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 Summary 

Antimicrobial peptides (AMPs) are currently the most researched group of compounds for new 

antimicrobial drugs especially with the rise in resistance to almost all available drugs by public 

health relevant pathogens. In this study we set out to characterise small cyclic AMPs in terms of 

their activity towards human pathogens Listeria monocytogenes, a food-borne pathogen causing 

listeriosis and Plasmodium falciparum, a parasite that causes malaria respectively, each a threat 

to public health.  

One of the small cyclic peptide libraries examined is the tyrocidines (Trcs) and analogues, which 

are cyclic decapeptides [cyclo-(D-Phe-Pro-(Phe/Trp)-D-Phe/DTrp)-Asn-Gln-(Tyr/Phe/Trp)-Val-

(Orn/Lys)-Leu] produced by the Gram-positive bacteria Bacillus aneurinolyticus as part of the 

tyrothricin complex which is non-ribosomally synthesised during sporulation. Previous research 

found that the six major Trcs were active against Listeria monocytogenes and Plasmodium 

falciparum and it was found that the identity of the aromatic residues in the aromatic dipeptide 

unit has an important role in activity. We set out to extend the qualitative structure to activity 

relationship (QSAR) studies using more Trc analogues and small synthetic Arg- and Trp-rich 

cyclic peptides (RW-peptides) in a bid to establish essential structural motifs and pre-requisites 

for activity. Eight natural and three synthetic Trc analogues and fifteen RW-peptides were either 

naturally or by chemical synthesis produced and characterised in terms of chemical character and 

biological activity. The Trcs were significantly more active than RW peptides, although much 

more haemolytic and thus toxic. Results indicated the relevance for hydrogen bonding with an 

aromatic amino acid residue for selective activity towards the leucocin A resistant L. 

monocytogenes B73-MR1. However, structural properties favouring a tighter membrane 

interaction hindered the Trc mode of action (MOA). We determined that Gln
6
 and hydroxyl 

group of Tyr
7 

may be involved in interaction with the putative target in L. monocytogenes. There 

was also need for an amphipathic balance between hydrophobicity and size/steric parameters for 

optimal activity. From our QSAR studies we predict as lead peptide for a future library of 

antilisterial Trcs: cyclo(VOMe3LfPWfNQY). Furthermore, the antilisterial activity of the Trcs 

was found to be predominantly lytic and salt tolerant while RW-peptides were non-lytic and 

sensitive to Ca
2+

. We confirmed that Ca
2+ 

enhanced Trc antilisterial activity with Ca
2+

 increasing 

the Trc anti-metabolic activity, but conversely inducing a non-lytic mechanism of action. From 
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model membrane studies, we propose that the calcium induced Trc non-lytic MOA could be due 

to detrimental lipid demixing, presence of a Trc sensitive Ca
2+

-induced non-membrane target in 

the prematurely calcium induced intracellular anaerobic form of Listeria monocytogenes,  and/or 

the Trc-Ca
2+

 complexes may inhibit key components such as membrane bound electron transport 

system or  bacterial dehydrogenases. 

We confirmed, as previously found, that the Trcs have potent antimalarial activity that is 

sequence specific and non-lytic. The RW-peptides had very weak activity, but our results again 

indicated that more hydrophobic and haemolytic peptides tend to be more active, particularly the 

RW-peptide containing the Trp analogue β-(benzothien-3-yl)-alanine (Bal). A novel finding was 

that one of the more polar Trc C analogues, namely tryptocidine C (Tpc C), in contrast to Trc C 

showed potent antimalarial activity indicating the specific sequence and the role of the Trp
7
 in 

activity. From these results a proposed lead peptide for future research is 

cyclo[VOLfP(Bal)fNQ(Bal)]. Furthermore, in our search for the Trc and Tpc C target(s) we 

employed high resolution fluorescence microscopy. Results show that Trc led to disorganisation 

of neutral lipid structures and chromatin halting growth in late trophozoite/early schizont stages. 

This indicated that membrane structures containing neutral lipids, as well as chromatin may be 

targeted by the Trcs. Another novel finding in our studies was that chloroquine (CQ) resistance 

not only correlated with resistance to Trcs, but the Trcs and CQ were found to be antagonistic 

towards each other’s activity. This indicated a shared target and we propose the food vacuole as 

another of the Trc targets in P. falciparum.  
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Opsomming 

Antimikrobiese peptiede (AMPe) is tans die mees nagevorsde groep verbindings in die soeke na 

nuwe antimikrobiese middels, veral weens 'n toenemende weerstandigheid van patogene in die 

openbare gesondheidsektor teen alle beskikbare middels. Die doel van hierdie studie was om 

klein, sikliese AMPe in terme van hul aktiwiteit teenoor twee menslike patogene wat 'n 

bedreiging vir openbare gesondheid is, Listeria monocytogenes, 'n voedsel-oordraagbare 

patogeen wat listeriose veroorsaak, asook Plasmodium falciparum, die parasiet verantwoordelik 

vir malaria, te karakteriseer. 

Een van die klein, sikliese peptiedbiblioteke wat ondersoek is, is die tyrocidines (Trcs) en analoë 

(sikliese dekapeptiede [siklo-(D-Phe-Pro-(Phe/Trp)-D-Phe/DTrp)-Asn-Gln-(Tyr/Phe/Trp)-Val-

(Orn/Lys)-Leu]). Hierdie peptiede deur die Gram-positiewe bakterie Bacillus aneurinolyticus 

word wat nie-ribosomaal gesintetiseer as deel van die tirotrisien kompleks word tydens 

sporulasie. Vorige navorsing het gewys dat die ses hoof Trcs teen Listeria monocytogenes en 

Plasmodium falciparum aktief is en dat die identiteit van die aromatiese residue in die aromatiese 

dipeptiedeenheid 'n belangrike rol speel in die Trc-aktiwiteit. Ons het gepoog om die 

kwalitatiewe struktuur-aktiwiteit-verwantskap (QSAR) studies uit te brei deur meer Trc analoë 

en klein sintetiese Arg- en Trp-ryke sikliese peptiede (RW-peptiede) te gebruik en sodoende 

essensiële struktuur-motiewe en voorvereistes vir aktiwiteit vas te stel. Agt natuurlike en drie 

sintetiese Trc analoë, asook vyftien RW-peptiede is of deur natuurlike of chemiese sintese 

geproduseer en gekarakteriseer in terme van chemiese karakter en biologiese aktiwiteit. Die Trcs 

het beduidend meer aktiwiteit as RW-peptiede getoon, maar is ook meer hemolities en dus meer 

toksies. Die resultate dui op die belang van waterstofbinding met 'n aromatiese aminosuurresidu 

vir die selektiewe aktiwiteit teenoor die leucocin A weerstandige L. monocytogenes B73-MR1. 

Strukturele eienskappe wat tot 'n sterker membraan-interaksie lei, verhinder egter die 

werkingsmeganisme. Ons het vasgestel dat Gln en die hidroksielgroep van Tyr betrokke kan 

wees in die interaksie met die vermeende teenmiddelteiken in L. monocytogenes. 'n Balans tussen 

amfipatiese/hidrofobiese en grootte/steriese parameters is ook noodsaaklik vir optimale 

aktiwiteit. Vanuit ons QSAR studies word die peptied siklo-(VOMe3LfPWfNQY) as die 

voorloper vir 'n toekomstige peptiedbiblioteek van antilisteriale Trcs voorgestel. Verder is daar 

gevind dat die antilisteriese aktiwiteit van die Trcs oorwegend lities en sout-verdraagsaam is, 
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terwyl die RW-peptiede nie-lities en Ca
2+

 sensitief is. Ons het bevestig dat Ca
2+

 die Trc 

antilisteriese aktiwiteit verbeter, deur die Trc se antimetaboliese aktiwiteit verhoog, maar 

terselfdertyd 'n nie-litiese werkingsmeganisme induseer. Vanuit model-membraan studies word 

voorgestel dat Trc se nie-litiese werkingsmeganisme, soos teweeggebring deur Ca
2+

, die gevolg 

kan wees van nadelige lipied vermenging, die teenwoordigheid van 'n kalsium geïnduseerde Trc-

sensitiewe nie-membraan teiken in 'n vervroegde kalsium geïnduseerde intrasellulêre anaerobiese 

vorm van Listeria monocytogenes, en/of dat die Trc-Ca
2+

 komplekse belangrike komponente 

soos ’n membraan-gebonde elektron transport sisteem of bakteriële dehidrogenases inhibeer. 

Daar is ook bevestig, soos voorheen gevind, dat die Trcs kragtige, antimalaria aktiwiteit besit wat 

volgorde-spesifiek en nie-lities is. Die RW-peptiede het swak aktiwiteit getoon, maar ons 

resultate het weereens bewys dat peptiede wat meer hidrofobies en hemolities is, meer aktief is, 

veral die RW-peptiede wat die Trp analoog β-(bensoteïen-3-iel)-alanien (Bal) bevat. 'n Nuwe 

bevinding is dat een van die meer polêre Trc C analoë, genaamd triptosidien C (Tpc C), in 

teenstelling met Trc C, sterk antimalaria aktiwiteit het, wat 'n aanduiding is van die spesifieke 

volgorde en die rol van die Trp
7
 in aktiwiteit. Vanuit hierdie bevindinge word die peptied siklo-

(VOLfP(Bal)fNQ(Bal)) as 'n voorloper vir toekomstige navorsing aangedui.  

Vir ons soeke na die Trc en Tpc C teiken(s), het ons hoë resolusie fluoressensie mikroskopie 

aangewend. Resultate toon dat Trc tot die ontwrigting van 'n neutrale lipied strukture en 

chromatien lei en sodoende groei beperk in die laat trofosoïet/vroeë skisont fases. Dit het 

aangedui dat die membraanstrukture wat neutrale lipiede bevat, sowel as chromatien, deur die 

Trcs geteiken word. 'n Verdere nuwe bevinding in hierdie studie was dat chloroquine (CQ) 

weerstandigheid nie net korreleer met weerstandigheid teen Trcs nie, maar dat die Trcs en CQ 

antagonisties optree teenoor mekaar se aktiwiteite. Dit dui op 'n gemeenskaplike teiken en die 

kosvakuool as 'n addisionele Trc teiken in P. falciparum word voorgestel. 
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Nelson Mandela 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

viii 

 

Acknowledgements 

I would like to express my thanks and gratitude to the following persons and institutions: 

•  The Organisation for Women in Science for the Developing World (OWSDW), the South 

African National Research Foundation (NRF), the Harry Crossley Foundation and the 

Postgraduate and International Office (PGIO) at Stellenbosch University for funding 

• Department of Biochemistry at Stellenbosch University for accommodating me during my 

studies 

• Prof. Marina Rautenbach, my promoter for her consistent and persistent guidance and 

mentorship 

• Dr Margitta Dathe and the group at the Liebniz Institute for Molecular Pharmacology, Berlin, 

Germany for their hospitality and training during my research visit and for supplying the RW-

peptides 

• Staff of the Central Analytical Facilities (CAF) at Stellenbosch University in particular Dr. 

Marietjie Stander, Dr. Ben Loos and Ms Lize Engelbrecht for technical assistance and 

training 

• Prof. Heinrich Hoppe (Rhodes University) for meaningful contributions in interpreting some 

of the malaria microscopy data 

• Prof. Martin Kidd at the Centre for Statistical Consultation at Stellenbosch University for 

assistance with principal component analyses 

• My colleagues of the BIOPEP group for their companionship for the past 4 years 

• Mr Emidio Samuel Nhantumbo for always having a moment to spare and for consistently 

having the right words to encourage me to achieve my full potential 

• My elder sister Epuli Menyi Ariane for the long calls and laughter even at thousands of miles 

away 

• My baby sister Leussa Monga Tessa for unconditional love and support 

• My mother Ms Mboh Enoh Margaret for all those nights and days spent on her knees 

interceding for me and for always being the wind under my wings lifting me to the highest 

heights 

• The Creator for care, love, direction and for never giving up on me and teaching me not to 

give up on myself. 

Stellenbosch University http://scholar.sun.ac.za



 

ix 

 

Table of Contents 

List of abbreviations and acronyms  ........................................................................................... xiv 

Preface ...................................................................................................................................... xxii 

 

Chapter 1 ...................................................................................................................................... 1.1 

Part I: Literature Review Small cyclic antimicrobial peptides as antilisterial compounds .......... 1.1 

1.1. Introduction.................................................................................................................... 1.1 

1.2. Listeria monocytogenes ................................................................................................. 1.1 

1.2.1. Cell structure .......................................................................................................... 1.2 

1.2.2. Pathogenesis of listeriosis ...................................................................................... 1.2 

1.2.3. Listeria control strategies ....................................................................................... 1.3 

1.2.4. Listerial antibiotic resistance .................................................................................. 1.5 

1.3. Peptide antibiotics and antimicrobial peptides .............................................................. 1.7 

1.4. Small cyclic antimicrobial peptides targeting Listeria ................................................ 1.11 

1.4.1. The tyrocidines and analogues ............................................................................. 1.12 

1.4.2. Model Trp-Arg rich cyclic hexapeptides .............................................................. 1.18 

1.5. Concluding remarks ..................................................................................................... 1.22 

1.6. References.................................................................................................................... 1.23 

 

Chapter 2 ...................................................................................................................................... 2.1 

Production, purification and characterisation of selected natural and synthetic Trcs .................. 2.1 

2.1. Introduction.................................................................................................................... 2.1 

2.2. Materials ........................................................................................................................ 2.6 

Bacterial strains: ................................................................................................................... 2.6 

Research materials:............................................................................................................... 2.6 

2.3. Methods ......................................................................................................................... 2.7 

2.3.1. Optimisation of Trc analogue production .............................................................. 2.7 

2.3.2. Purification of the Trcs ......................................................................................... 2.12 

2.3.3. Characterisation of purified Trc analogues .......................................................... 2.13 

2.4. Results and Discussion ................................................................................................ 2.15 

2.4.1. Manipulation of production and composition of Trc analogues by B. 

aneurinolyticus ATCC 8185 cultures ................................................................................. 2.15 

2.4.2. Optimisation for high yield of single Trc analogues from culture extracts .......... 2.21 

Stellenbosch University http://scholar.sun.ac.za



 

x 

 

2.4.3. Purification and characterisation of Trcs and analogues ...................................... 2.27 

2.4.4. Homology models of newly purified Trc analogues ............................................ 2.42 

2.5. Conclusions ................................................................................................................. 2.46 

2.6. References.................................................................................................................... 2.47 

 

Chapter 3...................................................................................................................3.1 

Role of antimicrobial peptide structure on antilisterial activity: tyrocidine and 

cyclo(RRRWFW) analogues ....................................................................................... ..........3.1 

3.1. Introduction.................................................................................................................. 3.1 

3.2. Materials ...................................................................................................................... 3.3 

3.3. Methods ....................................................................................................................... 3.4 

   3.3.1. Bacteria culturing ................................................................................................. 3.4 

   3.3.2. Peptide preparation ............................................................................................... 3.4 

   3.3.3. Determination of antilisterial activity of peptides ................................................ 3.5 

   3.3.4. Analysis of dose-response data ............................................................................ 3.6 

   3.3.5. Qualitative Structure-to-Activity Relationship (QSAR) analyses ........................ 3.6 

3.4. Results and Discussion: Part I - Tyrocidine analogues ................................................ 3.7 

   3.4.1. L. monocytogenes strain susceptibility to the tyrocidines .................................... 3.8 

   3.4.2. Comparative activity analyses of tyrocidine analogues ...................................... 3.10 

   3.4.3. QSAR and PCA analyses of the Trc libraries .................................................... 3.16 

3.5. Results and Discussion: Part II - cyclo(RRRWFW) analogues ................................. 3.22 

   3.5.1. L. monocytogenes strain susceptibility towards RW-peptides ........................... 3.26 

   3.5.2. Structure-activity analyses of c-WFW and analogues ........................................ 3.28 

   3.5.3. QSAR and PCA analyses ................................................................................... 3.34 

3.6. Conclusions ............................................................................................................... 3.40 

3.7. References.................................................................................................................. 3.43 

3.8. Addendum ........................................................................................................ .........3.51 

   3.8.1. Influence of culture storage on sensitivity to peptides ....................................... 3.51 

3.9. Supplementary data ................................................................................................... 3.54 

 

Chapter 4 ...................................................................................................................................... 4.1 

Activity and salt-tolerance of tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus,  

and their analogues towards Listeria monocytogenes as target .................................................. 4.1 

4.1. Introduction.................................................................................................................. 4.1 

Stellenbosch University http://scholar.sun.ac.za



 

xi 

 

4.2. Materials ...................................................................................................................... 4.3 

4.3. Methods ....................................................................................................................... 4.3 

4.3.1. Bacteria culturing ................................................................................................. 4.3 

4.3.2. Peptide preparation ............................................................................................... 4.4 

4.3.3. Growth and metabolism inhibition assays ............................................................ 4.4 

4.3.4. Membrane permeabilisation/lysis assays.............................................................. 4.5 

4.3.5. Influence of EDTA on Trc activity ....................................................................... 4.6 

4.3.6. Analyses of data ................................................................................................... 4.7 

4.3.7. Fluorescence microscopy ..................................................................................... 4.8 

4.3.8. Vesicle interaction studies .................................................................................... 4.8 

4.3.9. Fluorescence spectroscopy ................................................................................... 4.9 

4.3.10. Light scattering assays .......................................................................................... 4.9 

4.4. Results and Discussion ............................................................................................. 4..10 

4.4.1. Influence of metal cations on antilisterial activity of the cyclic peptides ........... 4.10 

4.4.2. Influence of metal cations on membrane activity of the cyclic peptides ............ 4.14 

4.4.3. Antilisterial activity of tyrocidines in combination with EDTA and divalent cations

 ................................................................................................................4.17 

4.4.4. Fluorescent microscopy ...................................................................................... 4.20 

4.4.5. Interaction of tyrocidines with metal cations ..................................................... 4.22 

4.4.6. Vesicle interaction studies .................................................................................. 4.26 

4.5. Conclusions ............................................................................................................... 4.27 

4.6. References.................................................................................................................. 4.29 

 

Chapter 5 .................................................................................................................................... 5.1 

Part II: Literature Review: Small cyclic antimicrobial peptides as anti-malarial compounds ... 5.1 

5.1. Introduction.................................................................................................................. 5.1 

5.2. Plasmodium falciparum ............................................................................................... 5.2 

5.2.1. Malaria pathogenesis ............................................................................................ 5.2 

5.2.2. Malaria related modifications of the red blood cell membrane ............................ 5.4 

5.2.3. Anti-malarial strategies ........................................................................................ 5.5 

5.3. Potential of antimicrobial peptides as antimalarial agents .......................................... 5.9 

5.3.1. Antiplasmodial antimicrobial peptides ................................................................. 5.9 

5.3.2. Possible mechanisms of antiplasmodial activity ................................................ 5.10 

5.4. Concluding remarks ................................................................................................... 5.14 

5.5. References.................................................................................................................. 5.15 

Stellenbosch University http://scholar.sun.ac.za



 

xii 

 

Chapter 6 .................................................................................................................................... 6.1 

Role of antimicrobial peptide structure on antimalarial activity: tyrocidine and cyclo(RRRWFW) 

analogues .................................................................................................................................... 6.1 

6.1. Introduction.................................................................................................................. 6.1 

6.2. Materials ...................................................................................................................... 6.4 

6.3. Methods ....................................................................................................................... 6.5 

6.3.1. Parasite culturing .................................................................................................. 6.5 

6.3.2. Peptide preparation ............................................................................................... 6.7 

6.3.3. Determination of antimalarial and haemolytic activities of peptides ................... 6.7 

6.3.4. Determination of toxicity ..................................................................................... 6.8 

6.3.5. Assessment of dose-response data ....................................................................... 6.8 

6.3.6. Interaction between chloroquine and selected tyrocidine analogues .................... 6.9 

6.4. Results and Discussion: Part I – cyclo(RRRWFW) analogues ................................. 6.11 

6.4.1. Antimalarial and haemolytic activities ............................................................... 6.11 

6.5. Results and Discussion: Part II – tyrocidine A and C analogues ............................... 6.14 

6.5.1. Antimalarial activity and cytotoxicity ................................................................ 6.14 

6.5.2. Evaluation of antimalarial activity of tyrocidines in combination with chloroquine 

........................... ............................................................................................................... 6.23 

6.6. Conclusion ................................................................................................................. 6.24 

6.7. References.................................................................................................................. 6.25 

6.8. Addendum ................................................................................................................. 6.33 

 

Chapter 7 .................................................................................................................................... 7.1 

Investigation of tyrocidine and tryptocidine antiplasmodial mechanism of action using light  

and fluorescence microscopy ..................................................................................................... 7.1 

7.1. Introduction.................................................................................................................. 7.1 

7.2. Material and methods .................................................................................................. 7.2 

7.2.1. Materials ............................................................................................................... 7.2 

7.2.2. Methods ................................................................................................................ 7.3 

7.3. Results and discussion ................................................................................................. 7.5 

7.3.1. Effect of tyrocidine and tryptocidine on intra-erythrocytic life cycle parasite 

     stages .......................................................................................................................... ...7.6 

7.3.2. Visualization of the effect of tryptocidine C on parasite neutral lipids .............. 7.12 

7.4. Conclusion ................................................................................................................. 7.14 

7.5. References.................................................................................................................. 7.14 

Stellenbosch University http://scholar.sun.ac.za



 

xiii 

 

Chapter 8 .................................................................................................................................... 8.1 

Summary, conclusions and outlook ............................................................................................ 8.1 

8.1. Introduction.................................................................................................................. 8.1 

8.2. Summary of findings and future prospects .................................................................. 8.2 

8.2.1. Production of selected natural Trcs ...................................................................... 8.2 

8.2.2. QSAR of antilisterial activity of small cyclic peptides ........................................ 8.3 

8.2.3. Salt sensitivity and tolerance of antilisterial activity of the cyclic peptides ......... 8.4 

8.2.4. Antimalarial activity of small cyclic peptides ...................................................... 8.6 

8.3. Last word ..................................................................................................................... 8.7 

8.4. References.................................................................................................................... 8.7 

 

Stellenbosch University http://scholar.sun.ac.za



 

xiv 

 

List of Abbreviations and Acronyms 

 

(Q)SAR (qualitative) structure to activity relationship 

[M]  molecular ion 

µ  growth rate 

1MeW  1-methyl tryptophan 

5MeW  5-methyl tryptophan 

ACN  acetonitrile 

ACTs  artemisinin-based combination therapies 

AMP(s) antimicrobial peptide(s) 

AP  activity product 

APAD  acetylpyridine adenine dinucleotide 

ATCC  American type culture collection 

ATP  adenosine triphosphate 

B. aneurinolyticus Bacillus aneurinolyticus 

B. subtilis Bacillus subtilis 

b3hW  L-beta-homotryptophan 

Bal  beta-(benzothien-3-yl)-alanine 

BHI  brain heart infusion 

CD  circular dichroism 

cDNA  complementary deoxyribonucleic acid 

CFU  colony forming units 

cl/cp  ratio of concentration of lipid to concentration of peptide 

CQ  chloroquine 

CQR  chloroquine resistance 

CQS  chloroquine sensitive 

CSP  circumsporozoite protein 

DDT  dichloro-diphenyl-trichloroethane 

Dha  2, 3-dehydroalanine  

Dhb  2, 3-dehydrobutyrine  

Stellenbosch University http://scholar.sun.ac.za



 

xv 

 

DLP  defensin-like protein 

DMEM Dulbecco’s modified Eagle’s medium 

DMPC  dimyristoyl-sn-glycero-3-phosphocholine 

DNA  deoxyribonucleic acid 

DPC  diphosphatidylcholine 

DPPE  1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine 

DPPG  1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] 

E. coli  Escherichia coli 

EDTA  ethylenediaminetetraacetic acid 

ESMS  electrospray mass spectrometry 

FIC  fractional inhibition concentration 

FICI  fractional inhibition concentration index 

Fpa  fluorophenylalanine 

fs  femtosecond 

FT-IR  Fourier transform infrared spectroscopy 

GMCS  global malaria control strategies 

GRAS  generally recognized as safe 

Grm  linear gramicidin  

GS  gramicidin S 

HDA  histone deacetylase 

HC50  peptide concentration leading to 50% haemolysis 

HEPES hydrozyethyl piperazineethanesulfonic acid 

HIV  human immunodeficiency virus 

HPLC  high performance liquid chromatography 

IC50  peptide concentration leading to 50 % microbial growth inhibition 

ICF  inhibitory concentration factor 

ICmax  peptide concentration leading to maximal microbial growth inhibition 

IEPM  infected erythrocyte plasma membrane 

Igl  alpha-(2-indanyl) glycine 

IL-1  interleukin-1 

Inl  internalin 

Stellenbosch University http://scholar.sun.ac.za



 

xvi 

 

iRBC  infected red blood cell 

IRS  indoor residual spraying 

ITN  insecticide treated nets 

LAB  lactic acid bacteria 

LB  Luria Bertani 

LC  liquid chromatography 

LC50  peptide concentration leading to 50% cytotoxicity 

LCMS  liquid chromatography mass spectrometry 

LDH  lactose dehydrogenase 

L-PrAsn L-N
δ
-propylasparagine 

LPS  lipopolysaccharide 

LUV  large unilamellar vesicles 

M  molar 

M. luteus Micrococcus luteus 

m/z  mass over charge ratio 

MALDI matrix-assisted laser desorption/ionization 

MDG  millennium development goal 

MIC  minimum inhibitory concentration 

MOA  mode of action 

Mr  molar mass 

MS  mass spectrometry 

MV  molecular volume 

NBT  nitro blue tetrazolium 

NCTC  national collection of type cultures 

NFG  tryptophan-N-formylated gramicidin  

NMR  nuclear magnetic resonance 

NOE  nuclear Overhauser effect 

NRPSs  non-ribosomal peptide synthethases 

NuB  nutrient broth 

OD  optical density 

Orn  ornithine 

Stellenbosch University http://scholar.sun.ac.za



 

xvii 

 

O  ornithine 

P. falciparum Plasmodium falciparum  

P. malariae Plasmodium malariae 

P. ovale Plasmodium ovale 

P.vivax  Plasmodium vivax 

PBS  phosphate buffered saline 

PC  phosphatidylcholine 

PCA  principal component analysis 

PCP-domain peptidyl carrier protein domain 

PCS  photon correlation spectroscopy 

PE  phosphatidylethanolamine 

PES  phenazine ethosulfate 

PfATPase Plasmodium falciparum adenosine-triphosphatase calcium pump 

Pfcrt  Plasmodium falciparum choroquine resistance gene 

PfCRT- Plasmodium falciparum chloroquine resistance protein 

Pfmdr  Plasmodium falciparum multi-drug resistance gene 

PfMDR- Plasmodium falciparum multi-drug resistance protein 

Phc A  phenycidine A 

Phc(s)  phenycidine(s) 

PI  phosphatidylinositol 

PIP2  phosphatidylinositol-4,5-bisphosphate 

pM  picomolar 

POPC  palmitoyloleylphosphatidylcholine 

POPE  palmitoyloleylphosphatidylethanolamine 

POPG  palmitoyloleylphosphatidylglycerol 

PPan  phosphopantotheine 

Prf  protein release factor 

PS  phosphatidyl serine 

PTS  phosphotransferase system 

PVM  parasitophorous vacuole membrane 

RBC  red blood cell 

Stellenbosch University http://scholar.sun.ac.za



 

xviii 

 

Rf  retention factor 

RMSD  root-mean-square deviation 

RNA  ribonucleic acid 

RP-HPLC reverse phase high performance liquid chromatography 

RPMI  Roswell park memorial institute medium 

Rt  retention time of analyte in column chromatography 

RW-peptides Arg- and Trp-rich peptides 

SASA  solvent accessible surface area 

SAV  solvent accessible volume 

SCSA  side chain surface area 

SDS  sodium dodecyl sulphate 

SEM  standard error of the mean 

SM  sphingomyelin 

SP  sulfadoxine/pyrimethamine 

spp.  species in plural 

Srf  surfactin 

sTpc A  synthetic tryptocidine A 

sTrc A(Q-O) synthetic tyrocidine A with glutamine to ornithine substitution 

sTrc AOMe3 synthetic tyrocidine A with trimethylated ornithine 

Tcn  tyrothricin 

TE  thioestherase 

TFA  trifluoroacetic acid 

TGS  tryptone glucose and salts culture medium 

TGYM  tryptone glucose yeast extract milk 

TLC  thin layer chromatography  

TNF  tumour necrosis factor 

TOF  time of flight 

Tpc C  tryptocidine C 

Tpc(s)  tryptocidines(s) 

Trc A  tyrocidine A 

Trc B  tyrocidine B 

Stellenbosch University http://scholar.sun.ac.za



 

xix 

 

Trc C  tyrocidine C 

Trc(s)  tyrocidine(s) 

TSB  tryptone soy broth 

UPLC  ultra performance liquid chromatography 

UV  ultraviolet 

WHOPES World Health Organisation Pesticide Evaluation Scheme 

Stellenbosch University http://scholar.sun.ac.za



 

xx 

 

Preface 

Malaria is a serious health threat that has been around for ages and is still present with us today 

especially in sub-Saharan Africa, but also in Latin America and Asia where millions of people 

die or are affected by the disease particularly children under the age of five. With recent reports 

signalling imminent clinical resistance towards artemisinin, the major component of the current 

therapy of choice, the ACTs (artemisinin-based combination therapies), there is an urgent need 

for new drugs that act via mechanisms to which the parasite will not develop resistance. 

Antimicrobial peptides (AMPs) act principally through membrane lysis in addition to other 

mechanisms of action. It is difficult for microorganisms to develop resistance to these unspecific 

and combined mechanisms. Some of these AMPs have been shown to have antimalarial activity. 

One group will be the subject of this research project; the tyrocidines (Trcs) which are cationic, 

amphipathic, cyclic decapeptides produced by Bacillus aneurinolyticus formerly known as 

Bacillus brevis.  

The major tyrocidines (Trcs) of the tyrothricin complex have also shown significant activity 

against Listeria monocytogenes. This food borne pathogenic bacteria which causes listeriosis has 

equally been a health scourge and threat to food safety mainly due to drug and disinfectant 

resistance by the pathogen. With the favourable attributes of the Trcs recognised, it is important 

to improve the collective understanding of their structure to activity relationship (SAR). We 

therefore, set out to produce a wider array of tyrocidine analogues by a variety of methods in high 

purity in order to characterise them and evaluate their structure to activity relationship (SAR). In 

a bid to develop bio-preservatives based on the structure of active Trcs we shall further verify the 

role of salts of metal cations, usually abundant in food processing and preservation settings, in 

modulating the antibacterial activity and mode of action of Trcs with emphasis on the previously 

observed non-lytic mode of action induced by calcium chloride. We would also be investigating 

the possible mechanisms of action of the Trcs towards these two microbial targets using a variety 

of state-of-the-art techniques which could enable the rational design of more specific analogues 

and peptide mimics. 

In addition to the Trcs we also investigated the activities of another group of small cyclic 

peptides that are possible antimalarial and antilisterial candidates, the synthetic analogues of the 
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hexapeptide cyclo(RRRWFW) or RW-peptides. They share the predominant aromatic residue 

and cationic character of the Trcs yet they are known to have a primarily non-lytic mode of 

action. Characterisation of these libraries of small cyclic AMPs will enable us to gain insight into 

the structural motifs and prerequisites necessary for antimicrobial activity and selectivity. 

The goal of this study is to contribute to the global effort towards the eradication of malaria, 

increase in food safety and reduction of the incidence of food borne diseases caused by Listeria 

by selecting for and characterizing cyclic peptide analogues with improved in vitro activity and 

selectivity to serve as lead compounds in drug development studies against drug-resistant forms 

of P. falciparum and L. monocytogenes. 

To achieve this goal, the following objectives were set to: 

1. To produce, purify and characterise the major and novel  tyrocidines and analogues via  

• optimized production by Bacillus aneurinolyticus ATCC 8185 (Chapter 2) 

• HPLC, ESMS, UPLC-MS and molecular modelling (Chapter 2); 

2. To characterise small cyclic peptides rich in Arg and Trp via HPLC and modelling  

(Chapter 3); 

3. To determine the in vitro antilisterial activities of cyclic peptides with detailed QSAR 

analyses to establish essential structural motifs and prerequisites for activity (Chapter 3); 

4. To verify the salt-tolerance of selected tyrocidine and cyclo(RRRWFW) analogues towards 

Listeria monocytogenes as target and the calcium chloride induced non-lytic mechanism of 

action of the tyrocidines (Chapter 4); 

5. To determine antiplasmodial (Plasmodium falciparum strains) and cytolytic (human 

erythrocytes and COS-1 cells) activity of tyrocidines and cyclo(RRRWFW) analogues 

(Chapter 6); 

6. To establish possible mode of action of tyrocidines towards Plasmodium falciparum using 

light and fluorescence microscopy (Chapter 7). 

This dissertation consists of two parts with Part I focusing on L. monocytogenes as target for the 

cyclic peptides in this study The literature survey of Part I is given in Chapter 1 and the 

experimental chapters consist of Chapters 2-4. Part II of this dissertation focuses on P. 

falciparum as target with the literature survey given in Chapter 5 and the experimental chapters 
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consisting of Chapters 6 and 7. The conclusions and future prospects of this study are given in 

Chapter 8. This dissertation was structured to consist of relatively independent chapter units so as 

to ease the publication of findings and all attempts to minimise inevitable repetitions were made. 
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Chapter 1  

Part I: Literature Review 

Small cyclic antimicrobial peptides as antilisterial 

compounds 

1.1. Introduction 

The on-going emergence of resistance by pathogenic microorganisms to currently available 

drugs has fuelled the search for the next generation of antimicrobial drugs 1–4. Compounds 

isolated from nature form a rich database of structures that could be optimized to develop more 

active drugs 5. Out of this assortment of natural compounds available, the antimicrobial peptides 

(AMPs) are one of the most researched groups for alternative and/or additional drugs because of 

their unique killing mechanism and minimal toxicity to normal mammalian cells 3,6–23. In order 

to carry out rational design of novel drug leads from AMPs active against resistant pathogens, 

there is need to increase knowledge of their mechanisms of action and the specific properties 

relevant to their activity and selectivity 10,24,25. This review is intended to summarize the main 

facts around listeriosis and to discuss the prospective use of AMPs as antilisterial therapeutics 

and/or food preservatives with emphasis on the small cyclic peptides. 

1.2. Listeria monocytogenes 

Listeria monocytogenes is a non-sporulating, flagellated and Gram-positive rod bacterium 26–29. 

The organism is a ubiquitous saprophyte in soil occurring primarily in decaying plant materials 
26,28,30–32. It is facultatively anaerobic and can grow at temperatures ranging from −0.4 to 50 oC 
26,33,34 and a pH range from 4.3 to 9.6 35–37. L. monocytogenes is moreover a facultative 

intracellular pathogen occurring mostly in domestic animals such as cattle, sheep, goats, and 

poultry, and occasionally in wild animals 26,35. It is an enteric pathogen which means that it 

resides in the gastrointestinal tract and has been isolated from animal and human waste 26,28,38. 

Since its emergence as a public health concern in the second half of the 1980s, several epidemic 

outbreaks of human listeriosis have been recorded especially in North America and Europe 
26,32,39–41. The latest outbreak which occurred in May 2013 in the USA has been linked to 

infected cheese resulting in human death and product recall 42. Human listeriosis, mainly caused 

by L. monocytogenes, is characterized by severe infections, like meningitis and septicaemia, 

principally in newborns and adults with compromised immunity 26,39. Contaminated food and 
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generally industrially produced, refrigerated ready-to-eat products are implicated 26,28,32. 

Therefore, listeriosis also has an economic effect as food manufacturers register massive losses 

during product recalls in food-borne outbreaks. Listeria spp. are therefore a serious threat to food 

safety, especially because of their tolerance of high salt concentrations and relatively low pH 

environments, as well as their ability to replicate at refrigeration temperatures 32,43. Moreover, 

these bacteria have developed resistance to currently available disinfectants and antibiotics 26,44–

46. The other members of the genus Listeria include L. innocua (non-pathogenic), L. seeligeri, L. 

welshimeri, L. ivanovii, L. grayi, and L. murrayi 
26.  

1.2.1. Cell structure 

The cellular structure of L. monocytogenes consists of a thick cell wall surrounding the 

cytoplasmic membrane. The cell wall is mostly made up of carbohydrates in the form of 

peptidoglycan, teichoic acids and lipoteichoic acids which are covalently linked to each other 
26,47. The peptidoglycan, which forms 35% of the dry weight of isolated dry cell walls, consists 

of cross-linked meso-diaminopimelic acid  27. Teichoic acids are polymers formed from glycerol 

or ribitol, neutral sugars, N-acetylamino sugars, and phosphate. The teichoic acids are covalently 

bonded to a particular site on the peptidoglycan. The lipoteichoic acids are the only amphipathic 

polymers at the cell surface. They are covalently bonded to the last phosphomonoester of the 

teichoic acids through their glycolipid portion. The lipid moiety serves to anchor the polymer 

chain to the cytoplasmic membrane. The major component of the cytoplasmic membrane of L. 

monocytogenes is phospholipids alongside a smaller amount of glycol- and neutral lipids 27. The 

major phospholipids involved are anionic and include bis(phosphatidy1)glycerol or cardiolipin, 

L-lysylcardiolipin, phosphatidylglycerol (PG), L-lysylphosphatidylglycerol and a phospholipid, 

referred to as bis(phosphatidylglycero1) phosphate 48–50.  

1.2.2. Pathogenesis of listeriosis 

Transmission of L. monocytogenes can be direct from contaminated animals to farm workers and 

veterinarians through skin lesions 26. However, contaminated industrially produced, refrigerated 

ready-to-eat food products such as vegetables, soft cheeses and dairy products, pâtés and 

sausages, smoked fish and egg products, as well as seafood are generally the vehicle of infection 

for sporadic and epidemic listeriosis 26,32,43,51,52. This fact was established following a number of 

epidemic outbreaks in North America and Europe from 1983 26,32,43,53. Ruminants get infected by 

eating spoiled silage 32. Due to the ubiquitous presence of Listeria spp. in the rural environment 

they contaminate the raw materials used to prepare industrially processed foods including the 

production plants 54.  
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Human listeriosis mostly occurs in very young or old individuals, as well as in persons with an 

underlying disease state associated with suppression of their T-cell-mediated immunity and this 

includes conditions such as neoplastic disease, pregnancy, diabetes mellitus, alcoholism, HIV, 

cardiovascular and renal collagen diseases,  and hemodialysis failure 26. Upon entry into the 

gastrointestinal tract from contaminated food, the pathogenesis of listeriosis is contributed by 

several factors 26,32. The most important factor is the intracellular growth capacity of L. 

monocytogenes using its virulent cell surface proteins: internalin A (InlA) and internalin (InlB), a 

hemolysin (listeriolysin O), two phospholipases, and a protein (ActA) responsible for 

intracellular motility 26,29,55. The bacteria penetrate intestinal epithelial cells and macrophages 

through the phenomenon of parasite-directed endocytosis 26 using the internalin proteins 29,56. 

The hemolysin and a phosphatidylinositol-specific phospholipase enable the escape of the 

listerial cells from the internalized phagosome 29,57,58. The bacteria replicate within the host while 

moving towards the cell membrane where they induce invagination of the membrane 29,59,60. 

Consequently the listerial cells become surrounded by a double membrane 29. A 

phosphatidylcholine-specific phospholipase enables the escape of the listerial cells from the 

double membranous vacuole before reinvasion of new cells 29,57,61,62. Invasion of neighbouring 

enterocytes results in enteritis 32. It has also been demonstrated that listerial cells can translocate 

to deeper organs without prior intraepithelial replication in the gut 32,63. After crossing the 

intestinal barrier, the cells are transported by lymph or blood to the mesenteric lymph nodes, 

spleen, and liver 32,63,64. In the absence of appropriate immune response in the liver, such as with 

immune compromised individuals, unlimited replication of L. monocytogenes in the liver 

parenchyma could lead to the release of the organism into the circulation 32. Being a 

multisystemic pathogen, L. monocytogenes can contaminate a wide range of host tissues and 

cause septicaemia 32. Nevertheless, L. monocytogenes seems to have a pathogenic tropism to the 

pregnant uterus and the central nervous system leading to abortion, still birth, and meningitis as 

the major clinical manifestations of the disease 32. 

1.2.3. Listeria control strategies 

1.2.3.1. Management of listeriosis  

In the late nineteenth century Pasteur, Joubert, von Freudenreich and a host of other scientists 

demonstrated that microbes released substances (antibiotics) capable of therapeutic action for 

infections by other microbes 65. The development of antibiotics contributed in significantly 

increasing life expectancy and is perhaps one of humanity's greatest triumphs 66,67. Generally, 

Listeria spp. are susceptible in vitro to antibiotics that are effective against other Gram-positive 
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bacteria with the exclusion of the newer cephalosporins and fosfomycin 45,68–70. However, only 

few antibiotics can kill the intracellular stage of these bacteria 45. The sporadic nature and rarity 

of human listeriosis makes prospective clinical studies on the best antibiotic treatment 

unavailable, thus choice of the optimal therapy relies on intermittent observations and 

impressions 45. Penicillin derivatives are important for treatment of all forms of listeriosis 45. 

Ampicillin has also been successfully used in treating adults and newborns 45,71. Penicillin and 

ampicillin (β-lactams) act via high affinity binding to and inhibition of the membrane enzyme 

PBP3 (penicillin binding protein 3) which is involved in the final stage of peptidoglycan 

synthesis leading to lethal effect on the bacterial cell 45.  However, ampicillin is not reliably 

bactericidal towards L. monocytogenes but combination with gentamicin, an aminoglycoside 

(acts by irreversibly binding the 30S bacterial ribosomal subunit thus inhibiting protein 

synthesis), increases the therapeutic effect in in vitro and animal experiments 72. Therefore, 

penicillin G or ampicillin in combination with gentamicin is recommended as the current therapy 

of choice 73,74. Co-trimoxazole has been recommended for patients allergic to β-lactams as 

second choice 75–77 treatment of intracranial and extracranial symptoms. Co-trimoxazole for 

example trimethoprim has also been used alone after parenteral treatment to prevent relapse 78 or 

in combination with ampicillin 45. Even though vancomycin has been suggested as a substitute of 

ampicillin or co-trimoxazole 79 it is associated with contradictory results such as treatment 

failures 80 and the development of listerial meningitis during vancomycin therapy 81. Listeriosis 

has been observed to be fatal in more than 30% of patients even with rational antibiotic therapy 
45,74. It has been suggested that this high lethality is due to the facultative intracellular location of 

Listeria where they are hidden from the high concentrations of antibacterial agents in 

extracellular environment 82. In addition, antibiotics do not easily penetrate the brain where some 

of the bacteria may be located 74. It is speculated that it is important to include rifampicin in the 

treatment regimen to completely eradicate intracellular bacteria hidden, for example, inside 

parenchymal cells of the brain 45,83. 

1.2.3.2. Food preservation 

The principal goal of food preservation is to reduce proliferation of microorganisms while food 

is in storage thereby extending the shelf life and decreasing hazard from food consumption 84. 

Food preservation approaches that can be used individually or in combination include physical 

removal of the microorganisms via centrifugation or filtration, use of low and high temperature, 

decreasing water availability, use of chemicals such as sulphur dioxide, organic acids and 

nitrates, and radiation techniques 84. In order to satisfy the demands of present day food 

consumers in terms of reduced use of chemical preservatives and harsh heat treatment so as to 
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achieve safe, more nutritious and fresh-tasting food, a class of AMPs called bacteriocins are 

increasingly employed as natural food preservatives 85,86. The class I bacteriocin (classification 

according to molecular weight and chemistry), nisin 87–89 have been shown to have antilisterial 

activity and is commonly used and has been given the GRAS (generally recognized as safe) 

status for food in the United States at levels of 5.5-6.9 mg nisin per kg of food 9,18,90. However, 

this group of peptides may have been compromised as there is emerging resistance against class I 

and IIa bacteriocins (class IIa bacteriocins and nisin are antilisterial through interaction with lipid 

II, a peptidoglycan precursor 91). There have been several reports of resistance by some Listeria 

strains to nisin and class IIa bacteriocins 91–103.   

1.2.4. Listerial antibiotic resistance 

Due to the knowledge that L. monocytogenes in contaminated animal products is the main route 

to acquire listeriosis, efforts to control the disease have also focused on antibiotic treatment of 

animals 44,104. Antibiotics are moreover randomly used in animal breeding 105. The extensive use 

of antibiotics in both humans and animals as well as use of sanitizers or disinfectants in food 

processing or equipment cleaning has led to the development of resistance by food-borne 

pathogens including L. monocytogenes to currently available antibiotics, sanitizers and 

disinfectants 
39,44,104,106

. Generally, bacteria acquire resistance through either of the following 

mechanisms 107: 

1) Cross-resistance arising from chromosomal mutation  

2) Transfer of resistance genes from one microorganism to another via plasmids (conjugation 

or transformation), transposons (conjugation), integrons and bacteriophages (transduction).  

The resistance genes protect bacteria from antimicrobial agents through numerous types of 

biochemical resistance mechanisms 107,108:  

1) Interfering with cell wall synthesis rendering some antibiotics inactive, e.g., β-lactams 109  

2) Modification of antibiotic target through inhibition of protein synthesis e.g., macrolides 

and tetracyclines 110,111 or meddling with nucleic acid synthesis, e.g., fluoroquinolones 112 

3) Modification of cell permeability by alterations in outer membrane, e.g., aminoglycosides 

or using novel membrane transporters, e.g., chloramphenicol 113.  

4) Through metabolic pathway “bypass” or inhibition, e.g., trimethoprim-sulfamethoxazole 
114.  

In 1988 was the first report of L. monocytogenes strains resistant to >10 µg of tetracycline per 

mL and isolation of a clinical multiresistant L. monocytogenes strain in France 115. From then, 

several strains of Listeria spp. that are resistant to one or more antibiotics have been isolated and 
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described 39,105. Although the number of Listeria spp. resistant to antibiotics (excluding 

tetracycline) remains low, the appearance of multiresistant strains makes doubtful the general 

claim that Listeria is a bacterial genus consistently susceptible to antibiotics 105. A food-borne 

strain of L. monocytogenes resistant to trimethoprim 39, a clinical multiple antibiotic (including 

gentamicin) resistant isolate of L. monocytogenes 116 and resistance to streptomycin, 

erythromycin, kanamycin, sulfamethoxazole, or rifampin 39,105,117 have been observed. It is 

debated that antibiotic resistance in Listeria could be transferred by genes found on plasmids and 

transposons from saprophytic or commensal isolates to human isolates of L. monocytogenes 26,44–

46. Self-transferable plasmids suggested to originate in Enterococcus-Streptococcus have been 

implicated in multiple antibiotic resistance 115 and resistance to tetracycline 39,105 in L. 

monocytogenes in addition to conjugative transposons. The digestive tract of humans and 

animals has been proposed to be where Listeria spp. acquire these conjugative plasmids and 

transposons from Enterococcus-Streptococcus 
105,118. This rise in resistance to conventional 

antibiotics is now a major public health concern 18,39,105. 

There are also several reports of resistance by L. monocytogenes strains to nisin and other 

bacteriocins 89,95,97,103,119 with the term “resistance” referring to the ability of strains to grow at 

the highest bacteriocin concentration available. The proposed nisin resistance model of L. 

monocytogenes ATCC 700302 by Crandall & Montville 93 (reviewed by Kaur et al.
120) included 

three factors: 1) alteration of peptidoglycan composition 121 possibly leading to increased binding 

of divalent cations that interfere with the cationic peptide; 2) phospholipid content changes 

leading to modified membrane electric charge which inhibits pore formation; and 3) decreasing 

membrane fluidity which prevents peptide insertion and association. The proposed mechanisms 

of resistance to class IIa bacteriocins specifically leucocin A resistance in L. monocytogenes 

B73-MR1 involve absence of a putative mannose-specific PTS enzyme IIAB subunit 100, up-

regulating the synthesis of a putative β-glucoside-specific PTS enzyme II (EIIBgl) and a phospho-

β-glucosidase, as well as increased membrane fluidity by increasing levels of desaturated and 

short-acyl-chain phosphatidylglycerols in the membrane 89,92,95. Furthermore, bacteriocin cross-

resistance in which resistance to a bacteriocin leads to resistance to other bacteriocins of the 

same class or in other classes reduces the efficiency of bacteriocins 94.  

In response to the emergence of resistance to currently available drugs and disinfectants by L. 

monocytogenes, other antimicrobial peptides are investigated for antilisterial activity to 

complement or replace the bacteriocins as natural food preservatives or serve as therapeutic 

agents. Those that have shown significant activity include AMPs of animal origin, human 

defensins 122,123, protamine 122,123, plectasin, novicidin, novispirin G10 123 and magainin 122, the 
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plant-derived thionin and snakin  122 and bacterial subtilosin from Bacillus amyloliquefaciens 
124. 

Spathelf and Rautenbach 125 observed that the six major tyrocidines from commercial tyrothricin 

had significant lytic and growth inhibitory activity towards L. monocytogenes. The leucocin A 

resistant strain, L. monocytogenes B73-MR1 was more susceptible than the sensitive L. 

monocytogenes B73 strain. Therefore, peptide antibiotics and AMPs are a promising new 

generation of antibiotics in drug discovery to combat resistant pathogens 8,9,14,126–128. 

1.3. Peptide antibiotics and antimicrobial peptides 

Peptide antibiotics have an average molecular mass ranging from 270 (bacilysin) to 

approximately 4500 (licheniformin) 129 and are also classified as antimicrobial peptides (AMPs) 

defined as “small, cationic, amphiphilic peptides, characterized by microbicidal activity against 

bacteria, fungi, viruses and other pathogens” 130. AMPs vary extensively according to their 

sequences but they can be grouped according to their secondary structure under four main 

categories namely those containing either α-helix, β-sheet, extended coil or loops 13,15. They are 

also grouped as linear or cyclic peptides (including cyclic lipopeptides) and could be of natural 

or synthetic origins (Table 1.1). 

These peptides are attractive as substitutions for classic antibiotics because of their fast and 

effective microbicidal action combined with a decreased likelihood for microbes to develop 

resistance to their non-specific membrane-mediated mechanism of action 9,12,16–22. Their 

molecular simplicity also makes them appealing for development of future antibiotics 131.  

The nature of the antimicrobial peptide, the characteristic of the cell membrane and the 

metabolic state of the target cells all contribute to determine the mechanisms of action of 

antimicrobial peptides and hence their activity 12,132–137. The physicochemical parameters related 

to peptide structure that control their activity include conformation, hydrophobicity, charge 

distribution, comparative size of the polar/nonpolar face, and amphipathicity 10,12,135,136,138–150. 

These parameters are relevant to different steps in the multi-step mode of action of AMPs 
146,147,151. Moreover AMP activity is conditioned by environmental factors like ionic strength and 

pH 134,145 which would influence peptide aggregation and interaction with charged membrane 

surfaces of target cells 145,152–155. Important to the activity and selectivity of AMPs is their 

cationic and amphiphilic nature as these factors are relevant for the initial interaction with 

microbial membranes 131,180. Accumulation at polyanionic microbial cell surfaces is ensured by 

the overall positive charge of the AMPs 12,141,144,146,147,181 because microbial membranes contain 

acidic polymers, such as lipopolysaccharide (LPS) (in Gram-negative bacteria) 182 and wall-

associated teichoic or teichuronic acids (in Gram-positive bacteria) 183. The AMPs eventually 
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reach the cell membrane through self-promoted uptake, a hypothesis proposed by Hancock and 

Chapple 8. Upon making contact with the anionic surface of the external lipid layer of the 

cytoplasmic membrane, these peptides firstly interact with the polar head groups of membrane 

phospholipids through their hydrophilic face and then the hydrophobic face interacts with fatty 

acyl chains for membrane insertion 131. Peptide accumulation at the membrane and ensuing 

permeation therein are therefore influenced by peptide amphipathicity and hydrophobicity 
144,146,147,165,184–190. 

Following insertion into the membrane, AMPs cause an array of structural distortions or 

damages to the membrane architecture using the following possible mechanisms adapted from 
131: 

1)  Carpet-like mechanism in which peptide molecules gather parallel to the surface and have 

a detergent-like effect on the membrane via thinning 9,182;  

2)  “Torroidal-pore or wormhole model” which proposes that peptide molecules self associate 

to form transient pores 187,189,191; 

3)  The insertion of peptides into the membrane could lead to the formation of a water core 

lined by both the inserted peptides and the lipid head groups resulting from an induced 

bending of lipids near peptide aggregates which leads to disruption of the membrane 

barrier function 188. 

4)  The peptides could also translocate across the cytoplasmic membrane and act on internal 

targets through unique mechanisms 9,22,25,108,184,192,193 for example, the proline hinge of 

some buforin II analogues enabled them to penetrate the cytoplasmic membrane without 

permeabilisation and determined their antimicrobial potency 194. The Pro-rich AMP 

apidaecin undergoes membrane translocation via a permease/transporter-mediated 

mechanism 195. 
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Table 1.1 Natural and synthetic antimicrobial peptides classified according to secondary 
structure. Standard one-letter amino acid code was used in the primary structure of 
the peptides with the following additions: lower case letters represent the D-
enantiomers; all other amino acids are L-form. O represents ornithine. Kyn: 
kynurenine; n: D-Asn; a: D-Ala; s: D-Ser, f: D-Phe, y: D-Tyr, and MeE: methyl 
glutamate. The subscript numbers show cysteine residues that are joined by disulfide 
bridges. 

 

Structural 

group Examples Origin Primary structure Source 

α-helical 
peptides  

Magainin 2 Frog GIGKFLHSAKKFGKAFVGEIMNS 156 
Penetratin Drosophilia RQIKIWFQNRRMKWKK 157,158 
Temporin L Frog FVQWFSKFLGRIL 159 
NLK-18 Synthetic YKLLKLLLPKLKGLLFKL-NH2 

160 
MSI-78 Synthetic GIGKFLKKAKKFGKAFVKILKK-NH2 

161 
β-sheet 
peptides 

Protegrin-1  Pig RGGRLC1YC2RRRFC1VC2VGR-NH2  
162 

(KIGAKI)3-
NH2 

Synthetic KIGAKIKIGAKIKIGAKI-NH2 
163 

Extended 
peptides  

Indolicidin Cattle ILPWKWPWWPWRR-NH2  
164,165 

Histatin-5 Human DSHAKRHHGYKRKFHEKHHSHRGY 166 
CP-11 Synthetic ILKKWPWWPWRRK 167 

Disulphide 
bonded β-
turn loop 
peptides 

Bactenecin Cattle RLC1RIVVIRVC1R 168,169 
Lactoferricin Cattle FKC1RRWQWRMKKLGAPSITC1VRRAF 170,171 
BacP3R-V Synthetic RRRLC1PIVIRVC1RR 172 

N → C cyclic 
peptides  

Gramicidin S Gram + 
Bacteria 

cyclo(VOLfPVOLfP) 173 

GS10 Synthetic cyclo(VKLyPVKLyP) 174 
Tyrocidine C Gram + 

Bacteria 
cyclo(VOLFPWWNQY) 175 

N → C cyclic 
lipopeptides 

Iturin A Gram + 
Bacteria 

cyclo(amino-octadecanoyl-NynQPnS) 176,177 

Daptomycin Gram + 
Bacteria 

cyclo(n-decanoyl-WnDTGODaGs-(2S,3R)3-
MeE-Kyn) 

178,179 

In order for the AMPs to target intracellular Listeria infection they must be able to translocate 

over membranes. Several Arg-rich peptide groups have been shown to translocate across cellular 

as well as nuclear membranes. These include HIV-1 peptide Tat (48-60) and analogues, NLS 

peptides, RNA-binding peptides, DNA-binding peptides and polyarginine and arginine-rich 

antimicrobial peptides 196. In addition to the Arg residues, the two Trp residues of penetratin, a 

Drosophila antennapedia peptide, have been shown to be relevant in the translocation of the 

peptide across cell membranes 158. Studies with the cathelicidin-derived peptide tritrpticin which 

is rich in all three residues (Pro-, Arg- and Trp-rich) indicated that it acts by both membrane 

depolarization and secondary intracellular targeting 197. However, when the two Trp residues of 

tritrpticin were replaced with Phe residues, the resulting analogue lacked membrane 
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permeabilising activity and translocated the membranes for improved antibacterial action 197. 

The mechanism of uptake of Arg-rich peptides and penetratin involves endocytosis mainly by 

macropinocytosis, clathrin-mediated endocytosis and caveolae/lipid-raft-mediated endocytosis 
198,199. On the other hand histatins translocate fungal cell membranes by binding to a receptor and 

induce non-lytic loss of ATP from metabolically active cells 200. Non-lytic mechanisms of 

antimicrobial action of the internalized peptides involve modification of cell division via the 

cytoplasmic membrane septum formation, inhibition of cell-wall synthesis, inhibition of nucleic 

acid synthesis, inhibition of protein synthesis or enzymatic activity inhibition, cell cycle 

disruption and consequent production of reactive oxygen species 108. The study reported in this 

dissertation includes a group of synthetic cyclic peptides rich in Arg and Trp residues (RW-

peptides). The fact that their primary mode of action is not via membrane lysis attests to the role 

played by Arg and Trp in promoting translocation of AMPs across cell membranes. By 

comparing their antilisterial activity to that of the tyrocidines (Trcs), which also have Trp and 

Phe residues could assist in distinguishing which moiety of the Trcs is relevant for possible 

membrane translocation and interaction with the purported intracellular target(s). 

The potential of AMPs to be a new class of antimicrobial agents is demonstrated in for example 

the extensive use of gramicidin S and polymyxin B as non-prescription topical agents and use of 

tyrothricin, consisting of the Trcs and linear gramicidins 201, in non-prescription lozenges, ear 

drops and topical antibiotic creams 9,23. Vancomycin, a cyclic glycopeptide has been in clinical 

use for several years and is considered the ‘antibiotic of last resort’ 66. Also the lipopeptide 

daptomycin is one of the new classes of antibiotics used in clinical setting with systemic 

application 11. However, challenges towards clinical application of antimicrobial peptide 

therapies include possible in vivo proteolytic degradation of peptides in relation to 

pharmacokinetics for systemic applications; incomplete information about toxicity; maintaining 

the high microbicidal activity at physiological conditions of salt, pH, and serum; as well as 

relatively high development and manufacturing costs 202. Nevertheless, synthetic peptides which 

are stable, more cost-effective and have broad-spectrum activity are being developed to 

overcome these previous obstacles 22,23. Efforts have seen several peptide leads at different levels 

of pre-clinical and clinical trials to treat a variety of bacterial, fungal, parasitic, and viral 

infections 9,11,22,23. Examples include the magainin peptide/pexiganan acetate which is currently 

for the second time in phase III clinical trials for the treatment of diabetic foot ulcers and is 

developed by the companies Dipexium Pharma, MacroChem and Genaera 22. The modified R-

type bacteriocins avidocin and purocin from Pseudomonas aeruginosa are in preclinical trials by 

AvidBiotics (S. San Francisco, California) for their potential as narrow spectrum antibiotics for 
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human health and food preservation 22. There is emphasis on fully optimising AMPs before 

moving to pre-clinical and clinical testing 22.  

