
A feasibility analysis into the inference of a

generic object tracking algorithm on a

general-purpose single board computer

by

Gerard Louis Walsh

April 2019

Thesis presented in partial fulfilment of the requirements for the degree

of Master of Engineering Mechatronic in the Faculty of Engineering at

Stellenbosch University

 Supervisor: Dr. Willie Smit

Declaration

By submitting this thesis electronically, I declare that the entirety
of the work contained therein is my own, original work, that I am
the sole author thereof (save to the extent explicitly otherwise
stated), that reproduction and publication thereof by Stellenbosch
University will not infringe any third party rights and that I have
not previously in its entirety or in part submitted it for obtaining
any qualification.

Date: April 2019

 Copyright © 2019 Stellenbosch University

Stellenbosch University https://scholar.sun.ac.za

i

Plagiaatverklaring / Plagiarism Declaration
1 Plagiarism is the use of ideas, material and other intellectual property of another’s

work and to present is as my own.

2 I agree that plagiarism is a punishable offence because it constitutes theft.

3 I also understand that direct translations are plagiarism.

4 Accordingly all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without

quotation marks (even when the source is cited) is plagiarism.

5 I declare that the work contained in this assignment, except otherwise stated, is my

original work and that I have not previously (in its entirety or in part) submitted it for

grading in this module/assignment or another module/assignment.

Voorletters en van / Initials and surname Datum / Date

GL Walsh

2April 2019019

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

A feasibility analysis into the inference of a generic object tracking algorithm on a
general-purpose single board computer

G. Walsh
Department of Mechanical and Mechatronic Engineering

Stellenbosch University
Private Bag X1, 7602 Matieland, South Africa

Thesis: MEng (Mechatronics)
April 2019

Algorithms that are able to track generic objects in real-time have many useful applications such as
security and traffic surveillance, augmented reality and sports analytics. Practical implications of
tracking algorithms are further enhanced when the algorithms are able to be processed in real-time
on mobile devices. Mobile SoCs are compact and energy efficient by design (Carroll, 2010) and
present a possible implementation platform.

Modern object tracking algorithms (Bertinetto, 2016) rely on computationally intensive
convolutional neural network (CNN) architectures. CNNs are currently not able to be processed in
real-time on mobile devices (Lu, 2017). The research conducted in this thesis aimed to address the
prior shortcoming in the computation of object tracking algorithms on mobile devices. A classically-
designed object tracking algorithm, CMT, was chosen for investigation due to its flexibility in
configuration of image features. CMT is independent of the method used to compute classical image
features, permitting the usage of binary descriptor vectors that can be effectively computed. The
primary investigation was the algorithm’s suitability for implementation on a general-purpose
heterogeneous computing platform. This was performed since heterogeneous platforms are
common in mobile devices such as smartphones (Ignatov et al, 2016). A mobile platform was chosen
based on available hardware acceleration support and heterogeneous computing capacity.

Baseline performance of 2.22 FPS was initially established on the chosen mobile hardware platform
utilizing a strictly CPU execution model. An investigation into the optimal choice of image features
realized a 742% increase in FPS. The FPS was further increased through the utilization of on-board
SIMD processors and achieved a real-time performance of 21.39 FPS. Due to OpenCV not supporting
mobile GPU architecture, heterogeneous CPU-GPU acceleration on the mobile platform could not be
investigated. When a desktop heterogeneous platform was utilized, the FPS throughput increased by
205% through heterogeneous CPU-GPU acceleration when compared to a CPU implementation.
Results from an investigation into concurrent execution on the desktop platform did not meet
theoretical expectations since the set of asynchronous GPU functions utilized did not execute
completely asynchronously from the CPU.

Real-time computation was achieved by utilizing strictly CPU execution on the mobile platform. The
results of heterogeneous CPU-GPU acceleration on the desktop platform are transferrable to a
mobile platform, provided that the image processing library supports the mobile platform’s
heterogeneous capabilities. Thus, mobile devices are feasible platforms for real-time computation of
classical object tracking algorithms due to the attained FPS, with further increases in FPS possible
through heterogeneous CPU-GPU acceleration. This realizable increase in FPS through CPU-GPU
acceleration indicates more computationally demanding algorithms can achieve real-time
computation. Theoretical concurrent acceleration techniques were deemed to be of value as they
present the upper limit achievable in a CPU-GPU heterogeneous execution model.

Stellenbosch University https://scholar.sun.ac.za

iii

Uitreksel

‘n Uitvoerbaarheids-analise in die inferensie van 'n generiese objek-naspeur algoritme
op n gewone veeldoelige enkelbord rekenaar.

G. Walsh
Departement van Meganiese en Megatroniese Ingenieurswese

Universiteit Stellenbosch
Private Sak X1, 7602 Matie-land, Suid-Afrika

Tesis: MEng (Megatronies)
 April 2019

Die naspeur van 'n enkele, generiese voorwerp in 'n RGB insetstroom word baie bruikbaar wanneer
die naspeur algoritme onder bespreking instaat is om die inset beeld vinniger te prosesseer as wat
dit die beeld ontvang, gedefinieer deur die VOT uitdaging synde 'n reële tyd naspeurder, en meer so
wanneer die algoritmes direk na mobiele toestelle gelei kan word. Ultra moderne naspeur
algoritmes (Bertinetto, 2016) vertrou op konvolusionele neurale netwerk argitekture, en meer
spesifiek die bereken duur konvolusionele filter, om 'n ekstrak van die kenmerke van die beeld te
maak, en is daarom nie geskik vir reële tyd mobiele implementasie nie (Lu, 2017). Terwyl algoritmes
ontwerp word met reële tyd toepassing in gedagte, word implementering hardeware tans nie as 'n
belangrike faset beskou nie, en word tafelrekenaar hardeware dus tans vir inferensie gebruik. Die
gebruik hiervan is hoogs onaantreklik aangesien dit die toepassingspasie van die voorwerp naspeur
algoritmes beperk tot situasies waar uitgebreide berekeningskrag/rekenaarkrag? vir inferensie
beskikbaar is.

Die navorsing wat vir hierdie tesis onderneem is, het die klassiek-ontwerpte voorwerp naspeur
algoritme ondersoek, daarin dat dit handgemaakte kenmerke gebruik, en die uitvoerbaarheid
daarvan vir mobiele implementasie. Dit is voltooi deur die inagneming van die algoritme se
toepaslikheid vir implementering, en voortspruitende werkverrigting, op 'n algemene gebruik
heterogene rekenaar platform - 'n platform wat wyd beskikbaar is in mobiele toestelle soos
slimfone.

Verskeie hardeware versnelling en sagteware optimalisasie tegnieke is ook ondersoek, met die inisiëel
uitgevoerde eksperimente wat aangedui het dat die algoritme effektief gelei kan word op 'n suiwer
CPU- gebaseerde mobile platform en dat dit reële tyd raam prossesering snelhede bereik. 'n Hindernis
is teëgekom, as gevolg van 'OpenCV' biblioteek wat nie ontwerp is om die mobiele platform se GPU
argitektuur te ondersteun nie, en gevolglik kon die GPU versnelling op die mobile platform nie
ondersoek word nie. Nietemin is bevind dat die algoritme grootliks gebaat het by die GPU versnelling,
wanneer 'n desktop heterogene platform gebruik is, en vervolgens geskik om ook tegelyke tyd
uitgevoer te word. Resultate vooruitspruitende die ondersoek na die gelyktydige uitvoering was
teleurstellend aangesien die stel asinkroniese funksies wat gebruik is nie vertoon het soos beoog nie,
dit is nie totaal asikronies van die CPU nie. Die resultate van die geïmplimenteerde GPU en die
teoreties gelyktydige versnellingstegnieke is steeds van waarde geag met betrekking tot die doelwitte
van die projek aangesien die resultate in 'n mate oordraagbaar is na 'n mobiel heterogene platform,
gegewe 'n beeld prosessering sagteware biblioteek wat die mobile GPU kan benut.

Stellenbosch University https://scholar.sun.ac.za

iv

Acknowledgements

The author would like to firstly thank Dr Willie Smit for his continued guidance and stimulating
input for the duration of the project. For the chance to pursue research in such an interesting
and promising field, the author is truly appreciative and as well as for the support when
pursuing overseas travels. Secondly, to the International Office at Stellenbosch University,
and Ms Sarah van der Westhuizen, the chance to experience a semester aboard was once in
a lifetime. Thirdly to family, friends old and new, it was a great chapter of growth - may the
experiences and learning never end.

Stellenbosch University https://scholar.sun.ac.za

v

Table of contents
 Page

Abstract .. ii

Uitreksel .. iii

Acknowledgements ... iv

Table of contents ... v

List of figures .. vii

List of tables .. ix

Nomenclature ..x

1 Introduction ... 1

1.1 Background .. 1

1.2 State of the art ... 1

1.3 Objectives .. 3

2 Literature review .. 5

2.1 Machine learning ... 5

2.2 Computer vision ... 6

2.3 Neural networks ... 7

2.4 Image features ... 8
2.4.1 Convolution .. 9
2.4.2 Handcrafted .. 12

2.5 Object tracking ... 15
2.5.1 Classical approach ... 17
2.5.2 Connectionist approach .. 18

3 Case study .. 20

3.1 Tracking algorithm ... 20
3.1.1 CMT ... 20
3.1.2 Algorithmic overview .. 25

3.2 Computation .. 27
3.2.1 Graphics processing units ... 27
3.2.2 Accelerating computer vision .. 28
3.2.3 Software & heterogenous computing 29

3.3 Hardware platform ... 30
3.3.1 General-purpose single board computer 30

4 Use case ... 32

Stellenbosch University https://scholar.sun.ac.za

vi

4.1 Target use case .. 32

4.2 Algorithm ... 32
4.2.1 Algorithm choice ... 32

4.3 Hardware ... 35

4.4 Dataset... 36

5 Experiments.. 38

5.1 Evaluation method ... 38
5.1.1 VOT .. 38
5.1.2 Measures .. 40

5.2 Baseline.. 43
5.2.1 Desktop .. 43
5.2.2 Embedded .. 44
5.2.3 Embedded baseline performance ... 44

5.3 Image feature optimizations .. 46
5.3.1 Feature detector ... 46
5.3.2 Feature descriptor .. 48

5.4 CPU hardware acceleration .. 50
5.4.1 NEON .. 50
5.4.2 VFPv3 .. 50
5.4.3 Results .. 51

5.5 Heterogenous hardware implementation .. 53
5.5.1 Design ... 53
5.5.2 Embedded implementation .. 56
5.5.3 Shortcomings .. 57
5.5.4 Desktop implementation .. 57

5.6 Concurrent execution model .. 59
5.6.1 Design ... 60
5.6.2 Results .. 62

6 Conclusion .. 66

7 References .. 69

Appendix A .. 73

Stellenbosch University https://scholar.sun.ac.za

vii

List of figures

 Page

Figure 2.1: The Multilayer Perceptron .. 8

Figure 2.2: The Alexnet NN for image classification ... 9

Figure 2.3: The convolutional filter .. 10

Figure 2.4: The FAST feature detector. .. 14

Figure 2.5: The Fully-Convolutional Siamese Networks developed for object tracking 19

Figure 3.1: Illustration of the mediating properties of voted in CMT. 21

Figure 3.2: A graphical illustration of the agglomerative approach to clustering the centre
votes ... 24

Figure 3.3: Algorithmic overview of CMT ... 26

Figure 3.4: A summary of generic functions used within computer vision pipelines............ 29

Figure 3.5: A throughput optimized program whereby we note both processors are
allocated. .. 30

Figure 4.1: Illustration of the possible configurations of part detectors and descriptors 34

Figure 4.2: Frame 1 from the sequence “Track” .. 36

Figure 4.3: Frame 1 and 700 from the sequence “Person partially occluded” 37

Figure 4.4: Frame 507, 558, and 570 from the sequence “Car 2” ... 37

Figure 5.1: An AR plot alongside an EAO plot .. 39

Figure 5.2: The failure rate of state-of-the-art tracking methods for various scenarios. 40

Figure 5.3: Success plots of CMT. .. 43

Figure 5.4: Time distribution amongst the image processing functions of CMT 46

Figure 5.5: The investigated detector responses ... 47

Figure 5.6: Single Instruction Multiple Data architecture .. 51

Figure 5.7 (a): Time distribution amongst functions as a percentage of overall cycle time ... 52

Figure 5.8 (b): Success plot of CMT post relevant hardware and software optimization. 53

Figure 5.9: Performance benefit of utilizing NEON acceleration .. 54

Figure 5.10: The CMT task graph ... 55

Figure 5.11: An efficient allocation of CMT’s functions on a heterogeneous computing
platform .. 55

Figure 5.12: Source code snippet from the ‘GoodFeaturesToTrack’ detector, 56

Figure 5.13: The distribution of time amongst the functions. .. 58

Figure 5.14: An illustration of allocation of functions to specific hardware resources 60

Stellenbosch University https://scholar.sun.ac.za

viii

Figure 5.15: Design of the pipelined execution model. .. 61

Figure 5.16: Profiling results of detectAsync() function ... 64

Figure 5.17: Time distribution of function detect() in the runtime API. 65

Figure A1: Illustration of the timing method used for each individual function. 73

Figure A2: Illustration of uploading of variables into device memory. 74

Figure A3: Synchronization point in the function processframe() 75

Figure A4: Function matchGlobalAsync(). .. 76

Stellenbosch University https://scholar.sun.ac.za

ix

List of tables

 Page

Table 5.1: CPU hardware difference between embedded and desktop platform.45

Table 5.1: Summary of results regarding investigation into detector response. .. 48

Table 5.3: CMT performance when configured with an ORB and GFTT detector. 49

Table 5.4: CMT performance when utilizing the GFFT detector a 50

Table 5.5: Performance summary of CMT configured with the GFTT detector ... 51

Table 5.6: A summary of the time taken per function for ‘track running’ 58

Table 5.7: The of the impact on inference rate by allocating the GPU 59

Table 5.8: Time taken to process functions allocated to the GPU 62

Table 5.9 - Complete cycle period measurements, post concurrent execution. .. 62

Table 5.10: Memory management and launching of kernels on the GPU 63

Stellenbosch University https://scholar.sun.ac.za

x

Nomenclature

b Object bounding box

d Image feature descriptor vector

FPS Frames per second processing rate

𝐹𝑁 False negative classification

ℎ Object centre vote

I Image array of pixels

𝐿௄ Set K of part correspondences

𝑚௜ Correspondence 𝑖 of object parts

𝑝(𝑥௜) Descriptor vector of keypoint 𝑥௜

R Standard rotation matrix

𝑠 Scale

𝑆 Success ratio

𝑡௡ Set 𝑛 of reference descriptors

𝑇𝑃 True positive classification

𝑤 Transitive predicate

x Image patch

𝑥௜ Keypoint 𝑖 in image coordinates

𝑥௜
௧ Object part 𝑖 at time 𝑡

z Image template patch

𝑍 Normalized initialization image

∝ Overlap ratio

𝛾 Second nearest neighbour ratio threshold

𝜑 Consensus predicate

𝜇 Object centre in normalized image coordinates

∅ Overlap threshold

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction

1.1 Background

Unmanned Aerial Vehicles (UAVs) have seen a recent increase in both consumer
and industrial applications. One of the novel applications is in Concentrated Solar
Plants (CSPs), where UAVs assist in heliostat calibration. The increase in the
application of UAVs to a broad range of tasks can be attributed to the increase in
sophistication of both onboard software and hardware. The improved software
sophistication is, in turn, largely accredited to the current research effort into
computer vision (CV). CV is a field within machine learning whereby computers
seek to interpret the information found in digital images (Szeliski, 2010). Computer
vision allows UAVs to interpret the information of their immediate surroundings
in a manner that can be likened to that of the visual cortex (Goodfellow, 2015).
Using computer vision, UAVs can identify objects within their field of view and
formulate 3D recreations of their surroundings. This gathered information of the
immediate surrounding can then be utilized to plan a path of travel through the
physical world, whilst avoiding or following specific objects.

The task of tracking objects of interest is not limited to static objects such as
heliostats. UAVs are also tasked with tracking more dynamic and deformable
objects such as people partaking in various sports, automobiles or even wild
animals. The task of tracking an object is a well-defined problem since its formative
application in a military context (Kalman, 1960).

There are many valid assumptions to be made in the process of tracking objects.
One such assumption is that on a per frame basis, the object of interest is assumed
to be displaced an insignificant amount (Lucas and Kanade, 1981). One-shot object
tracking algorithms seek to make assumptions that are as conservative as possible,
to ensure the methods are applicable to the widest range of scenarios. The
method is not granted any prior knowledge of the object, nor does it search a
restricted area in the image once knowledge has been gained of its position. For
tracking algorithms to be of use in real-world scenarios the output needs to online
and within real-time constraints.

1.2 State of the art

Similarly to other image processing tasks, the scientific field of visual object
tracking has not managed to avoid the increasingly common application of
Artificial Neural Networks (ANNs). Arguably, the popularity of ANNs in image

Stellenbosch University https://scholar.sun.ac.za

2

processing tasks is due to the success that ANNs have achieved in image
classification, pioneered by AlexNet (Krizhevsky, 2012). State-of-the-art object
tracking methods currently employ a moderately shallow network of layers when
compared to state-of-the-art object detection networks that are some 20 layers
deep, such as You Only Look Once (Redmond, 2015).

