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Abstract 

A feasibility analysis into the inference of a generic object tracking algorithm on a 
general-purpose single board computer  

G. Walsh 
Department of Mechanical and Mechatronic Engineering 

Stellenbosch University 
Private Bag X1, 7602 Matieland, South Africa 

Thesis: MEng (Mechatronics) 
April 2019 

Algorithms that are able to track generic objects in real-time have many useful applications such as 
security and traffic surveillance, augmented reality and sports analytics. Practical implications of 
tracking algorithms are further enhanced when the algorithms are able to be processed in real-time 
on mobile devices. Mobile SoCs are compact and energy efficient by design (Carroll, 2010) and 
present a possible implementation platform. 

Modern object tracking algorithms (Bertinetto, 2016) rely on computationally intensive 
convolutional neural network (CNN) architectures. CNNs are currently not able to be processed in 
real-time on mobile devices (Lu, 2017). The research conducted in this thesis aimed to address the 
prior shortcoming in the computation of object tracking algorithms on mobile devices. A classically-
designed object tracking algorithm, CMT, was chosen for investigation due to its flexibility in 
configuration of image features. CMT is independent of the method used to compute classical image 
features, permitting the usage of binary descriptor vectors that can be effectively computed. The 
primary investigation was the algorithm’s suitability for implementation on a general-purpose 
heterogeneous computing platform. This was performed since heterogeneous platforms are 
common in mobile devices such as smartphones (Ignatov et al, 2016). A mobile platform was chosen 
based on available hardware acceleration support and heterogeneous computing capacity. 

Baseline performance of 2.22 FPS was initially established on the chosen mobile hardware platform 
utilizing a strictly CPU execution model. An investigation into the optimal choice of image features 
realized a 742% increase in FPS. The FPS was further increased through the utilization of on-board 
SIMD processors and achieved a real-time performance of 21.39 FPS. Due to OpenCV not supporting 
mobile GPU architecture, heterogeneous CPU-GPU acceleration on the mobile platform could not be 
investigated. When a desktop heterogeneous platform was utilized, the FPS throughput increased by 
205% through heterogeneous CPU-GPU acceleration when compared to a CPU implementation. 
Results from an investigation into concurrent execution on the desktop platform did not meet 
theoretical expectations since the set of asynchronous GPU functions utilized did not execute 
completely asynchronously from the CPU. 

Real-time computation was achieved by utilizing strictly CPU execution on the mobile platform. The 
results of heterogeneous CPU-GPU acceleration on the desktop platform are transferrable to a 
mobile platform, provided that the image processing library supports the mobile platform’s 
heterogeneous capabilities. Thus, mobile devices are feasible platforms for real-time computation of 
classical object tracking algorithms due to the attained FPS, with further increases in FPS possible 
through heterogeneous CPU-GPU acceleration. This realizable increase in FPS through CPU-GPU 
acceleration indicates more computationally demanding algorithms can achieve real-time 
computation. Theoretical concurrent acceleration techniques were deemed to be of value as they 
present the upper limit achievable in a CPU-GPU heterogeneous execution model. 
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Uitreksel 

‘n Uitvoerbaarheids-analise in die inferensie van 'n generiese objek-naspeur algoritme 
op n gewone veeldoelige enkelbord rekenaar.  

G. Walsh 
Departement van Meganiese en Megatroniese Ingenieurswese 

Universiteit Stellenbosch 
Private Sak X1, 7602 Matie-land, Suid-Afrika 

Tesis: MEng (Megatronies) 
        April 2019 

Die naspeur van 'n enkele, generiese voorwerp in 'n RGB insetstroom word baie bruikbaar wanneer 
die naspeur algoritme onder bespreking instaat is om die inset beeld vinniger te prosesseer as wat 
dit die beeld ontvang, gedefinieer deur die VOT uitdaging synde 'n reële tyd naspeurder, en meer so 
wanneer die algoritmes direk na mobiele toestelle gelei kan word. Ultra moderne naspeur 
algoritmes (Bertinetto, 2016) vertrou op konvolusionele neurale netwerk argitekture, en meer 
spesifiek die bereken duur konvolusionele filter, om 'n ekstrak van die kenmerke van die beeld te 
maak, en is daarom nie geskik vir reële tyd mobiele implementasie nie (Lu, 2017). Terwyl algoritmes 
ontwerp word met reële tyd toepassing in gedagte, word implementering hardeware tans nie as 'n 
belangrike faset beskou nie, en word tafelrekenaar hardeware dus tans vir inferensie gebruik. Die 
gebruik hiervan is hoogs onaantreklik aangesien dit die toepassingspasie van die voorwerp naspeur 
algoritmes beperk tot situasies waar uitgebreide berekeningskrag/rekenaarkrag? vir inferensie 
beskikbaar is. 

Die navorsing wat vir hierdie tesis onderneem is, het die klassiek-ontwerpte voorwerp naspeur 
algoritme ondersoek, daarin dat dit handgemaakte kenmerke gebruik, en die uitvoerbaarheid 
daarvan vir mobiele implementasie. Dit is voltooi deur die inagneming van die algoritme se 
toepaslikheid vir implementering, en voortspruitende werkverrigting, op 'n algemene gebruik 
heterogene rekenaar platform - 'n platform wat wyd beskikbaar is in mobiele toestelle soos 
slimfone. 

Verskeie hardeware versnelling en sagteware optimalisasie tegnieke is ook ondersoek, met die inisiëel 
uitgevoerde eksperimente wat aangedui het dat die algoritme effektief gelei kan word op 'n suiwer 
CPU- gebaseerde mobile platform en dat dit reële tyd raam prossesering snelhede bereik. 'n Hindernis 
is teëgekom, as gevolg van 'OpenCV' biblioteek wat nie ontwerp is om die mobiele platform se GPU 
argitektuur te ondersteun nie, en gevolglik kon die GPU versnelling op die mobile platform nie 
ondersoek word nie. Nietemin is bevind dat die algoritme grootliks  gebaat het by die GPU versnelling, 
wanneer 'n desktop heterogene platform gebruik is, en vervolgens geskik om ook  tegelyke tyd 
uitgevoer te word. Resultate vooruitspruitende die ondersoek na die gelyktydige uitvoering was 
teleurstellend aangesien die stel asinkroniese funksies wat gebruik is nie vertoon het soos beoog nie, 
dit is nie totaal asikronies van die CPU nie. Die resultate van die geïmplimenteerde GPU en die 
teoreties gelyktydige versnellingstegnieke is steeds van waarde geag met betrekking tot die doelwitte 
van die projek aangesien die resultate in 'n mate oordraagbaar is na 'n mobiel heterogene platform, 
gegewe 'n beeld prosessering sagteware biblioteek wat die mobile GPU kan benut. 
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1 Introduction 

1.1 Background 

Unmanned Aerial Vehicles (UAVs) have seen a recent increase in both consumer 
and industrial applications. One of the novel applications is in Concentrated Solar 
Plants (CSPs), where UAVs assist in heliostat calibration. The increase in the 
application of UAVs to a broad range of tasks can be attributed to the increase in 
sophistication of both onboard software and hardware. The improved software 
sophistication is, in turn, largely accredited to the current research effort into 
computer vision (CV). CV is a field within machine learning whereby computers 
seek to interpret the information found in digital images (Szeliski, 2010). Computer 
vision allows UAVs to interpret the information of their immediate surroundings 
in a manner that can be likened to that of the visual cortex (Goodfellow, 2015). 
Using computer vision, UAVs can identify objects within their field of view and 
formulate 3D recreations of their surroundings. This gathered information of the 
immediate surrounding can then be utilized to plan a path of travel through the 
physical world, whilst avoiding or following specific objects.  

The task of tracking objects of interest is not limited to static objects such as 
heliostats. UAVs are also tasked with tracking more dynamic and deformable 
objects such as people partaking in various sports, automobiles or even wild 
animals. The task of tracking an object is a well-defined problem since its formative 
application in a military context (Kalman, 1960).  

 
There are many valid assumptions to be made in the process of tracking objects. 
One such assumption is that on a per frame basis, the object of interest is assumed 
to be displaced an insignificant amount (Lucas and Kanade, 1981). One-shot object 
tracking algorithms seek to make assumptions that are as conservative as possible, 
to ensure the methods are applicable to the widest range of scenarios. The 
method is not granted any prior knowledge of the object, nor does it search a 
restricted area in the image once knowledge has been gained of its position. For 
tracking algorithms to be of use in real-world scenarios the output needs to online 
and within real-time constraints.  

1.2 State of the art 

Similarly to other image processing tasks, the scientific field of visual object 
tracking has not managed to avoid the increasingly common application of 
Artificial Neural Networks (ANNs). Arguably, the popularity of ANNs in image 
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processing tasks is due to the success that ANNs have achieved in image 
classification, pioneered by AlexNet (Krizhevsky, 2012). State-of-the-art object 
tracking methods currently employ a moderately shallow network of layers when 
compared to state-of-the-art object detection networks that are some 20 layers 
deep, such as You Only Look Once (Redmond, 2015).  

The differentiating attributes between the approach of state-of-the-art ANNs and 
classical one-shot object tracking algorithms are the utilization of convolutional 
neural networks (CNNs). CNNs are a subset of ANNs that are especially effective 
at image processing tasks. Predominantly, the effectiveness of CNNs is due to the 
weights of the convolutional filter operators are learnt offline, with a suitable 
dataset for the given task. Offline training of the filter weights enables extraction 
of image features that allow the network to be able to generalize well, particularly 
on unseen examples. Classical one-shot object tracking methods rely on 
handcrafted image feature extraction models to provide discriminative features 
to the classification portion of the algorithm. Classical image feature methods such 
as the Scale Invariant Feature Transform (Lowe, 2004), present poorer 
performance as the methods generally attempt to span a generic application 
domain. Whilst these tasks commonly require that the feature descriptor be 
uniquely discriminative, convolutional filter operators have the advantage of 
being trained for the specific task. For example, object detection networks such as 
You Only Look Once are for the sole purpose of object detection and localization. 

 A vast computational cost is however incurred in computing CNN networks like 
the object detection network mentioned previously – a computation cost of 30 
billion floating point operations (BFLOPS) for a single prediction of You Only Look 
Once (Redmond, 2015). This computational burden can be attributed to the 
computation of the convolutional filters (Wu, Leng, Wang and Cheng, 2015). 
Convolutional image filters are usually computed by hardware that can accelerate 
data parallel operations such as Graphics Processing Units (GPU). GPUs are 
commonplace as of late in consumer general and high-performance personal 
computers. However, the devices utilized by the research and industrial 
communities commonly rely on proprietary desktop hardware and associated 
software and are not mobile. Thus, the application domain of real-time object 
tracking algorithms (Bertinetto, 2016) is constrained due to the reliance on 
desktop GPUs, to achieve real-time computation. 

Arguably, real-time computation of object tracking algorithms on mobile 
platforms has not been considered due to researchers focusing their efforts on 
tracking effectiveness. However, object tracking algorithms that are able to be 
computed in real-time are documented by the real-time challenge within the 
Visual Object Tracking challenge (Kristan et al, 2016). The caveat in the evaluation 
of real-time trackers by the Visual Object Tracking challenge is the utilization of 
desktop hardware.  
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Classical object tracking algorithms and image features present a feasible solution 
when pursuing real-time performance as they do not employ convolutional filters. 
Research in classical image features culminated in Orientated FAST and Rotated 
Brief (Rublee, 2011) which performed comparatively (Rublee, 2011) to SIFT, but 
faster by two magnitudes of order. Classical image features can be efficiently 
computed due to utilizing binary descriptor vectors, as in Orientated FAST and 
Rotated Brief. Classical object tracking algorithms, utilizing lightweight image 
features, thus present a feasible alternative to CNNs for real-time object tracking 
computation on mobile devices. Mobile SoCs are a feasible platform for 
investigation as they rival desktop hardware that was available earlier in the last 
decade (Ignatov et al, 2018).  

The aim of this research is to implement a classical object tracking algorithm and 
assess its feasibility of obtaining real-time performance on a mobile device. The 
initial hypothesis is that real-time performance, of the classical object tracking 
algorithm, can be achieved by utilizing heterogeneous CPU-GPU acceleration on 
the mobile platform. 

1.3 Objectives 

The principal objective of this thesis was to implement the chosen object-tracking 
algorithm effectively on a general-purpose single board computer. Real-time 
performance was the criteria for assessing the successful implementation of the 
algorithm. Real-time performance was to be achieved by efficiently using onboard 
hardware and through efficient software design. 

Research objectives 

 Concurrently establish a general-purpose single board computer platform 
as well as an open-source generic object tracking algorithm, the latter of 
which will be investigated whether suitable for inference on the chosen 
hardware platform.  

 Identify and investigate the functions within the algorithm that present the 
largest computing overhead, on the chosen hardware.  

 Determine how the algorithm can be accelerated with on-board hardware 
and software optimizations.  

 Investigate which optimizations, software and hardware, should bring 
inference improvements and quantify the improvements on specific 
functions 

Stellenbosch University  https://scholar.sun.ac.za



 

4 

 Implement an accelerated variant of the given algorithm on the given 
hardware. 

 Investigate the suitability of the chosen algorithm for a concurrent 
execution model.  
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2 Literature review 

2.1 Machine learning 

Machine learning is the statistical science of enabling computers to be able to 
expose underlying patterns in data (Murphy, 2012) and make high level 
interpretations. Machine learning has seen an exponential rise in both its 
proficiency to solve problems as well as its applicability in common scenarios. 
Machine learning has been solving problems, such as handwritten digit 
recognition (LeChun et al, 1990) or Optical Character Recognition (OCR) since the 
late 1990’s, but only since the proliferation of modern computers and the 
associated accessibility of digital data or big data (Murphy, 2012) has the discipline 
started to flourish.  

Machine learning can be separated into three fundamental approaches that are 
used to infer ‘learning’ into an algorithm: supervised and unsupervised learning, 
being natural opposites to one another in their approaches, and reinforcement 
learning (Murphy, 2012). Supervised learning can be described as the task of 
learning an input to output function mapping, given a set of labelled data points 
that are distributed amongst the classes that we seek to be able to discriminate 
between. The data points, more commonly known collectively as the training 
dataset, and the nature of their labelling differentiates supervised and 
unsupervised learning. Unsupervised learning also requires a set of training 
examples to infer learning in the algorithm, but instead the algorithm seeks to 
learn the inherent structure (Murphy, 2012) in unlabelled data points, in which 
the class of each data point is not explicitly defined. Whilst the approach of 
unsupervised learning may seem more akin to the so-called forthcoming Artificial 
Intelligence Singularity, it still requires much input from the architect of the 
algorithm in order to leverage any underlying structure within the data. 

A learning paradigm that is more align with the popular culture surrounding the 
research topic of machine learning is reinforcement learning. Reinforcement 
learning is a method congruent with the natural methods of learning, through trial 
and error. Upon first approach, the method is more easily grasped than that of the 
previously mentioned methods, as the algorithm simply has a defined reward 
(Russell and Norvig, 2010) pathway and attempts take actions that seek to 
maximize this reward. Reinforcement learning is an area of research that is 
pursued in many disciplines outside of the world of machine learning such as game 
theory, due to its general ability to learn an optimal policy in an environment.  

A common goal between all methods is that they seek to make light work of 
interpreting vast amounts of data (Murphy, 2012) that is inherent to our digital 
world, and not easily processed by humans. Machine learning has seen 
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applications ranging from time series forecasting (Bontempi, Taieb and Borge, 
2013) to being able to detect and classify objects in digital images (Redmond, 
2015). The discerning factor between which approach is utilized to solve a problem 
or to leverage insight depends predominantly on the situation at hand but also the 
required output from the algorithm. A common machine learning application may 
even leverage both supervised and unsupervised learning in the same application. 
As a first step we might want to first learn the inherent structure within a vast 
dataset. The principal components, which were extracted from the unsupervised 
portion of the application, could then be passed to a supervised portion of the 
application in order to either create or train a classifier. 

