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Abstrat
An Adaptive Feature-based Traking SystemE. PretoriusDepartment of Mathematial SienesUniversity of StellenboshPrivate Bag X1, 7602 Matieland, South AfriaThesis: MS (Applied Mathematis)2008In this paper, traking tools are developed based on objet features torobustly trak the objet using patile �ltering. Automati on-line initiali-sation tehniques use motion detetion and dynami bakground modellingto extrat features of moving objets. Automatially adapting the featuremodels during traking is implemented and tested.
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OpsommingIn hierdie thesis word video volgings gereedskap ontwikkel en getoets. Deurgebruik te maak van 'n voorwerp se kenmerke is dit moontlik om sodoende'n voorwerp robust te kan volg deur "Partile Filtering" tegnieke. Die stelselword automaties geinisialiseer met beweging deteksie en agtergrond model-lering om voorwerpe se kenmerke te identi�seer en te ontrek. Automatiesopdatering van die kenmerk modelle geduurende video volging word geim-plementeer en getoets.
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Chapter 1IntrodutionSuppose a robot is given a video stream, and through it, interats with theworld around it. In this senario, omputer vision tehniques would haveto be programmed so that the robot an trak, and maybe even reogniseertain objets.Objet traking omes naturally to humans, sine it is instintive to ob-serve the world around us. Computers, however, need sophistiated teh-niques in order to mimi our traking ability and to automate tedious tasks.These tehniques attempt to solve objet traking through luttered seneswith noisy measurements. Spei� algorithms eah have inherent short-omings due to the nature of the problem, while suessful approahes useobjet appearanes that indeed mimi the way humans would trak objets.1.1 Problem statement: TrakingTraking of objets in a video sequene is one of the most fundamentalproblems in Computer Vision. It forms the basis of appliations as diverseas surveillane, tra� monitoring, gesture reognition and sport analysissuh as soer.Some of the most widely used traking algorithms inlude the Kanada-Luas-Tomasi (KLT) feature traker whih is an optial �ow method. These1



Chapter 1. Introdution 2algorithms trak objets by omparing onseutive pairs of frames, no dy-nami information about the moving objet is used. The problem is that assoon as the motion of the objet itself is used, some information about theobjet is required. On the other hand using dynami information leads tomore robust traking algorithms, allowing, for example, traking througholusions. It turns out that it is not hard to inorporate dynami infor-mation into the traking algorithms by using a partile �lter. That leaves�nding information about the objet itself that is to be traked.There are several hoies to obtain information about the objet. Isardand Blake [13℄ trak the shape of an objet, allowing, but also restritingshape deformations. This is known as ative ontours. Another hoie isto trak features that desribe the olour or texture of the objets. Then itis possible to ombine all these whih resulted in the so-alled Ative Ap-pearane Models (AAM) [3℄. Although robust, AAM's are omputationallyexpensive algorithms. A simple fat is that lients requiring systems basedon omputer vision tehniques, suh as surveillane, often annot a�ordthe neessary CPU power. It is therefore of onsiderable interest to explorelight-weight alternatives. That takes us bak to olour and texture trakingusing a partile �lter.1.2 Literature studyA study of the most reent developments in traking has shown thatolour-based partile �ltering is used suessfully to trak non-rigid objets[14℄. A olour distribution model is built in RGB spae and a similaritymeasure is employed for the objet model. The authors ompare this teh-nique with the mean-shift algorithm whih tries to minimise the distanebetween the theoretial mean and the observed ones. It is shown that themean-shift algorithm fails when the objet's position in suessive framesdoes not overlap, where the partile �lter has no suh problems. The olour-based partile �lter would however fail if lighting onditions hange to an



Chapter 1. Introdution 3extent where the similarity between the objet model and measurements isindistinguishable from the bakground.A self-adapting histogrammodel is used in [6℄ to adjust to lighting hanges.This is possible sine the olour model uses the HSV instead of the RGBolour spae. The adaptivity allows for small illumination hanges as wellas partial rotation in 3D-spae. A on�dene measure is alulated from theprobability distribution that desribes how well objets are being traked.Adapting is done using this on�dene measure to only adapt to the atualtarget when on�dene is high. Also, the implementation is done on a smartamera (amera with CPU) and runs real-time. Sine all the proessing isdone on the amera itself, no images need to be sent over the network. Thisis a very important property in seurity appliations where lient privaymight be an issue.Blob traking [7℄ is also a suessful feature-based traker. A multi-resolution graph for traked regions is built from onneted omponents(blobs). The point is made by the authors that robust traking annot behandled by only one algorithm. Modules need to be built up that solveproblems robustly at eah step of a semanti ladder. The �rst step beingsegmentation, and the next step traking. The algorithm handles larger slowmoving blobs that are easy to trak, and fast moving, small blobs that aremuh more di�ult to trak equally well. In ases where the algorithm failedthe segmentation step produed unsatisfatory results. Either a region ofinterest is not segmented, two separate regions merge and form one blob orthe relationship between a blob in onseutive frames has a low likelihoodat a low resolution in the multi-resolution sale. This is handled at the nextsemanti step.Multi-amera systems are implemented in [21℄ and [20℄ for traking foot-ball players and surveillane purpose, respetively. Cameras with over-lapping �elds of view are used. In the ase of the football players, eahamera's proessing is done separately and then ombined. A Kalman �l-



Chapter 1. Introdution 4ter is used for eah amera to trak players. Measurement data is usedwhenever available to minimize estimation errors. For the surveillane ap-pliation the Kanada-Luas-Tomasi (KLT)[18℄ feature traking algorithmis used. KLT tries to estimate the motion at every pixel position usingonurrent available frames.Contour features are used in [13℄ implementing the ondensation (par-tile �lter) algorithm. Spline urves are �tted to an objet's shape andhigh ontrast features are extrated at intervals along the urve. Objetontours (splines) are desriptive features and are suessfully used to trakurves through lutter. This is known as ontour-based traking. An im-pressive experiment is done traking a falling leaf against a bakground�lled with similar leaves. Contour-based traking has the disadvantage ofbeing omputationally expensive.In [4℄ edges and the pixel gradients are onsidered as feature models. Im-ages are broken into ells, eah a histogram of oriented gradients (HOG).Combined these ells represent the feature model. This approah has beensuessfully implemented in objet reognition type problems. This teh-nique su�ers from expensive alulations and slow exeution on less sim-plisti sene omposition.Some of the most popular traking algorithms where shown here. Animportant fator for eah of these algorithms is their omputational ost.For any traker to be useful it should be robust and light-weight and shouldbe heap to build and use.1.3 Objetive of the studyIn this thesis several light-weight trakers are studied. More spei�allyimplementing of a olour-based traker and a texture-based feature usingan adapted HOG desriptor is developed. The traking "engine", a partile�lter, is implemented. The projet objetives are



Chapter 1. Introdution 5� Design a traking implementation to solve problem statement� Build a partile �lter for the design� Create a olour-based feature model� Investigate and implement other type feature models suh as texture� Test the feature's e�etiveness and robustness� Make improvements to the original implementation based on learntshortomings� Automate the traking proess after initialisation� Automati initialisation of the traker� Feature adaption when objet's appearane hangeHOG was developed to detet objets in a sene at di�erent image sales.Its suess, when used as an objet detetor, sparked our interest for use in atraking ontext. An adaption to the HOG texture feature is developed andombined with the olour feature to improve traking robustness. The HOGfeature is used to �nd a similarity measure between the target objet andsamples. Failure as a robust traking feature is disovered and adjustmentsto the HOG onstrution are developed. The developed feature desriptoran suessfully trak objets using only texture information, (when textureis available) and traking improves when ombined with a olour feature.1.4 Dissertation strutureThis thesis builds on the theory in Chapter 2 to a working implementationin Chapter 4.



Chapter 1. Introdution 6After �rst overing the basi partile �lter onepts, objet features areinvestigated in Chapter 3. Features are adapted through new observationsand the proess is automated to adapt independent of user interation.Features with omplementary harateristis, that ontain su�ient infor-mation, are investigated.A motion traker is built to help with automating a traking systemat initialisation. Bakground modelling tehniques are also investigatedas part of the traker initialisation and feature extration. Eah systemmodule is disussed as implemented and results are shown.



Chapter 2Partile �lter theoryA partile �lter is a non-linear sub-optimal model estimation tehniquebased on simulation. It is an implementation of the formal reursive Bayesian�lter that performs sequential Monte Carlo (SMC) estimation based ona weighted representation of probability densities [16℄. Random sampledapproximations of the probability density funtion (pdf) are alled theweighted partiles. In general more partiles lead to a better approxima-tions of the pdf. Partile �lters propagate a �nite number of these samplesaording to the dynamis of the system and update the pdf using theobserved measurements [1℄.2.1 Introdution to Bayesian estimationThe Bayesian approah aims to onstrut the posterior pdf based on allavailable previous information and urrent measurements. In suh a asewhere the pdf is onstruted from all available information the solution isomplete and an optimal estimate (in a minimising-of-a-ost-funtion sense)of the state is possible. A reursive approah is onsidered that allows fora new estimate whenever new measurements are obtained. Reursively,preditions and updates form the two main steps for most Bayesian esti-mators. The predition step propagates the state pdf forward aording toa dynami system model. The update step, using Bayes' theorem, uses the7



Chapter 2. Partile �lter theory 8latest measurements to alulate the predition pdf. The reursive Bayesianestimation or �lter therefore provides a formal mehanism for propagatingand updating the posterior pdf as new information is reeived [17℄.The following setions develop the bakground theory of partile �ltering.Firstly, a dynami system is represented by a dynamis model and a mea-surement model in a probabilisti form so that a Bayesian approah may beadopted. Then the reursive estimation in Bayesian �ltering [5℄, preditionand update steps, �ts this dynami representation. Integration di�ultiesin Bayesian �ltering are handled by Monte Carlo (MC) estimation [16℄ pre-sented in Setion 2.4. Finally, the implemented partile �ltering algorithmis disussed.2.2 Dynami system representationA sequene of evolving probability distributions π(xk), indexed by disretetime k = 0, 1, 2, ..., is alled a probabilisti dynami system [12℄. A dynamisystem is generally represented by a state spae xk. Two models are requiredfor analysis in a dynami system: a dynami model and a measurementmodel.Firstly, a dynami model desribing system evolution, the hange in thestate over time, is de�ned. The state sequene is a Markov random proessand the state equation is written asxk = fk−1(xk−1,vk−1), (2.2.1)where xk is the state vetor at time step k, fk−1 is the (possibly non-linear)state transition funtion that propagates the system from time step k−1 totime step k. Proess noise is modelled by vk and the pdf is assumed known.Seondly, a measurement model where noisy measurements are related to



