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Abstract

This thesis investigates the use of Lidar sensors for landmark identification in simul-
taneous localisation and mapping (SLAM). Lidar sensors can very accurately meas-
ure the distance toward objects in the environment, but provide no other information
about the environment. Modelling landmarks from this spatial representation and
associating new measurements with landmarks are important problems to address
in order to perform SLAM with these measurements.

A literature review shows that multiple different approaches to extracting fea-
tures from Lidar measurements and modelling landmarks exist. From this study we
conclude that existing methods do not reliably associate measurements to landmarks
and do not have the ability to update landmark models, which could be helpful to
improve the representation of the environment.

We consequently develop a probabilistic method to model landmarks from Lidar
measurements. In our approach, we approximate object boundaries with continu-
ous, piecewise linear functions. The parameters of these functions are modelled as
Gaussian random variables. With this probabilistic model, a method is created to
determine if measurements originate from a certain landmark. This method first
aligns the measurements to the model using the iterated closest point (ICP) al-
gorithm and then it finds the Mahalanobis distance between measurements and
lines to determine if the measurements fit the model. A method is also developed
to probabilistically update the model and extend the model when new segments of
the landmark are observed.

In addition, a SLAM algorithm is designed to use this landmark modelling
method. The extended Kalman filter (EKF) SLAM motion update is used directly
with an odometry motion model. The measurement update, however, is adapted in
order to update the model parameters and robot pose simultaneously. This is in
contrast to most other approaches that only use the landmark model to extract a
point or reference measurement.

Finally, our methods are tested in both simulated environments and with real-
world datasets. The results show that the landmark models are good representations
of the environment and that measurements of unique objects can be associated with
their models. However, the robot tends to be overconfident about its pose and fails
to close bigger loops due to faulty associations.

We conclude that this approach successfully models the environment with SLAM,
but further development needs to take place to make it robust and suitable for
practical applications.
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Uittreksel

Hierdie tesis ondersoek die gebruik van Lidar sensors om landmerke te indentifiseer
tydens gelyktydige lokalisering en kartering (SLAM). Lidar sensors meet die afstand
na voorwerpe in die omgewing met hoë akkuraatheid, maar verskaf geen ander
inligting oor die omgewing nie. Die modellering van landmerke met die gebruik van
hierdie ruimtelike voorstelling, asook om nuwe metings met landmarke te assosieer,
is belangrike probleme om aan te spreek om SLAM uit te voer.

’n Literatuurstudie toon dat verskeie benaderings tot die onttrekking van ken-
merke uit Lidar metings, asook die modellering van landmerke bestaan. Uit hierdie
studie kom ons tot die gevolgtrekking dat bestaande metodes nie metings betrou-
baar assosieer met landmerke nie en nie die vermoë het om landmerkmodelle op te
dateer nie, wat kan help om die voorstelling van die omgewing te verbeter.

Ons ontwikkel dus ’n probabilistiese metode om landmerke met die gebruik van
Lidar metings te modelleer. Met hieride metode benader ons objekgrense met kon-
tinue, stuksgewys lineêre funksies. Die parameters van hierdie funksies word gemo-
delleer as Gaussiese ewekansige veranderlikes. Met die gebruik van hierdie probabi-
listiese model word ’n metode geskep om vas te stel of nuwe metings van ’n sekere
landmerk afkomstig is. Hierdie metode belyn eers die metings met die model met die
gebruik van die herhaalde naaste punt (ICP) algoritme en vind dan die Mahalanobis
afstand tussen metings en lyne om te bepaal of die metings pas by die model. ’n
Metode word ook ontwikkel om die model probabilisties op te dateer en die model
uit te brei wanneer nuwe dele van die landmerk waargeneem word.

Daarbenewens word ’n SLAM-algoritme ontwerp om hierdie landmerkmodelle-
ringsmetode te gebruik. Die bewegingsopdatering stap van uitgebreide Kalman filter
(EKF) SLAM word direk gebruik met ’n odometer-bewegingsmodel. Die meetopda-
tering stap word egter aangepas sodat die robotposisie en landmerkmodel gelyktydig
opgedateer kan word. Dit is in teenstelling met die meeste ander benaderings wat
slegs die landmerkmodel gebruik om ’n punt of verwysingsmeting te onttrek.

Ten slotte word ons metodes getoets in beide gesimuleerde omgewings en met
werklike datastelle. Die resultate toon dat die landmerkmodelle goeie voorstellings
van die omgewing skep en dat die metings van unieke voorwerpe met die land-
merkmodelle geassosieer kan word. Die robot is egter geneig om te seker die word
van sy posisie en versuim om groter lusse in die omgewing te sluit weens foutiewe
assosiasies.

Ons kom tot die gevolgtrekking dat hierdie metode die omgewing suksesvol mo-
delleer tydens SLAM, maar dat verdere ontwikkeling nodig is om dit robuust en
geskik te maak vir praktiese toepassings.
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Chapter 1

Introduction

1.1 Background
Autonomous robots are used in various applications to perform tasks with higher
accuracy or more efficiently than humanly possible, or tasks that are unsafe for
humans. These robots are, however, often used in controlled environments or with
supervision of humans.

For a mobile robot to be truly autonomous, it should to be able to model its
environment and localise itself within its environment. The robot should then be
able to plan accordingly in this environment to perform its task with safety and
precision. To be able to achieve this, the robot needs sensing capabilities with
sufficient accuracy for the specified task.

Research in the field of autonomous robotics has investigated the use of a number
of different sensors, such as sonar sensors, Lidar sensors and cameras. Lidar sensors
are often used for its high accuracy in spatial measurements, whereas cameras are
better for seeing and tracking specific objects.

1.2 Project Aims
In this project we aim to address the problem of simultaneous localisation and
mapping (SLAM) using only 2D Lidar sensors to observe the environment. The
focus is on identifying and modelling landmarks from Lidar measurements, which
are used in SLAM. Landmarks in the SLAM context are typically static point in
the environment. The purpose of a SLAM algorithm is to estimate both the robot’s
trajectory through an unknown environment and the landmark locations in this
environment.

Lidar sensors usually give very accurate measurements of the distance toward ob-
jects, but contain no other information about objects. Therefore, spatial information
about the object, such as its shape, has to be used to associate Lidar measurements
with landmarks.

The main goal of this project is to develop a method to model landmarks from
Lidar measurements. These models should be developed in a manner that the land-
marks are uniquely identifiable and new measurements generated from the land-
marks could be associated with it. Measurement from other landmarks should,

1
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CHAPTER 1. INTRODUCTION 2

however, be rejected by the landmark. The method should also be able to update a
landmark model when new information about the landmark is obtained.

The purpose of the developed modelling method is to identify landmarks for
SLAM, therefore another aim of this project is to implement and adapt an existing
SLAM algorithm. This SLAM algorithm should be compatible with the design
choices made during the development of the modelling method.

1.3 System Overview
The approach used for modelling landmarks from Lidar measurements is discussed
briefly here. The specifics of the development and motivations for design choices are
discussed in later chapters.

In our approach, we attempt to model landmarks by using the shape of objects.
A shape is modelled by a set of straight lines, parameterised by continuous, probab-
ilistic variables. Using a probabilistic approach allow measurements to be associated
in a probabilistic way and landmarks to be updated probabilistically.

To model multiple objects observed in a single Lidar scan, a method is used to
separate measurements that come from different objects. Once these measurements
are separated, a set of measurements from the same object are either associated with
a landmark or used to create a new landmark.

A SLAM algorithm is implemented to test the landmark modelling method.
The standard extended Kalman filter (EKF) motion update is used, since this is a
commonly-used method and the motion update is not the focus of this project. The
measurement update is, however, adapted to incorporate the updating of landmark
models and to use the measured landmark parameters in the full state space update.

Finally, these methods are tested in multiple simulated environments as well as
in real-world environments by making use of publicly available datasets.

1.4 Document Outline
We first provide an overview of existing mapping methods and algorithms to perform
SLAM with in Chapter 2. In this chapter we also discuss existing approaches to
SLAM with Lidar sensors.

In Chapter 3 we discuss the development of the landmark modelling technique
as well as methods to detect and update these landmarks. The development of
the SLAM algorithm is discussed in Chapter 4, working through the motion and
measurement updates.

The implementation of the full system is described and results from simulated
and real datasets are shown and discussed in Chapter 5. Finally, we make conclusions
about the project and suggest possible improvements to be made in Chapter 6.
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Chapter 2

Literature Review

In this chapter a study is done of existing approaches to the general simultaneous
localisation and mapping (SLAM) problem, as well as approaches to solving this
problem using only Lidar measurements.

2.1 SLAM
SLAM is a key problem in robotics [1], addressing the situation of a mobile robot
with an unknown pose in an unknown environment. The robot has to localise itself
to build an accurate map of the environment, but it needs an accurate map to localise
itself. In SLAM, the robot uses the measurements it obtains from the environment
to build a relative map around itself and localise itself in this map. In this section
we discuss different mapping techniques as well as existing SLAM algorithms found
in literature.

2.1.1 Mapping

In SLAM, the robot needs to represent the environment using the measurements it
obtains. In this subsection we look at two methods used to represent the environ-
ment. Although these are not the only representations, these methods are commonly
used in SLAM applications.

Occupancy Grids

A possible representation for mapping an environment is to divide it into a grid of
cells, where each cell has a probability of it being occupied or empty. The map
created is called an occupancy grid and was developed by Elfes [2].

The occupancy grid is typically initialised with probability values and an inverse
model of the sensor that the measurements come from is created to update these
probabilities when new measurements are received. For range-angle measurements,
the cells in the measurement beam have low occupancy probabilities, the measure-
ment cells at the measurements have high occupancy probabilities and the rest of
the environment is not updated. For known poses, the map is updated using this
sensor model each time new measurements are received. Occupancy grids create
a dense representation of the environment, which is good for applications such as

3
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CHAPTER 2. LITERATURE REVIEW 4

planning where an accurate map of the entire environment is needed, but could
make it computationally expensive in localisation applications.

In his article, Elfes [2] also addresses the problem of uncertain robot poses, as
well as estimating the robot pose using the measurements and the map. Handling
this pose uncertainty and localisation is critical in solving the SLAM problem. The
cells in the occupancy grid are, however, assumed to be independent from each other.
This means that once new information of a cell’s occupancy is obtained, it has no
effect on other cells. When used in SLAM, this independence results in the robot
being unable to correct other parts of the environment once it revisits a previously
observed part of the map and improves its pose estimate.

Landmark Maps

Another mapping representation often used in SLAM applications is landmark maps.
In these maps, recognisable features in the static environment are modelled and
stored as landmarks in the map [1]. Each of these landmarks is typically represented
by its location in the global environment with a signature or model describing the
landmark associated with it.

Low-dimensional features are typically extracted from high-dimensional meas-
urements, creating a sparse representation of the environment. The challenge with
these maps are, however, to extract reliable features to create a model describing
the landmark and to associate new measurements to existing landmark models.

Most classical SLAM algorithms that use landmark maps only use point land-
mark measurements and assume that the modelling and association are done sep-
arately, which simplifies the problem significantly. A number of different methods
have been proposed to approach the modelling and association problem with specific
sensor measurements. Some of these methods are discussed later.

Landmark maps do not map the entire environment, but rather extract features
from the environment and some measurements are not used to model a landmark
and has no effect on the map. Although this is computationally less expensive
when mapping and localising a robot, a dense representation of the environment is
required in addition to the landmark map for certain applications.

2.1.2 SLAM algorithms

Once an environment representation has been chosen, an algorithm to perform
SLAM with this representation can be designed. We now discuss some of the existing
classical SLAM algorithms.

EKF SLAM

The EKF SLAM algorithm is the earliest of the SLAM algorithms, first presented
by Smith and Cheeseman [3] and Smith et al. [4]. This algorithm applies the EKF
to SLAM with a map of point landmarks. With EKF SLAM, all state variables
are represented by Gaussian random variables. A consequence of this assumption is
that negative information, or the absence of landmarks, cannot be processed by the
algorithm [1].
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CHAPTER 2. LITERATURE REVIEW 5

EKF SLAM is a Bayes filter approach, where only the current belief over the
states is calculated, which is also known as online SLAM. The algorithm maintains
a joint distribution over the robot states and all the landmark locations, introdu-
cing dependencies between all elements. These dependencies allow landmarks not
observed to also be updated when other states are updated.

The algorithm consists of two steps: the motion update and the measurement
update. In the motion update, the controls given to the robot’s actuators or odo-
metry measurements of the robot’s motion are used to update the belief over the
robot’s pose. This step typically increases the uncertainty over the robot’s pose due
to the noise of the controls.

