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SUMMARY

Aged distilled spirits such as whiskey are complex mixtures of flavour compounds in an

ethanol-water matrix. The flavour compounds involved can have widely different volatility

and relative amounts. Many of the organoleptic properties that make whiskey suitable for

commercial sale have their origin in reactions occurring during the ageing process in oak

wood barrels.

To investigate the complex changes that take place during spirit ageing a preparative

fractional vacuum distillation process was developed. Both high and low volatility

compounds could be individually isolated as fractions and free from both the ethanol matrix

and the fermentation fusel alcohols. This allowed a range of sensory and analytical

procedures to be conducted on these fractions, in particular to investigate changes occurring

during ageing.

Gas chromatographic (GC) analysis of the low volatility fraction is complicated by the fact

that both the compounds and their ethanol matrix have very similar chromatographic

behaviour when separated simultaneously on standard chromatographic phases. Compound

and matrix co-elution becomes a major problem and conditions for mass spectrometric (MS)

investigation are disadvantageous. A two-dimensional GC configuration using dissimilar

chromatographic phases was configured to overcome these limitations. Using this approach

27 compounds were separated and identified. Headspace injection was used to increase

detection sensitivity. Changes with ageing for seven compounds present at very low levels

were quantified. In addition changes in the most abundant compounds were quantified by

standard split injection, and changes in trace level sulfur compounds by headspace injection

with sulfur chemiluminescent detection (SCD). Increases of the concentrations of pleasant

fruity ethyl esters and acetates were established. Volatile sulfides with generally objectiona-

ble aroma showed concomitant major decreases.

Appropriate techniques could also be applied to the low volatility compounds recovered from

the whiskey water fraction. High temperature GC-MS analysis of an extract of the water

fraction allowed the identification of 30 compounds. Three phenolic esters were identified in

whiskey for the first time. These compounds were synthesised and shown to be contributory

to desirable ageing flavour. Increases in concentrations of 16 oak derived compounds during
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alO year ageing period were established. Several compounds increased significantly over

this time period. Ratios of aromatic phenolic aldehydes, and changes in these ratios during

ageing, were unique to the type of barrel used in these experiments. This suggests that the

final sensory properties of aged whiskey may be more dependent on wood parameters than

previously thought.

Preparative reverse phase High Pressure Liquid Chromatography (HPLC) with an ethanol

water gradient was used to further fractionate an extract of the low volatility compounds.

Subsequent analysis and sensory testing allowed a group separation of compounds with each

group contributing characteristic attributes to the total flavour. One group contained the three

new phenolic esters together with a number of other unidentified compounds. This group was

found to be important for desirable ageing flavour that seems to develop slowly with time.

Further studies in this area to understand the individual and synergistic contributions of the

many facets of ageing chemistry will have important commercial implications.
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OPSOMMING

Verouderde spiritus soos Whiskey is 'n komplekse mengsel van geurstowwe in 'n etanol-

water oplossing. Die vlugtigheid van die geurstowwe asook die konsentrasies waarin hul

aanwesig is, varieer aansienlik. Verskeie van die sintuiglike eienskappe wat kommersiële

waarde aan whiskey verleen, het huloorsprong in reaksies wat tydens die verouderingsproses

in eikehoutvate plaasvind.

Ten einde die ingewikkelde veranderinge wat tydens die veroudering van spiritus plaasvind,

te ondersoek, is 'n preparatiewe fraksionele vakuumdistillasieproses ontwikkel. Hoogs

vlugtige en minder vlugtige verbindings kon geskei word in afsonderlike fraksies wat vry was

van etanol en fuselalkohole. Dit het die sintuiglike en fisies-chemiese analises van die

fraksies moontlik gemaak, veralom die veranderings wat tydens veroudering plaasvind, te

ondersoek.

Gaschromatografiese (GC) analise van die fraksie met 'n lae vlugtigheid word gekompliseer

deur die feit dat hierdie komponente en die etanol waarin dit opgelos is soortgelyke

chromatografiese eienskappe toon wanneer hul gelyktydig op standaard gaschromatografie

fases geskei word. Die gelyktydige eluering van dié komponente en etanol waarin hul

opgelos is, skep 'n probleem wat nadelig vir massaspektrometriese (MS) analise is. Die

beperkings is oorkom deur die gebruik van tweedimensionele GC en stasionêre fases met

uiteenlopende eienskappe. Op dié wyse is 27 verbindings geskei en geïdentifiseer. Die

veranderinge in konsentrasies tydens veroudering is vir sewe verbindings gekwantifiseer.

Veranderinge in die konsentrasies van die verbindings teenwoordig in die hoogste

konsentrasies is gekwantifiseer deur split-inspuitings, terwyl veranderinge in die spoor-

konsentrasies van vlugtige swawelverbindings mbv dampfase-inspuitings en met swawel

chemolumisensie deteksie (SCD) bepaal is. Toenames in die konsentrasies van die

aangename vrugtige esters en asetate is bepaal. Vlugtige sulfiede met meesalonaanvaarbare

aromas toon gelyktydige groot afnames.

Geskikte tegnieke is ook gebruik vir die herwinning van minder vlugtige verbindings met die

waterfase van whiskey. Hoë temperatuur GC-MS analises van 'n ekstrak van die waterfase

het die identifikasie van 30 komponente moontlik gemaak. Drie fenoliese esters is vir die

eerste keer in whiskey gevind. Hierdie verbindings is gesintetiseer en hul bydrae tot die
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gewenste verouderingsgeur is sintuiglik bevestig. Toenames in die konsentrasies van 16

eikehoutverwante verbindings gedurende 'n verouderingsperiode van 10 jaar is bepaal. 'n

Betekenisvolle toename het voorgekom in die konsentrasies van verskeie van hierdie whiskey

verbindings. Die verhoudings van aromatiese fenoliese aldehiede en die verandering in die

verhoudings tydens veroudering was kenmerkend van die tipe eikehoutvat wat gebruik is. Dié

bevinding dui daarop dat die fenole sintuiglike eienskappe van verouderde whiskey meer

afhanklik mag wees van eikehout parameters as wat voorheen algemeen aanvaarbaar is.

Preparatiewe omgekeerde fase hoëdrukvloeistofchromatografie met etanol/water as 'n

gradient elueermiddel is gebruik om 'n ekstrak van die minder vlugtige verbindings verder te

fraksioneer. Verdere GC-, MS- en sintuiglike analise het die skeiding van groepe van

verbindings waarvan elk kenmerkende bydraes tot die totale geur lewer, moontlik gemaak.

Een groep het drie nuut geïdentifiseerde fenoliese esters, tesame met 'n aantal ongeïdentifi-

seerde verbindings, bevat. Daar is vasgestel dat hierdie groep 'n belangrike bydrae maak tot

die gewenste geur wat klaarblyklik stadig tydens veroudering ontwikkel. Verdere ondersoeke

in hierdie verband om die individuele en sinergistiese bydraes van verskeie fasette van die

chemie van veroudering te verstaan, kan belangrike kommersiële implikasies hê.
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CHAPTERl

INTRODUCTION

The ageing or maturation of distilled spirits in oak barrels is a very important part of the

entire production process. Unaged whiskey is generally raw in both aroma and taste, and the

ageing process converts this immature spirit into a desirable high-value commercial product.

Elucidation of these changes is therefore important both scientifically and commercially.

Since whiskey is distilled in pot stills, which have limited separation power, the intermediate

immature spirit is still a complex mixture in an ethanol-water matrix. These compounds

originate from the raw material and the various production stages of brewing, fermentation

and distillation. A major difficulty therefore is in trying to clarify the chemical ageing

changes against a background of compounds that do not change or change very little.

To investigate the changes that take place during spirit ageing a preparative fractional

vacuum distillation process was developed. The design and operation of this unit is presented

in Chapter 1, together with data on distribution and recovery of compounds. In the fractional

distillation process both the flavor compounds and the matrix components separate according

to volatility and azeotropic boiling points. High volatility compounds can be recovered as a

small enriched fraction in ethanol. The ethanol matrix itself can be isolated in greater than

90% yield, giving a useful depletion of this neutral fraction. The fusel fraction, which

changes little during ageing, is similarly concentrated and isolated. The majority of low

volatility compounds originating from the wood, and their reaction products over time,

remain in the water fraction, which can be analysed free of interfering fusel fraction

compounds. Sensory testing in the absence of any extraneous solvent material can be carried

out on both fully reconstituted whiskeys in comparison to their unfractionated parents, and on

individual fraction reconstitutes from different samples. This technique was applied to the

monitoring of ageing changes in whiskey during oak barrel maturation. Only fractions

considered contributory to perceived ageing character need be considered and gas chromato-

graphic analysis can be tailored to the volatility of the fractions.

Chapter 2 outlines appropriate techniques, which were developed for analysis of the high

volatility compounds, together with results on their changes during ageing. These compounds
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are associated with perceived flavour changes because of their volatility and generally low

sensory threshold values. The most abundant compounds could be analysed by standard split

capillary gas chromatography, as splitting conveniently reduces the amount of matrix ethanol

transferred to the column. Sulfur compounds at very low levels were analysed by a

combination of headspace injection and sulfur chemiluminescent detection. Headspace

injection maximised sensitivity and specific chemiluminescent detection meant that large

solvent peaks were essentially not detected. Volatile sulfides, with generally disagreeable

aroma, were found to decrease with ageing time. For other trace compounds a two-

dimensional gas chromatographic configuration using dissimilar phases was found necessary

for separation and identification. Using multiple individual injections of the sample to the

first column, with different cuts from each injection transferred to the main column for

further resolution, it was possible to separate trace-level compounds from the main ethanol

peak. Using these approaches the changes in concentration of the highly volatile compounds

of whiskey during ageing were monitored.

Storage in oak barrels significantly improves the sensory properties of whiskey and the

mechanisms involved range from extraction of wood components to reactions of these

components with each other and with components of the distillate. InChapter 3 an attempt is

made to interpret some of these changes by preliminary isolation of the compounds in the

water fraction in the vacuum fractional distillation process. Chromatography can again be

tailored to the specific compounds in this fraction. In this case high temperature capillary gas

chromatography after programmed temperature vaporization injection is useful for elution of

high boiling compounds. After extraction of the relevant compounds from a water fraction

high pressure liquid chromatography was used to further fractionate the flavour compounds.

These fractions could in tum be analysed by high temperature GC to reveal further

compounds previously masked by chromatographic overlapping. By using ethanol and water

as eluting solvents for the liquid chromatographic separation, sensory information was also

available from the resulting fractions. This integrated strategy was then applied to water

fractions of the same whiskey at different ages to characterise both abundant and trace

compounds formed during maturation.

The draft publications are written according to the prescriptions of the South African Journal

of Enology and Viticulture and have been accepted for publication in 2001.
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CHAPTER2

FLAVOUR COMPONENTS OF WHISKEY.

1. DISTRIBUTION AND RECOVERY OF COMPOUNDS BY

FRACTIONAL VACUUM DISTILLATION

K MacNamara1,CJ van Wyk2, OPH Augustyn', A Rapp"

I Irish Distillers Group, Bow Street Distillery, Smithfield, Dublin 7, Republic of Ireland.

2 Department of Viticulture and Oenology, University of Stell enbosch, Stellenbosch 7600, Republic of South
Africa.

3 ARC - Fruit, Vine and Wine Research Institute, Private Bag X5103, Stellenbosch 7599, Republic of South
Africa.

4 Institut fur Lebensmittelchemie, Der Universitat Karlsruhe, 76128, Karlsruhe, Germany.

Key words: Whiskey, vacuum distillation, flavour compounds, gas chromatography

Condensed title: Vacuum distillation of whiskey

ABSTRACT

A vacuum fractional distillation procedure is described for separating both the matrix

components and flavour compounds of a whiskey into well defined groups based on

differences in azeotropic boiling points. The distillation was carried out at near ambient

temperatures to accommodate both unaged and aged whiskeys. Analytical and sensory data

indicated good recovery of congeners.

