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Abstract

Radon levels in South African homes - design elements for a national

survey and initial results from directed sampling

Abbey Matimba Maheso

Departement of Physics,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc (Physics)

March 2021

Radon (222Rn) is an inert, colourless, odourless radioactive gas that is generated by the alpha

decay of radium (226Ra), a radionuclide in the uranium (238U) decay series. Radon (222Rn)

is the primary source of environmental radiation exposure posing significant risks to human

health. The World Health Organization (WHO) estimates that between 3 and 14% of lung

cancers are attributable to radon and its progeny. There are a number of factors contributing

in a multiplicative manner to the radon levels inside dwellings (e.g. underlying soil and geol-

ogy, building materials, building construction).

An overview of existing data on indoor radon levels across South Africa and national radon

surveys conducted around the world is presented. The approach strategies adopted to achieve

public acceptance of radon detectors in dwellings is presented and discussed. An investigation
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ABSTRACT

into the most appropriate technology to use for short- and long-term indoor radon measure-

ments was undertaken. As part of this, results from measurements with track-etch, electret

ion-chamber and Airthings™ detectors were critically compared.

Radon measurements were carried in workplaces, homes and schools. The radon concentration

recorded in workplaces (offices and laboratories) ranged from 32.2 ± 5.2 Bqm−3 to 87.0 ± 10.1

Bqm−3. The levels recorded in Gauteng homes ranged from 2.4 ± 0.3 Bqm−3 to 102.5 ± 11.7

Bqm−3. The levels recorded in schools and homes in Western Cape ranged from 12.3 ± 2.8

Bqm−3 to 143.7 ± 17.0 Bqm−3 and from 0.0 ± 0.0 Bq m−3 to 126.9 ± 14.6 Bqm−3, respectively.

Results of the surveys showed that radon concentration levels in most of the dwellings were

low, whilst in areas close to granite outcrops the levels were found to be relatively high. The

overall annual mean effective dose rate from radon and its decay progenies was estimated to

be 0.6 ± 0.4 mSvy−1 which yields an excess lifetime cancer risk of around 1.7 ± 1.1 x 10−3.

These values are below the recommended action levels. The study recommends that the highly

populated areas, especially those close to granite outcrops, should be prioritised for the future

indoor radon survey. The radon measurements should preferably be made during the winter

seasons using electret ion-chamber and track-etch detectors. Access to homes can be gained

through the door-to-door approach, invitations and school outreach.
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Uittreksel

Radonvlakke in Suid-Afrikaanse huise - ontwerpelemente vir ’n

nasionale opname en aanvanklike resultate van gerigte

steekproefneming

(“Radon levels in South African homes - design elements for a national survey and initial results

from directed sampling”)

Abbey Matimba Maheso

Departement Fisika,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc (Fisika)

Maart 2021

Radon (222Rn) is ’n inerte, kleurlose, reuklose radioaktiewe gas wat ontstaan deur die alfa-

verval van radium (226Ra), ’n radionuklied in die uraan (238U) vervalreeks. Radon (222Rn) is

die primêre bron van blootstelling aan die omgewingstraling wat beduidende risikos vir die

mens se gesondheid inhou. Die Wêreldgesondheidsorganisasie (WGO) skat dat tussen 3 en

14% van longkanker gevalle aan radon en sy afvalprodukte te wyte is. Daar is ’n aantal faktore

wat op ’n vermenigvuldigende manier bydra tot die radonvlakke in huise (bv. onderliggende

grond en geologie, boumateriaal, boukonstruksie).
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UITTREKSEL

’n Oorsig van bestaande data oor radonvlakke regoor Suid Afrika en nasionale radonopna-

mes wat oor die hele wêreld gedoen word, word aangebied. Die benaderingsstrategieë wat

aangewend word om openbare aanvaarding van radondetektore in wonings te bewerkstellig,

word aangebied en bespreek. ’n Ondersoek na die mees geskikte tegnologie om vir kort- en

langtermyn radonmetings binnenshuis te gebruik, is onderneem. As deel hiervan is resultate

van metings met spoor-ets, elektret ioonkamer en Airthings™ detektore krities vergelyk.

Radonmetings is by werkplekke, binne huise en by skole. Die radonkonsentrasie wat by werk-

plekke (kantore en laboratoriums) aangeteken is, wissel van 32.2 ± 5.2 Bqm−3 tot 87.0 ± 10.1

Bqm−3. Die vlakke wat in Gautengse huise aangeteken is, het gewissel van 2.4 ± 0.3 Bqm−3

tot 102.5 ± 11.7 Bqm−3. Die vlakke wat in skole en huise in die Wes-Kaap aangeteken is,

wissel van 12.3 ± 2.8 Bqm−3 tot 143.7 ± 17.0 Bqm−3 en van 0.0 ± 0.0 Bqm−3 tot 126.9 ±

14.6 Bqm−3, onderskeidelik.

Resultate van die opnames het getoon dat die radonkonsentrasievlakke in die meeste wonings

laag was, terwyl die vlakke relatief hoog in gebiede naby graniet “outcrops” was. Die totale

jaarlikse gemiddelde effektiewe dosis as gevolg van radon en sy afvalprodukte word beraam op

0.6 ± 0.4 mSvy−1 wat ’n oormaat lewenslange kankerrisiko oplewer van ongeveer 1.7 ± 1.1 x

10 −3. Hierdie waardes is laer as die aanbevole aksievlakke. Die studie beveel aan dat die meer

bevolkte gebiede, veral die naby graniet “outcrops” voorkeur moet geniet in toekomstige bin-

nenshuise radonopnames. Radon metings moet verkieslik gedurende die winterseisoen geskied

met behulp van elektriese ioonkamer-en spoor-etsdetektors. Toegang tot huise kan verkry word

deur die deur-tot-deur-benadering, uitnodigings en skooluitreike.
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Chapter 1

1 Introduction

1.1 Background

This MSc thesis focuses on the design of South Africa’s national indoor radon survey and the

development of an indoor radon measuring system. All of the measurements in this MSc Thesis

were analysed at the Health Physics Laboratory (HPL) which is located at the Department

of Physics at Stellenbosch University (South Africa). This thesis deals with measurements of

indoor radon in homes, schools, and workplaces (offices, and laboratories). Radon is common

indoors and outdoors. It arises in soil and geology with a radium and uranium content. Radon

is transported through diffusion and advection processes to the atmosphere and into the indoor

environment. Radon builds up indoors depending on the building materials and ventilation.

This study investigated the correlation between building materials and indoor radon levels.

Epidemiological studies have shown that elevated radon indoors can cause lung cancer and

are ranked second as a cause of lung cancer death after smoking. Countries around the world

have started regulating indoor radon concentrations and are establishing their reference levels

for indoor radon. They accomplished this through national indoor radon surveys. There is

no national radon survey program in South Africa. However, the National Nuclear Regulator

(NNR) in South Africa has set a reference level of 300 Bqm–3. In 2018, a project was initiated

by the Center for Nuclear Safety and Security (CNSS) in South Africa to design a national radon

survey. The University of Stellenbosch was successful in getting funding to carry out the project.

The thesis also provides an overview of national indoor radon survey programs in other countries

and uses this information to inform a future national indoor radon survey for South Africa. The

thesis also includes a desktop-based survey of existing South African indoor radon levels.

The measurement of indoor radon gas and its daughters in the air is necessary, especially on

radiological protection to prevent human beings from health risks associated with radon gas.

Various methodologies and technologies can be used to measure radon gas indoors, and their

advantages and disadvantages are also described. The common methods known for indoor radon

measurement are called active and passive methods. Electret Passive Environmental Radon

1
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Monitor (E-PERM) and Alpha Track detectors were mainly used to conduct the measurements

of indoor radon gas for this study.

1.2 Objectives

This research discusses the factors to consider when designing the national indoor radon survey.

It aims to assist the national authorities and inform them of the strategies to be considered

for future indoor radon surveys. Here are the objectives which will be covered throughout the

research:

� to conduct studies of the types of radon survey programmes that have been carried out in

other countries;

� to conduct indoor radon measurements in homes, schools and workplaces;

� to identify the hotspots and sources of elevated radon activity; and

� to design a strategy and plan for indoor radon mapping in Republic of South Africa.

1.3 Thesis structure

This section give the outline of the thesis and each chapter is carefully summarised. The mind-

map diagram of the research is attached at the end of this section.

� Chapter 2 begins by giving background theory of radioactivity and decay series. It also

covers the different types of radiation and decay modes. Radon indoors is further discussed

by explaining its physical and chemical properties. The emanation and inhalation of radon

gas and its daughters are further examined. This chapter will also cover the sources of radon

in air and the health risks associated with indoor radon. This chapter will also present

an overview of instruments used for measuring indoor radon and discuss their advantages

and disadvantages for each radon detector. The last two sections of this chapter will cover

an overview of radon national surveys conducted in other countries and the case studies

conducted in South Africa.

� Chapter 3 outlines the research methodology. How the indoor radon measurements were

carried out will be discussed explicitly here. This chapter will discuss how, for each cam-

paign, detectors were deployed in buildings. The use of Geographic Information Systems

2
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(GIS) to generate radon maps for South Africa will be discussed. Will also investigate the

inter-comparison measurements between different radon instruments.

� Chapter 4 presents the experimental results of the research. The results of the indoor

radon concentration obtained from each campaign will be discussed. From the soil map

that was generated using the qGIS software, the correlation between the indoor radon

and soil type will be discussed. The correlation between indoor radon gas and building

materials will be discussed as the building materials also contribute to indoor radon gas.

The results obtained from the inter-comparison measurements will also be discussed since

different types of radon detectors have been used to measure radon gas indoors.

� Chapter 5 The thesis will be concluded with the presentation of suggestions for a national

indoor radon survey in South Africa.
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1.4 Project mind map
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Chapter 2

2 Literature review

2.1 Radioactivity

2.1.1 General properties of nuclei

Radioactivity is defined to be the spontaneous emission of a stream of particles or electromag-

netic rays in nuclear decay [Moe80]. This form of radiation can be understood by exploring the

atomic nucleus. In theory, an atom is made up of three particles which are protons (positively

charged), neutrons (no charge), and electrons (negatively charged). The electrons are located

on outside of the atom inside electron shells, and both protons and neutrons are located at the

centre of an atom called a nucleus. A typical diameter of an electron cloud and nucleus is 10–10

m and 10–14 m, respectively [Kra88].

An atoms is electrically neutral if the number of protons denoted by (Z) is equal to the number

of electrons. The number of protons identifies the element. And the mass of an atom is practi-

cally provided by its nucleus, protons and neutrons denoted by (N). The atomic mass number is

denoted by (A) and can be determined as A=Z+N. A specific number of protons and neutrons

together inside a nucleus forms a unique nuclide denoted by A
Z XN, where X is the chemical sym-

bol of the element. In this thesis, all nuclides will be symbolised as AX, for example, uranium

element with an atomic mass number of 238 will be expressed as 238U.

5
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Figure 2.1: The distribution of nuclides as a function of neutron numbers N and proton numbers
Z [All08].

Nuclides with the same atomic number Z are called isotopes. Many isotopes of different elements

are unstable and tend to disintegrate until they reach stability, this process is called radioactivity.

For Z > 82, all the known nuclides are unstable. In Figure 2.1 the black line region represents

the belt of stability, all nuclides in this region are stable. All other nuclides are unstable and

decay spontaneously in various ways. An unstable nuclide which undergoes radioactive decay is

called a radionuclide.

2.2 Radioactive decay of a radionuclide

The discovery of radioactivity dates back to 1896 when the physicist named Henri Becquerel

noticed the rays emitted from a uranium grain penetrated a paper and created an image on a

photographic plate [Kra88]. The radioactive decay process occurs when the radionuclide disin-

tegrates due to instability, as a result, radiation or energy is emitted. Three types of radiation

can be emitted in the radioactive processes namely, alpha particles, beta particle, and gamma

rays.

It is important to consider the rate of radioactive decay when dealing with a radionuclide. The

6
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rate of radioactive decay is determined using the half-life T1/2 of a radionuclide. The half-life

is the time required for the disintegration of half of the atoms in a radioactive substance. The

activity of a quantity of radioactive material is the number of nuclear decays per second and is

expressed in Becquerel (Bq).

In a case where an unstable radionuclide decays to a stable nuclide, the number of radioac-

tive atoms denoted by Nt after time t can be determined by:

Nt = N0e–lt (2.1)

where N0 is the initial number of atoms and l is a parameter known as the decay constant given

by equation:

l = ln(2)/T1/2 (2.2)

where T1/2 is the half-life of the radionuclide.

7
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Figure 2.2: Decay chain showing how uranium-238 radionuclide decays to a stable lead-206
nuclide.

2.2.1 Alpha decay

Alpha particles are composed of two neutrons and two protons released from the nucleus, which

gives these particles the same form as a helium nucleus with a mass number of 4. The emission

of an alpha particle changes the parent nucleus by reducing the atomic number by 2, and the

atomic mass number by 4. The alpha decay equation may be described in equation 2.3.

8
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A
Z X→ A–4

Z–2 Y + 4
2He (2.3)

where X and Y represents a parent nucleus and daughter nucleus, respectively. A typical exam-

ple of an alpha decay:

226
88 Ra→ 222

86 Rn + a(4.8 MeV)

When dealing with the alpha particles it is important to consider the stopping power, which is

defined as the energy loss by a particle in material corresponding to the path length travelled

by the particle in the material. For 5.00 MeV alpha particles, the stopping power in air is 1.23

MeV cm–1 [Fil19]. An alpha particle interacts strongly with matter and stops within 100 mm in

most materials. In the air, alpha particles may travel only a few centimetres, a 5.49 MeV alpha

particle travels approximately 4 cm in air as illustrated in Figure 2.3.

Figure 2.3: The Bragg curve shows the distance travelled by the alpha particles emitted by radon
in the air. Image downloaded from https://en.wikipedia.org/wiki/Bragg_peak.

9
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2.2.2 Beta decay

When a high-speed electron or positron is emitted in the decay of a radioactive isotope this

process is called beta decay. The beta decay occurs in two modes known as beta-plus b+ and

beta-minus b–. Beta particles in the air travel larger distances and move deeper into the matter

than for alpha particles with the same initial kinetic energy.

2.2.3 Gamma rays

Gamma rays are form of high energy electromagnetic radiation with energies ranging from a

few keV to approximately 8 MeV and can go much higher [Bus11]. The interaction of gamma

rays with matter can be explained through the processes of the photoelectric effect, Compton

scattering and pair production. Gamma radiation released from natural sources also known

as background radiation is largely due to primordial radionuclides, mainly from the 232Th and
238U series, and their decay products, as well as 40K. Another source of gamma rays is due to

secondary radiation from atmospheric interaction with cosmic ray particles.

2.3 Radiation around us

Our everyday life is exposed to some amount of radiation. The sources of radiation can be

subdivided into terrestrial (from materials in the earth), artificial (from man-made activities)

and cosmic (from cosmic ray interaction with air). Radon gas in air is the main contributor

to the dose to people, and it contributes to the greatest amount of natural radiation [WHO09].

Radiation is listed as ionising or non-ionising.

10
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Figure 2.4: Electromagnetic spectrum showing radiation in the environment.

2.3.1 Non-ionising radiation

Non-ionising radiation is a form of radiation with less quantum photon energy to remove electrons

from atoms and molecules. Non-ionising radiation has lower frequency and longer wavelength

as illustrated in Figure 2.4. These types of radiation are divided into three regions namely,

optical, thermal, and non-thermal. The optical region is extended into visible light, infrared,

and ultraviolet. The thermal region is extended into microwaves and radio waves. The non-

thermal region covers extremely low frequencies [Wil16].

2.3.2 Ionising radiation

Ionising radiation is defined to be high-energy radiation that carries sufficient quantum photon

energy to ionise atoms and molecules, the process is referred to as ionisation. During the ion-

isation process, an electron is knocked off from an atom. When the particles and photons are

emitted by a radioactive source they form ionising radiation. Examples of ionising radiation

include a-particles, b-particles, X-rays, and g-rays radiation. Ionising radiation is characterised

11
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by a short wavelength and high frequency. This radiation can move through matter and alter it

as it passes through. As the ionising radiation passes through an atom, an atom gets ionised.

Ionising radiation is regarded as more dangerous than non-ionising radiation. Ionising radiation

is much more dangerous because it can ionise the atoms of the DNA molecules and cause dis-

ruption in major cellular functions. Once broken, the proteins that are coded by that fragment

of DNA cannot be repaired, leading to many serious health hazards like cancer.

2.4 Radiation exposure and associated dose

Determining the effect of radon exposure to personnel is important. The radiometric quantities

and effects that the radiation dose produces must be measured. This section deals with dosimetric

quantities known as dose and also discusses how to calculate the annual effective dose using radon

concentration. Here are some categories of dosimetric quantities to be discussed in this section;

the absorbed dose, the equivalent dose and the effective dose.

2.4.1 Absorbed dose

Absorbed dose is a measure of the energy absorbed by a medium from any type of radiation per

unit mass. It is denoted by symbol D. The SI unit of absorbed dose is gray (Gy) defined to be

joule per kilogram (Jkg–1), and one gray is equal to one joule per kilogram [Kno00].

1 Gy = 1 Jkg–1 (2.4)

The absorbed dose can be used to measure the physical or chemical effects created by radiation

exposure in an absorbing material. The original unit of absorbed dose is radiation absorbed dose

(rad) defined to be 100 ergs gram–1, and one gray is equal to 100 rad.

1 Gy = 100 rad (2.5)

2.4.2 Equivalent dose

In order to determine how much damage may be done to the tissue or the level of the potential

hazard we use equivalent dose denoted by H. The SI unit of equivalent dose is Sievert (Sv) also

defined to be joule per kilogram (Jkg–1). The equivalent dose can be used as a measure of

biological effect of a particular type of radiation on organs or tissues. The equivalent dose is the

12
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product of the absorbed dose D and the quality factor denoted by QF. The QF depends on the

radiation type involved.

H = D×QF (2.6)

The quality factor depends on the type of radiation, for example, a-particles and b-particles

of typical energies have the QF of 20 and 1, respectively[ICRP 60]. The original unit of equiva-

lent dose is rem (roentgen equivalent man), and one sievert is equal to 100 rem.

1 Sv = 100 rem

2.4.3 Effective dose

Effective dose (Sievert) is calculated for the whole body. It is the product of equivalent dose

(H) and tissue weighting factors (wT) which is different for specified tissues and organs of the

human body (lungs, gonads, bone marrow and skin). The tissue weighting factors are needed

because different organs have different levels of sensitivity to radiation.