As mentioned above, bacteriocins have been seen as the most promising natural food-

preservatives 85,86. Bacteriocins are gene-encoded peptides produced by lactic acid bacteria or 

LAB 205 and are variable in their structure, functions, ecology and inhibition spectra 85. Three 

main classes of bacteriocins have been identified on the basis of their biochemical and genetic 

properties 205. Class I bacteriocins are the lantibiotics, which are post-translationally modified 

small peptides containing atypical amino acid residues like lanthionine and methyl lanthionine. 

Class II bacteriocins are not modified and can be sub-classified as: class IIa (pediocin-like 

bacteriocins and possess antilisterial activity), class IIb (two-peptide bacteriocins) and class IIc 

(other one-peptide bacteriocins or non-pepdiocin-like bacteriocins). Class III bacteriocins 

include large, heat-labile proteins which show antimicrobial activity. However, the class I 

bacteriocin, nisin, the main bacteriocin used in food preservation, has the following the 

shortcomings as concluded by Mendoza et al. 209: it is unstable at neutral to alkaline pHs, its 

antimicrobial activity is reduced when it is included in complex foods, its solubility is low over 

the physiological pH range, and its activity is restricted to Gram-positive bacteria. In addition, 

the resistance by some Listeria spp. to a number of Class I and class II bacteriocins is currently a 

concern that must be addressed 91–103.  

Although previous studies indicated the potent antilisterial activity of the cyclic decapeptides 

tyrocidines especially towards the leucocin A resistant strain of L. monocytogenes 
125, only six 

analogues were tested whereas more than twenty natural analogues have been identified 210. 

Studies with AMPs such as the cyclic RW-peptides and Trcs have reported that it is mainly the 

amphipathic balance of the different peptide analogues that are relevant to their antibacterial 

activity 125,203,204. However, more analogues need to be evaluated for activity as well as to 

determine their stability, salt tolerance and toxicity with the aim of employing them in food 

preservation against drug and disinfectant resistant pathogens. There is also need to test for more 

analogues to establish the structural motifs that are required for optimal activity and selectivity. 

1.4. Small cyclic antimicrobial peptides targeting Listeria 

The flexibility of linear peptides causes the existence of a variety of possible conformations 

which leads to decreased selectivity and specificity of most linear peptides for their receptors 211. 

Cyclisation through peptide (amide or disulfide) bond formation is employed as one strategy to 

constrain the peptides 211. The advantages especially of small cyclic peptides over their linear 

analogues include: stability, resistance of proteolytic degradation, improved receptor selectivity, 
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better bioavailability and available conformational proximity for receptor binding 211,212. This 

Part I of the research project focussed on the tyrocidines (Trcs), small cyclic decapeptides and 

model Trp/Arg-rich cyclic hexapeptides in an attempt to identify essential structural motifs and 

pre-requisites for their antilisterial activity (Chapters 3 and 4). 

1.4.1. The tyrocidines and analogues 

The Trcs are cyclic decapeptide antibiotics 65,213,214 produced by the bacteria Bacillus 

aneurinolyticus formerly known as Bacillus brevis as part of the tyrothricin complex together 

with gramicidins, a family of analogous peptides 129,215–217. Trcs are positively charged at neutral 

pH but do not have an overt amphipathic structure 218 and can thus be classified as cationic 

antimicrobial peptides 128. They are not gene-encoded but are produced via special thiotemplate 

enzymatic systems in aerobic sporulating soil bacteria Bacillus aneurinolyticus 
126. Together 

with the gramicidins they form the tyrothricin complex, an alcohol-soluble, water-insoluble 

fraction thus named by René Dubos in 1939 201,210,219–221. They were discovered based on the 

observation that some bacilli exhibited antagonistic bactericidal activity to other microorganisms 
219. Tyrothricin was eventually employed as the earliest antibiotic in clinical practice though 

discovered a decade after penicillin 210. The tyrocidines are strictly considered peptide 

antibiotics, but differ from conventional antibiotics in that they possess fast killing kinetics via 

pore-forming mechanisms in membranes unlike the slower antibiotic mechanism of primarily 

targeting a metabolic enzyme 18. Their positive charge provides for selectivity and broad 

spectrum activity as they preferentially interact with bacterial membranes that are negatively 

charged as opposed to the neutral membranes of normal vertebrate cells 14. Hence, resistance to 

Trcs will necessitate major modification of the lipid composition of the microbial membranes. 

Incidentally, no resistance has been reported to the tyrocidines 222. It is this unique mode of 

action shared with most AMPs that prompted the characterization of the antilisterial activity of 

the tyrocidines.  

Previous research has already demonstrated the in vitro antilisterial and anti-malarial activity of 

the tyrocidines and also highlighted that their activity is related to the structure of the analogues 
45,125,223,224. However, the tyrocidines also have high haemolytic activity which has halted their 

intravenous use 222. Knowledge of the structure-activity relationship of these type of cyclic 

peptides has been useful for separation of the haemolytic and antibacterial activity 222. For 

example synthetic analogues of gramicidin S (GS) in which the D-His and Lys residues replaced 

D-Phe and Orn retained good antibacterial activity with reduced haemolytic activity 7,174. Other 

GS analogues with increased ring size from 10 to 14 showed that perturbation of the amphipathic 

moment also resulted in suppressed haemolytic activity 225. However, similar perturbations did 
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not improve selectivity in the decapeptide GS10_0 (cyclo[VKLhPVKLhP]) and analogues as 

they resulted in considerably reduced antimicrobial activity along with the suppressed 

hemotoxicity 226.  

1.4.1.1. Structural properties  

Both the gramicidin and tyrocidine fractions of tyrothricin are a composite mixture of peptides 
210. Nine linear gramicidins and 28 different tyrocidines have been identified from tyrothricin 210. 

The sequences of tyrocidine A 227,228, B 229 and C 230 were established over 50 years ago. In the 

major three tyrocidines A, B, and C, the phenylalanine residue(s) in the aromatic dipeptide unit 

is replaced by tryptophan residues(s). The Orn residue is sometimes substituted with Lys (Figure 

1.1) while the Val and Leu residues are sometimes substituted by other aliphatic amino acids in 

variants of the tyrocidines. When the invariable Tyr is substituted with Trp or Phe the tyrocidine-

like peptides are named tryptocidines and phenycidines (as designated by our group) 125. The 

primary structure of the tyrocidines is comparable other peptides such as GS 

(cyclo[VOLfPVOLfP]) 173 and streptocidins (with major analogues (A-D) consisting of the 

structure cyclo[F1P2L3W4/F4N5Q6Y7/W7V8O9L10]) 231. 

Under physiological conditions the cyclic decapeptide tyrocidine A 

(cyclo[f1P2F3f4N5Q6Y7V8O9L10]) is basic and has an antiparallel β-pleated sheet conformation 

with β I and β II' turns stabilised by four backbone hydrogen bonds 218,232–236. The backbone 

conformation is conserved in the other major tyrocidines 237 and this backbone conformation is 

mainly responsible for the tendency of tyrocidines to form homo- and heteropolymers (or 

aggregates) in aqueous solution 217,218,230,237,238. The occurrence of D- and L-amino acids is 

possibly essential for the spatial distribution of the hydrophilic and hydrophobic moieties of 

tyrocidines 239. The residues Gln6 and Tyr7 do not fit into either side of the antiparallel sheet 

structure, but form a type II′ β-turn with little contribution to the amphipathicity of the molecule 
240. The tyrocidines share the Val8Orn9Leu10D-Phe1Val2 pentapeptide sequence and backbone 

conformation with GS (Table 1.1) which is a cyclic decapeptide produced by Aneurinibacillus 

migulanus ATCC 9999 16,135,232,241–244. 
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Figure 1.1 Structure of tyrocidine A showing possible residue substitutions in major analogues 

 

1.4.1.2. Biosynthesis  

In 1964, Mach and Tatum 245 observed that the synthesis of the different tyrocidine analogues 

could be determined by the environmental concentration of constituent amino acids and 

attributed this fact to a low specificity of the enzyme systems which can incorporate certain 

structurally similar amino acids. In their case, the addition of Phe to the culture led to an almost 

exclusive synthesis of tyrocidine A at the expense of tyrocidines B and C. Adding Trp to the 

minimal medium compromised the synthesis of the Phe-rich forms of tyrocidine and a new 

tyrocidine was produced instead, tyrocidine D (renamed tryptocidine C), which contains three 

Trp and no Phe. In the presence of both Phe and Trp, the four tyrocidine analogues were 

synthesized. This phenomenon can be exploited to achieve high yields of specific analogues in 

high purity for use in bioassays. 

The onset of tyrocidine production occurs when logarithmic growth turns into the stationary 

phase immediately before the start of spore formation 246–251 and continues during spore 

formation. Lee et al. 252 observed the coincidence between the early stages of sporulation of 

Bacillus brevis 8185, the increase in uptake capacity for tyrocidine-constituent amino acids and 

tyrocidine production, and suggested that accumulation of amino acids and the synthesis of 

tyrocidine occurred in forespores. It has been observed that tyrocidine production rate is rapid 

and only occurs within a short period such as in the case of Bacillus brevis 10068 where 

synthesis started round about 26 hours following inoculation 253.  

The tyrocidines fall under the class of microbial peptides that are non-ribosomally synthesized 

which includes among others, daptomycin, gramicidin S, isopenicillin N, surfactin, iturin A, 
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rapamycin, bleomycin and cyclosporine 254–256. Their synthesis is catalysed by the modularly 

organized non-ribosomal peptide synthetase (NRPS)-mega-enzymes, which also determine the 

sequence and chemical identity of the final peptide by the order of their catalytic units 254–262. 

The biosynthesis of the tyrocidines requires three complementary enzyme fractions of molecular 

weights 100 , 230 , and 444 kilodaltons 246. These correspond to three peptide synthetases, Tyc 

A, Tyc B, and Tyc C (tyrocidine synthetases 1, 2, and 3) which activate 1, 3, and 6 amino acids 

respectively 247. 

A “multiple carrier model” has been proposed for NRPS enzymology 263. Modules are formed by 

catalytic domains, each in charge of a particular synthetic step in peptide synthesis 247,257,263–266. 

In each module, an adenylation domain (A-domain, about 500 amino acids) is responsible for the 

selection of a specific substrate (amino or carboxy acid), producing an aminoacyl AMP-mixed 

anhydride through ATP hydrolysis 247,254. The 4`-phosphopantotheine (PPan) prosthetic group 

that is attached to the peptidyl carrier protein (PCP) or thiolation domain, binds the reactive 

aminoacyl AMP-mixed anhydride via a thiol moiety 267,268. The next step involves the formation 

of a peptide bond between two bound flanking PCP intermediates catalyzed by the condensation 

domain (C-domain, about 450 amino acids) 254,268. This is followed by translocation of the 

ensuing peptidyl intermediate down the assembly line for successive condensation and 

modification steps making the upstream PPan-PCP available for subsequent reloading reaction 
254.  

Supplementary domains located within the NRPS elongation module include the epimerization 

(E) domains that are found downstream of the PCP 254,269,270. They catalyse the conversion of L-

configured amino acids to their corresponding D-isomers when bound to the cofactor PPan 254. 

The final step involves the release of the peptide product from the NRPS-template by the 

thioesterase domain (TE-domain, ∼280 amino acids), linked to the terminal module of Tyc C 

synthetase 271–274. The reaction involves the translocation of the completed peptide chain from 

the last PCP to the active site Ser of the TE, producing a peptidyl-acyl-enzyme intermediate 

(acyl-O-TE) 254. Therefore, catalysis involves a sequential acylation and deacylation of the 

active-site Ser residue 254. In the case of Trcs, the TE domain catalyzes a macrocyclisation using 

an intramolecular nucleophilic attack producing a cyclic lactam 254. Tyrocidine synthetase 3 

(723,577 Da) is composed of six modules and harbours the TE domain at its C-terminal end  
247,254. The NRPS assembly is found at the cytoplasmic membrane of the producing Bacillus. It is 

speculated that this sub cellular localization is necessary for the released cyclic Trc to be 

transported out by a committed ABC transporter, maintaining a low intracellular concentration in 

the organism as part of its self-defence 247,275.  
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1.4.1.3. Mode of action  

Like most AMPs, tyrocidines can induce cell lysis, but lysis has been demonstrated also to be a 

resultant process caused by autolytic enzymes 201.  Trc activity against bacteria was attributed to 

the inactivation of the glucose dehydrogenase system which consequently affected metabolic 

activity 201,219. Trc was observed to specifically and reversibly interact with and inhibit 

acetylcholinesterase found in excitable membranes 276. This interaction was dependant on the 

positive charge of the Trc. A similar Trc inhibition was found in the same study with β-

galactosidase, a soluble cytoplasmic enzyme 276. Trcs are able to bind to DNA in the producer 

strains as non-specific repressors leading to inhibition of transcription 277–279, and their 

antimicrobial action could also involve a similar mechanism 224. The sequence, specifically the 

identity of the aromatic dipeptide unit, of the six major tyrocidines from tyrothricin was observed 

to be relevant only to growth inhibitory activity against three Gram-positive bacterial strains 

including two Listeria strains. Conversely cell lysis, was independent of sequence, supporting 

the hypothesis of an alternative sequence dependant target or mode of action (MOA) 125. 

Nevertheless, the β-sheet structure and related amphipathicity of the Trcs, specific dimer form of 

the Trcsref and the analogous GS predisposes them for interaction with bacterial membranes. The 

hydrophilic and cationic residues will bind to the anionic phospholipids while the lipophilic 

groups should insert into hydrophobic core of the lipid bilayer to form a non-selective porous 

channel leading to membrane destabilization, loss of structural integrity and eventually 

mebranolysis 16,280,281. 

1.4.1.4. Structure - activity relationships 

Correlation of the growth inhibitory activity of these tyrocidines against Gram-positive bacteria 

with several physicochemical parameters like solution amphipathicity, theoretical lipophilicity, 

side-chain surface area and mass-over-charge ratio similarly indicated that Orn was more 

important for activity than Lys 125. However, it was the Trcs containing Trp (Trc C, Trc C1, Trc 

B and Trc B1) that were more active than the more hydrophobic Phe-containing (A and A1) 

peptides. Moreover, the results indicated that the aromatic residue on position 3 had a major 

influence on activity. This agreed with previous studies by Danders et al. 215 who showed that 

substitution of this hydrophobic residue at position 3 in Trc A with Val led to a decrease of its 

antibacterial activity, as well as considerable decrease in its capacity to inhibit both active 

transport in membrane vesicles and in vitro transcription. Doubly charged Trc A with a D-Phe4 

to Orn substitution was also found to be less active in relation to the parent Trc A. They 

suggested that such residue replacements may intervene with the topographical distribution of 
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the hydrophobic and hydrophilic regions of Trc A proposed by Kuo and Gibbons 232. In contrast, 

Marques et al. 16 recorded a 2- to 8-fold increase in the minimum inhibitory concentration (MIC) 

for two Trc A analogues with increased charge towards a range of pathogenic bacteria. In one of 

the two analogues, Gln6 was replaced with a Lys while in the other analogue an additional D-

Phe4 to D-Lys4 substitution was made. However, just a D-Phe4 to D-Lys4 substitution led to a 

loss of activity. They concluded that there is a preference for increased amphipathicity within a 

range for improved antibacterial activity, but did not detect an obvious inclination for increasing 

hydrophilicity or hydrophobicity in improving antibacterial activity. In addition, increasing the 

charge in certain analogues improved their activity against the Gram-negative bacteria 

Escherichia coli towards which Trcs are normally not active 125,282. Qin et al. 222 also 

demonstrated that an Ala for Gln6 and D-Phe4 substitution in Trc A each led to a significant 

improvement of the therapeutic index without affecting the antimicrobial potency. The 

selectivity index was significantly further enhanced by up to 140-fold through the introduction of 

the cationic amino acid residual Orn, Lys, or Arg to position 6 by increasing the antibacterial 

potency. In a further study, they showed that replacing either or both D-Phe4 and Phe3 with two 

small aliphatic amino acids other than Ala or one aliphatic and one aromatic residue improved 

the therapeutic index and antibacterial activity 240. They attributed this to the loss of 

hydrophobicity which would reduce interaction with mammalian cells 240. In a previous study by 

Kohli et al. 283 replacing D-Phe4 with a charged residue like D-Arg, D-Lys, or D-Orn also 

improved the selectivity index. They also indicated the relevance of the cyclic nature of Trc A by 

noting that the synthetic linear analogue was inactive. Joo et al. 282 designed and synthesized a 

400-member combinatorial library of Trc A analogues by randomly replacing the Val8 and Orn9 

with 20 L-amino acids. They identified that Pro8-Lys9 and Lys8-Lys9 analogues with an L- rather 

than a D-epimer of L-Nδ-propylasparagine (L-PrAsn) at position 5 led to improved activity 

against both Gram-positive and Gram-negative bacteria. This method was later used to develop a 

larger library of Trc A analogues (1716 analogues) by randomising positions 4, 6, and 10 214. An 

analogue with D-Arg, Gly and L-4-fluorophenylalanine (Fpa) at positions 4, 6 and 10 

respectively was identified to be 4-8 times less toxic than the parent compound to human 

erythrocytes while maintaining antibacterial activity.  

These previous studies show the possibility to significantly improve the therapeutic index of the 

Trcs notably Trc A through structural modification indicating charge and hydrophobicity as the 

most crucial factors for antimicrobial activity.  
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1.4.2. Model Trp-Arg rich cyclic hexapeptides 

Efforts to understand the mechanism of action of AMPs and reduce unwanted toxicity, as well as 

production costs have involved combinatorial library synthesis strategies and development of 

shorter analogues that retain activity, in order to increase information about structure-activity 

relationships 9,131. This is possible because the AMP sequence in itself is not central to its 

antimicrobial activity and cytotoxicity as much as certain biophysical features of its structure that 

are maintained in shorter oligomers 9,131. These physicochemical and structural factors include 

cationicity, hydrophobicity, amphipathicity, structural propensity, etc. A delicate balance of 

these structural parameters is necessary to optimise the antibacterial potency and minimize host 

cell toxicity 221. It has also been demonstrated that two types of amino acid side chains are 

crucial for antimicrobial activity. The first type is the positively charged side chains of Arg (R), 

Lys (K), and His (H), because of their role in facilitating peptide interactions with negatively 

charged membranes and/or cell walls of bacteria, as well as lipopolysaccharide 284. Second, the 

bulky non-polar side chains of Pro (P), Phe (F), and Trp (W), are relevant in forming lipophilic 

interactions that eventually bring about membrane disruption 285,286. According to the Liu-Deber 

hydrophobicity scale 287, the aromatic side chain of Trp is considered to be the most hydrophobic 

of these residues. 

Small cyclic antimicrobial peptides which predominantly contain the  residues Arg, Trp, and Pro 

have received great attention as lead compounds 288–291. The foundation of this interest is their 

presence as small motifs in larger natural compounds with antimicrobial activity 139,292 such as 

the Arg and Trp-rich antimicrobial peptide lactoferricin, a 25-residue cyclic peptide from 

degradation product of lactoferrin which is glycoprotein that functions in iron binding 170,171 

(Table 1.1). Other Arg and Trp-rich antimicrobial peptides include tritrpticin 

(VRRFPWWWPFLRR) which was recognized as a cDNA stretch in a porcine cathelicidin with 

broad spectrum antimicrobial activity293, indolicidin (Table 1.1) which was isolated from bovine 

neutrophils 164,165. Even short chain sequences derived from the pharmacophore of these peptides 

as small as trimers (WRW and RWR) retained antimicrobial activity 285,290. A group of synthetic 

hexapeptides that share the cationic, amphipathic and aromatic character of the Trcs and thus are 

potential antilisterial and antimalarial candidates are the analogues of cyclo(RRRWFW) or RW-

peptides (Fig. 1.4). Following the discovery through screening of synthetic combinatorial 

libraries of the linear analogue (Ac)-RRWWRF-NH2 
294 and subsequent cyclization that 

improved antibacterial activity 149 they have been subjected to several activity and biophysical 

studies 149,203,204,295–300, but not yet evaluated for their activity against the intracellular pathogens 

L. monocytogenes and Plasmodium falciparum. Remarkably the most active and parent analogue 
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cyclo(RRRWFW) has been found to be  primarily non-membranolytic 149. The Arg provides the 

cationic character and hydrogen bonding capacity while the hydrophobic bulky amino acid Trp is 

preferentially located in the bilayer interfacial region, permitting an extended attachment and a 

deeper membrane insertion 296,301. 

1.4.2.1. Structural properties 

The parent RW-peptide cyclo(RRRWFW) or c-WFW (Fig. 1.2) is a cyclic analogue 149 of the 

linear peptide (Ac)-RRWWRF-NH2 
294. Within a membrane-mimetic environment, the linear 

analogue assumes an amphipathic structure 302.  

An analogue of c-WFW, c-RW (cyclo[RRWWRW]) was observed to possess two β-turn motifs 

using solution NMR spectroscopy 296. Likewise nuclear magnetic resonance (NMR) studies 

showed that in a membrane-mimicking environment, c-WFW assumes a structure with two 

regular β-turns in which the side chains of the clustered aromatic residues of c-WFW are 

positioned in the hydrophobic section while the polar backbone and the charged residues are 

found in the lipid head group segment 297. The analogue c-RW 2 (cyclo[RRRWWF]) was 

observed to have one regular and one irregular β-turn structure 297. Therefore, the peptide 

backbone is a flexible scaffold that can adapt in order to generate an amphipathic molecule that 

permits proper orientation of the side chains 297. 

 

 

 

 

 

 

 

 

 

Figure 1.2 Primary structures of A. (Ac)-RRWWRF-NH2 and B. linear peptide cyclic 
hexapeptide cyclo(RRRWFW). Structures were drawn using ChemDraw Ultra 
10.0 (CambridgeSoft®, UK) 
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1.4.2.2. Mode of action 

The peptides c-WFW and c-WWW fulfil the structural prerequisites for membrane activity 

(positively charged and amphipathic). When c-RW was made to interact with detergents and 

lipids, it switched from the flexible structure observed in water to an amphipathic ordered 

structure 297. Circular dichroism (CD) of c-WFW in negatively charged POPG (1-palmitoyl-2-

oleoyl-sn-glycero-3-[phospho-rac-(1)-glycerol) small unilamellar vesicles, Gram positive 

bacteria model membrane phospholipids, suggested insertion of the hydrophobic cluster into the 

lipid acyl chain region resulting from reorientation of the side chains with respect to the 

backbone 204. A similar observation was made for c-WRW (cyclo[RWRWRW]). In contrast, the 

c-WWW (cyclo[RRRWWW]) analogue was observed to be more stable with reduced influence 

in the presence of POPG, trifluoroethanol (H-bond stabilising solvent), guanidinium-

hydrochloride (denaturant) and increased temperature,  on its secondary structure 204. Reducing 

the ring size by omission of one R residue in c-WFW 5 resulted in large negative ellipticity 

values indicative of a more constrained structure than c-WFW whereas increasing the cycle size 

to 10 and 12 did not significantly affect the CD spectra 204. Contrary to the negative ellipticity 

minimum of c-WFW at 202 nm (associated with backbone peptide bonds), the analogue c-KRK 

(cyclo[KRKWFW]) registered a positive ellipticity under 200 nm indicating a change in the 

backbone conformation 303. 

It was also observed that the reversed phase HPLC retention times, tR, which measures 

hydrophobicity and amphipathicity was reduced when W was replaced with F in the cyclic 

hexapeptides, when the positions of R and W were scrambled 204, as well as replacement of R by 

K in the analogue c-KRK 303.  On the contrary, increase in ring size from 6 to 12 residues 204, the 

absence of an R residue in c-WFW5 204, as well as replacement of R by K in the sequence of the 

parent c-WFW in analogues c-RKR, c-RKK, c-KKR and c-KKK 303 increased the tR. These 

results led to the suggestion that the different analogues probably bind to and insert into lipid 

bilayers at varying depths 204.      

Based on molecular dynamic simulations, the peptide backbone supposedly lied parallel to the 

lipid bilayer surface, with the cationic Arg residues interacting with lipid phosphates, and the 

aromatic residues buried within the acyl chain region of DPPC (1,2-dipalmitoyl-sn-glycero-3-

phospho-choline) liposomes 299.  However, it has been shown that membrane activity of RW-

peptides is not their preferred mode of action 204.  The analogue c-WFW did not permeabilise 

POPG : 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanoleamine (POPE) mixed liposomes 

(1:3 ratio) at a peptide to lipid ratio of 8:1 or induced influx of the membrane impermeable 

fluorescent stain propidium iodide into cells 204. This peptide was also bactericidal towards  E. 
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coli D21 at a MIC (maximum inhibitory concentration) of  8 µM 204. It was observed that c-

WFW induces morphological changes in E. coli DH5α (Dr. Dathe, personal communication). 

Using DSC (differential scanning calorimetry) and FT-IR (Fourier transform infrared) analyses, 

it was shown that c-RW and Ac- RW (linear analogue) bring about a demixing in 1,2-

dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)]/1,2-dipalmitoyl-sn-glycero-3-

phosphoethanolamine (DPPG/DPPE)  model membranes resulting in the development of two 

domains, a peptide-rich DPPG-peptide domain and a peptide-poor DPPE-enriched region. 

However, in DPPG/1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes, the 

peptides only induced a considerable down-shift in the transition temperature of the mixtures 300. 

c-WFW was observed to induce aggregation of POPE/POPG (1/3) vesicles (lipid concentration = 

20 µM) 204. According to Junkes et al. 204 the possible MOA of c-WFW involves a non-lytic 

mechanism related to the reorganization of functionally  relevant lipid domains, lipid demixing 

and phase changes  connected to changes in the function  of bacterial membrane components. 

These may result in membrane translocation of the peptides which potentially interact with  

cytoplasmic components such as DNA/RNA. Lys-analogues of this peptide investigated by 

Scheinpflug et al. 
303 are thought to have a similar non-permeabilising mode of action. In the 

same study, it was observed that introduction of fluorophores within the hydrophobic cluster of 

c-WFW led to a change in the mode of action which relied on increasing hydrophobicity and led 

to membrane lysis 
303. 

1.4.2.3. Structure-activity relationships 

Quantitative structure-activity studies have indicated that charge and multiple Trp residues are 

required for antimicrobial activities of RW-peptides with the possibility of replacing Trp side 

chains by analogues with bulkier side chains 138,304,305. In shorter peptides with respect to cationic 

and lipophilic residues, the composition rather than the order of the amino acids is important for 

antibacterial activity 138,290,306. Exchanges between W and F in the hydrophobic region while 

maintaining the aromatic cluster and the cyclic backbone will not influence the two regular β-

turns unlike ring size modification and scrambling of R and W residues which are expected to 

affect the backbone structure 204 and may affect activity.  Reducing the ring size by omission of 

one R residue in c-WFW 5 resulted in a more constrained structure than c-WFW whereas 

increasing the cycle size to 10 and 12 did not significantly affect the secondary structure as 

determined by the CD 204. On the contrary, increase in ring size from 6 to 12 residues and the 

absence of an R residue in c-WFW5 increased the tR 204, therefore increased hydrophobicity and 

haemolytic activity (this study, Chapter 6).  
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For example, scrambling of residues in c-WRW resulted  reduced HPLC retention times, tR, 

which measures hydrophobicity and amphipathicity and a shallower insertion of the peptide into 

model lipid bilayers in comparison to c-WWW and c-WFW as observed using W fluorescence 

spectroscopy 204.  c-RW analogues in which Trp was replaced with a lipophilic  β-(2-

naphthyl)alanine (Nal) or a bulky non-aromatic amino acid residue, bicyclo[1.1.1]pentane  

revealed higher bactericidal activity, while substitution with Tyr or Phe eradicated the activity 
291,292,307,308. In contrast, the introduction of the bulky fluorophore, carboxyfluorescein within the 

cyclo(RRRWWK[Fluos]) and cyclo(RRWWWK[Fluos]) analogues led to a loss in activity due 

to the decrease in overall charge and modification of the peptide hydrophobicity and 

amphipathicity as reflected by an increase in the HPLC tR 303. Single amino acid substitutions or 

replacement of L-amino acid residues by D- enantiomers have been shown to improve or 

eliminate the antimicrobial activity of c-WFW towards E.coli 291,292,307,308. 

Arg has also been shown to be the preferred cationic residue over Lys in terms of antimicrobial 

activity 306,309, while Trp was observed to be the more relevant lipophilic residue in comparison 

to either Phe or Tyr 290,291,310.  Substituting tryptophan with tyrosine or arginine with lysine does 

not affect peptide structure but changes the activity significantly 291,296. The guanidinium group 

of Arg is regarded as a  more diffused positive charge than the single amine of K, which 

potentially enhances electrostatic interactions between peptides and the negatively charged 

bacterial membrane surface 311,312. Then again, the bulkier W side chain may guarantees a more 

efficient contact with membrane surfaces than F, P, or Y 138,313. Electrostatic effects, including 

dipole and quadrupole moments of Arg and Trp side chains,  may contribute to the hydrogen 

bonding ability once the peptides make contact with membranes 285,312,314,315.  

Analogues of c-WFW could thus in themselves serve as antilisterial drug leads or help us to 

understand the details of the mechanisms that govern selectivity of cyclic, amphipathic, and 

cationic peptides with a β-sheet conformation.  

1.5. Concluding remarks  

The motivation for this study is to further investigate the structural scaffold of the tyrocidines 

and the RW-peptides for the design of peptides improve the selectivity index toward bacteria, 

specifically L. monocytogenes (Chapter 3) and Plasmodium falciparum (Chapters 5 and 6). 

Moreover, the precise mechanism of tyrocidine action against the pathogens in this study is not 

fully understood and there is the possibility of alternative target(s)/MOA 224 other than the 

membrane that needs to be investigated  (Chapters 4 and 7). Identification of the target(s) could 

enable the rational design of lead compounds with improved selectivity indices based on the 
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most active tyrocidine analogue to combat drug-resistant L. monocytogenes and P. falciparum. 

However, in order to conduct these studies meticulous preparation of the peptide libraries was 

necessary and will be reported in Chapter 2. 
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Chapter 2   

Production, purification and characterisation of selected 
natural and synthetic Trcs 

2.1. Introduction 

The tyrocidines (Trcs) are cyclic decapeptides produced by Bacillus aneurinolyticus formerly 

known as Bacillus brevis 1 as part of the tyrothricin complex 2. The tyrothricin complex which 

consists of both the cationic cyclic Trcs and neutral linear gramicidins is mainly produced by B. 

aneurinolyticus cultures in late logarithmic growth phase 1–3. With the basic sequence of 

cyclo[f1P2X3x4N5Q6Y7V8X9L10], the major Trcs only vary in three residue positions Trp3,4/Phe3,4 

and Lys9/Orn9 4–8. Analogues are named with respect to the identity of the aromatic residue at 

position 7: Tyr (Trcs) or Trp (tryptocidines) or Phe (phenycidines) (Fig. 2.1). 

As antimicrobial peptides (AMPs), the most striking character of Trcs include broad spectrum 

antimicrobial activity, selectivity, rapid action, and reduced likelihood of resistance development 
9. The major Trcs of the tyrothricin complex have shown considerable antilisterial 10, antimalarial 
11 and antifungal 12 activities. Like other AMPs, the Trcs have also shown pathogen selectivity 

due to their cationic nature which allows preferable interaction with more negatively charged 

bacterial cell membranes thus discriminating between pathogens and plant/animal hosts with 

neutral membranes 11,13–15. Hence, they represent a promising group of compounds in the fight 

against antimicrobial resistance to currently available drugs. Rational design to improve activity 

and selectivity of the Trcs requires establishment of structure to activity relationships (SAR). In 

order to achieve this aim it will be necessary to analyze as many structural analogues of the Trcs 

as possible. 

Trcs were discovered in the acid precipitate of the culture medium of the aerobic sporulating soil 

bacteria Bacillus aneurinolyticus 
1. The tyrocidine producers were originally referred to as the 

Dubos strain of Bacillus brevis 
16. However, it was demonstrated that B. aneurinolyticus is a 

distinct group with comparable phenotype 17 and phylogenetics 18 to the B. brevis group. 

Nevertheless, due to the fact that taxonomical descriptions of B. aneurinolyticus relied on only 

few strains 19 this name is not official nor is it included in the “Approved lists of bacterial 

names” 20. Shida et al. have proposed a revival of the name B. aneurinolyticus 
21. The same 
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authors later suggested that the B. brevis cluster of bacteria be referred to as Brevibacillus gen. 

nov. and that bacteria of the  B. aneurinolyticus cluster be referred to as Aneurinibacillus gen. 

Nov 22.  In this study, to avoid further confusion, we will be referring to the tyrothricin/tyrocidine 

producers as B. aneurinolyticus.  

 

 

Figure 2.1  Primary structure of Trc A. The residues in brackets show that amino acid 
substitutions in other Trcs, the phenycidines and tryptocidines. Standard three 
letter amino acid abbreviations used for residues (Orn represents ornithine). The 
order of incorporation during biological synthesis is used to number the residues; 
optional residues are presented in brackets. Adapted from Rautenbach et al.

11. 

Together with the gramicidins the tyrocidines form the tyrothricin complex, an alcohol-soluble, 

water-insoluble fraction thus named by René Dubos in 1939 1–3,8,23. These compounds were 

discovered based on the observation that some bacilli exhibited antagonistic bactericidal activity 

to other microorganisms 2. Tyrothricin was eventually employed as the earliest antibiotic in 

clinical practice though discovered a decade after penicillin 8.  

Trcs get produced by B. aneurinolyticus when the cultures start sporulating 24. Trcs interact with 

DNA possibly via a charged amino acid causing helical unwinding at low concentration and 

forming nuclease-resistant complexes with DNA at higher concentration 24. They are thought to 

function as a DNA regulatory factor involved in regulating the onset of sporulation by 

selectively inhibiting RNA synthesis during cell differentiation 24–31. This was supported by the 
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fact that addition of tyrocidine (Trc) induced sporogenesis and accompanied the synthesis of 

gramicidin in vegetative cells removed from a rich medium and submitted to severe nitrogen 

starvation 24,26. The gramicidins possibly counteract the inhibitory activity of the Trcs in vivo by 

influencing the DNA-Trc interaction 24. It has also been proposed that Trc packing of DNA may 

be beneficial in the ability of the spores to resist negative environmental factors 24. However, 

studies with mutant strains of B. aneurinolyticus defective in Trc production but capable of 

producing heat resistant spores indicate that in this strain at least Trc is not required for 

sporulation or spore resistance and thus its precise function is unknown in the producer organism 
25,29.  

There is a general limitation in terms of cost and efficiency of production of cyclic AMPs 32 and 

the Trcs are no exception. Recombinant DNA technology as an option is specifically appropriate 

to produce large peptides such as insulin 33,34 and is not very efficient in production especially of 

non-ribosomal peptides like the Trcs 35–38. Although automated chemical synthesis is a viable 

method for production of small and medium size peptides 39 which make up the bulk of the 

peptides of pharmaceutical interest 34 it is very expensive 40. Previous work in our group 

employed natural analogues isolated from commercially available tyrothricin but Spathelf 41 

expressed difficulty in isolating certain Trc analogues that have shown promising activity 

namely tryptocidine B, tryptocidine C, and phenycidine A (latter named by our group) in 

sufficient quantity and/or purity from this source. More analogues could be isolated from the 

tyrothricin complex in B. aneurinolyticus fermentation broth as revealed in a study by Tang et al. 
8 in which 28 possible Trc analogues were identified. There is need for efficient strategies to 

produce the rare and potentially useful natural Trc analogues in sufficient amounts and purity for 

bioactivity analyses and physicochemical characterization so as to improve their inherent activity 

or bring about new activities.  

In the past many groups achieved high yields of tyrothricin from cultures of producer strains 42–46 

and later production was achieved in cell-free preparations containing the Trc synthetase enzyme 

complex 47–52. Varying nutrients in the culture medium brought about changes in the secondary 

metabolism of B. aneurinolyticus leading to modulation of Trc production 4,44,46,48,53. This could 

be useful in cost-effective production of rare analogues in high yields and purity. Studying the 

modulation of the production of Trcs by changing the culture conditions of the producer strains 

of B. aneurinolyticus would be useful to induce the synthesis of novel Trcs and analogues 4. Trc 

production by B. aneurinolyticus is governed by nitrogen supplementation with urea 44 and 

amino acids 4,5,46 as well as carbon supplementation 46. It is also known that different Bacillus 
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strains produce different ratios of gramicidin to Trcs. B. aneurinolyticus ATCC 8185 is an ideal 

strain to principally produce Trcs with little or no gramicidins 53. The various strains also 

synthesize different major Trcs such as the B. aneurinolyticus (formerly B. brevis) DSM-5618 

strain whose major Trc analogue produced is Trc C 53 and the B. aneurinolyticus (formerly B. 

brevis) ATCC strain 10068 that synthesises a broad spectrum of Trcs 4. Focusing on nitrogen 

supplementation, Stokes and Woodward 46 showed that tyrothricin production in submerged 

aerated cultures was generally favourable in the presence of single amino acids as opposed to 

complex nitrogenous substances. They also observed that supplementation of culture media with 

specific amino acids used led to varying yields and compositions of tyrothricin. Baron 44, whose 

patented protocol is used by the Sigma company (St. Louis, USA) for tyrothricin production, 

observed that the addition of urea or its derivatives to the culture medium, containing nutrient 

mineral salts, glucose, a single amino acid or its salt, substantially boosted the yield of Trc. 

Baron 44 proposed that the presence of the urea or its derivatives also act in preventing 

contamination of the products and also suggested using submerged cultures with sufficient 

aeration for maximum tyrothricin production. However, Vogt et al. 53 suggested that sufficiently 

anaerobic conditions are required for gramicidin and Trc production. In addition, the 

investigators observed that production of the maximum amounts of tyrothricin were in media 

like peptone from Escherichia coli and yeast, peptone from E. coli or a mixture of twenty amino 

acids. Pipecolic acid, a proline analogue had been reported to selectively block the synthesis of 

Trc 47. However, Vogt et al. 53 found a similar Trc to gramicidin ratio irrespective of whether 

pipecolic acid was present or not in the culture medium. Nevertheless, use of pipecolic acid as 

sole nitrogen source inhibited growth of B. aneurinolyticus. Celtone, a commercially available 

rich medium, obtained from bacterial and yeast cultures, was shown to inhibit the growth of the 

B. aneurinolyticus ATCC 8185 strain 53. Martek, another commercially available medium 

acquired by partial hydrolysis of algal proteins, led to growth but not tyrothricin production 53. 

Some researchers have demonstrated that the amino acid sequence of Trc produced by cultures 

was changed by the amino acid composition of the medium 4,5,48. This phenomenon is thought to 

be due to the low specificity of the enzyme systems in charge of incorporating some structurally 

related amino acids 4. Experiments carried out by Mach and Tatum 4 revealed that adding L-Phe 

to the culture medium led to an approximately exclusive production of Trc A at the expense of 

the other analogues. Likewise, addition of L-Trp led to an exclusive synthesis of Trc D (renamed 

by our group to tryptocidine C) with similar antibiotic activity as the A, B, and C analogues. In 

the presence of both L-Phe and L-Trp, all four forms (Trc A-D) were produced. Fujikawa et al. 
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48 observed that the composition of the Trc synthesized by a partially purified Trc synthetase 

enzyme preparation of B. brevis ATCC 8185 was modified by changing the amino acids present 

during the incubation period. They were able to produce Trcs A, B, C, and tryptocidine (Tpc) C, 

as well as Trc E (renamed by our group to phenycidine A), Trc A1 (Orn residue in Trc A was 

replaced by Lys) and isoleucyl-Trc A (Leu residue in Trc A was replaced by Ile) in vitro. The 

production of these Trcs was directly influenced by the amino acid concentrations in the reaction 

mixture. Moreover, certain unnatural amino acid analogues, such as 5-methyltryptophan, p-

fluorotryptophan, thienylalanine and p-fluorophenylalanine were incorporated into Trc 48.  

In this study we used analogous amino acid supplementation in culture medium for the Trc 

producer of B. aneurinolyticus ATCC 8185 to develop a cheaper and more sustainable 

production process for the rare Trc analogues. A number of rare analogues and the major Trcs in 

commercial tyrothricin were isolated with established high performance liquid chromatography 

(HPLC) 54 and analysed with analytical HPLC 54, ultra performance liquid chromatography 

(UPLC) 55 and electrospray mass spectrometry (ESMS) 54. 

High purity Trcs and analogues produced will be required for the analysis of their structure, 

biological activity and qualitative structure-to-activity relationships (QSAR) (Chapter 3). The 

Trcs for this study can be grouped into two libraries namely the Trc A library and Trc C library 

(Table 2.1), based on the identity of their aromatic dipeptide unit. Selected tryptocidines (Tpc) 

and a phenycidine (Phc), where the aromatic amino acid, Tyr7, was substituted with Trp or Phe 

respectively, would allow us to assess the role of the Tyr in the peptide activity (Table 2.1). The 

cationic residue would be assessed in terms of size, hydrogen bonding ability and integration into 

membranes, as Spathelf & Rautenbach 10 found lower antilisterial activity for the Lys-analogues, 

than the Orn-analogues. Following comparable antibacterial activity to the parent gramicidin S 

(GS) of analogues containing N-methyl groups including trimethylated-Orn analogues against 

Gram-positive bacteria 56, we included a synthetic Trc A analogue, sTrc AOMe3, containing a 

trimethylated-Orn residue (Table 2.1). From the reported improved activity of Trc A towards 

Bacillus subtilis 13, after charge increase with Gln to Orn substitution, this Trc A analogue 

(sTrcA(Q-O)), was also included. It should be noted that Trc B doubles as both a Trc A and a 

Trc C analogue. 

We determined a number of structural parameters on the purified peptides for the qualitative 

structure-to- activity relationship (QSAR) analysis (refer to Chapter 3 for the QSAR study). The 

solution phase hydrophobicity of the Trcs and analogues were determined with reverse-phase 

HPLC (RP-HPLC) which separates the peptides based on differences in hydrophobicity. Time-
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of-flight electrospray mass spectrometry (TOF-ESMS) was employed for the determination of 

monoisotopic mass and mass/charge (m/z) ratio. Homology modelling with YASARA 9.10.5© 

was used to elucidate in silico physicochemical parameters related to the three-dimensional 

structure of the Trc analogues. 

Table 2.1  Summary of tyrocidines and analogues in this study. 

Peptide Abbr. Sequence 

Theoretical 
mono-
isotopic 
mass (Mr) 

Reference 

Tyrocidine A Trc A cyclo-(VOLfPFfNQY) 1269.6568 57 
Tyrocidine A1 Trc A1 cyclo-(VKLfPFfNQY) 1283.6703 58 
Trc A with 
trimethylated 
Orn 

Trc AOMe3 
cyclo-
(VO(CH3)3LfPFfNQY) 

1312.7090 This study 

Trc A with  
Gln to Orn  
substitution 

Trc A(Q-O) cyclo-(VOLfPFfNOY) 1255.6754 13 

Phenycidine A 
(Tyrocidine E) 

Phc A cyclo-(VOLfPFfNQF) 1253.6600 
Named by 
our group, 8 

Tryptocidine A Tpc A cyclo-(VOLfPFfNQW) 1292.6706 8 
Tyrocidine B Trc B cyclo-(VOLfPWfNQY) 1308.6655 57 
Tyrocidine B1 Trc B1 cyclo-(VKLfPWfNQY) 1322.6812 58 
Tyrocidine C Trc C cyclo-(VOLfPWwNQY) 1347.6764 57 
Tyrocidine C1 Trc C1 cyclo-(VKLfPWwNQY) 1361.6921 58 
Tryptocidine B Tpc B cyclo-(VOLfPWfNQW) 1331.6793 8 
Tryptocidine C 
(Tyrocidine D) 

Tpc C cyclo-(VOLfPWwNQW) 1370.6924 8 

2.2. Materials 

Bacterial strains: Brevibacillus parabrevis 8185 (referred to as Bacillus aneurinolyticus ATCC 

8185 in this study) cultures were supplied by the American Type Culture Collection (Manassas, 

VA, USA). Micrococcus luteus NCTC 8340 cultures were obtained from National Collection of 

Type Cultures (Porton Down, Salisbury, United Kingdom). 

Research materials: Deep 96-well plates, tryptone soy broth (TSB), Luria Bertani broth (LB), 

peptone, tryptone, yeast extract, glucose, agar, diethyl ether, sodium chloride, hydrochloric acid, 

L-Lys and L-Arg were obtained from Merck (Darmstadt, Germany). L-Cys, L-Phe, L-Tyr and L-

Trp were supplied by Sigma Aldrich (Steinheim, Germany). Nutrient broth (NuB) was supplied 

by Unipath Ltd (Basingstoke, England). Ultra pure urea was got from ICN Biomedicals Inc. 

(Aurora, USA). Tween 20 was supplied by Fluka (Buchs, Switzerland), skimmed powdered milk 
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was from Clover (Roodepoort, South Africa), standard untreated, non-sterile polystyrene 96-well 

flat bottom  plates and culture dishes were from Greiner bio-one (Frickenhausen, Germany) and 

Lasec (Cape Town, South Africa) respectively. Falcon® tubes were from Becton Dickson 

Labware (Lincoln Park, USA). Acetonitrile (HPLC-grade, far UV cut-off) and methanol 

(>99.9%) were from Romill Ltd. (Cambridge, UK). Analytical grade water was prepared by 

filtering water from a reverse osmosis plant through a Millipore-Q® water purification system 

(Milford, USA). Gramicidin S (GS), trifluoroacetic acid (TFA; >98%) and commercial 

tyrothricin were made available by Sigma (St. Louis, USA). Synthetic Trcs were supplied by GL 

Biochem (Shangai) Ltd., China. Diethyl ether was provided by Merck (Darmstadt, Germany). 

Acetone was provided by Saarchem (Krugersdorp, RSA). The Nova-Pak® C18 (5 µm particle 

size, 60 Å pore size, 150 mm × 3.9 mm) reverse-phase analytical column, the Nova-Pak® C18 (6 

µm particle size, 60 Å pore size, 7.8 mm × 300 mm) semi-preparative HPLC column and an 

ACQUITY UPLC® bridged ethyl hybrid (BEH) C18 (1.7 Mm particle size, 2.1 mm × 100 mm) 

column were from Waters Millipore (Milford, USA).  

2.3. Methods 

2.3.1. Optimisation of Trc analogue production 

2.3.1.1. Preparation of pre-cultures of Bacillus aneurinolyticus ATCC 8185 

The culture stocks were preserved as lyophilized powder using 10% m/v skimmed milk in 

analytical quality water as lyophilisation buffer. Culturing was done using normal sterile 

techniques. Tryptone glucose yeast extract milk (TGYM) broth (0.5 g peptone, 0.25 g yeast 

extract, 0.1 g glucose and 0.1% m/v skimmed milk in 100 mL water, pH 7.0) was used to 

rehydrate the cultures before streaking them onto TGYM agar plates (0.5 g peptone, 0.25 g yeast 

extract, 0.1 g glucose, 0.1% m/v skimmed milk, and 1.5 g agar in 100 mL water, pH 7.0) and 

incubating for 48 hours at 37 oC. The choice of this pre-culture medium was justified by the 

works of Baron 44 and Fujikawa et al. 49. Single colonies were prepared by diluting a small 

amount of the culture from the plates with sterile broth and carrying out serial dilutions using the 

TGYM broth. Each sample (50 µL) was spread onto TGYM agar plates and incubated for 48 

hours at 37 oC. Culturing of the bacteria for Trc production was adapted from the method of 

Baron 44. A single colony was pre-cultured by adding it to 5 mL of TGYM broth and incubating 

at 37 oC for 24 hours while constantly shaking at 20 × g. 
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2.3.1.2. Preparation of Micrococcus luteus NCTC 8340 cultures 

M. luteus NCTC 8340 from freezer stocks was cultured using standard sterile methods on Luria 

Bertani (LB) agar (1 g tryptone, 0.5 g yeast extract, 1 g NaCl, and 2 g agar in 100 mL water) for 

48 hours at 37 oC. Three to five selected colonies were grown for 16 hours at 37 oC in LB broth 

(1 g tryptone, 0.5 g yeast extract, 1 g NaCl in 100 mL water) with constant shaking at 15 × g to 

an optical density (OD) of 0.8 at 620 nm. These cultures were sub-cultured in TSB: 500 µL of 

cultures unto 20 mL of TSB medium (3 g TSB powder dissolved in 100 mL of water) and 

incubated at 37 oC for 5-6 hours to an OD of 0.6 at 620 nm.  

2.3.1.3. Radial diffusion assay to select colonies for optimum antibiotic production 

Because colonial variation in the yield of Trcs is typical for the B. aneurinolyticus ATCC 8185 

strain, there was need to select colonies that optimally produced Trcs. Radial diffusion assay was 

used for this purpose. It was executed according to the methods of Du Toit and Rautenbach 59 

and Lehrer et al. 60 with modifications. M. luteus cultures (1 mL) in tryptone soy broth (TSB) at 

OD 0.6 was diluted with 9 mL of a sterilized gel solution at 45 oC (prepared using 1% m/v 

powdered TSB medium, 1% m/v low electro-endosmosis type agarose and 0.02% v/v Tween 20 

in water). After homogenizing the mixture, it was poured onto sterile Petri dishes on a level 

surface and allowed to set for 30 minutes. Single colonies of B. aneurinolyticus ATCC 8185 

were spotted equal distances apart unto the gel. A duplicate of the B. aneurinolyticus colonies 

was grown on a TGYM agar plate from which the selected colony was picked for propagation. 

The plates were incubated overnight at 37 oC in order to observe the antibacterial activity 

production of the different spotted colonies. The colony with the broadest inhibition zone 

selected for tyrothricin production was further cultivated on TGYM agar plates and monitored by 

assaying for antibiotic production as above. 

2.3.1.4. The influence of supplemented nitrogen source on the growth of B. aneurinolyticus 

ATCC 8185  

To investigate the influence of the amino acids and their concentration on the growth of B. 

aneurinolyticus ATCC 8185, the pre-culture was prepared as described above and then diluted 

four times using NuB. The amino acids chosen for supplementation were specifically the 

variable amino acids in the identified Trc analogues and other amino acids known to play a role 

during Trc synthesis by the multi-enzyme complex (Phe, Tyr, Trp, Lys, Cys, Met, β-Ala, and 

D/L-Phe). Specialised plates (96-deep well plates) were used for the culturing of the Trc 
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producers. The culture medium (total volume = 500 µL) supplemented with single amino acids 

at concentrations ranging from 0.01 – 1% m/v and 0.1% m/v urea was transferred into the deep 

wells of the plates in quadruplicate for each amino acid concentration.  

To examine the influence of the concentration of urea on the growth of the Trc producer, NuB 

supplemented with a two-fold dilution series of urea ranging from 1 to 0.008% m/v were used as 

culture media. Each urea concentration was assayed in quadruplicate. For two columns of each 

plate, the 4 first wells contained only NuB while the 4 last wells contained NuB + 0.1% m/v urea. 

One of these columns was used as sterility control and did not receive any bacterial culture. The 

other was used to examine the effect of the absence of urea and amino acid on the growth of the 

bacteria.  

The diluted pre-cultures (10 µL) were added to each well in the plate excluding those for sterility 

control. The homogenized cultures (200 µL) was immediately transferred into corresponding 

wells in a standard 96-well microtiter plate and light dispersion of the cultures was read every 

hour for 24 hours at 595 nm using the Bio RadTM microtiter plate reader. The data was analysed 

using GraphPad Prism® 4.03 (GraphPad Software, San Diego, USA) to determine the growth 

rates of the cultures. 

2.3.1.5. High throughput analysis of the influence of nitrogen supplementation on the 

composition and antibacterial activity of produced Trc complex 

A protocol was developed to investigate the influence of the concentration of the above amino 

acids on the composition as well as the antibacterial activity of Trcs from the culture extracts of 

B. aneurinolyticus ATCC 8185 against M. luteus NCTC 8340. For this purpose 96-deep well 

plates were used for the culturing of the Trc producers. The pre-culturing was done as mentioned 

above and then diluted four times using NuB. The culture medium supplemented with the 

highest concentration of a single amino acid (Phe, Tyr, Trp, Lys, Cys, Met, β-Ala, and D/L-Phe) 

and 0.1% m/v urea was added to the top wells of the plates and diluted down in the lower wells 

using NuB supplemented with 0.1% m/v urea. The supplemented nitrogen source (specific amino 

acid, amino acid mixture or urea) ranged from 1 – 0.008% m/v and the volume of culture 

medium in the wells was 300 µL. The amino acid concentrations were prepared in 

quadruplicates and 10 µL of the diluted pre-cultures was added to each well. For positive 

control, one column received no amino acid supplementation and another column serving as 

negative (sterility) control received no bacteria. The plates were then covered and incubated for 

36 hours at 37 oC with constant shaking at 15×g. Each well’s content was then acidified to a pH 
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of 4.7 with HCl and allowed to stand without stirring for 24 hours. The plates were then 

centrifuged at 2200×g for 60 minutes and the supernatant discarded. The pellet in each well was 

re-suspended in 200 µL of methanol and sonicated for 15 minutes and the 200 µL of analytical 

quality water was added to each well and the plate was again sonicated for another 15 minutes. 

The plates were again centrifuged at 2200×g for 30 minutes. The supernatant (10 µL) from each 

well was then transferred carefully to a sterilized standard 96-well plate containing the indicator 

organism, M. luteus for the investigation of antibacterial activity. An adaptation of the  broth 

dilution method described by Du Toit and Rautenbach 59 and Lehrer et al. 60 was used. The M. 

luteus culture was diluted using TSB to an OD = 0.2 at 620 nm (5 × 105 CFU/mL) and 90 µL of 

this culture was transferred into each well of a sterilized 96-well plate except for those in the first 

column. The wells for sterility control received only 90 µL of TSB and 0.5% v/v methanol or 

sterile filtered analytical quality water. In the growth controls no Trc extract was added to the M. 

luteus cultures; 0.5% v/v methanol or water was added instead and other wells all received the 

supernatants (10 µL) from the deep well culture extracts. The microtiter plates were incubated at 

37 oC for 16 hours. Subsequently, the growth inhibition was analyzed by spectrophotometry at 

595 nm using a BioRadTM microtiter plate reader followed by data analysis using GraphPad 

Prism® 4.03 (GraphPad Software, San Diego, USA) as described by Du Toit and Rautenbach 59. 

The percentage growth inhibition was calculated using the following generic equation: 

% growth inhibition = 100 -                                                                                          (1) 

For the analysis of the Trc composition of the culture extracts, the supernatants derived from the 

Bacillus cultures were pooled together from the four wells for each amino acid concentration and 

transferred to glass vials. The solvent was evaporated under vacuum and the residual content was 

suspended in 50% v/v acetonitrile in analytical quality water for analytical HPLC (1.0 mg/mL) 

and ESMS (200 µg/mL) analyses. 

2.3.1.6. Manipulation of Trc production by B. aneurinolyticus ATCC 8185 cultures 

B. aneurinolyticus ATCC 8185 pre-cultures (5 mL) were transferred to 200 mL culture medium 

in 1 L Erlenmeyer flasks. The culture medium was made of nutrient broth (1.3 g NuB powdered 

medium in 100 mL water) supplemented with 0.1% m/v urea. The cultures were incubated at 37 
oC with constant shaking at 15 × g for 36 hours. The pH of the cultures was adjusted to 4.7 with 

HCl and allowed to stand without stirring for 24 hours. The acidified media was centrifuged at 

12 000 × g at 4 oC for 20 minutes. The precipitate was extracted three times with 20 mL 

Average A595 of growth wells -Average A595 of background 

100 x (A595 of well-Average A595 of background)  
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methanol by adding the methanol to the precipitate and then sonicating for 15 minutes in conical 

flasks at room temperature before centrifuging for 8 minutes at 2200 × g in glass test tubes. The 

combined extracts were distilled at 64 oC to remove the methanol before lyophilizing the residue 

overnight. The dried precipitate was washed thrice with 2 mL portions of diethyl ether and 

lyophilized again overnight. The extracted Trcs thus obtained were analysed by thin layer 

chromatography (TLC) against Trcs extracted from a commercial tyrothricin after dissolving 

them in acetone:diethyl ether (1:1) mixture. Subsequently, semi-preparative HPLC was done at 4 

mg/mL in 50% acetonitrile diluted with analytical grade water. The major fractions were 

collected and analysed by electrospray mass spectrometry (ESMS) at a concentration of 200 

µg/mL. The procedures for these analyses are detailed below. 

To investigate the influence of the presence of amino acids in the culture medium on the Trc 

production, the above methodology was used with the exception that the culture media were 

supplemented with 1% m/v of single amino acids. In addition to the amino acids mentioned in 

Section 2.3.1.5 influence of D-Phe was also examined. The influence of 1:1 m/m combinations of 

pairs of some amino acids to final concentration of 1% m/v was also investigated notably:  

Lys + Phe/Trp  

Tyr + Trp/Phe 

Phe + Trp 

We also investigated the following combinations with each amino acid at 0.5% m/v: 

Lys + Phe + Tyr/Trp 

Lys + Tyr + Trp 

The influence of the presence or absence of 0.1% m/v urea in the culture medium was 

investigated as well following the same methodology used for amino acids. The culture media 

chosen for investigation included: 

NuB + 0.3% Trp  

NuB + 0.5% m/v Phe + 0.5% m/v Tyr  

NuB + 0.5% m/v Lys + 0.5% m/v Phe + 0.5% m/v Tyr  

The cultures were prepared in triplicate with 20 mL culture media spiked with 45 µL pre-culture 

and grown at 37 oC in 50 mL Falcon™ tubes for 36 hours.  Analytical HPLC and ESMS were 

used to analyse the Trc peptide composition of the culture extracts. 

Stellenbosch University http://scholar.sun.ac.za



2.12 

 

2.3.2. Purification of the Trcs 

The peptides of interest in this study for purification included the Trcs and analogues from the 

commercial tyrothricin complex and from the tyrothricin isolated from culture extracts of the B. 

aneurinolyticus ATCC 8185 (Table 2.1). Some synthetic Trc analogues to be used in structure-

to-activity relationship analyses were also purified and/or analysed. 

Isolation of the Trcs from the tyrothricin complex was by the organic extraction method of 

Hotchkiss and Dubos 61 previously used by Rautenbach et al. 11. Weighed tyrothricin dry powder 

was washed thrice in clear glass test tubes with a 1:1 mixture of acetone and ether (5 mL for 5 

mg tyrothricin in each test tube). Following sonication, the precipitate which contained the Trcs 

was collected by centrifugation at 700 × g for 8 minutes. The supernatant was decanted and the 

residue was dried under vacuum. The supernatant contained most of the neutral gramicidin 

fraction while the pellet contained most of the basic Trc fraction.  

A preliminary analysis of purity of the crude extracts was done by thin layer chromatography 

(TLC) on aluminium backed Kieselguhr 60-F254 TLC plates developed in a butan-1-ol:acetic 

acid:water (10:2:3) solvent. Samples were diluted to 1 mg/mL with 50% v/v acetonitrile in water 

and 5-10 µL spotted on the silica plate for TLC. The TLC plates were visualised under 

ultraviolet light and also by spraying with ninhydrin. The samples used were: Trc extract (Trc), 

gramicidin supernatant extract (Grm), and commercial tyrothricin (Tcn). The gramicidin was 

expected as a spot near the solvent front (retention factor, Rf = 0.9) while the Trc fraction was 

expected at Rf = 0.6 62. 