Individual fractions were reconstituted with ethanol and water to the original volume and

strength dimensions of the whiskey. Undesirable thermal changes in the aged products were

minimised by the low temperature fractionation, and allowed changes in the flavour

composition of whiskey due to maturation to be investigated for such unaged and aged

reconstituted pairs.

Stellenbosch University http://scholar.sun.ac.za



4

INTRODUCTION

Aged whiskey is a complex mixture of hundreds of flavour compounds in an ethanol water

matrix. These compounds originate from the cereal raw material, the individual production

stages of starch conversion, fermentation and distillation and the ageing process in oak

barrels (Lyons & Rose, 1977; Lehtonen & Suomalainen, 1979; Nykanen & Nykanen, 1991).

Analysis of the majority of the flavour compounds at their naturally occurring levels requires

concentration and isolation techniques. Various approaches have been described and a

general trend is to both isolate and concentrate specific compound groups (Maarse & Belz,

1985). An analysis of Jamaica Rum has been described (Liebich, Koenig & Bayer, 1970)

employing initial solvent extraction with subsequent acid and/or base manipulation for

isolation of acids, phenols and lactones. Further preparative gas chromatography was used to

isolate individual compounds for spectroscopic study. A more comprehensive general

separation scheme for distilled spirits (ter Heide et al., 1978; ter Heide, 1984) involves the

above steps, but also subsequent fractional and short path distillation.

There are certain disadvantages to these approaches. When a sample is initially solvent

extracted it is not possible to successfully analyse the very volatile compounds. Additional

headspace concentration techniques on the sample itself are necessary to recover these

volatile compounds (ter Heide et al., 1978). Extraction also makes sensory investigation more

difficult because of residual solvent traces.

A different approach describes a semi-automated commercial apparatus employing vacuum

column distillation to fractionate the actual sample (MacNamara, Burke & Conway, 1989).

Applied to whiskey this distillation gives the required compound separation and enrichment

by taking advantage of both compound volatility and the azeotropic behaviour of ethanol and

water with the secondary flavour compounds. The fractions obtained are in the original

whiskey matrix only and will therefore be suitable for direct sensory evaluation. However,

since they differ in volume and ethanol content an individual fraction reconstitution

procedure is necessary to remove these variables. Gas chromatography with flame ionisation

detection (GC-FID) is used to define the start and finish of fractions. Gas chromatography/

mass spectrometry (GC-MS) is used to demonstrate the isolation of important compounds

originating from wood into one specific fraction. Further GC analysis on the individual
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fraction reconstitutes and on a total reconstitute is employed to monitor the general

distribution of flavour compounds in all of the fractions.

The aim of the present work is the extension of this approach to the monitoring of ageing

changes in whiskey during oak barrel maturation. A major advantage is that only those

fractions which are judged contributory to perceived ageing character, need be considered. In

addition the volatility fractionation offered by the process greatly simplifies the subsequent

chromatographic analysis of these fractions.

MATERIALS AND METHODS

Whiskeys: Whiskeys were standard unpeated Irish Malt Whiskey and were obtained directly

from warehouse at a cask strength of ca. 65% v/v. These samples were at various ages and

each sample was a composite of 12 aliquots from similar casks at the same age. Casks were

standard once-used American bourbon barrels and composites were used to minimise any

cask to cask variation. A 50 litre sample of the original unaged standard malt whiskey had

been retained for comparison purposes. Samples and their subsequent fractions from the

distillation were either stored in a cold room at 4°C in Duran flasks with teflon lined closures,

or frozen in the case of fraction 5 with low ethanol content.

Distillation apparatns: Two litre samples of whiskey were distilled in the apparatus shown

in Fig. 1 (Normschliff, Wertheim, Germany).

Evaporation occurred by recirculating the sample through a thin film evaporator, which was

heated by an external oil bath (not shown). The 1,2 meter column was silver vacuum jacketed

and packed with 3 mm glass Wilson helices. A vapour dividing reflux head was used between

the column and head condenser. This divider led into a sidearm condenser and receiver and

both head and sidearm condensers were cooled to - 25°C by an external methanol bath (not

shown).

Vacuum in the system was maintained at 80 mbar by a vacuum pump operating through a

switchable three way arrangement of cold traps. The traps were cooled with liquid nitrogen

for recovery of the very volatile compounds. Electronic control units (not shown) operated

through pressure and temperature sensors and allowed measurement and control of vacuum,
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reflux withdrawal ratio and temperatures in the plant. All materials in contact with the sample

or its vapour were glass or PTFE and the sample circulation pump had stainless steel

displacement heads. The distillation plant was cleaned between processing of different

samples by similarly distilling two litres of rectified neutral 65% ethanol under total reflux

for two hours, followed by withdrawal of 200 ml to clean the sidearm and receiver. Further

rinsing with neutral 65% ethanol and subsequent sensory evaluation was used to confirm that

the unit was clean and ready for the next distillation.

Head Condenser :
I
I
I
I
I
I
I
I
I
I
I
I
I
I------------..,

Distillate
Receivers

Separation Column

Motor
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I1-----1T~-_
- I

I
I
I
I
I
I
I
I
I

;- - _,_ - - - - -·_·-1

I

I

Cold Traps

TI

Thin Film
Evaporator

I

I
I

et( ',,-
Vacuum Pump \\._J)

Abbreviations:

TI Temperature Indication
TIS Temperature Indication Switch
FC Fluid Control
PIC Pressure Indication and Control
PC Pressure Control

I

I Circulation Pump

~-(8) -------~
.~

Figure 1. Apparatus for vacuum fractional distillation
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Gas chromatography-flame ionisation detection: A Hewlett-Packard 5880A gas chromato-

graph (Hewlett-Packard, Palo Alto, CA., USA) was used for the determination of the major

compounds in original whiskeys, fractions, subfractions, and total and individual

reconstitutes. Separation was performed on a chemically bonded CP Wax 57 fused silica

capillary column (50 m x 0,25 mm i.d. x 0,25 df, Chrompack, Middelburg, The Netherlands).

The injection port temperature was 200°C and the detector temperature 220°C. Hydrogen was

used as carrier gas at 16 psi constant pressure to give a flow rate of about 1,5 ml/min, The

oven temperature was 40°C (4 min.) x 5°C/min. to 200°C (10 min.). 1 ).lIof each sample was

directly injected using a 1/50 split ratio (MacNamara, 1984). For compound quantification 4-

methyl-2-pentanol was used as internal standard with two levels of calibration using pure

compounds (Fluka, Buchs, Switzerland) in an ethanol-water solution.

Sample preparation for gas chromatography-mass spectrometry: For profiling of the

phenolic aldehyde and whiskey lactone distribution between the distillation fractions of an

aged whiskey equal volumes of the samples were reduced to 10% ethanol using clean water

(Milli-Q, Millipore Corporation, Bedford, MA., USA) and 250 ml aliquots were continuously

extracted for 22 hours into a solvent mixture comprising 90% freon 11 and 10%

dichloromethane (Burdick and Jackson grade) (Mandery, 1983). The freon was distilled

immediately before use. After removal of the solvent in a Kuderna -Danish apparatus, the

extract was recovered in 200 JlI of ethanol.

Gas chromatography-mass spectrometry: The GC-MS analyses of the fraction extracts

were performed on a Hewlett-Packard 5890 GC coupled to a 5971 mass selective detector.

The column used was a chemically bonded XTI5 fused silica capillary (50 m x 0,25 mm i.d. x

0,25 df, Restek, Bellefonte, PA., USA) directly interfaced to the ion source of the mass

selective detector. The mass spectrometer was operated in selected ion monitoring mode for

the following time programmed group of ions. Group 1, rnIz 99 for cis and trans lactones.

Group 2, rnIz 151, 152 for vanillin. Group 3, rnIz 181, 182 for syringaldehyde. Group 4, rnIz

135, 177, 178 for coniferaldehyde. Group 5, rnIz 165, 177, 180, 208 for sinapaldehyde. The

ions were selected from the mass spectra of authentic standards and published data

(Nakamura, Nakatsubo & Takayoshi, 1974). The MSD detector voltage was 1600 volts with

100 msec dwell time per ion. The oven temperature was 60°C (1 min) x 5°C/min to 300°C.

The injector was a programmed temperature vaporiser (PTV), 40°C x lOoC/sec to 300°C.
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Helium was used as carrier gas at a flow rate of 1 ml/min and 1 III of extracts were injected at

1/50 split ratio into an empty deactivated vigreux glass liner.

Sensory testing: The integrity and recovery of fractionation was investigated by triangular

sensory difference testing on both unaged and aged original whiskeys and their reconstitutes.

Seven experienced whiskey tasters each evaluated three sets of three samples, reduced to

20% vlv immediately before tasting, and presented in a coded random manner. Minimum

correct judgements for significant difference at various levels were as per published Tables

(Sensory Testing Methods, 1996). Similar difference testing was carried out on corre-

sponding unaged and aged individual fraction reconstitutes to investigate their relative

difference contributions.

RESUL TS AND DISCUSSION

Fraction characteristics: Table 1 describes the set of fractions obtained from a typical

distillation run

Table 1. Fractions obtained from vacuum distillation of a 2 litre whiskey charge.

0- 6(a) 3-5 98%

2 6 - 7(b) 50 98%

3 7 - 23(b) 1200 98%

4 23 - 24(b) 40 50%

5 24 - 26(c) 690 <1%

Fraction 1 recovered from cold traps at -196°C.(a)

(b) Fractions 2, 3 and 4 recovered from distillate receiver at 9:1 reflux ratio. Bulk of fraction 3
recovered overnight.

Fraction 5 recovered as undistilled water fraction combined with residues of fraction 5 recovered
from column packing and plant with rectified neutral ethanol.

(c)

The rationale for the five principal fractions can be understood in terms of compound and

matrix volatility, together with reduced volatility due to azeotropic behaviour between the

matrix components or between compounds and matrix components (Horsley, 1973).

Fraction 1 consisted of very volatile compounds that passed with a little ethanol through the

head condenser and were recovered from the cold traps. Fractions 2 and 3 were essentially
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the azeotrope of ethanol and water (ca. 98% ethanol and 2% water at 80 mbar). Fraction 2 is a

practical "buffer" fraction between fractions 1 and 3 and its function was to remove any last

traces of volatile compounds that did not pass to the cold traps. The homogeneity of fraction

3 was reflected in a stable head temperature of 24°C during its entire removal. lts main

advantage is to give a very useful isolation and depletion of the semi-neutral matrix as it

contains ca. 60% of the total sample volume and ca. 92% of the total sample ethanol content.

At the end of fraction 3 the ethanol content in the pot has practically been depleted. New

higher boiling azeotropes of the remaining ethanol, water and less volatile flavour

compounds (i.e. higher alcohols) now entered the column. The pot and column entry

temperatures quickly rose to 41°C (boiling point of water at 80 mbar), indicating that this

new fraction was essentially trapped in the column. As the remnants of fraction 3 were

removed from the system the head temperature in turn rose above 24°C. Fraction 4 was then

removed during a head temperature increase from 24 to 41oe. Qualitative GC profiling was

used to detect the start and finish of fraction 4 in terms of total recovery of higher alcohols

(Fig.2).