2.2 Computer vision 

Within the vast depth of research fields of machine learning is the interdisciplinary 
field known as Computer vision. Computer vision (CV) presents an enormous 
challenge, regarding dealing with vast amounts of complex data (Szeliski, 2010). 
CV is both a highly active and an extremely promising area research field. The 
annual Computer Vision and Pattern Recognition Conference (CVPR) has seen over 
ten thousand publications in its short 30-year existence.   

However, modelling the real world and its associated complexities with digital 
image sensors in a binary format presents an enormous challenge when we seek 
to interpret this information in a high-level manner (Szeliski, 2010). Common 
challenges in computer vision, and the associated digital representation of a 
scene, are changes in light intensity, various viewpoints of a scene and interpreting 
the same scene at various levels of scale. Many challenges arise as we are 
essentially representing a 3-dimensional space on a 2-dimensional plane (Szeliski, 
2010). Not only are we attempting to model the natural world with a seemingly 
simple binary representation, the representations that we utilize are also high 
dimensional. A 640 x 480-pixel RGB colour model image contains roughly 1 million 
bytes of information, and essentially occupies a 640 x 480-dimensional space.  

Common areas of application of computer vision are, for example, in medical 
imaging where a computed tomography scan may be post-processed by an 
algorithm to detect the presence of cancerous tumours within the human body, 
or in robotics application where object recognition needs to be performed in order 
to navigate an environment and avoid objects successfully. These tasks are further 
complicated when video is fed into the computer vision algorithm. To provide 
meaningful output on video input the image processing rate is usually required to 
meet or exceed that rate at which information is captured. This computational 
burden is further complicated by modern image capturing devices usually 
representing the real world with High Definition (HD) images that occupy some 
1980 x 1080-dimensional spaces.  
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Despite the aforementioned challenges, it should be reiterated that computer 
vision has been successfully transforming our world and automating many tasks 
since the 1990s. Once such task that humans complete without perceiving the 
inherent complexity on hand is that of generic object tracking. Recognising 
objects, a separate subsection within computer vision, and tracking them through 
a video feed is an attractive tool. Once the field of object tracking is sufficiently 
solved, it promises to bring many advances to applications of machine learning. 
The term sufficiently solved is referred to, due the existence of the No Free Lunch 
Theorem (Wolpert, 1997), which states that no singular algorithm can solve every 
problem. Wolpert’s theorem can be applied to the task of generic object tracking, 
in which we realize no singular algorithm will be superior in all situations - some 
scenarios requiring speed over accuracy or superior robustness to explicit 
accuracy. 

2.3 Neural networks 

Realistically, the approach of ANNs is not a recent discovery as it has been present 
since the 1940s. Confusion has surfaced throughout history due to the array of 
naming schemes ANNs accumulated over time, starting with cybernetics and later 
becoming connectionism (Goodfellow, 2015). Recent theoretical discoveries in 
ANN structure such as the activation function in the hidden layers of a network, 
and the development of the propagation of errors backward through a network 
(Rumelhart et al, 1986) have enabled effective training and state-of-the-art 
classification accuracy. Proliferation of the general-purpose computing on 
Graphics Processing Units (GPGPU) have realized both training and inference of 
ANNs within realistic time boundaries. The combination of theoretical progression 
and available computing power has enabled the widespread success of ANNs in a 
variety of applications. Neural Networks gain their artificial prefix as the 
connectionism, as illustrated in Figure 2.1, draws inspiration in its construction 
from biology, where the brain (Goodfellow, 2015) is comprised of multiple layers 
of neurons that are interconnected on varying levels. This common structure, 
illustrated in Figure 2.1, is also known as the Multi-layer Perceptron (MLP). It gives 
rise to the term Deep Neural Networks, when a network is comprised of many 
hidden layers repeatedly.  
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Figure 2.1: The Multilayer Perceptron illustrating the connectionism between 
nodes (Karpathy, 2015). 

It was showed that that Deep Neural Networks (DNNs), deeper than previously 
employed (Krizhevsky, 2012) in vision-based machine learning tasks, could 
outperform state-of-the-art approaches to object detection in images. This was 
due to the hierarchy of image features that were learnt for the specific task on 
hand by the network, during offline training. Object detection approaches that 
utilized hand-crafted image features and classifiers such as a Support Vector 
Machine were from 2012 onwards considered outdated or classical. 

2.4 Image features 

Figure 2.1 illustrates the network construction is more akin to those tasked with 
general regression analysis. This construction is commonly referred to as Fully 
Connected Network (FCN), due to the interconnection between each node in the 
network. DNNs commonly utilized in tasks within computer vision are referred to 
as Convolutional Neural Networks (CNNs). CNNs are generally employed for image 
processing tasks such as object detection, classification and object tracking. CNNs 
usually consist of a sequential series of convolutional filter layers followed by a 
minimal set of fully connected layers. AlexNet (Krizhevsky, 2012) is illustrated in 
Figure 2.2 as reference for a generic CNN employed in image processing tasks. 
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Figure 2.2: The Alexnet (Krizhevsky, 2012) CNN for image classification, with 5 
convolutional layers are followed by 3 Fully Connected Layers (The 
intermediate max pooling layers between convolutional layer 1 - 2 and 2 -3 are 
not illustrated for simplicity). 

2.4.1 Convolution 

While the definition of convolution differs depending upon which application 
space it is utilized in, when we speak of the process of convolution, we refer to the 
image filter operation defined by  

 𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) =  ෍ ෍ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

௡௠

 (2.1) 

whereby 𝐼 is an input image, a 3-dimensional array, that is filtered using the filter 
operation K. This operation, illustrated below in Figure 2.3 as the kernel, is passed 
over the image at a defined spatial location, where the input image is now a 2-
dimensional array. The input image attains it’s third dimension due to the RGB 
colour model, with each of the three dimensions represent a certain colour 
channel of which the convolutional filter manages independently, as illustrated in 
the manner below.  

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

10 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The convolutional filter processing a 2-dimensional input, with the 
kernel or convolutional filter and input image highlighted (Goodfellow, 2015). 

Each layer of a CNN produces an output whereby the dimensionality is usually 
smaller than that of the input layer, as the goal is to perform effective 
dimensionality reduction, with an exception for the third dimension. A larger third 
dimension is produced due to the fact that many filters are passed over the input 
image and as a result an output is produced that is smaller in both input image 
width and height, but has more depth layers. This is illustrated in Figure 2.2 where 
the input is 227x227x3 and, after the initial set of convolutional filters, there are a 
total of 96 outputs each of width and height of 55 pixels.  

The output of a convolutional filter or kernel, of which both can be used 
interchangeably, is referred to as a feature map and contains a 3-dimensional 
array of features extracted by each of the kernels. The index of the third dimension 
of the feature map refers to the index of which a unique kernel, as illustrated 
above in Figure 2.3, produced the specific feature map and the third dimension 
grows in size throughout the convolutional stages, with the remaining dimensions 
shrinking. Another fundamental aspect of the CNNs are that the kernels are not 
usually applied to every pixel in the input image as this would include redundant 
information in the feature maps. Filters are usually applied in a stride, with a stride 
of 2 implying that the centre of the filter only being applied to every third pixel in 
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a specific direction of either height or width, and that the kernel strides two pixels 
before operating in both planar image dimensions. 

However, information is not disregarded with the application of a strided filters 
due to the filters possessing a ‘receptive field’. Receptive fields refer to the area in 
the input of which a filter can ‘see’ and through the utilization of a stride, the 
amount of overlap between applications of a kernel can be controlled. In Figure 
2.3, with a stride of 1, the kernels share 50% of the input data between successive 
applications, and thus as have a similar receptive field. DNNs tend to have a larger 
receptive field than shallower networks, due to the same input propagating 
through the network, partly enabling their effectiveness in extracting 
discriminative features (Goodfellow, 2015).  

Zero-padding and pooling are two aspects that also influence the dimensionality 
of the feature maps generated by convolutional filters. Zero-padding essentially 
appends the input to the filter with 8-bit 0 values, where necessary, in order to 
preserve spatial dimensions in the output and allows independent command over 
both the kernel width and the dimensions of the output (Goodfellow, 2017). 
Pooling is another dimensionality-reducing operator that takes in a two-
dimensional input and reduces the size of both dimensions by using a selective 
operator, such as, for example, a max pooling operator. Pooling serves to down-
sample the input by separating the input into non-overlapping grids of which it 
selects, for example, in a 2x2 grid with max-pooling, the singular highest integer 
value.  It is an effective method employed in practice that greatly reduces both 
computation and overfitting, with the intuition that specific feature location is not 
as critical as general location (Goodfellow, 2015).  

Finally, the last notable operator in modern CNNs is the activation unit that serves 
to provide activation of a node based on a threshold, with inspiration drawn from 
the research conducted on the visual system (Hubel, 1959). Modern CNNs 
commonly utilize the Rectified Linear Unit (ReLu) which can be likened to that of 
a half-wave rectifier in electronic signal processing and, like all activation 
functions, serves to provide an increase in network nonlinearities, which is critical 
in Neural Networks as they can learn complex functions and avoid gravitating 
toward being deeply stacked linear operators. The convolutional portion of the 
network, illustrated in Figure 2.2 by the first 5 layers, generally follows the 
construction of a sequential series of operators by starting with a set of 
convolutional kernels, after which comes an activation unit and a pooling layer. 
This section of the network is responsible for dealing with image features, after 
which the generated feature maps are passed to the classification portion of the 
network. With the continued research efforts into more effective CNNs, novel 
operators like skip connections, such as those found in ResNet (He, 2015), are 
becoming more common place as well. 
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Convolutional Neural Networks produce superior features to classical features 
detectors and descriptors arguably for two reasons. The first being their design 
being closely inspired by the human visual system, which responds on many 
different levels to varying types of visual stimuli (Goodfellow, 2015). Secondly that 
there is a hierarchy in visual input, visual features and brain response. This 
hierarchy is learnt for a specific task and embedded in the weights of the kernels 
can be learnt. Arguably, a feature is designed to be as discriminative as possible, 
from the approach of both the classical and CNN, and as such the single feature 
should be useful for many tasks where we need to distinguish between image 
information, being it either for 3D reconstruction or for optical flow fields. 
Research (Bertinetto, 2016) has however showed that CNNs perform well on 
image recognition-based tasks.   
 

2.4.2 Handcrafted 

Classical image features are handled in two-step manner - the input image is first 
passed through a feature detector that filters the image to determine the spatial 
coordinates where interest points are present, known as keypoints, after which 
the area surrounding the keypoints are described with a corresponding feature 
vector, generated by a feature descriptor. Arguably, CNNs follow a similar 
procedure, but the process is completed over several steps for which the network 
designer has control, and the features develop as they propagate through the CNN 
rather than being completed in two distinct steps. While the literature available 
that covers the classical approaches to image features is extremely vast and 
beyond the scope of this research, the following two sections serve to cover the 
basic approach in which local image features are handled. Local features are 
defined by the fact that they serve to represent discrete spatial positions in 
images, rather than the image as a complete region, such as the Histogram of 
Orientated Gradients descriptor (HOG). 

2.4.2.1 Feature detection 

Feature detection methods aim to filter the input image, to discern the locations 
of features that the function deems to be both discriminative, invariant to varying 
transformations, and repeatedly detectable. Keypoints are generated by the 
feature detector in image coordinates and locate an area of interest, for instance 
either an edge or a sharp change in colour contrast. Initial work on keypoint 
detectors relied on extremely simple approaches and simply utilized a sum of 
squares difference approach to differentiate between and detect keypoints in 
image regions. Image feature detectors progressed steadily by incorporating more 
advanced operators such as taking derivatives in both directions (Harris, 1988). 
Subsequently, the GoodFeaturesToTrack approach (Shi and Tomasi, 1994) 
furthered the prior approach by incorporating a corner strength test. It was only 
with the pioneering work of Scale Invariant Feature Transform (Lowe, 2004) that 
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feature detectors and descriptors became of great use to the computer vision 
community. Scale Invariant Feature Transform (SIFT) is, however, limited due to 
its computational complexity. Importantly for the purpose of this research thesis, 
computational complexity was addressed with the approach of Features from 
Accelerated Segment Test (Rosten and Drummond, 2005), which considered 
individual pixels as keypoints by investigating a 16-pixel circular region around the 
pixel. The candidate pixel was considered a keypoint if there existed a set of pixels 
n which were within the circular region, and were all at the opposite end of the 
pixel’s illumination intensity, by a threshold t. It should also be mentioned the 
approach of Lowe, as well as aforementioned approach, required the input image 
to be in grayscale, as this greatly simplified both the brightness check of the 
Features from Accelerated Segment Test (FAST) detector and the computation of 
SIFT keypoints.  

Whilst the FAST keypoint detector was efficient in terms of inference, it had 
inherent issues due to its simple approach that made FAST keypoints less effective 
than keypoints detected the SIFT operator. The FAST detector in practice produced 
a large keypoint count, which was subsequently addressed by, as illustrated in 
Figure 2.4, first only checking a determined minimum number of pixel positions, 
being 1 and 9, and then if those pass the previous threshold test, 5 and 13 are also 
tested. Image locations that passed these preliminary tests were then added to 
the list of keypoints, after which a full neighbourhood test could begin.  

Whilst the FAST detector was still not suitably robust for effective implementation, 
the author attempted to address these issues, firstly with the suboptimal choice 
of pixels for the reduced segment test (pixels through 1,3,9 and 13). Since these 4 
pixels were aligned 45 degrees apart from one another, a corner could easily be 
missed if not correctly aligned and was for instance oriented vertically. The author 
addressed this issue, as well as many redundant keypoints being detected in close 
proximity to another, by testing the detector over a dataset of images from which 
a decision tree was learnt that yielded more robust corner detection and 
employed Non-Maximum Suppression in order to avoid detecting keypoints that 
were close to within a vicinity of one another. The reader is referred to the original 
paper for a further discussion (Rosten, 2005). 
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Figure 2.4: The FAST feature detector, where the circular region around a 
candidate pixel is investigated and demarcated with the 16-pixel region 
(Rosten et al., 2010). 

2.4.2.2 Feature description 

Following successful keypoint detection, keypoints are subsequently associated 
with a feature descriptor vector that assigns a unique vector to a keypoint such 
that it could be reliably detected in other frames. Pioneering work was achieved 
with very simple features in early attempts at facial recognition which utilized 
difference operators between sums of pixels from a pair of regions, similar to 
feature detection. The SIFT descriptor vector, which was demonstrated to be 
supreme to other feature descriptors at the time, was constructed by calculating 
a Histogram of Orientated Gradients that summarized the image gradient 
orientations of the image patch surrounding the keypoint. SIFT greatly contributed 
to their effectiveness of many computer vision algorithms that utilized key points 
such as panoramic stitching or 3D reconstruction, but was mostly impractical in 
real-time applications due to a 16x16 patch around the keypoint of interest being 
summarized with a 128-dimensional feature descriptor, having too large of a 
memory footprint. Researchers subsequently put significant effort into developing 
descriptors that were as effective as SIFTs’ but were more computationally 
efficient. A binary feature descriptor was proposed (Calonder, 2010) that 
promised to bring about real-time performance by testing, after smoothing 
candidate image patches, brightness intensity between pairs of pixels. Binary 
Roust Independent Elementary Features (BRIEF) experimented with various 
sampling geometries for generating pairs of pixels and eventually settled scheme 
that sampled randomly from a Gaussian distribution centred around the patch. 
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The most effective Gaussian distribution had a variance of 1
25

𝑆2 and zero mean, 
where 𝑆  is the dimension of the square image patch. Using the proposed method 
BRIEF allowed for the efficient processing of descriptors that rivalled SIFT in terms 
of effectiveness. Researchers built on novel binary feature descriptor BRIEF and 
attempted to include invariance to rotation with the Binary Robust Invariant 
Scalable Keypoints (Leutenegger, 2011). Binary Robust Invariant Scalable 
Keypoints (BRISK) employed varying-width Gaussian smoothing operators to area 
surrounding the candidate image patches that were sampled by utilizing a fixed 
sampling pattern.  