Chapter 2. Partile �lter theory 9the state is needed. The observation equation is of the formzk = hk(xk,wk), (2.2.2)where zk is the observation vetor at time step k, hk is the observationfuntion that relates the state spae to the observations and the observationnoise, wk, whih has a known pdf.The state and observation equations an also be represented by proba-bility densities. Note that (2.2.1) is a �rst order Markov proess and thatthe state equation is equivalent to p(xk|xk−1), also known as the transitiondensity. Similarly, the observation equation (2.2.2) is equivalent to p(zk|xk).In summary, the probabilisti desription of a dynamial system formu-lated in a probabilisti way �ts the Bayesian estimation approah, as de-sribed in the next setion.2.3 Bayesian �lterBayesian �ltering attempts to onstrut the posterior pdf from all availableinformation. The state vetor, xk, ontains information desribing the sys-tem. This true state, xk, is assumed to be a Markov proess whih annotbe observed diretly, and the measurements zi, where the set Zk = {zi, i =

1, ..., k} are the observations of the state. A Markov assumption is madeabout the state spae, that assumes the urrent state is only dependent onthe immediately preeding state,
p(xk|xk−1) = p(xk|x0, ...,xk−1). (2.3.1)Similarly, the measurement at the k-th time step depend only on the urrentstate and is independent of all other states given the urrent state
p(zk|xk) = p(zk|x0, ...,xk−1). (2.3.2)



Chapter 2. Partile �lter theory 10From the Markov assumption made, the formulation of (2.3.1), (2.3.2) isequivalent to the dynami system state representation in Setion 2.2.Given the posterior pdf at time k − 1, p(xk−1|Zk−1), the idea is to �nd
p(xk|Zk). This is ahieved by means of a predition and an update step.First, p(xk|Zk−1), the prior pdf, is obtained using the transition density
p(xk|xk−1)

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (2.3.3)Now the new observation is obtained, this is used to update the posteriorpdf using Bayes' rule by inluding the observation zk,

p(xk|Zk) = p(zk|xk)p(xk|Zk−1)/p(zk|Zk−1). (2.3.4)The normalization fator is given as usual by
p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk.Bayesian �ltering is de�ned by the predition step in (2.3.3) and the up-date step in (2.3.4) with initial ondition p(x0|z0) = p(x0) obtained fromassumed or given data.Analytial evaluation of the pdf in (2.3.3) and (2.3.4) is impossible exeptin ases suh as the Kalman �lter and hidden �nite-state spae Markovhains where linearisation (Gaussian pdf's) simpli�es the equations. MonteCarlo (MC) integration, on the other hand, is not limited by linear-Gaussianassumptions and will be desribed in the following setion.2.4 Monte Carlo (MC) integrationMonte Carlo (MC) integration methods use pseudo-random numbers to nu-merially approximate multi-dimensional, de�nite integrals and form the



Chapter 2. Partile �lter theory 11basis of sequential monte arlo (SMC) methods. Pseudo-random numbersare generally used for omputational onveniene. By the Law of large num-bers1 if N → ∞ then MC integration approahes the exat solution. MCintegration is used to evaluate the integral (2.3.3) of the optimal Bayesian�lter.Consider a multi-dimensional, de�nite integral g(x). Writing g(x) =

f(x)π(x) its integral beomes
I =

∫
g(x)dx =

∫
f(x)π(x)dx. (2.4.1)The integral g(x) is fatorised suh that π(x) is a density. Sine π(x) is adensity I is interpreted as the mean of f(x). In a Bayesian ontext π(x)is realised as the posterior pdf. Where {xi; i = 1, ..., N} are the samplesdrawn from π(x). The MC estimate of I is the sample mean

IN =
1

N

N∑

i=1

f(xi) (2.4.2)and onverges to I ifN is hosen large enough. Unfortunately, e�etive sam-pling from π(x) is not possible due to the distribution being multi-variate,non-Gaussian and only known up to a proportional onstant. Importanesampling rather samples from a known density distribution q(x) that ap-proahes π(x) when N is inreased. This proposed pdf q(x) is referred toas the importane or proposal pdf. Sine q(x) is a weighted density of thesample set, MC estimation is possible. The integral (2.4.1) is written as
I =

∫
f(x)π(x)dx =

∫
f(x)

π(x)

q(x)
q(x)dx, (2.4.3)1Jaob Bernoulli �rst desribed the law of large numbers as so sim-ple that even the stupidest man instintively knows it is true. -http :

//en.wikipedia.org/wiki/Law_of_large_numbers#note− 0



Chapter 2. Partile �lter theory 12and the MC estimation is alulated, by drawing N ≫ 1 samples, as
IN =

1

N

N∑

i=1

f(xi)w(xi) (2.4.4)where
w(x) ∝

π(x)

q(x)
(2.4.5)are the normalised importane weights so that N∑

i=1

wi = 1. Therefore, from
(2.4.5) samples drawn from the known importane density q(x) have weights

w(xk) ∝

p(xk|Zk)

q(xk)
. (2.4.6)The hoie of the importane density q(x) is ruial when designing theSMC. In this ase a suboptimal hoie is made to approximate q(x). Choos-ing the transitional prior, q(xk | xk−1, zk) = p(xk,xk−1), the weights areupdated by w(xi

k) ∝ w(xi
k)p(zk | xi

k).This indiates that the weight at time k an only be omputed after theobservation and the partiles have been propagated at time k.SMC is also known as partile �ltering. Other names by whih SMC isknown inlude bootstrap �ltering, the ondensation algorithm, interatingpartile approximation and survival of the �ttest. The SMC method im-plements a reursive Bayesian �lter of Setion 2.3 using the MC integrationmethod (sub-optimal) to evaluate the integrals.2.5 Partile �lter algorithmThe partile �lter algorithm is a diret implementation of the reursiveBayesian �lter using MC methods. The basi partile �lter, sequential im-



Chapter 2. Partile �lter theory 13portane sampling (SIS) algorithm is desribed in this setion as well as thesampling importane resampling (SIR) algorithm.Given the posterior p(xk−1|Zk−1) and thatN samples are randomly drawnxi
k−1, i = [1...N ]. Then in the predition phase samples are passed fromtime step k−1 and propagated using a dynami model to generate the priorsample set at time step k. These prior samples xi

k, i = [1...N ] produed bythe dynamis model are samples from the prior pdf p(xk|Zk−1).In the update step, a new measurement zk is obtained. The measure-ment is used to update the prior aording to the partile's weight wi
k. Thenew weight value is alulated as the measurement likelihood evaluated atthe prior sample: wi

k = p(zk|xi
k). The weights must sum to one after nor-malisation. In the SIR algorithm a further step is added to resample thesenormalised weights. The resampling algorithm hooses partiles from theprior set with a probability equal to its weight. This new set of partiles isonsidered to be samples from the required pdf p(xk|Zk).The partile �lter algorithm repeats the predition and update phases ateah time step to obtain the posterior pdf at the next time step [17℄.2.5.1 Sequential importane sampling (SIS) algorithmThis is the most basi implementation of the partile �lter. Sampling isdone from the prior pdf and weights are assigned to the partiles. The pdfis reursively updated or propagated using measurements at eah time step(sequentially). A serious problem arises when applying the SIS algorithm.After a few iterations the pdf ollapses around a single partile and allother partiles have negligible weight. This phenomenon is alled degener-ay. Also, propagating these partiles is omputationally ostly and fails torepresent the true pdf aurately. A possible solution requires resamplingof the partiles.



Chapter 2. Partile �lter theory 14The SIS algorithm is shown in Algorithm 1. The algorithm notationused in this setion is similar to [1℄. The state spae samples xk−1 haveorresponding weights wk−1 at time k − 1. New observations at time k isdesribed by zk.input : xk−1, wk−1 ,zkoutput: xk,wkxfor i← 1 to N do1 draw xi
k ∼ q(xk|xk−1, zk) generated samples;2 assign partile weight, wi

k = p(zk|xi
k) ;3 end4 Algorithm 1: SIS Algorithm2.5.2 Resampling algorithmThe SIR algorithm is an extension of the SIS algorithm by inorporatingthe resampling step desribed here.Degeneray ours when only a few partiles have a large weight and therest of the partiles have weights that are almost zero. In suh a situationthe prior pdf is not an aurate representation. To redue the e�ets ofdegeneray on the partile �lter a resampling step is added. Resampling isdone by hoosing partiles with larger weights more frequently than thosewith smaller weights. Di�erent methods of resampling exist suh as multi-nomial, residual, strati�ed and systemati [2℄. A systemati resamplingsheme is onsidered here with omplexity of O(N), where N is the numberof partiles.Resampling steps The resampling proess is shown in Algorithm 2 andthe steps are explained as follows. Figure 2.1 illustrates the resamplingalgorithm.



Chapter 2. Partile �lter theory 15Step 1 omputes the umulative sum of N partile weights, Ci =
i∑

j=0

wj,
i = [1...N ]. Note that the weights w represent a pdf and that CN = 1. Cis an index of the umulative weights and it is divided into equally spaedintervals of 1

N
.Step 2 sets where the index should start, namely at the �rst partile'sweight index.In Step 3 a random o�set value λ ∈

[
0, 1

N

], is generated from a uniformdistribution.Step 4 insures that all the partiles' weights are onsidered whilst movingup the index.Step 5, starting at the o�set value, moves up along the index values.step 6 draws samples by omparing the value λ to Ci.In step 7, if λ > Ci, the partile weight of wi is small and not sampled byinreasing i. This e�etively skips past a few partiles with small weights.Otherwise, the weight at index i is sampled repeatedly in step 9 untilondition λ > Ci is not true. It is lear that larger weights are sampledmore often whilst moving along the indexed values of C and smaller weightsare ignored.2.6 SummaryThe basi partile �lter has an elegant and simple algorithm that an beapplied in general to most non-linear estimation problems. It is importantto realise the dangers, suh as the hoie of dynami model, sample set sizeand impoverishment of the sample set.
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k,w∗

k

Ci =

i∑

j=0

wj //Create the umulative values index;1
i = 0 //start o�set index;2
λ1 ← random[0, 1

N
];3 for j ← 1 to N do4

λj = λj−1 + 1
N
//moving up C;5 while λj > Ci do6

i = i + 1;7 end8
xj∗

k = xi
k;9

wj∗
k = 1

N
;10 end11 Algorithm 2: Resampling algorithm

Figure 2.1: Resampling of 6 sample weights.In Figure 2.2 a possible iteration of the partile �lter algorithm is shownat partile level. The graphial representation visually summarises the mainidea behind partile �ltering. The three main setions as desribed in thishapter are shown, namely, seletion and predition of the partiles, theresampling step and the observational update of the pdf.
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Figure 2.2: Partile �lter iteration



