+ + Γk,− and Γk,2 = Γk,+ − Γk,−. (5.11)

This matrix contributes purely to the description of the dissipative dynamics, since turning off the bath,
which amounts to setting γ = 0, will set this matrix to zero.

In the three points above we established that the unitary dynamics introduce the complex iλs in the matrices
ZXTZ� and ZXZ� in Eq. (5.7), and the Bogoliubov coupling terms in Eq. (5.8). We therefore turn off the
unitary dynamics by setting H = 0, which eliminates the contribution to the unitary dynamics in the terms
denoted by 1 in the matrix differential equation, and secondly by dropping the Bogoliubov coupling terms
denoted by 2 . After doing so, Eq. (5.6) reduces to

dN (t)

dt
= −

[
Re[ZXTZ�]N (t) + N (t) Re[ZXZ�]− 1

2
Z(X + XT − 4iMi)Z

�

]
, (5.12)

which describes only the dissipative dynamics.

The set of 4 × 4 matrix differential equations (5.12) describe the dissipative dynamics for all the ηk
correlation functions. For our purposes, we are interested only in the occupations 〈η�kηk〉, which correspond
to the diagonal entries of the N matrix in Eq. (5.3). According to Eq. (5.12), the diagonal entries of N
evolve according to the rate equation

d
dt
Pk(t) = − 1

τk

[
Pk(t)− P th

k

(
λk
T

)]
, (5.13)

where Pk(t) = 〈η�kηk〉(t) is the excitation probability of the k’th mode, λk(t) = λk is the mode en-
ergy (2.26), τ−1

k = 2γΓk,1 is the relaxation rate and P th
k (λk/T ) = nFD(λk/T ) is the thermal equilibrium

distribution at time t. The Fermi-Dirac distribution nFD emerges from the ratios Γk,2/Γk,1 in Eq. (5.10),
which can be calculated using Eq. (5.11) and the bath coupling constants (2.80) as

Γk,2
Γk,1

=
Γk,+ − Γk,−
Γk,+ + Γk,−

=
2J (λk)

2J (λk)(2nBE(λk) + 1)
=

1

(2nBE(λk) + 1)
. (5.14)

If we identify the prefactor in Eq. (5.10) as τ−1
k = 2γΓk,1, and apply the result in Eq. (5.14), we find that

the diagonal entries of Eq. (5.10) are −τ−1
k nFD(λk/T ). This is consistent with the rate equation (5.13). The

rate equation, which describes the dynamics of the incoherent excitation probability Pk, will be central to
our work on deriving analytic scaling relations for the incoherent contribution Einc.

In the rate equation above we introduced the so-called relaxation rate τ−1
k , which is defined in terms of
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Figure 5.2: The Kitaev chain relaxation rate τ−1
k for a sin-

gle ηk-mode of the form in Eq. (5.18), scaled by 1/(γT ),
as a function of λk/T . This illustrates that τ−1
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Figure 5.3: The mode energy λk for the short-range Ki-
taev chain as a function of the chemical potential µ for
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k > 0 the minima of the mode energies λk are located
to the right of the critical point µc = −1. As a result,
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the system–bath coupling and bath coupling constants as

τ−1
k = 2γΓk,1, (5.15)

where Γk,1 is defined in Eq. (5.11). To establish whether the identification of 2γΓk,1 as a relaxation rate
is sensible and consistent, we look at the evolution of the correlations for the time-independent case which
was discussed in Section 3.2. Recall that after performing a basis transformation, the time evolution of the
correlations is described by a simple propagation of the initial condition G(0) [103]. According to Eq. (3.30)
we have [103]

Gjm(t) = e−2(rj+rm)tGjm(0), (5.16)

where rj and rm are the rapidities (3.43). We therefore expect that the correlation functions will relax on
timescales set by the real parts of the rapidities. For the Kitaev chain the real parts of the rapidities can be
extracted from Eq. (3.43), leading to the identification of τ−1

k as

τ−1
k = 4Re[r+,k] = 2γΓk,1 = 2γJ (λk)(2nBE(λk) + 1), (5.17)

which is consistent with Eq. (5.15).

If we now consider a bosonic bath with a spectral function J (λk) of the form J (λk) ∝ λsk, the relaxation
rate can be written as

τ−1
k = γT sm(λk/T ) with m(λk/T ) = 2π

(
λk
T

)s(
2

eλk/T − 1
+ 1

)
. (5.18)

It follows from the expression above that τ−1
k is an increasing function of T . From a physical perspective, this

suggests that modes will relax more rapidly at higher temperatures. Figure 5.2 illustrates another important
feature of the relaxation rate, namely that τ−1

k is an increasing function of the mode energy λk. Consequently,
the high-energy modes in the Kitaev chain, which in our case are synonymous with the large-k modes, will
relax faster than the low-energy modes. The form of the relaxation rate in Eq. (5.18) will be used in the next
section.

5.1.2 Scaling laws for the incoherent contribution to the excitation density
In the absence of an environment, the excitation density will exhibit the scaling laws derived in Chapter 4.
These scaling laws for the isolated Kitaev chain are summarised in Eq. (4.24). In this section we use the
results in Section 5.1.1 to demonstrate how a set of scaling laws for the incoherent contribution Einc can
be derived directly from the rate equation (5.13). As a matter of convenience, we will ramp the chemical
potential µ according to µ(t) = vt in the analytic work that follows. If we define t appropriately, this is
equivalent to Eq. (5.1) which will be used in the numerics in Section 5.1.4.
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54 5. Dynamic scaling relations for the dissipative open Kitaev chain

In the derivation of the set of scaling laws for the incoherent contribution we terminate the parameter
ramp at a final time tf . At this final time we define Einc in terms of the incoherent excitation probability Pk
as

Einc(tf ) =
1

π

∫ ∞
0

dkPk(tf ). (5.19)

Under the assumption that the spectral function takes the form J (λk) ∝ λsk, a direct integration of the rate
equation (5.13) yields an implicit integral equation for the excitation probability

Pk(tf ) = −γ
∫ tf

ti

dt T sm

(
λk(t)

T

)[
Pk(t)− P th

k

(
λk(t)

T

)]
. (5.20)

Here the relaxation rate τ−1
k from the rate equation has been replaced by the form in Eq. (5.18), λk(t)

is the mode energy (2.26) with the t-dependence entering via the chemical potential (5.1), and tf is the
time at which the ramp is terminated. The lower bound ti of the integral in Eq. (5.20) is chosen such that
λk(ti)/T � 1. An initial time ti for which λk(ti)/T � 1 will coincide with a ramp start point µ(ti) = µi
at which Pk(ti) is essentially zero. Since the mode energy λk is a monotonic function of µ for all k values
when µ ≤ µc, as shown in Fig. 5.3, we extend the lower bound to −∞. This will not impact on the nature
of the ramp in any way. The form of Eq. (5.20) with ti → −∞ now allows for an iterative expansion of Pk
in orders of the system–bath coupling γ. Inserting the zeroth-order solution Pk(ti = −∞) = 0 for Pk(t) on
the right-hand side of the implicit integral equation (5.20) leads to

Pk(tf ) = γ

∫ tf

−∞
dt T sm

(
λk(t)

T

)
P th
k

(
λk(t)

T

)
+O(γ2). (5.21)

The expression above gives the excitation probability Pk(tf ) to linear order in the system–bath coupling,
which we expect to be valid for sufficiently weak couplings. Equation (5.21) forms the basis for the remainder
of the derivation of the scaling relations.

To sensibly study the universal behaviour of the dissipative dynamics, it is important to terminate pa-
rameter ramps exactly at the critical point where µ(tf ) = µc. Ramping beyond the critical point results in
significant bath-induced relaxation which is not expected to be universal [50]. Hereafter, the ramp is assumed
to always end at the critical point µc, corresponding to the time tf = µc/v. This specific choice for the ramp
end point results in the function t → λk(t)/T being invertible, since the mode energy λk(t) for µ ≤ µc is a
monotonic function of µ. To illustrate this, we include Fig. 5.3. The function t → λk(t)/T being invertible
allows for the change of variable

x =
λk(t)

T
, with dx =

λ′k(t)

T
dt. (5.22)

Implementing the change of variables above, Eq. (5.21) can be reformulated as

Pk(tf ) = γ

∫ λk(tf )/T

∞
dxT sm(x)P th

k (x)
T

λ′k(t)
+O(γ2), (5.23)

where the thermal equilibrium distributionP th
k is given by the Fermi-Dirac distributionP th

k (x) = (ex + 1)−1.
When the excitation energy λk is large compared to the temperature T , i.e. when x � 1, we have that
P th
k (x) � 1. As a result, the modes for which x � 1 will make a negligible contribution to the excitation

probability. It is therefore only necessary to consider those modes for which λk(tf ) . T . At low temper-
atures this will correspond to the low-energy modes around k = 0. Further simplification of the excitation
probability (5.23) requires the short- and long-range cases to be considered separately.

We will simplify the excitation probability (5.23) for the nearest-neighbour case where α, φ = ∞. It is
possible to extend the methods and reasoning we apply here to the long-range case. As argued at the end of
the previous paragraph, only the low-energy modes will contribute significantly to the excitation probability
Pk(tf ) if the temperature is low. This motivates the introduction of the approximation of the mode energy λk
to lowest order in k. From the expansions in Eqs. (2.34) and (2.38) λk is written to lowest order in k as

λ2
k(t) = 4[J + µ(t)]2 + [∆2 − 4J(J + µ(t))]k2. (5.24)

The above expression for the mode energy performs well, provided the temperature is low. The time deriva-
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tive of λk(t) in Eq. (5.24) is calculated as

λ′k(t) = − 2v

λk(t)
(λ2
k(t)−∆2k2)1/2 = −2v

T

λk(t)

(
λ2
k(t)

T 2
− ∆2k2

T 2

)1/2

. (5.25)

Recalling that x = λk(t)/T from Eq. (5.22), we insert the result for λ′k(t) into Eq. (5.23). This leads to

Pk(tf ) = −1

2
γv−1T s+1

∫ λk(tf )/T

∞
dxm(x)P th

k (x)x

(
x2 − λ2

k(tf )

T 2

)−1/2

+O(γ2), (5.26)

where we have used the low-energy approximation λk(tf ) = |∆||k| from Eq. (2.41). Now we write
Einc (5.19) in terms of the incoherent excitation probability Pk(tf ) (5.26) as

Einc(tf ) = − 1

2π|∆|
γv−1T s+1

∫ ∞
0

dE

∫ E/T

∞
dxm(x)P th

k (x)x

(
x2 − E2

T 2

)−1/2

︸ ︷︷ ︸
ψ(E/T )

+O(γ2), (5.27)

where we have introduced the function ψ(E/T ) and E = λk(tf ) = |∆||k| from Eq. (2.41) is the mode
energy at the critical point µ(tf ) = µc to lowest order in k. After performing the change of variable

y = E/T with dE = T dy, (5.28)

we have to leading order in γ for the nearest-neighbour case that

Einc = − 1

2π|∆|
γv−1T s+2

∫ ∞
0

dy ψ(y) ∝ γv−1T s+2. (5.29)

From this result we extract the scaling law for the nearest-neighbour Kitaev chain as

Einc ∝ γv−1T s+2. (5.30)

We expect the above scaling relation to also be applicable to fermionic chains with short-range pairing and
hopping, provided α, φ > 2.

Following a similar approach, the scaling behaviour of the incoherent contribution to the density of ex-
citations for long-range pairing with α ∈ (1, 2) and long-range hopping with φ ∈ (1, 2) can be determined.
Using the expansions of f∞α (k) and g∞φ (k) in Eqs. (2.34) and (2.38), as well as the low-energy approxi-
mation (2.41) of the dispersion relation, the scaling laws for long-range pairing and long-range hopping are
found to be

Einc ∝ γv−1T s+1+ 1
α−1 and Einc ∝ γv−1T s+1+ 1

φ−1 , (5.31)

respectively. Consequently, for all distance decay parameters we expect Einc to exhibit power-law scaling
in v, with exponent −1, and power-law scaling in the temperature T . We summarise the scaling laws (5.30)
and (5.31) in terms of the dynamical and correlation length critical exponents, z and ν, as

Einc ∝ γv−1T s+ν+ 1
νz , (5.32)

with z and ν given in Eq. (4.29). This suggests a dependence on the equilibrium critical exponents, and is
supported by the results published in Refs. [23, 50].

5.1.3 Scaling laws: regimes of validity
The scaling results obtained in Section 4.2.2 and Section 5.1.2 correspond to leading-order expansions in the
ramp rate v and system–bath coupling γ. In this section we report results for explicit bounds on v and γ,
which should ensure that the predicted scaling behaviour is observed. We first discuss the scaling law regimes
of validity for the two contributions independently, starting with the coherent contribution Ecoh, followed by
the incoherent contribution Einc. Although the study of the two contributions in isolation provides valuable
insights into the universal behaviour exhibited close to the phase transition, it is restrictive since the total
excitation density cannot in general be written as a combination of the two contributions, as in Eq. (5.2).
Therefore, we conclude this section by determining a crossover rate which distinguishes between the regions
in which the two mechanisms of excitation dominate. This should indicate whether the scaling with the ramp
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rate will also be observed in the total excitation density, and not only when the contributions are considered
in isolation.

For Ecoh a necessary condition for the predicted scaling in Eq. (4.24) to emerge for the nearest-neighbour
Kitaev chain is

J
√
v√

2∆2π
� 1. (5.33)

Details on the derivation of this condition are included in Appendix D.1 Therefore we do not expect perfect
scaling to be exhibited for fast ramps, since, for a fixed J and ∆, condition (5.33) places an upper bound
on the ramp rate. Figure 5.4 shows the numeric results for Ecoh, together with this condition on the ramp
rate. We observe that the scaling becomes more accurate for slower ramp rates. However, it should be noted
that the numeric data may also deviate from the predicted scaling at very slow ramp rates. This is due to
finite-size effects. At slow ramp rates it is only the modes in an increasingly narrow interval around k = 0
which will contribute significantly to the excitation density. In the numerics we approximate the integral∫
dk in Eq. (4.3) by a discrete sum

∑
k over modes, as in Eq. (4.2). If only a narrow interval of modes make

a contribution to Ecoh, this translates to us requiring a larger system size to observe the predicted power-law
scaling.

A necessary condition for the predicted scaling in Eqs. (5.30) and (5.31) to emerge in Einc can be derived
by analysing the k = 0 mode contribution to Einc within the linear-order approximation (5.21). Details are
provided in Appendix E, where the condition for the power-law scaling to emerge is found to be2

πT 2γδ

v
<

1

35
≈ 0.02857. (5.34)

The dimensionless parameter δ enters via the relaxation rate as a part of the spectral function J in Eq. (2.81).
Condition (5.34) suggests that the predicted power-law scaling will emerge provided that the ramp rate v is
sufficiently fast, the bath temperature T is sufficiently low or the system–bath coupling γ is sufficiently weak.
All three of these conditions would suppress the generation of the incoherent excitations, and thereby ensure
that Pk remains sufficiently small for the linear-order approximation in Eq. (5.21) to hold. This is supported
by Fig. 5.5, where the incoherent contribution Einc only exhibits power-law scaling at sufficiently fast ramp
rates and sufficiently low temperatures.

Studying the two mechanisms of excitation independently is valuable, but does not provide the full pic-
ture. To determine whether the scaling of the two contributions makes an appearance in the total excitation
density, we define a quantitative crossover rate, vcross. This crossover rate will distinguish between the regions

1We only include details on the nearest-neighbour case, but these results can be generalised to long-range pairing and hopping with
some additional work.

2This result is specifically for the nearest-neighbour Kitaev chain, but can be generalised to also include long-range systems.
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in which one of the two mechanisms of excitation dominate. The different scaling of the two contributions
implies that for slow ramp rates, where v < vcross, the incoherent mechanism of excitation will be dominant,
while for fast ramp rates, where v > vcross, the coherent mechanism dominates over the incoherent one. If
the conditions (5.33) and (5.34) are met in regions where the appropriate contribution is dominant, then the
scaling should materialise in Etot.