1

C
I

12 3

A
II

1 2

3

B
I

D\ Li 1 _I

3

1

Il
I

Figure 2. Gas chromotograms illustrating recovery of fusel alcohols during fraction 4
take-off.
A = start; D = finish. Peak identities: 1 = n-propanol; 2 = isobutanol; 3 = amyl alcohols.
Conditions as in text.

Stellenbosch University http://scholar.sun.ac.za



10

Fraction 5 was immediately recovered as the water residue from the distillation flask. This

fraction contains remnants of fraction 4 compounds together with some lower volatility

fermentation compounds, but in the case of an aged spirit it also contains all the colour of the

original sample, most of the cis and trans-Bcmethyl-j-octalactones (whiskey lactones), and all

the wood lignin derived phenolics as represented by the four principal phenolic aldehydes

(Fig. 3). The traces in Fig. 3 compare reconstructed ion chromatograms after selected ion

monitoring for these specific compounds in an original whiskey, and fraction 4 and fraction 5

from the whiskey.

A slight partitioning of the whiskey lactones into fraction 4 was observed. This represents a

balance between their preferred retention in fraction 5 and the objective of removing the

entire higher alcohol content into fraction 4. Programmed temperature injection is particularly

useful for capillary gas chromatography of these semi-volatile compounds. The technique

avoids the well known discrimination in the needle due to selective vaporisation of the

solvent that occurs in hot splitlsplitless injectors (Eder, Reichlmayr-Lais & Kirchgessner,

1991).

Total and fraction reconstitution: This procedure represented a total physical segmentation

of the sample rather than a selective removal or enrichment of certain congeners. The first

interesting procedure was therefore to compare a total reconstitution of the fractions (using

proportional aliquots) with the original undistilled sample. Since the fractions differed greatly

in volume and strength, a second interesting approach was the concept of individual fraction

reconstitution. This consisted of using rectified neutral ethanol and/or water to dilute each

fraction back to the original matrix dimensions of 2 litres at 65% v/v ethanol. If, by

comparative testing of an undistilled whiskey and its total reconstitute, it can be shown that

the integrity of the undistilled whiskey can be re-established in the total reconstitute, then all

the flavour must be distributed within the fractions and two main productive approaches

become available. Firstly, the relative contribution of individual fractions to the overall

flavour of a sample can be assessed. Secondly, differences between similar fractions from

different starting samples can be examined. This approach has been used to investigate

maturation changes between new and aged whiskeys.
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Figure 3. Reconstituted ion chromatograms for extracts of an original aged whiskey

and its reconstituted fraction 4 and fraction S.

A = extract of original aged whiskey; B = extract of reconstituted fraction 4;

C = extract of reconstituted fraction 5.

Peak identities: 1 & 2 = whiskey lactones, 3 = vanillin, 4 = syringaldehyde,

5 = coniferaldehyde, 6 = sinapaldehyde.

Conditions as in text.
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Recovery and distribution of major congeners: The partitioning of certain compound

groups between fractions has previously been mentioned (Figs. 2, 3). An overall view of this

trend in terms of the most abundant fermentation compounds can be obtained by comparing

standard split capillary GC profiles of individual fraction reconstitutes (Fig. 4).

6

Fraction 1 - Reconstituted
2

I l
6

Fraction 2 - Reconstituted

1..

6

Fraction 3 - Reconstituted

~

4 5 617

Fraction 4 - Reconstituted

A -, 8 J,D 11 12

6

Fraction 5 - Reconstituted

13

~
11 Y l14 1r

16

A l

Figure 4. Comparative gas chromatographic profiles for individual fraction
reconstitutes.
Peak identities: 1 = acetaldehyde, 2 = ethyl acetate, 3 = diethyl acetal, 4 = n-propanol,

5 = isobutanol, 6 = 4-methyl-2-pentanol (internal standard), 7 = amyl alcohols,

8 = ethyl lactate, 9 = ethyl caprylate, 10 = furfural, 11 = ethyl caprate, 12 = phenyl ethyl

acetate, 13 = ethyllaurate, 14 = 2- phenyl ethanol, 15 = ethyl myristate, 16 = ethyl palmitate.

Conditions as in text.
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In Table 2 quantitative data for both recovery and distribution of major flavour compounds is

presented for an original (undistilled) whiskey, its total reconstitute, and individual fraction 4

and 5 reconstitutes.

Table 2. Recovery and distribution of major volatile compounds.

Acetaldehyde 31 21

Ethyl Acetate 149 126

Diethyl Acetal 53 44

Amyl Alcohols 1108 1119 1118 6

Total Fusel Alcohols 1744 1763 1768 8

Ethyl Lactate 40 44 14 29

Furfural 29 29 28

Ethyl Caprate 28 22 4 17

Ethyl Laurate 26 21 22

2-Phenyl-Ethanol 30 37 35

Ethyl Myristate 7 5 5

Ethyl Palmitate 20 17 18

al Amounts in mglL absolute alcohol.

The partitioning of the entire fusel alcohol content into Fraction 4 gives a significant

advantage when monitoring maturation changes as the majority of lignin derived lactone and

phenolic compounds partition into Fraction 5 (Fig. 3).

Sensory assessment of reconstitutes: For both aged and unaged whiskeys, the panel

repeatedly returned a non-significant difference for pairs of both unaged and aged originals

and their total reconstitutes These data are presented in Table 3. It therefore appears as

though virtually no sensory detectable changes were introduced by the vacuum distillation of

whiskey into five fractions.

In the case of aged whiskeys that mature at ambient temperatures, the low temperature

vacuum distillation is important to minimise possible thermal reactions. The sample has

remained at ambient temperature for most of this process and only rises to 41°C for a short

period to remove fraction 4.
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Table 3. Difference sensory analysis 1) of original and reconstituted whiskey samples

and vacuum distilled fractions of aged and un aged whiskeys.

Unaged: Original vs total reconstitued sample 9 NS

Aged (1): Original vs total reconstituted sample 8 NS

Aged (2): Original vs total reconstituted sample Il NS

Aged vs Unaged reconstituted fraction 1 15 ***
Aged vs Unaged reconstituted fraction 2 16 ***
Aged vs Unaged reconstituted fraction 3 13 **
Aged vs Unaged reconstituted fraction 4 15 ***
Aged vs Unaged reconstituted fraction 5 17 ***

I) Triangular difference test

2) Required correct identification for significance (7 judges x 3 replications).

P > 95% (*) : 12

P > 99% (**) : 13

P > 99,9% (***) : 15

The triangular sensory difference testing was extended to the corresponding pairs of unaged

and aged individually reconstituted fractions, in order to investigate difference contributions

from the individual fractions. These results are also presented in Table 3 and show that

significant differences are detected in all the corresponding unaged and aged pairs. Such

differences were expected in the fraction 1 and 5 pairs based on the compound types isolated

into these fractions. Fraction 1 contains volatile compounds and changes in these compounds

are associated with a decrease in negative sulfur aroma and pungency, and an increase in

sweetness (Reazin, 1981; Nishimura et al., 1983; Nishimura & Matsuyama, 1989). Fraction 5

isolates the lignin derived maturation compounds and their flavour contribution has been

extensively investigated both in actual spirit samples and in model ethanol/wood systems

(Nykanen, 1984; Nykënen, Nykanen & Moring, 1984; Maga, 1984; Maga, 1989). These

changes are interrelated, as oak wood is necessary for the decrease in volatile sulfides

(Nishimura et al., 1983)
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Fractions 2 and 3 were not investigated further due to their relative neutrality. Differences

between the unaged and aged pairs could be due to acetal formation during ageing.

Acetaldehyde increase during ageing leads to the possibility of acetals of higher alcohols

appearing in aged fractions 2 and 3. In a previous study on an extract of aged Cognac the

fusel fraction was also removed by distillation and judged to have limited organoleptic value

(ter Heide et al., 1978). Fraction 4 was therefore also excluded from further investigation.

Since the compounds in fractions 1 and 5 have been particularly associated with flavour

changes during ageing it was decided to preferentially investigate the relative changes in

these fractions which will be the subject of future papers.

CONCLUSIONS

A scheme has been described for routine fractionation of the most volatile and least volatile

compounds in unaged and aged whiskeys from both the common ethanol and fusel matrix.

The apparatus can be assembled from readily available commercial units. A high degree of

automation in terms of temperature, vacuum control and fraction collection is possible. Low

vacuum during the distillation avoids thermal changes in the case of aged whiskeys, and

ensured that the sensory changes observed were principally due to the ageing process.
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CHAPTER3

FLAVOUR COMPONENTS OF WHISKEY.

2. AGEING CHANGES IN THE HIGH VOLATILITY FRACTION.
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ABSTRACT

The volatile compounds isolated from whiskey by fractional vacuum distillation were

identified by two-dimensional capillary gas chromatography/mass spectrometry (2D-GC-

MS). Changing levels with ageing were quantified for the most abundant compounds by

direct split injection of whiskeys on a gas chromatograph equipped with a flame ionisation

detector (Fill). The ageing decreases in volatile sulfides were similarly determined using a

sulfur chemiluminescence detector (SCD). Large volume headspace injection sufficiently

reproduced the distillation enrichment to allow direct two-dimensional determination of

similar ageing changes for other trace compounds. Seven compounds at ug/L and low mg/L

levels were monitored and quantified.

INTRODUCTION

Volatile compounds of low molecular weight can be powerful odourants with significant

effect on sensory properties (Maarse, 1991). In whiskey the volatile compounds present after

distillation are further modified during the ageing process in oak barrels. These changes are

Stellenbosch University http://scholar.sun.ac.za



20

contributory to the accepted flavour improvement associated with maturation and their study

is important for both commercial and scientific reasons.

Successful analysis of trace volatile compounds necessitates an approach, which combines

both enrichment of the volatiles and their isolation from other compounds (Jennings & Rapp,

1983; Maarse & Belz, 1985; Marsili, 1997). In this way subsequent chromatographic

separation can be specifically tailored to the high volatility range. Sample preparation

techniques such as extraction, simple distillation, and simultaneous distillation-extraction

simply act to isolate all compounds which can volatilise from an involatile matrix.

Preliminary isolation of volatiles from distilled spirits has been attempted in a number of

ways. A preparative headspace approach has been described for aged cognac which used a

seven step tandem arrangement of porous polymer adsorption tubes to eliminate water (ter

Heide, 1978). Ethanol vapour was retained by an additional diglycerol column. In a device

coupling dynamic stripping with liquid-liquid extraction an extract was obtained from wine

showing a similar profile to static headspace analysis (Rapp & Knipser, 1980). A procedure

for rum allowed the volatiles from a 1,5 litre sample to diffuse at room temperature to a small

flask cooled in a dry ice bath. After 36 hours 0,33 ml of liquid was collected (Liebich, Koenig

& Bayer, 1970). A vacuum stripping approach to beer has been described in which the

collected volatile fraction was further separated by a series of trap to trap fractionations at

successively decreasing temperatures (Pickett, Coates & Sharpe, 1976).