The question then becomes: once it is possible to reliably locate points of interest 
in images that can be repeatedly detected and matched after changes in image 
rotation, scale and illumination, what algorithms and computer vision concepts 
these keypoints and their associated descriptor vectors are useful for. Whilst this 
was certainly not natural progression in the development of image features, the 
use-cases became more complex as image features saw a similar increase in their 
effectiveness. Once such application that heavily relies on image features is 
generic object tracking, whereby we seek to track deformable random objects in 
images. 

2.5 Object tracking 

An application where discriminative features are of utmost importance is in the 
task of tracking objects in a sequence of images or from a live video feed. The 
target of an object tracking algorithm can be summarized (Maggio and Cavallaro, 
2011) as predicating the spatial location, in an image, of an object in a video 
sequence comprising of individual images. Authors have studied how to track 
objects that belong to specific classes, for instance humans (Koller et al, 1994). 
This approach supplies the algorithm prior knowledge of the object of interest and 
should return higher tracking effectiveness than an approach without this 
knowledge. However, this requires a specific subset of assumptions for each 
object of interest, which is unattractive as each object would have to studied prior 
to tracking.  

Generic object tracking algorithms have no prior knowledge of the object of 
interest that is to be tracked and seeks to make the most conservative 
assumptions possible. Assumptions such as reduced-space searching for the 
object once the object is localized in the previous frame, or that the object will 
remain rigid throughout the tracking sequence are avoided in generic object 
tracking. In practice objects such as humans involved in physical activity can 
readily deform throughout a sequence.   
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Generic object tracking algorithms are tasked with (Nebehay, 2016) in a sequence 
of images or a live video feed of most predominantly the RGB colour model: given 
a bounding box 𝑏, comprising of the top left image coordinates and accompanying 
width and height, that surrounds the object from an initialization image 𝐼1, the 
purpose of the algorithm is to conduct an optimization exercise to find the 
bounding box 𝑏 in each image that presents the largest overlap with the object of 
interest, whilst simultaneously minimizing the overlap with background clutter for 
every input at time 𝑡. The utilization of a bounding box, however simple it may 
seem, is an exercise in trade-off between fully encompassing the object and 
including the most minimal number of pixels that belong to the background and is 
utilized in all state-of-the-art detection and localization tasks.  

The task of object tracking can, algorithmically, be separated into four distinct 
processes (Nebehay, 2016): an initial predication step, the extraction and 
processing of the relevant image features, localization and subsequently the 
updating of the model used to represent the object of interest.  

The prediction step is usually only of value when an object of fixed class is being 
tracked and valid assumptions can therefore be made. Useful prediction 
assumptions are commonly made on the object’s future location, based on 
previous motion (Kalman, 1960). Prediction is often error prone and can in turn be 
result in significant drift and error aggregation (Lepetit and Fau, 2005). For the 
reason of being applicable only to certain objects, the prediction step is not 
performed in generic object tracking.  

The second step of feature extraction can be likened to dimensionality reduction 
in terms of general machine learning. The goal is to move from a high dimensional 
space of an image to a more compact and condensed representation of the image. 
The compact representation, of image into image features, allows more 
convenient and efficient comparison of images and their content. An image 
feature should be discriminative and therefore only belong to a unique object or 
certain region in an image. Feature invariance is a fundamental attribute of image 
features and allows a unique feature to be detected in multiple different scenes. 
Section 2.4 covers feature extraction methods, both current and classical 
methods, and the methods employed to overcome the task of effective 
dimensionality reduction.  

Localization refers to the step of correlating image features to object location, 
completed in a local search or by detection. On first approach local search 
methods may seem to employ the use of a predictive model or step to localize the 
object. However, solely the information of object location from the previous image 
is regarded as valuable (Cannons, 2008) and can be utilized as a starting point in 
localizing the object for the current frame. The key difference in a local search 
compared to a prediction step is that only information from the previous time step 

Stellenbosch University  https://scholar.sun.ac.za



 

17 

is used, and subsequently does not lead to drift. Optical flow (Lucas and Kanade, 
1981) have been widely utilized to provide local search information. Optical flow 
provides image feature location by assessing per-frame image motion, assuming 
minor per-frame motion. Localization by detection relies on correlating extracted 
image features to a database of information that is known to belong to the object 
of interest. Localization by detection is commonly performed by comparing 
individual image features and utilizing a difference operator such as the Euclidean 
distance. This approach ignores all prior object location information, but some 
localization by detection methods do update the database of known object 
information. 

The final task relates to the amendment of the object model with the information 
from the localization step, in order to keep the model relevant with time. Amongst 
key challenges are to avoid drift through the inclusion of erroneous information 
and to complete the update in time to avoid changes in appearance. It is 
hypothesized that the most successful approach (Nebehay, 2016) is to update the 
object model as conservatively as possible. Each tracking algorithm has a specific 
handcrafted criterion for this step and as such should be explored with each 
individual tracking approach.   

2.5.1 Classical approach 

Previous approaches to the task of generic object tracking generally constructed 
an object tracking pipeline out of the four well-defined building blocks of 
prediction, feature extraction, localization and model update (Nebehay, 2016). 
The tasks were generally approached through established machine learning 
methods such as utilizing classical image feature description and detection, and 
hand-crafted object models as in Hough Forests. Hough Forests (Gall, 2011) 
approach to object tracking utilized an approach similar to Random Forests for 
classification, but rather than attempting to interpret class labels, Hough Forests 
utilized a Random Forest classifier to discern an object centre.  

A method which built upon the Hough Forest object model, whereby the object 
consisted of disjointed parts with a common centre, was Clustering of Static-
Adaptive Correspondences for Deformable Object Tracking (Nebehay, 2016). 
Clustering of Static-Adaptive Correspondences for Deformable Object Tracking’s 
(CMT) approach improved the proposition of utilizing a star-shaped object model 
by allowing an individual degree of displacement to each part, and, similarly to 
Hough Forests, object parts voted for the object centre, where CMT’s 
distinguishing fact was that the voting was completed by object pairs.  

Following the pipeline of classical object tracking algorithms a motion model 
would first be assumed, such as minor per-frame displacement, and be used to 
make a temporal-spatial prediction. Methods such as sparse optical flow (Lucas, 
Kanade, 1981) were commonly employed in classical generic object tracking 
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pipelines. Image features were then handled by utilising a hand-crafted feature 
detector and descriptor such as Orientated FAST and Rotated BRIEF (Rublee, 
2011), which essentially utilized a FAST keypoint detector and a BRIEF descriptor, 
but where Orientated FAST and Rotated BRIEF extended the BRIEF descriptor 
vector to include rotation invariance. These keypoints and their associated 
descriptors were subsequently processed in the following algorithmic step to 
localize the object of interest, for instance by matching candidate descriptors to a 
database of the object using a nearest neighbour matching scheme. The final 
algorithmic step was to update the object model with the newly acquired 
information to keep the object model current, and to balance the trade-off 
between stability and plasticity as well as drift. CMT approached this by combing 
the temporal-spatial and image feature information in an adaptive-static 
approach, by giving preference to robust, statically matched information. 

2.5.2 Connectionist approach 

In contrast to the traditional approach to object tracking, where the building 
blocks of the tracker were well defined, the connectionist approach, which utilizes 
ANNs of varyingly interconnected layers and nodes, is somewhat less understood. 
State of the art object tracking algorithms have benefited enormously from the 
resurgence of ANNs, and, more specifically, CNNs and their newfound success in 
the application to high level image processing tasks such as Object Detection.  

Similarly to Deep Neural Networks (DNNs) designed for the task of object 
detection and classification, object tracking algorithms have arguably benefitted 
primarily from the increased effectiveness of convolutional filters for the task of 
feature detection and description. The primordial difference between the 
connectionist approach and those used in previous state of the art object tracking 
methods, culminating arguably with CMT, is that convolutional kernel weights are 
learnt in a supervised fashion, offline. The features extracted from CNNs are 
interesting to visualize and it is noted that within the early convolutional layers 
that the kernels learn to behave similarly to classical feature detectors, in that 
corners in images and similar features are also found. Image features are of 
extreme importance when considering the tracking accuracy of object tracking 
algorithms, as will be illustrated in section 5, as, no matter how sophisticated the 
object model, if the features that are employed are not discriminative, any object 
model will fail. A simple object model however, when employed with 
discriminative features, can perform remarkably well.  

The connectionist approach to the design of trackers focuses around 3 distinct 
stages (Bazzani, 2011): the who-, where- and why-pathways. The who-pathway is 
aligned with the classical view of image features and accumulates information that 
can be used to perform discrimination of the object and background, the where-
pathway which is responsible for perceiving object location, and the why-pathway 
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is responsible for with the learning objective of the network. One such network, 
Fully-Convolutional Siamese Networks for Object Tracking (Bertinetto, 2017), 
which rose to dominance in the real-time challenge with the Visual Object Tracking 
challenge (VOT), employs a seemingly simple Siamese network that essentially 
performs a similarity measure between image patches with features provided by 
a CNN. The approach to similarity learning by Fully-Convolutional Siamese 
Networks for Object Tracking (SiamFC) is illustrated below in Figure 2.5. 

The approach of SiamFC trains a function 𝑓(𝑧, 𝑥) that compares a template image 
𝑧 to the input image patch 𝑥, with the goal of this function as previously 
mentioned, to compute the similarity between the two images. The resulting 
measure should discern whether the image contains the same object by either 
providing a high score for a True Positive or low score other if the object is not 
deemed to be present, after which a thorough localization effort is completed in 
the event of a True Positive. The goal of the localization effort is to find the image 
patch in the input image that is most similar to the template 𝑧 - a former 
representation of the object. 

  

 

 

 

 

 

 

 

Figure 2.5: The Fully-Convolutional Siamese Networks (Bertinetto, 2017) 
developed for object tracking. The who and where pathway indicated by the Ø 
and * operator respectively. 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

20 

3 Case study 
The following chapter serves to cover in detail the algorithm that is proposed to 
be deployed to the embedded system, as well as an overview to modern 
approaches to handling computationally expensive algorithms.  

3.1 Tracking algorithm 

As mentioned previously, the generic object tracking algorithm Clustering of 
Static-Adaptive Correspondences for Deformable Object Tracking (Nebehay, 
2016) employs a classical approach to object tracking. Classical object tracking 
methods that rely on hand-crafted algorithms to either handle image features or 
when modelling the object of interest. In this section, the theoretical approach of 
the Clustering of Static-Adaptive Correspondences for Deformable Object Tracking 
(CMT) algorithm is covered in depth and the fundamental computational steps are 
explained.  

3.1.1 CMT 

The algorithm CMT contributed to the field of generic object tracking by 
developing the Deformable Part Model for One-Shot Object Tracking (DPMOST). 
DPMOST is a part-based model builds off a star-shaped model, whereby the object 
is modelled with a set of interconnected object parts with a common anchor. As 
in all star-shaped models, the common anchor DPMOST revolves around is the 
object centre. Star-shaped models are attractive since they handle occlusion well, 
as illustrated in CMT’s performance (Kristan et al, 2017) as not all object parts need 
to present for the object to be detected successfully. DPMOST further extends this 
attractive quality by handling object deformation in a principled manner, whereby 
object parts are proposed to be interconnected and can connect outlying parts 
through another member belonging to the part model. Highly displaced parts that 
serve to model severe deformations, can have their membership to the object of 
interest reinforced by other interconnecting parts. DPMOST can account for 
extreme deformation, as illustrated by Figure 3.1.  

Formally, DPMOST builds an object model from a reference set of members or 
object parts, {𝑥ଵ

௧ , . . . 𝑥ே
௧ } obtained from an initialization image and accompanying 

bounding box 𝑏ଵ, with the reference appearance 𝑍 having been normalized with 
respect to the mean position in image coordinates. The so-called deformation 
threshold, that is assumed constant for each part in a bid to keep the approach 
simple, allows each vote for the common anchor point a certain amount of leeway. 
The set of correspondences denoted 𝐿 = { 𝑚ଵ, … 𝑚௡ } with 𝑚௡ being a pair of 
object points (𝑥௜

௧, 𝑥௜
ଵ), is a set of correspondences between the initialization image 

and the present image of interest. 
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(a)                                                         (b) 

Figure 3.1: Illustration of the mediating properties of voted in CMT. In (a) the 
parts 𝒙𝟑 and 𝒙𝟒 are deemed to vote for the same centre, by having parts 𝒙𝟐 
and 𝒙𝟏 reinforce their membership to the object model opposed to in (b) 
where part 𝒙𝟑 has severe deformation and no mediating part (Nebehay, 2016). 

The objective at hand then becomes how a set of correspondences between the 
reference set and the current image of interest should be determined. The method 
employed will greatly influence the success of the tracking algorithm, as all 
information inferred about the object and its temporal behaviour will be based on 
the set of correspondences.  CMT employs a two-step approach with the intention 
of increasing matching robustness by balancing the stability-plasticity dilemma.   

Static correspondences are obtained by matching descriptors between the 
reference set, which are obtained from the initialization image, and the candidate 
set through the utilization of a similarity measure. Since this requires comparing 
every candidate descriptor vector against those in the reference set, 
computational efficiency is of great importance. Binary descriptor vectors, which 
is where floating point variables are avoided, present an attractive approach to 
the computational dilemma. Descriptors can be compared utilizing the XOR 
operator to compare two equal-length bit strings or to measure the distance 
between descriptor vectors and can be effectively computed on modern CPUs, 
utilizing for instance the SEE4.2 instruction set (Intel, 2007). As such we can avoid 
computing the floating point L2 norm, if for instance SIFT descriptors were 
employed in - a markedly costlier operation.  The author of CMT elaborates on the 
choice of the matching scheme employed for descriptor matching and arrives at 
the conclusion of second nearest neighbour distance ratio (SNNDR) test 

  𝑆𝑁𝑁𝐷𝑅(𝑝(𝑥௜)) =  ቊ
𝑁𝑁൫𝑝(𝑥௜)൯ 𝑖𝑓 

ௗ(௣(௫೔),ேே(௣(௫೔))

ௗ(௣(௫೔), ேேమ(௣(௫೔))
<  𝛾      

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
ቋ (3.1) 
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The SNNDR is deemed (Mikolajczyk and Schmid, 2005) to be a robust method for 
determining the confidence a correct match has been made for a candidate 
descriptor 𝑝(𝑥௜) and its nearest neighbour. This completed by assessing the 
distance 𝑑 between a candidate descriptor 𝑝(𝑥௜) and the nearest neighbour 
𝑁𝑁(𝑝(𝑥௜)), over a distance to the second nearest neighbour 𝑁𝑁ଶ(𝑝(𝑥௜)). The 
intuition behind this ratio is that the lower the ratio, that must be below the 
threshold 𝛾, the more confident the match. A larger denominator than numerator 
will identify that indeed the numerator presents a unique match, as the second 
nearest neighbour is not near the second nearest neighbour to the candidate 
descriptor. The application of the SNNDR will ensure highly discriminative matches 
will be established, rather than ambiguous matches when simply using a nearest 
neighbour matching scheme. It seems imperative at this moment to highlight the 
fact that in the design of CMT, the reference set of descriptors includes descriptors 
that belong to clutter - this is beneficial to the matching effort as the algorithm 
can disregard candidates that match to directly to clutter.  Descriptors from the 
reference set are assigned class labels, foreground or background, and as such 
DPMOST will disregard matches that are classified to belong to background.  