ED =
∑

H× wT (2.7)

Effective dose is used to assess the potential for long-term effects that might occur in the future

and is expressed in millisieverts (mSv).

2.4.4 Annual mean effective dose rate due to radon

Annual mean effective dose rate E (nSvy–1) can be determined using equation 2.8 which is based

on the UNSCEAR model [UNS00]:

E = RnC× F× H× T×D (2.8)

where:

13
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� RnC is the mean indoor radon concentration in air given in Becquerel per cubic meter

(Bqm–3);

� F = 0.4 is the equilibrium factor defined as the ratio of the radon daughters to the radon

concentration in air [Nad19];

� H = 0.8 is the home occupancy factor. Khalil et al. [Kha19] determined the occupancy

factors for universities and schools to be 0.22 and 0.16, respectively;

� T = 8760 hy–1 is the number of hours in a year; and

� D = 9 nSv per Bqm–3h–1 is the dose conversion factor as per ICRP.

2.4.5 The excess lifetime risk

The excess lifetime risk can be calculated as an estimate of the probability of developing lung

cancer due to radon exposure over the mean lifetime using equation 2.9:

Risk = E(nSvy–1)×DL(y)× RF(Sv–1) (2.9)

where:

� DL = 64 years is an average life expectancy in South Africa; and

� RF = 0.05 Sv–1 as the fatal risk factor as per The International Commission on Radiological

Protection [ICR08].

2.5 Physical and chemical properties of radon

Radon is a naturally occurring radioactive gas found in nature. It is colourless, odourless and

tasteless and is chemically inert. Radon belongs in the group of noble gases in the periodic table

of elements and is the 86th element with an atomic mass number of 222. At room temperature,

radon is very dense and is classified as the heaviest of the noble gases. Radon is directly produced

from the decaying radionuclide called radium-226, which is generally found in soil and rocks.

Radon exists naturally in three radionuclides of its 39 isotopes generally called actinium, thoron,

14
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and radon with the atomic symbol 219Rn, 220Rn, and 222Rn, respectively. However, this re-

search focuses only on radon referred to as 222Rn. At 0 °C and 1 atm, the density of radon is

9.73 gL–1, which is 7.5 times denser than air. Since radon is not stable, with the half-life of

3.824 days it undergoes a radioactive decay process and produce other radionuclide known as

radon daughters or radon progeny. The radon daughters include polonium, lead and bismuth as

indicated in Table 2.1.

The unit for measuring radon activity concentration in air is called Becquerel per cubic me-

ter (Bqm–3) named after physicist Henri Becquerel, where 1 Becquerel represents one nuclear

disintegration per second. Another common unit used for measuring radon is pico-curies of

radioactivity per litre (pCiL–1) and is related to Becquerel by equation 2.10:

1 pCiL–1 = 37 Bqm–3 (2.10)

Table 2.1: 222Rn daughters and their radiation energies [Rob13].

Radiation energies (MeV)

Radionuclide Half-life a b g

222Rn 3.824 day Gas 5.49

218Po 3.11 min Solid 6.00

214Pb 26.8 min Solid 1.02 0.35
0.70 0.30
0.65 0.24

214Bo 19.7 min Solid 3.27 0.61
1.54 1.77
1.51 1.17

214Po 1.64 × 10–4 s Solid 7.69
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2.6 Radon migration

Since radon is a gas, it is highly mobile and can move from the soil and building materials if it

enters the pore space after being formed by the decay of 226Ra in the soil particles or building

material. The release of radon from soils, rocks and the building materials, is described through

emanation, transport, and exhalation processes. This section discusses how radon is transported

from outdoors into buildings.

2.6.1 Radon emanation

All radon gas is produced from soil or rocks with minerals such as uranium or radium. The

fractional grains of soil containing radium atom produces a newly formed radon atom, then

about 10% to 50% of radon atoms escape from the grains to pore spaces between the mineral

grains [Ott92]. Some fraction of radon dissolve in water between grain other are absorbed in the

mineral grain. The emanation of radon depends on various factors. This includes radium content

in a mineral grain, grain size, pore space property, soil moisture and temperature [Bos03].

2.6.2 Radon transport and exhalation

The radon gas accumulated in the pore space is then transported through advective flow and

diffusion to the surface. Diffusion is governed by Fick’s law which describes the migration from

high concentration pores toward low concentration pores and is given by equation 2.11 [Phe20].

f = –DM∇C (2.11)

where

� f is the radon activity flux density in Bqm–2s–1;

� DM is the molecular diffusion coefficient in m2s–1; and

� ∇C is the gradient of radon activity concentration in Bqm–4.

On the other hand, the advective flow is governed by Darcy’s law and it describes how the flow

is induced by pressure difference, the flow will occur from higher pressure towards lower pressure

16
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and is given by equation 2.12 [Spe04].

~n = –
k

ma

~∇Pa (2.12)

where

� ~n is fluid flow per unit cross section (m3m–2s–1);

� k is the intrinsic permeability of the soil (m2);

� ma is dynamic viscosity of air in Pascal seconds (Pas); and

� Pa is the air pressure in Pascal (Pa).

The radon gas that has been transported to the ground surface (soil, rocks, or building materials)

is exhaled to the atmosphere. The rate at which the radon gas is exhaled depends on the

geological characteristics of the study area, soil porosity and texture, soil temperature and type

of the building materials.

2.6.3 Radon entry into buildings

The amount of radon gas found indoors mostly comes from outdoor (rocks and soil). Since radon

is gaseous at room temperature, it will flow through cracks and, or openings in walls and floors

of dwellings [Zub16]. The building materials also contribute to indoor radon gas, for example,

tiles, ceramics, carpets, porcelains, and marbles. In general, the outdoor radon levels in the air

are very low (2 - 20 Bqm–3) compared to the indoor radon levels. The radon gas then can build

up indoors over time. Indoor radon concentrations have been found to range between 20 Bqm–3

to 110 000 Bqm–3 with a world average of 40 Bqm–3 [WHO09].

2.6.4 Radon from the building materials

The primary source of indoor radon is soil gas, but it is also considered that the building

materials contribute to indoor radon gas. In most cases, radon exhaling from building materials

does not contribute significantly to indoor radon levels as compared with soil gas [Kel01]. The

building materials that are widely used in dwellings include cement bricks, red-clay bricks, gravel

aggregates, and igneous rocks [Tre18]. Radon can be released into the indoor environment by
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building materials containing 226Ra. It is important to measure the radon released from the

building materials used for the construction of the dwellings. In some countries, the national

legislation sets limits on naturally occurring sources of radiation that are allowed in building

materials. Table 2.2 shows the estimates of radium concentration data that was obtained in

the United Kingdom buildings. Generally, high concentrations of 226Ra found in the building

materials result in elevated indoor radon concentrations.

Table 2.2: Different building materials with estimates of radium concentration [Ham71].

Materials Radium concentration (Bqkg–1)
Aerated concrete 89.0
Clay Bricks 52.0
Concrete block with fly ash 65.0
Flint aggregate 2.2
Granite aggregate bricks 11.0
Granite bricks 89.0
Gravel aggregate 7.4
Natural gypsum 23.0
Phosphogypsum 120.0
Vermiculite 93.0
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2.7 Health effects of radon

Naturally occuring gaseous radionuclides like 222Rn can be easily inhaled directly by humans.

The health problem of indoor radon in human beings is linked to the inhalation of radon daugh-

ters. Since 222Rn gas is radioactive, it decays further to produce its daughters which are also

radioactive. The daughters can also attach to dust particles in the air vapour and trace gases of

indoor gas. When 222Rn gas is inhaled, most of the 222Rn can immediately be exhaled, whereas

its decaying daughters are retained in the human lungs. These radioactive daughters continue

to decay in the lungs and release energy bursts in a form of alpha particles. These a-particles

subsequently interacts with biological tissues in the lungs. During interactions of alpha particles

and lung tissues, the deoxyribonucleic acid (DNA) can be altered and damaged. As a result,

lung cancer can develop through gene mutation and a rapid increase in damaged cells which

replicate to form a tumour.

Several studies have identified radon as the second main contributor to causing lung cancer

after cigarette smoking [UNS08]. Tobacco smokers who are living in the dwellings with higher

radon levels are at more risk of lung cancer than non-smokers who are living in the dwelling with

higher radon levels. The World Health Organization (WHO) estimates that between 3 and 14%

of lung cancers are attributable to radon and its progeny [WHO09]. In 2006, a study conducted

in the UK indicated that about 3.3% of lung cancer deaths were due to radon in homes. About

1 in 7 of the deaths from radon-related lung cancer was due to radon and not by active smok-

ing. The remainder was due to radon and active cigarette smoking as cancer could have been

prevented by avoiding exposure to either factor [Gra09].

Radon in homes and workplaces is associated with an increase in the risk of lung cancer in

the general population [WHO17]. Some workers and members of the public can also be also

exposed to higher radon concentration in their workplaces. This includes workers in mines,

water treatment plants, tourist caves, schools, pre-schools, hospitals, etc. Radon exposure for

both workers and members of the public in such buildings is managed through the use of reg-

ulations and reference levels. Data from the Chinese [Lub04], European [Dar05] and North

American [Kre05] indoor radon studies consistently indicate that the lung cancer risk increases

approximately linearly with increased long-term exposure to radon.
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2.8 Overview of radon measurement systems

Since radon is a noble gas, it cannot be detected by human senses. The only way to detect

radon gas is through the detection of nuclear radiation. Systems for measuring indoor radon

concentration have been developed over the years. These measurement systems are divided

into two classes namely active and passive. Active radon detectors require electric power to

operate and involve the pumping of radon gas into the detector. On the other hand, passive

radon detectors can operate without any electric power. This section gives an overview of radon

detectors that are commonly used for measuring indoor radon concentrations. The advantages

and disadvantages of each detector are also listed.

2.8.1 Active radon systems

RAD7

The RAD7 monitor is a solid-state alpha detector equipped with a 0.7 litre hemispherical sample

cell coated with an electrical conductor. The solid-state alpha detector is located at the centre of

the hemispherical cell as indicated in Figure 2.5. The electrical conductor inside the hemisphere

cell is charged with a high voltage power circuit to a potential of 2 kV to 2.5 kV and an electric

field is created inside the volume of the hemispherical chamber. The radon gas is pumped into the

chamber through an inlet filter and fills the hemisphere. Then radon decays inside the chamber

and emits alpha particles and its daughters build up. The electric field propels the positively

charged daughter (218Po) to the detector. When this 218Po alpha decays, the alpha is measured

by the silicon detector that also measures the energy of the alpha (= 6 MeV). Similarly, it can

measure the emission energy from the 214Po decay further down the radon decay chain. Then

the detector converts alpha pulses into electrical signals [Saa18]. The RAD7 has the capability

for continuous monitoring of radon concentrations from 4 Bqm–3 to 750 000 Bqm–3 [Dur20].
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Figure 2.5: RAD7 detector.

AlphaGUARD

The AlphaGUARD radon detector is a continuous monitoring system equipped with a 0.62-litre

pulse-counting ionisation chamber [Deh12]. The ionisation chamber is held with the potential

of +750 V (anode) and the electric field is created when voltage is applied across the electrodes

of ionisation chamber. Radon gas enters the ionisation chamber and decays to produce its

daughters and alpha particles. The air inside the chamber get ionised by alpha particles, the

positive ions gets attracted to the cathode and negative ions get attracted to the anode. As

a result, an electric current is induced and detected by a sensitive current measuring device

placed between the anode and cathode. The AlphaGUARD has the capability for continuous

monitoring of radon concentrations from 0 Bqm–3 to 50 000 Bqm–3 [Sap12].

Airthings� radon detector

Airthings� is a battery-powered smart radon gas detector that uses radon sensor which consists

of a passive diffusion chamber to detect alpha particles [Bal20]. Inside the chamber there is a

photodiode sensor, which is the semiconductor with two-terminal components whose electrical

characteristics are light-sensitive. The chamber is coated with a chromium-plate on the out-

side which prevents unwanted particles to enter the chamber. When air enters through a 0.2

mm filter, only radon gas and its daughters allowed from entering the chamber. Then radon

decays inside the detector and alpha particles are detected by the photodiode sensor. The
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Airthings� radon detector is a versatile detector which can also detect the temperature and

humidity. The Airthings� has the capability for continuous monitoring of radon concentrations

from 2 Bqm–3 to 2 MBqm–3 [Air18].

2.8.2 Passive radon detectors

Charcoal canister

The active charcoal canister is made up of a tin box filled with activated carbon. Activated

charcoal has a high affinity for vapours and gases like radon. When the canister is exposed to

air, radon gas enters the detector and undergoes the radioactive decay to produce its daughters.

Radon and its daughters get absorbed by carbon in the canister. Then radon daughters emit

gamma rays inside the charcoal canister. After the desired exposure period, the canister is

analysed in the laboratory using gamma-ray spectrometry for counting the gamma-rays released

by radon daughters. Three gamma-rays energies are used for counting the gamma rays emitted

by radon daughters, namely 295 keV and 352 keV (energies of 214Pb photons) and 609 keV

(energy of 214Bi photon) [Pan14].

Track etch

Passive track-etch monitors detect the alpha particles from the radioactive decay of radon and

its daughters. The track etch monitor is made up of a poly-allyl-diglycol-carbonate (PADC) film

which is highly sensitive to alpha particles [Mos19]. The sensitive film is covered with container

which allows 222Rn to diffuse into it. The alpha radiation from radon and its progeny cause

radiation damage in the film by leaving tracks. After the desired exposure period, the track

etch film is analysed in the laboratory using optical microscopy for counting the tracks caused

by radon and its daughters. During the analysis, a film is etched in a hot caustic solution to

make these tracks visible [Bát15]. The tracks can be counted with an optical microscope and

the radon concentration can be determined. The track etch radon monitors can be exposed for

2 to 3 months. The track-etch has the capability for monitoring of radon concentrations from 5

Bqm–3 to 15 MBqm–3 [Tas15].
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Electret ionisation chambers

The electret ionisation chamber (EIC) employs an electret, a plastic disk made of Teflon® mate-

rial [Bau97]. The electret carries a electrostatic charge with an initial surface voltage of around

700 V. When the electret is mounted on the ionisation chamber, an electric field is created in-

side the opened chamber as illustrated in Figure 2.6. Radon diffuses through a filter which is

designed to trap all radon daughters. Radon with the half-life of 3.85 days decays further and

produces its daughter and alpha particles which ionises the air inside the chamber [Rad15]. The

electret collects the negatively charged ions generated during the ionisation process that occurs

inside the chamber. These ions are drawn to the surface of the electret where they cause a

reduction in its surface charge. The electret is discharged at a rate proportional to the radon

concentration [Kot90]. The loss of charge on the surface of the electret during the exposure

period determines the average radon concentration in the location where the devices were lo-

cated. Using different combination of electret ionisation chambers it is possible to measure radon

concentrations ranging from 1 Bqm–3 to 3 MBqm–3 [Kot90].

Figure 2.6: The cross section of the E-PERM system [Kot90].
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Table 2.3: The advantages and disadvantages of different radon measuring detectors [Rad15].

Detector Type Advantages Disadvantages

RAD7

� Make quick reading

� Can determine the energy of each

alpha particle

� Expensive

� Cannot be easily transported

via mail

� Requires to be calibrated every

year

Track-etch

� Low cost

� Can be easily transported via

mail

� Safe for home use, Track-etch

film is non-toxic

� Can be deployed by anyone

� Tracks can be hard to count

accurately

� Can only be used for long term

testing

� Water entering device causes

wrong readings

� Detectors must be sent to a

laboratory for analysis

Electret ionisa-

tion chamber � Electret can be re-used until volt-

age falls below 200 volts

� Electret can be recharged

� Suitable for short-term and long-

term measurements

� Temperature and humidity inde-

pendent

� Results require correction for

the gamma-ray background ra-

diation and altitude at which

testing took place

� Can be accidently discharged

by touching or surface contam-

ination

� Surface Potential Electret

Reader (SPER) voltage reader

requires calibration each year
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Table 2.4: The advantages and disadvantages of different radon measuring detectors (contin-
ues) [Kri17].

Detector Type Advantages Disadvantages

Airthings

� Tracks radon levels in real time

� Suitable for long-term and short-

term measurements

� Easy to install and set up

� More expensive than conven-

tional radon testing methods

� Uses Bluetooth only

Charcoal

� Compact, convenient and eco-

nomical

� Can be used for 48-hour test

� Can be easily mailed to the lab-

oratory for analysis

� Passive, does not require power

� Quick and accurate analysis

� Limited to short-term

� Provides no indication of

changes in radon during

measurement

� Hard to detect tampering

� Detectors must be sent to a

laboratory for analysis

AlphaGUARD

� Relatively good precision

� Can track hourly variation

� Can indicate tapering of ventila-

tion

� Option to download or print on

site

� Expensive

� Requires annual calibration

� Can only test one room at a

time
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2.9 Overview of a national indoor radon survey worldwide

Over the years, indoor radon surveys have been conducted in many countries. The radon surveys

were mainly conducted in homes. Since radon is not only a problem in dwellings, the surveys have

also been conducted in workplaces including office buildings, schools and factories. The method

used in one country was observed to be widely different from the method used in other countries,

these methods are discussed in table 2.6, table 2.7 and table 2.8. This might be on account of

different factors like the country’s geology, building styles, climatic parameters and ventilation

conditions. This section will cover the overview of national indoor radon surveys conducted

worldwide. This will include the reference levels adopted per country, sampling design, sampling

procedure, measurement techniques used, measurement duration and quality assurance.

2.9.1 Reference levels for radon

The reference level is defined as the level of activity concentration above which it is not ac-

ceptable to allow exposures to occur and under which safety management will continue to be

implemented [Vuk18]. The level value depends on the amount of exposure, which varies with

the countries. The reference levels help countries to identify possible health hazards related to

indoor radon exposure and to take steps to minimise exposure.

Radon-related risk can be estimated with a reference level. The areas where the average concen-

tration of radon is higher than the national average concentration, are referred to as radon prone

areas (RPA). There is no level of radon considered safe. Several countries chose their national

action levels based on results from indoor radon surveys. The United States Environmental

Protection Agency has set the radon action level at 148 Bqm–3 [EPA03]. The National Nuclear

Regulator (NNR) in South Africa has adopted the reference level at 300 Bqm–3.

