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Abstra
t
An Adaptive Feature-based Tra
king SystemE. PretoriusDepartment of Mathemati
al S
ien
esUniversity of Stellenbos
hPrivate Bag X1, 7602 Matieland, South Afri
aThesis: MS
 (Applied Mathemati
s)2008In this paper, tra
king tools are developed based on obje
t features torobustly tra
k the obje
t using pati
le �ltering. Automati
 on-line initiali-sation te
hniques use motion dete
tion and dynami
 ba
kground modellingto extra
t features of moving obje
ts. Automati
ally adapting the featuremodels during tra
king is implemented and tested.
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OpsommingIn hierdie thesis word video volgings gereedskap ontwikkel en getoets. Deurgebruik te maak van 'n voorwerp se kenmerke is dit moontlik om sodoende'n voorwerp robust te kan volg deur "Parti
le Filtering" tegnieke. Die stelselword automaties geinisialiseer met beweging deteksie en agtergrond model-lering om voorwerpe se kenmerke te identi�seer en te ontrek. Automatiesopdatering van die kenmerk modelle geduurende video volging word geim-plementeer en getoets.
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Chapter 1Introdu
tionSuppose a robot is given a video stream, and through it, intera
ts with theworld around it. In this s
enario, 
omputer vision te
hniques would haveto be programmed so that the robot 
an tra
k, and maybe even re
ognise
ertain obje
ts.Obje
t tra
king 
omes naturally to humans, sin
e it is instin
tive to ob-serve the world around us. Computers, however, need sophisti
ated te
h-niques in order to mimi
 our tra
king ability and to automate tedious tasks.These te
hniques attempt to solve obje
t tra
king through 
luttered s
eneswith noisy measurements. Spe
i�
 algorithms ea
h have inherent short-
omings due to the nature of the problem, while su

essful approa
hes useobje
t appearan
es that indeed mimi
 the way humans would tra
k obje
ts.1.1 Problem statement: Tra
kingTra
king of obje
ts in a video sequen
e is one of the most fundamentalproblems in Computer Vision. It forms the basis of appli
ations as diverseas surveillan
e, tra�
 monitoring, gesture re
ognition and sport analysissu
h as so

er.Some of the most widely used tra
king algorithms in
lude the Kanada-Lu
as-Tomasi (KLT) feature tra
ker whi
h is an opti
al �ow method. These1



Chapter 1. Introdu
tion 2algorithms tra
k obje
ts by 
omparing 
onse
utive pairs of frames, no dy-nami
 information about the moving obje
t is used. The problem is that assoon as the motion of the obje
t itself is used, some information about theobje
t is required. On the other hand using dynami
 information leads tomore robust tra
king algorithms, allowing, for example, tra
king througho

lusions. It turns out that it is not hard to in
orporate dynami
 infor-mation into the tra
king algorithms by using a parti
le �lter. That leaves�nding information about the obje
t itself that is to be tra
ked.There are several 
hoi
es to obtain information about the obje
t. Isardand Blake [13℄ tra
k the shape of an obje
t, allowing, but also restri
tingshape deformations. This is known as a
tive 
ontours. Another 
hoi
e isto tra
k features that des
ribe the 
olour or texture of the obje
ts. Then itis possible to 
ombine all these whi
h resulted in the so-
alled A
tive Ap-pearan
e Models (AAM) [3℄. Although robust, AAM's are 
omputationallyexpensive algorithms. A simple fa
t is that 
lients requiring systems basedon 
omputer vision te
hniques, su
h as surveillan
e, often 
annot a�ordthe ne
essary CPU power. It is therefore of 
onsiderable interest to explorelight-weight alternatives. That takes us ba
k to 
olour and texture tra
kingusing a parti
le �lter.1.2 Literature studyA study of the most re
ent developments in tra
king has shown that
olour-based parti
le �ltering is used su

essfully to tra
k non-rigid obje
ts[14℄. A 
olour distribution model is built in RGB spa
e and a similaritymeasure is employed for the obje
t model. The authors 
ompare this te
h-nique with the mean-shift algorithm whi
h tries to minimise the distan
ebetween the theoreti
al mean and the observed ones. It is shown that themean-shift algorithm fails when the obje
t's position in su

essive framesdoes not overlap, where the parti
le �lter has no su
h problems. The 
olour-based parti
le �lter would however fail if lighting 
onditions 
hange to an



Chapter 1. Introdu
tion 3extent where the similarity between the obje
t model and measurements isindistinguishable from the ba
kground.A self-adapting histogrammodel is used in [6℄ to adjust to lighting 
hanges.This is possible sin
e the 
olour model uses the HSV instead of the RGB
olour spa
e. The adaptivity allows for small illumination 
hanges as wellas partial rotation in 3D-spa
e. A 
on�den
e measure is 
al
ulated from theprobability distribution that des
ribes how well obje
ts are being tra
ked.Adapting is done using this 
on�den
e measure to only adapt to the a
tualtarget when 
on�den
e is high. Also, the implementation is done on a smart
amera (
amera with CPU) and runs real-time. Sin
e all the pro
essing isdone on the 
amera itself, no images need to be sent over the network. Thisis a very important property in se
urity appli
ations where 
lient priva
ymight be an issue.Blob tra
king [7℄ is also a su

essful feature-based tra
ker. A multi-resolution graph for tra
ked regions is built from 
onne
ted 
omponents(blobs). The point is made by the authors that robust tra
king 
annot behandled by only one algorithm. Modules need to be built up that solveproblems robustly at ea
h step of a semanti
 ladder. The �rst step beingsegmentation, and the next step tra
king. The algorithm handles larger slowmoving blobs that are easy to tra
k, and fast moving, small blobs that aremu
h more di�
ult to tra
k equally well. In 
ases where the algorithm failedthe segmentation step produ
ed unsatisfa
tory results. Either a region ofinterest is not segmented, two separate regions merge and form one blob orthe relationship between a blob in 
onse
utive frames has a low likelihoodat a low resolution in the multi-resolution s
ale. This is handled at the nextsemanti
 step.Multi-
amera systems are implemented in [21℄ and [20℄ for tra
king foot-ball players and surveillan
e purpose, respe
tively. Cameras with over-lapping �elds of view are used. In the 
ase of the football players, ea
h
amera's pro
essing is done separately and then 
ombined. A Kalman �l-



Chapter 1. Introdu
tion 4ter is used for ea
h 
amera to tra
k players. Measurement data is usedwhenever available to minimize estimation errors. For the surveillan
e ap-pli
ation the Kanada-Lu
as-Tomasi (KLT)[18℄ feature tra
king algorithmis used. KLT tries to estimate the motion at every pixel position using
on
urrent available frames.Contour features are used in [13℄ implementing the 
ondensation (par-ti
le �lter) algorithm. Spline 
urves are �tted to an obje
t's shape andhigh 
ontrast features are extra
ted at intervals along the 
urve. Obje
t
ontours (splines) are des
riptive features and are su

essfully used to tra
k
urves through 
lutter. This is known as 
ontour-based tra
king. An im-pressive experiment is done tra
king a falling leaf against a ba
kground�lled with similar leaves. Contour-based tra
king has the disadvantage ofbeing 
omputationally expensive.In [4℄ edges and the pixel gradients are 
onsidered as feature models. Im-ages are broken into 
ells, ea
h a histogram of oriented gradients (HOG).Combined these 
ells represent the feature model. This approa
h has beensu

essfully implemented in obje
t re
ognition type problems. This te
h-nique su�ers from expensive 
al
ulations and slow exe
ution on less sim-plisti
 s
ene 
omposition.Some of the most popular tra
king algorithms where shown here. Animportant fa
tor for ea
h of these algorithms is their 
omputational 
ost.For any tra
ker to be useful it should be robust and light-weight and shouldbe 
heap to build and use.1.3 Obje
tive of the studyIn this thesis several light-weight tra
kers are studied. More spe
i�
allyimplementing of a 
olour-based tra
ker and a texture-based feature usingan adapted HOG des
riptor is developed. The tra
king "engine", a parti
le�lter, is implemented. The proje
t obje
tives are



Chapter 1. Introdu
tion 5� Design a tra
king implementation to solve problem statement� Build a parti
le �lter for the design� Create a 
olour-based feature model� Investigate and implement other type feature models su
h as texture� Test the feature's e�e
tiveness and robustness� Make improvements to the original implementation based on learntshort
omings� Automate the tra
king pro
ess after initialisation� Automati
 initialisation of the tra
ker� Feature adaption when obje
t's appearan
e 
hangeHOG was developed to dete
t obje
ts in a s
ene at di�erent image s
ales.Its su

ess, when used as an obje
t dete
tor, sparked our interest for use in atra
king 
ontext. An adaption to the HOG texture feature is developed and
ombined with the 
olour feature to improve tra
king robustness. The HOGfeature is used to �nd a similarity measure between the target obje
t andsamples. Failure as a robust tra
king feature is dis
overed and adjustmentsto the HOG 
onstru
tion are developed. The developed feature des
riptor
an su

essfully tra
k obje
ts using only texture information, (when textureis available) and tra
king improves when 
ombined with a 
olour feature.1.4 Dissertation stru
tureThis thesis builds on the theory in Chapter 2 to a working implementationin Chapter 4.



Chapter 1. Introdu
tion 6After �rst 
overing the basi
 parti
le �lter 
on
epts, obje
t features areinvestigated in Chapter 3. Features are adapted through new observationsand the pro
ess is automated to adapt independent of user intera
tion.Features with 
omplementary 
hara
teristi
s, that 
ontain su�
ient infor-mation, are investigated.A motion tra
ker is built to help with automating a tra
king systemat initialisation. Ba
kground modelling te
hniques are also investigatedas part of the tra
ker initialisation and feature extra
tion. Ea
h systemmodule is dis
ussed as implemented and results are shown.



Chapter 2Parti
le �lter theoryA parti
le �lter is a non-linear sub-optimal model estimation te
hniquebased on simulation. It is an implementation of the formal re
ursive Bayesian�lter that performs sequential Monte Carlo (SMC) estimation based ona weighted representation of probability densities [16℄. Random sampledapproximations of the probability density fun
tion (pdf) are 
alled theweighted parti
les. In general more parti
les lead to a better approxima-tions of the pdf. Parti
le �lters propagate a �nite number of these samplesa

ording to the dynami
s of the system and update the pdf using theobserved measurements [1℄.2.1 Introdu
tion to Bayesian estimationThe Bayesian approa
h aims to 
onstru
t the posterior pdf based on allavailable previous information and 
urrent measurements. In su
h a 
asewhere the pdf is 
onstru
ted from all available information the solution is
omplete and an optimal estimate (in a minimising-of-a-
ost-fun
tion sense)of the state is possible. A re
ursive approa
h is 
onsidered that allows fora new estimate whenever new measurements are obtained. Re
ursively,predi
tions and updates form the two main steps for most Bayesian esti-mators. The predi
tion step propagates the state pdf forward a

ording toa dynami
 system model. The update step, using Bayes' theorem, uses the7



Chapter 2. Parti
le �lter theory 8latest measurements to 
al
ulate the predi
tion pdf. The re
ursive Bayesianestimation or �lter therefore provides a formal me
hanism for propagatingand updating the posterior pdf as new information is re
eived [17℄.The following se
tions develop the ba
kground theory of parti
le �ltering.Firstly, a dynami
 system is represented by a dynami
s model and a mea-surement model in a probabilisti
 form so that a Bayesian approa
h may beadopted. Then the re
ursive estimation in Bayesian �ltering [5℄, predi
tionand update steps, �ts this dynami
 representation. Integration di�
ultiesin Bayesian �ltering are handled by Monte Carlo (MC) estimation [16℄ pre-sented in Se
tion 2.4. Finally, the implemented parti
le �ltering algorithmis dis
ussed.2.2 Dynami
 system representationA sequen
e of evolving probability distributions π(xk), indexed by dis
retetime k = 0, 1, 2, ..., is 
alled a probabilisti
 dynami
 system [12℄. A dynami
system is generally represented by a state spa
e xk. Two models are requiredfor analysis in a dynami
 system: a dynami
 model and a measurementmodel.Firstly, a dynami
 model des
ribing system evolution, the 
hange in thestate over time, is de�ned. The state sequen
e is a Markov random pro
essand the state equation is written asxk = fk−1(xk−1,vk−1), (2.2.1)where xk is the state ve
tor at time step k, fk−1 is the (possibly non-linear)state transition fun
tion that propagates the system from time step k−1 totime step k. Pro
ess noise is modelled by vk and the pdf is assumed known.Se
ondly, a measurement model where noisy measurements are related to