The differentiating attributes between the approach of state-of-the-art ANNs and
classical one-shot object tracking algorithms are the utilization of convolutional
neural networks (CNNs). CNNs are a subset of ANNs that are especially effective
at image processing tasks. Predominantly, the effectiveness of CNNs is due to the
weights of the convolutional filter operators are learnt offline, with a suitable
dataset for the given task. Offline training of the filter weights enables extraction
of image features that allow the network to be able to generalize well, particularly
on unseen examples. Classical one-shot object tracking methods rely on
handcrafted image feature extraction models to provide discriminative features
to the classification portion of the algorithm. Classical image feature methods such
as the Scale Invariant Feature Transform (Lowe, 2004), present poorer
performance as the methods generally attempt to span a generic application
domain. Whilst these tasks commonly require that the feature descriptor be
uniquely discriminative, convolutional filter operators have the advantage of
being trained for the specific task. For example, object detection networks such as
You Only Look Once are for the sole purpose of object detection and localization.

 A vast computational cost is however incurred in computing CNN networks like
the object detection network mentioned previously – a computation cost of 30
billion floating point operations (BFLOPS) for a single prediction of You Only Look
Once (Redmond, 2015). This computational burden can be attributed to the
computation of the convolutional filters (Wu, Leng, Wang and Cheng, 2015).
Convolutional image filters are usually computed by hardware that can accelerate
data parallel operations such as Graphics Processing Units (GPU). GPUs are
commonplace as of late in consumer general and high-performance personal
computers. However, the devices utilized by the research and industrial
communities commonly rely on proprietary desktop hardware and associated
software and are not mobile. Thus, the application domain of real-time object
tracking algorithms (Bertinetto, 2016) is constrained due to the reliance on
desktop GPUs, to achieve real-time computation.

Arguably, real-time computation of object tracking algorithms on mobile
platforms has not been considered due to researchers focusing their efforts on
tracking effectiveness. However, object tracking algorithms that are able to be
computed in real-time are documented by the real-time challenge within the
Visual Object Tracking challenge (Kristan et al, 2016). The caveat in the evaluation
of real-time trackers by the Visual Object Tracking challenge is the utilization of
desktop hardware.

Stellenbosch University https://scholar.sun.ac.za

3

Classical object tracking algorithms and image features present a feasible solution
when pursuing real-time performance as they do not employ convolutional filters.
Research in classical image features culminated in Orientated FAST and Rotated
Brief (Rublee, 2011) which performed comparatively (Rublee, 2011) to SIFT, but
faster by two magnitudes of order. Classical image features can be efficiently
computed due to utilizing binary descriptor vectors, as in Orientated FAST and
Rotated Brief. Classical object tracking algorithms, utilizing lightweight image
features, thus present a feasible alternative to CNNs for real-time object tracking
computation on mobile devices. Mobile SoCs are a feasible platform for
investigation as they rival desktop hardware that was available earlier in the last
decade (Ignatov et al, 2018).

The aim of this research is to implement a classical object tracking algorithm and
assess its feasibility of obtaining real-time performance on a mobile device. The
initial hypothesis is that real-time performance, of the classical object tracking
algorithm, can be achieved by utilizing heterogeneous CPU-GPU acceleration on
the mobile platform.

1.3 Objectives

The principal objective of this thesis was to implement the chosen object-tracking
algorithm effectively on a general-purpose single board computer. Real-time
performance was the criteria for assessing the successful implementation of the
algorithm. Real-time performance was to be achieved by efficiently using onboard
hardware and through efficient software design.

Research objectives

 Concurrently establish a general-purpose single board computer platform
as well as an open-source generic object tracking algorithm, the latter of
which will be investigated whether suitable for inference on the chosen
hardware platform.

 Identify and investigate the functions within the algorithm that present the
largest computing overhead, on the chosen hardware.

 Determine how the algorithm can be accelerated with on-board hardware
and software optimizations.

 Investigate which optimizations, software and hardware, should bring
inference improvements and quantify the improvements on specific
functions

Stellenbosch University https://scholar.sun.ac.za

4

 Implement an accelerated variant of the given algorithm on the given
hardware.

 Investigate the suitability of the chosen algorithm for a concurrent
execution model.

Stellenbosch University https://scholar.sun.ac.za

5

2 Literature review

2.1 Machine learning

Machine learning is the statistical science of enabling computers to be able to
expose underlying patterns in data (Murphy, 2012) and make high level
interpretations. Machine learning has seen an exponential rise in both its
proficiency to solve problems as well as its applicability in common scenarios.
Machine learning has been solving problems, such as handwritten digit
recognition (LeChun et al, 1990) or Optical Character Recognition (OCR) since the
late 1990’s, but only since the proliferation of modern computers and the
associated accessibility of digital data or big data (Murphy, 2012) has the discipline
started to flourish.

Machine learning can be separated into three fundamental approaches that are
used to infer ‘learning’ into an algorithm: supervised and unsupervised learning,
being natural opposites to one another in their approaches, and reinforcement
learning (Murphy, 2012). Supervised learning can be described as the task of
learning an input to output function mapping, given a set of labelled data points
that are distributed amongst the classes that we seek to be able to discriminate
between. The data points, more commonly known collectively as the training
dataset, and the nature of their labelling differentiates supervised and
unsupervised learning. Unsupervised learning also requires a set of training
examples to infer learning in the algorithm, but instead the algorithm seeks to
learn the inherent structure (Murphy, 2012) in unlabelled data points, in which
the class of each data point is not explicitly defined. Whilst the approach of
unsupervised learning may seem more akin to the so-called forthcoming Artificial
Intelligence Singularity, it still requires much input from the architect of the
algorithm in order to leverage any underlying structure within the data.

A learning paradigm that is more align with the popular culture surrounding the
research topic of machine learning is reinforcement learning. Reinforcement
learning is a method congruent with the natural methods of learning, through trial
and error. Upon first approach, the method is more easily grasped than that of the
previously mentioned methods, as the algorithm simply has a defined reward
(Russell and Norvig, 2010) pathway and attempts take actions that seek to
maximize this reward. Reinforcement learning is an area of research that is
pursued in many disciplines outside of the world of machine learning such as game
theory, due to its general ability to learn an optimal policy in an environment.

A common goal between all methods is that they seek to make light work of
interpreting vast amounts of data (Murphy, 2012) that is inherent to our digital
world, and not easily processed by humans. Machine learning has seen

Stellenbosch University https://scholar.sun.ac.za

6

applications ranging from time series forecasting (Bontempi, Taieb and Borge,
2013) to being able to detect and classify objects in digital images (Redmond,
2015). The discerning factor between which approach is utilized to solve a problem
or to leverage insight depends predominantly on the situation at hand but also the
required output from the algorithm. A common machine learning application may
even leverage both supervised and unsupervised learning in the same application.
As a first step we might want to first learn the inherent structure within a vast
dataset. The principal components, which were extracted from the unsupervised
portion of the application, could then be passed to a supervised portion of the
application in order to either create or train a classifier.

2.2 Computer vision

Within the vast depth of research fields of machine learning is the interdisciplinary
field known as Computer vision. Computer vision (CV) presents an enormous
challenge, regarding dealing with vast amounts of complex data (Szeliski, 2010).
CV is both a highly active and an extremely promising area research field. The
annual Computer Vision and Pattern Recognition Conference (CVPR) has seen over
ten thousand publications in its short 30-year existence.

However, modelling the real world and its associated complexities with digital
image sensors in a binary format presents an enormous challenge when we seek
to interpret this information in a high-level manner (Szeliski, 2010). Common
challenges in computer vision, and the associated digital representation of a
scene, are changes in light intensity, various viewpoints of a scene and interpreting
the same scene at various levels of scale. Many challenges arise as we are
essentially representing a 3-dimensional space on a 2-dimensional plane (Szeliski,
2010). Not only are we attempting to model the natural world with a seemingly
simple binary representation, the representations that we utilize are also high
dimensional. A 640 x 480-pixel RGB colour model image contains roughly 1 million
bytes of information, and essentially occupies a 640 x 480-dimensional space.

Common areas of application of computer vision are, for example, in medical
imaging where a computed tomography scan may be post-processed by an
algorithm to detect the presence of cancerous tumours within the human body,
or in robotics application where object recognition needs to be performed in order
to navigate an environment and avoid objects successfully. These tasks are further
complicated when video is fed into the computer vision algorithm. To provide
meaningful output on video input the image processing rate is usually required to
meet or exceed that rate at which information is captured. This computational
burden is further complicated by modern image capturing devices usually
representing the real world with High Definition (HD) images that occupy some
1980 x 1080-dimensional spaces.

Stellenbosch University https://scholar.sun.ac.za

7

Despite the aforementioned challenges, it should be reiterated that computer
vision has been successfully transforming our world and automating many tasks
since the 1990s. Once such task that humans complete without perceiving the
inherent complexity on hand is that of generic object tracking. Recognising
objects, a separate subsection within computer vision, and tracking them through
a video feed is an attractive tool. Once the field of object tracking is sufficiently
solved, it promises to bring many advances to applications of machine learning.
The term sufficiently solved is referred to, due the existence of the No Free Lunch
Theorem (Wolpert, 1997), which states that no singular algorithm can solve every
problem. Wolpert’s theorem can be applied to the task of generic object tracking,
in which we realize no singular algorithm will be superior in all situations - some
scenarios requiring speed over accuracy or superior robustness to explicit
accuracy.

2.3 Neural networks

Realistically, the approach of ANNs is not a recent discovery as it has been present
since the 1940s. Confusion has surfaced throughout history due to the array of
naming schemes ANNs accumulated over time, starting with cybernetics and later
becoming connectionism (Goodfellow, 2015). Recent theoretical discoveries in
ANN structure such as the activation function in the hidden layers of a network,
and the development of the propagation of errors backward through a network
(Rumelhart et al, 1986) have enabled effective training and state-of-the-art
classification accuracy. Proliferation of the general-purpose computing on
Graphics Processing Units (GPGPU) have realized both training and inference of
ANNs within realistic time boundaries. The combination of theoretical progression
and available computing power has enabled the widespread success of ANNs in a
variety of applications. Neural Networks gain their artificial prefix as the
connectionism, as illustrated in Figure 2.1, draws inspiration in its construction
from biology, where the brain (Goodfellow, 2015) is comprised of multiple layers
of neurons that are interconnected on varying levels. This common structure,
illustrated in Figure 2.1, is also known as the Multi-layer Perceptron (MLP). It gives
rise to the term Deep Neural Networks, when a network is comprised of many
hidden layers repeatedly.

Stellenbosch University https://scholar.sun.ac.za

8

Figure 2.1: The Multilayer Perceptron illustrating the connectionism between
nodes (Karpathy, 2015).

It was showed that that Deep Neural Networks (DNNs), deeper than previously
employed (Krizhevsky, 2012) in vision-based machine learning tasks, could
outperform state-of-the-art approaches to object detection in images. This was
due to the hierarchy of image features that were learnt for the specific task on
hand by the network, during offline training. Object detection approaches that
utilized hand-crafted image features and classifiers such as a Support Vector
Machine were from 2012 onwards considered outdated or classical.

2.4 Image features

Figure 2.1 illustrates the network construction is more akin to those tasked with
general regression analysis. This construction is commonly referred to as Fully
Connected Network (FCN), due to the interconnection between each node in the
network. DNNs commonly utilized in tasks within computer vision are referred to
as Convolutional Neural Networks (CNNs). CNNs are generally employed for image
processing tasks such as object detection, classification and object tracking. CNNs
usually consist of a sequential series of convolutional filter layers followed by a
minimal set of fully connected layers. AlexNet (Krizhevsky, 2012) is illustrated in
Figure 2.2 as reference for a generic CNN employed in image processing tasks.

Stellenbosch University https://scholar.sun.ac.za

9

Figure 2.2: The Alexnet (Krizhevsky, 2012) CNN for image classification, with 5
convolutional layers are followed by 3 Fully Connected Layers (The
intermediate max pooling layers between convolutional layer 1 - 2 and 2 -3 are
not illustrated for simplicity).

2.4.1 Convolution

While the definition of convolution differs depending upon which application
space it is utilized in, when we speak of the process of convolution, we refer to the
image filter operation defined by

 𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ෍ ෍ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

௡௠

 (2.1)

whereby 𝐼 is an input image, a 3-dimensional array, that is filtered using the filter
operation K. This operation, illustrated below in Figure 2.3 as the kernel, is passed
over the image at a defined spatial location, where the input image is now a 2-
dimensional array. The input image attains it’s third dimension due to the RGB
colour model, with each of the three dimensions represent a certain colour
channel of which the convolutional filter manages independently, as illustrated in
the manner below.

Stellenbosch University https://scholar.sun.ac.za

10

Figure 2.3: The convolutional filter processing a 2-dimensional input, with the
kernel or convolutional filter and input image highlighted (Goodfellow, 2015).

Each layer of a CNN produces an output whereby the dimensionality is usually
smaller than that of the input layer, as the goal is to perform effective
dimensionality reduction, with an exception for the third dimension. A larger third
dimension is produced due to the fact that many filters are passed over the input
image and as a result an output is produced that is smaller in both input image
width and height, but has more depth layers. This is illustrated in Figure 2.2 where
the input is 227x227x3 and, after the initial set of convolutional filters, there are a
total of 96 outputs each of width and height of 55 pixels.

The output of a convolutional filter or kernel, of which both can be used
interchangeably, is referred to as a feature map and contains a 3-dimensional
array of features extracted by each of the kernels. The index of the third dimension
of the feature map refers to the index of which a unique kernel, as illustrated
above in Figure 2.3, produced the specific feature map and the third dimension
grows in size throughout the convolutional stages, with the remaining dimensions
shrinking. Another fundamental aspect of the CNNs are that the kernels are not
usually applied to every pixel in the input image as this would include redundant
information in the feature maps. Filters are usually applied in a stride, with a stride
of 2 implying that the centre of the filter only being applied to every third pixel in

Stellenbosch University https://scholar.sun.ac.za

11

a specific direction of either height or width, and that the kernel strides two pixels
before operating in both planar image dimensions.

However, information is not disregarded with the application of a strided filters
due to the filters possessing a ‘receptive field’. Receptive fields refer to the area in
the input of which a filter can ‘see’ and through the utilization of a stride, the
amount of overlap between applications of a kernel can be controlled. In Figure
2.3, with a stride of 1, the kernels share 50% of the input data between successive
applications, and thus as have a similar receptive field. DNNs tend to have a larger
receptive field than shallower networks, due to the same input propagating
through the network, partly enabling their effectiveness in extracting
discriminative features (Goodfellow, 2015).

Zero-padding and pooling are two aspects that also influence the dimensionality
of the feature maps generated by convolutional filters. Zero-padding essentially
appends the input to the filter with 8-bit 0 values, where necessary, in order to
preserve spatial dimensions in the output and allows independent command over
both the kernel width and the dimensions of the output (Goodfellow, 2017).
Pooling is another dimensionality-reducing operator that takes in a two-
dimensional input and reduces the size of both dimensions by using a selective
operator, such as, for example, a max pooling operator. Pooling serves to down-
sample the input by separating the input into non-overlapping grids of which it
selects, for example, in a 2x2 grid with max-pooling, the singular highest integer
value. It is an effective method employed in practice that greatly reduces both
computation and overfitting, with the intuition that specific feature location is not
as critical as general location (Goodfellow, 2015).

Finally, the last notable operator in modern CNNs is the activation unit that serves
to provide activation of a node based on a threshold, with inspiration drawn from
the research conducted on the visual system (Hubel, 1959). Modern CNNs
commonly utilize the Rectified Linear Unit (ReLu) which can be likened to that of
a half-wave rectifier in electronic signal processing and, like all activation
functions, serves to provide an increase in network nonlinearities, which is critical
in Neural Networks as they can learn complex functions and avoid gravitating
toward being deeply stacked linear operators. The convolutional portion of the
network, illustrated in Figure 2.2 by the first 5 layers, generally follows the
construction of a sequential series of operators by starting with a set of
convolutional kernels, after which comes an activation unit and a pooling layer.
This section of the network is responsible for dealing with image features, after
which the generated feature maps are passed to the classification portion of the
network. With the continued research efforts into more effective CNNs, novel
operators like skip connections, such as those found in ResNet (He, 2015), are
becoming more common place as well.

Stellenbosch University https://scholar.sun.ac.za

12

Convolutional Neural Networks produce superior features to classical features
detectors and descriptors arguably for two reasons. The first being their design
being closely inspired by the human visual system, which responds on many
different levels to varying types of visual stimuli (Goodfellow, 2015). Secondly that
there is a hierarchy in visual input, visual features and brain response. This
hierarchy is learnt for a specific task and embedded in the weights of the kernels
can be learnt. Arguably, a feature is designed to be as discriminative as possible,
from the approach of both the classical and CNN, and as such the single feature
should be useful for many tasks where we need to distinguish between image
information, being it either for 3D reconstruction or for optical flow fields.
Research (Bertinetto, 2016) has however showed that CNNs perform well on
image recognition-based tasks.

2.4.2 Handcrafted

Classical image features are handled in two-step manner - the input image is first
passed through a feature detector that filters the image to determine the spatial
coordinates where interest points are present, known as keypoints, after which
the area surrounding the keypoints are described with a corresponding feature
vector, generated by a feature descriptor. Arguably, CNNs follow a similar
procedure, but the process is completed over several steps for which the network
designer has control, and the features develop as they propagate through the CNN
rather than being completed in two distinct steps. While the literature available
that covers the classical approaches to image features is extremely vast and
beyond the scope of this research, the following two sections serve to cover the
basic approach in which local image features are handled. Local features are
defined by the fact that they serve to represent discrete spatial positions in
images, rather than the image as a complete region, such as the Histogram of
Orientated Gradients descriptor (HOG).