The measurement update involves using the measurements of landmarks to up-
date the belief over the robot pose and landmarks simultaneously. With this update,
a predicted measurement of the landmark is evaluated against the actual measure-
ment and all states are updated accordingly. This update usually decreases the
uncertainty over the robot pose and the landmarks due to the added information of
new measurements. If a new landmark is measured, it is added to the map. The
motion update and measurement update are performed at each timestep and EKF
linearisation is applied to the nonlinear motion and measurement models.

The usual formulation of EKF SLAM assumes that measurements are associated
with the correct landmarks. This is, however, not always the case and faulty asso-
ciations could lead to irreparable errors. Therefore, the design of reliable landmark
models is very important when using this approach.

Other similar Bayes filter approaches have been implemented as well using differ-
ent filters such as the unscented Kalman filter (UKF) and the extended information
filter (EIF) [1].

Pose-Graph SLAM

EKF SLAM discussed above only maintains the posterior distribution over the latest
pose and landmark estimates. The pose-graph SLAM algorithm, however, estimates
the posterior distribution over all robot poses and landmarks, resulting in the com-
plete trajectory of the robot. This idea was originally introduced by Lu and Milios
[5].

Pose-graph SLAM is known as an offline SLAM algorithm [1], since it accu-
mulates all robot controls and measurements over all timesteps and the posterior
distributions are only calculated afterwards. Lu and Milios [5] applied this method
by representing the environment with the point clouds of the raw measurements and
performed scan matching to get estimates of the relationship between poses. How-
ever, we discuss the method presented by Thrun et al. [1], which uses a landmark-
based approach.

The distribution over the full state space of all poses and landmarks is typically
represented as a Gaussian random variable in the canonical form. A link is created
between consecutive poses due to the robot controls describing the transformation
between these poses. For each landmark measurement, a link is created between the
landmark and the pose when the landmark is measured. These links are typically
nonlinear relationships which are linearised to create a sparse information matrix.
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Once all controls and measurements are factored in, the resulting estimate of all
states is obtained from the canonical form distribution.

Since the algorithm maintains the pose estimates and measurements of all timesteps,
the linearisation of the nonlinear relationships can be repeated once a posterior dis-
tribution over all states is obtained, which could lead to a better estimate of the
posterior distribution.

Landmark association in pose-graph SLAM is also important. More robust meth-
ods to make landmark associations can be designed since measurements do not need
to be processed sequentially [1]. As with the linearisation, the association step could
be repeated once a posterior distribution over all states is obtained, which can lead
to fixing faulty associations.

Although pose-graph SLAM can result in a more accurate representation of the
environment and pose estimates of the complete robot trajectory, it could be very
computationally expensive. This is due to the fact that the state space dimensions is
proportional to the number of timesteps of the robot and the number of landmarks
created.

Particle Filter SLAM

Another method of approaching SLAM is with the use of particle filters. Particle
filters take a number of random samples, called particles, from a distribution of a
random variable, where each particle is a hypothesis of the true states of the variable
[1]. Any distribution can be approximated by this nonparametric method of drawing
samples and therefore it is suitable for very nonlinear models.

Thrun [6] proposed the first mapping algorithm using particle filters and Murphy
[7] introduced Rao-Blackwellised particle filters to the SLAM problem applied to
occupancy grids. However, we discuss the approach developed by Montemerlo et al.
[8], named FastSLAM, which applies particle filters to a landmark-based SLAM
problem.

This approach maintains a particle set for each robot pose and estimates the
mean and covariance of each landmark for this specific pose. This simplifies the
problem to a mapping problem for each particle, where the EKF is used to update
the landmark estimates. The landmark estimates are independent since the robot
pose is assumed to be known for each particle.

For each timestep, new poses are sampled from the previous pose particles and
robot controls. Once new poses are sampled, the measurements are used to update
the estimates of the observed landmarks for each particle. An importance weight
is calculated for each particle, which is related to the likelihood that the states
represented by the particle are the true states. The particles are then resampled
using these importance weights, which removes unlikely particles and creates more
particles with high likelihoods.

The particle filter SLAM approach solves both the online and offline SLAM
problems. At each timestep, an estimate of the current pose and map is calculated,
which solves online SLAM and the algorithm also maintains all previous poses for
each particle, which solves offline SLAM.

No assumptions are made regarding the distribution of the pose of the robot
or the motion noise, such as the Gaussian assumption made with the other SLAM
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algorithms. This could result in a more accurate estimate of the robot pose, espe-
cially in nonlinear systems. The accuracy of the filter is dependent on the amount
of particles used.

Due to the use of particles, where each particle is assumed to be the true robot
pose, this SLAM approach is able to associate measurements with different land-
marks for different particles. This can lead to more robust landmark associations,
since bad associations will lead to unlikely particles that will not be resampled.

2.2 Lidar Sensors
For SLAM, the environment needs to be observed by a sensor. In this project we
use light detection and ranging (Lidar) sensors to accomplish this. Lidar sensors are
very accurate sensors that take a scan of the environment and measure distances to
the closest objects. These sensors are commonly used in SLAM applications due to
their accuracy regarding positional information of objects in the environment. We
give a brief overview of the operation of Lidar sensors and then discuss different
approaches to the SLAM application using Lidar measurements.

2.2.1 Lidar Sensor Operation

Lidar sensors use laser beams to measure the distance to objects. A Lidar emits laser
pulses, which is reflected back by objects and sensed by the Lidar. The measured
time of flight and speed of light is used to calculate the distance to these objects.
A Lidar sensor emits these pulses in multiple directions, measuring the distance in
each direction, which results in a scan of range-angle measurements. This is typically
made possible by having a single laser source, with its direction being altered by a
rotating mirror. Due to the rotating mechanical parts in the Lidar, it cannot reach
the same measurement frequency as similar solid-state electronic sensors.

Lidar sensors with 2D and 3D sensing capabilities exist and they usually have a
number of characteristics that are useful for localisation and mapping applications.
The Lidar’s aperture angle or field-of-view indicates the angular range it can take
measurements in and the operating range indicates the maximum distance it can
measure. A Lidar also has an angular resolution associated with it, which refers
to the angle between consecutive range measurements, and a scanning frequency,
which indicates how many scans it can take per second.

The last characteristic which is important for probabilistic applications is the
accuracy of the Lidar regarding the angle and range measurements, which is often
given as a statistical error. Lidar sensors are typically very accurate and the beam
width of a laser source is small enough to be negligible.

Environmental effects can also cause Lidar sensors to make faulty measurements.
These are typically due to objects with low reflectivity or objects with high focussed
reflectivity, in which case the laser is reflected in another direction. The Lidar can
also measure a pulse which is reflected by multiple objects, resulting in a longer
time of flight and a higher measurement than the true distance. These errors can be
avoided in controlled environments or filtered out with outlier detection methods.

Lidar sensors return range-angle measurements, which can be modelled as points
in the environment, where the line between a point and the Lidar contains no ob-
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jects and the point lie on an object boundary. When a Lidar measures no objects
in a certain direction, a maximum range is typically measured by the Lidar. These
maximum range measurements are usually filtered out by the Lidar sensor or before
the measurements are used further. The Lidar measurements also have errors, which
can be modelled as Gaussian distributed noise. This results in each measurement
in the point cloud to be modelled as a Gaussian distribution. The remaining meas-
urements form a point cloud of objects in the environment and these measurements
can be used for purposes such as landmark identification.

2.2.2 SLAM with Lidar measurements

A number of different approaches to SLAM exist using only Lidar measurements
to observe the environment. These approaches differ in mapping representations as
well as the SLAM algorithms implemented.

Lu and Milios [5] implemented a pose-graph SLAM algorithm for 2D Lidar data,
as mentioned in Section 2.1.2. The map in their approach is represented by the raw
Lidar scans. Each Lidar scan is aligned to the previous scan with a scan-matching
algorithm to obtain an estimate of the relationship between the two poses. Lidar
scans from poses far apart in time, but close in space are also aligned to obtain
estimates of the relationships between these poses. This approach only calculates
the posterior distribution over all the poses and a point cloud map can be constructed
by using the measurements and posterior poses.

A similar approach is proposed by Mendes et al. [9]. The differences are that
they use 3D Lidar data and instead of constructing a graph of all poses, they create
local maps and only insert a single pose for each local map in the graph. These local
maps typically consist of a number of consecutive measurements that are aligned to
each other; when new measurements are out of the previous local map’s scope, a
new local map is created, which is also considered for loop closure with other local
maps.

A real-time SLAM algorithm using 2D Lidar measurements have been imple-
mented by Hess et al. [10]. In this approach, occupancy grid submaps are created
and these submaps are updated by aligning new measurements to the submap. As
the robot moves out of the range of a submap it creates a new submap. Each
submap has a local reference frame, which can be adjusted in the global frame once
a previous submap is revisited to perform loop closure.

Other approaches to SLAM with Lidar data identifies landmarks in the envir-
onment and implement an EKF SLAM algorithm. Jensfelt and Christensen [11]
extract rectangular shapes from the Lidar measurements, as this algorithm is de-
signed for indoor environments where a lot of rectangles are usually visible. On the
other hand, Guivant and Nebot [12] designed an algorithm for an outdoor, tree-
filled environment and model landmarks as circles. Both of these methods use prior
knowledge about the environment, which is crucial for the landmark models. These
algorithms perform well in their specific environments, but are not suitable for other
environments.

Nieto et al. [13, 14] proposed a method of modelling landmarks as the point
cloud measurements obtained from the landmark. In their approach the Lidar scan
is segmented into clusters of measurements that come from the same landmark and
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each cluster is evaluated separately. Each landmark is defined in a local reference
frame and its reference frame’s global pose is added to the SLAM state space. New
measurements are associated with landmarks by using the iterated closest point
(ICP) [15] algorithm to align the measurements with the landmark. The distances
between the closest points between scans after scan alignment are evaluated against
a threshold to determine if the shapes match. Since the landmarks are represented
by the raw point measurements, they can represent any shape. The landmarks in
this approach cannot be updated when new parts of a landmark is seen.

Other methods to extract general features from Lidar scans have been proposed
as well. Bosse and Zlot [16] proposed three methods to extract keypoints from
Lidar scans and creates a descriptor model of the area around each keypoint. These
keypoints are used as landmarks in the SLAM application and the descriptor models
are used to associate landmarks. In the first method to extract keypoints, the
Lidar scan is segmented into connected components, similar to Nieto et al. [13, 14],
and the centroid of each segment is calculated. The second method searches for
points of high curvature in the scan by computing the second derivative of the scan
range measurements and the third method computes a locally weighted mean of the
measurements. The descriptor models create a discrete grid around the keypoint to
describe the region. The extraction of these keypoints and associated descriptors
are used to identify and associate landmarks to perform SLAM.

Himstedt et al. [17] also uses the curvature in a scan to extract features, similar
to Bosse and Zlot [16]. The features in the scan are mapped to a pose-invariant
histogram representing the Euclidean distance and angle between features. An ap-
proximate nearest neighbour approach is used to make initial associations to features
and the histograms are used to validate these associations.

An alternative approach to feature extraction is to use image processing tech-
niques on Lidar data. Li and Olson [18] proposed a method to rasterise the Lidar
measurements to an image using a Gaussian kernel. This rasterisation method also
takes into account occlusion boundaries and adds lines on the image where occlusion
boundaries occur. An image processing corner detector is used to detect corners in
the scan to use as landmarks. The landmarks in this approach is simply associated
using a nearest neighbour approach, which could lead to bad associations when the
robot pose uncertainty is big.

A number of different approaches have been proposed to extract features and
model landmarks using Lidar measurements. All of these methods have their ad-
vantages, but they are lacking in some aspects. Some of the methods that use simple
models only make nearest neighbour associations, which could easily result in faulty
associations when the pose uncertainty is large. Other methods with more descript-
ive models can make more robust associations, but they typically lack the ability
to update or extend the landmark model using new measurements. The methods
that are able to update their landmark models do this in a separate step and do not
consider the new information about the landmark model for pose correction.
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2.3 Problem Statement
From this literature review, we conclude that existing approaches do not create
very descriptive models of the environment that measurements could reliably be
associated with and methods with more descriptive models cannot be updated with
new measurements. We will therefore design a method to model landmarks, using
Lidar measurements, that describe the objects that generate these measurements.
The modelling method will describe the general shape of these objects, similar to
Nieto et al. [13, 14], but in contrast to their approach that creates a point cloud
description of the object, our model will create a parametric description of the object.
This parametric model will be designed with the goal of being able to update the
model with new measurements and to extend the model to create a better description
of the object.

The goal of the landmark modelling is for it to be used in a SLAM applica-
tion. Therefore, in addition to the modelling method, we will implement a SLAM
algorithm and develop a novel measurement update to incorporate the update of
our parametric landmark model.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3

Landmark Modelling

In landmark-based SLAM, the modelling of landmarks is an essential part of the
process. As stated previously, we approach landmark modelling by describing the
shape of objects in the environment. This approach creates descriptive models of
the environment so that new measurements can reliably be associated with land-
marks. In addition, a method is designed to update the landmark models when new
measurements are received.