Purification was done using the RP-HPLC purification methodology developed and optimised by 

our group 54 previously used to purify the six major Trcs from commercial tyrothricin 11. Prior to 

the semi-preparative HPLC analysis, the isolated Trc complex was dissolved to a concentration 

of 10 mg/mL in 50% v/v acetonitrile and centrifuged for 10 minutes at 8600 × g to remove any 

particulate. A semi-preparative C18 Nova-Pak HR column (6 µm particle size, 60 Å pore size, 7.8 

mm × 300 mm) was used with two Waters 510 pumps, a MAXIMA controller system, a Waters 

Model 440 detector and WISP 712 sample processor. A solvent gradient (3 mL/min flow rate) 

was generated using eluant A (0.1% v/v TFA) and eluant B (90% v/v acetonitrile and 10% v/v 

eluant A). The chromatography was done at 35 oC and visualised using an inline Waters Model 

440 detector at 254 nm. Peptide fractions from multiple 100 µL sample injections were collected, 

lyophilized and stored dry at −10 oC for further analyses.  
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Table 2.2  HPLC purification and analysis gradient program with eluant A = 0.1% v/v TFA 
and eluant B = 90% v/v acetonitrile and 10% v/v eluant A; as defined by the 
Waters gradient control curve type 11,54. 

Time (min) % eluant A % eluant B Curve type 
0.0 50 50 - 
0.5/1.0* 50 50 - 
23.0 20 80 non-linear 
24.0 0 100 -  
26.0 0 100 -  
30.0 50 50 linear 
35.0 50 50 - 

* 0.5 min for semi-preparative RP-HPLC, 1.0 min for analytical RP-HPLC 

For the fractions in which the separation was observed to be unsatisfactory on the semi-

preparative column, a further purification was done on a reverse-phase analytical C18 Nova-Pak® 

HPLC column (5 µm particle size, 60 Å pore size, 150 mm × 3.9 mm) used with the system, 

solvents and gradient program described above for the semi-preparative HPLC, but with a 1.0 

mL flow rate and 50 µL injection per chromatographic run. The gradient program employed for 

the HPLC is detailed in Table 2.2. 

2.3.3. Characterisation of purified Trc analogues 

2.3.3.1. Analytical HPLC 

The purified fractions obtained from HPLC were further analyzed to determine their purity by 

analytical HPLC as previously described 41. Identical methodology (Table 2.2) and system were 

used for the analytical HPLC, but with 1.0 mL flow rate; 20 µL injection at lower peptide 

concentrations were injected on a C18 Nova-Pak® HPLC column (5 µm particle size, 60 Å pore 

size, 150 mm × 3.9 mm).  The concentration of the peptide samples was 100 mg/mL to 1.0 

mg/mL, depending on peptide to limit aggregation. Analytical HPLC analyses retention time 

results were also used as a QSAR parameter to describe the solvent hydrophobicity of the Trcs 

and analogues. 

2.3.3.2. ESMS and UPLC-MS analysis of purified peptides 

ESMS was used to determine the identity (Mr), purity and m/z parameters of each of the purified 

peptides and peptide fractions. TOF-ESMS was done on a Waters Quadrupole TOF Synapt G2. 

Sample injections (3 µL) of purified (200 µg/mL) samples were used for direct mass analysis via 

a Waters Acquity UPLCTM into a Z-spray electrospray ionization source. Samples were 

subjected to a capillary voltage of 3.0 kV with an ionization source temperature of 120 oC and 
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cone voltage of 15 V. The data was acquired in positive mode in the first mass analyzer (MS1) 

through mass over charge ratio (m/z) = 300−2000. All peptide samples were dissolved in 50% 

v/v acetonitrile diluted with analytical quality water. 

For UPLC-MS, the sample injection volume was 3 µL of 200 µg/mL peptide in water with less 

than 5% acetonitrile. Chromatography was done over 17 minutes on an Acquity UPLC® BEH 

C18 column with 1% v/v formic acid in water (eluant A) and acetonitrile (eluant B) as the two 

mobile phases (Table 2.3). Detection of chromatography was done in-line with ESMS as 

described above.  

Multi-protonated spectra in centroid mode were deconvoluted using the QTOF transform 

algorithm of Mass Lynx V4.1 software with calculated range from 300-4000 atomic mass units, 

maximum 4 charges. Multi-protonated spectra in continuum mode were deconvoluted using  the 

MaxEnt 3 algorithm of  Mass Lynx V4.1 software with calculated range from 300-6500 atomic 

mass units,  maximum 10 charges , 50 iterations and auto peak width determination. 

Table 2.3 UPLC analysis gradient program for the analysis of Trcs and analogues (method 
developed by M. Rautenbach and M.A. Stander, Department of Biochemistry, 
Stellenbosch University). 

Time (min) % eluant A % eluant B 
0.0 100 0 
0.5 100 0 

12.0 42 58 
13.0 10 90 
13.5 10 90 
14.0 10 90 
17.0 100 0 

2.3.3.3. Fluorescence spectroscopy 

Fluorescence measurements using the model RF-5301PC spectrofluorophotometer (Shimadzu, 

Japan) were performed to compare Trc A from commercial and culture extracted tyrothricin. The 

chemically synthesized Tpc A which is the only Trc A analogue with a Trp was used as control 

peptide. The samples were excited at 280 and 295 nm with the emission spectra recorded 

between 280 and 450 nm in 0.2 nm steps. Slit widths of 5 nm were utilized for both excitation 

and emission 41. 

2.3.3.4. Homology modelling 

Homology modelling was performed as previously described 41, using as starting point a low 

energy model of Trc C created using two dimensional nuclear magnetic resonance nuclear 
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Overhauser enhancement (2D

of Prof. Graham Jackson (University of Cape Town). The major Trcs isolated from commercial 

tyrothricin have previously been mode
41,63,64. In this study, the structure of 

structures of Trc C while those of 

from mutating low energy structures of Trc A. The derived structures were submitted to 

YASARA molecular dynamic (MD) simulations for 200 fs at 298 K 

minimisations using the YASARA 2 

400 fs at 333 K and by minimisations to 

A structure was regarded as a representative structure when 10

of backbone structure, overall structure (RMSD < 1Å from average)

obtained from consecutive simulation runs and energy 

volume (SAV) and solvent accessible surface area (SASA) for each peptide were determined 

from their ten lowest energy structures using YASARA 9.10.5© 

2.4. Results and Discussion

2.4.1. Manipulation of production and composition of 

ATCC 8185 cultures 

2.4.1.1. Colony selection for optimum 

The radial diffusion assays of 

NCTC 8340 showed antibiotic 

zones observed (Fig. 2.2).  
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2.15 

(2D-NMR NOE) constraints during a combined study with the group 

of Prof. Graham Jackson (University of Cape Town). The major Trcs isolated from commercial 

been modelled by M. Rautenbach using YASARA 9.10.5© software 

In this study, the structure of Tpc C was obtained from transformation of low energy 

those of Tpc A, Phc A, Trc AOMe3, and Trc A(Q

low energy structures of Trc A. The derived structures were submitted to 

YASARA molecular dynamic (MD) simulations for 200 fs at 298 K followed by 

YASARA 2 force field 64. This was followed by MD simulat

nimisations to assess if the structures had reached 

regarded as a representative structure when 10 near identical

, overall structure (RMSD < 1Å from average) and calculated 

obtained from consecutive simulation runs and energy minimisations. The solvent accessible 

volume (SAV) and solvent accessible surface area (SASA) for each peptide were determined 

their ten lowest energy structures using YASARA 9.10.5© 41. 

nd Discussion 

Manipulation of production and composition of Trc analogues by 

 

Colony selection for optimum tyrothricin production 

radial diffusion assays of B. aneurinolyticus ATCC 8185 single colonies against 

NCTC 8340 showed antibiotic tyrothricin production as evidenced by the clear growth inhibition 

Gel diffusion assays for tyrothricin production on M. luteus 

zones (clear zones) were created by the antibiotic tyrothricin complex produced 
B. aneurinolyticus ATCC 8185. 

NMR NOE) constraints during a combined study with the group 

of Prof. Graham Jackson (University of Cape Town). The major Trcs isolated from commercial 

led by M. Rautenbach using YASARA 9.10.5© software 

Tpc C was obtained from transformation of low energy 

, and Trc A(Q-O) were obtained 

low energy structures of Trc A. The derived structures were submitted to 

followed by in vacuo energy 

. This was followed by MD simulations for 

the structures had reached a global minimum. 

near identical structures in terms 

calculated energy were 

minimisations. The solvent accessible 

volume (SAV) and solvent accessible surface area (SASA) for each peptide were determined 

analogues by B. aneurinolyticus 

ATCC 8185 single colonies against M. luteus 

production as evidenced by the clear growth inhibition 

 

M. luteus lawn. The inhibition 
created by the antibiotic tyrothricin complex produced 

Example of 
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produces 
tyrocidines/ 
tyrothricin  
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Colonies that gave the largest inhibition zones were selected for further propagation to produce 

Trcs. An average yield of 500-700 mg crude Trc was obtained per litre of B. aneurinolyticus 

ATCC 8185 culture. This is in accordance with the expected yield of 500 mg/L tyrothricin 

produced estimated by Dubos and Hotchkiss 2. 

Eighty percent of the tyrothricin extract is expected to be Trc 53. Thin layer chromatography of 

samples isolated from the culture extracts revealed a ninhydrin active spot with the same Rf 

value (Rf = 0.6) to that of the Trcs extracted from the commercial tyrothricin (results not shown). 

2.4.1.2. Influence of urea supplementation on the growth of and Trc production by B. 

aneurinolyticus ATCC 8185  

The selected B. aneurinolyticus ATCC 8185 colonies grew well in NuB culture medium with or 

without 0.1% m/v urea (Fig. 2.3A) as additional nitrogen source, although urea supplementation 

induced a slight decrease in the specific growth rate from 0.41 to 0.33 (/hour) (Fig. 2.3B). 

However, the final biomass yields were similar with and without urea in culture medium (not 

shown). 

 

 

 

 

 

 

 

 
   

  

Figure 2.3  Comparison of A. Growth curves of B. aneurinolyticus ATCC 8185 cultures in 
nutrient broth (NuB) in the presence or absence of 0.1% urea over 24 hours. Each 
data point represents the mean of 3-4 measurements. B. Specific growth rate 
difference during the exponential growth phase of B. aneurinolyticus ATCC 8185 
induced by supplementation with 0.1% m/v urea. 

Using semi-preparative RP-HPLC seven main fractions were purified from the Trcs isolated 

from the cultures grown in NuB in the presence (Fig. 2.4) or absence (results not shown) of 0.1% 

m/v urea. ESMS analyses of the purified fractions revealed that fraction 1 did not contain any 
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Trcs. This fraction contains a yellow pigment from the culture co-extracting with the Trcs. 

ESMS of the other fractions revealed that fractions 2, 3 and 5 consisted of Trc C, B, and A 

respectively. Fraction 6 also contained Trc A while fraction 4 contained Trc B and Tpc C. The 

seventh fraction was composed of Phc A and Tpc A (identities confirmed by MS-MS analysis by 

our group). 
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Figure 2.4  Semi-preparative RP-HPLC chromatogram of Trcs extracted from B. 

aneurinolyticus ATCC 8185 grown in NuB + 0.1% m/v urea showing 7 fractions 
purified (1-7) 

Examination of the influence of urea concentration on the antibacterial activity of Trc extracts 

indicated that the optimal urea concentration was 0.1% m/v (Fig. 2.5) in accordance with Baron 
44. Since the urea over 1 to 0.008% m/v did not prevent growth of bacteria its effect is probably 

linked to the regulation of the Trc synthesis mechanism. 
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Figure 2.5  Effect of urea concentration on the extracted antibacterial activity of the crude Trc 
culture extracts. Each data point represents the mean of quadruplicate 
measurements 

2.4.1.3. Influence of amino acid supplementation on the growth of and Trc production of B. 

aneurinolyticus ATCC 8185  

Supplementation with different amino acids had different effects on the growth rate of the 

cultures depending on the amino acid concentration (Fig. 2.6). The general tendency was of 

decrease in growth rate with increase in amino acid concentration perhaps as a result of the 

amino acids at high concentration.  

Stokes & Woodward 46 also observed that tyrothricin production in submerged, aerated cultures 

was inhibited following supplementation with Trp at a concentration of 0.5% m/v. All cultures 

showed least growth at highest amino acid concentration (1% m/v) while optimum growth was 

mostly observed at 0.1% m/v except for Trp and Met for which it was observed at 0.001% m/v. 

Phe had the least inhibitory effect on growth of producer as opposed to D/L-Phe that rapidly 

decreased the growth rate. Studies on the B. aneurinolyticus ATCC 10068 strain also showed 

growth inhibition by increasing concentrations of Trp and Phe with the effect of Phe being 

observed only from 13 hours 55. 
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Figure 2.6  Influence of amino acid concentration on the specific growth rate of B. 

aneurinolyticus ATCC 8185 cultures in nutrient broth (NuB) in the presence of 
0.1% m/v urea over 24 hours (left). Specific growth rate (µ) was computed as the 
change in lnOD595 over the change in time during the exponential growth phase 
over 24 hours. Each data point represents the mean of quadruplicate 
measurements. 

The relative amount and/or composition of the Trc analogues produced varied with the 

concentration of the added amino acid (Fig. 2.7). Trp particularly influenced the composition of 
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Trcs produced as seen in Fig. 2.7A wherein as the concentration of added Trp decreased, there 

was an increase in the range of and/or amount of Trcs produced. Increasing concentrations of 

Trp also led to increase production of gramicidins (Fig. 2.7A). Unlike Trp, the concentration of 

Phe (Fig. 2.7B) and the other amino acids (results not shown) only influenced the relative 

amounts of the Trcs produced. However, up to 0.05% m/v Phe and DL-Phe supplementation 

favoured the synthesis of Trc A, Phc A and to a lesser extent Trc B (Trc A analogues) and 

concomitant inhibition of gramicidin production. The Trc analogues produced in the presence of 

the other amino acids did not differ from those in the non-supplemented culture extract (results 

not shown). Similar observations were made by Vosloo et al. 55 in terms of effect of varying 

concentrations of Trp and Phe added to the culture medium of B. aneurinolyticus ATCC 10068.  

The change in Trc profile was similar with the Trp-containing peptides forming with Trp 

supplementation and Phe-containing peptides forming with Phe supplementation, even though 

different culture medium of tryptone, glucose and salts (TGS) 45 was used and the producer stain 

was different. However, Vosloo et al. 55 observed a broader array of Trc analogues such as the 

Lys analogues of the major Trcs as well as other minor tryptocidines. Rao et al.
51 previously 

observed that B. aneurinolyticus ATCC 10068 responded more readily to modifications in amino 

acids than B. aneurinolyticus ATCC 8185 even though the effect was evaluated in cell-free 

extracts and similar culture medium was used for both strains. Our results are in accordance also 

with previous work by other authors 4,5,65 who demonstrated preferential synthesis of Trc A by B. 

aneurinolyticus ATCC 10068 cultures upon addition of Phe to the culture medium while 

supplementing with Trp led to preferred production of Tpc C (formerly known as Trc D). Similar 

results were obtained in cell-free production systems 48,51. It has been suggested that the fact that 

only Trp addition seemed to cause the exclusive production of Tpc C is due to very high Trp 

affinity of the enzyme synthetase complex 37,51. 
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Figure 2.7  HPLC chromatography showing the influence of concentration of A. Trp and B. 
Phe on the composition of Trcs produced by B. aneurinolyticus ATCC 8185 
cultures. The identity of fractions was confirmed by TOF-ESMS. 

2.4.2. Optimisation for high yield of single Trc analogues from culture extracts 

Following the results from the previous section and the goal being to increase the yield of single 

analogues, we opted to supplement the cultures with higher amino acid concentrations 

individually and in combinations, followed by isolation of the Trcs and purification of the major 

fractions. The identity of components of the purified fractions was confirmed by TOF-ESMS and 

comparison of the observed molecular masses to the list of identified Trcs by Tang et al. 8. 
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2.4.2.1. Influence of amino acid supplementation  

The amino acids chosen for supplementation were specifically the variable amino acids in the 

identified Trc analogues and other amino acids known to play a role during Trc synthesis by the 

multi-enzyme complex (Phe, Tyr, Trp, Lys, Cys, Met, β-Ala, and D/L-Phe). Table 2.4 

summarises the modulation of Trc analogue production under specified amino acid 

supplementation.  

Table 2.4  Summary of Trc analogue production by B. aneurinolyticus ATCC 8185 cultures 
as modulated by amino acid supplementation. Where more than one amino acid is 
mentioned, they were used at 0.5% m/v each while single amino acids were at 1% 
m/v. Standard three letter abbreviations are used for amino acids. The ‘+’ indicates 
the confirmed presence of Trc or analogue. The m/z of the unknowns is given as 
observed in the TOF ESMS data. 

Amino acids added 
to NuB culture 
medium 

Identity of Trcs and  analogues 

T
rc

 A
 

T
rc

 B
  

T
rc

 C
 

T
pc

 A
  

T
pc

 B
  

T
pc

 C
 

Ph
c 

A
 

Ph
c 

C
 o

r 
 

T
pc

 B
 

m/z of other 
compounds/ 
peptides observed 
 

Phe +      +   
D-Phe          
DL-Phe +      +  1263.18 
Tyr + + + + + +    
Trp     + +    
Lys + + +       
Cys + +  + +    1302.59 
β-Ala + + + + + +   1302.20  
Met +   +      
Lys + Phe +      +   
Lys + Trp +   + + +   1229.16  
Tyr + Trp      +    
Tyr + Phe +      +   
Phe + Trp +    + +  + 1226.06 
Lys + Phe + Tyr +      +   
Lys + Phe + Trp      +  + 1378.50, 1384.59** 
Lys + Tyr + Trp      +    

**Tryptocidine analogue with Lys2, Trp10 identified, but not named by Tang et al.
8. 

The extract of 1% m/v β-Ala- and Tyr-supplemented cultures contained all of the major Trcs and 

most of the minor peptides, while Lys seemed to favour the production only of the major Trcs, 

although at lower yield. None of the Lys-containing major Trc analogues were found in any of 

the preparations. In the presence of Cys the production of Trc C, Tpc C, and Phc A was 

inhibited. Met induced the preferential production of Trc A with Tpc A. D-Phe completely 
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inhibited Trc production unlike the Phe or DL-Phe that induced production of Trc A and Phc A. 

Addition of Tyr to Phe with or without Lys, however, led to preferential production of Trc A 

over Phc A. Lys influenced Trp supplementation by inducing production of more analogues like 

Trc A and Tpc A.  

Supplementing with Tyr and Trp in a 1:1 ratio as well as a combination of equal amounts of Lys, 

Tyr and Trp led to exclusive production of Tpc C though at lower yield than when Trp alone was 

added. Phe and Trp induced production of Tpc B and inhibition of Phc A production. Addition of 

Lys to Phe and Trp shifted production mainly towards Tpc C. Some unknown analogues were 

also produced though in very small amounts (Table 2.4).  

It has been demonstrated in previous studies that the enzymes involved in the incorporation of 

the aromatic amino acids have low affinity and will incorporate the aromatic amino acids with 

related structures according to availability 4,5. However, some of these amino acids have higher 

affinity for certain enzyme domains than others which will explain their preferential abundance 

in the final Trc product. Mootz & Marahiel 37 observed that the adenylation domain of the B. 

aneurinolyticus ATCC 8185 in charge of integrating either Phe or Trp at position 4, had a 

fivefold higher affinity for Trp. This explains the preferential tendency to produce Tpc C with 

three Trp residues in the presence of the other aromatic amino acids. Therefore, the affinity of 

the synthetase enzyme complex for the amino acid supplement also determines the nature of Trcs 

produced 4. It also seems that the hydrophobic amino acids play a role in determining the 

preferential affinity of the enzymes that incorporate the aromatic amino acids. The absence of 

Trc production in the presence of D-Phe indicates that L-Phe is a rate limiting factor in the 

production of Trcs and this is contrary to the results of Mach and Tatum who observed no 

difference in using either D- or L-Phe 4. These results indicate the need for further detailed 

investigation of the influence of the role played by amino acids in the tyrocidine production but 

were enough to inform of which amino acids could provide large yield of rare analogues like Tpc 

C and Phc A. 

A pilot experiment was performed to improve the yield of Trc A and Tpc C produced in cultures 

supplemented with combinations of Lys + Phe + Tyr and Lys + Phe + Trp respectively by 

varying the relative concentration of each amino acid. Several combinations of varying 

concentrations of each amino acid were used to supplement the B. aneurinolyticus ATCC 8185 

cultures.  
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Figure 2.8  Semi-preparative RP-HPLC chromatogram of tyrocidine analogues isolated from 

extracts of Bacillus aneurinolyticus ATCC 8185 cultured in nutrient broth (NuB) 
supplemented with A. 0.3% m/v Trp B. 1% m/v Phe C. 0.5% m/v Lys + 0.5% m/v 
Phe + 0.5% m/v Tyr  
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The isolated Trcs from the culture extracts were analysed as previously described using HPLC 

and TOF-ESMS and their antibacterial activity against M. luteus was determined as previously 

described. None of the preparations led to production of a single analogue (results not shown). 

Comparison of activity against M. luteus showed large variations. The activity variation of the 

isolated Trcs could be due to differences in the proportions of the different analogues produced, 

as well as non-antibiotic contaminants co-extracted. 

Based on the above results, supplementation with Trp was chosen for high yield production of 

Tpc C (Fig. 2.8A); Phe (Fig. 2.8B) or Phe + Tyr supplementation for production of Phc A along 

with Trc A; Phe + Tyr + Lys for production of Trc A (Fig. 2.8C). Trp at 0.3% m/v was the 

chosen concentration for supplementation because results indicated that a comparable yield of 

Tpc C was produced as that with 1% m/v supplementation. There was a difference in retention 

time for Trc A and Phc A in Figs 2.7B and 2.8B probably due to minor differences in HPLC 

conditions and amount of material separated, specifically impurities that could change elution of 

the peptides due to interference with matrix interaction.  

2.4.2.2. Influence of urea supplementation 

As previously observed (Fig. 2.3B), the presence of urea seemed to reduce the growth rate of the 

Trc producers. We investigated if this had any impact on the yield of Trcs produced upon 

supplementation with the selected amino acids Trp, Phe + Tyr or Phe + Tyr + Lys for production 

of Tpc C, Phc A and Trc A respectively. Urea supplementation at 0.1% m/v was added to 

cultures along with the specific amino acids. The average yield obtained for all the conditions of 

amino acid supplementation selected in Section 2.4.2.1 was unchanged except for addition of 

0.5% m/v Lys + 0.5% m/v Phe + 0.5% m/v Tyr for preferential production of Trc A which gave a 

significantly higher yield in the absence of urea than with 0.1% m/v urea as determined by 

Student t-test (Fig. 2.9). This is contrary to the recommendations made by Baron 44, who claimed 

that the presence of urea or its derivatives in the culture media led to a substantial increase in the 

amount of Trcs produced in the cultures. However, deep tank fermentation was utilised, which 

could influence the yield and account for the disparity of the observations. Baron obtained an 

average yield of 150 mg/L of Trc in the presence of 0.1% m/v urea which was double the average 

yield obtained in its absence.   
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Figure 2.9 Effect of 0.1% m/v urea on the yield of tyrocidine analogues produced by B. 

aneurinolyticus ATCC 8185 in NuB culture media supplemented with amino 
acids.  

 

Table 2.6 Effect of nitrogen supplementation on composition of Trcs produced by B. 

aneurinolyticus ATCC 8185 cultures 

Nitrogen supplement 
in culture media 

Total yield  
(mg/L ± SEM) 
 n = 3 

Major m/z 
signals 

Peptide 
identity 

% Signal 
in ESMS 

Phe+Tyr + urea  

 Phe+Tyr 

598.3 ± 42.06 

630.0 ± 7.64 

 

1254.38 

1270.34 

1292.31 

1309.30 

Phc A 

Trc A 

Trc A + Na 

Trc B 

20 

100 

55 

trace 

Trp + urea  

Trp 

341.7 ± 30.60 

411.7 ± 42.26 

 

1293.36 

1332.32 

1371.30 

Tpc A/PhcB 

Tpc B 

Tpc C 

trace 

trace 

100 

Phe + Tyr + Lys + urea 

Phe + Tyr + Lys 

641.7 ± 41.47 

801.7 ± 41.67 

1254.39 

1270.37 

1310.30 

Phc A 

Trc A 

Trc B 

20 

100 

trace 
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This could be accounted for by the difference in the depth of the fermentation media which will 

influence oxygenation which could in turn affect nutrient supply to the cultures. B. 

aneurinolyticus cultures will initiate antibiotic production under conditions of nutrient limitation 
25,49,65 and so the increased oxygenation in shallow cultures may not be favourable for the high 

yield production of Trcs. As previously demonstrated in Section 2.4.1.1 the particular colony 

selected for Trc production may also have a large influence on the yield. As shown in Table 2.6 

the addition of urea did not affect the composition of the Trc analogues produced. 

2.4.3. Purification and characterisation of Trcs and analogues 

From the previous sections we identified three supplementation regimens that gave high yield of 

some rare Trc analogues notably Trc A, Phc A and Tpc C which are preferentially produced in B. 

aneurinolyticus ATCC 8185 cultures grown in nutrient broth medium supplemented with either 

an equimolar combination of Phe, Tyr and Lys to a total amino acid concentration of 1.5% m/v 

for Trc A or 1% m/v Phe for Phc A or 0.3% m/v Trp for Tpc C. Other Trc analogues (Trc A1, B, 

B1, C, and C1) were purified from commercially obtained tyrothricin. Some of the synthetic Trc 

analogues were also purified and/or analysed. Following isolation of tyrocidines from the 

tyrothricin from both culture and commercial sources through organic extraction, purification 

was done using the RP-HPLC 54 previously used to purify the six major Trcs from commercial 

tyrothricin 11. The purity of the fractions was verified by analytical HPLC 41, ESMS 41 and 

UPLC-MS 55. 

2.4.3.1. Purification from supplemented B. aneurinolyticus ATCC 8185 culture extracts 

From the culture extract following supplementation with 0.3% m/v Trp, we purified Tpc C which 

could be identified from its TOF-ESMS spectra showing the singly charged molecular ion (m/z = 

1371.6957) and singly charged sodium adduct (m/z = 1393.6774) (Fig. 2.10).  

Purified Tpc C eluted from the analytical C18 RP-HPLC column at 9.52 minutes and from the 

UPLC column at 8.13 minutes (Fig. 2.11). Its purity was 97% as determined from analysis of the 

UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.10 TOF-ESMS analysis of purified Tpc C. The recorded positive mode spectrum 
from 300-2000 atomic mass units (amu). The singly charged molecular ion ([Tpc 

C + H]+) and singly charged sodium adduct ([Tpc C + Na]+) are indicated. 
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Figure 2.11  A. Analytical C18 RP- HPLC chromatogram of purified Tpc C at 200 µg/mL (50 

µL injection volume) B.  UPLC chromatogram of Tpc C preparation. 

From the culture extract following supplementation with 0.5% m/v Phe + 0.5% m/v Tyr + 0.5% 

m/v Lys, we purified Trc A as the major peak. It could be identified from its TOF-ESMS spectra 

showing the singly charged molecular ion (m/z = 1270.6613) and singly charged sodium adduct 

(m/z = 1292.6399) (Fig. 2.12).  
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Figure 2.12 TOF-ESMS analysis of purified Trc A. The recorded positive mode spectrum 
from 300-2000 amu. The singly charged molecular ion ([Trc A + H]+) and singly 
charged sodium adduct ([Trc A + Na]+) are indicated. 

 

The retention time of purified Trc A was 11.26 minutes on the analytical C18 RP-HPLC column 

and 9.22 minutes on the UPLC column (Fig. 2.13). Its purity was 97% as determined from 

analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.13  A. Analytical C18 RP- HPLC chromatogram of purified Trc A at 100 µg/mL (20 
µL injection volume) B.  UPLC chromatogram of Trc A preparation 
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Trc A could also be purified from commercial tyrothricin, but this fraction was frequently 

contaminated with Tpc A which was difficult to get rid of as revealed from fluorescence 

spectroscopy (Fig. 2.14) and MS analyses. We also observed presence of the linear gramicidin A 

from the MS spectra co-eluting with Trc A (not shown). 
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Figure 2.14  Comparison of fluorescence emission spectra of Trc A from commercial extracts 
and culture extracts in an aqueous environment A. Excitation at 280 nm yields the 
combined emission of Tyr and tyrosinate B. Excitation at 295 yields the emission 
of tyrosinate 

Hence production of Trc A from the supplemented culture extracts offered the advantage of 

fewer purification rounds using RP-HPLC and a higher purity Trc A preparation. 

Tyrothricin derived from culture extracts following supplementation with 1% m/v Phe showed 

two main peaks. The first fraction contained Trc A while the second fraction contained Phc A. 

Phc A was identified from its TOF-ESMS spectra showing singly charged (m/z = 1255.6670) 

molecular ions and singly charged potassium adduct (m/z = 1292.6232) (Fig. 2.15).  

The high aggregation tendency of this very hydrophobic peptide was observed as there was an 

initial peak that eluted before 5 minutes on the analytical C18 RP-HPLC column. The retention 

time of purified Phc A was 13.61 minutes on the analytical C18 RP-HPLC column and 9.49 

minutes on the UPLC column (Fig. 2.16). Its purity was 90% as determined from analysis of the 

UPLC results. 
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Figure 2.15  TOF-ESMS analysis of purified Phc A. The recorded positive mode spectrum 
from 300-2000 amu. The singly charged molecular ion ([Phc A + H]+) and singly 
charged potassium adduct ([Phc A + K]+) are indicated. 
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Figure 2.16 A. Analytical C18 RP- HPLC chromatogram of purified Phc A at 200 µg/mL (50 
µL injection volume) B.  UPLC chromatogram of Phc A preparation 

2.4.3.2. Purification of Trcs from commercial tyrothricin 

The rest of the natural Trc analogues of interest in this study (Table 2.7) were obtained from 

commercial tyrothricin. Organic extraction of 300 mg commercial tyrothricin gave a yield of 185 
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mg (62%) Trcs corresponding to the expected yield of 60% 61. The semi-preparative C18-RP-

HPLC of the crude Trc extract from the commercial tyrothricin complex gave 6 major fractions 

(Fig. 2.17). Analytical RP-HPLC and ESMS of the purified fractions showed that fraction A 

contained Trc C1, fraction B constituted mainly of Trc C, fraction C was shown to contain a 

mixture of Trc B1 and Trc B contaminated with their analogues Trc B1`,and Trc B` respectively 

with inverted aromatic dipeptide unit. Fraction D was found to contain Trc B and Trc B`, 

fraction E was shown to contain a mixture of peptides including Trc A and Trc A1 and fraction F 

contained a mixture of Trc A, Trc A1 and Tpc A. Fractions C, D, E and F were subjected to 

further purification by analytical HPLC. Following this Trc A1, Trc B and Trc B1 were 

successfully purified. Commercially obtained gramicidin S (GS) which will be used as reference 

peptide in most assays was also identified using TOF-ESMS (m/z of singly charged molecular 

ion = 1141.7167 and m/z of doubly charged molecular ion 571.3670). 
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Figure 2.17  Semi-preparative RP-HPLC chromatogram of Trcs in commercial tyrothricin 

showing the six major fractions (A to F) that was collected. 

Trc C1 was purified from fraction A. It could be identified from its TOF-ESMS spectra showing 

the singly charged molecular ion (m/z = 1362.6975) as well as the sodium (m/z = 1384.6797) and 

potassium adducts (m/z = 1400.6497) (Fig. 2.18).  
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Figure 2.18  TOF-ESMS analysis of purified Trc C1. The recorded positive mode spectrum 
from 300-2000 amu.The singly charged molecular ion ([Trc C1 + H]+) and singly 
charged sodium ([Trc C1 + Na]+)  and potassium ([Trc C1 + K]+) adducts are 
indicated.  

 

The retention time of purified Trc C1 was 7.31 minutes on the analytical C18 RP-HPLC column 

and 7.79 minutes on the UPLC column (Fig. 2.19). Its purity was 98% as determined from 

analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.19  A. Analytical C18 RP- HPLC chromatogram of purified Trc C1 at 500 µg/mL (50 
µL injection volume) B. UPLC chromatogram of Trc C1 preparation 

Trc C was purified from fraction B. It could be identified from its TOF-ESMS spectra showing 

the singly charged molecular ion (m/z = 1348.6824) (Fig. 2.20). The retention time of purified 

Trc C was 7.71 minutes on the analytical C18 RP-HPLC column and 8.10 minutes on the UPLC 
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column (Fig. 2.21). Its purity was 94% as determined from analysis of the UPLC results and 

>95% as determined from analytical HPLC.  

 

Figure2.20 TOF-ESMS analysis of purified Trc C. The recorded positive mode spectrum 
from 300-2000 amu. The singly charged molecular ion ([Trc C + H]+) is indicated. 
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Figure 2.21  A. Analytical C18 RP- HPLC chromatogram of purified Trc C at 500 µg/mL (50 
µL injection volume) B. UPLC chromatogram of Trc C preparation. 

Trc B1 was not successfully purified to >90% from fraction C as it contained about 20% amounts 

of Trc B1’ and Trc B. Exhaustive purification of Trc B1 from a similar fraction by our group 

yielded a purity >90%. Trc B1 could be identified from its TOF-ESMS spectra showing the 

singly (m/z = 1323.6958) and doubly charged molecular ions (m/z = 662.3505) (Fig. 2.22).  
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Figure 2.22  TOF-ESMS analysis of purified Trc B1. The recorded positive mode spectrum 
from 300-2000 amu. The doubly charged molecular ion ([Trc B1+ 2H]2+) and 
singly charged molecular ion ([Trc B1 + H]+) are indicated. 

The retention time of purified Trc B1 was 9.28 minutes on the analytical C18 RP-HPLC column 

and 8.74 minutes on the UPLC column (Fig. 2.23). Its purity was 90% as determined from 

analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.23  A. Analytical C18 RP- HPLC chromatogram of purified Trc B1 at 250 µg/mL (50 
µL injection volume) B. UPLC chromatogram of Trc B1 preparation 

Trc B was only purified from fraction D to 76%, and as with Trc B1 also contained the related 

peptides, which was in this case Trc B1 and Trc B’. Exhaustive purification of Trc B from a 

similar fraction by our group yielded a purity >90%. Trc B could be identified from its TOF-

ESMS spectra showing the singly (m/z = 1309.6499) and doubly (m/z = 655.3290) charged 

molecular ions (Fig. 2.24).  
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Figure 2.24  TOF-ESMS analysis of purified Trc B. The recorded positive mode spectrum 
from 300-2000 amu. The doubly charged molecular ion ([Trc B + 2H]2+)  and 
singly charged molecular ion ([Trc B + H]+) of are indicated.  

The retention time of purified Trc B was 9.56 minutes on the analytical C18 RP-HPLC column 

and 8.38 minutes on the UPLC column (Fig. 2.25). Its purity was 91% as determined from 

analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.25  A. Analytical C18 RP- HPLC chromatogram of purified Trc B at 500 µg/mL (50 
µL injection volume) B. UPLC chromatogram of Trc B preparation 

Trc A1 was purified from fraction E. It could be identified from its TOF-ESMS spectra showing 

the singly charged molecular ion (m/z = 1284.6760) and singly charged sodium (m/z = 

1306.6543) and potassium (m/z = 1322.6252) adducts (Fig. 2.26).  
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Figure 2.26  TOF-ESMS analysis of purified Trc A1. The recorded positive mode spectrum 
from 300-2000 amu. The singly charged molecular ion ([Trc A1 + H]+) and singly 
charged sodium ([Trc A1 + Na]+)  and potassium ([Trc A1 + K]+) adducts are 
indicated.  

The retention time of purified Trc A1 was 11.12 minutes on the analytical C18 RP-HPLC column 

and 9.11 minutes on the UPLC column (Fig. 2.27). Its purity was 98% as determined from 

analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.27  A. Analytical C18 RP- HPLC chromatogram of purified Trc A1 at 100 µg/mL (20 
µL injection volume) B. UPLC chromatogram of Trc A1 preparation 

2.4.3.3. From chemical synthesis 

Among the synthetic Trc analogues, sTrc A(OMe3) was not satisfactorily pure so it was purified 

by semi-preparative RP-HPLC to >95% purity. The synthetic analogues of Trc A and Phc A 

eluted earlier (6.33 and 8.80 mins respectively) than the natural analogues (11.26 and 13.61 
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minutes respectively) which revealed that there was an interference with at least their 

hydrophobicity during the chemical synthesis process (not shown). This could affect the 

mechanism of interaction of the synthetic analogues with targets; hence focus was on analysis of 

the natural analogues.  

The synthetic Trc A analogue with two Orn residues could be identified from its TOF-ESMS 

spectra showing the singly (m/z = 1256.6832) charged molecular ion (Fig. 2.28).  

 

Figure 2.28  TOF-ESMS analysis of purified sTrc A(Q-O). The recorded positive mode 
spectrum from 300-2000 amu. The singly charged molecular ion ([sTrc A(Q-O) + 
H]+) is indicated. 

The retention time of purified sTrc A(Q-O) was 6.73 minutes on the analytical C18 RP-HPLC 

column and 7.05 minutes on the UPLC column (Fig. 2.29). Its purity was 94% as determined 

from analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.29  A. Analytical C18 RP- HPLC chromatogram of purified sTrc A(Q-O) at 200 
µg/mL (50 µL injection volume) B. UPLC chromatogram of sTrc A(Q-O) 
preparation 

The synthetic Trc A analogue with a trimethylated Orn residue could be identified from its TOF-

ESMS spectra showing the singly (m/z = 1312.7084) charged molecular ion (Fig. 2.30).  

 

Figure 2.30  TOF-ESMS analysis of purified sTrc AOMe3. The recorded positive mode 
spectrum from 300-2000 amu. The singly charged molecular ion ([sTrc AOMe3 + 
H]+) is indicated. 

The retention time of purified sTrc AOMe3 was 10.04 minutes on the analytical C18 RP-HPLC 

column and 9.04 minutes on the UPLC column (Fig. 2.31). Its purity was 96% as determined 

from analysis of the UPLC results and >95% as determined from analytical HPLC. 
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Figure 2.31  A. Analytical C18 RP- HPLC chromatogram of purified sTrc AOMe3 at 200 
µg/mL (50 µL injection volume) B. UPLC chromatogram of sTrc AOMe3 
preparation 

The synthetic Tpc A analogue could be identified from its TOF-ESMS spectra showing the 

singly (m/z = 1293.6755) charged molecular ion (Fig. 2.32).  

The retention time of purified sTpc A was 13.58 minutes on the analytical C18 RP-HPLC column 

and 9.50 minutes on the UPLC column (Fig. 2.33). Its purity was 97% as determined from 

analysis of the UPLC results and >95% as determined from analytical HPLC. 

The results of the purification and characterisation of the Trc analogues in this study are 

summarised in Table 2.5. The qualitative structure-to-activity relationship (QSAR) between the 

structure of the Trcs and their observed antimicrobial activities will be investigated in Chapter 3 

with the aim of estimating the optimal/minimal structural determinants of activity necessary to 

facilitate the design of peptide derivatives and mimics for therapeutic evaluation 11,66. The HPLC 

Rt will be used as previously10,11,67,68 to depict the peptide hydrophobic character and potential 

membrane activity. The m/z will be used to derive the Mr parameter which will demonstrate 

peptide size factors that may affect target interaction.  
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Figure 2.32  TOF-ESMS analysis of purified sTpc A. The recorded positive mode spectrum 
from 300-2000 amu. The singly charged molecular ion ([sTpc A + H]+) is 
indicated.  
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Figure 2.33  A. Analytical C18 RP- HPLC chromatogram of purified sTpc A at 100 µg/mL (50 
µL injection volume) B. UPLC chromatogram of sTpc A preparation 
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Table 2.5  Summary of characterisation of purified Trcs analogues in this study.  

 

Peptide HPLC Rt 

(mins.) 

% 
HPLC 
purity 

UPLC Rt 

(mins.) 

% 
UPLC 
purity 

Experimental 
Mr (Theoretical 

Mr) 

Experimental m/z 
(Theoretical m/z) 
of singly charged 

molecular ion 

From commercial tyrothricin 

Trc C1 7.31  >95 7.80 98 1361.6897 

(1361.6921) 

1362.6975 

(1362.6999) 

Trc C 7.71  >95 7.84 94 1347.6746 

(1347.6764) 

1348.6824  

(1348.6842) 

Trc B1 9.28  >95 8.31 90 1322.6826 

(1322.6812) 

1323.6958 

(1323.6890) 

Trc B 9.56  >95 8.39 91 1308.6337 

(1308.6655) 

1309.6499 

(1309.6733) 

Trc A1 11.12  >95 9.12 98 1283.6674 

(1283.6703) 

1284.6760 

(1284.6781) 

From amino acid supplemented culture extracts of B. aneurinolyticus 8185 

Tpc C 9.52  >95 8.13 97 1370.6949 

(1370.6924) 

1371. 6957 

(1371.7002) 

Trc A 11.26  >95 9.23 97 1269.6605 

(1269.6568) 

1270.6611 

(1270.6624) 

Phc A 13.61  >90 9.49 90 1253.6663 

(1253.6600) 

1254.6670 

(1254.6675) 

From chemical synthesis 

sTrc  

A(Q-O) 

6.73  >95 7.04 94 1255.6754 

(1255.6754) 

1256.6832 

(1256.6832) 

sTrc 
AOMe3 

10.04  >95 9.04 96 1311.7006 

(1311.7337) 

1312.7084 

(1312.7415) 

sTpc A 13.58  >95 9.50 97 1292.6677 

(1292.6706) 

1293.6755 

(1293.6784) 

2.4.4. Homology models of newly purified Trc analogues 

We used a low energy model of Trc C, created from 2D-NMR NOE constraints (model courtesy 

of Prof. G. Jackson, University of Cape Town, Cape Town, South Africa), as the basic three-
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dimensional structure for the homology modelling of the new Trc analogues. Previous modelling 

experiments by M. Rautenbach (University of Stellenbosch, Stellenbosch, South Africa) 

produced homology models for GS and the six major Trcs 41 which were mutated to generate the 

new structures in this study. Four internal hydrogen bonds between Phe3-NH:O-Leu10, Leu10-

NH:O-Phe3 and Val8-NH:O-Asn5 and Asn5-NH-O-Val8 are expected to stabilise the β-sheet 

structures of the Trcs, two of which are in the conserved VOLFP pentapeptide moiety as 

predicted for Trc A by Gibbons et al. 69. The low energy model of all the new analogues showed 

at least three matching hydrogen bonds (Fig. 2.34). These bonds were also found in the structure 

of GS and those of major Trcs 41. Only Tpc A and Trc A(Q-O) structures exhibited all four 

internal hydrogen bonds. We observed that the lowest energy structures of the other three peptide 

structures lacked the hydrogen bond between Asn5-NH:O-Val8. Therefore, all predicted model 

structures were similar in their backbone conformations and therefore their secondary structures. 

They all showed a β-sheet with two strands made of Val8-O9-Leu10 and Ar3-D-Ar4-Asn5, where 

O stands for either Orn or trimethylated-Orn and Ar denotes Trp or Phe. The adjoining β-turns 

are made of Gln/Orn6-Ar7 and D-Phe1-Pro2 where Ar is Tyr, Phe or Trp. This agrees with the 

predicted structures of the major Trcs 41 and the type I β-turn/type II` β-turn/ β-pleated sheet 

conformation indicated for Trc A in solution 69–71.  

From the ten lowest energy structures (RMSD < 1Å from average) of each peptide we 

determined the solvent accessible area (SASA) and volume (SAV) in silico using YASARA 

9.10.5© (Table 2.6). SASA and SAV are size parameters that are also useful in calculating 

hydrophobic burial 72 and as a measure of the probable magnitude of binding-induced changes  73 

such as during target interaction making them also relevant in QSAR studies. Their relationship 

to the hydrophobicity of molecules is through computation of the logarithm of the partition 

coefficient 74,75. Phc A had the least SASA and SAV values while Trc C1 had the largest values 

(Table 2.6). 
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Table 2.6  Summary of information derived from molecular models of tyrocidine analogues 
using YASARA 9.10.5© 

Peptides 
Observed hydrogen 

bonding of 
backbone 

Solvent accessible 
surface area 
(SASA, Å2) 

Solvent accessible 
volume  

(SAV, Å3) 

Trc A* 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1199 2680 

Trc A1* 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1208 2715 

Phc A 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1120 2591 

sTpc A 

Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

Asn5-NH- O-Val8 

1122 2631 

sTrc AOMe3 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1170 2741 

sTrc A(Q-O) 

Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

Asn5-NH- O-Val8 

1122 2605 

Trc B* 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1217 2741 

Trc B1* 

Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

Asn5-NH- O-Val8 

1231 2777 

Trc C* 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1267 2833 

Trc C1* 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1269 2854 

Tpc C 
Phe3-NH-O-Leu10  
Leu10-NH-O-Phe3 
Val8-NH-O-Asn5 

1193 2772 

*Results from Spathelf 41 
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Figure 2.34 Examples of low energy structure
left panels show hydrogen bonding pattern within the cyclic backbone and the 
right panels show the secondary structure (
ribbon, β-turn as green tube) and the side chains of the

Trc A(Q

Trc AOMe

Phc A 

Tpc C 

Tpc A 

 

 

 

2.45 

Examples of low energy structures of the novel Trc analogues in this study. The 
left panels show hydrogen bonding pattern within the cyclic backbone and the 
right panels show the secondary structure (β-sheet structure shown as a red 

turn as green tube) and the side chains of the variable amino acids

Trc A(Q-O) 

Trc AOMe3 

 

 

 

 

 

of the novel Trc analogues in this study. The 
left panels show hydrogen bonding pattern within the cyclic backbone and the 

sheet structure shown as a red 
variable amino acids. 
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2.5. Conclusions 

Bacillus aneurinolyticus strains ATCC 8185 effectively produce Trcs that inhibit the growth of 

bacteria such as M. luteus NCTC 8340. We successfully manipulated B. aneurinolyticus ATCC 

8185 cultures for tailored Trc production to ease extraction and purification and ensure high 

yields of single peptides (tryptocidine C, Trc A and phenycidine A). The RP-HPLC purification 

methodology established by our group enabled the purification of the six major Trcs (Trc A1, B, 

B1, C and C1) from a commercial tyrothricin complex. This methodology was also used for the 

purification of the synthetic trimethylated Trc A. Nine natural Trcs and three synthetic analogues 

were purified. The purity of the collected fractions was confirmed using analytical RP-HPLC, 

UPLC-MS and TOF-ESMS. The use of these analytical tools together with the modification of 

the culture media of the Trc producer Bacillus have enabled the purification of Tpc C, Phc A and 

Trc A in milligram quantities. It is worth noting that the successful purification to 97% and 90% 

of Tpc C and Phc A respectively was an important result as this had proven difficult in previous 

work 41. The low energy homology models of Tpc C, Phc A, Tpc A, Trc AOMe3, and Trc A(Q-

O) were determined for the first time in this study. All predicted models were highly similar to 

models of the other tyrocidine analogues previously determined 41 in both their backbone 

conformations  and secondary structures.  Chemical characterization of the purified peptides 

using analytical HPLC and TOF-ESMS, as well as molecular modelling of the peptides allowed 

us to derive structural parameters (HPLC retention time, molecular mass, solvent accessible 

surface area, solvent accessible volume) that will be useful for qualitative structure-to-activity 

analyses (QSAR) to predict structural motifs and pre-requisites of tyrocidine structure that are 

relevant to antimicrobial activity (Chapter 3). 
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Chapter 3  

Role of antimicrobial peptide structure on antilisterial 
activity: tyrocidine and cyclo(RRRWFW) analogues 

3.1. Introduction 

Listeriosis has received increased attention from the 1980s due to the rise in the number of 

human cases in several countries as well as evidence for food borne transmission 1. Listeria 

monocytogenes is the major species pathogenic to humans causing this opportunistic infection 

with a case fatality of 20 to 40% in immunocompromised subjects, infants, pregnant women, and 

senior citizens, thus a public health threat 1–4. The disease is characterised by abortion, 

septicemia and meningoencephalitis with listerial meningitis ranking among the most lethal 

infections 3,5. Listeria spp. contamination also has a serious economic impact due to the loss 

incurred by the food industry during outbreaks from execution of the WHO recommendation to 

“withdraw from the market any foods which have been demonstrated to be causally associated 

with human cases of listeriosis” 6. The current therapy of choice is ampicillin and penicillin, 

often in combination with gentamicin because most β-lactam antibiotics are only bacteriostatic to 

Listeria spp. 7,8. However, use of these drugs does not always result in successful treatment and 

there is a general tendency of resistance by Listeria spp. to antibiotics and disinfectants 1,3,4. This 

concern propelled the search for new antimicrobials 9. 

Cationic peptides with antimicrobial activity also known as “natural antibiotics” have been 

investigated for food processing and preservation to control harmful organisms such as L. 

monocytogenes 2,10. Three main groups of antimicrobial peptides (AMPs) can be distinguished: 

the gene-encoded heat-stable prokaryotic bacteriocins 9,11, ribosomally produced eukaryotic 

AMPs 12–14 and the non-ribosomally synthesized AMPs 10,15. Bacteriocins produced by lactic 

acid bacteria (LAB) have been of particular interest in the food industry for use as natural 

preservatives 16. Their recent classification groups them into two major classes 16,17: class I or 

lantibiotics and class II or nonlantibiotics. The two classes differ in whether they possess or lack 

post-translationally modified amino acids such as 2, 3-dehydroalanine (Dha), 2, 3-

dehydrobutyrine (Dhb), and the distinctive lantionine and methyllantionine residues 11,17. Class I 

peptide bacteriocins are further divided into type A or B in terms of their structures; type A have 

a flexible structure in solution and include nisin, subtilin and Pep5 while type B are rigid and 

globular 17,18. Class II bacteriocins are also sub-classified into classes IIa (pediocin-like which 
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possess the conserved N-terminal consensus sequence YGNGVXCXK), IIb (two-peptide 

bacteriocins), IIc (leaderless peptide bacteriocin), and IId (circular bacteriocins). Nisin and class 

IIa bacteriocins are particularly interesting for their antilisterial activity 19–21. Nisin is the only 

bacteriocin accorded the status of GRAS (generally recognized as safe) in the United States for 

use in food at levels of 5.5-6.9 mg nisin per kg of food and licensed as food preservative in over 

45 countries 2,21,22. Nevertheless, the shortcomings of nisin include the fact that it is unstable and 

less soluble above pH 7.0 and its antimicrobial activity, which is limited to Gram-positive 

bacteria, reduces when it is integrated in complex foods 2. Leucocins such as leucocin A 

produced by Leuconostoc gelidum UAL-187 are class IIa bacteriocins reported to inhibit L. 

monocytogenes 23–25. Leucocin A is a 37 residue-peptide predicted to consist of three short β-

strands at the N-terminus and an amphiphilic helical region in the C-terminus. Between the two 

sections, the sequence fragments containing Cys-9 and Cys-14 form two β-strands connected by 

a short six-member disulfide loop or turn connecting Cys-9 and Cys-14 23,26. Bacteriocins act 

primarily via membrane pore formation as their net positive charge and amphipathic structure 

assists in their interaction with negatively charged microbial membranes or other cellular targets 
9,27. Secondary cellular targets including lipid II targeted by mersacidin and mesentericin Y to 

inhibit cell-wall synthesis, bacterial RNA synthesis inhibited by microcin J25 and bacterial 

phospholipase A2 inhibited by duramycin-C as well as more than one mechanism (nisin induces 

membrane pore formation and inhibits cell-wall synthesis) are also employed for killing bacteria 
9,28–30. It has been proposed that class IIa bacteriocins require a mannose phosphotransferase 

system (PTS) permease as cell surface target molecule for their activity 21,31,32. 

Despite the multi-targeted mode of action of the bacteriocins, there are several reports of 

resistance by L. monocytogenes strains to class I (i.e. nisin) and class IIa bacteriocins 21,33–36 with 

the term “resistance” referring to the ability of strains to grow at the highest bacteriocin 

concentration available. The proposed nisin resistance model of L. monocytogenes ATCC 

700302 by Crandall & Montville 37 reviewed by Kaur et al. 38 included three factors: (i) 

alteration of peptidoglycan composition 39 possibly leading to increased binding of divalent 

cations that interfere with the cationic peptide; (ii) phospholipid content changes leading to 

modified membrane electric charge which inhibits pore formation; and (iii) decreasing 

membrane fluidity which prevents peptide insertion and association. The proposed mechanisms 

of resistance to class IIa bacteriocins specifically leucocin resistance in L. monocytogenes B73-

MR1 involve absence of a putative mannose-specific PTS enzyme IIAB subunit 40, up-regulating 

the synthesis of a putative β-glucoside-specific PTS enzyme II (EIIBgl) and a phospho-β-

glucosidase, as well as increased membrane fluidity by increasing levels of desaturated and 
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short-acyl-chain phosphatidylglycerols in the membrane 21,36,41. Furthermore, bacteriocin cross-

resistance in which resistance to a bacteriocin leads to resistance to other bacteriocins of the 

same class or in other classes reduces the efficiency of bacteriocins 16. There is therefore, a need 

for other antimicrobial compounds to be used in isolation or in combination with nisin or other 

bacteriocins as food preservatives. Katla et al. 21 proposed that bacteriocins should be part of a 

multiple preservative principle system referred to as “hurdles”.  

There are several records of high antilisterial activity by AMPs. Their most attractive attributes 

include broad spectrum antimicrobial activity, selectivity, rapid action, and reduced likelihood of 

resistance development 15. For example, the alpha-defensins from rhesus macaque leukocytes 

have been shown to be active against L. monocytogenes strain EGD at 7-15 µg/mL in a study by 

Tang et al. 43. Lόpez-Solanilla et al. 5 found that human defensins, thionins, protamine and 

magainin had significant antilisterial activity with a minimum inhibitory concentration (MIC) of 

2-5 µg/mL. More recently, Spathelf & Rautenbach 44 demonstrated significant activity by the 

major tyrocidines (Trcs) of the tyrothricin complex; cyclic decapeptides produced by Bacillus 

aneurinolyticus, against the leucocin A resistant strain, L. monocytogenes B73-MR1. Testing 

more Trc analogues is needed to improve the understanding of the structure-to-activity 

relationship (SAR) of the Trcs. Possible cyclic peptide candidates for antilisterial activity, 

sharing the predominant aromatic residue and cationic character with the Trcs, are the analogues 

of synthetic hexapeptide (Ac)-RRWWRF-NH2 (Ac-RW) which was identified as an AMP by 

Blondelle and Houghten 45 through synthetic combinatorial libraries screening. Dathe et al. 47 

obtained cyclo(RRRWFW) (c-WFW) by head-to-tail cyclisation of the synthetic hexapeptide 

(Ac)-RRWWRF-NH2 (Ac-RW). This resulted in a 62-fold increase in activity against 

Escherichia coli and 8-fold increase against Bacillus subtilis 48. 

This study aims to determine, compare and contrast the in vitro antilisterial activities of purified 

Trc analogues with cyclo(RRRWFW) and analogues (RW-peptides) against the leucocin A 

sensitive (B73) and resistant (B73-MR1) strains of L. monocytogenes and to find correlation 

between biophysical/theoretical structural parameters and bioactivity parameters through 

qualitative structure-to-activity relationship (QSAR) analyses. Characterisation of these libraries 

of small cyclic AMPs will enable us to gain insight into the structural motifs and prerequisites 

necessary for antilisterial activity and selectivity. 

3.2. Materials 

Tyrothricin (extracted from Bacillus aneurinolyticus), gramicidin S (GS) (from Brevibacillus 

brevis Nagano), Corning Incorporated® cell culture cluster non-pyrogenic polypropylene 
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microtiter plates and trifluoroacetic acid (TFA, >98%) were obtained from Sigma (St. Louis, 

USA). Acetonitrile (ACN) (HPLC-grade, far UV cut-off) came from Romill Ltd. (Cambridge, 

UK). Culture dishes were obtained from Lasec (Cape Town, South Africa) and microtitre plates 

(NuncTM-Immuno Maxisorp) were from AEC Amersham (Kyalami, South Africa). Brain heart 

infusion (BHI) and BHI agar were supplied by Biolab Diagnostics (Midrand, South Africa). To 

obtain analytical grade water, water was filtered from a reverse osmosis plant via a Millipore 

Milli-Q water purification system (Milford, USA). Ethanol (>99.8%) was supplied by Merck 

(Darmstadt, Germany). Falcon® tubes were from Becton Dickson Labware (Lincoln Park, USA). 

Promega (Madison, USA) supplied the Cell Titer-BlueTM Cell Viability Assay kit. The synthetic 

tyrocidines were supplied by GL Biochem (Shangai) Ltd., China. The Nova-Pak® C18 (5 µm 

particle size, 60 Å pore size, 150 mm × 3.9 mm) reverse-phase analytical column, the Nova-Pak® 

C18 (6 µm particle size, 60 Å pore size, 7.8 mm × 300 mm) semi-preparative HPLC column and 

an ACQUITY UPLC® bridged ethyl hybrid (BEH) C18 (1.7 Mm particle size, 2.1 mm × 100 

mm) column were from Waters Millipore (Milford, USA). Dr Margitta Dathe from Leibniz 

Institute of Molecular Pharmacology (FMP), Berlin, Germany supplied the pure (>90%) 

synthetic cyclic Arg- and Trp-rich peptides (RW-peptides).  

3.3. Methods 

3.3.1. Bacteria culturing  

Normal sterile techniques were used to culture L. monocytogenes strains B73, a leucocin A-

sensitive wild-type meat-isolate 25 and B73-MR1, a leucocin A resistant mutant of B73 40. The 

bacteria were cultured on BHI agar from freezer stocks for 24 hours at 37 oC followed by culture 

of selected colonies at 37 °C in BHI broth to log phase for growth inhibition studies. 

Subsequently the cultures were sub-cultured in BHI broth to an OD620 of 0.4 and diluted to 

OD620 of 0.2 (6.7×108 colony forming units per mL) prior to use in assays. Extreme care was 

taken in the storage and culturing conditions of the target strains in this study as L. 

monocytogenes tends to adapt to different conditions and in the process its peptide susceptibility 

changes. Details on this aspect are given in the addendum under Section 3.8.1. 

3.3.2. Peptide preparation 

The major Trcs from the commercial tyrothricin were purified and characterised as previously 

described in Chapter 2 according to the methods of Rautenbach et al. 49 and Spathelf & 

Rautenbach 44. The other natural analogues (Tpc C, TrcA and Phc A) were extracted from 
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cultures of B. aneurinolyticus ATCC 8185 (supplied by the American Type Culture Collection 

(Manassas, VA, USA)), purified and characterised as previously described 44,49. Following 

peptide isolation by established  reverse-phase high performance liquid chromatography (RP 

HPLC) 44,49, the peptides were analysed for purity and integrity using analytical HPLC, ultra 

performance liquid chromatography (UPLC) and time-of-flight electrospray mass spectrometry 

(TOF-ESMS) according to the methods of Rautenbach et al. 50. 