Chapter 3Feature vetorsFeature vetors, suh as olour, ontour, texture, edge and intensity, de-sribe an objet's appearane. Features are olleted in a state, and thestate is represented by a pdf. The pdf is known through its samples asdesribed in the previous hapter. Sampling measurements represented bythese feature are needed to update the partile �lter's posterior pdf. Sam-ples are ompared and weighted aording to these appearane similarities.This hapter �rst desribes the implementation of a olour- and texture-based feature vetor, while in Setions 3.5 and 3.6 desribe improvementsfor a robust traker. The last setion illustrates the feature-based algorithm.3.1 Partiles and FeaturesPartiles s are vetors si = [xi, yi, dxi, dyi,F], i = [1, .., N ], where (x, y) isthe partile's position, (dx, dy) are the veloity omponents, F the set ofone or more features and N is the number of samples. A partile's featuresare obtained (a sample) at (x, y). The feature is extrated from a smallerregion in the image whih may ontain the objet. If the target featureis known, the samples are ompared and a weight, diretly proportionalto their similarity, an be assigned to a partile. Partiles an in generalontain any number of features. 18



Chapter 3. Feature vetors 193.2 Colour-based featureGood features are essential if an objet is to be traked suessfully. Colourhistograms model an objet's olour distribution. These olour histogramshave the advantage that objets an have non-rigid shapes or rotate inan environment and still be detetable provided the olour distributiondesribing the objet remains the same.3.2.1 Colour modelColour image samples are obtained in a red-green-blue (RGB) representa-tion and onverted to a hue-saturation-value (HSV) olour spae. A HSVhistogram model allows that the intensity, V, an be handled separately.The advantage is that re�etions and shadows, mostly present in V spae,an be handled more robustly. A 2D Hue-Saturation (HS) and a 1D inten-sity (V) histogram represent the objet's olour feature.Weighted histogramNon-rigid objets rarely have a retangular shape. A kernel funtion is usedto weigh spei� positions in an image region di�erently. De�ning a kernelfuntion for example as,
k(µ) =

{
1− µ2 if µ < 1

0 otherwise (3.2.1)where µ is a normalised distane of a pixel to its region's enter, weighs theolour distribution of pixels on the edges less than in the enter. Kernelssuh as epanehnikov, quarti (biweight), triube (triweight) or Gaussianould also be employed. In Figure 3.1, the hange in radius µ, illustrateshow the kernel (3.2.1) weighs the image regions. Assuming that the mostimportant information is ontained around the enter of an objet this fun-tion will be adequate and allows for partial olusion at the edges. An imageregion, Ri, has a user de�ned height and width, respetively, Hx and Hy.



Chapter 3. Feature vetors 20The image region, Ri is entred at (xi + Hx

2
, yi + Hy

2
). Note that if the entireimage is used as a region Hx and Hy then desribes the entire image.

Figure 3.1: Desription of weighting funtion alulation: (left) input imagemask, (middle) distanes from enter, (right) output weighting funtion.An image histogram is built using the image path weighted pixel valuesof (3.2.1). Every pixel r = (x, y) in an image region Ri is binned in thehistogram
pi [b] = f

∑rεRi

k

(
‖r− d̂i‖

a

)

δ [I(r)− b] . (3.2.2)The distane from pixel (x, y) to regionRi enter is d̂i =
√

(1
2
Hx − x)2 + (1

2
Hy − y)2.Saling of d̂i by the region irular radius a =

√
1
4
(H2

x + H2
y ) ensures thatthe kernel funtion assigns the largest weights to pixels at the region's en-ter. Image I represents the weighted HS- and V-omponents. The δ fun-tion bins the pixels for intensities in image I, into bins b.The 2D HS-histogram is represented as an image as illustrated in Figure3.2. The HS-histogram image is divided into retangles of equal size thatrepresent the histogram bins. A high bin value in the image is proportionalto a high olour intensity (white) and a low bin value is blak. Representingthe olour model in histogram spae using (3.2.2), it is possible to ompare
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Figure 3.2: (left) input image, (middle) 2D Hue-Saturation histogram imageusing 50x50 bins, (right) V histogram image 50 binsfeature samples while traking. To update the reursive nature of the algo-rithm when new observations are introdued a similarity measure is neededin the traking estimate, as explained below.Partile weight updateGiven an objet's olour feature histogram, the target appearane is known.The target appearane needs to be ompared with partile samples that rep-resent the observations zk to update p(xk|Zk). To ompare the target modeland the samples, the Bhattaharyya similarity that measures the similarityof two disrete probability distributions, is used. Both the 2D HS-histogramand 1D V-histogram similarity values, ρhs and ρv respetively, are obtainedwhen a sample's histogram is ompared with the target's histogram modelusing the disrete Bhattaharyya oe�ient
ρ
[pi,q] =

B∑

b=1

√
pi [b] q [b], (3.2.3)where pi are the sample histograms and q is the model histogram, and

B the number of bins. Note that for the olour feature vetor Fi = pi.Both pi and q are seen as a pdf and normalised to sum to unity. Whenpi and q are exat, the similarity is maximized, ρ = 1. The more similarthe appearane between the target and model histograms, the higher thesimilarity measure ρ. The ρhs and ρv similarity values are ombined using



Chapter 3. Feature vetors 22alpha blending to weigh the histograms aording to their importane,
ρ = α× ρhs + (1− α)× ρv.To minimize lighting hanges the V-histogram is weighted less in the ex-periments and α = 0.7 is used. This value was suggested by [6℄ and testedby trail and error. A smaller value for alpha usually redues auray whiletraking and a α = 0.5 usually fails to trak an objet suessfuly.The Bhattaharyya distane is alulated using

di =
√

1− ρ [pi,q]. (3.2.4)This distane is used when alulating the partile weights, w using a Gaus-sian. The weights of sample set s then isw =
1√
2πσ

e(− d
2

2σ2
). (3.2.5)where the variane σ is a user-de�ned variable. When the variane is low,the hoie of partiles with high ρ are favoured when propagated to thenext step. The result of hoosing σ too small results in a degeneray of thepdf.3.3 Histogram of oriented gradients featureHistogram of oriented gradients (HOG) was developed as a suessful hu-man detetor [4℄. The idea is that gradients of an objet ontain shape andtexture information that an be used to distinguish it from other objets.In this way, HOG aptures an objet's struture and texture into a featurevetor that an be used to detet humans in a sene. The goal is to be ableto use HOG features to trak an objet by omparing sample HOG featureswith a target appearane.



Chapter 3. Feature vetors 233.3.1 HOG model desriptionAn image I is divided into uniformly spaed ell regions Ic. Cells mayoverlap and have a user de�ned size Cx, Cy. Calulating the number of non-overlapping ells in an image region is then L = Hx

Cx
× Hy

Cy
, where Hx and

Hy are the dimension of image I. For eah ell Iic, i = [0, ..., L] a histogramof gradients is alulated. Gradients are deteted by onvolving with a�lter mask [−1 01]. When dealing with olour images the gradients arealulated for eah olour plane. The gradients are redued to a singleplane by seleting the pixel gradient value with the largest magnitude fromeah plane. Eah ell bins the gradient values weighted aording to theirmagnitude. Combined, these ells form the HOG model's feature vetor.The proess is illustrated for a single ell in the following example and theresults are shown in Figures 3.4 and 3.5 for an entire image.3.3.2 HOG illustrative exampleA hekered board matrix funtion
f(x, y) =




1 0 1

0 1 0

1 0 1



 (3.3.1)represented by image
,is onstruted. Di�erentiating f(x, y) is done in pratise by onvolutionwith the kernel funtions,

Kx =
[
−1 0 1

] (3.3.2)
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Ky =




−1

0

1



 . (3.3.3)For larity, in this example, we di�erentiate f(x, y) using,
∂f(x, y)

∂x
≈ f(x + 1, y)− f(x− 1, y)

2
.and

∂f(x, y)

∂y
≈ f(x, y + 1)− f(x, y − 1)

2
.Boundary ases are handled by padding the edges with the boundary values.Applying the �lter above to f(x, y) we respetively obtain




−1

2
0 1

2
1
2

0 −1
2

−1
2

0 1
2



in the x-diretion and in the y-diretion



−1

2
1
2
−1

2

0 0 0
1
2
−1

2
1
2



 .Viewing the omponents ∂f

∂x
,∂f

∂y
in polar oordinates a magnitude shown inTable 3.1

|∇f | =

√
∂f

∂x

2

+
∂f

∂y

2and angle shown in Table 3.2
θ = artan∇fy

∇fxis alulated, shown here in degrees. A histogram of these alulatedgradients, weighted by their magnitude, is onstruted as shown in Figure3.3. Eah of these bins an also be represented as a vetor with angle equal
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1√
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1
2
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2

1
2

0 1
2

1√
2

1
2

1√
2



Table 3.1: Magnitude values and orresponding image representation



45 270 135

180 0 0
315 90 225



Table 3.2: Angle values and orresponding image representationto the bin index and magnitude diretly related to its bin value. Interestingresults are observed when alulating a HOG for shapes with uniform olourand no texture, suh as a �lled retangle or irle. Gradient informationavailable only on the edges of these shapes reates a double edge (twoneighbouring pixels ontain gradient and magnitude information) imagethat results from the onvolution using (3.3.2) and (3.3.3).