We restrict our discussion here to the case of nearest-neighbour hopping and pairing, with a pairing
parameter ∆ > 0. The crossover rate can be determined by equating Ecoh = Einc. To obtain a quantitative
description of this rate, it is important to also consider the prefactors and not only the quantities with which
the excitation density scales. To this end, we make use of the result in Appendix D to write

Ecoh ≈
1

π

√
2v

∆

∫ ∞
0

dω0 P0(ω0) ≈ 0.119

∆
v1/2, (5.35)

which provides a quantitative analytic description of Ecoh. For the incoherent excitations the result in Eq. (5.29)
gives

Einc ≈ −
γ

2π∆
v−1T s+2

∫ ∞
0

dy ψ(y) ≈ 3.776γ

∆
v−1T s+2. (5.36)

Now equating (5.35) and (5.36) yields

vcross = 10.023γ2/3T 2(s+2)/3. (5.37)

Note that the temperature T and system–bath coupling γ shift the crossover point. For low temperatures,
or weak system–bath couplings, the excitations generated by the incoherent mechanism will only be visible
at very slow ramp rates, with the coherent mechanism dominating at faster ramp rates. In contrast, a high
temperature, or strong system–bath coupling, increases vcross, implying that the incoherent contribution will
be visible at faster ramp rates.

The result in Eq. (5.37) provides us with a quantitative description of the crossover point between the
regions in which the incoherent and coherent mechanisms of excitation dominate. This is useful for deriving
conditions on the ramp rate v for which the scaling will emerge in Etot. First note that the emergence of
scaling in the total excitation density requires that conditions (5.33) and (5.34) are satisfied in the region
where the appropriate contribution is dominant. We handle the two scaling cases separately in the list below.
Point one provides a condition on the ramp rate v for the coherent scaling (4.24) to emerge in Etot, while point
two gives a condition on v for which the incoherent scaling (5.30) should be visible in Etot.

1. The coherent mechanism of excitation is dominant when v > vcross. Based on condition (5.33), the
ramp rate must be bounded from above to observe scaling behaviour. Therefore combining (5.33) and
(5.37), we find the condition on v to be

10.023γ2/3T 2(s+2)/3 < v � 2π2∆4

J2
. (5.38)

If the ramp rate v satisfies the condition above, the scaling Ecoh ∝ v1/2 is expected to emerge in Etot.
Consequently, scaling will be observed only in a very specific regime of ramp rates, with very slow
ramp rates resulting in the coherent contribution not being dominant and fast ramp rates leading to
condition (5.33) being violated.

2. The incoherent mechanism of excitation is dominant when v < vcross. The scaling Einc ∝ v−1 will
therefore emerge in Etot only if condition (5.34) and v < vcross are satisfied simultaneously. We write
this condition for observing scaling compactly by combining Eqs. (5.34) and (5.37) as3

35πT 2γ < v < 10.023γ2/3T 2(s+2)/3. (5.39)

Obtaining an interval of ramp rates that satisfies (5.39) is challenging, since the temperature and
system–bath coupling enter in both the upper and lower bound on v. If s > 1 we expect high tem-
peratures to broaden the interval over which the incoherent scaling will emerge. The system–bath
coupling γ enters in condition (5.39) in such a way that stronger couplings lead to a narrower range
of ramp rates for which the scaling in Eq. (5.30) will emerge. It is possible that sufficiently strong

3Note that we have absorbed the dimensionless parameter δ, which enters in condition (5.34), into the system–bath coupling γ to be
consistent with the expression in Eq. (5.37), which makes use of the relaxation rate (5.18).
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system-bath couplings suppress the scaling behaviour entirely due to it being impossible to satisfy
condition (5.39). As a result, we anticipate that the incoherent scaling (5.30) will not materialise in
Etot, unless γ is very weak.

With reference to points one and two above, we conclude that the coherent and incoherent scaling behaviours
will only materialise in Etot if we consider a range of ramp rates for which the conditions (5.38) and (5.39) are
satisfied. For low temperatures, condition (5.38) on the ramp rate should be easy to satisfy. The second con-
dition on v suggests that there will be a suppression of the scaling behaviour for the incoherent contribution
in Etot, unless the system–bath coupling is sufficiently weak.

5.1.4 Numeric results for the Kitaev chain
In Section 5.1.4.1 we report some numeric results for the scaling of the incoherent contribution to the exci-
tation density for the Kitaev chain coupled to a bosonic bath, which is maintained at a temperature T . When
considering the incoherent contribution in isolation, a numeric treatment of the rate equation (5.13) suffices.
Obtaining the total excitation density is a more challenging task, requiring an exact numeric treatment of the
Lindblad master equation (2.78). To this end, we first reduce the matrix differential equation (3.61), which
governs the open system dynamics of the Kitaev chain, to a set of three ordinary coupled differential equa-
tions. This permits a computationally feasible numeric evaluation of Etot, even for system sizes in the order
of thousands of fermions. In Section 5.1.4.2 we summarise this approach for computing Etot and discuss the
results that follow from it.

5.1.4.1 Incoherent contribution

In our numeric analysis we consider a bosonic bath with an ohmic spectral function J (λk) = πδλke
−λk/λc ,

as defined in Eq. (2.81). If the cutoff frequency λc is sufficiently large compared to the mode energy, the
spectral function can be approximated by J (λk) ≈ πδλk. Consequently, s = 1 and the analytic scaling
laws (5.30) and (5.31) are written as

Einc ∝


γv−1T 3 (SR pairing and hopping)
γv−1T 2+1/(α−1) (LR pairing)
γv−1T 2+1/(φ−1) (LR hopping)

. (5.40)

To verify these scaling laws, we solve the rate equation numerically for each ηk mode. With the excitation
probabilities at our disposal, it is possible to calculate Einc and corroborate our scaling predictions.

Results for the nearest-neighbour Kitaev chain are shown in Fig. 5.6. The power-law scaling emerging
in the numeric results for both Einc versus v (Fig. 5.6a) and Einc versus T (Fig. 5.6b) is consistent with
the analytic scaling prediction in Eq. (5.40). As expected, the universal scaling behaviour vanishes when
condition (5.34) is not met. In the case of long-range pairing or hopping, the scaling of Einc with T will
depend non-trivially on either α or φ. Figure 5.7 shows the numeric results for long-range pairing and long-
range hopping, together with the analytic scaling predictions from Eq. (5.40). Deviations from the expected
scaling at low temperatures is a consequence of using a finite system size.

5.1.4.2 Total excitation density

It is important to note that hitherto the two contributions to Etot were considered independently. In this
section we study the exact total excitation density through a numeric treatment of the Kitaev chain master
equation (2.78).4 We also address the extent to which the total excitation density can be approximated by the
sum of the two contributions, Ecoh and Einc.

The computational expense associated with numerically solving the matrix differential equation (3.61)
for the Fourier Majorana fermion correlation functions, in particular for large system sizes and slow ramp
rates, motivates first simplifying these equations analytically as far as possible. After some manipulation, the

4Refer to Chapter 3 for a detailed discussion on solving the Lindblad dynamics of the Kitaev chain. This section provides a simpli-
fication of the methodology and tools already established in Chapter 3 in order to make the calculation of the total excitation density
computationally feasible.
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Figure 5.6: (a) The incoherent contribution Einc to the excitation density as a function of v for a range of temperatures
and γ = 0.005, together with the analytic scaling result (5.30) (dashed black lines) to which the exact numeric results
converge when v > 35πT 2γδ. Solid vertical lines, corresponding to v = 35πT 2γδ from (5.34), distinguish between
regimes in which power-law scaling is expected and where the scaling breaks down. (b) The incoherent contribution to
the excitation density Einc as a function of T for several ramp rates and γ = 0.05, together with the analytic scaling result
(5.30) (dashed black lines) to which the exact numeric results converge as the temperature tends to zero. The parameters
in both (a) and (b) are set as follows: L = 212, J = ∆ = δ = 1, φ = α =∞, λc = 4000, µi = −3 and µf = −1.
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Figure 5.7: The incoherent contribution Einc to the excitation density as a function of T for the long-range Kitaev chain,
together with the analytic scaling predictions (5.31) (dashed lines). (a) Data for weakly long-range pairing (1 < α < 2)
and nearest-neighbour hopping (φ = ∞). (b) Data for weakly long-range hopping (1 < φ < 2) and nearest-neighbour
pairing (α =∞). The remaining parameters in both (a) and (b) are set to L = 106, J = ∆ = δ = 1, v = 0.5, γ = 0.01,
λc = 4000, µi = −5 and µf = −1.

set of 16 equations per mode can be reduced exactly to three ordinary coupled differential equations of the
form

dfk,1
dt

= γ(Γk,1 + cos(2βk)Γk,2 − 2Γk,1fk,1)− 2 sin(2βk)λkfk,2,

dfk,2
dt

= − sin(2βk)λk + 2 sin(2βk)λkfk,1 − 2γΓk,1fk,2 − 2 cos(2βk)λkfk,3, (5.41)

dfk,3
dt

= γ sin(2βk)Γk,2 + 2 cos(2βk)λkfk,2 − 2γΓk,1fk,3,

where fk,1 = 〈a�kak〉, fk,2 = Re[〈a�ka
�
−k〉] and fk,3 = Im[〈a�ka

�
−k〉]. The initial conditions are given by

fk,1(0) = cos(2βk[t = 0]) 〈η�kηk〉t=0 +
1

2

(
1− cos(2βk[t = 0])

)
,

fk,2(0) = 0, (5.42)

fk,3(0) = sin(2βk[t = 0])

(
〈η�kηk〉t=0 −

1

2

)
.

Note that there is an implicit time-dependence sitting in all the coefficients in the differential equations (5.41).
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Figure 5.8: The total excitation density Etot versus the ramp rate v for a range of temperatures. We terminate the ramp at
the QCP, with µf = µc = −1. Empty data points correspond to the incoherent contribution of Etot, which is calculated
directly from a numeric treatment of the rate equation (5.13). The vertical dotted lines correspond to vcross in Eq. (5.37).
Dashed lines are the analytic scaling predictions, Ecoh ∝ v1/2 and Einc ∝ v−1, with only the coherent scaling emerging in
Etot. The remaining parameters are set to L = 212, J = ∆ = δ = 1, α = φ =∞, γ = 0.001, λc = 4000 and µi = −3.

For the k = 0, π modes, only a single differential equation needs to be solved:

dfk,1
dt

= γ(Γk,1 − Γk,2 − 2Γk,1fk,1) with fk,1(0) = 1− 〈η�kηk〉. (5.43)

Once the differential equations have been solved, the excitation density for k 6= 0, π can be extracted using

〈η�kηk〉 = cos(2βk)fk,1(tf ) + sin(2βk)fk,3(tf ) + (1− cos(2βk))/2, (5.44)

whilst the zero and π mode excitations are

〈η�0η0〉 =


0.5 if µf = −J,
1− f0,1(tf ) if µf < −J,
f0,1(tf ) if µf > −J,

and 〈η�πηπ〉 =


0.5 if µf = J,

1− fπ,1(tf ) if µf < J,

fπ,1(tf ) if µf > J.

(5.45)

While the set of differential equations (5.41) has a simple form, it is found to be very stiff. This stiffness
is due to the very different scales of the independent variable on which the dependent variables are chang-
ing [112]. The issue with stiff differential equations is that they are numerically unstable unless the step size
in t is extremely small. Consequently, any of the conventional explicit methods for solving the differential
equations quickly become very computationally expensive. To solve stiff systems it is best to use higher-
order implicit methods. The results in Figs. 5.8 and 5.9 are obtained using the Bulirsch-Stoer method with a
few generalisations, in particular a semi-implicit extrapolation method due to Bader and Deuflhard [112].

The results for the total excitation density as a function of the ramp rate are shown in Fig. 5.8. To be
consistent with our analytic work, the ramping protocol is always halted at the critical point. The six data
sets visible in the figure correspond to different bath temperatures. For the data sets with higher temperatures
we explicitly show the crossover rates, as well as the incoherent contribution. We observe that the coherent
mechanism of excitation dominates when v > vcross. Increasing the ramp rate beyond vcross results in the
incoherent contribution very quickly becoming small. At slow ramp rates, where the condition v < vcross is
satisfied, the incoherent mechanism of excitation is the dominant one. In this region the coherent mechanism
becomes inconsequential and Etot ≈ Einc. The range of ramp rates for which each mechanism of excitation
is dominant is crucial for understanding why the scaling laws for the two contributions are suppressed in the
total excitation density. With reference to the theoretical arguments in Section 5.1.3, the regime in which the
scaling is expected to emerge does not fall in the region where the appropriate contribution is dominant. One
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Figure 5.9: Etot versus the ramp rate v for T = 0.086 and µf = −0.9, −0.8, −0.65, −0.5 and −0.35. Bath-induced
relaxation is prominent for slow ramp rates. The remaining parameters are set toL = 212, J = ∆ = δ = 1, α = φ =∞,
γ = 0.001, λc = 4000 and µi = −3.

exception is when the temperature of the thermal bath is sufficiently low. In this case, the coherent scaling
behaviour does materialise, as observed in Fig. 5.8.

Earlier we claimed that ramping past the critical point results in significant bath-induced relaxation,
which is not expected to be universal. Numeric results can be used to support this claim. In particular,
Fig. 5.9 shows Etot versus v for a range of µf values past the critical value µc = −1. The relaxation induced
by the bath, as seen in Fig. 5.9, is a consequence of the system leaving the quantum critical region and
crossing the semi-classical region [50]. Naturally, the further one ramps past the critical point, the more
prominent the effect of the bath-induced relaxation. Also note that the relaxation occurs predominantly at
small v, since the time spent in the semi-classical region is prolonged [50]. The plateauing observed at slow
ramp rates for µf = −0.35 and µf = −0.5 in Fig. 5.9 indicates that the system has relaxed to a point where
it is approaching thermal equilibrium at the end of the ramp. From this discussion we conclude that ramping
beyond the critical point leads to an unavoidable relaxation of the excitations generated in the vicinity of the
critical point due to the coupling with the bath.

In Section 5.1.3, as well as in our discussion of Fig. 5.8, we focused on regimes where one of the two
excitation mechanisms dominate, and formulated conditions under which the associated scaling behaviour
will be observed in the total excitation density. A natural question is the extent to which the total excita-
tion density can generally be regarded as a sum of independent coherent and incoherent contributions, as in
Eq. (5.2). The structure of the coupled differential equations (5.41) suggests that disentangling the contri-
butions from these two mechanisms will not be a simple task, or even possible at all in general. There are
certainly parameter regimes where a complicated interplay between the generation of coherent excitations
and the bath-induced dissipation will result in the total excitation density deviating significantly from being a
sum of the two independent contributions. For example, a fast ramp rate could generate coherent excitations
which push the system far out of equilibrium with the bath. This will result in the system losing some of this
excess energy through dissipation, rather than absorbing energy from the bath as it would in the absence of
the coherent excitations. A more detailed analysis of the full set of coupled differential equations would be
necessary to determine whether scaling behaviour in the excitation density could emerge in regimes where it
is necessary to account for both the coherent excitations and the system–bath coupling simultaneously.

5.2 Cooling quantum critical systems to zero temperature
In Section 5.1 we used the “third quantisation” framework introduced in Chapter 3 to study the universal
behaviour of the long-range Kitaev chain when ramping the chemical potential µ(t) towards the critical
value µ = µc at a finite temperature. Here we focus on the second time dependency of interest to us,
T (t), which involves the cooling of the Kitaev chain (2.1) towards quantum criticality. In this temperature
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ramping protocol the chain is initialised at the critical value µ = µc in equilibrium with the thermal bath at
temperature Ti. We then cool the system by ramping the temperature linearly from the initial temperature
Ti > 0 towards T = 0 at a rate v according to

T (t) = Ti − vt. (5.46)

During the ramp, the system is held at the critical value µc, and we expect a critical slowing down of the
dynamics as the quantum critical point is approached. As with the previous ramping protocols, the excitation
density E is monitored during the temperature ramp. We define this excitation density as

E =
1

2π

∫ π

−π
dkPk, (5.47)

where Pk is the excitation probability for the k’th mode. The sections that follow focus on investigating the
loss of adiabaticity and universal features that emerge in the density of excitations (5.47) when cooling the
Kitaev chain according to the above-mentioned temperature ramping protocol.