The purified peptides were subsequently used to analytically prepare stock solutions of 2.00 mM 

(most synthetic peptides) or 1.00 mM (natural peptides and GS) or 1.00 mg/mL (Trc mixture) 

with 40% v/v ethanol in analytical grade water (Trcs) or with analytical grade water (synthetic 

RW-peptides and GS). Subsequently for broth microdilution assays, the stock solution was used 

to construct two-fold dilutions in polypropylene 96 multi-well plates using the culture medium 

(BHI broth). 

The effect of low pH due to residual trifluoroacetic acid on peptide activity was counteracted by 

repeatedly lyophilizing the preparations to remove residual trifluoroacetic acid and to obtain a 

pH 7 ± 1 for 200 µM peptide in analytical quality water. 

3.3.3. Determination of antilisterial activity of peptides 

The activity of the peptides was analysed for inhibition of growth of the bacteria cultures. The 

broth microdilution assay for growth inhibition was carried out as previously described 51,52. The 

diluted cell suspension (90 µL) was transferred into each well in separate sterile microtiter plates 

followed by the addition of 10 µL of peptides from the dilution series accordingly or solvent 

devoid of peptide as control. The microtiter plates were sealed and incubated subsequently at 37 
oC for 16 hours, after which the light dispersion of the wells was obtained spectrophotometrically 

at 595 nm using a Biorad model 680 microplate reader. This was used to compute the percentage 

growth inhibition (equation 1) as previously described 53. 

% growth inhibition = 100 -                                                                                        (1) 

After reading the light dispersion of the wells at 595 nm, the assay for activity proceeded with 

the addition of 10 µL of CellTiter-BlueTM reagent to every well and incubation for an additional 

hour. Resazurin (blue, absorption maximum at 605nm) in the CellTiter-BlueTM is reduced to 

resofurin (pink, absorption maximum at 573nm) in viable and respiring cells 54. The plates were 

read spectrophotometrically at 570 nm and 600 nm using a Biorad microtiter plate reader and the 

percentage metabolism inhibition was computed using equation 2. 

100 × (A595 of well - Average A595 of background) 

 Average A595 of growth wells - Average A595 of background 
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% inhibition = 100 -     (2) 

3.3.4. Analysis of dose-response data 

GraphPad Prism 4.03 (GraphPad Software, San Diego, USA) was used to plot the dose–response 

curves. The data was analysed by carrying out non-linear regression and sigmoidal curves were 

fitted (having variable slope and a constant difference of 100 ± 10% between the top and bottom 

plateau).  

Equation 2 from Rautenbach et al. 53 was used to fit the dose-response curves: 

Y = bottom – (top – bottom)/1 + 10log IC
50

 x Activity slope                                                                                            (3) 

Top and bottom are defined as the experimental percentage inhibition in the presence of high 

peptide concentrations and in the absence of peptide, respectively; log IC50 is the x-value that 

denotes the response halfway between the top and bottom and the activity slope, which is related 

to the Hill slope, defines the slope of the curve. ICmax, related to the minimal inhibitory 

concentration (MIC), was computed from the x-values at the intercept between the slope and the 

top plateau 52. The IC50, defined as the peptide concentration leading to 50% growth inhibition, 

the ICmax, the inhibition concentration factor (ICF, concentration factor that describes increase 

from minimum to maximum inhibition) 
53, and a factor defined in this study, the activity product 

(AP = IC50 × ICmax) were chosen as parameters to characterise and compare activity of the Trcs. 

We used the ICF parameter because for comparison of antimicrobial peptide activity it is crucial 

to describe activity by more than one parameter 53
. Parameters such as ICF can provide 

information about peptide mechanism of action and compound parameters like the AP are useful 

in instances where the IC50 and ICmax give different trends as is yields a single factor for 

comparing the peptides. Activity at a fixed concentration of 25 µM was rather used to compare 

the RW-peptides. 

3.3.5. Qualitative Structure-to-Activity Relationship (QSAR) analyses 

QSAR analyses consisted of investigating the correlation between different physicochemical 

properties of the purified peptides and their antilisterial activity. The physicochemical properties 

that were considered include: analytical HPLC retention time (Rt) and a number of parameters 

describing the chemical properties of the peptides, as well as molecular mass (Mr) and a number 

of parameters describing the size of the peptides. The theoretical parameters, lipophilicity (πFP), 

100 × (A570/A600 of well-Average A570/A600 of background) 

Average A570/A600 of growth wells-Average A570/A600 of background 
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55,56, Q/L 55, hydropathy 57, hydrophobicity  58, interphase properties 59, molecular volume (MV) 
60 and side-chain surface area (SCSA) 55,61 of each peptide were additive parameters obtained 

from the summation of the parameters of all the constituent amino acids of the particular peptide. 

Side-chain surface areas (SCSA) were computed from Connolly surfaces 61. The solvent 

accessible surface area (SASA) and volume (SAV) as well as molecular volume (for RW-

peptides) were determined in silico from the ten lowest energy structures (RMSD < 1Å from 

average) of each peptide with YASARA 9.10.5©. Principal component analysis (PCA) was done 

using STATISTICA version 11, series 0112 (StatSoft®, Tulsa, OK, USA) on all structural and 

activity parameters against both strains of L. monocytogenes to identify clusters of peptides with 

similar characteristics as well as structural parameters that are important for antilisterial activity. 

3.4. Results and Discussion: Part I - Tyrocidine analogues 

We divided the tyrocidines into two libraries namely the Trc A library and Trc C library (Table 

3.1), on the grounds of the identity of their aromatic dipeptide unit and the lower antilisterial 

activity found previously for the Phe-Phe containing Trc A versus that of Trp-Trp containing Trc 

C 44. We included selected tryptocidines (Tpc) and a phenycidine (Phc), where the aromatic 

amino acid, Tyr7, was substituted with Trp or Phe respectively, to assess the role of the Tyr in the 

peptide activity (Table 3.1). The cationic residue was assessed in terms of size, hydrogen 

bonding ability and integration into membranes, as Spathelf & Rautenbach 44 found lower 

antilisterial activity for the Lys-analogues, than the Orn-analogues. Following comparable 

antibacterial activity to the parent gramicidin S (GS) of analogues containing N-methyl groups 

including trimethylated-Orn analogues against Gram-positive bacteria 62, we included a synthetic 

Trc A analogue, sTrc AOMe3, containing a trimethylated-Orn residue (Table 3.1). From the 

reported improved activity of Trc A towards Bacillus subtilis 63, after charge increase with Gln to 

Orn substitution, this Trc A analogue ( sTrc A(Q-O)), was also included. It should be noted that 

Trc B doubles as both a Trc A and a Trc C analogue. The structural parameters of all the Trcs are 

detailed in Chapter 2 and Table S3.1 in supplementary data.  
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Table 3.1  Description of tyrocidine A and C analogues 

Type Identity Sequence Source Abbreviation 

T
rc

 A
  

an
al

og
ue

s 

Tyrocidine A cyclo[f1P2F3f4N5Q6Y7V8O9L10] Natural  Trc A 

Tyrocidine A1 cyclo[fPFfNQYVKL] Natural Trc A1 

Tyrocidine B cyclo[fPWfNQYVOL] Natural Trc B 

Phenycidine A cyclo[fPFfNQFVOL] Natural  Phc A  

Tryptocidine A cyclo[fPFfNQWVOL] Synthetic sTpc A 

Trc A-trimethylated Orn cyclo[fPFfNQYVO(Me)3L] Synthetic sTrc AOMe3 

Tyrocidine A-Gln to Orn cyclo[fPFfNOYVOL] Synthetic sTrc A(Q-O) 

T
rc

 C
 

an
al

og
ue

s 

Tyrocidine C cyclo[fPWwNQYVOL] Natural Trc C 

Tyrocidine B cyclo[fPWfNQYVOL] Natural Trc B 

Tyrocidine B1 cyclo[fPWfNQYVKL] Natural Trc B1 

Tyrocidine C1 cyclo[fPWwNQYVKL] Natural Trc C1 

Tryptocidine C cyclo[fPWwNQWVOL] Natural Tpc C 
 

3.4.1. L. monocytogenes strain susceptibility to the tyrocidines  

The Trc A and Trc C analogues (Table 3.1) were evaluated for their antilisterial activity against 

both the leucocin A sensitive strain L. monocytogenes B73 and the resistant strain L. 

monocytogenes B73-MR1. GS with 50% sequence identity to the Trcs and with known lytic 

activity was included as a reference peptide. In general, both strains were sensitive to the Trcs 

tested with IC50 values ranging from 5.5 to 27 µM (Table 3.2). The observed growth inhibition 

activities of the major Trcs purified from commercial tyrothricin (A1, B, B1, C, and C1) and Trc 

A from culture extracts of B. aneurinolyticus ATCC 8185 as well as GS were similar to those 

previously reported 44 with GS again more active than the Trcs against both strains (Table 3.2). 

The Trc analogue with the lowest IC50 was Trc B (IC50 = 7.4 µM) against L. monocytogenes B73 

and Trc C (IC50 = 5.5 µM) against L. monocytogenes B73-MR1.  

When there was a significant difference of the Trc activity in terms of IC50 values towards the 

two strains, the activity was generally greater against the resistant strain than against the 

sensitive strain (Fig. 3.1A and Fig. 3.2, refer to Tables S3.2 and S3.3 in supplementary data for 

statistical analysis data). Spathelf & Rautenbach 44 made a similar observation on the higher 

susceptibility of the resistant strain to the Trcs and GS. The ICmax values, however, revealed that 

there was increased susceptibility of the sensitive strain (B73) over the resistant strain (B73-

MR1) for the more hydrophobic Phc A and Trc A (Fig. 3.3A). 
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 Table 3.2 Summary of the antilisterial activity parameters of the Trc mixture, Trc A analogues, 
Trc C analogues and GS toward the leucocin A sensitive strain (B73) and the 
leucocin A resistant strain (B73-MR1) of Listeria monocytogenes. Trc mixture’s 
concentrations are given in µg/mL (top row) and those of all other peptides are given 
in µM. Every value denotes the average± standard error of the mean (SEM) of n 
biological repeats (number of repeats given in brackets), with triplicate technical 
repeats per assay. Trc B is shaded in grey to indicate that it belongs both to the Trc A 
analogues above it and Trc C analogues below it. 

Peptide 
L. monocytogenes B73 L. monocytogenes B73-MR1 

IC50 ± SEM (n) ICmax ± SEM (n) IC50 ± SEM (n) ICmax ± SEM (n) 

GS 4.2 ± 0.14 (9) 6.0 ± 2.90 (9) 3.9 ± 0.15 (3) 5.40 ± 0.27 (3) 

Trc mix 10.4 ± 1.30 (10) 20.7 ± 2.90 (10) 7.6 ± 0.36 (5) 12.0 ± 2.00 (5) 

Trc A 12.2 ± 0.09 (5) 21.0 ± 2.30 (5) 8.8 ± 0.24 (3) 26.0 ± 0.89 (3) 

Trc A1 18.0 ± 4.10 (3) 32.0 ± 7.04 (3) 14.0 ± 1.50 (3) 29.0 ± 5.20 (3) 

sTrc AOMe3 12.0 ± 0.68 (3) 18.0 ± 0.31 (3) 5.7 ± 0.40 (3) 11.0 ± 0.94 (3) 

sTrc A(Q-O) 27.0 ± 2.30 (3) 37.0 ± 2.50 (3) 25.0 ± 1.70 (3) 43.0 ± 7.20 (3) 

Phc A 15.0 ± 0.26 (4) 20.3 ± 0.20 (3) 14.0 ± 2.00 (3) 35.0 ± 3.30 (3) 

sTpc A 23.0 ± 2.80 (4) 52.0 ± 5.40 (4) 11.0 ± 0.98 (3) 40.8 ± 5.05 (3) 

Trc B 7.4 ± 0.31 (7) 16.2 ± 2.25 (7) 5.9 ± 0.28 (7) 14.2 ± 1.46 (7) 

Trc B1 10.7 ± 0.82 (8) 25.1 ± 1.67 (8) 10.4 ± 1.24 (6) 26.1 ± 4.26 (6) 

Trc C 9.0 ± 1.20 (3) 22.0 ± 4.30 (3) 5.5 ± 0.60 (3) 14.0 ± 0.85 (3) 

Trc C1 10.6 ± 1.90 (3) 28.0 ± 1.50 (3) 10.6 ± 1.20 (3) 31.0 ± 3.01 (3) 

Tpc C 16.0 ± 1.50 (4) 39.0 ± 1.80 (4) 14.0 ± 1.70 (3) 33.0 ± 7.01 (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1  Comparison of the susceptibility of the leucocin A sensitive L. monocytogenes B73 
and leucocin A resistant L. monocytogenes B73-MR1 strains to Trc A and Trc C 
analogues according to A. IC50 values (Table 3.2) and B. activity product calculated 
as AP = IC50 × ICmax for each peptide. GS was included as reference peptide. 
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The difference in sensitivity of the two Listeria strains has been attributed to differences in 

membrane structures and metabolism 40,41,64. Resistance to leucocin A by B73-MR1 has been 

associated with the absence of a putative mannose-specific phosphotransferase system protein 

suggesting glucose as a preferred carbohydrate source in this strain 40. Spathelf & Rautenbach 44 

proposed that the known interference of Trcs with glucose metabolism in Gram-positive 

organisms 65 could account for their greater activity towards L. monocytogenes B73-MR1. Also, 

the increased fluidity of the cytoplasmic membrane of L. monocytogenes B73-MR1 known to be 

rich in desaturated and short-acyl-chain phosphatidylglycerols 41 in comparison to that of the 

B73 strain would interfere with the hydrophobic interactions of the Trcs. It is possible that the 

two smallest peptides, Phc A and Trc A being rich in Phe, a residue without hydrogen bond 

capability among the aromatic amino acid residues, are able to insert deeper across the more 

rigid membrane of the B73 strain resulting in its greater sensitivity to these analogues. In 

contrast, sTpc A, which differs from Phc A and Trc A by having a Trp rather than a Phe or Tyr at 

position 7, is more active against B73-MR1 than B73 (Figs. 3.2 and 3.3).  

Katla et al. 21, after testing some bacteriocins against 200 L. monocytogenes strains, also noted 

strain-to-strain differences in susceptibility and recommended that these differences have to be 

considered should bacteriocins be used as bio-preservatives. In addition, we have found that 

conditions of bacteria culturing could influence their susceptibility to the Trcs, specifically 

leading to a lowered susceptibility after long term culturing at 37 oC (refer to Addendum Section 

3.8.1). 

3.4.2. Comparative activity analyses of tyrocidine analogues 

3.4.2.1. Tyrocidine A analogues 

The activity of the Trc A analogues against each strain gave different trends as illustrated in Fig. 

3.3. In order to assess both the IC50 and ICmax parameters we defined the activity product (AP) 

which is calculated from IC50 × ICmax. Based on the AP against L. monocytogenes B73, the trend 

was (Trc A, Trc B, sTrc AOMe3, Phc A) > Trc A1 > (sTpc A, sTrc A(Q-O)) (Figs. 3.2 and 3.3, 

Supplementary data Table 3.2). The groupings of the peptides indicate statistically similar 

activities (refer to Fig. 3.3 and Supplementary data Table 3.2). This shows that going from the 

structure of Trc A (cyclo[fPFfNQYVOL]) activity was maintained with an Orn9 to trimethylated-

Orn9 substitution in sTrc AOMe3, with a Phe3 to Trp3 substitution in Trc B and a Tyr7 to Phe7 

substitution in Phc A. However, activity decreased significantly when Orn9 was replaced by a 

Lys9 in TrcA1, and when Tyr7 was substituted by Trp7 in sTpc A. Moreover, increasing the 
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charge by increasing the number of Orn residues in sTrc A(Q-O) with a Gln6 to Orn6 substitution 

led to a substantial loss of activity (Table 3.2 and Fig. 3.3A). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.2  Comparison of the activity in terms of A. activity product (AP = IC50 × ICmax) for 
each peptide and B. inhibition concentration factor (ICF = ICmax/IC50) of the Trc A 
and Trc C analogues towards the leucocin A sensitive strain L. monocytogenes B73 
and leucocin A resistant strain L. monocytogenes B73-MR1. Bars represent the 
average of 3-9 biological repeats (each consisting of triplicate technical repeats) and 
standard error of the mean. Statistical comparison of activity towards the two strains 
was done with the Student t-test (***P<0.0001; ** P<0.005; * P < 0.05). 
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The following activity sequence was observed in terms of the AP towards the resistant L. 

monocytogenes B73-MR1: (Trc A, Trc B, sTrc AOMe3) > (Trc A1, Phc A, sTpc A) > sTrc A(Q-

O) (Figs. 3.2 and 3.3, Table 3.2, Table S3.2 in supplementary data). Similar to the B73 strain, the 

activity of the parent peptide Trc A was maintained with the Orn9 to trimethylated-Orn9 

substitution in sTrc AOMe3 and increased with the Phe3 to Trp3 substitution in Trc B. Activity 

was likewise decreased following Orn9 to Lys9 substitution in Trc A1, Tyr7 to Trp7 substitution in 

sTpc A and with a Gln6 to Orn6 substitution in sTrc A(Q-O). The difference was that in this 

strain substitution of Tyr7 by Phe7 led to loss of activity. As mentioned above, the differences in 

membrane structures of the two strains could account for this difference. 

Using a cut-off point of 250 µM2 for the AP, the most active Trc A analogues against L. 

monocytogenes strains B73 and B73-MR1 were identified as Trc A, Trc B and sTrc AOMe3 (Fig. 

3.3B). Employing a cut-off of 2.5 for the inhibition concentration factor (ICF = ICmax/IC50) which 

describes the concentration factor that describes fold increase peptide concentration between 

minimum inhibition and maximum inhibition 53, all peptides were active against L. 

monocytogenes strains B73. However, for activity towards L. monocytogenes B73-MR1, sTrc 

AOMe3 and Trc B were identified as the most promising analogues (Fig. 3.3B). sTrc AOMe3 

was the only synthetic analogue to show comparable activity to the active natural analogues 

towards both strains of L. monocytogenes. The known consequences of Orn trimethylation 

include: 1) preserving the overall charge, 2) higher bulkiness and hydrophobicity of the side 

chain, and 3) quaternary amino group with no hydrogen bonding ability 66. However, according 

to the reverse phase (C18) HPLC retention times, the trimethylation of Orn9 did not lead to an 

overall increased hydrophobicity, as the trimethylated analogue eluted earlier than Trc A 

(Supplementary data Table 3.1). This observation was similar to that made by Fernàndez-Reyes 

et al. 66 about Lys-trimethylated analogues of the cecropin A-melittin hybrid peptide. A study by 

Kawai et al. 62 on GS analogues containing N-methyl groups including trimethylated-Orn 

analogues, indicated that these analogues showed comparable antibacterial activity against 

Gram-positive bacteria as the parent GS. The loss of hydrogen bonding activity may lead to a 

weaker electrostatic binding to the target(s), but increased hydrophobicity and bulkiness could 

allow deeper more disruptive imbedding into the membrane.  

The Nδ-trimethyl Orn group in sTrc AOMe3 would be involved in electrostatic interactions with 

anionic phospholipids, but could have weaker interaction due to the loss of hydrogen bonding 

character, possibly supporting the Trc mode of action.  
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Increase in the bulkiness of the charged group through the replacement of Orn9 by Lys9 in TrcA1, 

led to a decrease in activity against both strains when compared to the activity of the parent Trc 

A. Lys, with a butylene moiety in its side chain, has been shown to carry out “snorkeling” into 

the membranes, leading to a tighter membrane interaction than Orn, which does not translate into 

higher activity against L. monocytogenes 43,49. This is an indication that tighter binding to the 

listerial membrane (or cell wall) may hamper the mode of action of Trcs. From these and 

previous results 44 it is thus clear that the sequence of preference for cationic amino acid is as 

follows: Orn(Me)3 > Orn > Lys. 

 

 

 

 

 

 

 

 

Figure 3.3 Comparison of the Trc A analogues in terms of activity against the leucocin A 
sensitive L. monocytogenes B73 and leucocin A resistant L. monocytogenes B73-
MR1 strains with A. IC50 versus ICmax and B. AP versus ICF. Circled groups in A. 
have similar activities based on results of the Newman-Keuls multiple comparison 
test for IC50 values (Supplementary data Table 3.2).The shaded area in B. indicates 
the most active peptides selected using cut off values of ICF = 2.5 and AP = 250 µM2. 
Abbreviations used are; A: Trc A, B: Trc B, A1: Trc A1, SA-OMe3: sTrc AOMe3, 
FA: Phc A, sWA: sTpc A and sA(Q-O): sTrc A(Q-O).  

Increasing the charge of Trc A by Gln6 to Orn6 replacement resulted in a pronounced decrease in 

activity. In contrast, Gln to Orn/Lys/Arg substitution in Trc A resulted in improved activity 

towards Bacillus subtilis 63. This is possibly related to the fact that in highly negatively charged 

membranes, such as in the case of L. monocytogenes known to be rich in phosphatidylglycerols 
41, the increase in charge of the peptide leads to an increase in electrostatic interaction with the 

membrane and possibly trapping and reduced activity 67. Danders et al. 
68 also found a Trc A 

analogue with two Orn residues, the second of which was at the aromatic position 7, to be 

inactive against Bacillus species. We observed a decrease in HPLC retention time and thus 

hydrophobicity for sTrc A(Q-O) compared to the parent Trc A, corresponding with the loss in 

activity. Alternatively, the polar Gln6 may be important to binding to the listerial target. This 

result confirmed that there is a more complex relationship between peptide charge and activity 
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than a membrane affinity relationship, especially because increasing charge (Q) is always linked 

to reduced peptide hydrophobicity (H) and a modification of the hydrophobic moment (µ) 67. 

Kohli et al. 69 observed an increased selectivity for bacterial membranes when charge was 

increased by substituting D-Phe4 in Trc A with positively charged amino acids. In another study 

by Marques et al. 70, increase in charge with a resulting loss of hydrophobicity, however, led to 

up to eight fold increase in the activity of Trc A analogues against Gram-positive bacteria where 

Gln6 was replaced by Lys. Yet, activity was lost when charge was increased with D-Phe4 to D-

Lys4 substitution. These studies strongly indicated, as we also observed, that simply increasing 

charge does not always result in improved antibacterial activity, especially as different target 

cells have different sensitivities. 

Substitution of the Tyr at position 7 in Trc A with Trp7 to form Tpc A decreased the activity 

significantly in both strains. There seems to be a preference for either a Tyr or Phe in position 7 

indicating that a bulky Trp may have some steric interference with the target interaction. 

However, in the L. monocytogenes B73-MR1 strain, the requirement for a Tyr at position 7 

seems more critical, with both the Trp7 and Phe7 substitution, leading to lower activity, 

indicating more selective target specificity. Therefore, the weakly acidic hydroxyl group of Tyr 

may be important for the mechanism of action of the Trcs against the resistant B73-MR1 strain. 

It has been shown that the resistant strain has cells with a more fluid membrane due to 

modification in membrane phosphatidylglycerols containing shorter, unsaturated acyl chains 41. 

Given that Trp and Tyr both form hydrogen bonds and that Phe is essentially hydrophobic in 

nature with a purely aromatic hydrocarbon side chain, it can be suggested that in the more fluid 

membrane of the resistant strain, Trc activity modulated by hydrogen bonding is critical with a 

preference for a less bulky interacting group. However, in the sensitive strain with a more rigid 

membrane, it is the size of the aromatic side chain that may be more important than hydrogen 

bonding, since Phe and Tyr both contain side chains with a phenyl ring. The aromatic residues 

(Trp, Phe and Tyr) are therefore important in target interaction due to their significant impact on 

the hydrophobicity and have been proposed to account for/contribute to membrane integration of 

the Trcs 44.  

Activity of Trc A analogues against L. monocytogenes is therefore, sensitive to the amphipathic 

balance, with hydrophobic interactions being essential while an increase of electrostatic 

interactions leads to a decrease in Trc A activity. Trapping of the Trc A(Q-O) and TrcA1 in the 

membrane could counteract their mode of action, while in sTrcAOMe3 the more bulky 

trimethylated Orn probably led to binding that enhances the mode of action. A further 

prerequisite seems to be size and hydrogen bonding ability of residue 7 with Tyr preferred above 
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Phe and Trp. The aromatic amino acid at position 3 had been previously shown to be critical for 

antilisterial activity 44 and this was again demonstrated by the increase in IC50 activity against 

both strains when the Phe3 of Trc A was replaced by Trp3 in Trc B. However, this preference is 

offset by the trimethylation of Orn, indicating that a bulky side chain in close proximity to the 

Phe can also lead to good activity.  

3.4.2.2. Tyrocidine C analogues 

The Trc C analogues showed the same trend of activity against both L. monocytogenes B73 and 

B73-MR1 strains (Fig. 3.2). The AP values decreased in the following order: (Trc B, Trc B1, Trc 

C, Trc C1) > Tpc C. According to the cut-off point for the AP set earlier at 250 µM2, the most 

active Trc C analogues were Trc B and Trc C towards both strains (Figs. 3.2 and 3.4B). The ICF 

cut-off value of 2.5 designates Trc B and Trc C towards L. monocytogenes B73 and Trc B 

towards L. monocytogenes B73-MR1 as the peptides with best activities (Fig. 3.4B). 

These results indicated that from the parent peptide Trc C (cyclo[fPWwNQYVOL]), activity was 

preserved following D-Trp4 to D-Phe4 substitution either alone in Trc B or in combination with 

Orn9 to Lys9 substitution in Trc B1. However, as with the Trc A analogues, replacement of Tyr7 

by Trp7 in Tpc C also led to a loss of activity. Although increasing the bulkiness of the charged 

group by replacing Orn9 with Lys9 in Trc C1 in comparison with Trc C did not show any 

significant difference in AP, there was decrease in IC50 and ICmax activity in L. monocytogenes 

strain B73-MR1 (refer to Table 3.2 and S3.3), as found for the Trc A analogues. A similar 

observation was made for this substitution comparing Trc B1 and Trc B (refer to Table 3.2 and 

S3.3). The proposed tighter membrane interaction of Lys due to the “snorkel effect” 71 could 

account for the decreased antilisterial activity, as was observed for Trc A1. There is little change 

in activity between Trc C and Trc B with Orn9 as cationic residue or between Trc B1 and Trc C1 

with Lys9. This suggests that the size of the cationic residue more than the size of the side chains 

in the aromatic dipeptide is critical in membrane interaction particularly in the more fluid 

membrane of L. monocytogenes B73-MR1. Changing the aromatic residue at position 7 from Tyr 

as in Trc C to Trp as in Tpc C resulted in a significant decrease in activity. A similar decrease in 

activity was observed for Trc A when the Tyr at position 7 was replaced by Trp. This indicated 

strongly that the identity of the aromatic group at position 7 and possibly the hydroxyl group of 

Tyr is critical for the activity of the Trcs against the resistant Listeria strain. 

Therefore, the character of the charged amino acids (Lys or Orn) in the conserved V(K/O)LfP 

pentapeptide moiety in addition to the aromatic amino acids in the variable pentapeptide moiety 
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modulate the efficacy of the Trc activity by influencing membrane activity or binding to a 

different target. Similar observations were made by Spathelf & Rautenbach 44. 

 

 

 

 

 

 

 

 

Figure 3.4 Comparison of the activity of Trc C analogues against the leucocin A sensitive L. 
monocytogenes B73 and leucocin A resistant L. monocytogenes B73-MR1 strains 
with A. IC50 versus ICmax and B. AP versus ICF. Circled groups in A. have similar 
activities based on results of the Newman-Keuls multiple comparison test for IC50 
values (Supplementary data Table 3.3).The shaded area in B. indicates the most 
active peptides selected using a cut off value of ICF = 2.5 and AP = 250 µM2. 
Abbreviations used: B: Trc B, B1: Trc B1, C: Trc C, C1: Trc C1 and WC: Tpc C. GS 
was included as reference peptide. 

3.4.3. QSAR and PCA analyses of the Trc libraries 

The QSAR between the structure of the Trc and its observed antilisterial activity was 

investigated with the aim of estimating the optimal/minimal structural determinants of activity 

necessary to facilitate the design of peptide derivatives and mimics for therapeutic evaluation 
49,72. Experimental and theoretical structural parameters (refer to Table S3.1 in supplementary 

data) for each of the analogues were correlated with the observed biological activity parameters 

(IC50, ICmax ICF and/or AP). The HPLC Rt, hydropathy, lipophilicity, hydrophobicity, interphase 

properties and Q/L were used as previously 44,49,55,58,59,73,74 to depict the peptide hydrophobic 

character and potential membrane activity. SASA and SAV are size parameters that are also 

useful in calculating hydrophobic burial 75 and as a measure of the probable magnitude of 

binding-induced changes 76. They are related to the hydrophobicity of molecules through 

computation of the logarithm of the partition coefficient 77,78. The molecular mass, SCSA and 

MV were used to demonstrate side-chain and peptide size factors that may affect target 

interaction.  All data were fitted to linear, quadratic, hyperbolic and exponential equations and 

only correlations with R2 ≥ 0.50 were considered as significant QSAR trends (refer to Table 3.4 

in supplementary data). In addition, multivariate QSAR through principal component analysis 
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(PCA) was performed to verify/identify relevant molecular descriptors of the peptides that affect 

their antilisterial activity. 

Two dimensional QSAR trends were generally weak, indicating a strong selection of specific 

sequence combinations. In general, correlation of activity against B73-MR1 with the size and 

chemical character parameters yielded larger and/or more significant correlation coefficient (R2) 

values than that for B73 (Table S3.4 and Fig. 3.5A). This could indicate that the more fluid 

membrane of B73-MR1 is more sensitive to changes in the peptide structure and character. Most 

correlations between amphipathicity/ lipophilicity/hydrophobicity and antilisterial activity led to 

either no trend or quadratic (2nd order) trends with R2 < 0.50 except for the Σ(hydropathy) where 

quadratic trends generally gave R2 > 0.50 (Table S3.4). There was a distinct relevance of the 

aromatic side chain at position 7 as the peptides were separated into two groups with those 

containing Tyr as one group and those containing instead Trp or Phe in another group when the 

hydropathy parameter was considered (Fig. 3.5A).  
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Figure 3.5  Relationships between A. IC50 and Σ (hydropathy) B. ICF and Mr fit to quadratic (2nd 

order polynomial) equation. Each data point represents the mean of at least 3 
biological repeats, with 3–5 technical repeats per assay ± SEM. Refer to Table S3.4 
for correlation coefficient (R2) values and trends and Table 3.2 for details on activity 
parameters.  

The only significant QSAR trend for both strains was observed for correlation between the IC50 

and the Q/L parameter (Table S3.4). Therefore, hydrophobicity does play a role in the 

modulation of Trc activity and the identity of the aromatic residue in position 7 affects this 

relationship. Similarly, when considering size parameters mostly weak trends were found. Only 

correlations between the size parameters SASA, SAV and especially Mr, and activity (IC50 or 
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ICF) resulted in good quadratic trends towards L. monocytogenes B73, implying that the peptide 

size are highly relevant to activity in L. monocytogenes B73 with the more rigid membrane (Fig. 

3.5B, Table S3.4). Quadratic correlations, although weaker were also obtained for correlation 

between activity (IC50 or AP) towards L. monocytogenes B73-MR1 and size parameters, Mr and 

SAV (Table S3.4).  

The molecular descriptors representing bulk (size) and chemical character of the peptides (Table 

S3.1 in supplementary data) together with four activity parameters (IC50, ICmax, ICF  and AP) for 

both listerial strains were studied by the multivariate data analysis technique using the PCA 

projection method. This QSAR technique described by Strøm et al. 79 offers the advantage of 

estimating QSAR by simultaneously taking into account several activity parameters for a 

relatively small group of peptides. Two PCAs were done; in the first PCA we included all 

eighteen variables while in the next PCA we excluded the compound variables AP and ICF 

comparing the remaining sixteen variables.   

When all eighteen variables were considered, the first two principal components (factors) 

explained ~60% of the total variance (factor 1 = 39% and factor 2 = 23%). The resulting t1t2 

score plot (Fig. 3.6A) clustered the peptides into distinct groups which corresponded to the Trc A 

analogues and Trc C analogues along the PC1 scale. However, the Trc A analogue sTrc AOMe3 

clustered with the Trc C analogues (Fig. 3.6A). We also observed closer association between the 

analogues that have either Orn or Lys as charge groups i.e. Trc A1/Trc A, Trc B1/Trc B and Trc 

C1/Trc C along PC1 with sTrc AOMe3 associating with the Trc B1/Trc B pair. Thus the “PC1” 

variable appeared to be strongly associated with the identity of the variable aromatic dipeptide 

unit not distinguishing based on the identity of the charged group. The second principal 

component “PC2” seemed to be strongly associated with the activity of the peptides as the 

analogues were separated according to their observed antilisterial activity along the PC2 scale.  

The p1p2 loading plot (Fig. 3.6A) grouped together the size parameter Mr with the theoretically 

derived size parameter MV, which correlated with the size parameters derived from in silico 

molecular modelling SASA and SAV. On the p1p2 loading plot the Mr, MV, SASA and SAV had 

a significant negative correlation with the IC50, ICmax and AP of L. monocytogenes B73-MR1 

along with the IC50 and AP of L. monocytogenes B73. The theoretical parameter SCSA, however, 

did not correlate with the other size parameters. It was observed to positively correlate with the 

ICmax of L. monocytogenes B73 and both showed a negative correlation to the hydrophobicity 

parameters. The experimentally determined HPLC Rt, as expected, grouped with the 

theoretically derived hydrophobicity and interphase property parameters. The ICF variables for 

both strains along with the lipophilicity and hydropathy did not contribute significantly to the 
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variance of the parameters on this plot according the limit of the correlation coefficient (R2 = 

0.50). Based on the bi-plots (loading and score plots superimposed) the grouping of the peptides 

along the “PC1” variable could be explained by the negative correlation between size and the 

magnitude of most activity parameters of the peptides with the larger peptides (containing Trp-

Trp dipeptide unit) showing higher activity than the smaller peptides (with Phe-Phe dipeptide 

unit). The smaller peptides are also the more hydrophobic ones. The Trc A analogue with 

trimethylated Orn clustered with the Trc C analogues due to its higher activity which as 

previously mentioned was comparable to that of the most active Trc C analogues. 

The t1t3 score plot (Fig. 3.6B) with factor 3 of 17%, clustered the peptides into distinct groups 

which corresponded to the Orn-containing analogues and the analogues with Orn to Lys 

substitution clustered into a separate group along the PC3 scale. The analogue sTrc A(Q-O) was 

separated from the rest of the Orn-containing peptides. Thus the “PC3” variable seems to be 

strongly associated to the identity of the charged group. There was also a separation of the Trc A 

analogues in which the Tyr was substituted by either Trp or Phe from Trc A as well as separation 

of Tpc C with a Trp residue at position 7 from the rest of the Tyr-containing Trc C analogues 

along the PC3 scale. Based on the p1p3 loading plot, the segregation of the peptides along PC3 

can be mainly explained by the hydropathy and lipophilicity which in the p1p3 plot had R2 = 0.88 

and 0.49 respectively. The ICF of towards both L. monocytogenes strains as well as the ICmax 

towards L. monocytogenes B73, hydrophobicity, SCSA and interphase properties did not 

significantly contribute to the variance on this plot.  

With the exclusion of the AP and ICF parameters and considering sixteen variables, the 

magnitude of the first two principal components changed (factor 1 = 42% and factor 2 = 25%). 

The separation of the peptides on the t1t2 score plot along the PC1 and PC2 scales was similar to 

that described above (not shown). The hydropathy was the only variable that did not significantly 

contribute to the variance in this plot. The t1t3 score plot was also similar to that obtained with 

inclusion of the compound activity parameters (not shown). 

The PCA results in Fig. 3.6 show, as expected from our basic trend analyses, the importance of 

the SAV and SASA to the modulation of antilisterial activity against B73-MR1 as these 

structural parameters correlate negatively to the activity parameters. Results depicted in Fig. 3.6 

further reveal that the separation of peptides according to activity along PC2 in the t1t2 score plot 

is contributed by the following structural parameters: SASA, SAV, Mr and MV. The success of 

the multivariate QSAR was validated by the high correlation between most of the actual 

variables and those predicted by the models as evidenced by the R2 values in Table 3.3. In this 
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PCA, each variable was considered the dependant variable and estimates were calculated from 

the PCA models. 
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Figure 3.6  A. PCA bi-plot showing the relationship between the variation in the 18 structural 

and antilisterial activity parameters and the relationship between the 11 Trc 
analogues along factor 1 and 2. B. Bi-plot showing the relationship between the 
variation in the 18 structural and antilisterial activity parameters and the relationship 
between the 11 Trc analogues along factors 1 and 3. Parameters with R2 < 0.5 are not 
indicated on the graphs. 
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Table 3.3  Correlation coefficients (R2) for agreement between actual variables and PCA 
model-predicted variables used in the PCA QSAR analyses of the tyrocidine library  

 

 PCA Model fit 

Variables 
R2 

p1p2 plot 
R2  

p1p3 plot 
Activity parameters 

B73 IC50 0.904 0.866 
B73-MR1 ICmax 0.747 0.676 

B73 ICmax 0.673 0.348 
B73-MR1 IC50 0.666 0.809 

B73 AP 0.797 0.612 
B73-MR1 AP 0.775 0.818 

B73 ICF 0.152 0.259 
B73-MR1 ICF 0.003 0.158 

Size parameters 
Mr 0.936 0.552 
MV 0.847 0.489 

SCSA 0.556 0.263 
SASA 0.848 0.943 
SAV 0.943 0.863 

Chemical parameters 
HPLC Rt 0.412 0.570 

Lipophilicity 0.336 0.492 
Hydropathy 0.097 0.933 

Hydrophobicity 0.707 0.177 
Interphase properties 0.754 0.288 

To further interpret the QSAR results for the Trcs it is assumed that their initial association with 

the membrane, driven principally by electrostatic interactions and membrane integration through 

hydrophobic interactions, are the essential steps in spite of the specific subsequent mechanism of 

action or interaction with a molecular target 44. From our QSAR analysis the aromatic amino 

acids (Trp, Phe and Tyr) in the Trc analogues are pivotal in determining the activity. Phe has a 

greater lipophilicity compared to Trp and has also been found to integrate the membrane deeper 

while the indole and phenol analogues (Trp and Tyr) are shallower 80,81. On the other hand, Trp 

which is the largest of the aromatic amino acids should display better anchoring also as a result 

of the formation of hydrogen bonds between its NH-group and lipid carbonyl groups 82. 

However, a very tight membrane association does not always translate into better activity and 

there is need for an optimal amphipathicity which still allows for efficient membrane integration 

and self-assembly into active lytic complexes and/or translocation to an internal molecular target 
44,70. This was also illustrated by the PCA analyses showing Tpc C with three Trp residues as an 
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outlier. Analysis of the structure-activity relationship of a group of Trc A analogues by Marques 

et al. 70 revealed that though there was a preference for increased amphipathicity, it was not clear 

if either hydrophilicity or hydrophobicity was preferred to improve antibacterial activity.  

The cationic amino acids in the conserved V(K/O)LfP pentapeptide also contribute in 

modulating the efficacy of the Trc. The side chains of Lys and Orn differ by having either ε- or 

γ-amino groups (pKa = 10.54 vs. pKa = 10.76) respectively 83 and in terms of hydropathy (−9.9 

and −9.0 respectively) 57. The longer Lys side-chain has a tighter binding due to a “snorkel 

effect” where the longer butylene chain can fold into a cis-conformation and associate with the 

acyl chains, while the amino group remains linked with the head groups in the aqueous phase 71. 

It is assumed that the optimal amphipathicity is achieved by Phe and/or Lys contributing to 

tighter membrane binding and Trp and/or Orn amending this binding, probably by limiting 

peptide trapping 44. 

3.5. Results and Discussion: Part II - cyclo(RRRWFW) analogues 

The RW-peptides are a library of synthetic cyclic derivatives of the hexapeptide (Ac)-

RRWWRF-NH2 (R-, W-rich or RW-peptides), carrying substitutions of Trp and/or Arg (Table 

3.4). The RW-peptides share some characteristics with the Trcs such as cyclic, aromatic and 

cationic character, as well as their active conformation which consists of two β turns, which is 

the smallest possible β-sheet 47,84,85. In contrast to the Trcs, the RW-peptides have been found to 

have reduced haemolytic activity 48,85,86.  

After showing that the aromatic motif and cationic residues modulate activity of c-WFW 

[cyclo(RRRWFW)], c-WFW analogues with altered hydrophobicity, dipole and quadrupole 

moments, hydrogen-bonding ability, amphipathicity, and ring size were synthesized by 

substitution of Trp and Arg with analogues in order to discover interaction sites and to explain 

the mode of action 48,85,87. Examples of such modifications are shown in Fig. 3.7. The cyclic 

model peptides, c-WFW and analogues, consist of four groups of structural peptide analogues 

(Table 3.4). The aromatic substitutions included unnatural amino acids such as 5-methyl-DL-

tryptophan (5MeW), 1-methyl-L-tryptophan (1MeW), alpha-(2-indanyl) glycine (Igl) and β-

(benzothien-3-yl)-alanine (Bal) with subtle chemical differences to Trp (Table 3.5 and Fig 3.8). 

The β-amino acid b3hW (L-β-homotryptophan) was also incorporated to increase the size of the 

backbone cycle 85,88. Analogues investigated in this project would be derived from four structural 

changes to the two domains of the parent sequence. Modifications will include: 
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1) Alteration of the hydrophobic domain by replacing Phe with Trp, some unnatural amino 

acids and Trp analogues (Table 3.5 and Fig 3.8) 

2) Modification of the cationic domain by replacing Arg with Lys 

3) Scrambling the residues to upset the clustering of the hydrophobic and cationic domains 

4) Increasing ring size through increase in number of residues in both domains  

Table 3.4  Descriptions of groups of analogues of cyclo(RRRWFW) 

G
ro

up
 

Domain 
altered Analogue Sequence Name Amino acid substitution 

1 Hydrophobic  

c(RRRWFW) c-WFW Parent compound 

c[RRR(b3hW)F(b3hW)] c-b3hW W to b3hW 

c(RRRWWW) c-WWW F to W 

c(RRRWIW) c-WIW F to Igl 

c[RRR(1MeW)F(1MeW)] c-1MeW W to 1MeW 

c[RRR(5MeW)F(5MeW)] c-5MeW W to 5MeW 

c[RRR(Bal)F(Bal)] c-Bal W to Bal 

2 Polar  

c(RRRWFW) c-WFW Parent sequence 

c(KRKWFW) c-KRK R to K 

c(KKWWKF) c-KW R to K 

c(RRRWWW) c-WWW Parent sequence 

c(KKKWWW) c-KWW R to K 

3 
Polar and 
hydrophobic 
(ring size) 

c(RRRWFW) c-WFW Parent sequence 

c(RRRRWFWF) c-WFW8 Addition of R and F 

c(RRRRRWFWFW) c-WFW10 Addition of RR and FW 

c(RRRRRRWFWFWF) c-WFW12 Addition of RRR and FWF 

4 

Polar and 
hydrophobic 
(destruction 
of clusters) 

c(KKKWWW) c-KWW Parent sequence 

c(KWKWKW) c-WKW Altered sequence 

c(RRRWWW) c-WWW Parent sequence 

c(RWRWRW) c-WRW Altered sequence 
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Figure 3.7 Chemical alteration of the structure of cyclo(RRRWFW) to yield analogues. A. 
Change in hydrophobic domain to cyclo(RRRWWW) B. Change in cationic domain 
to cyclo(KKKWFW) C. Scrambling of residues to cyclo(KWKWKW) D. Increase in 
peptide size to cyclo(RRRRWFWF).  
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Table 3.5  Differences in physicochemical properties between Trp and unnatural Trp 
analogues 

 H- bonding 
Dipole 

moment 
Quadrupole 

moment Amphipathicity Hydrophobicity 

<W 
1MeW, Bal, 
Igl 

Bal, Igl Igl Bal, Igl Igl 

=W b3hW, 5MeW 
b3hW, 
5MeW, 
1MeW 

b3hW, 
5MeW, 
1MeW, Bal 

b3hW, 5MeW, 
1MeW 

 

>W 
  

 
 

b3hW, Bal, 
1MeW, 5MeW 

Note. Table adapted from “Cationic Antimicrobial Peptides: Thermodynamic Characterization of Peptide-Lipid 
Interactions and Biological Efficacy of Surface-Tethered Peptides” by M. Bagheri, 2010, PhD thesis, p. 24 88. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8  Structures of amino acid residues employed in the hydrophobic domain of the 
RW-peptides  

 

Trp has a dipole moment of ~2.1 D in magnitude, running from N-1 in the five-membered ring to 
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aromatic ring is closer to the backbone in Igl which is not supposed to lie at the lipid-water 

interfacial region 88. In the analogue b3hW, the size and flexibility of the backbone ring are 

increased while hydrogen bonding ability is maintained 88. The hydrogen bonding ability is 

eradicated in the analogue 1MeW due to the presence of the more hydrophobic and bulky methyl 

group. Nevertheless, its hydrophobicity is higher than that of Trp while the amphipathicity and 

direction and magnitude of the dipole moment (~2.2 D) are similar to those of Trp 89. The 

analogue 5MeW retains the hydrogen bonding ability, the quadrupole moment (aromaticity) and 

the dipole moment of Trp 89,90. Although, the size of the indole ring is the same as that of the ring 

in the analogue Bal, the presence of the sulphur atom with reduced electronegativity in the five-

member ring, decreases the dipole moment compared to that of Trp. This results in a loss of 

amphipathic structure and hydrogen bonding capacity 91. Bal is also more hydrophobic than Trp 
88.  The changes in the hydrophobic domain may lead to different conformations from the parent 

cyclic peptide (c-WFW) with altered degree of amphipathicity in the lipid-bound peptide which 

would affect antimicrobial activity and selectivity 88. 

3.5.1. L. monocytogenes strain susceptibility towards RW-peptides 

Out of the 15 synthetic analogues of cyclo(RRRWFW) evaluated for their antilisterial activity 

against the leucocin A sensitive L. monocytogenes B73, seven peptides were active namely: c-

WFW, c-WWW, c-WFW8, c-KWW, c-5MeW, c-Bal and c-1MeW (Table 3.6) although they 

were significantly less active than the Trcs. This could be related to the fact that membrane 

permeabilisation is not the preferred mode of action of the RW-peptides 86. 

The active RW-peptides were further evaluated for their activity against the leucocin A resistant 

strain L. monocytogenes B73-MR1. When there was a significant difference between the 

susceptibility of the two strains, B73-MR1 was more susceptible to the RW-peptides tested, 

except for c-Bal (Fig. 3.9). Although the five-member ring of the unnatural amino acid Bal is 

equal in size with the indole ring in Trp, Bal has a lower dipole moment due to the less 

electronegative sulphur in the ring (Table 3.5). Bal losses the amphipathic structure and 

hydrogen bonding characteristics of Trp even though it is more hydrophobic 88. The observed 

increased sensitivity of the B73 strain to c-Bal is consistent with the activity of the Trc analogue, 

Phc A, which possesses Phe in place of Tyr; Phe having less hydrogen bonding capacity than 

both Tyr and Trp. Thus differences in membrane composition and/or metabolism of the two 

Listeria strains 40,41,92 influence their susceptibility to the RW-peptides. 

Stellenbosch University http://scholar.sun.ac.za



3.27 
 

Table 3.6  Summary of the growth inhibitory activity parameters of the cyclo(RRRWFW) 
analogues, toward the leucocin A sensitive strain of Listeria monocytogenes (B73) 
and the leucocin A resistant strain of L. monocytogenes (B73-MR1). 
Concentrations are given in µM. Every value denotes the average of n biological 
repeats (number of repeats given in brackets), with 3 technical repeats per assay ± 
SEM given in 2 significant figures. Refer to Table 3.4 for groupings of peptides and 
Tables S3.5 -S3.7 for statistical analyses of data. 

     nd = not determined  

Membrane activity is not the only mode of action of the RW-peptides, but it contributes to their 

activity against Gram-positive bacteria 48. The RW-peptides share similar secondary β-structure 

and amphipathic character with the Trcs which accounts at least in part for the membrane 

activity 85,88,93. It is possible that Bal which is less capable of hydrogen bond formation in 

comparison to Trp is able to insert deeper across the more rigid membrane of the B73 strain 

resulting in its greater sensitivity to c-Bal. Similarly Phc A which was more active against this 

strain possesses Phe with less hydrogen-bonding ability. This indicates that membrane insertion 

rather than hydrogen bonding with a peptide probably at the cell wall affects susceptibility of L. 

monocytogenes B73.  

 

Peptide 
L. monocytogenes B73 L. monocytogenes B73-MR1 

IC50 ± SEM (n) ICmax ± SEM (n) IC50 ± SEM (n) ICmax ± SEM (n) 

c-WFW 27.0 ± 0.50 (5) 38.0 ± 1.03 (5) 25.0 ± 2.50 (3) 38.0 ± 0.28 (3) 

c-b3hW > 100 (3) > 100 (3) nd nd 

c-WWW 23.0 ± 1.80 (4) 30.4 ± 4.70 (4) 14.0 ± 0.27 (3) 20.0 ± 0.65 (3) 

c-WIW > 100 (3) > 100 (3) nd nd 

c-1MeW 32.0 ± 1.50 (3) 52.0 ± 4.30 (3) 27.0 ± 2.40 (3) 40.3 ± 2.30 (3) 

c-5MeW 27.0 ± 0.90 (3) 43.0 ± 5.02 (3) 17.0 ± 0.40 (3) 23.0 ± 1.20 (3) 

c-Bal 19.0 ± 1.50 (5) 29.0 ± 4.20 (5) 27.0 ± 1.10 (3) 37.0 ± 1.60 (3) 

c-KW > 100 (3) > 100 (3) nd nd 

c-KWW 78.0 ± 14.00(4) 93.0 ± 2.40 (4) 63.0 ± 4.70 (3) 86.0 ± 7.70 (3) 

c-KRK > 100 (3) > 100 (3) nd nd 

c-WFW8 36.0 ± 6.20 (4) > 100 17.0 ± 0.33 (3) 26.0 ± 3.50 (3) 

c-WFW10 > 100 (3) > 100 (3) nd nd 

c-WFW12 > 100 (3) > 100 (3) nd nd 

c-WKW > 100 (3) > 100 (3) nd nd 

c-WRW > 100 (3) > 100 (3) nd nd 
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Figure 3.9  Comparison of A. IC50 and B. ICmax of the active RW-peptides and gramicidin S for 
growth inhibitory activity towards the leucocin A sensitive L. monocytogenes B73 
and leucocin A resistant L. monocytogenes B73-MR1. Parameter data are given in 
Table 3.6. The ICmax of c-WFW8 was >100 µM and is not shown in B. 

3.5.2. Structure-activity analyses of c-WFW and analogues 

The most active peptide against L. monocytogenes B73 was found to be c-Bal with an IC50 of 

19.0 µM. Due to the fact that IC50 and/or ICmax values could not be derived from data for all the 

RW-peptides (Fig. 3.10), growth and metabolism inhibitory activities at 25 µM were considered. 

Activity at 25 µM gave the following trend: c-Bal > c-WFW8 > c-5MeW > (c-1MeW, c-WWW) 

> c-WFW > (c-WFW10, c-KRK) > (c-WKW, c-KWW, c-KW, c-WIW, c-b3hW, c-WRW) > c-

WFW12 (Table 3.6 and Table S3.5-S3.7). Some of the peptides lost activity at higher 

concentration (not shown) probably due to loss of “active peptide” monomers as a result of self-

association into higher order structures 94. Such was the case for c-WFW8 and c-WWW both of 

which are more hydrophobic according to HPLC Rt, than the parent compound c-WFW (refer to 

Table S3.8 in supplementary data). 

3.5.2.1. Group 1: Modification of the hydrophobic domain 

In this group, we investigated the effect of the modification of the hydrophobic domain while 

maintaining number of residues and the polar domain unchanged. The dipole and quadrupole 

moments of the Trp residue and its hydrogen-bonding ability with both water and polar lipid 

head groups are said to account for its propensity to be located at the membrane interface 85,95. 

Trp differs from the unnatural residues Igl, b3hW, 5MeW, 1MeW, and Bal in terms of 

hydrophobicity, electron distribution, hydrogen-bonding ability, amphipathicity, and flexibility 
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in the hydrophobic domain of c-WFW (Table 3.5). Comparing the growth inhibition activity at 

25 µM against L. monocytogenes B73 using the Newman-Keuls multiple comparison test, the 

following sequence was obtained: c-Bal > c-5MeW > (c-WWW, c-1MeW) > c-WFW > (c-WIW, 

c-b3hW) (Table 3.6 and Table S3.5). Dose response data depicting the antilisterial growth and 

metabolic activity of the peptides are shown in Figs. 3.10 and 3.13A.  
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Figure 3.10  Representative dose–response curves of the active and inactive RW-peptides in group 1. 
Activity was measured as percentage of both growth and metabolism inhibition. Each data 
point represents the average of at least six determinations ± SEM. 
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It can be observed that activity of the parent compound was improved by either replacing the Phe 

with a Trp or substituting the two Trp residues with the unnatural amino acid Bal (β-(benzothien-

3-yl)-alanine) in c-Bal and the Trp methylated at either the nitrogen atom in position 1 or the 

carbon at position 5 of the indole ring in c-1MeW or c-5MeW. Activity was lost when Igl (α-(2-

indanyl) glycine) replaced the Phe residue in c-WIW or when the two Trp residues were replaced 

by b3hW (L-β-homotryptophan). In Igl the aromatic ring is closer to the backbone 88. Although 

c-WIW has similar hydrophobicity to c-WFW according to Rt values (Table S3.8), the fact that 

Igl is not positioned at the lipid-water interfacial region 88 could account for loss in activity 

against L. monocytogenes B73 of c-WIW.  

Size and flexibility of the backbone ring are increased in b3hW while hydrogen bonding ability 

is maintained. Even though two extra methylene groups in c-b3hW resulted in slight increase in 

hydrophobicity compared to c-WFW, the decreased activity of c-b3hW is probably related to an 

increase in size and flexibility of the backbone ring which leads to a change in the amphipathic 

conformation of c-WFW by disturbing the β-turn motifs 99 and affects membrane interaction 88. 

Previously, c-b3hW showed weakened interaction with neutrally charged 1-palmitoyl,2-oleoyl-

sn-glycero-3-phosphocholine (POPC) vesicles and decreased haemolytic activity and activity 

against B. subtilis 85.  

The analogues 5MeW and 1MeW are similar to Trp in terms of dipole and quadrupole moments. 

The effect of methylation in 1MeW is the obstruction of the hydrogen-bonding ability of Trp by 

the more hydrophobic and bulky methyl group 88. Nevertheless, 1MeW and Trp share the same 

amphipathicity and dipole moment (~2.2 D) with similar direction and magnitude (Table 3.5). 

1MeW is also more hydrophobic than Trp 88. The presence of either 1MeW or 5MeW resulted in 

increased hydrophobicity and maintenance of or increase in antilisterial activity compared to that 

of c-WFW. This reveals the role of hydrophobicity over hydrogen-bonding ability in activity 

towards L. monocytogenes B73. In previous studies, c-1MeW and c-5MeW showed the same 

activity as c-WFW against B. subtilis, but were more haemolytic 85; we found the activity trend 

as c-1MeW > (c-5MeW; c-WFW). This result also indicated that the hydrogen bonding character 

of Trp may, similar to what we found for the Trcs, influence activity negatively.  

The Bal-containing peptide, which was the most active in this group, was also the most 

hydrophobic and due to the less electronegative sulphur atom, the dipole moment of Bal is lower 

than that of Trp and Bal does not possess the hydrogen-bonding ability of Trp (Table 3.5). This 

side chain also lacks an amphipathic structure 85. This analogue has been shown to increase anti-

B. subtilis activity compared to the parent compound 88. Our results also agree with the higher 
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antimicrobial activity observed for a 15-residue Bal-modified lactoferricin derivative over that of 

the parent peptide 91.  

Substituting the Phe in c-WFW with a Trp led to a gain in activity. This particular residue is 

probably important in anchoring and localisation properties of the indole ring as a result of the 

formation of hydrogen bonds between its NH-group and lipid polar head groups and its larger 

size 82, similar to the one Trp residue in the highly antilisterial Trc B. Phe, however, integrates 

the membrane deeper than Trp 70,81, which could signify that anchoring may not explain the 

increase in activity.  

The critical role of the hydrophobicity of Trp residues was supported by the significant 

enhancement in the antilisterial activities against L. monocytogenes B73 of c-Bal, c-5MeW, c-

1MeW and c-WWW. Reduced activity of c-b3hW also emphasized the importance of the 

increased size and flexibility of the backbone ring in c-b3hW which leads to a change in the 

amphipathic conformation of c-WFW by disturbing the β-turn motifs 99. This substantiates the 

proposal by Wessolowski et al. 97 that optimization of electrostatic and hydrophobic interactions 

of AMPs requires the formation of an amphipathic structure since interaction with the cell 

membrane is the fundamental step in antimicrobial activity, despite the specific details of the 

mode of action of the individual peptides. 

The activity spectrum of the active members of this group in terms of the activity at 25 µM 

towards L. monocytogenes B73-MR1 was (c-WWW, c-5MeW) > (c-Bal, c-WFW) > c-1MeW. 

Unlike for the leucocin A sensitive strain, methylation at position 1 of the indole ring reduces 

activity against the resistant strain compared to the parent compound. This correlates well with 

the results for the Trcs that indicated that hydrogen bonding with an aromatic residue is critical 

for susceptibility of L. monocytogenes B73-MR1. Likewise, unlike the gain in activity against L. 

monocytogenes B73 when Bal (which also lacks the hydrogen-bonding ability of Trp) replaced 

Trp, in B73-MR1 activity of c-Bal was not different from that of c-WFW. 

3.5.2.2. Group 2: Modification of the polar domain 

The polar domain was altered by consistently replacing the charged residue Arg with Lys at 

selected positions. The Rt values of all Lys-containing analogues show only minor differences 

from the Arg-containing analogues (Table S3.8). Substituting two of the Arg residues with Lys 

from c-WFW to c-KRK resulted in a loss of activity (Figs. 3.11 and 3.13B, Table 3.6 and Table 

S3.6). This is in contrast to previous results that showed increased antimicrobial activity for c-

KRK 98. Scheinpflug et al. 98 observed that the CD spectrum of c-KRK was different from that of 

the rest of the peptides indicating a change in the backbone ring conformation. This 
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conformation may reduce interaction with the membrane or intracellular target of c-WFW in L. 

monocytogenes B73.  
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Figure 3.11  Representative dose–response curves of the active and inactive RW-peptides in 

group 2. Activity was measured as percentage of both growth and metabolism 
inhibition. Each data point represents the average of at least six determinations ± 
SEM. 

Replacement of all three Arg residues with Lys and a disruption of the aromatic cluster by one of 

the Lys in the case of c-KW led to a decrease in activity too. In previous work, this analogue also 

showed decreased bactericidal and haemolytic activity in comparison to another structural 

analogue of c-WFW with which it had comparable size of the hydrophilic and hydrophobic areas 

as well as net charge, c(RRWWRF) or c-RW 100. This was attributed to the decrease in the ability 

of Lys with three hydrogen-bond donors to interact with hydrogen-bond acceptors of lipid head 

groups. In contrast, the guanidine fraction of Arg residues possesses five hydrogen-bond donors 
100. There was a similar loss of activity from c-WWW to c-KWW when all the Arg side chains 

were replaced by Lys. In other studies, Arg-containing analogues have been observed to show 

higher membrane permeability and/or activity against Gram-positive and/or Gram-negative 

bacteria than Lys-containing analogues of the AMPs RLA 101, tritrpticin 102, bactenecin 5, 

lactoferrin B and a cyclic β-stranded synthetic peptide 103–105. Replacement of Orn by Lys or Arg 
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for GS left the activity unaltered 106. However, the same substitution showed decreased activity 

against Gram-negative bacteria for protegrin-1 107.  