Figure 3.3: Example HOG desriptor for image f(x, y) using 3 bins. Eahmagnitude and orresponding angle is shown in every bin.Figure 3.5 shows the HOG desriptor in vetor form, for the input imagein Figure 3.4 at di�erent ell size seletions. When the ell size is small, 2×2pixels, detail is high and the edge information is learly notieable on ells
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Figure 3.4: Example HOG feature steps for entire input image on left, (middle)magnitude image, (right) angle imagewith dense gradient information. Note that by seleting a small ell sizesuh as 2 × 2 allows that the feature an be ompared at di�erent salesby ombining neighbouring ells into larger ells. For example, 10 × 10ells an be ombined from 5 groups of 2 × 2 ells without realulationfrom the soure image. Histogram bins an also be redued by summingneighbouring bins. This less aurate representation might be neessary toalulate a feature more quikly to maintain real-time speeds. It is alsoimportant to note that eah ell vetor is assoiated with a position in theimage.Note that the normalised HOG desriptor an be interpreted as a pdf withthe following useful properties. In this normalised form the HOG is saleinvariant and less dependent on the magnitude of the gradients. Speialare should be taken to normalise the pdf for a uniform region where nogradients are present in the region (all histogram bins equal zero). Thisis more likely to happen with smaller ell sizes. This situation is handledseparately to ensure that similarity omparison between suh features iszero.Also, note that the HOG desriptor as desribed is not rotationally in-variant. This is explained by the fat that a rotated objet's edge gradientvalues are binned into di�erent histogram bins and usually not in the sameell. Note that the HOG ells prevent that rotation an be deteted by
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[a℄ [b℄

[℄Figure 3.5: HOG features at di�erent ell sizes, using 36 bin histograms. Theimages show eah ell's HOG as vetors graphially (a) ell sizes at 2x2, numberof histograms 60x80, (b) ell sizes at 6x8, number of histograms 20x20, () ellsizes at 12x16, number of histograms 10x10



Chapter 3. Feature vetors 28a linear shift of eah histogram. Comparing two HOG desriptors quiklybeomes a hallenging problem. This observation is explained in the nextsetion.3.3.3 Similarity measure between HOG featuresComparison between two HOG vetors v1,v2 is done in a similar way tothat of the olour-based feature vetor. Representing eah HOG vetor ellIic as a probability distribution, the Bhattaharyya similarity measure anbe used. The ell similarity measures are ombined in a single similarityvalue by taking the average over the similarity measures,
ρ =

1

L

L∑

i=1

B∑

b=1

√
vi
1[b]v

i
2[b], (3.3.4)where b is the gradient histogram bins, L is the number of ells and B is thenumber of bins. A omparison between the trained HOGmodel and partilesample HOG's allows the use of the similarity value, ρ to update the partileweights using (3.2.4) and (3.2.5). In pratie, however, this approah failsto be an aurate measure to trak an objet and is disussed in the nextsetion.3.3.3.1 HOG similarity used in trakingDividing an image into ells allows that hanges in small parts of the imagedo not e�et the entire feature. This is an advantage when using HOGfor detetion as presented in [4℄. When viewed in a partile �lter trakingontext, two hallenging problems arise. Firstly, sampling at predited loa-tions does not, in general, sample at exatly the orret position. Considerthe situation where a sample is taken just left of the atual objet loation.Then eah of the ell histograms ontain gradient information that are un-aligned to the right of the model histogram, resulting in a low similarity.Seondly, histograms are binned using an image's gradient angles. Cell his-tograms are not rotational invariant in suh a situation. Again, samples



Chapter 3. Feature vetors 29might be mis-aligned due to objet rotation. This is not easy to deal withif multiple ells are used. Thus, instead of using multiple ells, we use asingle ell for eah region.Using the traker preditions of possible objet loation the single ellHOG is used to �nd a similarity value. The advantage of this is three fold.Firstly, samples at non-exat predited loations that ontains only part ofthe target might still have a large similarity. Seondly, objet rotation aneasily be handled by a linear shift. And thirdly, a muh faster implemen-tation is possible assuming that objet rotation between frames is small.Then orrelation redues to shifting the histogram bins one bin positionleft or right respetively. For example, using 36 bins, an objet an rotate10 degrees without a�eting the similarity value.3.3.3.2 HOG similarity omparisonAn experiment is done to determine how similar objets appear using thesingle histogram HOG and the general HOG with di�erent ell sizes. Asubset of the ETH-80 dataset is used [10℄ to test how well HOG desriptorsompare objets at di�erent bin and ell sizes. Figures 3.7 shows the e�etsof bin and ell seletion when omparing objets in Figures 3.6 entred inan image.A pear image is hosen as a model in Figures 3.7 (a) and ompared withother pear images. Eah of the pear images is then ompared with a tomatoimage and the results are shown in Figure 3.7 (b). Again the test is repeatedwhere a up image is ompared with eah pear image. The similarity resultsfor a range of di�erent bin sizes are shown in Figure 3.7 (c).For eah of these tests the single vetor (1 ell) HOG results are shown inFigure 3.7 (d). These results show a 5% better similarity when omparingpears with pears than omparing tomatoes and pears. And a 10% bettersimilarity is obtained when omparing a up with pears. Also, note thathanging the number of bins does not e�et these results.



Chapter 3. Feature vetors 30The results show that similarity measurements su�er greatly when thenumber of ells is inreased. A single ell representation ahieves best resultsfor all bin sizes tested. Traking using a single ell HOG vetor improvesperformane and an experiment is done in Setion 3.9. In the experimentit is shown that a single ell HOG feature is more robust, allowing for smalltranslation and rotation errors from traker preditions.

Figure 3.6: Model images used to obtain similarity results of Figure 3.7.
3.4 Motion modelPartiles are propagated to the next step aording to a dynami motionmodel. A onstant veloity model is used without aeleration. Aelera-tion, handled by noise, is not onsidered sine the state spae beomes toohigh dimensional and requires far too many samples, whih is omputation-ally expensive. Partiles are propagated usingxk = Axk−1 +wk−1 (3.4.1)where A de�nes deterministi parameters, wk−1 the stohasti and k thetime. We remind the reader that xk is the state spae representing thedynamis. Using (3.4.1) to propagate a partile using the motion model its
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[a℄

[b℄

[℄

[d℄Figure 3.7: HOG features omparison at di�erent bin and ell sizes. (a) Com-parison results of image set pears. (b) Comparison results of omparing a tomatowith pears. () Comparison results of a up with pears. (d) Comparing resultsof up, tomato and pears using only one ell.
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(x, y) oordinate is updated using veloity v+ k,

[ xkvk

]

= A

[ xk−1vk−1

]

+wk−1. (3.4.2)The value of A is user de�ned to be either a random position model,
A =

[
1 0

0 0

]
, (3.4.3)or a onstant veloity model, also used in [6℄

A =

[
1 1

0 1

]

. (3.4.4)3.5 Feature adaptivityChanges in lighting and shape of the objet, result in a bad representationof the histogram desribing the objet. Appearane hanges of an objetan be handled by adapting the model to inrease traking robustness.Adaptivity as implemented and tested here is presented in [6℄, [8℄, [15℄.When traking an objet in real-time, adapting the target model needs tobe done automatially.The model qk is adapted using,
qk = α× sj

k + (1− α)× qk−1 (3.5.1)where sj
k is the most likely objet position at time k. Eah target bin isblended mixing α ∈ {0, 1} with sample j, having the highest appearanesimilarity of all the samples. This is done for both the HS- and V-histogramolour feature and HOG feature. The hoie of α is diretly related to theon�dene measure desribed in the following setions.



Chapter 3. Feature vetors 33Seletive adaption is neessary to avoid adapting the target featuremodels in ases where the traked objet is lost. If the loss is undeteted, themodels will be inorretly updated and beome orrupted. This is learlyan undesirable e�et. Automati adaption is possible using a on�denemeasure to only adapt if the system has a high on�dene that the objetis being traked. A slow adaption rate handles olusion better sine thetarget model hanges less over time. Fast appearane hanges are handledwhen the rate of adaption is quik. Note that the rate at whih adaption isapplied a�ets the situations that an be handled by the traker. Considerthe situation when the traked objet moves behind a struture and theadaption is fast. While the objet is lost from view the target model isadapted inorretly using the best predited loation. When the objetreappears it might not be traked orretly due to a bad representation ofthe target model.In ases where the objet is being traked with high preision, the trakingpdf has a high peak and most samples are grouped together. On the otherhand a low ertainty of objet position is shown by a uniform pdf. In [6℄ theon�dene is measured diretly from the traking pdf. The on�dene mea-sure is desribed by the degree of unimodality of the resulting pdf p(x | Z).A low on�dene is measured when the pdf has a very uniform distribution.The partile weights approximate the on�dene of the traked pdf. Thisomputationally simple on�dene measure works well. However, failurean our. When the bakground region's olours or textures are similar tothe target model or the size of the partile's image pathes are onsiderablysmaller than the region being traked, whih might have a uniform olour,on�dene is low. In both ases the pdf beomes more uniform, and theon�dene measure inorretly results in a traking loss.Experiments using di�erent values for σ in (3.2.5), illustrated that theon�dene measure is related to the hoie of σ. Note that σ determines thevariane in the position of partiles. A on�dene value is obtained from a
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Sσ < K(

1

σ
),where σ is the user de�ned value from (3.2.5), K a normalisation and Sσthe standard deviation of the traking pdf. As mentioned previously thehoie of alpha is diretly related to the on�dene measure. Sine theon�dene value an be alulated during run-time it is used as the valuefor α in (3.5.1). It is now lear that the target model is only adapted whenthe on�dene is high.The next setion desribes how to reover from traking failure. Bothmethods desribed above are used to alulate a on�dene when testingwhether to adapt the histogram model. These methods an also be used todetermine whether an objet is being traked orretly.3.6 Finding an objet and deteting a lossAssume that the objet that will be traked is known. Then its features,available as a pdf, are also known. Finding the objet's position in an imageis then possible.Using the prior knowledge of the target histogram, a searh for the objetin the �rst frame an be done. The Bhattaharyya similaritymeasure (3.2.3)is used to ompare the target model at every image region. These regionswill have a low similarity when the objet is not present and a high similaritywhen the objet appears in the frames. A mean value µ and a standarddeviation σ of the similarities in all the regions are alulated

µ =
1

M

M∑

i=0

ρ [sRi
, q] , (3.6.1)

σ2 =
1

M

M∑

i=0

(ρ [sRi
, q)]− µ)2, (3.6.2)
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are samples alulated at eah of the M regions in the image.Assuming a Gaussian distribution1 an appearane threshold is de�ned, in[14℄,

ρ [sRi
, q] > µ + 2σ. (3.6.3)The appearane threshold indiates a 95 % on�dene that the region Ri isnot part of the bakground. The partile �lter is initialised in the region ifmore than a user-de�ned fration of the sample set s meets the appearanethreshold. The same rule is applied to detet when the traker loses the ob-jet. When the objet leaves the frame or beomes oluded for a ouple offrames, ondition (3.6.3) fails and the initialisation phase is entered again.3.7 Perspetive adaptionAdjusting the region size aording to the objet's pereived size is neessaryto robustly trak objets in a 3D environment. An objet moving away fromthe amera, hanges size relative to the amera's perspetive. Detetingwhether an objet is moving loser or away from the amera is done bysampling at di�erent region sizes. The region's size is sampled at ±2% ofthe region size (Hx, Hy) at the urrent best predited loation and omparedto the target model. If a omparison is found to have a higher similarityto the feature models, the region size is adjusted. Note that features suhas olour and HOG are sale invariant so an adjustment of the region sizedoes not a�et the features. Also, it is useful to only adapt when there is asigni�ant di�erene in the similarity value to minimise omputation.This adaption is not diretly related to the on�dene measure, but re-sults in a higher on�dene if the objet's size is sampled at orret regionsizes to avoid inluding bakground whih leads to bad feature model rep-resentations.1The empirial rule states that for a normal distribution assumption, about 68% ofthe values are within 1 standard deviation of the mean, about 95% of the values arewithin two standard deviations and about 99.7% lie within 3 standard deviations.