2.4.2.1 Feature detection

Feature detection methods aim to filter the input image, to discern the locations
of features that the function deems to be both discriminative, invariant to varying
transformations, and repeatedly detectable. Keypoints are generated by the
feature detector in image coordinates and locate an area of interest, for instance
either an edge or a sharp change in colour contrast. Initial work on keypoint
detectors relied on extremely simple approaches and simply utilized a sum of
squares difference approach to differentiate between and detect keypoints in
image regions. Image feature detectors progressed steadily by incorporating more
advanced operators such as taking derivatives in both directions (Harris, 1988).
Subsequently, the GoodFeaturesToTrack approach (Shi and Tomasi, 1994)
furthered the prior approach by incorporating a corner strength test. It was only
with the pioneering work of Scale Invariant Feature Transform (Lowe, 2004) that

Stellenbosch University https://scholar.sun.ac.za

13

feature detectors and descriptors became of great use to the computer vision
community. Scale Invariant Feature Transform (SIFT) is, however, limited due to
its computational complexity. Importantly for the purpose of this research thesis,
computational complexity was addressed with the approach of Features from
Accelerated Segment Test (Rosten and Drummond, 2005), which considered
individual pixels as keypoints by investigating a 16-pixel circular region around the
pixel. The candidate pixel was considered a keypoint if there existed a set of pixels
n which were within the circular region, and were all at the opposite end of the
pixel’s illumination intensity, by a threshold t. It should also be mentioned the
approach of Lowe, as well as aforementioned approach, required the input image
to be in grayscale, as this greatly simplified both the brightness check of the
Features from Accelerated Segment Test (FAST) detector and the computation of
SIFT keypoints.

Whilst the FAST keypoint detector was efficient in terms of inference, it had
inherent issues due to its simple approach that made FAST keypoints less effective
than keypoints detected the SIFT operator. The FAST detector in practice produced
a large keypoint count, which was subsequently addressed by, as illustrated in
Figure 2.4, first only checking a determined minimum number of pixel positions,
being 1 and 9, and then if those pass the previous threshold test, 5 and 13 are also
tested. Image locations that passed these preliminary tests were then added to
the list of keypoints, after which a full neighbourhood test could begin.

Whilst the FAST detector was still not suitably robust for effective implementation,
the author attempted to address these issues, firstly with the suboptimal choice
of pixels for the reduced segment test (pixels through 1,3,9 and 13). Since these 4
pixels were aligned 45 degrees apart from one another, a corner could easily be
missed if not correctly aligned and was for instance oriented vertically. The author
addressed this issue, as well as many redundant keypoints being detected in close
proximity to another, by testing the detector over a dataset of images from which
a decision tree was learnt that yielded more robust corner detection and
employed Non-Maximum Suppression in order to avoid detecting keypoints that
were close to within a vicinity of one another. The reader is referred to the original
paper for a further discussion (Rosten, 2005).

Stellenbosch University https://scholar.sun.ac.za

14

Figure 2.4: The FAST feature detector, where the circular region around a
candidate pixel is investigated and demarcated with the 16-pixel region
(Rosten et al., 2010).

2.4.2.2 Feature description

Following successful keypoint detection, keypoints are subsequently associated
with a feature descriptor vector that assigns a unique vector to a keypoint such
that it could be reliably detected in other frames. Pioneering work was achieved
with very simple features in early attempts at facial recognition which utilized
difference operators between sums of pixels from a pair of regions, similar to
feature detection. The SIFT descriptor vector, which was demonstrated to be
supreme to other feature descriptors at the time, was constructed by calculating
a Histogram of Orientated Gradients that summarized the image gradient
orientations of the image patch surrounding the keypoint. SIFT greatly contributed
to their effectiveness of many computer vision algorithms that utilized key points
such as panoramic stitching or 3D reconstruction, but was mostly impractical in
real-time applications due to a 16x16 patch around the keypoint of interest being
summarized with a 128-dimensional feature descriptor, having too large of a
memory footprint. Researchers subsequently put significant effort into developing
descriptors that were as effective as SIFTs’ but were more computationally
efficient. A binary feature descriptor was proposed (Calonder, 2010) that
promised to bring about real-time performance by testing, after smoothing
candidate image patches, brightness intensity between pairs of pixels. Binary
Roust Independent Elementary Features (BRIEF) experimented with various
sampling geometries for generating pairs of pixels and eventually settled scheme
that sampled randomly from a Gaussian distribution centred around the patch.

Stellenbosch University https://scholar.sun.ac.za

15

The most effective Gaussian distribution had a variance of 1
25

𝑆2 and zero mean,
where 𝑆 is the dimension of the square image patch. Using the proposed method
BRIEF allowed for the efficient processing of descriptors that rivalled SIFT in terms
of effectiveness. Researchers built on novel binary feature descriptor BRIEF and
attempted to include invariance to rotation with the Binary Robust Invariant
Scalable Keypoints (Leutenegger, 2011). Binary Robust Invariant Scalable
Keypoints (BRISK) employed varying-width Gaussian smoothing operators to area
surrounding the candidate image patches that were sampled by utilizing a fixed
sampling pattern.

The question then becomes: once it is possible to reliably locate points of interest
in images that can be repeatedly detected and matched after changes in image
rotation, scale and illumination, what algorithms and computer vision concepts
these keypoints and their associated descriptor vectors are useful for. Whilst this
was certainly not natural progression in the development of image features, the
use-cases became more complex as image features saw a similar increase in their
effectiveness. Once such application that heavily relies on image features is
generic object tracking, whereby we seek to track deformable random objects in
images.

2.5 Object tracking

An application where discriminative features are of utmost importance is in the
task of tracking objects in a sequence of images or from a live video feed. The
target of an object tracking algorithm can be summarized (Maggio and Cavallaro,
2011) as predicating the spatial location, in an image, of an object in a video
sequence comprising of individual images. Authors have studied how to track
objects that belong to specific classes, for instance humans (Koller et al, 1994).
This approach supplies the algorithm prior knowledge of the object of interest and
should return higher tracking effectiveness than an approach without this
knowledge. However, this requires a specific subset of assumptions for each
object of interest, which is unattractive as each object would have to studied prior
to tracking.

Generic object tracking algorithms have no prior knowledge of the object of
interest that is to be tracked and seeks to make the most conservative
assumptions possible. Assumptions such as reduced-space searching for the
object once the object is localized in the previous frame, or that the object will
remain rigid throughout the tracking sequence are avoided in generic object
tracking. In practice objects such as humans involved in physical activity can
readily deform throughout a sequence.

Stellenbosch University https://scholar.sun.ac.za

16

Generic object tracking algorithms are tasked with (Nebehay, 2016) in a sequence
of images or a live video feed of most predominantly the RGB colour model: given
a bounding box 𝑏, comprising of the top left image coordinates and accompanying
width and height, that surrounds the object from an initialization image 𝐼1, the
purpose of the algorithm is to conduct an optimization exercise to find the
bounding box 𝑏 in each image that presents the largest overlap with the object of
interest, whilst simultaneously minimizing the overlap with background clutter for
every input at time 𝑡. The utilization of a bounding box, however simple it may
seem, is an exercise in trade-off between fully encompassing the object and
including the most minimal number of pixels that belong to the background and is
utilized in all state-of-the-art detection and localization tasks.

The task of object tracking can, algorithmically, be separated into four distinct
processes (Nebehay, 2016): an initial predication step, the extraction and
processing of the relevant image features, localization and subsequently the
updating of the model used to represent the object of interest.

The prediction step is usually only of value when an object of fixed class is being
tracked and valid assumptions can therefore be made. Useful prediction
assumptions are commonly made on the object’s future location, based on
previous motion (Kalman, 1960). Prediction is often error prone and can in turn be
result in significant drift and error aggregation (Lepetit and Fau, 2005). For the
reason of being applicable only to certain objects, the prediction step is not
performed in generic object tracking.

The second step of feature extraction can be likened to dimensionality reduction
in terms of general machine learning. The goal is to move from a high dimensional
space of an image to a more compact and condensed representation of the image.
The compact representation, of image into image features, allows more
convenient and efficient comparison of images and their content. An image
feature should be discriminative and therefore only belong to a unique object or
certain region in an image. Feature invariance is a fundamental attribute of image
features and allows a unique feature to be detected in multiple different scenes.
Section 2.4 covers feature extraction methods, both current and classical
methods, and the methods employed to overcome the task of effective
dimensionality reduction.

Localization refers to the step of correlating image features to object location,
completed in a local search or by detection. On first approach local search
methods may seem to employ the use of a predictive model or step to localize the
object. However, solely the information of object location from the previous image
is regarded as valuable (Cannons, 2008) and can be utilized as a starting point in
localizing the object for the current frame. The key difference in a local search
compared to a prediction step is that only information from the previous time step

Stellenbosch University https://scholar.sun.ac.za

17

is used, and subsequently does not lead to drift. Optical flow (Lucas and Kanade,
1981) have been widely utilized to provide local search information. Optical flow
provides image feature location by assessing per-frame image motion, assuming
minor per-frame motion. Localization by detection relies on correlating extracted
image features to a database of information that is known to belong to the object
of interest. Localization by detection is commonly performed by comparing
individual image features and utilizing a difference operator such as the Euclidean
distance. This approach ignores all prior object location information, but some
localization by detection methods do update the database of known object
information.

The final task relates to the amendment of the object model with the information
from the localization step, in order to keep the model relevant with time. Amongst
key challenges are to avoid drift through the inclusion of erroneous information
and to complete the update in time to avoid changes in appearance. It is
hypothesized that the most successful approach (Nebehay, 2016) is to update the
object model as conservatively as possible. Each tracking algorithm has a specific
handcrafted criterion for this step and as such should be explored with each
individual tracking approach.

2.5.1 Classical approach

Previous approaches to the task of generic object tracking generally constructed
an object tracking pipeline out of the four well-defined building blocks of
prediction, feature extraction, localization and model update (Nebehay, 2016).
The tasks were generally approached through established machine learning
methods such as utilizing classical image feature description and detection, and
hand-crafted object models as in Hough Forests. Hough Forests (Gall, 2011)
approach to object tracking utilized an approach similar to Random Forests for
classification, but rather than attempting to interpret class labels, Hough Forests
utilized a Random Forest classifier to discern an object centre.

A method which built upon the Hough Forest object model, whereby the object
consisted of disjointed parts with a common centre, was Clustering of Static-
Adaptive Correspondences for Deformable Object Tracking (Nebehay, 2016).
Clustering of Static-Adaptive Correspondences for Deformable Object Tracking’s
(CMT) approach improved the proposition of utilizing a star-shaped object model
by allowing an individual degree of displacement to each part, and, similarly to
Hough Forests, object parts voted for the object centre, where CMT’s
distinguishing fact was that the voting was completed by object pairs.

Following the pipeline of classical object tracking algorithms a motion model
would first be assumed, such as minor per-frame displacement, and be used to
make a temporal-spatial prediction. Methods such as sparse optical flow (Lucas,
Kanade, 1981) were commonly employed in classical generic object tracking

Stellenbosch University https://scholar.sun.ac.za

18

pipelines. Image features were then handled by utilising a hand-crafted feature
detector and descriptor such as Orientated FAST and Rotated BRIEF (Rublee,
2011), which essentially utilized a FAST keypoint detector and a BRIEF descriptor,
but where Orientated FAST and Rotated BRIEF extended the BRIEF descriptor
vector to include rotation invariance. These keypoints and their associated
descriptors were subsequently processed in the following algorithmic step to
localize the object of interest, for instance by matching candidate descriptors to a
database of the object using a nearest neighbour matching scheme. The final
algorithmic step was to update the object model with the newly acquired
information to keep the object model current, and to balance the trade-off
between stability and plasticity as well as drift. CMT approached this by combing
the temporal-spatial and image feature information in an adaptive-static
approach, by giving preference to robust, statically matched information.

2.5.2 Connectionist approach

In contrast to the traditional approach to object tracking, where the building
blocks of the tracker were well defined, the connectionist approach, which utilizes
ANNs of varyingly interconnected layers and nodes, is somewhat less understood.
State of the art object tracking algorithms have benefited enormously from the
resurgence of ANNs, and, more specifically, CNNs and their newfound success in
the application to high level image processing tasks such as Object Detection.

Similarly to Deep Neural Networks (DNNs) designed for the task of object
detection and classification, object tracking algorithms have arguably benefitted
primarily from the increased effectiveness of convolutional filters for the task of
feature detection and description. The primordial difference between the
connectionist approach and those used in previous state of the art object tracking
methods, culminating arguably with CMT, is that convolutional kernel weights are
learnt in a supervised fashion, offline. The features extracted from CNNs are
interesting to visualize and it is noted that within the early convolutional layers
that the kernels learn to behave similarly to classical feature detectors, in that
corners in images and similar features are also found. Image features are of
extreme importance when considering the tracking accuracy of object tracking
algorithms, as will be illustrated in section 5, as, no matter how sophisticated the
object model, if the features that are employed are not discriminative, any object
model will fail. A simple object model however, when employed with
discriminative features, can perform remarkably well.

The connectionist approach to the design of trackers focuses around 3 distinct
stages (Bazzani, 2011): the who-, where- and why-pathways. The who-pathway is
aligned with the classical view of image features and accumulates information that
can be used to perform discrimination of the object and background, the where-
pathway which is responsible for perceiving object location, and the why-pathway

Stellenbosch University https://scholar.sun.ac.za

19

is responsible for with the learning objective of the network. One such network,
Fully-Convolutional Siamese Networks for Object Tracking (Bertinetto, 2017),
which rose to dominance in the real-time challenge with the Visual Object Tracking
challenge (VOT), employs a seemingly simple Siamese network that essentially
performs a similarity measure between image patches with features provided by
a CNN. The approach to similarity learning by Fully-Convolutional Siamese
Networks for Object Tracking (SiamFC) is illustrated below in Figure 2.5.

The approach of SiamFC trains a function 𝑓(𝑧, 𝑥) that compares a template image
𝑧 to the input image patch 𝑥, with the goal of this function as previously
mentioned, to compute the similarity between the two images. The resulting
measure should discern whether the image contains the same object by either
providing a high score for a True Positive or low score other if the object is not
deemed to be present, after which a thorough localization effort is completed in
the event of a True Positive. The goal of the localization effort is to find the image
patch in the input image that is most similar to the template 𝑧 - a former
representation of the object.

Figure 2.5: The Fully-Convolutional Siamese Networks (Bertinetto, 2017)
developed for object tracking. The who and where pathway indicated by the Ø
and * operator respectively.

Stellenbosch University https://scholar.sun.ac.za

20

3 Case study
The following chapter serves to cover in detail the algorithm that is proposed to
be deployed to the embedded system, as well as an overview to modern
approaches to handling computationally expensive algorithms.

3.1 Tracking algorithm

As mentioned previously, the generic object tracking algorithm Clustering of
Static-Adaptive Correspondences for Deformable Object Tracking (Nebehay,
2016) employs a classical approach to object tracking. Classical object tracking
methods that rely on hand-crafted algorithms to either handle image features or
when modelling the object of interest. In this section, the theoretical approach of
the Clustering of Static-Adaptive Correspondences for Deformable Object Tracking
(CMT) algorithm is covered in depth and the fundamental computational steps are
explained.

3.1.1 CMT

The algorithm CMT contributed to the field of generic object tracking by
developing the Deformable Part Model for One-Shot Object Tracking (DPMOST).
DPMOST is a part-based model builds off a star-shaped model, whereby the object
is modelled with a set of interconnected object parts with a common anchor. As
in all star-shaped models, the common anchor DPMOST revolves around is the
object centre. Star-shaped models are attractive since they handle occlusion well,
as illustrated in CMT’s performance (Kristan et al, 2017) as not all object parts need
to present for the object to be detected successfully. DPMOST further extends this
attractive quality by handling object deformation in a principled manner, whereby
object parts are proposed to be interconnected and can connect outlying parts
through another member belonging to the part model. Highly displaced parts that
serve to model severe deformations, can have their membership to the object of
interest reinforced by other interconnecting parts. DPMOST can account for
extreme deformation, as illustrated by Figure 3.1.

Formally, DPMOST builds an object model from a reference set of members or
object parts, {𝑥ଵ

௧ , . . . 𝑥ே
௧ } obtained from an initialization image and accompanying

bounding box 𝑏ଵ, with the reference appearance 𝑍 having been normalized with
respect to the mean position in image coordinates. The so-called deformation
threshold, that is assumed constant for each part in a bid to keep the approach
simple, allows each vote for the common anchor point a certain amount of leeway.
The set of correspondences denoted 𝐿 = { 𝑚ଵ, … 𝑚௡ } with 𝑚௡ being a pair of
object points (𝑥௜

௧, 𝑥௜
ଵ), is a set of correspondences between the initialization image

and the present image of interest.

Stellenbosch University https://scholar.sun.ac.za

21

(a) (b)

Figure 3.1: Illustration of the mediating properties of voted in CMT. In (a) the
parts 𝒙𝟑 and 𝒙𝟒 are deemed to vote for the same centre, by having parts 𝒙𝟐
and 𝒙𝟏 reinforce their membership to the object model opposed to in (b)
where part 𝒙𝟑 has severe deformation and no mediating part (Nebehay, 2016).