3.5.2.3. Group 3: Modification of number of residues 

In this group, there was consistent increase in ring size. Both the polar and hydrophobic domains 

were extended by increasing the number of aromatic and charged residues while maintaining the 

amphipathic equilibrium 86. The hydrophobicity according to HPLC Rt was increased 

continuously (Table S3.8). The aim was to gain insight on the peptide structural designs that are 

relevant to antilisterial activity 86. The overall results showed that increasing peptide size and 

hydrophobicity led to loss of activity against L. monocytogenes B73, however, at 25 µM the 

activity of c-WFW8 was significantly higher than that of c-WFW (Figs. 3.12 and 3.13C and 

Table S3.7 in supplementary data).  

Our results contradict the results of Junkes et al. 87 who found a correlation between both 

haemolytic activity and activity against B. subtilis and E. coli with increase in peptide ring size. 

It was established in this study that the large rings have as primary mode of action, membrane 

permeabilisation unlike c-WFW which had little bilayer-disturbing and membrane 

permeabilising activity. Despite the increase in hydrophobicity with increase in peptide size, 

there was also increase in charge which could lead to an increase in electrostatic interaction with 

the anionic listerial membrane and possibly trapping, consequently reducing antilisterial activity 
67. Studies by Dathe et al. 47 established that highly anionic lipid bilayers and bacterial target 

membranes counteract the improved activity of cyclic analogues of (Ac)-RRWWRF-NH2 due to 

shallow partitioning of the peptides into the membrane. A similar observation was made for Trc 

A analogues in Section 3.4.2.1 above, though increased charge was accompanied rather by a 

decrease in hydrophobicity compared to the parent compound. 

3.5.2.4. Group 4: Destruction of polar and hydrophobic clusters 

Here the cationic and hydrophobic clusters were destroyed resulting in a loss of amphipathicity 

as reflected by the low Rt values. There seems to be a requirement for the aromatic and charged 

residues to be clustered together for optimal activity as there was a general loss of activity for c-

WRW compared to c-WWW as well as c-KWW compared to c-WKW (Fig. 3.13D). 
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Figure 3.12 Representative dose–response curves of the active and inactive RW-peptides in 
group 3. Activity was measured as percentage of both growth and metabolism 
inhibition. Each data point represents the average of at least six determinations ± 
SEM. 

3.5.3. QSAR and PCA analyses 

HPLC Rt values and molecular masses of the RW-peptides along with some structural 

parameters derived for the analogues (Supplementary data Table S3.8) were evaluated for 

correlation with the observed growth inhibitory activity at 25 µM and 100 µM. Data were fitted 

to Gaussian distribution, hyperbolic, exponential decrease and increase, sigmoidal, 1st, 2nd and 3rd 

order polynomial equations and correlations with R2 
≥ 0.50 were considered as significant QSAR 

trends (Fig. 3.14).  
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Figure 3.13 Comparison of the growth and metabolism inhibitory activity of four groups of 

synthetic cyclic analogues of (Ac)-RRWWRF-NH2 (RW-peptides) at 25 µM 
against L. monocytogenes B73. Refer to Table 3.4 for more details on the peptide 
structures and Table 3.6 for their activity parameters A. Peptides differ with respect 
to aromatic residues in the hydrophobic domain; B. the polar domain was modified 
by R to K substitution in selected positions; C. group of sequences with increasing 
ring size. Both the polar and hydrophobic sequence regions are larger; D. effect of 
destruction of the cationic and hydrophobic clusters.  

Significant correlations were obtained between activity at 25 µM and HPLC Rt, interphase 

properties, Mr and MV with R2 values between 0.5-0.6 (Fig. 3.14, also refer to Table S3.8 for 

parameters). However, interphase properties, Mr and MV data for c-RW had to be excluded from 

analyses due to the same magnitude of the structural parameter as that of c-WWW, but total loss 

of activity which affected the trends.  
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Figure 3.14 Relationship between growth inhibition of L. monocytogenes B73 and A. HPLC Rt 

B. Σ (interphase properties) C. molecular mass (Mr) D. Σ (molecular volume) fit to 
Gaussian distribution and 2nd order polynomial equations. Each data point 
represents the mean of at least 3 biological repeats; with 9–15 measurements ± 
SEM. Correlation coefficient values are indicated.  

The correlation between activity and retention behaviour in RP-HPLC followed a Gaussian 

distribution with activity increasing as Rt increased to an optimal value and then decreasing with 

further increase in Rt (Fig. 3.14A). Activity and interphase properties gave a significant 

correlation with a quadratic equation again indicating an optimal amphipathicity (Fig. 3.14B). 

These two correlations indicated that antilisterial activity is highly dependent on amphipathicity. 

Similar trends were observed between activity and the size parameters Mr and MV (Fig. 3.14 C, 

D). The 2D QSAR analyses did not give significant correlation between activity and the other 

structural parameters evaluated based on the limit of R2 
≥ 0.50 (results not shown). Therefore, 
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both size and hydrophobicity/amphipathicity are relevant in modulating antilisterial activity of 

RW-peptides. 

As with the Trc library, we carried out multivariate data analysis using the PCA projection 

method for the molecular descriptors representing bulk (size) and chemical character of the 

peptides (Table S3.8) together with two activity parameters i.e. growth inhibitory activity at 25 

µM (A25) and 100 µM (A100) against L. monocytogenes B73. We carried out two PCA; in the 

first PCA ten RW-peptides were evaluated due to exclusion of the analogues with unnatural Trp 

analogues and in the second PCA all the peptides were evaluated, but some parameters which 

could not be obtained for certain analogues with unnatural amino acids were excluded. A total of 

thirteen and seven parameters were considered in the first and second PCA respectively (Fig. 

3.15 and Table 3.7). 

Considering only the peptides with natural amino acids, the score plot t1t2 (Fig. 3.15A) showed 

that the first two principal components or factors explained 85% of the total variance among the 

analogues (factor 1 = 73%, factor 2 = 12%). Along the PC 1 scale, the peptides were segregated 

according to the number of residues with all hexapeptides grouped in the extreme right of the 

scale while the largest peptide with 12 residues c-WFW 12 was found at the extreme left (Fig. 

3.15A). Separation of peptides along the PC 2 scale seemed to be according to activity as the 

most active analogues c-WFW8, c-WFW and c-WWW clustered together in the top right 

quadrant on this scale (Fig. 3.15A).  

Based on the loading plot p1p2 the size parameters determined experimentally (Mr) along with 

the computed MV as well as those determined in silico (MV, SAV and SASA) correlated 

positively. The MV estimated using YASARA 9.10.5© was very closely associated with that 

derived from theoretical values of the constituent amino acids. The SCSA was the only size 

parameter that did not associate with the others, however, it had a negative correlation with the 

interphase properties parameter as well as the HPLC Rt (Fig. 3.15A). A similar observation was 

made with the Trc library analyses in Section 3.4.3. Lipophilicity correlated negatively with 

hydrophobicity and hydropathy, but positively with the size parameters. This is probably due to 

an increase in the number of the highly lipophilic Phe residues not only increasing the size by 

also the hydrophobicity 80,81. Therefore, distribution of the peptides along the PC 1 scale can be 

explained by the negative correlation between size and hydrophobicity/hydropathy parameters. 

As predicted activity at 25 µM (A25) had great influence in the top right quadrant along the PC 2 

scale in which the most active peptides formed a cluster (Fig. 3.15A). In the bi-plot of the first 
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(PC 1) and third (PC 3) principal components, comparable trends were observed, but it was 

rather the activity at 100 µM (A100) that had a significant correlation coefficient (not shown). 
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Figure 3.15  A. PCA bi-plot showing the relationship between the variation in the 13 structural 

and antilisterial activity parameters and the relationship between 10 RW-peptides 
(excluding analogues with unnatural Trp analogues) along factor 1 and 2. B. Bi-
plot showing the relationship between the variation in 7 structural and antilisterial 
activity parameters and the relationship between all 15 RW-peptides along factors 
1 and 2. 

A 

B 
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When all 15 RW-peptides were considered based on seven variables, PC 1 and PC 2 accounted 

for 90% of the total variance (Fig. 3.15B). From the t1t2 plot, distribution along the PC 1 scale 

was related once more to the number of residues with the hexapeptides clustered in the left half 

of the scale. Along the PC 2 scale the hexapeptides in which the aromatic and charged residues 

were scrambled clustered together in the bottom left quadrant. The peptides with methylated 

indole rings also associated closely to each other. The analogue c-Bal was an outlier in the group 

of hexapeptides. Based on the p1p2 plot, we observed clustering of all size parameters which 

explained peptide distribution along the PC 1 scale (Fig. 3.15B). The two activity parameters 

were closely associated to each other and correlated positively with the HPLC Rt.  

Antilisterial activity of the RW-peptides is therefore, influenced by clustering of aromatic and 

cationic residues and total number of residues which all impact on both the chemical and 

structural parameters of the peptides. All determined physicochemical parameters gave high 

correlation coefficients in both PCAs (Table 3.7). 

 Table 3.7 Correlation coefficients (R2) for agreement between actual variables and PCA model-
predicted variables used in the PCA QSAR analysis of the RW-peptides 

 PCA Model fit 

Variables 

R2 

p1p2 plot without 
peptides with 

unnatural  
Trp analogues 

R2  
p1p2 plot 

all peptides 

Activity parameters 
A25 0.854 0.728 

A100 0.201 0.727 
Size parameters 

Mr 0.992 0.986 
MV 0.984 0.990 

MV yasara 0.989 na 
SCSA 0.778 na 
SASA 0.962 0.985 
SAV 0.983 0.992 

Chemical parameters 
HPLC Rt 0.852 0.864 

Lipophilicity 0.990 na 
Hydropathy 0.830 na 

Hydrophobicity 0.819 na 
Interphase properties 0.845 na 
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As was previously observed by Junkes et al. 87, adjoining cationic and hydrophobic residues and 

a ring size of six amino acids caused maximal activity towards Listeria and alterations in amino 

acid arrangement and ring size probably lead to differences in the mode of action. Antimicrobial 

peptides carry out their antibacterial activity by lysis and/or alternative target inhibition that is 

frequenly indicated by data captured within the dose-response according to Rautenbach et al. 94. 

The RW-peptides showed different dose-responses (Figs. 3.10-3.12) and antilisterial activity of 

most of the RW-peptides we analysed do not depend on membranolytic action. Previous 

experiments for membrane permeability have shown that the most active RW-peptides (c-WFW 

and c-WWW) do not rely primarily on membrane lysis for activity 47,87,108. Membrane activity of 

these peptides has been associated to lipid demixing 109–111 resulting in interference with some 

cell regulatory functions 112 or packing defects leading to translocation of polar compounds into 

the cytoplasm 113.  

Phosphatidyl ethanolamine (PE)-rich membrane domains as in Gram-positive bacteria can also 

favour membrane destabilization because of the negative curvature propensity of the lipids 110. 

The other mode of action which may involve peptides crossing the plasma membrane is 

supported by the high content in W and R residues for the active peptides which has been 

suggested to favour peptide translocation across the cell membrane 87,114. The observed biomass 

stress, which corresponds to observed “growth” with metabolism inhibition (Fig. 3.13), could be 

due to the formation of biofilms and exopolysacharride formation leading to increased light 

scattering that is measured as growth. 

3.6. Conclusions 

Due to the public health and economic threat of Listeria 1,2,4 coupled with a general tendency of 

resistance by Listeria spp. to antibiotics and disinfectants 1,3,4 as well as the limitations of nisin 2, 

other AMPs are investigated for use in isolation or in combination with nisin or other 

bacteriocins as food preservatives. Recognition of the key structural parameters for the 

optimization of peptide activity toward the resistant strains of this pathogen provides the basis 

for the design of highly selective antimicrobial compounds.  

In general the Trcs and RW-peptides were more active against the leucocin A resistant L. 

monocytogenes B73-MR1, than the sensitive B73 strain. The results from all the peptide libraries 

tested revealed the relevance of hydrogen bonding with an aromatic amino acid residue for 

activity towards B73-MR1 while for B73, the overall peptide size was more important. 

Hydrogen bonding may either result in an inactive conformation or retain the peptide in the cell 

wall/membrane, limiting its mode of action. The observed difference in susceptibility between 
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the strains to these peptides can be explained by the difference in their membrane composition, 

B73-MR1 having a more fluid and anionic membrane 41.  Since the effect of peptides on cells 

involves at least in part their interaction with membrane lipids, the lipid composition of 

membranes significantly impacts on their specificity 115. 

We employed a new activity parameter, the activity product (AP = IC50 × ICmax) and the 

inhibition concentration factor (ICF = IC50/ICmax) which improved selecting the most active Trc 

analogues, while still incorporating conventional inhibition parameters. Our results agreed with 

Spathelf & Rautenbach 44 on the higher activity of the tyrocidines (Trcs) containing Trp3 in the 

aromatic dipeptide unit and either Orn9/Lys9 as cationic residue. Re-evaluation of Trc A, Trc C, 

Trc B and their Lys analogues confirmed their low micromolar activity (IC50s = 7-14 µM and 

MICs <35 µM). We also found that the Orn9 containing Trcs were generally more active than the 

Lys9 analogues. The most active Trc was the analogue of both Trc A and Trc C, namely Trc B 

with IC50 at 7 µM and ICmax at 16 µM. Modifying Trc C to Tpc C (Tyr7 to Trp7 substitution) 

resulted in reduced activity (ICmax = 39 µM). Likewise Trc A to Phc A (Tyr to Phe substitution) 

modification yielded a higher IC50 of 15 µM. However, the slightly lower ICmax at 20 µM of Phc 

A to that of Trc A indicated a role of the size of the aromatic residue in the NQX sequence of the 

variable pentapeptide possibly due to size and dipolar/induced dipolar potential. This is the first 

evidence that the antilisterial activity of the tyrocidines may rely on a Tyr or Phe in the variable 

pentapeptide moiety. A novel synthetic analogue of Trc A, sTrc AOMe3, with comparable 

activity to that of Trc A at IC50 of 12 µM, but a lower ICmax of 18 µM rivalling that of Trc B was 

identified. The presence a bulky charged residue in proximity to Phe3 can thus alleviate the 

negative effect of Phe3 on antilisterial activity. Also, despite the loss of hydrogen bonding in the 

Nδ-trimethyl Orn, the increased hydrophobicity probably enables deeper and more disruptive 

membrane interaction than the “snorkeling” Lys analogue. However, the synthetic analogue of 

Trc A with charge increase due to Gln6 substitution to Orn6 in the NQY sequence decreased the 

antilisterial activity, indicating a delicate amphipathic balance and possibly a role for the Gln6 in 

antilisterial activity. The results therefore, revealed that a small group such as Tyr or Phe at 

position 7 of the Trcs and possibly the Gln6 are probably involved in target interaction for 

activity against Listeria. Moreover the character of the aromatic dipeptide unit as well as the 

cationic residue in the conserved V(K/O)LfP pentapeptide are critical residues within the Trc 

structure for antilisterial activity. The aromatic dipeptide unit has a major influence on the 

hydrophobicity and size of the tyrocidine/analogue. Increase in charge, hydrophobicity and size 

parameters that lead to tighter membrane interaction tend to hamper the Trc mechanism of action 

by possibly trapping the peptides and preventing either the formation of lytic complexes or 

Stellenbosch University http://scholar.sun.ac.za



3.42 
 

translocation to target site(s). Multivariate QSAR models derived for the Trcs accurately 

predicted most of the structural and activity parameters and indicated the relevance of both 

hydrophobicity and overall size parameters for antilisterial activity. The most important 

hydrophobicity parameter were the hydropathy, hydrophobicity and interphase properties while 

the SASA, SAV, Mr and molecular volume (MV) were the best steric/size parameters associated 

with antilisterial activity. From this study we predict that viable lead structures for antilisterial 

activity in the next generation tyrocidine library would be cyclo[VOMe3LfPWfNQ(Y/F)]. 

Seven of the RW-peptides tested were active against L. monocytogenes B73 with IC50 < 100 µM; 

four having an IC50 < 30 µM and ICmax < 50 µM. The template cyclo(RRRWFW) was found to 

have good activity (IC50 = 27 µM, ICmax = 38 µM). A slight improvement in activity was 

achieved with the substitution of Phe by Trp (IC50 = 23 µM, MIC = 30 µM) indicating that this 

residue is not constrained by size. A further increase in activity (IC50 =19 µM, ICmax = 29 µM) 

was found with the substitution of Trp by Bal (β-(benzothien-3-yl)-alanine) to form 

cyclo[RRR(Bal)F(Bal)]. This indicated that a more hydrophobic aromatic sequence could be 

beneficial for antilisterial activity. Methylation of tryptophan residues increased the activity, 

indicating that the tryptophan side chain size may also be a factor. Substitution of the aromatic 

residues with analogues revealed the relevance of interaction at the membrane interface in which 

size, amphipathicity, hydrophobicity, and flexibility are all factors. Clustering of aromatic 

residues, a preference for Arg over Lys as cationic residue and a ring size of six residues (18 

atoms) were also shown to be essential for their antilisterial activity, correlating with previous 

results obtained by Junkes et al. 87. Any change in the ring size, such as introducing beta-amino 

acids (beta-homotryptophan) or including more amino acids lowered or eradicated the 

antilisterial activity. Scrambling, and even minor changes in the sequence also eradicated the 

activity. Two-dimensional QSAR confirmed with good correlation the significance of 

hydrophobicity (HPLC Rt and interphase properties) and steric/size parameters (MV and 

molecular mass) to activity. These results were in agreement with previous results on other 

Gram-positive targets and underline the fact that a fine amphipathic balance is necessary to 

maintain activity in the RW-peptides. Similarly to the Trcs, multivariate QSAR models derived 

for the RW-peptides accurately predicted most of the structural and activity parameters and 

indicated the relevance of both hydrophobicity and overall size parameters for antilisterial 

activity. As with the 2D QSAR, the PCA projection technique indicated interphase properties 

and HPLC Rt as the most important parameters associated with antilisterial activity. 

Based on the pivotal structural features identified in the peptide libraries, especially those that 

account for strain susceptibility and selectivity, lead peptides can be designed with desirable and 
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predictive effect against Listeria and other similar drug resistant pathogens. There is nevertheless 

the need to design and test more analogues in order to design more specific peptides and mimics.  
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3.8. Addendum 

3.8.1. Influence of culture storage on sensitivity to peptides 

The transition by pathogenic Listeria from the environmental habitat to the mammalian host is 

accompanied by a temperature up-shift ensued by an up regulation of virulence factors 

(including surface-associated proteins) that could affect their susceptibility to AMPs 5; hence it 

was important to investigate the influence of temperature on the antilisterial activity of the Trcs.  

3.8.1.1. Methodology 

The effect of storage of L. monocytogenes B73 pre-cultures at varying temperatures and for 

varying lengths of time on the growth inhibition activity of the Trc mixture extracted from 

commercial tyrothricin, as described in Chapter 2, was investigated. Gramicidin S (GS) was used 

as reference peptide. Following culturing of bacteria on BHI agar from freezer stocks for 24 

hours at 37 oC, the cultures were stored separately at 4 ± 2 oC, 22 ± 2 oC, and 37 ± 2 oC for 3 and 

6 days. Selected colonies were later cultured in BHI broth at 37 °C to log phase and sub-cultured 

to OD620 of 0.4 for use in growth inhibition assays as described below. The sub-cultured cell 

suspensions at mid-log phase were diluted to OD620 of 0.2 using BHI broth. 

3.8.1.2. Results and discussion  

Although storage at 4 ± 2 oC and 22 ± 2 oC for 3 and 6 days and at 37 ± 2 oC for 3 days did not 

significantly alter the activity of Trc mix, it was noted that prolonged storage of the pre-cultures 

to 6 days at 37 ± 2 oC increased the resistance of the bacteria to Trc mix’s growth inhibitory 

activity (Fig. 3.16) as demonstrated by a significant increase in the IC50 value. The same 

observation was made for GS’ growth inhibition activity (see Table 3.8 and 3.9). 
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Figure 3.16 Influence of pre-culture storage conditions (time and temperature) on antilisterial 
activity (IC50 and ICmax) of Trc mix from commercial tyrothricin against L. 
monocytogenes B73. Parameter data are given in Addendum Table 3.9 and 3.10. 
According to the Newman-Keuls multiple comparison test the IC50 value of only post 
6 days pre-culture storage at 37 oC was significantly different (* P < 0.05). 

Lόpez-Solanilla et al. 5 demonstrated a thermoregulated susceptibility of pathogenic Listeria to 

potato defensin mediated by protein release factor (Prf) A. PrfA which is a transcription factor 

and the central virulence regulator is the only known regulatory mechanism in pathogenic 

Listeria that is affected by altering temperature from 20 oC to 37 oC. PrfA-dependent genes are 

repressed at low temperature but they are induced at 37 oC 5. It is possible that this could account 

for the observed difference in the susceptibility of L. monocytogenes B73 to the Trcs and GS 

following 6 days pre-incubation at 37 oC seen from our results. This could reflect a response 

aimed at improving survival of Listeria during their environmental saprophytic life 5. 
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Table 3.8  Summary of the influence of storage conditions (time and temperature) of L. 

monocytogenes B73 pre-cultures on activity parameters of Trc mix and GS. Trc 
mixture’s concentrations are given in µg/mL (top two rows) and those of GS are 
given in µM. Every value denotes the average of n biological repeats (number of 
repeats given in brackets); with 3–5 technical repeats per assay ± SEM. 

Peptide 
Pre-culture 
storage time 
(days) 

Temperature 
of storage (oC) IC50 ± SEM (n) 

ICmax ± SEM 
(n) 

Trc mix 

3 
4 ± 2 12.0 ± 1.20 (5) 22.0 ± 2.70 (5) 
22 ± 2 13.0 ± 1.60 (4) 22.0 ± 2.50 (4) 
37 ± 2 13.0 ± 1.30 (3) 24.0 ± 1.50 (3) 

6 
4 ± 2 7.5 ± 1.50 (3) 15.0 ± 3.30 (3) 
22 ± 2 8.4 ± 1.60 (3) 23.0 ± 4.40 (3) 
37 ± 2 22.0 ± 5.00 (3) 38.0 ± 10.2 (3) 

GS 

3 
4 ± 2 4.1 ± 0.09 (5) 5.6 ± 0.11 (5) 
22 ± 2 4.2 ± 0.08 (4) 5.8 ± 0.12 (4) 
37 ± 2 4.1 ± 0.06 (4) 5.4 ± 0.09 (4) 

6 
4 ± 2 4.5 ± 0.12 (3) 6.2 ± 0.11 (3) 
22 ± 2 4.6 ± 0.19 (3) 7.0 ± 0.36 (3) 
37 ± 2 15.0 ±4.50 (3) 22.0 ± 6.80 (3) 

 

Table 3.9 Summary of the P-values from the Newman-Keuls multiple comparison test on two 
listerial growth inhibition parameters (Table 3.8). The precise P-values are less than 
the limit value shown in table. “ns” denotes a P-value > 0.05. In each cell, the first 
value corresponds to the P-value for IC50 and the second value corresponds to that 
of ICmax 

 Post 3 days  
4 ± 2 oC 

Post 3 days 
22 ± 2 oC 

Post 3 days 
37 ± 2 oC 

Post 6 days 
 4 ± 2 oC 

Post 6 days 
22 ± 2 oC 

Post 3 days 
22 ± 2 oC 

ns 
ns 

    

Post 3 days 
37 ± 2 oC 

ns 
ns 

ns 
ns 

   

Post 6 days 
 4 ± 2 oC 

ns 
ns 

ns 
ns 

ns 
ns 

  

Post 6 days 
22 ± 2 oC 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

 

Post 6 days 
37 ± 2 oC 

0.05 
ns 

0.05 
ns 

0.05 
ns 

0.01 
ns 

0.01 
ns 
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3.9. Supplementary data 

Table S3.1 Summary of selected physicochemical parameters of the Trc A and Trc C 
analogues investigated for antilisterial activity. A number of parameters were taken 
from literature; HPLC retention times are from the analytical HPLC; SASA and 
SAV were determined in silico using YASARA 9.10.5©. 
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Trc A 11.26 0.105 9.55 24 -7.78 4.29 1269.661 1582.2 721.9 1199 2680 

Trc A1 11.12 0.123 8.16 23.1 -1.34 4.33 1283.667 1609.2 741.4 1208 2715 

Phc A 13.61 0.096 10.38 31.5 -9.41 4.68 1253.666 1578.5 786.9 1120 2591 

sTpc A 13.58 0.092 10.84 31.2 -8.58 4.20 1292.668 1616.4 815.8 1122 2631 

sTrc AOMe3 10.04 na 10.48 30.6 -5.77 4.47 1311.701 1659.5 850.2 1170 2741 

sTrc A(Q-O) 6.73 0.197 10.17 21.0 -9.41 3.48 1255.675 1580 796.2 1122 2605 

Trc B 9.56 0.1 10.01 23.7 -10.80 3.81 1308.634 1620.1 750.8 1217 2741 

Trc B1 9.28 0.116 8.62 22.8 -13.44 3.85 1322.683 1647.1 770.3 1231 2777 

Trc C 7.71 0.096 10.47 23.4 -13.82 3.33 1347.675 1658 779.7 1267 2833 

Trc C1 7.31 0.11 9.08 22.5 -16.46 3.37 1361.690 1685 799.2 1269 2854 

Tpc C 9.52 0.085 11.76 30.6 -17.64 3.24 1370.695 1692.2 873.6 1193 2772 

* Missing amino acid parameters (P) were calculated as follows:  
POrn = PLys – PLeu+PVal; PTrimethylated Orn = POrn + 3 ×(PAla– PGly) 
na: not available 
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Table S3.2  Summary of the P-values from the Newman-Keuls multiple comparison 
test on two listerial growth inhibition parameters (Table 3.2) for Trc A 
analogues. The precise P-values are less than the limit value shown in 
table. “ns” denotes a P-value > 0.05. In each cell, the first value 
corresponds to the maximum P-value for L. monocytogenes B73 and the 
second value corresponds to that of L. monocytogenes B73-MR1. 

 

 
 

sTpc A Trc A Trc A1 
sTrc  

AOMe3 
Trc B sTrc A 

(Q-O) 

Phc A 
ICmax 

0.001 
ns 

ns 
0.05 

0.01 
ns 

ns 
0.001 

ns 
0.001 

0.001 
ns 

IC50 
0.001 
0.05 

ns 
0.001 

ns 
ns 

ns 
0.001 

0.01 
0.001 

0.001 
0.001 

sTpc A 
ICmax  

0.001 
0.001 

0.001 
0.01 

0.001 
0.001 

0.001 
0.001 

0.001 
ns 

IC50  0.001 
0.01 

0.001 
0.01 

0.001 
0.001 

0.001 
0.001 

0.05 
0.001 

Trc A 
ICmax   0.001 

ns 
ns 
0.01 

ns 
0.01 

0.001 
0.001 

IC50   
0.001 
0.001 

ns 
0.01 

ns 
0.01 

0.001 
0.001 

Trc A1 
ICmax    

0.01 
0.001 

0.001 
0.001 

ns 
0.01 

IC50    
0.01 
0.001 

0.001 
0.001 

0.001 
0.001 

sTrc A 
OMe3 

ICmax     ns 
ns 

0.001 
0.001 

IC50     
ns 
ns 

0.001 
0.001 

Trc B 
ICmax      

0.001 
0.001 

IC50      0.001 
0.001 
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Table S3.3  Summary of the P-values from the Newman-Keuls multiple comparison 
test on two listerial growth inhibition parameters (Table 3.2) for Trc C 
analogues. The precise P-values are less than the limit value shown in 
table. “ns” denotes a P-value > 0.05. In each cell, the first value 
corresponds to the maximum P-value for L. monocytogenes B73 and the 
second value corresponds to that of L. monocytogenes B73-MR1. 

 

  Tpc C Trc C1 Trc C Trc B1 

Trc B 
ICmax 

0.001 
0.001 

0.01 
0.001 

ns 
ns 

ns 
0.01 

IC50 
0.01 

0.001 
ns 

0.001 
ns 
ns 

ns 
0.001 

Tpc C 
ICmax  

0.001 
ns 

0.001 
0.001 

0.001 
ns 

IC50  
0.001 
0.01 

0.001 
0.001 

ns 
0.001 

Trc C1 
ICmax   

ns 
0.001 

ns 
ns 

IC50   
ns 

0.001 
ns 
ns 

Trc C 
ICmax    

ns 
0.001 

IC50    
ns 

0.001 
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Table S3.4  Summary of the most prominent QSAR trends for correlation of the 
physicochemical parameters of the tyrocidines with antilisterial activity (IC50, 
ICmax, ICF and AP) as determined from data fitted to polynomial equations. Only 
trends with correlation coefficients of R2≥0.5 were considered significant. Q = 
quadratic trend; − = no trend observed with fit R2≥0.5 
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IC50 
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B73 − 
0.50 

Q − 
0.61

Q − − − − − − − 

B73-
MR1 − 

0.68 
Q − 

0.76
Q − − 

0.57
Q − − − − 

ICmax 
(µM) 

B73 − − − − − − − − − − − 

B73-
MR1 − − − 

0.58
Q − − − − − − − 

ICF 
B73 − − − − 

0.55
Q − 

0.73
Q − − − 

0.58
Q 

B73-
MR1 − − − − − − − − − − − 

AP 
(µM2) 

B73 − − − − − − − − − 
0.51

Q − 

B73-
MR1 − 

0.71
Q − 

0.81
Q − − 

0.58
Q − − − 

0.50
Q 
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Table S3.5  Summary of the P-values from the Newman-Keuls multiple comparison test on % 
growth inhibition of L. monocytogenes B73 at 25 µM for Group 1 RW-peptides. 
The precise P-values are less than the limit value shown in table. “ns” denotes a P-
value >0.05 

 
c-b3hW c-WWW c-WIW c-1MeW c-5MeW c-Bal 

c-WFW 0.001 0.001 0.001 0.05 0.001 0.001 
c-b3hW 

 
0.001 ns 0.001 0.001 0.001 

c-WWW 
  

0.001 ns 0.01 0.001 
c-WIW 

   
0.001 0.001 0.001 

c-1MeW 
    

0.01 0.001 
c-5MeW 

     
0.001 

 

Table S3.6 Summary of the P-values from the Newman-Keuls multiple comparison test on 
listerial % growth inhibition of L. monocytogenes B73 at 25 µM for Group 2 RW-
peptides. The precise P-values are less than the limit value shown in table. “ns” 
denotes a P-value >0.05 

 
c-WFW c-KRK c-KW c-KWW 

c-WWW 0.001 0.001 0.001 0.001 
c-WFW 

 
0.01 0.001 0.001 

c-KRK 
  

0.01 0.001 
c-KW 

   
0.01 

 

Table S3.7  Summary of the P-values from the Newman-Keuls multiple comparison 
test on listerial % growth inhibition of L. monocytogenes B73 at 25 µM 
for Group 3 RW-peptides. The precise P-values are less than the limit 
value shown in table. “ns” denotes a P-value >0.05 

 
c-WFW8 c-WFW10 c-WFW12 

c-WFW 0.001 0.001 0.001 
c-WFW8 

 
0.001 0.001 

c-WFW10 
  

0.001 
 

Stellenbosch University http://scholar.sun.ac.za



3.59 
 

Table S3.8  Summary of selected physicochemical parameters of the RW-peptides 
investigated for antilisterial activity A number of parameters were taken from 
literature; HPLC retention times are from the analytical HPLC; Mr are from 
ESMS; SASA, SAV and molecular volume were determined in silico using 
YASARA 9.10.5©. 
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c-WKW 15.2 3.78 1.26 -14.4 -11.07 -1.16 635.4 1189.2 822.99 943.8 1052.17 2136.62 

c-WRW 17 3.72 1.24 -16.2 -13.35 2.12 482.4 1203.6 859.95 1027.2 996.48 2151.07 

c-KW 17.1 3.32 1.11 -10.7 -8.05 -0.68 606.5 1151.3 794.26 904.1 1003.32 2042.6 

c-WFW 19.9 3.26 1.09 -12.5 -10.33 2.60 453.5 1165.7 792.17 989.5 1061.89 2171.2 

c-KWW 20 3.78 1.26 -14.4 -11.07 -1.16 635.4 1189.2 822.99 943.2 1056.26 2141.78 

c-b3hW 20.1 4.22 0.71 -13.3 -15.61 2.90 491.1 1219.1 867.44 1015.6 1070.73 2200.9 

c-WWW 20.2 3.72 1.24 -16.2 -13.35 2.12 482.4 1203.6 859.95 1027.2 1041.12 2169.22 

c-KRK 20.3 3.3 1.1 -11.3 -8.81 0.41 555.5 1156.1 806.58 931.5 1077.16 2124.48 

c-WIW 20.3 na na na na na na na 864.31 954.5 1078.11 2190.96 

c-1MeW 20.4 4.22 0.71 -13.3 -15.61 2.90 491.1 1219.1 867.88 1015.6 1061.98 2195.09 

c-5MeW 20.4 4.22 0.71 -13.3 -15.61 2.90 491.1 1219.1 874.5 1015.6 1060.17 2201.67 

c-WFW8 21.3 4.04 1.01 -14.2 -11.76 3.78 585.4 1529 1089.14 1291.5 1327.34 2776.98 

c-Bal 22 na na na na na na na 848.16 1021.5 1044.86 2178.58 

c-WFW10 22.4 5.28 1.06 -19.6 -16.21 4.49 746.2 1930.2 1375.79 1633.9 1593.75 3478.08 

c-WFW12 23.4 6.06 1.01 -21.3 -17.64 5.67 878.1 2293.5 1633.71 1937.3 1782.6 4027.57 

* Missing amino acid parameters (P) were calculated as follows:  
Pb3hW= P1MeW = P5MeW = PTrp + (PAla– PGly)  
na: not available 
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Chapter 4  

Activity and salt-tolerance of tyrocidines, cyclic decapeptides 

from Bacillus aneurinolyticus, and their analogues towards 

Listeria monocytogenes as target 

4.1. Introduction 

The cyclic amphipathic decapeptides, tyrocidines (Trcs), are antimicrobial peptides (AMPs) 

produced by Bacillus aneurinolyticus as part of the tyrothricin complex 1. The major Trcs 

include Trc A/A1, B/B1, and C/C1. In the analogous tryptocidines (Tpc) and phenycidines (Phc) 

(named by our group) the invariable aromatic amino acid Tyr is substituted with Trp and Phe 

respectively. They are effective against Gram-positive bacteria in vitro 1–4 and in the past have 

been limited to topical treatment of infections by these bacteria due to their systemic toxicity 5. 

Notably, the six major tyrocidines (A, A1, B, B1, C, C1) showed significant activity against the 

leucocin A resistant (B73-MR1) and sensitive strains (B73) of the Gram-positive bacteria L. 

monocytogenes (Spathelf & Rautenbach 4 and Chapter 3 of this study). This pathogen is the 

causative agent of listeriosis which is a food-borne opportunistic infection. It is fatal in 20 to 

40% of cases in immunocompromised subjects, infants, pregnant women, and senior citizens 6–9. 

It is thus a public health and food safety threat 10. 

Listeria spp. are known to be resistant to antibiotics 6–8,11–13, disinfectants 14–16 and even to nisin 

which is the most widely used bacteriocin in food preservation against listerial growth 17–20. Trcs 

are therefore, being investigated for the development of potential bio-preservatives against 

Listeria since microorganisms may not easily develop resistance to their rapid and principal 

membranolytic mode of action (MOA) 21,22. However, this pathogen is very resilient having the 

ability to grow at temperatures ranging from 1 o to 45 °C, has high tolerance for salts including 

NaCl and the ability to grow at quite low pH, hence difficult to control during both food 

processing and food preservation 23–27. Di- and trivalent cations have been reported to affect the 

activity of antimicrobial compounds such as was observed for the nisin-resistant strain of L. 

monocytogenes Nisr where divalent cations (Ca2+, Mg2+, Mn2+ and Ba2+) increased resistance to 

nisin, but had no effect on the wild type strain 28. Abee et al. 29 observed a decrease in the rate of 

K+ efflux caused by nisin Z from whole cells of L. monocytogenes Scott A in the presence of 

divalent cations (Mg2+, Ca2+) and the trivalent cation, Gd3+ with the lanthanide gadolinium 
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(Gd3+) completely inhibiting the effect at 0.2 mM. In contrast, an increase in activity was 

reported for daptomycin, a membranolytic cyclic lipopeptide, in the presence of Ca2+ 30. The 

probable reasons for interference of antimicrobial peptide activity by cations is either because 

they induce increased peptide aggregation 26,31,32 thus decreasing the “active” peptide 

concentration 27 or shield electrostatic interaction between the peptide and the target membrane 

31,33–35. It is possible that neutralisation of the phospholipids’ negative head group charges by 

cations leads to a more rigid membrane by inducing phospholipid condensation which would 

affect membrane insertion by AMPs 29. The use of single or combined AMPs together with salts 

or salt-sequestering agents like EDTA can improve control of Listeria and inhibit the induction 

of bacteriocin resistant strains and species 26.  

Marques et al. 3 observed that increasing the concentration of Ca from 25 mg/L to 50 mg/L 

moderately antagonised the antibacterial activity for Trc A and analogues. Previous work by 

Spathelf 35 showed that divalent cations especially Ca2+ had an influence on the self-assembly 

and mode of action (MOA) of the Trcs changing it from a lytic to non-lytic MOA. Spathelf 35 

found the optimal concentration for the apparent synergistic effect of CaCl2 on Trc activity to be 

7.5 mM. Higher concentrations up to 15 mM was also beneficial, but led to precipitation of some 

of the media constituents and at 30 mM there was loss of the synergistic activity. Further 

investigation of the influence of biological salts (MgCl2, CaCl2, KCl and NaCl) on the activity of 

Trcs is needed using diverse assays and will be discussed in this chapter.  

In Chapter 3, we deduced that the identity of the aromatic amino acid at position 7 and of the 

aromatic dipeptide unit in the variable pentapeptide ArArNQAr unit (Ar = aromatic amino acid) 

as well as the presence of a trimethylated Orn in place of Orn as cationic residue in the 

conserved V+LFP pentapeptide unit (+ = cationic residue) are critical residues within the Trc 

structure for antilisterial activity. To verify if the mechanism by which cations influence Trc 

activity is related to interaction with the residues relevant for their activity which may cause the 

modification of the MOA previously observed, we evaluated the most active of Trc A analogues 

namely Trc A, sTrc AOMe3, Phc A and Trc C analogues (Trc C, Trc B, Tpc C). The sequences, 

activity and biophysical characteristics of these peptides are detailed in Chapter 3. We also 

included the two most active RW-peptides (c-WFW and c-WWW) which are cyclic analogues of 

the synthetic hexapeptide (Ac)-RRWWRF-NH2 (Ac-RW), sharing the predominant aromatic 

residue and cationic character with the Trcs (refer to Chapter 3). Previous studies by Junkes et al. 

36 showed that c-WFW and c-WWW have a primarily non-lytic MOA. The effect of the salts on 

these RW-peptides will allow us to determine if the synergistic effect of CaCl2 on Trcs is a 
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peptide-specific phenomenon or target dependant. Furthermore, we shall analyse the role played 

by interactions with the lipid matrix of Gram-positive bacterial membranes in the biological 

effect of divalent cations on peptide activity by using model lipid vesicles. 

4.2. Materials 

Tyrothricin (extract from Bacillus aneurinolyticus), gramicidin S (from Brevibacillus brevis 

(Nagano)), Corning Incorporated® cell culture cluster non-pyrogenic polypropylene microtiter 

plates, propidium iodide, bis-benzimide, MgCl2.6H2O, ethylenediaminetetraacetic acid 

tetrasodium salt dihydrate (Na4EDTA or EDTA) and trifluoroacetic acid (TFA, >98%) were 

obtained from Sigma (St. Louis, USA). Culture dishes were obtained from Lasec (Cape Town, 

South Africa) and microtiter plates (NuncTM-Immuno Maxisorp) were from AEC Amersham 

(Johannesburg, South Africa. Saarchem (Krugersdorp, South Africa) supplied the NaCl, diethyl 

ether, acetone, butan-1-ol, acetic acid and propan-2-ol. Brain heart infusion broth (BHI) and BHI 

agar were supplied by Biolab Diagnostics (Midrand, South Africa). Capital Enterprises 

(Hillcrest, South Africa) provided the KCl. To obtain analytical grade water, water was filtered 

from a reverse osmosis plant via a Millipore Milli-Q water purification system (Milford, USA). 

Promega (Madison, USA) supplied the Cell Titer-BlueTM Cell Viability Assay kit. Ethanol 

(>99.8%), Tris and CaCl2 was supplied by Merck (Darmstadt, Germany). Falcon® tubes were 

from Becton Dickson Labware (Lincoln Park, USA). Dr Margitta Dathe from Leibniz Institute of 

Molecular Pharmacology (FMP), Berlin, Germany supplied the two pure RW-peptides, c-WFW 

and c-WRW. Liposome extrusion filters (polycarbonate membrane filters, 100 nm pore size) 

were from Avestin, Switzerland. Chloroform (99.8% A.C.S. spectrophotometric grade) was from 

Sigma-Aldrich (Germany). The other lipids were procured from Avanti Polar Lipids, Inc. 

(Alabaster, AL). 

4.3. Methods 

4.3.1. Bacteria culturing  

Normal sterile techniques were used to culture the leucocin A sensitive wild-type meat-isolate 

(B73) Listeria monocytogenes strain 37 as described in Chapter 3. Following 24 hour culturing at 

37 oC on BHI agar from freezer stocks selected colonies were grown overnight at 37 oC in BHI 

broth (37 g prepared with 1 L water) or BHI broth supplemented with 7.5 mM CaCl2 to log 

phase. Subsequently the cultures were sub-cultured in the culture medium to mid-log phase 

(OD620 of 0.4) prior to use in assays. 
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4.3.2. Peptide preparation 

Selected tyrocidine A analogues (Trc A, sTrc AOMe3, and Phc A), C analogues (Trc B, Trc C, 

Tpc C), RW-peptides (c-WWW and c-WFW), as well as Trc mixture and GS were used. The 

natural Trcs were extracted from commercially available tyrothricin as well as from tyrothricin 

isolated from culture extracts of Bacillus aneurinolyticus ATCC 8185 strain as described in 

Chapter 2. Purification of the Trcs was done using semi-preparative reverse phase high 

performance liquid chromatography (RP-HPLC) and analytical HPLC according to the methods 

of Rautenbach et al. 38 and Eyéghé-Bickong 39. Chemical purity and integrity was established 

using previously described ESMS and UPLC-MS methods 4,38–40. 

Antilisterial activity of these peptides for IC50 and ICmax determination is described in Chapter 3. 

The peptide stocks were prepared as previously described to 1 mM with 40% v/v ethanol in 

deionised sterile H2O for the Trcs and with deionised sterile H2O for the RW-peptides (to 2 mM) 

and GS (to 1 mM). The stock was further diluted to the appropriate concentrations relative to the 

IC50 and ICmax separately with each of the salt solutions (NaCl, KCl, CaCl2, and MgCl2). 

Deionised sterile H2O was used as control solvent. All solvents were previously filtered using 

0.22 µm pore size filters. 

4.3.3. Growth and metabolism inhibition assays 

Growth and metabolism inhibition assays were carried out against the two bacterial targets 

according to previously described methods 35 with modifications. The mid-log phase cultures 

were diluted with growth media to OD620 = 0.2. Ten µL of the peptide solutions was added to 90 

µL of the cell suspensions in 96-well microtiter plates and incubated for 16 hours at 37 oC. The 

final concentration of the salts in the cell suspensions was 7.5 mM and 15 mM. After reading the 

light dispersion of the wells at 595 nm, 10 µL of CellTiter-BlueTM reagent was added to all wells 

and incubated for an additional hour. Resazurin (blue, absorption maximum at 605 nm) in the 

CellTiter-BlueTM is reduced to resofurin (pink, absorption maximum at 573 nm) in viable and 

respiring cells 41. The plates were analysed spectrophotometrically at 570 nm and 600 nm using a 

Biorad microtiter plate reader and the percentage metabolism inhibition was computed using 

equation 2. The growth inhibition was computed as previously described in Chapter 3 using 

equation 1. 

 

% growth inhibition = 100 −                                                                                             (1) 
Average A595 of growth wells − Average A595 of background 

100 × (A595 of well − Average A595 of background) 
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% inhibition = 100 −     (2) 

In another set of experiments, spectrofluorimetry was used to observe the effect of the divalent 

cation salt CaCl2 on the metabolism inhibition pattern of Trc B and GS against L. monocytogenes 

B73 using the CellTiter-BlueTM reagent. The peptide and salt solutions were prepared as above to 

peptide concentrations representing < IC50, IC50 and ICmax. Peptide solutions prepared in 

deionised sterile water were used for control. The bacterial cultures were prepared as described 

above. After adding 10 µL of the peptide solutions to 90 µL of the cell suspensions in 96-well 

microtiter plates, 10 µL of CellTiter-BlueTM reagent was added to each well and the plates were 

immediately assessed for fluorescence (560 nm excitation and 590 nm emission) every 2 minutes 

over 30 minutes using a VarioskanTM spectrofluorimeter and SkanIt® software 2.4.1 for 

retrieving the data (ThermoElectron Corporation, Vantaa, Finland). 

4.3.4. Membrane permeabilisation/lysis assays 

The effect of the salts at 7.5 mM on the membrane activity towards L. monocytogenes B73 of the 

peptides was investigated using the membrane impermeable DNA chelator, propidium iodide. 

Following the sub-culturing of the bacterial cultures to mid-log phase, the cultures were 

separated from the culture medium by centrifugation at 200×g for 10 minutes, the supernatant 

was discarded followed by a wash in sterile NaCl (0.9% m/v) again by centrifugation at 200×g 

for 10 minutes. The cells were diluted to an OD620 of 0.20 with sterile NaCl (0.9% m/v). 

Propidium iodide (1 mg/mL) was added to the cell suspensions in a 1:100 ratio. Ten µL of 

peptide solutions (final concentration = IC50 and 2 × IC50) as prepared above was added to 90 µL 

of the stained cells distributed in black 96-well sterile flat bottom LumiNunc/FluoroNunc 

microplates for spectrofluorimetry. The reaction mixtures were incubated at room temperature for 

±5 minutes and assessed for propidium iodide fluorescence emission at 617 nm (excitation 

wavelength was set at 535 nm) every 2 mins for 30 mins using the VarioskanTM 

spectrofluorimeter and SkanIt® software 2.4.1 for retrieving the data. For positive control, some 

cells were lysed by freeze-thawing before staining with propidium iodide for use in assay. The 

average propidium iodide fluorescence was calculated over the 30 minutes for triplicate repeats 

100 × (A570/A600 of well-Average A570/A600 of background) 

Average A570/A600 of growth wells − Average A570/A600 of 
background 
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in the presence of the peptide dissolved in water or 7.5 mM chloride salt and 6 repeats in the 

absence of peptide. 

4.3.5. Influence of EDTA on Trc activity  

In order to further verify the effect of divalent metal ion on the activity and mode of antilisterial 

activity of the peptides, EDTA (ethylene diamine tetraacetic acid) tetrasodium salt dihydrate was 

used to sequester Ca2+ and Mg2+ ions at 7.5 mM. 

In initial experiments to determine the minimum concentration of EDTA that affects Trc activity, 

peptide suspensions were made from diluting the Trc mixture (final concentration = 12.5 µg/mL) 

with the divalent cation salt solutions, deionised sterile H2O or BHI broth. GS (final 

concentration of 10 µM) was used as reference peptide. EDTA was added to the peptide in salt 

or water solutions at final concentrations of 10, 5 and 2.5 mM and at 10, 5 and 2.5 µM to the 

peptide solutions in BHI broth. NaCl at concentrations four times higher than those of EDTA 

(40, 20 and 10 mM or µM) was used as control for the effect of the salt fraction of the EDTA 

formulation used. Ten µL of these solutions was separately added to 90 µL of the bacterial 

cultures prepared as described above for the previously described growth and metabolism 

inhibition assays and also to 90 µL of the bacterial cultures prepared as described above for the 

membrane permeabilisation assays. Following the results from these assays, the experiments in 

Section 4.3.4 were repeated with the addition of 10 mM EDTA to the peptide suspensions with 

the divalent metal ion salts to verify that the observed effect on the membrane permeabilisation 

activity of the peptides was indeed due to the divalent metal cations. 

In order to determine the nature of Trc-EDTA interaction in the presence and absence of divalent 

cation salts (CaCl2 and MgCl2), IC50 values were derived from dose-response curves and used in 

fixed ratios for fractional inhibition concentration (FIC) determination according to an adaptation 

of the methods by Chawira and Warhust 42 and Fivelman et al. 43.  

Twenty mM EDTA and 50 µM (0.05 mM) peptide were used to prepare the following 

concentration combination ratios: 20:0, 15:0.01, 10:0.03, 5:0.04, and 0:0.05 mM in solutions of 

CaCl2, MgCl2, or water which were then individually serially diluted in the respective solvents. 

Ten µL of the peptide preparations was added to 90 µL of the cell suspensions, incubated for 16 

hours at 37 oC, and analyzed for growth and metabolism inhibition as previously described. The 

IC50 values and standard error of the mean for the various EDTA-peptide combinations in each 

solvent were determined from the dose-response curves plotted and analyzed using GraphPad 

Prism® 4.03 (GraphPad Software, San Diego, USA). A minimum of three technical repeats and 
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two biological repeats were carried out for each combination experiment. Two fractional 

inhibition concentration (FIC) values were calculated for each of the five EDTA-peptide 

combination ratios, one for EDTA and the other for the peptide according to equations 2 and 3 

below adapted from Bell 44 and Makowa 45. 

FICEDTA = IC50
EDTA + Peptide (in combination)/IC50

EDTA (alone)...........................................(2) 

FICpeptide = IC50
EDTA + Peptide (in combination)/IC50

peptide (alone)..........................................(3) 

The FIC values were used to construct isobolograms on Graphpad Prism® 4.03 and to compute 

the fractional inhibition concentration index (FICI) which is the sum of FICs of EDTA and each 

peptide using equation 4 below 45,46. 

FICI = FICEDTA + FICpeptide.................................................................................................(4) 

The magnitude of the FICI determined the nature of the EDTA-peptide interaction as being 

either synergistic (FICI < 1.0), antagonistic (FICI > 1.0) or additive (FICI = 1.0) 44,46,47. 

However, a more conservative interpretation requires that FICI ≤ 0.5 indicates absolute synergy, 

1 > FICI > 0.5 shows slight synergy, FICI = 1 means additive activity, 1< FICI < 4 is interpreted 

as non-interactive to slight/moderate antagonism, while FICI ≥ 4 indicates absolute antagonism 

44–46,48. The shape of the isobolograms also provided an indication of the nature of the interactive 

effect of EDTA and the peptides with a concave curve for synergy, a linear line for an additive to 

non-interactive effect or convex curve for antagonism with deviation of the curves from the 

additivity line indicating the strength of the interactive effect 44. 

4.3.6. Analyses of data 

GraphPad Prism® 
4.03 (GraphPad Software, San Diego, USA) was used to plot the dose–

response curves as described in Chapter 3. ICmax, related to the maximum inhibitory 

concentration (MIC) was computed from the x-values at the intercept between the slope and the 

top plateau 49. The log IC50 is the x-value that denotes the response halfway between the top and 

bottom where IC50 is defined as the peptide concentration leading to 50% growth inhibition 50. 

For fixed concentration experiments the mean and standard error of the percentage inhibition, 

percentage haemolysis or fluorescence signals were computed using GraphPad Prism® 
4.03 

(GraphPad Software, San Diego, USA) and statistical analyses of the data was performed with 

the same software.  
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4.3.7. Fluorescence microscopy 

Prior to cell imaging experiments, the listerial cultures at mid-log phase (OD = 0.4) were washed 

and diluted to OD = 0.2 with 0.9% m/v NaCl. Bis-benzimide (Hoechst) which is a blue, cell-

permeable, DNA-binding fluorescent dye and propidium iodide (PI), a red DNA intercalating 

dye that is membrane impermeable were used to assess the membranolytic activity of the Trcs 

towards L. monocytogenes B73. The dyes were prepared in phosphate bovine saline (PBS) and 

added to the cell suspensions in 0.9% m/v NaCl (to final concentration of 20 µg/mL for bis-

benzimide and 10 µg/mL for PI) followed by 15 minutes incubation in the dark at room 

temperature. One mM stock of Trc B prepared as described in Section 4.3.2 was diluted in CaCl2 

or MgCl2 solutions and 10 µL of the peptide suspension was added to 90 µL of stained cells 

(final salt concentration = 7.5 mM and final peptide concentration = 5 µM). Water was used as 

control solvent. Aliquots of stained cultures were mounted under cover slips on microscope 

slides and the images were acquired using an Olympus UPlanApo N 100×/1.40 Oil 

∞/0.17/FN26.5 objective and CellR imaging software attached to an Olympus IX81 inverted 

fluorescent microscope. Excitation was at 360 nm and 572 nm for the blue and red staining 

respectively employing a Xenon-Arc burner (Olympus Biosystems GMBH) as light source. The 

emitted light was collected using a UBG triple-bandpass emission filter cube (Chroma) for 

capture by an F-view-II cooled CCD camera (Soft Imaging systems). 

4.3.8. Vesicle interaction studies  

Dynamic light scattering measurements (photon correlation spectroscopy) were done with the 

aim of investigating the effect of peptides and/or CaCl2 on the size of lipid vesicles. The required 

combinations and molar lipid ratios at final concentrations between 5 and 20 mM (POPG:POPE, 

3:1) were produced from stock solutions of POPG (1-palmitoyl-2-oleoylphosphatidyl-sn-

glycerol) and POPE (1-palmitoyl-2-oleoylphosphatidyl-ethanolamine), with chloroform as 

solvent. The lipid films were subsequently dried under nitrogen (using vacuum drier alpha 2-4 

LD plus Christ®) and suspended in the appropriate buffer by vortexing. The large unilamellar 

vesicles (LUVs) (prepared in buffer containing 10 mM Tris, 154 mM NaCl at pH 7.4) were 

produced by 35 times extrusion through two stacked 100 nm filters in a mini extruder (Avestin, 

Switzerland). The existence of a main population of vesicles (more than 95% mass content) with 

a mean diameter of 100 nm (polydispersity index 0.3) in 1 mM and 10 µM of LUVs was 

confirmed by dynamic light scattering measurements (N4 Plus, Coulter Corp.) prior to assays 

36,51,52.  
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Analytical stock solutions of peptides (1.00 mM) were prepared in appropriate solvent (40% v/v 

ethanol for Trc B and analytical quality water for other peptides) and diluted to desired 

concentrations using either buffer 1 (10 mM Tris, 154 mM NaCl, pH 7.4) or buffer 2 (10 mM 

Tris, 154 mM NaCl, 7.5 mM CaCl2, pH 7.4). Samples for light scattering experiments were 

prepared by mixing of appropriate amounts of the vesicle suspensions (stock concentration 10 

mM) and peptide solutions (stock concentration 250 µM). The least final peptide concentration 

in the 500 µL samples was 6.25 µM for Trc B, 4 µM for GS and 5 µM for c-WFW. The molar 

lipid to peptide ratio varied depending upon the peptide and lipid system. The samples were 

incubated for 10 mins prior to reading. A volume of 40 µL of each sample was transferred to a 

sterile cuvette for reading (for each sample 5 readings were recorded per measurement and 5 

measurements per sample; each sample prepared in duplicate). The autocorrelation functions 

were measured, averaged and analyzed using a Zeta Sizer. The normalized unweighted particle 

size distributions, which correlate with the respective scattering intensity, were determined.  

4.3.9. Fluorescence spectroscopy 

The LUVs with or without the above peptide preparations were also assessed 

spectrofluorimetrically by determining the tryptophan fluorescence spectra. Measurements were 

made on a Perkin-Elker LS 50B spectrofluorometer at 23 oC. Upon excitation at 280 nm, 

recording of the emission spectra was done between 300-500 nm. The emission was detected 

using a 290 nm red edge filter. 

4.3.10. Light scattering assays 

Light scattering of Trc B and GS in solution with or without divalent cation salts was measured 

to determine the size of peptide aggregates. 1 mM peptide stock was prepared with 50% 

acetonitrile for Trc B and water for GS, allowed to stand for 10 minutes in a warm water bath 

followed by sonication to obtain a clear solution. The solution was then diluted to 50 µM either 

with 7.5 mM CaCl2, 7.5 mM MgCl2 or analytical grade water in one or two steps. For the one 

step dilution, 5 µL of peptide stock was added to 95 µL of solvent, while in the 2 step dilution, 5 

µL of peptide stock was added to 20 µL of solvent and then a further 75 µL of solvent was 

added. 40 µL of each sample was then read as described above for LUVs (5 readings made per 

measurement and 3 measurements per sample, 2 samples for each preparation). 
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4.4. Results and Discussion 

Results from Chapter 3 agreed with previous studies by Spathelf and Rautenbach 4 and showed 

the potency of the major tyrocidines (Trcs) from the natural tyrothricin complex (tyrocidines A, 

B, C, tryptocidine C and phenycidine A) against the leucocin A sensitive and resistant strains of 

L. monocytogenes B73 and B73-MR1 respectively. In addition, the synthetic Trc A analogue 

with a trimethylated Orn revealed activity comparable to the natural analogues. The IC50 values 

ranged from 5-18 µM at high bacterial counts of ~7 × 108 CFU/mL. In view of the potential use 

of Trcs as bio-preservatives against Listeria which is highly salt tolerant and due to the reported 

influence of salts on antimicrobial activity of AMPs, in this study we evaluated the influence of 

biological salts on the activity and biophysical properties of the most active Trc A (Trc A, sTrc 

AOMe3, and Phc A) and Trc C (Trc B, Trc C, Tpc C) analogues as well as the Trc mixture 

isolated from commercially available tyrothricin complex. Gramicidin S (GS) was employed as a 

reference peptide. The most active RW-peptides c-WFW and c-WWW were also evaluated for 

comparison. 

4.4.1. Influence of metal cations on antilisterial activity of the cyclic peptides 

Testing the activity of the Trcs and RW-peptides at fixed concentrations of 10 µM and 40 µM 

respectively we observed that their growth and metabolism inhibitory activities against L. 

monocytogenes B73 were generally salt tolerant when the peptides were pre-incubated in 75 mM 

and 150 mM of chloride salts. Notably, the divalent cation salts (CaCl2 and MgCl2) at final 

concentration of 7.5 mM in the assay led to significantly increased growth inhibitory activity 

(defined as decrease in optical scattering of light at 595 nm) of Trc B and Trc C, (Fig. 4.1A). The 

sequence of growth inhibitory activity of Trc B and Trc C in the presence of chloride salt at 7.5 

mM final concentration was Ca2+~Mg2+ > K+~Na+ in terms of metal cation. The activity, as 

determined at 595 nm, of 40 µM, c-WWW [cyclo(RRRWWW)] was generally salt tolerant (Fig. 