Chapter 3. Feature vetors 363.8 AlgorithmImplementation of Algorithm 3 follows the same steps as the basi partile�lter from Algorithm 1 using the resampling step desribed in Setion 2.5.2.The speialisation of the feature-based steps are desribed using the modelsand rules desribed throughout this hapter.#Initialization step;1 qk = get observation model at time, k=0;2 while true do3
µ, σ from eq 3.6.1 and 3.6.2;4 f = N∑

i=0

ρ
[pi

k,qk

]
> µ + 2σ;5 if f > (0.1)N then6

objectfound = true;7 end8 #Measurement step;9 for i← 1 to N do10
si

k−1 ← get particle samples, eq. 3.2.2;11
πi

k−1 ← assign particle weight, eq. 3.2.5;12 end13
normalize πk−1;14 # Robustness improvements;15 //on�dene measure;16 if objectfoundandconfidence > Threshold then17

Adapt_sample_size();18 qk+1 = adapt histogram(pk−1,qk) , eq. 3.5.1;19 end20
πk ← resample pdf πk−1 using algorithm2;21 # Predition step;22 sk ← apply motion model, eq 3.4.1;23 end24 Algorithm 3: Feature-based partile �lter algorithm



Chapter 3. Feature vetors 373.9 Feature traking experimentImplementation of Algorithm 3 is tested using eah of the feature types;olour, texture and a ombination of both. In the latter ase, a user de�nedweighting value is used to ombine the features using alpha blending. Forgenerality, an arbitrary number of features an be handled in this manner.Experiment 1 A simulated test is done to aomplish the following;� Colour objet traking using a HS-,V- histogram desriptor� Texture objet traking using a HOG-histogram desriptor� Combined feature traking� Traking through lutter/noisy bakground� Corret traking with partial olusion� Corret traking with full olusionAs shown in Figure 3.8 the simulated test plaes four simple rigid shapes,two triangles and two retangles, eah following a irular path shown inFigure 3.8. All objets have onstant movement and maintain their irularmotion in their own diretion. Eah of the retangle and triangle olourshapes interset and overlap with other shapes with the same olour.The white retangle is the objet being traked. Figure 3.8 shows theretangles at interesting positions as well as the partiles X,Y movementalong the irular path. The sequene runs for 620 frames. The partile'sposition and weight are shown as red irles on the image where the size ofthe irle is diretly related to the weight.Colour objet traking It is lear that the olour-based traking is likelyto fail at some point due to bakground olours and other shapes with thesame olour. The partile movement in the Y-diretion Figure 3.8 (c) ofthis sequene shows that at frame 80 the diretion hanges as the traker
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[a℄ [b℄ [℄
[d℄ [e℄ [f℄
[g℄ [h℄ [i℄Figure 3.8: (a,b,) Colour traking frame 80, (d,e,f) HOG traking frame 310,(g,h,i) feature ombined frame 250. (a,d,g) Traked partiles X-movement, (,f,i)traked partiles Y-movement. 50 partiles are used with a zero veloity motionmodel.



Chapter 3. Feature vetors 39onfuses objets moving in opposite diretions. The failure is the result ofa higher similarity value for a white triangle than the white square whenthe two objets ross (a partial olusion).HOG objet traking The HOG traker fails at frame 310 when thetwo retangle shapes with olours green and white overlap (full olusion).From Figures 3.8 (d, f) we see the sudden hange of diretion in partilemovement at frame 310. From Figure 3.8 (e) it an be seen that the partilesare distributed aross both retangles eah having a high similarity valueas they move past eah other.Combined objet traking When features are ombined, it is lear fromthe X-and Y-diretion graphs, Figures 3.8 (g, i), that the partiles trak theorret objet throughout the sequene suessfully through partial olu-sion (retangle moves under triangle) and full olusion (white retanglemoves under green retangle).Experiment 2 The goal of this experiment is to illustrate HOG featureadaption to aurately trak an objet rotating as desribed in Setion3.5. As desribed previously, a single ell HOG feature is not rotationallyinvariant. However, objet rotation an be deteted by a linear shift ofthe histogram bins. This experiment traks a rotating square objet. Theobjet is rotating around its enter while it is following a irular path.The HOG feature is represented as a vetor where the angle desribes thehistogram bin and the bin value the vetor's magnitude. In Figure 3.9 theHOG feature is shown in eah of the frames at the bottom right orner.Adapting the feature model is only done when the traking on�dene ishigh. A low traking on�dene is measured when only HOG is used. Thereason for this is that the noisy bakground is similar to the objet. Theresult is that adaption to the rotating objet is not done. Traking failswhen the objet has rotated more than the linear shift allows. To inreasethe on�dene the olour feature is also used. From the partiles X and
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Figure 3.9: Traking experiment 2: HOG adaption. Traking a square over 400frames. Seleted frames 1,50,100,200,300,400, shown. (Bottom left) X-position ofpartiles.(Bottom right) Y-position of partiles
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Y positions it is lear that traking using the HOG adaption is suessfulwhen the olour feature is used to inrease on�dene. When the on�deneis high, notie how the noisy edges in the bakground also beome part ofthe model, seen as vetors at right angles. Feature adaption is suessful,and the rotating objet is traked aurately.3.10 SummaryBoth olour and texture information are modelled as features that an beused to desribe an objet. The histogram methods used allow that adapt-ing to objets undergoing small shape, rotation, size or olour hanges anbe handled e�etively. These feature are learly useful for traking pur-poses. Also, ombining features signi�antly improve results. It is alsoimportant to note that the proess runs real-time when the region sizes aresmall. Performane is mostly a�eted by the number of partiles and theimage region sizes that need to be proessed to extrat features.



Chapter 4System implementationRobustly traking objets relies heavily on aurate features. The feature-based partile �lter is most e�etive when the objet is rigid, an onlyrotate in a 2D-plane and has a onstant olour and texture histograms. Theself-adapting histogram omponents and on�dene measure are added tohandle realisti traking senarios more e�etively. The next hallenge isto obtain prior knowledge of the objet's features and dynami informationabout its movement. This hapter desribes these hallenges and presentsan approah to integrate automati feature extration of moving objetsand feature-based partile �ltering inside a system.4.1 System design and goalsAutomati objet traking relies heavily on robust objet detetion and, inour ase, initialisation of motion and features. These di�erent hallengesare implemented in self-ontained modules that need to be integrated ina system. A modular approah desribed in [7℄ is used where a semantiladder, built from feature extration to ation reognition, desribes thehallenges as well as the system implementation. This intuitive design ap-proah allows for models that an be reated to handle a spei� problemwhere eah step up the ladder relies on the previous step. In this way thesystem is dynami in that all omponents an be replaed as improvements42



Chapter 4. System implementation 43to tehnology and algorithms beome available. Using this high level designmethodology an automati traking system has been developed.Eah of the following setions are modules that, when ombined, handlethe system from initialisation to the traking of an objet. The design andimplementation of feature models from Chapter 3 are shown in Figure 4.1.Note that at eah level the design is modular and easily extendable.

Figure 4.1: Feature-based traking modulesAn overview of the system modules is shown in Figure 4.2 and desribedin the following setions. Note that the fous of these setions are to detetan objet of interest in a sene. Detetion an also be used to trak objetsby means of repeated detetion in every frame. This is very time onsumingand it is omputationally muh quiker to trak an objet using preditionmethods suh as the partile �lter. Real-time traking is onsidered to



Chapter 4. System implementation 44be at least 5 frames per seond (fps). Although, speeds of more than 10fps is ahieved when using a single module. Most web ameras an performtheoretially up to 30 fps, but realistially speeds of 5 to 20 frames is normal.

Figure 4.2: System module design
4.2 Bakground modellingA bakground region ontains objets that stay in the same plae or boundedregion over time, while foreground regions or regions of interest move aroundmore freely. Information about a sene's bakground is useful to minimisenoise during traking or when extrating features. A bakground modelan be de�ned as a referene struture that desribes the bakground of asene. The simplest struture being a time-averaged referene image where



Chapter 4. System implementation 45onurrent frames are subtrated. Conurrent subtration of frames resultsin very noisy images that need to be leaned, usually using thresholds. Ob-taining an aurate bakground model using these omputationally simplealgorithms requires a training period within a ontrolled environment absentfrom movement, foreground objets or illumination hanges. Any hangesto the sene requires a re-estimation of the bakground. This type of solu-tion onsequently requires that the bakground be updated onstantly.Bakground modelling is a separate �eld of researh and two populartypes of bakground modelling tehniques are investigated in this setionand ompared with a time-averaging method. A foreground objet detetor[11℄ and an adaptive bakground mixture model [9℄ are investigated. Thesemethods are hosen based on their ability to dynamially model omplexsenes and real-time exeution. Both FGD and the bakground mixturemodel algorithms are implemented in the OpenCV library.4.2.1 Foreground Objet Detetion (FGD)In a omplex sene, possibly ontaining dynami moving objets suh astrees, bakground pixels an have multiple values. FGD integrates multiplefeatures where most other bakground modelling tehniques only use onetype of feature to model stati and dynami parts. The FGD's fous is tomodel di�erent parts of the bakground using di�erent types of features.Feature models for both stati and dynami bakground pixels are used.Extrating foreground objets from a omplex sene is done using a Bayesdeision rule whih has been extended to deal with general features. Itis then possible to lassify both bakground and foreground pixels usingmultiple features.Classi�ation rule A lassi�ation rule is formulated in general to las-sify a pixel as foreground or bakground. Following the notation in [11℄, letvk be a feature at time k loated at position r = (x, y) where r is possibly



Chapter 4. System implementation 46a bakground or a foreground pixel. Using Bayes theorem, the posteriorprobability of vk of a bakground pixel b or foreground pixel f is
P (C | vk, r) =

P (vk | C, r)P (C | r)
P (vk | r) , (4.2.1)where C = f or b. Classi�ation of a pixel as foreground using Bayes ruleis given by

