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Abstract

An Adaptive Feature-based Tracking System

E. Pretorius

Department of Mathematical Sciences
University of Stellenbosch
Private Bag X1, 7602 Matieland, South Africa

Thesis: MSc (Applied Mathematics)
2008

In this paper, tracking tools are developed based on object features to
robustly track the object using paticle filtering. Automatic on-line initiali-
sation techniques use motion detection and dynamic background modelling
to extract features of moving objects. Automatically adapting the feature

models during tracking is implemented and tested.
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Opsomming

In hierdie thesis word video volgings gereedskap ontwikkel en getoets. Deur
gebruik te maak van 'n voorwerp se kenmerke is dit moontlik om sodoende
'n voorwerp robust te kan volg deur "Particle Filtering" tegnieke. Die stelsel
word automaties geinisialiseer met beweging deteksie en agtergrond model-
lering om voorwerpe se kenmerke te identifiseer en te ontrek. Automaties
opdatering van die kenmerk modelle geduurende video volging word geim-

plementeer en getoets.
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Chapter 1
Introduction

Suppose a robot is given a video stream, and through it, interacts with the
world around it. In this scenario, computer vision techniques would have
to be programmed so that the robot can track, and maybe even recognise

certain objects.

Object tracking comes naturally to humans, since it is instinctive to ob-
serve the world around us. Computers, however, need sophisticated tech-
niques in order to mimic our tracking ability and to automate tedious tasks.
These techniques attempt to solve object tracking through cluttered scenes
with noisy measurements. Specific algorithms each have inherent short-
comings due to the nature of the problem, while successful approaches use

object appearances that indeed mimic the way humans would track objects.

1.1 Problem statement: Tracking

Tracking of objects in a video sequence is one of the most fundamental
problems in Computer Vision. It forms the basis of applications as diverse
as surveillance, traffic monitoring, gesture recognition and sport analysis

such as soccer.

Some of the most widely used tracking algorithms include the Kanada-

Lucas-Tomasi (KLT) feature tracker which is an optical flow method. These
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algorithms track objects by comparing consecutive pairs of frames, no dy-
namic information about the moving object is used. The problem is that as
soon as the motion of the object itself is used, some information about the
object is required. On the other hand using dynamic information leads to
more robust tracking algorithms, allowing, for example, tracking through
occlusions. It turns out that it is not hard to incorporate dynamic infor-
mation into the tracking algorithms by using a particle filter. That leaves

finding information about the object itself that is to be tracked.

There are several choices to obtain information about the object. Isard
and Blake [13| track the shape of an object, allowing, but also restricting
shape deformations. This is known as active contours. Another choice is
to track features that describe the colour or texture of the objects. Then it
is possible to combine all these which resulted in the so-called Active Ap-
pearance Models (AAM) [3]. Although robust, AAM’s are computationally
expensive algorithms. A simple fact is that clients requiring systems based
on computer vision techniques, such as surveillance, often cannot afford
the necessary CPU power. It is therefore of considerable interest to explore
light-weight alternatives. That takes us back to colour and texture tracking

using a particle filter.

1.2 Literature study

A study of the most recent developments in tracking has shown that
colour-based particle filtering is used successfully to track non-rigid objects
[14]. A colour distribution model is built in RGB space and a similarity
measure is employed for the object model. The authors compare this tech-
nique with the mean-shift algorithm which tries to minimise the distance
between the theoretical mean and the observed ones. It is shown that the
mean-shift algorithm fails when the object’s position in successive frames
does not overlap, where the particle filter has no such problems. The colour-

based particle filter would however fail if lighting conditions change to an
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extent where the similarity between the object model and measurements is

indistinguishable from the background.

A self-adapting histogram model is used in [6] to adjust to lighting changes.
This is possible since the colour model uses the HSV instead of the RGB
colour space. The adaptivity allows for small illumination changes as well
as partial rotation in 3D-space. A confidence measure is calculated from the
probability distribution that describes how well objects are being tracked.
Adapting is done using this confidence measure to only adapt to the actual
target when confidence is high. Also, the implementation is done on a smart
camera (camera with CPU) and runs real-time. Since all the processing is
done on the camera itself, no images need to be sent over the network. This
is a very important property in security applications where client privacy

might be an issue.

Blob tracking [7] is also a successful feature-based tracker. A multi-
resolution graph for tracked regions is built from connected components
(blobs). The point is made by the authors that robust tracking cannot be
handled by only one algorithm. Modules need to be built up that solve
problems robustly at each step of a semantic ladder. The first step being
segmentation, and the next step tracking. The algorithm handles larger slow
moving blobs that are easy to track, and fast moving, small blobs that are
much more difficult to track equally well. In cases where the algorithm failed
the segmentation step produced unsatisfactory results. Either a region of
interest is not segmented, two separate regions merge and form one blob or
the relationship between a blob in consecutive frames has a low likelihood
at a low resolution in the multi-resolution scale. This is handled at the next

semantic step.

Multi-camera systems are implemented in [21] and [20] for tracking foot-
ball players and surveillance purpose, respectively. Cameras with over-
lapping fields of view are used. In the case of the football players, each

camera’s processing is done separately and then combined. A Kalman fil-
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ter is used for each camera to track players. Measurement data is used
whenever available to minimize estimation errors. For the surveillance ap-
plication the Kanada-Lucas-Tomasi (KLT)[18| feature tracking algorithm
is used. KLT tries to estimate the motion at every pixel position using

concurrent available frames.

Contour features are used in [13] implementing the condensation (par-
ticle filter) algorithm. Spline curves are fitted to an object’s shape and
high contrast features are extracted at intervals along the curve. Object
contours (splines) are descriptive features and are successfully used to track
curves through clutter. This is known as contour-based tracking. An im-
pressive experiment is done tracking a falling leaf against a background
filled with similar leaves. Contour-based tracking has the disadvantage of

being computationally expensive.

In 4] edges and the pixel gradients are considered as feature models. Im-
ages are broken into cells, each a histogram of oriented gradients (HOG).
Combined these cells represent the feature model. This approach has been
successfully implemented in object recognition type problems. This tech-
nique suffers from expensive calculations and slow execution on less sim-

plistic scene composition.

Some of the most popular tracking algorithms where shown here. An
important factor for each of these algorithms is their computational cost.
For any tracker to be useful it should be robust and light-weight and should
be cheap to build and use.

1.3 Objective of the study

In this thesis several light-weight trackers are studied. More specifically
implementing of a colour-based tracker and a texture-based feature using
an adapted HOG descriptor is developed. The tracking "engine", a particle

filter, is implemented. The project objectives are
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e Design a tracking implementation to solve problem statement

e Build a particle filter for the design

e Create a colour-based feature model

e Investigate and implement other type feature models such as texture
e Test the feature’s effectiveness and robustness

e Make improvements to the original implementation based on learnt

shortcomings
e Automate the tracking process after initialisation
e Automatic initialisation of the tracker

e Feature adaption when object’s appearance change

HOG was developed to detect objects in a scene at different image scales.
Its success, when used as an object detector, sparked our interest for use in a
tracking context. An adaption to the HOG texture feature is developed and
combined with the colour feature to improve tracking robustness. The HOG
feature is used to find a similarity measure between the target object and
samples. Failure as a robust tracking feature is discovered and adjustments
to the HOG construction are developed. The developed feature descriptor
can successfully track objects using only texture information, (when texture

is available) and tracking improves when combined with a colour feature.

1.4 Dissertation structure

This thesis builds on the theory in Chapter 2 to a working implementation
in Chapter 4.
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After first covering the basic particle filter concepts, object features are
investigated in Chapter 3. Features are adapted through new observations
and the process is automated to adapt independent of user interaction.
Features with complementary characteristics, that contain sufficient infor-

mation, are investigated.

A motion tracker is built to help with automating a tracking system
at initialisation. Background modelling techniques are also investigated
as part of the tracker initialisation and feature extraction. Each system

module is discussed as implemented and results are shown.



Chapter 2

Particle filter theory

A particle filter is a non-linear sub-optimal model estimation technique
based on simulation. It is an implementation of the formal recursive Bayesian
filter that performs sequential Monte Carlo (SMC) estimation based on
a weighted representation of probability densities [16]. Random sampled
approximations of the probability density function (pdf) are called the
weighted particles. In general more particles lead to a better approxima-
tions of the pdf. Particle filters propagate a finite number of these samples
according to the dynamics of the system and update the pdf using the

observed measurements [1].

2.1 Introduction to Bayesian estimation

The Bayesian approach aims to construct the posterior pdf based on all
available previous information and current measurements. In such a case
where the pdf is constructed from all available information the solution is
complete and an optimal estimate (in a minimising-of-a-cost-function sense)
of the state is possible. A recursive approach is considered that allows for
a new estimate whenever new measurements are obtained. Recursively,
predictions and updates form the two main steps for most Bayesian esti-
mators. The prediction step propagates the state pdf forward according to

a dynamic system model. The update step, using Bayes’ theorem, uses the
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latest measurements to calculate the prediction pdf. The recursive Bayesian
estimation or filter therefore provides a formal mechanism for propagating

and updating the posterior pdf as new information is received [17].

The following sections develop the background theory of particle filtering.
Firstly, a dynamic system is represented by a dynamics model and a mea-
surement model in a probabilistic form so that a Bayesian approach may be
adopted. Then the recursive estimation in Bayesian filtering [5], prediction
and update steps, fits this dynamic representation. Integration difficulties
in Bayesian filtering are handled by Monte Carlo (MC) estimation [16] pre-
sented in Section 2.4. Finally, the implemented particle filtering algorithm

is discussed.

2.2 Dynamic system representation

A sequence of evolving probability distributions 7(xy), indexed by discrete
time k = 0,1,2, ..., is called a probabilistic dynamic system [12]. A dynamic
system is generally represented by a state space x;. Two models are required
for analysis in a dynamic system: a dynamic model and a measurement

model.

Firstly, a dynamic model describing system evolution, the change in the
state over time, is defined. The state sequence is a Markov random process

and the state equation is written as

X = fr-1(Xp—1, Vi-1), (2.2.1)

where x;, is the state vector at time step k, f_1 is the (possibly non-linear)
state transition function that propagates the system from time step £ —1 to
time step k. Process noise is modelled by v, and the pdf is assumed known.