The action level represents the maximum acceptable levels of indoor radon to minimise the

risk to people and warn them when the mitigation action is required. WHO indicates that in-

door radon exposure is a major and growing public health threat in homes, and recommends that

countries adopt reference levels of the gas of 100 Bqm–3. Health Canada revised the National

Building Code of Canada (NBCC) recommendations in 2007, by reducing indoor radon from

800 Bqm–3 to 200 Bqm–3. However, both World Health Organisation (WHO) and International

Atomic Energy Agency (IAEA) have shown that concentrations below 200 Bqm–3 have also been
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associated with lung cancer[WHO09]. Table 2.5 show some action levels that have been adopted

in some countries.

Table 2.5: Action levels in different countries [WHO09]

Country Action levels in Bq m–3

Argentina 400
Austria 400
Belgium 400
Bulgaria 500
Canada 800
China 400
Czech Republic 400
Denmark 200
Ecuador 400 to 600
Finland 400
France 400
Georgia 200
Germany 100
Greece 400
Ireland 200
Kyrgyzstan 200
Latvia 200
Lithuania 400
Netherlands 30
Norway 200
Peru 200 to 600
Romania 400
Russia 400
Slovenia 400
Sweden 200
Switzerland 1000
United Kingdom 200
USA 148
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2.9.2 Mapping methods for indoor radon

Several stages are considered for mapping indoor radon. The first stage is to define the objec-

tives which include two forms of maps which are contour maps and class maps. The contour

maps show the geographical distribution of the levels of the quantity of interest, for example,

geological characteristics or soil types. On the other hand, the class-map shows whether the

standard regarding the quality of interest is satisfied, for example, to indicate the probability

that the dwelling will exceed the reference level. Also, the existing indoor radon data is collected

and reviewed.

Countries like Ireland [Syn06] and Iran [Mar15] used uniform grid sampling by choosing their

sampling unit to be 10 km × 10 km square and 5 km × 5 km square, respectively. According to

a Norwegian study [Jen02], grid sampling was not suitable because of scattered populated areas.

Instead of grid sampling, the dwellings were randomly chosen from each participating munici-

pality. In Greece and Lithuania [Mor99], population density sampling strategy was considered.

In Lithuania, dwellings were randomly selected on a whole territory followed by preferential

sampling regions with higher population and/or higher radon levels. In France, a selection was

based on the hospital with a higher number of lung cancer patients [Bay04]. In some countries,

the selection method was based on the geological characteristics and soil types [Kie97], [Yar12].

2.9.3 Sampling procedure

After the sampling area was identified, homeowners were informed and invited to participate

in the survey. This was achieved through multiple approaches, for example, in Greece, a door-

to-door approach was used in order to minimise non-response and bias [Nik02]. In Cyprus,

homeowners were reached by phone calls to get their agreement for participating in the sur-

vey [Ana03]. In Iceland, volunteers were reached via a webpage or by phone. In the Austrian

survey, dwellings were randomly selected through telephone register [Fri05].

2.9.4 Measurements duration

Since 222Rn is gas, its level fluctuates as a function of time of day. Short-term indoor measure-

ments of a few hours or a few days may not be considered a reliable indicator of long term average

values [IAE19]. To obtain accurate results of long term average values, long-term measurements
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are recommended. Long-term measurements can take between 3 to 12 months. Integrated mea-

surements lasting for one-year are usually preferred to obtain good estimates of the mean radon

concentration. Alpha track detectors and electret ion-chambers are recognised by Health Canada

for long-term measurements. In most countries, a measuring period of 3 months is recommended

as per national practices to meet homeowners’ expectations. However, most of the short-term

monitoring devices can be used for screening if a radon problem is suspected.

2.9.5 Seasonal variation

Buildings are generally less ventilated during the winter season than in summer. The Stack

Effect is generated due to indoor/outdoor pressure difference [Joj09]. This accounts for 222Rn

gas accumulating in indoor spaces rather than outdoors. Studies show that tests conducted in

the winter months tend to give higher results than the annual average, and tests conducted in

summer months produce lower results. A similar variation can be observed for day/night varia-

tion. Soil emanation activity during late night/early morning hours is higher than the emanation

activity during the day [Kha13].

Other countries like Korea [Kim03] conducted both summer and winter measurements and

obtained seasonal correction factors. The seasonal correction factor is needed to adjust mea-

surements taken over periods other than twelve months. In some countries, either summer or

winter measurement were conducted, and the seasonal factors are used to compare seasonal vari-

ation. However, it is recommended that the measurements must be taken in the winter season

to obtain maximum radon concentrations.

2.9.6 Quality assurance

Conducting quality assurance and quality control activities is recommended to assure confidence

in the radon monitoring programme. This can include the handling of radon detectors during

transportation. Some steps can be taken during sampling to ensure the accuracy of the results

by reducing uncertainties. In other countries, the quality of measurements was ensured through

inter-comparisons, inter-calibration and parallel measurements [How07]. Some countries have a

testing scheme for radon detectors, to ensure that they meet the required standard of accuracy.
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Table 2.6: Methods for measuring indoor radon concentration [Fri05, Iva13,Jón15, IAE19].

Country Approach methods Measuring methods

Argentina

Cities with highest population were Passive track etch detectors with

prioritised. exposure period of three (3) months.

The survey began in mine dwellings. The measurements were preferably

Houseowners agreed to participate. performed in the winter.

Each householder was provided with Short term detectors (activated

the questionnaire. charcoal detectors and electret

Most measurements were carried out in dwellings detectors) were used for the purpose

constructed from bricks and concrete. of making initial screening

measurements.

Australia

Homes were selected randomly from The detectors used for radon

an electoral register. survey were track-etch radon detectors

Questionnaires were sent to each and were exposed for 12 months.

participant along with one radon detector.

The detectors were placed in the living rooms.

Austria

Dwellings were selected at random Three detector systems were

from the telephone directory. used: track-etch

Two detectors were placed in each detectors, electrets and

dwelling in the most frequently used charcoal detectors with liquid

rooms. scintillation counting measurement.

Questionnaires were distributed Three-month measurements were

together with the detectors. performed using track-etch and

three-days using charcoal detectors.

All measurements were made in

spring and autumn.

Bulgaria

The survey was population based. The measurements were performed

The dwellings were randomly selected with track-etch detectors).

by using a door-to-door approach for

contacting families and distributing

detectors.

Detectors were deployed on the

ground floor. The detectors were

placed in the living room and in

children’s rooms or bedrooms.

The measurements were completed in

2775 dwellings.
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Table 2.7: Methods for measuring indoor radon concentration (continues) [Dow17,Car19,Vuk18,
IAE19].

Country Approach methods Measuring methods

Canada

A market research company was All measurements were to be carried out

contracted to recruit participants for for a minimum period of three months

the survey. Participants were recruited during the summer season.

randomly by telephone.

Each participant received a radon

detector and a questionnaire.

Iceland

The Icelandic Radiation Safety Authority The detectors used were alpha track

(IRSA) advertised on its web site. detectors.

IRSA staff also asked family, friends

and colleagues to participate.

The detectors were sent to homeowners.

Survey was also conducted in schools,

workplaces, and kindergartens.

Iran

Postcodes were used for selecting homes. Track-etch detectors were used

The radon detectors were distributed by in the survey.

trained staff.

Two radon detectors were placed in separate

rooms (living room and bedroom).

Ireland

Participant were randomly selected at Track-etch detectors were used

from the register of electors. in survey for 12 months.

A total of 12 649 dwellings were

surveyed for indoor radon gas.

Italy

The door-to-door approach was adopted Alpha track detectors (LR-115 type II)

for contacting the participants. were used for a period of 12

months.

Montenegro

The survey was geographically and Track-etch detectors were used

population based. in the survey for six month.

Detectors were deployed in the living room

or bedroom on ground floor or first floor

31

Stellenbosch University https://scholar.sun.ac.za



Chapter 2 Literature review

Table 2.8: Methods for measuring indoor radon concentration (continues), [Lem01, IAE19].

Country Approach methods Measuring methods

Netherlands

Homes were randomly selected. Track-etch detectors were used

Each participant received two passive in the survey for at least one year.

detectors: one radon detector and one

thoron progeny detector and a

questionnaire.

Homes were randomly selected. Track-etch detectors were used in the survey

Environmental Protection Agency (EPA)

United States assisted homeowners in placing the

of detectors in their homes.

America Questionnaires were distributed

together with the detectors.
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2.10 South African existing indoor radon data

Numerous pilot studies have been carried out in indoor radon surveys in South Africa. These

studies include measurements of the radon levels in soil, water, and air. No national-scale study

on indoor radon has been conducted in South Africa so far. This section gives an overview of

existing studies overview of indoor radon in South Africa.

Indoor radon along the West Coast, Western Cape [2019]

The indoor radon measurements were performed in 52 houses located in Vredenburg and Sal-

danha [Rou19]. The houses were randomly selected and the homeowners were approached to

get permission for measurement. E-PERM electret chambers were used to measure radon and

exposed for a minimum of 3 days. The monitors were placed in the most occupied rooms like

the living rooms. The average values for indoor radon levels were 58.7 Bqm–3 in Vredenburg

and 38.6 Bqm–3 in Saldanha.

Radon in mine dwellings, Gauteng [2017]

Indoor radon gas measurements were performed in mine dwellings located in a gold mining area

of Gauteng Province [Kam17]. The 222Rn gas activity in indoor air was measured using the

AlphaGUARD Radon Professional Monitor. The measurements were performed in two mine

villages namely, West Village and East Village. The detectors were deployed 1 m above the

ground in six houses, three houses were located in the west village and the other three in the

east village. The measurements were taken in 24 hours. The average activity of 119.6 Bqm–3

was obtained from the mining area. The maximum indoor radon level found in the mining area

was 472 Bqm–3.

Radon in-air in a spa resort, Western Cape [2016]

The radon activity levels in-air were measured at Montagu in the Western Cape [Bot16]. The

study aimed to estimate the associated effective dose received by the employees and visitors

at the Avalon Springs thermal spa resort. The measuring method that was employed was E-

PERM� (Electret Passive Environmental Radon Monitor). The electrets were deployed for 5

days at different locations. These locations were described to be the Grand Suite, hot-tub, indoor

pool, pumping room and, cocktail bar. The indoor radon concentration levels ranged from a
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minimum of 33 ± 4 Bqm–3 to a maximum of 523 ± 26 Bqm–3. The annual occupational effective

dose due to the inhalation of radon progeny ranged from 0.16 ± 0.01 mSv to 0.40 ± 0.02 mSv.

Radon in-air in wine cellars, Western Cape [2014]

In Western Cape, nine wine cellars were selected for the study of radon in-air [Bot17]. The

measuring techniques used in this study were passive electret (E-PERM) from Rad Elec Inc.

and RAD7 detector. The short-term electret ion-chambers were deployed for 6 to 10 days at

each location within the nine wine cellars. Two RAD7 detectors were used to perform continuous

radon in-air activity concentration measurements for 2 days. The radon levels ranged from 12

± 4 Bqm–3 to 770 ± 40 Bqm–3.

Paarl Houses, Western Cape [2004]

In 2004 the indoor radon measurements were performed in Paarl, Western Cape [Lin08]. The

study involved school learners and teachers. A total of seven schools participated in this study.

The E-PERM were distributed by the researchers to at least 200 localities in Paarl. The detectors

were deployed in the houses and exposed for at least seven days. The living rooms were preferred

as the perfect place to deploy the detector. The information about the house characteristics

was obtained through a questionnaire. The deployments and collection were supervised by the

researchers for quality assurance. The results yielded an average value of 115 Bqm–3 with a

minimum of 8 Bqm–3 and a maximum of 801 Bqm–3.

Cango Caves, Western Cape [2005]

During the summer of 2004 and 2005, the radon levels were measured in the Cango Caves in

the Western Cape Province [Nem05]. Two measuring methods used in this study were E-PERM

and the RAD7. Short-term electrets were exposed for 24 hours inside the caves. The RAD7

was exposed in a large section of the caves for 2 hours, this was performed during the day and

overnight. The results for the radon activity levels ranged from 800 Bqm–3 to 2600 Bqm–3.

Goldfields, Free State [1998]

The University of the Free State conducted an indoor radon study in 1998 [Eli98]. The study

involved the potential radiation hazards from gold mines in the Free State province. The envi-
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ronmental radon gas measurements were taken around Goldfields mine. The aim was to identify

the areas with high radon concentration greater than 200 Bqm–3. The three measuring tech-

niques used in this study were passive track etch, AlphaGUARD Radon Professional Monitor,

and E-PERM. The exposure period was at least 2 to 3 months, 24 hours, and, seven weeks,

respectively. The environmental radon levels were measured indoors and outdoors. The results

seemed to confirm that the natural radon levels in the Free State Goldfields do not differ much

from non-mining areas. No excessively high indoor radon concentration greater than 200 Bqm–3

was detected.

South African indoor radon study by Leuschner et al. [1989-1991]

In this study, about 1855 houses in South Africa were measured for radon levels [Leu02]. Two

types of passive detectors used in this study were passive track etch and passive charcoal canisters.

The track etch monitors were exposed for two months and the charcoal canisters were exposed

for seven days. The average indoor radon concentration was about 70 Bqm–3 with a maximum

of 842 Bqm–3. In <1 % of houses radon levels were above 400 Bqm–3 and in 3 - 4% of houses

radon levels were above 200 Bqm–3. The main contributing factors for higher radon levels were

associated with wooden floors, radium content in the soil, and the underlying geology.
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Table 2.9: The summary of the finding from case studies around South Africa [Lin08, Rou19,
Leu02]

Location Province Sample Size Average Maximum Reference
Vredenburg Western Cape 33 59 200 [Rou19]
Saldahna Western Cape 19 37 90 [Rou19]
Paarl (2005) Western Cape 200 115 801 [Lin08]
Cape Town Western Cape 134 13 52 [Leu02]
Paarl (1989) Western Cape 60 85 842 [Leu02]
Malmesbury Western Cape 59 42 150 [Leu02]
Beaufort-West Western Cape 62 79 184 [Leu02]
George Western Cape 91 64 143 [Leu02]
Akasia Gauteng 7 57 97 [Leu02]
Bedfordview Gauteng 16 20 72 [Leu02]
Boksburg Gauteng 116 66 212 [Leu02]
Germiston Gauteng 143 116 297 [Leu02]
Johannesburg Gauteng 284 49 197 [Leu02]
Roodepoort Gauteng 6 61 130 [Leu02]
Randfontein Gauteng 45 92 185 [Leu02]
Randburg Gauteng 13 122 440 [Leu02]
Soweto Gauteng 150 56 131 [Leu02]
Krugersdorp Gauteng 53 77 273 [Leu02]
Sandton Gauteng 16 50 106 [Leu02]
Centurion Gauteng 16 61 136 [Leu02]
Hartbeespoort Gauteng 28 59 145 [Leu02]
Nababeep Northern Cape 88 87 393 [Leu02]
Springbok Northern Cape 67 78 340 [Leu02]
Brits North West 30 42 119 [Leu02]
Stilfontein North West 72 62 131 [Leu02]
Rustenburg North West 10 33 48 [Leu02]
Parys Free State 44 66 595 [Leu02]
Richards Bay KwaZulu-Natal 76 38 120 [Leu02]
Phalaborwa Limpopo 8 61 79 [Leu02]
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Figure 2.7: South African 10 × 10 km grid map showing areas where indoor radon was measured. The data was
obtained from table 2.9.
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2.11 Log-normal distribution and indoor radon

Many studies have shown that indoor radon levels follows a log-normal distribution [Bos19].

Log-normal distribution is defined to be a continuous probability distribution of random vari-

able whose logarithm is normally distributed. In simple terms if the original data of indoor radon

follows log-normal distribution then the natural logarithm of the data follow normal distribution.

So, if the original data of variable is

x1, x2, x3, ..., xi

When combining all data points, the resulting probability distribution function p(x) for in-

door radon concentration (x) can be approximately expressed as 2.13 [Rim18]

p(x) =
1

x
√

2ps2
exp

(
–[ln(x) – m]2

2s2

)
x >0; s >0 (2.13)

where s and m are the fitting parameters, s is the standard deviation which represents the

spread of the distribution, and m is the mean value of the data [Rim18]. Figure 2.8 illustrates

how the log-normal (left) and normal distribution (right) look like. Two curves on the left (red

and black) follow log-normal distribution and have the same value for m and different values for

s, respectively. The spread of the curve changes with the s value. This indicates that the shape

of a curve depends on the s value. The following properties must hold for the distribution to be

log-normal: the values must be always positive and the distribution must be always right-skewed.

To get the log-normal distribution on the right, simply take the natural logarithm of original

data of log-normal distribution.
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Figure 2.8: The log-normal distribution transformed to normal distribution.

In a case of indoor radon levels, the log-normality test is necessary for estimating the mean value

of indoor radon concentration and for determining the probability that the indoor radon will

exceed the recommended reference radon concentration [Pan19]. In some European countries,

studies show that the mean concentration of indoor radon ranges from less than 10 Bqm–3

to over 100 Bqm–3 with the typical standard geometric deviation ranging from the value of 2

Bqm–3 to 3 Bqm–3 [WHO17]. It implies that about 2% to 3% of the cases the indoor radon

concentration is expected to be one hundred times the mean. On the other hand, the study

conducted in Belgium indicated that the deviation from log-normal is due to outliers determined

to be extreme levels of indoor radon [Cin15]. The log-normal distribution showed a good fit for

indoor radon concentrations [Zub16].
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Chapter 3

3 Data collection and methodology

In this chapter, the different measuring techniques for indoor 222Rn concentration are discussed.

This chapter will also describe the approach and systems used for the selection of study areas.

The procedures for the measurement of indoor 222Rn concentration will be discussed for each

campaign.

3.1 An overview of the instruments used for radon detection.

Radon is undetectable by human senses but by radon detectors there must be a limit of how

high the levels may be. There are several ways to measure radon concentrations indoors. The

radon measuring instruments used for indoor radon measurements in this study are discussed in

this section.

3.1.1 E-PERM� System

3.1.1.1 E-PERM� preparation processes

E-PERMs (Electret Passive Environmental Radon Monitors) from Rad Elec� were used in this

study. An E-PERM sometimes referred to an electret ion-chamber (EIC), normally comes in

a keeper cover for preventing voltage loss due to ions in the air. Each electret’s surface was

carefully examined for any dust or fibre contamination. The surface of each electret was cleaned

using a jet of nitrogen air. The cleaning was done at the SU Physics Department workshop. The

cleaning procedure was also repeated for cover keepers and the E-PERM� ion chambers. For

this research, all electret ion-chambers (EICs) were prepared in the Health Physics Laboratory

(HPL) located inside the Merensky Building.