Chapter 2. Parti
le �lter theory 9the state is needed. The observation equation is of the formzk = hk(xk,wk), (2.2.2)where zk is the observation ve
tor at time step k, hk is the observationfun
tion that relates the state spa
e to the observations and the observationnoise, wk, whi
h has a known pdf.The state and observation equations 
an also be represented by proba-bility densities. Note that (2.2.1) is a �rst order Markov pro
ess and thatthe state equation is equivalent to p(xk|xk−1), also known as the transitiondensity. Similarly, the observation equation (2.2.2) is equivalent to p(zk|xk).In summary, the probabilisti
 des
ription of a dynami
al system formu-lated in a probabilisti
 way �ts the Bayesian estimation approa
h, as de-s
ribed in the next se
tion.2.3 Bayesian �lterBayesian �ltering attempts to 
onstru
t the posterior pdf from all availableinformation. The state ve
tor, xk, 
ontains information des
ribing the sys-tem. This true state, xk, is assumed to be a Markov pro
ess whi
h 
annotbe observed dire
tly, and the measurements zi, where the set Zk = {zi, i =

1, ..., k} are the observations of the state. A Markov assumption is madeabout the state spa
e, that assumes the 
urrent state is only dependent onthe immediately pre
eding state,
p(xk|xk−1) = p(xk|x0, ...,xk−1). (2.3.1)Similarly, the measurement at the k-th time step depend only on the 
urrentstate and is independent of all other states given the 
urrent state
p(zk|xk) = p(zk|x0, ...,xk−1). (2.3.2)



Chapter 2. Parti
le �lter theory 10From the Markov assumption made, the formulation of (2.3.1), (2.3.2) isequivalent to the dynami
 system state representation in Se
tion 2.2.Given the posterior pdf at time k − 1, p(xk−1|Zk−1), the idea is to �nd
p(xk|Zk). This is a
hieved by means of a predi
tion and an update step.First, p(xk|Zk−1), the prior pdf, is obtained using the transition density
p(xk|xk−1)

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (2.3.3)Now the new observation is obtained, this is used to update the posteriorpdf using Bayes' rule by in
luding the observation zk,

p(xk|Zk) = p(zk|xk)p(xk|Zk−1)/p(zk|Zk−1). (2.3.4)The normalization fa
tor is given as usual by
p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1)dxk.Bayesian �ltering is de�ned by the predi
tion step in (2.3.3) and the up-date step in (2.3.4) with initial 
ondition p(x0|z0) = p(x0) obtained fromassumed or given data.Analyti
al evaluation of the pdf in (2.3.3) and (2.3.4) is impossible ex
eptin 
ases su
h as the Kalman �lter and hidden �nite-state spa
e Markov
hains where linearisation (Gaussian pdf's) simpli�es the equations. MonteCarlo (MC) integration, on the other hand, is not limited by linear-Gaussianassumptions and will be des
ribed in the following se
tion.2.4 Monte Carlo (MC) integrationMonte Carlo (MC) integration methods use pseudo-random numbers to nu-meri
ally approximate multi-dimensional, de�nite integrals and form the



Chapter 2. Parti
le �lter theory 11basis of sequential monte 
arlo (SMC) methods. Pseudo-random numbersare generally used for 
omputational 
onvenien
e. By the Law of large num-bers1 if N → ∞ then MC integration approa
hes the exa
t solution. MCintegration is used to evaluate the integral (2.3.3) of the optimal Bayesian�lter.Consider a multi-dimensional, de�nite integral g(x). Writing g(x) =

f(x)π(x) its integral be
omes
I =

∫
g(x)dx =

∫
f(x)π(x)dx. (2.4.1)The integral g(x) is fa
torised su
h that π(x) is a density. Sin
e π(x) is adensity I is interpreted as the mean of f(x). In a Bayesian 
ontext π(x)is realised as the posterior pdf. Where {xi; i = 1, ..., N} are the samplesdrawn from π(x). The MC estimate of I is the sample mean

IN =
1

N

N∑

i=1

f(xi) (2.4.2)and 
onverges to I ifN is 
hosen large enough. Unfortunately, e�e
tive sam-pling from π(x) is not possible due to the distribution being multi-variate,non-Gaussian and only known up to a proportional 
onstant. Importan
esampling rather samples from a known density distribution q(x) that ap-proa
hes π(x) when N is in
reased. This proposed pdf q(x) is referred toas the importan
e or proposal pdf. Sin
e q(x) is a weighted density of thesample set, MC estimation is possible. The integral (2.4.1) is written as
I =

∫
f(x)π(x)dx =

∫
f(x)

π(x)

q(x)
q(x)dx, (2.4.3)1Ja
ob Bernoulli �rst des
ribed the law of large numbers as so sim-ple that even the stupidest man instin
tively knows it is true. -http :

//en.wikipedia.org/wiki/Law_of_large_numbers#note− 0



Chapter 2. Parti
le �lter theory 12and the MC estimation is 
al
ulated, by drawing N ≫ 1 samples, as
IN =

1

N

N∑

i=1

f(xi)w(xi) (2.4.4)where
w(x) ∝

π(x)

q(x)
(2.4.5)are the normalised importan
e weights so that N∑

i=1

wi = 1. Therefore, from
(2.4.5) samples drawn from the known importan
e density q(x) have weights

w(xk) ∝

p(xk|Zk)

q(xk)
. (2.4.6)The 
hoi
e of the importan
e density q(x) is 
ru
ial when designing theSMC. In this 
ase a suboptimal 
hoi
e is made to approximate q(x). Choos-ing the transitional prior, q(xk | xk−1, zk) = p(xk,xk−1), the weights areupdated by w(xi

k) ∝ w(xi
k)p(zk | xi

k).This indi
ates that the weight at time k 
an only be 
omputed after theobservation and the parti
les have been propagated at time k.SMC is also known as parti
le �ltering. Other names by whi
h SMC isknown in
lude bootstrap �ltering, the 
ondensation algorithm, intera
tingparti
le approximation and survival of the �ttest. The SMC method im-plements a re
ursive Bayesian �lter of Se
tion 2.3 using the MC integrationmethod (sub-optimal) to evaluate the integrals.2.5 Parti
le �lter algorithmThe parti
le �lter algorithm is a dire
t implementation of the re
ursiveBayesian �lter using MC methods. The basi
 parti
le �lter, sequential im-
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le �lter theory 13portan
e sampling (SIS) algorithm is des
ribed in this se
tion as well as thesampling importan
e resampling (SIR) algorithm.Given the posterior p(xk−1|Zk−1) and thatN samples are randomly drawnxi
k−1, i = [1...N ]. Then in the predi
tion phase samples are passed fromtime step k−1 and propagated using a dynami
 model to generate the priorsample set at time step k. These prior samples xi

k, i = [1...N ] produ
ed bythe dynami
s model are samples from the prior pdf p(xk|Zk−1).In the update step, a new measurement zk is obtained. The measure-ment is used to update the prior a

ording to the parti
le's weight wi
k. Thenew weight value is 
al
ulated as the measurement likelihood evaluated atthe prior sample: wi

k = p(zk|xi
k). The weights must sum to one after nor-malisation. In the SIR algorithm a further step is added to resample thesenormalised weights. The resampling algorithm 
hooses parti
les from theprior set with a probability equal to its weight. This new set of parti
les is
onsidered to be samples from the required pdf p(xk|Zk).The parti
le �lter algorithm repeats the predi
tion and update phases atea
h time step to obtain the posterior pdf at the next time step [17℄.2.5.1 Sequential importan
e sampling (SIS) algorithmThis is the most basi
 implementation of the parti
le �lter. Sampling isdone from the prior pdf and weights are assigned to the parti
les. The pdfis re
ursively updated or propagated using measurements at ea
h time step(sequentially). A serious problem arises when applying the SIS algorithm.After a few iterations the pdf 
ollapses around a single parti
le and allother parti
les have negligible weight. This phenomenon is 
alled degener-a
y. Also, propagating these parti
les is 
omputationally 
ostly and fails torepresent the true pdf a

urately. A possible solution requires resamplingof the parti
les.



Chapter 2. Parti
le �lter theory 14The SIS algorithm is shown in Algorithm 1. The algorithm notationused in this se
tion is similar to [1℄. The state spa
e samples xk−1 have
orresponding weights wk−1 at time k − 1. New observations at time k isdes
ribed by zk.input : xk−1, wk−1 ,zkoutput: xk,wkxfor i← 1 to N do1 draw xi
k ∼ q(xk|xk−1, zk) generated samples;2 assign parti
le weight, wi

k = p(zk|xi
k) ;3 end4 Algorithm 1: SIS Algorithm2.5.2 Resampling algorithmThe SIR algorithm is an extension of the SIS algorithm by in
orporatingthe resampling step des
ribed here.Degenera
y o

urs when only a few parti
les have a large weight and therest of the parti
les have weights that are almost zero. In su
h a situationthe prior pdf is not an a

urate representation. To redu
e the e�e
ts ofdegenera
y on the parti
le �lter a resampling step is added. Resampling isdone by 
hoosing parti
les with larger weights more frequently than thosewith smaller weights. Di�erent methods of resampling exist su
h as multi-nomial, residual, strati�ed and systemati
 [2℄. A systemati
 resamplings
heme is 
onsidered here with 
omplexity of O(N), where N is the numberof parti
les.Resampling steps The resampling pro
ess is shown in Algorithm 2 andthe steps are explained as follows. Figure 2.1 illustrates the resamplingalgorithm.
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le �lter theory 15Step 1 
omputes the 
umulative sum of N parti
le weights, Ci =
i∑

j=0

wj,
i = [1...N ]. Note that the weights w represent a pdf and that CN = 1. Cis an index of the 
umulative weights and it is divided into equally spa
edintervals of 1

N
.Step 2 sets where the index should start, namely at the �rst parti
le'sweight index.In Step 3 a random o�set value λ ∈

[
0, 1

N

], is generated from a uniformdistribution.Step 4 insures that all the parti
les' weights are 
onsidered whilst movingup the index.Step 5, starting at the o�set value, moves up along the index values.step 6 draws samples by 
omparing the value λ to Ci.In step 7, if λ > Ci, the parti
le weight of wi is small and not sampled byin
reasing i. This e�e
tively skips past a few parti
les with small weights.Otherwise, the weight at index i is sampled repeatedly in step 9 until
ondition λ > Ci is not true. It is 
lear that larger weights are sampledmore often whilst moving along the indexed values of C and smaller weightsare ignored.2.6 SummaryThe basi
 parti
le �lter has an elegant and simple algorithm that 
an beapplied in general to most non-linear estimation problems. It is importantto realise the dangers, su
h as the 
hoi
e of dynami
 model, sample set sizeand impoverishment of the sample set.
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le �lter theory 16input : xk,wkoutput: x∗
k,w∗

k

Ci =

i∑

j=0

wj //Create the 
umulative values index;1
i = 0 //start o�set index;2
λ1 ← random[0, 1

N
];3 for j ← 1 to N do4

λj = λj−1 + 1
N
//moving up C;5 while λj > Ci do6

i = i + 1;7 end8
xj∗

k = xi
k;9

wj∗
k = 1

N
;10 end11 Algorithm 2: Resampling algorithm

Figure 2.1: Resampling of 6 sample weights.In Figure 2.2 a possible iteration of the parti
le �lter algorithm is shownat parti
le level. The graphi
al representation visually summarises the mainidea behind parti
le �ltering. The three main se
tions as des
ribed in this
hapter are shown, namely, sele
tion and predi
tion of the parti
les, theresampling step and the observational update of the pdf.
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Figure 2.2: Parti
le �lter iteration