Secondly, a measurement model where noisy measurements are related to
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the state is needed. The observation equation is of the form
Z — hk(Xk, Wk), (222)

where z; is the observation vector at time step k, hj is the observation
function that relates the state space to the observations and the observation

noise, wy, which has a known pdf.

The state and observation equations can also be represented by proba-
bility densities. Note that (2.2.1) is a first order Markov process and that
the state equation is equivalent to p(xx|xx_1), also known as the transition

density. Similarly, the observation equation (2.2.2) is equivalent to p(zx|xy).

In summary, the probabilistic description of a dynamical system formu-
lated in a probabilistic way fits the Bayesian estimation approach, as de-

scribed in the next section.

2.3 Bayesian filter

Bayesian filtering attempts to construct the posterior pdf from all available
information. The state vector, x;, contains information describing the sys-
tem. This true state, x;, is assumed to be a Markov process which cannot
be observed directly, and the measurements z;, where the set Zy = {z;,i =
1,...,k} are the observations of the state. A Markov assumption is made
about the state space, that assumes the current state is only dependent on

the immediately preceding state,

p(Xk|xp—1) = p(Xk|X0, -, Xk_1)- (2.3.1)

Similarly, the measurement at the k-th time step depend only on the current

state and is independent of all other states given the current state

p(zk|x) = p(zk|X0, .o, Xp—1). (2.3.2)
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From the Markov assumption made, the formulation of (2.3.1), (2.3.2) is

equivalent to the dynamic system state representation in Section 2.2.

Given the posterior pdf at time k — 1, p(x_1|Zx_1), the idea is to find
p(xk|Zy). This is achieved by means of a prediction and an update step.
First, p(xx|Zx_1), the prior pdf, is obtained using the transition density

p<Xk‘Xk71)

p0iZics) = [ oo Ze e, (233)

Now the new observation is obtained, this is used to update the posterior

pdf using Bayes’ rule by including the observation zy,

p(xklZi) = p(zr|xk)p(Xk|Zi—1) /D(2k| Zi—1). (2.3.4)

The normalization factor is given as usual by

P2 Zir) = / p(2elx)p (x| Zi1 ).

Bayesian filtering is defined by the prediction step in (2.3.3) and the up-
date step in (2.3.4) with initial condition p(xg|zg) = p(xo) obtained from

assumed or given data.

Analytical evaluation of the pdf in (2.3.3) and (2.3.4) is impossible except
in cases such as the Kalman filter and hidden finite-state space Markov
chains where linearisation (Gaussian pdf’s) simplifies the equations. Monte
Carlo (MC) integration, on the other hand, is not limited by linear-Gaussian

assumptions and will be described in the following section.

2.4 Monte Carlo (MC) integration

Monte Carlo (MC) integration methods use pseudo-random numbers to nu-

merically approximate multi-dimensional, definite integrals and form the
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basis of sequential monte carlo (SMC) methods. Pseudo-random numbers
are generally used for computational convenience. By the Law of large num-
bers! if N — oo then MC integration approaches the exact solution. MC
integration is used to evaluate the integral (2.3.3) of the optimal Bayesian
filter.

Consider a multi-dimensional, definite integral g(x). Writing g(x) =

f(x)m(x) its integral becomes

[= / g(x)dx = / F(x)m(x)dx. (2.4.1)

The integral g(x) is factorised such that 7(x) is a density. Since 7(x) is a
density I is interpreted as the mean of f(x). In a Bayesian context m(x)
is realised as the posterior pdf. Where {x;;i = 1,..., N} are the samples

drawn from 7(x). The MC estimate of [ is the sample mean

= %Zf(xi) (2.4.2)

and converges to [ if N is chosen large enough. Unfortunately, effective sam-
pling from 7(x) is not possible due to the distribution being multi-variate,
non-Gaussian and only known up to a proportional constant. Importance
sampling rather samples from a known density distribution ¢(x) that ap-
proaches 7(x) when N is increased. This proposed pdf ¢(x) is referred to
as the importance or proposal pdf. Since ¢(x) is a weighted density of the

sample set, MC estimation is possible. The integral (2.4.1) is written as

[:/f(x) dx_/f % x)dx, (2.4.3)

!Jacob Bernoulli first described the law of large numbers as so sim-
ple that even the stupidest man instinctively knows it is true. -http
//en.wikipedia.org/wiki/Law_of _large _numbersgnote — 0
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and the MC estimation is calculated, by drawing N > 1 samples, as

N
1 . .
Iy =+ 2 F(xDw(x) (2.4.4)
where )
m(x
w(x) oo —= 2.4.5
() e 2 (2.45)
N
are the normalised importance weights so that Zwi = 1. Therefore, from
i=1

(2.4.5) samples drawn from the known importance density ¢(x) have weights

< OCP(XHZk)

(2.4.6)
The choice of the importance density ¢(x) is crucial when designing the
SMC. In this case a suboptimal choice is made to approximate ¢(x). Choos-
ing the transitional prior, ¢(xx | Xk_1,2r) = p(Xg,Xx_1), the weights are
updated by

w(xj,) oc w(xp)p(zx | ).

This indicates that the weight at time £ can only be computed after the

observation and the particles have been propagated at time k.

SMC is also known as particle filtering. Other names by which SMC is
known include bootstrap filtering, the condensation algorithm, interacting
particle approximation and survival of the fittest. The SMC method im-
plements a recursive Bayesian filter of Section 2.3 using the MC integration

method (sub-optimal) to evaluate the integrals.

2.5 Particle filter algorithm

The particle filter algorithm is a direct implementation of the recursive

Bayesian filter using MC methods. The basic particle filter, sequential im-
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portance sampling (SIS) algorithm is described in this section as well as the

sampling importance resampling (SIR) algorithm.

Given the posterior p(xj_1|Zx_1) and that NV samples are randomly drawn
xi_,,i=[1..N]. Then in the prediction phase samples are passed from
time step k—1 and propagated using a dynamic model to generate the prior
sample set at time step k. These prior samples x&,i = [1...N] produced by

the dynamics model are samples from the prior pdf p(xy|Zx_1).

In the update step, a new measurement z; is obtained. The measure-
ment is used to update the prior according to the particle’s weight w?. The
new weight value is calculated as the measurement likelihood evaluated at
the prior sample: wi = p(zx|x}). The weights must sum to one after nor-
malisation. In the SIR algorithm a further step is added to resample these
normalised weights. The resampling algorithm chooses particles from the
prior set with a probability equal to its weight. This new set of particles is

considered to be samples from the required pdf p(xy|Zy).

The particle filter algorithm repeats the prediction and update phases at
each time step to obtain the posterior pdf at the next time step [17].

2.5.1 Sequential importance sampling (SIS) algorithm

This is the most basic implementation of the particle filter. Sampling is
done from the prior pdf and weights are assigned to the particles. The pdf
is recursively updated or propagated using measurements at each time step
(sequentially). A serious problem arises when applying the SIS algorithm.
After a few iterations the pdf collapses around a single particle and all
other particles have negligible weight. This phenomenon is called degener-
acy. Also, propagating these particles is computationally costly and fails to
represent the true pdf accurately. A possible solution requires resampling

of the particles.
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The SIS algorithm is shown in Algorithm 1. The algorithm notation
used in this section is similar to [1]. The state space samples x;_; have
corresponding weights wj;_; at time k — 1. New observations at time £ is

described by z.

input :x; 1, Wp_1 ,Z
output: x;, wix

1 for i+ 1to N do

2 draw zj, ~ q(x[x)-1,2x) generated samples;
3 assign particle weight, wj, = p(zx|x},) ;
4 end

Algorithm 1: SIS Algorithm

2.5.2 Resampling algorithm

The SIR algorithm is an extension of the SIS algorithm by incorporating

the resampling step described here.

Degeneracy occurs when only a few particles have a large weight and the
rest of the particles have weights that are almost zero. In such a situation
the prior pdf is not an accurate representation. To reduce the effects of
degeneracy on the particle filter a resampling step is added. Resampling is
done by choosing particles with larger weights more frequently than those
with smaller weights. Different methods of resampling exist such as multi-
nomial, residual, stratified and systematic [2]. A systematic resampling
scheme is considered here with complexity of O(N), where N is the number

of particles.

Resampling steps The resampling process is shown in Algorithm 2 and
the steps are explained as follows. Figure 2.1 illustrates the resampling

algorithm.



Chapter 2. Particle filter theory 15

Step 1 computes the cumulative sum of N particle weights, C' = Z w?,
5=0

i = [1...N]. Note that the weights w represent a pdf and that CV = 1. C
is an index of the cumulative weights and it is divided into equally spaced

intervals of %

Step 2 sets where the index should start, namely at the first particle’s

weight index.

In Step 3 a random offset value \ € [O, %], is generated from a uniform

distribution.

Step 4 insures that all the particles’ weights are considered whilst moving

up the index.
Step 5, starting at the offset value, moves up along the index values.
step 6 draws samples by comparing the value A to C'.

In step 7, if A > C', the particle weight of w’ is small and not sampled by
increasing i. This effectively skips past a few particles with small weights.
Otherwise, the weight at index i is sampled repeatedly in step 9 until
condition A > C’ is not true. It is clear that larger weights are sampled
more often whilst moving along the indexed values of C and smaller weights

are ignored.

2.6 Summary

The basic particle filter has an elegant and simple algorithm that can be
applied in general to most non-linear estimation problems. It is important
to realise the dangers, such as the choice of dynamic model, sample set size

and impoverishment of the sample set.
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input : x;, wg
output: x;, wj,
i

C'= Z w’ //Create the cumulative values index;

1 20

2 i =0 //start offset index;
3 A1 < random|0, 1 ;

4 for j — 1to N do

5 Aj =X+ % //moving up C;
6  while \; > C" do

7 1 =1+ 1;

8 end

9 vl = a2l
10 wl’ =+
11 end

Algorithm 2: Resampling algorithm

=
8 E
O e
2 =
e
T |- =
s =
= @
© o]
O 4 =
=3
< &)
I Aol L
N . N
0 1 2 3 4 5 Particles

Figure 2.1: Resampling of 6 sample weights.