The Surface Potential Electret Reader (SPER) from Rad Elec� was used to read out the voltage

across the surface of each electret as illustrated in Figure 3.1. An electret was carefully placed in

the circular receptacle in the SPER voltage reader and a metal slider in the SPER voltage reader

was manually moved to expose the electret to the voltage sensor. The voltage on the electret was
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digitally displayed on the LCD panel on the SPER voltage reader. The voltage measurement

was repeated three times for each electret. The values were recorded in the logbook as initial

voltages (Vi).

Figure 3.1: Voltage reader used for measuring initial Vi and final Vf voltages from the electrets.

After measuring the initial voltage, an electret was removed from the receptacle and quickly

placed into the closed ion chamber. Depending on the duration of the measurements (short-

or long-term), an electret was attached to the ionisation chamber; either S-chamber or L-OO

chamber. Different E-PERM� configurations are shown in Table 3.1, with their associated

constants (C1, C2 and C3). The C1 and C2 are calibration constants and C3 is a constant to

take the gamma-ray background into account.
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Table 3.1: E-PERM� configurations with their respective constants and measuring peri-
ods. [Rad15].

E-PERM� Constants
Description

Exposure

configuration C1 C2 C3 period (days)
SST 1.69776 0.0005742 0.087 Short-term electret in

the S-chamber
2 - 7

SLT 0.14 0.0000525 0.087 Long-term electret in the
S-chamber

30 - 120

LST-OO 0.23327 0.000123 0.12 Short-term electret in
the L-OO chamber

15 - 91

LLT-OO 0.02156 0.00001012 0.12 Long-term electret in the
L-OO chamber

91 - 365

3.1.1.2 E-PERM� deployment procedure

After all electrets were screwed into the bottom of the ionisation chamber (S-chamber or L-

OO chamber), the E-PERM� were then transported to the study areas with the ion chamber

in a ”closed” or ”off” position as shown on the right of Figure 3.2. The E-PERMs� were kept

closed during transportation to avoid the surrounding air from entering the ion chamber. A

plastic trolley-case was generally used for transporting the E-PERMs� from the HPL to the

designated study area. The case protected the E-PERMs� from direct exposure to sunlight.

When the E-PERMs� were finally transported to the study area, the E-PERM� unit was turned

to the ”open” or ”on” position by carefully unscrewing the top screw cap as shown on the left of

Figure 3.2. Then each E-PERM� was generally placed at least 1.0 m above the ground. The idea

was to measure the indoor 222Rn gas at height inside dwellings where normal breathing occurs.

The E-PERM� was also placed at least 0.5 metre away from the building walls, considering the

fact that the thoron (220Rn) coming from the walls could contribute more when the detector is

close to walls.
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Figure 3.2: Left, E-PERM (S-chamber) in opened position. Right, E-PERM in closed position.

The serial number at back of each electret was carefully recorded. The date and time at which

the E-PERM� was opened was recorded at initial time (ti). Then the temper-indicating tape

labelled ”DO NOT DISTURB” was placed next to the deployed E-PERM� for alerting people

that the indoor 222Rn measurement was in progress. For each E-PERM� setup, a photograph

showing the E-PERM� and the location was taken. The E-PERM� was left exposed to the air

for a certain period depending on the intended measuring duration.

3.1.1.3 E-PERM� collection procedure

After the predetermined exposure period, the E-PERMs� were collected for analysis in the

laboratory. This section describes the E-PERM� collection procedure. A photograph of the

E-PERM� at its measurement location was taken. This photograph was compared with the

one taken just after deployment to see if the E-PERM was moved. Then the E-PERM� was

carefully put to ”closed” or ”off” position by simply screwing the top screw cap. Immediately

after the E-PERM the date and time (tf) was recorded. The serial number on the back of each

E-PERM� was also recorded. The E-PERMs� were then transported back to HPL for analysis.

43

Stellenbosch University https://scholar.sun.ac.za



Chapter 3 Data collection and methodology

3.1.1.4 Equation for calculating the radon concentration

Equation 3.1 was used to calculate radon concentration in air. In cases where the gamma-

ray background could not be measured equation 3.2 was instead used. The value of gamma-ray

background (Bgc) was taken as 32 Bqm–3 [Rad15], [Kot90].

RnC = 37 ·
[

Vi – Vf

CF · T
– (Bg · C3) · ElevCF

]
(3.1)

RnC = 37 ·
[

Vi – Vf

CF · T

]
– Bgc (3.2)

CF = C1 + C2 ·
(

Vi + Vf

2

)
(3.3)

ElevCF = 0.79 +
6 · Elevation

100000
(3.4)

where,

� RnC (Bqm–3) is the mean radon concentration;

� Vi and Vf are voltages before and after the exposure respectively;

� CF is the calibration factor;

� T is the duration of exposure in days;

� Bg is the measured gamma-ray background radiation due to the gamma-ray background
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radiation in mRh–1. If the gamma-ray background value was measured in nGyh–1, it was

converted to mRh–1 by dividing the nGyh–1 value by 8.7 [Rad15];

� ElevCF is the elevation correction factor in feet (ft):

– if Elevation1 < =4000 ft (1 219 m), then ElevCF=1

– if Elevetion > 4000 ft (1 219 m) then use equation 3.4;

� and C1, C3, C3 are constants given in Table 3.1.

The E-PERM measurement has three contributing sources of measurement uncertainty:

� E1 is the uncertainty associated with the chamber volume, electrets thickness and other

chamber parameters and has been experimentally measured to be 5%

E1 = 5% (3.5)

� E2 is the uncertainty associated with the electret voltage reading

E2 =
100%× 1.4

(Vi – Vf)
(3.6)

� E3 is the uncertainty associated with the natural gamma-ray radiation background Bg

E3 =
100%× 0.1

RnC
(3.7)

The total uncertainty, Etot (%), associated with each E-PERM measurement was evaluated using

Equation (3.8)

Etot =
√

E2
1 + E2

2 + E2
3 (3.8)

1Elevation is the height above sea level where the test was conducted. The average Elevation values were
obtained from Google.
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3.1.2 ParcRGM� system

3.1.2.1 ParcRGM� preparation processes

The track-etch ParcRGM detectors were prepared at the ParcRGM (Pty) Ltd offices in Pre-

toria and couriered to the HPL. Each ParcRGM� was prepared by cutting CR-39 material into

small rectangular blocks as illustrated in Figure 3.3(a). Then each block was placed inside a

plastic holder which only allows 222Rn gas to diffuse in to reach the track-etch material as shown

in Figure 3.3(b). Each ParcRGM� was labelled with a serial number outside the plastic holder

for identification. Then each ParcRGMs� was placed inside a radon-proof protective bag made

of Mylar® material and sealed as shown in Figure 3.4.

Figure 3.3: (a) CR-39 polycarbonate plastic element, (b) A 43 mm diameter plastic
holder[Par20].
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Figure 3.4: The ParcRGMs inside the radon-proof bags.

3.1.2.2 ParcRGM� deployment procedure

After the ParcRGMs� were transported to the pre-determined location, their radon-proof bags

were cut open with a pair of scissors and the ParcRGMs� were carefully removed from their bags.

The ParcRGMs� begin to measure indoor 222Rn gas the moment they are removed from the

bag. The date and time were recorded immediately after each ParcRGM� was removed from the

bag. The ParcRGMs� were generally deployed in the same way as the E-PERMs�, 1.0 m above

the ground and 0.5 m away from the building walls. A photograph showing the ParcRGM� and

the location was then taken. A control monitor that came with other ParcRGM� was kept in

its radon-proof bag. The ParcRGMs� were left exposed for the intended measuring period.

3.1.2.3 ParcRGM� collection procedure

At the end of the measuring period, the date and time were noted, and the photograph was

taken to ensure that the ParcRGMs� were not moved during the measuring period. Each Par-

cRGM� was placed back in its radon-proof bag and the bag was resealed using a sellotape. The

ParcRGM� stopped measuring indoor 222Rn gas immediately after it was placed in the radon-
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proof bag. All the ParcRGMs� were collected and transferred into an appropriate container. A

radon-proof bag with the control monitor was cut open and the monitor was removed from its bag

and transferred to a container with the rest of other ParcRGMs�. Then the ParcRGMs� were

transported in a container to ParcRGM (Pty) Ltd laboratory for analysis.

3.1.3 Airthings� radon monitor system

The Airthings� radon detectors were purchased from CareTac (Pty) Ltd. The detector is battery-

powered and it comes with two AA batteries installed. The indoor radon gas diffuses into the

detector through the air inlets then it decays and emits alpha particles. Then the sensor registers

the alpha particles emitted by radon gas. The detection principle of the Airthings� radon

detector is already explained under section 2.8 in Chapter 2. A smartphone with Airthings app

was linked to the Airthings smart detector via Bluetooth to read the radon levels as shown in

Figure 3.5. The data were automatically uploaded to the Airthings cloud computer servers and

later assessed from the online dashboard. The .csv file was downloaded from the dashboard and

the data were analysed using the Microsoft EXCEL program.

Figure 3.5: The Airthings� radon detector.
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3.1.4 Geographic Information Systems (GIS)

A Geographic Information System (GIS) mapping program (qGIS 2.18, Free Software Founda-

tion, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA, downloaded from: https:

//docs.qgis.org/2.18/en/docs/gentle_gis_introduction/introducing_gis.html) was used

to map indoor radon concentrations in this research. GIS provides a convenient way for a range

of data to be integrated, including aggregate resource inventory information [Kel15]. All shape-

files were obtained from the Council for Geoscience (CGS) website. A shapefile (.shp) is a vector

data storage format for storing the location, shape, and attributes of geographic features. A

shapefile is stored in a set of related files and contains one feature class. The shapefiles included

soil-type, geology, lithology, population, and administrative type of shapefile.

To help identify the study areas where a radon survey should be performed, the soil and geology

shapefiles were incorporated into the qGIS software. The Global Positioning System (GPS) co-

ordinates for the location of the indoor radon measurements were obtained from Google Maps.

The coordinate data were geocoded (by transforming the location address and street names into

the geographic coordinates) and new shapefiles were created from them. These shapefiles were

used to create points on the map for every indoor radon location. All maps in this research were

generated using qGIS software.

3.2 Indoor 222Rn measurements in workplaces

3.2.1 Campaign-A description

This section deals with the indoor radon measurements in workplaces. Universities are educa-

tional premises where a wide range of workplaces can be found with a high occupancy factor

for members of the public. Radon levels in universities may pose potential long-term health

risks to the full-time staff and students. The examined workplaces in this study include offices

and laboratories. These places are normally occupied by professional academic staff members

and students. The experimental work in this section was divided into two campaigns named

campaign-A1 and -A2, respectively.
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The aim of campaign-A1 was to

� investigate systematic effects associated with indoor radon measurements, and

� to measure indoor radon in offices.

The aim of campaign-A2 was to

� do long-term measurements using E-PERM� and ParcRGM radon monitors to compare

results for radon levels using two completely different measurement techniques;

� investigate day and night variation of indoor 222Rn gas using Airthings� radon detector

and

� to compare Airthings� and at least EIC results.

3.2.2 Selected study area

This study campaign was conducted in the offices and laboratories located in the Merensky

building at Stellenbosch University. The University is situated in Stellenbosch, a town in the

Western Cape with an average elevation of 136 metres above sea level and located about 50

kilometres from Cape Town. The soil types found in Stellenbosch are mainly Lithic Leptosols.

The Merensky building is one of the academic buildings located in the Stellenbosch University.

It is a three-story building with offices, laboratories and lecture halls. The building materials

include granite steps to the entrance, tiled/carpeted corridors, wooden panelling floor tiles and

wooden doors.

3.2.3 Campaign-A1 experimental setup

A total of 18 short-term electrets ion chambers (SST) were prepared in HPL at the Physics

Department, Stellenbosch University. Measurements were made for radon concentrations at

various locations and heights within the building during winter (June 2019). The deployment of

the EICs was divided into four sets as described in Table 3.2. The experimental setup is shown in

Figure 3.6. The radon detectors were deployed in a vertical configuration to investigate indoor

radon as a function of height. Other radon detectors were placed next to the wall and away

from the wall to investigate the effect of building walls on the radon measurements. The radon

detectors were deployed for a week in the same room.
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Table 3.2: Campaign-A1 experimental setup.

Code Number of SST Description

H 4 Deployed in the vertical position (1.5 m, 2.1 m, 2.7 m and 3.3 m)

W 5 Placed next to buildings walls (<0.5 m)

A 5 Deployed away from buildings walls (>0.5 m)

CW 4 Placed in the corner of buildings walls (<0.5 m)

Total 18

Figure 3.6: The measurement setup for campaign-A1.

In the same building, the indoor radon concentration was also measured in six offices and four

laboratories. In three offices, two SST (EICs) were deployed per office. One detector was placed

next to the building’s wall and the other was placed away from the building wall as shown in
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Figure 3.7(a). In other offices, only one detector was deployed under a normal condition 2 as

shown in Figure 3.7(b). Three laboratories were measured for indoor radon gas. One laboratory

was a confined space without windows as shown in Figure 3.7(c). All detectors were deployed

for a week during the winter season (June 2019).

Figure 3.7: (a)The setup of SSTs (EIC) in the workplace, (b) in an office under normal conditions,
(c) in the confined laboratory without any windows.

2normal condition

� More than 1 m above the floor.

� More than 1 m from wall openings that may allow airflow.
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3.2.4 Campaign-A2 experimental setup

A total of 31 passive electrets (E-PERM) from Rad Elec and 35 passive track-etch monitors from

ParcRGM were used in this study. Measurements were made of indoor radon concentrations for

three months (March - June 2020). The radon detectors were deployed in 5 locations, 4 loca-

tions were laboratories and offices located in the same building at Stellenbosch University and

1 location is a house located around the Stellenbosch area. The E-PERM radon detectors were

prepared as described under section 3.1.1.

For each location, EICs and ParcRGMs were placed side-by-side as illustrated in Figure [3.8

- 3.12].

Location 1: Room 2026 Merensky building, Stellenbosch University.

Figure 3.8: Two sets of LLT-OO (EICs) and ParcRGMs were placed side-by-side.
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Location 2: Room 1059 (Health Physics Laboratory) Merensky building, Stellen-

bosch University.

Figure 3.9: (a) Four sets of LST-OO, SLT (EICs) and ParcRGMs were deployed in parallel and
placed away from the wall (>0.5 m). (b) Three sets of LST-OO and ParcRGM were deployed
in parallel and placed next to the wall (<0.5 m).
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Location 3: Room 2020 (third-year physics laboratory) Merensky building, Stellen-

bosch University

Figure 3.10: Four sets of LST-OO (EICs) and ParcRGMs were deployed and placed next to one
another.
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Location 4: Room 2024 (Physics Film Studio) Merensky building, Stellenbosch

University.

Figure 3.11: (a) Three LST-OO (EICs), two LLT-OO (EICs), two SST (EICs), and three SLT
(EICs) were deployed in parallel with nine ParcRGMs. (b) Three sets of LST-OO (EICs) and
ParcRGM were placed close to the wall (<0.5 m).
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Location 5: House located in Stellenbosch.

Figure 3.12: Two LST (EICs) and four ParcRGMs were deployed in parallel and placed next to
one another.

The EICs and ParcRGMs detectors were collected after three months from each location. Par-

cRGM detectors were put back in their radon-proof bags as in Figure 3.4 and dispatched to

ParcRGM (Pty) Ltd laboratory for analysis. The E-PERMs were collected and analysed in

Health Physics Laboratory (HPL) at the Physics Department, Stellenbosch University.

3.2.5 Indoor 222Rn measurements using Airthings� radon monitors.

One Airthings� radon monitor was deployed with three SST E-PERMs� in the laboratory as

shown in Figure 3.13. The aim was to compare results from the two types of radon monitor.

The measurements were carried out for one week during the summer season (February 2020).

The three Airthings� radon monitors were also used to measure the radon concentration in

the house as shown in Figure 3.14. The detectors were activated and allowed to calibrate their

sensors for 12 hours before they were paired with the smartphone to start measuring radon.

Detector no.3 was placed closer to the walls of the building than no.1. Measurements were

carried out during the winter season (August 2020). The house was mostly closed to allow

sufficient radon to accumulate indoors. The data from Airthings radon detectors were accessed

from the Airthings� online dashboard (web:https://www.airthings.com/en/dashboard) after

twenty-one days of measurements and analysed with the Microsoft EXCEL program.
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Figure 3.13: The Airthings� radon detectors placed next to three short term electrets.

Figure 3.14: Three Airthings� radon detectors placed next to one another.
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3.3 Indoor 222Rn measurements in homes located in Gauteng

3.3.1 Campaign-B description

This section deals with the short-term measurement of indoor radon in homes. The aim of this

campaign was to

� compare the indoor radon levels in living and bedrooms of selected Gauteng houses;

� investigate the influence of building materials on indoor radon gas and;

� to investigate if there is a correlation between soil type and indoor radon levels.

3.3.2 Selected study area

This study was conducted during the summer season (December 2020) in 22 homes located in

Gauteng province. The province has the highest population in the Republic of South Africa

(RSA) estimated to be 15.48 million in 2020 (http://www.statssa.gov.za/). The houses were

selected in four administrative regions. The selection was based on the soil type of each region.

An average elevation above the sea level in Gauteng is 1500 metres. The soil types found in

Gauteng province are mainly Albic Plinthosol, Haplic Lixisol, Plinthic Acrisol, and Lithic Lep-

tosol.

Gauteng province is divided into five main administrative regions namely, the City of Johannes-

burg, City of Tshwane, Ekurhuleni, Sedebeng and West Rand. This study was conducted in only

three regions namely the City of Johannesburg, City of Tshwane and Ekurhuleni. The selection

of these three regions was based on the population density per region and the soil/geology type

as indicated in Table 3.3. The majority of the houses were single-storey, built with cement or

clay bricks.
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Figure 3.15: Gauteng map showing soil type.
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Table 3.3: Number of houses in Gauteng that were sampled for indoor 222Rn measurements.