We will start with a discussion of the adiabatic and non-adiabatic cooling regimes in Section 5.2.1, which
are fundamental to the accurate interpretation of the results for the temperature ramping protocol. In Sec-
tion 5.2.2 we show that, under certain conditions, the excitation density E exhibits scaling behaviour charac-
terised by power laws involving v and Ti. These analytic scaling predictions for the long-range Kitaev chain
are subsequently verified by numeric results. The numeric results presented in Section 5.2.3 suggest that an
appropriate rescaling of the data can collapse the various data sets onto a universal scaling function. This
idea is explored further in the final section of this chapter, Section 5.2.4.

5.2.1 Adiabatic and non-adiabatic cooling regimes
When cooling the Kitaev chain at the critical value µ = µc there are two important regimes: the initially
adiabatic (early time) regime and the non-adiabatic (late time) regime. In the context of Chapter 4, adiabatic
evolution referred to an isolated system’s ability to follow its instantaneous ground state. Here the notion of
adiabaticity is conceptually similar. We use the terms adiabatic and non-adiabatic to describe the extent to
which the system instantaneously remains in thermal equilibrium with the bath. If the system has the ability
to cool down through a sequence of thermal states corresponding to the instantaneous bath temperature, then
the evolution is adiabatic. As soon as the system evolves out of equilibrium with the bath, the evolution is
deemed to be non-adiabatic. The temperature at which the system dynamics switches from the adiabatic to
the non-adiabatic regime will be called the crossover temperature, Tcr.

Before quantitatively characterising the crossover temperature, we provide a more detailed discussion
on the adiabatic and non-adiabatic evolution in the context of the temperature ramping protocol. Suppose
we start the temperature ramp at a sufficiently high initial temperature Ti. Here we expect the system to
start in the adiabatic regime, since the relaxation rate (5.18) is an increasing function of the temperature T .
Over time, the system is cooled according to (5.46). Provided T > Tcr, the evolution is adiabatic, since the
relaxation rate is sufficiently fast for the system to cool down in unison with the bath. At some point we
expect the temperature to have decreased sufficiently such that T = Tcr. After this point there is a breakdown
in adiabaticity, and the slow relaxation rate results in the system evolving out of thermal equilibrium. These
concepts are well illustrated in Fig. 5.10. Figure 5.10a demonstrates adiabatic cooling at early times and
high temperatures, followed by a region in which the instantaneous excitation density can no longer track the
excitation density E th of the thermal equilibrium distribution. In Fig. 5.10b we show the excess excitations
that are generated over time after starting from a thermal initial state at Ti = 15. As the temperature is
lowered, the system’s evolution transitions from being adiabatic to non-adiabatic, resulting in an increase of
excess excitations.

A sensible comparison of the relaxation rate and the relative rate of change of the thermal equilibrium
occupation can be used to quantitatively characterise the crossover temperature. To consider the relaxation
rate τ−1

k (λk) of all ηk modes simultaneously, we introduce the average relaxation rate

〈
τ−1

〉
=

1

π

∫ π

0

dk ρth(λk/T )τ−1
k (λk), (5.48)
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Figure 5.10: (a) The excitation density E as a function of T (t) for temperature ramps with ramp rates v =
10−2, 10−3, 10−4. For comparison, the excitation density E th of the thermal equilibrium distribution with tempera-
ture T (t) is shown in black. In all cases the dynamics starts from a thermal initial state at Ti = 15. The dotted lines
in the corresponding colours mark the crossover temperatures Tcr at which the dynamics switches from the adiabatic to
the non-adiabatic regime. (b) The excess excitations |E(T ) − E th(T )| as a function of −T = vt − Ti for temperature
ramps with ramp rates v = 10−2, 10−3, 10−4. The parameters in both (a) and (b) are set to L = 106, J = ∆ = δ = 1,
α = φ =∞, γ = 0.01, λc = 4000 and µ = µc = −1.

weighted by the normalised thermal equilibrium distribution

ρth(λk/T ) = N−1nFD(λk/T ) with N =
1

π

∫ π

0

dk nFD(λk/T ). (5.49)

In the expressions above we have exploited the k ↔ −k mode symmetry to produce integrals which run over
only half of the domain k ∈ [−π, π]. The average relaxation rate (5.48) is compared to the average value of
the relative rate of change of the equilibrium occupation〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉 =
1

π

∫ π

0

dk ρth(λk/T )

∣∣∣∣ ṅFD(λk/T )

nFD(λk/T )

∣∣∣∣. (5.50)

The time dependence in the expression above enters through the temperature T = T (t) according to (5.46),
and we define ṅFD(λk/T ) ≡ d

dt [nFD(λk/T )]. We now interpret the crossover temperature Tcr as the temper-
ature at which the average rates (5.48) and (5.50) are equal, i.e. 〈τ−1〉 = 〈|ṅFD/nFD|〉. This provides a quan-
titative indication of the point where, on average, the system’s relaxation rate matches the rate at which the
thermal equilibrium distribution changes. We proceed by calculating Tcr explicitly for the nearest-neighbour
and long-range Kitaev chains.

In general, the derivation of Tcr requires several approximations to be made. In both the nearest-neighbour
and long-range cases we assume the temperature T is sufficiently low, such that only the low-energy modes
around k = 0 will contribute significantly to the average rates in Eqs. (5.48) and (5.50). This allows us to
replace the mode energies by their low-energy approximations (2.41). Within the low-energy approximation,
we can also extend the upper bounds of the integrals in Eqs. (5.48) and (5.50) to infinity. Under these
assumptions, it is now possible to calculate the integrals. In the nearest-neighbour case we use the low-energy
approximation (2.41) for λk to perform the change of variable k → λ/|∆| in both the average relaxation rate
and the average value of the relative rate of change of the equilibrium occupation. This leads to

〈
τ−1

〉
NN =

1

π|∆|

∫ ∞
0

dλ ρth(λ/T )τ−1(λ) and
〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉
NN

=
1

π|∆|

∫ ∞
0

dλ ρth(λ/T )

∣∣∣∣ ṅFD(λ/T )

nFD(λ/T )

∣∣∣∣.
(5.51)

Following the same set of steps, we find the normalisation factor of ρth(λ/T ) (5.49) to be

N =
1

π|∆|

∫ ∞
0

dλnFD(λ/T ) =
T ln(2)

π|∆|
. (5.52)

To simplify the average rates 〈τ−1〉NN and 〈|ṅFD/nFD|〉NN further, we approximate the relaxation rate τ−1(λ)
in Eq. (5.17) by taking the cutoff frequency λc in the spectral function (2.81) to be sufficiently large. For
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large λc we find that5

τ−1(λ) ≈ 2πγλ (2nBE(λ/T ) + 1) . (5.53)

We now insert expression (5.49) for ρth, with the normalisation factor (5.52) and relaxation rate (5.53), into
the average rates in Eq. (5.51). After some manipulation, the average rates are found to be

〈
τ−1

〉
NN =

1

π|∆|N
π3

3
(γT 2) and

〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉
NN

=
1

π|∆|N
v ln(2). (5.54)

The crossover temperature for the cooling of the Kitaev chain with nearest-neighbour hopping and pairing is
the temperature at which the average rates in Eq. (5.54) match. Accordingly, we have

〈
τ−1

〉
NN =

〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉
NN

⇒ π3

3
(γT 2

cr) = v ln(2) ⇒ Tcr

(
v

γ

)
=

√
3v ln(2)

γπ3
, (5.55)

where the crossover temperature depends only on the ratio of the ramp rate v and system–bath coupling γ. In
Fig. 5.10a we find that the analytic expression (5.55) accurately marks the temperature at which the dynamics
switches from the adiabatic to the non-adiabatic regime.

The crossover temperature for the cooling of a long-range Kitaev chain can be found in a similar way.
We start by implementing the same set of approximations we made for the nearest-neighbour case. More
precisely, we assume that the temperature is sufficiently low, allowing us to approximate the mode energy
by its low-energy approximations (2.41), and that the integral upper bounds in Eqs. (5.48) and (5.50) can be
extended to infinity. Before we proceed, we note that the crossover temperature for the long-range case will
exhibit a non-trivial dependence on the distance decay parameters α and φ. In order to treat the long-range
hopping and pairing cases simultaneously, we introduce the parameter ζ, and define the α- and φ-dependent
coefficients in the mode energy λk as Cζ . Here either ζ = α or ζ = φ, depending on whether long-
range pairing or hopping is being considered. For the weakly long-range distance decay parameters we are
considering, we have the condition 1 < ζ < 2. Within the low-energy approximation, we use Eq. (2.41)
to perform the change of variables k → (λ/Cζ)

1/(ζ−1) in the integrals appearing the the average rates in
Eqs. (5.48) and (5.50). This leads to

〈
τ−1

〉
LR =

1

πCζ(ζ − 1)
C
ζ−2
ζ−1

ζ

∫ ∞
0

dλλ
2−ζ
ζ−1 ρth(λ/T )τ−1(λ) (5.56)

and 〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉
LR

=
1

πCζ(ζ − 1)
C
ζ−2
ζ−1

ζ

∫ ∞
0

dλλ
2−ζ
ζ−1 ρth(λ/T )

∣∣∣∣ ṅFD(λ/T )

nFD(λ/T )

∣∣∣∣. (5.57)

Under an identical set of approximations and change of variables, the normalisation factor of the thermal
equilibrium distribution in Eq. (5.49) for the long-range case is

N =
1

πCζ(ζ − 1)
C
ζ−2
ζ−1

ζ

∫ ∞
0

dλλ
2−ζ
ζ−1nFD(λ/T )

=
1

πCζ(ζ − 1)
C
ζ−2
ζ−1

ζ

(
1− 2

ζ−2
ζ−1

)
T

1
ζ−1 Γ

[
1

ζ − 1

]
ζR

[
1

ζ − 1

]
, (5.58)

where Γ and ζR are the standard Gamma and Riemann Zeta functions. For the values of ζ we are considering,
the integral in Eq. (5.58) converges. If we again consider the cutoff frequency λc to be large, the relaxation
rate τ−1 is given by Eq. (5.53). Inserting the expression for ρth and τ−1 into the average relaxation rate (5.56)
leads to 〈

τ−1
〉

LR =

[
1

πCζ(ζ − 1)N
C
ζ−2
ζ−1

ζ

]
2πγT

ζ
ζ−1 Γ

[
ζ

ζ − 1

]
Li ζ

ζ−1
(1) (5.59)

The function Li ζ
ζ−1

(1) is the polylogarithmic function of order ζ
ζ−1 . After some manipulation, we find the

5For simplicity, we have absorbed the dimensionless parameter δ in the spectral density function into the system–bath coupling γ.
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average rate 〈|ṅFD/nFD|〉LR in Eq. (5.57) to be〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉
LR

= − 1

πCζ(ζ − 1)N
C
ζ−2
ζ−1

ζ vT
2−ζ
ζ−1

∫ ∞
0

dλ′ (λ′)
2−ζ
ζ−1 +1n′FD(λ′)︸ ︷︷ ︸
Iζ

=

[
1

πCζ(ζ − 1)N
C
ζ−2
ζ−1

ζ

]
vT

2−ζ
ζ−1 |Iζ |, (5.60)

where we have labeled the ζ-dependent integral by Iζ and n′FD is the derivative of the Fermi-Dirac distribution
with respect to the integration variable λ′. In the final line of (5.60) we made use of the fact that Iζ < 0
for 1 < ζ < 2. Equating the two rates (5.59) and (5.60) yields the crossover temperature in terms of the
long-range parameter ζ = φ, α:

〈
τ−1

〉
LR =

〈∣∣∣∣ ṅFD

nFD

∣∣∣∣〉
LR

⇒ 2πγT
ζ
ζ−1 Γ

[
ζ

ζ − 1

]
Li ζ

ζ−1
(1) = vT

2−ζ
ζ−1 |Iζ |

⇒ Tcr

(
v

γ

)
=

√
v|Iζ |
2πγ

(
Γ

[
ζ

ζ − 1

]
Li ζ

ζ−1
(1)

)−1/2

. (5.61)

The integral Iζ must be computed numerically.

As will be clear from later numeric results in Section 5.2.3, these quantitative values for the crossover
temperature will separate the two cooling regimes. In summary, when T > Tcr the evolution is adiabatic and
we expect the excitation density to track its changing thermal equilibrium value. However, when T < Tcr,
the system relaxes too slowly and therefore cannot remain in thermal equilibrium with the bath.

5.2.2 Asymptotic scaling laws for temperature ramps
In the temperature ramping protocol we are restricted to the quantum critical region (see Fig. 5.1) in which
thermal excitations are generated due to the temperature exceeding the excitation gap. These thermal ex-
citations are expected to display universal features at the end of the temperature ramp. In this section we
will study some of the universal features by examining the scaling behaviour of the excitation density (5.47).
More precisely, we will show that, under certain conditions, the excitation density E exhibits scaling be-
haviour characterised by power laws involving either the ratio v/γ of the ramp rate and system–bath cou-
pling or the initial temperature Ti. Here we specialise our discussions and derivation of the scaling laws to
the one-dimensional Kitaev chain. At the end of the section, the applicability of this work to other models is
briefly reviewed.

Unlike for the parameter ramps at finite temperatures in Section 5.1, there is no coherent contribution to
the excitation density for the temperature ramping protocol. Hence, the rate equation (5.13) describes the full
(incoherent) contribution to the excitation density E . Since the rate equation has an analytic solution, scaling
laws for the temperature ramping protocol can be derived directly from the exact analytic solution for the
excitation density. From Section 5.1.1 we know that inside the quantum critical region the dynamics of the
incoherent excitation probability Pk is described by the rate equation

d

dt
Pk = −τ−1

k (λk, T )
(
Pk − P th

k (λk/T )
)
, (5.62)

where P th
k is the thermal equilibrium distribution. We will consider a relaxation rate τ−1

k of the form in
Eq. (5.18). As a matter of convenience, we express τ−1

k with important functional dependencies as

τ−1
k (λk, T ) = γT sm(λk/T ) with m(λk/T ) = 2π

(
λk
T

)s(
2

eλk/T − 1
+ 1

)
. (5.63)

To obtain the expression for the relaxation rate above, we have assumed that the spectral function J has the
form J (λk) ∝ λsk. On the surface, the differential equation (5.62) appears to be simple. However, recall
that a non-trivial time dependence enters via the temperature according to Eq. (5.46) in both the relaxation
rate and thermal equilibrium distribution. This leads to a complicated analytic solution for the excitation
probability Pk. To write down this analytic solution, it will be useful to first recast the rate equation into a
different form. We will do this in two steps. First we perform the change of variables t→ (Ti − T )/v in the
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rate equation (5.62) with the relaxation rate given by (5.63). This leads to

d

dT
Pk =

γT sm(λk/T )

v

(
Pk − P th

k

(
λk
T

))
. (5.64)

Now introducing a new variable y = −T/λk, we write Eq. (5.64) as

d
dy
Pk = −

γλs+1
k m(−1/y)

v
(−y)sPk +

γλs+1
k m(−1/y)

v
(−y)sP th

k

(
−1

y

)
. (5.65)

According to Ref. [113], the solution to a first-order linear differential equation of the form

g(x)
dy(x)

dx
= f1(x)y(x) + f0(x) (5.66)

is

y(x) = CeF + eF
∫
dx e−F

f0(x)

g(x)
, with F (x) =

∫
dx

f1(x)

g(x)
. (5.67)

Here C is an arbitrary constant, which is determined by the initial conditions of the problem. It follows from
(5.66) and (5.67) that the excitation probability Pk for a single ηk mode is

Pk = P
(
y,
Ti
λk
,
γλs+1

k

v

)
= CeF (y) +

γλs+1
k

v
eF (y)

∫ y

− Ti
λk

dy′ e−F (y′)(−y′)sm(−1/y′)P th
k

(
−1

y′

)
,

(5.68)
where

C = P th
k (λk/Ti) and F (y) = −

γλs+1
k

v

∫ y

− Ti
λk

dy′ (−y′)sm(−1/y′). (5.69)

The analytic expression (5.68) for the thermal excitations can be integrated over all ηk modes according
to Eq. (5.47) to get the total excitation density E . First we reduce the domain k ∈ [−π, π] over which the
integral (5.47) runs to k ∈ [0, π] by exploiting the k ↔ −k mode symmetry. This leads to

E =
1

π

∫ π

0

dkPk =
1

π

∫ π

0

dkP
(
y,
Ti
λk
,
γλs+1

k

v

)
. (5.70)

We rely on several approximations to simplify the excitation density in the expression above. As mentioned
earlier, the system is held at the critical value µc during the temperature ramp. Consequently, for the low-
energy modes, we have [50, 110]

λk ∝ kz, (5.71)

where z is the dynamical equilibrium critical exponent. Within this low-energy approximation, we extend
the upper bound of the integral in Eq. (5.70) to infinity and perform the change of variables k → λ1/z . Up to
a proportionality constant, the excitation density is now given by

E ∝
∫ ∞

0

dλ (λ)
1
z−1P

(
y,
Ti
λ
,
γλs+1

v

)
. (5.72)

We are interested in the scaling behaviour of E when the temperature ramp is terminated at the quantum
critical point at T = 0. Provided that only the low-energy modes of the system’s spectrum contribute
significantly to the excitation density E (5.72) at T = 0, i.e. y = 0, we expect E to display universal
behaviour with both v/γ and Ti. For the sake of clarity, these two cases are treated separately below.