In Figure 2.2 a possible iteration of the particle filter algorithm is shown
at particle level. The graphical representation visually summarises the main
idea behind particle filtering. The three main sections as described in this
chapter are shown, namely, selection and prediction of the particles, the

resampling step and the observational update of the pdf.
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PX | Z)

X X, y)

bz | X))

Xﬁ—l ‘ Zi—l)dri'—l

Figure 2.2: Particle filter iteration

17



Chapter 3
Feature vectors

Feature vectors, such as colour, contour, texture, edge and intensity, de-
scribe an object’s appearance. Features are collected in a state, and the
state is represented by a pdf. The pdf is known through its samples as
described in the previous chapter. Sampling measurements represented by
these feature are needed to update the particle filter’s posterior pdf. Sam-

ples are compared and weighted according to these appearance similarities.

This chapter first describes the implementation of a colour- and texture-
based feature vector, while in Sections 3.5 and 3.6 describe improvements

for a robust tracker. The last section illustrates the feature-based algorithm.

3.1 Particles and Features

Particles s are vectors s' = [z, y;, dx;, dy;, F], i = [1, .., N], where (x,y) is
the particle’s position, (dz,dy) are the velocity components, F the set of
one or more features and N is the number of samples. A particle’s features
are obtained (a sample) at (x,y). The feature is extracted from a smaller
region in the image which may contain the object. If the target feature
is known, the samples are compared and a weight, directly proportional
to their similarity, can be assigned to a particle. Particles can in general

contain any number of features.

18
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3.2 Colour-based feature

Good features are essential if an object is to be tracked successfully. Colour
histograms model an object’s colour distribution. These colour histograms
have the advantage that objects can have non-rigid shapes or rotate in
an environment and still be detectable provided the colour distribution

describing the object remains the same.

3.2.1 Colour model

Colour image samples are obtained in a red-green-blue (RGB) representa-
tion and converted to a hue-saturation-value (HSV) colour space. A HSV
histogram model allows that the intensity, V, can be handled separately.
The advantage is that reflections and shadows, mostly present in V space,
can be handled more robustly. A 2D Hue-Saturation (HS) and a 1D inten-

sity (V) histogram represent the object’s colour feature.

Weighted histogram
Non-rigid objects rarely have a rectangular shape. A kernel function is used
to weigh specific positions in an image region differently. Defining a kernel
function for example as,

k() = (3.2.1)

1—p? ifpu<i
0 otherwise

where p is a normalised distance of a pixel to its region’s center, weighs the
colour distribution of pixels on the edges less than in the center. Kernels
such as epanechnikov, quartic (biweight), tricube (triweight) or Gaussian
could also be employed. In Figure 3.1, the change in radius p, illustrates
how the kernel (3.2.1) weighs the image regions. Assuming that the most
important information is contained around the center of an object this func-
tion will be adequate and allows for partial occlusion at the edges. An image

region, R', has a user defined height and width, respectively, H, and H,.
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The image region, R’ is centred at (z°+ %, Yl + %) Note that if the entire

image is used as a region H, and H, then describes the entire image.

Qutput image

Input image
sire (Hx,Hy)

Figure 3.1: Description of weighting function calculation: (left) input image
mask, (middle) distances from center, (right) output weighting function.

An image histogram is built using the image patch weighted pixel values
of (3.2.1). Every pixel r = (z,y) in an image region R’ is binned in the

histogram

P =r>k (M) S[I(r)—1b]. (3.2.2)

reR!

TH, —x)?+ (5H, — y)2.

The distance from pixel (x,y) to region R center is di = \/(
Scaling of di by the region circular radius a = /5 (H2 + H2) ensures that
the kernel function assigns the largest weights to pixels at the region’s cen-
ter. Image I represents the weighted HS- and V-components. The § func-

tion bins the pixels for intensities in image I, into bins b.

The 2D HS-histogram is represented as an image as illustrated in Figure
3.2. The HS-histogram image is divided into rectangles of equal size that
represent the histogram bins. A high bin value in the image is proportional
to a high colour intensity (white) and a low bin value is black. Representing

the colour model in histogram space using (3.2.2), it is possible to compare
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S-bins

Intensity

—_
H-bins bins

Figure 3.2: (left) input image, (middle) 2D Hue-Saturation histogram image
using 50x50 bins, (right) V histogram image 50 bins

feature samples while tracking. To update the recursive nature of the algo-
rithm when new observations are introduced a similarity measure is needed

in the tracking estimate, as explained below.

Particle weight update

Given an object’s colour feature histogram, the target appearance is known.
The target appearance needs to be compared with particle samples that rep-
resent the observations z; to update p(xx|Zy). To compare the target model
and the samples, the Bhattacharyya similarity that measures the similarity
of two discrete probability distributions, is used. Both the 2D HS-histogram
and 1D V-histogram similarity values, p,s and p, respectively, are obtained
when a sample’s histogram is compared with the target’s histogram model

using the discrete Bhattacharyya coefficient

plpha) =) Vriblqlb]. (3.2.3)

b=1

where p® are the sample histograms and q is the model histogram, and
B the number of bins. Note that for the colour feature vector F; = p'.
Both p’ and q are seen as a pdf and normalised to sum to unity. When
p’ and q are exact, the similarity is maximized, p = 1. The more similar
the appearance between the target and model histograms, the higher the

similarity measure p. The pps and p, similarity values are combined using
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alpha blending to weigh the histograms according to their importance,

p:Oszh8+(1—(I)XpU.

To minimize lighting changes the V-histogram is weighted less in the ex-
periments and o = 0.7 is used. This value was suggested by [6] and tested
by trail and error. A smaller value for alpha usually reduces accuracy while
tracking and a o = 0.5 usually fails to track an object successfuly.

The Bhattacharyya distance is calculated using

d"=+/1—p[p’,q. (3.2.4)

This distance is used when calculating the particle weights, w using a Gaus-

sian. The weights of sample set s then is

1 2
w=———el32), (3.2.5)
270
where the variance o is a user-defined variable. When the variance is low,
the choice of particles with high p are favoured when propagated to the
next step. The result of choosing ¢ too small results in a degeneracy of the

pdf.

3.3 Histogram of oriented gradients feature

Histogram of oriented gradients (HOG) was developed as a successful hu-
man detector [4]. The idea is that gradients of an object contain shape and
texture information that can be used to distinguish it from other objects.
In this way, HOG captures an object’s structure and texture into a feature
vector that can be used to detect humans in a scene. The goal is to be able
to use HOG features to track an object by comparing sample HOG features

with a target appearance.
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3.3.1 HOG model description

An image I is divided into uniformly spaced cell regions I.. Cells may
overlap and have a user defined size C,, C;,. Calculating the number of non-
overlapping cells in an image region is then L = g—z X g—s, where H, and
H, are the dimension of image /. For each cell I' ;i = [0, ..., L] a histogram
of gradients is calculated. Gradients are detected by convolving with a
filter mask [—101]. When dealing with colour images the gradients are
calculated for each colour plane. The gradients are reduced to a single
plane by selecting the pixel gradient value with the largest magnitude from
each plane. Each cell bins the gradient values weighted according to their
magnitude. Combined, these cells form the HOG model’s feature vector.
The process is illustrated for a single cell in the following example and the

results are shown in Figures 3.4 and 3.5 for an entire image.

3.3.2 HOG illustrative example

A checkered board matrix function

fla,y) = (3.3.1)

—_ O =
o = O
—_ O =

represented by image

Y

is constructed. Differentiating f(z,y) is done in practise by convolution

with the kernel functions,

Ko=|-10 1] (3.3.2)



Chapter 3. Feature vectors 24

and

K,=| 0]. (3.3.3)

For clarity, in this example, we differentiate f(x,y) using,

8f(:c,y) f(l’-'-l,y)—f(l’—l,y)

~
~

ox 2 '

and

~
~

oy 2
Boundary cases are handled by padding the edges with the boundary values.

8f(:c,y) f(x,y+1)—f(:c,y—1)

Applying the filter above to f(z,y) we respectively obtain

1 1
-3 0 3
1 1
3 0 —3
1 1
-3 0 3
in the x-direction and in the y-direction
1 1 1
T2 2 2
0O 0 0
1 1
2 2 2

Viewing the components %’% in polar coordinates a magnitude shown in
Table 3.1

af* of?
Vil=1\=— +=
and angle shown in Table 3.2
0 = arctan gﬁ

is calculated, shown here in degrees. A histogram of these calculated
gradients, weighted by their magnitude, is constructed as shown in Figure

3.3. Each of these bins can also be represented as a vector with angle equal
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Table 3.1: Magnitude values and corresponding image representation

45 270 135
180 0 0
315 90 225

Table 3.2: Angle values and corresponding image representation

to the bin index and magnitude directly related to its bin value. Interesting
results are observed when calculating a HOG for shapes with uniform colour
and no texture, such as a filled rectangle or circle. Gradient information
available only on the edges of these shapes creates a double edge (two
neighbouring pixels contain gradient and magnitude information) image
that results from the convolution using (3.3.2) and (3.3.3).

| Vf]

120 240 360 @ (degrees)

Figure 3.3: Example HOG descriptor for image f(x,y) using 3 bins. Each
magnitude and corresponding angle is shown in every bin.

Figure 3.5 shows the HOG descriptor in vector form, for the input image
in Figure 3.4 at different cell size selections. When the cell size is small, 2 x 2

pixels, detail is high and the edge information is clearly noticeable on cells
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Figure 3.4: Example HOG feature steps for entire input image on left, (middle)
magnitude image, (right) angle image

with dense gradient information. Note that by selecting a small cell size
such as 2 x 2 allows that the feature can be compared at different scales
by combining neighbouring cells into larger cells. For example, 10 x 10
cells can be combined from 5 groups of 2 x 2 cells without recalculation
from the source image. Histogram bins can also be reduced by summing
neighbouring bins. This less accurate representation might be necessary to
calculate a feature more quickly to maintain real-time speeds. It is also
important to note that each cell vector is associated with a position in the

image.

Note that the normalised HOG descriptor can be interpreted as a pdf with
the following useful properties. In this normalised form the HOG is scale
invariant and less dependent on the magnitude of the gradients. Special
care should be taken to normalise the pdf for a uniform region where no
gradients are present in the region (all histogram bins equal zero). This
is more likely to happen with smaller cell sizes. This situation is handled
separately to ensure that similarity comparison between such features is

7Z€ero.