P (f | vk, r) > P (b | vk, r). (4.2.2)To lassify a pixel at run-time as part of the foreground or bakground theprobabilities, P (b | vk, r), P (vk | r) and P (vk | b, r) need to be trained. Atable struture is used to store these statistis for every pixel in the image.Table of feature statistis In [11℄ a histogram of feature vetors is usedto approximate P (vk | r) and P (vk | b, r) whih is not known in general.A bakground pixel only has a limited number of values, they are onsid-ered to only be onentrated in a small subspae of the feature histogram.This indiates that with a good feature seletion a bakground pixel ane�etively be overed by a small number of histogram bins. On the otherhand, foreground pixel values will not be as onentrated in these histogrambins and will in general be spread more widely. Then we let P (vi
k | r),

i = 1, ..., N be the �rst N bins from the feature histogram desribing themultiple bakground values.A table of feature statistis is reated to store the di�erent feature his-tograms. The table Sr,kvk
of feature statistis maintains three omponentsfor every pixel in an image,Sr,k,ivk

=
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,where ai
j are the di�erent states that a feature an have. For a featurevk the table maintains the most signi�ant portion, where there is the



Chapter 4. System implementation 47highest onentration of pixel values, of the feature histogram. The tableis maintained by eah update of the bakground model. The probability tolassify a pixel as foreground, P (b | vk, r), P (vk | r) and P (vk | b, r), areknown for eah pixel from the feature table statistis.Feature vetors For a pixel lassi�ed as part of a stati bakground theolour is hosen as a feature to be stored in the table and, vk is substitutedin (4.2.1) by k = [rk gk bk]
T . Stati bakgrounds where pixel values do nothange over time is simple to handle. The feature k is hosen if the �rst

N entries in the feature table do not vary.A moving bakground's pixel values hange between frames. The olouro-ourrene of the hange in pixel values between frames are hosen as afeature vetor and again, vk is substituted in (4.2.1) by ok = [rk−1 gk−1 bk−1

rk gk bk]
T . Seleting the olour o-ourrene feature is based on the ob-servation that, for a moving bakground, the pixel values varies greatly,and always at the same loation in an image. Both states Sr,k,ik

and Sr,k,iokare stored for every pixel to represent the multiple states. Representing thebakground using multiple states allows for alternating pixel values withoutnoisy interferene with foreground objets. In [11℄ the omplete algorithmis disussed in detail.4.2.2 Mixture of Gaussian bakground modellingThe adaptive mixture of Gaussian (MOG) models the variation in pixelvalues using a Gaussian mixture model (GMM) onsisting of up to K Gaus-sians, where 3 ≤ K ≤ 5. Eah pixel in an image is modelled by a MOGdistributions. Di�erent Gaussian represents di�erent olours. Note that wehave mentioned that bakground pixels are present in a sene for longerperiods. Then, a weight w is applied to eah Gaussian that is proportionalto the time those olours stay in a sene. The idea is that a pixel is drawnfrom a GMM allowing for multi-modal distributions of pixel values. The�rst N most frequent ourrenes of a spei� olour is onsidered to rep-



Chapter 4. System implementation 48resent the bakground model. The adaptive bakground mixture model isdeveloped in [9℄ and builds on previous work done by Grimson and Stauf-fer [19℄. This method improves the update speed (learning time) of thebakground model.MOG Model The K Gaussian's at pixel r = (x, y) models the probabil-ity of the olour values k = [rk gk bk]
T at time k and we write

p(k) =

K∑

i=1

wiη (k | µi,Σi) , (4.2.3)
K∑

i=0

wi = 1. (4.2.4)as a 1 dimensional GMM. Then wi is the weight of the ith Gaussian and
η (k | µi,Σi) is its normal distribution. Training is needed to �nd wi, µi,Σiand the standard EM algorithms are used. The method is improved uponin [9℄ to speed up the learning time. A two step proess is used in theoptimised equations. Firstly, estimation of the mixture model by the EMalgorithms are performed. After this initial estimate, the updating steponly onsiders the last L frames allowing urrent hanges in the sene tohave a higher priority. This improved adaptive MOG adapts quiker andhas a learning time muh shorter than [19℄.4.3 Motion trakingMotion traking piks up onstant motion based on repeated detetion inevery frame. Motion detetion is used to �nd regions of interest whihare de�ned as regions whih are onsistently present in onseutive framesto minimise noise. Sine noise is onsidered random it is assumed not tohave a onstant motion and is only present in a sequene of frames forshort periods. Senes omposed of objets in onstant movement in frontof stati bakgrounds are assumed. Note that motion traking refers to a



Chapter 4. System implementation 49simple method for deteting objets in a sene and the traking only refersto the mathing (keeping trak) of these regions between frames.4.3.1 Motion DetetionMotion detetion is the �rst step in proessing input frames. Connetedomponents (blobs) in image M are segmented into retangular regions.From experiments it is found that many retangle regions of the same mov-ing objet overlap. These overlapping retangles are ombined to form alarger retangular region to ompletely bound the objet. Filtering out ofsmall regions is done after overlapping retangular regions have been om-bined. These regions are proessed as desribed in the following setion.Motion detetion builds up a motion image that aptures pixels thathange between frames. Motion is deteted by maintaining a sequene ofthe last onseutive frames in gray sale. A silhouette image, S, is alulatedby the absolute di�erene between frame at time k and its preeding frameat time k − 1, and then thresholded to remove small and isolated noisyregions. The motion image M is onstruted and maintained by updating
M using S,

M(x, y) =






k, if S(x, y) 6= 0,
0, if S(x, y)=0 and M(x, y)< k-D,
M(x, y), otherwise,where D is the duration that pixels are allowed to be present in a sene.

D is a user-de�ned onstant value in milliseonds. A large value for Dinreases the time a pixel is present in M and usually results in a delayedshadow or ghost e�et. A small value of D dereases the likelihood thatslow motion is deteted.



Chapter 4. System implementation 504.3.2 Motion traking implementationRegions deteted in the motion algorithm are proessed and traked. Notall of these regions are onsistent in their motion over a time period andneed to be disarded. The proess is divided into logial setions and isdesribed in eah of the following steps: deteting tentative regions, on-�rming a tentative region and preparing a region for initialisation for featureextration in the partile �lter.Step 1: Tentatives Motion traking keeps trak of regions that havebeen deteted. Newly deteted regions, blobs of motion pixels group to-gether, are labelled as tentative when they �rst appear. Mathing of theseregions to previously deteted regions is done in a nearest-neighbour fash-ion. Only regions within the tentative region's neighbourhood are tested fora math. Regions are mathed by their width and breadth. These regionsare allowed to hange in size in onseutive frames. If there is no mathto previous regions, the new region is given a timestamp and linked to atentative list of regions.Step 2: Con�rmed Continuous deteted tentative regions are upgradedto a on�rmed region if motion is present for a minimum time limit. Anyregion from the tentative or on�rmed list is removed if they are not de-teted within that minimum time limit. This step has the advantage thatbakground noise is quikly removed before the region is on�rmed. Also,any on�rmed regions are removed if in onseutive frames there is no newdeteted region that mathes the size and veloity in that region's loseproximity.Step 3: Initialisation Eah region in this traker has a history vetorh desribing its positions (x, y), width and height (w, h) and speed ompo-nents (vx, vy), suh that h = (x, y, w, h, vx, vy) over a period of sequentialframes. These parameters are used when on�rmed regions are passed tothe partile �lter to automatially initialise the dynamis and extrat fea-tures.



Chapter 4. System implementation 514.3.3 Motion traking resultsThis setion disusses the results of the motion traking method desribedabove. A video sequene is hosen to illustrate the basi traker and itsshortomings. In Figure 4.3 a sequene of frames is shown. Traked regionswhih are on�rmed, are shown in yellow, while tentative regions are green.A number label inside eah retangle is added to eah traked region foridenti�ation.From frame 380 shown in Figure 4.3 it an be seen that 3 regions areorretly labelled. A ar stopping at the stop sign is lost (no motion regionsare deteted) in frame 430 and traked again when motion resumes in frame530. Two regions interset in frame 680 with mathing area sizes. Motiondetetion reates a noisy region shown in green that quikly disappearsagain. The two interseted regions are still separate in frame 730, but theirlabels have swithed.Motion detetion has another unwanted property due to its onstrution.Any fast moving objet in a frame reates a ghost e�et. The e�et is theresult of pixels that are present in the motion image for a �xed amountof time due to the frame bu�er used. This unwanted e�et auses a muhlarger region of interest than the atual objet size. A ombination of thefast motion traker used with a bakground modelling tehnique reatesan aurate region of interest. The bakground model is only updatedwhen new tentative regions are reated by the motion detetion proess tomaintain real-time speeds. These more aurate estimated region sizes areused when initialising the partile �lter.4.3.4 In summaryFrom the results it is lear that inonsistent labelling is problemati. Themotion traker does, however, allow a means of �nding interesting objetsto trak. Any onstant movement in a sequene of frames is piked upand motion history information is obtained. Using one of the bakground
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Figure 4.3: Frames 380, 430, 480, 530, 580, 630, 680, 730 show the motiontraking of 2 ars and a group of people walking along the side walk.



Chapter 4. System implementation 53Parameters Desriptions ValuesMotion detetionMotion history duration Time a pixel is part of history 10 msMinimum region size Smallest amount of pixels forming a region 30 pixelsTraking SettingsTentatives region Time needed to beome trakable 5 msDeletion Time needed for lost region to be removed 5msSearh range Mathing regions between frames 30 pixelsRegion growth Size hange allowed 50%Colour model(h,s,v) bins Histogram bin sizes (10,10,10)(HS-V) weight ration Combining HS- and V-histogram (0.7 : 0.3)Alpha blending Adaption rate 0.1Hog modelHistogram bins Objet rotation = 360/Histogram bins 18Partile �lterSigma Seletion aggressiveness 0.1Partiles Amount 100FGD & MOGMinimum region size Noise removal 15 pixelsTable 4.1: User de�ned parameters to tweak module performanes.detetion shemes like MOG or FGD, segments of on�rmed regions an bebetter identi�ed.4.4 User de�ned parametersEah of the modules, motion detetion, motion traking, bakground mod-elling and partile �ltering ontains user de�ned parameters that ould im-prove performane if seleted orretly for a partiular sene. This setionsummarises the most important parameters in Table 4.4. Also, values usedin the experiments are the same unless stated otherwise in the text.