The above approaches are complicated in terms of equipment required and are time

consuming. They also have not been generally used to monitor ageing changes in a sample

series. In a previous paper a commercially available column distillation unit working under

vacuum was described in which the volatiles from two litres ofunaged or aged whiskey could

be isolated in a convenient one step operation as a discreet low boiling fraction (MacNamara

et al., 2001). Using this approach the purpose of the present investigation was to identify and

quantitatively monitor the changes in concentration of the highly volatile compounds of

whiskey during ageing in heavy charred American oak wood barrels once used for the ageing

of Bourbon. Efficient techniques for isolating and monitoring these compounds and their

ageing changes are important commercially, as results can be used to assess the relative

contribution of both different wood barrel types, and wood barrels that have undergone a

number of ageing cycles.
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MATERIALS AND METHODS

Material: Whiskey, unaged and at three and six years old, was used for distillation and gas

chromatographic investigation of the high volatility compounds. The unaged parent whiskey

was at 65% v/v ethanol. The aged whiskeys were from standard once-used American bourbon

barrels and were composites from similar casks at the same age. Natural evaporative loss of

ethanol during ageing resulted in strengths of between 1 and 3% v/v lower than the unaged

parent depending on the age.

Sample preparation: The fractional distillation separation of whiskey used to isolate the

high volatility compounds has previously been described (MacNamara et al., 2001). The high

volatility fraction 1 compounds from an unaged whiskey were analysed by two-dimensional

gas chromatography (2D-GC) with mass spectrometric (MS) detection for compound

identification. Quantitative changes in compounds that changed most were established for the

various whiskeys without any sample pre-treatment. Separate procedures were used to

quantify the different volatile groups in the whiskeys. Direct injection gas chromatography

with flame ionisation detection was used for the quantitatively abundant compounds. A

similar approach but with specific sulfur chemiluminescent detection was used for volatile

sulfur compounds. Large volume headspace injection with mass spectrometric detection after

two-dimensional gas chromatography was used for detection of other trace level compounds.

Two-dimensional gas chromatography: The 2D-GC system used for initial identification of

the volatiles, and subsequent quantification after headspace injection, was constructed from

two Hewlett-Packard 5890 Series 2 gas chromatographs, and a Hewlett-Packard 5971 mass

selective detector (Hewlett-Packard, Palo Alto, CA., USA). The columns were connected in

the first oven through a heated interface line by a micro column switching device (Gerstel

GmbH, Miilheim, Germany) with a split connection to a monitor flame ionisation detector.

The unwanted first column components were vented at the column-switching device by a

mass flow controlled countercurrent flow. For transfer of a selected cut to the second column

this flow is stopped for the duration of the transfer and the compounds of interest pass to the

head of the second column which is cooled by liquid nitrogen in the interface line. Rapid

heating of the interface line "re-injects" the compounds for chromatography on the second

column. All pressures before and after switching are quickly re-established by electronic
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proportional valves to grve pulseless switching required for high-resolution capillary

chromatography. A schematic of the system is presented in Fig. 1.

D
5

4,

Figure 1. Two-dimensional GC configuration.

1: Programmed temperature vaporizing injector, 2: Main GC, 3: Main column,

4: Mass selective detector, 5: PC Chemstation, 6: Pre-column GC, 7: Column switching

device, 8: Monitor FID detector, 9: Pre-column,10: Heated interface, 11: Liquid nitrogen

trap, 12: Headspace injector.

The pre-column separation was carried out on a polar CP-Wax 57 fused silica column (SOm x

0,32 mm i.d. x 1,17 df, Chrompack, Middelburg, The Netherlands) using an oven temperature

program of 40°C (17min) x 3°C/min to 200°C (10 min). The main column for separation of

cuts transferred from the pre-column was an apolar Rtx-5 fused silica capillary (30m x 0,32

mm i.d. x 3,0 df, Restek, Bellefonte, PA., USA) with an oven temperature program of -50°C

(until after transfer of the selected cut) x 70°C/min to 60°C x 2°C/min to 80°C x 5°C/min to

250°C. Helium was used as carrier gas at 1 ml/min. All injections were in splitless mode to a

programmed temperature vaporising injector (Gerstel Cis-3) equipped with a glass vigreux

liner, which was heated immediately after injection according to the following program, 40°C

x 10°C/sec to 200°C. Temperature programmed retention indices were calculated after

similar injection of a mixture of C6 to C10 alkanes. The mass selective detector after the

main column was operated in scan mode, 25 to 200 amu, at 1600 EV. Three cuts (1-16 min,

15-20 min, 19-28 min) covering the elution of the fraction 1 volatiles on the pre-column were
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individually separated on the main column. The slight overlap was to ensure transfer of all

.compounds during the three consecutive analyses.

Headspace injection: This analysis consisted of five replicate 1 mL headspace injections

from a vial of each whiskey reduced to 10% v/v ethanol. Injections were made to a

programmed temperature vaporising (PTV) injector (Gerstel Cis-3) capable of being cooled

to trap and enrich volatile compounds on the liner. The headspace unit was a multi-purpose

sampler (Gerstel MPS) equipped with a 1 ml gas tight syringe. Vial contents were

thermostatted at 60°C for 10min. The PTV liner was packed with 15-20 mg of 50-80

Porapak Q and held in place by two small plugs of deactivated glass wool to give a bed

length of 4 cm. The liner had a split flow of 60ml/min and was cooled to -75°C during

injection using liquid nitrogen. After headspace injection the PTV changed to splitless mode

for heated transfer of the enriched compounds to the pre-column, and used the following

program, -75°C x lOoC/sec to 180°C, 10 min. Two-dimensional chromatography then

proceeded as previously described except that after the second column an additional micro

crosspiece (Gerstel GmbH) was installed for simultaneous MS and FID detection. The former

was used for spectral confirmation of the compounds of interest, which were then quantified

using the FID signal. For each whiskey headspace run two cuts (1 - 16 min and 16-30 min)

covering the elution of the compounds to be quantified were consecutively separated on the

main column after separate injections. Two compounds were quantified from cut 1 and five

compounds from cut 2. Quantification was by external standardisation using pure compounds

in 65% ethanol and three point calibration curves. The individual compound solutions were

reduced to 10% ethanol before headspace injection.

Gas chromatography with flame ionisation detection: A Hewlett Packard 5880A gas

chromatograph was used for the direct determination of the most abundant volatile

compounds in whiskeys of various ages. Separation was performed on a chemically bonded

CP Wax 57 fused silica capillary column (50 m x 0,25 mm i.d. x 0,25 df, Chrompack). The

injector port temperature was 200°C and the detector temperature 220°C. Hydrogen was used

as carrier gas at 16 psi constant pressure to give a flow rate of 1,5 ml/min. The oven

temperature was 40°C (5 min) x 5°C/min to 200°C (10 min). 1 ~l of each sample was directly

injected using a 1/50 split ratio. For compound quantification 4-methyl-2-pentanol was used
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as internal standard with two levels of calibration using pure compounds (Fluka, Buchs,

Switzerland) in an ethanol water solution.

Gas chromatography with sulfur chemiluminescent detection: A Hewlett Packard 5890

Series 2 gas chromatograph equipped with a Sievers 350B sulfur chemiluminescence detector

(Sievers Inc., Boulder, Colorado, USA) was used to determine dimethyl sulfide and dimethyl

disulfide in aged and unaged whiskeys. Separation was performed on a chemically bonded

CP Wax 57 thick film fused silica capillary column (50 m x 0,32 mm i.d. x 1,17 df,

Chrompack). The injector was a programmed temperature vaporiser (PTV) (Gerstel CIS 3),

40°C x 10°C/sec to 200°C. Helium was used as carrier gas at a flow rate of 1,5 ml/min and 1

III of each whiskey was directly injected in splitless mode to a glass liner with a 1 min purge

delay. The oven temperature was 40°C (2 min) x 3°C/min to 180°C (10 min). The detector

was operated at 800°C using 8 mL/min oxygen and 100 mL/min hydrogen for plasma

generation in the burner. Ozone for chemiluminescence of the resultant sulfur monoxide was

generated from pure oxygen. Three point calibration curves were obtained using pure

compounds in 65% ethanol solutions. Ethyl methyl sulfide at a concentration of 41 ug/L was

used as internal standard and all compounds were Fluka Purum grade.

RESULTS AND DISCUSSION

Identification: Figure 2 shows the monitor FID trace from injection of fraction 1 to the polar

pre-column. The trace consisted of volatile compounds eluting before and just after the

ethanol peak. The distillation had concentrated the volatiles to such a degree that resolution,

even on this relatively thick film column with a phaseratio 13 = 68, was poor (The phase ratio

of a wall coated open tubular capillary column is a measurement of the "openness" of the

tube and is a function of the inner tube radius and the liquid phase film thickness). The

selected cuts indicated in Fig. 2 cover the entire elution range on the first column.
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Cut 1: 0-16 Mins
Cut 2 : 15-20 Mins
Cut 3 : 19-28 Mins

Cut 1
Cut 2

Cut 3

Figure 2. Thick film pre-column gas chromatogram of fraction 1 into three cuts for

transfer to main apolar column.

20.00Time--> 5.00 10.00 25.00 40.0030.00 35.0015.00
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Cuts slightly overlapped to ensure transfer of all components for separation on the mam

column. Figure 3 a, b, and c shows the MS total ion traces of these cuts after transfer, liquid

nitrogen focusing, and elution from the apolar thick film (phase ratio P = 27) main column.
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Figure 3. Fraction 1 cuts on apolar main column.
A.Main column trace from 0 -16 mins. cut Ion pre-column (fig. 2); B. Main column trace
from 15 - 20 mins. cut 2 on pre-column (fig. 2); C. Main column trace from 19 - 28 mins. cut
3 on pre-column (fig. 2)
Mass spectrometric detection. Peak identifications in table 1.
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Quantification procedures: The two-dimensional chromatography on thick film columns

with dissimilar phases provided substantial additional resolution and allowed detection of

minor compounds overlapped by the ethanol and major volatiles on any single chromato-

graphic phase (Cortes, 1990). Cut 1 transferred the compounds eluting up to the appearance

of ethanol. Cuts 2 and 3 transferred compounds eluting under and on the tail of the ethanol

peak. For these later cuts an MS solvent delay was used until after elution of ethanol. Since

the apolar main column separated principally by molecular weight, all the species of interest

could be detected after this solvent delay. The compounds were identified on the basis of

their electron impact mass spectra using spectrum libraries (ten Noever de Brauw et al.,

1982), and spectra of authentic compounds as reference. The two-dimensional chromato-

graphy allowed a total of 28 compounds to be identified. These compounds with retention

indices on the apolar column are listed in Table 1.

Table 1. Compounds identified in the volatile fraction 1 after two-dimensional gas
chromatography on dissimilar phases

Temperature programmed retention indices
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Two-dimensional fraction 1 screenmg on different whiskeys indicated those compounds

whose concentrations changed most with ageing. Low boiling sulfides decreased while

aldehydes and ethyl and acetate esters increased. Analytical procedures in tum were matched

to the concentrations and functionality of the compounds ofinterest as follows:

• The abundant compounds acetaldehyde, acetaldehyde diethyl acetal and ethyl acetate were

directly quantified in the whiskeys by split capillary GC-FID with internal standardisation.

• Dimethyl sulfide and dimethyl disulfide were similarly quantified but usmg splitless

capillary GC and sulfur chemiluminescence detection.

For remaining trace compounds some form of enrichment was necessary and in an initial

attempt volatile internal standards were added to the whiskey before distillation to standardise

recovery of volatiles into fraction 1. This was unsatisfactory because a different internal

standard was needed for each consecutive cut, and main column co-elution of internal

standards and compounds of interest was a problem. Substituting direct large volume

headspace for the distillation enrichment was found to give adequate sensitivity for these

compounds and allowed external standard quantification. Since only light volatiles were

enriched by headspace an advantage was that no higher boiling compounds from the whiskey

were transferred to the precolumn. Cuts 2 and 3 from the fraction 1 qualitative investigation

were collapsed into a single cut to fully recover each compound of interest for transfer to the

main column.