Also, note that the HOG descriptor as described is not rotationally in-
variant. This is explained by the fact that a rotated object’s edge gradient
values are binned into different histogram bins and usually not in the same
cell. Note that the HOG cells prevent that rotation can be detected by
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[c]

Figure 3.5: HOG features at different cell sizes, using 36 bin histograms. The
images show each cell’s HOG as vectors graphically (a) cell sizes at 2x2, number
of histograms 60x80, (b) cell sizes at 6x8, number of histograms 20x20, (c) cell
sizes at 12x16, number of histograms 10x10
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a linear shift of each histogram. Comparing two HOG descriptors quickly
becomes a challenging problem. This observation is explained in the next

section.

3.3.3 Similarity measure between HOG features

Comparison between two HOG vectors vy, vy is done in a similar way to
that of the colour-based feature vector. Representing each HOG vector cell
IZ as a probability distribution, the Bhattacharyya similarity measure can
be used. The cell similarity measures are combined in a single similarity

value by taking the average over the similarity measures,

p:

DD i), (3.3.4)

i=1 1

e~ =

B
b=

where b is the gradient histogram bins, L is the number of cells and B is the
number of bins. A comparison between the trained HOG model and particle
sample HOG’s allows the use of the similarity value, p to update the particle
weights using (3.2.4) and (3.2.5). In practice, however, this approach fails
to be an accurate measure to track an object and is discussed in the next

section.

3.3.3.1 HOG similarity used in tracking

Dividing an image into cells allows that changes in small parts of the image
do not effect the entire feature. This is an advantage when using HOG
for detection as presented in [4]. When viewed in a particle filter tracking
context, two challenging problems arise. Firstly, sampling at predicted loca-
tions does not, in general, sample at exactly the correct position. Consider
the situation where a sample is taken just left of the actual object location.
Then each of the cell histograms contain gradient information that are un-
aligned to the right of the model histogram, resulting in a low similarity.
Secondly, histograms are binned using an image’s gradient angles. Cell his-

tograms are not rotational invariant in such a situation. Again, samples
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might be mis-aligned due to object rotation. This is not easy to deal with
if multiple cells are used. Thus, instead of using multiple cells, we use a

single cell for each region.

Using the tracker predictions of possible object location the single cell
HOG is used to find a similarity value. The advantage of this is three fold.
Firstly, samples at non-exact predicted locations that contains only part of
the target might still have a large similarity. Secondly, object rotation can
easily be handled by a linear shift. And thirdly, a much faster implemen-
tation is possible assuming that object rotation between frames is small.
Then correlation reduces to shifting the histogram bins one bin position
left or right respectively. For example, using 36 bins, an object can rotate

10 degrees without affecting the similarity value.

3.3.3.2 HOG similarity comparison

An experiment is done to determine how similar objects appear using the
single histogram HOG and the general HOG with different cell sizes. A
subset of the ETH-80 dataset is used [10] to test how well HOG descriptors
compare objects at different bin and cell sizes. Figures 3.7 shows the effects
of bin and cell selection when comparing objects in Figures 3.6 centred in

an image.

A pear image is chosen as a model in Figures 3.7 (a) and compared with
other pear images. Each of the pear images is then compared with a tomato
image and the results are shown in Figure 3.7 (b). Again the test is repeated
where a cup image is compared with each pear image. The similarity results

for a range of different bin sizes are shown in Figure 3.7 (¢).

For each of these tests the single vector (1 cell) HOG results are shown in
Figure 3.7 (d). These results show a 5% better similarity when comparing
pears with pears than comparing tomatoes and pears. And a 10% better
similarity is obtained when comparing a cup with pears. Also, note that

changing the number of bins does not effect these results.
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The results show that similarity measurements suffer greatly when the
number of cells is increased. A single cell representation achieves best results
for all bin sizes tested. Tracking using a single cell HOG vector improves
performance and an experiment is done in Section 3.9. In the experiment
it is shown that a single cell HOG feature is more robust, allowing for small

translation and rotation errors from tracker predictions.

Figure 3.6: Model images used to obtain similarity results of Figure 3.7.

3.4 Motion model

Particles are propagated to the next step according to a dynamic motion
model. A constant velocity model is used without acceleration. Accelera-
tion, handled by noise, is not considered since the state space becomes too
high dimensional and requires far too many samples, which is computation-

ally expensive. Particles are propagated using
X = AXk_l + Wi (341)

where A defines deterministic parameters, w;_; the stochastic and k the
time. We remind the reader that x; is the state space representing the

dynamics. Using (3.4.1) to propagate a particle using the motion model its
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Figure 3.7: HOG features comparison at different bin and cell sizes. (a) Com-
parison results of image set pears. (b) Comparison results of comparing a tomato
with pears. (¢) Comparison results of a cup with pears. (d) Comparing results
of cup, tomato and pears using only one cell.
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(x,y) coordinate is updated using velocity v + k,

X
Vi
The value of A is user defined to be either a random position model,

bo ] | (3.4.3)

A:
0 0

or a constant velocity model, also used in [6]

11
A= [0 X ] (3.4.4)

3.5 Feature adaptivity

Changes in lighting and shape of the object, result in a bad representation
of the histogram describing the object. Appearance changes of an object
can be handled by adapting the model to increase tracking robustness.
Adaptivity as implemented and tested here is presented in [6], [8], [15].
When tracking an object in real-time, adapting the target model needs to

be done automatically.
The model ¢ is adapted using,
Gr=axsh+(1—a)X g (3.5.1)

where si is the most likely object position at time k. Each target bin is
blended mixing o € {0,1} with sample j, having the highest appearance
similarity of all the samples. This is done for both the HS- and V-histogram
colour feature and HOG feature. The choice of « is directly related to the

confidence measure described in the following sections.
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Selective adaption is necessary to avoid adapting the target feature
models in cases where the tracked object is lost. If the loss is undetected, the
models will be incorrectly updated and become corrupted. This is clearly
an undesirable effect. Automatic adaption is possible using a confidence
measure to only adapt if the system has a high confidence that the object
is being tracked. A slow adaption rate handles occlusion better since the
target model changes less over time. Fast appearance changes are handled
when the rate of adaption is quick. Note that the rate at which adaption is
applied affects the situations that can be handled by the tracker. Consider
the situation when the tracked object moves behind a structure and the
adaption is fast. While the object is lost from view the target model is
adapted incorrectly using the best predicted location. When the object
reappears it might not be tracked correctly due to a bad representation of

the target model.

In cases where the object is being tracked with high precision, the tracking
pdf has a high peak and most samples are grouped together. On the other
hand a low certainty of object position is shown by a uniform pdf. In [6] the
confidence is measured directly from the tracking pdf. The confidence mea-
sure is described by the degree of unimodality of the resulting pdf p(x | Z).
A low confidence is measured when the pdf has a very uniform distribution.
The particle weights approximate the confidence of the tracked pdf. This
computationally simple confidence measure works well. However, failure
can occur. When the background region’s colours or textures are similar to
the target model or the size of the particle’s image patches are considerably
smaller than the region being tracked, which might have a uniform colour,
confidence is low. In both cases the pdf becomes more uniform, and the

confidence measure incorrectly results in a tracking loss.

Experiments using different values for o in (3.2.5), illustrated that the
confidence measure is related to the choice of 0. Note that o determines the

variance in the position of particles. A confidence value is obtained from a
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threshold defined by
1
Se < K(—),

o
where o is the user defined value from (3.2.5), K a normalisation and S,
the standard deviation of the tracking pdf. As mentioned previously the
choice of alpha is directly related to the confidence measure. Since the
confidence value can be calculated during run-time it is used as the value
for avin (3.5.1). It is now clear that the target model is only adapted when
the confidence is high.

The next section describes how to recover from tracking failure. Both
methods described above are used to calculate a confidence when testing
whether to adapt the histogram model. These methods can also be used to

determine whether an object is being tracked correctly.

3.6 Finding an object and detecting a loss

Assume that the object that will be tracked is known. Then its features,
available as a pdf, are also known. Finding the object’s position in an image

is then possible.

Using the prior knowledge of the target histogram, a search for the object
in the first frame can be done. The Bhattacharyya similarity measure (3.2.3)
is used to compare the target model at every image region. These regions
will have a low similarity when the object is not present and a high similarity
when the object appears in the frames. A mean value ; and a standard

deviation o of the similarities in all the regions are calculated

= % Zp [SRi7 Q] ) (361)
7 =3 (o lsme )]~ (3.6.2)
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where sp, are samples calculated at each of the M regions in the image.

1

Assuming a Gaussian distribution' an appearance threshold is defined, in

[14],
plsg,,q] > p+ 20. (3.6.3)

The appearance threshold indicates a 95 % confidence that the region R; is
not part of the background. The particle filter is initialised in the region if
more than a user-defined fraction of the sample set s meets the appearance
threshold. The same rule is applied to detect when the tracker loses the ob-
ject. When the object leaves the frame or becomes occluded for a couple of

frames, condition (3.6.3) fails and the initialisation phase is entered again.

3.7 Perspective adaption

Adjusting the region size according to the object’s perceived size is necessary
to robustly track objects in a 3D environment. An object moving away from
the camera, changes size relative to the camera’s perspective. Detecting
whether an object is moving closer or away from the camera is done by
sampling at different region sizes. The region’s size is sampled at £2% of
the region size (H,, H,) at the current best predicted location and compared
to the target model. If a comparison is found to have a higher similarity
to the feature models, the region size is adjusted. Note that features such
as colour and HOG are scale invariant so an adjustment of the region size
does not affect the features. Also, it is useful to only adapt when there is a

significant difference in the similarity value to minimise computation.

This adaption is not directly related to the confidence measure, but re-
sults in a higher confidence if the object’s size is sampled at correct region
sizes to avoid including background which leads to bad feature model rep-

resentations.

IThe empirical rule states that for a normal distribution assumption, about 68% of
the values are within 1 standard deviation of the mean, about 95% of the values are
within two standard deviations and about 99.7% lie within 3 standard deviations.
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3.8 Algorithm

Implementation of Algorithm 3 follows the same steps as the basic particle

filter from Algorithm 1 using the resampling step described in Section 2.5.2.

The specialisation of the feature-based steps are described using the models

and rules described throughout this chapter.