4.1B) while c-WFW [cyclo(RRRWFW)] was sensitive to Na+, K+ and Ca2+ chloride salts 

(decrease in growth inhibitory activity) while Mg2+ led to an increase in activity (Fig. 4.1B). This 

could indicate that the aromatic residue Phe plays a unique role in modulating the influence of 

salts on antilisterial growth inhibition. The activity trend in terms of influence of solvent on c-

WFW was: Mg2+ > K+ ~ Na+ > Ca2+.  
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Figure 4.1  Comparison of the growth inhibitory activity of A. 10 µM tyrocidine B, tyrocidine 
C and gramicidin S and  B. 40 µM c-WWW and c-WFW towards Listeria 

monocytogenes B73 in the presence of 7.5 mM chloride salts as measured by 
optical scattering of light at 595 nm. Comparison of anti-metabolic activity by C. 
10 µM tyrocidine B, tyrocidine C and gramicidin S and D. 40 µM c-WWW and c-
WFW towards Listeria monocytogenes B73 in the presence of 7.5 mM chloride 
salts as measured by decrease in resazurin reduction. Statistical analyses were 
done with two-way ANOVA using Bonferroni’s post test. 

The analysis of growth using optical methods is error prone if cells tend to clump or if biofilms 

form, so we reassessed the listerial growth and survival using the CellTiter-BlueTM assay which 

indicated metabolic activity. Antilisterial activity of the same preparations of Trcs in terms of the 

metabolism inhibitory activity as defined by decreased conversion of resazurin (blue) in the 

CellTiter-BlueTM reagent to resofurin (pink) by cells gave a very different result in that this 

sensitive method rather indicated that the Trcs were highly salt tolerant (Fig. 4.1C). The 
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influence of the cations also showed a different trend, namely Ca2+ >> K+~Na+ > Mg2+. Thus, 

pre-incubation in MgCl2 resulted in lower activity than expected while CaCl2 significantly 

improved the metabolism inhibitory activity of the Trcs (Fig. 4.1C). Although we observed 

precipitation of components of the media and cell clumping at 15 mM final salt concentration, 

the high anti-metabolic activity by the Trcs in CaCl2 solution was maintained at this 

concentration (results not shown). A significant increase in anti-metabolic activity in the 

presence of CaCl2 above that in the control and MgCl2 was also observed for GS, but this 

activity was not statistically different from that in the presence of Na+ and K+ (Fig. 4.1C).  

In terms of the anti-metabolic activity, CaCl2 was the only salt to significantly affect the activity 

of the RW-peptides. However, it led to a decrease in the activity of both c-WFW and c-WWW 

(Fig. 4.1D) which demonstrates that the calcium induced increase in anti-metabolic activity is 

unique to the peptides with the pentapeptide moiety VOKLfP (Trcs and GS). 

Spathelf 35 also found, after testing preparations of Trcs over a range of CaCl2 concentrations, 

that the increase in the antilisterial activity of Trcs provoked by calcium was optimal at 7.5 mM 

final concentration which is significantly high for in vivo systems. It is possible that this high 

calcium tolerance is related to the fact that the Trc producer Bacillus aneurinolyticus, may have 

evolved in soil where calcium content is 1-200 g/kg 53. Moreover, Welshimer 54 showed the 

survival of L. monocytogenes in soil for long periods. Therefore, Ca2+ might specifically 

modulate the antilisterial activity of Trcs. Inhibition of bacterial respiration (O2 consumption) 

with an associated decrease in the redox status of the bacterial cells by Trcs was shown in early 

research by Dubos et al. 1. Dubos in another study proposed that Trcs caused cell death through 

the inactivation of bacterial glucose dehydrogenase 55. Therefore, it is possible that Ca2+ boosts 

the Trc anti-metabolic mode of action (MOA), contrary to Mg2+ which either antagonises Trc 

activity or enhances another MOA. 

Over the 16 hour assay, the presence of CaCl2 led to significantly higher inhibition of cell 

respiration by all the Trcs including the analogues Phc A and sTrc AOMe3 compared to MgCl2 

and water (Fig. 4.2). However, Tpc C was not influenced at 15 µM, which may indicate that a 

small aromatic residue (Phe or Tyr) in position 7 is crucial for the calcium dependent increase in 

activity. This residue was previously shown to be specifically relevant to the MOA for 

antilisterial activity of Trcs in Chapter 3. Although calcium induced an opposite effect on the 

anti-metabolic activity of both RW-peptides, the relevance of the small aromatic residue Phe was 
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observed from the fact that c-WFW was more susceptible to the influence of CaCl2 than c-

WWW (Fig. 4.1B and 4.2). 
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Figure 4.2  Comparison of the influence of 7.5 mM CaCl2 or MgCl2 on antilisterial activity by 

12.5 µg/mL of the tyrocidine complex, 10 µM of the different tyrocidine analogues 

and GS, and 40 µM of c-WWW and c-WFW. The percentage inhibition was 
determined after 17 hours using the resazurin reduction (CellTiter-BlueTM assay) to 
determine changes in redox potential and thus antilisterial activity. Means of 3-12 
measurements in the presence of peptide ± SEM are depicted.  Statistical analysis 
was done with using Newman-Keuls multiple comparison test. 

The influence of Ca2+ on activity of the lytic peptide GS and Trc B toward Listeria metabolism 

was monitored in kinetic assays over 30 minutes (Fig 4.3A and 4.3B). We observed that from 0-

2 minutes, after peptide addition the resazurin fluorescence showed a sharp increase in the 

presence of CaCl2 indicating increased metabolic activity (Fig. 4.3A and 4.3B). This increase 

was also found for Trc B alone, but not GS alone. The increase indicated that the peptides may 

have triggered a metabolic response, possibly an osmotic stress response. However, a sharp 

decrease in resazurin fluorescence after 2 minutes was observed for Trc B in the presence of 

Ca2+, with the decrease leveling off between 88% and 67% in the presence and absence of CaCl2 

respectively indicating cell death or decrease in metabolism. For GS, there was an initial 

decrease after 2 minutes and a slow increase in metabolic activity close to the basal level. These 
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results indicated that there is a difference in the action of the lytic GS and Trc B on the cells if 

the metabolic reponse in considered. 
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Figure 4.3  A. Kinetics of the influence of 4 µM Trc B and 3 µM GS in the presence of 7.5 
mM CaCl2 on the formation of resazurin as an indicator of energy metabolism 
over 30 minutes B. Comparison of the influence of 7.5 mM CaCl2 on the 
fluorescence of resazurin after 2 minutes following treatment of cultures with 
varying concentrations (representing <IC50 and IC50) of Trc B and GS. Statistical 

analyses (Student t-test) showed that the influence of CaCl2 on 4 µM Trc B and 3 

µM GS was significant (*P<0.05; **P<0.01) (n=4). 

4.4.2. Influence of metal cations on membrane activity of the cyclic peptides 

Given that the Trcs unlike the RW-peptides are known to have membrane permeabilising 

activity, it was necessary to ascertain the influence of the salts on this aspect of Trc antilisterial 

activity.  

The membrane activity (permeability increase/lytic activity) of the Trc complex and GS as 

determined by propidium iodide leakage into the cells was not influenced by NaCl and KCl 

while, following pre-incubation in either MgCl2 and CaCl2 there was a decrease in the membrane 

activity of all peptides (Fig. 4.4A). The decrease in membrane activity was the result of slower 

permeabilisation in the presence of MgCl2 and CaCl2 (Fig. 4.4C). The permeabilisation rate by 

Trc B and Trc C was maintained in the presence of KCl and NaCl (Fig. 4.4B). Similar 

observations were made for the effect of alkaline earth metal chloride salts on the membrane 

permeabilisation activity of the purified Trc analogues (Fig. 4.5). The salts generally decreased 

the activity of the peptides including GS. However, the effect of CaCl2 and MgCl2 in comparison 

Stellenbosch University http://scholar.sun.ac.za



4.15 

 

to each other varied with peptide identity. Magnesium induced less lytic activity in GS and Trc C 

as opposed to a higher lytic activity in the Trc A analogues sTrc AOMe3 and Phc A as well as 

Tpc C (Fig. 4.5).  The two salts had similar effects on Trc A and Trc B (Fig. 4.5). 

As was expected the two RW-peptides were non-lytic at 40 µM to the bacterial cells following 

membrane permeabilisation/lysis assays using propidium iodide (results not shown). Previous 

experiments for membrane permeability have shown that the most active RW-peptides (c-WFW 

and c-WWW) do not rely primarily on membrane lysis for activity 36,51,56. Therefore, the primary 

MOA of the RW-peptides is different from that of the Trcs. Therefore, modulation of the activity 

of RW-peptide Ca2+ and Trcs is opposite, indicating differences in mode of action and possibly 

targets. Phe in the RW peptides sequence favoured a greater negative influence by salts and 

particularly CaCl2 on activity, whereas the effect of CaCl2 is lost in Tpc C containing Trp at 

position 7.  

The presence of CaCl2 results in both an apparent loss of membrane activity and increased anti-

metabolic activity translating into gain in growth inhibitory activity of the Trcs. This indicates a 

change in the Trc MOA from a principally membranolytic MOA to one that influences the cell 

viability (ie energy metabolism) without overt membrane damage. In contrast, MgCl2 induced 

apparent loss of membrane and anti-metabolic activities, though it gained apparent growth 

inhibitory activity as assessed at 595 nm. This could be due to overall loss of bactericidal activity 

or change in MOA/target that does not involve either membrane activity or the energy 

metabolism or alternatively results in the formation of biofilms which is not measured by the 

optical determination. The latter was indicated by flaky cell clumping in cultures. MgCl2 was 

previously shown to reduce the lytic activity of another cyclic peptide of similar size containing 

β-turns, iturin A where at 1 mM MgCl2 had a protective effect on lysis of M. luteus protoplasts 

and at 20 mM completely prevented lysis by up to 200 µg/mL iturin A 57.  

Calcium has been implicated to play a crucial role in drawing membrane bilayers closer together 

by partial dehydration of the membrane surface and cross-linking of opposing molecules of 

acidic phospholipids, a phenomenon not likely for magnesium 58. This is attributed to the non-

uniform configuration of Ca with a coordination number of 7 or 8 contrary to the regular 

octahedral 6-coordination of Mg 58. Calcium is also more likely to lose part of its hydration shell, 

and to displace water upon complex formation 58. These differences on the specific membrane 

interaction by Ca and Mg could account for the differences in the mode of modulation of Trc 

activity by the two divalent metal ions.  

Stellenbosch University http://scholar.sun.ac.za



4.16 

 

 

NaCl KCl MgCl2 CaCl2 Control (H2O)
0

2

4

6

8

10
GS
 No peptide

***

$$ $

*** P < 0.001 ito CaCl2 or  MgCl2; n ≥ 48

$ P < 0.05; $$$ P < 0.001 ito CaCl2; n ≥ 48

Trc mixture

***
***

$$$

A

***
***

***

$$$

Peptide solvent modifier

A
v

e
ra

g
e

 p
ro

p
id

iu
m

 i
o

d
id

e
fl

u
o

re
s

c
e

n
s

e
 o

v
e

r 
3

0
 m

in
u

te
s

  

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3

4

5

6

7

8

9

10

11

TrcC + KCl

TrcC + NaCl

TrcC + H2O

TrcB  + KCl

TrcB + NaCl

TrcB + H2O

Cells

time (minutes)

P
ro

p
id

iu
m

 i
o

d
id

e
 f

lu
o

re
s

c
e

n
c

e
 (

A
U

)

B

 

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

2

4

6

8

10

TrcC + H2O

TrcB + H2O

Cells

TrcB + CaCl2

TrcB + MgCl2

TrcC + CaCl2

TrcC + MgCl2

C

time (minutes)

P
ro

p
id

iu
m

 i
o

d
id

e
 f

lu
o

re
s

c
e

n
c

e
 (

A
U

)

 
Figure 4.4  A. Comparison of the influence of chloride salts on listerial membrane 

permeabilisation by 12.5 µg/mL (~10 µM) Trc mixture and 10 µM GS using 
propidium iodide fluorescence over 30 minutes. Similar results were obtained for 
Trc B and Trc C. Statistical analyses were done with Two-way Anova using 
Bonferroni’s post test (n ≥ 48 determinations). B. The kinetics of membrane 

permeabilisation by  10 µM mM Trc B or Trc C in the presence of 7.5 µM KCl or 

NaCl. C. The kinetics of membrane permeabilisation by  10 µM Trc B or Trc C in 
the presence of 7.5 mM CaCl2 or MgCl2. The data points are the means of 
triplicate measurements. 
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Figure 4.5  Comparison of the listerial membrane permeabilisation by 10 µM of the purified 
Trcs in the presence of 7.5 mM chloride salt of alkali earth metals using 
propidium iodide fluorescence over 30 minutes. Means of ≥16 measurements in 
the presence of peptide ± SEM are depicted. Statistical analysis was done with 
using Newman-Keuls multiple comparison test. 

4.4.3. Antilisterial activity of tyrocidines in combination with EDTA and divalent cations 

Addition of various concentrations of Na4-EDTA to the tyrocidine complex (Trc mix) and GS in 

the presence or absence of either 7.5 mM MgCl2 or CaCl2 showed that EDTA activity was 

significant from 5 mM (Fig. 4.6A). EDTA restored the anti-metabolic activity of the Trcs in the 

presence of MgCl2, albeit much higher concentrations of EDTA than for the Trcs in water were 

needed, indicating that MgCl2 may have an antagonistic effect. In contrast, EDTA caused a 

significant loss (P < 0.001) of the anti-metabolic activity of the tyrocidines pre-incubated in 

CaCl2 (Fig. 4.6B). The Trc activity in the presence of calcium was only re-established at 10 mM 

EDTA (Fig. 4.6A), however, EDTA is also antimicrobial at such a high concentration. These 

results indicate that Ca2+ and the Trcs may have synergistic antimicrobial activity, while Mg2+ 

and Trcs may be antagonistic with L. monocytogenes as target cell. EDTA addition also 

significantly (P < 0.001) increased the anti-metabolic activity of the tyrocidine complex in water 

(Fig. 4.6B) probably due to a synergistic activity between EDTA and the Trcs (refer Table 4.1 

and the discussion below). EDTA could chelate Mg2+ and Ca2+ from the cell walls and weaken it 

for tyrocidine action. However, when EDTA was added to the culture medium it had minimal 

effect on the Trc activity and there was a significant difference (P < 0.001) from the activity of 

the Trcs dissolved in water modified with EDTA. It is therefore, more plausible that the EDTA is 
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chelating residual divalent cations such as Mg2+ that may be antagonistic towards the Trc action. 

Moreover, Na4EDTA reversed the effect of MgCl2 or CaCl2 on membrane permeabilisation and 

restored the lytic effect of all Trc analogues (results not shown) and Trc mixture (Fig. 4.6B). 

EDTA has also been shown to improve the lytic activity of iturin A toward M. luteus protoplasts 

57. 

There was no significant effect of EDTA on the activity of GS in the presence or absence of the 

different cations (results not shown). Sodium at concentrations correlating to the concentration of 

Na+ of the added EDTA also did not have any effect on the tyrocidine activity in the presence of 

the two earth metal chloride salts (results not shown).  
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Figure 4.6  A. The antilisterial activity of 12.5 µg/mL (~10 µM) tyrocidine mixture in the 
presence of Na4EDTA alone or Na4EDTA and 7.5 mM MgCl2 or CaCl2 as 
measured by resazurin reduction. B. Comparison of the membrane and antilisterial 
activity of 12.5 µg/mL (~10 µM) tyrocidine mixture in the presence of 5 mM 
Na4EDTA or Na4EDTA and 7.5 mM MgCl2 or CaCl2. The antilisterial activity 
was measured by resazurin reduction (n ≥ 10 determinations) and listerial 
membrane permeabilisation by propidium iodide fluorescence (n = 48 
measurements). Statistical analyses were done with two-way ANOVA using 
Bonferroni’s post test and Student t-test. 

Due to the observed significant enhancement of the anti-metabolic activity of Trcs in water by 

EDTA we decided to test the hypothesis of a synergistic interaction between EDTA and Trcs 

towards L. monocytogenes B73 as well as the nature of the interaction in the presence of the 

divalent metal cation chloride salts. To assess the influence of EDTA on Trc activity in the 

presence and absence of divalent metal cations in vitro antilisterial activities of EDTA: Trc 
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mixture combinations were determined. GS was evaluated as reference peptide. Following 

determination of the IC50 values of the combinations with dose-response assays as described in 

Chapter 3, FIC values were calculated and used to plot isobolograms (plots not shown) as well as 

determine the FIC indices (Table 4.1).  

Table 4.1 Summary of the evaluation of the mode of in vitro interaction between EDTA and 
Trc complex or GS in different combinations in the presence and absence of the 
divalent metal chloride salts CaCl2 and MgCl2. FICs from activity in terms of anti-
metabolism activity and calculated FIC indices were obtained from two biological 
repeats of experiments done in triplicate.  
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10:0.03 0.23 ± 0.01 1.20 ± 0.12 1.40 ± 0.14 0.33 ± 0.08 0.43 ± 0.10 0.76 ± 0.18 

5:0.04 0.08 ± 0.02 1.30 ± 0.22 1.30 ± 0.24 0.14 ± 0.03 0.44 ± 0.02 0.58 ± 0.05 

CaCl2 
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10:0.03 0.16 ± 0.05 1.40 ± 0.31 1.60 ± 0.37 0.24 ± 0.02 1.06 ± 0.14 1.30 ± 0.16 

5:0.04 0.05 ± 0.00 1.38 ± 0.10 1.40 ± 0.10 0.08 ± 0.02 1.09 ± 0.23 1.20 ± 0.25 

MgCl2 
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5:0.04 0.05 ± 0.00 1.51 ± 0.55 1.60 ± 0.55 0.11 ± 0.00 0.73 ± 0.02 0.84 ± 0.02 

The results from the shape of the isobolograms correlated well with the calculated FIC indices. 

The results confirmed slight synergy (concave shaped graph below the line of additivity) for 

growth inhibitory and anti-metabolic activity between EDTA and the Trc complex in water and 

MgCl2 as indicated by the FIC indices (1 > FICI > 0.5). The anti-metabolic activity in the 

presence of CaCl2 results indicated a non-interactive or slight/moderate antagonism (convex 

shaped graph above the line of additivity) according to the FIC indices (1< FICI < 4) between 

EDTA and the Trc complex in CaCl2. The results showed that EDTA was either non-interactive 

or slightly antagonistic with GS in all solvents. 
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4.4.4. Fluorescent microscopy 

The increased Trc antilisterial activity caused by pre-incubation with CaCl2 may be due to either 

complexation between calcium (refer to discussion under Section 4.4.5) and the Trcs which 

could lead to a more active conformation, formation of active complexes and/or antagonism of 

the Trc hydrogen-bonded structure(s) as indicated by circular dichroism analyses done by our 

group (personal communication, Dr. B. Battacharya, refer to Section 4.4.5). Another possible 

reason could be the increase in available calcium for integration in the bacterial cell wall, which 

may act as docking sites for the Trcs since most of the calcium content of L. monocytogenes is 

known to be in its cell wall 59. In order to evaluate the first hypothesis for the mode of 

modulation of Trc antilisterial activity by CaCl2, Trc B was pre-incubated in 75 mM CaCl2 (10× 

concentrate), allowing for pre-complexation before adding to L. monocytogenes B73 cultures in 

standard BHI growth medium. To test the second hypothesis, L. monocytogenes was cultured in 

BHI growth medium supplemented with 7.5 mM CaCl2 allowing for prior calcium-bacteria 

interaction before evaluation of Trc activity.  

Live-cell fluorescent microscopy showed that pre-incubation of 5 µM Trc B in water led to 

membrane lysis/leakage of L. monocytogenes as evidenced by the red fluorescence signal of 

propidium iodide (Fig. 4.7C), in contrast to the negligible membrane permeability observed for 

the cells previously grown in 7.5 mM CaCl2-enriched BHI medium and/or treated with 5 µM Trc 

B pre-incubated in 7.5 mM CaCl2 and MgCl2 (Fig. 4.7D, E, F respectively). These results were 

in accordance with our previous results (refer to Figs. 4.4, 4.5 and 4.6B) and therefore, 

apparently pre-incubation of Trc B with CaCl2 improves antilisterial activity by converting the 

mode of action from a lytic to a predominantly non-lytic mode of action. Lytic activity for 

antimicrobial peptides, such as the Trcs, involves self-assembly into active complexes probably 

within the membrane and upon reaching a certain significant peptide concentration this results in 

disruption of the membrane integrity 60. Therefore, putative tyrocidine-Ca2+ complexes could 

characterize another active form of the peptide, unlike putative complexes with Mg2+ which do 

not result in similar improved anti-metabolic activity. Ca2+ plays a significant role in the 

virulence of L. monocytogenes and its switch from a saprophyte to a predominantly anaerobic 

intracellular pathogen 61. It is hence possible that the observed Ca2+-induced non-lytic MOA may 

result from both higher Ca2+ modulating the premature L. monocytogenes conversion from a 

saprophyte to an intracellular anaerobic pathogen and Trcs acting on sensitive non-membrane 

target(s) in the prematurely transforming pathogen.  
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4.4.5. Interaction of tyrocidines with metal cations 

The specific influence of selected metal cations on the antilisterial activity of the Trcs may be 

due to specific interaction of the tyrocidines with the metal ions which may influence their 

secondary structure and self-assembly/aggregation state. Alternatively, possible tight binding of 

peptide to a metal cation may yield a complex with larger positive charge and this could improve 

the binding interaction to negative cellular target(s). It seems that competition of the metal 

cations for negative target molecules in bacterial membrane/cell wall which will thereby 

compromise the binding of the peptides to the membrane/cell wall does not affect the Trc 

activity. Our results therefore, correlate with previous studies which demonstrated that 

complexation with Ca2+ is a determinant of Trc antilisterial activity and difference in sensitivity 

to CaCl2 by the different Trc analogues could be due to distinct peptide-calcium interactions 

and/or aggregation tendencies which in turn are related to the structural differences among the 

Trcs 35. 

Using photon correlation spectroscopy (PCS) we investigated the influence of 7.5 mM divalent 

metal cation chloride salts on the particle size of Trc B at 50 µM in aqueous solutions following 

either a one- or two-step dilution from 1 mM stock in 50% acetonitrile/water (which simulates 

the peptide preparation steps during the biological assays). The results showed that the one-step 

dilution did not yield any difference in the size of the Trc B particles (Fig. 4.8A) in all solvents 

(CaCl2, MgCl2 and water). However, the two-step dilution gave particles in the following order 

in terms of solvent: MgCl2 < CaCl2 < water (Fig. 4.8B). The particle sizes of 50 µM Trc B in 

diameter in water, CaCl2, and MgCl2 were 59 nm; 51 nm and 38 nm respectively. The two step 

dilution allows more time for the solution for dissociation of the aggregates due to new 

interaction with the divalent cation interactions. Calcium and magnesium resulted in reduction of 

particle size of Trc B in aqueous solution following the two-step dilution indicating that these 

salts may act as chaotropic agents or lead to smaller defined oligomers/aggregates.  
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Figure 4.8  Effect of 7.5 mM calcium and magnesium chloride salts on the size of particles in 
50 µM Trc B diluted from 1 mM stock in 50% acetonitrile in either A. one step or 
B. two steps. The lines shown represent the average point to point line fit for 
triplicate measurements per solvent condition with 5 readings made per 
measurement and duplicate samples for each solvent condition. 

We also investigated the influence of CaCl2 on the intrinsic fluorescence signal of tryptophan in 

Trc B (at 6.25 µM) both in aqueous solution (buffer containing 10 mM Tris, 154 mM NaCl at pH 

7.4) and in 50 µM of vesicles made of POPE and POPG (1:3 molar ratio respectively) 

representative of Gram-positive bacteria model membrane. The maximum wavelength (λ max) of 

the fluorescence signal in buffer was 347.9 nm whereas in the liposome environment it decreased 

to 327.3 nm (Fig. 4.9), thus a significant red shift of 21 nm. The shift in fluorescence maxima 

indicates that the conformation of Trc B in aqueous solution, with particular emphasis on the 

Trp4 residue, differs from that in the liposome vesicles. Apart from the shift in λ max, there was 

also quenching of the Trp fluorescence in the liposome environment from 33.84 to 25.06 (Fig. 

4.9). Upon addition of CaCl2, we still observed a red shift of Trp fluorescence maxima between 

buffer and liposome environments by a magnitude of 23 nm, however, the fluorescence signal 

was comparable within both environments being 32.3 in buffer and 31.5 in liposome (Fig. 4.9). 

Therefore, calcium does not change the overall conformation of Trc B in terms of its Trp residue, 

but affects the binding of Trp with the membrane, changing its exposure within the membrane 

environment as indicated by the increased fluorescence intensity. Trp has been reported to be 

critical for membranolytic activity of AMPs 62–64 hence; changing the membrane interaction of 

the unique Trp residue in Trc B could explain how calcium decreased the membrane 

permeabilising activity of the Trcs as observed in Section 4.4.2. 
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Figure 4.9 Effect of 7.5 mM calcium chloride salt on the Trp fluorescence spectra of 6.25 
µM Trc B dissolved in either aqueous buffer with or without the chloride salt 
added as well as in the presence of 50 µM POPG:POPE (3:1) large unilamellar 
liposomes. The lines shown represent the average point to point line fit of three 
scans for each condition 

A significant loss of ordered hydrogen bonded structures of Trcs was observed in the presence of 

the alkali and earth metal chloride salts in circular dichroism spectroscopy studies by Dr B. 

Bhattacharya from our group (personal communication). Spectra in chloride salts were compared 

and significant decreases in ellipticity over 200-220 nm (Fig. 4.10) and the  

θ206/θ217 ratio (structural change parameter) were observed after pre-incubation of the Trcs with 

either of the alkali or earth metal chloride salts. The intensity loss at both 206 nm and 217 nm 

minima for Trc B according to the type of cation was Mg2+ ≥ Ca2+ > K+ > Na+. The chloride salts 

had very little influence on the GS structure according to the CD spectra (personal 

communication Dr B. Bhattacharya). It was generally found that Ca2+ caused the largest changes 

in the θ206/θ217 ratio decreasing it from 1.18 to 0.92, for Trc B indicating higher sensitivity of Trc 

hydrogen bonded structure to Ca2+. These observations correlated with our PCS results that 

indicated the decrease in particle size when Trc B was diluted with either MgCl2 or CaCl2 (refer 

to Fig 4.8). However, the change of Trc structure did not compare with the calcium induced 

structural changes observed for daptomycin, a calcium dependent cyclic lipopeptide 65. 

Previous studies on interaction of Trcs with metal cations by Spathelf 35 demonstrated 

differences in complexation between different Trcs and different metal cations. The influence of 

the metal cation chloride salts at 1 mM on the ESMS signal of singly charged free ions ([M+H]+) 

Stellenbosch University http://scholar.sun.ac.za



4.25 

 

of the Trcs A, B, C and their Lys-containing analogues at ~10 µM was evaluated. Spathelf 35 

deduced from these studies that the Trc-divalent ions adducts were more stable under ESMS 

conditions because the Trc probably have a higher affinity for the divalent metal cation chloride 

salts.  
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Figure 4.10  Effect of 100 mM chloride salt on the ellipticity of 0.19 µM Trc B dissolved in 
12.5% v/v acetonitrile in water without chloride salt added at 217 nm and 206 nm. 
The % ellipticity (expected ellipticity) was calculated in terms of the ellipticity of 
the Trc B preparation without the added salt. The bars shown represent the 
average %ellipticity following point to point line fit of three scans for each 
solvent condition. Collection of scans was at 5000 data points per nm (Spectral 
data courtesy Dr. B. Bhattacharya) 

An explanation of the calcium induced increase in antilisterial activity could be that a putative 

overall increase in positive charge of the Trc-calcium complex will not only increase the 

interaction with negative cell walls and membranes of target bacteria, but also result in 

electrostatic repulsion that would prevent unwanted formation of aggregates by self-association 

of Trcs (salting-in or chaotropic effect). Based on these observations it is proposed that any 

number of the seven carbonyl groups and one hydroxyl group in the variable pentapeptide 

moiety (X-D-X-Asn-Gln-Tyr, X=Phe or Trp) of the Trcs may form an electronegative cavity for 

metal cation interaction. Therefore, metal cations, especially Ca2+ and Mg2+, may have a major 

influence on the Trc structure in aqueous solution, either acting as chaotropic agents or through 

specific interaction with the peptide in an electronegative cavity leading to disruption of 

secondary H-bonded structures. Our fluorescent studies (Fig. 4.9) showed that Ca2+ also affects 

the interaction of Trc B with model Gram-positive bacterial membranes. We then investigated 

the membrane interaction of the Trcs further using liposomes that model bacterial membranes. 
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4.4.6. Vesicle interaction studies  

Interaction of selected peptides with model membrane systems was studied using dynamic light 

scattering measurements (photon correlation spectroscopy) with the aim of evaluating the effect 

of peptides and/or CaCl2 on the size of lipid vesicles. The peptides studied were Trc B, GS and 

c-WFW based on the results from the in vitro antibacterial assays. The model membrane system 

under investigation was a combination of POPG and POPE in molar ratio 3:1 representing the 

phosphatidylglycerol-rich membrane of L. monocytogenes B73 66. The results were quantified in 

terms of the concentration lipid to peptide concentration ratio (cl/cp). 

In the vesicle, the formation of larger particles up to several thousand nm in diameter was 

induced by Trc B at a lipid to peptide ratio of ≤5. At cl/cp = 2, 100 nm particles no longer existed 

(destruction) (results not shown). Particle size was restored at cl/cp = 8. Ca2+ enhanced the 

peptide effect and the particle size was only restored at lipid to peptide ratio (cl/cp) five times 

higher than when Ca2+ was absent. GS disturbed the POPG:POPE 3:1 large unilamellar vesicle 

(LUV) integrity at cl/cp = 12.5. In the presence of Ca2+, it was again at cl/cp = 12.5 that GS 

disturbed the LUV integrity although forming higher proportions of the larger particles. Thus 

Ca2+ also enhanced the effect of GS. In these type vesicles, Ca2+ had a greater effect on Trc B’s 

activity than on the activity of GS which correlates well with in vitro antilisterial activity results 

above. This could be due to the fact that GS has a higher charge than Trc B. At cl/cp ≤ 10, c-

WFW disturbed POPG:POPE 3:1 LUVs. In the presence of Ca2+, the effect of c-WFW was also 

enhanced. Therefore, the activity order in terms of the cl/cp required to disturb the LUV integrity 

was GS > c-WFW >> Trc B. This correlates well with the known high membrane lytic activity 

of GS 50 and the fact that membrane activity of c-WFW has been associated to lipid demixing 67–

69 which could cause packing defects allowing translocation of polar compounds into the 

cytoplasm 70. Therefore, in both lipid systems, Ca2+ enhanced the susceptibility of the particles to 

the effect of Trc B. The Gram + (POPG:POPE at 3:1 ratio) LUV resisted most the effect of Trc 

B (Table 4.2). The susceptibility of the POPG:POPE (3:1) liposomes to the activity of the 

peptides and also the effect of Ca2+ could be due to the fact that POPE has an unsubstituted 

quaternary ammonium group, which is protonated at neutral pH which has a small head group 

and is able to participate in hydrogen bonding interactions. The negatively charged POPG:POPE 

(3:1) liposomes will bind strongly to Ca2+ leading to reduction in the electrostatic charge of the 

head groups which will cause condensation of the bilayer which accounts for the observed 

increase in liposome size in the presence of CaCl2 
58. 
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Table 4.2  Summary of the influence of CaCl2 on the activity of Trc B, GS and c-WFW in 
terms of the ratio of lipid concentration to peptide concentration (cl/cp) required 
to cause change in size of 100 nm POPG:POPE (3:1) large unilamellar vesicles in 

vitro. 

 cl/cp of vesicle disturbance 

Peptide 

POPG:POPE 

3:1 (Gram + 

model) 

POPG:POPE 3:1 

(Gram + model) 

+ Ca
2+

 

Trc B < 5 < 8 

GS < 12.5 < 12.5 

c-WFW < 10 < 50 

CaCl2 distinctly enhanced the susceptibility of the POPG:POPE (3:1) liposomes, but this effect 

was  peptide specific. This correlated with our in vitro studies that have shown that the different 

peptides respond differently to Ca2+. The activity of c-WFW towards the bilayers correlated with 

the good biological effect of c-WFW against bacteria (which is however not permeabilisation). 

4.5. Conclusions 

The antilisterial activity of the Trcs is tolerant to chloride salts of alkali (NaCl, KCl) and earth 

metals (MgCl2, CaCl2). However, Ca2+ might specifically modulate Trc activity as it was the 

only ion to cause an increase in overall activity while reducing their predominantly 

membranolytic action. This effect was specific to the Trcs as the antilisterial activity of other 

peptides tested (Tpc C, GS, c-WFW, and c-WWW) was either unaffected or decreased by the 

presence of CaCl2. The results again indicated the relevance of a small aromatic residue (Phe or 

Tyr) in position 7 for the calcium dependent increase in antilisterial activity. This correlated with 

previous results showing that antilisterial activity of the Trcs rely on a Tyr or Phe in the NQAr 

unit (Chapter 3).  

The influence of calcium could be partially due to a chaotropic effect or structural change as 

indicated by PSC and CD, respectively. Alternatively, it could be due to the calcium-induced 

change of conformation of Trcs in model Gram-positive bacteria membranes, as detected by 

fluorescence studies focussing on the Trp residues. D-Trp4 is probably directly involved in the 

membranolytic activity of the Trcs and calcium-induced change in the membrane interaction of 

this residue could account for observed decreased membranolytic activity of Trcs in the presence 

of Ca2+. However, the change in MOA of the Trcs could not be explained by their action on 
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model membrane in the presence of calcium. CaCl2 in fact enhanced susceptibility of model 

Gram-positive bacteria liposomes to Trc B, GS and c-WFW, leading to a change the liposome 

size either through aggregation or disintegration. As model membrane targets are static, while 

the bacteria not only have cell wall barrier that have to be crossed but also a host of other stress 

and growth responses that must be overcome by the peptide, this result is not unexpected. 

Moreover, we observed a slight synergism against L. monocytogenes between EDTA and the Trc 

mixture in water and MgCl2, but a non-interactive or slight/moderate antagonism between EDTA 

and the Trc mixture in CaCl2 was observed. The fact that Mg2+ and Ca2+ ions decreased the lytic 

activity of the Trcs and that EDTA, competing for the divalent ions, restored this Trc activity 

supports the hypothesis that Trcs probably interact with polar head groups of lipids in the cell 

membrane to exert their membranolytic effect 57, but may have alternative target/MOA when 

associated with Ca2+ and the membrane interaction is inhibited. 

In summary, the results indicated that the calcium influences the Trc solution/membrane bound 

structure, aggregation in solution, model membrane activity and MOA. Calcium complexation 

could change its cell membrane interaction, possibly targeting the Trc to the cell wall or allowing 

translocation over the cell membrane. Alternatively, an increased availability of Ca2+ released 

from the Trc-calcium complex could cause a premature L. monocytogenes transition from a 

saprophyte to intracellular anaerobic pathogen. The Trc-Ca2+ complexes may interact and inhibit 

key components that are essential to maintain redox potential and sustain metabolism, such as 

the membrane bound electron transport system or bacterial dehydrogenases, without leading to 

overt lysis of the target cell. The observed Ca-induced non-lytic mode of action may therefore, 

be the consequence of a combination of biophysical and biological effects. 
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Chapter 5   

Part II: Literature Review 

Small cyclic antimicrobial peptides as anti-malarial 

compounds 

5.1. Introduction 

The seclusion of intracellular pathogens from host humoral and cellular immune response lead to 

infectious diseases linked with high mortality and morbidity that plague humans such as listeriosis 

and malaria 1,2. The intracellular localisation of these pathogens also protects them from drugs, 

creating a reservoir for recurrence and re-infection and enhancing the development of drug resistant 

strains 3. 

From immemorial times malaria has caused incredible human suffering including annihilation of 

human settlements, decline of civilisations, loss of wars and loss of millions of lives irrespective of 

social status which all slowed humanity’s progress 4,5. Although recent reports indicate a decrease in 

the number of malaria related cases worldwide, there were still about 219 million cases in 2010 

leading to about 660 000 deaths 6. In 2011 an estimated 3.3 billion people were at risk to contract 

malaria worldwide 6. Most affected are immune deficient individuals like pregnant women (due to 

weakened ability to limit parasite replication during pregnancy) 6, children under five years of age 

and tourists (as immunity is established following repeated malaria infection) 6–8. The disease in 

humans is caused by parasites of the genus Plasmodium (P. falciparum, P. vivax, P. ovale, P. 

malariae and P. knowlesi) which are transmitted by over 30 anopheline species through infected 

female mosquito bites 6–8. Malaria is predominantly overwhelming in sub-Saharan Africa, where 

about 80% of cases and 90% of deaths occur due to the prevalence of P. falciparum which is the 

most deadly form of the parasite 6,9,10. Therefore malaria is still endemic especially in poor 

countries. Forty percent of the global total malaria deaths occurred in two African countries, the 

Democratic Republic of Congo and Nigeria 6. However, some countries like South Africa have 

about 90% of the population living in malaria-free regions  6 as a result of intervention policies and 

strategies some of which are detailed below. Nevertheless, P. falciparum is responsible for 99% of 

malaria cases in South Africa, the other 1% being due to infection with P. vivax  6. Other areas 
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affected by malaria include certain regions of South East Asia and South America 7. Malignant 

malaria caused by P. falciparum can manifest as anaemia, cerebral complications (from coma to 

convulsions), hypoglycaemia and glomerulonephritis 7,11,12. Malaria is a major public health problem 

mainly due to the development of wide-spread resistance by P. falciparum to all available 

antimalarial drugs 7,13–15.  

5.2. Plasmodium falciparum 

P. falciparum is a unicellular eukaryotic microbe and thus has similar cell and molecular biology as 

other eukaryotes though unique by its intracellular lifestyle 16. The protozoan parasite has both 

invertebrate (Anopheles mosquitoes) and vertebrate (human) hosts 12,17. The pathology of falciparum 

malaria is caused by a 48 hour dynamic asexual intra-erythrocytic life cycle involving many 

intermediate stages 12,18–20. P. falciparum, is different from the other human malaria species in that it 

is capable of unlimited replication in the human host achieving very high parasitemia levels, 

infecting >50% erythrocytes, of which most are immobilised by attachment to capillary walls, which 

generally correlate with clinical features and diagnosis 8,21. Four percent or higher parasitemia 

circulating is generally considered an indicator of a severe malarial threat in a low-transmission 

setting 22,23.  

5.2.1. Malaria pathogenesis 

The Plasmodium spp. sporozoites are transmitted via the saliva of infected female mosquitoes 

during a blood meal to the subcutaneous tissues of the human host 24. The sporozoites are then 

speedily transported to the liver where they invade hepatocytes and develop into tissue schizonts 

(exo-erythrocytic stage) 24 (Figure 5.1). The targeting of sporozoites to hepatocytes possibly 

involves interaction of the circumsporozoite protein (CSP) with heparin sulfate proteoglycans on the 

sporozoites and hepatocytes respectively 17. By day 6-10 the tissue schizonts go through schizogony 

(Figure 5.1), during which they replicate via mitosis and burst infected hepatocytes releasing tens of 

thousands of merozoites in the form of membrane-bound merosomes  into the blood stream 25,26. 

The development in the hepatocytes is asymptomatic 12. In falciparum malaria merozoite discharge 

from the liver is an incessant and asynchronous process 24. The intra-erythrocytic stage begins with 

invasion of red blood cells by merozoites, which occurs through localised disruption of the 

erythrocyte cytoskeleton induced by the merozoites 16. Several merozoite surface proteins have been 

implicated in this invasion with the most characterised being MSP-1 which is uniformly distributed 
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around the merozoites and binds to the host receptor protein band 3 27,28. Moreover apical organelles 

of the merozoite stage namely: rhoptries, dense granules and micronemes are implicated in 

facilitating erythrocyte invasion and formation of the parasitophorous vacuole derived from 

invagination of the host cell membrane and components of the parasite 16,29,30. In the erythrocytes 

the merozoites lose their rhoptries, micronemes and pellicular membranes and develop into  rings, 

immature trophozoites becoming mature trophozoites by ingesting erythrocyte cytoplasm 12,30. 

 

Figure 5.1  Life cycle of Plasmodium falciparum showing the detail in the human host of the 
different parasite stages (Picture courtesy of M Rautenbach and HC Hoppe).  

The trophozoites mature to blood schizonts which each replicate to 8-32 daughter merozoites 24,30. 

During the growth and replication of the intracellular parasite the host red blood cell is remodelled 

into a stiff cell with decreased deformability which tends to stick to a variety of cell types 21,29,31. 

These changes are fundamental in the clinical complications of P. falciparum malaria such as 

anaemia, lactic acidosis, coma and death 21,29,32. Periodic fever is observed clinically following lysis 

of infected erythrocytes to release the merozoites due mainly to the stimulation of cytokines 

interleukin-1 (IL-1) and tumour necrosis factor (TNF) 7. The released merozoites then invade new 

erythrocytes.  

Some of the merozoites do not undergo asexual replication upon invasion of erythrocytes, but 

mature to a sexual stage called gametocytes which could be ingested by a mosquito during a blood 
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meal. Fusion of male and female gametocytes leads to formation of a zygote. It is during this diploid 

stage that sexual recombination of genetic material such as the chromosomal genes responsible for 

most drug resistance occurs 24. While in the mosquito’s midgut the zygote develops into an oocyst, 

which in turn discharges sporozoites that travel to the mosquito salivary glands 24.  

5.2.2. Malaria related modifications of the red blood cell membrane  

Owing to the lack of an efficient fractionation procedure there is limited detailed knowledge 

available on the sub-cellular composition of the infected erythrocyte 33. For example no information 

is to our knowledge available on the lipid composition of the parasitophorous vacuolar membrane or 

the intraparasitic membranes as focus has been principally on the infected erythrocyte’s plasma 

membrane 33. However, it is known that the fatty acid of the infected erythrocyte plasma membrane 

(IEPM) is very similar to that of the parasite, but cholesterol is almost absent in the parasite 33. 

The membrane of the red blood cell or erythrocyte is composed of three layers: the carbohydrate-

rich glycocalyx on the exterior, the lipid bilayer containing many transmembrane proteins in 

addition to its lipid constituents and the membrane skeleton on the interior which is a structural 

network of proteins 34. The flexibility and deformability of the erythrocyte, properties determined by 

proteins of the membrane skeleton, are important to allow it to deform and pass through capillaries 

whose diameters are less than half (3 µm) that of the erythrocyte (7 µm) 34,35. The mammalian 

membrane mass is equally distributed between lipids and proteins 36 while the total lipid bilayer 

mass is equally distributed between cholesterol and phospholipids 37. The major phospholipids are 

phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylserine 

(PS), and minor phosphoinositide (PI) components 35,38,39. While cholesterol is uniformly distributed 

between the two membrane leaflets, there is an asymmetric distribution of the major phospholipids 

with the neutral PC and SM in the outer leaflet while most PE, all PS and PI are found in the inner 

leaflet 35,38,39. Therefore, most anionic phospholipids are found in the intracytoplasmic layer 40. In 

addition to their other physiological roles PS and phosphatidylinositol-4,5-bisphosphate (PIP2) 

interact with proteins in the membrane skeleton to control mechanical function of the membrane 

41,42. 

The changes that occur in the erythrocyte membrane during infection with Plasmodium spp. include 

increased fluidity 43–46 possibly due to decreased SM 47 and cholesterol 48 levels, modification of 

phospholipid fatty acid 30,47,49–53, transbilayer distribution 54 and enhanced rate of transbilayer 

motion 55–57, along with novel pores that boost membrane permeability 58–62. There is transfer of the 
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anionic PS from the inner leaflet to the outer leaflet of the bilayer which changes the membrane lipid 

asymmetry and the infected erythrocyte tends to be similarly anionic like bacterial cells 63–65. In 

addition, neoantigens are formed on the surface of the RBC through the alteration of resident 

integral erythrocyte membrane proteins 66–68. 

It has been observed that modifications of the erythrocyte membrane structure and composition peak 

when the parasite is at the metabolically active trophozoite stage 47 and the membrane fluidity 

gradient between the bilayer leaflets is abolished at the schizont stage 46. Three membranes are 

involved in Plasmodium-infected erythrocytes: the IEPM, the parasitophorous vacuole membrane 

(PVM) which surrounds the parasite and the parasite’s membrane 30,47. The erythrocyte membrane 

changes are directed by the parasite since mature human erythrocytes have limited lipid metabolism 

capacity 69 and the parasites are fully equipped for phospholipid biosynthesis 50 accounting for the 

rapid rise in erythrocyte lipid metabolism observed during infection 30,47,49–51. However, some 

authors have suggested that the parasite lacks the capacity to synthesise fatty acids and cholesterol 

de novo 49,53 and must obtain these compounds from the serum or the erythrocyte membrane 47. It 

has been demonstrated that bidirectional exchange of lipids and associated proteins between the 

IEPM and parasite membrane or PVM 47,69,70 possibly causes the IEPM from P. falciparum-infected 

erythrocytes (trophozoite stage) to be more similar to the parasite membrane or PVM and different 

from membranes of uninfected erythrocytes 47. This exchange involves delivery of parasite proteins 

to the erythrocyte membrane possibly via vesicular trafficking and fusion 71,72 of novel membrane-

bound organelles formed by the parasite in the erythrocyte cytoplasm 73. The PVM surrounding the 

parasite is a penetrable barrier through which the parasite actively alters the erythrocyte membrane 

to preserve an appropriate intracellular environment 47 such as when the erythrocyte’s membrane 

permeability is increased for the parasite to obtain essential nutrients 74.  

5.2.3. Anti-malarial strategies 

The most effective tools for the eradication of malaria have been prevention and prophylactic and 

curative chemotherapy.  Prevention of contact with the mosquito vector for control of transmission 

through house spraying with chemical insecticides, use of insecticide-treated bed nets and other 

materials, as well as other vector control strategies via nonchemical means including environmental 

and biological methods 4.Chemotherapy to treat malaria is important for decreasing morbidity and 

mortality, but also to reduce transmission through decrease of parasite load in the human reservoir 

(Figure 5.1). 
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5.2.3.1. Vector control  

The WHO considers vector control to be the most commonly effective means of malaria 

transmission prevention and it is one of the four fundamental technical components of the global 

malaria control strategies (GMCS) 75. This is because successful vector control translates into less 

malaria patients to treat via chemotherapy 75. Prior to targeting the anopheline vectors, efforts were 

dispensed towards eradication of the mosquito larvae which was not very successful 75. Indoor 

residual spraying (IRS) with dichloro-diphenyl-trichloroethane (DDT), which is a residual 

insecticide and afterwards with others, took central stage in the malaria eradication campaign 

instigated in 1955 75. This led to the eradication of malaria in several parts of the world especially in 

temperate areas such as Western Europe and the United States as well as parts of South Africa 75–77. 

However, the logistic, human and financial resources suitable for malaria eradication through vector 

eradication were not available in all countries particularly in Africa 75. With the resurgence of 

malaria, efforts are now directed towards control of transmission rather than vector eradication 75. 

The measures employed to control the malaria vector include 75: 

1) limiting contact between the mosquitoes and humans through the use of insecticide treated 

nets (ITNs), repellents and protective clothing for individuals as well as zooprophylaxis for 

communities; 

2) IRS and space spraying to kill the adult mosquitoes; 

3) destruction of the mosquito larvae domestically and at large scale in communities through 

sanitation and larviciding of water surfaces and 

4) strategies for source reduction and social participation 

However, ITNs and IRS remain the strategies with broad applicability both of which make use of 

insecticides to kill the adult mosquitoes as they get indoors to obtain a blood meal from humans 75,78. 

The extensive use of DDT led to the development of resistant mosquitoes and prompted the use of 

other chemical groups to kill the adult mosquitoes. These other groups include organophosphates, 

carbamates and synthetic pyretheroids 76. Nevertheless there has been the occurrence of multiple 

insecticide resistant mosquitoes making necessary the development of other measures for vector 

control 76. Measures currently considered include the use of insect growth regulators, natural plant 

products, bio-control agents, bacterial and fungal pesticides, genetic manipulation and insect sterility 

techniques 76. The need for efficient inter-sectoral coordination and community participation has 

been highlighted for the success of all strategies of vector control 76. There is also a need to combine 
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the effectual tools including environmental management for an integrated approach towards vector 

control 75,76. The World Health Organisation Pesticide Evaluation Scheme (WHOPES) is involved in 

the development of new vector control tools and methods 76. 

5.2.3.2. Antimalarial drugs and parasite resistance  

According to Amina et al. 77 antimalarial drugs are currently classified under seven groups namely: 

4-aminoquinolines, arylamino alcohols, antifolates, 8-aminoquinolines, inhibitors of the respiratory 

chain, antibiotics and artemisinins.  

The activity of the 4-aminoquinolines (like  chloroquine and amodiaquine) relies on complex 

formation with heme (ferriprotoporphirine IX) which leads to inhibition of hemozoin formation in 

the parasite’s food vacuole 77. The mechanism of action of chloroquine (CQ) involves its 

accumulation to millimolar levels inside the digestive vacuole of the intra-erythrocytic trophozoite 

where it inhibits heme polymerisation, leading to a accumulation of heme and/or a CQ-heme 

complex that is toxic to the parasite 79. Heme is a product of the parasite’s digestion of haemoglobin 

for nutrients which is otherwise converted to hemozoin crystal(s) by the parasite to avoid toxicity 

11,79. In chloroquine resistant strains, accumulation of chloroquine in the acidic digestive vacuole is 

altered due to point mutations in a gene pfcrt (Plasmodium falciparum chloroquine resistance 

transporter) which codes for a predicted transporter protein PfCRT situated in the parasite’s 

digestive vacuole membrane 80. This leads to exclusion of the drug from the food vacuole 77. Due to 

widespread development of P. falciparum strains resistant to chloroquine, the use of this drug to 

treat falciparum malaria has been abandoned but it is still employed against malaria due to other 

species including P. vivax 
77. Over 80% of P. falciparum strains are currently resistant to CQ 77,81. 

Emergence of CQ resistance was a disaster and halted elimination efforts leading to epidemic 

malaria resurgence 15,77,82. Amodiaquine is useful in cases of low CQ resistance although it has 

severe liver side effects following prolonged use 77,83. Moreover, resistance to amodiaquine has also 

been observed in Asia 77,84. 

The arylaminoalcohols act by preventing access of haemoglobin to parasite’s food vacuole 77. 

Examples include the widely used quinine and mefloquine and less currently used halofantrine and 

lumefantrine 77. Their detailed mechanism of action is not well understood, but seems to necessitate 

the presence of the racemate form 77. However, drugs in this class are generally associated with 

multiple albeit reversible side effects but halofantrine leading to severe cardiac side effects 77,85. P. 

falciparum strains resistant to the arylaminoalcohols possess a membrane-linked transport protein 

Stellenbosch University http://scholar.sun.ac.za



 

5.8 
 

called Plasmodium falciparum multidrug resistance-1 (PfMDR-1) which allows entry of the 

arylaminoalcohols into the food vacuole where they are inefficient 77. Resistance to quinine and 

mefloquine has also been observed in Asia 86. 

The antifolate group consists of drugs that inhibit specific metabolic enzymes in the parasite such as 

dihydropteroate synthase (includes sulfadoxine) or dihydrofolate reductase (like pyrimethamine and 

cycloguanil) 77. The combination of sulfadoxine and pyrimethamine was previously used to replace 

chloroquine in the 1970s following widespread development of chloroquine resistance. P. 

falciparum has developed resistance to replacement first-line drug sulfadoxine/pyrimethamine (SP) 

77,87,88. Multiple mutations in the genes that code for these enzymes are responsible for the resistance 

to antifolates that has been observed in 67% of isolates from South Eastern Asian countries 89. 

The class of 8-aminoquinolines has one viable antimalarial drug, primaquine which is the 

recommended treatment of P. vivax malaria and can be used in chemoprevention against P. 

falciparum 
77. It is efficient against both the sexual stage of parasites as well as their pre-erythrocytic 

or liver stages 90. Resistance to primaquine is rare, but has been observed in South East Asia and can 

be counteracted by increasing the dosage 91. 

The next group consists of respiratory chain inhibitors such as atovaquone. These drugs are used for 

prophylaxis and treatment of uncomplicated P. falciparum malaria 77. Atovaquone has been 

combined with proguanil as a means to fight development of resistance by parasites 77. It brings 

about inhibition of electron transport by targeting the binding side of ubiquinone in the cytochrome 

bc 1 complex 77,92. Resistance to atovaquone is spread across the globe and although combination 

with proguanil is efficient against certain strains, treatment failure of this combination therapy has 

been observed 93. 

Antibiotics like doxycycline and clindamycin also have antimalarial activity 77. The function by 

targeting prokaryote-like proteins and prevent the development of the apicoplast during schizogony 

outside of the erythrocytes 77. However, they are only efficient following the second round of the 

intraerythrocytic parasite life cycle and so in the case of acute malaria they still need to be 

associated with faster acting drugs such as those from the arylaminoalcohols or artemisinin groups 

94. Nevertheless, resistant strains to antibiotics have not yet been observed 77. 

The artemisinin class is made up of several derivatives of artemisinin lactone which is the active 

principle of the Artemisia annua plant 77. Artemether and artesunate are the most common members 

of this group 95. This group consists of the most efficient and swift-acting antimalarial compounds 
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due to their ability to act against both early and late rings 77. The details of the mechanism of action 

of artemisinins are not well comprehended, but targets that have been proposed include food vacuole 

proteins or an endoplasmic reticulum adenosine-triphosphatase calcium pump (PfATPase6) 77. To 

delay resistance development, it is recommended to use the artemisinins in combination with other 

antimalarial drugs also known as artemisinin-based combination therapies (ACTs) 96. The last 

decade has seen over 90% of countries endemic for P. falciparum shifting their national treatment 

policies to ACTs 6. However, there are recent reports of parasite resistance to artemisinins in four 

countries of the Greater Mekong sub region: Cambodia, Myanmar, Thailand and Viet Nam 6,97. 

Delayed-clearance phenotypes have been observed in South East Asia 98–104 which emphasises the 

need for new drugs active against drug-resistant P. falciparum 
14,15,97,105,106. The resistance is 

supposedly linked to a mutation in the adenosine-triphosphatase-6 gene of P. falciparum 
97. It would 

catastrophic if artemisinin resistance spread to India or sub-Saharan Africa following the 

chloroquine resistance, because currently there is no other antimalarial drug to replace the ACTs in 

terms of efficacy and tolerability. Hence, there is urgent need for the development of new 

antimalarial drugs to which the parasite will not easily develop resistance 77. Unfortunately drugs 

with new targets are still lacking in the pipeline for new antimalarial drugs 77.   

5.3. Potential of antimicrobial peptides as antimalarial agents 

5.3.1. Antiplasmodial antimicrobial peptides 

Several antimicrobial peptides (AMPs) from various sources have been investigated for 

antiplasmodial activity and promising results have been recorded. Three peptide antibiotics isolated 

from fungi: efrapeptins, zervamicins, and antiamoebin have been shown to kill P. falciparum in 

culture with micromolar 50% inhibitory concentrations (IC50) 
107. Dermaseptins obtained from frog 

skin and their derivatives are selectively toxic to intraerythrocytic P.  falciparum and/or infected red 

blood cells  108–111. Gomesin isolated from the hemocytes of the spider Acanthoscurria gomesiana 

inhibited the growth of intraerythrocytic P. falciparum in vitro and compromised the maturity of the 

sexual and early sporogonic plasmodial stages in vitro and in vivo 112. Scorpin, a proposed cecropin-

defensin hybrid from the venom of the African scorpion Pandinus imperator totally suppressed both 

fertilisation and formation of a fertilised zygote (ookinete) in Plasmodium bergei, a murine malaria 

species, at 50 and 3 µM, respectively 113. Tryptophan-N-formylated gramicidin (NFG) was found to 

be active in vivo against P. berghei and was non-toxic to the host when administered in lipid 
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vesicles 114. ∆Fd, a de novo-designed, cationic, lysine-branched amphipathic, helical peptide was 

observed to cause both the arrest of intra-erythrocytic P. falciparum stages without hemolysis, as 

well as prompted the premature release of the mature parasites from the red blood cells through 

membrane lysis 63. It was active against both chloroquin-sensitive (3D7) and CQ-resistant (INDO 

and Dd2) strains of the parasite. Other naturally occurring or modified AMPs with antiplasmodial 

activity include the phylloseptins isolated from the skin of Phyllomedusa azurea 115,116, isariins and 

isaridin, cyclic hexadepsipeptides from the fungus Isaria 
117, cecropin-mellitin 118,119, NK-2 a 

synthetic peptide derived from mammalian defensin NK-lysin 65, Shiva-1120 and Shiva-3 121 which 

are cecropin-like synthetic peptides, AdDLP, a defensin-like protein (DLP) from the myxobacterium 

Anaeromyxobacter dehalogenans 122, venturamides originating from the marine cyanobacterium 

Oscillatoria sp. 
123, meucin-24 (cDNA clone from the venom gland of the scorpion Mesobuthus 

eupeus) 124, Psalmopeotoxin I and II (from the venom of the tarantula Psalmopoeus cambridgei) 125,  

jasplakinolide obtained from the marine sponge Jaspis sp. 
126, apicidin which are cyclic tetrapeptides 

obtained from cultures of the fungus Fusarium pallidoroseum, gramicidin S 127,128, gramicidin D 128, 

and cyclosporine A 129. In 1944, Taliaferro et al. 130 discovered the antiplasmodial activity of the 

tyrothricin crude extract against Plasmodium gallinaceum in infected chicken. Previous work in our 

group revealed that this antiplasmodial activity could mainly be attributed to the six major 

tyrocidines which were shown to cause an inhibition of the development and life cycle progress of 

P. falciparum 127. A remarkable IC50 of 580 pM was obtained for the most active tyrocidine 

preparation containing tyrocidine A, which equally had the highest selectivity index.  

5.3.2. Possible mechanisms of antiplasmodial activity 

The AMPs have two possible modes of antiplasmodial activity. They are either cytotoxic to both the 

host and parasite or they are selectively active against the parasite or infected erythrocyte 124. 