Chapter 3Feature ve
torsFeature ve
tors, su
h as 
olour, 
ontour, texture, edge and intensity, de-s
ribe an obje
t's appearan
e. Features are 
olle
ted in a state, and thestate is represented by a pdf. The pdf is known through its samples asdes
ribed in the previous 
hapter. Sampling measurements represented bythese feature are needed to update the parti
le �lter's posterior pdf. Sam-ples are 
ompared and weighted a

ording to these appearan
e similarities.This 
hapter �rst des
ribes the implementation of a 
olour- and texture-based feature ve
tor, while in Se
tions 3.5 and 3.6 des
ribe improvementsfor a robust tra
ker. The last se
tion illustrates the feature-based algorithm.3.1 Parti
les and FeaturesParti
les s are ve
tors si = [xi, yi, dxi, dyi,F], i = [1, .., N ], where (x, y) isthe parti
le's position, (dx, dy) are the velo
ity 
omponents, F the set ofone or more features and N is the number of samples. A parti
le's featuresare obtained (a sample) at (x, y). The feature is extra
ted from a smallerregion in the image whi
h may 
ontain the obje
t. If the target featureis known, the samples are 
ompared and a weight, dire
tly proportionalto their similarity, 
an be assigned to a parti
le. Parti
les 
an in general
ontain any number of features. 18
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tors 193.2 Colour-based featureGood features are essential if an obje
t is to be tra
ked su

essfully. Colourhistograms model an obje
t's 
olour distribution. These 
olour histogramshave the advantage that obje
ts 
an have non-rigid shapes or rotate inan environment and still be dete
table provided the 
olour distributiondes
ribing the obje
t remains the same.3.2.1 Colour modelColour image samples are obtained in a red-green-blue (RGB) representa-tion and 
onverted to a hue-saturation-value (HSV) 
olour spa
e. A HSVhistogram model allows that the intensity, V, 
an be handled separately.The advantage is that re�e
tions and shadows, mostly present in V spa
e,
an be handled more robustly. A 2D Hue-Saturation (HS) and a 1D inten-sity (V) histogram represent the obje
t's 
olour feature.Weighted histogramNon-rigid obje
ts rarely have a re
tangular shape. A kernel fun
tion is usedto weigh spe
i�
 positions in an image region di�erently. De�ning a kernelfun
tion for example as,
k(µ) =

{
1− µ2 if µ < 1

0 otherwise (3.2.1)where µ is a normalised distan
e of a pixel to its region's 
enter, weighs the
olour distribution of pixels on the edges less than in the 
enter. Kernelssu
h as epane
hnikov, quarti
 (biweight), tri
ube (triweight) or Gaussian
ould also be employed. In Figure 3.1, the 
hange in radius µ, illustrateshow the kernel (3.2.1) weighs the image regions. Assuming that the mostimportant information is 
ontained around the 
enter of an obje
t this fun
-tion will be adequate and allows for partial o

lusion at the edges. An imageregion, Ri, has a user de�ned height and width, respe
tively, Hx and Hy.
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tors 20The image region, Ri is 
entred at (xi + Hx

2
, yi + Hy

2
). Note that if the entireimage is used as a region Hx and Hy then des
ribes the entire image.

Figure 3.1: Des
ription of weighting fun
tion 
al
ulation: (left) input imagemask, (middle) distan
es from 
enter, (right) output weighting fun
tion.An image histogram is built using the image pat
h weighted pixel valuesof (3.2.1). Every pixel r = (x, y) in an image region Ri is binned in thehistogram
pi [b] = f

∑rεRi

k

(
‖r− d̂i‖

a

)

δ [I(r)− b] . (3.2.2)The distan
e from pixel (x, y) to regionRi 
enter is d̂i =
√

(1
2
Hx − x)2 + (1

2
Hy − y)2.S
aling of d̂i by the region 
ir
ular radius a =

√
1
4
(H2

x + H2
y ) ensures thatthe kernel fun
tion assigns the largest weights to pixels at the region's 
en-ter. Image I represents the weighted HS- and V-
omponents. The δ fun
-tion bins the pixels for intensities in image I, into bins b.The 2D HS-histogram is represented as an image as illustrated in Figure3.2. The HS-histogram image is divided into re
tangles of equal size thatrepresent the histogram bins. A high bin value in the image is proportionalto a high 
olour intensity (white) and a low bin value is bla
k. Representingthe 
olour model in histogram spa
e using (3.2.2), it is possible to 
ompare
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Figure 3.2: (left) input image, (middle) 2D Hue-Saturation histogram imageusing 50x50 bins, (right) V histogram image 50 binsfeature samples while tra
king. To update the re
ursive nature of the algo-rithm when new observations are introdu
ed a similarity measure is neededin the tra
king estimate, as explained below.Parti
le weight updateGiven an obje
t's 
olour feature histogram, the target appearan
e is known.The target appearan
e needs to be 
ompared with parti
le samples that rep-resent the observations zk to update p(xk|Zk). To 
ompare the target modeland the samples, the Bhatta
haryya similarity that measures the similarityof two dis
rete probability distributions, is used. Both the 2D HS-histogramand 1D V-histogram similarity values, ρhs and ρv respe
tively, are obtainedwhen a sample's histogram is 
ompared with the target's histogram modelusing the dis
rete Bhatta
haryya 
oe�
ient
ρ
[pi,q] =

B∑

b=1

√
pi [b] q [b], (3.2.3)where pi are the sample histograms and q is the model histogram, and

B the number of bins. Note that for the 
olour feature ve
tor Fi = pi.Both pi and q are seen as a pdf and normalised to sum to unity. Whenpi and q are exa
t, the similarity is maximized, ρ = 1. The more similarthe appearan
e between the target and model histograms, the higher thesimilarity measure ρ. The ρhs and ρv similarity values are 
ombined using
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tors 22alpha blending to weigh the histograms a

ording to their importan
e,
ρ = α× ρhs + (1− α)× ρv.To minimize lighting 
hanges the V-histogram is weighted less in the ex-periments and α = 0.7 is used. This value was suggested by [6℄ and testedby trail and error. A smaller value for alpha usually redu
es a

ura
y whiletra
king and a α = 0.5 usually fails to tra
k an obje
t su

essfuly.The Bhatta
haryya distan
e is 
al
ulated using

di =
√

1− ρ [pi,q]. (3.2.4)This distan
e is used when 
al
ulating the parti
le weights, w using a Gaus-sian. The weights of sample set s then isw =
1√
2πσ

e(− d
2

2σ2
). (3.2.5)where the varian
e σ is a user-de�ned variable. When the varian
e is low,the 
hoi
e of parti
les with high ρ are favoured when propagated to thenext step. The result of 
hoosing σ too small results in a degenera
y of thepdf.3.3 Histogram of oriented gradients featureHistogram of oriented gradients (HOG) was developed as a su

essful hu-man dete
tor [4℄. The idea is that gradients of an obje
t 
ontain shape andtexture information that 
an be used to distinguish it from other obje
ts.In this way, HOG 
aptures an obje
t's stru
ture and texture into a featureve
tor that 
an be used to dete
t humans in a s
ene. The goal is to be ableto use HOG features to tra
k an obje
t by 
omparing sample HOG featureswith a target appearan
e.
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tors 233.3.1 HOG model des
riptionAn image I is divided into uniformly spa
ed 
ell regions Ic. Cells mayoverlap and have a user de�ned size Cx, Cy. Cal
ulating the number of non-overlapping 
ells in an image region is then L = Hx

Cx
× Hy

Cy
, where Hx and

Hy are the dimension of image I. For ea
h 
ell Iic, i = [0, ..., L] a histogramof gradients is 
al
ulated. Gradients are dete
ted by 
onvolving with a�lter mask [−1 01]. When dealing with 
olour images the gradients are
al
ulated for ea
h 
olour plane. The gradients are redu
ed to a singleplane by sele
ting the pixel gradient value with the largest magnitude fromea
h plane. Ea
h 
ell bins the gradient values weighted a

ording to theirmagnitude. Combined, these 
ells form the HOG model's feature ve
tor.The pro
ess is illustrated for a single 
ell in the following example and theresults are shown in Figures 3.4 and 3.5 for an entire image.3.3.2 HOG illustrative exampleA 
he
kered board matrix fun
tion
f(x, y) =




1 0 1

0 1 0

1 0 1



 (3.3.1)represented by image
,is 
onstru
ted. Di�erentiating f(x, y) is done in pra
tise by 
onvolutionwith the kernel fun
tions,

Kx =
[
−1 0 1

] (3.3.2)
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Ky =




−1

0

1



 . (3.3.3)For 
larity, in this example, we di�erentiate f(x, y) using,
∂f(x, y)

∂x
≈ f(x + 1, y)− f(x− 1, y)

2
.and

∂f(x, y)

∂y
≈ f(x, y + 1)− f(x, y − 1)

2
.Boundary 
ases are handled by padding the edges with the boundary values.Applying the �lter above to f(x, y) we respe
tively obtain




−1

2
0 1

2
1
2

0 −1
2

−1
2

0 1
2



in the x-dire
tion and in the y-dire
tion



−1

2
1
2
−1

2

0 0 0
1
2
−1

2
1
2



 .Viewing the 
omponents ∂f

∂x
,∂f

∂y
in polar 
oordinates a magnitude shown inTable 3.1

|∇f | =

√
∂f

∂x

2

+
∂f

∂y

2and angle shown in Table 3.2
θ = ar
tan∇fy

∇fxis 
al
ulated, shown here in degrees. A histogram of these 
al
ulatedgradients, weighted by their magnitude, is 
onstru
ted as shown in Figure3.3. Ea
h of these bins 
an also be represented as a ve
tor with angle equal
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


1√
2

1
2

1√
2

1
2

0 1
2

1√
2

1
2

1√
2



Table 3.1: Magnitude values and 
orresponding image representation



45 270 135

180 0 0
315 90 225



Table 3.2: Angle values and 
orresponding image representationto the bin index and magnitude dire
tly related to its bin value. Interestingresults are observed when 
al
ulating a HOG for shapes with uniform 
olourand no texture, su
h as a �lled re
tangle or 
ir
le. Gradient informationavailable only on the edges of these shapes 
reates a double edge (twoneighbouring pixels 
ontain gradient and magnitude information) imagethat results from the 
onvolution using (3.3.2) and (3.3.3).

Figure 3.3: Example HOG des
riptor for image f(x, y) using 3 bins. Ea
hmagnitude and 
orresponding angle is shown in every bin.Figure 3.5 shows the HOG des
riptor in ve
tor form, for the input imagein Figure 3.4 at di�erent 
ell size sele
tions. When the 
ell size is small, 2×2pixels, detail is high and the edge information is 
learly noti
eable on 
ells
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Figure 3.4: Example HOG feature steps for entire input image on left, (middle)magnitude image, (right) angle imagewith dense gradient information. Note that by sele
ting a small 
ell sizesu
h as 2 × 2 allows that the feature 
an be 
ompared at di�erent s
alesby 
ombining neighbouring 
ells into larger 
ells. For example, 10 × 10
ells 
an be 
ombined from 5 groups of 2 × 2 
ells without re
al
ulationfrom the sour
e image. Histogram bins 
an also be redu
ed by summingneighbouring bins. This less a

urate representation might be ne
essary to
al
ulate a feature more qui
kly to maintain real-time speeds. It is alsoimportant to note that ea
h 
ell ve
tor is asso
iated with a position in theimage.Note that the normalised HOG des
riptor 
an be interpreted as a pdf withthe following useful properties. In this normalised form the HOG is s
aleinvariant and less dependent on the magnitude of the gradients. Spe
ial
are should be taken to normalise the pdf for a uniform region where nogradients are present in the region (all histogram bins equal zero). Thisis more likely to happen with smaller 
ell sizes. This situation is handledseparately to ensure that similarity 
omparison between su
h features iszero.Also, note that the HOG des
riptor as des
ribed is not rotationally in-variant. This is explained by the fa
t that a rotated obje
t's edge gradientvalues are binned into di�erent histogram bins and usually not in the same
ell. Note that the HOG 
ells prevent that rotation 
an be dete
ted by
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[a℄ [b℄