5.2.2.1 Asymptotic scaling relation for small v/γ

We start by performing the change of variables λ → (v/γ)1/(s+1)λ in Eq. (5.72). After performing the
change of variables, the excitation density at the end of the ramp, i.e. at y = 0, is found to be

E ∝
(
vγ−1

)1/[z(s+1)]
∫ ∞

0

dλ (λ)
1
z−1P

(
0,

Ti
λ(v/γ)1/(s+1)

, λs+1

)
. (5.73)
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To extract the small-v/γ asymptotic behaviour of E from the expression above we require that the v/γ → 0
limit of the integral exists and is finite. Provided these requirements are met, the dominant scaling behaviour
will come from the prefactor in Eq. (5.73). The approach here is identical to that of Section 4.2.2.1 and Sec-
tion 4.2.2.2. We therefore reserve a detailed analysis of the existence and convergence of the v/γ → 0 limit
of the integral in Eq. (5.73) for Appendix F. Based on the small-v/γ asymptotics of the excitation probability
P
(

0, Ti
λ(v/γ)1/(s+1) , λ

s+1
)

in Appendix F, we conclude that the integral has a well defined v/γ → 0 limit
and is finite. Therefore, in the limit of slow ramp rates, the leading-order behaviour of E results in

E ∝ (v/γ)
1/[z(s+1)]

. (5.74)

The result above suggests that for sufficiently slow ramp rates the excitation density E obeys a power law in
the ramp rate v.

5.2.2.2 Asymptotic scaling relation for small Ti

The scaling behaviour with the initial temperature can be found in a similar way. First we perform the change
of variables λ→ λTi in Eq. (5.72). This leads to

E ∝ (Ti)
1/z

∫ ∞
0

dλ (λ)
1
z−1P

(
0,

1

λ
,
γ(λTi)

s+1

v

)
, (5.75)

where the ramp is terminated at T = 0. We can extract the small-Ti asymptotic behaviour of E from
the expression above by considering the leading-order scaling behaviour of the integral at small Ti. In
Appendix F we motivate that the Ti → 0 limit of the integral in Eq. (5.75) exists and is finite. Therefore,
under the assumption that the initial temperature is sufficiently low, the excitation density scales universally
with Ti as

E ∝ (Ti)
1/z. (5.76)

5.2.2.3 Discussion on the asymptotic scaling results

The scaling relations (5.74) and (5.76) were derived specifically with the Kitaev chain in mind. Despite the
derivation being focused on a single model, we expect these results to be applicable to other models with
similar system–bath couplings. We anticipate that changing the model or the description of the bath will
impact on the exponent s, which is determined by the properties of the bath and, in some cases, potentially
the equilibrium critical exponents. In addition to this, we point out that the derivation is consistent for
different forms of the functionm(λk/T ) (5.63).6 This allows for the treatment of models that have a different
functional form for the relaxation rate. Our results can also be extended to d-dimensional systems, since the
dimensionality in the scaling exponent always enters in a ratio with the dynamical critical exponent as d/z. In
the next section we test our analytic predictions against numeric results for the Kitaev chain. This is followed
by Section 5.2.4 where we analyse the work of this section again, but using a different approach in which the
proportionality constants are included.

5.2.3 Temperature ramp numeric results for the Kitaev chain
In this section we will test the scaling predictions (5.74) and (5.76) derived in Section 5.2.2 against numeric
results for the long-range Kitaev chain. Quantitative comparisons between the analytic and numeric results
require that we first calculate the exponent s, which is determined by the properties of the bath. Here we
work with the description of the Kitaev chain and bosonic bath from Section 2.2, where the bath has an ohmic
spectral density function J (λk) = πδλe−λk/λc (2.81). If we assume the cutoff frequency λc is high, the
relaxation rate (5.15) is approximated as

τ−1
k (λk, T ) ≈ 2πγλk

(
2

eλk/T − 1
+ 1

)
, (5.77)

6Although the derivation is consistent for different forms of the function m(λk/T ) (5.63), there are certain conditions that must be
satisfied by the function to ensure that the integrals in Eqs. (5.73) and (5.75) have well-defined v/γ → 0 and Ti → 0 limits and are
finite. Refer to Appendix F for further details.
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Figure 5.11: (a) The excitation density E for the nearest-neighbour Kitaev chain as a function of v/γ for a range of initial
temperatures and γ = 0.1. This is shown together with the asymptotic result (5.79) (dashed red line) to which the exact
numeric results converge as v/γ tends to zero. The dotted vertical lines in the corresponding colours are the crossover
points T−1

cr (Ti) (5.55) between the initially adiabatic and initially non-adiabatic regimes. (b) The excitation density as
a function of Ti for a series of ramp rates and γ = 0.01, together with the asymptotic result (5.79) (dashed red line) to
which the exact numeric results converge as Ti tends to zero. The dotted vertical lines in the corresponding colours are
the crossover points Tcr(v/γ) (5.55) between the initially adiabatic and initially non-adiabatic regimes. The parameters
in both (a) and (b) are set as follows: L = 4 × 104, J = ∆ = δ = 1, φ = α = ∞, λc = 4000, µ = µc = −1 and
Tf ' 0. In

where we have absorbed the dimensionless parameter δ into the system–bath coupling γ for convenience.
The approximate relaxation rate above is recast into the form of Eq. (5.63) to give

τ−1
k (λk, T ) ≈ (γT )

[
2π
λk
T

(
2

eλk/T − 1
+ 1

)]
= γTm(λk/T ). (5.78)

A comparison of (5.63) and (5.78) indicates that s = 1. For the short-range Kitaev chain the dynamical
equilibrium critical exponent is found to be z = 1, as illustrated in Section 4.2.3. Substituting the appropriate
values of s and z into the scaling relations (5.74) and (5.76) yields

E ∝ (v/γ)
1/2 and E ∝ Ti. (5.79)

These analytic scaling predictions (5.79) are compared with the numeric results in Fig. 5.11.

Figure 5.11 shows the exact numeric results for the density of excitations E at the end of the temperature
ramp for the nearest-neighbour Kitaev chain. In Fig. 5.11a the excitation density is plotted as a function
of v/γ for a range of initial temperatures, together with the asymptotic scaling law (5.79). For each initial
temperature two cooling regimes are visible: the initially adiabatic regime and the initially non-adiabatic
regime. The former refers to a regime in which the system dynamics starts out adiabatically, but at some point
during the temperature ramp adiabaticity is lost. The latter corresponds to completely non-adiabatic ramps, in
the sense that the dynamics is non-adiabatic from the instance the ramp is started. In Fig. 5.11a these initially
adiabatic and non-adiabatic regimes are distinguished for each data set by a dotted line corresponding to the
point (v/γ) = T−1

cr (Ti), which is the inverse of the crossover temperature Tcr(v/γ) in Eq. (5.55). In the
initially adiabatic regime, i.e. in the region to the left of the crossover lines, we are ramping more slowly or
coupling more strongly to the thermal baths. As a result, the system cools down more effectively with the
bath, and the exact numeric results converge to the predicted scaling function (5.79) with a scaling exponent
of 1/2. To the right of the crossover lines, a plateauing in the excitation density is observed, where the final
value of E is essentially identical to its initial thermal value at Ti. This is a consequence of the ramp rate
being so fast, or the system–bath coupling being so weak, that the comparatively slow relaxation time of the
system does not allow the chain to cool down with the bath.

Numeric results for the excitation density E as a function of the initial temperature Ti for a range of ramp
rates are summarised in Fig. 5.11b. We observe qualitatively similar behaviour to Fig. 5.11a, with distinct
power-law scaling in one cooling regime and a plateauing of the excitation density in the other. The two
regimes, initially adiabatic and initially non-adiabatic, are separated by dotted lines for each data set. These
crossover points Tcr(v/γ) are given by Eq. (5.55). At high initial temperatures, i.e. when Ti > Tcr(v/γ),
the initial relaxation rate is fast enough for the system to cool effectively with the bath—at least until the
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Figure 5.12: (a) and (c): The excitation density E for the long-range Kitaev chain as a function of v/γ for a range of
initial temperatures, together with the asymptotic result (dashed black line) to which the exact numeric results converge
as v/γ tends to zero. The dotted vertical lines in the corresponding colours are the crossover points T−1

cr (Ti) (5.61)
between the initially adiabatic and initially non-adiabatic regimes. (b) and (d): The excitation density for the long-range
Kitaev chain as a function of Ti for a series of ramp rates. This is shown together with the asymptotic result (dashed black
line) to which the exact numeric results converge as Ti tends to zero. The crossover points Tcr(v/γ) (5.61) between the
initially adiabatic and initially non-adiabatic regimes are marked by the vertical dotted lines. The parameters in (a)-(d)
are set as follows: L = 4× 106, J = ∆ = δ = 1, λc = 4000, µ = µc = −gφ(0) (long-range hopping), µ = µc = −1
(long-range pairing) and Tf ' 0.

temperature T drops below Tcr(v/γ). As a result, we observe a plateauing behaviour in E , since the initial
temperature does not impact on the final excitation density at the end of the ramp. In the initially non-
adiabatic regime the ramps are by definition non-adiabatic from the start. The system therefore cannot follow
the cooling of the bath, so it remains in its initial thermal state. Hence we find that when Ti < Tcr(v/γ) the
excitation density converges to the predicted power-law scaling function.

If we now consider the Kitaev chain with long-range hopping and pairing, the scaling relations will
depend non-trivially on the distance decay parameters φ and α. These long-range parameters are introduced
through the dynamical critical exponent z. The result in Eq. (4.29) gives z = φ− 1 for long-range hopping.
It follows from the asymptotic scaling relations (5.74) and (5.76) that

E ∝ (v/γ)
1/[2(φ−1)] and E ∝ T 1/(φ−1)

i . (5.80)

Similarly, for long-range pairing we have z = α− 1, which leads to the two asymptotic scaling relations

E ∝ (v/γ)
1/[2(α−1)] and E ∝ T 1/(α−1)

i . (5.81)

These analytic scaling predictions are supported by the numeric results in Fig. 5.12 for φ = 1.5 with nearest-
neighbour pairing (α = ∞), as well as for α = 1.5 with nearest-neighbour hopping (φ = ∞). The results
are qualitatively similar to those for the nearest-neighbour case, with the only noteworthy difference being
the power-law scaling exponent which now depends on φ or α. Finite-size effects cause deviations from the
predicted scaling for small v/γ and Ti, however, there is still good agreement between the predicted scaling
laws (5.80) and (5.81) and the numeric results. It is possible to verify the scaling laws numerically for other
choices of φ ∈ (1, 2) and α ∈ (1, 2).
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5.2.4 A universal scaling function for temperature ramps
In the context of non-equilibrium physics, in particular the study of the dynamics of continuous phase transi-
tions, we often find that in the vicinity of the critical point(s) different systems in various parameter regimes
show qualitatively similar features, but on differing scales. The numeric results for the Kitaev chain in Sec-
tion 5.2.3 suggest that an appropriate rescaling can collapse the various data sets onto a single curve, corre-
sponding to a universal scaling function. The key to producing such a data collapse is to exploit the similarity
of the data sets and, through an appropriate rescaling, bring the data sets to lie on a single curve [114]. A
neat collapse of the data indicates that the various data sets are related by power laws in the parameters that
were used for the rescaling. This is of interest to us since temperature ramps with different parameters can
be unified through a single scaling function. We proceed by deriving a set of scaling functions onto which all
the data sets from Section 5.2.3 collapse asymptotically.

Our derivation of a universal scaling function for the cooling of the Kitaev chain to criticality starts with
the description of the total excitation density E within the low-energy approximation. If the temperature
ramp is terminated at T = 0, recall from Eq. (5.72) that the total excitation density at the end of the ramp is
approximated by

E(Ti, γ/v) ≈ c
∫ ∞

0

dλ(λ)
1
z−1P

(
0,
Ti
λ
,
γλs+1

v

)
, (5.82)

where we have explicitly indicated the two functional dependencies of E . In Eq. (5.82) c is a proportionality
constant, which is determined by the leading-order low-energy approximation (2.41) of the dispersion rela-
tion, the long-range parameters φ and α and the dynamical critical exponent z (4.29). More precisely, using
Eq. (2.41) we find c to be

c =


1

π|∆| if φ, α =∞
1

π|∆a2(α)| if φ, α > 2
1

π|∆a1(α)|(α−1) |∆a1(α)|
α−2
α−1 if φ =∞, α < 2

1
π|2Jb2(φ)|(φ−1) |2Jb2(φ)|

φ−2
φ−1 if φ < 2, α =∞

, (5.83)

where a1(α), a2(α) and b2(φ) are defined in Eqs. (2.33) and (2.37), respectively. As we show next, it is
possible to introduce two rescaled versions of the excitation density (5.82), each of which is a function of
a single variable. The first of these, Ẽ1(T̃i), depends only on a rescaled initial temperature T̃i. The second,
Ẽ2(ṽ), only varies with ṽ, a rescaling of v/γ. By effectively reducing the excitation density to a function of
a single variable in this way, we are able to analyse its dependence on Ti and v/γ in a simple and unified
manner. We will refer to Ẽ1(T̃i) and Ẽ2(ṽ) as scaling functions, and consider the two separately in the next
two subsections.