The measurements, z, that the Lidar takes are the only information the robot
has about its environment. These measurements, which are often noisy, have to
be used to model the landmarks in the environment. We choose to use Gaussian
random variables to represent the uncertainty in the measurements as well as the
model.

For a specific landmark model, we need to define a set of parameters, v, to
describe the model. Due to the uncertainty of the measurements, these parameters
are also uncertain and are thus represented by Gaussian random variables. The
transformation between the measurements and model parameters is often nonlinear
and needs to be linearised to obtain a Gaussian distribution over the parameters.

In this chapter the proposed landmark model is discussed, including creating
the model, detecting the model and updating the model. The unscented transform
is explained first, since it is used as a linearisation method in many of the other
processes.

3.1 Unscented Transform
The unscented transform described in this section is an existing method used to
linearise a non-linear function. The material in this section is adapted from Thrun
et al. [1, p. 64-71].

Suppose we have the nonlinear equation

y = f(x), (3.1.1)

and a Gaussian distribution over the variable x,

p(x) = N (µx,Σx). (3.1.2)

11
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The function f should be linearised to approximate the distribution over y as a
Gaussian distribution,

p(y) ≈ N (µy,Σy). (3.1.3)

The unscented transform is one method to linearise a function by drawing a set
of sigma points, X , from p(x). Each of these sigma points, Xi, are passed through
the function f to obtain a mapped sigma point, Yi, where

Yi = f(Xi). (3.1.4)

For an n-dimensional input vector, there are 2n+ 1 sigma points that are calcu-
lated with the following equations:

X0 = µx

Xi = µx +
√
n+ λ

(√
Σx

)
i

for i = 1, ..., n

Xi = µx −
√
n+ λ

(√
Σx

)
i−n

for i = n+ 1, ..., 2n,

(3.1.5)

where λ = α2(n+ κ)− n, with α and κ being scaling parameters. The subscript in(√
Σx
)
i indicates the i

th column of the matrix
√

Σx.
There are also two weights associated with each sigma point. The one, ωm,i, is

used to reconstruct the mean vector and the other, ωc,i, is used to reconstruct the
covariance matrix. The weights are calculated as follows:

ωm,0 = λ

n+ λ

ωc,0 = λ

n+ λ
+ (1− α2 + β)

ωm,i = ωc,i = 1
2(n+ λ) for i = 1, ..., 2n,

(3.1.6)

where the parameter β can encode additional information about the underlying
distribution.

The approximated Gaussian distribution, p(y), is calculated by using the weights,
ωm and ωc, and the mapped sigma points, Y:

µy =
∑
i

ωm,iYi

Σy =
∑
i

ωc,i(Yi − µy)(Yi − µy)T .
(3.1.7)

In our application of the unscented transform, we made the standard choices of
κ = 0 and β = 2. We also chose λ = 1 − n so that the sigma points lie on the one
standard deviation boundary, which results in α2 = 1

n . An example of this process
of linearisation through the unscented transform, for a scalar non-linear function,
is shown in Figure 3.1. Since the output of the unscented transform is a Gaussian
distribution, there is a linear transform that yield the same result as the unscented
transform. The unscented transform can therefore be seen as a linearisation of the
nonlinear model.
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p(y)

y

Unscented transform Gaussian

Taylor series Gaussian

Actual distribution over y

x

y
=
f

(x
)

y = f(x)

Linearised f(x) with unscented transform

Linearised f(x) with Taylor series

x

p
(x

)

Sigma Points

p(x)

Figure 3.1 – Example of linearisation done with the unscented transform and the
Taylor series expansion on a scalar non-linear function. The distribution p(x) is trans-
formed using y = f(x) to form p(y). The unscented transform and Taylor series expan-
sion are used to linearise the function to obtain a Gaussian approximation of p(y)

Since we use the unscented transform (UT) frequently, we define the notation

p(y) = UT(p(x);x 7→ y) (3.1.8)

to indicate the use of the unscented transform to linearise the transformation x 7→
y, where p(x) is the Gaussian distribution over x and p(y) is the approximated
Gaussian distribution over y, obtained through the linearisation.

In Figure 3.1 the unscented transform is compared with linearisation using the
Taylor series expansion. With the Taylor series expansion, the derivative of the non-
linear function at the mean of the input distribution is calculated. This derivative
is the slope of linearised function and the mean of the input distribution is substi-
tuted to obtain the offset of the linearised function. For multivariate functions, the
derivative of the nonlinear function is called a Jacobian matrix.

It can be shown that the unscented transform performs better on average than
the Taylor series expansion, which only uses the mean of the input distribution to lin-
earise the function [1, p. 67]. The Taylor series expansion also requires the Jacobian
of the function to be calculated, which is not the case for the unscented transform.
This makes the implementation of the unscented transform more general since it
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does not need to be adapted for each separate function. The unscented transform
and Taylor series expansion linearisation methods are compared in Figure 3.1.

The unscented transform is used to linearise different transformations in this
project, especially in the landmark modelling process.

3.2 Vertex Parameter Modelling
As stated previously, the landmarks should be recognisable parts of the environment.
The method we propose attempt to describe the shapes of these landmarks by
approximating them as sets of straight lines, which can be parameterised by the
vertices of these lines. Throughout this section, it is assumed that the robot and
Lidar pose is known. It becomes clear in subsequent chapters why this assumption
is used.

3.2.1 Landmark Model Creation

To create a landmark model, the robot has to make use of the Lidar measurements,
zp, which are the only information it has about the environment. To model each
individual landmark, these measurements have to be segmented into sets, where
the measurements in each set come from the same landmark. In this subsection
we assume that these measurement segmentation is done already and that zp only
refers to the measurements in a single set.

Vertex Parameterisation

We aim to parameterise the landmark by a set of vertices, v, between straight lines
describing the model. The process of obtaining the vertices from the measurements
is discussed below. The case for noiseless measurements are first considered and
then the process is extended to the case with noisy measurements.

The Lidar measurements are given as a list of n range and angle measurements,
zp =

[
zTp,0 · · · zTp,n−1

]T
, with zp,i =

[
ri φi

]T
. These measurements are in polar

coordinates in a Lidar-fixed reference frame, with the pose of the Lidar, xpose =[
x y θ

]T
, as the origin of this coordinate system, as shown in Figure 3.2. The

position of the Lidar is also defined as xpos =
[
x y

]T
in Cartesian coordinates in the

inertial reference frame. These measurements are sorted in descending order with
respect to the angle measurement so that φi > φi+1. This means the measurements
are sorted from left to right from the Lidar’s perspective.

In order to fit lines to these measurements, they first need to be transformed
to Cartesian coordinates in the inertial reference frame, zc =

[
zTc,0 · · · zTc,n−1

]T
,

where zc,i =
[
zx,i zy,i

]T
. This transformation is done with the following equation:

zc,i = xpos + ri

[
cos(θ + φi)
sin(θ + φi)

]
. (3.2.1)

These measurements are split into m groups of consecutive measurements, not
to be confused with the measurement sets, and a single line is fitted to each group
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xpose

zc,i

θ

ri

φi

x

y

zc,i+1

ri+1 φi+1

Figure 3.2 – Diagram of Lidar measurements in the inertial reference frame. The
Lidar measurements are obtained in polar coordinates in a Lidar-fixed reference frame,
centred at xpose and transformed to the inertial reference frame.

of measurements. The measurements grouped together are indicated with γ =[
γ0 · · · γm−1

]
, where γi = (γi,0, γi,1) denotes the first and last indices of group

i respectively, so that zc,γi,0:γi,1 =
[
zc,γi,0 · · · zc,γi,1

]T
are the measurements

grouped together. The method of choosing these groups is discussed later in this
section. For now we assume that the grouping is known.

We assume that the measurements in each of these groups are generated by a
straight line, thus a single line is fitted to each group of Cartesian measurements.
Each line is parameterised by a pair of points, p0 =

[
x0 y0

]T
and p1 =

[
x1 y1

]T
,

through which the line goes. This parameterisation is used to allow lines that
lie in a vertical direction to be parameterised, which is not possible if the line is
parameterised with a slope and an offset, y = mx+ c. The equation for the line is

pα = (1− α)p0 + αp1, (3.2.2)

where pα is a point on the line and α is the fraction that pα is between p0 and p1.
This parameterisation has an infinite number of possible parameters to describe a
specific line, as it can be parameterised by any two points on the line.

p0

p1

zc,i

ei

Figure 3.3 – Diagram of perpendicular errors between measurements and a line.

A line is fitted to the group of measurements by minimising the perpendicular
square error, e2

i , between the line and the measurements, as shown in Figure 3.3.
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The derivation of Equations 3.2.3 to 3.2.6 are given in Appendix A, which goes
through the process of minimising the square error. These equations result in the
best fitted line, given the noiseless measurements. Once we introduce uncertainty to
the measurements, uncertainty over the line arises as well. We omit the indices of
the group, zc,γi,0:γi,1 , here for simplicity and write it as zc. The two point parameters
are calculated with the following equations:

p0 = zc = 1
n

∑
i

zc,i

p1 = p0 + β

[
cosψ
sinψ

]
,

(3.2.3)

where β is a chosen constant which equals the distance between p0 and p1, which
we choose as β = 1. ψ is the angle of the line,

cosψ = b

c

sinψ = a+
√
a2 + b2

c
,

(3.2.4)

where
a =

∑
i

(zy,i − y0)2 −
∑
i

(zx,i − x0)2

b = 2
∑
i

(zy,i − y0)(zx,i − x0)

c =
√

2
(
a2 + b2 + a

√
a2 + b2

)
.

(3.2.5)

For the case where c = 0, which can only occur if b = 0 and a ≤ 0, the angle of the
line is ψ = 0◦, resulting in

cosψ = 1
sinψ = 0.

(3.2.6)

These values are substituted into Equation 3.2.3 to obtain the parameters for the
line.

The parameters calculated here are just two possible points on the line which
can be used to parameterise the same line. The exact choices of these parameters
are, however, not as important here since it is only an intermediate step to finding
the vertices between the different lines, which become the new parameters for the
line. The choices for the parameters here are thus made to keep the equations as
simple as possible, with p0 being the mean of the measurements and p1 a distance
of β away from p0.

Once a line is fitted to every group of measurements, the vertices of the model
is calculated. We now have m lines, l =

[
lT0 · · · lTm−1

]T
, each parameterised by

a pair of points, li =
[
pTi,0 pTi,1

]T
. Using these m lines, m − 1 vertices can be

calculated by finding the intersections between adjacent lines. Two vertices are also
created at the two ends of the model, which results in m+1 vertices in total. This is
done by adding a line at each end of the model, which is the line that goes through
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the Lidar position and the first and last measurement respectively, as shown in
Figure 3.4. These two lines are parameterised by

l−1 =
[
pT−1,0 pT−1,1

]T
=
[
xTpos zTc,0

]T
lm =

[
pTm,0 pTm,1

]T
=
[
xTpos zTc,n−1

]T
.

(3.2.7)

The vertices are now calculated by finding the intersections between adjacent lines.
This is done by setting the the equations describing the two lines, Equation 3.2.2,
equal to each other, finding α of the one line and then substituting α back into the
equation of that line to find the intersection point pα. This leads to the following
equation, where the intersection point is assigned to the vertex, or vi := pα:

vi =
(pi,0 − pi−1,0)TR(pi,1 − pi,0)

(pi−1,1 − pi−1,0)TR(pi,1 − pi,0)(pi−1,1 − pi−1,0) + pi−1,0 for i = 0, ...,m,

(3.2.8)
where

R =
[

0 1
−1 0

]
. (3.2.9)

The method of finding these intersections is visualised in Figure 3.4.

p−1,1 = p3,1 = xpos

p−1,0 = zc,0

p3,0 = zc,n−1

v0

v1

v2

v3

p0,0

p0,1

p1,0

p1,1

p2,0

p2,1

Figure 3.4 – Diagram of vertices found at line intersections. The first and last vertices
are found by adding lines between the Lidar position and the first and last measure-
ments.