The objective at hand then becomes how a set of correspondences between the
reference set and the current image of interest should be determined. The method
employed will greatly influence the success of the tracking algorithm, as all
information inferred about the object and its temporal behaviour will be based on
the set of correspondences. CMT employs a two-step approach with the intention
of increasing matching robustness by balancing the stability-plasticity dilemma.

Static correspondences are obtained by matching descriptors between the
reference set, which are obtained from the initialization image, and the candidate
set through the utilization of a similarity measure. Since this requires comparing
every candidate descriptor vector against those in the reference set,
computational efficiency is of great importance. Binary descriptor vectors, which
is where floating point variables are avoided, present an attractive approach to
the computational dilemma. Descriptors can be compared utilizing the XOR
operator to compare two equal-length bit strings or to measure the distance
between descriptor vectors and can be effectively computed on modern CPUs,
utilizing for instance the SEE4.2 instruction set (Intel, 2007). As such we can avoid
computing the floating point L2 norm, if for instance SIFT descriptors were
employed in - a markedly costlier operation. The author of CMT elaborates on the
choice of the matching scheme employed for descriptor matching and arrives at
the conclusion of second nearest neighbour distance ratio (SNNDR) test

 𝑆𝑁𝑁𝐷𝑅(𝑝(𝑥௜)) = ቊ
𝑁𝑁൫𝑝(𝑥௜)൯ 𝑖𝑓

ௗ(௣(௫೔),ேே(௣(௫೔))

ௗ(௣(௫೔), ேேమ(௣(௫೔))
< 𝛾

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ቋ (3.1)

Stellenbosch University https://scholar.sun.ac.za

22

The SNNDR is deemed (Mikolajczyk and Schmid, 2005) to be a robust method for
determining the confidence a correct match has been made for a candidate
descriptor 𝑝(𝑥௜) and its nearest neighbour. This completed by assessing the
distance 𝑑 between a candidate descriptor 𝑝(𝑥௜) and the nearest neighbour
𝑁𝑁(𝑝(𝑥௜)), over a distance to the second nearest neighbour 𝑁𝑁ଶ(𝑝(𝑥௜)). The
intuition behind this ratio is that the lower the ratio, that must be below the
threshold 𝛾, the more confident the match. A larger denominator than numerator
will identify that indeed the numerator presents a unique match, as the second
nearest neighbour is not near the second nearest neighbour to the candidate
descriptor. The application of the SNNDR will ensure highly discriminative matches
will be established, rather than ambiguous matches when simply using a nearest
neighbour matching scheme. It seems imperative at this moment to highlight the
fact that in the design of CMT, the reference set of descriptors includes descriptors
that belong to clutter - this is beneficial to the matching effort as the algorithm
can disregard candidates that match to directly to clutter. Descriptors from the
reference set are assigned class labels, foreground or background, and as such
DPMOST will disregard matches that are classified to belong to background.

The second approach incorporated into CMT to identify adaptive correspondences
between the current image and the reference set, is through the utilization of
sparse optical flow. The principle intuition behind utilizing sparse optical flow
(Lucas and Kanade, 1981) is for the algorithm to remain adaptive to temporal-
spatial changes, and as such computes the displacement between keypoints from
the previous frame to current the frame. The Forward-Backward Error (Kalal,
2010) furthers the logic of forward optical flow and calculates optical flow from
the previous frame to current, as well in reverse. The difference between these
two trajectories is then calculated for the specific keypoint and if the two
trajectories differ by less than the specified threshold, they are identified as
correct adaptive correspondences. While it may not be inherently clear, the
keypoints that are tested in this spatial-temporal manner are exclusively those
that belong to the object from the previous frame, or those keypoints that are
active.

Finally, the object model needs to remain current throughout the tracking
sequence. The model needs to adapt to changes in object appearance but also to
remain stable such as not to suffer from drift, but also that we are able to redetect
the object if absent for a period. Opposing other tracking methods that utilize a
similar detection approach, CMT never modifies the initial reference set as these
were constructed from extremely reliable information. Rather, two sets of
correspondences are maintained and are fused to become the set 𝐿∗. Static
correspondences 𝐿௦ identified using the SNNDR are more robust, and those
discerned as correct correspondences by using sparse optical flow are termed the
adaptive correspondences 𝐿஺. The set 𝐿∗ is constructed on a per-frame basis by
fusing the two sets, 𝐿஺ and 𝐿ௌ, and discards adaptive correspondences when the

Stellenbosch University https://scholar.sun.ac.za

23

static equivalent is available in its attempt to balance the stability-plasticity
dilemma.

Once we have determined a set of correspondences between initialization and
current information 𝐿∗, the next task is to process the correspondences to discern
the resulting per-frame shift in object location, in-plane rotation and object
centre.

Firstly, to quantify scale and rotation change, of which DPMOST accounts for when
predicting object location, it was showed (Kalal, 2010) that scale could reliably be
estimated through a pairwise measure

𝑠 = 𝑚𝑒𝑑𝑖𝑎𝑛 ቆ

𝑥௜
௧ − 𝑥௝

௧

𝑥௜
ଵ − 𝑥௝

ଵቇ
(3.6)

which leads to a similar measure for a rotation estimate

 𝑅 = 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑎𝑡𝑎𝑛2൫𝑥௜
ଵ − 𝑥௝

ଵ൯ − 𝑎𝑡𝑎𝑛2(𝑥௜
௧ − 𝑥௝

௧)൯ (3.7)

whereby the median rejects outlying predictions reliably, given that the count of
predictions made by inliers is at least 50%. Once scale and rotation have been
determined for the set 𝐿∗, we turn our attention determining a consensus set of
votes for the object centre. The simple initial voting mechanism (Nebehay, 2016)
is initially proposed as

 ℎ(𝑚௜) = 𝑥௜
௧ − 𝑥௜

ଵ (3.2)

where ℎ(𝑚௜) simply represents translation between correspondence 𝑚௜ of object
parts 𝑥௜

ଵin the initialization and 𝑥௜
௧ in the current frame 𝑡. We start to build a sense

for the object location when the two correspondences 𝑚௜ and 𝑚௝ simultaneously
vote for the centre location with the transitive operator 𝑤൫𝑚௜, 𝑚௝൯

 𝑤൫𝑚௝, 𝑚௜൯ = ቄ
1 𝑖𝑓|| ℎ(𝑚𝑖) − ℎ(𝑚𝑗)|| < 𝑑𝑒𝑓𝑜𝑟𝑚 𝑡ℎ𝑟𝑒𝑠ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.3)

whereby we have consensus between correspondences of the object centre if the
𝐿2 norm is smaller than twice the deformation threshold. The aforementioned
mediating property of Equation 3.3 is demonstrated by the mathematical
transitive property of

 𝑤൫𝑚௜ , 𝑚௝൯ 𝑎𝑛𝑑 𝑤൫𝑚௞, 𝑚௝൯ = 𝑤(𝑚௜ , 𝑚௞) (3.4)

whereby correspondences 𝑚௜ and 𝑚௞ are mediated by correspondences 𝑚௝.

Stellenbosch University https://scholar.sun.ac.za

24

CMT approaches the computation of equation 3.3 from the approach of
agglomerative clustering approach whereby we utilize the deformation threshold
as a cut-off between differing levels of linkage, as illustrated in Figure 3.2. Scale
and rotation invariant votes for the object centre 𝜇 are made by

𝜇 =
1

|𝐿௪|
෍ (𝑥௜

௧ − 𝑠𝑅𝑥௜
ଵ)

(௫೔
భ ,௫೔

೟)

(3.8)

where the difference in centre votes is mediated between votes, and subsequently
object parts, by the deformation threshold.

Figure 3.2: A graphical illustration of the agglomerative approach to clustering
the centre votes, whereby the deformation threshold serves to discern the
linkage cut-off between clusters of centre votes (Nebehay, 2016).

The consensus set 𝐿௪ is then determined by taking the largest cluster of centre
votes, after which the object centre is calculated. As a final reliability check
(Nebehay, 2016) we employ

 𝜑(𝐿௪) = ቄ
1 𝑖𝑓|𝐿௪| > 𝜃(𝜑)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.5)

where 𝜃(𝜑) is a numerical value that is set experimentally.

Stellenbosch University https://scholar.sun.ac.za

25

3.1.2 Algorithmic overview

In order to clarify the computational process and how each of the previous
sections are interlinked, the algorithmic psuedocode for CMT is presented below
in Figure 3.3.

Initially we construct the normalized reference set of object parts 𝑍 by requiring
an initialization image 𝐼ଵ and bounding box 𝑏ଵ. We first proceed by extracting
image keypoints in step 1, using a keypoint detector such as FAST that is
implemented in OpenCV. The keypoints are then normalized, by the mean
keypoint location, in step 2 to produce 𝑍.

Descriptor vectors, such as a BRIEF descriptor that is similarly implemented in
OpenCV, are then computed in step 3 for the keypoints extracted in step 1. Steps
4 and 5 once again detect keypoints, or parts, and compute their associated
descriptors but for keypoints of the region outside of the bounding box 𝑏ଵ. This
separate set of keypoints and descriptors that are inside and of foreground, or
outside and of background, of the supplied bounding box 𝑏ଵ are crucially
separated and assigned an according class label for keypoint matching in step 8,
as mentioned in 3.1.1. The reference set of static descriptors P utilized for
matching is obtained in step 5, whereby the descriptors from step 3 are also added
to P. The set of static descriptors P now contains descriptors from inside and
outside of the bounding box 𝑏ଵ.

The repeating loop then processes the input images by first detecting keypoints
over the whole input image and computing the accompanying descriptors in step
7. The implementation utilized is the same as in step 1. In step 8, the extracted
keypoints are then matched, through the use of the accompanying descriptors, to
the reference set P through OpenCV’s implementation of nearest neighbouring
matching. Within the algorithmic step 8, the matches are tested using equation
3.1 to produce the static correspondences ℒ௦. Step 9 produces the set of adaptive
correspondences ℒ஺ by computing the optical flow, once again utilizing OpenCV’s
implementation thereof. Optical flow for the previous active keypoints, ℒ௧ିଵ, is
calculated both forward, using the current input image, as well as in reverse from
the current image to the previous image 𝐼௧ିଵ. After passing the test on the
Forward-Backward Error, the adaptive correspondences are obtained. These two
sets of candidate correspondences are then fused by the rule mentioned in
Section 3.1.1, of inclusion with regards to static and adaptive correspondences, to
produce ℒ∗.

The algorithm then proceeds to make estimates of scale and rotation in step 11
and 12 respectively, using this fused set ℒ∗. This is completed through utilizing
Equation 3.6 and Equation 3.7. Once estimates for scale and rotation have been

Stellenbosch University https://scholar.sun.ac.za

26

determined, they are employed in step 13 to complete transitive consensus
utilizing Equation 3.3. Transitive consensus allows outlying object parts to be
mediated by other parts and as such this operation results in the set of
consensus set ℒௐ.

Line 14 the presents the algorithmic step “disambiguate”, whereby we further
attempt to refine the consensus set ℒௐ by attempting to include any keypoints,
or object parts, that were not matched in step 8.

Figure 3.3: Algorithmic overview of CMT, denoting the entire computation
process from initialization till termination of the for loop (Nebehay, 2016).

This action of “disambiguation” is done by transforming the reference set 𝑍
through the scale and rotation heuristic and attempting to match the keypoints
of step 7 to this transformed set. OpenCV’s nearest neighbouring matching is nce
again called upon for the matching functionality. The intention of the
ambiguation step is include incorrectly rejected keypoints in step 7 such that the
estimation of adaptive correspondences in the forthcoming input are more
accurate (Nebehay, 2016).

Stellenbosch University https://scholar.sun.ac.za

27

Post completion of this operation, step 15 establishes whether the result of the
consensus was feasible according to the prior count in the consensus set. If step
15 is passed the current bounding box, object centre and subsequent similarity
transform is calculated. In the result of a false output from line 15, no bounding
box is generated.

3.2 Computation

Due to the high dimensional space that computer vision pipelines usually occupy,
the associated computing overhead is vast and puts great demand on the chosen
hardware platform. A careful codesign however, whilst being mindful of both
hardware and software, can yield promising results especially with the significant
computing power that has become more accessible to developers as of late. The
following section serves to highlight the industry standard approach to dealing
with the high dimensional data that computer vision presents.

3.2.1 Graphics processing units

Since the incarnation of NVIDIA (1999), industry as well as mainstream users have
been increasingly exposed to computing platforms that contain Graphics
Processing Units (GPU), which too have been increasingly applied to general
computational problems, known as general-purpose computing on GPUs
(GPGPU). GPUs however were not originally designed for the task of general
computation such as CPUs, but rather for processing pixels for video output. Due
to requirement for GPUS to processes high bandwidth input such as video, they
tend to feature higher core-counts when compared to CPUs, with associated co-
processors such as Single Instruction Multiple Data (SIMD) processors being
present in higher counts too. GPU compute cores further differ from CPU cores in
that more threads can be dispatched allowing more computation to occur
concurrently, but it is also important to note that modern CPUs contain vectorized
instructions sets such as Intel’s AVX for data parallel computations. In general
GPUs dedicate more transistors to ALU units that support floating point
operations, and with each computing core having less cache memory than a CPU
core and with less emphasis on flow control. Fundamentally, GPUs are clocked at
lower frequencies than CPUs but feature higher memory bandwidth – an
indication that they are designed for data parallel computations.

Industry and researchers soon realized the applicability of GPUs to general
computing and as such one popular framework that came into fruition was
NVIDIA’s Compute Unified Device Architecture (CUDA) that allowed users to
offload computationally expensive workloads to various GPUs and enjoy higher
throughput. Since the introduction of CUDA, GPUs have seen application to many
fields such as Molecular modelling (Stone et al, 2007) or in computational finance
(Grauer-Gray, Killian, Searles and Cavazos, 2013). The common a common theme

Stellenbosch University https://scholar.sun.ac.za

28

between all these applications is the vast amount of data the needs to be
processed. Fortunately, many computer vision tasks are highly data parallel, in
that the same operator is carried out many times on different data points.

3.2.2 Accelerating computer vision

A common task in computer vision, that is highly data parallel, is the computation
of nearest neighbour. In the process of calculating the nearest neighbour, a single
input 𝑑௡ and is to be matched to a training database 𝑡. The candidate vector is
used to rank the entries of training database by a measure of their proximity to
the candidate vector, through a measure such as the L2 norm. In the case of CMT,
the second nearest neighbour is required and such the two entries that are in
closest proximity to the candidate descriptor are returned. Algorithmically this is
completed by: for the input 𝑑௡ we iterate over each descriptor 𝑡ଵ,...௡ in the
database and perform a similarity measure between the current candidate
descriptor from 𝑡௡. We rank the results in a descending list and store the two best
results, presenting computational complexity 𝑂(𝑛𝑑𝑡). The operation whereby we
need to compute the distance of candidate to the entire database is very suited to
a SIMD processor, as the same instruction is repeated on multiple data points.
Therefore, the database of descriptors can be operated on simultaneously and a
decrease in computation time when utilizing a SIMD processor can be expected.

Fortunately, many computer vision functions present a similar level of data-
parallelism such as the convolution filter in Equation 2.1. The convolution filter can
be interpreted as a “primitive” image processing task, as it comprises of a single
matrix multiplication operation. In Figure 3.4 we see that “primitive” image
processing tasks can see decrease in computation time of 30 times. Another
operation that is data parallel and can benefit from a magnitude decrease in
computation time is keypoint detection, once again as illustrated in Figure 3.4.

In short, computer vision tasks present a challenge when it comes to real time
processing due to the vast amounts of complex data. Using GPUs and efficient
software design, we can expect to accelerate highly data parallel tasks.

Stellenbosch University https://scholar.sun.ac.za

29

Figure 3.4: A summary of generic functions used within common computer
vision pipelines and their indefinite estimated speed-ups, noting that keypoint
detection, though SURF keypoints, can be sped up by an order of magnitude
utilizing GPU acceleration (NVIDIA).

3.2.3 Software & heterogenous computing

Building on the promise of accelerating data-parallel computer vision tasks of the
previous section, it seems pertinent to investigate how it is possible to effectively
exploit on-board hardware such that we achieve high levels of hardware
utilization. Figure 3.5 illustrates three cases where a heterogenous computing
platform is utilized in different manners. Extending the No Free Lunch theorem to
computing processors, a throughput optimized computer vision application will
rely on both a CPU and GPU, in a common heterogenous platform, to achieve real-
time processing and the highest levels of device utilization, with each processor
being suited to a specific function.

A CPU will in theory be more suited to handling memory allocation and interfacing
with various sensors due its broad spectrum of instruction sets, whereas a GPU
will be more suited to handling data parallel computations. As such, we can design
our algorithms to run across various processors and allocate the suitable functions
to each and achieve the highest efficiency execution model by utilizing a
concurrent execution model - whereby both processors are simultaneously
allocated and processing data, illustrated below in the diagram third from left.
Open Compute Language (OpenCL) is another framework, such as NVIDIA’s CUDA,
for utilizing and executing programs across heterogenous computing platforms.

Stellenbosch University https://scholar.sun.ac.za

30

Figure 3.5: A throughput optimized program whereby we note both processors
are allocated, increasing the SoC utilization when compared to only having a
single processor allocated (MediaTek – available at http://cdn-
cw.mediatek.com/White%20Papers/MediaTek_CorePilot%202.0_Final.pdf).

3.3 Hardware platform

Many implementation mobile platforms are suitable for the case of implementing
a generic object tracking algorithms. An implementation platform should aim at
balancing factors such as cost, electrical power consumption, ease of use and
being suitable for the task, as well as possibly highlighting important factors for
future research.