The second approach incorporated into CMT to identify adaptive correspondences 
between the current image and the reference set, is through the utilization of 
sparse optical flow. The principle intuition behind utilizing sparse optical flow 
(Lucas and Kanade, 1981) is for the algorithm to remain adaptive to temporal-
spatial changes, and as such computes the displacement between keypoints from 
the previous frame to current the frame. The Forward-Backward Error (Kalal, 
2010) furthers the logic of forward optical flow and calculates optical flow from 
the previous frame to current, as well in reverse. The difference between these 
two trajectories is then calculated for the specific keypoint and if the two 
trajectories differ by less than the specified threshold, they are identified as 
correct adaptive correspondences. While it may not be inherently clear, the 
keypoints that are tested in this spatial-temporal manner are exclusively those 
that belong to the object from the previous frame, or those keypoints that are 
active. 

Finally, the object model needs to remain current throughout the tracking 
sequence. The model needs to adapt to changes in object appearance but also to 
remain stable such as not to suffer from drift, but also that we are able to redetect 
the object if absent for a period. Opposing other tracking methods that utilize a 
similar detection approach, CMT never modifies the initial reference set as these 
were constructed from extremely reliable information. Rather, two sets of 
correspondences are maintained and are fused to become the set 𝐿∗. Static 
correspondences 𝐿௦  identified using the SNNDR are more robust, and those 
discerned as correct correspondences by using sparse optical flow are termed the 
adaptive correspondences 𝐿஺.  The set 𝐿∗ is constructed on a per-frame basis by 
fusing the two sets, 𝐿஺ and 𝐿ௌ, and discards adaptive correspondences when the 
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static equivalent is available in its attempt to balance the stability-plasticity 
dilemma.  

Once we have determined a set of correspondences between initialization and 
current information 𝐿∗, the next task is to process the correspondences to discern 
the resulting per-frame shift in object location, in-plane rotation and object 
centre.  

Firstly, to quantify scale and rotation change, of which DPMOST accounts for when 
predicting object location, it was showed (Kalal, 2010) that scale could reliably be 
estimated through a pairwise measure 

 
𝑠 = 𝑚𝑒𝑑𝑖𝑎𝑛 ቆ

𝑥௜
௧ − 𝑥௝

௧

𝑥௜
ଵ − 𝑥௝

ଵቇ 
(3.6) 

which leads to a similar measure for a rotation estimate 

 𝑅 = 𝑚𝑒𝑑𝑖𝑎𝑛൫𝑎𝑡𝑎𝑛2൫𝑥௜
ଵ − 𝑥௝

ଵ൯ − 𝑎𝑡𝑎𝑛2(𝑥௜
௧ − 𝑥௝

௧)൯ (3.7) 

whereby the median rejects outlying predictions reliably, given that the count of 
predictions made by inliers is at least 50%. Once scale and rotation have been 
determined for the set 𝐿∗, we turn our attention determining a consensus set of 
votes for the object centre. The simple initial voting mechanism (Nebehay, 2016) 
is initially proposed as  

 ℎ(𝑚௜) =  𝑥௜
௧ −  𝑥௜

ଵ (3.2) 

where ℎ(𝑚௜) simply represents translation between correspondence 𝑚௜ of object 
parts 𝑥௜

ଵin the initialization and 𝑥௜
௧ in the current frame 𝑡. We start to build a sense 

for the object location when the two correspondences 𝑚௜ and 𝑚௝ simultaneously 
vote for the centre location with the transitive operator 𝑤൫𝑚௜, 𝑚௝൯ 

 𝑤൫𝑚௝, 𝑚௜൯ = ቄ
1 𝑖𝑓|| ℎ(𝑚𝑖) − ℎ(𝑚𝑗)|| < 𝑑𝑒𝑓𝑜𝑟𝑚 𝑡ℎ𝑟𝑒𝑠ℎ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.3) 

whereby we have consensus between correspondences of the object centre if the 
𝐿2 norm is smaller than twice the deformation threshold. The aforementioned 
mediating property of Equation 3.3 is demonstrated by the mathematical 
transitive property of  

 𝑤൫𝑚௜ , 𝑚௝൯ 𝑎𝑛𝑑 𝑤൫𝑚௞, 𝑚௝൯ =  𝑤(𝑚௜ , 𝑚௞) (3.4) 

whereby correspondences 𝑚௜  and 𝑚௞ are mediated by correspondences 𝑚௝.  
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CMT approaches the computation of equation 3.3 from the approach of 
agglomerative clustering approach whereby we utilize the deformation threshold 
as a cut-off between differing levels of linkage, as illustrated in Figure 3.2. Scale 
and rotation invariant votes for the object centre 𝜇 are made by  

𝜇 =  
1

|𝐿௪|
෍ (𝑥௜

௧ − 𝑠𝑅𝑥௜
ଵ)

(௫೔
భ ,௫೔

೟)

 
(3.8) 

where the difference in centre votes is mediated between votes, and subsequently 
object parts, by the deformation threshold. 

 

 

 

 

 

 

 

 

 

Figure 3.2: A graphical illustration of the agglomerative approach to clustering 
the centre votes, whereby the deformation threshold serves to discern the 
linkage cut-off between clusters of centre votes (Nebehay, 2016). 

The consensus set 𝐿௪ is then determined by taking the largest cluster of centre 
votes, after which the object centre is calculated. As a final reliability check 
(Nebehay, 2016) we employ 

 𝜑(𝐿௪) = ቄ
1 𝑖𝑓|𝐿௪| > 𝜃(𝜑)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.5) 

where 𝜃(𝜑) is a numerical value that is set experimentally.  
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3.1.2 Algorithmic overview 

In order to clarify the computational process and how each of the previous 
sections are interlinked, the algorithmic psuedocode for CMT  is presented below 
in Figure 3.3.  

Initially we construct the normalized reference set of object parts 𝑍 by requiring 
an initialization image 𝐼ଵ and bounding box 𝑏ଵ. We first proceed by extracting 
image keypoints in step 1, using a keypoint detector such as FAST that is 
implemented in OpenCV. The keypoints are then normalized, by the mean 
keypoint location, in step 2 to produce 𝑍.  

Descriptor vectors, such as a BRIEF descriptor that is similarly implemented in 
OpenCV, are then computed in step 3 for the keypoints extracted in step 1. Steps 
4 and 5 once again detect keypoints, or parts, and compute their associated 
descriptors but for keypoints of the region outside of the bounding box 𝑏ଵ. This 
separate set of keypoints and descriptors that are inside and of foreground, or 
outside and of background, of the supplied bounding box 𝑏ଵ are crucially 
separated and assigned an according class label for keypoint matching in step 8, 
as mentioned in 3.1.1. The reference set of static descriptors P utilized for 
matching is obtained in step 5, whereby the descriptors from step 3 are also added 
to P. The set of static descriptors P now contains descriptors from inside and 
outside of the bounding box 𝑏ଵ.  

The repeating loop then processes the input images by first detecting keypoints 
over the whole input image and computing the accompanying descriptors in step 
7. The implementation utilized is the same as in step 1. In step 8, the extracted 
keypoints are then matched, through the use of the accompanying descriptors, to 
the reference set P through OpenCV’s implementation of nearest neighbouring 
matching. Within the algorithmic step 8, the matches are tested using equation 
3.1 to produce the static correspondences ℒ௦. Step 9 produces the set of adaptive 
correspondences ℒ஺ by computing the optical flow, once again utilizing OpenCV’s 
implementation thereof. Optical flow for the previous active keypoints, ℒ௧ିଵ, is 
calculated both forward, using the current input image, as well as in reverse from 
the current image to the previous image 𝐼௧ିଵ. After passing the test on the 
Forward-Backward Error, the adaptive correspondences are obtained. These two 
sets of candidate correspondences are then fused by the rule mentioned in 
Section 3.1.1, of inclusion with regards to static and adaptive correspondences, to 
produce ℒ∗.  

 
The algorithm then proceeds to make estimates of scale and rotation in step 11 
and 12 respectively, using this fused set ℒ∗. This is completed through utilizing 
Equation 3.6 and Equation 3.7. Once estimates for scale and rotation have been 
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determined, they are employed in step 13 to complete transitive consensus 
utilizing Equation 3.3. Transitive consensus allows outlying object parts to be 
mediated by other parts and as such this operation results in the set of 
consensus set ℒௐ.  

Line 14 the presents the algorithmic step “disambiguate”, whereby we further 
attempt to refine the consensus set ℒௐ by attempting to include any keypoints, 
or object parts, that were not matched in step 8.  

 

 
 
 
 

 

 

 

 

 

 

 

 

 
 

Figure 3.3: Algorithmic overview of CMT, denoting the entire computation 
process from initialization till termination of the for loop (Nebehay, 2016).  

This action of “disambiguation” is done by transforming the reference set 𝑍 
through the scale and rotation heuristic and attempting to match the keypoints 
of step 7 to this transformed set. OpenCV’s nearest neighbouring matching is nce 
again called upon for the matching functionality. The intention of the 
ambiguation step is include incorrectly rejected keypoints in step 7 such that the 
estimation of adaptive correspondences in the forthcoming input are more 
accurate (Nebehay, 2016).  
 

Stellenbosch University  https://scholar.sun.ac.za



 

27 

Post completion of this operation, step 15 establishes whether the result of the 
consensus was feasible according to the prior count in the consensus set. If step 
15 is passed the current bounding box, object centre and subsequent similarity 
transform is calculated. In the result of a false output from line 15, no bounding 
box is generated.  

3.2 Computation 

Due to the high dimensional space that computer vision pipelines usually occupy, 
the associated computing overhead is vast and puts great demand on the chosen 
hardware platform. A careful codesign however, whilst being mindful of both 
hardware and software, can yield promising results especially with the significant 
computing power that has become more accessible to developers as of late. The 
following section serves to highlight the industry standard approach to dealing 
with the high dimensional data that computer vision presents.   

3.2.1 Graphics processing units 

Since the incarnation of NVIDIA (1999), industry as well as mainstream users have 
been increasingly exposed to computing platforms that contain Graphics 
Processing Units (GPU), which too have been increasingly applied to general 
computational problems, known as general-purpose computing on GPUs 
(GPGPU). GPUs however were not originally designed for the task of general 
computation such as CPUs, but rather for processing pixels for video output. Due 
to requirement for GPUS to processes high bandwidth input such as video, they 
tend to feature higher core-counts when compared to CPUs, with associated co-
processors such as Single Instruction Multiple Data (SIMD) processors being 
present in higher counts too. GPU compute cores further differ from CPU cores in 
that more threads can be dispatched allowing more computation to occur 
concurrently, but it is also important to note that modern CPUs contain vectorized 
instructions sets such as Intel’s AVX for data parallel computations. In general 
GPUs dedicate more transistors to ALU units that support floating point 
operations, and with each computing core having less cache memory than a CPU 
core and with less emphasis on flow control. Fundamentally, GPUs are clocked at 
lower frequencies than CPUs but feature higher memory bandwidth – an 
indication that they are designed for data parallel computations. 

Industry and researchers soon realized the applicability of GPUs to general 
computing and as such one popular framework that came into fruition was 
NVIDIA’s Compute Unified Device Architecture (CUDA) that allowed users to 
offload computationally expensive workloads to various GPUs and enjoy higher 
throughput. Since the introduction of CUDA, GPUs have seen application to many 
fields such as Molecular modelling (Stone et al, 2007) or in computational finance 
(Grauer-Gray, Killian, Searles and Cavazos, 2013). The common a common theme 
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between all these applications is the vast amount of data   the needs to be 
processed. Fortunately, many computer vision tasks are highly data parallel, in 
that the same operator is carried out many times on different data points. 

3.2.2 Accelerating computer vision 

A common task in computer vision, that is highly data parallel, is the computation 
of nearest neighbour. In the process of calculating the nearest neighbour, a single 
input 𝑑௡ and is to be matched to a training database 𝑡. The candidate vector is 
used to rank the entries of training database by a measure of their proximity to 
the candidate vector, through a measure such as the L2 norm. In the case of CMT, 
the second nearest neighbour is required and such the two entries that are in 
closest proximity to the candidate descriptor are returned. Algorithmically this is 
completed by: for the input 𝑑௡ we iterate over each descriptor 𝑡ଵ,...௡ in the 
database and perform a similarity measure between the current candidate 
descriptor from 𝑡௡. We rank the results in a descending list and store the two best 
results, presenting computational complexity 𝑂(𝑛𝑑𝑡). The operation whereby we 
need to compute the distance of candidate to the entire database is very suited to 
a SIMD processor, as the same instruction is repeated on multiple data points. 
Therefore, the database of descriptors can be operated on simultaneously and a 
decrease in computation time when utilizing a SIMD processor can be expected.  

Fortunately, many computer vision functions present a similar level of data-
parallelism such as the convolution filter in Equation 2.1. The convolution filter can 
be interpreted as a “primitive” image processing task, as it comprises of a single 
matrix multiplication operation. In Figure 3.4 we see that “primitive” image 
processing tasks can see decrease in computation time of 30 times. Another 
operation that is data parallel and can benefit from a magnitude decrease in 
computation time is keypoint detection, once again as illustrated in Figure 3.4.  

In short, computer vision tasks present a challenge when it comes to real time 
processing due to the vast amounts of complex data. Using GPUs and efficient 
software design, we can expect to accelerate highly data parallel tasks.  
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Figure 3.4:  A summary of generic functions used within common computer 
vision pipelines and their indefinite estimated speed-ups, noting that keypoint 
detection, though SURF keypoints, can be sped up by an order of magnitude 
utilizing GPU acceleration (NVIDIA).  

3.2.3 Software & heterogenous computing 

Building on the promise of accelerating data-parallel computer vision tasks of the 
previous section, it seems pertinent to investigate how it is possible to effectively 
exploit on-board hardware such that we achieve high levels of hardware 
utilization. Figure 3.5 illustrates three cases where a heterogenous computing 
platform is utilized in different manners. Extending the No Free Lunch theorem to 
computing processors, a throughput optimized computer vision application will 
rely on both a CPU and GPU, in a common heterogenous platform, to achieve real-
time processing and the highest levels of device utilization, with each processor 
being suited to a specific function.  

A CPU will in theory be more suited to handling memory allocation and interfacing 
with various sensors due its broad spectrum of instruction sets, whereas a GPU 
will be more suited to handling data parallel computations. As such, we can design 
our algorithms to run across various processors and allocate the suitable functions 
to each and achieve the highest efficiency execution model by utilizing a 
concurrent execution model - whereby both processors are simultaneously 
allocated and processing data, illustrated below in the diagram third from left. 
Open Compute Language (OpenCL) is another framework, such as NVIDIA’s CUDA, 
for utilizing and executing programs across heterogenous computing platforms.  
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Figure 3.5: A throughput optimized program whereby we note both processors 
are allocated, increasing the SoC utilization when compared to only having a 
single processor allocated (MediaTek – available at http://cdn-
cw.mediatek.com/White%20Papers/MediaTek_CorePilot%202.0_Final.pdf).  

3.3 Hardware platform 

Many implementation mobile platforms are suitable for the case of implementing 
a generic object tracking algorithms. An implementation platform should aim at 
balancing factors such as cost, electrical power consumption, ease of use and 
being suitable for the task, as well as possibly highlighting important factors for 
future research.   