Changes in major volatile compounds with ageing: The whiskeys in question came from a

small traditional distillery where uniformity of both the fermented product prior to distillation

and the distilled unaged whiskey is well documented. The subsequent maturation process is

also highly standardised. In view of this production uniformity the observed magnitude of the

differences in concentrations of the major volatile compounds can in fact be attributed to the

effect of maturation and not simply be regarded as normal fluctuations in the sample. Table 2

shows the levels of three major volatile compounds in whiskey samples of respectively 0, 3

and 6 years old. These levels clearly show an increase with ageing for each of these

compounds.
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Table 2. Changes in major volatile compounds with ageing

Acetaldehyde 53

523Ethyl acetate 148 411

Acetaldehyde diethyl acetal 61 101 158
al Amounts in mg/L at absolute alcohol.

Similar increases in bourbon whiskey are recorded (Reazin, 1981; Reazin et al., 1976) and

the mechanism involved has been described by the same workers. By adding a small amount

of radioactive ethanol to a whiskey at the start of ageing they found over a 56 month period

that this radioactivity is incorporated into acetaldehyde, ethyl acetate and acetic acid. The

mechanism involves oxidation of ethanol by molecular oxygen to produce acetic acid via

acetaldehyde. Excess ethanol combines with acetic acid to produce ethyl acetate, and with

acetaldehyde to produce diethyl acetal (Reazin, 1981). The equilibria between aldehydes and

their acetals is important from the odour aspect (Perry, 1986). Aldehydes can be sour and

pungent, while acetals are pleasant, fruity, and contribute to the flavour of whiskey (Nykanen

& Suomaleinen, 1983). The concentration of diethyl acetal produced during ageing is

dependant on the ethanol strength and is significant down to 40% v/v ethanol (Perry, 1986). It

has been pointed out that an important secondary effect of diethyl acetal is its corresponding

contribution to a decrease in acetaldehyde (Simpson, 1979). Substantial data is available on

the individual sensory contributions of these volatile compounds (van der Merwe & van

Wyk, 1981; Salo, Nykanen & Suomaleinen, 1972). Since the isolated fraction 1 from six year

old whiskey was clearly less harsh than unaged or younger whiskey, the overall contribution

with ageing is positive despite the negative effect of acetaldehyde increase.

Changes in volatile sulfides with ageing: Decreases in volatile sulfides were quantified for

the same set of samples (Table 3).
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Table 3. Changes in major volatile sulfides with ageing

Dimethyl disulfide

29 TracesDimethyl sulfide 446

79 20462

a) Amounts in mg/L at absolute alcohol.

The dimethyl sulfide (DMS) content of unaged whiskey was approximately 15 fold greater

than in a whiskey aged for 3 years. This represents a non-linear decrease with most loss

occurring in the first year. A similar amount of dimethyl disulfide (DMDS) in unaged

whiskey reduced by ca, 83% over the first three years. Similar results have been reported for

Japanese whiskey (Masuda & Nishimura, 1981). Natural evaporation is a factor in the

decrease in these compounds but oak wood is also necessary for their removal (Nishimura et

al., 1983). Wood hydrolysable tannins are implicated in removing sulfides. The mechanism

postulated is that in aqueous medium the oxidation of gallic acid produces hydrogen

peroxide, a very reactive molecule that can efficiently oxidise sulfides (Wildenradt &

Singleton, 1974). Because of their characteristic unpleasant odours these alkyl sulfides play

an important role in the flavour of alcoholic beverages. Sensory thresholds of 35 ug/L for

DMS and 5-7 ug/L for DMDS are reported for a 3% ethanol matrix (Haboucha, Devreux &

Masschelein, 1982). In white wine a threshold of 25 ug/L for DMS is reported (Park et al.,

1994) and another study quotes 20 ug/L for DMDS in 10% v/v ethanol solution (Leppanen,

Denslow & Ronkainen, 1979). The levels from Table 3 indicated therefore that these

compounds were contributory in all probability to the odour of unaged whiskey, and that this

negative contribution apparently decreased during ageing. One study estimates average

concentrations of DMS and DMDS in commercial whiskey at between 2 and 10 times their

odour thresholds (Philp, 1986).

Changes in minor volatiles with ageing: The combination of large volume cryogemc

headspace injection with two dimensional chromatography allowed resolution and detection

of low amount of trace volatile compounds. Results are tabulated in Table 4 for the same

samples as before.

Porapak Q was chosen as adsorbent based on previous trapping results with this packing

(Peppard, 1984; Tuan et al., 1995). The material is slightly polar and tends to efficiently trap
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a wide range of compounds. The additional cryogenic cooling to -75°C ensured complete

retention of all compounds of interest from the headspace vapour. Triplicate 5 ml headspace

injections of the lowest calibration level for ethyl formate and formaldehyde diethyl acetal

gave relative standard deviations of 4,8% and 4,6%, respectively. Figure 4 shows the external

standard regression line for ethyl butyrate from 0,2 to 2,2 mg/L.

Table 4. Changes in minor volatile compounds with ageing

Ethyl formate b) 0,33 2,62 9,10

Formaldehyde diethyl acetal b) 0,11 0,17 0,45

Ethyl propionate c) 0,77 1,28 1,24

Propyl acetate c) 0,16 0,40 0,23

Ethyl isobutyrate c) 0,17 0,25 0,33

Isobutyl acetate c) 0,38 0,78 0,61

Ethyl butyrate c) 0,55 0,86 2,20

al Amounts in mg/L at absolute alcohol.
bl Precolumn cut from 1 to 16 min (Fig. 2)
cl Precolumn cut from 16 to 30 min (Fig. 2).

40000
R
e
s
p 30000
0
n
s
e 20000

Figure 4. Main column calibration line for ethyl butyrate for 0,2 to 2,2 mg/L in 65%
rectified ethanol. Direct large volume headspace injection to pre-column
after reduction to 10% ethanol followedby two-dimensional GC-MS

10000

O.!!! 1.0 l.!!! 2.0

Amount (ppm Ethyl Butyrate)
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The higher levels of ethyl formate and formaldehyde diethyl acetal are analogous to those for

the increases for the similar acetaldehyde by-products (Table 2). The same trend is observed

for the other trace ethyl esters and acetates. The fruity odours of these compounds are

considered important contributors to aroma. In the case of wine, acetates are considered more

important than ethyl esters of fatty acids for intensity and quality of aroma (van der Merwe &

van Wyk, 1981). The same is likely for whiskey because of the low sensory odour threshold

values of these compounds (Salo, 1970). Some compound levels from Table 4 reached

maximum levels after 3 years, while others such as ethyl butyrate appeared to have continued

to increase with ageing. Whiskey with higher levels of butyric acid and a resultant sour note

correlate with higher levels of ethyl butyrate (Carter- Tijmstra, 1986). Ethyl butyrate has been

reported as having a threshold value ofO,15 mg/L in 9,4% grain spirit (Salo et al., 1972), and

0,4 mg/L in beer (Meilgaard, 1975), and can easily be detected at levels above 0,5 mg/L in

rectified alcohol (Chialva et al., 1984). The possible contribution of the higher levels of these

minor ethyl esters, acetates and acetals may be enhanced by higher levels of the major

volatiles and lower levels of the alkyl sulfides.

CONCLUSIONS

High volatility compounds and their changes with ageing in whiskey have been investigated.

Substantial changes occurred with ageing. Compounds associated with the pathway for

oxidation of ethanol increased, while sulfur compounds showed major decreases. The identity

of a number of trace compounds has been confirmed and increases with ageing were

established for a range of ethyl esters and acetates. These compounds are associated with

fruity, pleasant notes and it is reasonable to associate their increase with improved flavour.

Although the sensory significance of the observed changes in concentrations of the

compounds in question has not been determined in this study, it would appear as though these

changes in the light of reported threshold values might contribute significantly to the odour

and quality of whiskey.
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ABSTRACT

The low volatility wood-originating compounds isolated from whiskey by vacuum fractional

distillation were analysed by high resolution gas chromatography and mass spectrometry

(GC-MS). Three phenolic esters previously unreported in whiskey were identified and

confirmed by synthesis. Formation profiles for sixteen compounds were established in

whiskeys aged for periods from 1,5 to 10 years in second fill heavy charred American

Bourbon barrels. These profiles indicated significant increases for several compounds,

especially in the older whiskeys. Ratios of aromatic phenolic aldehydes, and similar ratio

changes during ageing, were different from reported data relating to other wood types and

treatments. Further preparative separation by high pressure liquid chromatography (HPLC) of

the wood fraction followed by GC-MS allowed retention and mass spectral characterization

of additional compounds originating from wood. Sensory investigation indicated different

and unique contributions from the HPLC cuts. Spiking of the three phenolic esters into a

young whiskey gave a detectable increase in maturation intensity.
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INTRODUCTION

Freshly distilled whiskey is colourless with a pungent aroma and harsh taste. The practice of

storage in oak casks modifies and significantly improves the sensory properties of the

product. Maturation of distilled spirits in oak barrels takes place slowly and therefore over

many years. The mechanisms involved in this barrel contribution include direct extraction of

wood components, decomposition of wood components, and reaction of wood components

both with each other and with components of the distillate (Nishimura & Matsuyama, 1989).

Some of these reactions occur in the already complex matrix of the unaged whiskey with

resultant difficulties for analysis of the new compounds produced and related subsequent

changes.

The approach of this work was to attempt to interpret some of these complex changes by first

isolating the relevant low volatility compounds as a distinct fraction from the whiskey

(MacNamara et al., 2001 a). A similar approach was used to isolate the high volatility

compounds from whiskey and to investigate their changes with ageing (MacNamara et al.,

2001 b). In both cases the vacuum fractional distillation procedure separates either the high or

low volatility compounds free from both the dominant ethanol and the complex fusel

compounds. This allowed subsequent chromatography to be tailored to the specific

compounds in each fraction.

When the low volatility compounds of interest are isolated in this way the increases

in concentration of dominant and trace compounds can be measured for natural barrel-aged

whiskey. A different approach towards the identification of oak wood aroma compounds

involved the extraction of such compounds from oak wood chips and shavings in model

solutions. In one study over one hundred compounds were identified from the steam distillate

of methanol extracts of white oak shavings (Nishimura et al., 1983). Extraction of volatile

and non-volatile compounds by 60% ethanol from oak hardwood shavings was also

investigated (Nykanen, Nykiinen & Moring, 1984). Maximum extraction occurred after three

months and with the aid of subsequent analysis carbohydrates and a range of carboxylic acids

were identified.

In both of these studies the presence of p-methyl-y-octalactone was not reported even though

the isomers of this compound had previously been identified in spirits stored in oak casks
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(Suomalainen & Nykanen, 1970). The eis and trans isomers were also shown to be major

constituents of oak wood (Masuda & Nishimura, 1971) and subsequent work confirmed the

presence of these compounds in spirits stored in oak wood (Nishimura & Masuda, 1971;

Guymon & Crowell, 1972). Organoleptic thresholds of both isomers have been established in

30% alcohol solution and a positive correlation has been established by a scale method,

involving ranking for aroma and taste evaluation, between desirable aged flavour and lactone

content for ten commercial whiskeys (Otsuka et al., 1974). Other studies have shown that

production of lactones is substantially enhanced by thermal oxidation of lipid precursors

during charring or toasting of wood (Maga, 1989), and no such treatment was indicated in

both of the previously mentioned studies where lactones were not reported. Therefore care

must be taken with data from model solution experiments, as they may not fully represent the

natural ageing process in barrels. Isolating the wood compounds by vacuum fractional

distillation from barrel whiskey at different ages as was proposed for this study allows a more

accurate and authentic representation of the chemical changes to be established.