Equations 3.2.1 to 3.2.8 describe the process of obtaining a set of vertices from a
set of noiseless Lidar measurements, given the measurements that should be joined
into lines. In order to take a probabilistic approach, we need to incorporate the
uncertainty of the measurements. Each Lidar measurement, in polar coordinates, is
assumed to have Gaussian distributed noise, qi, added from the underlying meas-
urement, z′p,i, or

zp,i = z′p,i + qi, qi ∼ N (0,Q), (3.2.10)
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where
Q =

[
σ2
r 0

0 σ2
φ

]
. (3.2.11)

σ2
r and σ2

φ are the variances of the range and angle measurements respectively.
The noise of the measurements is assumed to be independent and identically

distributed (i.i.d). The set of underlying measurements can therefore be described
by a Gaussian distribution,

p(z′p) = N (zp,Σzp), (3.2.12)

where

Σzp =

Q 0 0

0 . . . 0
0 0 Q

 . (3.2.13)

Measurements, zc

Model lines and vertices, v

Figure 3.5 – Example of lines (black) being fit on a set of measurements (red). A dis-
tribution over the vertices is obtained. The 3-σ confidence ellipses of the measurements
(red) and vertices (black) are shown.

Since we assume that the measurements are generated by a set of underlying
straight lines, we use the unscented transform to obtain a Gaussian distribution
over the vertices using the distribution over the measurements,

N (µv,Σv) = UT(N (zp,Σzp); z′p 7→ v). (3.2.14)

An illustration of lines fitted to measurements are shown in Figure 3.5. The Cartesian
measurements, zc, are shown, as well as its uncertainty, rather than the polar meas-
urements, zp.
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Likelihood Function

The distribution over the vertices allow us to define a function relating to the likeli-
hood that a set of measurements is obtained from a landmark. For each measurement
we calculate an expected range measurement, rexp,i,j , from the jth line, given the
line parameters and angle measurement. By performing an axis rotation, as in Fig-
ure 3.6, where the orientation of the robot is in line with the x-axis, we derive an
equation for this expected measurement. The expected measurement is calculated
as

rexp,i,j = v′j,x −
∆v′j,xv′j,y

∆v′j,y
, (3.2.15)

where
∆v′j =

[
∆v′j,x
∆v′j,y

]
= R(vj − vj+1),

v′j =
[
v′j,x
v′j,y

]
= R(vj − xpos)

(3.2.16)

and
R =

[
cos(θ + φi) sin(θ + φi)
− sin(θ + φi) cos(θ + φi)

]
. (3.2.17)

xpose

zc,i

θ

r ex
p,i
,j

φi

r i
r err

,i,
j

vj

vj+1

v′j

x′pose

v′j+1

z′c,i
rexp,i,j

v′j,x

∆v′j,x ∆
v
′ j,
y

v
′ j,
y

Figure 3.6 – Diagram of the expected measurement and error in measurement. The
expected measurement is calculated by rotating the axis by θ + φi.

The error between the range measurement, ri, and the expected range measure-
ment can be calculated as the difference between the two,

rerr,i,j = ri − rexp,i,j . (3.2.18)

By using the distributions over the line vertices and an underlying point being
measured, the distribution over the error between the point and line can be obtained
with the unscented transform,

p(rerr,i,j) = N (µrerr,i,j ,Σrerr,i,j )

= UT

N

 zp,i
µv,j
µv,j+1

 ,
Q 0 0

0 Σv,j,j Σv,j,j+1
0 Σv,j+1,j Σv,j+1,j+1


 ;

 z′p,ivj
vj+1

 7→ rerr,i,j

 .
(3.2.19)
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The likelihood that the measurement is measured from the line is the likelihood
that this error equals 0,

log (p(zp,i|vj ,vj+1)) = log (p(rerr,i,j = 0))

= −0.5
(

log(2πσ2
rerr,i,j

) +
µrerr,i,j

σ2
rerr,i,j

)
.

(3.2.20)

To calculate the likelihood that the whole set of measurements comes from the
landmark, each measurements has to be associated with a specific line. This is
indicated by the correspondence vector, c =

[
c0 · · · cn−1

]T
, where ci is the index

of the line that the ith measurement is associated with. These correspondences is
assumed to be known in this section.

The likelihood that the set of measurements is measured from the landmark, is
the sum of the all log likelihoods of the individual measurements with their corres-
ponding lines,

log (p(zp|v)) =
∑
i

log (p(rerr,i,ci = 0)) . (3.2.21)

This likelihood is used to compare different models and in the process of associating
a set of measurements with a landmark.

Model Selection

Up to this point we have assumed that the measurement grouping is known, but
to create a landmark model from a set of measurements, we have to decide which
measurements should be grouped together and how many lines the model should
consist of. There are a lot of different possible models for a set of measurements
and we preferably want to use the best one. We need to compare different models
to each other with the following criteria: the data needs to fit the model well and
the model should be as simple as possible.

A good probabilistic approach to this problem is to compare models with this
likelihood equation,

p(zp|M) =
∫
p(zp|θ,M)p(θ|M)dθ. (3.2.22)

M is the model with m lines, without the specific parameters, and θ is the para-
meters of this model.

The integral in Equation 3.2.22 cannot, however, be evaluated exactly. We
therefore make use of the Bayes information criterion (BIC), which approximates
this likelihood with the following equation:

log p(zp|M) ≈ log p(zp|θ,M)− K

2 logN, (3.2.23)

where K = dim(v) and N = dim(zp) [19, p. 282-284]. In this equation, the first
term is the likelihood of the measurements given the model and parameters, where

log p(zp|θ,M) = log p(zp|v) (3.2.24)
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from Equation 3.2.21, and the second term penalises the model complexity.
For n measurements, N = 2n, since each measurement consists of a range and

angle. The dimensionality of θ is more complex since the parameters consist of a
mean vector, µv, and a covariance matrix, Σv. For a model with k vertices, we
calculate the dimensionality as

K = dim(θ)
= dim(µv) + dim(Σv)

= 2k + 2k(2k + 1)
2

= 2k2 + 3k.

(3.2.25)

Since the covariance matrix is symmetrical, only the upper triangular matrix is
considered when calculating its dimensionality.

In this this model selection, the BIC penalises the complexity of the model too
much. Since the penalty term is an approximation, we introduce a scaling factor, α,
to it, which can be adjusted for better results in this application:

log p(zp|M) ≈ log p(zp|v)− αK2 logN. (3.2.26)

This likelihood in Equation 3.2.26 can now be used to compare different models
and parameters with each other. To obtain the best model, all possible models need
to be evaluated and the highest likelihood model should be chosen. This is, however,
computationally intractable, since all possible measurement grouping combinations
has to be considered. We therefore propose another method, which attempts to
choose the best grouping that results in the best model. This method, however,
does not guarantee that the best model is selected, but selects a sufficient model.

The proposed method starts by fitting a line to each pair of adjacent meas-
urements, essentially making each Cartesian measurement a vertex. The initial
grouping vector is γ =

[
(0, 1) (1, 2) · · · (n− 2, n− 1)

]
, resulting in n − 1 lines.

The number of lines are then iteratively reduced by joining two adjacent lines that
results in the lowest decrease in model likelihood. This is done until one line is fitted
to all the measurements, with γ =

[
(0 n− 1)

]
. These n − 1 models are then be

compared using Equation 3.2.26 and the highest likelihood model is chosen.
A visualisation of this method is shown in Figure 3.7, where the model with

four lines is clearly the best model. The model likelihoods of these models are also
shown in Figure 3.8, which are calculated with Equation 3.2.26. Here the maximum
likelihood occur at m = 4 for all values of α except α = 0, since the latter has no
penalty term.

It is not clear from this example that the BIC penalises the model complexity too
much. It can be argued, however, that it is better to have a model with too many
lines, which is still a good definition of the landmark, than to penalise complexity
severely and end up with a model that does not define the landmark well. This
argument can be aided by comparing the models for m = 3 and m = 5 in Figure 3.7.

This method is presented in more detail in Algorithm 1 and Algorithm 2. The
implementation of these algorithms differs in certain aspects from the pseudocode
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m = 35 m = 15 m = 5

m = 4 m = 3 m = 1

Measurements, zc

Model lines and vertices, v

Figure 3.7 – Results of different steps in the proposed model selection algorithm. In
each figure, m is the number of line fitted to the measurements.

to make it more optimal. This is mostly done to avoid recomputing the same
parameters or likelihoods.

The purpose of Algorithm 1 is fit different models to the measurements and
select the best model. Lines 3 to 14 in Algorithm 1 initialises the first model where
all the measurements are connected as vertices and in line 18 the BIC likelihood
of the initial model is calculated. The likelihood in line 10 is the lowest of the
likelihoods of the measurements that are used to fit two lines. These likelihoods are
subtracted from the total model likelihood in line 18, as well as line 28 and 9 in
Algorithm 2. Since these measurements are used to fit two lines, when these two
lines’ likelihoods are added together, the effect of these measurements are considered
twice. Therefore, the lowest of these two likelihoods are subtracted from the joint
likelihood. In Lines 19 to 23 the number of lines is iteratively decreased using
Algorithm 2, which also returns the BIC likelihood for each model. The index of
the model with the maximum BIC likelihood is obtained in line 24 and this model
is returned by the algorithm.

Algorithm 2 is a function used in Algorithm 1, which goes through the process
of decreasing the number of lines in a model. In Lines 3 to 11, each pair of adjacent
lines are joined and the difference between the likelihoods of the new line and the
two separate lines are calculated. In Line 12, the best pair of lines to join is selected
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Figure 3.8 – Model likelihoods of the example in Figure 3.7 with different α values for
Equation 3.2.26.

by choosing the pair that leads to the lowest decrease in likelihood. In the rest of this
algorithm, the parameters of the new model are calculated, along with the likelihoods
and grouping vector needed to perform this line decrease operation iteratively.

The best model selected by this method often have a lot fewer lines than the
number of measurements, which is clear from Figure 3.8. This also makes intuitive
sense, because if we have more measurements on a straight line, we have a better
accuracy of this line.

The method used takes a lot of time to evaluate the first number of iterations,
which seldom generate the best model. We thus want to initialise this model with
fewer lines, which is closer to the optimal number of lines. The idea is to group
consecutive measurements together as long as a straight line can be drawn so that the
Mahalanobis distance between each Cartesian measurement and the closest point on
the line is less than 1. This is done by grouping the first three measurements together
and evaluating the above condition. The grouping is then iteratively extended by
one until the condition does not hold any longer. A new grouping is then started
from the last valid measurement in the previous group. This method is illustrated
in Figure 3.9, where every line goes through all the 1-σ confidence ellipses of the
measurements in its grouping.

To calculate the Mahalanobis distance between a measurement and a line, the
distribution over the equivalent Euclidean distance first needs to be calculated. The
distance between a Cartesian measurement, zc,i, and the closest point on a line,
parameterised by p0 and p1, can be described by the Gaussian distribution, p(di) =
N (µdi

, σ2
di

). The mean and variance can be calculated with the following equations:

µdi
= rT (µzc,i

− p0)

σ2
di

= rTΣzc,ir,
(3.2.27)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. LANDMARK MODELLING 24

Algorithm 1 Model Selection
1: function ModelSelection(p(zp))
2: n := number of measurements
3: γ :=

[
(0, 1) (1, 2) · · · (n− 2, n− 1)

]
. Initial grouping indices

4: p(v) := UT(p(zp); zp 7→ zc) . Create first set of vertices
5: Ψ0 := log(p(zp,0|v0,v1)) . Likelihood of first measurement given first line
6: for i := 0 to n− 3 do . Loop through all initial lines
7: Ψ1 := log(p(zp,i+1|vi,vi+1)) . Likelihood of second zp on line
8: Φi := Ψ0 + Ψ1 . Total log likelihood of measurements on line
9: Ψ0 := log(p(zp,i+1|vi+1,vi+2)) . Likelihood of first zp on next line

10: Φdup,i := min(Ψ0,Ψ1) . Minimum likelihood of zp,i+1 on the two lines
11: end for
12: Ψ1 := log(p(zp,n−1|vn−1,vn)) . Likelihood of last measurement given last

line
13: Φn−2 := Ψ0 + Ψ1 . Total log likelihood of measurements on last line
14: m := n− 1 . Number of lines
15: Mm := p(v) . Initial model with m lines
16: K := 2n2 + 3n
17: N := 2n
18: BICm =

∑
i Φi −

∑
i Φdup,i − αK2 logN . Equation 3.2.26

19: while m > 1 do . Reduce number of lines up to 1
20: m := m− 1
21: p(v),γ,Φ,Φdup,BICm := DecreaseLines(p(zp), p(v),γ,Φ,Φdup)

. Algorithm 2
22: Mm := p(v)
23: end while
24: i := arg max(BIC) . Choose best model with highest BIC likelihood
25: p(v) := Mi

26: return p(v),γ
27: end function

where
r = 1

dp

[
−∆py
∆px

]
(3.2.28)

is a unit vector in the direction normal to the line, with[
∆px
∆py

]
= ∆p = p1 − p0

dp = ||p1 − p0||
(3.2.29)