3.3.1 General-purpose single board computer 

Since the goal of this research is into the feasibility of generic object tracking on a 
single board computer, a hardware platform that supports lightweight 
distributions of desktop operating systems would be most apt. A platform such as 
Raspbian, which is based off-of Debian, will allow the use of standard software 
libraries such Open Computer Vision (OpenCV), languages like C++ and compilers 
such as GCC. This will allow rapid development and testing of algorithms, without 
having to resort to cross-compiling or lower level implementations of algorithms, 
and will enable minimalizing the amount of time spent debugging - essentially 
enabling a development environment like those of a desktop, but with lower 
computation power on hand. As such algorithms will be able to be directly tested 
on such a mobile platform, allowing an insight into computational demands and 
hardware specific bottlenecks before moving to a lower-level implementation if 
need be.  

Recently there has been a surge in the popularity of general-purpose single board 
computers such as the Raspberry Pi computing platform. Platforms such as these 
present interesting prototyping platforms to test methods like heterogenous 
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computing and GPU acceleration since most of the single board computers have 
on-board mobile GPUs that support frameworks such as OpenCL, as well as having 
desktop features like supporting CPU multithreading through Threaded Building 
Blocks. Single board computers also have adequate RAM available, an 
important hardware specification for testing large-model CNNs (Velasco-Montero, 
2016).  

Whilst we do not expect performance to rival that of dedicated hardware, such as 
dedicated GPUs found in desktop platforms, SoC’s resources that are similar in 
form and hardware, like the Raspberry Pi, present a complete computing platform 
that presents desktop functionality, on one all-contained platform, at power levels 
an order of magnitude lower than that of desktop platforms. This type of hardware 
platform that is to be investigated is of similar specification to those found in 
modern smartphones, making the investigation more so compelling due to the 
current abundance of smartphones. 
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4 Use case 
The following section serves to outline the use case for the experiments carried 
out in this research and motivates, where necessary, decisions that were made 
with regards to the hardware platform chosen for implementation, the choice of 
tracking algorithm as well as a dataset for testing the chosen implementation 
configuration. 

4.1 Target use case 

As mentioned in the introductory section to this thesis, drones are proposed to be 
used in the aid of the calibration of heliostats. As such, the implementation 
platform will certainly need to be a mobile hardware platform that does not 
consume vast amounts of electrical power which would significantly reduce the 
already limited flight time of UAVs. Since the environmental setting will be 
outdoors and involve the tracking of large static objects, we need to use a suitable 
dataset to simulate this use case, but also a dataset that enables us to compare 
results to highlight progress. The dataset and subsequent analysis should 
concentrate on outdoor scenes with occlusions and tracking sequences that 
feature similar objects, as in an CSP plant there will be many seemingly identical 
heliostats.   

4.2 Algorithm 

This intended use case of this research is into the feasibility of object tracking on 
a general-purpose single board computer, with the specific application to UAVs 
and for them to track generic, deformable objects. In the following section, the 
choice for the particular algorithm is motivated and the limiting factors of state-
of-the-art approaches are highlighted. 

4.2.1 Algorithm choice 

CMT was highlighted as the algorithm of choice due to it scoring well in the 2015 
VOT challenge, as well as not utilizing the computationally expensive convolution 
filter for extracting features. The algorithm uses a simple star-shaped model to 
represent the object of interest, which is configurable in the number of parts that 
are used to represent the object of interest. We further motivate the choice of 
CMT as it scored very highly in the 2017 VOT challenge in terms of tracking 
performance in situations that involved occlusion - a situation very common in 
UAV-based tracking.  
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A benchmarking effort was recently undertaken by Velasco-Montero et al (2016) 
to investigate the rates of inference achievable for common DNNs that are utilized 
for object detection. While we note that Velasco-Montero utilized software 
packages originally designed for desktop utilization such as Tensorflow (Abadi et 
al, 2016) many of these software packages have lightweight implementation such 
as Tensorflow Lite. These packages, however, are not as thoroughly supported as 
OpenCV is for the specific hardware, as we see OpenCV has the highest average 
inference rate, as well as highest accuracy achieved in benchmarking when the 
C++ API is utilized in Velasco-Montero’s investigation. 

The benchmarking effort however highlights a common theme - common DNN 
architectures are not yet feasible for mobile implementation when we have the 
constraint of real-time, on purely CPU based execution on a device such as a 
Raspberry Pi 3. Deep neural networks designed for mobile devices (Iandola et al, 
2016) do attain impressive 5 FPS, and this is of particular interest to this research 
as the state-of-the-art real-time approach SiamFC utilizes a similar DNN to extract 
features for its similarity measure function. SqueezeNet (Iandola et al, 2016) was 
designed to emulate AlexNet’s accuracy, the latter being the backbone that 
SiamFC used to construct its feature maps, but with a highly reduced parameter 
count and model size. Essentially this implies that on a Raspberry Pi 3 we could 
extract features from our input image at 5 FPS and feed it into the SiamFC network, 
obtaining at most 5 FPS, if the rest of the network took negligible time to process 
the features. Attaining 5 FPS inference rate while impressive is simply not up to 
the task of real-time tasks. The remainder of the SiamFC network would occupy a 
significant portion of processing time, as we would be completing similarity 
measure, and as such in reality an inference rate of far below 5 FPS would be 
realistic. In summary, it is proposed that DNNs are not feasible for the task of real-
time mobile inference when utilized for the task of generic object tracking, with 
further motivation stemming from the issue that the task of real-time object 
tracking inference remains challenging for desktop hardware.  

The ARM Compute Library does however present an alternative to either of the 
frameworks utilized in the Velasco-Montero’s benchmarking and is a fruitful topic 
further research effort. The library consists of heavily optimized, low-level 
implementations of the fundamentals of machine learning and Computer Tasks, 
such as the convolutional filter, SVMs and all of the CNN building blocks.  

Whilst in CMT an initial reported inference rate of 10 FPS on desktop hardware, 
the quoted rate was not it is optimum configuration for high inference rates.  The 
algorithm was configured by the author of CMT such that it attained the highest 
possible tracking effectiveness, but not the highest computational efficiency. 
Figure 4.1 highlights that the investigation conducted by in CMT on the possible 
configurations of detectors and descriptors, which seemingly reach an asymptote 
for a certain success rate of at an average overlap per-sequence. This can be 
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interpreted as: for a success rate of 0.6, or 60%, of tracking sequences in the 
testing dataset, most of the configurations of CMT averaged between 0.1 and 0.2 
per-sequence overlap, or the algorithmically produced bounding box overlapped 
between 10 and 20% with the ground truth. However, noting that 60% of the 
configurations did not average over 20% overlap for all sequences, it is promising 
that many configurations are possible with minimal effect on tracking accuracy; 
whereas certain detectors and descriptors are vastly superior in computational 
efficiency.  

CMT thus presents an interesting case for efficient mobile inference, noting, too, 
that no GPU acceleration has been utilized in the original approach.  As with many 
tasks such as object tracking, a trade-off will need to be balanced between speed, 
accuracy and cost.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Illustration of the possible configurations of part detectors and 
descriptors, where it is noted that compact binary descriptors (32-byte BRIEF) 
outperform more larger descriptors (64-byte FREAK) highlighted by the 
combination of the GFFT detector and BRIEF descriptor (Nebehay, 2016). 
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4.3 Hardware 

As previously mentioned, the specific hardware platform to investigate is a Single 
Board Computer that has similar attributes such as form factor, power 
consumption and hardware resources as those of the Raspberry PiTM 3 computing 
platform. The following section serves to motivate the choice in this regard. 

We propose to investigate the ASUS TinkerboardTM for the task of inference of a 
generic object tracking algorithm, with the aim of achieving real-time 
performance. Whilst real-time is a vague description and most certainly varies 
between uses, it can be loosely defined as the situation where the data processing 
must be completed at rate faster than the rate at which the input is received (VOT, 
2015). Whilst this definition is still not completely concrete in its definition, as 
sensors capture images differing frequencies and resolutions, we propose for the 
average rate to be 20 Hz with the chosen dataset.  

The ASUS TinkerboardTM is a relatively low-cost hardware platform when 
compared to an embedded platform such as the NVIDIATM Jetson, whilst being 
considerably more computationally powerful and, as such, more suited to the task 
of real-time object tracking than the popular Raspberry PiTM 3. Whereas the Jetson 
provides a high-end GPU computing solution and the Raspberry PiTM an entry level 
device best suited for a hobbyist, the TinkerboardTM presents an attractive 
solution by providing a quad-core CPU ARMTM Cortex A17 clocked at 1.8 GHz and 
6 core ARMTM Mali T760 mobile GPU, on the RockchipTM RK3288 system on a chip. 
It presents a cost-effective hardware platform to investigate embedded GPU 
accelerated computation of computer vision tasks; in contrast to the offering from 
NVIDIA, as it supports the Open Computer Vision (OpenCV) library’s minimum 
OpenCL framework requirement. The Raspberry PiTM computing platform was 
ruled out due to the BroadcomTM GPU not supporting OpenCL and thus preventing 
any possibly heterogenous computing.  

Furthermore, the ARMTM Cortex A17 processor features an advanced NEON Singe 
Instruction Multiple Data (SIMD) coprocessor as well as VFPv4 instruction set for 
floating point acceleration, where the former hardware accelerator should bring 
significant performance increases due to data-parallel tasks being computed 
efficiently using a SIMD coprocessor.  

In summary, the ASUS TinkerboardTM was chosen predominantly due to the board 
being a heterogenous computing platform that supports a desktop-like operating 
system that allows rapid prototyping and testing, both in terms of software 
libraries commonly utilized in computer vision research as well as hardware that 
is used for efficiently dealing with, and possibly accelerating, computer vision 
tasks. 

Stellenbosch University  https://scholar.sun.ac.za



 

36 

4.4 Dataset 

Finally, the dataset that will be employed to evaluate the on-edge performance of 
the object tracking algorithm is of great importance, as any insight gained will be 
highly dependent on the dataset. The dataset needs represent the task which we 
seek to utilize the algorithm for in practice and needs to challenge the algorithm 
accordingly with scenes that we might encounter in practise. One such example is 
vast scale change. Without the dataset being representative of the scenes 
encountered in practice, we cannot make any realistic assessment of the 
performance of the algorithm and thus cannot make an estimation of how it will 
perform for our specific use case. 

The dataset chosen to evaluate the on-edge performance of CMT on the 
TinkerboardTM is that which is employed by the author of CMT, a dataset compiled 
by Thomas Vojir. The dataset will allow comparison between the inference rate 
achieved in practice with that of the original implementation of CMT, on desktop 
hardware, and with analysis concentrating on outdoor scenes with large amounts 
of background detail as in Figure 4.2, occlusion as in Figure 4.3 and the redetection 
as in Figure 4.4, as well as tracking similar objects. As such the dataset will be 
trimmed to a smaller size and by doing so will allow us to evaluate the 
performance quickly. The final dataset1 employed will be the reduced dataset 
compiled by Vojir, consisting of the 22 tracking sequences. Primarily, the main aim 
of the research regards the possible on-edge inference rates of CMT rather than 
its accuracy, as that should carry over between mobile and desktop 
implementations. However, a balance will still need to be struck in the 
investigation between accuracy and inference rates as the two parameters most 
likely share a distinct coupling.  

 

 

 

 

 

 

 

Figure 4.2: Frame 1 from the sequence “Track” that serves to represent 
outdoor scenes with high level of detail. This sequence is especially challenging 
in terms of the amount of detail, highlighted in the forthcoming section 5.3.  
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Figure 4.3: Frame 1 and 700 from the sequence “Person partially occluded” that 
serves to represent scenes with occlusion. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Frame 507, 558, and 570, clockwise from top left, from the sequence 
“Car 2” that serves to represent outdoor scenes with high level of detail, 
redetection and similar object. 
______________________ 

1 Available at http://cmp.felk.cvut.cz/~vojirtom/dataset/ 
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5 Experiments 
In the following sections, the method employed to evaluate tracking performance, 
as there are multiple in the field of object tracking research is first. In section 5.2 
the baseline performance is established first on a desktop platform, for 
comparison, as well as on the mobile device. The most time-consuming functions 
of CMT are also identified. Section 5.3 covers the optimization regarding image 
features and most importantly feature descriptor choice, on the mobile platform.  
Section 5.4 covers the utilization of hardware acceleration on the mobile device 
and section 5.5 covers the theory behind a heterogeneous execution. In section 
5.5 we encounter a hardware and software barrier on the mobile platform and 
return to the desktop platform for the remainder of section 5.5 and the section 
5.6. The final section, section 5.6, covers concurrent heterogenous execution of 
the tracking algorithm on the desktop platform – the theoretical limit of 
achievable performance.  

5.1 Evaluation method 

5.1.1 VOT 

Introduced in 2013, the annual Visual Object Tracking Challenge aims to 
consolidate active research in the field of Object Tracking, by providing 
standardized performance measures and an evaluation toolbox that seeks to 
automatically analyse trackers submitted to the challenge in an unbiased manner. 
Compared to other benchmarks, the VOT evaluation methodology differs in that 
once a tracker fails, it is reset, and the tracker effort continues. This was found to 
be of benefit in an unbiased tracking evaluation by Cohevin (2014), as it was 
identified that accuracy and robustness were negligibly coupled. This led to the 
utilization of both measures, by the VOT committee, where accuracy is the 
average overlap measured in frames in which tracking was successful, or an 
overlap between the ground truth and algorithmic output greater than 0.5, and 
robustness is a measure that accumulates tracker failures in a sequence and 
reinitializations. Accuracy-robustness plots, where a data entry is plotted with 
robustness on the x-axis and accuracy on the y-axis, are utilized to visualize the 
ranking of a specific tracker compared to other state-of-the-art methods but are 
not primary measure of absolute performance. Expected average overlap (EAO) is 
employed as the primary measure for the performance of tracking algorithms, 
being stricter than average overlap (AO) as shown in the 2016 VOT challenge 
(Kristan, 2016). EAO can be summarised as the average overlap between 
algorithmic output and ground truth bounding boxes, normalized with respect to 
the length of the sequence, for sequences of increasing length. The plot is, 
therefore, the increasing sequence length on the horizontal axis and the average 
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overlap for the specific sequence length on the vertical, illustrated in Figure 5.1 
along with an AR plot on the following page.  

Furthermore, the VOT challenge provides a dataset is utilized for evaluating 
submitted trackers. The dataset is concentrated on diversity and as such aims to 
be representative of a wide spectrum of tracking scenarios, rather than pursuing 
an arbitrarily large dataset. Importantly, each frame is labelled according to a class 
of established tracking scenarios; for instance, being challenging in terms of 
illumination and scale change. A subsequent figure, illustrated on the following 
page in Figure 5.2, can be produced that is both easily interpreted and extremely 
useful when comparing trackers – a comparison that reinforces the theorem of No 
Free Lunch (Wolpert, 1997), stating that no singular tracker will be superior in all 
respects. A recently introduced performance measure, by the VOT challenge with 
the goal of normalizing a submitted trackers’ performance results relative to the 
hardware the results were generated on, is the effective filter operations (EFO). 
Essentially the measure attempts to account for the speed of a specific hardware 
platform by measuring a set of operations on the platform and normalizing any 
frames per second processing rates by the measured time; thus, resulting in a 
normalized measure. 

 

 

 

 

 

 

 

 

(a)                                                            (b) 

Figure 5.1: An AR (a) plot alongside an EAO (b) plot – illustrating the 
accompanying and primary performance measures for the VOT challenge, 
respectively (Kristan et al., 2017). 
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Figure 5.2: The failure rate of state-of-the-art tracking methods for various 
scenarios. There is a not a single method that performs well in all the scenarios 
(Kristan et al., 2017). 