High pressure liquid chromatography (HPLC) is usually the technique of choice for analysing

the low volatility compounds produced during ageing (Lehtonen, 1984). However, since it

offers limited resolution and suffers from lack of a routine universal detector, high resolution

gas chromatography -mass spectrometry (GC-MS) was selected as a better alternative to

analyse the isolated lower volatility flavour compounds in aged whiskey. In addition,

programmed temperature vaporization (PTV) followed by chromatography on a stable high

temperature column was selected for the elution of low volatility compounds previously not

amenable to gas chromatography. Despite the limitations of HPLC it still appears very useful

as a technique to segregate the principle wood originating compounds prior to GC-MS

analyses. Thus it is believed that the above-integrated analytical strategy would allow the

characterization of both abundant and trace compounds formed during ageing. Such analysis

of premium whiskeys aged for long periods of time in order to develop significant maturation

flavour should permit a better understanding of compound development during maturation

and may allow the achievement of greater effects in less time with important implications for

production costs.
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MATERIALS AND METHODS

Material: Whiskey at 1,5, 3, 5, and 10 years old was used for both GC-MS investigations of

low volatility compounds and formation profiles for selected compounds over the full time

range. The 10 year old sample was also used for additional GC-MS analysis after a further

preparative chromatographic procedure. All samples were from standard once-used American

bourbon barrels and at strengths between 60% and 65% v/v ethanol, depending on the natural

evaporation loss during ageing. These samples at various ages were composites of twelve

aliquots from similar casks at the same age.

Sample Preparation: The general whiskey vacuum fractional distillation separation has

previously been described (MacNamara et al, 2001 a).

Essentially, the distillation removes the matrix ethanol together with those volatile and

fermentation compounds that partition into the first four fractions, leaving the compounds of

interest in an aqueous fraction 5. Two 250 ml aliquots of fraction 5 from the ten year old

whiskey were each continually extracted overnight with 60 ml of Freon 11/Dichloromethane

(90%/10%). The organic layers were bulked and subsequently concentrated in a Kuderna

Danish apparatus to 1 ml. This extract was further fractionated by preparative HPLC and the

fractions obtained were assembled into composites, re-extracted as above and concentrated

for GC-MS analysis. Triplicate 50 ml portions of the whiskey fraction 5 at the different ages

were similarly extracted and concentrated after addition of 6 ppm 2, 3, 4-trimethoxy

benzaldehyde as internal standard. These extracts were analysed by simultaneous GC-MS and

GC-FID to quantitatively determine concentration increases of the selected compounds with

time. For quantification the area ratio of each peak of interest to the internal standard at the

different ages was used to give amounts relative to the known added amount of the internal

standard.

Preparative High Pressure Liquid Chromatography: The apparatus was a Waters Maxima

820 (Waters Corporation, Milford, MA., USA) with gradient capability and an SM400 multi

UVNIS detector set at 254 nm and 2,0 AUFS. The column was a 250 mm x 10 mm

Lichrospher RP-18 (Merck Gmbh, Darmstadt, Germany) with alO urn particle size. An

ethanol/water gradient was used starting from 10% ethanol and increasing at 1,5%

ethanol/min to 100% ethanol. A further period of 15 min at 100% ethanol was used to clean
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the column. Thirty injections were made using the concentrate from 500 ml of the 10-year-

old fraction 5. The injection volume was 20!-l1per run with 36 fractions per run collected on a

time basis.

Gas Chromatography-Mass Spectrometry: The GC-MS analyses of the 10 year old

fraction 5 concentrate and similar concentrates of its HPLC composites were performed on a

Hewlett-Packard 5890 GC coupled to a 5971 Mass Selective Detector (Hewlett-Packard, Palo

Alto, CA., USA). The column used was a chemically bonded XTI5 fused silica capillary (50

m x 0,25 mm i.d. x 0,25 df, Restek, Bellefonte, PA., USA) directly interfaced to the ion

source of the mass selective detector. The oven temperature was programmed from 60°C at

2°C/min to 300°C where it was held for 10min. Linear temperature programmed retention

indices were calculated using the same conditions after injection of a mixture of C9 to C26

alkanes. The Mass Selective Detector was operated in scan mode at a detector setting of 1600

volts and an ionization voltage of 70eV. The scan range was 25-400 amu, and spectra were

acquired at 2 scans/sec. Helium was used as carrier gas at 1mI/min. 1 !-lIof each sample was

injected in splitless mode using a programmed temperature injector (CIS-3, Gerstel GmbH)

with an empty deactivated vigreux glass liner. The injector temperature was programmed

from 40°C at 10°C/sec to 300°C. The splitless time was 1 min. Mass spectra and retention

indices of authentic compounds were used for identification. Compounds were either

purchased (Sigma-Aldrich, Poole, Dorset, UK), or were available from internal colections.

Ethyl homovanillate, ethyl syringate and ethyl homosyringate were synthesised as described

later.

Simultaneous Mass Spectrometric and Flame Ionization Detection: The MS and FID

analyses on the triplicate fraction 5 concentrates at various ages were performed using the

same GC-MS conditions as above, but with a split injection of 1/10 to ensure resolution of all

compounds for quantification. At the column exit a micro crosspiece (Gerstel Gmbh) with

individual fused silica segments to MS and FID was used to achieve the simultaneous

detection. Quantification was obtained from the FID signal with spectral confirmation from

the MS signal.

Synthesis of Phenolic Esters: Ethyl syringate and ethyl homovanillate were synthesised

from the corresponding commercially available acids by esterification with p-toluene sulfonic

acid in the presence of an excess of ethanol. Homosyringic acid was synthesised via a
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rhodanine complex from syringaldehyde (Fischer & Hibbert, 1947; Tanner & Osman, 1987)

and esterified as above. The following IR., NMR and MS data are in agreement with the

proposed structures.

Ethyl homovanillate

GC data: non polar index: 1645 (on XTI-5), polar index: 2721 (on FFAP)

Spectroscopic data:- IH-n.m.r. (400MHz) 8 (CDCi)): 1,23 (3H, t, -OCH2CH3, J=7,4Hz), 3,5

(2H, s, -CH2-), 3,83 (3H, s, -OCH3), 4,12 (2H, q, -OCH2CH3, J=7,4Hz), 5,73 (lH, s, -OH),

6,74 (lH,dd, 6-H, J=2, 8,36 Hz), 6,78 (lH,d, 2-H, J=2Hz), 6,83 (lH, d, 5-H, J=8,36Hz).- 13C_

n.m.r. 8: 14,07,40,90,55,76,60,74, 111,68, 114,31. 121,9, 125,77, 144,65, 146,42, 171,9

LR.. KBr disc: 3300, 1700, 1600, 1130, 1040. cm"

MS (70ev): 137 (100), 210 (28,5, M+), 138 (9,8), 122 (6,6), 94 (6,0), 211 (3,7),51 (3,1), 39

(3,0),65 (2,8), 77 (2,4), 66 (2,3), 123 (1,5).

Ethyl syringate

GC data: non polar index: 1840 (on XTI-5), polar index: 3020 (on FFAP)

Spectroscopic data:- IH-n.m.r. (400MHz) 8 (CDCi)):1,34 (3H, t, -OCH2CH3, J=7,4Hz), 3,88

(6H, s, 2x-OCH3), 4,31 (2H, q, -OCH2CH3, J=7,4Hz), 6,03(lH, s, -OH), 7,27 (2H, s, 2-H, 6-

H).- 13C-n.m.r. 8: 14,3,56,3,60,85, 106,48,

121,26,139,05, 146,51, 166,31

LR. KBr disc: 3350, 1700, 1620, 760 cm-l

MS (70ev):181 (100), 226 (82,8, M+), 198 (23,8), 182 (13,0), 183 (10,7), 227 (10,5), 154

(10,0),211 (8,2), 153 (8,1),67 (7,9), 53 (6,2), 139 (5,3)
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Ethyl homosyringate

GC data: non polar index: 1886 (on XTI-5), polar index: 3076 (on FFAP)

Spectroscopic data: lH-n.m.r. (400MHz) 8 (CDCh): 1,23 (3H, t, -OCH2CH3, J=7,4Hz), 3,5

(2H, s, -CH2:j, 3,80 (6H, s, 2x-OCH3), 4,10 (2H, q, -OCH2CH3, J=7,4Hz), 5,75 (lH, s, -OH),

6,50 (2H, s, aromatic). -13C-n.m.r. 8: 171,7,146,8,133,7,124,9,105,8,60,8,56,1,41,4,14,1

LR.. K.Br disc: 3451, 1730, 1609, 755 cm"

MS (70ev): 167 (100), 240 (25,6, M+),168 (9,8), 122 (4,3), 123 (4,0), 241 (3,1),153 (1,8), 106

(1,8), 151 (1,4),53 (1,3), 169 (1,1), 78 (0,9).

Sensory assessment of HPLC composites: These samples were adjusted to 20% ethanol and

duplicates were presented in a random order to five experienced judges. They were requested

to describe the aroma and taste of each composite in terms of general whiskey terminology to

which they were acquainted. No panel training was done, as the judges were experts who

were accustomed to using similar terminology.

Sensory Investigation of phenolic esters: A panel of 12 judges, all familiar with sensory

evaluation of aged spirit samples was used. The three esters were added together to a three-

year-old whiskey at the level found for the ten-year-old whiskey, and double this level. These

levels were 0,12 mg/L and 0,24 mg/L for ethyl homovanillate, 0,5 mg/L and 1,0 mg/L for

ethyl syringate, and 0,1 mg/L and 0,2 mg/L for ethyl homosyringate. The samples were

supplied in random order and the judges were asked to indicate the intensity of the maturation

character on a 150 mm unstructured line scale with indications for "none" and "intense" at

the ends. All samples were judged at an alcohol strength of23% v/v.
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RESULTS AND DISCUSSION

Identification of compounds in aged fraction 5: Figure 1 shows the GC-MS trace of the

10-year-old whiskey after extraction and concentration.

Dominating compounds in this extract are the 2-phenyl ethanol, the isomeric methyl

octalactones and four phenolic aldehydes. Table 1 details the compounds identified together

with retention indices on the apolar XTI5 capillary column.

Á
~OCH,

(

011

23 25+26

27 30

Figure 1. GC-MS trace on a high temperature apolar column of an extract from the

fraction 5 of a 10 year old whiskey.

Peak identifications in Table 1.
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Table 1. Compounds identified in aged whiskey fraction 5 after vacuum fractional

distillation.

a) Temperature programmed retention indices.

2-Phenyl-ethanol is a fermentation compound, but because of its relatively high boiling point

and non-azeotropic behaviour with ethanol, it does not partition into the earlier distillation

fractions with the other higher alcohols. Use of programmed temperature vaporisation and a

low-bleed high temperature apolar column allows GC determination of relatively high boiling

polar compounds (Guntert et al., 1986). Ethyl homovanillate, ethyl syringate and ethyl

homosyringate were identified for the first time in aged whiskey. Confirmation was obtained

by comparison of retention times and mass spectral data of the compounds in fraction 5 with

synthesised standards. Ethyl syringate was previously identified as a reaction product in a

model experiment involving storage of lignin related compounds in 60% ethanol for 4 years

under an oxygen headspace (Nishimura et al., 1983). Figure 2 shows structures and mass

spectra for these compounds.
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Figure 2. Mass spectra of new phenolic esters identified in whiskey.