1 #Initialization step;
2 q; — get observation model at time, k—0;
3 while true do

4 i, o from eq 3.6.1 and 3.6.2;
N
f=> plpi ay] > p+20;

5 =0

6 if f > (0.1)N then

7 object found = true;

8 end

9 #Measurement step;

10 for i — 1 to N do

11 st « get particle samples, eq. 3.2.2;
12 mi_, < assign particle weight, eq. 3.2.5;
13 end

14 normalize m,_1;

15 # Robustness improvements;

16 //confidence measure;

17 if object foundandcon fidence > Threshold then
18 Adapt _sample _size();

19 a1 = adapt histogram(p,_;,qy) , eq. 3.5.1;
20 end
21 T «— resample pdf m,_1 using algorithm?2;
22 # Prediction step;
23 Sk «— apply motion model, eq 3.4.1;
24 end

Algorithm 3: Feature-based particle filter algorithm
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3.9 Feature tracking experiment

Implementation of Algorithm 3 is tested using each of the feature types;
colour, texture and a combination of both. In the latter case, a user defined
weighting value is used to combine the features using alpha blending. For

generality, an arbitrary number of features can be handled in this manner.

Experiment 1 A simulated test is done to accomplish the following;

e Colour object tracking using a HS-,V- histogram descriptor

Texture object tracking using a HOG-histogram descriptor

Combined feature tracking

Tracking through clutter/noisy background

Correct tracking with partial occlusion
e Correct tracking with full occlusion

As shown in Figure 3.8 the simulated test places four simple rigid shapes,
two triangles and two rectangles, each following a circular path shown in
Figure 3.8. All objects have constant movement and maintain their circular
motion in their own direction. Each of the rectangle and triangle colour

shapes intersect and overlap with other shapes with the same colour.

The white rectangle is the object being tracked. Figure 3.8 shows the
rectangles at interesting positions as well as the particles X,Y movement
along the circular path. The sequence runs for 620 frames. The particle’s
position and weight are shown as red circles on the image where the size of

the circle is directly related to the weight.

Colour object tracking It is clear that the colour-based tracking is likely
to fail at some point due to background colours and other shapes with the
same colour. The particle movement in the Y-direction Figure 3.8 (¢) of

this sequence shows that at frame 80 the direction changes as the tracker
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Figure 3.8: (a,b,c) Colour tracking frame 80, (d.e,f) HOG tracking frame 310,
(g,h,i) feature combined frame 250. (a,d,g) Tracked particles X-movement, (c,f}i)
tracked particles Y-movement. 50 particles are used with a zero velocity motion

model.



Chapter 3. Feature vectors 39

confuses objects moving in opposite directions. The failure is the result of
a higher similarity value for a white triangle than the white square when

the two objects cross (a partial occlusion).

HOG object tracking The HOG tracker fails at frame 310 when the
two rectangle shapes with colours green and white overlap (full occlusion).
From Figures 3.8 (d, f) we see the sudden change of direction in particle
movement at frame 310. From Figure 3.8 (e) it can be seen that the particles
are distributed across both rectangles each having a high similarity value

as they move past each other.

Combined object tracking When features are combined, it is clear from
the X-and Y-direction graphs, Figures 3.8 (g, 1), that the particles track the
correct object throughout the sequence successfully through partial occlu-
sion (rectangle moves under triangle) and full occlusion (white rectangle

moves under green rectangle).

Experiment 2 The goal of this experiment is to illustrate HOG feature
adaption to accurately track an object rotating as described in Section
3.5. As described previously, a single cell HOG feature is not rotationally
invariant. However, object rotation can be detected by a linear shift of
the histogram bins. This experiment tracks a rotating square object. The
object is rotating around its center while it is following a circular path.
The HOG feature is represented as a vector where the angle describes the
histogram bin and the bin value the vector’s magnitude. In Figure 3.9 the

HOG feature is shown in each of the frames at the bottom right corner.

Adapting the feature model is only done when the tracking confidence is
high. A low tracking confidence is measured when only HOG is used. The
reason for this is that the noisy background is similar to the object. The
result is that adaption to the rotating object is not done. Tracking fails
when the object has rotated more than the linear shift allows. To increase

the confidence the colour feature is also used. From the particles X and
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Figure 3.9: Tracking experiment 2: HOG adaption. Tracking a square over 400
frames. Selected frames 1,50,100,200,300,400, shown. (Bottom left) X-position of
particles.(Bottom right) Y-position of particles
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Y positions it is clear that tracking using the HOG adaption is successful
when the colour feature is used to increase confidence. When the confidence
is high, notice how the noisy edges in the background also become part of
the model, seen as vectors at right angles. Feature adaption is successful,

and the rotating object is tracked accurately.

3.10 Summary

Both colour and texture information are modelled as features that can be
used to describe an object. The histogram methods used allow that adapt-
ing to objects undergoing small shape, rotation, size or colour changes can
be handled effectively. These feature are clearly useful for tracking pur-
poses. Also, combining features significantly improve results. It is also
important to note that the process runs real-time when the region sizes are
small. Performance is mostly affected by the number of particles and the

image region sizes that need to be processed to extract features.



Chapter 4
System implementation

Robustly tracking objects relies heavily on accurate features. The feature-
based particle filter is most effective when the object is rigid, can only
rotate in a 2D-plane and has a constant colour and texture histograms. The
self-adapting histogram components and confidence measure are added to
handle realistic tracking scenarios more effectively. The next challenge is
to obtain prior knowledge of the object’s features and dynamic information
about its movement. This chapter describes these challenges and presents
an approach to integrate automatic feature extraction of moving objects

and feature-based particle filtering inside a system.

4.1 System design and goals

Automatic object tracking relies heavily on robust object detection and, in
our case, initialisation of motion and features. These different challenges
are implemented in self-contained modules that need to be integrated in
a system. A modular approach described in [7] is used where a semantic
ladder, built from feature extraction to action recognition, describes the
challenges as well as the system implementation. This intuitive design ap-
proach allows for models that can be created to handle a specific problem
where each step up the ladder relies on the previous step. In this way the

system is dynamic in that all components can be replaced as improvements

42
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to technology and algorithms become available. Using this high level design
methodology an automatic tracking system has been developed.

Each of the following sections are modules that, when combined, handle
the system from initialisation to the tracking of an object. The design and
implementation of feature models from Chapter 3 are shown in Figure 4.1.

Note that at each level the design is modular and easily extendable.

Feature Space Object Tracking Particle Space
o
E L =
E g
o b =
o2 o
Histogram of g o
. . A= =
oriented gradients g
model k- Particle filter
] g
o s
° 2
Colour (HSV) g 2
model i s 3
o L
=
New feature

Graphical input/
output

Figure 4.1: Feature-based tracking modules

An overview of the system modules is shown in Figure 4.2 and described
in the following sections. Note that the focus of these sections are to detect
an object of interest in a scene. Detection can also be used to track objects
by means of repeated detection in every frame. This is very time consuming
and it is computationally much quicker to track an object using prediction

methods such as the particle filter. Real-time tracking is considered to
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be at least 5 frames per second (fps). Although, speeds of more than 10
fps is achieved when using a single module. Most web cameras can perform

theoretically up to 30 fps, but realistically speeds of 5 to 20 frames is normal.
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Figure 4.2: System module design

4.2 Background modelling

A background region contains objects that stay in the same place or bounded
region over time, while foreground regions or regions of interest move around
more freely. Information about a scene’s background is useful to minimise
noise during tracking or when extracting features. A background model
can be defined as a reference structure that describes the background of a

scene. The simplest structure being a time-averaged reference image where
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concurrent frames are subtracted. Concurrent subtraction of frames results
in very noisy images that need to be cleaned, usually using thresholds. Ob-
taining an accurate background model using these computationally simple
algorithms requires a training period within a controlled environment absent
from movement, foreground objects or illumination changes. Any changes
to the scene requires a re-estimation of the background. This type of solu-

tion consequently requires that the background be updated constantly.

Background modelling is a separate field of research and two popular
types of background modelling techniques are investigated in this section
and compared with a time-averaging method. A foreground object detector
[11] and an adaptive background mixture model [9] are investigated. These
methods are chosen based on their ability to dynamically model complex
scenes and real-time execution. Both FGD and the background mixture

model algorithms are implemented in the OpenCV library.

4.2.1 Foreground Object Detection (FGD)

In a complex scene, possibly containing dynamic moving objects such as
trees, background pixels can have multiple values. FGD integrates multiple
features where most other background modelling techniques only use one
type of feature to model static and dynamic parts. The FGD’s focus is to
model different parts of the background using different types of features.
Feature models for both static and dynamic background pixels are used.
Extracting foreground objects from a complex scene is done using a Bayes
decision rule which has been extended to deal with general features. It
is then possible to classify both background and foreground pixels using

multiple features.

Classification rule A classification rule is formulated in general to clas-
sify a pixel as foreground or background. Following the notation in [11], let

v be a feature at time k located at position r = (x,y) where r is possibly



Chapter 4. System implementation 46

a background or a foreground pixel. Using Bayes theorem, the posterior

probability of v, of a background pixel b or foreground pixel f is

P(vi | C,r)P(C | 1)

P(C| vg,r) = Pive [ 1) ,

(4.2.1)

where C' = f or b. Classification of a pixel as foreground using Bayes rule
is given by
P(f|vg,xr)> P(b|vg,r). (4.2.2)

To classify a pixel at run-time as part of the foreground or background the
probabilities, P(b | vi,r), P(vy | r) and P(vy | b,r) need to be trained. A

table structure is used to store these statistics for every pixel in the image.

Table of feature statistics In [11] a histogram of feature vectors is used

to approximate P(vy | r) and P(vy | b,r) which is not known in general.

A background pixel only has a limited number of values, they are consid-
ered to only be concentrated in a small subspace of the feature histogram.
This indicates that with a good feature selection a background pixel can
effectively be covered by a small number of histogram bins. On the other
hand, foreground pixel values will not be as concentrated in these histogram
bins and will in general be spread more widely. Then we let P(v} | r),
1 = 1,..., N be the first N bins from the feature histogram describing the

multiple background values.

A table of feature statistics is created to store the different feature his-
tograms. The table Sf,f of feature statistics maintains three components

for every pixel in an image,

Pyt =P(vi|r)
7k7A —_— k?' 3
Sf’kz_ pv,;):P(Vislbar) )
V% = [al, ...,afi]T
where a§ are the different states that a feature can have. For a feature

vy the table maintains the most significant portion, where there is the
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highest concentration of pixel values, of the feature histogram. The table
is maintained by each update of the background model. The probability to
classify a pixel as foreground, P(b | vy, r), P(vg | r) and P(vy | b,r), are

known for each pixel from the feature table statistics.