However, due to variation in software packages used in developing tracking 
algorithms as well as hardware, this measure cannot accurately represent the 
speed of the tracking algorithm, but it is a notable measure introduced by the VOT 
challenge as it represents the importance of speed.  

The VOT challenge has made a remarkable impact on the quality of developed 
algorithms and the assessment of their performance, as well as encouraging 
quality, novel research by defining a tracker as state-of-the-art if it is above a 
certain performance threshold; thus, discouraging every paper to quote top 
performance results which skews the concept of state-of-the-art. 

5.1.2 Measures 

Evaluating object tracking algorithms in a fair and reproducible manner poses a 
lasting challenge. In order to automatically evaluate the success of the algorithm, 
a labelled dataset with annotated ground truth data is required. More specifically, 
in one-shot objecting tracking, the ground truth needs to be presented as a 
bounding box encompassing the object - denoted by the pixel location of the top 
left corner as well as the associated height and width - in each frame of the 
sequence. However, this comparison of algorithmic output to ground truth data 
may not be as simple as it is deemed to be on first impression and, as such, the 
following chapter servers to define the measures employed.   
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5.1.2.1 Per frame 

As simple as denoting the object of interest with a bounding box may seem, it 
allows the annotation process of a large dataset’s individual frames to be feasible 
when compared to other annotations such as a complex, multiple-variable pixel-
wise segmentation, and remains the state-of-the-art approach. While the 
bounding box may present a simple and effective method to highlight the object 
of interest’s position in the specific frame, it is not without its associated 
drawbacks - such as requiring a trade-off between wholly containing the object of 
interest whilst including the least possible amount of background pixels. As noted 
in CMT (Nebehay, 2016), the situations encountered in practice could be: wholly 
encapsulating the object with no regard to background inclusion, a bounding box 
only encapsulating pixels belonging to the object of interest, or a trade-off 
between these two extremes, which is most commonly employed. However, since 
the chosen method of representation incorporates a flexible definition for the 
bounding the object of interest, in the ground truth data and the algorithmic 
output, this metric cannot be used to assess the accuracy of the tracker and should 
be used to assess the robustness, as discussed by Nebehay (2016).  

The method used to compare the algorithmic and ground truth bounding boxes 
can be traced to Jaccard (1912), where the overlapping area of the two bounding 
boxes is measured. This method is attractive since the measure is normalized 
between 0 and 1 and as such does not introduce significant bias into its measure 
when compared to other measures such as a centre error measure. A centre error 
measure introduces significant complication in its interpretation as the error is, for 
example, dependent not only on the size of the image but the size of the image 
too and is difficult to normalize. In order to negate the ambiguity inherent in 
ground truth data - that being the ratio of pixels belonging to the object and those 
to the background - it is necessary to introduce the terms true positive, false 
negative, false positive and true negative. These terms are borrowed from binary 
classification and are employed to determine whether a data point (or data points) 
belongs to either of the two classes in binary classification. In our case, the 
objective is to compare the output of the algorithm to the ground truth data in 
terms of the location of the object of interest. In order to compensate for the 
ambiguity in the ground truth data, we define the term true positive (TP) to be  

 𝑇𝑃 = ቄ
 1 𝑖𝑓 ∝ >  ∅

𝑒𝑙𝑠𝑒 0
 (2) 

and noting that overlap measure ∝ may not be defined, either if there is not 
algorithmic output or the object is not present in the current frame, as indicated 
by in CMT (Nebehay, 2016). A false negative (FN) is defined when either the 
algorithm fails to produce output or the overlap measure ∝ is not greater than the 
threshold, when the object is present in the frame 
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 𝐹𝑁 = ቄ
 1 𝑖𝑓 ∝ ≤  ∅ ∪  (𝐴௢௨௧ =  ∅ ∩ 𝐺𝑇 ! =  ∅)

0 𝑒𝑙𝑠𝑒
 (3) 

Nebehay fully defines all eventualities, but since they are not employed in the 
measures in this thesis, the reader is referred to Nebehay (2016).  

5.1.2.2 Accumulated  

Since we are attempting to evaluate the success of the tracking algorithm over an 
entire sequence of frames, we need to define measures that can be employed to 
assess the success of the tracking algorithm over the entire sequence, which can 
be done as an accumulation of the per-frame measures. To measure the success 
of long-term trackers, noted by Nebehay (2016) as the algorithms that can correct 
themselves automatically after failure by re-detecting the object of interest, the 
concept of recall is defined as 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =  

∑ 𝑇𝑃௜

∑ 𝑇𝑃௜ + ∑ 𝐹𝑁௜
 

(4) 

accompanied by the measure precision, defined as 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

∑ 𝑇𝑃௜

∑ 𝑇𝑃௜ + ∑ 𝐹𝑃௜
 

(5) 

which differs in recall by providing a metric strictly when the algorithmic outputs 
a prediction. Nebehay (2016) provides further insight into the measure of recall as 
being the measure of many elements from the relevant population recalled; 
whereas precision estimates how many elements that have been retrieved are 
relevant. Nebehay continues by stating that a compromise exists between the two 
measures and that the balance between them being directed by the internal 
threshold of the algorithm on the prediction confidence. A higher threshold on the 
required prediction confidence will yield a more conservative behaviour, but a 
lower threshold will not increase the recall - as in binary classification - as the 
prediction is made with a bounding box, not a class label.  

In order to graphically display the results of the discussed accumulative measure, 
a success plot can be interpreted as  

 𝑆(𝑞) = 1 − 𝐸𝐶𝐷𝐹(𝑞), (6) 

which is related to the empirical distribution function by the above identity, 
interpreted as an empirical tally of those measurements above a certain specified 
value; which in our case is how many sequences are above a certain recall value. 
In order to easily interpret the success plot, the area under the curve (AuC) is 
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utilized, which is equivalent to the mean of the individual measure - in this case, it 
is recall - a higher AuC indicates a higher recall rate on average. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Success plots of CMT, when inferred in the author’s original 
configuration of a FAST keypoint detector and BRISK descriptor. The ‘baseline’ 
curve belongs to the implementation on a desktop platform whereas the 
‘embedded’ curve belongs to the mobile device. We note a tenfold difference 
in FPS achieved.  

5.2 Baseline 

In order to establish a baseline FPS inference rate, as well as tracking accuracy, 
CMT’s performance was first evaluated on a desktop platform. This served as a 
benchmark to which the embedded board could be compared. If the FPS inference 
rates achieved on the embedded platform eclipsed this baseline, significant 
progress in embedded performance would be highlighted.  

5.2.1 Desktop 

The original configuration of CMT, as released by the author on their Github2 
repository, utilizes a FAST feature detector with accompanying BRISK descriptors.  

______________________ 

2 Available https://github.com/gnebehay/CppMT 
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OpenCV 3.4.3 was built with CMake in its standard configuration with no hardware 
specific optimization flags specified. The desktop hardware platform most 
importantly comprised of an Intel i7 7700 HQ CPU with 16GB of system RAM. The 
success plot is illustrated on the previous page in Figure 5.3 with the average 
inference rate, in processed frames per second over the entire dataset by Vojir, 
highlighted. 

5.2.2 Embedded  

The same test was then performed on the embedded platform where it should be 
noted that OpenCV, when built with CMake in Linux, as standard detects relevant 
hardware and will automatically enable optimization flags when building and as 
such the arguments 

−𝐷 𝐸𝑁𝐴𝐵𝐿𝐸_𝑁𝐸𝑂𝑁 = 𝑂𝐹𝐹 

−𝐷 𝐸𝑁𝐴𝐵𝐿𝐸_𝑉𝐹𝑃𝑣3 = 𝑂𝐹𝐹 

were passed to ensure the OpenCV library was not build with the specified 
hardware accelerations for the embedded platform.  

5.2.3 Embedded baseline performance 

Illustrated on Figure 5.3, is the success plot of CMT on both the embedded and the 
desktop platforms. We note the large discrepancy between the two hardware 
platforms - this can be attributed to a variety of differences between the two 
platforms which is summarized in Table 5.1. Notably, the desktop platform has 
twice the core-count that each operate at twice the rate, as well as 8-fold the 
amount of available L1 cache memory, compared to the mobile platform. The last 
attribute is crucial as we infer fewer cache misses when computing the algorithm 
– cache misses being when we exhaust the available cache memory and need to 
access the relevant instructions or data from other cache levels or even possibly 
RAM. By having more available L1 cache memory, this allows the CPU cores to 
spend less time accessing slower-access memory and more time computing. Of 
equal importance is that the desktop platform has advanced system cooling 
compared to the embedded platform having simple passive cooling only. 
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Table 5.1: CPU hardware difference between the embedded and desktop 
platform. Whilst arguably not vastly different in terms of core count and 
frequency, the L1 cache memory size differs on one order of magnitude. 

Hardware element Desktop Embedded 

CPU core 8 4 

CPU clock rate 3.6 GHz 1.8 GHz 

CPU L1 cache 256 KiB 32 KiB 

 

Figure 5.4 is a distribution of time per function. Referring to Figure 3.3, the entry 
“Consensus” in Figure 5.4 refers to the algorithmic step 13 in Figure 3.3. Similarly, 
for the entries “Track”, “MatchLocal”, “MatchGlobal”, “Fuse” and Estimate” in 
Figure 5.4 correspond to the algorithmic steps 9, 8, 14, 10 as well as 11 and 12 
combined, in Figure 3.3. Finally, the entries “Describe” and “Detect” in Figure 5.4 
refer to the single algorithmic step 7 in Figure 3.3. The entry “Detect” is the second 
argument to the algorithmic step 7, and a separate algorithmic step but has been 
group together for simplicity.  

The values for each function were averaged over each frame over the entire 
dataset, and, whilst not being the ideal approach to the situation as each sequence 
will present different overheads per function, it is an effective method to generate 
a general understanding of the computationally demanding functions or image 
processing tasks. A more detailed analysis of function behaviour for a specific 
scene is conducted in section 5.3. 

We note that the majority of the time is spent matching candidate descriptors to 
the database and computing the descriptors for each keypoint, both being a 
function of the count of keypoints, which illustrates that an excessive count of 
keypoints was generated by the FAST feature detector. Cache missing may be 
occurring when the candidate descriptors are attempted to be matched to the 
database, as the entire database will likely not fit into cache memory.  Slower 
memory access may need to be made to access the remainder of the database of 
descriptors that did not fit into cache memory to complete the nearest neighbour 
matching. The priority is then to investigate alternatives where less keypoints are 
generated per frame as collectively 75% of the time per cycle of processing an 
input image is spent of functions that are heavily dependent on keypoint count.  
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Figure 5.4: Time distribution amongst the image processing functions of CMT, 
with the majority of time spent on functions are a function of the number of 
descriptors. 

5.3 Image feature optimizations 

While it may seem logical to first build OpenCV with the optimization flags set for 
the relevant on-board hardware, it in fact blurs our results. Although hardware 
acceleration will be utilized in the final performance measurements of the 
algorithm, it is more logical to first investigate the configuration that is most 
suitable in terms of which detector and descriptor to utilize. Once we have 
completed this software investigation, we can investigate the performance 
increase that we achieve through the utilization of on-board hardware 
accelerators; thus, the increase in performance that we achieved with the chosen 
configuration will be clearer.   

5.3.1 Feature detector 

As previously mentioned, the first configuration option that should be investigated 
is the choice of feature detector, as most of the data that flows through the 
algorithm are keypoints and their descriptors. A minimal count of image features 
will enable efficient inference, and for this investigation we keep the descriptor 
fixed and determine which set of detectors produce the lowest amount of 
keypoints per frame, whilst still monitoring accuracy and inference rates, so as to 
highlight which detectors produce a low amount of discriminative keypoints.  
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Table 5.2 on the following pages highlights the fact that the GoodFeaturesToTrack 
detector, as well as the ORB detector, produce a conservative amount of keypoints 
per frame whilst still yielding a comparable AuC for the given dataset when 
coupled with a BRISK descriptor. Both detectors yield an inference rate an order 
of magnitude higher than that of the remaining detectors and as such are chosen 
for further investigation. Figure 5.5 reinforces how the feature detectors respond 
in an outdoor scene, as outdoor scenes are of great importance to the application 
space of this research. The two selected keypoint detectors respond sparsely, 
whereas the FAST and BRISK detectors overreact to the detail in the scene and are 
clearly unsuited for outdoor use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The investigated detector responses clockwise from top left to the 
scene ‘track’: BRISK, FAST, ORB and GFTT, with the top two detectors 
responding excessively in the outdoor scene. We see a distinct separation 
between ORB and GFFT, and BRISK and FAST.  
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Table 5.2: Summary of results regarding investigation into detector response.  

Detector Average 
extracted 
keypoints 

FPS AuC 

ORB 388 13.92 0.66 

GFFT 534 11.14 0.68 

BRISK 844 4.2 0.70 

FAST 1781 2.25 0.62 

 

We note that there is no direct correlation to the amount of keypoints detected in 
each image to the inference rate achieved, but are aware of a possible relationship 
between certain detectors and descriptors, and certain detectors possibly 
producing more keypoints. How these keypoints are described, once produced by 
the detector, will be interesting to investigate, as we may see a detector producing 
many keypoints according to its internal configuration but the descriptor not 
‘agreeing’ on these keypoints, resulting in many descriptors being rejected in the 
SNN test.  

This leads us to investigate the relationship between the detectors and 
descriptors, and we can effectively measure interaction by the number of 
keypoints that are active - the lower the active keypoints, the more effective 
inference will be as well. We see later that there is a more direct correlation 
between the number of active keypoints and the rate of inference.  

5.3.2 Feature descriptor 

Following the previous investigation, it is pertinent to subsequently choose a 
descriptor that is as lightweight as possible, yet still discriminative to enable 
accurate and efficient inference. For this test, we retain the aforementioned 
detectors and evaluate their performance with an ORB and BRIEF descriptor, both 
of which are 32 bytes in their standard configuration, with ORB being an extension 
of the BRIEF descriptor to incorporate rotational invariance. For this experiment 
we investigate the performance of the algorithm with both the ORB detector, 
which is an extension of the FAST keypoint detector, and the GoodFeaturestoTrack 
detector, essentially an extension to the Harris Corner Detector, when combined 
with the ORB and BRIEF descriptors. We aim to investigate the combination that 
produces the highest rate of inference, but still keep accuracy in mind and 
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subsequently show that a smaller descriptor is of great importance to the rate of 
inference achievable.  

From Table 5.3 we see that a clearer correlation exists between the number of 
keypoints that are active, and the rate of inference achieved. This is logical as the 
less data (keypoints and descriptors) that travels through the algorithm, the faster 
the functions can be executed, as there is less data to be processed. We notice 
two anomalies to this observation: 1) the configuration utilizing an ORB detector 
and BRIEF descriptor - this could be because, although there is a higher amount of 
active keypoints than other configurations, but still a high FPS rate, the lower 
keypoint count allows for less time to be spent matching this smaller count of 
descriptors and 2) the configuration utilizing an ORB detector and ORB descriptor 
- this could be due to the costlier operation of computing an ORB descriptor 
compared to the BRIEF descriptor in the aforementioned configuration.   

Table 5.3:- CMT performance when configured with an ORB and GFTT detector, 
along with 32-byte binary descriptors, highlighting the GFFT detector when 
coupled with a 32-byte ORB descriptor being superior. 