Formation profiles of wood originating compounds: Increases in the concentrations of 16

compounds from Table 1, originating directly from wood or its lignin breakdown, were

monitored over 10 years of ageing. Triplicate assays were performed on fraction 5 from the

composite whiskeys at 1,5, 3, 5 and 10 years old. The mean amount for each compound at the

different ages, relative to the known amount of added internal standard, is outlined in

graphical form in Fig. 3. For each data point the % standard deviation from the triplicate

analyses is also indicated.
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Figure 3. Increase in concentrations 1) of oak derived aroma compounds in whiskey

during ageing 2).

I) Average of triplicate analysis relative to an internal standard. % standard deviation
indicated for each average amount.

2) Each sample represents a composite of 12 similarly distilled and aged whiskeys.

These graphical data indicate that the concentrations of these compounds increased over time.

The extraction of the cis and trans ~-methyl-y-octalactone is nearly linear and this agrees

with similar data for a model wood/alcohol system (Maga, 1989). The lactones have been

found to be correlated to positive assessment of whiskey quality (Otsuka et al., 1974), and the

flavour is described as sweet, woody and coconut-like. Eugenol is characteristic of oak-

matured products and imparts a clove-like flavour (Masuda & Nishimura, 1971; Mosedale &

Puech, 1998).

Maturation of distilled spirits in oak barrels is a complex process and much work has been

carried out to elucidate the various mechanisms involved (Reazin, 1981; Nishimura et al.,

1983). In the present study the whiskey was matured for ten years in second fill heavy

charred American oak barrels used for ageing of Bourbon. This particular combination of
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wood type, treatment and barrel history will directly influence the amounts and relative levels

of the compounds produced and, therefore, the ageing flavour of the product. Charring

produces aerobic and anaerobic pyrolysis reactions in which the oak lignin is degraded in the

layer immediately under the charcoal, releasing flavour compounds such as vanillin into the

spirit (Philp, 1989; Singleton, 1995). In contrast toasting induces less burning and involves

more darkening of the wood rather than pyrolitic or thermal degradation. The isomeric

methyl octalactones are present in unheated oak wood but charring can significantly increase

the amounts formed from thermal oxidation of precursors in the wood (Otsuka et al., 1974;

Maga, 1989).

In a study involving oak cask staves from charred Bourbon barrels it was shown that with

successive reuse for spirit maturation the maxima for phenolic aldehydes and lactones were

shifted after the first maturation from 5 mm below the char, to the char layer. This suggests

migration of these compounds from the interior to the spirit (Conner, Paterson & Piggott,

1993). An important consequence is that barrels for reuse will provide correspondingly

decreasing amounts of these compounds as successive maturation cycles will deplete the

wood of aromatic aldehydes and lactones. In this respect use of second fill heavy charred

barrels represents an intermediate treatment situation between charring and toasting. The

amounts and ratios of the compounds produced will be different from either new charred or

toasted wood and this is reflected in the patterns in Fig. 3. While in this study similar

formation profiles have not been established for whiskey from new heavy charred American

oak barrels, literature data for whiskey from such casks indicates substantially higher

amounts of aromatic phenolic aldehydes in comparison to second fill equivalents (Baldwin et

al., 1967).

Mechanisms for production of these aldehydes have been postulated (Baldwin et aI., 1967;

Guymon & Crowell, 1972; Reazin, 1981). In a study involving aqueous ethanol extraction of

charred or toasted oak chips over twelve days, it was shown that toasting or charring

produces aromatic aldehydes from lignin (Nishimura et al., 1983). In similar treatment of the

uncharred oak chips none or only trace amounts of these compounds were detected. On the

other hand the uncharred oak chips did have positive levels of these compounds after six

months of storage, and this means that an additional mechanism unrelated to charring is in

operation for production of these compounds. This procedure involves initial production of a

complex of lignin and ethanol in which ethanol acts as both a solvent and a reactant, and the
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mild acidic hydrolysis of this complex to produce the aromatic phenolic compounds is termed

ethanolysis (Puech et al., 1977). This ethanol lignin compound has been isolated and found to

increase with whiskey ageing (Reazin, 1981). This differs fundamentally from classical

ethanolysis in which oak wood is treated with boiling absolute alcohol for 48 hours in the

presence of 2-3% hydrochloric acid (Deibner, Jouret & Puech, 1976; Puech et al., 1977;

Puech, Jouret & Deibner, 1978). Therefore compounds produced during maturation can result

from contributions from both charring and ethanolysis. All whiskeys are matured in charred

casks, whether new or used, and will therefore be characterized by higher levels of pyrolysis

products and lignin degradation compounds than are formed in Cognac and other brandies

that are stored in casks subjected to less intense heating (Sami et al., 1990). In the case of

whiskey from a previously used charred cask, acidic ethanolysis is thought to be the major

route for formation of lignin breakdown products (Nishimura et al., 1983). In the same study

(Nishimura et al., 1983), which involved soaking of differently treated wood in 60% ethanol,

levels of aromatic phenolic compounds were much lower in the uncharred wood sample, and

very different ratios of aromatic aldehydes were found depending on whether the wood was

charred (lignin pyrolysis mechanism), or uncharred, (ethanolysis mechanism). The ratio of

syringaldehyde/vanillin remained constant, but for the charred wood the ratio of syringalde-

hyde/sinapaldehyde was 66% lower, and that of vanillin/coniferaldehyde 80% lower, in

comparison to the uncharred wood. This again supports the suggestion that whiskey from a

second fill barrel will have an ageing flavor which will be a balance between pyrolysis and

acidic ethanolysis reactions. A study involving extraction of oak hardwood shavings by 60%

ethanol allowed identification of a range of carbohydrates and carboxylic acids (Nykanen,

Nykanen & Moring, 1984). Neither the isomeric methyl octalactones or aromatic phenolics

were reported and this is most likely due to the lack of any wood charring or toasting.

Wood species IS also an important variable for the agemg flavour of distilled spirits

(Chatonnet & Dubourdieu, 1998). American white oak (Quercus alba) contains higher

quantities of the cis and trans isomers of p-methyl-y-octalactone and lower quantities of

extractable polyphenols than either sessile oak (Quercus petrea e) or pendunculate oak

(Quercus robur), the two most commonly used European species (Mosedale, 1995). Even

among the European species studies have shown that Quercus petraea has levels of methyl

octalactone similar to American oak while Quercus robur has high levels of ellagitannins and

very low levels of octalactone (Mosedale, 1995; Chatonnet & Dubourdieu, 1998). Cognac

and Armagnac are matured almost almost exclusively in Limousin oak, which is
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predominately Quercus robur. The whiskey used In this study was aged In once used

American oak Bourbon barrels.

An explanation for the rate of increase in concentrations of some compounds in Fig. 3 could

be reactions subsequent to extraction as was suggested for such compounds present in an

aged solution of 60% ethanol and lignin related compounds (Nishimura et al., 1983). In the

case of esters (ethyl vanillate, ethyl syringate, etc) an interpretation can be initial

solubilisation of the corresponding acid directly from the wood followed by esterification in

the ethanol solution. Amounts of the einnamie aldehydes are also much lower than amounts

of vanillin and syringaldehyde. This is in agreement with other studies (Puech, 1981), but

contradicts reports on Russian brandy (Skourikhin & Efimov, 1968).

Table 2 details the ratio of syringaldehyde to vanillin and the ratios of the syringyl type

compounds syringaldehyde and sinapaldehyde, and the guaiacyl compounds vanillin and

coniferaldehyde over the ten years of ageing.

Table 2. Ratios of some aromatic aldehydes in whiskey over ten years of ageing in

once used Bourbon barrels.

SyringaldehydeN anillin 1,7 1,51,6 1,7

3,3Syringaldehyde/Sinapaldehyde 21,7 6,5 4,9

VanilliniConiferaldehyde 3,0 2,3 2,2 2,0

The ratio syringaldehyde/vanillin varied between approximately 1,5 and 1,7 over ten years,

and this is similar to a range of 1,6 to 2,0 found in aged Cognac over fifty years (Puech et al,

1984). The sharp decrease in the syringaldehyde/sinapaldehyde ratio from 1,5 years to 3

years can be attributed to a much higher relative increase in the sinapaldehyde level over the

same period. The ratios syringaldehyde/sinapaldehyde and vanillin/coniferaldehyde have

been reported to increase with ageing in both Bourbon (Nishimura et al., 1983), and Cognac

(Puech et al., 1984), and this has been attributed to oxidation of the einnamie double bond in

coniferaldehyde and sinapaldehyde with conversion to vanillin and syringaldehyde,

respectively. This trend has not been observed in this study and the relevant ratios decrease

regularly over the time of the study rather than increase. This could be partly due to a unique
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balance of compound extraction mechanisms in operation for the particular once used barrels

employed for the present study. In this regard, for Bourbon in heavy charred new barrels,

maximum amounts of phenolic aldehydes will be immediately released into the spirit from

degraded lignin beneath the heavy char layer, and their relative ratios could be different from

phenolic aldehydes produced in once used Bourbon barrels by the slower acidic ethanolysis

mechanism. This also agrees with the substantial differences, both in absolute levels of

phenolic aldehydes and in the vanillin/coniferaldehyde and syringaldehyde/sinapaldehyde

ratios reported for uncharred wood soaked in 60% ethanol, in comparison to similarly treated

charred wood (Nishimura et al., 1983). In the Cognac study the wood type was also different

and initial charring of the wood was not employed. An additional complicating factor is that

the Cognac was initially matured for one year in new oak, and then transferred to used casks

for further ageing (Puech et al., 1984). In a separate study on Armagnac in Limousin aak the

increase in the ratios of vanillin to coniferaldehyde and syringaldehyde to sinapaldehyde did

not materialize until after fifteen years of ageing (Puech, 1981). This is not in agreement with

the previously mentioned Cognac study where a regular decrease over fifty years was

presented. However the Armagnac results are in agreement with data presented here and may

imply that if whiskey is left sufficiently long in cask, such a similar increase in these ratios

may occur. Normal commercial whiskey is not usually matured for more than twelve years.

Relative levels and ratios of the aromatic aldehydes at various stages of ageing were also

clearly different in a comparasion of aged Armagnac and Rum (Puech et al., 1977). In this

case the additional factor of climatic condition was cited, in addition to different wood type

and pretreatment. InRum producing countries warehouses are generally heated during winter

to produce an average temperature of 20DC to 25DC (Kervegant, 1946), and this temperature

increase will cause an acceleration in oxidation reactions (Mourgues, Jouret & Moutounet,

1973). Therefore, characteristic analytical profiles of aged distilled spirits must be interpreted

in terms of the different variables of wood type, wood pretreatment, barrel history in the

reusage cycle, and the climatic conditions for storage during maturation. There is a possibility

here for commercial producers to use such profiles to aid authentication of their own products

in the market place.

HPLC separation of fractions. Separation of the fraction 5 extract from the 10-year-old

whiskey according to the HPLC procedure previously described is represented in Fig. 4.
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Figure 4 HPLC-UV1
) trace of fraction 5 concentrated extract 2).

I) Ethanol-water gradient. 2) 36 cuts per injection as indicated.

Thirty six fractions were collected per run, comprising an initial zero fraction, thirty four

fractions during elution of compounds, and a final fraction. The opinion of experienced

whiskey tasters was that the zero and final fractions had little sensory interest, and these were

excluded from further investigation.

Small aliquots of the intermediate thirty-four fractions were then analysed by GC-MS and

based on these results the fractions were combined into four composite fractions in order to

achieve the maximum segregation of the dominant 2-phenyl-ethanol, whiskey lactones, and

the four phenolic aldehydes. After extraction and GC-MS analysis these composites give the

traces in Fig. 5.