Chapter 4. System implementation 544.5 Objet detetion experimental resultsAs previously mentioned, the FGD and MOG algorithms are implementedin the OpenCV library. A bakground module interfae is implemented andintegrated into the system. Using this interfae eah algorithm is tested.FGD and MOG bakground modelling tehniques were developed foromplex senes ontaining hanging bakgrounds. Comparison of di�erentvideo sequenes shows that for stati bakgrounds, both methods performsimilarly, giving exellent results. Problems using these tehniques beomequikly apparent. Tweaking parameters for eah model needs to be donefor di�erent senes, see Table 4.4. Also, model update speeds are slow dueto the omplexity and amount of alulations needed. Real-time proessingis ahievable only at low resolutions of 320x240 on hardware as desribedin Appendix A.5.Figure 4.4 shows a frame from a video sequene where a person dressedin blak walks aross the sene. The sene is omposed of dynamiallyhanging bakground senery, e.g. trees, while the foreground ontains aperson. The idea is to detet the person moving in the foreground againstthe dynamially hanging tree branhes in the bakground.The foreground frames are shown for four di�erent bakground modellingtehniques: frame di�erening, motion detetion, FGD and MOG. BothFGD and MOG are trained for 700 frames beforehand to ensure a reliablebakground model is present. The following paragraphs explain the resultsobtained in Figure 4.4 for eah of the four tehniques.Frame di�erening is a simple approah for deteting foreground re-gions by subtrating onseutive frames and thresholding to minimise noise.For the results in Figure 4.4 (b), a running average, weighted sum of frame
I(x, y) is alulated,

Ik(x, y) = (1− α)Ik−1(x, y) + α× Fk(x, y). (4.5.1)
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[a℄ [b℄
[℄ [d℄

[e℄Figure 4.4: (a) frame 260, (b) frame di�erening, () motion detetion, (d)MOG, (e) FGDEvery new frame Fk is weighted by a onstant value α at time k, in this aseset to α = 0.1. Eah of the olour hannels is thresholded and ombined bya logi OR operator to form a binary foreground image. Throughout thevideo sequene noise regions are deteted where the bakground moves andthe foreground image is luttered. Frame di�erening has the advantagethat it runs real-time and is appropriate for stati senes.



Chapter 4. System implementation 56Motion Motion detetion is shown in Figure 4.4 (c) and explained fullyin Setion 4.3.1. There is no bakground modelling, only foreground dete-tion from moving objets. Moving shapes that ome to rest are lost fromview. Any moving foreground objet is deteted and an empirially hosenthreshold, T = 50 (minimum blob size in pixels) is used in this sequene.Figure 4.4 shows that motion ontains a signi�ant amount of useful infor-mation for traking purposes. It also shows how the bakground hangedfor a short period of time before the frames shown in Figures 4.4.FGD Foreground detetion, as desribed in Setion 4.2.1, is tested usingvarious input parameters. Frame rates of 30 frames per seond is ahievedat a resolution of 320x240. The foreground person is deteted suessfullyin the video sequene shown in Figure 4.4 (d). FGD fails to detet the fore-ground objet (person in Figure 4.4 (a) ) in ases where the bakgroundpixels are indistinguishable from the foreground (blak lothing over shad-ows). This is understandable sine the model statistis annot distinguishthe foreground from the bakground when the pixel values are the same.Also, note that most of the moving tree branhes in the bakground aresuessfully distinguished from the foreground.MOG Similar to FGD, parameters need to be set aording to the seneomposition. Using 3 Gaussians, a speed of 25 frames is ahieved at aresolution of 320x240. Foreground regions are deteted with small noisypathes. Using the same minimum blob size as FGD, MOG deteted moreforeground pixels in this ase, as seen in Figure 4.4 (e).4.5.1 In summaryBoth MOG and FGD an handle dynamially hanging bakgrounds and arewell suited for omplex senes. Proessing is omputationally expensive andslows down more when senes are busy. Setting up model parameters alsorequire tweaking to obtain useable results. These bakground modellingmethods were developed to deal with omplex dynami senes. In ases



Chapter 4. System implementation 57where senes are stati, foreground objets are muh easier to detet usingonly the motion in a sene.4.6 Partile �lter trakingReal and simulated videos are used to test the feature-based partile �lter.Experiments are �rst done by seleting the objet to be traked by handin the �rst frame. Then experiments are done by automatially obtainingobjets and extrating features to trak. The �nal experiment illustratesthe integration of all the modules, bakground modelling, motion trakingand multiple feature-based partile �lers.4.6.1 Colour only trakingUsing only the objet's olour feature, a simulated soer video from datasethttp://www.multitel.be/tritra is tested. The objet to be traked is �rstseleted by hand. The test illustrates the use of traking on�dene as wellas the partile �lter's multiple hypotheses when dealing with objets withsimilar appearane.Soer sene desription The video sequene onsists of soer players,all similar in appearane, on a football �eld. In the sequene, the amera,moving quiker than the players, is panning from left to right. In eahframe in Figure 4.5 the partiles are shown as red irles traking a playeras well as the traking on�dene (top left). The traking on�dene isshown in terms of "traking objet" or "objet lost". Eah partile's weightis represented by the irle's radius, where the radius is diretly related tothe partile weight.Detetion of traker loss In frame 348 the amera moves aross the�eld past the players and the traked player is lost. A lear indiationof a traker loss is seen when partiles, equally weighted, are distributedwith a large standard deviation. In the sequene of frames di�erent players
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Figure 4.5: Seleted frames 301,315,319,322,348,353,372,571 show the trakingof simulated similarly lothed players using a moving amera.



Chapter 4. System implementation 59are traked when the player is lost from view and the initialisation detetsanother player that has a high likeliness to the target model.It is lear that partiles are distributed between players that are lose indistane, a lear indiation of multiple hypothesis of the pdf distributionproperties. This an be seen in Figure 4.5 frame 322 where the two playerson the left are both weighted by partile irles after the automati initialisefuntion deteted the players.4.6.2 Texture only trakingHOG is used as a feature model in this experiment to trak a person's eyesand nose (see Figure 4.6). The experiment illustrates a real person's faebeing traked. The on�dene measure is tested for the HOG feature model.
Figure 4.6: Fae image used to initialise trakingThe red irles, in Figure 4.7, have a radius diretly related to theirprobability and are well distributed aross the fae. The predited loation,shown by the ellipse bounding the most likely position, is not an auratepredition in every frame. Through the sequene the traking on�denestays low and a message is displayed showing that the objet is onsideredlost. However, the fae is traked for the entire sequene. In Figure 4.7 thenumber of partiles are set to 150 and a 72 bin histogram is used. Both thenumber of partiles and the number of HOG bins are inreased greatly toobtain the results shown. Performane is negatively a�eted by the inreasein partiles. Real-time traking is not ahieved sine feature extration ofthe fae regions for every partile is slow.



Chapter 4. System implementation 604.6.3 Feature ombination trakingBoth features, olour and texture, are used during traking. Again, trakinga person's fae is onsidered. The result is ompared with the HOG trakingin the previous setion. The soer sequane is not used in to illustrate theombined features. The soer players texture information is very little, dueto the uniform olour of the players, and traking results do not improve.To inrease the on�dene measure of texture traking the olour featureis inluded. This allows for less partiles to be used to inrease speed.Also, the inrease in traking on�dene allows that the region size anbe adjusted appropriately. The number of partiles is set to 75 using aolour histogram desriptor of 10x10 bins for HS-histogram, 10 bins V-histogram and a HOG desriptor of 36 bins. Eah feature is weightedequally. Performane and auray is greatly inreased and the faial regionis traked with high on�dene as seen in Figure 4.8. Note the high aurayof the most likely positions during the end of the sequene where both olourand shape beome distorted.4.7 Automati initialisation trakingThe feature-based partile �lter requires prior knowledge of features, whereasmotion traking as implemented in Setion 4.3, aptures any region of mov-ing objets. This setion desribes how to integrate motion deteted objets,representing them as features, to the feature-based partile �lter.Other initialisation tehniques, whih rely on features being trained be-forehand, are possible. Support vetor mahines for example are used toobtain an objet's features from a large desriptive dataset of similarly ap-pearing objets. These methods work well if the objet that needs to betraked is spei�ally known. This is possible when designing a spei� ap-pliation. Using motion traking, a general approah is taken to illustratethe power of a feature-based partile �lter to trak objets.



Chapter 4. System implementation 614.7.1 Snooker ball experimentTo illustrate the integration of eah of the module's bakground mod-elling, motion traking and partile �ltering, a sequene of snooker balls aretraked. No prior knowledge is used to train the features or the bakgroundmodel. Traking snooker balls, eah with its own instantiated partile �l-ter, is illustrated in this setion. Traking snooker balls is onsidered tomaintain a ontrolled environment.The video sequene ontains 3 snooker balls plaed at the end of the table.New snooker balls enter the frames periodially. When a new snooker ballenters the amera view, its motion is aptured and traked using motiontraking. One the region is on�rmed, the bakground model is used to �ndthe minimum bounding box ontaining the snooker ball for aurate featureextration. The bounding box is used to initialise a partile �lter to handlefurther traking. Di�erent oloured balls are used sine ball shapes areidential and HOG would fail when used alone. The snooker ball experimentis shown in Figure 4.9 and illustrates the following:� Automati initialisation is possible using the motion traker� Due to modular design multiple objets an be traked simultaneously� Neessary good feature extration is handled by a bakground model� Adapting to the region size automatially (motion diretion is awayfrom amera)Details of the snooker sequene A desription of the video sequeneis required to understand the experiment ompletely. The video resolutionis 320x240 with the light soure above and behind the table. Illuminationhanges are present when the balls move aross the table beneath the light.The illumination hanges are handled by the olour feature adaption. Also,the light soure reates pixel noise deteted by the motion detetion. Ballspeeds vary but all enter the sene quikly. The balls are rolled hard enoughby hand to reah the opposite side of the table and bump into other balls



Chapter 4. System implementation 62on the way bak. The e�et of this is that motion detetion, detets a muhlarger region when the ball enters due to the motion pixel history desribedin Setion 4.3.1. Also, it is important to note that as the ball moves awayfrom the amera its size also beomes muh smaller.Parameter settings In Figure 4.9 the bounding box regions are drawnin blak. The number of partiles are set to 60, using both HOG and olourfeatures blended at 50%. The motion traker is set to on�rm tentativeregions in 0.5 seonds. The maximum number of partile �lters that maybe instantiated is set to 8. Automati initialisation after a loss of an objet,whih is very time onsuming, is disabled to avoid interferene with themotion traker timing. A MOG bakground model is used whenever newregions are on�rmed. A FGD an also be used with similar results, howeverwith slightly slower exeution.Result disussion The �rst blue snooker ball is deteted from frame55. The movement is mostly away from the amera and its bounding boxdereases quikly. The bounding region is mostly adapted in frames 74,75 as seen by the size of the white irles orresponding to the partile'sloation with the highest probability.The introdution of new snooker balls in frames 74, 85, 103 is eah han-dled separately. Features are extrated while the balls are moving at theirquikest, not always bounded exatly and where shadows are also inluded.These features are slowly adapted and most balls are traked suessfully,although two do beome lost. The e�et of the HOG feature does, in someases where the olour ball is lost, allow other olour balls to be traked andthe olour adapts to the new ball olour (suh is the ase with the blakball).Notie that the motion traking bounded regions, shown in green (ten-tatives) and yellow (on�rmed), are muh larger than the atual target



Chapter 4. System implementation 63objets. A muh more aurate bounding region is thus found from featuretraking.There are slight illumination variation as the balls move aross the tableand loser to the light soure. To handle the illumination hanges the olourfeature model needs to adapt aordingly. Adaption is suessful in all but2 ases, the blue and blak ball is not traked the entire sequene. Thereason the balls are lost is the result of bad feature representation. Thesimilarity with the side and bak of the snooker table where the edge of thetable asts a shadow has a high similarity with the feature and the blakball is not traked. In the ase of the blue ball, another ball (purple ball)with similar olour, is traked when the blue ball moves into the table'sedge shadow (seen in frame 112).Using eight partile �lters is omputationally expensive and the sequeneof snooker balls are not traked real-time. When only one or two balls aretraked using the partile �lter, real-time traking is possible.4.8 Summary and onlusionIn this hapter, the development of modules, bakground modelling, motiontraking and feature traking are integrated and tested. Results show thatwhen parameters are setup orretly and desriptive model features areseleted, then traking is suessful. Table 4.8 shows a summary of timingresults for experiments in this hapter. Results are based on hardwaredesribed in Appendix A.5.Generally, in situations where the objet is deteted using motion de-tetion, desriptive features are either not present or not automatiallyseleted well. It is important to note that traking only performs as wellas the initial model seletions. The snooker ball traking experiment workswell, due to simple but desriptive features, little bakground noise and asemi-ontrolled environment.