3.3.1 General-purpose single board computer

Since the goal of this research is into the feasibility of generic object tracking on a
single board computer, a hardware platform that supports lightweight
distributions of desktop operating systems would be most apt. A platform such as
Raspbian, which is based off-of Debian, will allow the use of standard software
libraries such Open Computer Vision (OpenCV), languages like C++ and compilers
such as GCC. This will allow rapid development and testing of algorithms, without
having to resort to cross-compiling or lower level implementations of algorithms,
and will enable minimalizing the amount of time spent debugging - essentially
enabling a development environment like those of a desktop, but with lower
computation power on hand. As such algorithms will be able to be directly tested
on such a mobile platform, allowing an insight into computational demands and
hardware specific bottlenecks before moving to a lower-level implementation if
need be.

Recently there has been a surge in the popularity of general-purpose single board
computers such as the Raspberry Pi computing platform. Platforms such as these
present interesting prototyping platforms to test methods like heterogenous

Stellenbosch University https://scholar.sun.ac.za

31

computing and GPU acceleration since most of the single board computers have
on-board mobile GPUs that support frameworks such as OpenCL, as well as having
desktop features like supporting CPU multithreading through Threaded Building
Blocks. Single board computers also have adequate RAM available, an
important hardware specification for testing large-model CNNs (Velasco-Montero,
2016).

Whilst we do not expect performance to rival that of dedicated hardware, such as
dedicated GPUs found in desktop platforms, SoC’s resources that are similar in
form and hardware, like the Raspberry Pi, present a complete computing platform
that presents desktop functionality, on one all-contained platform, at power levels
an order of magnitude lower than that of desktop platforms. This type of hardware
platform that is to be investigated is of similar specification to those found in
modern smartphones, making the investigation more so compelling due to the
current abundance of smartphones.

Stellenbosch University https://scholar.sun.ac.za

32

4 Use case
The following section serves to outline the use case for the experiments carried
out in this research and motivates, where necessary, decisions that were made
with regards to the hardware platform chosen for implementation, the choice of
tracking algorithm as well as a dataset for testing the chosen implementation
configuration.

4.1 Target use case

As mentioned in the introductory section to this thesis, drones are proposed to be
used in the aid of the calibration of heliostats. As such, the implementation
platform will certainly need to be a mobile hardware platform that does not
consume vast amounts of electrical power which would significantly reduce the
already limited flight time of UAVs. Since the environmental setting will be
outdoors and involve the tracking of large static objects, we need to use a suitable
dataset to simulate this use case, but also a dataset that enables us to compare
results to highlight progress. The dataset and subsequent analysis should
concentrate on outdoor scenes with occlusions and tracking sequences that
feature similar objects, as in an CSP plant there will be many seemingly identical
heliostats.

4.2 Algorithm

This intended use case of this research is into the feasibility of object tracking on
a general-purpose single board computer, with the specific application to UAVs
and for them to track generic, deformable objects. In the following section, the
choice for the particular algorithm is motivated and the limiting factors of state-
of-the-art approaches are highlighted.

4.2.1 Algorithm choice

CMT was highlighted as the algorithm of choice due to it scoring well in the 2015
VOT challenge, as well as not utilizing the computationally expensive convolution
filter for extracting features. The algorithm uses a simple star-shaped model to
represent the object of interest, which is configurable in the number of parts that
are used to represent the object of interest. We further motivate the choice of
CMT as it scored very highly in the 2017 VOT challenge in terms of tracking
performance in situations that involved occlusion - a situation very common in
UAV-based tracking.

Stellenbosch University https://scholar.sun.ac.za

33

A benchmarking effort was recently undertaken by Velasco-Montero et al (2016)
to investigate the rates of inference achievable for common DNNs that are utilized
for object detection. While we note that Velasco-Montero utilized software
packages originally designed for desktop utilization such as Tensorflow (Abadi et
al, 2016) many of these software packages have lightweight implementation such
as Tensorflow Lite. These packages, however, are not as thoroughly supported as
OpenCV is for the specific hardware, as we see OpenCV has the highest average
inference rate, as well as highest accuracy achieved in benchmarking when the
C++ API is utilized in Velasco-Montero’s investigation.

The benchmarking effort however highlights a common theme - common DNN
architectures are not yet feasible for mobile implementation when we have the
constraint of real-time, on purely CPU based execution on a device such as a
Raspberry Pi 3. Deep neural networks designed for mobile devices (Iandola et al,
2016) do attain impressive 5 FPS, and this is of particular interest to this research
as the state-of-the-art real-time approach SiamFC utilizes a similar DNN to extract
features for its similarity measure function. SqueezeNet (Iandola et al, 2016) was
designed to emulate AlexNet’s accuracy, the latter being the backbone that
SiamFC used to construct its feature maps, but with a highly reduced parameter
count and model size. Essentially this implies that on a Raspberry Pi 3 we could
extract features from our input image at 5 FPS and feed it into the SiamFC network,
obtaining at most 5 FPS, if the rest of the network took negligible time to process
the features. Attaining 5 FPS inference rate while impressive is simply not up to
the task of real-time tasks. The remainder of the SiamFC network would occupy a
significant portion of processing time, as we would be completing similarity
measure, and as such in reality an inference rate of far below 5 FPS would be
realistic. In summary, it is proposed that DNNs are not feasible for the task of real-
time mobile inference when utilized for the task of generic object tracking, with
further motivation stemming from the issue that the task of real-time object
tracking inference remains challenging for desktop hardware.

The ARM Compute Library does however present an alternative to either of the
frameworks utilized in the Velasco-Montero’s benchmarking and is a fruitful topic
further research effort. The library consists of heavily optimized, low-level
implementations of the fundamentals of machine learning and Computer Tasks,
such as the convolutional filter, SVMs and all of the CNN building blocks.

Whilst in CMT an initial reported inference rate of 10 FPS on desktop hardware,
the quoted rate was not it is optimum configuration for high inference rates. The
algorithm was configured by the author of CMT such that it attained the highest
possible tracking effectiveness, but not the highest computational efficiency.
Figure 4.1 highlights that the investigation conducted by in CMT on the possible
configurations of detectors and descriptors, which seemingly reach an asymptote
for a certain success rate of at an average overlap per-sequence. This can be

Stellenbosch University https://scholar.sun.ac.za

34

interpreted as: for a success rate of 0.6, or 60%, of tracking sequences in the
testing dataset, most of the configurations of CMT averaged between 0.1 and 0.2
per-sequence overlap, or the algorithmically produced bounding box overlapped
between 10 and 20% with the ground truth. However, noting that 60% of the
configurations did not average over 20% overlap for all sequences, it is promising
that many configurations are possible with minimal effect on tracking accuracy;
whereas certain detectors and descriptors are vastly superior in computational
efficiency.

CMT thus presents an interesting case for efficient mobile inference, noting, too,
that no GPU acceleration has been utilized in the original approach. As with many
tasks such as object tracking, a trade-off will need to be balanced between speed,
accuracy and cost.

Figure 4.1: Illustration of the possible configurations of part detectors and
descriptors, where it is noted that compact binary descriptors (32-byte BRIEF)
outperform more larger descriptors (64-byte FREAK) highlighted by the
combination of the GFFT detector and BRIEF descriptor (Nebehay, 2016).

Stellenbosch University https://scholar.sun.ac.za

35

4.3 Hardware

As previously mentioned, the specific hardware platform to investigate is a Single
Board Computer that has similar attributes such as form factor, power
consumption and hardware resources as those of the Raspberry PiTM 3 computing
platform. The following section serves to motivate the choice in this regard.

We propose to investigate the ASUS TinkerboardTM for the task of inference of a
generic object tracking algorithm, with the aim of achieving real-time
performance. Whilst real-time is a vague description and most certainly varies
between uses, it can be loosely defined as the situation where the data processing
must be completed at rate faster than the rate at which the input is received (VOT,
2015). Whilst this definition is still not completely concrete in its definition, as
sensors capture images differing frequencies and resolutions, we propose for the
average rate to be 20 Hz with the chosen dataset.

The ASUS TinkerboardTM is a relatively low-cost hardware platform when
compared to an embedded platform such as the NVIDIATM Jetson, whilst being
considerably more computationally powerful and, as such, more suited to the task
of real-time object tracking than the popular Raspberry PiTM 3. Whereas the Jetson
provides a high-end GPU computing solution and the Raspberry PiTM an entry level
device best suited for a hobbyist, the TinkerboardTM presents an attractive
solution by providing a quad-core CPU ARMTM Cortex A17 clocked at 1.8 GHz and
6 core ARMTM Mali T760 mobile GPU, on the RockchipTM RK3288 system on a chip.
It presents a cost-effective hardware platform to investigate embedded GPU
accelerated computation of computer vision tasks; in contrast to the offering from
NVIDIA, as it supports the Open Computer Vision (OpenCV) library’s minimum
OpenCL framework requirement. The Raspberry PiTM computing platform was
ruled out due to the BroadcomTM GPU not supporting OpenCL and thus preventing
any possibly heterogenous computing.

Furthermore, the ARMTM Cortex A17 processor features an advanced NEON Singe
Instruction Multiple Data (SIMD) coprocessor as well as VFPv4 instruction set for
floating point acceleration, where the former hardware accelerator should bring
significant performance increases due to data-parallel tasks being computed
efficiently using a SIMD coprocessor.

In summary, the ASUS TinkerboardTM was chosen predominantly due to the board
being a heterogenous computing platform that supports a desktop-like operating
system that allows rapid prototyping and testing, both in terms of software
libraries commonly utilized in computer vision research as well as hardware that
is used for efficiently dealing with, and possibly accelerating, computer vision
tasks.

Stellenbosch University https://scholar.sun.ac.za

36

4.4 Dataset

Finally, the dataset that will be employed to evaluate the on-edge performance of
the object tracking algorithm is of great importance, as any insight gained will be
highly dependent on the dataset. The dataset needs represent the task which we
seek to utilize the algorithm for in practice and needs to challenge the algorithm
accordingly with scenes that we might encounter in practise. One such example is
vast scale change. Without the dataset being representative of the scenes
encountered in practice, we cannot make any realistic assessment of the
performance of the algorithm and thus cannot make an estimation of how it will
perform for our specific use case.

The dataset chosen to evaluate the on-edge performance of CMT on the
TinkerboardTM is that which is employed by the author of CMT, a dataset compiled
by Thomas Vojir. The dataset will allow comparison between the inference rate
achieved in practice with that of the original implementation of CMT, on desktop
hardware, and with analysis concentrating on outdoor scenes with large amounts
of background detail as in Figure 4.2, occlusion as in Figure 4.3 and the redetection
as in Figure 4.4, as well as tracking similar objects. As such the dataset will be
trimmed to a smaller size and by doing so will allow us to evaluate the
performance quickly. The final dataset1 employed will be the reduced dataset
compiled by Vojir, consisting of the 22 tracking sequences. Primarily, the main aim
of the research regards the possible on-edge inference rates of CMT rather than
its accuracy, as that should carry over between mobile and desktop
implementations. However, a balance will still need to be struck in the
investigation between accuracy and inference rates as the two parameters most
likely share a distinct coupling.

Figure 4.2: Frame 1 from the sequence “Track” that serves to represent
outdoor scenes with high level of detail. This sequence is especially challenging
in terms of the amount of detail, highlighted in the forthcoming section 5.3.

Stellenbosch University https://scholar.sun.ac.za

37

Figure 4.3: Frame 1 and 700 from the sequence “Person partially occluded” that
serves to represent scenes with occlusion.

Figure 4.4: Frame 507, 558, and 570, clockwise from top left, from the sequence
“Car 2” that serves to represent outdoor scenes with high level of detail,
redetection and similar object.

1 Available at http://cmp.felk.cvut.cz/~vojirtom/dataset/

Stellenbosch University https://scholar.sun.ac.za

38

5 Experiments
In the following sections, the method employed to evaluate tracking performance,
as there are multiple in the field of object tracking research is first. In section 5.2
the baseline performance is established first on a desktop platform, for
comparison, as well as on the mobile device. The most time-consuming functions
of CMT are also identified. Section 5.3 covers the optimization regarding image
features and most importantly feature descriptor choice, on the mobile platform.
Section 5.4 covers the utilization of hardware acceleration on the mobile device
and section 5.5 covers the theory behind a heterogeneous execution. In section
5.5 we encounter a hardware and software barrier on the mobile platform and
return to the desktop platform for the remainder of section 5.5 and the section
5.6. The final section, section 5.6, covers concurrent heterogenous execution of
the tracking algorithm on the desktop platform – the theoretical limit of
achievable performance.

5.1 Evaluation method

5.1.1 VOT

Introduced in 2013, the annual Visual Object Tracking Challenge aims to
consolidate active research in the field of Object Tracking, by providing
standardized performance measures and an evaluation toolbox that seeks to
automatically analyse trackers submitted to the challenge in an unbiased manner.
Compared to other benchmarks, the VOT evaluation methodology differs in that
once a tracker fails, it is reset, and the tracker effort continues. This was found to
be of benefit in an unbiased tracking evaluation by Cohevin (2014), as it was
identified that accuracy and robustness were negligibly coupled. This led to the
utilization of both measures, by the VOT committee, where accuracy is the
average overlap measured in frames in which tracking was successful, or an
overlap between the ground truth and algorithmic output greater than 0.5, and
robustness is a measure that accumulates tracker failures in a sequence and
reinitializations. Accuracy-robustness plots, where a data entry is plotted with
robustness on the x-axis and accuracy on the y-axis, are utilized to visualize the
ranking of a specific tracker compared to other state-of-the-art methods but are
not primary measure of absolute performance. Expected average overlap (EAO) is
employed as the primary measure for the performance of tracking algorithms,
being stricter than average overlap (AO) as shown in the 2016 VOT challenge
(Kristan, 2016). EAO can be summarised as the average overlap between
algorithmic output and ground truth bounding boxes, normalized with respect to
the length of the sequence, for sequences of increasing length. The plot is,
therefore, the increasing sequence length on the horizontal axis and the average

Stellenbosch University https://scholar.sun.ac.za

39

overlap for the specific sequence length on the vertical, illustrated in Figure 5.1
along with an AR plot on the following page.

Furthermore, the VOT challenge provides a dataset is utilized for evaluating
submitted trackers. The dataset is concentrated on diversity and as such aims to
be representative of a wide spectrum of tracking scenarios, rather than pursuing
an arbitrarily large dataset. Importantly, each frame is labelled according to a class
of established tracking scenarios; for instance, being challenging in terms of
illumination and scale change. A subsequent figure, illustrated on the following
page in Figure 5.2, can be produced that is both easily interpreted and extremely
useful when comparing trackers – a comparison that reinforces the theorem of No
Free Lunch (Wolpert, 1997), stating that no singular tracker will be superior in all
respects. A recently introduced performance measure, by the VOT challenge with
the goal of normalizing a submitted trackers’ performance results relative to the
hardware the results were generated on, is the effective filter operations (EFO).
Essentially the measure attempts to account for the speed of a specific hardware
platform by measuring a set of operations on the platform and normalizing any
frames per second processing rates by the measured time; thus, resulting in a
normalized measure.

(a) (b)

Figure 5.1: An AR (a) plot alongside an EAO (b) plot – illustrating the
accompanying and primary performance measures for the VOT challenge,
respectively (Kristan et al., 2017).

Stellenbosch University https://scholar.sun.ac.za

40

Figure 5.2: The failure rate of state-of-the-art tracking methods for various
scenarios. There is a not a single method that performs well in all the scenarios
(Kristan et al., 2017).

However, due to variation in software packages used in developing tracking
algorithms as well as hardware, this measure cannot accurately represent the
speed of the tracking algorithm, but it is a notable measure introduced by the VOT
challenge as it represents the importance of speed.

The VOT challenge has made a remarkable impact on the quality of developed
algorithms and the assessment of their performance, as well as encouraging
quality, novel research by defining a tracker as state-of-the-art if it is above a
certain performance threshold; thus, discouraging every paper to quote top
performance results which skews the concept of state-of-the-art.

5.1.2 Measures

Evaluating object tracking algorithms in a fair and reproducible manner poses a
lasting challenge. In order to automatically evaluate the success of the algorithm,
a labelled dataset with annotated ground truth data is required. More specifically,
in one-shot objecting tracking, the ground truth needs to be presented as a
bounding box encompassing the object - denoted by the pixel location of the top
left corner as well as the associated height and width - in each frame of the
sequence. However, this comparison of algorithmic output to ground truth data
may not be as simple as it is deemed to be on first impression and, as such, the
following chapter servers to define the measures employed.

Stellenbosch University https://scholar.sun.ac.za

41

5.1.2.1 Per frame

As simple as denoting the object of interest with a bounding box may seem, it
allows the annotation process of a large dataset’s individual frames to be feasible
when compared to other annotations such as a complex, multiple-variable pixel-
wise segmentation, and remains the state-of-the-art approach. While the
bounding box may present a simple and effective method to highlight the object
of interest’s position in the specific frame, it is not without its associated
drawbacks - such as requiring a trade-off between wholly containing the object of
interest whilst including the least possible amount of background pixels. As noted
in CMT (Nebehay, 2016), the situations encountered in practice could be: wholly
encapsulating the object with no regard to background inclusion, a bounding box
only encapsulating pixels belonging to the object of interest, or a trade-off
between these two extremes, which is most commonly employed. However, since
the chosen method of representation incorporates a flexible definition for the
bounding the object of interest, in the ground truth data and the algorithmic
output, this metric cannot be used to assess the accuracy of the tracker and should
be used to assess the robustness, as discussed by Nebehay (2016).