From this figure it is clear that the phenolic aldehydes, 2-phenyl ethanol and the whiskey

lactones were substantially segregated into separate composites, allowing cleaner mass

spectra of the minor components.

Preparative HPLC has also been used previously for concentrating flavour compounds from

distilled spirits (Piggott et al., 1992). However, this study simply involved initial dilution of

200 ml of the spirit to 5% ethanol followed by pumping of the diluted solution through the

HPLC column to enrich flavour compounds by reverse phase polarity trapping. This was

followed by a gradient elution analysis to separate the flavour compounds. This approach
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suffers from the disadvantage that no pre-separation of compounds (e.g. higher alcohols) is

used to simplify subsequent chromatography, and may not offer sufficient concentration and

enrichment for detection of trace levels of compounds associated with ageing character.

17

31 26.

32 33

7
28

27

r
1.

Figure 5 GC-MS traces'<" of extracts of composites after preparative HPLC
separation of concentrated fraction 5 from 10 years old whiskey.
1) HPLC cuts 1-20, 2)HPLC cuts 21-25, 3) HPLC cuts 26-30,4) HPLC cuts 31-34.

Peak identification in Tables 1 and 3.
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Additional compounds found in composites: The subsequent GC-MS analysis of the

separate composite extracts allowed the additional compounds in Table 3 to be characterised

(Peaks 31 to 41 in Fig. 5).

Table 3. Additional compounds found in aged whiskey after distillation and

preparative liquid chromatography

31

Unknown

1609 151(100),180(55, M+), 123(49), 108(25),52(17),
65(16),77(13),51(10)

Propiovanillone (b)

32 Homosyringyl ethyl ether (b) 1714 167(100), 168(57),212(47, M+), 123(23), 153(20),
95(15), 107(13), 77(12), 53(11)

33 Propiosyringone (b) 1850 181(100),210(43, M+), 182(20), 153(18),67(13),
108(13), 123(12), 138(10)

1874 151(100),123(17),152(11),149(10),224(4, M+)

2035 211(100), 123(42),95(16),212(12), 140(10),
155(10), 167(9),284(9, M+)

2064 181(100), 182(18), 153(14),67(11), 123(10),
108(10),
254(9,Mj

2093 151(100),207(11),123(10),152(9),252(6, M+)

2108 181(100),182(16),154(21),179(15),153(12),
254(9, M+)

2493 182(100),85(96), 167(85), 181(72),81(54),
83(40),57(26), 154(25), 168(25),237(17),
310(11, Mj

2567 151(100),123(18),274(11, M+), 108(9), 152(8),
243(6)

2694 272(100, M+), 211(24), 168(20), 136(19), 197(17),
273(17),207(15)

34 Butyl vanillate (b)

(principal loss of mlz 73)

a) Temperature programmed retention indices.

b) Tentative structure.

c) Relative abundance in brackets. Suggested molecular ion is the highest mass detected in the electron
impact mass spectrum.

35 2-Ethoxy-(4 hydroxy-3,5-dirnethoxy-
phenyl)-ethyl acetate'"

Many of these compounds have major mass spectral ions at rnIz 151 and/or rnIz 181, which

represent the molecular ions of vanillin and syringaldehyde, respectively. This indicates that

they all probably have as their origin lignin breakdown pathways and associated reactions

over time. Many also share similar fragmentation patterns. Propiovanillone and 2-methyl-

propiovanillone have previously been reported as constituents in oak matured wine (Etievant,

1981; Guntert et al., 1986). Propiovanillone was also identified after direct extraction of oak

36 3-Ethoxy-3( 4-hydroxy-3-methoxy
phenyl) methyl propanoate (b)

37 Vanillic acid derivative

38 Possible isomer of peak 36

(principal loss of mlz 73)

39 Syringic acid derivative

40 Vanillic acid derivative

41
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wood chips (Nishimura et al., 1983). The tentative structures for peaks 35 and 36 both have a

principal loss of m1z 73 similar to butyl vanillate. Peaks 36 and 38 are probably isomers as

both have almost identical mass spectra. Since the mass spectral data for the unidentified

compounds in Table 3 and Fig. 5 indicate compounds from lignin breakdown, it is reasonable

to assume that they also increase with time either through extraction from the wood or

subsequent reactions in the aqueous ethanol medium.

A series of similar compounds not found in this study have been produced either by heating

of oak wood with absolute alcohol in the presence of hydrochloric acid (Puech, 1984), or

after pyrolysis of plant and forage material (Ralph & Hatfield, 1991). Examples are 2-

hydroxypropiosyringone, vanilloylmethylketone, u-ethoxypropiovanillone and syringyl-

methylketone. However, the first procedure, as was discussed earlier, constitutes classical

ethanolysis which represents an extreme treatment in comparison to the mild acidic

ethanolysis which occurs during natural spirit maturation, and would be expected to produce

different wood chemical breakdown pathways (Puech, Jouret & Deibner, 1978). Pyrolysis of

plant material represents a situation more similar to heavy charred new Bourbon casks, than

to the once used casks used in the present study. In new charred barrels the main mechanism

for production of aromatic compounds is thermal degradation of the wood, whereas in the

once used variety mild acidic ethanolysis is probably the dominant route (Nishimura et al.,

1983).

Sensory investigation of sub-fractions: Since an ethanol-water gradient was used for the

HPLC separation of the fraction 5 extract, it was possible to examine the resulting composites

for aroma and taste. Table 4 summarizes the opinions of an experienced whiskey taste panel.

Table 4 Description of HPLC composites by an experienced whiskey panel.

Composite 1
HPLC Cuts 1 - 20

Sweet, woody aroma.
Strong vanillin note.
Dull wood taste.

Composite 2
HPLC Cuts 20 - 25

Spicy delicate aroma. Intense taste
characteristics similar to well-aged

Composite 4
HPLC Cuts 31 -34

Intense sweet coconut aroma.
Little taste.

Composite 3
HPLC Cuts 26 - 30
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The compound types that have been partitioned into the different composites generally

support the descriptions. The phenolic aldehydes, phenyl ethyl alcohol, and the isomeric

lactones were partitioned into composites 1, 3 and 4, respectively. The sensory characteristics

of these compounds are well documented and were reflected in the assessor's comments.

None, or only trace amounts, of these dominant aroma contributing compounds partitioned

into composite 2, and subsequently allowed the indicated positive maturation characteristics

to be assigned to composite 2, without interference or masking from other compounds.

Effect of phenolic esters on young whiskey aroma: The interesting composite 2 contained

the three phenolic esters in addition to the compounds described in Table 3. Therefore it was

decided to investigate the effect of addition of these three esters to a young whiskey to

determine if maturation character increased. Control samples were the original three year and

ten-year-old whiskeys. Initially sixteen judges were used, but in an initial screening judges

that were not able to detect the ten year old product or those that did not rate the ten year

highest in maturation characteristics were excluded. Table 5 represents the results of the

tasting after three months using the twelve remaining judges.

Table 5 Maturation intensity rankings on young whiskey, young whiskey after

spiking and old whiskey.

10Year Old Whiskey

38,85C3 Year Old Whiskey

3 Year Old Whiskey + Level I Spike 4654bc,

3 Year Old Whiskey + Level 2 Spike

* LSD (p = 0,05) = 10,08

The maturation intensity of the three year old whiskey, as well as the same sample spiked

with two levels of the three phenolic esters (amounts found in the ten year old whiskey and

double this level), were ranked significantly lower than that of the ten year old whiskey. This

illustrates that these three esters, even at double the level found in a ten-year-old whiskey, did

not account for the higher maturation odour intensity of the ten-year-old product. However, at

double the level found in the ten-year-old whiskey they caused a significant increase in the

maturation odour intensity of the three-year-old whiskey. This intensification of the matura-
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tion odour to some extent demonstrates that these esters are in fact making a contribution to

the odour intensity, although not significantly at the lower level of spiking.

Although these esters may contribute significantly to the aroma intensity of aged whiskey,

this contribution should also be evaluated together with several other aroma impact

components previously reported and also found in this study.

CONCLUSIONS

Vacuum fractional distillation followed by GC-MC analysis allowed construction of practical

profiles of ageing changes during maturation of whiskey in second fill heavy charred

Bourbon oak barrels. There is evidence to suggest that these ageing patterns may be related to

wood type, it's pre-treatment, and fill history. Ratios of certain aromatic phenolic aldehydes

were different from similar published data relating to other wood types and other treatments.

Ratios of syringyl and guaiacyl phenolic aldehydes decreased rather than increased over ten

years of ageing. These observations are fundamentally linked to a unique balance of

extraction mechanisms, which in tum is related to the wood type and fill history of the barrel.

An appreciation of the relative contribution of these maturation parameters can be used to

investigate and improve the ageing flavour of whiskey.

A combination of vacuum fractional distillation and preparative HPLC allowed the

maturation flavour of whiskey to be segregated into composites. This approach isolated a

unique group of compounds, free from the known dominant aroma contributing components,

and these compounds were shown to be partially significant for maturation character.
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CHAPTERS

CONCLUSIONS

Preliminary vacuum fractional distillation followed by high-resolution capillary gas

chromatography with mass spectrometric and sulfur chemiluminescent detection, permitted

monitoring of changes in a range of compounds involved in the ageing of whiskey in oak

barrels.

The fractional distillation gave a useful pre-separation of the whiskey. The distillation was at

ambient temperature and therefore no thermal changes were induced. The fractions could be

recovered and were available for sensory evaluation, since the separation was achieved in the

natural matrix of the whiskey. Important low and high volatility compounds were isolated

practically free from the whiskey ethanol and it's fusel compounds. Sensory and analytical

data indicated good recovery of all compounds. Our work has shown that this technique is a

very practical and suitable technique for the pre-separation of distilled spirits. Even though

the separation is based on relative azeotropic volatility, it is still a volatility separation, and an

important consequence is that the isolated fractions can be analysed by specific chromato-

graphic techniques suited to their volatility.

Changes in the volatile compounds with agemg were analysed usmg capillary gas

chromatographic techniques. These included specific sulfur detection, and two-dimensional

heart cutting on serially coupled columns to overcome inherent limitations of solvent

interference and compound co-elution. These techniques are relatively new and use modern

developments in instrumental hardware and software. In our opinion they will become the

next generation of routine laboratory techniques. Substantial changes in high volatility

compounds occurred with ageing. Compounds associated with the pathway for oxidation of

ethanol increased. Volatile sulfur compounds showed major decreases. Increases were also

established for a range of ethyl esters and acetates, which are associated with fruity, pleasant

notes. The observed changes in concentrations of the compounds in question and their

generally low threshold values imply that these changes might contribute significantly to the

odour of whiskey.

Stellenbosch University http://scholar.sun.ac.za



62

An important achievement of the vacuum fractional distillation process is the isolation in the

water fraction of low volatility whiskey compounds. The majority of these compounds

originate from the wood and many more develop during ageing through interdistillate

reactions. Gas chromatographic analysis of these compounds is also facilitated by the prior

removal of the complex fusel fraction. This allowed many compounds to be identified by

GC-MS in an extract of a ten-year-old whiskey water fraction. Profiles of ageing changes

could also be established for ageing of whiskey in oak barrels. Three phenolic esters were

synthesised and found to be contributory to maturation intensity when added to young

whiskeys. An important finding was unique ratios of phenolic aldehydes, which seem to be

related to the particular barrel specification used for this study.

While it is recognized that the ageing flavour of whiskey is substantially influenced by oak

wood maturation, there is evidence to suggest that these changes may be more related to

wood type or it's pre-treatment than previously thought.
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