5.2.4.1 Scaling Function 1: Ẽ1(T̃i)

Here we investigate the first of the two scaling functions, Ẽ1(T̃i). The rescaled excitation density Ẽ1 and the
rescaled initial temperature T̃i are defined as

Ẽ1 = a(1/z)E and T̃i = bTi, (5.84)

where the a and b parameters used to perform the rescaling will be determined in due course. If we rescale E
in Eq. (5.82) according to Eq. (5.84), and perform the change of variables λ → λ/a, the rescaled excitation
density is found to be

Ẽ1 ≈ c
∫ ∞

0

dλ(λ)
1
z−1P

(
0,
aT̃i
bλ

,
γλs+1

vas+1

)
. (5.85)

Choosing a = b = (γ/v)1/(s+1), i.e. rescaling the excitation density E by (γ/v)1/[z(s+1)] and the initial
temperature Ti by (γ/v)1/(s+1), eliminates the explicit γ- and v-dependence in the integral above. This
immediately leads to

Ẽ1 = E(T̃i, 1), (5.86)

where E(T̃i, 1) is given by Eq. (5.82). This form (5.86) of Ẽ1 is suitable for investigating the scaling behaviour
in the high T̃i regime. We now consider a second asymptotic form, which is applicable for studying the
scaling behaviour of Ẽ1 when T̃i is sufficiently low. To obtain this second form of the scaling function, we
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Figure 5.13: (a) The rescaled excitation density Ẽ1 as a function of the rescaled initial temperature T̃i for the nearest-
neighbour Kitaev chain with γ = 0.01. We show the asymptotic scaling functions (5.89) and (5.90) in the two regimes,
T̃i > T̃cr and T̃i < T̃cr, as red and black dashed lines. The two cooling regimes are separated by the crossover line
at T̃i = T̃cr. (b) The same as (a), but for γ = 0.1. The remaining parameters in both (a) and (b) are set as follows:
L = 4× 106, J = ∆ = δ = 1, λc = 4000, µ = µc = −gφ(0) and Tf ' 0.

perform the change of variables λ→ λT̃i in Eq. (5.85). This results in the asymptotic form

Ẽ1 = T̃i
1/zE

(
1, T̃i

s+1
)
. (5.87)

The two forms of the scaling function introduced in Eqs. (5.86) and (5.87) describe the two asymptotic
regimes of either plateauing or power-law scaling. This asymptotic behaviour is already visible in the nu-
meric results of Section 5.2.3. To provide a quantitative description of the plateauing and power-law scaling
behaviour of Ẽ1, we introduce two ‘universal constants’, c1 and c2. These are defined as

c1 = E(Ti =∞, γ/v = 1) and c2 = E(Ti = 1, γ/v = 0), (5.88)

where c1 is the excitation density (5.82) in the limit of very high initial temperatures, and c2 is the exci-
tation density (5.82) for an initial temperature of Ti = 1 in the limit of very fast ramp rates or very weak
system–bath couplings. In fact, c2 will correspond to the initial thermal equilibrium excitation density for
a temperature of Ti = 1. With the universal constants (5.88), we can compactly describe the power-law
scaling and plateauing in the two cooling regimes. Note that in this rescaled picture the initially adiabatic
and initially non-adiabatic regimes are separated by the crossover point T̃cr, which is a rescaled version of
the crossover temperature Tcr in Eqs. (5.55) and (5.61). In the initially adiabatic regime, where T̃i > T̃cr,
the rescaled excitation density approaches Ẽ1 = c1, corresponding to the constant plateau values. When

T̃i < T̃cr, the rescaled excitation density approaches Ẽ1 = c2T̃i
1/z

, which exhibits power-law scaling in T̃i.
Since Ẽ1 in Eqs. (5.86) and (5.87) is only dependent on T̃i, we expect that for all ramp rates and system–bath

couplings the data will collapse onto the functions c1 and c2T̃i
1/z

when in the regimes of high and low initial
temperatures, respectively.

To provide a concrete example of this collapse onto a universal scaling function, we revisit the numeric
results from Fig. 5.11b. For the nearest-neighbour case, both the excitation density E and the initial tempera-
ture Ti are rescaled by (γ/v)1/2. With these rescalings, we expect the numeric data in Fig. 5.11b to collapse
onto

Ẽ1 = c1 = E(∞, 1) =
1

π

∫ ∞
0

dλP
(
0,∞, λ2

)
≈ 0.0526925 (5.89)

when T̃i > T̃cr, and onto the linear function

Ẽ1 = T̃ic2 = T̃iE(1, 0) =
ln(2)

π
T̃i (5.90)

when T̃i < T̃cr. The numeric results in Fig. 5.13a show a neat collapse of the data onto the predicted
asymptotic scaling functions in the two regimes. The transition point from the asymptotic regime of power-
law scaling to plateauing can be estimated by either rescaling the expression for Tcr in Eq. (5.55), or by
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Figure 5.14: The rescaled excitation density Ẽ1 as a function of the rescaled initial temperature T̃i for the Kitaev chain
with long-range hopping. The three data sets correspond to φ = 1.5, φ = 1.75 and φ = 1.9. For each data set, the
asymptotic scaling functions (5.92) in the two regimes, T̃i > T̃cr and T̃i < T̃cr, are shown as red and black dashed lines.
The crossover point at T̃i = T̃cr is also indicated. The remaining parameters are set to L = 4 × 106, J = ∆ = δ = 1,
γ = 0.01, λc = 4000, µ = µc = −gφ(0) and Tf ' 0.

equating c1 and T̃ic2. These two approaches produce qualitatively identical results for the transition point,
with the first and second approach leading to

T̃cr =

√
3 ln(2)

π3
≈ 0.258969 and T̃cr =

c1
c2
≈ 0.238821. (5.91)

The crossover point at T̃i = T̃cr is evident in Fig. 5.13a, where it separates the power-law scaling behaviour
from the plateauing behaviour. For faster ramp rates, or weaker system–bath couplings, we observe an
imperfect collapse of the data, particularly in the initially adiabatic regime. To explain this, consider any
fixed T̃i, and note that a fast ramp rate v, or weak coupling γ, necessarily results in a high initial temperature
Ti. This leads to the occupation of high-energy modes of which the energies are not accurately described by
the leading-order approximation in Eq. (5.71). To illustrate this further, we include the numeric results for a
system–bath coupling of γ = 0.1 in Fig. 5.13b. It is immediately clear that the weaker system–bath coupling
γ = 0.01 used in Fig. 5.13a impacts on the quality of the collapse onto the two asymptotic scaling functions
for Ẽ1.

We can test the asymptotic scaling predictions further by considering the Kitaev chain with long-range
hopping. In this case, the excitation density and initial temperature are rescaled by (γ/v)1/[2(φ−1)] and
(γ/v)1/2, respectively. The numeric data for all ramp rates and system–bath couplings is expected to collapse
onto either

Ẽ1 = c1 or Ẽ1 = c2T̃i
1/(φ−1)

, (5.92)

depending on whether T̃i > T̃cr or T̃i < T̃cr. Figure 5.14 provides the exact numeric results for this case,
which are in good agreement with the analytic predictions for three different φ-values. The deviation from
the asymptotic behaviour at low temperatures is due to finite-size effects. It can be shown that these scaling
predictions are also consistent for long-range pairing.

5.2.4.2 Scaling Function 2: Ẽ2(ṽ)

The second scaling function Ẽ2(ṽ) depends only on the rescaled ramp rate ṽ. We define the rescaled quantities
explicitly as

Ẽ2 = a′(1/z)E and ṽ = b′v, (5.93)

where the rescaling parameters a′ and b′ will become evident shortly. Using the expression for E in Eq. (5.82),
we can apply the rescaling (5.93), followed by the change of variables λ→ λ/a′, to bring Ẽ2 into the form

Ẽ2 ≈ c
∫ ∞

0

dλ (λ)
1
z−1P

(
0,
a′Ti
λ
,
b′γλs+1

ṽa′(s+1)

)
. (5.94)
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Figure 5.15: (a) The rescaled excitation density Ẽ2 as a function of the rescaled ramp rate ṽ for the nearest-neighbour
Kitaev chain with γ = 0.1. The red and black dashed lines are the asymptotic scaling functions (5.95) and (5.96) in the
two regimes, ṽ > T̃−2

cr and ṽ < T̃−2
cr , which are separated by the crossover line at ṽcr = T̃−2

cr . (b) The same as (a),
but for γ = 0.001. The parameters in (a) and (b) are set as follows: L = 4 × 106, J = ∆ = δ = 1, λc = 4000,
µ = µc = −gφ(0) and Tf ' 0.

Choosing a′ = 1/Ti and b′ =
(
γT

(s+1)
i

)−1
, i.e. rescaling the excitation density E by T−1/z

i and the ramp
rate v by

(
γT

(s+1)
i

)−1
, eliminates the explicit γ- and Ti-dependence in the integral above. As discussed

in Section 5.2.4.1, we can now extract two asymptotic forms for the scaling function Ẽ2. Substituting the
choices for a′ and b′ above into (5.94) trivially leads to

Ẽ2 = E(1, ṽ−1), (5.95)

where the excitation density E(1, ṽ−1) is given by Eq. (5.82). This form is applicable for studying the scaling
behaviour of Ẽ2 when the rescaled ramp rate ṽ is fast. The second asymptotic form of the scaling function is
found through the change of variables λ→ ṽ1/(s+1)λ in Eq. (5.94). This leads to

Ẽ2 = ṽ1/[z(s+1)]E(ṽ−1/(s+1), 1). (5.96)

The form of the scaling function above is suitable for investigating the scaling behaviour in the slow ṽ regime.

For the scaling function Ẽ2, we find that the two asymptotic forms (5.95) and (5.96) are qualitatively sim-
ilar to those encountered for the scaling function Ẽ1 in Section 5.2.4.1. More precisely, Eq. (5.95) describes a
plateauing in the regime where ṽ > T̃−2

cr , and Eq. (5.96) characterises the power-law scaling behaviour when
ṽ < T̃−2

cr . To provide a quantitative description of this plateauing and power-law scaling, we refer back to
the two ‘universal constants’, c1 and c2, in Eq. (5.88). In the initially non-adiabatic regime, where ṽ > T̃−2

cr ,
the rescaled excitation density approaches Ẽ2 = c2, corresponding to the plateauing behaviour. However, if
the rescaled ramp rate is sufficiently slow, such that ṽ < T̃−2

cr , then we are in the initially adiabatic regime
in which Ẽ2 = c1ṽ

1/[z(s+1)] exhibits power-law scaling with ṽ. These results suggest that the scaling func-
tion Ẽ2 will be described by the universal functions c2 and c1ṽ1/[z(s+1)] in the regimes where ṽ > T̃−2

cr and
ṽ < T̃−2

cr , respectively.

The analytic scaling functions defined above can be verified numerically. To demonstrate this, let us first
revisit the numeric results for the nearest-neighbour Kitaev chain in Fig. 5.11a. If the analytic results are
accurate, then rescaling the excitation density E by 1/Ti and the ramp rate v by

(
γT 2

i

)−1
should collapse

the data of Fig. 5.11a onto the two asymptotic scaling functions c2 and c1
√
ṽ for ṽ > T̃−2

cr and ṽ < T̃−2
cr ,

respectively. Figure 5.15a supports these predictions, with the data collapsing neatly onto the two scaling
functions. Despite the good agreement between the analytic and numeric results in general, the data does not
collapse well for high initial temperatures. It is not unreasonable to expect this, since a high initial temper-
ature Ti leads to the occupation of high-energy modes. The energies of these modes will not be accurately
described by the leading-order approximation in Eq. (5.71), which is applied in our analytic derivation. For
the same reason, weaker system–bath couplings negatively affect the collapse onto the two asymptotic scal-
ing functions, as is evident in Fig. 5.15b. As before, we also validate the analytic results (5.95) and (5.96) for
the Kitaev chain with long-range hopping. Rescaling the excitation density and the ramp rate by T−1/(φ−1)

i

and
(
γT 2

i

)−1
, respectively, collapses the data onto c2 when ṽ > T̃−2

cr and c1ṽ1/[2(φ−1)] when ṽ < T̃−2
cr . This
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Figure 5.16: The rescaled excitation density Ẽ2 as a function of the rescaled ramp rate ṽ for the Kitaev chain with
long-range hopping. The three data sets correspond to φ = 1.5, φ = 1.75 and φ = 1.9. For each data set, the red and
black dashed lines correspond to the asymptotic scaling functions (5.95) and (5.96). The initially adiabatic (ṽ < T̃−2

cr )
and initially non-adiabatic (ṽ > T̃−2

cr ) regimes are separated by the crossover line at ṽ = ṽcr = T̃−2
cr . The remaining

parameters are set to L = 4× 106, J = ∆ = δ = 1, γ = 0.01, λc = 4000, µ = µc = −gφ(0) and Tf ' 0.

is in agreement with the numeric results in Fig. 5.16 for three different choices of φ.

5.3 Conclusion
In this chapter we built on the work established in Chapter 4 to derive a set of scaling relations for the
dissipative open Kitaev chain. We were particularly interested in two time dependencies, µ(t) and T (t),
where µ is the chemical potential in the Kitaev chain Hamiltonian (2.1) and T is the temperature of the
thermal bath to which the system is coupled. This led to the introduction of two ramping protocols: the finite-
temperature ramping protocol, whereby the chemical potential µ is ramped towards the quantum critical point
µ = µc at T > 0, and the temperature ramping protocol, in which the cooling of the Kitaev chain towards
quantum criticality is investigated.

In Section 5.1 we introduced the finite-temperature ramping protocol, and monitored the density of exci-
tations during the ramp. Studies of this nature have already been conducted by Refs. [23, 50, 85], which led
to general scaling laws for the density of excitations. Our scaling results (5.30) and (5.31) corroborate those
published in Ref. [50], where the excitation density was found to scale universally as a function of both the
ramp rate v and the bath temperature T—even in the presence of dissipation. To derive the scaling laws for
the finite-temperature ramps we considered the incoherent and coherent contributions to the excitation den-
sity independently. While this does not provide the full picture, it allowed us to conduct an in-depth study of
the scaling behaviour of the incoherent contribution Einc, and determine quantitative conditions under which
we expect the scaling laws to be valid. To support the scaling arguments, we treated the Lindblad master
equation (2.78) numerically. In all cases we observed good agreement between the analytic and numeric
results.

In Section 5.2 we extended the existing results in the literature to incorporate scaling relations for the
cooling of systems in the vicinity of the quantum critical point. To study the cooling of the Kitaev chain
we implemented a protocol in which the temperature was ramped from some finite value T > 0 towards
zero absolute temperature, while holding the system at the critical value µ = µc. Under suitable conditions,
the excitation density E was found to exhibit scaling behaviour characterised by power laws involving the
ramp rate v and the initial temperature Ti. The numeric results for the temperature ramps validated the
analytic scaling predictions (5.74) and (5.76), and also suggested that an appropriate rescaling of the data
can collapse the various data sets onto a universal scaling function. We explored this idea further, and
established a universal description of the power-law scaling and plateauing in the two cooling regimes. Here
we also found good agreement between our analytic work and the numeric results. Although we restricted the
majority of our discussions to the Kitaev chain, we believe it is possible to extend the results of this chapter
to other models with similar system–bath couplings.
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Chapter 6

Summary and outlook

This thesis explored aspects of the non-equilibrium dynamics of quantum critical systems, with a focus
on the universality of the dynamics in the vicinity of quantum critical points. We considered the density
of excitations generated when linearly ramping a parameter in the system Hamiltonian towards the critical
point, as well as the residual excitations present after lowering the thermal environment’s temperature to
zero at the critical point. In-keeping with the central ideas of the Kibble-Zurek framework, we found that
these excitation densities obeyed universal scaling laws with powers determined by the equilibrium critical
exponents of the phase transition.

For the bulk of the work, the analytic and numeric analyses of the universal features arising in the ex-
citation density was specialised to the fermionic Kitaev chain. Accordingly, we started with an in-depth
discussion of the model in Chapter 2, where we exploited the quadratic nature of the Hamiltonian (2.1) to
map it onto a free-quasiparticle description. While this enabled us to study the unitary dynamics of the Kitaev
chain, it was insufficient for exploring the effect of an external environment on the system’s dynamics. To
this end, we formulated the open system dynamics of the Kitaev chain in terms of an appropriate Markovian
Lindblad master equation (2.78), with the thermal environment consisting of identical, independent bosonic
baths. We chose a linear coupling between the baths and sites on the chain.

After introducing the Kitaev chain and its coupling to the environment we focused on solving the Lind-
blad dynamics of the model, which was one of the main numeric components of our work. To this end,
we implemented the general method of “third quantisation”, first introduced by Prosen [58]. Within this
formalism, we derived the matrix differential equation (3.23) which governs the dynamics of the correlation
functions relevant to calculating the excitation density. To reduce computational complexity, these correlation
functions were reformulated in terms of Fourier Majorana fermions, resulting in a convenient block-diagonal
structure for the matrix equation. This led to the set of decoupled, lower-dimensional matrix differential
equations in (3.61), which allowed for an exact numeric treatment even for large system sizes.

The preliminary work in Chapter 2 and Chapter 3 formed the basis for our subsequent study of the isolated
and open system dynamics of the Kitaev chain in the vicinity of a quantum phase transition. In Chapter 4
we focused on the dynamic Kibble-Zurek scaling for the isolated Kitaev chain. After a general description
of the quantum Kibble-Zurek ramping protocol, we provided a detailed derivation of the scaling laws for
the excitation density. Our results were in agreement with those of Ref. [22], and also extended the current
results in the literature to include the presence of long-range hopping. A numeric treatment of the Kitaev
chain was then used to verify the analytic scaling results, with good agreement observed for both weakly
long-range and short-range systems.