Chapter 4. System implementation 64The goal of reating real-time methods is ahieved. Eah module anoperate in real-time when used on its own. However, when integrating themodules the proess slows down signi�antly. Bakground modelling speedsare mostly subjet to how busy a sene is, while the partile �lter speedsare mostly a�eted by the region size that need to be proessed for eahpartile to extrat features. Using the very fast motion traking bakgroundmodelling is only neessary for newly on�rmed regions and greater speedsare obtained.
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Figure 4.7: Fae traking video sequene using HOG with 150 partiles and 72bins. Seleted frames 55, 100, 125, 150, 180, 212, 300, 336 shown.
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Figure 4.8: Fae traking video sequene using olour and HOG features with75 partiles. 110 olour bins and 36 HOG bins. Seleted frames 55, 100, 125, 150,371, 372, 373, 374 shown.
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Figure 4.9: Seleted frames 55, 57, 74, 75, 85, 88, 103, 112, 128, 129, 143, 201shown from top left to bottom right.Experiment name Features used Fps # partiles image/path size(pixels)FGD × 33 × 320×240MOG × 25 × 320×240Motion × 35 × 640×480Soer sequene Colour 10 150 10×20Fae 1 Texture 7 150 75×45Fae 2 Combination 5 75 75×45Snooker Combination 0.3 70×8=560 variesTable 4.2: Summary of experimental timing results



Chapter 5ConlusionThe problem was to investigate a means of traking that ould be extendedto various �elds for the purpose of general use.A sub-optimal general partile �lter was implemented that an be usedin di�erent traking appliations. Other, more aurate trakers do existand are muh more omplex, but are just too omputationally expensive.Inorporating feature desriptors allowed objets to be modelled and videosequenes to be analysed. Previous work suggests that olour-based fea-tures obtained good results; the olour-based feature was implemented. Italso beame lear that using other features inreased robustness, and his-tograms of gradient (HOG) were implemented suitably adapted for trakingpurposes. Re-initialisation after traker loss and a on�dene measure wasadded to inrease robustness during adaption. Dynami and objet infor-mation was obtained using the motion traker and automati initialisationwas implemented. Noise needed to be removed before apturing good de-sriptive features and bakground modelling tehniques partially solved thisproblem.
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Chapter 5. Conlusion 695.1 Future hallengesSome hallenging senarios exist where traking will fail in most ases. In-terestingly, in general, indoor loations are more di�ult than outdoor.Indoor loations have many surfaes that re�et or ast shadows. Also,eletri lighting reates more hallenges, suh as noise, and objets re�e-tions and shadows are more pronouned. This poses a hallenging task toaurately extrat features only relating to the objet. Traking duringnight-time is another hallenge that requires detailed attention to illumina-tion soures.5.2 RestritionsIt is important to realise that eah module, suh as motion traking, bak-ground modelling and feature traking, have their own restritions. Bothmotion traking as well as bakground modelling, are restrited by a statiamera setup. Also, muh time is needed setting up parameters or waitingfor bakground models to be trained orretly. In most ases, settings aresene-and-objet spei�.Partile �ltering is onsidered due to its simpliity to easily trak objetsin real-time. However, it was found that there are hidden omputationalosts. The feature-based partile �ltering is omputationally expensive formultiple features. Exeution time su�ers when the number of partiles isinreased or the image path for eah partile is very large. Most of theomputational time is spent on extrating features for eah observationwhih is equal to the number of partiles. In suh ases the requirement ofreal-time traking is not met. Also, traking fails when models are a badrepresentation of the objet.



Chapter 5. Conlusion 705.3 Goals ahievedAn adaptive feature-based traker was implemented and tested. Having atraking on�dene meant that features ould be adapted automatially andsmartly. These tools allow robust traking of any objet that meets the re-stritions. These restritions depend on their model desriptors and bettermodels would inrease robustness or exeution speeds. Prior knowledge ofan objet's desriptor was obtained using a motion traking tehnique basedon repeated detetion in eah frame. Improvement of the prior model ob-tained from the detetion, used dynami bakground modelling tehniquesto obtain more aurate bounding boxes, greatly improving results.5.4 ReommendationsReal-time exeution is always a high priority in ertain appliations. Whatis more important is the ost e�etiveness in the sense of being able todrive multiple ameras from the same CPU. Even the light-weight trakingmethods disussed here are hard to implement in real-time. Detailed atten-tion to optimisation is required. Many of the algorithms might also havemuh simpler or better ways that as a whole, minimise omputations. Itis suspeted that suh optimisations are possible and bene�ial if applia-tions are to beome useful. Our studies do show however, that light-weightshemes an be quite robust and have the advantage of being adaptable tomore spei� appliations. Researh into appliation development is mostlikely the next logial step. Appliation spei� solutions would also showmuh better results and have its own set of optimisations for robustness andspeed. This thesis has presented a traking tool that is easily extendableusing di�erent features. An appliation might now be developed that solvesa muh more spei� problem using the tools developed here.
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Appendix AProjet �lesIn this setion projet �les, installation and �le interation are desribed.All software libraries used are freeware or open soure and ross-platform(developed and tested in Linux).A.1 Required softwareDevelopment was done in a Linux environment on an Ubuntu Dapper sys-tem. Elipse version 3.1.2 with a Cdt (C++) plug-in is used as editor for thetools. A pydev (python 2.4.3) plug-in is used for the interfae and requireswxpython (2.6.2.1) to be installed. The Elipse workspae ontains all theompile settings, projet �les, images and videos used for development andompiled with g version 4.0.3 (Ubuntu 4.0.3-1ubuntu5). OpenCV Intellibraries (1.0.0) as well as the �mpeg (libavutil, libavode, libavformat)libraries are required. Pakages suh as libjpeg are needed to display andsave images. Note that the versions only indiate how the built binarieswhere onstruted. In general always install newest versions when buildingfrom soure.
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Appendix A. Projet �les 73A.2 Installing traking toolsRunning binaries An interfae was reated to easily enable or disablemodules for testing. Eah module setting is also inluded and is saved toa on�g.txt �le. To run the preompiled binaries, simply opy the projetdiretory and run 〈 ./PF/src/ python interface_params.py 〉. To saveimages and videos to the disk write aess is required. In Linux log on as asuperuser or exeute the above ommand with a sudo pre�x.Building from soure Building from soure is easiest using Elipse. Im-port the projet workspae, all my ompiler settings and diretory stru-tures are inluded. Selet build all from menu and selet run. Otherwise,ompile using the 〈makefile.from.source〉 �le.A.3 Running an exampleOpen the GUI from the main projet diretory, 〈 ./PF/src/ python interface_params.py 〉and selet from the start menu, run demo. The main GUI window is shownin �gure A.1. There are 8 quik demo's to view. If at any stage it seemsthat a demo window is not responding hit any key. To exit hit the ESCkey.A.4 Diretory struture and �le desriptionFigure A.2 shows how the projet �les interat.
GIO.cpp Graphial input and output funtions. All drawing funtions,opening and saving of images and video stream funtions are inluded inthis �le.
Backgroundmodel.cpp Both the Mixture of Gaussians and ForegroundDetetor is inluded and uses the openv libraries bakground model.
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Figure A.1: GUI main window

Figure A.2: Projet �le interation
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T iming.cpp Contains timing alulations to start, stop and get elapsedtime funtions.
MotionDetection.cpp Implementation of motion detetion. Updates mo-tion model using update_mhi funtion.
MotionTracker.cpp Proesses the regions deteted by motion detetion(funtion proess() is used). Labels are added to the regions and timingis used to obtain region whih are present for onstant time periods. Fil-terOverlappingRegions() funtion merges retangles whih interset.
ParticleF ilter.cpp Contains funtions to alulate the pdfs and statistisfrom the distribution.
HoGmodel.cpp Texture feature is implemented using HOG. Histogramtexture features are extrated from a olour image.
ColourHistmodel.cpp Colour image histograms are built for HS and Vplanes of the image.
FeatureParticleF ilter.cpp Contains the tools that adapt and alulateon�dene. The traking steps, update pdf from samples and predit usingmotion models are inluded.
TrackerMain.cpp Contains the main loop that parses input parameters,open the video for display and alls eah module.
Sys_var.h System and module settings and varibles.
Const_global_incl.h The partile struture and other global onstants.



Appendix A. Projet �les 76Proessor Intel Core 2 T5500Ram 1GB DDR2Camera 1 Sony DSC-V1 320x240, 640x480 video (15 fps)Camera 2 Sony DSC-H1 320x240, 640x480 video (15 fps)Camera 3 Axis 221 320x240, 640x480 (up to 60 fps)Camera 4 Axis 207 320x240, 640x480 (up to 30 fps)Table A.1: Hardware used in experimentsA.5 Hardware on�guration usedExperimental results where obtained using the following hardware in TableA.1. Di�rent amera's where used to test the e�etiveness of the algorithmson di�erent hardware. Camera 1 and Camera 2 are both digital ameraswith video funtionality. For results shown in this thesis Camera 2 was usedfor the fae traking, bakground modelling experiments. And Camera 3was used for the motion traking experiment.
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