The method used to compare the algorithmic and ground truth bounding boxes
can be traced to Jaccard (1912), where the overlapping area of the two bounding
boxes is measured. This method is attractive since the measure is normalized
between 0 and 1 and as such does not introduce significant bias into its measure
when compared to other measures such as a centre error measure. A centre error
measure introduces significant complication in its interpretation as the error is, for
example, dependent not only on the size of the image but the size of the image
too and is difficult to normalize. In order to negate the ambiguity inherent in
ground truth data - that being the ratio of pixels belonging to the object and those
to the background - it is necessary to introduce the terms true positive, false
negative, false positive and true negative. These terms are borrowed from binary
classification and are employed to determine whether a data point (or data points)
belongs to either of the two classes in binary classification. In our case, the
objective is to compare the output of the algorithm to the ground truth data in
terms of the location of the object of interest. In order to compensate for the
ambiguity in the ground truth data, we define the term true positive (TP) to be

 𝑇𝑃 = ቄ
 1 𝑖𝑓 ∝ > ∅

𝑒𝑙𝑠𝑒 0
 (2)

and noting that overlap measure ∝ may not be defined, either if there is not
algorithmic output or the object is not present in the current frame, as indicated
by in CMT (Nebehay, 2016). A false negative (FN) is defined when either the
algorithm fails to produce output or the overlap measure ∝ is not greater than the
threshold, when the object is present in the frame

Stellenbosch University https://scholar.sun.ac.za

42

 𝐹𝑁 = ቄ
 1 𝑖𝑓 ∝ ≤ ∅ ∪ (𝐴௢௨௧ = ∅ ∩ 𝐺𝑇 ! = ∅)

0 𝑒𝑙𝑠𝑒
 (3)

Nebehay fully defines all eventualities, but since they are not employed in the
measures in this thesis, the reader is referred to Nebehay (2016).

5.1.2.2 Accumulated

Since we are attempting to evaluate the success of the tracking algorithm over an
entire sequence of frames, we need to define measures that can be employed to
assess the success of the tracking algorithm over the entire sequence, which can
be done as an accumulation of the per-frame measures. To measure the success
of long-term trackers, noted by Nebehay (2016) as the algorithms that can correct
themselves automatically after failure by re-detecting the object of interest, the
concept of recall is defined as

𝑟𝑒𝑐𝑎𝑙𝑙 =

∑ 𝑇𝑃௜

∑ 𝑇𝑃௜ + ∑ 𝐹𝑁௜

(4)

accompanied by the measure precision, defined as

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑ 𝑇𝑃௜

∑ 𝑇𝑃௜ + ∑ 𝐹𝑃௜

(5)

which differs in recall by providing a metric strictly when the algorithmic outputs
a prediction. Nebehay (2016) provides further insight into the measure of recall as
being the measure of many elements from the relevant population recalled;
whereas precision estimates how many elements that have been retrieved are
relevant. Nebehay continues by stating that a compromise exists between the two
measures and that the balance between them being directed by the internal
threshold of the algorithm on the prediction confidence. A higher threshold on the
required prediction confidence will yield a more conservative behaviour, but a
lower threshold will not increase the recall - as in binary classification - as the
prediction is made with a bounding box, not a class label.

In order to graphically display the results of the discussed accumulative measure,
a success plot can be interpreted as

 𝑆(𝑞) = 1 − 𝐸𝐶𝐷𝐹(𝑞), (6)

which is related to the empirical distribution function by the above identity,
interpreted as an empirical tally of those measurements above a certain specified
value; which in our case is how many sequences are above a certain recall value.
In order to easily interpret the success plot, the area under the curve (AuC) is

Stellenbosch University https://scholar.sun.ac.za

43

utilized, which is equivalent to the mean of the individual measure - in this case, it
is recall - a higher AuC indicates a higher recall rate on average.

Figure 5.3: Success plots of CMT, when inferred in the author’s original
configuration of a FAST keypoint detector and BRISK descriptor. The ‘baseline’
curve belongs to the implementation on a desktop platform whereas the
‘embedded’ curve belongs to the mobile device. We note a tenfold difference
in FPS achieved.

5.2 Baseline

In order to establish a baseline FPS inference rate, as well as tracking accuracy,
CMT’s performance was first evaluated on a desktop platform. This served as a
benchmark to which the embedded board could be compared. If the FPS inference
rates achieved on the embedded platform eclipsed this baseline, significant
progress in embedded performance would be highlighted.

5.2.1 Desktop

The original configuration of CMT, as released by the author on their Github2
repository, utilizes a FAST feature detector with accompanying BRISK descriptors.

2 Available https://github.com/gnebehay/CppMT

Stellenbosch University https://scholar.sun.ac.za

44

OpenCV 3.4.3 was built with CMake in its standard configuration with no hardware
specific optimization flags specified. The desktop hardware platform most
importantly comprised of an Intel i7 7700 HQ CPU with 16GB of system RAM. The
success plot is illustrated on the previous page in Figure 5.3 with the average
inference rate, in processed frames per second over the entire dataset by Vojir,
highlighted.

5.2.2 Embedded

The same test was then performed on the embedded platform where it should be
noted that OpenCV, when built with CMake in Linux, as standard detects relevant
hardware and will automatically enable optimization flags when building and as
such the arguments

−𝐷 𝐸𝑁𝐴𝐵𝐿𝐸_𝑁𝐸𝑂𝑁 = 𝑂𝐹𝐹

−𝐷 𝐸𝑁𝐴𝐵𝐿𝐸_𝑉𝐹𝑃𝑣3 = 𝑂𝐹𝐹

were passed to ensure the OpenCV library was not build with the specified
hardware accelerations for the embedded platform.

5.2.3 Embedded baseline performance

Illustrated on Figure 5.3, is the success plot of CMT on both the embedded and the
desktop platforms. We note the large discrepancy between the two hardware
platforms - this can be attributed to a variety of differences between the two
platforms which is summarized in Table 5.1. Notably, the desktop platform has
twice the core-count that each operate at twice the rate, as well as 8-fold the
amount of available L1 cache memory, compared to the mobile platform. The last
attribute is crucial as we infer fewer cache misses when computing the algorithm
– cache misses being when we exhaust the available cache memory and need to
access the relevant instructions or data from other cache levels or even possibly
RAM. By having more available L1 cache memory, this allows the CPU cores to
spend less time accessing slower-access memory and more time computing. Of
equal importance is that the desktop platform has advanced system cooling
compared to the embedded platform having simple passive cooling only.

Stellenbosch University https://scholar.sun.ac.za

45

Table 5.1: CPU hardware difference between the embedded and desktop
platform. Whilst arguably not vastly different in terms of core count and
frequency, the L1 cache memory size differs on one order of magnitude.

Hardware element Desktop Embedded

CPU core 8 4

CPU clock rate 3.6 GHz 1.8 GHz

CPU L1 cache 256 KiB 32 KiB

Figure 5.4 is a distribution of time per function. Referring to Figure 3.3, the entry
“Consensus” in Figure 5.4 refers to the algorithmic step 13 in Figure 3.3. Similarly,
for the entries “Track”, “MatchLocal”, “MatchGlobal”, “Fuse” and Estimate” in
Figure 5.4 correspond to the algorithmic steps 9, 8, 14, 10 as well as 11 and 12
combined, in Figure 3.3. Finally, the entries “Describe” and “Detect” in Figure 5.4
refer to the single algorithmic step 7 in Figure 3.3. The entry “Detect” is the second
argument to the algorithmic step 7, and a separate algorithmic step but has been
group together for simplicity.

The values for each function were averaged over each frame over the entire
dataset, and, whilst not being the ideal approach to the situation as each sequence
will present different overheads per function, it is an effective method to generate
a general understanding of the computationally demanding functions or image
processing tasks. A more detailed analysis of function behaviour for a specific
scene is conducted in section 5.3.

We note that the majority of the time is spent matching candidate descriptors to
the database and computing the descriptors for each keypoint, both being a
function of the count of keypoints, which illustrates that an excessive count of
keypoints was generated by the FAST feature detector. Cache missing may be
occurring when the candidate descriptors are attempted to be matched to the
database, as the entire database will likely not fit into cache memory. Slower
memory access may need to be made to access the remainder of the database of
descriptors that did not fit into cache memory to complete the nearest neighbour
matching. The priority is then to investigate alternatives where less keypoints are
generated per frame as collectively 75% of the time per cycle of processing an
input image is spent of functions that are heavily dependent on keypoint count.

Stellenbosch University https://scholar.sun.ac.za

46

Figure 5.4: Time distribution amongst the image processing functions of CMT,
with the majority of time spent on functions are a function of the number of
descriptors.

5.3 Image feature optimizations

While it may seem logical to first build OpenCV with the optimization flags set for
the relevant on-board hardware, it in fact blurs our results. Although hardware
acceleration will be utilized in the final performance measurements of the
algorithm, it is more logical to first investigate the configuration that is most
suitable in terms of which detector and descriptor to utilize. Once we have
completed this software investigation, we can investigate the performance
increase that we achieve through the utilization of on-board hardware
accelerators; thus, the increase in performance that we achieved with the chosen
configuration will be clearer.

5.3.1 Feature detector

As previously mentioned, the first configuration option that should be investigated
is the choice of feature detector, as most of the data that flows through the
algorithm are keypoints and their descriptors. A minimal count of image features
will enable efficient inference, and for this investigation we keep the descriptor
fixed and determine which set of detectors produce the lowest amount of
keypoints per frame, whilst still monitoring accuracy and inference rates, so as to
highlight which detectors produce a low amount of discriminative keypoints.

Stellenbosch University https://scholar.sun.ac.za

47

Table 5.2 on the following pages highlights the fact that the GoodFeaturesToTrack
detector, as well as the ORB detector, produce a conservative amount of keypoints
per frame whilst still yielding a comparable AuC for the given dataset when
coupled with a BRISK descriptor. Both detectors yield an inference rate an order
of magnitude higher than that of the remaining detectors and as such are chosen
for further investigation. Figure 5.5 reinforces how the feature detectors respond
in an outdoor scene, as outdoor scenes are of great importance to the application
space of this research. The two selected keypoint detectors respond sparsely,
whereas the FAST and BRISK detectors overreact to the detail in the scene and are
clearly unsuited for outdoor use.

Figure 5.5: The investigated detector responses clockwise from top left to the
scene ‘track’: BRISK, FAST, ORB and GFTT, with the top two detectors
responding excessively in the outdoor scene. We see a distinct separation
between ORB and GFFT, and BRISK and FAST.

Stellenbosch University https://scholar.sun.ac.za

48

Table 5.2: Summary of results regarding investigation into detector response.

Detector Average
extracted
keypoints

FPS AuC

ORB 388 13.92 0.66

GFFT 534 11.14 0.68

BRISK 844 4.2 0.70

FAST 1781 2.25 0.62

We note that there is no direct correlation to the amount of keypoints detected in
each image to the inference rate achieved, but are aware of a possible relationship
between certain detectors and descriptors, and certain detectors possibly
producing more keypoints. How these keypoints are described, once produced by
the detector, will be interesting to investigate, as we may see a detector producing
many keypoints according to its internal configuration but the descriptor not
‘agreeing’ on these keypoints, resulting in many descriptors being rejected in the
SNN test.

This leads us to investigate the relationship between the detectors and
descriptors, and we can effectively measure interaction by the number of
keypoints that are active - the lower the active keypoints, the more effective
inference will be as well. We see later that there is a more direct correlation
between the number of active keypoints and the rate of inference.

5.3.2 Feature descriptor

Following the previous investigation, it is pertinent to subsequently choose a
descriptor that is as lightweight as possible, yet still discriminative to enable
accurate and efficient inference. For this test, we retain the aforementioned
detectors and evaluate their performance with an ORB and BRIEF descriptor, both
of which are 32 bytes in their standard configuration, with ORB being an extension
of the BRIEF descriptor to incorporate rotational invariance. For this experiment
we investigate the performance of the algorithm with both the ORB detector,
which is an extension of the FAST keypoint detector, and the GoodFeaturestoTrack
detector, essentially an extension to the Harris Corner Detector, when combined
with the ORB and BRIEF descriptors. We aim to investigate the combination that
produces the highest rate of inference, but still keep accuracy in mind and

Stellenbosch University https://scholar.sun.ac.za

49

subsequently show that a smaller descriptor is of great importance to the rate of
inference achievable.

From Table 5.3 we see that a clearer correlation exists between the number of
keypoints that are active, and the rate of inference achieved. This is logical as the
less data (keypoints and descriptors) that travels through the algorithm, the faster
the functions can be executed, as there is less data to be processed. We notice
two anomalies to this observation: 1) the configuration utilizing an ORB detector
and BRIEF descriptor - this could be because, although there is a higher amount of
active keypoints than other configurations, but still a high FPS rate, the lower
keypoint count allows for less time to be spent matching this smaller count of
descriptors and 2) the configuration utilizing an ORB detector and ORB descriptor
- this could be due to the costlier operation of computing an ORB descriptor
compared to the BRIEF descriptor in the aforementioned configuration.

Table 5.3:- CMT performance when configured with an ORB and GFTT detector,
along with 32-byte binary descriptors, highlighting the GFFT detector when
coupled with a 32-byte ORB descriptor being superior.

Detector Descriptor Average
extracted
keypoints

Average
active

keypoints

FPS AuC

GFTT ORB 639 58 15.94 0.695

ORB ORB 391 77 11.91 0.705

GFTT BRIEF 639 56 14.44 0.7207

ORB BRIEF 391 69 15.16 0.6517

Table 5.3 serves to highlight the importance of a compact descriptor whereby we
utilized a GoodFeaturesToTrack detector, due to it leading partly to the highest
inference rate achieved with an ORB descriptor, to investigate the implications of
using the same descriptor but in varying sizes.

The BRIEF descriptor can be configured to utilize a 16, 32 or 64-byte descriptor
and the resulting discovery is logical, whereby the 16-byte descriptor achieves the
highest FPS. An illogical result was realized in that the most lightweight
configuration also yielded close to the highest accuracy, a result that is not
predictable and could only have been found empirically due to the complex
interrelation between detectors and descriptors and the tracking algorithm of

Stellenbosch University https://scholar.sun.ac.za

50

choice. The configuration of GoodFeaturesToTrack detector and 16-byte BRIEF
descriptor is thus chosen as the configuration that is utilized for the rest of the
investigation, unless stated otherwise. This was chosen as it yielded that fastest
inference rate, but also with a relatively high AuC.

Table 5.4: CMT performance when utilizing the GFFT detector and binary
descriptors of varying length, highlighting the importance of a compact
descriptor.

Detector Descriptor Extracted
keypoints

Active
keypoints

FPS AuC

GFFT BRIEF (64) 639 65 13.12 0.7168

GFTT BRIEF (32) 639 56 14.44 0.7207

GFFT BRIEF (16) 639 59 16.48 0.7158

5.4 CPU hardware acceleration

In order to partly justify our choice for the chosen hardware platform, the
following sections serves to highlight the available hardware acceleration options
available for the ARMTM Cortex A17 processor and increase in inference rate
achieved.

5.4.1 NEON

The Cortex A17 processor supports ARM’s NEON Single Instruction Multiple Data
(SIMD) architecture extension and incorporates a separate NEON engine into the
SoC. The general approach to SIMD execution is illustrated in Figure 5.6 on the
following page, whereby we have a singular instruction stream and multiple input
data points that are handled concurrently, with SIMD being particularly suited to
image processing tasks. CMT utilizes many operations that are data-parallel, or
tasks that are suited to SIMD, such as keypoint detection, descriptor and kNN
matching and thus we expect to realize significant improvements in inference
rates through building the OpenCV library with NEON support.

5.4.2 VFPv3

The VPv3 is an optimization developed by ARM in order to effectively process
floating point data, in both single and double precision, an optimization that
should in theory be less attractive due to our application utilizing binary
descriptors comprised of 8-bit binary strings, with a total of 16 strings per
descriptor vector. It should still bring a minor speed up as other data points are

Stellenbosch University https://scholar.sun.ac.za

51

represented by floating point in the algorithm, but we expect the NEON instruction
set to bring the greatest acceleration.

Figure 5.6: Single Instruction Multiple Data architecture (ARM – available
online at: https://developer.arm.com/technologies/neon)

5.4.3 Results

Post the investigation into the optimal software configuration for CMT in terms of
inference rates, we repeat the prior tests in this optimal configuration with three
different builds of the OpenCV library. The results from the prior test were first
carried over, after which the OpenCV library was then rebuilt with NEON support
and subsequently NEON and VFPv3 support, with the results summarized below
in Table 5.5.

Table 5.5: Performance summary of CMT configured with the optimal GFTT
detector and BRIEF descriptors, rivalling the desktop benchmark inference rate.

Optimization Detector Descriptor FPS AuC

N/A GFTT BRIEF (16) 16.4774 0.7158

NEON GFTT BRIEF (16) 20.3937 0.7391

NEON VFPv3 GFTT BRIEF (16) 21.3921 0.7391

We notice that when utilizing the OpenCV library with NEON support enabled, an
improvement of nearly 25% was achieved on average over all tracking sequences,
and subsequently a mere 4% improvement was gained due to utilizing a floating-

Stellenbosch University https://scholar.sun.ac.za

52

point optimization. Even though the results are in line with the expectation that
utilizing the NEON engine would bring the greatest improvement, the magnitude
of improvement resulting from NEON acceleration was not expected – a sign that
heterogenous implementation should bring significant improvements too, as GPU
computation is also well suited to data-parallel tasks. Figure 5.7 b) on the following
page serves to illustrate the performance of the final configuration of CMT on the
embedded platform, with the interesting observation that not only is the final
configuration faster by a magnitude of order than the baseline embedded
configuration, but more accurate as well. It is important to note too that the final
configuration achieves real-time performance and has surpassed the baseline
implementation on the desktop platform in terms of average inference rate.
Figure 5.7 a) also illustrates the more uniform distribution of time amongst the
different computational steps of CMT in the final configuration, depicting that
there are less significant bottlenecks.