[
℄Figure 3.5: HOG features at di�erent 
ell sizes, using 36 bin histograms. Theimages show ea
h 
ell's HOG as ve
tors graphi
ally (a) 
ell sizes at 2x2, numberof histograms 60x80, (b) 
ell sizes at 6x8, number of histograms 20x20, (
) 
ellsizes at 12x16, number of histograms 10x10
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tors 28a linear shift of ea
h histogram. Comparing two HOG des
riptors qui
klybe
omes a 
hallenging problem. This observation is explained in the nextse
tion.3.3.3 Similarity measure between HOG featuresComparison between two HOG ve
tors v1,v2 is done in a similar way tothat of the 
olour-based feature ve
tor. Representing ea
h HOG ve
tor 
ellIic as a probability distribution, the Bhatta
haryya similarity measure 
anbe used. The 
ell similarity measures are 
ombined in a single similarityvalue by taking the average over the similarity measures,
ρ =

1

L

L∑

i=1

B∑

b=1

√
vi
1[b]v

i
2[b], (3.3.4)where b is the gradient histogram bins, L is the number of 
ells and B is thenumber of bins. A 
omparison between the trained HOGmodel and parti
lesample HOG's allows the use of the similarity value, ρ to update the parti
leweights using (3.2.4) and (3.2.5). In pra
ti
e, however, this approa
h failsto be an a

urate measure to tra
k an obje
t and is dis
ussed in the nextse
tion.3.3.3.1 HOG similarity used in tra
kingDividing an image into 
ells allows that 
hanges in small parts of the imagedo not e�e
t the entire feature. This is an advantage when using HOGfor dete
tion as presented in [4℄. When viewed in a parti
le �lter tra
king
ontext, two 
hallenging problems arise. Firstly, sampling at predi
ted lo
a-tions does not, in general, sample at exa
tly the 
orre
t position. Considerthe situation where a sample is taken just left of the a
tual obje
t lo
ation.Then ea
h of the 
ell histograms 
ontain gradient information that are un-aligned to the right of the model histogram, resulting in a low similarity.Se
ondly, histograms are binned using an image's gradient angles. Cell his-tograms are not rotational invariant in su
h a situation. Again, samples
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t rotation. This is not easy to deal withif multiple 
ells are used. Thus, instead of using multiple 
ells, we use asingle 
ell for ea
h region.Using the tra
ker predi
tions of possible obje
t lo
ation the single 
ellHOG is used to �nd a similarity value. The advantage of this is three fold.Firstly, samples at non-exa
t predi
ted lo
ations that 
ontains only part ofthe target might still have a large similarity. Se
ondly, obje
t rotation 
aneasily be handled by a linear shift. And thirdly, a mu
h faster implemen-tation is possible assuming that obje
t rotation between frames is small.Then 
orrelation redu
es to shifting the histogram bins one bin positionleft or right respe
tively. For example, using 36 bins, an obje
t 
an rotate10 degrees without a�e
ting the similarity value.3.3.3.2 HOG similarity 
omparisonAn experiment is done to determine how similar obje
ts appear using thesingle histogram HOG and the general HOG with di�erent 
ell sizes. Asubset of the ETH-80 dataset is used [10℄ to test how well HOG des
riptors
ompare obje
ts at di�erent bin and 
ell sizes. Figures 3.7 shows the e�e
tsof bin and 
ell sele
tion when 
omparing obje
ts in Figures 3.6 
entred inan image.A pear image is 
hosen as a model in Figures 3.7 (a) and 
ompared withother pear images. Ea
h of the pear images is then 
ompared with a tomatoimage and the results are shown in Figure 3.7 (b). Again the test is repeatedwhere a 
up image is 
ompared with ea
h pear image. The similarity resultsfor a range of di�erent bin sizes are shown in Figure 3.7 (c).For ea
h of these tests the single ve
tor (1 
ell) HOG results are shown inFigure 3.7 (d). These results show a 5% better similarity when 
omparingpears with pears than 
omparing tomatoes and pears. And a 10% bettersimilarity is obtained when 
omparing a 
up with pears. Also, note that
hanging the number of bins does not e�e
t these results.
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ells is in
reased. A single 
ell representation a
hieves best resultsfor all bin sizes tested. Tra
king using a single 
ell HOG ve
tor improvesperforman
e and an experiment is done in Se
tion 3.9. In the experimentit is shown that a single 
ell HOG feature is more robust, allowing for smalltranslation and rotation errors from tra
ker predi
tions.

Figure 3.6: Model images used to obtain similarity results of Figure 3.7.
3.4 Motion modelParti
les are propagated to the next step a

ording to a dynami
 motionmodel. A 
onstant velo
ity model is used without a

eleration. A

elera-tion, handled by noise, is not 
onsidered sin
e the state spa
e be
omes toohigh dimensional and requires far too many samples, whi
h is 
omputation-ally expensive. Parti
les are propagated usingxk = Axk−1 +wk−1 (3.4.1)where A de�nes deterministi
 parameters, wk−1 the sto
hasti
 and k thetime. We remind the reader that xk is the state spa
e representing thedynami
s. Using (3.4.1) to propagate a parti
le using the motion model its
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[a℄

[b℄

[
℄

[d℄Figure 3.7: HOG features 
omparison at di�erent bin and 
ell sizes. (a) Com-parison results of image set pears. (b) Comparison results of 
omparing a tomatowith pears. (
) Comparison results of a 
up with pears. (d) Comparing resultsof 
up, tomato and pears using only one 
ell.
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(x, y) 
oordinate is updated using velo
ity v+ k,

[ xkvk

]

= A

[ xk−1vk−1

]

+wk−1. (3.4.2)The value of A is user de�ned to be either a random position model,
A =

[
1 0

0 0

]
, (3.4.3)or a 
onstant velo
ity model, also used in [6℄

A =

[
1 1

0 1

]

. (3.4.4)3.5 Feature adaptivityChanges in lighting and shape of the obje
t, result in a bad representationof the histogram des
ribing the obje
t. Appearan
e 
hanges of an obje
t
an be handled by adapting the model to in
rease tra
king robustness.Adaptivity as implemented and tested here is presented in [6℄, [8℄, [15℄.When tra
king an obje
t in real-time, adapting the target model needs tobe done automati
ally.The model qk is adapted using,
qk = α× sj

k + (1− α)× qk−1 (3.5.1)where sj
k is the most likely obje
t position at time k. Ea
h target bin isblended mixing α ∈ {0, 1} with sample j, having the highest appearan
esimilarity of all the samples. This is done for both the HS- and V-histogram
olour feature and HOG feature. The 
hoi
e of α is dire
tly related to the
on�den
e measure des
ribed in the following se
tions.
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tors 33Sele
tive adaption is ne
essary to avoid adapting the target featuremodels in 
ases where the tra
ked obje
t is lost. If the loss is undete
ted, themodels will be in
orre
tly updated and be
ome 
orrupted. This is 
learlyan undesirable e�e
t. Automati
 adaption is possible using a 
on�den
emeasure to only adapt if the system has a high 
on�den
e that the obje
tis being tra
ked. A slow adaption rate handles o

lusion better sin
e thetarget model 
hanges less over time. Fast appearan
e 
hanges are handledwhen the rate of adaption is qui
k. Note that the rate at whi
h adaption isapplied a�e
ts the situations that 
an be handled by the tra
ker. Considerthe situation when the tra
ked obje
t moves behind a stru
ture and theadaption is fast. While the obje
t is lost from view the target model isadapted in
orre
tly using the best predi
ted lo
ation. When the obje
treappears it might not be tra
ked 
orre
tly due to a bad representation ofthe target model.In 
ases where the obje
t is being tra
ked with high pre
ision, the tra
kingpdf has a high peak and most samples are grouped together. On the otherhand a low 
ertainty of obje
t position is shown by a uniform pdf. In [6℄ the
on�den
e is measured dire
tly from the tra
king pdf. The 
on�den
e mea-sure is des
ribed by the degree of unimodality of the resulting pdf p(x | Z).A low 
on�den
e is measured when the pdf has a very uniform distribution.The parti
le weights approximate the 
on�den
e of the tra
ked pdf. This
omputationally simple 
on�den
e measure works well. However, failure
an o

ur. When the ba
kground region's 
olours or textures are similar tothe target model or the size of the parti
le's image pat
hes are 
onsiderablysmaller than the region being tra
ked, whi
h might have a uniform 
olour,
on�den
e is low. In both 
ases the pdf be
omes more uniform, and the
on�den
e measure in
orre
tly results in a tra
king loss.Experiments using di�erent values for σ in (3.2.5), illustrated that the
on�den
e measure is related to the 
hoi
e of σ. Note that σ determines thevarian
e in the position of parti
les. A 
on�den
e value is obtained from a
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tors 34threshold de�ned by
Sσ < K(

1

σ
),where σ is the user de�ned value from (3.2.5), K a normalisation and Sσthe standard deviation of the tra
king pdf. As mentioned previously the
hoi
e of alpha is dire
tly related to the 
on�den
e measure. Sin
e the
on�den
e value 
an be 
al
ulated during run-time it is used as the valuefor α in (3.5.1). It is now 
lear that the target model is only adapted whenthe 
on�den
e is high.The next se
tion des
ribes how to re
over from tra
king failure. Bothmethods des
ribed above are used to 
al
ulate a 
on�den
e when testingwhether to adapt the histogram model. These methods 
an also be used todetermine whether an obje
t is being tra
ked 
orre
tly.3.6 Finding an obje
t and dete
ting a lossAssume that the obje
t that will be tra
ked is known. Then its features,available as a pdf, are also known. Finding the obje
t's position in an imageis then possible.Using the prior knowledge of the target histogram, a sear
h for the obje
tin the �rst frame 
an be done. The Bhatta
haryya similaritymeasure (3.2.3)is used to 
ompare the target model at every image region. These regionswill have a low similarity when the obje
t is not present and a high similaritywhen the obje
t appears in the frames. A mean value µ and a standarddeviation σ of the similarities in all the regions are 
al
ulated

µ =
1

M

M∑

i=0

ρ [sRi
, q] , (3.6.1)

σ2 =
1

M

M∑

i=0

(ρ [sRi
, q)]− µ)2, (3.6.2)
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tors 35where sRi
are samples 
al
ulated at ea
h of the M regions in the image.Assuming a Gaussian distribution1 an appearan
e threshold is de�ned, in[14℄,

ρ [sRi
, q] > µ + 2σ. (3.6.3)The appearan
e threshold indi
ates a 95 % 
on�den
e that the region Ri isnot part of the ba
kground. The parti
le �lter is initialised in the region ifmore than a user-de�ned fra
tion of the sample set s meets the appearan
ethreshold. The same rule is applied to dete
t when the tra
ker loses the ob-je
t. When the obje
t leaves the frame or be
omes o

luded for a 
ouple offrames, 
ondition (3.6.3) fails and the initialisation phase is entered again.3.7 Perspe
tive adaptionAdjusting the region size a

ording to the obje
t's per
eived size is ne
essaryto robustly tra
k obje
ts in a 3D environment. An obje
t moving away fromthe 
amera, 
hanges size relative to the 
amera's perspe
tive. Dete
tingwhether an obje
t is moving 
loser or away from the 
amera is done bysampling at di�erent region sizes. The region's size is sampled at ±2% ofthe region size (Hx, Hy) at the 
urrent best predi
ted lo
ation and 
omparedto the target model. If a 
omparison is found to have a higher similarityto the feature models, the region size is adjusted. Note that features su
has 
olour and HOG are s
ale invariant so an adjustment of the region sizedoes not a�e
t the features. Also, it is useful to only adapt when there is asigni�
ant di�eren
e in the similarity value to minimise 
omputation.This adaption is not dire
tly related to the 
on�den
e measure, but re-sults in a higher 
on�den
e if the obje
t's size is sampled at 
orre
t regionsizes to avoid in
luding ba
kground whi
h leads to bad feature model rep-resentations.1The empiri
al rule states that for a normal distribution assumption, about 68% ofthe values are within 1 standard deviation of the mean, about 95% of the values arewithin two standard deviations and about 99.7% lie within 3 standard deviations.
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tors 363.8 AlgorithmImplementation of Algorithm 3 follows the same steps as the basi
 parti
le�lter from Algorithm 1 using the resampling step des
ribed in Se
tion 2.5.2.The spe
ialisation of the feature-based steps are des
ribed using the modelsand rules des
ribed throughout this 
hapter.#Initialization step;1 qk = get observation model at time, k=0;2 while true do3
µ, σ from eq 3.6.1 and 3.6.2;4 f = N∑

i=0

ρ
[pi

k,qk

]
> µ + 2σ;5 if f > (0.1)N then6

objectfound = true;7 end8 #Measurement step;9 for i← 1 to N do10
si

k−1 ← get particle samples, eq. 3.2.2;11
πi

k−1 ← assign particle weight, eq. 3.2.5;12 end13
normalize πk−1;14 # Robustness improvements;15 //
on�den
e measure;16 if objectfoundandconfidence > Threshold then17