Region Town Soil type Geology No. of house sampled

City of Johannesburg Midrand Plinthic Acrisol

Meinhardsraal granite

4

Transvaal

Sand river gneiss

Rooiberg

Griqualand-West

City of Tshwane

Atteridgeville

Lithic Leptosol

Transvaal

10
Sand river gneiss

Lotus Gardens
Rooiberg

Griqualand-West

City of Ekurhuleni

Benoni Albic Plinthosol
ECCA

8
Witwatersrand

Daveyton Haplic Lixisol
Dominion

Pongola

3.3.3 Approach strategies to homeowners

The ethical clearance for surveying homes was obtained from the University of Stellenbosch. The

homeowners for the selected homes were approached and were asked for permission for conducting

the indoor 222Rn levels in their homes. After agreeing to participate, each homeowner was asked

to complete a consent form. In the consent form, the reason for conducting the survey was clearly

stated. Thereafter homeowners were asked to complete a questionnaire. The questionnaire

was used to get the information about the characteristics, for example, home address, building

materials, age of the house, and the period of occupancy in the house.

3.3.4 Deployment procedure

The radon detectors that were used in this survey were short-term electrets in the ion S-chambers

(SST) from Rad Elec. All short-term electrets and ion S-chambers were prepared as discussed

in section 3.1.1.1. The initial voltage (Vi) was measured using the SPER reader, immediately

after the homeowner agreed to participate. A short-term electret was then carefully screwed into

the S-chamber to form a SST configuration as indicated in Table 3.1. Then for every short-term

electret, the serial number on the electret was recorded.

The homeowner was asked to identify a suitable spot in the living room and bedroom to place
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the radon detectors. After the homeowner identified a spot for deployment, the radon detector

was opened and placed in the selected spot. The detector was generally placed 1.0 m above the

ground and 0.5 m away from the walls of the building, however it was not always the case. A

photograph of the deployed detector was taken with the permission of the homeowner.

A total of twenty-two homes were sampled. Two detectors were deployed for each house, one in

the living room and the second in a bedroom. Each owner was notified about the date and time

of the collection of the radon detector. The radon detectors were left in each home for 1 week.

3.3.5 Collection procedure

Homeowners were reminded about the collection of the radon detector two days before the actual

collection date. This was done through the SMS. The radon detectors were collected from the

homes after a week. This was done in the same order as the deployment, for example, if house

no.1 was the first to be surveyed and house no.22 was the last to be surveyed. Then a similar

order was followed during the collection of the radon detectors, first in house no.1 and house

no.22 was the last.

On the date of collection, a photograph of the radon detector setup was taken. Then the radon

detector was carefully closed by screwing the top screw cap of the S-Chamber and the serial

number on the short-term electret was noted. The date and time were also recorded the moment

the radon detector was closed. The final voltage on the short-term electret was measured three

times and the values were noted as (Vf). After the collection of the radon detectors, the GPS

coordinates of the house were recorded. All radon detectors were collected from 22 homes in

3 regions. The locations of the homes surveyed are shown in the Figure 3.16, Figure 3.17 and

Figure 3.18.
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Figure 3.16: Radon locations in the City of Johannesburg.
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Figure 3.17: Radon locations in the City of Tshwane.
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Figure 3.18: Radon locations in the City of Ekurhuleni

3.3.6 Gamma-ray background radiation measurements

When measuring the indoor radon concentration using the E-PERM� system, it is important

to consider the gamma-ray background radiation. For this campaign, the gamma-ray dose rates

were measured in the homes. From each region, three houses were selected and measured for

gamma-ray background radiation. The Graetz X5C plus� dosimeter illustrated in Figure 3.19

was used to measure the environmental gamma-ray radiation in the air. The dosimeter was placed

next to the radon detector for the selected individual homes to measure the ambient gamma-ray

background radiation for one hour. At each home, the background gamma-ray measurement was

made twice, during the deployment and collection of the radon monitors. The Graetz dosimeter

measured the values in units of mSvh–1, these values were later converted to nGyh–1. The values

65

Stellenbosch University https://scholar.sun.ac.za



Chapter 3 Data collection and methodology

measured in three houses for each region are given in Table 3.4. For campaigns A and C the

default background gamma-ray of 32 Bqm–3 was used.

Figure 3.19: The Graetz X5C plus� dosimeter.

Table 3.4: The indoor gamma-ray background radiation (nGyh–1) for each house in 3 investigated
regions.

Location Day
Region

City of Johannesburg City of Tshwane Ekurhuleni

House 1
1 120.0 120.0 120.0
2 120.0 120.0 120.0

House 2
1 120.0 120.0 120.0
2 120.0 120.0 120.0

House 3
1 130.0 110.0 120.0
2 120.0 120.0 120.0

Mean 121.7 118.3 120.0
SD 4.1 4.0 0.0
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3.4 Indoor 222Rn measurements in homes and schools around West-

ern Cape

3.4.1 Campaign-C description

This section deals with the indoor measurement of 222Rn gas in schools and homes. The approach

strategies for gaining access to conducting surveys in homes and schools are well discussed. The

main aim of this campaign was to

� do short-term indoor 222Rn measurements in homes and schools and

� to investigate the correlation between indoor 222Rn gas and the surrounding soil/geology.

3.4.2 Selected study area

Figure 3.20: Western Cape map showing the geology.
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The Western Cape is one of the nine provinces in South Africa with an estimated population

of 7 million in 2020. The province is divided into 6 districts namely Cape Winelands, Central

Karoo, City of Cape Town, Garden Route, Overberg and West Coast. The elevation ranges

from the lowest of 0.0 m to the highest of 2325.0 m, as the Western Cape is largely covered with

mountains. Western Cape geology consists of Bokkeveld, Cape granite, Kalahari, Malmesbury,

Kango, Gariep, Table Mountain and Witteberg.

Figure 3.21: Western Cape map showing the radon locations in homes and schools.

The study campaign was only conducted in schools and homes around the City of Cape Town

and Cape Winelands regions. The importance of the campaign arises from the fact that these

regions are heavily populated. The inhabitants of these regions comprise about 50% of the total

population in Western Cape province. Hence it is necessary to investigate the indoor 222Rn gas

in homes and schools around these areas.
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3.4.2.1 School selection and recruitment processes

In the initial phase of the survey, 10 schools were targeted around the City of Cape Town and the

Cape Winelands region. The selection of schools was based on the geology and the population

density of the area where the school is located. A total of 10 schools were identified around the

City of Cape Town and Cape Winelands. The ethical clearance for conducting the radon survey

in school and homes was approved by Stellenbosch University in June 2019. The permission for

the recruitment of schools was obtained from the Western Cape Education Department (WCED).

For a selected school, the school principal was invited by e-mail (obtained from the WCED

database) to have his/her school participate in the project. The principal was asked to iden-

tify five school learners and one school teacher from the school with the following criteria. A

participant must

� be in grade 10 or 11 science-stream class

� reside in the vicinity of the school (not more than 5 km away from school).

After the principal agreed for the school to participate, the informed consent form was sent to

the principal. Then the principal was asked to distribute the consent forms to the school learners

and the teachers. After the learner has agreed to participate in the survey, the learner was given

an informed-consent form to give their parents/guardians at home. All participants were asked

to give information about their names, age, address and phone numbers. This information was

used to organise the transport and the venue where the outreach was held.

3.4.2.2 School outreach arrangements

After knowing the number of participants, a venue to meet with the learners was secured. The

aim was to assemble all the participants in one venue on the days of an event. iThemba LABS

(a National Research Foundation facility, www.tlabs.ac.za) was approached to make its audi-

torium and computer laboratory available for the outreach event. The proposal was approved

and the event dates were arranged. The management team at iThemba LABS also assisted with
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the transportation of the participants from and to their schools. Catering was also arranged for

all the participants.

3.4.3 Distribution and collection of radon detectors

Day 1 of the event was held at the iThemba LABS on Saturday 31st August 2019. A total of

forty learners and eight school teachers participated in the outreach programme. All participants

signed the attendance register at the beginning each day of the event. The school outreach pro-

gram lasted for 6 hours. During the program, learners were introduced to the survey program

through presentations on radon and the project details.

Instructions on how to handle and deploy the radon detectors was presented to the partici-

pants. Afterward, initial voltages were measured from each short-term electret using a SPER

voltage reader. Since there was a large number of participants, they were divided into two groups

and two SPER voltage readers were used for reading out the voltage on the electrets. The ini-

tial voltage on each short-term electret was measured three times and the serial number on the

electret was also noted. Then a short-term electret was carefully screwed into the S-chamber to

form SST (EIC).

Each learner received a closed SST (EIC) to take home and each teacher received three SST

(EICs) to deploy at his/her school. Each participant also received a questionnaire and an in-

formation sheet on how to deploy a radon detector. To ensure that each participant followed

a correct procedure to deploy the detector, the participant was asked to take photographs of

the location and the radon detector before and after deployment. The participants were asked

to open the radon detector as soon as they get back to their homes. A total of 46 SST radon

detectors were distributed and were deployed in homes and schools in the selected regions.

The participants returned on day 2 (7th September 2019), the final day of the outreach event

which was held. At the beginning of an event, the method of calculating the radon concentrations

was presented to the participants. The participants were then divided into two groups. Each

participant returned the closed SST radon detector and the questionnaire in the same order as

day 1. For each participant, a short-term electret was unscrewed from the S-chamber and the

final voltage was immediately measured three times with the SPER voltage reader. As a part
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of the school outreach activity, the participants were engaged in the calculation of indoor radon

for their homes and schools. The participants were then grouped according to their respective

schools. Each group was given access to the iThemba LABS computer laboratory in order for

it to calculate radon levels using Microsoft EXCEL and to prepare a presentation on findings

using Microsoft Powerpoint. The event closed with each group making a presentation in the

auditorium on its work.
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4 Results and Discussion

4.1 Campaign A: Results of indoor radon concentration in homes,

schools and workplaces

4.1.1 Campaign A1: results of indoor radon concentration in workplaces.

A total of 18 SST were deployed in a big laboratory (room 2024) located in the Merensky building

at Stellenbosch University to test the impact of building materials (walls) and height (ceilings).

To test the effect of building walls on indoor radon, the five radon detectors were placed close

to the wall (<0.5 m) and the four radon detectors were placed in a room corner. To measure

the indoor radon concentration as a function of height, four radon detectors were deployed in a

vertical position at various heights ranging from 1.5 m to 3.3 m from the floor. Five detectors

were placed on a table. The measurements were conducted for a week and a summary of the

results of these measurements is shown in Figure 4.1 and presented in Table 4.1.

Figure 4.1: Indoor radon concentration as a function of walls and height.
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Table 4.1: Summary statistics for data in Figure 4.1.

Descriptive Statistics Radon concentration (Bqm–3)

Wall Corner wall Table

Mean 61.8 69.0 46.3

Standard Error 3.5 3.1 1.1

Median 60.9 68.2 46.9

Standard Deviation 7.8 6.2 2.5

Sample Variance 60.4 38.1 6.3

Kurtosis -0.3 -4.4 -0.2

Skewness -0.1 0.3 0.1

Range 20.4 12.3 6.6

Minimum 51.4 63.7 43.1

Maximum 71.8 76.0 49.7

No of data 5.0 4.0 5.0

Confidence Level(95.0%) 9.6 9.8 3.1

All radon levels were below the action level of 100 Bqm–3 recommended by WHO (indicated by

a black dashed line in Figure 4.1). The radon concentration close to a wall ranged from 51.4 ±
6.3 Bqm–3 to 71.8 ± 8.5 Bqm–3 with the mean of 61.8 ± 7.8 Bqm–3. The radon concentration

in a corner wall ranged from 63.7 ± 7.7 Bqm–3 to 76.0 ± 9.0 Bqm–3 with a mean of 69.0 ±
6.5 Bqm–3. The radon concentration on the table ranged from 43.1 ± 5.4 Bqm–3 to 49.7 ± 6.1

Bqm–3 with the mean of 46.3 ± 2.5 Bqm–3.

A comparison between the results of radon concentration close to a wall and away from a wall,

showed that the radon concentration close to a wall is greater than the radon concentration away

from a wall. The obtained results were expected since the thoron 220Rn, a natural radioactive

decay whose half-life is short (T1/2=55.6 s) coming from the walls decays and reach the detector

which contribute more when the radon detectors are placed close to a wall. The gamma radia-

tion also contributes to the ionisation process in the radon chamber during measurements, as a

result, more voltage in the electrets drops, and this accounts for an increased radon concentration.
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The effect of building materials to indoor radon is also observed from the height results. The

height results in Figure 4.1 show an increase in radon concentration as the height increases. At

the height of 1.5 m, 2.1 m, 2.7 m and 3.3 m, the radon concentrations were found to be 43.8 ±
5.5 Bqm–3, 53.8 ± 6.6 Bqm–3, 54.7 ± 6.7 Bqm–3 and 68.5 ± 8.2 Bqm–3, respectively. The result

at 1.5 m was in the same range as the results on the table with a mean of 46.3 ± 2.5 Bqm–3.

The results at 3.3 m showed an increased radon concentration since it was close to the ceiling.

In this case, the thoron source is presumably the materials in the ceiling.

The results for radon concentration in workplaces (offices and laboratories) is shown in Fig-

ure 4.2 and presented in Table 4.2.

Figure 4.2: Radon levels in offices and laboratories located at Stellenbosch University.
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Table 4.2: The radon levels in different locations.

Places No. of measurements Radon concentration (Bqm–3)

Minimum Average Maximum

Offices 8 32.2 ± 5.2 35.7 ± 2.7 39.2 ± 5.9

Laboratories 3 36.3 ± 5.7 56.6 ± 26.8 87.0 ± 10.1

Tables 3 32.2 ± 5.2 35.4 ± 3.5 39.2 ± 5.9

Walls 3 47.1 ± 6.9 51.2 ± 3.9 55.0 ± 7.7

All radon levels were below the action level of 100 Bqm–3, the highest radon concentration was

measured inside the laboratory (room 0018) which is normally kept closed with no ventilation.

The value there was 87.0 ± 10.1 Bqm–3. The results of radon levels in offices ranged from 32.2

± 5.2 Bqm–3 to 35.7 ± 2.7 Bqm–3 with a mean of 39.2 ± 5.9 Bqm–3. These levels are considered

safe because it is below the EU action level of 100 Bqm–3. In three offices, two detectors were

deployed in each office. One detector was placed close to the wall and one on the table. The

results of radon concentration were compared and it was observed that the results from the

detectors close to the wall were higher than the results of the detectors on the tables.

4.1.2 Campaign A2: a comparison results between E-PERM and ParcRGM sys-

tems

A comparative assessment of several integrating detector types was undertaken during winter

(March 2020 - July 2020). The track-etch detectors from ParcRGM were deployed parallel with

electret detectors (E-PERM) from RadElec for more than 3 months. Different configurations

were used for E-PERM, involving both long-term and short-term electrets. The measurements

were conducted at different locations in the same building, and another set of measurements was

conducted inside a house. The results for each location are shown from Figure 4.3 to Figure 4.8.
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Location 1: Room 2026 Merensky building, Stellenbosch University.

Figure 4.3: Results of two sets of LLT-OO and ParcRGM.

A comparison between LLT-OO results and those of ParcRGM showed that the average radon

concentration was measured to be 117.9 ± 17.7 Bqm–3 and 41.5 ± 3.6 Bqm–3, respectively. The

relative difference between the two means was calculated to be 64.8%.
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Location 2: Room 1059 (Health Physics Laboratory) Merensky building, Stellen-

bosch University.

Figure 4.4: Results of SST, LST-OO and ParcRGM.

A comparison between SST, LST-OO and ParcRGM results showed that the average radon

concentration was measured to be 30.9 ± 2.6 Bqm–3, 48.4 ± 3.5 Bqm–3 and 45.6 ± 2.6 Bqm–3,

respectively. The percentage difference between the three obtained averages are presented in

Table 4.3. The lowest percentage difference of 5.6% was recorded between the LST-OO and

ParcRGM. The results of indoor radon obtained from LST-OO and ParcRGM detectors were

consistent within measurement uncertainties. This is expected since both detectors were designed

to measure radon for more than three months.
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Table 4.3: The relative percentage difference between the detectors in room 1059.

SST LST-OO ParcRGM

SST 0 - -

LST-OO 36.1 0 -

ParcRGM 32.2 5.63 0

Figure 4.5: Results of LST-OO and ParcRGM deployed in parallel and placed next to the wall
(<0.5 m).

Figure 4.5 show the results of indoor radon gas between the LST-OO and ParcRGM, with a

mean of 53.8 ± 1.1 Bqm–3 and 43.9 ± 4.6 Bqm–3, respectively. The average LST-OO result

was 18.3% higher than the average ParcRGM result. The results of LST-OO measurements

adjacent to a wall were 10% more than the average results of LST-OO measurements on the

table since the thoron from the walls contribute more when the radon detectors are placed close

to a wall. Whereas, the average radon concentration of ParcRGM close to a wall was 3.8% less

than the average radon concentration of ParcRGM in the table was because the detectors were

deployed closer to the wall which prevented enough radon gas and its product from flowing into

the detectors.
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Location 3: Room 2020 Merensky building, Stellenbosch University

Figure 4.6: Results of LST-OO and ParcRGM in room 2024.

Figure 4.6 show the results of indoor radon gas between the LST-OO and ParcRGM, with a

mean of 32.6 ± 4.3 Bqm–3 and 42.7 ± 3.8 Bqm–3, respectively. The average ParcRGM result

was 23.6% higher than the average LST-OO result.
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Location 4: Room 2024 Merensky building, Stellenbosch University.

Figure 4.7: Results showing of two LST-OO , three LLT-OO, three SST, and two SLT that were
deployed along with nine ParcRGM.

Figure 4.7 show the results of indoor radon gas between the SST, SLT, LST-OO, LLT-OO and

ParcRGM, with a mean of 31.9 ± 1.1 Bqm–3, 43.5 ± 1.3 Bqm–3, 46.8 ± 4.2 Bqm–3, 162.4 ±
68.9 Bqm–3 and 38.0 ± 3.9 Bqm–3, respectively. The relative difference was calculated between

the detectors and presented in Table 4.4. When different configurations of E-PERM compared

to ParcRGM, the lowest percentage difference for SLT and LLT-OO was 12% and the highest of

76.6%, respectively.

Table 4.4: The relative percentage difference between the detectors in room 2024.

SST SLT LST-OO LLT-OO ParcRGM

SST 0.0 - - - -

SLT 26.8 0.0 - - -

LST-OO 31.9 7.0 0.0 - -

LLT-OO 80.4 73.2 71.2 0.0 -

ParcRGM 16.2 12.7 18.8 76.6 0.0
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Location 5: House in Stellenbosch.