The Mahalanobis distance, dmhl, is a normalised distance between a vector, x,
and a Gaussian distribution, N (µ,Σ), over the same vector space. It can be calcu-
lated with the following equation:

dmhl =
√

(x− µ)TΣ−1(x− µ). (3.2.30)
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Algorithm 2 Decrease Lines for Model Selection
1: function DecreaseLines(p(zp), p(v),γ,Φ,Φdup)
2: m := current number of lines
3: for i := 0 to m− 2 do . Join each pair of adjacent lines
4: a := γi,0 . Index of first measurement on line
5: b := γi,1 . Index of measurement shared by lines
6: c := γi+1,1 . Index of last measurement on next line
7: p(p0,p1) := UT(p(zp,a:c); zp 7→ p0,p1) . Fit a line to measurements a-c
8: Ψi :=

∑c
j=a log(p(zp,j |p0,p1)) . Equation (3.2.20)

9: Φ′i := Φi + Φi+1 − Φdup,i . Sum of likelihoods - duplicate likelihood
10: ∆Ψi := Φ′i −Ψi . Difference between current and new line likelihoods
11: end for
12: i := arg min(∆Ψ) . Best pair of lines to join: line i and i+ 1
13: m := m− 1
14: γi,1 := γi+1,1
15: remove element i+ 1 from γ
16: p(v) := UT(p(zp),γ; zp 7→ v) . Create new set of vertices
17: Φ :=

[
Φ0 · · · Φi−1 Ψi Φi+2 · · · Φm

]T
. Update line log likelihoods

18: a := γi,0 . Index of first measurement on joined line
19: b := γi,1 . Index of last measurement on joined line
20: if i > 0 then . Update likelihood of left shared measurement
21: Φdup,i−1 := min (log(p(zp,a|vi,vi+1)), log(p(zp,a|vi−1,vi)))
22: end if
23: if i < m− 1 then . Update likelihood of right shared measurement
24: Φdup,i := min (log(p(zp,b|vi,vi+1)), log(p(zp,b|vi+1,vi+2)))
25: end if
26: remove element i+ 1 from Φdup . Shared measurement of two lines joined
27: K := 2m2 + 7m+ 5 . Dimensionality of model parameters: k = m+ 1
28: BIC :=

∑
i Φi −

∑
i Φdup,i − αK2 logN . Equation 3.2.26

29: return p(v),γ,Φ,Φdup,BIC
30: end function

The distribution over the distance between a measurement and a line is given by
Equation 3.2.27. We want to calculate the Mahalanobis distance between 0 and
this distribution, since for measurement to originate from the line this true distance
should be zero. The resulting Mahalanobis distance for this scalar can thus be
calculated as

dmhl,i =

√√√√µ2
di

σ2
di

. (3.2.31)

The algorithm to find an initial grouping is presented in Algorithm 3. In Lines 5
and 6, the indices of the first group of measurements are initialised. The indices of
the current group are maintained through the algorithm. Lines 7 to 21 loop through
all the measurements and fit a line to the measurements in the current group in
Line 8. In Lines 9 to 13 the Mahalanobis distance between the measurements in the
group and the fitted line are calculated. If all these distances fall within a threshold,
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Measurements, zc

Initial model lines

Figure 3.9 – Example of method to get an initial model. All the lines (black) goes
through the 1-σ confidence ellipses of the measurements (red) of its grouping.

the group is extended and the next measurement is tested. If all the Mahalanobis
distances do not fall within the threshold, the group is ended by adding its indices,
without the latest measurement, to the grouping vector in Line 17 and a new group
is started containing the latest two measurement. Once the loop is finished, the
indices of the last group is added to the grouping vector in Line 22 and the initial
model parameters are calculated in Line 23.

Once the initial model is obtained, the initial likelihoods can be computed for
this model using Equation 3.2.21. Lines 3 to 14 in Algorithm 1 can now be replaced
by the parameters of this new initial model. This method aims to reduce the number
of loops of Line 19 to 23 in Algorithm 1 significantly, since the initial number of lines
can be a lot lower than the number of measurements.

Unknown Lines

The landmark model created thus far uses the Lidar measurements generated from
the landmark object, which models object boundaries. By investigating occlusion
boundaries around the object, we can reason about expected measurements around
the object from regions that are not currently observed. These occlusion boundaries
are obtained using the measurements adjacent to the ones on the object. We aim
to use this information to extend the model of the landmark. We still assume the
Lidar pose is known.

The lines in the landmark model developed so far are fitted to the measurements
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Algorithm 3 Initialise Model Selection Algorithm
1: function InitialModel(p(zp))
2: n := number of measurements
3: γ := [] . Initialise empty grouping vector
4: p(zc) := UT(p(zp); zp 7→ zc) . Calculate the Cartesian measurements
5: a := 0 . Index of first measurement in current group
6: b := 2 . Index of last measurement in current group
7: while b < n do
8: p0,p1 := f(µzc,a:b) : zc 7→ p0,p1 . Fit a line to measurements a-b

. Equation 3.2.3
9: for i := a to b do . Loop through all measurements in group

10: µdi
= rT (µzc,i

− p0)
11: σ2

di
= rTΣzc,ir

12: dmhl,i :=
√

µ2
di

σ2
di

. Calculate Mahalanobis distance

13: end for
14: if all dmhl,i ≤ 1 for i = [a,b] then . Measurements form straight line
15: b := b+ 1 . Increase the group size
16: else . Measurements don’t form straight line
17: append (a, b− 1) to γ . Add previous valid group’s indices
18: a := b− 1 . Start a new group
19: b := a+ 2 . Initialise new group with 3 measurements
20: end if
21: end while
22: append (a, n− 1) to γ . Add final group’s indices
23: p(v) := UT(p(zp),γ; zp 7→ v) . Create initial model
24: return p(v),γ
25: end function

of the landmark. These are boundaries between empty space and occupied space.
We now want to use the measurements adjacent to the landmark to define lines
that are boundaries between open space and unknown space, which we refer to as
unknown lines. These lines could aid in detecting and updating a landmark when
new segments of it are observed.

The adjacent measurements referred to here are the measurements to the imme-
diate left, zl =

[
rl φl

]T
, and right, zr =

[
rr φr

]T
, of the measurements on the

landmark, where φl = φ0 + φres and φr = φn−1 − φres. The angle φres is the angular
resolution of the Lidar.

To create these lines, we have to know why no further measurements are obtained
from the landmark, so that we can reason about where the empty space and unknown
space are. We identify three reasons that the measurements of a landmark has ended.
The first is that the edge of the landmark is reached and the rest of the landmark
is hidden behind the part of the landmark that is visible to the Lidar. In this
case we expect the measurement adjacent to the landmark to be further than the
measurement on the landmark, or that there will be no measurement due to the
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Lidar sensor’s maximum range, rmax. The second reason is that the rest of the
landmark is occluded by another object, in which case the adjacent measurement is
closer than the measurement on the landmark. The last is that the landmark is at
the edge of the Lidar sensor’s field-of-view (FOV), in which case the measurement on
the landmark is at the Lidar sensor’s minimum or maximum angle. An illustration
of these occlusions and FOV boundaries is shown in Figure 3.10.

(a) (b)

Measurements

Laser beams

Landmark lines

Maximum range boundary

Objects

Unobserved area

Figure 3.10 – Illustration of landmark measurements, showing occlusions, maximum
range boundaries and FOV boundaries. The red lines show the laser beams in open
space and the white areas indicate unobserved areas. In (a) the measurements on the
left of the star-like landmark show that the rest of the landmark is hidden behind the
observed landmark and the measurements on the right shows that part of the star-like
landmark is occluded by another object. In (b) the star-like landmark is on the left
edge of the Lidar’s FOV.

The unknown lines will form part of the landmark model and the creation thereof
is now explained. These unknown lines will add a number of vertices to the left, vl,
and to the right, vr, of the landmark model. The creation of the unknown lines at
the two sides of the landmark model is explained together for simplicity.

In this explanation, we assume that maximum range measurements are filtered
out and in such a case the sensor returns no measurement. If there is a measurement
adjacent to the landmark measurements, it either means there is an object in front
of the landmark, as seen on the right side measurements of Figure 3.10(a), or behind
the landmark, as seen on the right side measurements of Figure 3.10(b). In both
cases we want to create an unknown line from the edge of the landmark toward
this adjacent measurement, zp,l or zp,r for the left and right adjacent measurement
respectively, as seen in Figure 3.11(a) and (b) on the right side measurements.

If there are no measurements adjacent to the landmark measurements, it either
means that the edge of the landmark, from the Lidar’s perspective, is reached (Fig-
ure 3.10(a)) or that the landmark is on the edge of the Lidar’s FOV (Figure 3.10(b)).
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For the first case, we want to add an unknown line from the edge of the landmark to-
ward the maximum range of the Lidar and another one from there on the maximum
range boundary away from the landmark to indicate that we have no information
about the region further away than the maximum range, as seen in Figure 3.11(a).
We do this by adding two artificial measurements to the left or right,

zp,l =
[
rmax φ0 + 5φres rmax φ0 + φres

]T
zp,r =

[
rmax φn−1 − φres rmax φn−1 − 5φres

]T
,

(3.2.32)

where rmax is the maximum range of the Lidar and φres is the angular resolution
of the Lidar. The second added artificial measurement is chosen at 5 angular res-
olutions away on the maximum range boundary to approximate this boundary as a
straight line.

For the second case, if the last measurement of the landmark is on the edge of
the Lidar’s FOV, we want to create an unknown line from the edge of the landmark
toward the Lidar’s position, as seen in Figure 3.11(b) on the left side measurements.
We do this by adding an artificial zero range measurement to the left or right,

zp,l =
[
0 φ0 + φres

]T
zp,r =

[
0 φn−1 − φres

]T
.

(3.2.33)

(a) (b)

Laser beams

Landmark lines

Unknown lines

Objects

Figure 3.11 – Unknown lines added to the landmark model. The unknown lines are
added to the landmark models of the example in Figure 3.10. The means of the unknown
lines are displayed by the black dotted lines.

The unknown lines are created by drawing a line from the landmark’s edge
toward the adjacent measurements or artificial measurements in their Cartesian
coordinates in the inertial reference frame. This is illustrated in Figure 3.11, for
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the example in Figure 3.10. We thus transform the distributions over the adjacent
polar measurements to distributions over the Cartesian measurements and set them
as the distributions of the left and right vertices,

p(vl) = p(zc,l) = UT(N (zp,l,Σp,l); zp 7→ zc)
p(vr) = p(zc,r) = UT(N (zp,r,Σp,r); zp 7→ zc),

(3.2.34)

where Σp,l and Σp,r are populated with Q as in Equation 3.2.13. Once the distri-
butions over these vertices are calculated, they are added to the landmark model,

p(v′) = N (µ′v,Σ′v) = N


µv,lµv
µv,r

 ,
Σv,l 0 0

0 Σv 0
0 0 Σv,r


 , (3.2.35)

where we assume that the existing vertices and added vertices are statistically inde-
pendent. From now on, we will use v to refer to the model with the unknown lines
added, omitting the accent of Equation 3.2.35.

After the unknown lines are added to the model, we create a vector, u =[
u0 · · · um−1

]T
, where ui indicates whether the ith line is an object boundary

or an unknown boundary. A value of ui = 1 is given to each unknown line and
ui = 0 is given to each object boundary.

The idea of the unknown boundary is also extended to the already existing lines
of the landmark, which are fitted to the measurements. This is done to account for
the uncertainty of what an object looks like between measurements, especially the
chance that parts in the middle of the landmark could be occluded by the landmark
itself, which is illustrated in Figure 3.12. Each element in the vector, u, now denotes
the probability that the line is an unknown boundary.

Measurements

Laser beams

Landmark Lines

Object

Figure 3.12 – Illustration of a landmark occluding parts of itself. The third line of the
landmark model is not a line on the object, but rather a boundary between observed
and unobserved areas.
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We approximate this probability by evaluating the average distance on a line,
di, between the measurements it is fitted to. This probability is approximated with
a piecewise linear function,

ui =


0; di ≤ εl
di−εl
εu−εl ; εl < di < εu

1; di ≥ εu
, (3.2.36)

where di is the length of the line divided by the number of measurements the line is
fitted to, minus one,

di =

∣∣∣∣∣∣µv,i+1 − µv,i
∣∣∣∣∣∣

γi,1 − γi,0
. (3.2.37)

The indices represented by the grouping vector, γ, is used to determine the number
of measurements a line is fitted to. εl and εu in Equation 3.2.36 are the lower and
upper boundaries of the piecewise linear function. These values are chosen as εl = 0.2
and εu = 0.8, but can be adapted for different applications according to the Lidar
sensor’s angular resolution. With this method we assume that if the measurements
are close together, the fitted line is an object boundary, but if they are too far apart
the fitted line is an unknown boundary and the region behind the line is unknown.