Adapt_sample_size();18 qk+1 = adapt histogram(pk−1,qk) , eq. 3.5.1;19 end20
πk ← resample pdf πk−1 using algorithm2;21 # Predi
tion step;22 sk ← apply motion model, eq 3.4.1;23 end24 Algorithm 3: Feature-based parti
le �lter algorithm
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tors 373.9 Feature tra
king experimentImplementation of Algorithm 3 is tested using ea
h of the feature types;
olour, texture and a 
ombination of both. In the latter 
ase, a user de�nedweighting value is used to 
ombine the features using alpha blending. Forgenerality, an arbitrary number of features 
an be handled in this manner.Experiment 1 A simulated test is done to a

omplish the following;� Colour obje
t tra
king using a HS-,V- histogram des
riptor� Texture obje
t tra
king using a HOG-histogram des
riptor� Combined feature tra
king� Tra
king through 
lutter/noisy ba
kground� Corre
t tra
king with partial o

lusion� Corre
t tra
king with full o

lusionAs shown in Figure 3.8 the simulated test pla
es four simple rigid shapes,two triangles and two re
tangles, ea
h following a 
ir
ular path shown inFigure 3.8. All obje
ts have 
onstant movement and maintain their 
ir
ularmotion in their own dire
tion. Ea
h of the re
tangle and triangle 
olourshapes interse
t and overlap with other shapes with the same 
olour.The white re
tangle is the obje
t being tra
ked. Figure 3.8 shows there
tangles at interesting positions as well as the parti
les X,Y movementalong the 
ir
ular path. The sequen
e runs for 620 frames. The parti
le'sposition and weight are shown as red 
ir
les on the image where the size ofthe 
ir
le is dire
tly related to the weight.Colour obje
t tra
king It is 
lear that the 
olour-based tra
king is likelyto fail at some point due to ba
kground 
olours and other shapes with thesame 
olour. The parti
le movement in the Y-dire
tion Figure 3.8 (c) ofthis sequen
e shows that at frame 80 the dire
tion 
hanges as the tra
ker
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[a℄ [b℄ [
℄
[d℄ [e℄ [f℄
[g℄ [h℄ [i℄Figure 3.8: (a,b,
) Colour tra
king frame 80, (d,e,f) HOG tra
king frame 310,(g,h,i) feature 
ombined frame 250. (a,d,g) Tra
ked parti
les X-movement, (
,f,i)tra
ked parti
les Y-movement. 50 parti
les are used with a zero velo
ity motionmodel.
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onfuses obje
ts moving in opposite dire
tions. The failure is the result ofa higher similarity value for a white triangle than the white square whenthe two obje
ts 
ross (a partial o

lusion).HOG obje
t tra
king The HOG tra
ker fails at frame 310 when thetwo re
tangle shapes with 
olours green and white overlap (full o

lusion).From Figures 3.8 (d, f) we see the sudden 
hange of dire
tion in parti
lemovement at frame 310. From Figure 3.8 (e) it 
an be seen that the parti
lesare distributed a
ross both re
tangles ea
h having a high similarity valueas they move past ea
h other.Combined obje
t tra
king When features are 
ombined, it is 
lear fromthe X-and Y-dire
tion graphs, Figures 3.8 (g, i), that the parti
les tra
k the
orre
t obje
t throughout the sequen
e su

essfully through partial o

lu-sion (re
tangle moves under triangle) and full o

lusion (white re
tanglemoves under green re
tangle).Experiment 2 The goal of this experiment is to illustrate HOG featureadaption to a

urately tra
k an obje
t rotating as des
ribed in Se
tion3.5. As des
ribed previously, a single 
ell HOG feature is not rotationallyinvariant. However, obje
t rotation 
an be dete
ted by a linear shift ofthe histogram bins. This experiment tra
ks a rotating square obje
t. Theobje
t is rotating around its 
enter while it is following a 
ir
ular path.The HOG feature is represented as a ve
tor where the angle des
ribes thehistogram bin and the bin value the ve
tor's magnitude. In Figure 3.9 theHOG feature is shown in ea
h of the frames at the bottom right 
orner.Adapting the feature model is only done when the tra
king 
on�den
e ishigh. A low tra
king 
on�den
e is measured when only HOG is used. Thereason for this is that the noisy ba
kground is similar to the obje
t. Theresult is that adaption to the rotating obje
t is not done. Tra
king failswhen the obje
t has rotated more than the linear shift allows. To in
reasethe 
on�den
e the 
olour feature is also used. From the parti
les X and
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Figure 3.9: Tra
king experiment 2: HOG adaption. Tra
king a square over 400frames. Sele
ted frames 1,50,100,200,300,400, shown. (Bottom left) X-position ofparti
les.(Bottom right) Y-position of parti
les
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Y positions it is 
lear that tra
king using the HOG adaption is su

essfulwhen the 
olour feature is used to in
rease 
on�den
e. When the 
on�den
eis high, noti
e how the noisy edges in the ba
kground also be
ome part ofthe model, seen as ve
tors at right angles. Feature adaption is su

essful,and the rotating obje
t is tra
ked a

urately.3.10 SummaryBoth 
olour and texture information are modelled as features that 
an beused to des
ribe an obje
t. The histogram methods used allow that adapt-ing to obje
ts undergoing small shape, rotation, size or 
olour 
hanges 
anbe handled e�e
tively. These feature are 
learly useful for tra
king pur-poses. Also, 
ombining features signi�
antly improve results. It is alsoimportant to note that the pro
ess runs real-time when the region sizes aresmall. Performan
e is mostly a�e
ted by the number of parti
les and theimage region sizes that need to be pro
essed to extra
t features.



Chapter 4System implementationRobustly tra
king obje
ts relies heavily on a

urate features. The feature-based parti
le �lter is most e�e
tive when the obje
t is rigid, 
an onlyrotate in a 2D-plane and has a 
onstant 
olour and texture histograms. Theself-adapting histogram 
omponents and 
on�den
e measure are added tohandle realisti
 tra
king s
enarios more e�e
tively. The next 
hallenge isto obtain prior knowledge of the obje
t's features and dynami
 informationabout its movement. This 
hapter des
ribes these 
hallenges and presentsan approa
h to integrate automati
 feature extra
tion of moving obje
tsand feature-based parti
le �ltering inside a system.4.1 System design and goalsAutomati
 obje
t tra
king relies heavily on robust obje
t dete
tion and, inour 
ase, initialisation of motion and features. These di�erent 
hallengesare implemented in self-
ontained modules that need to be integrated ina system. A modular approa
h des
ribed in [7℄ is used where a semanti
ladder, built from feature extra
tion to a
tion re
ognition, des
ribes the
hallenges as well as the system implementation. This intuitive design ap-proa
h allows for models that 
an be 
reated to handle a spe
i�
 problemwhere ea
h step up the ladder relies on the previous step. In this way thesystem is dynami
 in that all 
omponents 
an be repla
ed as improvements42
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hnology and algorithms be
ome available. Using this high level designmethodology an automati
 tra
king system has been developed.Ea
h of the following se
tions are modules that, when 
ombined, handlethe system from initialisation to the tra
king of an obje
t. The design andimplementation of feature models from Chapter 3 are shown in Figure 4.1.Note that at ea
h level the design is modular and easily extendable.

Figure 4.1: Feature-based tra
king modulesAn overview of the system modules is shown in Figure 4.2 and des
ribedin the following se
tions. Note that the fo
us of these se
tions are to dete
tan obje
t of interest in a s
ene. Dete
tion 
an also be used to tra
k obje
tsby means of repeated dete
tion in every frame. This is very time 
onsumingand it is 
omputationally mu
h qui
ker to tra
k an obje
t using predi
tionmethods su
h as the parti
le �lter. Real-time tra
king is 
onsidered to
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ond (fps). Although, speeds of more than 10fps is a
hieved when using a single module. Most web 
ameras 
an performtheoreti
ally up to 30 fps, but realisti
ally speeds of 5 to 20 frames is normal.

Figure 4.2: System module design
4.2 Ba
kground modellingA ba
kground region 
ontains obje
ts that stay in the same pla
e or boundedregion over time, while foreground regions or regions of interest move aroundmore freely. Information about a s
ene's ba
kground is useful to minimisenoise during tra
king or when extra
ting features. A ba
kground model
an be de�ned as a referen
e stru
ture that des
ribes the ba
kground of as
ene. The simplest stru
ture being a time-averaged referen
e image where
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on
urrent frames are subtra
ted. Con
urrent subtra
tion of frames resultsin very noisy images that need to be 
leaned, usually using thresholds. Ob-taining an a

urate ba
kground model using these 
omputationally simplealgorithms requires a training period within a 
ontrolled environment absentfrom movement, foreground obje
ts or illumination 
hanges. Any 
hangesto the s
ene requires a re-estimation of the ba
kground. This type of solu-tion 
onsequently requires that the ba
kground be updated 
onstantly.Ba
kground modelling is a separate �eld of resear
h and two populartypes of ba
kground modelling te
hniques are investigated in this se
tionand 
ompared with a time-averaging method. A foreground obje
t dete
tor[11℄ and an adaptive ba
kground mixture model [9℄ are investigated. Thesemethods are 
hosen based on their ability to dynami
ally model 
omplexs
enes and real-time exe
ution. Both FGD and the ba
kground mixturemodel algorithms are implemented in the OpenCV library.4.2.1 Foreground Obje
t Dete
tion (FGD)In a 
omplex s
ene, possibly 
ontaining dynami
 moving obje
ts su
h astrees, ba
kground pixels 
an have multiple values. FGD integrates multiplefeatures where most other ba
kground modelling te
hniques only use onetype of feature to model stati
 and dynami
 parts. The FGD's fo
us is tomodel di�erent parts of the ba
kground using di�erent types of features.Feature models for both stati
 and dynami
 ba
kground pixels are used.Extra
ting foreground obje
ts from a 
omplex s
ene is done using a Bayesde
ision rule whi
h has been extended to deal with general features. Itis then possible to 
lassify both ba
kground and foreground pixels usingmultiple features.Classi�
ation rule A 
lassi�
ation rule is formulated in general to 
las-sify a pixel as foreground or ba
kground. Following the notation in [11℄, letvk be a feature at time k lo
ated at position r = (x, y) where r is possibly
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kground or a foreground pixel. Using Bayes theorem, the posteriorprobability of vk of a ba
kground pixel b or foreground pixel f is
P (C | vk, r) =

P (vk | C, r)P (C | r)
P (vk | r) , (4.2.1)where C = f or b. Classi�
ation of a pixel as foreground using Bayes ruleis given by

P (f | vk, r) > P (b | vk, r). (4.2.2)To 
lassify a pixel at run-time as part of the foreground or ba
kground theprobabilities, P (b | vk, r), P (vk | r) and P (vk | b, r) need to be trained. Atable stru
ture is used to store these statisti
s for every pixel in the image.Table of feature statisti
s In [11℄ a histogram of feature ve
tors is usedto approximate P (vk | r) and P (vk | b, r) whi
h is not known in general.A ba
kground pixel only has a limited number of values, they are 
onsid-ered to only be 
on
entrated in a small subspa
e of the feature histogram.This indi
ates that with a good feature sele
tion a ba
kground pixel 
ane�e
tively be 
overed by a small number of histogram bins. On the otherhand, foreground pixel values will not be as 
on
entrated in these histogrambins and will in general be spread more widely. Then we let P (vi
k | r),

i = 1, ..., N be the �rst N bins from the feature histogram des
ribing themultiple ba
kground values.A table of feature statisti
s is 
reated to store the di�erent feature his-tograms. The table Sr,kvk
of feature statisti
s maintains three 
omponentsfor every pixel in an image,Sr,k,ivk