 (a)

Figure 5.7 (a): Time distribution amongst functions as a percentage of overall
cycle time - a much more uniform distribution compared to the baseline
configuration indicating less major computation bottlenecks.

Stellenbosch University https://scholar.sun.ac.za

53

 (b)

Figure 5.8 (b): Success plot of CMT post relevant hardware and software
optimizations, on the embedded platform. We note a near tenfold increase in
inference rates on the embedded platform.

Figure 5.8 on the following page serves to highlight the benefit on individual
functions of CMT due to utilizing NEON acceleration - a promising sign when GPU
acceleration will be employed for these functions in the following section.

5.5 Heterogenous hardware implementation

5.5.1 Design

Assuming that we approached the highest rate of inference by solely utilizing the
CPU of the embedded device, with the associated optimizations, we turn our
attention to the design of a heterogeneous implementation that aims to increase
the utilization of the on-board hardware, by allocating certain functions between
the two available hardware resources. As depicted in Figure 5.7 a), two of the most
time-consuming functions of CMT are detecting keypoints and computing the
optical flow for these keypoints, both of which are highly data-parallel and as such
suited to GPU acceleration.

Utilizing a certain hardware resource for effective acceleration is not as trivial as
it may seem, whereby simply offloading functions, that have available
implementations on the specific hardware, may likely lead to a disappointing
increase in performance due to a variety of factors.

Stellenbosch University https://scholar.sun.ac.za

54

Figure 5.9: Performance benefit of utilizing NEON acceleration for all image
processing functions in CMT. A significant decrease in computing time is
realized in most data-parallel functions.

One such barrier to a significant performance increase is memory transfers
between the host, the CPU, and the device, the GPU, especially when memory
transfers occur in a cyclic fashion such as in CMT. As such, minimizing memory
transfers is of great importance and as such we suggest the allocation as depicted
below on the following page in Figure 5.9. In Figure 5.9 it is important to highlight
the current resource allocation of CMT, of which we note the GPU is idle for the
entire cycle, in which we process a single input frame.

In Figure 5.9, a reordering of the computational sequence of CMT was performed
to ease of the complexity of depicting proposed heterogenous allocation. The
function ‘track’ was initially computed first in the authors implementation of CMT,
but we schedule the function after image features have been computed and
processed - or features have been detected, described and the candidate
keypoints and their descriptors matched globally to the database. Subsequently
the computation of image features is allocated to the GPU as each task is highly
data parallel, as the results of Figure 5.8 highlights in that utilizing NEON
acceleration provided significant improvements in these three functions and have
a tightly coupled data-dependency between functions. The variables returned
from each of these functions is, as illustrated, passed directly to the following
functions - keypoints are first detected, then passed to the descriptor whereby a
descriptor is computed and associated with each keypoint after which each
keypoint-descriptor pair is matched to the database of descriptors.

Stellenbosch University https://scholar.sun.ac.za

55

Figure 5.10: The CMT task graph. Orange symbols illustrate the variables that
are stored in memory and that are returned by the functions, depicted in
green. This figure serves to illustrate the allocation of functions to the available
resources on a heterogenous computing platform, noting the GPU is
unallocated. Red arrows illustrate algorithmic flow and blue input/outputs of
functions.

Figure 5.11: An efficient allocation of CMT’s functions on a heterogeneous
computing platform, with a single set of memory transfers to the device and
back to the host. The functions ‘Detect’, ‘Describe’ and ‘matchGlobal’ have
been allocated to the GPU.

This is attractive attribute as intermediate memory transfers back to the host
between each function could be avoided, as these intermediate variables are not
immediately required in the rest of the computing pipeline.

Stellenbosch University https://scholar.sun.ac.za

56

5.5.2 Embedded implementation

In order to allocate functions to the GPU, we utilize the so-called Transparent API
(TAPI) within OpenCV that utilizes OpenCL framework to distribute computation
between heterogenous platforms, since our chosen hardware platform supports
the minimum required 1.2 full profile OpenCL framework. In order to allocate
functions to the GPU we simply need to alter a single variable declaration that
specifies the memory location of the basic image container ‘Mat’, that
predominantly resides in CPU memory, with ‘UMat’ that will then be a GPU
memory bound variable. The compiler will see this variable and handle GPU
memory allocation automatically by creating the memory on the device, uploading
the data synchronously to the device, and downloading the results back to host
after the CPU has waited, in a synchronous fashion, for the GPU to complete
computation. As such this ease of use leads to the Transparent API naming scheme
as it designed to allow ease of use - if we examine the source code of the chosen
feature detector’s class, ‘GoodFeaturesToTrack’ and it’s ‘detect’ method, we
obtain an intuition for how the allocation is handled as illustrated in Figure 5.10.
We see that the function ascertains the type of image container, ‘Mat’ or ‘UMat’,
and calls the relevant function, ‘goodfeaturestotrack()’, accordingly.

Figure 5.12: Source code snippet from the ‘GoodFeaturesToTrack’ detector,
where we see the ‘detect’ method’s Transparent API functionality, whereby
the function checks the input type and responds accordingly (OpenCV 3.4.0 –
available online at: https://docs.opencv.org/3.4.0/).

Stellenbosch University https://scholar.sun.ac.za

57

5.5.3 Shortcomings

Upon attempting to utilize the TAPI on the ASUS TinkerboardTM certain barriers
were encountered related to the specific device architecture. All the methods,
notably ‘detect()’, ‘compute()’ and ‘knnMatch()’, from each respective class, when
attempted to be used with the TAPI returned the error:
“CL_OUT_OF_RESOURCES”. This error has to do with the fact that the functions
and more specifically the OpenCL kernels were developed with scalar desktop
hardware in mind, opposed to Mali mobile GPU vector architecture. In order to
rectify these issues, much developmental work would be required and is out of
the scope of this research, which a feasibility analysis whilst making use of
available, functioning tools. The developmental work would require a complete
rewriting of OpenCL kernels such that they are functional on vector architecture
(vectorisation), as current operation is on scalar architecture. Once the kernels are
functional on vector architecture, an optimization process would have to be
undertaken to realize the specifics of a mobile GPU – i.e. to take advantage of the
128 bit wide registers. This would involve first determining the variable type,
either int, short half-float, for the specific task and how to best fit as many
elements of the variable type in the 128-bit registers. We thus turn our attention
to a functioning implementation platform, that being the desktop platform utilized
in the beginning of the experiments which is equipped with an NVIDIATM GPU and
utilizing the mature and widely utilized CUDA API in OpenCV.

5.5.4 Desktop implementation

Due to the embedded system being deemed to be an unsuitable prototyping
platform for a GPU-accelerated implementation of CMT as discussed in the
previous section, we return to the original desktop hardware platform. After
investigating the feature detectors and descriptors that have been implemented
in the CUDA API of OpenCV, we settle on an ORB descriptor and detector from the
available FAST and ORB keypoint detectors and solely available ORB descriptor.
Table 5.3 in section 5.3.1 illustrates that ORB detector and descriptor yields high
accuracy, but most importantly a superior keypoint detector response when
compare to the FAST keypoint detector, and since hardware acceleration will be
utilized, the lower inference rate that an ORB keypoint paired with an ORB
descriptor presents when empirically investigated may be neglected.

Referring to Figure 5.11 on the following page, in (b), we allocated the functions
detect(), describe() and matchGlobal() to the GPU as they present large overheads
in the overall pipeline of processing an input image, illustrated in (a), when
measured on the desktop hardware platform. Further motivation for allocating
these functions to the GPU will be discussed in the coming section. As envisioned,
a vast decrease was realized, as illustrated in Figure 5.11 (b), for each of the
functions allocated to the GPU, as they are highly data parallel. Both the

Stellenbosch University https://scholar.sun.ac.za

58

computation of descriptors and matching them to the database realized a 7x
reduction in computing time per frame, averaged over all frames in the dataset. It
is however noticed that the decrease of 30% in detecting keypoints is less
impressive - postulated to be since the input images in the database are
predominantly of relatively low pixel count at 340x240 pixels, compared to a
1080x720 pixel HD image. Subsequently the GPU has lower opportunity, when
compared to computing descriptors or matching them to a database, to present a
significant acceleration in computation due to the low dimension input to the
‘detect’ method.

This fact is reinforced whereby the GPU acceleration achieved, for the three
allocated functions, was investigated for the sequence ‘tracking running’ where is
the input is 768x576 pixels and results for this singular sequence is summarised in
Table 5.6 on the following page. Table 5.7, also on the following page, summarises
the result of utilizing GPU acceleration in the tracking algorithm over the entire
dataset.

(a) (b)

Figure 5.13: The distribution of time amongst the functions, illustrated on the
left in (a) of CMT on the desktop platform when solely utilizing the CPU and in
(b) the measured decrease in computation time for functions allocated to the
GPU, with an on average decrease of 5x over the three functions against a CPU
implementation is illustrated. Experiments were carried out utilizing a NVIDIA
GTX1060 6GB.

Table 5.6: A summary of the time taken per function for the sequence ‘track
running’ whereby a larger decrease, nearing 2x reduction in time, can be seem
for the method ‘detect’, illustrating the dependence of the keypoint detector

Stellenbosch University https://scholar.sun.ac.za

59

on high dimensional input data to achieve significant acceleration when
allocated to a GPU. The remaining functions see similar decreases due to the
number of keypoints and descriptors being fixed by the user.

Hardware
platform

Detect Describe MatchGlobal

CPU 4.66 3.90 2.67

GPU 2.66 0.63 0.29

Table 5.7: The summary of the impact on inference rate and accuracy by
allocating data-parallel, high-complexity computations to the GPU, compared
to a pure CPU allocated implementation of CMT. The algorithm is well suited to
GPU acceleration, due to the presence of commonly-utilized and intensive
image processing tasks being well suited to GPU acceleration, and as such
efficient GPU implementations of these functions being available. It is noted
that by utilizing GPU acceleration for certain functions, the AuC decreases by
5% - an acceptable decrease in accuracy for a 2x reduction in inference rate.

Hardware
platform

Detector Descriptor FPS AuC

CPU ORB ORB 42.79 0.739

CPU & GPU ORB ORB 87.92 0.7039

5.6 Concurrent execution model

After the investigation and the subsequent reinforcement of suitability of CMT for
GPU acceleration, we take Figure 5.9 into account and note that data processing
still proceeds in a sequential manner - whilst each resource is allocated and busy
computing, the other resource in the heterogenous platform remains idle.

The following section serves to highlight the feasibility and design of a concurrent
execution model, whereby both hardware resources are allocated and processing
data at the same time.

Stellenbosch University https://scholar.sun.ac.za

60

5.6.1 Design

To justify the developmental effort for designing a concurrent execution model, it
seems pertinent to highlight the motivational factor which is in mobile computing,
since hardware resources and power supply is limited, it is of utmost importance
that we utilize the available hardware resources to their highest capacity to
achieve the highest possible throughput. An approach to concurrent execution in
computer vision pipeline is to overlap tasks between two successive cycles, such
as in CMT’s cyclic processing pipeline, to ensure a resource avoids being left idle
and is rather continually being utilized at most points in a cyclic processing
pipeline.

The GPU, although allocated a certain portion of the functions of CMT’s object
tracking pipeline in Figure 5.12 below, is left idle for the remainder of the cycle
achieving low hardware utilization when considering the span of the entire frame-
processing pipeline. The remainder of the cycle, the stage assigned with updating
the object model, is completed by the CPU.

Figure 5.14: An illustration of allocation of functions to specific hardware
resources, with a low-level utilization of hardware resources.

However, for an algorithm to be suitable to be executed in a concurrent manner
or to be overlapped between cycles, a seemingly sequential set of computations,
as illustrated in Figure 5.12, must be decoupled of data dependencies for the
computations to be executed in parallel. In terms of the algorithmic steps in Figure
5.12, there are essentially two tightly coupled and data dependent computational
stages to the algorithm. The image feature stage, which Nebehay refers to as the
static component, is tightly coupled in terms of the intermediate data shared
between tasks and is independent of remaining tasks in the cycle, until a much
later point in the cycle. This presents an opportunity as the two stages in a single
cycle of the object tracking pipeline are distinctively independent of each other.

Stellenbosch University https://scholar.sun.ac.za

61

As previously stated, this allows the tasks suited to GPU acceleration to computed
with a single transfer of data to the device upon initialization, and subsequently
only one synchronization post completion is required with the host, illustrated in
Figure 5.12. Thus, upon completion of a single cycle’s GPU allocated functions and
after the memory transfer from device back to the host, it seems pertinent for the
CPU to first capture next image from the sensor. By capturing the next image, the
same functions can then be reallocated to the GPU, and by doing so fill the
pipeline. The image features for the next frame can then be computed by the GPU
concurrently and by doing so, overlap computation between two cycles as
illustrated in Figure 5.13. A concurrent execution model has thus been achieved
and the utilization of the hardware platform should be increased and as such
present a higher throughput.

Figure 5.15: Design of the pipelined execution model, with both resources
allocated during a single cycle of CMT. We see that whilst the CPU process the
current image, the GPU is processing the next image. Synchronisation occurs at
“1”.

However, to develop an effective concurrent execution model, it is important to
consider the trade-off between utilizing a specific computational resource and the
overhead between memory transfers. Whilst the theoretical speedup achievable
by a GPU may be magnitudes of order when compared to the same task on a CPU,
as illustrated in Figure 5.11 (b), inefficient memory handling may result in an
execution model that achieves a lower throughput and overall higher processing
time per cycle. By utilizing the asynchronous set of functions from the CUDA API
for feature detection (detectAsync()), computing descriptors (computeAsync()),
and matching of descriptors (knnMatchAsync()), all data that is shared between
the image feature tasks allocated to the GPU resides in GPU device memory. The
asynchronous functions accept GPU-memory allocated data as arguments,

Stellenbosch University https://scholar.sun.ac.za

62

opposed to the synchronous versions that only accept CPU-memory allocated data
as their arguments. Further, no explicit synchronization is required with the CPU
upon the completion of these individual functions, and as such it possible to
achieve an execution model whereby only a single synchronization is required
between host and device. It should also be pointed out that the ‘database’ variable
is static, and a copy is thus held in both CPU and GPU memory, such that we avoid
repeatedly transferring the variable per cycle.

5.6.2 Results

To be able to draw conclusions from the results of the investigation into a
concurrent execution model, it seems pertinent to first determine the percentage
of a complete cycle that the tasks that were intended to be executed concurrently
take to compute when allocated to the GPU. This would serve as the upper bound
and would highlight if perfect pipelining was achieved - if the cycle time was
reduced by the amount of time occupied by these functions. Measurements were
made utilizing OpenCV’s function getTickCount() and getTickFrequency(), that
returns timing in a resolution of milliseconds.

Table 5.8: Time taken to process functions allocated to the GPU, as illustrated
in Figure 5.12, with a cycle decrease of 27.34 % achievable in the limit of
perfect pipelining.

Dataset Average time to
process a single
frame (1 cycle)

[ms]

Average time to
process GPU

tasks per cycle
[ms]

Upper limit
achievable by
pipelining [%]

Vojir dataset (22
sequences)

8.63 2.09 27.34

Clearly, the functions allocated to the GPU occupy a significant portion of each
individual cycle, and as such we can expect to see a considerable decrease in cycle
period if the functions can be computed concurrently.

Table 5.9 - Complete cycle period measurements, post concurrent execution.

Dataset Average time to
process a single

frame [ms]

Average time to
process a single

frame w/
pipelining [ms]

Measured
decrease in cycle

time [%]

Vojir dataset (24
sequences)

8.63 7.97 7.64

Stellenbosch University https://scholar.sun.ac.za

63

It is noted that the average decrease in cycle time was not as expected, and
another experiment was undertaken to measure the time taken to transfer data
from the CPU to the GPU and to launch the tasks on the GPU.

Following the results of the second experiment, the unexpected results obtained
in the first experiment can be attributed to the fact the execution of the functions
are not entirely asynchronous as initially assumed. Following a profiling exercise
of individual functions, using the NVIDIA NSight profiler, that were to be executed
concurrently such as detectAsync() illustrated below in Figure 5.14, it is observed
that the memory allocation and transfer between the host and device, as well as
device kernel launching is continual throughout the functional call from the
runtime API (of which the host controls).

Table 5.10: Memory management and launching of kernels on the GPU

Dataset Average
time to
transfer
data and
launch

tasks on
GPU per

single
frame [ms]

Average
time to
process

GPU
tasks per

cycle
[ms]

Realizable
decrease
in cycle

time [ms]

Average
time to

process a
single

frame (1
cycle)
[ms]

Realizable
decrease in
cycle time

[%]

Vojir dataset
(22 sequences)

1.42 2.09 0.67 8.63 7.71

Asynchronous computation does indeed occur, such as in Figure 5.14 where there
is a kernel invoked on the device and whilst the kernel is busy being executed on
the device a memory copy is taking place, but it is not to the extent as assumed in
the case of the results of Table 5.8. It was assumed that once the function was
called from the API, the CPU would allocate the required memory, transfer the
data to the device and launch the kernels on the GPU and return control for further
processing. It is postulated that as the API was designed to be simple, robust and
user friendly, as well as portable across many heterogenous platforms with a
NVIDIA GPU, to include such asynchronous functionality could comprise the
aforementioned goals.