Since an unknown line is not an object boundary, the likelihood function for
measurements corresponding to this line is different than the likelihood function for
object lines. To derive this likelihood function, we first look at what we expect
the distribution of Lidar measurements would look like with no prior information of
landmarks in the environment.

The Lidar sensor measures the closest object in a certain direction, therefore it
is more likely to have a closer measurement than a farther one. Having no prior
information about the environment, we assume that objects in the environment are
distributed uniformly. The exponential distribution models the distance to the first
object in a uniformly distributed environment, therefore we can approximate the
prior distribution over global Lidar range measurements as an exponential distribu-
tion,

p(r) = λ exp(−λr)u(r)u(rmax − r) + exp(−λrmax)δ(r − rmax), (3.2.38)

where λ relates to the density of objects in the environment. The notation, u(x), is
used for the step function. This distribution is cut off at rmax due to the fact that no
measurement is greater than the Lidar’s maximum range. A Dirac delta function,
δ(x), is added at the maximum range, with a weight to normalise the distribution.
This impulse is due to the fact that the Lidar sensor returns an rmax measurement
if nothing is measured in that direction. This function is shown in Figure 3.13.

In Equation 3.2.38, λ is a parameter of the probability density function. This
parameter needs to be set to use this equation in likelihood estimation. We choose
to estimate this parameter with maximum likelihood estimation from the measure-
ments obtained from the environment. The density parameter can be estimated as
the number of measurements divided by the sum of all the measurements, which is
the inverse of the mean. For the exponential distribution which is cut off at rmax,
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Figure 3.13 – Graph of the exponential distribution with a cut-off at the maximum
range measurement, where the range on the x-axis is in metres (λ = 0.1 and rmax = 30
m).

the number of rmax measurements also have an effect, which leads to the following
equation:

λ = nz
nzr + nrrmax

. (3.2.39)

where nz is the number of measurements not having a maximum range measurement
(an actual point measured), nr is the number of measurements with a maximum
range measurement (nothing measured) and r is the mean of the actual measure-
ments.

Since the unknown lines are boundaries between empty and unobserved space,
we can approximate the distribution of measurements from the region behind an
unknown line with an exponential distribution. The zero point of this distribution
is on the unknown line, since we know the area in front of the line is empty space.

These lines are, however, parameterised by two vertices with Gaussian distrib-
uted uncertainty over them and the measurements also have Gaussian distributed
uncertainty over them. The distribution over the error between a measurement
and the point that generated the measurement, N

(
µrerr , σ

2
err
)
, can be obtained with

Equation 3.2.19, which uses the unscented transform to linearise this error. The
likelihood function associated with these lines is a convolution between the Gaus-
sian distribution over this error and the exponential distribution of the unknown
line. However, we assume that the maximum range, rmax, used in Equation 3.2.38 is
far enough to have a trivial effect on the probability density function. We therefore
model the distribution over measurements associated with an unknown line as a
general exponential distribution without the cutoff and impulse at rmax. The con-
volution between the Gaussian distribution and the general exponential distribution
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is calculated here:

p(x) = 1√
2πσ2

exp
(
− x2

2σ2

)
∗ λ exp(−λx)u(x)

=
∫ ∞

0

1√
2πσ2

exp
(
−(x− τ)2

2σ2

)
λ exp(−λτ)dτ

= λ√
2πσ2

exp
(
−x

2 −
(
x− λσ2)2
2σ2

)∫ ∞
0

exp
(
−
(
τ −

(
x− λσ2))2
2σ2

)
dτ

= λ√
2πσ2

exp
(
−λx+ λ2σ2

2

)√πσ2

2 erf
(
−τ −

(
x− λσ2)
2σ2

)τ=∞

τ=0

=λ

2 exp
(
−λx+ λ2σ2

2

)(
1− erf

(
−x− λσ

2
√

2σ2

))
,

(3.2.40)
where erf(x) is the error function, defined as

erf(x) = 1√
π

∫ x

−x
exp

(
−t2

)
dt. (3.2.41)

The error function can be approximated with numerical methods and there exists
implementations of it for many programming languages. The unknown distribution
along with the exponential and Gaussian distributions are shown in Figure 3.14.
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Figure 3.14 – Graph of the unknown distribution (black), which is a convolution of
the exponential (blue) and Gaussian (red) distributions (λ = 0.4 and σ2 = 1).

For the likelihood of a measurement obtained from an unknown line, we substi-
tute x := µrerr,i,j and σ := σrerr,i,j into Equation 3.2.40. The likelihood is then given
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by

p(zp,i|vj ,vj+1, uj = 1) =λ

2 exp
(
−λµrerr,i,j +

λ2σ2
rerr,i,j

2

)

×

1− erf

−µrerr,i,j − λσ2
rerr,i,j√

2σ2
rerr,i,j

 . (3.2.42)

For the case where the type of boundary a line describes is uncertain (0 < uj <
1), the likelihood for a measurement corresponding to this line is obtained using the
total probability, which takes into account the probability of the line’s state and the
probability density functions for each state, given by Equation 3.2.20 and 3.2.42.
The likelihood function associated with a general line in the model is thus

p(zp,i|vj ,vj+1) = (1− uj)p(zp,i|vj ,vj+1, uj = 0) + ujp(zp,i|vj ,vj+1, uj = 1).
(3.2.43)

These unknown lines can be used to obtain a likelihood that a set of measure-
ments are from a certain landmark, even if parts of the landmark measured now
have not been observed before. It can also be used to find out in what areas the
landmark model can be extended by using new measurements.

Conditional Landmark Modelling

Throughout this section we assume that the pose of the Lidar is known, which
means that the distribution over the vertices is actually a conditional distribution,
given the Lidar pose, p(v|xpose). To perform SLAM with these landmark models,
which is discussed in Chapter 4, we need to take the robot pose uncertainty into
account. We still assume a known pose for now and discuss obtaining the parameters
of this conditional distribution given the known pose. This allows us to obtain a
joint distribution over the vertices and pose once the pose uncertainty is taken into
account in Chapter 4.

This conditional Gaussian distribution can be approximated by a noisy linear
relationship between xpose and v, given by

v = Avxxpose + bvx + n, n ∼ N (0,Σv), (3.2.44)

where the noise covariance is the uncertainty over the vertices from the modelling
process. The linear relationship between xpose and each vertex, vi can similarly be
written as

vi = Avx,ixpose + bvx,i + ni, ni ∼ N (0,Σv,i,i). (3.2.45)
To obtain this linear relationship, we need to first obtain the actual relationship

between xpose and vi. We can define the vertices in polar coordinates in the Lidar’s
reference frame, with

vp,i =
[
vr,i
vφ,i

]
=
[

||vi − xpos||
arctan

(
vy,i−y
vx,i−x

)
− θ

]
, (3.2.46)

which is the inverse function of Equation 3.2.1 and xpos =
[
x y

]T
is the position of

the Lidar. The vertices in Cartesian coordinates in the inertial reference frame can
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then be expressed as a function of xpose and vp,i, given by Equation 3.2.1, which we
rewrite here for vi,

vi = xpos + vr,i

[
cos(θ + vφ,i)
sin(θ + vφ,i)

]
. (3.2.47)

Linearising Equation 3.2.47 leads to the linear relationship in Equation 3.2.45.
We choose to use the Taylor series expansion in this linearisation, rather than the un-
scented transform, since we assume xpose is known and we do not use the distribution
over xpose in the modelling process. Avx,i is thus the Jacobian of Equation 3.2.47,
with respect to xpose, which we can calculate as

Avx,i =
[
1 0 −vr,i sin(θ + vφ,i)
0 1 vr,i cos(θ + vφ,i)

]
. (3.2.48)

Since we have a distribution over vi, we use the mean thereof to calculate vp,i using
Equation 3.2.46.

Avx can now be populated with all its elements, Avx =
[
AT
vx,0 · · · AT

vx,m

]T
,

and bvx can be calculated by substituting the mean of v and n into Equation 3.2.44,

bvx = µv −Avxxpose. (3.2.49)

The parameters of this relationship, Avx, bvx and Σv, are used in the SLAM al-
gorithm in Chapter 4.

3.2.2 Landmark Detection

When new measurements of the environment are taken, an important aspect in
landmark-based SLAM is to know whether these measurements come from a land-
mark already modelled or if it is part of a previously unobserved part of the envir-
onment. We now discuss how to decide whether a set of measurements comes from
a landmark or not, given a known or estimated Lidar pose.

We have already discussed the likelihood that a set of measurements comes from
a landmark, but this likelihood requires that each measurement is associated with a
line of the landmark model, denoted by a correspondence vector, c. For vertices and
measurements with no uncertainty, we can associate a measurement by extending the
line between the Lidar and the measurement and finding the first line of the landmark
it intersects with. This is done by transforming the vertices to polar coordinates
in the Lidar’s reference frame, vp =

[
vTp,0 · · · vTp,m

]T
, using Equation 3.2.46, and

finding the two adjacent vertices of which the angles are respectively greater and
smaller than the measurement angle. Each element of the correspondence vector
can then be calculated accordingly,

ci = j if vφ,j+1 ≤ φi ≤ vφ,j . (3.2.50)

If multiple lines fit this criteria, the closest one is selected for correspondence, since
the others are obstructed by the closest line.

Assuming that we have noiseless measurements and no uncertainty over the
vertices could lead to bad associations. The uncertainty therefore needs to be taken
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into account when making these associations. We thus rather find the distribution
over the vertices’ polar coordinates,

p(vp,j) = N (µv,p,j ,Σv,p,j) = UT(p(v);vj 7→ vp,j). (3.2.51)

By adding the measurement noise to a polar vertex, vp,j , we obtain the distribution
of the point where we expect the measurement of each vertex to come from,

p(v′p,j) = N (µ′v,p,j ,Σ′v,p,j) = N (µv,p,j ,Σv,p,j +Q), (3.2.52)

where

µ′v,p,j =
[
µv,r,j
µv,φ,j

]
and Σ′v,p,j =

[
σ′v,r,j

2 ρjσ
′
v,r,jσ

′
v,φ,j

ρjσ
′
v,r,jσ

′
v,φ,j σ′v,φ,j

2

]
. (3.2.53)

With these expected vertex measurements, a list of all lines a measurement possibly
comes from, ςi, is constructed. This is done by evaluating if the measurement angle
is between the two vertices’ expected angle measurement’s 3-σ bound,

j ∈ ςi if µv,φ,j+1 − 3σ′v,φ,j+1 ≤ φi ≤ µv,φ,j + 3σ′v,φ,j . (3.2.54)

The likelihoods of each line in this list are evaluated with Equation 3.2.43 and the
association is made with the line with the highest likelihood,

ci = arg max
j
p(zp,i|vj ,vj+1) for j ∈ ςi. (3.2.55)

An example of associations made to lines is shown in Figure 3.15.
If a measurement is not associated with any line using Equation 3.2.55, it is

automatically associated with the first or last line of the model, depending if it is to
the left or right of the model. This is done to ensure that measurements that partly
fits the model well are rejected if the rest of the measurements do not fit the model.

With these associations, we can reason whether a set of measurements come
from a specific landmark. The likelihood function is, however, not a good measure
to reason whether a set of measurements come from a landmark, because it is not
a normalised function and it depends heavily on the number of measurements and
the uncertainty over the vertices. It is therefore very difficult to say what a good
likelihood value is for a set of measurements. We therefore evaluate the Mahalan-
obis distance of the error between measurements and lines to decide whether the
measurements should be associated with a landmark.

The Mahalanobis distance is already defined in Equation 3.2.30 for Gaussian
distributions, but the measurements associated with the unknown lines in the land-
mark model are, however, not Gaussian distributed. We therefore need to define a
generalised Mahalanobis distance equivalent, dGM, for non-Gaussian distributions.
A method for this generalisation has been proposed by Martos et al. [20], where

d2
GM = log

(
p(xmax)
p(x)

)
. (3.2.56)

Here xmax is the mode of p and can be calculated by finding the derivative of p(x)
and setting it to zero,

p(xmax) = max
x

p(x) where dp(x)
dx

∣∣∣∣
x=xmax

= 0. (3.2.57)
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(a) (b)

Figure 3.15 – Example of measurements associated with lines. The different colours
indicate measurements associated with different lines. All the measurements of which
the laser beam goes through the 3-σ confidence ellipse of the vertices are evaluated with
the different lines and associated with the one with the highest likelihood.

If the distribution over x is a Gaussian distribution, this equation simplifies to the
Mahalanobis distance of Equation 3.2.30.

We want to get the generalised Mahalanobis distance for the distribution in
Equation 3.2.43 that we rewrite here in terms of x:

p(x) =(1− u) 1√
2πσ2

exp
(
− x2

2σ2

)

+ u
λ

2 exp
(
λ2σ2

2 − λx
)(

1− erf
(
−x− λσ

2
√

2σ2

))
.