=






pk,i
v = P (vi

k | r)
pk,i

v,b = P (vi
k | b, r)vi

k = [ai
1, ..., a

i
n]

T

,where ai
j are the di�erent states that a feature 
an have. For a featurevk the table maintains the most signi�
ant portion, where there is the
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on
entration of pixel values, of the feature histogram. The tableis maintained by ea
h update of the ba
kground model. The probability to
lassify a pixel as foreground, P (b | vk, r), P (vk | r) and P (vk | b, r), areknown for ea
h pixel from the feature table statisti
s.Feature ve
tors For a pixel 
lassi�ed as part of a stati
 ba
kground the
olour is 
hosen as a feature to be stored in the table and, vk is substitutedin (4.2.1) by 
k = [rk gk bk]
T . Stati
 ba
kgrounds where pixel values do not
hange over time is simple to handle. The feature 
k is 
hosen if the �rst

N entries in the feature table do not vary.A moving ba
kground's pixel values 
hange between frames. The 
olour
o-o

urren
e of the 
hange in pixel values between frames are 
hosen as afeature ve
tor and again, vk is substituted in (4.2.1) by ok = [rk−1 gk−1 bk−1

rk gk bk]
T . Sele
ting the 
olour 
o-o

urren
e feature is based on the ob-servation that, for a moving ba
kground, the pixel values varies greatly,and always at the same lo
ation in an image. Both states Sr,k,i
k

and Sr,k,iokare stored for every pixel to represent the multiple states. Representing theba
kground using multiple states allows for alternating pixel values withoutnoisy interferen
e with foreground obje
ts. In [11℄ the 
omplete algorithmis dis
ussed in detail.4.2.2 Mixture of Gaussian ba
kground modellingThe adaptive mixture of Gaussian (MOG) models the variation in pixelvalues using a Gaussian mixture model (GMM) 
onsisting of up to K Gaus-sians, where 3 ≤ K ≤ 5. Ea
h pixel in an image is modelled by a MOGdistributions. Di�erent Gaussian represents di�erent 
olours. Note that wehave mentioned that ba
kground pixels are present in a s
ene for longerperiods. Then, a weight w is applied to ea
h Gaussian that is proportionalto the time those 
olours stay in a s
ene. The idea is that a pixel is drawnfrom a GMM allowing for multi-modal distributions of pixel values. The�rst N most frequent o

urren
es of a spe
i�
 
olour is 
onsidered to rep-
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kground model. The adaptive ba
kground mixture model isdeveloped in [9℄ and builds on previous work done by Grimson and Stauf-fer [19℄. This method improves the update speed (learning time) of theba
kground model.MOG Model The K Gaussian's at pixel r = (x, y) models the probabil-ity of the 
olour values 
k = [rk gk bk]
T at time k and we write

p(
k) =

K∑

i=1

wiη (
k | µi,Σi) , (4.2.3)
K∑

i=0

wi = 1. (4.2.4)as a 1 dimensional GMM. Then wi is the weight of the ith Gaussian and
η (
k | µi,Σi) is its normal distribution. Training is needed to �nd wi, µi,Σiand the standard EM algorithms are used. The method is improved uponin [9℄ to speed up the learning time. A two step pro
ess is used in theoptimised equations. Firstly, estimation of the mixture model by the EMalgorithms are performed. After this initial estimate, the updating steponly 
onsiders the last L frames allowing 
urrent 
hanges in the s
ene tohave a higher priority. This improved adaptive MOG adapts qui
ker andhas a learning time mu
h shorter than [19℄.4.3 Motion tra
kingMotion tra
king pi
ks up 
onstant motion based on repeated dete
tion inevery frame. Motion dete
tion is used to �nd regions of interest whi
hare de�ned as regions whi
h are 
onsistently present in 
onse
utive framesto minimise noise. Sin
e noise is 
onsidered random it is assumed not tohave a 
onstant motion and is only present in a sequen
e of frames forshort periods. S
enes 
omposed of obje
ts in 
onstant movement in frontof stati
 ba
kgrounds are assumed. Note that motion tra
king refers to a



Chapter 4. System implementation 49simple method for dete
ting obje
ts in a s
ene and the tra
king only refersto the mat
hing (keeping tra
k) of these regions between frames.4.3.1 Motion Dete
tionMotion dete
tion is the �rst step in pro
essing input frames. Conne
ted
omponents (blobs) in image M are segmented into re
tangular regions.From experiments it is found that many re
tangle regions of the same mov-ing obje
t overlap. These overlapping re
tangles are 
ombined to form alarger re
tangular region to 
ompletely bound the obje
t. Filtering out ofsmall regions is done after overlapping re
tangular regions have been 
om-bined. These regions are pro
essed as des
ribed in the following se
tion.Motion dete
tion builds up a motion image that 
aptures pixels that
hange between frames. Motion is dete
ted by maintaining a sequen
e ofthe last 
onse
utive frames in gray s
ale. A silhouette image, S, is 
al
ulatedby the absolute di�eren
e between frame at time k and its pre
eding frameat time k − 1, and then thresholded to remove small and isolated noisyregions. The motion image M is 
onstru
ted and maintained by updating
M using S,

M(x, y) =






k, if S(x, y) 6= 0,
0, if S(x, y)=0 and M(x, y)< k-D,
M(x, y), otherwise,where D is the duration that pixels are allowed to be present in a s
ene.

D is a user-de�ned 
onstant value in millise
onds. A large value for Din
reases the time a pixel is present in M and usually results in a delayedshadow or ghost e�e
t. A small value of D de
reases the likelihood thatslow motion is dete
ted.
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king implementationRegions dete
ted in the motion algorithm are pro
essed and tra
ked. Notall of these regions are 
onsistent in their motion over a time period andneed to be dis
arded. The pro
ess is divided into logi
al se
tions and isdes
ribed in ea
h of the following steps: dete
ting tentative regions, 
on-�rming a tentative region and preparing a region for initialisation for featureextra
tion in the parti
le �lter.Step 1: Tentatives Motion tra
king keeps tra
k of regions that havebeen dete
ted. Newly dete
ted regions, blobs of motion pixels group to-gether, are labelled as tentative when they �rst appear. Mat
hing of theseregions to previously dete
ted regions is done in a nearest-neighbour fash-ion. Only regions within the tentative region's neighbourhood are tested fora mat
h. Regions are mat
hed by their width and breadth. These regionsare allowed to 
hange in size in 
onse
utive frames. If there is no mat
hto previous regions, the new region is given a timestamp and linked to atentative list of regions.Step 2: Con�rmed Continuous dete
ted tentative regions are upgradedto a 
on�rmed region if motion is present for a minimum time limit. Anyregion from the tentative or 
on�rmed list is removed if they are not de-te
ted within that minimum time limit. This step has the advantage thatba
kground noise is qui
kly removed before the region is 
on�rmed. Also,any 
on�rmed regions are removed if in 
onse
utive frames there is no newdete
ted region that mat
hes the size and velo
ity in that region's 
loseproximity.Step 3: Initialisation Ea
h region in this tra
ker has a history ve
torh des
ribing its positions (x, y), width and height (w, h) and speed 
ompo-nents (vx, vy), su
h that h = (x, y, w, h, vx, vy) over a period of sequentialframes. These parameters are used when 
on�rmed regions are passed tothe parti
le �lter to automati
ally initialise the dynami
s and extra
t fea-tures.
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king resultsThis se
tion dis
usses the results of the motion tra
king method des
ribedabove. A video sequen
e is 
hosen to illustrate the basi
 tra
ker and itsshort
omings. In Figure 4.3 a sequen
e of frames is shown. Tra
ked regionswhi
h are 
on�rmed, are shown in yellow, while tentative regions are green.A number label inside ea
h re
tangle is added to ea
h tra
ked region foridenti�
ation.From frame 380 shown in Figure 4.3 it 
an be seen that 3 regions are
orre
tly labelled. A 
ar stopping at the stop sign is lost (no motion regionsare dete
ted) in frame 430 and tra
ked again when motion resumes in frame530. Two regions interse
t in frame 680 with mat
hing area sizes. Motiondete
tion 
reates a noisy region shown in green that qui
kly disappearsagain. The two interse
ted regions are still separate in frame 730, but theirlabels have swit
hed.Motion dete
tion has another unwanted property due to its 
onstru
tion.Any fast moving obje
t in a frame 
reates a ghost e�e
t. The e�e
t is theresult of pixels that are present in the motion image for a �xed amountof time due to the frame bu�er used. This unwanted e�e
t 
auses a mu
hlarger region of interest than the a
tual obje
t size. A 
ombination of thefast motion tra
ker used with a ba
kground modelling te
hnique 
reatesan a

urate region of interest. The ba
kground model is only updatedwhen new tentative regions are 
reated by the motion dete
tion pro
ess tomaintain real-time speeds. These more a

urate estimated region sizes areused when initialising the parti
le �lter.4.3.4 In summaryFrom the results it is 
lear that in
onsistent labelling is problemati
. Themotion tra
ker does, however, allow a means of �nding interesting obje
tsto tra
k. Any 
onstant movement in a sequen
e of frames is pi
ked upand motion history information is obtained. Using one of the ba
kground
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Figure 4.3: Frames 380, 430, 480, 530, 580, 630, 680, 730 show the motiontra
king of 2 
ars and a group of people walking along the side walk.
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riptions ValuesMotion dete
tionMotion history duration Time a pixel is part of history 10 msMinimum region size Smallest amount of pixels forming a region 30 pixelsTra
king SettingsTentatives region Time needed to be
ome tra
kable 5 msDeletion Time needed for lost region to be removed 5msSear
h range Mat
hing regions between frames 30 pixelsRegion growth Size 
hange allowed 50%Colour model(h,s,v) bins Histogram bin sizes (10,10,10)(HS-V) weight ration Combining HS- and V-histogram (0.7 : 0.3)Alpha blending Adaption rate 0.1Hog modelHistogram bins Obje
t rotation = 360/Histogram bins 18Parti
le �lterSigma Sele
tion aggressiveness 0.1Parti
les Amount 100FGD & MOGMinimum region size Noise removal 15 pixelsTable 4.1: User de�ned parameters to tweak module performan
es.dete
tion s
hemes like MOG or FGD, segments of 
on�rmed regions 
an bebetter identi�ed.4.4 User de�ned parametersEa
h of the modules, motion dete
tion, motion tra
king, ba
kground mod-elling and parti
le �ltering 
ontains user de�ned parameters that 
ould im-prove performan
e if sele
ted 
orre
tly for a parti
ular s
ene. This se
tionsummarises the most important parameters in Table 4.4. Also, values usedin the experiments are the same unless stated otherwise in the text.
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t dete
tion experimental resultsAs previously mentioned, the FGD and MOG algorithms are implementedin the OpenCV library. A ba
kground module interfa
e is implemented andintegrated into the system. Using this interfa
e ea
h algorithm is tested.FGD and MOG ba
kground modelling te
hniques were developed for
omplex s
enes 
ontaining 
hanging ba
kgrounds. Comparison of di�erentvideo sequen
es shows that for stati
 ba
kgrounds, both methods performsimilarly, giving ex
ellent results. Problems using these te
hniques be
omequi
kly apparent. Tweaking parameters for ea
h model needs to be donefor di�erent s
enes, see Table 4.4. Also, model update speeds are slow dueto the 
omplexity and amount of 
al
ulations needed. Real-time pro
essingis a
hievable only at low resolutions of 320x240 on hardware as des
ribedin Appendix A.5.Figure 4.4 shows a frame from a video sequen
e where a person dressedin bla
k walks a
ross the s
ene. The s
ene is 
omposed of dynami
ally
hanging ba
kground s
enery, e.g. trees, while the foreground 
ontains aperson. The idea is to dete
t the person moving in the foreground againstthe dynami
ally 
hanging tree bran
hes in the ba
kground.The foreground frames are shown for four di�erent ba
kground modellingte
hniques: frame di�eren
ing, motion dete
tion, FGD and MOG. BothFGD and MOG are trained for 700 frames beforehand to ensure a reliableba
kground model is present. The following paragraphs explain the resultsobtained in Figure 4.4 for ea
h of the four te
hniques.Frame di�eren
ing is a simple approa
h for dete
ting foreground re-gions by subtra
ting 
onse
utive frames and thresholding to minimise noise.For the results in Figure 4.4 (b), a running average, weighted sum of frame
I(x, y) is 
al
ulated,