Feature vectors For a pixel classified as part of a static background the
colour is chosen as a feature to be stored in the table and, vy is substituted
in (4.2.1) by ¢ = [rr g bi]”. Static backgrounds where pixel values do not
change over time is simple to handle. The feature c; is chosen if the first

N entries in the feature table do not vary.

A moving background’s pixel values change between frames. The colour
co-occurrence of the change in pixel values between frames are chosen as a
feature vector and again, vy, is substituted in (4.2.1) by oy = [rg—1 gr—1 bx_1
re gr br]T.  Selecting the colour co-occurrence feature is based on the ob-
servation that, for a moving background, the pixel values varies greatly,
and always at the same location in an image. Both states Sz;f’i and Sf,,:“
are stored for every pixel to represent the multiple states. Representing the
background using multiple states allows for alternating pixel values without
noisy interference with foreground objects. In [11] the complete algorithm

is discussed in detail.

4.2.2 Mixture of Gaussian background modelling

The adaptive mixture of Gaussian (MOG) models the variation in pixel
values using a Gaussian mixture model (GMM) consisting of up to K Gaus-
sians, where 3 < K < 5. Each pixel in an image is modelled by a MOG
distributions. Different Gaussian represents different colours. Note that we
have mentioned that background pixels are present in a scene for longer
periods. Then, a weight w is applied to each Gaussian that is proportional
to the time those colours stay in a scene. The idea is that a pixel is drawn
from a GMM allowing for multi-modal distributions of pixel values. The

first N most frequent occurrences of a specific colour is considered to rep-
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resent the background model. The adaptive background mixture model is
developed in [9] and builds on previous work done by Grimson and Stauf-
fer [19]. This method improves the update speed (learning time) of the

background model.

MOG Model The K Gaussian’s at pixel r = (x, y) models the probabil-
ity of the colour values ¢ = [ry gx bk]T at time k& and we write

pler) = Zwm (k| pis 2) (4.2.3)
> wi=1 (4.2.4)

as a 1 dimensional GMM. Then w; is the weight of the i"® Gaussian and
n(cg | pi, ;) is its normal distribution. Training is needed to find w;, u;, %;
and the standard EM algorithms are used. The method is improved upon
in [9] to speed up the learning time. A two step process is used in the
optimised equations. Firstly, estimation of the mixture model by the EM
algorithms are performed. After this initial estimate, the updating step
only considers the last L frames allowing current changes in the scene to
have a higher priority. This improved adaptive MOG adapts quicker and

has a learning time much shorter than [19].

4.3 Motion tracking

Motion tracking picks up constant motion based on repeated detection in
every frame. Motion detection is used to find regions of interest which
are defined as regions which are consistently present in consecutive frames
to minimise noise. Since noise is considered random it is assumed not to
have a constant motion and is only present in a sequence of frames for
short periods. Scenes composed of objects in constant movement in front

of static backgrounds are assumed. Note that motion tracking refers to a
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simple method for detecting objects in a scene and the tracking only refers

to the matching (keeping track) of these regions between frames.

4.3.1 Motion Detection

Motion detection is the first step in processing input frames. Connected
components (blobs) in image M are segmented into rectangular regions.
From experiments it is found that many rectangle regions of the same mov-
ing object overlap. These overlapping rectangles are combined to form a
larger rectangular region to completely bound the object. Filtering out of
small regions is done after overlapping rectangular regions have been com-

bined. These regions are processed as described in the following section.

Motion detection builds up a motion image that captures pixels that
change between frames. Motion is detected by maintaining a sequence of
the last consecutive frames in gray scale. A silhouette image, S, is calculated
by the absolute difference between frame at time £ and its preceding frame
at time k£ — 1, and then thresholded to remove small and isolated noisy
regions. The motion image M is constructed and maintained by updating
M using S,

k, if S(z,y) # 0,
M(z,y) =1 0, if S(z,y)=0and M(x,y) < k-D,
M(z,y), otherwise,

where D is the duration that pixels are allowed to be present in a scene.
D is a user-defined constant value in milliseconds. A large value for D
increases the time a pixel is present in M and usually results in a delayed
shadow or ghost effect. A small value of D decreases the likelihood that

slow motion is detected.
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4.3.2 Motion tracking implementation

Regions detected in the motion algorithm are processed and tracked. Not
all of these regions are consistent in their motion over a time period and
need to be discarded. The process is divided into logical sections and is
described in each of the following steps: detecting tentative regions, con-
firming a tentative region and preparing a region for initialisation for feature

extraction in the particle filter.

Step 1: Tentatives Motion tracking keeps track of regions that have
been detected. Newly detected regions, blobs of motion pixels group to-
gether, are labelled as tentative when they first appear. Matching of these
regions to previously detected regions is done in a nearest-neighbour fash-
ion. Only regions within the tentative region’s neighbourhood are tested for
a match. Regions are matched by their width and breadth. These regions
are allowed to change in size in consecutive frames. If there is no match
to previous regions, the new region is given a timestamp and linked to a

tentative list of regions.

Step 2: Confirmed Continuous detected tentative regions are upgraded
to a confirmed region if motion is present for a minimum time limit. Any
region from the tentative or confirmed list is removed if they are not de-
tected within that minimum time limit. This step has the advantage that
background noise is quickly removed before the region is confirmed. Also,
any confirmed regions are removed if in consecutive frames there is no new
detected region that matches the size and velocity in that region’s close

proximity.

Step 3: Initialisation FEach region in this tracker has a history vector
h describing its positions (x,y), width and height (w, h) and speed compo-
nents (v, vy), such that h = (z,y,w, h,v,,v,) over a period of sequential
frames. These parameters are used when confirmed regions are passed to
the particle filter to automatically initialise the dynamics and extract fea-

tures.
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4.3.3 Motion tracking results

This section discusses the results of the motion tracking method described
above. A video sequence is chosen to illustrate the basic tracker and its
shortcomings. In Figure 4.3 a sequence of frames is shown. Tracked regions
which are confirmed, are shown in yellow, while tentative regions are green.
A number label inside each rectangle is added to each tracked region for

identification.

From frame 380 shown in Figure 4.3 it can be seen that 3 regions are
correctly labelled. A car stopping at the stop sign is lost (no motion regions
are detected) in frame 430 and tracked again when motion resumes in frame
530. Two regions intersect in frame 680 with matching area sizes. Motion
detection creates a noisy region shown in green that quickly disappears
again. The two intersected regions are still separate in frame 730, but their

labels have switched.

Motion detection has another unwanted property due to its construction.
Any fast moving object in a frame creates a ghost effect. The effect is the
result of pixels that are present in the motion image for a fixed amount
of time due to the frame buffer used. This unwanted effect causes a much
larger region of interest than the actual object size. A combination of the
fast motion tracker used with a background modelling technique creates
an accurate region of interest. The background model is only updated
when new tentative regions are created by the motion detection process to
maintain real-time speeds. These more accurate estimated region sizes are

used when initialising the particle filter.

4.3.4 In summary

From the results it is clear that inconsistent labelling is problematic. The
motion tracker does, however, allow a means of finding interesting objects
to track. Any constant movement in a sequence of frames is picked up

and motion history information is obtained. Using one of the background
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Frarme:

Figure 4.3: Frames 380, 430, 480, 530, 580, 630, 680, 730 show the motion
tracking of 2 cars and a group of people walking along the side walk.
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Parameters Descriptions ‘ Values ‘
Motion detection
Motion history duration | Time a pixel is part of history 10 ms
Minimum region size Smallest amount of pixels forming a region | 30 pixels
Tracking Settings
Tentatives region Time needed to become trackable 5 ms
Deletion Time needed for lost region to be removed | 5ms
Search range Matching regions between frames 30 pixels
Region growth Size change allowed 50%
Colour model
(h,s,v) bins Histogram bin sizes (10,10,10)
(HS-V) weight ration Combining HS- and V-histogram (0.7 : 0.3)
Alpha blending Adaption rate 0.1
Hog model
Histogram bins Object rotation = 360/Histogram bins ‘ 18 ‘
Particle filter
Sigma Selection aggressiveness 0.1
Particles Amount 100
FGD & MOG
Minimum region size Noise removal ‘ 15 pixels ‘

Table 4.1: User defined parameters to tweak module performances.

detection schemes like MOG or FGD, segments of confirmed regions can be

better identified.

4.4 User defined parameters

Each of the modules, motion detection, motion tracking, background mod-

elling and particle filtering contains user defined parameters that could im-

prove performance if selected correctly for a particular scene. This section

summarises the most important parameters in Table 4.4. Also, values used

in the experiments are the same unless stated otherwise in the text.
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4.5 Object detection experimental results

As previously mentioned, the FGD and MOG algorithms are implemented
in the OpenCV library. A background module interface is implemented and

integrated into the system. Using this interface each algorithm is tested.

FGD and MOG background modelling techniques were developed for
complex scenes containing changing backgrounds. Comparison of different
video sequences shows that for static backgrounds, both methods perform
similarly, giving excellent results. Problems using these techniques become
quickly apparent. Tweaking parameters for each model needs to be done
for different scenes, see Table 4.4. Also, model update speeds are slow due
to the complexity and amount of calculations needed. Real-time processing
is achievable only at low resolutions of 320x240 on hardware as described

in Appendix A.5.

Figure 4.4 shows a frame from a video sequence where a person dressed
in black walks across the scene. The scene is composed of dynamically
changing background scenery, e.g. trees, while the foreground contains a
person. The idea is to detect the person moving in the foreground against

the dynamically changing tree branches in the background.

The foreground frames are shown for four different background modelling
techniques: frame differencing, motion detection, FGD and MOG. Both
FGD and MOG are trained for 700 frames beforehand to ensure a reliable
background model is present. The following paragraphs explain the results

obtained in Figure 4.4 for each of the four techniques.

Frame differencing is a simple approach for detecting foreground re-
gions by subtracting consecutive frames and thresholding to minimise noise.
For the results in Figure 4.4 (b), a running average, weighted sum of frame

I(z,y) is calculated,

I(z,y) = (1 — o) [e_1(z,y) + a X Fi(z,y). (4.5.1)
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Figure 4.4: (a) frame 260, (b) frame differencing, (c) motion detection, (d)
MOG, (e) FGD

Every new frame F}, is weighted by a constant value « at time k, in this case
set to a = 0.1. Each of the colour channels is thresholded and combined by
a logic OR operator to form a binary foreground image. Throughout the
video sequence noise regions are detected where the background moves and
the foreground image is cluttered. Frame differencing has the advantage

that it runs real-time and is appropriate for static scenes.