Chapter 5 implemented the tools and methods developed in previous chapters to investigate scaling be-
haviour emerging in dissipative open quantum systems. Here we introduced two ramping protocols, a finite-
temperature parameter ramping protocol and a protocol in which the system is cooled to quantum criticality.
The former described the ramping of the chemical potential µ in the Kitaev chain Hamiltonian towards its
critical value µ = µc at a finite temperature T > 0. Provided that this temperature is sufficiently low, we
observed that the system is still sensitive to the presence of the quantum critical point and that universal scal-
ing emerges. In our derivation of the set of scaling relations, we considered the coherent Ecoh and incoherent
Einc contributions separately. Later we treated the full master equation numerically to analyse the emergence
of universal features in the total excitation density Etot. Based on the regimes in which the scaling laws are
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expected to be valid, it was not surprising that only a certain range of parameters led to scaling behaviour
emerging in Etot. The second protocol in Chapter 5 investigated the cooling of the Kitaev chain towards
quantum criticality. Under certain conditions, the excitation density E was found to exhibit scaling behaviour
characterised by power laws involving the ramp rate v and the initial temperature Ti. By introducing a uni-
versal scaling function, we established a unified description of the power-law scaling and plateauing in the
two cooling regimes.

Our analytic results for the scaling laws in Chapter 4 and Chapter 5 support the emergence of dynamic
universal scaling in the vicinity of the quantum phase transition, even in the presence of dissipation. This
scaling behaviour is governed by the equilibrium critical exponents and, in the case of finite-temperature
parameter ramps and temperature ramps, also the properties of the thermal bath to which the system is cou-
pled. We restricted our discussions to short-range and weakly long-range chains. The strongly long-range
case, where φ, α < 1, requires a more sophisticated numeric treatment to minimise finite-size effects, which
become increasingly prominent for longer-range hopping and pairing. Despite these challenges, the strongly
long-range Kitaev chain is a particularly intriguing model, as we expect it to exhibit a topological quan-
tum phase transition at finite temperatures. One possible extension of this work is therefore to identify the
footprint of this phase transition in the system’s finite-temperature dynamics. This will require introducing
novel non-local observables, for example the Uhlmann fidelity [95], which are sensitive to the proximity of
the topological critical point. Monitoring such a topological quantity while performing a finite-temperature
ramp in the vicinity of the critical point should allow for the identification of potential universal behaviour.

Another natural extension of this research would be to exploit the solvability of the Kitaev chain to
study non-equilibrium stationary states. Our current description of the thermal bath is homogeneous, i.e.
the Lindblad operators act on every lattice site in the same way. Coupling the sites of the chain to baths at
different temperatures, i.e. using an inhomogeneous thermal environment, should permit the study of non-
equilibrium stationary states. In particular, it would be interesting to initialise the system in a non-equilibrium
stationary state corresponding to some parameter value µ, and then ramp µ across its critical value which, in
equilibrium, corresponds to the quantum phase transition. A sensible definition of the excitations generated
during such a ramp may be used to establish whether universal features emerge here. Of course, we again
propose studying the dynamics for global ramps, where the control parameter couples uniformly to all lattice
sites. An entirely separate, but perhaps thought-provoking question, is how this picture would change if local
or nonuniform ramps are performed.

Although unrelated to the Kitaev chain itself, another interesting avenue of investigation is the dynam-
ics of systems that exhibit true finite-temperature phase transitions, for example the long-range interacting
transverse-field Ising chain or a Heisenberg chain. Both these models are known to exhibit finite-temperature
phase transitions for sufficiently long-range interactions [90]. Of interest to us is the extent to which the scal-
ing behaviour differs in weakly long-range versus strongly long-range regimes. From a numeric perspective,
this will require an innovative and efficient computational scheme, which may be difficult to achieve since
we would no longer be dealing with a solvable quadratic model.

The work contained in this thesis, as well as the above-mentioned extensions of the research, focuses
primarily on systems which are in contact with some thermal environment. Despite its technical challenges,
the theoretical study of open quantum systems is warranted by the major role these systems play in numerous
applications of quantum physics, and the fact that the perfect isolation of quantum systems in experiments
is not viable [50]. Consequently, it is necessary to understand the highly non-trivial interplay between the
unitary quantum dynamics and the dissipation in order to address pertinent questions about quantum critical
phenomena and non-equilibrium dynamics in open systems. In turn, research in this field may impact on cur-
rent and future endeavours focused on the realisation of quantum-based technologies and scalable quantum
computers.
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651.

[97] Calabrese, P., Essler, F. H. L. and Fagotti, M. [2012]. Quantum quench in the transverse field Ising
chain: I. Time evolution of order parameter correlators, Journal of Statistical Mechanics: Theory and
Experiment 2012(7): P07016(1–74).

[98] Greiter, M., Schnells, V. and Thomale, R. [2014]. The 1D Ising model and the topological phase of the
Kitaev chain, Annals of Physics 351: 1026–1033.

[99] Kitaev, A. Y. [2001]. Unpaired Majorana fermions in quantum wires, Uspekhi Fizicheskikh Nauk
44(10S): 131–136.
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Appendix A

Adiabatic-following condition

In this appendix we show how a condition for adiabatic evolution within the Landau-Zener (LZ) model can
be motivated directly from the set of coupled differential equations (1.4) governing the system’s dynamics.
When this condition is met the system’s state is therefore able to “follow” the Hamiltonian’s instantaneous
ground state, even as the latter changes in time. We also show how this result can be adapted to apply to the
dynamics of a single ηk-mode of the isolated Kitaev chain.

A.1 Adiabatic-following condition for the standard LZ model
First we formulate the differential equations from Eq. (1.4) describing the time evolution of the LZ model in
matrix form as

i
d

dt

[
C1(t)
C2(t)

]
=

[
ε(t) ∆̄
∆̄ −ε(t)

]
︸ ︷︷ ︸

H(t)

[
C1(t)
C2(t)

]
. (A.1)

Here the detuning ε(t) varies linearly in time at a constant rate of ε̇(t) = ϑ. The unitary transformation
diagonalising H(t) is

U(t) =

[
cos[θ(t)/2] sin[θ(t)/2]
− sin[θ(t)/2] cos[θ(t)/2]

]
, (A.2)

where the angle θ(t) is such that cos[θ(t)] = ε(t)/
√
ε2(t) + ∆̄2 and sin[θ(t)] = ∆̄/

√
ε2(t) + ∆̄2. The

eigenvalues of H(t) are ±∆(t) with ∆(t) = 2
√
ε(t)2 + ∆̄2. Hereafter the explicit time dependence of

functions will be suppressed. The system state in the adiabatic basis is ψ = U [C1 C2]T, of which the
dynamics is governed by the Hamiltonian

H̃ = UHU � + iU̇U � =

[
+∆/2 iθ̇/2

−iθ̇/2 −∆/2

]
(A.3)

according to
iψ̇ = H̃ψ. (A.4)

Note that

θ̇ = −4∆̄ϑ

∆2
. (A.5)

The components of ψ are the probability amplitudes for finding the system in either its instantaneous ground
or excited state. Adiabatic evolution therefore corresponds to the magnitudes of these components remaining
constant. Since the diagonal entries of H̃ only introduce phases in these components, any deviation from
adiabatic evolution must be due to the two off-diagonal entries±iθ̇/2. To formulate a condition under which
the effect of these off-diagonal entries will be negligible we exploit the qualitative similarity between the
equation governing ψ and the well-known example of a harmonically driven two-level system [101]. Based
on this analogy we require, for adiabatic evolution, that the magnitude |θ̇| of the off-diagonal entries is small
compared to ∆/2. This is the analogue of weak driving, and amounts to the condition

2|θ̇|
∆

=
8|∆̄|ϑ

∆3
� 1. (A.6)

IX
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X A. Adiabatic-following condition

Secondly, we require that the rate at which the off-diagonal entries vary in time is slow compared to the
transition frequency ∆ between the ground and excited state. This condition is the analogue of the driving
being off-resonance with the transition between the two states. To quantify the relative rate of change in the
off-diagonal entries we use the ratio |θ̈/θ̇|. The second condition therefore reads

1

∆

∣∣∣∣ θ̈θ̇
∣∣∣∣ =

8|ε|ϑ
∆3

� 1. (A.7)

The conditions (A.6) and (A.7) can be conveniently combined into√(
8|ε|ϑ
∆3

)2

+

(
8|∆̄|ϑ

∆3

)2

=
4ϑ

∆2
� 1, (A.8)

which amounts to √
ϑ� ∆(t)/2. (A.9)

As expected, this is a comparison of the ramp rate ϑ at which the detuning ε(t) in H(t) varies, with the in-
stantaneous excitation gap 2∆(t) ofH(t). This shows that ramping ε(t) through a point where ∆(t) vanishes
will result in a loss of adiabaticity, no matter how slow the ramp rate. Far from this point condition (A.9)
may still be satisfied, allowing the system to evolve adiabatically.

A.2 Adiabatic-following condition for the isolated Kitaev chain

In Section 4.2.1 we describe the evolution of the excitation probability 〈η�kηk〉(t) for a single ηk-mode in the
Kitaev chain by mapping this problem onto the Landau-Zener model. This mapping allows us to treat each
ηk-mode as an independent two-level LZ model. The time-dependent Hamiltonian Hk(t) (4.5) has the same
structure as the Landau-Zener Hamiltonian H(t) in Eq. (A.1) of the preceding section, with eigenenergies
±λk(t) given in Eq. (4.6). Following the same set of steps presented in Section A.1, the final condition for
adiabatic evolution for a single ηk-mode is found to be

√
v � λk. (A.10)
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Appendix B

Symmetries of the BdG Hamiltonian

In the process of simplifying the dissipator D[%] (2.71) in Section 2.2.4 we used the condition

V �S∗ + STV = 0. (B.1)

It was claimed that this additional constraint on the V and S matrices (2.11) is due to the symmetries of
the Bogoliubov–de Gennes Hamiltonian (2.10) introduced in Section 2.1.2.1. For reference, we restate the
Hamiltonian below as

H =

[
Q P
−P ∗ −Q∗

]
. (B.2)

The Hamiltonian H exhibits a number of symmetries, with the relevant ones here being particle-hole (PH)
symmetry and time-reversal (TR) symmetry. Both of these are realised through anti-unitary operators acting
on the same column vector space as H.

We introduce the operators for PH and TR symmetry as follows:

• The operator for PH symmetry is UPH and acts as

UPH

[
~a
~b

]
=

[
~b∗

~a∗

]
, (B.3)

where ~a and~b are L-component column vectors. It can be verified that UPHH = −HUPH.

• The operator for TR symmetry is UTR and acts as

UTRv = v∗, (B.4)

i.e. by complex conjugation. In Eq. (B.4), and in what follows, boldface vectors comprise of 2L
components. Since the entries of H are real, we have UTRH = HUTR.

Based on the two symmetries (B.3) and (B.4) we can make some statements about the eigenvectors of H (B.2).
It follows that if v in Eq. (B.4) is an eigenvector of H with eigenvalue λk, then so is UTRv = v∗. This
implies that UTR leaves the eigenspaces of H invariant. Secondly, we have that if v is an eigenvector of H
with eigenvalue λk, then UPHv is an eigenvector with eigenvalue −λk.1 This observation is also reflected in
the matrix T (2.12)

T =

[
V S
S∗ V ∗

]
, (B.5)

which diagonalises H as

T�HT =

[
Λ 0
0 −Λ

]
. (B.6)

Here Λ is an L × L diagonal matrix containing the mode energies λk ≥ 0. The “particle” eigenvectors
{uk} with eigenvalues {λk} are the first L columns of T (B.5), while the “hole” eigenvectors {UPHuk} with

1As will become clear, this is just the statement that for each mode we have a particle with energy λk > 0, created by an η�k operator,
and a corresponding hole with energy λk < 0, created by ηk .

XI
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XII B. Symmetries of the BdG Hamiltonian

eigenvalues {−λk} are the last L columns.2

Based on the statements made above, we can now motivate how the two symmetries lead to condi-
tion (B.1). Note that since H (B.2) is real and symmetric we can choose T (B.5) to be real and orthogonal.
However, this is not necessarily convenient, since it prevents us from constructing modes with well-defined
momenta.3 We will therefore not require the uk vectors to be real. However, for the ones corresponding to
zero-energy modes we will assume that uk is either real, or proportional to a real vector. Keeping these as-
sumptions in mind, let uk be a “particle” eigenvector of H with eigenvalue λk ≥ 0. Its time-reversed version
UTRuk = u∗k is then an eigenvector with the same eigenvalue. If λk > 0 then UTRuk = u∗k is orthogonal to
all the non-positive eigenvalue “hole” eigenvectors {UPHuk′}. If λk = 0 then, by assumption, UTRuk = u∗k
is proportional to uk, and therefore also orthogonal to all the {UPHuk′} vectors, since T is unitary and has
orthogonal columns. In summary, the {u∗k} vectors, which are the columns of[

V ∗

S

]
, (B.7)

are orthogonal to the {UPHuk} vectors, which are the columns of[
S
V ∗

]
. (B.8)

This implies that [
V ∗

S

]� [
S
V ∗

]
=
[
V T S�

] [ S
V ∗

]
= V TS + S�V ∗ = 0. (B.9)

Through complex conjugation we obtain the result in Eq. (B.1), which is the condition imposed in Sec-
tion 2.2.4.

2To connect this with the second quantised formalism, note that the expansion coefficients of ηk in the site-fermion basis are the
entries of u∗k , i.e. ηk = u�

kc. Similarly, η�k = (UPHuk)
�c.

3This would be like choosing the “real” combinations ηk + η−k and i(ηk − η−k) instead of ηk and η−k . Due to the degeneracy of
these modes we can have this choice, but the real combinations are more like (discrete) “standing waves” (sin(kx) and cos(kx)) than
travelling waves (exp(±ikx)).
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Appendix C

Landau-Zener transition probability

It is widely accepted that under certain conditions the quasiparticle excitation probability of several integrable
spin models can be calculated using a general form of the Landau-Zener (LZ) transition probability. In
Section C.1 we outline the link between the probability of exciting an ηk-mode and the probability of inducing
a transition in the two-level model governed by Hk(t) (4.5). Since the probability of exciting the ηk-mode
is exactly the probability of inducing a transition in the two-level model, we map the fermionic problem
onto the LZ model. This allows us to obtain the transition probability amplitude in Section C.2. Finally, in
Section C.3 we derive the well-known asymptotic form of the LZ excitation probability for a single mode in
the Kitaev chain.

C.1 The link between the fermionic and Landau-Zener pictures
Consider the time-dependent Hamiltonian from Eq. (2.21) in the text, which can be written compactly as

H(t) =
1

2

∑
k

Ψ�
kHk(t)Ψk (C.1)

with Ψk = [ak a�−k]T a column vector of Fourier fermion operators. The 2× 2 matrix Hk(t) has the form

Hk(t) =

[
Ak(t) iBk
−iBk −Ak(t)

]
, (C.2)

where Ak(t) = A−k(t) = 2Jgφ(k) + 2µ(t) and Bk = −B−k = ∆fα(k). We introduce the vector Ψk in
the Heisenberg picture, denoted as

ΨH
k (t) = [aHk (t) a�H−k(t)]T . (C.3)

Using the fermionic anticommutation relations it can be shown that the Heisenberg equations of motion for
ψHk (t) are

i
d

dt
ΨH
k (t) = Hk(t)ΨH

k (t). (C.4)

Equation (C.4) can be rewritten as a set of ordinary scalar differential equations. We express the components
of ΨH

k (t) (C.3) as time-dependent linear combinations of the time-independent operators, ηk,i and η�−k,i,
which are the elementary excitations associated with the initial Hamiltonian H(ti). This leads to[

aHk (t)

a�H−k(t)

]
=

[
uk(t) −v∗k(t)
vk(t) u∗k(t)

]
︸ ︷︷ ︸

Uk(t)

[
ηk,i
η�−k,i

]
︸ ︷︷ ︸

Φk,i

, (C.5)

or compactly ΨH
k (t) = Uk(t)Φk,i. It follows that the Heisenberg equations of motion in terms of Uk(t) are

i
d

dt
Uk(t) = Hk(t)Uk(t), (C.6)

which reduces to

i
d

dt

[
uk(t)
vk(t)

]
= Hk

[
uk(t)
vk(t)

]
(C.7)

XIII
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XIV C. Landau-Zener transition probability

since it is only necessary to consider the first column on both sides of Eq. (C.6).