Gomesin is a haemolytic peptide, but it is not evident if its antiplasmodial activity results from 

cytotoxicity to the host cell or if it directly interacts with the parasite 112. The dermaseptin S4 

derivative K4S4(1–13) (also known as “P”) effected its antiplasmodial activity through selective 

cytotoxicity to infected erythrocytes, but an aminoheptanoylated analogue (NC7-P) developed from 

peptide P showed decreased hemotoxicity and improved antiparasitic activity 108–111. The 

phylloseptins which are cationic peptides have very low haemolytic activity 115 and toxicity in mice 

116,131. Their helical structure induced by membrane environment (from a random coil conformation 

in aqueous solution) predisposes them for membrane activity thought to be the mode of action 
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against the malaria parasite 115,116,132. However, their membrane interaction is less with mammalian 

cells due to differences in lipid composition and external membrane leaflet charge 116,133. Notably, 

phylloseptin-1 has been observed to promote parasite growth and development at low concentration 

presumably as a result of homersis (an adaptive reaction of cells and organisms to modest and 

sporadic stress) 116. NK-2, a linear cationic and amphipathic helical peptide with a net charge of +10, 

was observed to cause selective lysis of IEPM mediated by the increased exposure of 

phosphatidylserine (PS) induced by the parasite infection  65,134. NK-2 carried out its antiplasmodial 

activity through both selective haemolysis and modification of the morphology of the parasite’s 

membrane by forming temporary oligomers in the membrane 65. Other possible binding partners of 

NK-2 include phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) whose membrane 

distribution is also affected by parasite infection of the red blood cells 65,135. It was observed that 

labelled NK-2 localised preferentially onto the parasite’s membrane which supports the hypothesis 

that PE is the peptide’s binding partner as the membrane of trophozoites has low PS content  65. The 

cationic dimeric peptide ∆Fd was suggested to cause selective lysis of erythrocytes infected with 

mature parasites (were more vulnerable) leading to premature release of trophozoites and schizonts 

following incubation of the cultures with the peptides at IC70 of 2.5 µM (concentration leading to 

70% parasite growth inhibition) for 24 hours resulting in parasite death 63. The released trophozoites 

could not develop into schizonts and released schizonts containing knobs of amplified DNA and 

lacking the typical symmetric rosette appearance proliferated into merozoites that could not reinvade 

new host cells 63. The peptide was selective for parasitized erythrocytes and up to 16 × IC80 did not 

result in lysis of uninfected erythrocytes 63. Fluorescence microscopy with the labelled peptide 

showed that it has the ability to cross the IEPM, the parasitophorous vacuolar membrane (PVM), the 

parasite’s plasma and nuclear membranes to interact with DNA of the parasite 63. The similarity of 

∆Fd to poly-L-Lys led to the suggestion that their selective activity to infected erythrocytes relies on 

the differential exposure of anionic lipids on the surface of  the infected red blood cells 63. This 

initial binding then boosted the membrane anionic character reinforcing the peptide binding and 

speeding up the internalisation of peptides into the cells 63. 

Among the non-haemolytic peptides are the cecropins which cause pore formation in membranes  

predisposed for this by their helical amphipathic and hydrophobic conformation (with no detergent-

like membrane lysis and do not require a specific membrane receptor as target) 136,137. The 

difference in cholesterol content may account for selectivity between infected red blood cells 

(iRBCs) and uninfected RBCs since cholesterol affects membrane fluidity and dipole potential 
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which in turn affects the depth of insertion of the cecropins and their channel-forming ability 136. 

Cecropin-derivatives and analogues probably share this mechanism of action for example Shiva-

1120, Shiva-3 121 (60% sequence identity to cecropin B and maintains its amphipathic and 

hydrophobic structure),  and scorpin (cecropin-defensin hybrid) 113. The fungal peptides 

zervamicins, antiamoebin and efrapeptins (at high concentration) form transmembrane helical 

bundles and the proposed mechanism for their antiplasmodial activity is that their ionophore 

channels cause dissipation of the parasite’s mitochondria or plasma membrane potential 107. 

Although the mitochondrion is not essential for energy metabolism in the intraerythrocytic parasite 

stages of P. falciparum that rely mostly on glycolysis for ATP supply 30, the inhibition of 

mitochondrial activity is suggested to have other physiological implications on the parasite. Their 

activity at the plasma membrane level is also less likely to be overcome by a resistance mutation in 

the parasite 107. Selectivity of these peptides is due to the increased permeability of the infected 

erythrocytes to low molecular weight solutes 107.  

It has been demonstrated that true ionophores (mobile ion carriers) that transport monovalent cations 

are the most active and selective in terms of inhibiting P. falciparum growth in vitro and 

cytotoxicity to mammalian cells 128.  The quasi-ionophore (channel-forming) linear gramicidin D 

that is produced as part of the tyrothricin complex along with tyrocidines by Bacillus 

aneurinolyticus 138 and is specific to H+ had the highest in vitro antiplasmodial activity and lowest 

cytotoxicity 128. N-formylated gramicidin exert their antiplasmodial activity by inserting into the 

erythrocyte and form monovalent cation (K+) channels and do not act on the parasite itself 114,139. 

Rather it is the consequent loss of K+ ions that kills the parasites. Selectivity for the gramicidins is 

partly due to the fact that the life span of the channels relies on membrane surface pressure, which is 

decreased during plasmodial infection of the red blood cell leading to longer lasting channels 140,141 

and thus more ionophores are integrated in the membrane of the infected erythrocytes 128.   

NC7-P was different from the predecessor dermaseptin S4 derivative in its ability to dissipate 

membrane potential and is thought to cause increased proton permeability in the parasite and thus 

shifting decreasing the intracellular pH without causing haemolysis 110. It was suggested that the 

membrane-trophic and lipophilic character of NC7-P allows it to cross the erythrocyte membrane 

and result in nonspecific permeabilisation of the parasite’s membrane 110. Differences in the 

transmembrane potential between host and parasite membranes account for selectivity 110. This 

mechanism of action was confirmed by the absence of parasite stage selectivity by the peptide 

contrary to NC7-P which was more active towards trophozoite- than ring-infected erythrocytes 
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relying on the increased change in host cell membrane structure caused by the more matured 

parasites 110. The rhodaminated-derivative (fluorescent label) of the peptide was only observed 

within infected erythrocytes associated specifically with the parasites and the host compartment of 

inclusions (turbulovesicular structures) and Maurer’s clefts 110. In normal erythrocytes the labelled 

peptide was localised on the host cell membrane. 

Psalmopeotoxin I and II 125, and meucin-24 124 are non-haemolytic and non-toxic to bacteria and 

fungi but have antiplasmodial activity. Meucin-24 is a linear cationic peptide thought to act through 

initial selective adhesion to the membrane of infected erythrocytes followed by an affinity-driven 

uptake across the erythrocyte membrane to the parasite 124. The detailed molecular mechanism of 

this uptake process is not fully understood especially as they possess an acidic molecular face that 

prevents antibacterial and antifungal activity but preserves antiplasmodial activity 124. Jasplakinolide 

obtained from the marine sponge Jaspis sp. was found to interfere with red blood cell invasion by 

merozoites via their actin polymerising and filament-stabilising properties, thus reducing the 

parasitaemia of P. falciparum 
126. 

Among the peptides with non-haemolytic antiplasmodial activity are small cyclic AMPs such as 

apicidin which has an inhibitory activity at low nanomolar scale towards protozoal histone 

deacetylase (HDA). It was found to be active against P. berghei in mice when administered orally. 

HDA is a vital nuclear enzyme involved in regulation of transcription. The enzyme controls the 

continuous acetylation/deacetylation of the ε-amino group of particular histone Lys residues which 

is necessary transcription. Apicidin’s 2-amino-8-oxo-decanoic moiety seemingly imitates the ε-

amino acetylated Lys residues of histone substrates, leading to effective reversible inhibition of 

HDA. The inhibition of HDA impedes cell proliferation 7,142.  

Another group of small cyclic peptides with significant antimalarial activities is the tyrocidines 

(Trcs) produced by the Gram-positive bacteria Bacillus aneurinolyticus. The activity of the peptides 

was linked to hydrophobicity with the most hydrophobic peptides Trc A and A1 
127 as well as 

tryptocidines showing the highest antiplasmodial activity 143. Two hypotheses were proposed for the 

exceptional nanomolar antiplasmodial activity of the tyrocidines. First, the permeability of infected 

erythrocyte membranes may be disturbed by the tyrocidines thus affecting the ability of the parasite 

to regulate small molecule homeostasis in its host cell, leading to a progressive inhibition of the 

development of the parasite 127. Second, the infected cell or parasite itself may possess a tyrocidine 

sensitive and specific molecular target causing a delay in maturation 127. The latter hypothesis is 
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supported by the low values of anti-plasmodial IC50s and relatively high cytotoxic concentrations 

obtained 127. The later parasite stages were found to be the most sensitive to the Trc activity 

interrupting re-invasion of new erythrocytes, by halting the development of schizonts to merozoites 

143. The non-lytic MOA of the Trcs involves a disruption of parasite morphology leading to arrest of 

the parasite in the schizont stage which was related to a significant rise in parasite dynamin levels, a 

protein that is related to endocytosis mediators in mammalian cells. It was also suggested that the 

Trcs also affected haemoglobin digestion in both rings and trophozoites as the levels of undigested 

haemoglobin in the treated parasites was higher than in the controls 143. This was associated with the 

observed decrease in plasmepsin levels, which is a protein recognised for its role in the food vacuole 

and haemoglobin digestion in the Plasmodium 
143. Unlike the Trcs, a related cyclic decapeptide with 

50% sequence identity to the Trcs, gramicidin S (GS) which is a quasi-ionophore, has much reduced 

antiplasmodial activity and selectivity 127,128. Contrary to the Trcs, the antiplasmodial activity of 

gramicidin S is mediated merely by selective lysis of the infected erythrocyte 12. For this reason the 

membranolytic MOA of the Trcs has been linked to the VOLfP pentapeptide unit which it shares 

with GS, while its non-lytic MOA is associated with the ArArNQAr unit which contains the variable 

dipeptide unit (Ar = aromatic amino acid) 127.  

5.4. Concluding remarks 

As elaborated using the above examples, AMPs are able to cross the multiple membrane barriers in 

infected erythrocytes to exert their effects on the intracellular parasite and their activity is primarily 

at the membrane level, a mechanism of action less prone to parasite resistance strategies 107,108,143. 

Furthermore, most AMPs with antimalarial activity contain unusual amino acids and are constrained 

in a ring structure which renders them less vulnerable to proteases and thus increasing their 

bioavailability 107. Due to these attributes, the purpose of this part of the present project is to 

investigate the probable development of small cyclic AMPs (Trcs and RW-peptide analogues) as 

viable antimalarial drug leads (Chapter 6). The detailed elucidation of the mechanism of action(s) 

and identification of the target(s) of the Trcs will also facilitate the search for alternate therapeutic 

targets and approaches, as well as the design of Trc derived lead compounds (Chapter 7). 
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Chapter 6  

Role of antimicrobial peptide structure on antimalarial 

activity: tyrocidine and cyclo(RRRWFW) analogues 

6.1. Introduction 

Among the diseases that occur in tropical countries, malaria is one of the most frequent causing 

approximately 225 million new infections and about a million deaths annually world-wide 
1
. The 

majority of malaria cases are caused by the unicellular protozoan and obligate intracellular 

parasite Plasmodium falciparum. Therefore, falciparum malaria is presently a public health 

problem especially in developing countries. Malaria control is part of the sixth Millennium  

Development  Goal (MDG), Target 6.C – “to have halted by 2015 and begun to reverse the 

incidence of malaria and other major diseases” 
2
. Resistance by the parasites to antimalarial 

drugs has been the major drawback to the control of malaria and is also a current public health 

concern. For example chloroquine (CQ) which used to be the first line antimalarial drug because 

of its unprecedented benefits of low cost, low occurrence of side-effects and high efficacy 
3
 has 

been abandoned due to an upsurge of resistant P. falciparum. The lurking threat of resistance by 

the parasites to the artemisinins which are the major components of the currently recommended 

antimalarial drugs (artemisinin combination therapies or ACTs) makes urgent the need to 

develop new drugs that have novel targets in Plasmodium falciparum  
4–8

.  

Among the current approaches to develop new antimalarial drugs, the modified erythrocyte 

membrane following infection by the malaria parasite is exploited as a target 
9–13

. Some of the 

changes that occur in the infected erythrocyte plasma membrane (IEPM) include increased 

fluidity 
12,14–16

, decreased surface pressure 
13

, novel pores that boost membrane permeability 
17–

21
, transfer of the anionic phosphatidylserine (PS) from the inner leaflet to the outer leaflet of the 

bilayer which changes the membrane lipid asymmetry and the infected erythrocyte tends to be 

similarly anionic like bacterial cells 
9,22,23

. These erythrocyte membrane changes increase the 

likelihood that membrane active compounds like cationic antimicrobial peptides (AMPs) may 

have selective activity towards the infected RBC membrane 
24,25

. 

Indeed AMPs have been investigated as a probable source of future antimalarial drugs due to 

some valuable properties including those considered for their use as new antimicrobials 
26–29

. 

Though originating from various sources, AMPs exist as families of isoforms which has allowed 

for the fine-tuning of their physicochemical characteristics to improve their antimicrobial 
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properties using structure-activity relationship (SAR) studies and display the role of parameters 

such as amphipathicity, charge, hydrophobicity supramolecular organization, and conformational 

flexibility on the interaction with microbial targets 
26

. 

One of the first studies using peptides as antimalarials was on the tyrothricin complex which 

showed comparable activity to quinine towards Plasmodium gallinaceum in infected chicken by 

Taliaferro et al. 
30

. The linear peptide gramicidin D that is produced as part of the tyrothricin 

complex along with tyrocidines by Bacillus aneurinolyticus 
31

 is a quasi-ionophore (channel-

forming) specific to H
+
 ions that has shown high in vitro antiplasmodial activity and low 

cytotoxicity 
32

. It has also been shown that linear gramicidin A and its analogues inhibit growth 

of all life cycle stages of the parasite in vitro, and this activity tends to increase with the age of 

the parasite 
33

. Tryptophan-N-formylated gramicidin A (NFG) was found to be active in vivo 

against P. berghei and was non-toxic to the host when administered in lipid vesicles 
34

. N-

formylated gramicidin exert their antiplasmodial activity by inserting into the erythrocyte and 

form monovalent cation (K
+
) channels but do not act on the parasite itself 

34,35
. Rather it is the 

consequent loss of K
+
 ions that kills the parasites. Selectivity for the gramicidins is partly due to 

the fact that the life span of the channels relies on membrane surface potential, which is 

decreased during plasmodial infection of the red blood cell leading to longer lasting channels 

36,37
 and thus more ionophores are integrated in the membrane of the infected erythrocytes 

32
. 

Among the AMPs evaluated for antimalarial activity, small cyclic peptides have shown 

promising ability and have the added advantage of being better potential drugs than their linear 

analogues. This advantage is in terms of improved antimicrobial activity 
38,39

, enhanced stability, 

resistance of proteolytic degradation, improved receptor selectivity, better bioavailability and 

available conformational proximity for receptor binding 
40,41

. Some cyclic AMPs that have been 

shown to have antiplasmodial activity include the fungal metabolites isariins and isaridin which 

are cyclic hexadepsipeptides from the fungus Isaria 
42

 as well as apicidins which are cyclic 

tetrapeptides obtained from cultures of the fungus Fusarium pallidoroseum 
43

. The cyclic peptide 

gramicidin S which has 50% sequence homology to the tyrocidines produced by 

Aneurinibacillus migulanus (previously classified as Brevibacillus brevis) 
44

 and is another 

quasi-ionophore was  also antiplasmodial although its activity was lower in comparison to that of 

gramicidin D and the tyrocidines 
29,32

. Previous work in our group revealed the antiplasmodial 

activity of the six major tyrocidines which were shown to cause an inhibition of the development 

and life cycle progress of P. falciparum 
29

. A remarkable IC50 of 580 pM was obtained for the 

most active tyrocidine preparation containing tyrocidine A, which equally had the highest 

apparent selectivity index. The SAR analyses from this study deduced that anti-P. falciparum 

Stellenbosch University http://scholar.sun.ac.za



6.3 

activity of Trcs and selectivity for the infected erythrocyte or parasite was determined by overall 

hydrophobicity (measured as HPLC retention time) and steric factors (in terms of the side chain 

surface area) 
29

. Substitution of Orn in the conserved VOLfP pentapeptide by Lys led to a 

significant decrease in antiplasmodial activity, as well as decrease in haemolytic activity and 

toxicity. This suggested that antiplasmodial activity of Trcs may depend on their membrane 

activity which also relies on the chemical character of charged group in the cyclic peptide 

structure 
29

. Another relevant residue for Trc antiplasmodial activity indicated by the 

investigators was Phe in the first position of the FfNQY pentapeptide unit 
29

. Nevertheless, this 

study only evaluated Trc activity towards a single P. falciparum strain and considered only the 

six major Trcs in commercial tyrothricin. The findings from this study need to be refined by 

increasing the number of analogues as well as testing activity towards drug resistant strains of P. 

falciparum to determine parameters required for selective activity towards these drug resistant 

strains.  

The promising activity of small cyclic AMPs warrants a further understanding of the structural 

parameters that determine their high antimalarial activity and improves their selectivity so that 

future drug development can involve a lead peptide from these libraries. We therefore aimed to 

assess the antimalarial activity of selected cyclic antimicrobial peptides. A library of small 

synthetic cyclic peptides, cyclo(RRRWFW) and its analogues of (RW-peptides), will be tested in 

order to determine their potential and structural determinants for antiplasmodial activity and 

selectivity. The RW-peptides are a library of synthetic cyclic derivatives of the hexapeptide 

(Ac)-RRWWRF-NH2 (R-, W-rich or RW-peptides), carrying substitutions of Trp and/or Arg 

(Chapter 3, Table 3.4). The RW-peptides and Trcs have common characteristics such as cyclic, 

aromatic and cationic character, as well as their active conformation which consists of two β 

turns, which is the smallest possible β-sheet 
39,45,46

. However, unlike Trcs the RW-peptides have 

been found to have low haemolytic activity 
46–48

. By evaluating and comparing sequence and 

physicochemical property modifications among the RW-peptides we would gain valuable insight 

into their potential and structural motifs important for antimalarial activity. In addition, an 

extended library of the Trcs, grouped as Trc A and Trc C analogues, were tested against different 

P. falciparum strains namely chloroquine sensitive (CQS) strains P. falciparum D10 and 3D7 

and against the chloroquine resistant (CQR) strain P. falciparum Dd2 to further elucidate 

structural determinants for antiplasmodial activity and selectivity. The Trc A 

[cyclo(fPFfNQYVOL)] analogues include Trc A1 (ornithine (Orn) to Lys substitution), Trc B 

(Phe to Trp substitution), Phc A (Tyr to Phe substitution), sTrc A(Q-O) with a Gln to Orn 

substitution, sTrc AOMe3 with an Orn to trimethylated-Orn substitution, and Tpc A (Tyr to Trp 

Stellenbosch University http://scholar.sun.ac.za



6.4 

substitution). The Trc C [cyclo(fPWwNQYVOL)] analogues investigated include Trc C1 (Orn to 

Lys substitution), Trc B1 (Orn to Lys substitution and D-Trp to D-Phe), Trc B (D-Trp to D-Phe 

substitution), and Tpc C (Tyr to Trp substitution); all natural analogues. It should be noted that 

Trc B doubles as both a Trc A and a Trc C analogue.  

6.2. Materials 

Tyrothricin (extracted from Bacillus aneurinolyticus), gramicidin S (from Brevibacillus brevis 

(Nagano)), and Corning Incorporated
®

 cell culture cluster non-pyrogenic polypropylene 

microtiter plates, bis-benzamide trihydrochloride (Hoechst stain) and trifluoroacetic acid (TFA, 

>98%) were obtained from Sigma (St. Louis, USA). All the chemicals used to prepare the 

RPMI-1640 culture media (RPMI 1640 medium, glucose, HEPES, albumax II, hypoxanthine, 

NaOH, gentamycin, and sodium bicarbonate), sodium lactate, potassium chloride, NaCl, L-lactic 

acid, nitro blue tetrazolium (NBT), phenazine ethosulfate (PES), 3-acetylpyridine adenine 

dinucleotide (APAD), D-sorbitol, Dulbecco’s modified Eagle’s Medium (DMEM), 0.4% trypan 

blue solution, and DNA interchelator Giemsa stain mixture were  obtained from Sigma-Aldrich 

(St. Louis, MA, USA). The synthetic tyrocidines were supplied by GL Biochem (Shangai) Ltd, 

China. Resazurin reagent (CellTiter Blue™) was from Promega (Madison, WI). Sterile red 

standard cap 250 mL Cellstar tissue culture flasks, sterile Cryo.s PP tubes and sodium hydrogen 

phosphate were from Greiner Bio-One GmbH, Germany. Glycerol (AnalaR grade) was obtained 

from BDH Chemicals Ltd. Triton X-100 came from BDH Laboratory Supplies, Poole, England. 

Tris-HCl buffer was obtained from Boehringer Mannheim or Roche. Acetonitrile (ACN) 

(HPLC-grade, far UV cut-off) came from Romill Ltd. (Cambridge, UK). To obtain analytical 

grade water, water was filtered from a reverse osmosis plant via a Millipore Milli-Q water 

purification system (Milford, USA). Ethanol (>99.8%) was supplied by Merck (Darmstadt, 

Germany). Culture dishes and 0.2 µm-25 mm sterile cellulose acetate membrane syringe filters 

were obtained from Lasec (Cape Town, South Africa) and microtiter plates (NuncTM-Immuno 

Maxisorp) were from AEC Amersham (Johannesburg, South Africa). Falcon
®

 tubes were from 

Becton Dickson Labware (Lincoln Park, USA). Foetal calf serum and penicillin–streptomycin 

were from Gibco BRL (Gaithersburg, MD, USA). Sterile VacuCap
®

 90PF filter unit w/0.8/0.2 

µm Supor® membrane was obtained from Pall Corporation (Pall Europe Ltd, UK). SYTO
®

 9 

green-fluorescent nucleic acid stain and HCS LipidTOX™ neutral lipid stain were obtained from 

Invitrogen (Carlsbad, USA). Whole A
+
 blood stored in anticoagulant (citrate phosphate dextrose) 

containing enriched erythrocyte fraction in saline adenine-glucose-mannitol red blood cell 

preservation solution was donated by the Western Cape Blood services (or National Health 

Laboratory Services in South Africa). Asexual erythrocytic stage chloroquine sensitive (CQS) 
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Plasmodium falciparum D10 and 3D7 as well as chloroquine resistant (CQR) P. falciparum Dd2 

(Asian/African) were benevolently supplied by Prof. Peter Smith from the University of Cape 

Town, Division of Pharmacology. COS-1 cells were provided by Prof. Pieter Swart from the 

University of Stellenbosch, Department of Biochemistry. 

6.3. Methods 

6.3.1. Parasite culturing 

6.3.1.1. Culture media preparation 

The composition of the media used to culture P. falciparum was RPMI-1640 (10.4 g/L) 

supplemented with glucose (4 g/L), HEPES (6 g/L), albumax II (5 g/L), hypoxanthine (0.4 g/L, 

dissolved previously in 1 mL of 1 N NaOH), gentamycin (50 mg/L), and sodium bicarbonate 

(2.1 g/L). The media was made up in analytical quality water; the pH was adjusted to 7.2 – 7.3 

and sterility was achieved by filtering through a 0.2 µM filter 
49,50

. 

6.3.1.2. Preparation of blood 

Anonymous A
+
 donor blood (300 mL enriched erythrocyte fraction containing 63.0 mL citrate 

phosphate dextrose anticoagulant and 100 mL saline-adenine-glucose-mannitol red blood cell 

preservation solution) from the Western Cape Blood services (or National Health Laboratory 

Services in South Africa) conforming to relevant legislation and ethics were utilised during all 

experiments of this study. 

Routinely A
+
 erythrocyte enriched blood of not older than two weeks was used since the P. 

falciparum cultures did not develop well on older erythrocytes 
51

. Prior to use, the blood was 

washed twice in parasite culture media by centrifugation at 1300×g for 5 minutes per wash 

followed by decantation of supernatant (containing plasma and buffy coats if present). 

6.3.1.3. P. falciparum culturing procedure 

Culturing was carried out using normal sterile techniques according the methods of Trager and 

Jensen 
50

 and Lambros and Vanderberg 
52

. Freezer stock cultures of CQS (D10 and 3D7) and 

CQR (Dd2) P. falciparum were thawed in a water bath at 37 
o
C and the cultures were transferred 

to 50 mL falcon tubes. The osmotic potential of the thawed parasite freezer stocks in glycerol 

was progressively reduced by stepwise dilution in three saline solutions prepared in analytical 

quality water namely solution A (12% NaCl), solution B (1.8% NaCl), and solution C (0.9% 

NaCl and 0.2% glucose) 
53

. Five volumes of solution A was first added drop wise with swirling 

to 1 volume of thawed cultures and allowed to stand for 5 minutes followed by slowly adding 10 
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mL of solution B. Subsequently the combination was centrifuged at 400×g for 5 minutes 

followed by aspiration of the supernatant. Ten mL of solution C was gradually added to the 

residual pellet with moderate swirling. The mixture was centrifuged at 400×g for 5 minutes 

followed by aspiration of the supernatant. The residual culture was washed with 20 mL of 

culture media by centrifuging at 400×g for 5 minutes and then returned to culture media for 

culturing. 

Culturing involved incubating the parasitized blood (at 3-4% haematocrit, i.e. 3-4 mL blood/100 

mL media) in sterile red standard cap 250 mL Cellstar tissue culture flasks at 37 °C under a gas 

mixture of 3% O2, 4% CO2, and 93% N2 without shaking. The initial culture from freezer stocks 

was left to stand for 3-4 days. Culturing was carried out continuously for not longer than three 

months from one stock culture to avoid genetic modification 
51

. The parasite development and 

parasitemia (number of parasites in the infected erythrocytes expressed as a percentage of the 

normal erythrocytes) were followed by taking samples of the cultures to prepare thin blood 

smears on microscope slides for staining with Giemsa and viewing under oil immersion at the 

100× objective lens of a light microscope according to the methods of Reilly et al. 
54

. From 0.5% 

parasitemia, the media was replaced daily by centrifugation at 750×g for 3 minutes, aspiration of 

the supernatant and addition of fresh media. 

 It was important to maintain the cultures at the same developmental asexual stage and this was 

achieved by addition of 5 volumes of 5% D-sorbitol to 1 volume of pelleted parasite infected 

erythrocytes. In vitro synchronisation was carried out only when most of the parasites were at the 

ring stage (because the membranes of erythrocytes containing ring stage parasites are less 

permeable to solutes 
55

) according to the methods of Lambros and Vanderberg 
52

. Following 

addition of sterile 5% D-sorbitol to the pelleted erythrocytes, the mixture was gently swirled and 

allowed to stand for 5 minutes in a water bath at 37 
o
C. Next, the mixture was centrifuged at 

750×g for 3 minutes, the supernatant was aspirated and the pellet was washed once with culture 

media by centrifugation at 750×g for 3 minutes and aspiration of supernatant. The pellet was 

then returned to culture media and maintained according to the culturing procedures mentioned 

above. Synchronisation was limited to once a week due to the finding by Makowa 
51

 that D-

sorbitol favours the development of resistance to chloroquine. 

Once a high parasitemia (>10%) was achieved, the cultures were either frozen away in glycerol 

at −80 °C for culture preservation or used for dose response assays. Freezing involved ring stage 

parasites only as their membranes are more robust according to the method of Diggs et al. 
53

. The 

glycerolyte medium in which the parasites were stored at −80 
o
C was made of 1.6% sodium 

lactate, 0.03% KCl, 1.38% sodium dihydrogen phosphate, 57% glycerol adjusted to pH of 6.8. 
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The solution was sterile filtered through 0.22 µm filters. One volume of glycerolyte medium was 

added to 3 volumes of pelleted infected erythrocytes in a drop wise manner with constant 

swirling. The mixture was allowed to stand for 5 minutes followed by addition of 2 volumes of 

glycerolyte medium. The cultures were stored in Cryo.s PP tubes by storage at −80 ºC until 

required for use. 

6.3.2. Peptide preparation 

The major Trcs from commercial tyrothricin were purified and characterised as previously 

described in Chapter 2 according to the methods of Rautenbach et al. 
29

 and Eyéghé-Bickong 
56

. 

The other natural analogues (Tpc C, Trc A and Phc A) were extracted from cultures of Bacillus 

aneurinolyticus ATCC 8185 under specific nitrogen supplementation conditions, purified and 

characterised as described in Chapter 2. The synthetic Trcs were verified for purity and 

characterised as described previously in Chapter 2.  

The analytically weighed purified peptides were subsequently used to analytically prepare stock 

solutions of 2.00 mM (purified peptides) or 2.00 mg/mL (Trc mixture) with 40% v/v ethanol in 

analytical quality water (Trcs) or with analytical quality water (gramicidin S and RW-peptides). 

Subsequently the stock solutions were used to construct quadrupling dilution series in 

polypropylene 96 multi-well plates containing the supplemented RPMI-1640 culture medium 

used for culturing the P. falciparum, but lacking albumax II. Preparation of stock solutions and 

subsequent dilution was performed about 30 minutes prior to each assay. 

6.3.3. Determination of antimalarial and haemolytic activities of peptides 

The antimalarial assays were carried out according to the method of Nkhoma et al. 
57

. Once the 

cultures reached a parasitemia of 5-15%, they were synchronised four days prior to the day of the 

assay as described above (Section 6.3.1.3) which allowed the cultures to recover from the stress 

caused by the D-sorbitol. On the day of the assay, the parasitemia was determined following 

observation by light microscopy after Giemsa staining of a thin blood smear from the culture 

(Section 6.3.1.3). The cultures at young trophozoite stage were diluted to 2% parasitemia and 2% 

haematocrit by addition of fresh RPMI medium and uninfected erythrocytes. This culture 

suspension was distributed in 96-well culture plates at 90 µL/well. The diluted peptides (see 

Section 6.3.2) were added to the cultures in triplicate at 10 µL/well to give a total volume of 100 

µL/well. Total growth and total haemolysis were obtained by adding 10 µL of mixture of culture 

medium and solvent used in peptide preparation and 10 µL 1 mM gramicidin S (GS) respectively 

to the parasite suspension. The plates were incubated at 37 
o
C for 48 hours under an atmosphere 
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of 3% CO2, 4% O2 and 93% N2. Assays were carried out in at least three biological repeats each 

consisting of three technical repeats to ascertain reproducibility. 

To determine the haemolytic activity of the peptides, the plates were centrifuged using a swing-

out rotor at 200×g for 3 minutes. The supernatant was diluted 1:8 in analytical quality water in 

separate 96-well plates and after mixing, the absorbance of the suspension was determined at 405 

nm. The rest of the culture suspension was frozen away at –20
 o

C until determination of the 

residual lactate dehydrogenase activity of the parasites by the Malstat assay as adapted from 

Gomez et al. 
58

.  

For the Malstat assay, the plates were transferred to –80 
o
C for 1 hour following overnight 

storage at –20
 o

C to ensure that all the suspensions in each well of the 96-well plate were frozen. 

The plates were then thawed at room temperature. The Malstat reagent consisted of 200 µL 

Triton X-100, 2 g L-lactic acid (substrate), 0.66 g Tris-HCl buffer and 0.011 g of 3-

acetylpyridine adenine dinucleotide (APAD) (coenzyme for parasite lactate dehydrogenase) in 

100 mL analytical quality water set to a pH of 9.0 
57

. The lactate dehydrogenase reaction was 

initiated by addition of a second solution, NBT/PES solution composed of 1.96 mM nitro blue 

tetrazolium (NBT) and 0.24 mM phenazine ethosulfate (PES) which was always protected from 

light. A 15 µL aliquot of the thawed and properly mixed suspension from the assay plates was 

added to 100 µL of the Malstat reagent, followed by addition of 25 µL of the NBT/PES solution. 

The reaction mixtures were then incubated at room temperature in the dark for 30 minutes 

followed by spectrophotometric measurement of the absorbance of the reduced APAD at 620 nm 

using a Model 680 Microplate reader from BioRad. 

6.3.4. Determination of toxicity 

COS-1 cells were cultured in DMEM containing 0.9 g/L glucose, 0.12% NaHCO3, 10% foetal 

calf serum and 1% penicillin–streptomycin at 37 
o
C and under an atmosphere of 5% CO2 

59
. 

Twenty hours before the assay, the cells were transferred to 96-well plates at a density of 

1.5×10
4 

cells/well. The peptides from the dilution series were added to each well and incubated 

for 24 hours. The cell viability was measured by adding 20 µL/well resazurin reagent (CellTiter 

Blue™), followed by 4 hour incubation at room temperature in the dark and measurement of the 

absorbance at 560 nm and 600 nm in the microplate reader 
29

.  

6.3.5. Assessment of dose-response data 

The data obtained from spectrophotometric measurement of the plates following the lactate 

dehydrogenase (Malstat) assay were converted to percentage growth inhibition using equation 1 
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below as described by Rautenbach et al. 
61

. The background was obtained from control wells in 

which the parasites were killed with 100 µM GS while total growth was from the wells that were 

not submitted to peptides. 

 

% growth inhibition = 100 –                                                                                             (1) 

 

The background for the haemolysis evaluation (equation 2) was from wells in which the 

uninfected erythrocytes were lysed using 100 µM GS while growth control was from the wells 

with uninfected erythrocytes that received no peptides 
29

. 

 

% haemolysis =      100   –                                                                                             (2) 

The percentage COS-1 cell death (CellTiter Blue™ assay) was similarly calculated using 

equation 3 from absorbance values. 

 

% COS-1 inhibition = 100 –                                                                                                     (3)      

 

All the dose–response assay data were evaluated using GraphPad Prism 4.03 (GraphPad 

Software, San Diego, USA) followed by non-linear regression and sigmoidal curves were fitted 

(having variable slope and a constant difference of 100 between the top and bottom plateau). 

Equation 4 was used to fit the dose-response curves. 

Y = bottom – (top – bottom)/1 + 10
log IC

50
 × Activity slope                                                                                            

(4) 

Following calculation of the 50% P. falciparum inhibitory concentration (IC50), 50% haemolytic 

concentration (HC50) and 50% lethal concentration (LC50) for COS-1 cells 
61

, the selectivity 

indices were determined as the ratios HC50/IC50 and LC50/IC50 
29

. 

6.3.6. Interaction between chloroquine and selected tyrocidine analogues 

In order to determine the nature of Trc-CQ interaction, IC50 values were derived from dose-

response curves of fixed ratios of Trc and CQ for fractional inhibition concentration (FIC) 

determination according to an adaptation of the methods by Chawira and Warhust 
62

 and 

Fivelman et al. 
63

.  

   A620 of growth wells - Average A620 of background 

 

   100 × (A620 of well-Average A620 of background) 

100 × (A405 of well-Average A405 of background) 

    A405 of growth wells - Average A405 of background 

 

100 x (A570/A600 of well-Average A570/A600 of background) 

Average A570/A600 of growth wells-Average A570/A600 of 

background 
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CQ at 400 ng/mL (0.2 µM) and 50 µM peptide were used to prepare the following concentration 

combination ratios: 0.2:0, 0.15:12.5, 0.1:25, 0.05:37.5 and 0:50 in supplemented RPMI-1640 

culture medium used for culturing the P. falciparum, but lacking albumax II. Each drug:peptide 

combination was then serially diluted in the culture medium. The CQ, peptide or drug:peptide 

combination (10 µL) was added to 90 µL of the cell suspensions, incubated for 48 hours at 37 
o
C 

under an atmosphere of 3% CO2, 4% O2 and 93% N2 and analyzed for growth inhibition as 

previously described using the Malstat assay. The IC50 values and standard error of the mean for 

the various CQ-peptide combinations were determined from the dose-response curves plotted 

and analysed using GraphPad Prism
®

 4.03 (GraphPad Software, San Diego, USA). A minimum 

of three technical repeats and two biological repeats were carried out for each combination 

experiment.  

Two fractional inhibition concentration (FIC) values were calculated for each of the five CQ-

peptide combination ratios, one for CQ and the other for the peptide according to equations 2 and 

3 below from Bell 
64

 and Makowa 
51

. 

FICCQ = IC50
CQ + Peptide

 (in combination)/IC50
CQ

 (alone)..............................................(2) 

FICpeptide = IC50
CQ + Peptide

 (in combination)/IC50
peptide

 (alone)..............................................(3) 

The FIC values were used to construct isobolograms on Graphpad Prism
®

 4.03 and to compute 

the fractional inhibition concentration index (FICI) which is the sum of FICs of CQ and each 

peptide using equation 4 below 
51,65

. 

FICI = FICCQ + FICpeptide.................................................................................................(4) 

The magnitude of the FICI determined the nature of the CQ-peptide interaction as being either 

synergistic (FICI < 1.0), antagonistic (FICI > 1.0) or additive (FICI = 1.0) 
64–66

. However, a more 

conservative interpretation requires that FICI ≤ 0.5 indicates absolute synergy, 1 > FICI > 0.5 

shows slight synergy, FICI = 1 means additive activity, 1< FICI < 4 is interpreted as non-

interactive to slight/moderate antagonism, while FICI ≥ 4 indicates absolute antagonism 
51,64,65,67

. 

The shape of the isobolograms also provided an indication of the nature of the interactive effect 

of CQ and the peptides with a concave curve for synergy, a linear line for an additive to non-

interactive effect or convex curve for antagonism with deviation of the curves from the additivity 

line indicating the strength of the interactive effect 
64

. 
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6.4. Results and Discussion: Part I – cyclo(RRRWFW) analogues 

6.4.1. Antimalarial and haemolytic activities  

A total of 14 analogues of the hexapeptide cyclo(RRRWFW) (Table 6.1) were evaluated for both 

their growth inhibitory activity towards the chloroquine sensitive P. falciparum D10 and their 

haemolytic activity towards human erythrocytes. As described in Chapter 3 these peptides were 

grouped according to modifications in the hydrophobic and/or polar domains of the parent 

peptide. 

Table 6.1  Analogues of cyclo(RRRWFW) evaluated for antiplasmodial and haemolytic 

activities 

Group 

Number 

Domain 

altered 
Analogue Sequence Code Amino acid substitution 

1 Hydrophobic  

c(RRRWFW) c-WFW Parent compound 

c[RRR(b3-hW)F(b3-hW)] c-b3hW W to b3-hW 

c(RRRWWW) c-WWW F to W 

c(RRRWIW) c-WIW F to Igl 

c[RRR(1MeW)F(1MeW)] c-1MeW W to 1MeW 

c[RRR(5MeW)F(5MeW)] c-5MeW W to 5MeW 

c[RRR(Bal)F(Bal)] c-Bal W to Bal 

2 Polar  

c(RRRWFW) c-WFW Parent sequence 

c(KRKWWW) c-KRK R to K 

c(KKWWKF) c-KW R to K 

c(RRRWWW) c-WWW Parent sequence 

c(KKKWWW) c-KWW R to K 

3 

Polar and 

hydrophobic 

(ring size) 

c(RRRWFW) c-WFW Parent sequence 

c(RRRRWFWF) c-WFW 8 Addition of R and F 

c(RRRRRWFWFW) c-WFW 10 Addition of RR and FW 

c(RRRRRRWFWFWF) c-WFW 12 
Addition of RRR and 

FWF 

4 

Polar and 

hydrophobic 

(destruction 

of clusters) 

c(KKKWWW) c-KWW Parent sequence 

c(KWKWKW) c-WKW Altered sequence 

c(RRRWWW) c-WWW Parent sequence 

c(RWRWRW) c-WRW Altered sequence 

 

In general, all of the hexapeptides had low haemolytic activities (< 20% erythrocyte lysis) at up 

to 200 µM (Fig. 6.1). Increasing the size of the peptides from eight through to twelve residues 

with concomitant increase in hydrophobicity (see Chapter 3, Table 3.6) resulted in increased 

haemolytic activity (40-70% erythrocyte lysis) at the same concentration. Nevertheless, the 

haemolytic activity observed was significantly less than that of the Trcs (refer to discussion in 

Part II of this chapter). This observation is similar to that made in previous studies 
68

 which 

underlined the fact that activity towards the neutral membranes of human RBCs will rely more 
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on hydrophobicity and amphipathic character of the peptides than on electrostatic interactions. 

Hence, increase in peptide hydrophobicity favours interaction with and lytic activity towards 

erythrocytes. 

The RW-peptides displayed much lower antiplasmodial activity to that of the tyrocidines (study 

of Rautenbach et al. 
29

 and this study, Part II) (Tables  6.2 and 6.3). Most of the peptides gave 

only 20-40% growth inhibitory activity towards Plasmodium falciparum D10 cultures at 12.5 

µM (Fig. 6.1). However, we observed a substantial increase in antimalarial activity with increase 

in hydrophobicity (refer to Table 3.6, Chapter 3) within the groups of analogues.  In group 1 with 

hydrophobic domain modification through the use of Trp and Trp unnatural analogues without 

changing the number of residues, the activity trend was (c-WFW, c-b3hW, c-WWW, c-WIW) < 

(c-1MeW, c-5MeW, c-Bal). Only c-Bal in group 1 gave a measurable IC50 value (38 µM) (Table 

6.2). 

Table 6.2  Summary of the growth inhibitory activity parameters toward the chloroquine 

sensitive strain of Plasmodium falciparum (D10) and the haemolytic activity 

parameters towards human erythrocytes of the cyclo(RRRWFW) analogues. 

Concentrations are given in µM. Every value denotes the average of n biological 

repeats (number of repeats given in brackets), with 3 technical repeats per assay ± 

SEM given in 2 significant figures.  

Group Peptide 

Parasite 

infected  

erythrocytes                         

Uninfected 

human 

erythrocytes 

IC50 ± SEM (n) HC50 ± SEM (n) 

Parent 

sequence 
c-WFW > 100 (3) > 100 (3) 

1 

c-b3hW > 100 (2) > 100 (2) 

c-WWW > 100 (3) > 100 (3) 

c-WIW > 100 (3) > 100 (3) 

c-1MeW > 100 (2) > 100 (2) 

c-5MeW > 100 (2) > 100 (2) 

c-Bal 37.9 ± 1.10 (2) > 100 (2) 

2 

 

c-KW > 100 (2) > 100 (2) 

c-KWW > 100 (3) > 100 (3) 

c-KRK > 100 (3) > 100 (3) 

3 

c-WFW8 13.4 ± 0.67 (3) > 100 (3) 

c-WFW10 9.0 ± 0.19 (2) > 100 (3) 

c-WFW12 7.0 ± 0.48 (2) > 100 (3) 

4 
c-WKW > 100 (3) > 100 (3) 

c-WRW > 100 (3) > 100 (3) 

The one physicochemical property that groups the residues 1MeW, 5MeW and Bal is the fact 

that they have higher hydrophobicity than W which explains the increase in the activity of the 

peptides containing these residues over c-WFW. However, when compared to activity of c-

WWW, only that of c-Bal was significantly higher. Although b3hW also has higher 
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hydrophobicity than W, there was no significant increase in the activity of c-b3hW over c-

WWW probably indicating that increase in size and flexibility of the backbone ring in b3hW 
69

 

diminishes the propensity of hydrophobicity to increase antiplasmodial activity. The 

modification of the cationic domain in group 2 by changing R to K did not affect the activity. In 

group 3, the increase in peptide size by the addition of residues to both the hydrophobic and 

cationic domains yielded higher activity. The activity trend in this group was c-WFW < c-WFW 

8 < c-WFW 10 < c-WFW 12 which corresponds to the order of increasing hydrophobicity (refer 

to Addendum Table 6.7 for more details). This is consistent with the fact that the greater the 

interaction of the peptides with the erythrocyte membrane the better their translocation into the 

cell and the greater their access to the intra-erythrocytic parasites. Scrambling of residues to 

offset the aromatic and cationic clusters in group 4 did not significantly affect the antimalarial 

activity (Addendum Table 6.8).  
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Figure 6.1  Comparison of the activity of RW-peptides towards Plasmodium falciparum D10 

and human erythrocytes at 2% (v/v) parasitemia and 2% v/v haematocrit. 

Antiplasmodial activities of the peptides at 12.5 µM were compared within their 

specific subgroups using the Newman-Keuls multiple comparison test (Addendum 

Tables 6.5, 6.6, 6.7, and 6.8). 

From these studies it is clear that there is a definitive prerequisite for hydrophobic character and 

good interaction with the erythrocyte (correlating with increased haemolytic activity) to ensure 

antimalarial activity. However, these peptides were designed to have low haemolytic activity and 

high specificity for bacteria. It is therefore, not unexpected that these peptides did not show 
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potent antimalarial activity and we hence decided to focus the rest of study on the tyrocidines 

and analogues (Part II).  

6.5. Results and Discussion: Part II – tyrocidine A and C analogues 

6.5.1. Antimalarial activity and cytotoxicity  

Eleven Trc analogues, the Trc complex (called Trc mix) and GS were tested for their 

antiplasmodial activity against the chloroquine (CQ) sensitive P. falciparum D10. They were 

also concomitantly evaluated for their toxicity to human erythrocytes by employing a 48-hour 

dose-response assay. The activity was evaluated according to the IC50 values (concentration that 

gives 50% parasite growth inhibition 
60

) for antiplasmodial activity and HC50 values 

(concentration that gives 50% haemolysis 
29,60

).  

As previously observed, the natural Trc analogues had significantly higher antiplasmodial 

activity than GS 
29,70

, ranging between 48 and 600 nM. The haemolytic activity of the natural Trc 

analogues towards infected erythrocytes was in the range of 5-9 µM comparable to that of GS at 

6.2 µM (Fig. 6.2). If only the lowest range of the IC50 values were considered for each of the 

tyrocidines, the antiplasmodial activities were comparable to previous antimalarial activity 

studies done by our group 
29,70

. The activity of the re-evaluated Trc C analogues and GS were 

comparable to results from Spathelf 
70

 and Rautenbach et al. 
29

 but there was about a 10-50 fold 

increase in the IC50 values for Trc A and TrcA1. One reason for this difference could be 

differences in the assay conditions which may influence the self-assembly/aggregation properties 

of these more hydrophobic peptides which in turn affected their antiplasmodial activity. Studies 

by Rautenbach et al. 
29

 involved peptides in the aggregated form as a single stock solution was 

used and was repeatedly dried by blowing off the ethanol solvent without freeze-drying which 

may have trapped the peptides in the aggregated conformation (M. Rautenbach, personal 

communication). Moreover, dilution and application of peptides was done immediately before 

assay which may have limited the disaggregation of the peptides. It was also observed that if the 

same peptide was dissolved in media and left to stand for 24 hours, it gave a >10× lower IC50 

value against P. falciparum D10 than when used immediately after preparation in the same 

solvent (M. Rautenbach, personal communication). In the previous studies it was found that the 

IC50 values had a significant correlation with retention time on a C18 RP-HPLC column which 

represents peptide hydrophobicity, with the activity increasing with increase in hydrophobicity 

29
. Alternatively, the Trc A and TrcA1 sample preparations in previous studies  

29,70
 may have 

contained minute amounts of the highly active gramicidin A and/or Tpc A which may have 

eluded detection with the less sensitive ESMS and HPLC analyses used in these studies
 
 
29,70

.   
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Figure 6.2 Comparison of the activity towards the chloroquine sensitive P. falciparum D10, 

and toxicity towards infected human erythrocytes and COS-1 cells A. of Trc A 

analogues B. of Trc C analogues. GS was included as a reference peptide. 

Antiplasmodial activity parameters of the peptides were compared to that of Trc A 

or Trc C using the Bartlett's test for equal variances (Parameter data are given in 

Addendum Table 6.9). 

Gramicidin A has picomolar activity 
33 

against P. falciparum and the late eluting tyrocidines, Trc 

A and TrcA1 tend to co-elute with gramicidin A during C18-HPLC (this study and study by 

Eyéghé-Bickong 
 56

). In this study the quality control of the peptides was done with one of the 

most sensitive high resolution mass spectrometers linked to state-of-the-art UPLC, which 

ensured that none of the peptides in the study contained any trace of gramicidins (refer to 

Chapter 2).  
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According to the overall results, the lowest average IC50 values at < 250 nM were recorded for 

Trc B, Trc B1, Tpc C,  and Phc A. Spathelf 
70

 also noted high activity of partially purified Tpc B 

and Tpc C. Trc B, Tpc C and Phc A also had the highest selectivity (>100 fold) for activity 

towards the parasite (Fig. 6.2).  

6.5.1.1. Trc A analogues  

Only two of the Trc A analogues, Trc B and Phc A exhibited an average IC50 < 250 nM against 

P. falciparum D10 (Fig. 6.2A). Comparing the IC50 values for activity against P. falciparum D10 

using the Bartlett's test for equal variances, the Trc A analogues showed the following sequence: 

(Phc A, Trc A, Trc B, Trc A1, sTrc AOMe3) > (sTpc A, sTrc A(Q-O)). 

 The HC50 of the doubly charged sTrc A(Q-O) was significantly higher than that of the other 

analogues. Previous studies by Kohli et al. 
38

 also found that a doubly charged Trc A analogue in 

which D-Phe
4
 was substituted by D-Orn residue had a minimum haemolytic concentration of 60 

µM in comparison to 4 µM for the parent Trc A. Therefore, evidently increasing charge reduces 

haemolytic activity of the peptide due to the reduced affinity between the more charged peptide 

and the zwitterionic phospholipids in the membrane of human erythrocytes 
38

.  Synthetic Trc A 

with a trimethylated Orn was similarly active as the parent sequence Trc A 

(cyclo[fPFfNQYVOL]) and the other active natural analogues. Therefore, the N
ε
-trimethyl Orn 

groups that are involved with creation of electrostatic interactions with anionic phospholipids 

leading to tighter membrane interactions, as well as the increase in bulkiness and hydrophobicity 

of the charged residue with loss of hydrogen bonding character 
71

 did not translate into higher 

antimalarial activity in this case. Unlike Lys N
ε
-trimethylation at certain positions of the 

antimicrobial cecropin A-melittin hybrid peptide 
71

 Orn N
ε
-trimethylation did not result in 

improvement of Trc A selectivity. There was nearly 10-fold decrease in parasite growth 

inhibition activity following substitution of the Tyr in Trc A with a Trp in the synthetic Tpc A 

which was also three-fold less toxic to the red blood cells. This could indicate a preference for 

either a Tyr or Phe in position 7 with a bulky Trp leading to steric interference with 

membrane/target interaction. However, the haemolytic activity of sTpc A is significantly lower 

than expected for a tryptocidine if compared with Tpc C, which could indicate that this synthetic 

peptide preparation may not be a true mimic of the natural Tpc A, possibly due to residual 

trifluoroacetic acid in the preparation.  

When Gln in Trc A was replaced by an Orn in the synthetic Trc A(Q-O) with an increase in 

charge to +2, this resulted in a 10-fold decrease in antiplasmodial  activity. Thus, increasing 

charge did not favour increase in activity, similar to what we observed for its antilisterial activity 
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(Chapter 3). GS with a similar charge also showed lower antiplasmodial activity. This could be 

because the transfer of the anionic PS (phosphatidyl serine) from the inner leaflet to the outer 

leaflet of the bilayer of the red blood cell membrane modifies the membrane lipid asymmetry 

rendering the infected erythrocyte to be similarly anionic like bacterial cells 
9,22

. Thus the 

peptides that are able to interact better with the anionic infected erythrocyte plasma membrane 

(IEPM), the parasitophorous vacuole membrane (PVM) which surrounds the parasite and the 

parasite’s membrane 
24,72

 will be trapped and have less ability to reach the purported internal 

target  
29

. Although not statistically significant, the presence of Phe at position 7 in place of Tyr 

in Phc A improved the antimalarial activity up to 7 fold while that of Trc B (Phe
3
 to Trp

3
 

substitution) was 8 fold higher than that of Trc A. Thus, the aromatic amino acids (Trp, Phe and 

Tyr) in the Trc analogues are pivotal in determining antimicrobial activity as previously seen 

with Listeria in Chapter 3. Phe has a greater lipophilicity compared to Trp and has also been 

found to integrate the membrane deeper while the indole and phenol analogues (Trp and Tyr) are 

shallower 
73,74

. On the other hand, Trp which is the largest of the aromatic amino acids should 

display better anchoring also as a result of the formation of hydrogen bonds between its NH-

group and lipid carbonyl groups 
75

. However, a very tight membrane association does not always 

translate into better activity and there is need for an optimal amphipathicity which still allows for 

efficient membrane integration and self-assembly into active lytic complexes and/or 

translocation to an internal molecular target 
76,77

.  

Activity of Trc A analogues against P. falciparum D10 is therefore sensitive to the amphipathic 

balance, with hydrophobic interactions being essential while an increase of electrostatic 

interactions leads to a decrease in Trc A activity. Trapping of the Trc A(Q-O) in the membrane 

could counteract their mode of action. A further prerequisite seems to be size and hydrogen 

bonding ability of residue 7 with Tyr and Phe preferred over Trp.  

6.5.1.2. Trc C analogues  

Three of the Trc C analogues, Tpc C, Trc B and Trc B1 exhibited an average IC50 < 250 nM 

against P. falciparum D10 as target (Fig. 6.2B). Using the Bartlett's test for equal variances to 

compare IC50 values, the average IC50 values against P. falciparum D10 of the Trc C analogues 

decreased in the following sequence: (Tpc C, Trc B, Trc B1) > Trc C > Trc C1. All Trc C 

analogues had comparable haemolytic activity (Fig. 6.2B) therefore modifying activity of this 

group led to a modification of the selectivity index. 

Replacing Orn with Lys in the conserved VOLfP pentapeptide significantly decreased the 

activity of Trc C1 (cyclo[fPWwNQYVKL]), indicating that there is a preference for an Orn 
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above Lys in the sequence. This result correlated with the observations of Rautenbach et al. 
29

. 

Trc C and TrcC1 have Trp-Trp in the variable aromatic dipeptide unit and the replacement of D-

Trp
4
 with D-Phe

4
 to Trc B and B1 which have a Trp-Phe aromatic unit led to an increase in the 

activity. Phe and/or Lys contribute to tighter membrane binding and Trp and/or Orn amend this 

binding and limit peptide trapping in the membrane 
77

.  Lys with a butylene moiety in its side 

chain, has been shown to carry out “snorkeling” into membranes 
29,77,78

. The tighter membrane 

interaction will in this case lead to lower antiplasmodial activity. Substituting the larger and 

more rigid D-Trp residue with a greater hydrogen-bonding ability at position 4 by the relatively 

smaller and non-polar D-Phe resulted in an increase in activity. It indicates that activity in this 

series is determined by membrane interaction since Phe has been found to integrate the 

membrane deeper than Trp and also Phe has a greater lipophilicity compared to Trp 
73,74

. 

Peptides containing Phe will have a preference for the water-phospholipid interface and should 

be more active 
29,74,75,79

. As mentioned earlier a very tight membrane association does not always 

translate into better activity and there is need for an optimal amphipathicity which still allows for 

efficient membrane integration and self-assembly into active lytic complexes and/or 

translocation to an internal molecular target 
76,77

. However, the mutation of the Tyr
7
 in Trc C to 

Trp
7
 decreased the IC50 > 3-fold which indicates that Trp

7
 could be important in modulating 

antiplasmodial activity. This could also be more likely a sequence specific effect as the 

substitution of Tyr by Trp in Trc A to obtain Tpc A rather led to a loss of activity.  

The LC50 values towards COS-1 cells ranged from 6 to 42 µM, with the least toxic being 

synthetic Trc A having a Gln to Orn substitution (Fig. 6.2). The profile is quite similar to that 

obtained for haemolytic activity towards the infected human erythrocytes. 

6.5.1.3. Strain susceptibility  

The variability in terms of peptide preparation was eliminated at the onset of this study as stock 

peptide preparations were carefully prepared for each peptide and aliquoted to ensure 

repeatability. However, we observed variability in the IC50 values obtained on different assay 

dates to some of the Trc analogues (Fig 6.3), while the HC50 values, as well as the inhibition 

parameter data for the control peptide, GS were highly repeatable (Fig. 6.3). The results for GS 

antiplasmodial  activity towards the CQ sensitive P. falciparum D10 strain was similar to that 

obtained by Rautenbach et al. 
29

 towards the more CQ sensitive P. falciparum 3D7 strain. In 

order to eliminate any errors that may have occurred in parasitemia determination, the IC50 

values of all the peptides were normalised to that of GS as an internal standard. After 

normalising the data, similar variability was found (results not shown). Specifically, the more 

Stellenbosch University http://scholar.sun.ac.za



6.19 

active Trc A analogues: Trc A, TrcA1 and Phc A and the highly active Tpc C showed much more 

variability than the other Trc C analogues (Fig 6.3A).  

We observed that the IC50 values became higher as we persisted with the same parasite culture 

over time or used different starter cultures (Fig. 6.3B). From Figure 6.3B it can be observed that 

unlike Tpc C that demonstrated a steady decrease in activity over time towards the parasites, Trc 

A and Phc A had a reciprocal trend to each other while GS activity remained constant. It was 

assumed therefore, that such variability in the activity was specific to the Trc analogues and was 

culture derived, which correlated to observations made from previous studies in our group for 

chloroquine activity towards the chloroquine sensitive (CQS) P. falciparum D10 strain 
51

. 

Makowa
51

 determined that the synchronisation process which involves treating the cultures with 

5% v/v D-sorbitol solution induced the development of a CQ resistant (CQR) strain. It was 

hypothesised that a similar reason may account for the increased and variability of IC50 values 

observed for the Trc analogues. To test this hypothesis, we tested the activity of Trc A and the 

most active peptides (Trc B, Trc C, Tpc C and Phc A; IC50 < 250 nM) against the CQR strain P. 

falciparum Dd2 (Indochina).  
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Figure 6.3  Variability of IC50 values of Trc analogues obtained at different dates. A. Each 

shape represents a specific assay date. Blue symbols represent assays done in 

2010, unfilled squares: 2011, green symbols: 2012, black and red symbols 2013. 

Dotted line shows 250 nM B. Activity variability trends for peptides Trc A, Tpc C 

and Phc A. GS was included as reference compound. 

There was a significant decrease (2-18 fold) in activity against the CQR strain in comparison to 

the CQS strain for all the peptides, with degree of the decrease in activity as follows: Trc B > 

Phc A > Trc A > Tpc C > Trc C >> GS (Fig. 6.4A and 6.4B, Table 6.3). Therefore, the 

analogues with D-Phe at position 4 are more susceptible to the effect of CQ resistance in the Dd2 

strain than the analogues possessing D-Trp
4
. It is possible that the aromatic residue at position 4 

is relevant to the process of target interaction in the food vacuole and that the larger size and 
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lower lipophilicity of Trp compared to Phe 
73,74

 makes it less susceptible to mutations linked with 

CQ resistance in the Dd2 strain. GS, as expected had the least resistance index of one (Table 6.3) 

since its activity is linked to lysis of the erythrocyte membrane. The slight difference noticed 

could be due to different effects on the IEPM by the different parasite strains. GS, which has a 

predominantly lytic activity 
80,81

, was slightly less active against the Dd2 strain which could 

indicate that this strain may have a different effect on the erythrocyte membrane leading to the 

loss of the selective lytic activity of GS. This can explain some of the loss in activity of the Trcs 

and analogues. If a secondary target, other than the primary action of the Trcs on the erythrocyte 

membrane which is the first point of interaction, is also changed or the interaction with the 

peptides is limited this probably would lead to such a major loss in activity.   

  

 

 

 

 

 

 

 

  

Figure 6.4  Comparison of the activity of selected Trc analogues towards the chloroquine 

sensitive strain P. falciparum D10 and chloroquine resistant strain P. falciparum 

Dd2. A. Bars represent the average of 3-11 biological repeats (each consisting of 

triplicate technical repeats) and standard error of the mean. Parameter data are 

given in Addendum Table 6.9. Statistical comparison of activity towards the two 

strains was done with the student t-test (* P < 0.05; ** P < 0.01; *** P < 0.001). 