Figure 4.8: Results showing SLT and ParcRGM.

The results of the indoor radon concentration are shown in Figure 4.8. The mean between the

SLT and ParcRGM was calculated to be 72.6 ± 3.9 Bqm–3 and 60.2 ± 2.0 Bqm–3, respectively.

The average SLT result was 17.1% higher than the average ParcRGM result.
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4.1.3 Comparison between Airthings Wave and E-PERM

Figure 4.9: Results showing SST and Airthings radon detectors for a week measurement.

The results of indoor radon concentration are shown in Figure 4.9. The mean for the SST

and Airthings radon detectors was calculated to be 17.7 ± 4.3 Bqm–3 and 17.3 ± 7.6 Bqm–3,

respectively. The average SST result was 0.5% higher than the average Airthings result.

4.1.4 Seasonal variation of indoor radon using EIC (SST)

The data was extracted from Figure 4.1 and Figure 4.9 to compare the indoor radon concentration

for summer and winter, respectively. These measurements were taken in the same location (room

2024 Merensky building, Stellenbosch University) and were deployed for a week. The mean for

summer and winter were found to be 17.8 ± 3.4 Bqm–3 and 49.9 ± 6.0 Bqm–3, respectively.

It was observed that winter radon levels were three times more than the radon concentration

in summer. This indicates that radon levels are higher in the winter season since the doors

and windows are always kept closed compared to in summer. This can be used to determine

the seasonal correction factor. However, calculating seasonal corrective factors requires a large

number of measurements; It is, therefore, preferable to perform year long measurements instead

of correcting for measurements of shorter duration.
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4.1.5 Day and night variation of indoor radon using Airthings Wave

Figure 4.10 show the results of indoor radon concentration taken at home for a week. The

hourly radon results were downloaded from the Airthings dashboard and then analysed using

the EXCEL program. The results are shown in Figure 4.11 and presented in Table 4.5. The

results show that indoor radon gas fluctuates and is not uniformly distributed since detector 1

measured a lower average for indoor radon levels when compared with detectors 2 and 3. The

average percentage difference was calculated to be 8%. The results from detectors 2 and 3 were

too close to one another. The mean value in detector 2 was 0.3% higher than the mean value in

detector 3. The average concentration values for indoor radon measured from detector 1, 2 and

3 were 28.7 ± 12.1 Bqm–3, 31.3 ± 16.5 Bqm–3, and 31.2 ± 12.3 Bqm–3, respectively.

Figure 4.10: Screenshots taken from a smartphone showing weekly radon average levels for each
detector.
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Table 4.5: Descriptive statistics for each Airthings Wave radon detector.

Descriptive statistics

Detector 1 Detector 2 Detector 3

Mean 28.7 31.3 31.2

Standard Error 0.9 1.2 0.9

Median 25.0 29.0 29.0

Mode 22.0 25.0 28.0

Standard Deviation 12.1 16.5 12.3

Sample Variance 145.6 273.1 150.9

Kurtosis 0.4 -1.1 0.5

Skewness 0.9 0.1 0.6

Range 61.0 59.0 59.0

Minimum 7.0 1.0 9.0

Maximum 68.0 60.0 68.0

Sum 5311.0 5786.0 5780.0

Count 185.0 185.0 185.0

Confidence Level(95.0%) 1.8 2.4 1.8

Figure 4.11: The indoor radon data plotted in EXCEL showing hourly measurements for each
detector.
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Table 4.6: Day and night results of indoor radon levels.

Day Period Radon level in Bqm–3

1
Day 18.7 ± 6.7

Night 25.7 ± 7.6

2
Day 42.4 ± 8.9

Night 43.9 ± 10.8

3
Day 35.2 ± 13.7

Night 39.4 ± 13.0

4
Day 24.7 ± 9.2

Night 20.9 ± 6.7

5
Day 13.9 ± 7.9

Night 17.3 ± 4.7

6
Day 31.2 ± 5.6

Night 40.3 ± 12.4

7
Day 39.7 ± 10.3

Night 47.4 ± 7.5

The mean for indoor radon concentration was calculated from three Airthings detectors, and

the day and night variation of indoor radon was investigated. The indoor radon concentration

results for day and night are presented in Table 4.6. The weekly results indicated that the radon

concentration was higher at night compared to during the day time. The increase of radon

concentration at night is because of the higher exhalation rate of radon from soil. Another fact

is that the radon accumulates indoors more during the night since windows and doors are closed

and less radon escapes during the night. The weekly results show that for only 1 day out of 7

the radon concentrations was recorded to be higher during the day than during the night.
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4.2 Campaign B: Results of 222Rn from homes in Gauteng.

The results of indoor radon levels in Gauteng homes were divided into 10 Bqm–3 bin range

and plotted in the Frequency-Concentration plot, as shown in Figure 4.12. All radon levels

were below the South African action level of 300 Bqm–3 recommended by NNR. The radon

concentration in homes ranged from 2.4 ± 0.3 Bqm–3 to 102.5 ± 11.7 Bqm–3 with the mean of

31.1 ± 17.3 Bqm–3 as presented in Table B.1 in Appendix B. Comparing the mean indoor radon

concentration of this campaign to other studies done across the country reveals that the mean

value was lower than the mean values obtained from existing studies in Gauteng [Leu02], and

the obtained mean value is lower than the global average of 40 Bqm–3.

Figure 4.12: Frequency distribution of radon in homes around Gauteng.

Indoor radon concentrations often considered following a log-normal distribution, as shown in

Figure 4.12. The distribution showed that 79.5% of data obtained from 44 measurement points

have a radon concentration of less than 40 Bqm–3. Whereas, only one location reported radon

concentration above the action level of 100 Bqm–3 recommended by WHO, as shown in Fig-

ure 4.13.
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Figure 4.13: Radon concentrations in living rooms and bedrooms.
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The minimum and maximum values in the living rooms were measured to be 8.7 ± 1.1 Bqm–3

and 102.5 ± 11.7 Bqm–3, respectively. The maximum value was measured in the living room (1st

floor) of a 16-year old brick house with floor tiles as shown in Table B.1[House9] in Appendix B.

The minimum and maximum values in the bedrooms were measured to be 2.4 ± 0.3 Bqm–3 and

47.6 ± 5.5 Bqm–3, respectively. The bedrooms and living rooms values are mostly within the

error bars. Apart from the levels in [House7] and [House9].

The linear regression analysis for indoor radon concentrations in the living rooms and bedrooms

indicated no strong correlation with the coefficient of determination of R2 = 0.18, as indicated

in Figure 4.14. The results show that indoor radon concentration can vary in the different rooms

of the same house. Since indoor radon gas comes from the building materials, and the building

materials used for construction are different from one room to another, difference could also be

due to different ventilation.

Figure 4.14: Linear regression of the relationship between indoor radon concentration in living
rooms and bedrooms for 22 homes.

Figure 4.15 shows a box-plots for indoor radon concentration as a function of floor (left) and

house type (right), respectively. The box shows the median (long horizontal line) and values
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between the 25 and 75% percentiles. The short horizontal lines describe the values between

10 and 90% percentiles. The dots represent the highest values obtained. The box-plots show

that indoor radon gas was higher in brick houses relative to shack houses. The average radon

concentration was found to be 36.9 ± 13.1 Bqm–3 for brick houses and 22.2 ± 15.0 Bqm–3 for

shack houses. That is because radon content is mainly present in the sand and cement of the

bricks. Moreover, the indoor radon concentration was higher in homes with tiles and concrete

floors relative to homes with carpet floors. The average radon concentration was found to be

37.9 ± 14.1 Bqm–3 for homes with tile floor and 25.7 ± 13.6 Bqm–3 in the homes with concrete

floor. However, the radon gas was recorded to be lower in houses with a carpeted floor with an

average value of 14.2 ± 0.5 Bqm–3.

Figure 4.15: Box plots showing indoor radon concentration as a function of the building materials.

Since the value of indoor radon concentration is influenced by the geological conditions of the

measurement area, the indoor radon was investigated as a function of the geological features

such as soil types and underlying geology. The average of indoor radon concentration was cal-

culated for each study region. For the City of Tshwane, the City of Johannesburg and the City

of Ekurhuleni, the corresponding average indoor radon values were calculated to be 39.4 ± 15.1

Bqm–3, 23.5 ± 12.6 Bqm–3 and 29.6 ± 14.6 Bqm–3, respectively.
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The 10 km × 10 km grid layer was created using the GIS for each region. Each grid pre-

sented all measurement points and the average indoor radon concentrations. The grid layer was

overlaid on the geology and the soil type layer, as shown in Figure 4.16 and Figure 4.17. The

maximum value was found to be in the City of Tshwane region with the underlying soil type

classified as Lithic leptosol and the geology classified as Transvaal. However, the maximum

value was below the global average of 40 Bqm–3 [UNS00]. The minimum value of indoor radon

concentration was found to be in the City of Johannesburg region with the underlying soil type

classified as Plinthic acrisol and the geology classified as Transvaal and Sand river gneiss.

Figure 4.16: Average indoor radon concentration as a function of the surrounding soil type in
the selected study areas.
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Figure 4.17: Average indoor radon concentration as a function of the surrounding geology in the
selected study areas.

Similar geology features were found to be in the homes assessed for maximum [House9] and

minimal [House21] indoor radon concentrations. In this case, no contribution to the indoor

concentration is indicated by the geological features. It is, therefore, clear that the variation of

indoor radon can be attributed to the surrounding soil type and types of construction materials

used for the construction of the houses. However, the study conducted in Paarl showed a strong

connection between the geology and indoor radon [Lin08]. Indoor radon concentrations were

observed to be higher in the houses located less than 2 km away from the Paarl Mountain with

granite outcrops, whereas the radon concentrations were observed to be lower in houses located

more than 3 km from the Paarl Mountain as shown in Figure 4.18.
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Figure 4.18: Indoor radon concentration as a function of the surrounding geology in Paarl
area [Lin08].
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Figure 4.19: Indoor radon concentration in homes located next to mine area.

Figure 4.19 shows a map of homes located next to the mining area where two homes [House16 and

House17] were surveyed. The indoor radon concentrations were observed to be relatively lower

in both homes with the average values of 11.5 ± 4.0 Bqm–3 and 12.2 ± 3.0 Bqm–3, respectively.

The radon levels were expected to be higher since the houses are located next to mines. However,

both homes were shacks built with corrugated metal and with carpet floors, which in turn may

result in lower radon levels in these homes. It could also be due to more ventilation with shacks.

This suggests that further measurements in brick homes near mine tailings will be useful.
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The effect of gamma-ray background on indoor radon measurements using E-PERM was inves-

tigated. Equation 3.1 and equation 3.2 were used to calculate indoor concentration for following

cases:

� gamma-ray background was not included;

� default gamma-ray background of 32 Bqm–3 was used;

� measured gamma-ray background using Graetz dosimeter and;

� elevation factor was taken into consideration.

Figure 4.20 shows the results for different cases using the information obtained from campaign

A1 were the average gamma-ray background value was obtained to be 80 nGyh–1. Figure 4.21

shows the results from campaign B were the average gamma-ray background value was obtained

to be 120 nGyh–1.

Figure 4.20: Indoor radon concentration when using E-PERM system from campaign 1A.

Figure 4.21: Indoor radon concentration when using E-PERM system from campaign B.
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4.3 Campaign C: Results of 222Rn from homes and schools in West-

ern Cape.

The indoor radon measurements were performed in 5 schools and 36 homes located mainly in the

Cape Flats and the surrounding areas in Western Cape. The distribution of radon concentration

is well described by a log-normal distribution as shown in Figure 4.22. Most of the radon concen-

trations (about 83%) were below the global average of 40 Bqm–3 and only 4.1% were above the

action level of 100 Bqm–3 recommended by WHO. The maximum value from the data is 123.8 ±
14.6 Bqm–3 when using the default gamma-ray background radiation value of 32 Bqm–3 [Kot90].

It was noted that some values were below zero (negative) due to the overestimation of the

gamma-ray background radiation value of 32 Bqm–3. One of the disadvantages of using an elec-

tret ion-chamber is that the detectors respond to natural gamma-ray background radiation, and

correction is required.

To solve this issue, all the values were recalculated using gamma-ray background radiation values

of 15 Bqm–3 and 12 Bqm–3 and the results are presented in Table D.1 under Appendix D. All

values were positive for the gamma-ray background radiation value of 12 Bqm–3. From now on,

all the results were discussed based on the positive values obtained using the gamma-ray back-

ground radiation of 12 Bqm–3. Nevertheless, no indoor radon concentration was above the South

African action level of 300 Bqm–3 recommended by NNR. The maximum value was calculated

to be 143.7 ± 17.0 Bqm–3.
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Figure 4.22: Frequency distribution for indoor radon in homes and schools in Western Cape.

Since the idea was to measure the radon gas in the most occupied space, the detectors were

either placed in the living rooms or bedrooms in homes. According to Figure 4.23, the results

showed that the indoor radon levels in the living rooms were slightly higher than in the bedrooms

with a mean of 35.1 ± 28.6 Bqm–3 and 34.6 ± 23.5 Bqm–3, respectively. However, there was no

direct correlation between the results obtained in the living rooms and bedrooms since only one

detector was used for each house.

The results in schools showed that radon levels were higher in staff rooms (offices) than in

the classrooms with a mean of 54.8 ± 47.3 Bqm–3 and 31.8 ± 23.5 Bqm–3, respectively. The

findings are expected since staff rooms are usually smaller and less ventilated than classrooms.

Indoor radon concentration in schools cannot be directly compared with the radon in homes,

but it is observed that the levels were higher in schools than in homes. The factors influencing

higher levels in schools is that South African schools operate mainly from 07h30 to 14h30 or

15h30 and are closed for the rest of the day and on weekends. Therefore, radon gas can build-up

due to poor ventilation after working hours and on weekends.

96

Stellenbosch University https://scholar.sun.ac.za



Chapter 4 Experimental results and discussion

Figure 4.23: Box plots showing indoor radon concentration as a function of the room type.

Tiles, ceramics, marbles, PVCs, and carpets are the most commonly used for flooring in homes

and schools in South Africa. Indoor radon concentrations were relatively higher in buildings

with tile floors, whereas relatively lower in homes with plastic PVC floor carpets, as shown in

Figure 4.24. The mean radon concentration in homes with tile floors was obtained to be 39.6

± 32.8 Bqm–3, and for plastic PVC floor carpets was 24.9 ± 14.8 Bqm–3. Higher indoor radon

concentrations were expected in homes with tiles floors since they are made of ceramic and

cement containing radionuclides such as 226Ra, 232Th, and 40K.
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Figure 4.24: Box plots showing indoor radon concentration as a function of the building materials.

The results of indoor radon concentration were compared to the lithology of the measured lo-

cations (homes and schools). Figure 4.25 shows the indoor radon location (square boxes) and

the lithology of the Cape Flats and the surrounding areas in the Western Cape. About 83.7%

of the measurements were carried in the homes and schools located mainly in the C3 WC L5

lithological type described in Table E.2 (Appendix E). The average indoor concentration in this

area was 37.7 ± 30.4 Bqm–3. Two buildings [MHS and FHS] measured indoor radon higher

above 100 Bqm–3 and are located in the same lithological type C3 WC L5.
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Figure 4.25: Indoor radon concentration as a function of the surrounding geology in Cape Flats
area.

When comparing the results in Figure 4.25 and Figure 4.26 [Rou19], it was observed that houses

can be in the same geology/lithology area and still be large variation for the indoor radon

due to certain variables such as climate parameters, ventilation conditions, and construction

materials. For example, all houses are located in an area with the same underlying geology in

Figure 4.26 [Rou19], but the home which measured elevated indoor radon was close to a granite

outcrop. It is apparent that the underlying geology/lithology is not uniform everywhere therefore

indoor radon can vary in homes found in similar geology/lithology areas.

99

Stellenbosch University https://scholar.sun.ac.za



Chapter 4 Experimental results and discussion

Figure 4.26: Indoor radon concentration as a function of the surrounding geology in Vredenburg,
Western Cape [Rou19].

Below are the advantages/disadvantages of the Schools outreach approach to obtain indoor radon

data.

Advantages:

� introducing learners to research (applied nuclear physics), environmental science and

� gaining access to homes.

Disadvantages:

� learner results have to be carefully checked (best to independently calculate radon levels),
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� consent process more complicated,

� need to have venue to host students,

� need for catering,

� short-term results only,

� scheduling constraints (not during exam time), and

� radon detectors get lost.
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4.4 Annual effective dose estimation of indoor 222Rn

The annual mean effective dose rate was calculated based on the UNSCEAR (2000) [UNS00]

procedure using equation 2.8 described in section 2.4.2 of Chapter 2. The estimated values of

the mean effective dose rate ranged from 0.0 to 3.2 mSvy–1, with an overall mean of 0.6 ± 0.4

mSvy–1 (Table 4.7). The estimated values of the annual mean effective dose were calculated

based on the short-term measurements (≈7 days) which may not accurately indicate annual

radon levels. As such, the calculated dose rate in Table 4.7 may be regarded as a rough estimate

of indoor radon and its daughters. However, the values of the obtained dose rates were well

below the recommended action level of 3 - 10 mSvy–1 as adopted by ICRP (1993) [ICR93]. The

obtained dose rate indicates low indoor levels of radon in dwellings and workplaces.

Table 4.7: Annual mean effective dose (E) and mean lifetime risk for indoor radon exposure in
the different campaigns.

222Rn levels (Bqm–3) E (mSvy–1) Risk (×10–3)

Campaign Place min mean max min mean max min mean max

A Offices (11) 32.2 ± 5.3 41.4 ± 15.6 87.0 ± 10.1 0.2 0.3 0.6 0.7 0.9 1.9

B Homes (22) 2.4 ± 0.3 31.1 ± 17.3 102.5 ± 11.7 0.1 0.8 2.6 0.2 2.5 8.3

C
Homes (36) 0.0 ± 0.0 35.1 ± 26.3 126.9 ± 14.6 0.0 0.9 3.2 0.0 2.8 10.2

Schools (5) 12.3 ± 2.8 41.3 ± 36.0 143.7 ± 17.0 0.1 0.2 0.7 0.2 0.7 2.3

The accumulation of the indoor radon and its daughters emanated from the building materials

can have carcinogenic effects [Saa10]. Therefore, the excess lifetime risk was calculated based

on the probability of developing lung cancer due to the radon exposure over the average lifetime

using the using equation 2.9 described in section 2.4.2 of Chapter 2. The mean risk values are

tabulated in Table 4.7 for each campaign, with an overall mean of 1.7 ± 1.1 × 10–3, which is

below the maximum risk of 3.5 × 10–3 that yields the annual effective dose of 1 mSvy–1.
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5 Conclusion

5.1 Summary of main findings

The literature survey has shown that residential indoor radon surveys have been conducted in-

ternationally. In some countries, the surveys covered the whole country and in many cases, the

surveys were pilot studies. The available data relevant to indoor radon surveys in South Africa

were collected up to 2019 and the data was used for mapping and producing databases through

the Geographic Information Systems (GIS) software (qGIS 2.18, Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA, downloaded from:https://docs.

qgis.org/2.18/en/docs/gentle_gis_introduction/introducing_gis.html). A map that

includes the indoor radon data from more than 20 towns in 7 provinces was produced as pre-

sented in Figure 2.7. The minimum and maximum indoor radon levels were found to be 12

Bqm–3 and 2600 Bqm–3 in wine cellars and Cango Caves (Western Cape), respectively.