We recognise the structure of Eq. (C.7) as being that of the equation governing the dynamics of a state
|ψ(t)〉 = uk(t) |1〉 + vk(t) |2〉 = [uk(t), vk(t)]T evolving under the matrix Hamiltonian Hk(t) within the
standard Landau-Zener framework of Section 1.1.2. In this sense the dynamics of a {k,−k} mode pair
under the fermionic Hamiltonian (C.1) is completely equivalent to the dynamics of a two-level Landau-
Zener model. Ultimately we are interested in calculating the excitation probability, at the end of the ramp, of
an ηk mode associated with the final fermionic Hamiltonian H(tf ). This is given by 〈η�kηk〉(tf ), where the
expectation value is taken with respect to the system state at t = tf . The definitions above can be combined to
show that the correspondence with the Landau-Zener model persists here as well, and that 〈η�kηk〉(tf ) indeed
equals the LZ excitation probability pk = |〈e(tf )|ψ(tf )〉|2, where |e(tf )〉 is the positive energy eigenvector
of Hk(tf ). The lecture notes by Santoro [115] provide a more detailed account of this connection between
the fermionic and LZ pictures.

C.2 The Landau-Zener transition probability amplitude
The Landau-Zener transition probability amplitude A(χ, ω) (4.11) can be obtained from the solution to the
set of differential equations governing the evolution of the two-level model. In the previous section we
established the link between the fermionic and Landau-Zener pictures, and from Eq. (C.7) we write the set
of coupled first-order differential equations as

i
d

dt
uk(t) = Ak(t)uk(t) + iBkvk(t) and i

d

dt
vk(t) = −iBkuk(t)−Ak(t)vk(t), (C.8)

whereAk(t) andBk are defined below Eq. (C.2) As a matter of convenience, we introduce the dimensionless
parameters χ and ω as

χ(k, t) =
Ak(t)√

2v
=

2Jgφ(k) + 2µ(t)√
2v

and ω(k) =
Bk√
2v

=
∆fα(k)√

2v
. (C.9)

Now using d
dt =

√
2v d

dχ and the dimensionless parameters (C.9), we express the set of coupled differential
equations (C.8) as

i
d

dχ
uk = χuk + iωvk and i

d

dχ
vk = −iωuk − χvk, (C.10)

or in matrix notation as

i
d

dχ

[
uk
vk

]
=

[
χ iω
−iω −χ

]
︸ ︷︷ ︸

Hχ

[
uk
vk

]
, (C.11)

where we have introduced the matrix Hχ. Taking the derivative with respect to χ in Eq. (C.10), and substi-
tuting in the expressions for duk

dχ and dvk
dχ (C.10), leads to the following second-order differential equations

(Weber equations) [15, 20]

d2

dχ2
uk = −(i+ χ2 + ω2)uk and

d2

dχ2
vk = −(−i+ χ2 + ω2)vk. (C.12)

The parabolic cylinder (Weber) functionDn(z) is a solution of the second-order differential equations (C.12)
[15, 20, 109]. Based on definitions in Gradshteyn and Ryzhik [109], we find the solutions of Eq. (C.12) to be

uk(χ) = aD−1+ iω2

2

(√
2χe

3π
4 i
)

+ bD−1+ iω2

2

(√
2χe−

π
4 i
)

(C.13)

and

vk(χ) =

√
2

ω
e−

π
4 i
[
aD iω2

2

(√
2χe

3π
4 i
)
− bD iω2

2

(√
2χe−

π
4 i
)]
, (C.14)

where the time dependence enters via χ, and the coefficients a and b need to be determined from the initial
conditions.

To determine the coefficients a and b we first express uk(χ) and vk(χ) in Eqs. (C.13) and (C.14) in terms
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C.2. The Landau-Zener transition probability amplitude XV

of the parameters

z =
√

2χe−
π
4 i and n =

ω2

2
. (C.15)

This leads to

uk(χ) = aD−1+in(−z) + bD−1+in(z) and vk(χ) =

√
2

ω
e−

π
4 i [aDin(−z)− bDin(z)] (C.16)

The ground state of the Hamiltonian Hχ (C.11) in the limit χ → −∞ is [ 1 0 ]T. Therefore we want to
enforce, via a and b, the initial conditions

lim
χ→−∞

|uk(χ)| = 1 and lim
χ→−∞

|vk(χ)| = 0 (C.17)

From the second initial condition and the expression for vk(χ) in Eq. (C.16), together with the asymptotic
expansions 9.246.1 and 9.246.2 in Ref. [109] we have

a

b
= lim
χ→−∞

Din(z)

Din(−z)
= e−πn = e−

πω2

2 . (C.18)

Applying the result above to uk(χ) and vk(χ) in Eq. (C.16) leads to

uk(χ) = b
[
e−

πω2

2 D−1+in(−z) +D−1+in(z)
]

and vk(χ) =

√
2

ω
e−

π
4 ib
[
e−

πω2

2 Din(−z)−Din(z)
]
.

(C.19)
To enforce the first initial condition (C.17), it is required that we determine the χ → −∞ limit of uk(χ).
We achieve this using the asymptotic expansions in 9.246.1 and 9.246.2 of Ref. [109]. Keeping only the
dominant terms, we have

uk(χ) ∼ b

[
−
√

2π

Γ(1− in)
e(−1+in)πie

z2

4 z−in

]
(C.20)

To ensure the first condition in Eq. (C.17) is met, we first identify the phases in the expansion of uk(χ),
which do not impact on the value of the coefficient b. We find that the initial condition is satisfied when

b =
Γ(1− in)√

2π
e
π
4 n. (C.21)

The expressions for the coefficients (C.18) and (C.21), together with Eq. (C.16), provide the exact solution
to the coupled differential equations (C.10) with the initial conditions in Eq. (C.17).

The solutions for uk(χ) and vk(χ) determined above can be used to calculate the transition probability
at time t. Recall that the time dependence enters via the parameter χ. For convenience we impose the
condition ω ≥ 0 in what follows. Now the probability amplitude A(χ, ω) is given by the inner product of
ψk(χ) = [uk(χ) vk(χ) ]T (4.7) with the excited state |e(χ)〉 of the Hamiltonian (C.11). Following the same
steps as in Section 1.1.2, we write the |e(χ)〉 and |g(χ)〉 eigenvectors of the Hamiltonian (C.11) as

|e(χ)〉 =

[
cos(θ/2)
−i sin(θ/2)

]
and |g(χ)〉 =

[
sin(θ/2)
i cos(θ/2)

]
, θ ∈ [0, π], (C.22)

where sin(θ) = ω/λ and cos θ = χ/λ with λ =
√
χ2 + ω2. This allows us to express the components of

the eigenvectors (C.22) as

sin(θ/2) =

√
(1− cos θ)

2
=

√
1

2
− χ

2
√
χ2 + ω2

, cos(θ/2) =

√
(1 + cos θ)

2
=

√
1

2
+

χ

2
√
χ2 + ω2

.

(C.23)
The inner product

〈e(χ)|ψk(χ)〉 = A(χ, ω) =
[

cos(θ/2) i sin(θ/2)
] [ uk(χ)

vk(χ)

]
(C.24)
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with sin(θ/2) and cos(θ/2) from Eq. (C.23) and uk(χ) and uk(χ) from Eqs. (C.19) and (C.21) leads to

A(χ, ω) =
1√
π

(1 + i)2−2+ iω2

4 e−
3πω2

8 + i
2

×
[
(1− i)

√
1 +

χ√
χ2 + ω2

Γ

(
1− iω2

2

)(
e
πω2

2 D iω2

2 −1
((1− i)χ) +D iω2

2 −1
((−1 + i)χ)

)
− iω

√
1− χ√

χ2 + ω2
Γ

(
− iω

2

2

)(
D iω2

2

((−1 + i)χ)− eπω
2

2 D iω2

2

((1− i)χ)
)]
. (C.25)

C.3 The asymptotic Landau-Zener transition probability
In some cases it is useful to have the asymptotic expression for the transition, or excitation, probability
pk = |A(χ, ω)|2, with A(χ, ω) (C.25), at a final time t→∞. In Section 1.1.2 we provided an expression for
the asymptotic LZ transition probability in Eq. (1.10). With the work in Section C.2, we show that in the limit
t → ∞, i.e. χ → ∞, we indeed reproduce the well-known result (1.10). First note that in the limit χ → ∞
the excited state |e(χ)〉 of the Hamiltonian (C.11) is [ 1 0 ]T. Hence, the asymptotic transition probability
will be given by pk = |uk(χ =∞)|2. From Eq. (C.19) we have

lim
χ→∞

|uk(χ)| = lim
χ→∞

∣∣∣b [e−πω2

2 D−1+in(−z) +D−1+in(z)
]∣∣∣ , (C.26)

with b in Eq. (C.21). The asymptotic expansions of the parabolic cylinder functions D−1+in(−z) and
D−1+in(z) in Ref. [109] yields

lim
χ→∞

|uk(χ)| =
∣∣∣eπ4 n−2πn+ 3π

4 i(−in)
∣∣∣ = e−πn. (C.27)

According to Eq. (C.15), n = ω2/2, which leads to the exponential form of the transition probability as

pk = |uk(χ =∞)|2 = e−πω
2

= e−π∆2f2
α(k)/(2v). (C.28)

This form matches the result in Eq. (1.10).
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Appendix D

Finite-v corrections to the scaling
relations of the isolated Kitaev chain

The asymptotic scaling results for the isolated Kitaev chain in Eq. (4.24) of Chapter 4 are only applicable
in the limit of very slow ramp rates. It is therefore important to question the extent to which this scaling
behaviour will emerge if the ramp rate v is finite. This will depend on the magnitudes of the sub-leading
terms which were neglected in multiple steps of our derivation in Chapter 4. Here we provide a more detailed
analysis on the expected range of validity for the scaling in the nearest-neighbour Kitaev chain when v is
finite.

Early in our derivation in Chapter 4 we neglected sub-leading terms in the expansions of χ and ω around
k = 0. The expansions of χ and ω to the lowest order in k were called χ0 and ω0. These approximations were
subsequently introduced when we replaced the excitation probability function in the integrand by its v → 0
limiting value. In addition to this, we extended the upper bound of the integral to infinity. This extension
results in certain sub-leading terms in the excitation density being ignored. With this in mind, a necessary
condition for the predicted scaling behaviour to emerge at finite v is therefore that the magnitudes of the
neglected sub-leading terms in the excitation density are sufficiently small. These neglected sub-leading
terms can be viewed as finite-v corrections to the asymptotic scaling relation. In what follows we will briefly
discuss these finite-v corrections for the nearest-neighbour case. A similar analysis can be performed for the
long-range hopping and pairing cases.

As motivated in Section 4.2.1, it will be convenient to introduce the dimensionless parameters χ and ω.
In the nearest-neighbour case these have the form

χ(k, t) =
2J cos(k) + 2µ(t)√

2v
and ω(k) =

∆ sin(k)√
2v

. (D.1)

For ramps ending at a final time t = tf at the critical point we have µ(tf ) = µf = −J , hence Eq. (D.1)
becomes

χ(k, tf ) =
2J(cos(k)− 1)√

2v
and ω(k) =

∆ sin(k)√
2v

. (D.2)

Now the excitation probability for a particular mode can be formulated in terms of these parameters as

P (χ(k, tf ), ω(k)) = |A(χ(k, tf ), ω(k))|2, (D.3)

where A(χ, ω) is the probability amplitude in Eq. (4.11). If we expand χ and ω in Eq. (D.2) around k = 0
we have, to lowest order in k,

χ0(k) = − Jk
2

√
2v

and ω0(k) =
∆k√

2v
. (D.4)

The exact excitation probability in Eq. (D.3) expressed in terms of ω0 is

Pv(ω0) = P (χ(ω0

√
2v/∆, tf ), ω(ω0

√
2v/∆)). (D.5)

It is possible to verify that Pv(ω0) has a well-defined v → 0 limit.

XVII
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Figure D.1: (a) Pv(ω0) for various choices of v, together with the exact v → 0 result P0(ω0) and the large ω0 approx-
imation of the excitation probability, P0(ω0) ≈ (2ω0)−4. (b) The absolute difference |Pv(ω0) − P0(ω0)| for various
choices of v. The dashed lines correspond to the linear order correction term, which is given in Eq. (D.8).

The first, and most significant, finite-v correction to the excitation density comes from the replacement
of Pv(ω0) by its v → 0 limit P0(ω0). Figure D.1a shows Pv(ω0) for various choices of v, together with
P0(ω0). As v decreases, Pv(ω0) tends to P0(ω0), and there is good agreement in the region ω0 ∈ [0, 3]
where P0(ω0) is large (roughly > 10−3). Figure D.1b shows the absolute value of the difference between
Pv(ω0) and P0(ω0), which is largest between ω0 = 0 and ω0 ≈ 2. This difference provides an indication of
the magnitude of the sub-leading terms which are dropped when replacing Pv(ω0) by P0(ω0). The finite-v
correction can therefore be estimated by expanding Pv(ω0) to linear order in

√
v. To this end, we first expand

χ(ω0

√
2v/∆, tf ) and ω(ω0

√
2v/∆), which are defined in Eq. (D.2), to linear order in

√
v as

χ(ω0

√
2v/∆) = −aω2

0 and ω(ω0

√
2v/∆) = ω0, with a =

J
√

2v

∆2
. (D.6)

For small-ω values, the excitation probability is given by

P (χ, ω) = P (0, ω) +
e−πω

2/2χ

2ω
+O(χ2). (D.7)

Combining Eqs. (D.6) and (D.7) yields, to linear order in
√
v,

Pv(ω0) ≈ P0(ω0)− e−πω
2
0/2aω2

0

2ω0︸ ︷︷ ︸
Linear order correction

. (D.8)

The approximation above is only accurate when χ = −aω2
0 � 1, however for sufficiently small ramp

rates this condition can at least be ensured for the range of ω0 values for which Pv(ω0) is non-negligible.
Figure D.1b shows that the correction term in Eq. (D.8), indicated by the dashed lines, does an excellent job at
describing the most significant deviation of Pv(ω0) from P0(ω0). The maximum magnitude of this correction
term, namely a/(2

√
eπ), provides a good approximation for the upper bound on |Pv(ω0)− P0(ω0)|.

Based on the discussions above, we can now compute the corrections to the excitation density itself,
which is defined as

Ecoh =
1

π

∫ π

0

dk P (χ(k), ω(k)). (D.9)

Performing the change of variable k → ω0

√
2v/∆ in the integral above, the expression for Ecoh can be

reformulated in terms of ω0 as

Ecoh =
1

π

√
2v

∆

∫ ω+

0

dω0 Pv(ω0), (D.10)

where ω+ = ∆π/
√

2v. A good approximation of the magnitude of the neglected sub-leading terms in Ecoh
when replacing Pv(ω0) by P0(ω0) in Eq. (D.10) is given by the integral of the linear order correction (D.8).
Accordingly we have ∫ ω+

0

dω0
e−πω

2
0/2aω2

0

2ω0
≤
∫ ∞

0

dω0
e−πω

2
0/2aω2

0

2ω0
=

a

2π
, (D.11)

Stellenbosch University https://scholar.sun.ac.za



XIX
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Figure D.2: (a) The two finite-v corrections, a/(2π) and 1/(48ω3
+) from Eq. (D.14), as a function of the ramp rate

v. Here we set J = ∆ = 1. It is clear that the first condition in Eq. (D.14) will imply the second, provided the ramp
rate is sufficiently slow. (b) The exact numeric excitation density as a function of v, together with the analytic results in
Eq. (D.15). The predicted scaling behaviour emerges at finite v, provided the two corrections are sufficiently small. At
faster ramp rates, the corrections become large and visibly impact on the scaling of Ecoh.

where a = J
√

2v/∆2 is defined in Eq. (D.6). The integral expressions in Eq. (D.11) are approximately equal
once ω+ > 2. This implies that the primary finite-v correction to Ecoh is well approximated by a/(2π) =
J
√

2v/(2π∆2). As one would expect, the magnitude of this correction tends to zero as the ramp rate v
decreases.