(3.2.58)

The derivative of this function can be calculated as

dp(x)
dx =(1− u) x

σ2
√

2πσ2
exp

(
− x2

2σ2

)

+ uλ exp
(
λ2σ2

2 − λx
)

×
[

1√
2πσ2

exp
(
−
(
x− λσ2)2

2σ2

)
−
(

1− erf
(
−x− λσ

2
√

2σ2

))]
.

(3.2.59)

The zero-crossing of this function cannot be calculated analytically, thus we rather
approximate it with a numerical method. Since Equation 3.2.58 has only one global
maximum with no minima, Equation 3.2.59 only has one zero-crossing. The zero-
crossing is always at x ≥ 0 due to the properties of the exponential distribution.
The numerical method we use performs a binary search between x = 0 and x = 5σ
if the function is greater than zero at the upper bound. If the function at the upper
bound is less than zero, this value is used as the lower bound and the upper bound
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is doubled. This binary search process is repeated until the function at the upper
and lower bounds are sufficiently close to zero.

The Mahalanobis distance can now be found for each measurement using the
error between the measurement and its corresponding line, or p(eerr), calculated
with Equation 3.2.19, substituting it into Equation 3.2.58 and calculating dGM with
Equation 3.2.56. The square of the Mahalanobis distances of the error between
the set of measurements and the landmark lines are expected to be chi-squared
distributed with a mean of 1 and variance of 2 [21]. For the set of Mahalanobis
distances, we calculate the mean,

µGM = 1
n

∑
i

d2
GM,i (3.2.60)

and variance
σ2

GM = 1
n

∑
i

(
d2

GM,i − µGM
)2
, (3.2.61)

where dGM,i is the Mahalanobis distance of the ith measurement. These mean and
variance values are evaluated and if they fall below satisfactory thresholds, µGM ≤
µthres and σ2

GM ≤ σ2
thres, we assume that the measurements come from the landmark.

We choose these thresholds as µthres = 3 and σ2
thres = 3, which is not very strict on

associating a set of measurements to a landmark. These choices are made especially
because the Lidar pose is assumed to be known in this section, but in the complete
SLAM application, this pose will only be an estimate of the true pose, which will
have uncertainty over it.

3.2.3 Landmark Update

Once a new set of measurements is associated with a landmark, it can be used to
update the landmark model. These measurements are used to update the observed
part of the landmark, as well as to obtain new information about where unknown
lines should be. In this subsection we still assume that the Lidar’s pose for the new
measurements as well as the pose at the time of model creation is known.

Observed Lines Update

To update the belief of the existing vertices, a new observed model is first created
using only the new measurements, zt. This observed model is then combined with
the existing model to create the updated model. The observed model should have
lines and vertices similar to the existing model, therefore the observed model is
not created by using the model selection algorithm, but rather by finding the line
associations of each measurement, c, described in Section 3.2.2, and fitting lines to
the measurements associated with the same line. The distribution over the vertices
between these lines, p(v|zt), is then calculated. The existing model distribution is
also written as p(v|z0:t−1), where z0:t−1 is all the previous measurements with which
the model is created.

We assume that different measurements are conditionally independent given v,

p(z0:t−1, zt|v) = p(z0:t−1|v)p(zt|v), (3.2.62)
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and that the prior distribution over v, given no measurements, is uninformative and
flat. The distribution over the v, given measurements,

p(v|z) = p(z|v)p(v)
p(z) , (3.2.63)

is proportional to p(z|v), since the prior distribution, p(v), is flat and the meas-
urement distribution, p(z), is a constant for a given measurement. Therefore, the
updated distribution over the vertices is calculated by multiplying the prior distri-
bution with the observed distribution,

p(v|zt, z0:t−1) = η p(v|z0:t−1)p(v|zt), (3.2.64)

where η is a normalising constant.
Here we assume that the new measurements observe the same part of the land-

mark that is already modelled. The algorithm should, however, have the ability to
update the landmark if some parts are not seen again and to extend the model when
new parts of the landmark are observed, as in Figure 3.16(a) and (b).

If we extend the model with new lines, it means that the existing model has
no information about the new vertices. Similarly, if we do not observe certain lines
with the new measurements, the new observed distribution has no information about
their vertices.

The mean and covariance parameterisation used for the Gaussian distribution
does not allow for a completely unknown or unobserved element to be parameterised,
since it requires that the corresponding diagonal element in the covariance matrix
is infinity. We therefore use the canonical parameterisation, which is parameterised
by an information matrix, K, and information vector, h, in the landmark updating
step. The information matrix is the inverse of the covariance matrix,

K = Σ−1, (3.2.65)

and the information vector is the covariance inverse multiplied by the mean vector,

h = Σ−1µ, (3.2.66)

so that the canonical form and the normal form represents the same distribution,

C(K,h) = N (µ,Σ). (3.2.67)

The canonical form allows an element of a vector of random variables to have no
information over it. The multiplication of distributions also simplifies to the addition
of the canonical parameters. Details about operations in the canonical form can be
found in Koller et al. [22, ch. 14]

The prior belief over the vertices can now be transformed to the canonical form,

p(v|z0:t−1) = C(Kv,hv) = C(Σ−1
v ,Σ−1

v µv), (3.2.68)

using the relationship in Equation 3.2.65 and Equation 3.2.66. The observed vertices
are also parameterised in the canonical form, p(v|zt) = C(Kv,obs,hv,obs).
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(a) (b)

Measurements

Object lines

Unknown lines

(c)

Figure 3.16 – Illustration of new measurements of an existing landmark. In (a) and
(b), areas where unknown lines are defined are observed with new measurements. In
(a), the entire region behind the unknown line is observed, but in (b), only a part of
this region is observed and new unknown lines should be added as well. In (c), a part
of the one line is observed, but its one vertex is not observed.

To update the belief over the vertices, we have to reason about which vertices are
observed with the new measurements and where the landmark should be extended
with new observed parts. An illustration of new measurements that observe new
parts of the environment is shown in Figure 3.16. First we obtain the associations, c,
between the measurements and lines and check which lines are observed, considering
a line observed if it has at least two measurements associated with it. For an
observed object boundary, we fit a single line to all the measurements associated
with it, but for an observed unknown boundary, the model selection algorithm,
Algorithm 1, is executed with the measurements associated with it. This is done
because measurements associated with an unknown line indicates that there is new
information about what the landmark looks like in that region. Here we assume
that line i is an unknown boundary if ui > 0.5 and an object boundary otherwise.

If an unknown line is considered observed, it does not necessarily mean that
both of the vertices of the unknown line are observed, as seen in Figure 3.16(b). We
therefore check if the observed lines are likely to terminate at the vertices of the
unknown line, or if the measurements observe only part of the unknown region. An
example of this is shown in Figure 3.17, where the new fitted lines in (a) models
the entire region behind the unknown line and the two vertices at the ends of the
fitted lines are the observed vertices of the unknown line. In (b), however, only a
part of the region behind the unknown line is observed and the new fitted line’s
vertices are not the vertices of the unknown line. Therefore both of these vertices
should be added as new vertices in the model. To check if the observed vertices are
the same as the existing unknown line’s vertices, the Mahalanobis distances of the
perpendicular error between the vertices of the unknown line and the first and last
observed line are evaluated.

The perpendicular error between the vertex, vi =
[
vx,i vy,i

]T
, and line, para-

meterised by v′0 and v′1, can be calculated with

e = (vx,i − v′x,0) sinψ − (vy,i − v′y,0) cosψ, (3.2.69)
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(a)

Object lines

Unknown lines

New observed lines fitted

(b)

Figure 3.17 – Illustration of new lines observed in unknown regions. The new lines
shown here is the lines fitted to the measurements associated to the unknown lines in
Figure 3.16(a) and (b). In (a), the entire region behind the unknown line is observed,
but in (b) only part of it is observed.

where
ψ = arctan

(
v′y,1 − v′y,0
v′x,1 − v′x,0

)
. (3.2.70)

This equation is similar to Equation A.0.3 and can be derived from Figure A.1. The
distribution over this error is found using the unscented transform,

N (µe, σ2
e) = UT

N

µv,iµ′v,0
µ′v,1

 ,
Σv,j,j 0 0

0 Σ′v,0,0 Σ′v,0,1
0 Σ′v,1,0 Σ′v,1,1


 ;

viv′0
v′1

 7→ e

 , (3.2.71)

and the Mahalanobis distance of the error can be calculated as,

emhl = µ2
e

σ2
e

. (3.2.72)

If emhl ≤ 3, it is considered that the line is likely to terminate at the vertex and the
vertex is considered observed. If the vertex is not observed, as in Figure 3.16(b), an
unobserved unknown line is created between the vertex and the observed lines.

To fit the observed model lines, we create an observed lines encoding list, ζi,
for each existing line. For each existing line, this list contains m′ values, where m′
is the number of observed lines in the existing line’s region and can only be larger
than 1 if the existing line is an unknown line. If the existing line is an unknown line,
it can be replaced by multiple new lines. Each value in this list, indicates whether
the corresponding line in the observed model is observed or not. We also obtain
the grouping vector, γ, which indicates the indices of measurements that the new
observed lines are fitted to. This process is presented in Algorithm 4.

Algorithm 4 loops through all the lines of the existing model. In Line 4 the
number of associations is evaluated to assess if the line is observed. If it is not
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Algorithm 4 Observed Lines Algorithm
1: function ObservedLines(p(v), p(zp), c)
2: γ = []
3: for i := 0 to m− 1 do . loop through all existing lines
4: if associations to ith line ≥ 2 then . line considered observed
5: a, b := 1st and last index of measurements associated with line
6: if ui ≤ 0.5 then . if existing line is an object boundary
7: ζi := (1) . single line fitted
8: Append (a, b) to γ
9: else . if existing line is an unknown boundary

10: µ′v,Σ′v,γ ′ = ModelSelection(p(zp,a:b)) . Algorithm 1
11: ζi := (1, · · · , 1) of length m′ . m′ is number of lines in µ′v
12: if Line p(v′0,v′1) terminate at vertex p(vi) then
13: Insert 0 in front of ζi . add unknown line left
14: Insert (0, 0) in front of γ ′
15: end if
16: if Line p(v′m′ ,v′m′+1) terminate at vertex p(vi+1) then
17: Append 0 to ζi . add unknown line right
18: Append (0, 0) to γ ′
19: end if
20: Append γ ′ to γ
21: end if
22: else . unobserved line
23: ζi := (0)
24: Append (0, 0) to γ
25: end if
26: end for
27: return ζ,γ
28: end function

observed, ζi is set to zero and placeholder values are added to the grouping vector,
γ, in Lines 23 and 24. If the line is observed, it is determined if the lines is an
object or unknown boundary in Line 6. If the line is an object boundary, ζi is set to
zero and the indices of the measurement associated with the line are added to γ in
Lines 7 and 8. If the line is an unknown boundary, however, a new partial model is
created from the measurements associated with the line in Line 10. In Line 12 and
16 we determine if the two ends of the new partial model are existing vertices or
new vertices. The grouping vector of the partial model is then added to γ and ζi is
populated with ones for all fitted lines and zeros where an unknown line is created
between the existing vertices and the new vertices.

Once the observed line encoding, ζ, and the grouping vector, γ, are obtained, new
lines are fitted to the measurements to obtain the observed vertices. There could be
lines in the middle of the model that are not observed with the new measurements, as
shown in Figure 3.16(c). Therefore, the vertices of the observed model are obtained
by fitting new lines to sets of adjacent observed lines, where all the lines in the set
are observed. Figure 3.16(a) has only one set of adjacent observed lines, while (b)
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and (c) each has two sets of adjacent observed lines, since there is an unobserved
line in the middle of the model. The distribution over the vertices of each set are
then transformed to the canonical form and the canonical parameters are added to
the corresponding part of the full canonical parameters of the complete observed
model. The canonical parameterisation is useful here, since the vertices that are not
observed, contain zeros in the information matrix and vector.

Measurements

Object lines

Unknown lines

Figure 3.18 – Zoomed in figure of Figure 3.16(c). The line shown is only partly ob-
served by the measurements, where the lower part of this line is not observed. Therefore,
no information about the lower vertex should be added in the observed model.

The two end vertices of each set of adjacent observed lines are, however, not
necessarily observed, as shown in Figure 3.16(c) and Figure 3.18. It is possible that
part of a line is observed, but its vertex is occluded by another object or another
part of the landmark, or that the end of the Lidar’s FOV is reached. Therefore, for
each set of adjacent observed lines, we check if the end vertices are occluded and if
they are, the vertex is removed from the observed distribution. This check is done
in the same manner that we check where the end unknown lines of a new landmark
should be, visualised by Figure 3.10. If the adjacent measurement is closer to the
Lidar than the measurement on the line or the measurement is at the Lidar’s FOV
limit, the vertex is considered occluded. In Figure 3.18, only the top part of the
line is observed and the bottom part is occluded by another part of the landmark.
Therefore only new information about the vertex at the top should be added in the
observed model and no information about the vertex at the bottom should be added.