The part of this study also involved the direct measurement of indoor radon in homes and

workplaces such as schools and offices. The sampling strategy was based on building character-

istics, geographic locations, underlying geology, and soil. The experimental work in this study

was divided into three campaigns for different objectives. In the first campaign, a comparative

assessment was taken between the track-etch, electrets, and Airthings� radon detectors. It was

concluded that track-etch and electrets are the most applicable and suitable technologies for

conducting the national indoor radon surveys.

The EIC results show that radon levels are found to be higher (up to 33%) for measurements

close to walls as opposed to measurements where the EIC detectors are placed > 0.5 m away

from walls. This is most likely due to thoron from the wall, in addition to radon entering the

EIC detectors. The EIC results show that radon levels increase with height. This is most likely

due to the thoron effect. In this case the thoron source is the materials in the ceiling. The

results showed radon levels to vary significantly in areas with the same underlying geology and

soil profile. This indicates that using underlying geology and soil profile alone is not sufficient

to develop an indoor radon survey strategy. However, the results of the existing data from Paarl

and Vredenburg indicated significant geographical variation in indoor radon concentrations only

in the areas located next to granite outcrops. Such areas are classified as high-radon areas, and
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should be prioritised during the national radon survey.

No clear correlation between bedroom and living room radon concentrations was found in the

Gauteng study. This suggests that one should try to measure in the bedrooms and living rooms.

Bedrooms levels are necessary because the occupancy of the room can be up to 8 hours a day

(during sleep).

The annual effective dose assessment was performed for all the three campaigns, and the annual

mean effective dose rate was calculated to be 0.6 ± 0.4 mSvy–1 which was lower than the allow-

able limit. The lifetime risk was found to have a mean of 1.7 ± 1.1 × 10–3. No level of indoor

radon is considered safe. Therefore, it is necessary to increase the level of public awareness

concerning the risks associated with indoor radon gas. Finally, national indoor radon programs

are required in the country to protect the citizens from preventable lung cancer deaths caused

by the silent killer, radon.

5.2 Recommendations

Some recommendations for future work on national indoor radon survey are:

� All high population density areas and areas more likely to have high levels of radon should

be prioritised when conducting a national survey.

� The National Nuclear Regulator (NNR) in South Africa must encourage homeowners to

have radon measurements made in their homes to identify the individual dwellings with

elevated indoor radon levels.

� The sampling method should be carried in two phases. In phase 1, directed sampling

should be considered based on the geology, soil, NORM/TENORM industry. In phase 2,

the grid sampling will be based on the district population for the development of a higher

resolution national radon map.

� Access to homes and public buildings can be gained through a door-to-door approach,

invitation, advertisement, and school outreach.

� Short-term measurements with electret ion-chambers (SST or SLT) or Airthings detectors

can be used for screening purposes. Track-etch detectors should be considered for long-
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term measurements. The cost-effectiveness of the three measuring systems is well outlined

in Appendix F.

� The radon results for LLT-OO (long-term electret on LOO-chamber) configuration were

found to be inaccurate when compared to other radon detectors, the reason for this will

be further investigated.

� The measurements should preferably be conducted during the winter seasons. The higher

levels in the winter is attributed to the observation that people normally keep their windows

closed during the winter, allowing indoor radon concentrations to rise.

� To continue using qGIS to build on what was created in this study.
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6 Appendices

A Questionnaire
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Deployment and household Questionnaire 

 

 

HOUSE DETAILS 

Parents name and surname:                                                                                

                   Physical address: 

             City:  

    Province:  

DEPLOYMENT INFO 

Detector serial number:                                    (indicated under the detector) 

Start Date:    Start Time:   Deployed by: 

End Date:   End Time:   Retrieved by: 

 

SECTION A: DWELLING\HOUSE INFORMATION 

Dwelling type:                                       

Shed\Wendy House         

Shack 

Hut          

              Concrete\ brick house          

              Caravan 

              Other (specify below) 

 

          

                                                                                                                                                                                                                                                                                                                                                          

Questionnaire Appendix A
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Floor type:                                       

             Wood         

              PVC flooring 

              Tiles 

              Mud          

               Concrete          

               Carpet 

               Stone (marble, granite, slate, sandstone, limestone) 

               Other (specify below) 

 

 

  

How old is a Dwelling\House?     

            0 – 3years                 3 – 8years     9 - 20 years                    21- 30 years    

 

          31 - 40 years               41 – 50 years           More than 50 years              Not sure 

        

 

 

 

 

 

 

 

 

  

Questionnaire Appendix A
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SECTION B: DEPLOYED AREA 

 

Which room did you deployed the detector? 

         Bedroom  

         Living room 

        Other (specify below) 

 

 

 

Which level is the room is located in the house:   

         Ground floor   

         First floor               

         Basement 

         The house does not have levels (single storey)              

         Other (specify below)               

 

 

According to the instructions, the detectors must be deployed 0.5 m away from the wall or open 

window and 1m above the ground. Did you follow these instruction?          Yes           No 

If No, Please describe how you deployed the detector 

 

 

 

 

Questionnaire Appendix A
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B Gauteng homes: building materials information

Table B.1: Building characteristics for each home in Gauteng

House characteristics

House N◦ Living room (Bqm–3) Bedroom (Bqm–3) Average levels (Bqm–3) Dwelling type Floor type House age Photographs

1 [H1L],[H1B] 38.8 ± 4.5 36.7 ± 4.3 37.7 ± 1.5 Brick Tile 21 - 30 House1

2 [H2L],[H2B] 51.3 ± 5.9 47.6 ± 5.5 49.5 ± 2.6 Brick Tile 9 - 20 House2

3 [H3L],[H3B] 27.9 ± 3.3 33.5 ± 3.9 30.7 ± 4.0 Brick Tile 9 - 20 House3

4 [H4L],[H4B] 28.5 ± 3.4 46.3 ± 5,4 37.4 ± 12.6 Brick Tile 3 - 8 House4

5 [H5L],[H5B] 18.9 ± 2.3 21.5 ± 2.6 20.2 ± 1.8 Shack Concrete 9 - 20 House5

6 [H6L],[H6B] 29.2 ± 3.5 21.7 ± 2.6 25.4 ± 5.2 Brick Tile 3 - 8 House6

7 [H7L],[H7B] 68.6 ± 7.9 18.2 ± 2.2 43.4 ± 35.6 Shack Concrete 0 - 3 House7

8 [H8L],[H8B] 29.4 ± 3.5 31.8 ± 3.8 30.6 ± 1.7 Brick Concrete 9 - 20 House8

9 [H9L],[H9B] 102.5 ± 11.7 40.0 ± 4.7 71.2 ± 44.1 Brick Tile 9 - 20 House9

10 [H10L],[H10B] 26.9 ± 3.2 20.5 ± 2.5 23.7 ± 4.5 Brick Concrete 21 - 30 House10

11 [H11L],[H11B] 39.0 ± 4.6 39.7 ± 4.7 39.3 ± 0.5 Brick Concrete 3 - 8 House11

12 [H12L],[H12B] 22.1 ± 2.7 42.1 ± 5.0 32.1 ± 14.1 Brick Tile 9 - 20 House12

13 [H13L],[H13B] 26.6 ± 3.2 28.9 ± 3.4 27.8 ± 1.6 Brick Concrete 9 - 20 House13

14 [H14L],[H14B] 53.9 ± 6.2 39.0 ± 4.6 46.5 ± 10.5 Brick Tile 9 - 20 House14

15 [H15L],[H15B] 18.9 ± 2.2 17.1 ± 2.0 18.0 ± 1.3 Brick Tile 9 - 20 House15

16 [H16L],[H16B] 8.7 ± 1.1 14.4 ± 1.8 11.5 ± 4.0 Shack Carpet 3 - 8 House16

17 [H17L],[H17B] 10.1 ± 1.3 14.4 ± 1.8 12.2 ± 3.0 Shack Carpet 3 - 8 House17

18 [H18L],[H18B] 24.1 ± 2.9 35.9 ± 4.2 30.0 ± 8.3 Shack Tile 3 - 8 House18

19 [H19L],[H19B] 30.1 ± 3.8 41.1 ± 5.0 35.6 ± 7.8 Brick Tile 3 - 8 House19

20 [H20L],[H20B] 22.6 ± 2.9 17.2 ± 2.2 19.9 ± 3.8 Brick Tile 9 - 20 House20

21 [H21L],[H21B] 25.9 ± 3.3 2.4 ± 0.3 14.2 ± 16.6 Shack Concrete 9 - 20 House21

22 [H22L],[H22B] 44.7 ± 5.4 10.2 ± 1.4 27.5 ± 24.4 Brick Tile 21 - 30 House22
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Table B.2: Additional information about homes in Gauteng.

Coordinates

Electret no Code Room type Location Start date Finish date Days Vi Vf DV CF x y

SLF 295 H1L Living room Atteridgeville 18/12/2019 14:40 27/12/2019 11:55 8.9 707.0 664.0 43.0 0.06 Available on request

SLF 344 H1B Bedroom Atteridgeville 18/12/2019 14:40 27/12/2019 11:55 8.9 656.3 615.0 41.3 0.06

SLF 357 H2L Living room Atteridgeville 18/12/2019 14:50 27/12/2019 11:45 8.9 696.0 647.0 49.0 0.06 Available on request

SLF 227 H2B Bedroom Atteridgeville 18/12/2019 14:50 27/12/2019 11:45 8.9 684.0 637.0 47.0 0.06

SLF 208 H3L Living room Atteridgeville 18/12/2019 15:30 27/12/2019 11:25 8.8 712.3 675.0 37.3 0.06 Available on request

SLF 267 H3B Bedroom Atteridgeville 18/12/2019 15:30 27/12/2019 11:25 8.8 637.3 598.0 39.3 0.06

SLF 330 H4L Living room Atteridgeville 19/12/2019 11:36 27/12/2019 11:15 8.0 707.0 673.0 34.0 0.06 Available on request

SLF 253 H4B Bedroom Atteridgeville 19/12/2019 11:36 27/12/2019 11:15 8.0 705.0 663.0 42.0 0.06

SLF 333 H5L Living room Atteridgeville 19/12/2019 11:45 27/12/2019 11:30 8.0 700.7 671.0 29.7 0.06 Available on request

SLF 369 H5B Bedroom Atteridgeville 19/12/2019 11:45 27/12/2019 11:30 8.0 678.3 647.7 30.7 0.06

SLF 348 H6L Living room Atteridgeville 19/12/2019 11:54 27/12/2019 11:40 8.0 671.0 637.0 34.0 0.06 Available on request

SLF 309 H6B Bedroom Atteridgeville 19/12/2019 11:54 27/12/2019 11:40 8.0 709.0 678.0 31.0 0.06

SLF 227 H7L Living room Lotus Gardens 19/12/2019 12:00 27/12/2019 10:55 8.0 697.7 646.0 51.7 0.06 Available on request

SLF 525 H7B Bedroom Lotus Gardens 19/12/2019 12:00 27/12/2019 10:55 8.0 672.0 643.0 29.0 0.06

SLF 340 H8L Living room Lotus Gardens 19/12/2019 14:00 27/12/2019 12:30 7.9 682.0 648.0 34.0 0.06 Available on request

SLF 225 H8B Bedroom Lotus Gardens 19/12/2019 14:00 27/12/2019 12:30 7.9 712.3 677.0 35.3 0.06

SLF 302 H9L Living room Lotus Gardens 19/12/2019 14:10 27/12/2019 12:35 7.9 686.3 620.0 66.3 0.06 Available on request

SLF 246 H9B Bedroom Lotus Gardens 19/12/2019 14:10 27/12/2019 12:35 7.9 651.3 613.0 38.3 0.06

SLF 356 H10L Living room Lotus Gardens 19/12/2019 14:25 27/12/2019 12:35 7.9 702.0 669.0 33.0 0.06 Available on request

SLF 307 H10B Bedroom Lotus Gardens 19/12/2019 14:25 27/12/2019 12:35 7.9 683.0 653.0 30.0 0.06

SLF 511 H11L Living room Benoni 20/12/2019 12:50 28/12/2019 18:37 8.2 711.0 671.0 40.0 0.06 Available on request

SLF 346 H11B Bedroom Benoni 20/12/2019 12:50 28/12/2019 18:37 8.2 681.0 641.0 40.0 0.06

SLF 373 H12L Living room Benoni 20/12/2019 13:30 28/12/2019 18:21 8.2 707.0 675.0 32.0 0.06 Available on request

SGJ 855 H12B Bedroom Benoni 20/12/2019 13:30 28/12/2019 18:21 8.2 332.0 295.0 37.0 0.05

SLF 323 H13L Living room Benoni 20/12/2019 13:50 28/12/2019 18:15 8.2 707.0 673.0 34.0 0.06 Available on request

SLF 285 H13B Bedroom Benoni 20/12/2019 13:50 28/12/2019 18:15 8.2 702.0 667.0 35.0 0.06

SLF 430 H14L Living room Daveyton 20/12/2019 14:55 28/12/2019 17:30 8.1 698.0 652.0 46.0 0.06 Available on request

SLF 212 H14B Bedroom Daveyton 20/12/2019 14:55 28/12/2019 17:30 8.1 675.0 636.0 39.0 0.06

SLF 465 H15L Living room Daveyton 20/12/2019 15:35 30/12/2019 14:30 10.0 707.0 670.0 37.0 0.06 Available on request

SLF 372 H15B Bedroom Daveyton 20/12/2019 15:35 30/12/2019 14:30 10.0 709.0 673.0 36.0 0.06

SLF 291 H16L Living room Benoni 20/12/2019 16:45 28/12/2019 19:05 8.1 211.0 189.0 22.0 0.05 Available on request

SLF 287 H16B Bedroom Benoni 20/12/2019 16:45 28/12/2019 19:05 8.1 702.0 674.0 28.0 0.06

SLF 362 H17L Living room Benoni 20/12/2019 17:05 28/12/2019 19:35 8.1 693.0 667.0 26.0 0.06 Available on request

SLF 274 H17B Bedroom Benoni 20/12/2019 17:05 28/12/2019 19:35 8.1 699.0 671.0 28.0 0.06

SLF 313 H18L Living room Benoni 20/12/2019 18:18 28/12/2019 17:15 8.0 717.0 685.0 32.0 0.06 Available on request

SLF 263 H18B Bedroom Benoni 20/12/2019 18:18 28/12/2019 17:15 8.0 687.0 650.0 37.0 0.06

SGJ 859 H19L Living room Midrand 23/12/2019 14:40 30/12/2019 09:15 6.8 148.0 123.0 25.0 0.05 Available on request

SGJ 802 H19B Bedroom Midrand 23/12/2019 14:40 30/12/2019 09:15 6.8 196.0 167.0 29.0 0.05
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Appendix C

Table B.3: Additional information about homes in Gauteng (continued).

Coordinates

Electret no Code Room type Location Start date Finish date Days Vi Vf DV CF x y

SGJ 788 H20L Living room Midrand 23/12/2019 15:35 30/12/2019 09:30 6.7 361.0 337.0 24.0 0.05 Available on request

SGJ 774 H20B Bedroom Midrand 23/12/2019 15:35 30/12/2019 09:30 6.7 189.0 168.0 21.0 0.05

SGJ 817 H21L Living room Midrand 23/12/2019 20:05 30/12/2019 08:56 6.5 173.0 158.0 15.0 0.05 Available on request

SGJ 841 H21B Bedroom Midrand 23/12/2019 20:05 30/12/2019 08:56 6.5 258.0 242.0 16.0 0.05

SGJ 795 H22L Living room Midrand 23/12/2019 18:15 30/12/2019 13:56 6.8 156.0 126.0 30.0 0.05 Available on request

SGJ 885 H22B Bedroom Midrand 23/12/2019 18:15 30/12/2019 13:56 6.8 201.0 182.0 19.0 0.05
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Appendix C

C Gauteng homes: photographs showing the building

materials

Table C.1: The photographs taken from each home in Gauteng showing the building materials
of the house (outside), living room and bedroom.

House N◦ Outside Living room Bedroom

1

2

3
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House N◦ Outside Living room Bedroom

4

5

6
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House N◦ Outside Living room Bedroom

7

8

9
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House N◦ Outside Living room Bedroom

10

11

12
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House N◦ Outside Living room Bedroom

13

14
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House N◦ Outside Living room Bedroom

15

16

17
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House N◦ Outside Living room Bedroom
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19

20
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House N◦ Outside Living room Bedroom
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22
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D Western Cape schools and homes: building materials
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Appendix D

Table D.1: The information about the building materials of schools and homes in Western Cape.