Detector Descriptor Average 
extracted 
keypoints 

Average 
active 

keypoints 

FPS AuC 

GFTT ORB 639 58 15.94 0.695 

ORB ORB 391 77 11.91 0.705 

GFTT BRIEF 639 56 14.44 0.7207 

ORB BRIEF 391 69 15.16 0.6517 

 

Table 5.3 serves to highlight the importance of a compact descriptor whereby we 
utilized a GoodFeaturesToTrack detector, due to it leading partly to the highest 
inference rate achieved with an ORB descriptor, to investigate the implications of 
using the same descriptor but in varying sizes.  

The BRIEF descriptor can be configured to utilize a 16, 32 or 64-byte descriptor 
and the resulting discovery is logical, whereby the 16-byte descriptor achieves the 
highest FPS. An illogical result was realized in that the most lightweight 
configuration also yielded close to the highest accuracy, a result that is not 
predictable and could only have been found empirically due to the complex 
interrelation between detectors and descriptors and the tracking algorithm of 
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choice. The configuration of GoodFeaturesToTrack detector and 16-byte BRIEF 
descriptor is thus chosen as the configuration that is utilized for the rest of the 
investigation, unless stated otherwise. This was chosen as it yielded that fastest 
inference rate, but also with a relatively high AuC.   

Table 5.4: CMT performance when utilizing the GFFT detector and binary 
descriptors of varying length, highlighting the importance of a compact 
descriptor. 

Detector Descriptor Extracted 
keypoints 

Active 
keypoints 

FPS AuC 

GFFT BRIEF (64) 639 65 13.12 0.7168 

GFTT BRIEF (32) 639 56 14.44 0.7207 

GFFT BRIEF (16) 639 59 16.48 0.7158 

5.4 CPU hardware acceleration 

In order to partly justify our choice for the chosen hardware platform, the 
following sections serves to highlight the available hardware acceleration options 
available for the ARMTM Cortex A17 processor and increase in inference rate 
achieved.  

5.4.1 NEON 

The Cortex A17 processor supports ARM’s NEON Single Instruction Multiple Data 
(SIMD) architecture extension and incorporates a separate NEON engine into the 
SoC. The general approach to SIMD execution is illustrated in Figure 5.6 on the 
following page, whereby we have a singular instruction stream and multiple input 
data points that are handled concurrently, with SIMD being particularly suited to 
image processing tasks. CMT utilizes many operations that are data-parallel, or 
tasks that are suited to SIMD, such as keypoint detection, descriptor and kNN 
matching and thus we expect to realize significant improvements in inference 
rates through building the OpenCV library with NEON support.  

5.4.2 VFPv3 

The VPv3 is an optimization developed by ARM in order to effectively process 
floating point data, in both single and double precision, an optimization that 
should in theory be less attractive due to our application utilizing binary 
descriptors comprised of 8-bit binary strings, with a total of 16 strings per 
descriptor vector. It should still bring a minor speed up as other data points are 
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represented by floating point in the algorithm, but we expect the NEON instruction 
set to bring the greatest acceleration.  

 

 

 

 

 

 

 

 

Figure 5.6: Single Instruction Multiple Data architecture (ARM – available 
online at: https://developer.arm.com/technologies/neon) 

5.4.3 Results 

Post the investigation into the optimal software configuration for CMT in terms of 
inference rates, we repeat the prior tests in this optimal configuration with three 
different builds of the OpenCV library. The results from the prior test were first 
carried over, after which the OpenCV library was then rebuilt with NEON support 
and subsequently NEON and VFPv3 support, with the results summarized below 
in Table 5.5. 

Table 5.5: Performance summary of CMT configured with the optimal GFTT 
detector and BRIEF descriptors, rivalling the desktop benchmark inference rate. 

Optimization Detector Descriptor FPS AuC 

N/A GFTT BRIEF (16) 16.4774 0.7158 

NEON GFTT BRIEF (16) 20.3937 0.7391 

NEON VFPv3 GFTT BRIEF (16) 21.3921 0.7391 

We notice that when utilizing the OpenCV library with NEON support enabled, an 
improvement of nearly 25% was achieved on average over all tracking sequences, 
and subsequently a mere 4% improvement was gained due to utilizing a floating-
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point optimization. Even though the results are in line with the expectation that 
utilizing the NEON engine would bring the greatest improvement, the magnitude 
of improvement resulting from NEON acceleration was not expected – a sign that 
heterogenous implementation should bring significant improvements too, as GPU 
computation is also well suited to data-parallel tasks. Figure 5.7 b) on the following 
page serves to illustrate the performance of the final configuration of CMT on the 
embedded platform, with the interesting observation that not only is the final 
configuration faster by a magnitude of order than the baseline embedded 
configuration, but more accurate as well. It is important to note too that the final 
configuration achieves real-time performance and has surpassed the baseline 
implementation on the desktop platform in terms of average inference rate. 
Figure 5.7 a) also illustrates the more uniform distribution of time amongst the 
different computational steps of CMT in the final configuration, depicting that 
there are less significant bottlenecks.  

 

 

 

 

 

 

 
 

 

   

     (a) 

Figure 5.7 (a): Time distribution amongst functions as a percentage of overall 
cycle time - a much more uniform distribution compared to the baseline 
configuration indicating less major computation bottlenecks.  
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                                                               (b) 

Figure 5.8 (b): Success plot of CMT post relevant hardware and software 
optimizations, on the embedded platform. We note a near tenfold increase in 
inference rates on the embedded platform.  

Figure 5.8 on the following page serves to highlight the benefit on individual 
functions of CMT due to utilizing NEON acceleration - a promising sign when GPU 
acceleration will be employed for these functions in the following section.   

5.5 Heterogenous hardware implementation 

5.5.1 Design 

Assuming that we approached the highest rate of inference by solely utilizing the 
CPU of the embedded device, with the associated optimizations, we turn our 
attention to the design of a heterogeneous implementation that aims to increase 
the utilization of the on-board hardware, by allocating certain functions between 
the two available hardware resources. As depicted in Figure 5.7 a), two of the most 
time-consuming functions of CMT are detecting keypoints and computing the 
optical flow for these keypoints, both of which are highly data-parallel and as such 
suited to GPU acceleration.  

Utilizing a certain hardware resource for effective acceleration is not as trivial as 
it may seem, whereby simply offloading functions, that have available 
implementations on the specific hardware, may likely lead to a disappointing 
increase in performance due to a variety of factors.  
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Figure 5.9: Performance benefit of utilizing NEON acceleration for all image 
processing functions in CMT. A significant decrease in computing time is 
realized in most data-parallel functions. 

One such barrier to a significant performance increase is memory transfers 
between the host, the CPU, and the device, the GPU, especially when memory 
transfers occur in a cyclic fashion such as in CMT. As such, minimizing memory 
transfers is of great importance and as such we suggest the allocation as depicted 
below on the following page in Figure 5.9. In Figure 5.9 it is important to highlight 
the current resource allocation of CMT, of which we note the GPU is idle for the 
entire cycle, in which we process a single input frame. 

In Figure 5.9, a reordering of the computational sequence of CMT was performed 
to ease of the complexity of depicting proposed heterogenous allocation. The 
function ‘track’ was initially computed first in the authors implementation of CMT, 
but we schedule the function after image features have been computed and 
processed - or features have been detected, described and the candidate 
keypoints and their descriptors matched globally to the database. Subsequently 
the computation of image features is allocated to the GPU as each task is highly 
data parallel, as the results of Figure 5.8 highlights in that utilizing NEON 
acceleration provided significant improvements in these three functions and have 
a tightly coupled data-dependency between functions. The variables returned 
from each of these functions is, as illustrated, passed directly to the following 
functions - keypoints are first detected, then passed to the descriptor whereby a 
descriptor is computed and associated with each keypoint after which each 
keypoint-descriptor pair is matched to the database of descriptors. 
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Figure 5.10: The CMT task graph. Orange symbols illustrate the variables that 
are stored in memory and that are returned by the functions, depicted in 
green. This figure serves to illustrate the allocation of functions to the available 
resources on a heterogenous computing platform, noting the GPU is 
unallocated. Red arrows illustrate algorithmic flow and blue input/outputs of 
functions.  

 

 

 

 

 

 

Figure 5.11: An efficient allocation of CMT’s functions on a heterogeneous 
computing platform, with a single set of memory transfers to the device and 
back to the host. The functions ‘Detect’, ‘Describe’ and ‘matchGlobal’ have 
been allocated to the GPU.  

This is attractive attribute as intermediate memory transfers back to the host 
between each function could be avoided, as these intermediate variables are not 
immediately required in the rest of the computing pipeline. 
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5.5.2 Embedded implementation 

In order to allocate functions to the GPU, we utilize the so-called Transparent API 
(TAPI) within OpenCV that utilizes OpenCL framework to distribute computation 
between heterogenous platforms, since our chosen hardware platform supports 
the minimum required 1.2 full profile OpenCL framework. In order to allocate 
functions to the GPU we simply need to alter a single variable declaration that 
specifies the memory location of the basic image container ‘Mat’, that 
predominantly resides in CPU memory, with ‘UMat’ that will then be a GPU 
memory bound variable. The compiler will see this variable and handle GPU 
memory allocation automatically by creating the memory on the device, uploading 
the data synchronously to the device, and downloading the results back to host 
after the CPU has waited, in a synchronous fashion, for the GPU to complete 
computation. As such this ease of use leads to the Transparent API naming scheme 
as it designed to allow ease of use - if we examine the source code of the chosen 
feature detector’s class, ‘GoodFeaturesToTrack’ and it’s ‘detect’ method, we 
obtain an intuition for how the allocation is handled as illustrated in Figure 5.10. 
We see that the function ascertains the type of image container, ‘Mat’ or ‘UMat’, 
and calls the relevant function, ‘goodfeaturestotrack()’, accordingly.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Source code snippet from the ‘GoodFeaturesToTrack’ detector, 
where we see the ‘detect’ method’s Transparent API functionality, whereby 
the function checks the input type and responds accordingly (OpenCV 3.4.0 – 
available online at:  https://docs.opencv.org/3.4.0/). 
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5.5.3 Shortcomings 

Upon attempting to utilize the TAPI on the ASUS TinkerboardTM certain barriers 
were encountered related to the specific device architecture. All the methods, 
notably ‘detect()’, ‘compute()’ and ‘knnMatch()’, from each respective class, when 
attempted to be used with the TAPI returned the error: 
“CL_OUT_OF_RESOURCES”. This error has to do with the fact that the functions 
and more specifically the OpenCL kernels were developed with scalar desktop 
hardware in mind, opposed to Mali mobile GPU vector architecture. In order to 
rectify these issues, much developmental work would be required and is out of 
the scope of this research, which a feasibility analysis whilst making use of 
available, functioning tools. The developmental work would require a complete 
rewriting of OpenCL kernels such that they are functional on vector architecture 
(vectorisation), as current operation is on scalar architecture. Once the kernels are 
functional on vector architecture, an optimization process would have to be 
undertaken to realize the specifics of a mobile GPU – i.e. to take advantage of the 
128 bit wide registers. This would involve first determining the variable type, 
either int, short half-float, for the specific task and how to best fit as many 
elements of the variable type in the 128-bit registers. We thus turn our attention 
to a functioning implementation platform, that being the desktop platform utilized 
in the beginning of the experiments which is equipped with an NVIDIATM GPU and 
utilizing the mature and widely utilized CUDA API in OpenCV.  

5.5.4 Desktop implementation 

Due to the embedded system being deemed to be an unsuitable prototyping 
platform for a GPU-accelerated implementation of CMT as discussed in the 
previous section, we return to the original desktop hardware platform. After 
investigating the feature detectors and descriptors that have been implemented 
in the CUDA API of OpenCV, we settle on an ORB descriptor and detector from the 
available FAST and ORB keypoint detectors and solely available ORB descriptor. 
Table 5.3 in section 5.3.1 illustrates that ORB detector and descriptor yields high 
accuracy, but most importantly a superior keypoint detector response when 
compare to the FAST keypoint detector, and since hardware acceleration will be 
utilized, the lower inference rate that an ORB keypoint paired with an ORB 
descriptor presents when empirically investigated may be neglected.  

Referring to Figure 5.11 on the following page, in (b), we allocated the functions 
detect(), describe() and matchGlobal() to the GPU as they present large overheads 
in the overall pipeline of processing an input image, illustrated in (a), when 
measured on the desktop hardware platform. Further motivation for allocating 
these functions to the GPU will be discussed in the coming section. As envisioned, 
a vast decrease was realized, as illustrated in Figure 5.11 (b), for each of the 
functions allocated to the GPU, as they are highly data parallel. Both the 
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computation of descriptors and matching them to the database realized a 7x 
reduction in computing time per frame, averaged over all frames in the dataset. It 
is however noticed that the decrease of 30% in detecting keypoints is less 
impressive - postulated to be since the input images in the database are 
predominantly of relatively low pixel count at 340x240 pixels, compared to a 
1080x720 pixel HD image. Subsequently the GPU has lower opportunity, when 
compared to computing descriptors or matching them to a database, to present a 
significant acceleration in computation due to the low dimension input to the 
‘detect’ method.  

This fact is reinforced whereby the GPU acceleration achieved, for the three 
allocated functions, was investigated for the sequence ‘tracking running’ where is 
the input is 768x576 pixels and results for this singular sequence is summarised in 
Table 5.6 on the following page. Table 5.7, also on the following page, summarises 
the result of utilizing GPU acceleration in the tracking algorithm over the entire 
dataset.  

 

 

 

 

 

 

 

 

(a)                                                                                   (b) 

Figure 5.13: The distribution of time amongst the functions, illustrated on the 
left in (a) of CMT on the desktop platform when solely utilizing the CPU and in 
(b) the measured decrease in computation time for functions allocated to the 
GPU, with an on average decrease of 5x over the three functions against a CPU 
implementation is illustrated. Experiments were carried out utilizing a NVIDIA 
GTX1060 6GB.  

Table 5.6: A summary of the time taken per function for the sequence ‘track 
running’ whereby a larger decrease, nearing 2x reduction in time, can be seem 
for the method ‘detect’, illustrating the dependence of the keypoint detector 
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on high dimensional input data to achieve significant acceleration when 
allocated to a GPU. The remaining functions see similar decreases due to the 
number of keypoints and descriptors being fixed by the user.  

Hardware 
platform 

Detect Describe MatchGlobal 

CPU 4.66 3.90 2.67 

GPU 2.66 0.63 0.29 

 

Table 5.7: The summary of the impact on inference rate and accuracy by 
allocating data-parallel, high-complexity computations to the GPU, compared 
to a pure CPU allocated implementation of CMT. The algorithm is well suited to 
GPU acceleration, due to the presence of commonly-utilized and intensive 
image processing tasks being well suited to GPU acceleration, and as such 
efficient GPU implementations of these functions being available. It is noted 
that by utilizing GPU acceleration for certain functions, the AuC decreases by 
5% - an acceptable decrease in accuracy for a 2x reduction in inference rate.  

Hardware 
platform 

Detector Descriptor FPS AuC 

CPU ORB ORB 42.79 0.739 

CPU & GPU ORB ORB 87.92 0.7039 

 

5.6 Concurrent execution model 

After the investigation and the subsequent reinforcement of suitability of CMT for 
GPU acceleration, we take Figure 5.9 into account and note that data processing 
still proceeds in a sequential manner - whilst each resource is allocated and busy 
computing, the other resource in the heterogenous platform remains idle.  

The following section serves to highlight the feasibility and design of a concurrent 
execution model, whereby both hardware resources are allocated and processing 
data at the same time. 
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5.6.1 Design 

To justify the developmental effort for designing a concurrent execution model, it 
seems pertinent to highlight the motivational factor which is in mobile computing, 
since hardware resources and power supply is limited, it is of utmost importance 
that we utilize the available hardware resources to their highest capacity to 
achieve the highest possible throughput. An approach to concurrent execution in 
computer vision pipeline is to overlap tasks between two successive cycles, such 
as in CMT’s cyclic processing pipeline, to ensure a resource avoids being left idle 
and is rather continually being utilized at most points in a cyclic processing 
pipeline.  