Ik(x, y) = (1− α)Ik−1(x, y) + α× Fk(x, y). (4.5.1)
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[a℄ [b℄
[
℄ [d℄

[e℄Figure 4.4: (a) frame 260, (b) frame di�eren
ing, (
) motion dete
tion, (d)MOG, (e) FGDEvery new frame Fk is weighted by a 
onstant value α at time k, in this 
aseset to α = 0.1. Ea
h of the 
olour 
hannels is thresholded and 
ombined bya logi
 OR operator to form a binary foreground image. Throughout thevideo sequen
e noise regions are dete
ted where the ba
kground moves andthe foreground image is 
luttered. Frame di�eren
ing has the advantagethat it runs real-time and is appropriate for stati
 s
enes.
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tion is shown in Figure 4.4 (c) and explained fullyin Se
tion 4.3.1. There is no ba
kground modelling, only foreground dete
-tion from moving obje
ts. Moving shapes that 
ome to rest are lost fromview. Any moving foreground obje
t is dete
ted and an empiri
ally 
hosenthreshold, T = 50 (minimum blob size in pixels) is used in this sequen
e.Figure 4.4 shows that motion 
ontains a signi�
ant amount of useful infor-mation for tra
king purposes. It also shows how the ba
kground 
hangedfor a short period of time before the frames shown in Figures 4.4.FGD Foreground dete
tion, as des
ribed in Se
tion 4.2.1, is tested usingvarious input parameters. Frame rates of 30 frames per se
ond is a
hievedat a resolution of 320x240. The foreground person is dete
ted su

essfullyin the video sequen
e shown in Figure 4.4 (d). FGD fails to dete
t the fore-ground obje
t (person in Figure 4.4 (a) ) in 
ases where the ba
kgroundpixels are indistinguishable from the foreground (bla
k 
lothing over shad-ows). This is understandable sin
e the model statisti
s 
annot distinguishthe foreground from the ba
kground when the pixel values are the same.Also, note that most of the moving tree bran
hes in the ba
kground aresu

essfully distinguished from the foreground.MOG Similar to FGD, parameters need to be set a

ording to the s
ene
omposition. Using 3 Gaussians, a speed of 25 frames is a
hieved at aresolution of 320x240. Foreground regions are dete
ted with small noisypat
hes. Using the same minimum blob size as FGD, MOG dete
ted moreforeground pixels in this 
ase, as seen in Figure 4.4 (e).4.5.1 In summaryBoth MOG and FGD 
an handle dynami
ally 
hanging ba
kgrounds and arewell suited for 
omplex s
enes. Pro
essing is 
omputationally expensive andslows down more when s
enes are busy. Setting up model parameters alsorequire tweaking to obtain useable results. These ba
kground modellingmethods were developed to deal with 
omplex dynami
 s
enes. In 
ases
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enes are stati
, foreground obje
ts are mu
h easier to dete
t usingonly the motion in a s
ene.4.6 Parti
le �lter tra
kingReal and simulated videos are used to test the feature-based parti
le �lter.Experiments are �rst done by sele
ting the obje
t to be tra
ked by handin the �rst frame. Then experiments are done by automati
ally obtainingobje
ts and extra
ting features to tra
k. The �nal experiment illustratesthe integration of all the modules, ba
kground modelling, motion tra
kingand multiple feature-based parti
le �lers.4.6.1 Colour only tra
kingUsing only the obje
t's 
olour feature, a simulated so

er video from datasethttp://www.multitel.be/tri
tra
 is tested. The obje
t to be tra
ked is �rstsele
ted by hand. The test illustrates the use of tra
king 
on�den
e as wellas the parti
le �lter's multiple hypotheses when dealing with obje
ts withsimilar appearan
e.So

er s
ene des
ription The video sequen
e 
onsists of so

er players,all similar in appearan
e, on a football �eld. In the sequen
e, the 
amera,moving qui
ker than the players, is panning from left to right. In ea
hframe in Figure 4.5 the parti
les are shown as red 
ir
les tra
king a playeras well as the tra
king 
on�den
e (top left). The tra
king 
on�den
e isshown in terms of "tra
king obje
t" or "obje
t lost". Ea
h parti
le's weightis represented by the 
ir
le's radius, where the radius is dire
tly related tothe parti
le weight.Dete
tion of tra
ker loss In frame 348 the 
amera moves a
ross the�eld past the players and the tra
ked player is lost. A 
lear indi
ationof a tra
ker loss is seen when parti
les, equally weighted, are distributedwith a large standard deviation. In the sequen
e of frames di�erent players
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Figure 4.5: Sele
ted frames 301,315,319,322,348,353,372,571 show the tra
kingof simulated similarly 
lothed players using a moving 
amera.
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ked when the player is lost from view and the initialisation dete
tsanother player that has a high likeliness to the target model.It is 
lear that parti
les are distributed between players that are 
lose indistan
e, a 
lear indi
ation of multiple hypothesis of the pdf distributionproperties. This 
an be seen in Figure 4.5 frame 322 where the two playerson the left are both weighted by parti
le 
ir
les after the automati
 initialisefun
tion dete
ted the players.4.6.2 Texture only tra
kingHOG is used as a feature model in this experiment to tra
k a person's eyesand nose (see Figure 4.6). The experiment illustrates a real person's fa
ebeing tra
ked. The 
on�den
e measure is tested for the HOG feature model.
Figure 4.6: Fa
e image used to initialise tra
kingThe red 
ir
les, in Figure 4.7, have a radius dire
tly related to theirprobability and are well distributed a
ross the fa
e. The predi
ted lo
ation,shown by the ellipse bounding the most likely position, is not an a

uratepredi
tion in every frame. Through the sequen
e the tra
king 
on�den
estays low and a message is displayed showing that the obje
t is 
onsideredlost. However, the fa
e is tra
ked for the entire sequen
e. In Figure 4.7 thenumber of parti
les are set to 150 and a 72 bin histogram is used. Both thenumber of parti
les and the number of HOG bins are in
reased greatly toobtain the results shown. Performan
e is negatively a�e
ted by the in
reasein parti
les. Real-time tra
king is not a
hieved sin
e feature extra
tion ofthe fa
e regions for every parti
le is slow.
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ombination tra
kingBoth features, 
olour and texture, are used during tra
king. Again, tra
kinga person's fa
e is 
onsidered. The result is 
ompared with the HOG tra
kingin the previous se
tion. The so

er sequan
e is not used in to illustrate the
ombined features. The so

er players texture information is very little, dueto the uniform 
olour of the players, and tra
king results do not improve.To in
rease the 
on�den
e measure of texture tra
king the 
olour featureis in
luded. This allows for less parti
les to be used to in
rease speed.Also, the in
rease in tra
king 
on�den
e allows that the region size 
anbe adjusted appropriately. The number of parti
les is set to 75 using a
olour histogram des
riptor of 10x10 bins for HS-histogram, 10 bins V-histogram and a HOG des
riptor of 36 bins. Ea
h feature is weightedequally. Performan
e and a

ura
y is greatly in
reased and the fa
ial regionis tra
ked with high 
on�den
e as seen in Figure 4.8. Note the high a

ura
yof the most likely positions during the end of the sequen
e where both 
olourand shape be
ome distorted.4.7 Automati
 initialisation tra
kingThe feature-based parti
le �lter requires prior knowledge of features, whereasmotion tra
king as implemented in Se
tion 4.3, 
aptures any region of mov-ing obje
ts. This se
tion des
ribes how to integrate motion dete
ted obje
ts,representing them as features, to the feature-based parti
le �lter.Other initialisation te
hniques, whi
h rely on features being trained be-forehand, are possible. Support ve
tor ma
hines for example are used toobtain an obje
t's features from a large des
riptive dataset of similarly ap-pearing obje
ts. These methods work well if the obje
t that needs to betra
ked is spe
i�
ally known. This is possible when designing a spe
i�
 ap-pli
ation. Using motion tra
king, a general approa
h is taken to illustratethe power of a feature-based parti
le �lter to tra
k obje
ts.
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h of the module's ba
kground mod-elling, motion tra
king and parti
le �ltering, a sequen
e of snooker balls aretra
ked. No prior knowledge is used to train the features or the ba
kgroundmodel. Tra
king snooker balls, ea
h with its own instantiated parti
le �l-ter, is illustrated in this se
tion. Tra
king snooker balls is 
onsidered tomaintain a 
ontrolled environment.The video sequen
e 
ontains 3 snooker balls pla
ed at the end of the table.New snooker balls enter the frames periodi
ally. When a new snooker ballenters the 
amera view, its motion is 
aptured and tra
ked using motiontra
king. On
e the region is 
on�rmed, the ba
kground model is used to �ndthe minimum bounding box 
ontaining the snooker ball for a

urate featureextra
tion. The bounding box is used to initialise a parti
le �lter to handlefurther tra
king. Di�erent 
oloured balls are used sin
e ball shapes areidenti
al and HOG would fail when used alone. The snooker ball experimentis shown in Figure 4.9 and illustrates the following:� Automati
 initialisation is possible using the motion tra
ker� Due to modular design multiple obje
ts 
an be tra
ked simultaneously� Ne
essary good feature extra
tion is handled by a ba
kground model� Adapting to the region size automati
ally (motion dire
tion is awayfrom 
amera)Details of the snooker sequen
e A des
ription of the video sequen
eis required to understand the experiment 
ompletely. The video resolutionis 320x240 with the light sour
e above and behind the table. Illumination
hanges are present when the balls move a
ross the table beneath the light.The illumination 
hanges are handled by the 
olour feature adaption. Also,the light sour
e 
reates pixel noise dete
ted by the motion dete
tion. Ballspeeds vary but all enter the s
ene qui
kly. The balls are rolled hard enoughby hand to rea
h the opposite side of the table and bump into other balls
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k. The e�e
t of this is that motion dete
tion, dete
ts a mu
hlarger region when the ball enters due to the motion pixel history des
ribedin Se
tion 4.3.1. Also, it is important to note that as the ball moves awayfrom the 
amera its size also be
omes mu
h smaller.Parameter settings In Figure 4.9 the bounding box regions are drawnin bla
k. The number of parti
les are set to 60, using both HOG and 
olourfeatures blended at 50%. The motion tra
ker is set to 
on�rm tentativeregions in 0.5 se
onds. The maximum number of parti
le �lters that maybe instantiated is set to 8. Automati
 initialisation after a loss of an obje
t,whi
h is very time 
onsuming, is disabled to avoid interferen
e with themotion tra
ker timing. A MOG ba
kground model is used whenever newregions are 
on�rmed. A FGD 
an also be used with similar results, howeverwith slightly slower exe
ution.Result dis
ussion The �rst blue snooker ball is dete
ted from frame55. The movement is mostly away from the 
amera and its bounding boxde
reases qui
kly. The bounding region is mostly adapted in frames 74,75 as seen by the size of the white 
ir
les 
orresponding to the parti
le'slo
ation with the highest probability.The introdu
tion of new snooker balls in frames 74, 85, 103 is ea
h han-dled separately. Features are extra
ted while the balls are moving at theirqui
kest, not always bounded exa
tly and where shadows are also in
luded.These features are slowly adapted and most balls are tra
ked su