The decrease in processing time of 7.71% highlighted in Table 5.10 is postulated
to be as a result of two factors. The first contribution to the decrease in processing
time is since the asynchronous implementations of the previously mentioned

Stellenbosch University https://scholar.sun.ac.za

64

functions accepting variables residing in GPU memory as arguments, unnecessary
memory transfers are thus eliminated. Further, the decrease in processing time
can also be attributed to the fact the asynchronous implementations of the
functions, such as detectAsync(), make no explicit device synchronization calls.

Device synchronization (cudaDeviceSynchronize) calls from within the runtime API
block the CPU until all kernels are complete on the GPU, and subsequently a
profiling investigation was undertaken into the behaviour of the functions detect()
and detectAsync(), with the result of the illustrated below in Figure 5.15. The large
difference between the two functions can be attributed to the synchronous
implementation making explicit device synchronization calls, as only the
synchronous implementation of detect() having a cudaDeviceSynchronize entry in
Figure 5.15, and cumulatively the CPU spends a large portion of the function
detect() idling waiting for the GPU to complete computation.

Figure 5.16: Profiling results of detectAsync() function, illustrating the continual
interaction between CPU (runtime) in orange and GPU compute kernels in
turquoise/blue. Asynchronous computing is occurring, such as where the
kernel ‘cv::cuda::device::fast’ is being computed on the device and the host is
allocating memory with ‘cudaMemcpyAsync’.

The time distribution of kernel execution on the device is not presented as the
implementations of the function detect(), synchronous and asynchronously, have
near identical time distributions amongst kernels and have identical kernel
invocations.

As the goal of this last investigation was into the feasibility of the object tracking
algorithm for a concurrent execution model, with the eventual goal of
implementation on a low cost, single board computer equipped with
heterogenous hardware, the investigation is considered successful as a concurrent
execution model was successfully designed. The sequential execution of the
original implementation was decoupled of data dependencies, leading to

Stellenbosch University https://scholar.sun.ac.za

65

concurrent execution being possible, and the poor results could be attributed to
the functionality of the API that was utilized.

However, it should be pointed out the approach would not produce a significant
decrease in cycle period nor boost throughput as envisioned on an embedded
platform, using standard software libraries. As the approach utilized high end
hardware for the investigation, the results achieved on a single board computer
would even less impressive due to the generally lower clock speeds for memory
and processors, as well as a narrower memory interface width.

Figure 5.17: Time distribution of function detect() in the runtime API,
illustrating that the synchronous implementation’s costly deviceSynchronise
calls.

Even though approach does not increase the cost of the system on hand, only an
investment of development time is required, the suboptimal results are an
indication that another approach should first be investigated if the goal is to vastly
improve throughput and decrease cycle period.

Stellenbosch University https://scholar.sun.ac.za

66

6 Conclusion
Generic object tracking has become a well-researched topic following the success
and attention that Tracking-Learning-Detection (Kalal, 2012) received. A
benchmark for evaluating single object, generic object trackers was developed in
2013 and aided standardized methods to compare trackers in an efficient and
simple manner. The Visual Object Tracking Challenge (VOT) has made a large
positive impact on the field of research in generic object tracking and as such
significant annual improvements in the accuracy and robustness of generic object
trackers are continually made.

With the introduction of the real-time challenge in 2015, as a sub-challenge within
VOT, the importance of inference rates gained attention as well. The real-time
challenge serves to rank a subset of generic object trackers that can process the
input stream faster than the sensor can capture its digital representation of the
real-world, with the same accuracy and robustness measures as in the overall
challenge in the VOT. Less attention has however been given to inference of
generic object trackers on the edge, on energy-efficient mobile devices.

The purpose of this research was to investigate the feasibility of a generic object
tracker for inference on a single board computer. The algorithm CMT was
highlighted for investigation as initial research showed that the algorithm is highly
configurable, had not yet investigated for hardware acceleration, and performed
well on tracking scenes that are suitable to the intended use case. The required
software library for inferring the algorithm on the single board computer was built
and the accuracy and inference performance was investigated, in the author of
the algorithm’s configuration. This configuration was deemed unsuitable for
inference on mobile, resource limited computational platforms and an
investigation was undertaken to discover more optimal configurations.

Using a feature detector that did not overrespond to highly detailed scenes, such
as those found outdoors, and a lightweight but still discriminative descriptor
vector, inference rates were increased 7x on the mobile platform without any
significant loss in tracking accuracy, on the chosen dataset. The software library
that was utilized for generic image processing tasks was then rebuilt in order to
utilize the onboard hardware acceleration engine for the CPU, as well as another
specific data-type optimization, yielding a final inference rate that improved the
initial rate on the mobile platform by an order of magnitude, to a frame processing
speed of value of above 20 FPS.

Another form of hardware acceleration on the single board computer was then
attempted to be utilized, notably a heterogenous computing approach using
GPGPU for intensive image processing tasks, as a GPU is present on the single
board computer, but it was found that the software library’s GPU accelerated

Stellenbosch University https://scholar.sun.ac.za

67

functions were developed for desktop hardware. As such the functions that were
intended to be accelerated using the GPU and the software library’s API for GPU
acceleration, using the OpenCL heterogenous computing programming
framework, did not function on the single board computer and thus investigation
into heterogenous computing on the mobile device was abandoned.

Subsequently the prototyping platform was altered to a desktop platform to make
a general investigation into whether the chosen object tracking algorithm would
benefit from GPU acceleration, and whether further developmental effort should
be undertaken to obtain a functioning set of GPU acceleration functions, on the
single board computer. The inference rate of the algorithm was subsequently
doubled by allocating the computationally intensive image processing tasks to the
GPU, which could be done efficiently due to a reshuffling of the computational
flow of the algorithm to enable a set of data-independent functions to be
accelerated by the GPU. A final step was then taken to investigate whether the
utilization of a hardware platform, in general, could be improved significantly in
the execution of the specific tracking algorithm by investigating concurrent
execution. This was also investigated by utilizing the desktop hardware platform
due to the hardware being well supported by with a set of asynchronous functions.
The envisioned result was not achieved due to the utilized asynchronous functions
not interacting with the hardware as assumed, with the assumptions that the
interaction between the CPU and GPU would be totally asynchronous, but the
algorithm was deemed to still be suitable for such an execution model due the
existence of two subsets of data-independent tasks. To the authors knowledge, to
realize an effective concurrent execution a large developmental effort would have
to be undertaken by a team of hardware and software engineers. In general the
algorithm was successfully accelerated with the GPU, reaching a final inference
rate of over 100 FPS, and subsequently is well suited to GPU acceleration due to
the presence of data parallel image processing tasks.

In closing, we return to the fact that the investigation was into the feasibility of
real-time inference of a generic object tracking algorithm on a general-purpose
single board computer. Since a FPS rate of 20 FPS was achieved, with a purely CPU
implementation, the algorithm and platform is deemed suited to the task. This
mostly as a result of extensive research into effective computational method of
image features, and the field object tracking can expect even more promising
results in terms of mobile inference once ANNs are efficiently computed on mobile
devices. Through a careful design, a suitable speed vs accuracy balancing exercise
and careful selection of a suitable algorithm and hardware platform, the task real-
time object tracking can be achieved on a general-purpose single board computer.

Future work should investigate heterogenous computing with a suitable software
library. The ARM Compute library is software package designed to efficiently
compute machine learning and computer vision functions specifically on ARM

Stellenbosch University https://scholar.sun.ac.za

68

heterogenous SoCs such as the Tinkerboard. Support for common CNN functions
such as the convolutional filter and pooling operators are present. An approach
would be to investigate the usage of the ARM Compute library to implement
object tracking algorithms that are labelled as real-time, from the VOT challenge,
on mobile heterogenous SoCs.

Stellenbosch University https://scholar.sun.ac.za

69

7 References

Abadi M., Agarwal A., Barham P., Brevdo E., Chen Z., Citro C. and et al, “Tensorflow:
Large-scale machine learning on heterogeneous distributed systems,”
arXiv:1603.04467, 2016.

Bazzani L., Freitas N., Larochelle H., Murino V., Ting J.A., “Learning attentional
policies for tracking and recognition in video with deep networks,” in: Proceedings
of the 28th International Conference on Machine Learning (ICML-11), June 2011,
pp. 937–944.

Bertinetto L., Valmadre J., Henriques J. F., Vedaldi A., and Torr P. H. S., “Fully-
convolutional siamese networks for object tracking,” in: Computer Vision-ECCV
2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016,
Proceedings, Part II, G. Hua and H. Jégou, Eds. Springer International Publishing,
2016, pp. 850–865.

Bontempi G., Taieb S., Le Borgne Y-A., "Machine Learning Strategies for Time
Series Forecasting," in: Neurocomputing, 2010.

Calonder M., Lepetit V., Ozuysal M., Trzcinski T., Strecha C., and Fua P., “BRIEF:
Computing a Local Binary Descriptor Very Fast,” in: Transactions on Pattern
Analysis and Machine Intelligence 34.7, 2012, pp. 1281–1298.

Cannons K., "A review of visual tracking". Department of Computer Science
Engineering, York University, Toronto, Canada, 2008.

Carroll A., Heiser G., "An Analysis of Power Consumption in a Smartphone," in:
USENIX, 2010, pp. 21-22.

Cehovin L., Kristan M., and Leonardis A., “Is my new tracker really better than
yours?” WACV 2014: IEEE Winter Conference on Applications of Computer Vision,
2014.

Gall J., Yao A., Razavi N., Van Gool L., and Lempitsky V., “Hough Forests for Object
Detection, Tracking, and Action Recognition,” in: Transactions on Pattern Analysis
and Machine Intelligence 33.11, 2011, pp. 2188–2202.

Goodfellow I., Bengio Y., Courville A., “Deep Learning”, MIT Press, 2016.

Grauer-Gray S., Killian W., Searles R., Cavazos J., “Accelerating financial
applications on the GPU,” in: Sixth Workshop on General Purpose Processing Using
GPUs, 2013.

Stellenbosch University https://scholar.sun.ac.za

70

Harris C. and Stephens M., “A Combined Corner and Edge Detector,” in: Alvey
Vision Conference. 1988, pp. 147–151.

He K., Zhang X., Ren S., Sun J., “Deep Residual Learning for Image Recognition,”
arXiv: 1512.03385, 2015.

Hubel D. H., Wiesel T. N., “Receptive fields, binocular interaction, and functional
architecture in the cat’s visual cortex”. Journal of Physiology (London), 160,106–
154. 1961

Intel Corporation. Intel SSE4 Programming Reference. 2007.

Iandola F. N., Han S., Moskewicz S., Ashraf K., Dally W. J., Keutzer K., “SqueezeNet:
AlexNet-level accuracy with 50xfewer parameters and <0.5MB model size,”
arXiv:1602.07360, 2016.

Ignatov A., Timofte R., Chou W., Wang K., Wu M., Hartley T., Van Gool L., “ I
Benchmark: Running Deep Neural Networks on Android Smartphones,”
arXiv:1812.01109, 2018.

Jaccard P., “The Distribution of the Flora in the Alpine Zone,” in: New Phytologist
11.2, 1912, pp. 37–50.

Kalal Z., Mikolajczyk K., and Matas J., “Forward-Backward Error: Automatic
Detection of Tracking Failures,” in: International Conference on Pattern
Recognition. 2010, pp. 23–26.

Kalman R.E., “A New Approach to Linear Filtering and Prediction Problems,” in:
Journal of Basic Engineering 82.1, 1960, pp. 35–45.

Koller D., Weber J., Malik J., “Robust multiple car tracking with occlusion
reasoning,” in: European Conference on Computer Vision. 1994, pp. 189–196.

Kristan M., Pflugfelder R., Leonardis A., Matas J., Porikli F., Cehovin L., Nebehay G.,
Gustavo F., Vojir T., “The VOT2013 challenge: overview and additional results,” in:
Computer Vision Winter Workshop. 2014, pp. 61–68.

Kristan M., Leonardis A., Matas J., Felsberg M., Pflugfelder R., Cohevin L. and et al,
“The visual object tracking VOT2016 challenge results,” in ICCV 2017 Workshops,
Workshop on visual object tracking challenge, 2017.

Kristan M., Leonardis A., Matas J., Felsberg M., Pflugfelder R., Cohevin L. and et al,
“The visual object tracking VOT2016 challenge results,” in ECCV 2016 Workshops,
Workshop on visual object tracking challenge, 2016.

Stellenbosch University https://scholar.sun.ac.za

71

Krizhevsky A., Sutskever I., and Hinton G. E., “ImageNet Classification with Deep
Convolutional Neural Networks,” in: Conference on Neural Information Processing
Systems. 2012, pp. 1097–1105.

Leutenegger S., Chli M., and Siegwart R. Y., “BRISK: Binary Robust invariant
scalable keypoints,” in: International Conference on Computer Vision. 2011, pp.
2548–2555.

Le Cun Y., Boser B., Denker J. S., Henderson D., Howard R. E., Hubbard W., Jackel
L. D.,"Handwritten Digit Recognition with a Back-Propagation Network," in:
Advances in Neural Information Processing Systems, 1989)

Lepetit V., Lagger P., Fua P., “Randomized Trees for Real-Time Keypoint
Recognition,” in: Conference on Computer Vision and Pattern Recognition. 2005,
pp. 775–781.

Lowe D.G., “Distinctive Image Features from Scale-Invariant Keypoints,” in:
International Journal of Computer Vision 60.2 (2004), pp. 91–110.

Lu Z., Chan K., Rallapalli S. and La Porta T., “Modelling the Resource Requirements
of Convolutional Neural Networks on Mobile Devices,” arXiv: 1709.09503, 2017.

Lucas B.D. and Kanade T., “An iterative image registration technique with an
application to stereo vision,” in IJCAI, 1981.

Maggio E., Cavallaro A., "Video Tracking: Theory and Practice," 2011.

Murphy K.P., “Machine Learning. A Probalistic Perspective,” MIT Press, 2012.

Nebehay G. and Pflugfelder R., “Clustering of static-adaptive correspondences for
deformable object tracking,” in Computer Vision and Pattern Recognition, 2015.

Norvig R., Russel S., “Artificial Intelligence. A Modern Approach,” Pearson, 2010.

Redmon J., Divvala S., Girshick R., Farhadi A., "You only look once: Unified, real-
time object detection," in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

Rosten E. and Drummond T., “Machine Learning for High-Speed Corner Detection”
in: European Conference on Computer Vision. 2006, pp. 430–443.

Rublee E., Rabaud V., Konolige K., and Bradski G., “ORB: An efficient alternative to
SIFT or SURF,” in: International Conference on Computer Vision. 2011, pp. 2564–
2571.

Stellenbosch University https://scholar.sun.ac.za

72

Rumelhart D., Hinton, G. Williams, R. Williams, McClelland J., "Learning
representations by back-propagating errors," in: Nature. 323, 1986, 533–536.

Shi J. and Tomasi C., “Good Features to Track,” in: Conference on Computer Vision
and Pattern Recognition. 1994, pp. 593–600.

Stone J.E., Phillips J.C., Freddolino P.L., Hardy D.J., Trabuco L.G., Schulten K.,
"Accelerating molecular modeling applications with graphics processors," in:
Journal of Computing Chemistry, 2007.

Szeliski, R., “Computer Vision: Algorithms and Applications,” Springer, 2010.

Velasco-Montero D., Fernandez-Bernia J., Carmona-Galana R., Rodrıguez-Vazquez
A., “Performance analysis of real-time DNN inference on Raspberry Pi,” in: SPIE
Commercial and Scientific Sensing and Imaging, 2018.

Wolpert D. H., Macready W. G., “No Free Lunch Theorems for Optimization,” in:
IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, April 1997.

Wu J., Leng C., Wang Y., Hu Q., Cheng J., "Quantized Convolutional Neural
Networks for Mobile Devices,", in: IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

Stellenbosch University https://scholar.sun.ac.za

73

Appendix A

Figure A1: Illustration of the timing method used for each individual function
whenever timing was employed throughout section 5, starting with Figure 5.4.

Stellenbosch University https://scholar.sun.ac.za

74

Figure A2: Illustration of uploading of variables into device memory, utilization
of the CUDA API functions for the three functions allocated to the GPU as well
as an illustration of how the concurrent execution is achieved, in Nebehay’s
function processframe(). If the first frame is being processed and concurrent
execution is desired, the processing pipeline is first filled as in line 144. On line
197, the runtime API makes the call for the host to wait for device completion,
and the discerning factor between a concurrent and sequential execution. The
‘else’ statement serves to initiate the sequential computation, illustrated in
Figure 5.9, whilst the true statement serves when concurrent execution is
enabled.

Stellenbosch University https://scholar.sun.ac.za

75

Figure A3: Synchronization point in the function processframe() if concurrent
execution has been enabled, where the extra image storage on line 313 should
be noted.

Stellenbosch University https://scholar.sun.ac.za

76

Figure A4: Function matchGlobalAsync() serves to illustrate how data is moved
from the device back to the host. The concurrent equivalent
matchGlobalNoSync() however does not return data to the host at this point,
as this completed later during synchronisation with the host – illustrated in
Figure A.3, line 309.

Stellenbosch University https://scholar.sun.ac.za