The second finite-v correction to Ecoh involves the extension of the upper bound of the integral (D.10)
to infinity. We have already shown that for slow ramps we can replace Pv(ω0) by P0(ω0) and still capture
the bulk of the contribution to Ecoh accurately. Therefore, within the bounds of Eq. (D.11), we can take the
excitation density to be

Ecoh =
1

π

√
2v

∆

∫ ω+

0

dω0 P0(ω0), (D.12)

where the v dependence enters only in the prefactor and upper bound of the integral. Now assuming that
ω+ > 2 we have ∫ ∞

ω+

dω0 P0(ω0) =
1

48

1

ω3
+

, (D.13)

where the large-ω0 expansion P0(ω0) ≈ (2ω0)−4 was used. The approximation P0(ω0) ≈ (2ω0)−4 performs
well for sufficiently large ω0 values, as observed in Fig. D.1a. Equation (D.13) therefore provides an estimate
of the correction which accounts for the extension of the integral bound to infinity.

A necessary condition for the predicted scaling in v to emerge for the nearest-neighbour Kitaev chain is
that both the corrections are much smaller than one. This amounts to

a

2π
=
J
√

2v

2π∆2
� 1 and

1

48ω3
+

=
v3/2

12
√

2(π∆)3
� 1. (D.14)

If one chooses J = 1 and ∆ to be of order 1, the first condition will imply the second for sufficiently slow
ramp rates, as seen in Fig. D.2a. The magnitudes of the corrections in Eq. (D.14) impact on the emergence
of the predicted scaling behaviour, particularly at faster ramp rates where the conditions a/(2π) � 1 and
1/(48ω3

+) � 1 are potentially not satisfied. To illustrate this, we plot the numeric excitation density results
for the nearest-neighbour Kitaev chain in Fig. D.2b with

E1 =
1

π

√
2v

∆

∫ ∞
0

dω0 P0(ω0), E2 = E1 −
a

2π
and E3 = E1 −

a

2π
− 1

48ω3
+

. (D.15)

The scaling is accurately predicted by E1 ∼ v1/2, and both the slope and intercept are in agreement with the
numeric results. Combining E1 with the correction terms improves the agreement between the analytic and
numeric results for large, finite v. Additionally, we can confirm from the plot that the correction of a/(2π) has
a significantly greater impact than the second correction 1/48ω3

+. To observe the predicted scaling behaviour
it is therefore important that the condition a/(2π)� 1 is met.
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Appendix E

Linear-order approximation of the rate
equation for the k = 0 mode

In our derivation of the scaling laws for the incoherent contribution Einc to the excitation density in Sec-
tion 5.1.2 we treated the excitation probability Pk to linear order in the system–bath coupling γ. A natural
question that arises is under what conditions we would expect the predicted power-law scaling in Eqs. (5.30)
and (5.31) to emerge. In this appendix we derive a condition for the predicted scaling in v and T to emerge by
analysing the contribution to Einc from the k = 0 mode within the linear-order approximation in Eq. (5.21).

We start with the rate equation (5.13), which describes the dynamics of the incoherent excitation proba-
bility Pk. This is given by

d

dt
Pk = − 1

τk
(Pk − P th

k ), (E.1)

where τ−1
k is the relaxation rate (5.17). The relaxation rate introduces the spectral density J of the thermal

bath. Here we will consider an ohmic spectral density of the form in Eq. (2.81), with a cutoff frequency of
λc = ∞. We proceed by considering only the k = 0 mode, which makes the largest contribution to the
incoherent excitation density Einc. The approximations derived for the k = 0 mode are expected to also apply
to the other k modes.

The rate equation (E.1) can be simplified if we consider only the k = 0 mode. First we write the
dispersion relation for the k = 0 mode as

λ0 = |2J + 2µ(t)| = −(2J + 2µ(t)), (E.2)

where we choose µ(t) = vt as a matter of convenience. It will be useful to introduce a new variable
x = 2(J+vt)

T , which runs from xi = 2(J+µi)
T < 0 to xf = 0. Rewriting the relaxation rate τ−1

0 in Eq. (5.17)
in terms of the ohmic spectral density (2.81) with λc =∞ and the new variable x leads to

τ−1
0 = 2πγδλ0(2n(λ0) + 1) = 2πTγδx

ex + 1

ex − 1
. (E.3)

Noting that the equilibrium excitation probability P th
k for the k = 0 mode is

P th
0 =

1

e−x + 1
, (E.4)

the rate equation (E.1) for the k = 0 mode is written as

d

dx
P0(x) = − πT 2γδ

v︸ ︷︷ ︸
a

x
ex + 1

ex − 1

(
P0(x)− 1

e−x + 1

)
with a =

πT 2γδ

v
. (E.5)

With the initial condition P0(xi) = 0 where xi → −∞, we can solve Eq. (E.5). We will take xi = −20,
since this is effectively equivalent to xi = −∞. The ramp ends at xf = 0, so we analyse the excitation
probability P0(0) as a function of a. The linear-order approximation which leads to perfect scaling is P̃0(x),

XXI

Stellenbosch University https://scholar.sun.ac.za
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satisfying
d

dx
P̃0(x) = −axe

x + 1

ex − 1

(
0− 1

e−x + 1

)
. (E.6)

By solving for P0(0) and P̃0(0) numerically for various choices of a� 1 we extract the result

|P0(0)− P̃0(0)|
P0(0)

≈ 7

2
a. (E.7)

Requiring a less than 10% difference imposes the following condition on a:

a =
πT 2γδ

v
<

1

35
≈ 0.02857. (E.8)

This condition will hold for either sufficiently low temperatures, fast ramp rates or weak system–bath cou-
plings.
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Appendix F

Small-v/γ and small-Ti asymptotics of
the excitation probability

The small-v/γ and small-Ti asymptotics of the excitation probability Pk (5.68) for a single ηk-mode in the
Kitaev chain were used to derive the scaling relations for the temperature ramping protocol in Section 5.2.2.
In this appendix we provide further information on the v/γ → 0 and Ti → 0 limits of the integrals in
Eqs. (5.73) and (5.75), respectively. Section F.1 argues, via the dominated convergence theorem, that the
v/γ → 0 limit of Eq. (5.73) exists and is finite. The Ti → 0 limit of Eq. (5.75) can be treated in the same
way. To avoid unnecessary repetition, in Section F.2 we motivate that the limit exists and is finite using the
small-Ti asymptotics of Pk.

F.1 Small-v/γ asymptotics of the excitation probability and v/γ → 0
limit of the integral

It is required to show that the integral∫ ∞
0

dλ (λ)
1
z−1P

(
0,

Ti
λ(v/γ)1/(s+1)

, λs+1

)
(F.1)

from Eq. (5.73) has a well defined Ti
(v/γ)1/(s+1) → ∞ limit. We restate the excitation probability from

Eq. (5.68) in the main text as

Pk = P (y,A,B) = CeF (y) +BeF (y)

∫ y

−A
dy′ e−F (y′)m(−1/y′)P th

k

(
−1

y′

)
(F.2)

with

C = P th
k (A−1), F (y) = −B

∫ y

−A
dy′m(−1/y′) and m(−1/y) = 2π

(
2

e−1/y − 1
+ 1

)
. (F.3)

For convenience, we define

c =
Ti

(v/γ)1/(s+1)
, A =

c

λ
and B = λs+1, (F.4)

such that the excitation probability in Eq. (F.1) can be expressed as P(0, A,B). Now consider the Lebesgue’s
dominated convergence theorem [116]:

Suppose fn : R → [−∞,∞] is a sequence of (Lebesgue) measurable functions such that the
point-wise limit f(x) = limn→∞ fn(x) exists, i.e. that fn → f as n → ∞. Now assume there
is an integrable (summable) function g : R → [0,∞] with |fn(x)| ≤ g(x), ∀n, for each x ∈ R.
Then f is integrable (summable), as is fn for each n, and

lim
n→∞

∫
R
fndµ =

∫
R

lim
n→∞

fn dµ =

∫
R
f dµ. (F.5)

XXIII
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Figure F.1: The function m(−1/ȳ) (F.3) plotted as a function of ȳ, showing a clear increasing trend with |ȳ| and linear
growth for large negative ȳ.

Hence, to show that the v/γ → 0 limit of the integral (F.1) is well defined when the integrand λ1/z−1P(0, A,B)
is in the asymptotic form, it is required to prove that

1. The limit of the function P(0,∞, B) = limc→∞ P(0, c/λ,B) exists.

2. There exists an integrable function g such that |P(0, c/λ,B)| ≤ g(0, c/λ,B).

3. The integral
∫∞

0
dλλ1/z−1P(0,∞, λs+1) exists.

First, we show that the limit P(0,∞, B) = limc→∞ P(0, c/λ,B) exists for the small-v/γ asymptotics
of the excitation probability. Noting that F ′(y) = −Bm(−1/y), Eq. (F.2) can be written as

P(0, A,B) = P th
k (A−1)eF (0) +

∫ 0

−A
dy′

d

dy′

[
eF (0)−F (y′)

]
P th
k (−1/y′). (F.6)

Performing integration by parts, we obtain the form

P(0, A,B) = P th
k (A−1)eF (0) + P th

k

(
−1

y′

)
eF (0)−F (y′)

∣∣∣∣0
−A
−
∫ 0

−A
dy′

d

dy′
[
P th
k (−1/y′)

]
eF (0)−F (y′)

= −
∫ 0

−A
dy′

d

dy′
[
P th
k (−1/y′)

]
eF (0)−F (y′). (F.7)

Naively one would expect that taking the c→∞ limit of the excitation probability amounts to extending the
lower bound of the integral in Eq. (F.7) to −∞. While this is indeed the case, we provide a more concrete
argument below.

Note that the exponential in the integrand of Eq. (F.7) is

eF (0)−F (y′) = −B
∫ 0

y′<0

dȳ m(−1/ȳ). (F.8)

The form of the functionm(−1/ȳ) is shown in Fig. F.1. Consequently, the integral (F.8) will be an increasing
function of |y′|. The expansion of m(−1/ȳ) for large ȳ to O

(
1/ȳ4

)
is

m(−1/ȳ) = −4πȳ − π

3ȳ
+

π

180ȳ3
+O

(
1

ȳ4

)
, (F.9)

hence for sufficiently large ȳ ∫ 0

y′<0

dȳ m(−1/ȳ) ∼ 2πy′2. (F.10)

It follows that the exponential function (F.8) will rapidly tend to zero with decreasing y′ when B 6= 0. As a
result, the integrand of the integral describing the excitation probability (F.7) rapidly decreases as the lower
bound becomes increasingly more negative. Hence, the extension of the lower integration bound to −∞
results in a well behaved integral, and the limit P(0,∞, B) = limc→∞ P(0, c/λ,B) exists.
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F.1. Small-v/γ asymptotics of the excitation probability and v/γ → 0 limit of the integral XXV
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Figure F.2: (a) The two parts of the integrand in Eq. (F.13), indicated by (a) and (b). As B is increased the rapid decay
of the exponential function e2πBy

′
results in the small-y′ behaviour of (a) becoming increasingly dominant. Note that

(i) function (a) tends to zero extremely rapidly as y′ → 0 and (ii) the first term in the Taylor series of (a), indicated by
the dashed curve, well approximates the function (a) for small y′. (b) The product of (a) and (b), as they appear in the
U integral (F.14). The solid curves correspond to the exact function in the integrand of U (F.14) for a series of B values,
while the dashed curves correspond to the first term in the Taylor series of (a) multiplied by the exponential function
e2πBy

′
.

We proceed by proving points 2 and 3, i.e. that there exists an integrable function g such that |P(0, c/λ,B)| ≤
g(0, c/λ,B), and that the integral

∫∞
0
dλλ1/z−1P(0,∞, λs+1) exists, which will then result in sufficient

motivation for exchanging the small-v/γ limit of the integral with the integral of the limit. The integrand in
Eq. (F.1) is an increasing function of c, hence

λ1/z−1P
(

0,
c

λ
,B
)
≤ λ1/z−1P(0,∞, B), (F.11)

where λ1/z−1P (0, c/λ,B) is dominated by the function λ1/z−1P(0,∞, B) in the limit of slow ramp rates,
i.e. in the c→∞ limit. Now it is required to prove that the integral∫ ∞

0

dλλ1/z−1P(0,∞, λs+1) (F.12)

converges. Writing the integrand explicitly using Eqs. (F.7) and (F.8) leads to

λ1/z−1P(0,∞, λs+1) = λ1/z−1

∫ 0

−∞
dy′

d

dy′
[
−P th

k (−1/y′)
]

︸ ︷︷ ︸
(a)

[
e−B

∫ 0
y′ dȳ m(−1/ȳ)

]
︸ ︷︷ ︸

(b)

. (F.13)

Referring back to the definition of the function m in Eq. (F.3) and Fig. F.1, note that m(−1/ȳ) ≥ 2π. This
implies (b) ≤ e2πBy′ in Eq. (F.13). We therefore define the upper bound U on the excitation probability as

0 ≤ P(0,∞, λs+1) ≤ U with U =

∫ 0

−∞
dy′

d

dy′
[
−P th

k (−1/y′)
]
e2πBy′ . (F.14)

With reference to Fig. F.2, we observe that as B →∞, i.e. λ→∞, the small-y′ behaviour of (a) (F.13) will
be dominant in the upper bound U (F.14). Using the Taylor series

(a) =
d

dy′
[
−P th

k (−1/y′)
]

=
e1/y′

y′2

∞∑
n=0

(−1)n(n+ 1)en/y
′
, (F.15)

the bound U is

U =
∞∑
n=0

(−1)n(n+ 1)

∫ 0

−∞
dy′

e(n+1)/y′

y′2
e2πBy′ =

∞∑
n=0

(−1)n(n+ 1)

(
8πB

1 + n

)1/2

K1(
√

8πB(1 + n))

(F.16)
where K1 is the modified Bessel function of the second kind. From the large argument asymptotic expansion
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Figure F.3: (a) The first term of the asymptotic approximation Ũ (F.18) of the bound, together with the exact bound
U (F.16) as a function of B. The bounds tend to zero exponentially quickly as B →∞. (b) The ratio U/Ũ of the exact
and approximate bounds as a function of B, which tends to 1 as B is increased.

of K1, the asymptotic approximation of the bound is

U ≈
∞∑
n=0

(−1)n
[
2(1 + n)π3B

]1/4
e−2[2π(n+1)B]1/2 . (F.17)

Since the first term in the infinite series will be dominant, we have

U ≈ Ũ =
[
2π3B

]1/4
e−2[2πB]1/2 , (F.18)

which agrees well with the true bound, even for relatively small values of B. This is illustrated in Fig. F.3.
Finally since B = λs+1, the bounded excitation probability P(0,∞, λs+1) ≤ U tends to zero exponentially
quickly as λ→∞, so the integral in Eq. (F.12) converges.

F.2 Small-Ti asymptotics of the excitation probability
In this section we motivate that the Ti → 0 limit of the integral∫ ∞

0

dλ (λ)
1
z−1P

(
0,

1

λ
,
γ(λTi)

s+1

v

)
(F.19)

from Eq. (5.75) exists and is finite by using the small-Ti asymptotics of Pk (F.2). For simplicity, define
x =

(
γT s+1

i

)
/v. The Ti → 0 limit of the excitation probability Pk = P

(
0, 1

λ , λ
s+1x

)
in the integral (F.19)

is

lim
x→0
P
(

0,
1

λ
, λs+1x

)
= P th

k (λ). (F.20)

Through a similar argument as in the previous section, it can be motivated that it is permissible to exchange
the Ti → 0 limit with the integral in Eq. (F.19). The resulting integral can be shown to converge.
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Appendix G

Mathematical expressions

The expression for h(χ) in Eq. (4.22) is given by

h(χ) =

[
(1 + i)χ

(
iD(1,0)(0, (1− i)χ)− iD(1,0)(0, (−1 + i)χ) + πD(0, (−1 + i)χ)

)
+D(−1, (1− i)χ) +D(−1, (−1 + i)χ)

]
×
[
(1 + i)χ

(
D(1,0)(0, (−1− i)χ)−D(1,0)(0, (1 + i)χ)− iπD(0, (1 + i)χ)

)
+D(−1, (−1− i)χ) +D(−1, (1 + i)χ)

]
, (G.1)

where we use the notation D(n, z) = Dn(z) and D(1,0)(n, z) = dDn(z)
dn , where Dn(z) is the parabolic

cylinder function satisfying the Weber differential equation [109].
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