essfully,although two do be
ome lost. The e�e
t of the HOG feature does, in some
ases where the 
olour ball is lost, allow other 
olour balls to be tra
ked andthe 
olour adapts to the new ball 
olour (su
h is the 
ase with the bla
kball).Noti
e that the motion tra
king bounded regions, shown in green (ten-tatives) and yellow (
on�rmed), are mu
h larger than the a
tual target
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ts. A mu
h more a

urate bounding region is thus found from featuretra
king.There are slight illumination variation as the balls move a
ross the tableand 
loser to the light sour
e. To handle the illumination 
hanges the 
olourfeature model needs to adapt a

ordingly. Adaption is su

essful in all but2 
ases, the blue and bla
k ball is not tra
ked the entire sequen
e. Thereason the balls are lost is the result of bad feature representation. Thesimilarity with the side and ba
k of the snooker table where the edge of thetable 
asts a shadow has a high similarity with the feature and the bla
kball is not tra
ked. In the 
ase of the blue ball, another ball (purple ball)with similar 
olour, is tra
ked when the blue ball moves into the table'sedge shadow (seen in frame 112).Using eight parti
le �lters is 
omputationally expensive and the sequen
eof snooker balls are not tra
ked real-time. When only one or two balls aretra
ked using the parti
le �lter, real-time tra
king is possible.4.8 Summary and 
on
lusionIn this 
hapter, the development of modules, ba
kground modelling, motiontra
king and feature tra
king are integrated and tested. Results show thatwhen parameters are setup 
orre
tly and des
riptive model features aresele
ted, then tra
king is su

essful. Table 4.8 shows a summary of timingresults for experiments in this 
hapter. Results are based on hardwaredes
ribed in Appendix A.5.Generally, in situations where the obje
t is dete
ted using motion de-te
tion, des
riptive features are either not present or not automati
allysele
ted well. It is important to note that tra
king only performs as wellas the initial model sele
tions. The snooker ball tra
king experiment workswell, due to simple but des
riptive features, little ba
kground noise and asemi-
ontrolled environment.
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reating real-time methods is a
hieved. Ea
h module 
anoperate in real-time when used on its own. However, when integrating themodules the pro
ess slows down signi�
antly. Ba
kground modelling speedsare mostly subje
t to how busy a s
ene is, while the parti
le �lter speedsare mostly a�e
ted by the region size that need to be pro
essed for ea
hparti
le to extra
t features. Using the very fast motion tra
king ba
kgroundmodelling is only ne
essary for newly 
on�rmed regions and greater speedsare obtained.
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Figure 4.7: Fa
e tra
king video sequen
e using HOG with 150 parti
les and 72bins. Sele
ted frames 55, 100, 125, 150, 180, 212, 300, 336 shown.
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Figure 4.8: Fa
e tra
king video sequen
e using 
olour and HOG features with75 parti
les. 110 
olour bins and 36 HOG bins. Sele
ted frames 55, 100, 125, 150,371, 372, 373, 374 shown.
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Figure 4.9: Sele
ted frames 55, 57, 74, 75, 85, 88, 103, 112, 128, 129, 143, 201shown from top left to bottom right.Experiment name Features used Fps # parti
les image/pat
h size(pixels)FGD × 33 × 320×240MOG × 25 × 320×240Motion × 35 × 640×480So

er sequen
e Colour 10 150 10×20Fa
e 1 Texture 7 150 75×45Fa
e 2 Combination 5 75 75×45Snooker Combination 0.3 70×8=560 variesTable 4.2: Summary of experimental timing results



Chapter 5Con
lusionThe problem was to investigate a means of tra
king that 
ould be extendedto various �elds for the purpose of general use.A sub-optimal general parti
le �lter was implemented that 
an be usedin di�erent tra
king appli
ations. Other, more a

urate tra
kers do existand are mu
h more 
omplex, but are just too 
omputationally expensive.In
orporating feature des
riptors allowed obje
ts to be modelled and videosequen
es to be analysed. Previous work suggests that 
olour-based fea-tures obtained good results; the 
olour-based feature was implemented. Italso be
ame 
lear that using other features in
reased robustness, and his-tograms of gradient (HOG) were implemented suitably adapted for tra
kingpurposes. Re-initialisation after tra
ker loss and a 
on�den
e measure wasadded to in
rease robustness during adaption. Dynami
 and obje
t infor-mation was obtained using the motion tra
ker and automati
 initialisationwas implemented. Noise needed to be removed before 
apturing good de-s
riptive features and ba
kground modelling te
hniques partially solved thisproblem.
68
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lusion 695.1 Future 
hallengesSome 
hallenging s
enarios exist where tra
king will fail in most 
ases. In-terestingly, in general, indoor lo
ations are more di�
ult than outdoor.Indoor lo
ations have many surfa
es that re�e
t or 
ast shadows. Also,ele
tri
 lighting 
reates more 
hallenges, su
h as noise, and obje
ts re�e
-tions and shadows are more pronoun
ed. This poses a 
hallenging task toa

urately extra
t features only relating to the obje
t. Tra
king duringnight-time is another 
hallenge that requires detailed attention to illumina-tion sour
es.5.2 Restri
tionsIt is important to realise that ea
h module, su
h as motion tra
king, ba
k-ground modelling and feature tra
king, have their own restri
tions. Bothmotion tra
king as well as ba
kground modelling, are restri
ted by a stati

amera setup. Also, mu
h time is needed setting up parameters or waitingfor ba
kground models to be trained 
orre
tly. In most 
ases, settings ares
ene-and-obje
t spe
i�
.Parti
le �ltering is 
onsidered due to its simpli
ity to easily tra
k obje
tsin real-time. However, it was found that there are hidden 
omputational
osts. The feature-based parti
le �ltering is 
omputationally expensive formultiple features. Exe
ution time su�ers when the number of parti
les isin
reased or the image pat
h for ea
h parti
le is very large. Most of the
omputational time is spent on extra
ting features for ea
h observationwhi
h is equal to the number of parti
les. In su
h 
ases the requirement ofreal-time tra
king is not met. Also, tra
king fails when models are a badrepresentation of the obje
t.
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lusion 705.3 Goals a
hievedAn adaptive feature-based tra
ker was implemented and tested. Having atra
king 
on�den
e meant that features 
ould be adapted automati
ally andsmartly. These tools allow robust tra
king of any obje
t that meets the re-stri
tions. These restri
tions depend on their model des
riptors and bettermodels would in
rease robustness or exe
ution speeds. Prior knowledge ofan obje
t's des
riptor was obtained using a motion tra
king te
hnique basedon repeated dete
tion in ea
h frame. Improvement of the prior model ob-tained from the dete
tion, used dynami
 ba
kground modelling te
hniquesto obtain more a

urate bounding boxes, greatly improving results.5.4 Re
ommendationsReal-time exe
ution is always a high priority in 
ertain appli
ations. Whatis more important is the 
ost e�e
tiveness in the sense of being able todrive multiple 
ameras from the same CPU. Even the light-weight tra
kingmethods dis
ussed here are hard to implement in real-time. Detailed atten-tion to optimisation is required. Many of the algorithms might also havemu
h simpler or better ways that as a whole, minimise 
omputations. Itis suspe
ted that su
h optimisations are possible and bene�
ial if appli
a-tions are to be
ome useful. Our studies do show however, that light-weights
hemes 
an be quite robust and have the advantage of being adaptable tomore spe
i�
 appli
ations. Resear
h into appli
ation development is mostlikely the next logi
al step. Appli
ation spe
i�
 solutions would also showmu
h better results and have its own set of optimisations for robustness andspeed. This thesis has presented a tra
king tool that is easily extendableusing di�erent features. An appli
ation might now be developed that solvesa mu
h more spe
i�
 problem using the tools developed here.
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Appendix AProje
t �lesIn this se
tion proje
t �les, installation and �le intera
tion are des
ribed.All software libraries used are freeware or open sour
e and 
ross-platform(developed and tested in Linux).A.1 Required softwareDevelopment was done in a Linux environment on an Ubuntu Dapper sys-tem. E
lipse version 3.1.2 with a Cdt (C++) plug-in is used as editor for thetools. A pydev (python 2.4.3) plug-in is used for the interfa
e and requireswxpython (2.6.2.1) to be installed. The E
lipse workspa
e 
ontains all the
ompile settings, proje
t �les, images and videos used for development and
ompiled with g

 version 4.0.3 (Ubuntu 4.0.3-1ubuntu5). OpenCV Intellibraries (1.0.0) as well as the �mpeg (libavutil, libav
ode
, libavformat)libraries are required. Pa
kages su
h as libjpeg are needed to display andsave images. Note that the versions only indi
ate how the built binarieswhere 
onstru
ted. In general always install newest versions when buildingfrom sour
e.
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t �les 73A.2 Installing tra
king toolsRunning binaries An interfa
e was 
reated to easily enable or disablemodules for testing. Ea
h module setting is also in
luded and is saved toa 
on�g.txt �le. To run the pre
ompiled binaries, simply 
opy the proje
tdire
tory and run 〈 ./PF/src/ python interface_params.py 〉. To saveimages and videos to the disk write a

ess is required. In Linux log on as asuperuser or exe
ute the above 
ommand with a sudo pre�x.Building from sour
e Building from sour
e is easiest using E
lipse. Im-port the proje
t workspa
e, all my 
ompiler settings and dire
tory stru
-tures are in
luded. Sele
t build all from menu and sele
t run. Otherwise,
ompile using the 〈makefile.from.source〉 �le.A.3 Running an exampleOpen the GUI from the main proje
t dire
tory, 〈 ./PF/src/ python interface_params.py 〉and sele
t from the start menu, run demo. The main GUI window is shownin �gure A.1. There are 8 qui
k demo's to view. If at any stage it seemsthat a demo window is not responding hit any key. To exit hit the ESCkey.A.4 Dire
tory stru
ture and �le des
riptionFigure A.2 shows how the proje
t �les intera
t.
GIO.cpp Graphi
al input and output fun
tions. All drawing fun
tions,opening and saving of images and video stream fun
tions are in
luded inthis �le.
Backgroundmodel.cpp Both the Mixture of Gaussians and ForegroundDete
tor is in
luded and uses the open
v libraries ba
kground model.
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Figure A.1: GUI main window

Figure A.2: Proje
t �le intera
tion
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T iming.cpp Contains timing 
al
ulations to start, stop and get elapsedtime fun
tions.
MotionDetection.cpp Implementation of motion dete
tion. Updates mo-tion model using update_mhi fun
tion.
MotionTracker.cpp Pro
esses the regions dete
ted by motion dete
tion(fun
tion pro
ess() is used). Labels are added to the regions and timingis used to obtain region whi
h are present for 
onstant time periods. Fil-terOverlappingRegions() fun
tion merges re
tangles whi
h interse
t.
ParticleF ilter.cpp Contains fun
tions to 
al
ulate the pdfs and statisti
sfrom the distribution.
HoGmodel.cpp Texture feature is implemented using HOG. Histogramtexture features are extra
ted from a 
olour image.
ColourHistmodel.cpp Colour image histograms are built for HS and Vplanes of the image.
FeatureParticleF ilter.cpp Contains the tools that adapt and 
al
ulate
on�den
e. The tra
king steps, update pdf from samples and predi
t usingmotion models are in
luded.
TrackerMain.cpp Contains the main loop that parses input parameters,open the video for display and 
alls ea
h module.
Sys_var.h System and module settings and varibles.
Const_global_incl.h The partile stru
ture and other global 
onstants.
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essor Intel Core 2 T5500Ram 1GB DDR2Camera 1 Sony DSC-V1 320x240, 640x480 video (15 fps)Camera 2 Sony DSC-H1 320x240, 640x480 video (15 fps)Camera 3 Axis 221 320x240, 640x480 (up to 60 fps)Camera 4 Axis 207 320x240, 640x480 (up to 30 fps)Table A.1: Hardware used in experimentsA.5 Hardware 
on�guration usedExperimental results where obtained using the following hardware in TableA.1. Di�rent 
amera's where used to test the e�e
tiveness of the algorithmson di�erent hardware. Camera 1 and Camera 2 are both digital 
ameraswith video fun
tionality. For results shown in this thesis Camera 2 was usedfor the fa
e tra
king, ba
kground modelling experiments. And Camera 3was used for the motion tra
king experiment.
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