Chapter 4. System implementation 56

Motion Motion detection is shown in Figure 4.4 (¢) and explained fully
in Section 4.3.1. There is no background modelling, only foreground detec-
tion from moving objects. Moving shapes that come to rest are lost from
view. Any moving foreground object is detected and an empirically chosen
threshold, 7' = 50 (minimum blob size in pixels) is used in this sequence.
Figure 4.4 shows that motion contains a significant amount of useful infor-
mation for tracking purposes. It also shows how the background changed

for a short period of time before the frames shown in Figures 4.4.

FGD Foreground detection, as described in Section 4.2.1, is tested using
various input parameters. Frame rates of 30 frames per second is achieved
at a resolution of 320x240. The foreground person is detected successfully
in the video sequence shown in Figure 4.4 (d). FGD fails to detect the fore-
ground object (person in Figure 4.4 (a) ) in cases where the background
pixels are indistinguishable from the foreground (black clothing over shad-
ows). This is understandable since the model statistics cannot distinguish
the foreground from the background when the pixel values are the same.
Also, note that most of the moving tree branches in the background are

successfully distinguished from the foreground.

MOG Similar to FGD, parameters need to be set according to the scene
composition. Using 3 Gaussians, a speed of 25 frames is achieved at a
resolution of 320x240. Foreground regions are detected with small noisy
patches. Using the same minimum blob size as FGD, MOG detected more

foreground pixels in this case, as seen in Figure 4.4 (e).

4.5.1 In summary

Both MOG and FGD can handle dynamically changing backgrounds and are
well suited for complex scenes. Processing is computationally expensive and
slows down more when scenes are busy. Setting up model parameters also
require tweaking to obtain useable results. These background modelling

methods were developed to deal with complex dynamic scenes. In cases
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where scenes are static, foreground objects are much easier to detect using

only the motion in a scene.

4.6 Particle filter tracking

Real and simulated videos are used to test the feature-based particle filter.
Experiments are first done by selecting the object to be tracked by hand
in the first frame. Then experiments are done by automatically obtaining
objects and extracting features to track. The final experiment illustrates
the integration of all the modules, background modelling, motion tracking

and multiple feature-based particle filers.

4.6.1 Colour only tracking

Using only the object’s colour feature, a simulated soccer video from dataset
http:/ /www.multitel.be /trictrac is tested. The object to be tracked is first
selected by hand. The test illustrates the use of tracking confidence as well
as the particle filter’s multiple hypotheses when dealing with objects with

similar appearance.

Soccer scene description The video sequence consists of soccer players,
all similar in appearance, on a football field. In the sequence, the camera,
moving quicker than the players, is panning from left to right. In each
frame in Figure 4.5 the particles are shown as red circles tracking a player
as well as the tracking confidence (top left). The tracking confidence is
shown in terms of "tracking object" or "object lost". Each particle’s weight
is represented by the circle’s radius, where the radius is directly related to

the particle weight.

Detection of tracker loss In frame 348 the camera moves across the
field past the players and the tracked player is lost. A clear indication
of a tracker loss is seen when particles, equally weighted, are distributed

with a large standard deviation. In the sequence of frames different players
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Figure 4.5: Selected frames 301,315,319,322,348,353,372,571 show the tracking
of simulated similarly clothed players using a moving camera.
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are tracked when the player is lost from view and the initialisation detects

another player that has a high likeliness to the target model.

It is clear that particles are distributed between players that are close in
distance, a clear indication of multiple hypothesis of the pdf distribution
properties. This can be seen in Figure 4.5 frame 322 where the two players
on the left are both weighted by particle circles after the automatic initialise

function detected the players.

4.6.2 Texture only tracking

HOG is used as a feature model in this experiment to track a person’s eyes
and nose (see Figure 4.6). The experiment illustrates a real person’s face

being tracked. The confidence measure is tested for the HOG feature model.

bl

Figure 4.6: Face image used to initialise tracking

The red circles, in Figure 4.7, have a radius directly related to their
probability and are well distributed across the face. The predicted location,
shown by the ellipse bounding the most likely position, is not an accurate
prediction in every frame. Through the sequence the tracking confidence
stays low and a message is displayed showing that the object is considered
lost. However, the face is tracked for the entire sequence. In Figure 4.7 the
number of particles are set to 150 and a 72 bin histogram is used. Both the
number of particles and the number of HOG bins are increased greatly to
obtain the results shown. Performance is negatively affected by the increase
in particles. Real-time tracking is not achieved since feature extraction of

the face regions for every particle is slow.
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4.6.3 Feature combination tracking

Both features, colour and texture, are used during tracking. Again, tracking
a person’s face is considered. The result is compared with the HOG tracking
in the previous section. The soccer sequance is not used in to illustrate the
combined features. The soccer players texture information is very little, due

to the uniform colour of the players, and tracking results do not improve.

To increase the confidence measure of texture tracking the colour feature
is included. This allows for less particles to be used to increase speed.
Also, the increase in tracking confidence allows that the region size can
be adjusted appropriately. The number of particles is set to 75 using a
colour histogram descriptor of 10x10 bins for HS-histogram, 10 bins V-
histogram and a HOG descriptor of 36 bins. Each feature is weighted
equally. Performance and accuracy is greatly increased and the facial region
is tracked with high confidence as seen in Figure 4.8. Note the high accuracy
of the most likely positions during the end of the sequence where both colour

and shape become distorted.

4.7 Automatic initialisation tracking

The feature-based particle filter requires prior knowledge of features, whereas
motion tracking as implemented in Section 4.3, captures any region of mov-
ing objects. This section describes how to integrate motion detected objects,

representing them as features, to the feature-based particle filter.

Other initialisation techniques, which rely on features being trained be-
forehand, are possible. Support vector machines for example are used to
obtain an object’s features from a large descriptive dataset of similarly ap-
pearing objects. These methods work well if the object that needs to be
tracked is specifically known. This is possible when designing a specific ap-
plication. Using motion tracking, a general approach is taken to illustrate

the power of a feature-based particle filter to track objects.
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4.7.1 Snooker ball experiment

To illustrate the integration of each of the module’s background mod-
elling, motion tracking and particle filtering, a sequence of snooker balls are
tracked. No prior knowledge is used to train the features or the background
model. Tracking snooker balls, each with its own instantiated particle fil-
ter, is illustrated in this section. Tracking snooker balls is considered to

maintain a controlled environment.

The video sequence contains 3 snooker balls placed at the end of the table.
New snooker balls enter the frames periodically. When a new snooker ball
enters the camera view, its motion is captured and tracked using motion
tracking. Once the region is confirmed, the background model is used to find
the minimum bounding box containing the snooker ball for accurate feature
extraction. The bounding box is used to initialise a particle filter to handle
further tracking. Different coloured balls are used since ball shapes are
identical and HOG would fail when used alone. The snooker ball experiment

is shown in Figure 4.9 and illustrates the following:

e Automatic initialisation is possible using the motion tracker
e Due to modular design multiple objects can be tracked simultaneously
e Necessary good feature extraction is handled by a background model

e Adapting to the region size automatically (motion direction is away

from camera)

Details of the snooker sequence A description of the video sequence
is required to understand the experiment completely. The video resolution
is 320x240 with the light source above and behind the table. Tllumination
changes are present when the balls move across the table beneath the light.
The illumination changes are handled by the colour feature adaption. Also,
the light source creates pixel noise detected by the motion detection. Ball
speeds vary but all enter the scene quickly. The balls are rolled hard enough
by hand to reach the opposite side of the table and bump into other balls
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on the way back. The effect of this is that motion detection, detects a much
larger region when the ball enters due to the motion pixel history described
in Section 4.3.1. Also, it is important to note that as the ball moves away

from the camera its size also becomes much smaller.

Parameter settings In Figure 4.9 the bounding box regions are drawn
in black. The number of particles are set to 60, using both HOG and colour
features blended at 50%. The motion tracker is set to confirm tentative
regions in 0.5 seconds. The maximum number of particle filters that may
be instantiated is set to 8. Automatic initialisation after a loss of an object,
which is very time consuming, is disabled to avoid interference with the
motion tracker timing. A MOG background model is used whenever new
regions are confirmed. A FGD can also be used with similar results, however

with slightly slower execution.

Result discussion The first blue snooker ball is detected from frame
55. The movement is mostly away from the camera and its bounding box
decreases quickly. The bounding region is mostly adapted in frames 74,
75 as seen by the size of the white circles corresponding to the particle’s

location with the highest probability.

The introduction of new snooker balls in frames 74, 85, 103 is each han-
dled separately. Features are extracted while the balls are moving at their
quickest, not always bounded exactly and where shadows are also included.
These features are slowly adapted and most balls are tracked successfully,
although two do become lost. The effect of the HOG feature does, in some
cases where the colour ball is lost, allow other colour balls to be tracked and

the colour adapts to the new ball colour (such is the case with the black
ball).

Notice that the motion tracking bounded regions, shown in green (ten-

tatives) and yellow (confirmed), are much larger than the actual target
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objects. A much more accurate bounding region is thus found from feature

tracking.

There are slight illumination variation as the balls move across the table
and closer to the light source. To handle the illumination changes the colour
feature model needs to adapt accordingly. Adaption is successful in all but
2 cases, the blue and black ball is not tracked the entire sequence. The
reason the balls are lost is the result of bad feature representation. The
similarity with the side and back of the snooker table where the edge of the
table casts a shadow has a high similarity with the feature and the black
ball is not tracked. In the case of the blue ball, another ball (purple ball)
with similar colour, is tracked when the blue ball moves into the table’s

edge shadow (seen in frame 112).

Using eight particle filters is computationally expensive and the sequence
of snooker balls are not tracked real-time. When only one or two balls are

tracked using the particle filter, real-time tracking is possible.

4.8 Summary and conclusion

In this chapter, the development of modules, background modelling, motion
tracking and feature tracking are integrated and tested. Results show that
when parameters are setup correctly and descriptive model features are
selected, then tracking is successful. Table 4.8 shows a summary of timing
results for experiments in this chapter. Results are based on hardware
described in Appendix A.5.