The GPU, although allocated a certain portion of the functions of CMT’s object 
tracking pipeline in Figure 5.12 below, is left idle for the remainder of the cycle 
achieving low hardware utilization when considering the span of the entire frame-
processing pipeline. The remainder of the cycle, the stage assigned with updating 
the object model, is completed by the CPU. 

 

 

 

 

 

 

 

Figure 5.14: An illustration of allocation of functions to specific hardware 
resources, with a low-level utilization of hardware resources. 

However, for an algorithm to be suitable to be executed in a concurrent manner 
or to be overlapped between cycles, a seemingly sequential set of computations, 
as illustrated in Figure 5.12, must be decoupled of data dependencies for the 
computations to be executed in parallel. In terms of the algorithmic steps in Figure 
5.12, there are essentially two tightly coupled and data dependent computational 
stages to the algorithm. The image feature stage, which Nebehay refers to as the 
static component, is tightly coupled in terms of the intermediate data shared 
between tasks and is independent of remaining tasks in the cycle, until a much 
later point in the cycle. This presents an opportunity as the two stages in a single 
cycle of the object tracking pipeline are distinctively independent of each other.  
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As previously stated, this allows the tasks suited to GPU acceleration to computed 
with a single transfer of data to the device upon initialization, and subsequently 
only one synchronization post completion is required with the host, illustrated in 
Figure 5.12. Thus, upon completion of a single cycle’s GPU allocated functions and 
after the memory transfer from device back to the host, it seems pertinent for the 
CPU to first capture next image from the sensor. By capturing the next image, the 
same functions can then be reallocated to the GPU, and by doing so fill the 
pipeline. The image features for the next frame can then be computed by the GPU 
concurrently and by doing so, overlap computation between two cycles as 
illustrated in Figure 5.13.  A concurrent execution model has thus been achieved 
and the utilization of the hardware platform should be increased and as such 
present a higher throughput.  

 

 

 

 

 

 

 

 

Figure 5.15: Design of the pipelined execution model, with both resources 
allocated during a single cycle of CMT. We see that whilst the CPU process the 
current image, the GPU is processing the next image. Synchronisation occurs at 
“1”. 

However, to develop an effective concurrent execution model, it is important to 
consider the trade-off between utilizing a specific computational resource and the 
overhead between memory transfers. Whilst the theoretical speedup achievable 
by a GPU may be magnitudes of order when compared to the same task on a CPU, 
as illustrated in Figure 5.11 (b), inefficient memory handling may result in an 
execution model that achieves a lower throughput and overall higher processing 
time per cycle. By utilizing the asynchronous set of functions from the CUDA API 
for feature detection (detectAsync()), computing descriptors (computeAsync()), 
and matching of descriptors (knnMatchAsync()), all data that is shared between 
the image feature tasks allocated to the GPU resides in GPU device memory. The 
asynchronous functions accept GPU-memory allocated data as arguments, 
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opposed to the synchronous versions that only accept CPU-memory allocated data 
as their arguments. Further, no explicit synchronization is required with the CPU 
upon the completion of these individual functions, and as such it possible to 
achieve an execution model whereby only a single synchronization is required 
between host and device. It should also be pointed out that the ‘database’ variable 
is static, and a copy is thus held in both CPU and GPU memory, such that we avoid 
repeatedly transferring the variable per cycle. 

5.6.2 Results 

To be able to draw conclusions from the results of the investigation into a 
concurrent execution model, it seems pertinent to first determine the percentage 
of a complete cycle that the tasks that were intended to be executed concurrently 
take to compute when allocated to the GPU. This would serve as the upper bound 
and would highlight if perfect pipelining was achieved - if the cycle time was 
reduced by the amount of time occupied by these functions. Measurements were 
made utilizing OpenCV’s function getTickCount() and getTickFrequency(), that 
returns timing in a resolution of milliseconds.  

Table 5.8:  Time taken to process functions allocated to the GPU, as illustrated 
in Figure 5.12, with a cycle decrease of 27.34 % achievable in the limit of 
perfect pipelining. 

Dataset Average time to 
process a single 
frame (1 cycle) 

[ms] 

Average time to 
process GPU 

tasks per cycle 
[ms] 

Upper limit 
achievable by 
pipelining [%] 

Vojir dataset (22 
sequences) 

8.63 2.09 27.34 

Clearly, the functions allocated to the GPU occupy a significant portion of each 
individual cycle, and as such we can expect to see a considerable decrease in cycle 
period if the functions can be computed concurrently.  

Table 5.9 - Complete cycle period measurements, post concurrent execution. 

Dataset Average time to 
process a single 

frame [ms] 

Average time to 
process a single 

frame w/ 
pipelining [ms] 

Measured 
decrease in cycle 

time [%] 

Vojir dataset (24 
sequences) 

8.63 7.97 7.64 
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It is noted that the average decrease in cycle time was not as expected, and 
another experiment was undertaken to measure the time taken to transfer data 
from the CPU to the GPU and to launch the tasks on the GPU.  

Following the results of the second experiment, the unexpected results obtained 
in the first experiment can be attributed to the fact the execution of the functions 
are not entirely asynchronous as initially assumed. Following a profiling exercise 
of individual functions, using the NVIDIA NSight profiler, that were to be executed 
concurrently such as detectAsync() illustrated below in Figure 5.14, it is observed 
that the memory allocation and transfer between the host and device, as well as 
device kernel launching is continual throughout the functional call from the 
runtime API (of which the host controls). 

 

Table 5.10: Memory management and launching of kernels on the GPU 

Dataset Average 
time to 
transfer 
data and 
launch 

tasks on 
GPU per 

single 
frame [ms] 

Average 
time to 
process 

GPU 
tasks per 

cycle 
[ms] 

Realizable 
decrease 
in cycle 

time [ms] 

Average 
time to 

process a 
single 

frame (1 
cycle) 
[ms] 

Realizable 
decrease in 
cycle time 

[%] 

Vojir dataset 
(22 sequences) 

1.42 2.09 0.67 8.63 7.71 

 

Asynchronous computation does indeed occur, such as in Figure 5.14 where there 
is a kernel invoked on the device and whilst the kernel is busy being executed on 
the device a memory copy is taking place, but it is not to the extent as assumed in 
the case of the results of Table 5.8. It was assumed that once the function was 
called from the API, the CPU would allocate the required memory, transfer the 
data to the device and launch the kernels on the GPU and return control for further 
processing. It is postulated that as the API was designed to be simple, robust and 
user friendly, as well as portable across many heterogenous platforms with a 
NVIDIA GPU, to include such asynchronous functionality could comprise the 
aforementioned goals. 

The decrease in processing time of 7.71% highlighted in Table 5.10 is postulated 
to be as a result of two factors. The first contribution to the decrease in processing 
time is since the asynchronous implementations of the previously mentioned 
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functions accepting variables residing in GPU memory as arguments, unnecessary 
memory transfers are thus eliminated. Further, the decrease in processing time 
can also be attributed to the fact the asynchronous implementations of the 
functions, such as detectAsync(), make no explicit device synchronization calls.  

Device synchronization (cudaDeviceSynchronize) calls from within the runtime API 
block the CPU until all kernels are complete on the GPU, and subsequently a 
profiling investigation was undertaken into the behaviour of the functions detect() 
and detectAsync(), with the result of the illustrated below in Figure 5.15. The large 
difference between the two functions can be attributed to the synchronous 
implementation making explicit device synchronization calls, as only the 
synchronous implementation of detect() having a cudaDeviceSynchronize entry in 
Figure 5.15, and cumulatively the CPU spends a large portion of the function 
detect() idling waiting for the GPU to complete computation.  

 

 

 

 

 

 

Figure 5.16: Profiling results of detectAsync() function, illustrating the continual 
interaction between CPU (runtime) in orange and GPU compute kernels in 
turquoise/blue. Asynchronous computing is occurring, such as where the 
kernel ‘cv::cuda::device::fast’ is being computed on the device and the host is 
allocating memory with ‘cudaMemcpyAsync’. 

The time distribution of kernel execution on the device is not presented as the 
implementations of the function detect(), synchronous and asynchronously, have 
near identical time distributions amongst kernels and have identical kernel 
invocations. 

As the goal of this last investigation was into the feasibility of the object tracking 
algorithm for a concurrent execution model, with the eventual goal of 
implementation on a low cost, single board computer equipped with 
heterogenous hardware, the investigation is considered successful as a concurrent 
execution model was successfully designed. The sequential execution of the 
original implementation was decoupled of data dependencies, leading to 
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concurrent execution being possible, and the poor results could be attributed to 
the functionality of the API that was utilized.  

However, it should be pointed out the approach would not produce a significant 
decrease in cycle period nor boost throughput as envisioned on an embedded 
platform, using standard software libraries. As the approach utilized high end 
hardware for the investigation, the results achieved on a single board computer 
would even less impressive due to the generally lower clock speeds for memory 
and processors, as well as a narrower memory interface width.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Time distribution of function detect() in the runtime API, 
illustrating that the synchronous implementation’s costly deviceSynchronise 
calls. 

Even though approach does not increase the cost of the system on hand, only an 
investment of development time is required, the suboptimal results are an 
indication that another approach should first be investigated if the goal is to vastly 
improve throughput and decrease cycle period. 
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6 Conclusion 
Generic object tracking has become a well-researched topic following the success 
and attention that Tracking-Learning-Detection (Kalal, 2012) received. A 
benchmark for evaluating single object, generic object trackers was developed in 
2013 and aided standardized methods to compare trackers in an efficient and 
simple manner. The Visual Object Tracking Challenge (VOT) has made a large 
positive impact on the field of research in generic object tracking and as such 
significant annual improvements in the accuracy and robustness of generic object 
trackers are continually made.  

With the introduction of the real-time challenge in 2015, as a sub-challenge within 
VOT, the importance of inference rates gained attention as well. The real-time 
challenge serves to rank a subset of generic object trackers that can process the 
input stream faster than the sensor can capture its digital representation of the 
real-world, with the same accuracy and robustness measures as in the overall 
challenge in the VOT. Less attention has however been given to inference of 
generic object trackers on the edge, on energy-efficient mobile devices.  

The purpose of this research was to investigate the feasibility of a generic object 
tracker for inference on a single board computer. The algorithm CMT was 
highlighted for investigation as initial research showed that the algorithm is highly 
configurable, had not yet investigated for hardware acceleration, and performed 
well on tracking scenes that are suitable to the intended use case. The required 
software library for inferring the algorithm on the single board computer was built 
and the accuracy and inference performance was investigated, in the author of 
the algorithm’s configuration. This configuration was deemed unsuitable for 
inference on mobile, resource limited computational platforms and an 
investigation was undertaken to discover more optimal configurations.  

Using a feature detector that did not overrespond to highly detailed scenes, such 
as those found outdoors, and a lightweight but still discriminative descriptor 
vector, inference rates were increased 7x on the mobile platform without any 
significant loss in tracking accuracy, on the chosen dataset. The software library 
that was utilized for generic image processing tasks was then rebuilt in order to 
utilize the onboard hardware acceleration engine for the CPU, as well as another 
specific data-type optimization, yielding a final inference rate that improved the 
initial rate on the mobile platform by an order of magnitude, to a frame processing 
speed of value of above 20 FPS.   

Another form of hardware acceleration on the single board computer was then 
attempted to be utilized, notably a heterogenous computing approach using 
GPGPU for intensive image processing tasks, as a GPU is present on the single 
board computer, but it was found that the software library’s GPU accelerated 
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functions were developed for desktop hardware. As such the functions that were 
intended to be accelerated using the GPU and the software library’s API for GPU 
acceleration, using the OpenCL heterogenous computing programming 
framework, did not function on the single board computer and thus investigation 
into heterogenous computing on the mobile device was abandoned.  

Subsequently the prototyping platform was altered to a desktop platform to make 
a general investigation into whether the chosen object tracking algorithm would 
benefit from GPU acceleration, and whether further developmental effort should 
be undertaken to obtain a functioning set of GPU acceleration functions, on the 
single board computer. The inference rate of the algorithm was subsequently 
doubled by allocating the computationally intensive image processing tasks to the 
GPU, which could be done efficiently due to a reshuffling of the computational 
flow of the algorithm to enable a set of data-independent functions to be 
accelerated by the GPU. A final step was then taken to investigate whether the 
utilization of a hardware platform, in general, could be improved significantly in 
the execution of the specific tracking algorithm by investigating concurrent 
execution. This was also investigated by utilizing the desktop hardware platform 
due to the hardware being well supported by with a set of asynchronous functions. 
The envisioned result was not achieved due to the utilized asynchronous functions 
not interacting with the hardware as assumed, with the assumptions that the 
interaction between the CPU and GPU would be totally asynchronous, but the 
algorithm was deemed to still be suitable for such an execution model due the 
existence of two subsets of data-independent tasks. To the authors knowledge, to 
realize an effective concurrent execution a large developmental effort would have 
to be undertaken by a team of hardware and software engineers. In general the 
algorithm was successfully accelerated with the GPU, reaching a final inference 
rate of over 100 FPS, and subsequently is well suited to GPU acceleration due to 
the presence of data parallel image processing tasks. 

In closing, we return to the fact that the investigation was into the feasibility of 
real-time inference of a generic object tracking algorithm on a general-purpose 
single board computer. Since a FPS rate of 20 FPS was achieved, with a purely CPU 
implementation, the algorithm and platform is deemed suited to the task. This 
mostly as a result of extensive research into effective computational method of 
image features, and the field object tracking can expect even more promising 
results in terms of mobile inference once ANNs are efficiently computed on mobile 
devices. Through a careful design, a suitable speed vs accuracy balancing exercise 
and careful selection of a suitable algorithm and hardware platform, the task real-
time object tracking can be achieved on a general-purpose single board computer.  

Future work should investigate heterogenous computing with a suitable software 
library. The ARM Compute library is software package designed to efficiently 
compute machine learning and computer vision functions specifically on ARM 
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heterogenous SoCs such as the Tinkerboard. Support for common CNN functions 
such as the convolutional filter and pooling operators are present. An approach 
would be to investigate the usage of the ARM Compute library to implement 
object tracking algorithms that are labelled as real-time, from the VOT challenge, 
on mobile heterogenous SoCs.  
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Appendix A 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1: Illustration of the timing method used for each individual function 
whenever timing was employed throughout section 5, starting with Figure 5.4. 
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Figure A2: Illustration of uploading of variables into device memory, utilization 
of the CUDA API functions for the three functions allocated to the GPU as well 
as an illustration of how the concurrent execution is achieved, in Nebehay’s 
function processframe(). If the first frame is being processed and concurrent 
execution is desired, the processing pipeline is first filled as in line 144. On line 
197, the runtime API makes the call for the host to wait for device completion, 
and the discerning factor between a concurrent and sequential execution. The 
‘else’ statement serves to initiate the sequential computation, illustrated in 
Figure 5.9, whilst the true statement serves when concurrent execution is 
enabled. 
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Figure A3: Synchronization point in the function processframe() if concurrent 
execution has been enabled, where the extra image storage on line 313 should 
be noted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

76 

 

 

 

 

 

 

 

 

 

 

 

Figure A4: Function matchGlobalAsync() serves to illustrate how data is moved 
from the device back to the host. The concurrent equivalent 
matchGlobalNoSync() however does not return data to the host at this point, 
as this completed later during synchronisation with the host – illustrated in 
Figure A.3, line 309.  
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