Building characteristics Rn level (Bqm–3)

Code Dwelling type Floor type House age Room type Room level BG = 32 BG = 15 BG = 12

LHS1 Brick PVC 41 - 50 Classroom First -7.6 ± 1.8 9.4 ± 2.2 12.3 ± 2.8

LHS2 Brick PVC 41 - 50 Staff room First 2.6 ± 0.5 19.6 ± 4.0 22.5 ± 4.6

LHS3 Brick PVC 0 - 3 Classroom First -1.8 ± 0.4 15.2 ± 3.3 18.1 ± 3,9

LH4 Brick Tiles 21 - 30 Bedroom First 1.7 ± 0.3 18.7 ± 3.4 21.6 ± 3.9

LH5 Shack Concrete 3 - 8 Bedroom First 39.8 ± 5.1 56.8 ± 7.3 59.7 ± 7.6

LH6 Brick Tiles Not sure Bedroom First 11.5 ± 1.8 28.5 ± 4.5 31.4 ± 5.0

MHS1 Brick Tiles Over 50 Secretary Office First 8.9 ± 1.6 25.9 ± 4.7 28.8 ± 5.2

MHS2 Brick Tiles Over 50 Staff room First 22.4 ± 3.5 39.4 ± 6.1 42.3 ± 6.5

MHS3 Brick Concrete 9 - 20 Classroom First 61.8 ± 7.9 78.8 ± 10.1 81.7 ± 10.5

MH4 Concrete Tiles 21 - 30 Dining room First -4.4 ± 0.8 12.6 ± 2.2 15.5 ± 2.7

MH5 Brick Tiles 21 - 30 Living room First 107.0 ± 12.3 124.0 ± 14.3 126.9 ± 14.6

MH6 Brick Tiles Not sure Bedroom First 49.6 ±6.3 66.6 ± 8.4 69.5 ± 8.8

MH7 Brick Tiles Over 50 Living room First 9.4 ± 1.4 26.4 ± 3.8 29.3 ± 4.2

MH8 Brick Tiles 21 - 30 Living room First 3.3 ± 0.5 20.3 ± 3.1 23.2 ± 3.6

MYH1 Brick Concrete 3 - 8 Bedroom First -5.4 ± 1.0 11.6 ± 2.1 14.5 ± 2.6

MYH2 Brick Carpet 9 - 20 Living room First 66.4 ± 8.0 83.4 ± 10.1 86.3 ± 10.4

MYH3 Wood Wood 3 - 8 Bedroom First 67.5 ± 8.0 84.5 ± 10.0 87.4 ± 10.4

MYH4 Brick Wood 3 - 8 Living room First 11.4 ± 1.6 28.4 ± 4.0 31.3 ± 4.4

MYH5 Brick Carpet Not sure Bedroom First 9.6 ± 1.4 26.6 ± 3.8 29.5 ± 4.2

FHS1 Brick Tiles 21 - 30 Classroom First 23.3 ± 3.7 40.3 ± 6.4 43.2 ± 6.8

FHS2 Brick Tiles 21 - 30 Staff room First 123.8 ± 14.6 140.8 ± 16.7 143.7 ± 17.0

FHS3 Brick Tiles 21 - 30 Classroom Second -6.6 ± 1.7 10.4 ± 2.7 13.3 ± 3.5

FH4 Brick Tiles 21 - 30 Living room Third 16.4 ± 2.2 33.4 ± 4.6 36.3 ± 5.0

FH5 Brick Tiles Not sure Bedroom First 13.4 ± 2.0 30.4 ± 4.5 33.3 ± 4.9

FH6 Brick Tiles 9 - 20 Living room First 6.4 ± 1.0 23.4 ± 3.5 26.3 ± 3.9

FH7 Brick Tiles 31 - 40 Living room First 18.0 ± 2.4 35.0 ± 4.7 37.9 ± 5.1

FH8 Brick Tiles 21 - 30 Bedroom First 14.3 ± 2.0 31.3 ± 4.3 34.2 ± 4.7

BDH1 Brick Tiles 0 - 3 Living room First 35.7 ± 4.5 52.7 ± 6.6 55.6 ± 7.0

BDH2 Brick Concrete 9 - 20 Bedroom First -0.7 ± 0.1 16.3 ± 2.9 19.2 ± 3.5

BDH3 Brick Tiles 9 - 20 Living room First 1.7 ± 0.3 18.7 ± 3.0 21.6 ± 3.5

BDH4 Shack PVC 0 - 3 Living room First 26.2 ± 3.5 43.2 ± 5.8 46.1 ± 6.2

BDH5 Brick Tiles 9 - 20 Living room First 2.6 ± 0.4 19.6 ± 3.1 22.5 ± 3.5

TGS5 Brick Concrete 9 - 20 Classroom First -3.6 ± 1.0 13.4 ± 3.8 16.3 ± 4.7

TGS7 Brick Concrete 9 - 20 Classroom First 17.3 ± 3.3 34.3 ± 3.8 37.2 ± 7.2

TGH1 Brick Tiles 3 - 8 Living room First -19.9 ± 6.9 -2.9 ± 1.0 0.0 ± 0.0

TGH2 Brick Wood 31 - 40 Living room First -5.4 ± 1.0 11.6 ± 2.1 14.5 ± 2.6

TGH3 Brick Concrete 9 - 20 Bedroom First 2.9 ± 0.5 19.9 ± 3.1 22.8 ± 3.6

TGH4 Shack Concrete 3 - 8 Bedroom First -0.7 ± 0.1 16.3 ± 2.6 19.2 ± 3.0

TGH6 Brick Tiles 9 - 20 Living room First -17.9 ± 6.6 -0.9 ± 0.3 2.0 ± 0.7

MZS1 Brick Tiles 21-30 Staff room First 15.8 ± 2.1 32.8 ± 4.4 15.5 ± 2.6

MZS2 Brick Tiles 21-30 Staff room First -4.4 ± 0.7 12.6 ± 2.2 68.2 ± 8.2

MZS3 Brick Tiles 21-30 Staff room First 48.3 ± 5.8 65.3 ± 7.8 35.7 ± 4.8
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Appendix D

Table D.2: The information about the building materials of schools and homes in Western Cape
(continued).

Building characteristics Rn level (Bqm–3)

Code Dwelling type Floor type House age Room type Room level BG = 32 BG = 15 BG = 12

MZH1 Brick Wood 31 - 40 Bedroom First -13.2 ± 3.3 3.8 ± 0.9 6.7 ± 1.7

MZH2 Shack Carpet 3 - 8 Living room First 24.9 ± 3.2 41.9 ± 5.4 44.8 ± 5.8

MZH3 Brick Carpet Not sure Living room First 2.7 ± 0.4 19.7 ± 3.1 22.6 ± 3.5

SKH1 Brick Tiles 9 - 20 Other (Kitchen) First 45.3 ± 5.5 62.3 ± 7.6 65.2 ± 8.0

SKH2 Brick Wood Not sure Living room First 4.4 ± 0.7 21.4 ± 3.3 24.3 ± 3.7

SKH3 Brick Tiles 31 - 40 Living room First 4.3 ± 0.7 21.3 ± 3.2 24.2 ± 3.7

SKH4 Brick Wood 41 - 50 Living room First 4.3 ± 0.7 21.3 ± 3.5 24.2 ± 3.9
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Table D.3: Additional information of schools and homes in Western Cape.

Electrect type Serial number Code Location Start date Finish date Days Vi Vi D V CF G

Coordinates

x y

Short term SLF 242 LHS Lückhoff High School 01/09/2019 12:24 06/09/2019 13:24 5.0 716.7 709.7 7.0 2.1 0.087 Available on request

Short term SLF 351 LHS Lückhoff High School 02/09/2019 08:10 06/09/2019 13:10 4.2 730.0 721.7 8.3 2.1 0.087 Available on request

Short term SLF 229 LHS Lückhoff High School 02/09/2019 02:45 06/09/2019 13:15 4.4 731.3 723.7 7.7 2.1 0.087 Available on request

Short term SLF 291 LH4 Stellenbosch (Home) 02/09/2019 03:05 07/09/2019 07:45 5.2 726.0 716.0 10.0 2.1 0.087 Available on request

Short term SLF 427 LH5 Stellenbosch (Home) 31/08/2019 17:53 06/09/2019 06:47 5.5 728.7 706.0 22.7 2.1 0.087 Available on request

Short term SLF 301 LH6 Stellenbosch (Home) 01/09/2019 12:24 06/09/2019 15:06 5.1 716.7 704.0 12.7 2.1 0.087 Available on request

Short term SLF 277 MHS Milnerton High School 02/09/2019 07:19 06/09/2019 14:24 4.3 716.0 706.0 10.0 2.1 0.087 Available on request

Short term SLF 313 MHS Milnerton High School 02/09/2019 07:22 06/09/2019 14:14 4.3 734.3 721.0 13.3 2.1 0.087 Available on request

Short term SLF 344 MHS Milnerton High School 02/09/2019 07:19 06/09/2019 13:58 4.3 695.0 672.3 22.7 2.1 0.087 Available on request

Short term SLF 369 MH4 Milnerton (Home) 31/08/2019 16:44 07/09/2019 07:32 6.6 699.0 688.7 10.3 2.1 0.087 Available on request

Short term SLF 246 MH5 Milnerton (Home) 31/08/2019 16:41 07/09/2019 07:14 6.6 717.7 665.7 52.0 2.1 0.087 Available on request

Short term SLF 340 MH6 Milnerton (Home) 31/08/2019 17:30 05/09/2019 23:30 5.3 713.3 689.0 24.3 2.1 0.087 Available on request

Short term SLF 356 MH7 Milnerton (Home) 31/08/2019 16:30 07/09/2019 07:38 6.6 724.7 709.0 15.7 2.1 0.087 Available on request

Short term SLF 274 MH8 Milnerton (Home) 31/08/2019 17:10 07/09/2019 07:42 6.6 732.0 718.7 13.3 2.1 0.087 Available on request

Short term SLF 323 MYH1 Khayelitsha (Home) 31/08/2019 17:11 07/09/2019 07:10 6.6 729.3 719.3 10.0 2.1 0.087 Available on request

Short term SLF 270 MYH2 Khayelitsha (Home) 01/09/2019 17:15 07/09/2019 06:15 5.5 722.0 691.0 31.0 2.1 0.087 Available on request

Short term SLF 371 MYH3 Khayelitsha (Home) 31/08/2019 21:50 07/09/2019 06:46 6.4 721.0 685.0 36.0 2.1 0.087 Available on request

Short term SLF 362 MYH4 Khayelitsha (Home) 31/08/2019 16:30 07/09/2019 07:10 6.6 721.7 705.3 16.3 2.1 0.087 Available on request

Short term SLF 511 MYH5 Khayelitsha (Home) 31/08/2019 16:50 07/09/2019 06:50 6.6 736.3 720.7 15.7 2.1 0.087 Available on request

Short term SLF 263 FHS Forest Height High School 02/09/2019 11:55 06/09/2019 12:33 4.0 715.0 702.3 12.7 2.1 0.087 Available on request

Short term SLF 525 FHS Forest Height High School 02/09/2019 09:20 06/09/2019 12:36 4.1 727.7 691.0 36.7 2.1 0.087 Available on request

Short term SLF 357 FHS Forest Height High School 02/09/2019 08:48 06/09/2019 12:28 4.2 716.0 710.0 6.0 2.1 0.087 Available on request

Short term SLF 302 FH4 Blue Downs (Home) 31/08/2019 17:35 07/09/2019 06:16 6.5 722.7 704.7 18.0 2.1 0.087 Available on request

Short term SLF 287 FH5 Blue Downs (Home) 01/09/2019 15:23 07/09/2019 07:19 5.7 723.0 708.3 14.7 2.1 0.087 Available on request

Short term SLF 329 FH6 Blue Downs (Home) 31/08/2019 17:20 07/09/2019 07:05 6.6 709.7 695.3 14.3 2.1 0.087 Available on request

Short term SLF 219 FH7 Blue Downs (Home) 31/08/2019 15:54 07/09/2019 07:30 6.7 735.7 716.7 19.0 2.1 0.087 Available on request

Short term SLF 208 FH8 Blue Downs (Home) 31/08/2019 18:05 07/09/2019 07:25 6.6 735.3 718.0 17.3 2.1 0.087 Available on request

Short term SLF 808 BDH1 Blue Downs (Home) 31/08/2019 22:15 07/09/2019 07:10 6.4 738.7 714.0 24.7 2.1 0.087 Available on request

Short term SLF 225 BDH2 Blue Downs (Home) 01/09/2019 17:15 07/09/2019 07:15 5.6 737.0 727.0 10.0 2.1 0.087 Available on request

Short term SLF 608 BDH3 Blue Downs (Home) 31/08/2019 21:45 07/09/2019 07:25 6.4 733.0 720.7 12.3 2.1 0.087 Available on request

Short term SLF 526 BDH4 Blue Downs (Home) 01/09/2019 13:52 07/09/2019 07:29 5.7 723.0 704.0 19.0 2.1 0.087 Available on request

Short term SLF 319 BDH5 Blue Downs (Home) 31/08/2019 16:07 07/09/2019 07:26 6.6 695.0 682.0 13.0 2.1 0.087 Available on request

Short term SLF 259 TGS5 Tuscany Glen High School 03/09/2019 08:00 06/09/2019 15:00 3.3 726.0 720.7 5.3 2.1 0.087 Available on request

Short term SLF 503 TGS7 Tuscany Glen High School 03/09/2019 08:31 06/09/2019 13:21 3.2 723.7 714.7 9.0 2.1 0.087 Available on request

Short term SLF 267 TGH1 Blue Downs (Home) 31/08/2019 22:18 07/09/2019 07:00 6.4 665.3 661.0 4.3 2.1 0.087 Available on request

Short term SLF 348 TGH2 Blue Downs (Home) 31/08/2019 17:03 07/09/2019 07:33 6.6 712.0 702.0 10.0 2.1 0.087 Available on request

Short term SLF 285 TGH3 Blue Downs (Home) 31/08/2019 18:06 07/09/2019 06:39 6.5 727.0 714.0 13.0 2.1 0.087 Available on request
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Table D.4: Additional information of schools and homes in Western Cape (continued).

Electrect type Serial number Code Location Start date Finish date Days Vi Vi D V CF G
Coordinates

x y
Short term SLF 235 TGH4 Blue Downs (Home) 31/08/2019 20:15 07/09/2019 22:25 7,1 723,0 710,3 12,7 2,1 0,087 Available on request
Short term SLF 330 TGH6 Blue Downs (Home) 02/09/2019 07:05 07/09/2019 06:06 5,0 733,7 729,7 4,0 2,1 0,087 Available on request
Short term SLF 332 MZS1 Manzomthombo Secondary School 02/09/2019 00:00 09/09/2019 00:00 7,0 713,0 702,0 11,0 2,1 0,087 Available on request
Short term SLF 458 MZS2 Manzomthombo Secondary School 02/09/2019 00:00 09/09/2019 00:00 7,0 728,0 696,0 32,0 2,1 0,087 Available on request
Short term SLF 209 MZS3 Manzomthombo Secondary School 02/09/2019 00:00 09/09/2019 00:00 7,0 712,0 693,0 19,0 2,1 0,087 Available on request
Short term SLF 355 MZH1 Mfuleni (Home) 01/09/2019 09:09 07/09/2019 07:36 5,9 711,7 705,3 6,3 2,1 0,087 Available on request
Short term SLF 214 MZH2 Mfuleni (Home) 31/08/2019 16:24 07/09/2019 07:20 6,6 759,7 738,0 21,7 2,1 0,087 Available on request
Short term SLF 253 MZH3 Mfuleni (Home) 31/08/2019 18:08 07/09/2019 07:41 6,6 729,0 716,0 13,0 2,1 0,087 Available on request
Short term SLF 307 SKH1 Kuils River (Home) 31/08/2019 18:56 07/09/2019 07:26 6,5 724,0 695,3 28,7 2,1 0,087 Available on request
Short term SLF 333 SKH2 Kuils River (Home) 31/08/2019 19:59 07/09/2019 06:15 6,4 720,7 707,3 13,3 2,1 0,087 Available on request
Short term SLF 212 SKH3 Kuils River (Home) 31/08/2019 16:20 07/09/2019 07:56 6,7 696,0 682,3 13,7 2,1 0,087 Available on request
Short term SLF 360 SKH4 Kuils River (Home) 01/09/2019 12:58 07/09/2019 07:55 5,8 731,0 719,0 12,0 2,1 0,087 Available on request
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E Western Cape lithology information

Table E.1: Lithology description in Western Cape (Paarl)

Code Lithology

C2 WC L1 Greywacke, phyllite, schist, limestone

C2 WC L2 Pebbly quartz arenite, diamictite, minor conglomerate, mudrock, siltstone and shale

C2 WC L3 Porphyritic, medium or fine-grained granite and granodiorite, with subordinate syenite,

gabbro, diorite and quartz porphyry

Table E.2: Lithology description in Western Cape (Cape Flats)

Code Lithology

C3 WC L1 Pebbly quartz arenite, diamictite, minor conglomerate, mudrock, siltstone and shale

C3 WC L2 Phyllite, metagreywacke, quartzite, minor volcanic rocks

C3 WC L3 Porphyritic, medium or fine-grained granite and granodiorite, with subordinate syen-

ite, gabbro, diorite and quartz porphyry

C3 WC L4 Quartzite, conglomerate, slate

C3 WC L5 Quartzose sand, pelletal phosphorite, gravel, sandy silt, grey-black carbonaceous

kaolinitic clay, peat, shelly limestone and sandstone, shelly sand and (aeolian) cal-

carenite, coquinite, light grey to reddish sandy soil, loamy sand
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Appendix F

F Cost-Effectiveness of radon detectors

When conducting a radon test is important to take costs into considerations. Here we outline

the cost-effectiveness of radon detectors used in this study and roughly estimate how much each

radon test can cost.

Short term test (7 days)

Unit Price

Short term electrets R 320

S-chamber R 800

A new electret comes with a potential voltage of 700 volts, and the manufacturer does not

recommend using an electret with less than 100 volts.

Checking how many tests can one short-term electret perform the average indoor levels can be

assumed to be 40 Bqm–3 (the global average).

The information above is sufficient to estimate the voltage drop if the measurements are con-

ducted for seven days, with the help of the equation below (F.1) and the results obtained in

House9 (bedroom).

40 =
DV

CF · T
– Bgc (F.1)

DV = Vi – Vf ≈ 38V

Therefore for an electret to get depleted from 700 V to 100 V i.e. 700V–100V
38V ≈ 15, then the

electret detectors may be reused about 15 times before requiring a recharge. On average, it

would cost roughly R25.00 per radon test (excluding the price of S-Chamber).
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Now we can compare the cost of long-term (3 months) radon test between the electret ion-

chamber (Rad Elec), track-etch (ParcRGM) and Airthings� radon detectors.

Long term test (91 days)

Unit Price Description

Short term electrets R 325

Track-etch (ParcRGM) R 162 The total cost including the delivery and reading/analysis costs.

Airthings� R 3000 A cost of 1 Airthings radon detector.

Figure F.1: Cost comparison between the electret detector and track etch detector for long-term
measurements (3-months).

Remark 1: The use of electrets for short-term measurements could effectively reduce the cost of

radon test.

Remark 2: Track etch radon monitors could be cost-effective for long-term radon measurements.
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