Generally, in situations where the object is detected using motion de-
tection, descriptive features are either not present or not automatically
selected well. It is important to note that tracking only performs as well
as the initial model selections. The snooker ball tracking experiment works
well, due to simple but descriptive features, little background noise and a

semi-controlled environment.
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The goal of creating real-time methods is achieved. Each module can
operate in real-time when used on its own. However, when integrating the
modules the process slows down significantly. Background modelling speeds
are mostly subject to how busy a scene is, while the particle filter speeds
are mostly affected by the region size that need to be processed for each
particle to extract features. Using the very fast motion tracking background
modelling is only necessary for newly confirmed regions and greater speeds

are obtained.
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Frame: 300 - Frame: 336

Figure 4.7: Face tracking video sequence using HOG with 150 particles and 72
bins. Selected frames 55, 100, 125, 150, 180, 212, 300, 336 shown.
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Frame: 373 L Frame: 374

Figure 4.8: Face tracking video sequence using colour and HOG features with
75 particles. 110 colour bins and 36 HOG bins. Selected frames 55, 100, 125, 150,
371, 372, 373, 374 shown.
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Frame: 55

Frame: 75

Frame: 103

Frame: 129

Frame: 112

Frame: 143

67

Frame: 74

Frame: 88

Frame: 128

Figure 4.9: Selected frames 55, 57, 74, 75, 85, 88, 103, 112, 128, 129, 143, 201
shown from top left to bottom right.

Experiment name | Features used | Fps | # particles | image/patch size(pixels)
FGD X 33 | X 320240

MOG X 25 | x 320x240

Motion X 35 | x 640x480

Soccer sequence Colour 10 | 150 10x20

Face 1 Texture 7 150 75x45

Face 2 Combination | 5 75 75x45

Snooker Combination | 0.3 | 70x8=560 | varies

Table 4.2: Summary of experimental timing results




Chapter 5
Conclusion

The problem was to investigate a means of tracking that could be extended

to various fields for the purpose of general use.

A sub-optimal general particle filter was implemented that can be used
in different tracking applications. Other, more accurate trackers do exist
and are much more complex, but are just too computationally expensive.
Incorporating feature descriptors allowed objects to be modelled and video
sequences to be analysed. Previous work suggests that colour-based fea-
tures obtained good results; the colour-based feature was implemented. It
also became clear that using other features increased robustness, and his-
tograms of gradient (HOG) were implemented suitably adapted for tracking
purposes. Re-initialisation after tracker loss and a confidence measure was
added to increase robustness during adaption. Dynamic and object infor-
mation was obtained using the motion tracker and automatic initialisation
was implemented. Noise needed to be removed before capturing good de-
scriptive features and background modelling techniques partially solved this

problem.
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5.1 Future challenges

Some challenging scenarios exist where tracking will fail in most cases. In-
terestingly, in general, indoor locations are more difficult than outdoor.
Indoor locations have many surfaces that reflect or cast shadows. Also,
electric lighting creates more challenges, such as noise, and objects reflec-
tions and shadows are more pronounced. This poses a challenging task to
accurately extract features only relating to the object. Tracking during
night-time is another challenge that requires detailed attention to illumina-

tion sources.

5.2 Restrictions

It is important to realise that each module, such as motion tracking, back-
ground modelling and feature tracking, have their own restrictions. Both
motion tracking as well as background modelling, are restricted by a static
camera setup. Also, much time is needed setting up parameters or waiting
for background models to be trained correctly. In most cases, settings are

scene-and-object specific.

Particle filtering is considered due to its simplicity to easily track objects
in real-time. However, it was found that there are hidden computational
costs. The feature-based particle filtering is computationally expensive for
multiple features. Execution time suffers when the number of particles is
increased or the image patch for each particle is very large. Most of the
computational time is spent on extracting features for each observation
which is equal to the number of particles. In such cases the requirement of
real-time tracking is not met. Also, tracking fails when models are a bad

representation of the object.
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5.3 Goals achieved

An adaptive feature-based tracker was implemented and tested. Having a
tracking confidence meant that features could be adapted automatically and
smartly. These tools allow robust tracking of any object that meets the re-
strictions. These restrictions depend on their model descriptors and better
models would increase robustness or execution speeds. Prior knowledge of
an object’s descriptor was obtained using a motion tracking technique based
on repeated detection in each frame. Improvement of the prior model ob-
tained from the detection, used dynamic background modelling techniques

to obtain more accurate bounding boxes, greatly improving results.

5.4 Recommendations

Real-time execution is always a high priority in certain applications. What
is more important is the cost effectiveness in the sense of being able to
drive multiple cameras from the same CPU. Even the light-weight tracking
methods discussed here are hard to implement in real-time. Detailed atten-
tion to optimisation is required. Many of the algorithms might also have
much simpler or better ways that as a whole, minimise computations. It
is suspected that such optimisations are possible and beneficial if applica-
tions are to become useful. Our studies do show however, that light-weight
schemes can be quite robust and have the advantage of being adaptable to
more specific applications. Research into application development is most
likely the next logical step. Application specific solutions would also show
much better results and have its own set of optimisations for robustness and
speed. This thesis has presented a tracking tool that is easily extendable
using different features. An application might now be developed that solves

a much more specific problem using the tools developed here.
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Appendix A

Project files

In this section project files, installation and file interaction are described.
All software libraries used are freeware or open source and cross-platform

(developed and tested in Linux).

A.1 Required software

Development was done in a Linux environment on an Ubuntu Dapper sys-
tem. Eclipse version 3.1.2 with a Cdt (C'++) plug-in is used as editor for the
tools. A pydev (python 2.4.3) plug-in is used for the interface and requires
wxpython (2.6.2.1) to be installed. The Eclipse workspace contains all the
compile settings, project files, images and videos used for development and
compiled with gce version 4.0.3 (Ubuntu 4.0.3-lubuntu5). OpenCV Intel
libraries (1.0.0) as well as the ffmpeg (libavutil, libavcodec, libavformat)
libraries are required. Packages such as libjpeg are needed to display and
save images. Note that the versions only indicate how the built binaries
where constructed. In general always install newest versions when building

from source.
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A.2 Installing tracking tools

Running binaries An interface was created to easily enable or disable
modules for testing. Each module setting is also included and is saved to
a config.txt file. To run the precompiled binaries, simply copy the project
directory and run (./PF/src/ python interface params.py). To save
images and videos to the disk write access is required. In Linux log on as a

superuser or execute the above command with a sudo prefix.

Building from source Building from source is easiest using Eclipse. Im-
port the project workspace, all my compiler settings and directory struc-
tures are included. Select build all from menu and select run. Otherwise,

compile using the (make file. from.source) file.

A.3 Running an example

Open the GUI from the main project directory, (./PF/src/ python inter face params.py)
and select from the start menu, run demo. The main GUI window is shown

in figure A.1. There are 8 quick demo’s to view. If at any stage it seems

that a demo window is not responding hit any key. To exit hit the ESC

key.

A.4 Directory structure and file description

Figure A.2 shows how the project files interact.

GIO.cpp Graphical input and output functions. All drawing functions,
opening and saving of images and video stream functions are included in
this file.

Backgroundmodel.cpp Both the Mixture of Gaussians and Foreground

Detector is included and uses the opencv libraries background model.
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Sracking oo|s

Openvideo Start Settings Exit

Main | Particle ﬁ{rar} Colour modall HOG modall Mation I Background model} Prior feature model select.'|

IActivate modules that will be tested,

¥ Motion tracking 10 :] 10 B Sample size (HxiHy)
[ Particle filtering 50 = Feature weight contribution [HOG:Colour]

@ Background modeling Mixture of Guas i

[ Z-plane adapt

Chebyshev confidence [0%,68%,95%,99%)]
Initialise search
resolution (pixels to skip)

# Use confidence

uu

[ Auto initizlise after loss 0
] Write video

[ Draw on frames

¥ Draw best location

2 : Scale video frames (fractor smaller)

Figure A.1: GUI main window

TrackerMain.cpp |
Background_model.h S 1 Motion_tracker.h
Background_model.cpp YoVl |} "] Motion_tracker.cpp
L E
JL < i
Const_global_inclh i Mation_detection.h timing.h
E Motion detection.cpp | | timing.cpp
tH <f
Tl | 25
|| HoGmodelh 0 S
HoGmodel.cpp Y] %% L particle_filterh
- &Ug " particle_filter.cpp
“ ol
g 58
g @3
ColourHistModelh | ¥ 3|} 9§
L : Zpoug
ColourHistModel.cpp % | GIOh
= " GIO.cpp

Figure A.2: Project file interaction
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Timing.cpp Contains timing calculations to start, stop and get elapsed

time functions.

MotionDetection.cpp Implementation of motion detection. Updates mo-

tion model using update mhi function.

MotionTracker.cpp Processes the regions detected by motion detection
(function process() is used). Labels are added to the regions and timing
is used to obtain region which are present for constant time periods. Fil-

terOverlappingRegions() function merges rectangles which intersect.

ParticleFilter.cpp Contains functions to calculate the pdfs and statistics

from the distribution.

HoGmodel.cpp Texture feature is implemented using HOG. Histogram

texture features are extracted from a colour image.

Colour Histmodel.cpp Colour image histograms are built for HS and V

planes of the image.
FeatureParticleFilter.cpp Contains the tools that adapt and calculate
confidence. The tracking steps, update pdf from samples and predict using

motion models are included.

Tracker Main.cpp Contains the main loop that parses input parameters,

open the video for display and calls each module.
Sys_war.h System and module settings and varibles.

Const__global _incl.h  The partile structure and other global constants.
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Processor Intel Core 2 T5500

Ram 1GB DDR2

Camera 1 Sony DSC-V1 320x240, 640x480 video (15 fps)
Camera 2 Sony DSC-H1 320x240, 640x480 video (15 fps)
Camera 3 Axis 221 320x240, 640x480 (up to 60 fps)
Camera 4 Axis 207 320x240, 640x480 (up to 30 fps)

Table A.1: Hardware used in experiments

A.5 Hardware configuration used

Experimental results where obtained using the following hardware in Table
A.1. Diffrent camera’s where used to test the effectiveness of the algorithms
on different hardware. Camera 1 and Camera 2 are both digital cameras
with video functionality. For results shown in this thesis Camera 2 was used
for the face tracking, background modelling experiments. And Camera 3

was used for the motion tracking experiment.
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