B. Direct comparison of IC50 against P. falciparum D10 and P. falciparum Dd2.  

Rautenbach et al. 
29

 suggested that such a putative target relies on the D-Phe
4
 of the aromatic 

dipeptide unit and Orn in the conserved pentapeptide. The 18-fold loss in activity of Trc B and 

10-fold loss in activity of Phc A is consistent with this hypothesis. The least affected peptide was 

Trc C with Trp
4
 in the aromatic dipeptide unit. However, Tpc C was also found to be about 4-

fold less active, similar to the 5-fold loss of Trc A activity. This similarity could be that the 

changes in the membrane target important for interaction and the putative internal target(s) has a 

differential influence on these analogues. These results further support our hypothesis (refer to 

Chapter 7 for more information) that at least for the most active Trcs there could be a parasite 
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target related to the digestive vacuole since the phenomena in the CQR strain that result in 

reduced accumulation of CQ 
82

 in the vacuole also affects the Trcs leading to loss in activity.  

According to Fidock et al. 
83

 CQ resistance arises due to: 

1) Change in CQ influx or efflux at the plasma membrane of the intra-erythrocytic parasite 
83

 

2) Change of H
+
 flux or CQ influx at the parasite’s food vacuole membrane 

84,85
  

3) Decreased access of CQ to its target, haematin which is produced in the food vacuole 

following haemoglobin digestion 
86,87

  

4) Enhanced detoxification of CQ-haematin complexes mediated by glutathione 
88

 

The molecules that have been suggested to be implicated in CQ resistance include P-

glycoproteins, a Cl
− 

channel regulator, a Na
+
/H

+
 cation exchanger, a food vacuole H

+
 pump, a 

trait that lessens CQ access to haematin, and glutathione S-transferase or a similar molecule 

implicated in heme detoxification 
83

. The main mutation that brings about CQ resistance is a 

Lys
76

 to Thr
76

 mutation in the PfCRT which is suggested to lead to a loss of a positive charge in 

a putative pore-forming transmembrane domain (in the food vacuole membrane) facilitating the 

escape of diprotonated CQ from the parasite’s food vacuole 
3,89

. It is known that some of the 

compounds that rely on the drug/metabolite transporter family, of which PfCRT is a member, are 

amino acids, weak bases and positively charged organic ions 
89

 as well as small peptides which 

are probably produced following degradation of haemoglobin in the food vacuole 
90

. Mutated 

PfCRT has been shown to directly transport the radio-labelled peptide YPWF–NH2 rich in 

aromatic amino acids 
91

. It is currently evident that PfCRT is also implicated in the resistance of 

P. falciparum to several antimalarial drugs such as quinine and quinidine 
92

 as well as changed 

susceptibility to amodiaquine 
93

, halofantrine and may be mefloquine 
94

.  

Another transporter protein found in the food vacuole membrane and known to contribute to CQ 

resistance is PfMDR1 (Plasmodium falciparum multi-drug resistance transporter 1). PfMDR1 

also known as Pgh-1 is the P-glycoprotein aforementioned 
83,95

 that is implicated in CQ resistant 

phenotypes 
90,93

 such as the CQR strain Dd2, a clone obtained from the CQR W2 strain first 

isolated from Southeast Asia
 96,97

. An Asn to Tyr substitution at position 86 in the PfMDR1 has 

been suggested to contribute to elevated CQ resistance in the Dd2 parasite as this was observed 

to completely change the substrate affinity of PfMDR1 from a quinine and CQ transporting 

ability to a halofantrine transporting function following expression of the gene in Xenopus laevis 

oocytes 
98

. The role of PfMDR1 in CQ resistance is suggested to involve diminished uptake of 

the drug into food vacuole due to mutations in the transporter 
90

. It is not certain what the 

physiological role of PfMDR1 is but speculations are taken from homologues of the protein in 

mammals and plants where they function in transport of lipids, ions and glucosides 
99,100

. There 
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is also evidence that PfMDR1 functions in transport of small peptides which arise from 

incomplete catabolism of haemoglobin from the food vacuole to the cytoplasm 
101

. The presence 

of an analogous MDR1 in mammalian cells led to cross-resistance to a synthetic tripeptide (N-

acetyl-leucyl-leucyl-norleucinal) 
102

, gramicidin D (15 residue linear peptide) 
103,104

 and 

valinomycin (a cyclic decapeptide) 
103

. These facts suggest that the Trcs may be among the 

substrates for the CQ transporters and may have an intracellular molecular target in the digestive 

vacuole. In a subsequent experiment, we also evaluated the activity of our Trc A preparation and 

the two newly evaluated and among the most active analogues towards P. falciparum D10 (Phc 

A and Tpc C) against the most CQ sensitive strain P. falciparum 3D7. The increased 

susceptibility to CQ of this strain was verified with an IC50 = 15 nM (in this study)  as opposed 

to IC50 = 56 nM in strain D10 and IC50 = 280 nM in strain Dd2 (established by Makowa 
51

) 

(Table 6.3). We observed that strain 3D7 showed higher susceptibility to Trc A, but similar 

susceptibility to Phc A and Tpc C relative to the D10 strain. Phc A had the lowest activity which 

was comparable to that of chloroquine (Table 6.3). 

Table 6.3  Differences in susceptibility of three strains of Plasmodium falciparum to Trc 

analogues with GS as reference peptide. All IC50 values are the means ± SEM in 

nM and numbers in brackets indicate the biological repeats, each with at least 

triplicate technical repeats. The resistance index is given as a ratio of activity 

against CQ resistant strain Dd2 to activity against CQ sensitive strain D10. 

Compounds 

tested 

Parasite strains  
P. falciparum 

3D7 

P. falciparum D10 P. falciparum 

Dd2 

Resistance index 
22

 

IC50Dd2/IC50D10 

Trc A 178 ± 9 (6) 383 ± 101 (11) 1920 ± 270 (3) 5 

Trc B nd 48 ± 17 (6) 848 ± 243 (3) 18 

Trc C nd 300 ± 85 (4) 642 ± 242 (3) 2 

Phc A 15 ± 4 (2) 52 ± 19 (10) 511 ± 96 (3) 10 

Tpc C 160 ± 31 (4) 94 ± 49 (9) 398 ± 94 (3) 4 

GS 1500 ± 160 (2) 1350 ± 137 (11) 1890 ± 149 (3) 1 

CQ  15 ± 0.11 (2) 56 ± 10 (2) 280 ± 18 (6) * 5 

* Value from Makowa 
51

  

The IC50 of Trc A at 178 nM was much higher that 0.58 nM obtained by Rautenbach et al. 
29

. As 

previously mentioned, this difference could be due to peptide preparation disparities. The 

activity of GS was quite consistent in all strains tested, which corroborates the hypothesis that 

the Trcs have an internal target(s) in P. falciparum. 
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6.5.2. Evaluation of antimalarial activity of tyrocidines in combination with chloroquine  

There is possibly at least one common mechanism of action between some of the Trcs and 

chloroquine as observed from the significant differences in the antiplasmodial activities of the 

most active Trc analogues against different strains of P. falciparum characterised by their 

susceptibility to CQ. We carried out similar 48-hour dose response assays using different 

combinations of Trc A, Phc A or Tpc C with chloroquine to evaluate for interaction between the 

compounds (Table 6.4) and the possible role of the peptide sequence in case of interaction. 

Table 6.4  Summary of the evaluation of the mode of in vitro interaction between 

chloroquine and Trc A, Phc A and Tpc C in different combinations towards CQ 

sensitive P. falciparum D10. FICs from activity in terms of growth inhibition as 

determined by Malstat assay and calculated FIC indices were obtained from three 

biological repeats of experiments done in triplicate.  

Peptide 
Combination ratio 

CQ:peptide 
CQ FIC Peptide  FIC 

CQ:peptide 

FIC index 

Is
o
b

o
lo

g
ra

m
 

sh
a
p

e 

Tyrocidine A 

0.15:12.50 1.77 ± 0.29 1.99 ± 0.36 3.76 ± 0.65 

C
o
n
v
ex

 

(a
n
ta

g
o
n
is

m
) 

0.10:25.00 0.66 ± 0.02 0.95 ± 0.18 1.60 ± 0.20 

0.05:37.50 0.13 ± 0.10 1.21 ± 0.29 1.35 ± 0.37 

Phenycidine A 

0.15:12.50 1.09 ± 0.03 2.44 ± 0.20 3.53 ± 0.22 

C
o
n
v
ex

 

(a
n
ta

g
o
n
is

m
) 

0.10:25.00 0.33 ± 0.15 2.82 ± 0.48 3.15 ± 0.33 

0.05:37.50 0.05 ± 0.02 0.49 ± 0.22 0.54 ± 0.23 

Tryptocidine C 

0.15:12.50 0.36 ± 0.07 0.90 ± 0.40 1.26 ± 0.36 

C
o
n
v
ex

 

(a
n
ta

g
o
n
is

m
)  

0.10:25.00 0.23 ± 0.08 1.24 ± 0.26 1.47 ± 0.28 

0.05:37.50 0.08 ± 0.03 0.93 ± 0.16 1.02 ± 0.17 

 

All three peptides tested were mostly only slightly antagonistic with chloroquine according to the 

shape of the isobolograms and the FIC indices i.e. 1 < FICI < 4 (Table 6.4). Tpc C had the least 

antagonistic interaction. However, the two Phe-Phe containing peptides Trc A and Phc A showed 

overt antagonism (FICI ~ 4) at 0.15:12.5 CQ:peptide ratio. One of the ways in which these 

peptides could antagonise CQ action is by interfering with the food vacuole membrane integrity 

and leading to leakage of CQ from the food vacuole; thereby limiting the accumulation of CQ 

that is essential to its antimalarial activity. It is also possible that the aromatic residues may play 
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a role in obstruction of PfCRT-mediated CQ uptake as previously observed for the transporter 

protein functionally expressed in oocytes of Xenopus laevis in the case of  the radio-labelled 

linear tetrapeptide YPWF–NH2 
91

.  

These results support the hypothesis that the Trcs and CQ may share at least one of their targets, 

such as the parasite food vacuole, and when both compounds are present in this target there is an 

antagonistic effect.  

6.6. Conclusion 

The RW-peptides had very weak antiplasmodial activity in general which was primarily non-

lytic. Optimal peptide hydrophobicity and membrane interaction favoured improved activity 

without increase in haemolysis particularly observed in the hexapeptide analogue 

cyclo[RRR(Bal)F(Bal)] in which the unnatural Trp analogue Bal (β-(benzothien-3-yl)-alanine) 

replaces Trp in the parent sequence cyclo(RRRWFW). However, increase in size and flexibility 

of the backbone ring in b3hW 
69

 diminishes the propensity of hydrophobicity to increase 

antiplasmodial activity. Their activity was however, less than that of the Trcs and they were less 

toxic to human erythrocytes than the Trcs. 

Generally, the Trcs showed potent antimalarial activity that was sequence specific and primarily 

non-lytic. The results confirm previous findings that natural Trc analogues had significantly 

higher antiplasmodial activity than GS 
29,70

. The activity of the Trcs in terms of the IC50 

(concentration that yields 50% growth inhibition as determined by the Malstat assay) ranged 

from 48 and 600 nM. A further prerequisite seems to be size and hydrogen bonding ability of 

residue 7 with Tyr and Phe preferred over Trp. Improved peptide selectivity was achieved in the 

Trc C library by the replacement of D-Trp
4
 with D-Phe

4
 in Trc C and TrcC1 that have Trp-Trp in 

the variable aromatic dipeptide unit. There was also a requirement for a Trp at position 7 for 

improved activity and selectivity. 

We observed a culture derived loss of susceptibility of the chloroquine sensitive strain 

Plasmodium falciparum D10 parasites that was sequence specific. This observation along with 

the correlation of CQ resistance in the Dd2 parasites with resistance to the Trcs as well as the 

antagonism between Trcs and CQ when present together especially at higher CQ concentration, 

supposed that the Trcs and CQ share a common intracellular target that is probably located in the 

food vacuole of the parasite. The aromatic residue D-Phe at position 4 and Orn in the conserved 

pentapeptide are probably involved in target interaction as previously proposed by Rautenbach et 

al. 
29

.  
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From the structure to activity relationship in all libraries we propose the following sequence as 

lead peptide for future antimalarial libraries: cyclo[VOLfP(Bal)fNQ(Bal)]. We suggest that 

including the Trp analogue Bal in the Trc structure could potentially improve the antimalarial 

activity, without increasing haemolytic activity as observed with the Arg and Trp-rich peptides. 
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6.8. Addendum 

Table 6.5  Summary of the P-values from the Newman-Keuls multiple comparison test 

percentage growth inhibition of Plasmodium falciparum D10 at 12.5 µM for 

Group 1 RW-peptides. The precise P-values are less than the limit value shown in 

table. “ns” denotes a P-value > 0.05 

 
c-b3hW c-WWW c-WIW c-1MeW c-5MeW c-Bal 

c-WFW ns ns ns 0.001 0.001 0.001 

c-b3hW 
 

ns ns ns ns ns 

c-WWW 
  

ns ns ns 0.05 

c-WIW 
   

ns ns ns 

c-1MeW 
    

ns ns 

c-5MeW 
     

ns 

Table 6.6 Summary of the P-values from the Newman-Keuls multiple comparison test 

percentage growth inhibition of Plasmodium falciparum D10 at 12.5 µM for 

Group 2 RW-peptides. The precise P-values are less than the limit value shown in 

table. “ns” denotes a P-value > 0.05 

 
c-WFW c-KW c-KWW 

c-WWW ns ns ns 

c-WFW 
 

ns 0.01 

c-KW 
  

ns 

Table 6.7  Summary of the P-values from the Newman-Keuls multiple comparison test 

percentage growth inhibition of Plasmodium falciparum D10 at 12.5 µM for 

Group 3 RW-peptides. The precise P-values are less than the limit value shown in 

table. 

 
c-WFW8 c-WFW10 c-WFW12 

c-WFW 0.001 0.001 0.001 

c-WFW8 
 

0.001 0.001 

c-WFW10 
  

0.05 

Table 6.8  Summary of the P-values from the Newman-Keuls multiple comparison test 

percentage growth inhibition of Plasmodium falciparum D10 at 12.5 µM for 

Group 4 RW-peptides. The precise P-values are less than the limit value shown in 

table. “ns” denotes a P-value > 0.05 

 
c-WRW c-WFW c-WWW 

c-WKW ns ns ns 

c-WRW 
 

ns ns 

c-WFW 
  

ns 
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Table 6.9  Summary of the growth inhibitory activity (IC50) of the purified tyrocidine 

analogues, Trc complex and GS toward the chloroquine sensitive (D10) and 

resistant (Dd2) strains of Plasmodium falciparum given in nM, the haemolytic 

activity (HC50) towards human erythrocytes and the cytotoxicity towards COS-1 

cells (LC50) are given in µM. Every value denotes the average of n biological 

repeats (number of repeats given in brackets), with 3 technical repeats per assay ± 

SEM given in 2 significant figures. 

Table 6.10  Summary of the P-values from the Newman-Keuls multiple comparison test on 

IC50 of Trc A analogues towards Plasmodium falciparum D10. The precise P-

values are less than the limit value shown in table. “ns” denotes a P-value > 0.05 

 
sTpcA Trc A Trc A1 sTrc AOMe3 Trc B sTrc A(Q-O) 

Phc A 0.001 ns ns 0.01 ns 0.001 

sTpc A 
 

0.001 0.001 0.001 0.001 ns 

Trc A 
 

 ns ns ns 0.001 

Trc A1  
 

 
ns ns 0.001 

sTrcA OMe3  
 

 
 0.01 0.001 

Trc B 
 

 
 

 
 

0.001 

Table 6.11  Summary of the P-values from Newman-Keuls multiple comparison test on IC50 

of Trc C analogues towards Plasmodium falciparum D10. The precise P-values 

are less than the limit value shown in table. “ns” denotes a P-value > 0.05 

 
Tpc C Trc C1 Trc C Trc B1 

Trc B ns 0.001 0.01 ns 

Tpc C 
 

0.001 0.01 ns 

Trc C1  
 0.001 0.001 

Trc C 
 

 
 

ns 

 

Peptides 

P. falciparum 

D10 

P. falciparum 

Dd2 

Human 

erythrocytes 
COS-1 cells 

IC50 ± SEM (n) IC50 ± SEM (n) HC50 ± SEM (n) LC50 ± SEM (n) 

Trc mix 80 ± 18 (5) 350 ± 96.0 (3) 5.8 ± 0.48 (6) 8.03  ± 1.8 (2)  

sTrc A(Q-O) 3800 ± 1030 (5) nd 44 ± 17.0 (3) 36.0  ± 5.9 (2) 

Trc C1 600 ± 23 (4) 1200 ± 280 (3) 4.6 ± 0.54 (5) 8.4 ± 0.24 (2) 

Trc C 300 ± 85 (4) 640 ± 240 (3) 7.8 ± 1.4 (3) 9.4 ± 0.62 (2) 

Trc B1 186 ± 35 (5) 560 ± 103 (3) 5.6 ± 0.79 (5) 7.7 ± 0.91 (2) 

Tpc C 94 ± 49 (9) 400 ± 94 (3) 9.1 ±  1.5 (4) 10.02 ± 0.29 (2) 

Trc B 48 ± 17 (6) 850 ± 240 (3) 4.8 ± 0.84 (4) 5.7  ± 0.51 (2) 

sTrc AOMe3 1200 ± 58 (3) nd 6.7 ± 0.56 (3) 11.0  ± 1.02 (2) 

Trc A1 390 ± 160 (7) nd 5.6 ± 0.52 (4) 7.4 ± 1.1 (2) 

Trc A 380 ± 101 (11) 1900 ± 270 (3) 6.1 ± 0.59 (5) 6.0 ± 0.32 (2) 

GS 1400 ± 140 (11) 1900 ± 150 (3) 6.2 ± 0.38 (9) 9.4 ± 0.32 (2) 

sTpc A 3600 ± 320 (5) nd 17.0 ± 7.5 (3) 12.00 ± 0.23 (2) 

Phc A 52 ± 19 (10) 510 ± 96 (3) 6.7 ± 1.9 (4) 7.6 ± 0.94 (2) 
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Chapter 7  

Investigation of tyrocidine and tryptocidine antiplasmodial 

mechanism of action using light and fluorescence microscopy 

7.1. Introduction 

The tyrocidines (Trcs) are cyclic amphipathic decapeptides produced through non-ribosomal 

synthesis as part of the tyrothricin complex by Bacillus aneurinolyticus 
1–3

. From the natural library 

of Trc isoforms, 28 cyclic decapeptide analogues have been identified and characterized 
4–9

. 

Previous work in our group revealed the antiplasmodial activity of the six major tyrocidines, Trc 

A/A1, B/B1, C/C1, which were shown to cause an inhibition of the development and life cycle 

progress of Plasmodium  falciparum and to have nanomolar range IC50 values (concentration that 

causes 50% growth inhibition 
10

) against the chloroquine (CQ) sensitive strains of  P. falciparum 

3D7 and D10 
11,12

. Successful manipulation of the Trc producer enabled us to obtain two more 

natural analogues in high purity namely phenycidine A (Phc A), thus named by our group, and 

tryptocidine C (Tpc C) 
12

 in which the Tyr residue at position 7 is substituted by Phe or Trp 

respectively (see Chapter 2 for details). These two peptides were shown to have comparable 

antiplasmodial activity and selectivity as the best of the previously evaluated natural analogues 

(refer to Chapter 6).  

Through structure-activity relationship (SAR) studies we identified structural prerequisites including 

hydrophobicity and size parameters that are most relevant in the antimalarial activity and selectivity 

of the Trcs with higher activity/selectivity recorded for smaller and more hydrophobic Trcs (this 

study and previous studies 
11,12

) except for Tpc C which seemed to have a particular sequence 

relevant for activity (this study). We aim to investigate the possible mode of action of this peptide to 

assess if it acts by a different mechanism as that suggested for the previously studied Trc A 
11

.  

Based on the relevant physicochemical properties relevant to activity it is possible to design peptide 

mimetics on the basis of the natural Trc peptide scaffolds as drug leads against malaria. In order for 

these mimics to specifically target the non-lytic antimalarial mode of action of the Trcs, as well as 

avoid the chloroquine cross-resistance (refer to Chapter 6) it is crucial to identify the possible targets 

of the Trcs, particularly as it could include a novel selective drug target. There is urgent need to 
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develop drugs with new targets that are less prone to resistance by P. falciparum as the imminent 

widespread resistance to artemisinin will be devastating since there is no successor drug in sight 13–

16
. Artemisinin is currently approved as the first line drug for the treatment of uncomplicated 

falciparum malaria by almost all malaria control programs all over the malaria-endemic world 
13

.  

The possible non-lytic modes of antimicrobial action of the Trcs include inactivation of the glucose 

dehydrogenase system which consequently affects metabolic activity as was observed in bacteria 

1,17
. Tyrocidine has been observed to specifically and reversibly interact with and inhibit 

acetylcholinesterase found in excitable membranes 18. A similar Trc inhibition was found with β-

galactosidase, a soluble cytoplasmic enzyme 
18

. Trcs are able to bind to DNA in the producer strains 

as non-specific repressors leading to inhibition of transcription 
19–21

, and their antimicrobial action 

could also involve a similar mechanism 
12

. The results from Chapter 6 demonstrated that resistance 

to CQ correlated with loss of Trc antiplasmodial activity and when both compounds were present 

there was an antagonistic effect. These observations supported the hypothesis that the Trcs and CQ 

may share at least one of their targets, such as the parasite food vacuole, as well as possibly a similar 

resistance mechanism. 

7.2. Material and methods 

7.2.1. Materials 

Tyrothricin (extracted from Bacillus aneurinolyticus), gramicidin S (from Brevibacillus brevis 

Nagano), and Corning Incorporated
®

 cell culture cluster non-pyrogenic polypropylene microtiter 

plates, bis-benzamide trihydrochloride (Hoechst stain) and trifluoroacetic acid (TFA, >98%) were 

obtained from Sigma (St. Louis, USA). All the chemicals used to prepare the RPMI-1640 culture 

media (RPMI 1640 medium, glucose, HEPES, albumax II, hypoxanthine, NaOH, gentamycin, and 

sodium bicarbonate), sodium lactate, potassium chloride, NaCl, L-lactic acid, nitro blue tetrazolium 

(NBT), phenazine ethosulfate (PES), 3-acetylpyridine adenine dinucleotide (APAD), D-sorbitol, 

Dulbecco’s modified Eagle’s Medium (DMEM),  0.4% trypan blue solution, and DNA interchelator 

Giemsa stain mixture were  obtained from Sigma-Aldrich (St. Louis, MA, USA). Sterile red 

standard cap 250 mL Cellstar tissue culture flasks, sterile Cryo.s PP tubes and sodium hydrogen 

phosphate were from Greiner Bio-One GmbH, Germany. Glycerol (AnalaR grade) was obtained 

from BDH Chemicals Ltd. Acetonitrile (ACN) (HPLC-grade, far UV cut-off) came from Romil Ltd. 

(Cambridge, UK). To obtain analytical grade water, water was filtered from a reverse osmosis plant 
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via a Millipore Milli-Q water purification system (Milford, USA). Ethanol (>99.8%) was supplied 

by Merck (Darmstadt, Germany). Culture dishes and 0.2 µm - 25 mm sterile cellulose acetate 

membrane syringe filters were obtained from Lasec (Cape Town, South Africa) and microtiter plates 

(NuncTM-Immuno Maxisorp) were from AEC Amersham (Johannesburg, South Africa). Falcon
®

 

tubes were from Becton Dickson Labware (Lincoln Park, USA). Foetal calf serum and penicillin–

streptomycin were from Gibco BRL (Gaithersburg, MD, USA). Sterile VacuCap
®
 90PF filter unit 

w/0.8/0.2 µm Supor® membrane was obtained from Pall Corporation (Pall Europe Ltd, UK). 

SYTO
®

 9 green-fluorescent nucleic acid stain and HCS LipidTOX™ neutral lipid stain were 

obtained from Invitrogen (Carlsbad, USA). Whole A
+
 blood stored in anticoagulant (citrate 

phosphate dextrose) containing enriched erythrocyte fraction in saline adenine-glucose-mannitol red 

blood cell preservation solution was donated by the Western Cape Blood services (or National 

Health Laboratory Services in South Africa). Asexual erythrocytic stage chloroquine sensitive 

(CQS) Plasmodium falciparum D10 cultures were benevolently supplied by Prof. Peter Smith from 

the University of Cape Town, Division of Pharmacology.  

7.2.2. Methods 

7.2.2.1. P. falciparum culturing procedure 

Culturing was carried out using normal sterile techniques according the methods of Trager and 

Jensen 
22

 and Lambros and Vanderberg 
23

. Refer to Chapter 6 for details. 

7.2.2.2. Evaluation of tyrocidine activity using light microscopy 

To determine the effect of the most active Trc analogue (according to IC50 from the antiplasmodial 

assay) on cultured P. falciparum and to assess its mode of action, the synchronised chloroquine 

sensitive cultures (D10 strain) at trophozoite stage (2% parasitemia, 1% haematocrit) were incubated 

with the drug at non-haemolytic concentrations 2-fold above its IC50 and evaluated using both light 

and fluorescence microscopy according to methods described by Rautenbach et al. 
11

 and Wiehart et 

al. 
24

 with modifications as described below. The mixture of Trcs (Trc mix) was also evaluated for 

comparison at a non-haemolytic concentration.  

For light microscopy, following addition of the peptides, aliquots were collected from the cultures at 

different time-points for preparation of Giemsa-stained blood smears. The assay was done in 

duplicate and lactate dehydrogenase activity of the residual cultures was determined after 48 hours.  
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Prior to staining for fluorescence microscopy, the cultures were centrifuged at 300×g for 4 minutes, 

then the supernatant was discarded and cells were suspended to the same percentage haematocrit in 

a solution made of one part  analytical quality water and three parts sterile PBS (pH 7.2-7.3) in order 

to reduce solute concentration. Bis-benzimide (Hoechst) (blue fluorescent membrane permeable 

DNA chelator) and trypan blue (red fluorescent membrane impermeable protein binding dye) in 

PBS (to final concentrations 1 µg/mL and 0.01% v/v, respectively) were added to the samples 

collected from the cultures at 1 hour and 5 hours post incubation with peptides for a trypan blue 

exclusion assay analysed by fluorescence microscopy. Aliquots (30 µL) of stained cultures were  

applied to wells of an 8 multi-well microscope dish and the images were acquired using an alpha 

Plan-Apochromat 100×/1.46 Oil DIC M27 Elyra objective and ZEN 2011 imaging software attached 

to a Carl Zeiss LSM 780 confocal microscope with Elyra S.1 super-resolution platform. Excitation 

was at 561 nm and 405 nm for the red fluorescent and blue fluorescent stains respectively using 

MBS-488/561/633 beam splitter for red and MBS-405 for blue. The emitted light was collected 

using a GaAsP detector.  

7.2.2.3. Evaluation of tyrocidine activity using fluorescence microscopy 

A second study using fluorescence microscopy involved staining suspended cultures prepared as 

described above (except for not being synchronised within the last 48 hours of culturing) with 

combinations of trypan blue (red fluorescence) and either SYTO® 9 green-fluorescent nucleic acid 

stain or LipidTOX™ neutral lipid stain (green fluorescence). To view the neutral lipids, the cells 

were stained with LipidTOX™ (stock solution dilution at 1:200), incubated for 30 minutes at room 

temperature before staining with trypan blue at final concentration of 0.002% v/v. For nucleic acid 

staining, the cells were stained with SYTO
®

 9 (stock solution dilution at 1:1000) and trypan blue at 

final concentration of 0.002% v/v and incubated at room temperature for 15 minutes. Super-

resolution structured illumination (SR-SIM) fluorescence microscopy was carried out as follows: 

thin (0.1 mm) z-stacks of high-resolution image frames were accumulated in 5 rotations using an 

alpha Plan-Apochromat 100×/1.46 oil DIC M27 ELYRA objective, employing an ELYRA S.1 (Carl 

Zeiss Microimaging) microscope equipped with a 488 nm laser (100 mW), 561 nm laser (100 mW) 

and Andor EM-CCD camera (iXon DU 885). Images were re-enacted using ZEN software (black 

edition, 2011, version 7.04.287) based on a structured illumination algorithm 
25

. Image projections 

and animations were carried out on reconstructed super-resolution images in ZEN.  
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7.3. Results and discussion 

Our antimalarial activity results revealed that Tpc C, which was investigated in high purity for the 

first time in this study, was among the most active and most selective analogues towards P. 

falciparum D10. Rautenbach et al. 
11

 had shown that the Trcs (notably Trc A) have a non-lytic 

mechanism of action which influenced parasite progress through the life cycle. In order to find out if 

this observation applied to Tpc C, we employed the peptide at 200 nM which is about 2×IC50 but 

still sub-haemolytic (Fig. 7.1A) to observe the influence on parasite life cycle progress using light 

microscopy (Fig. 7.2C). This concentration will lead to overt antimalarial activity within the parasite 

population without haemolytic activity to allow visualisation through microscopy The concentration 

initially corresponded to about 10×IC50 for the more susceptible parasite cultures (see Fig. 6.3, 

Chapter 6) and was maintained even when we observed more resistant cultures. The Trc mix, which 

showed a similar dose-response and selectivity to Tpc C (Figs. 7.1B), was included for comparison 

at sub-haemolytic concentrations of 200 ng/mL (2×IC50) in assessing the influence of peptide 

treatment on the parasite stage (Fig. 7.2B).  
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Figure 7.1  Representative dose-response curves for antiplasmodial activity against P. falciparum 

D10 (using the Malstat or lactate dehydrogenase activity assay) and haemolytic 

activity to infected human erythrocytes of A. Tpc C and B. Trc mix. Each data point 

represents the average ± SEM of 3-6 biological repeats for each assay done in 

triplicate. The activity parameters IC50 (concentration that leads to 50% growth 

inhibition) and HC50 (concentration that leads to 50% erythrocyte lysis) for each 

peptide are indicated on each graph. 
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7.3.1. Effect of tyrocidine and tryptocidine on intra-erythrocytic life cycle parasite stages 

7.3.1.1. Light microscopy observation of life cycle progression 

Following the determination of the parasitemia through Giemsa staining and light microscopy, we 

observed that there was a delay in the occurrence of the schizont stage for the peptide-treated 

cultures. Whereas in the untreated cultures (Fig. 7.2A) the schizonts were observed from 12 hours 

post incubation, they were only seen after 24 hours in the treated cultures (Fig. 7.2B and C).  

It is, however, possible that schizont only occurred between 12 to 24 hours in the treated cultures 

because ring stage parasites appeared at 24 hours post incubation for all cultures though at lower 

parasitemia for the treated cultures compared to the untreated ones (Figs. 7.2B and 7.2C). This 

might have affected the turnover into trophozoites at the end of the 48 hour incubation resulting in 

the pronounced difference in parasitemia observed between treated cultures and untreated cultures. 

The Malstat assay performed on the residual cultures indicated that 200 nM corresponds to 60-70% 

inhibition of parasite growth for the treated cultures (not shown). Rautenbach et al. 
11

 observed a 

high difference in parasitemia between cultures treated with either Trc A or C1 compared to 

untreated cultures after 21 hours of incubation. In their work, they indicated that the Trcs did not 

affect progression from starter ring cultures to trophozoite stage although the morphology of the 

resulting trophozoites seemed abnormal. In accordance with this, in the present study the parasites 

progressed from rings to trophozoite after 24 hours but the parasitemia gradually declined 

suggesting a slow cytocidal rather than a static effect of the peptides on the parasites 
11

. 

7.3.1.2. Confocal fluorescence live-cell imaging for membrane integrity and DNA packing 

In a bid to examine if the peptides affected the nuclear material of the parasites as was previously 

suggested for Trc A 11, cultures at trophozoite stage treated with Tpc C and Trc mix at 2 × IC50 were 

observed using fluorescence microscopy 1 to 6 hours post incubation. Trypan blue, a membrane 

impermeable dye, was used as a marker for cell leakage 
11,24

 while bis-benzimide, a membrane 

permeable DNA marker, was used to stain the parasite’s nuclear material  
12

. In agreement with 

previous studies 
11

, there was no difference in the permeability of erythrocytes’ and parasites’ 

membranes to trypan blue between the treated  (with either Tpc C or Trc mix) and the untreated 

cultures after up to 6 hours incubation. This indicates that at this concentration neither the 

erythrocyte nor parasite membranes were compromised.  
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Figure 7.2 Distribution of trophozoite, schizont and ring parasite stages over time from 0 to 48 

hours following treatment of synchronised P. falciparum D10 cultures at trophozoite 

stage incubated without (control) (A) or with 200 nM of tryptocidine C (Tpc C) (B) 

or 200 ng/mL tyrocidine mixture (Trc mix) (C).Each data point represents the mean ± 

SEM of parasite counts made within 8-13 regions from 2 biological repeats.  
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Figure 7.3  Fluorescence microscopy images 

P. falciparum 

fluorescent dye trypan blue (red) and the nucleic acid fluorescent stain 

(blue). A, B and

tryptocidine C-

treated cultures after 6 hours incubation; 

after 6 hours of

plasma membrane (IEPM)

The white arrow in 

delineates the nuclear membrane in the parasite. 

stained nuclear material.

A 

D 

G 

7.8 

Fluorescence microscopy images of unsynchronised late intra

 D10 stained with protein binding and membrane impermeable

fluorescent dye trypan blue (red) and the nucleic acid fluorescent stain 

and C are images of control culture with no peptide added; 

-treated cultures after 3 hours incubation; 

treated cultures after 6 hours incubation; G, H, and I show

of incubation. The yellow arrow in A shows the 

plasma membrane (IEPM) and white arrow in A indicates 

arrow in B shows vacuolar membranous structures. White arrow head in 

delineates the nuclear membrane in the parasite. The yellow arrow in 

stained nuclear material. 

B C 

E F 

H I 

 

 

 

intra-erythrocytic stages of 

D10 stained with protein binding and membrane impermeable 

fluorescent dye trypan blue (red) and the nucleic acid fluorescent stain bis-benzimide 

no peptide added; D shows 

E and F tryptocidine C-

show Trc mix-treated cultures 

shows the infected erythrocyte 

 the parasite’s membrane. 

shows vacuolar membranous structures. White arrow head in E 

ellow arrow in F shows the 
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We also observed that the nuclear membrane of the parasite was not damaged as confirmed by the 

confinement of the parasites’ nuclear material within the nucleus as stained by bis-benzimide. 

Therefore, Tpc C similar to Trc A, as suggested by Rautenbach et al. 
11

, also acts by a non-lytic 

mechanism of action which slowly inhibits maturation of P. falciparum. In some of the images taken 

for the treated samples, we observed some abnormality in the packing or compactness of the 

chromatin (Fig. 7.3F and 7.3G) which could suggest that this is the consequence of the Tpc C 

activity. Tpc C is rich in Trp residues and it is known that Trp can interact with DNA 26. We decided 

to use a more sophisticated technique of super-resolution structured illumination microscopy (SR-

SIM) to view the nuclear material at higher resolution. 

7.3.1.3. Super-resolution structured illumination (SR-SIM) fluorescence microscopy  

For the SR-SIM we only investigated the effect of the pure peptide Tpc C on the parasite’s nuclear 

material using trypan blue as membrane impermeable dye (red) and SYTO® 9 (green) as membrane 

permeable nuclear stain. The results confirmed those in Section 7.3.1.2, but improved on the image 

quality and details observed. There was a deformation of the parasite/nuclear membrane (Fig. 7.4F) 

with change in the compact nature of the nuclear material (Fig. 7.4F-H). In addition we also 

observed that unlike the discrete segregated distribution of chromatin seen in the untreated schizont 

(Fig. 7.4E), in the treated samples there seemed to be a loss of the uniform segregation and 

morphology of the chromatin (Fig. 7.4J). This could mean that some of the merozoites derived from 

this schizont will not be viable and could explain the gradual decrease in parasitemia that was 

observed in Section 7.3.1.1. A similar effect on schizont chromatin morphology has been observed 

with GS 
11

 and Trc A 
27

 treatment in previous studies by our group . Fluorescence microscopy of a 

labelled form of the cationic dimeric peptide ∆Fd allowed for the observation of its ability to cross 

the IEPM, the parasitophorous vacuolar membrane (PVM), the parasite’s plasma and nuclear 

membranes to interact with DNA of the parasite 
28

. Pre-maturely released schizonts following 

treatment with ∆Fd contained knobs of amplified DNA lacking the typical symmetric rosette 

appearance which could not be able to proliferate into merozoites to reinvade new host cells 
28

. 

These results and previous results from our group11,27 suggested that the Trcs and Tpc C could act in 

a similar manner. 
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Figure 7.4 Super-resolution structured illumination fluorescence microscopy images of late 

intra-erythrocytic stages of P. falciparum D10 stained with the membrane 

impermeable fluorescent dye trypan blue (red) and the permeable nucleic acid 

fluorescent dye SYTO
®

 9 (green). Images A, B, C, and D show untreated normal 

trophozoites and E a normal schizont. Images F, G and H show Tpc C-treated 

trophozoites (post 6 hours treatment) and I and J show Tpc C-treated schizonts (post 

6 hours treatment). 

Apart from overt changes in parasite morphology, we also observed some abnormality in the shape 

and compactness of a dark structure thought to be the haemozoin crystal in the treated samples (Fig. 

7.5). Unlike in the untreated sample, in some instances only observed in the treated samples there 

were dense dark elongated structures (Fig. 7.5) rather than round and uniform dark structures 

observed in the control samples (results not shown). Spathelf  
12

 noticed that the size of the 

haemozoin crystal was smaller in Trc A-treated parasites after 24 hours incubation compared to 

normal cultures. This suggested a compromise in the parasite’s ability to form haemozoin which 

could favour toxicity by heme following the parasite’s digestion of haemoglobin 12. Chloroquin has 

also been observed to cause the clumping of haemozoin crystals 
29–31

.  

 

D E A B C 

F G H I J 
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Figure 7.5 Super-resolution structured illumination fluorescence microscopy images 

intra-erythrocytic stages of 

impermeable fluorescent dye trypan blue (red) and the permeable nucleic acid 

fluorescent dye 

indicating changes in 

Processed image of 

indicate haemozoin crystals,

  

A 

C 

7.11 

resolution structured illumination fluorescence microscopy images 

erythrocytic stages of P. falciparum D10 stained with the membrane 

impermeable fluorescent dye trypan blue (red) and the permeable nucleic acid 

fluorescent dye SYTO
®

 9 (green). A and B show wide-field images with 

changes in parasite morphology after addition of Tpc

Processed image of A showing close up view of dark elongated 

indicate haemozoin crystals, within or close to the nuclear material mass.

 

B 

 

 

resolution structured illumination fluorescence microscopy images of late 

D10 stained with the membrane 

impermeable fluorescent dye trypan blue (red) and the permeable nucleic acid 

field images with arrows 

after addition of Tpc C to cultures. C. 

elongated particles, which could 

nuclear material mass. 
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7.3.2. Visualization of the effect of tryptocidine C on parasite neutral lipids  

Due to the possibility that the molecular target for the Trcs is located in the food vacuole as 

suggested by increased resistance of CQ resistant P. falciparum to the Trcs and the antagonism 

observed when both compounds were present, it can be suggested that this non-lytic mode of action 

involves heme toxicity as is the case for chloroquine. It has been suggested that haemozoin crystals 

in the malaria parasite are associated with neutral lipid droplet-like structures 32 within the food 

vacuole and that these lipid droplets along with phospholipid membranes are involved in the process 

of heme crystallisation both in vivo and in vitro 
32–38

. In an attempt to have a closer look at the food 

vacuole we used a SR-SIM method to visualize the effect of Tpc C on the neutral lipid accumulation 

using the green fluorescent LipidTOX™ neutral lipid stain.  

We observed that most of the neutral lipids accumulated in the intra-erythrocytic cellular space 

possibly part of the parasites’ membranes. The morphological details observed were unlike any yet 

described to the best of our knowledge and interpreting them is not within the scope of this project. 

Notably, the regular and symmetric shape of the lipid structures (Fig. 7.6A-I) was distorted after 

treatment with Tpc C (Fig. 7.6J-R).  

A striking increase in phospholipid and neutral lipid content has been reported as one of the main 

changes that occur following malaria infection of human erythrocytes 
39–43

. This increase in lipid 

content is geared towards synthesising the complex membranous system of the Plasmodium-infected 

erythrocyte 
39

. Our results agree with the observation that neutral lipids are previously not detectable 

in uninfected red blood cells 
39,40,43

 as we only saw the stained lipids within infected erythrocytes. 

The neutral lipids are said to include fatty acids, diacylglycerol and triacylglycerol which are closely 

associated with the food vacuole originating from the digestion of phospholipids of transport 

vesicles used for haemoglobin ingestion 38
. The formation of the neutral lipid structures depends on 

the stage of the parasite and peak during the mid- and late-trophozoite stages 
42

 which will justify 

the stage selective activity of the Trcs which is more active towards trophozoites and schizont stages 

11,27
. The lipid structures observed in this study seemed to extend from the parasite to the erythrocyte 

membrane and may thus not be limited to neutral lipid bodies within the food vacuole.  
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Figure 7.6 Super-resolution structured illumination fluorescence microscopy images of late 

intra-erythrocytic stages of P. falciparum D10 stained with trypan blue (red) and 

neutral lipid binding fluorescent dye LipidTOX (green). Right panel shows images 

with trypan blue stain alone while left panel shows images with LipidTOX alone. 

Middle panel are resulting images from super position of both. Images A-I show 

control cultures (no peptide added) and images J-R show cultures treated with Tpc C 

after 5 hours.  

A B C 

F D E 

G I G H 

J K L 

M N O 

P Q R 

Stellenbosch University http://scholar.sun.ac.za



7.14 

 

The parasite is also known to induce the formation of an interconnected network of turbovesicular 

membranes within 33 hours post-infection which indeed runs from the parasites vacuolar membrane 

to the erythrocyte membrane and are involved with transport of nutrients to the parasite such as 

nucleosides and amino acids 
44

. All these vital roles played by the neutral lipid membranous 

structures could be interfered with as a result of change in their morphology that was observed 

following treatment with the membrane active Tpc C. It has been suggested that the mode of 

antimalarial action of CQ and other quinolines involves entry into the neutral lipid 

microenvironment which interferes with the heme crystallisation process that is facilitated by the 

complex neutral lipid mixture 
32

. This could explain the observed antagonism between the Trcs and 

CQ if they compete for interaction with the neutral lipid structures. Otherwise the Trcs could 

interfere with haemoglobin ingestion and or heme crystallisation by disturbing the network of 

membranes made of neutral lipids. This can also interfere with the transport of other vital nutrients 

to the parasite and indirectly be fatal to the parasite over time. A link can be made between the 

observed halt in the life cycle caused by the Trcs and observed damage of the turbovesicular 

network as the same link was purported to account for the cell-cycle arrest caused by monoclonal 

antibodies to the cell surface protein Plasmodium falciparum 60S stalk ribosomal acidic protein P2 

(PfP2) (PFC0400w) 45.  

7.4. Conclusion 

Following light and fluorescence microscopic observation of tyrocidine and tryptocidine treated 

Plasmodium falciparum D10 cultures we were able to observe and propose as possible 

tyrocidine/tryptocidine targets: the disorganisation of chromatin that could account for halted growth 

in late trophozoite/early schizont stage, as well as disorganisation of neutral lipid structures that 

could account for change in the uniform appearance of the haemozoin crystal. The latter supports 

the previous hypothesis that the Trcs and chloroquin have a common target in the malaria parasite. 
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Chapter 8  

Summary, conclusions and outlook 

8.1. Introduction  

In this study we set out to characterise small cyclic peptides with antilisterial and antimalarial 

activity. Focus on the two microbial targets Listeria monocytogenes and Plasmodium falciparum 

stems from the fact these are both intracellular pathogens which are the causative agents of 

listeriosis and malaria respectively, each a threat to public health 
1–5

. The burden due to these 

two diseases is exacerbated with the development of resistance by the pathogens to all currently 

available drugs, which is probably favoured by their intracellular localisation. Antimicrobial 

peptides (AMPs) have been found to have the propensity to interact with cell membranes and 

reach intracellular targets and their positive charge also makes them quite selective for the 

negatively charged microbial surfaces in contrast to the zwitterionic mammalian cell surfaces. 

Hence AMPs are a possible source of a new class of drugs against drug resistant microbes. The 

interest in small cyclic peptides over their linear counterparts is due to improved stability, 

resistance to proteolytic degradation, receptor selectivity, better bioavailability and available 

conformational proximity for receptor binding 
6,7

. There is a need to extensively refine the 

relationship of the structure of these peptides to their antimicrobial activity which will allow for 

the development of drug leads based on the structural pre-requisites derived from these studies. 

Two libraries of small cyclic peptides were considered in this qualitative structure to activity 

relationship (QSAR) and mode of action (MOA) studies namely the tyrocidines and Trp/Arg rich 

cyclic peptides (RW-peptides). Given that up to 28 natural tyrocidines 
8
 have been identified and 

that other investigators have successfully synthesized unnatural tyrocidine analogues with 

promising activity 
9
, we extended the library of tyrocidine analogues tested against Listeria 

monocytogenes and Plasmodium falciparum in order to establish the structural motifs and pre-

requisites required for optimal activity and selectivity. We have for the first time determined the 

antimicrobial activity of three previously identified tyrocidine (Trc) analogues namely 

phenycidine A (Phc A), tryptocidine C (Tpc C) and tryptocidine A (Tpc A), with the former two 

obtained in high purity (>90%) through selective amino acid supplementation of Bacillus 

aneurinolyticus (formerly called Bacillus brevis), cultures while the latter was chemically 

synthesised. Two new synthetic Trc A analogues, one in which the charged ornithine residue was 

trimethylated and the other bearing two ornithines due to the substitution of glutamine by 
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ornithine, were also evaluated. The motivation for determining the antimicrobial activity of new 

Trc analogues was the fact that in previous studies the antimicrobial activity of the Trcs unlike 

their membranolytic activity had been linked to the identity of some variable residues within the 

structure of the related six major analogues isolated from commercially available tyrothricin 

notably three residue positions Trp
3,4

/Phe
3,4

 and Lys
9
/Orn

9
 

10–12
. This study also sought to use 

new techniques to verify certain proposed theories on the mechanism of action of the Trcs 

towards L. monocytogenes and P. falciparum which could facilitate rational design of more 

active and selective drug leads.  

Furthermore, the availability of a library of synthetic AMPs which share the cyclic, aromatic and 

cationic character of the Trcs, but lack their high membranolytic activity generated interest to 

also test these peptides so as to identify the structural pre-requisites that could be transferable to 

the Trc library to improve selectivity. We established for the first time the antilisterial and 

antimalarial activities of this library of short, cyclic peptides RW-peptides. These peptides could 

also serve as scaffold for the development of lead peptides against the two pathogens of interest.  

8.2. Summary of findings and future prospects 

8.2.1. Production of selected natural Trcs 

We identified the need for efficient strategies to produce the rare and potentially useful natural 

Trc analogues in sufficient amounts and purity for bioactivity analyses and physicochemical 

characterisation so as to improve their inherent activity or bring about new activities. Past studies 

found Trc production by B. aneurinolyticus to be governed by nitrogen supplementation with 

urea 
13

 and amino acids 
14–16

 and established that B. aneurinolyticus ATCC 8185 is an ideal strain 

to principally produce Trcs with little or no gramicidins 
17

. Based on this knowledge coupled 

with the low specificity of the enzyme systems in charge of incorporating some structurally 

related amino acids 
14

, we were successful in obtaining high yields of three analogues namely 

Trc A, Phc A and Tpc C in high purity (Chapter 2). Using preparative HPLC, the natural Trcs 

were obtained at >90% purity as determined by analytical HPLC, UPLC-MS and ESMS either 

from the commercial extract of from the extracts of manipulated cultures. The high purity 

achieved was very important for the analysis of their structure (Chapter 2), biological activity 

and qualitative structure to activity relationships (QSAR) (Chapter 3 and 6).  

There is potential in employing this strategy for the production of other rare peptide analogues 

although some factors will have to be closely examined that we found could potentially affect the 

output namely strain of bacterial culture, depth of culture flasks and aeration, concentration of 
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amino acids as well as interaction between certain amino acids. For the latter it will be of interest 

to use cell-free enzyme extracts in future studies to produce rare peptides with modified residues. 

For example we have identified a few unnatural analogues (Bal, 5MeW and 1MeW) of the 

relevant amino acid tryptophan which improved the antimicrobial activity of the RW-peptides 

and which could be incorporated into the structure of the most active Trcs in place of the 

aromatic residues. It will be cost effective and sustainable to produce these analogues using the 

natural enzyme synthetase system rather than through chemical synthesis 
18

 
19

 during which other 

agents are added that could interfere with the critical self-assembly mechanism of the peptides 

and disturb their antimicrobial activity. Previously Fujikawa et al. 
20

 succeeded in using the 

partially purified Trc synthetase enzyme preparation of B. aneurinolyticus ATCC 8185 to 

introduce unnatural amino acids like 5MeW, p-fluorotryptophan, thienylalanine and p-

fluorophenylalanine into the structure of tyrocidines. 

8.2.2. QSAR of antilisterial activity of small cyclic peptides  

After obtaining the libraries of small cyclic AMPs in high purity we determined certain 

physicochemical parameters related to the structure of the analogues. This was done 

experimentally (Chapter 2 for the Trcs) through analytical HPLC for the retention time on the 

C18 column (hydrophobicity/amphipathicity parameter) and ESMS for the molecular mass (Mr) 

(steric parameter)  or through in silico molecular modelling (Chapter 2) to determine the 

molecular volume (MV), solvent accessible surface area (SASA) and solvent accessible volume 

(SAV) (all size/steric parameters) as well as through computation of the side chain surface area 

(SCSA), MV, lipophilicity, hydrophobicity, hydropathy and interphase properties of the 

analogues from theoretical values of the constituent amino acid residues. These parameters were 

then correlated to activity parameters from antilisterial assays namely the IC50, ICmax, ICF and the 

newly coined activity product (AP) for the Trcs; A25 (percentage inhibitory activity at 25 µM) 

and A100 (percentage inhibitory activity at 100 µM) for the RW-peptides. We decided to include 

the composite parameters ICF (IC50/ICmax) and AP (IC50 × ICmax) in our analyses to improve 

selection of the most active Trc analogues, while still incorporating conventional inhibition 

parameters. 

As was previously established 
11

 we also found that the Trcs have potent activity with 

drug/disinfectant potential, especially against leucocin A resistant Listeria monocytogenes (B73-

MR1) (Chapter 3 Part I).   The activity of these decapeptides was found to be highly dependent 

on an amphipathic balance. QSAR analysis combined with principal component analysis showed 

the best activity correlation with hydropathy, hydrophobicity and interphase properties 
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(hydrophobicity parameters), SASA, SAV, Mr and molecular volume (MV)  (steric/size 

parameters), coupled with rigid sequence and charge prerequisites. For potent activity against 

Listeria monocytogenes strains, there is a prerequisite for a Tyr or Phe in the 

(W/F)(w/f)NQ(Y/F/W) sequence of the variable pentapeptide and ornithine (Orn, O) as cationic 

residue in the conserved V(K/O)fP pentapeptide, particularly with Trp in the aromatic dipeptide 

moiety of the variable pentapeptide. The roles of Trp and Orn in the Trcs were confirmed with 

the most active peptide, tyrocidine B (Trc B) containing Orn and a Trp-D-Phe in the aromatic 

dipeptide moiety. However, a novel analogue with a trimethylated ornithine and Phe-D-Phe 

showed an activity rivalling that of Trc B. It was also found that an analogue with two positive 

charges (Gln to Orn) lost activity against L. monocytogenes, indicating that increase electrostatic 

interaction may impede activity or that Gln is an important residue in the tyrocidine structure for 

antilisterial activity. Our results emphasised that activity is dictated by interplay between the 

character of the aromatic residues in the variable pentapeptide and the cationic residue. Any 

residue change resulting in tighter membrane/cell wall interaction is likely to trap tyrocidines and 

impede their mechanism of action. With the results from the QSAR of Trcs we can predict the 

following lead peptide structure for future libraries cyclo[VOMe3LfPWfNQ(Y/F)]. 

Our findings on the antilisterial activity of the RW-peptides closely agreed with previous studies 

on their activity towards other Gram-positive bacteria. We also found relevant to their activity 

the clustering of the aromatic and cationic residues, a ring size of six amino acids and Arg 

instead of Lys as charged residue (Chapter 3 Part II). As with the Trc library, we found that the 

hydrophobicity of aromatic residues and an amphipathic structure is critical for antilisterial 

activity of AMPs and that there exists an optimal balance between peptide size and 

hydrophobicity/amphipathicity for maximum activity and selectivity. 

The two target strains of L. monocytogenes are different in their cell wall 
21

 and membrane 

composition 
22

, as well as metabolism 
23

 and their susceptibility or resistance to the class IIa 

bacteriocin leucocin A. Most of the cyclic peptide tested showed higher activity against the 

lecucocin A resistant strain. We also demonstrated for the first time that for the peptides to 

specifically target L. monocytogenes B73-MR1 (resistant strain) a small hydrogen bonding 

aromatic residue is a pre-requisite in the peptide structure. 

8.2.3. Salt sensitivity and tolerance of antilisterial activity of the cyclic peptides 

Previous work by Spathelf  
12

 established that at 7.5 mM CaCl2 induced a change in the MOA of 

the Trcs towards L. monocytogenes from a primarily lytic to a non-lytic mechanism. Analysis by 

our group indicated a change in Trc structure, possibly due to a chaotropic effect of metal 
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chloride salts especially MgCl2 and CaCl2 on the Trcs 
12

 (personal communication Dr B. 

Bhattacharya). Given that L. monocytogenes is a food-borne pathogen and that the antimicrobial 

activity of AMPs along with the currently recognised food preservative nisin is affected by the 

presence of salts 
24, 25

, it was important to verify this phenomenon and identify the parameters 

that contribute to it. This information would be useful for Trcs to be considered as a new source 

of bio-preservative to protect from L. monocytogenes which is a food safety threat 
26

. We 

investigated the relationship between peptide structures with the effect of CaCl2 among other 

metal chloride salts. To verify the effect of peptide structure, we evaluated the most active Trc 

analogues towards L. monocytogenes in comparison with the known lytic GS and non-lytic RW-

peptide analogues. We also confirmed the effect of divalent cations by including a metal chelator 

EDTA in the assays and investigated the mode of action using novel techniques. The novel 

techniques employed included high throughput spectrofluorimetry, fluorescence spectroscopy 

and photon correlation spectroscopy also making use of Gram-positive model membrane vesicles 

as well as CellTiter-Blue
TM

 reagent which allowed us to determine the anti-metabolic activity of 

the peptides.  

The Trcs were found to be salt tolerant as they maintained their activity towards Listeria 

monocytogenes in the presence of selected chloride salts of earth (MgCl2, CaCl2) and alkali 

(NaCl, KCl) metals. The Trcs and gramicidin S lead to an increase in membrane permeability of 

the listerial cells, confirming their predominantly membranolytic mode of action. However, pre-

incubation of the Trcs with CaCl2 significantly decreased their ability to permeabilise listerial 

membranes, but conversely increased their inhibition of actively metabolising listerial cells. This 

indicated a calcium-dependent change to a non-lytic Trc MOA and target. The non-lytic MOA 

may be related to the inhibition of a key component in cell respiration by the tyrocidine-Ca
2+

 

complex and/or a combination of increased Ca
2+

 availability modulating L. monocytogenes 

transition from a saprophyte to intracellular pathogen and tyrocidine acting on an sensitive target 

involved in metabolism. We determined that a small aromatic residue (Phe or Tyr) in position 7 

is important for the calcium dependent increase in antilisterial activity. It was also found that 

calcium-induced change in the interaction of D-Trp
4
 that would be directly involved in the 

membranolytic activity of the Trcs could explain how Ca
2+

 brings about the observed decreased 

membranolytic activity of Trcs. Future studie will involve elucidation of the calcium-dependent 

MOA of the Trc and identification of the target(s). 

In this study confirmed that additive agents for formulations, namely, EDTA or CaCl2, to would 

increase the antilisterial potency of the Trcs in their role as bio-preservatives. We also found salt 

tolerance and that use of the Trcs in a high salt environment such as during food processing will 
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not interfere significantly with their activity. Future studies in which these preparations of Trcs 

would be applied to infected food samples to determine the effect of other parameters such as 

food texture as well as use of Trcs in combination with other food preservation techniques 

(hurdles 
27,28

) are recommended. 

8.2.4. Antimalarial activity of small cyclic peptides 

Activity of our peptide libraries towards the second target intracellular pathogen chloroquine 

(CQ) sensitive P. falciparum D10 was investigated through growth inhibition assays (Chapter 6) 

to determine activity parameters for QSAR analyses. However, this goal was complicated by the 

discovery of culture derived decrease in susceptibility of the parasites towards our most active 

peptides, the Trcs (Chapter 6 Part II). Nevertheless, we once again observed that the Trcs were 

more active than the RW-peptides and that peptide hydrophobic membrane interaction 

propensity was relevant to activity. For this reason the aromatic residues were found to also 

determine antiplasmodial activity with preference found for smaller and more lipophilic residues 

(Tyr and Phe). However, we demonstrated for the first time potent antimalarial activity of a 

purified tryptocidine, namely Tpc C, which have a specific amino acid sequence rich in Trp 

residues. From evaluation of the RW-peptides, we once more identified the Trp analogue Bal as 

being positive in improving activity without increase in cytotoxicity. This residue can be 

incorporated into the Trc scaffold in future libraries for improved selectivity. We also confirmed 

that the RW-peptides do not act primarily through membrane lysis due to their very low 

cytotoxicity to mammalian cells (erythrocytes and COS-1 cells) (Chapter 6 Part I). Thus, a 

possible lead peptide for increased selectivity and antimalarial activity would be 

cyclo[VOLfP(Bal)fNQ(Bal)]. 

The culture derived loss of Trc susceptibility indicated a shared intracellular target between the 

Trcs and CQ for which research in our group had observed a similar phenomenon brought about 

by the use of D-sorbitol to synchronize cultures 
29

. Our hypothesis was confirmed by the loss of 

activity observed when the Trcs were tested against the CQ resistant P. falciparum Dd2, as well 

as by the antagonism of the two compounds when tested together (Chapter 3 Part II). Light and 

fluorescence microscopy were employed to further investigate the MOA of the Trcs towards P. 

falciparum. These studies revealed that the Trcs and Tpc interrupted life cycle progression of the 

parasites through the observed Trc induced change in chromatin packing or morphology of 

neutral lipid structures associated with the parasites. Given the central role played by neutral 

lipid vesicles in heme crystallisation 
30–36

, we hypothesise that the Trcs/Tpc interfere with 

haemozoin crystal formation as a shared target with chloroquine explaining the correlation 
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between loss of activity of peptides and chloroquine resistance as well as antagonism when both 

are present.  

Future studies to verify this hypothesis are needed such as biophysical characterisation of the 

effect of Trcs on in vitro heme crystallisation to haematin within neutral lipid environments  
30–

32
, as well as identifying the Trc target(s). 

8.3. Last word 

By comparing libraries of peptides with related structures we were able to identify structural 

parameters and particular amino acid residues that play a pivotal role in antilisterial and 

antimalarial activity. These parameters would be useful in the design of lead peptides and 

peptide mimics for drug development towards resistant pathogens like L. monocytogenes and P. 

falciparum. 
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