The method of finding the distribution over the vertices in the canonical form is
shown in Algorithm 5. Here, a and b denote the indices of an observed set of lines,
which are initialised as zeros in Line 3. Lines 7 to 28 loop through all the existing
lines and Lines 8 to 26 loop through the observed line encoding ζi of the existing line.
Line 9 determines if this is the first line in an observed set and Line 11 determines
if the current line is unobserved. If the line is observed, the observed set index, b, is
increased and the loop continues. If the current line is not observed, the observed
set is ended and lines are fit to all the measurements of the current observed set
in Line 12. Lines 13 and 18 determine if the left and right vertices of this set are
really observed and removes these vertices if they are not observed. In Line 22 the
canonical parameters of the vertices of the observed set is added to the appropriate
part of the full canonical parameters. In Line 23 the unknown probabilities of the
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Algorithm 5 Observed Parameters Algorithm
1: function ObservedParameters(p(zp), ζ,γ)
2: ζm := (0) . add artificial unobserved line
3: a := b := 0 . start and end indices of observed set
4: k := dim(γ) + 1 . number of posterior vertices
5: C (Kv,obs,hv,obs) = C

(
0[2k×2k],0[2k]

)
. initialise zero information

6: uobs =
[
1 · · · 1

]T
of length k − 1

7: for i := 0 to m do . loop through existing lines and ζm
8: for j := 0 to length(ζi) do
9: if ζi,j = 1 and b− a = 0 then . first observed line in set

10: ja := j . save j value of first in set
11: else if ζi,j = 0 then . unobserved line
12: µ′v,Σ′v := UT(p(zp),γa:b; zp 7→ v)
13: if (φγa,0 = φFOV or rγa,0−1 < rγa,0) and ja = 0 then
14: a := a+ 1
15: Remove first vertex from p(v′)
16: end if
17: t := b
18: if (φγa,0 = −φFOV or rγb,1+1 < rγb,1) and j = 0 then
19: t := t− 1
20: Remove last vertex from p(v′)
21: end if
22: C (Kv,obs,a:t+1,a:t+1,hv,obs,a:t+1) := C

(
Σ′v
−1
,Σ′v

−1
µ′v

)
23: uobs,a:t := Equation 3.2.36 ← p(v′),γa:b, zp,a:b

. calculate unknown probabilities
24: a := b+ 1 . reset observed set
25: end if
26: b := b+ 1
27: end for
28: end for
29: return Kv,obs,hv,obs,uobs
30: end function

observed lines are calculated using Equation 3.2.36. The artificial unobserved line
in Line 2 ensures that the parameters of the final observed set are calculated.

The vertices that are observed, not observed and newly added are encoded in
a list, ϑ, using the information matrix, Kv,obs, and observed lines encoding, ζ.
Each element, ϑi, relates to the state of the ith vertex, with 0 being unobserved, 1
being a previously existing, observed vertex and 2 being a newly added vertex. This
encoding for the observed vertices can be used to transform the distribution over
the prior model to the state space of the posterior model.

The process of obtaining this encoding is shown in Algorithm 6. In Line 2 an
artificial unobserved line is added again to ensure that the final vertex encoding is
calculated. In Line 3 the entire vertex encoding vector is initialised as 0, which is
unobserved. Lines 6 to 15 loop through the existing lines and Lines 8 to 14 loop
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Algorithm 6 Observed Vertices Algorithm
1: function ObservedVertices(ζ,Kv,obs,u)
2: ζm := (0) . add artificial unobserved line
3: ϑ := 0[k] . k is number of posterior vertices

4: u′ :=
[
1 · · · 1

]T
[k−1]

. initialise extended unknown probabilities
5: a := 0 . observed vertex iterator
6: for i := 0 to m do . loop through existing lines and ζm
7: u′a := ui if length(ζi) = 1 . assign u′a if line is not replaced
8: for j := 0 to length(ζi) do
9: if Kv,obs,a,a 6= 0 then

10: ϑa := 1 if j = 0 . observed prior vertex
11: ϑa := 2 if j > 0 . new added vertex
12: end if
13: a := a+ 1
14: end for
15: end for
16: return ϑ,u′
17: end function

through ζi. In Line 9 the appropriate information matrix elements are checked to
see if it contains information. If it does it means that a vertex is observed. Lines 10
and 11 determine whether it is an existing vertex or a newly added vertex.

To add the existing model’s canonical parameters to the observed canonical
parameters, the vertices of the existing model need to be transformed to the state
space of the updated model. For this transformation, we define a transformation
matrix F to map the the existing model parameters to the appropriate locations
in the higher-dimensional state space. The dimensions of F are N ×M , where N
is the dimension of the existing model, v, and M is the dimension of the observed
model, vobs. F is populated by using ϑ, where

F i,j =
{
I [2×2]; ϑj < 2 and is the ith such element
0[2×2]; otherwise

(3.2.73)

and

F =

F 0,0 · · · F 0,m′
... . . . ...

Fm,0 · · · Fm,m′

 . (3.2.74)

Here m is the number of lines of the existing model and m′ is the number of lines
of the updated model. Each element, F i,j , is a 2 × 2 matrix, since each vertex is
2-dimensional.

As an example, the observed line encoding for Figure 3.16(a) would be

ζ =
(
(0), (1), (1, 1), (1), (1), (0)

)
. (3.2.75)

The two zeroes at the start and end of this list indicate the two unobserved unknown
lines at the ends of the model. Since the unknown line in the middle of the model is
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observed and should be replaced by two new lines, the third list contains two ones.
The observed vertices encoding of this example would be

ϑ =
(
0, 1, 1, 2, 1, 1, 1, 0

)
, (3.2.76)

where the two vertices at the ends of the model is not observed (these vertices are
also not visible is Figure 3.16(a)) and the 2 indicates the new vertex that will be
added. The transformation matrix to extend the existing model to the dimensions
of the observed model would be

F =



I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I


. (3.2.77)

In this matrix, the fourth column, which only contains zeroes, will place an element
with no information in the extended existing model where the new vertex will be
added.

The existing model parameters can be extended to the higher-dimensional state
space of the updated model parameters with the following transformation,

C
(
K ′v,h

′
v

)
= C

(
F TKvF ,F

Thv
)
, (3.2.78)

so that p(v|z0:t−1) = C
(
K ′v,h

′
v

)
. This transformation maps every vertex in the

existing model to the corresponding location in the extended state space, so that v′i
and vobs,i correspond to the same vertex. The posterior distribution of the vertices
can now be calculated by adding the canonical parameters of the prior and observed
distributions,

C (Kv,new,hv,new) = C
(
K ′v +Kv,obs,h

′
v + hv,obs

)
. (3.2.79)

An illustration of the observed models, created from the example in Figure 3.16,
and the updated models is shown in Figure 3.19.

Although neither of the information matrices of the extended existing vertices,
K ′v, or the observed vertices, Kv,obs, are necessarily invertible, the updated dis-
tribution’s information matrix, Kv,new, is invertible. This means that the up-
dated distribution can be transformed back to the normal form, p(v|zt, z0:t−1) =
N
(
µv,new,Σv,new

)
.

The unknown boundary probabilities of the observed lines, uobs, are also calcu-
lated in Algorithm 5. The unknown boundary probabilities of the updated lines,
unew, are approximated by taking the minimum of the existing probabilities, u, and
the observed probabilities, unew. The minimum is taken since it comes from the
observation with the most information or measurements of that line. The existing
model’s unknown boundary probabilities should, however, be extended to the di-
mensions of the updated model before this can be done. This extended unknown
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⇓ ⇓

Existing Model

Observed Model

⇓

(a) (b)

Updated Model

(c)

Figure 3.19 – Illustration of updated model. The existing and observed models are
shown in the top row, which is created from Figure 3.16. These distributions are
multiplied to obtain the updated model in the bottom row.

boundary probabilities, u′, are all initialised as ones, as in Line 4 of Algorithm 6. In
Line 7, the elements of u are then assigned to the appropriate location in u′ only if
the line is not replaced by a new set of lines. This ensures that ui is at the location
in u′ corresponding to line i of the existing model and that the unknown probabil-
ities of unknown lines that are replaced with multiple new lines are not considered.
A value of 1 is given to all new lines, since this is the maximum value it can have
and will not influence the new value when taking the minimum. The new unknown
boundary probabilities are now calculated by

unew,i = min
(
u′i, uobs,i

)
. (3.2.80)

Similar to Equation 3.2.44, where a linear relationship between two parameters
is used to describe the conditional distribution between them, we can describe the
relationship between xpose and vobs as

vobs = Avxxpose + bvx + n, n ∼ C(Kv,obs,0). (3.2.81)

The noise is, however, parameterised in the canonical form, since Kv,obs is possibly
not invertible. Due to the possible singular nature of Kv,obs, the mean of the full
observed distribution can also not be calculated in this form. We therefore want
create a transformation matrix, G, to extract only the observed vertices from vobs.
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With this transformation matrix we can obtain

C
(
K ′v,obs,h

′
v,obs

)
= C

(
GKv,obsG

T ,Ghv,obs
)
, (3.2.82)

whereK ′v,obs is invertible. G is populated similar to F in Equation 3.2.73, but rather
checking where ϑj > 0, which indicates vertices observed at the current timestep,

Gi,j =
{
I [2×2]; ϑj > 0 and is the ith such element
0[2×2]; otherwise

(3.2.83)

and

G =

 G0,0 · · · G0,m
... . . . ...

Gm′,0 · · · Gm′,m

 , (3.2.84)

where m′ is the number of vertices for which ϑj > 0.
We can now obtain the mean of these observed vertices,

µ′v,obs = K ′−1
v,obsh

′
v,obs, (3.2.85)

and the mean of their polar coordinates, µ′v,p,obs, with

µ′v,p,obs,i =
[
µ′v,r,i
µ′v,φ,i

]
=

 ∣∣∣∣∣∣µ′v,obs − xpos
∣∣∣∣∣∣

arctan
(
µv,y,i−y
µv,x,i−x

)
− θ

 , (3.2.86)

as in Equation 3.2.46. The transformation matrix for the observed part, A′vx, is
calculated as in Equation 3.2.48, where

A′vx,i =
[
1 0 −µ′v,r,i sin(θ + µ′v,φ,i)
0 1 µ′v,r,i cos(θ + µ′v,φ,i)

]
, (3.2.87)

and subsequently, calculate

b′vx = µ′v,p,obs −A′vxxpose. (3.2.88)

We now have the linear relationship,

v′obs = A′vxxpose + b′vx + n, n ∼ C(K ′v,obs,0). (3.2.89)

For the unobserved vertices, with no observed information about them, it does
not matter what their means are, since the uncertainty over them is infinity. We can
therefore populate their corresponding locations in Avx and bvx with zeros. These
parameters are thus reconstructed using the transformation matrix G,

Avx = GTA′vxG

bvx = GTb′vx.
(3.2.90)

This parameterisation of the conditional distribution over the observed vertices is
used in the SLAM algorithm in Chapter 4.
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Unknown Lines Update

Once the landmark parameters are updated with the observed vertices, the unknown
lines at the end of the model, vl and vr, can also be updated by finding the observed
unknown lines, vl,obs and vr,obs. This is done with the same method of finding the
original unknown lines, Equation 3.2.34, by assessing the measurements adjacent to
the one on the model.

(a)

Existing unknowns

Observed unknowns

Updated model

(b) (c)

Figure 3.20 – Illustration of updated unknown lines. The existing unknown lines
(blue) and observed unknown lines (red) are shown, as well as the updated model with
updated unknown lines (black).

Once these observed unknown lines are obtained, they are compared to the
existing unknown lines. The updated unknown lines, vl,new and vr,new, are selected
as the combination of the existing and observed unknown lines that contain the
most information; so that the new unknown lines are not in any of the existing or
observed unknown lines’ empty regions. This is visualised in Figure 3.20, where the
existing, observed and updated unknown lines are shown for different cases.

Algorithm 7 is implemented to achieve this for the left unknown lines; the right
unknown lines’ update is performed similarly. Firstly, the algorithm finds the first
vertex of the existing model’s object lines (Line 2) and draws the existing unknown
lines from this vertex (Line 7). Similarly, the first observed vertex is obtained (Line
3) and the observed unknown vertices are drawn from this vertex (Line 4). The two
unknown lines closest to the model from both of these sets are evaluated (Lines 8
to 17) to obtain the one with the most information about the environment; the line
that lies in the other’s unknown region. Line 8 simply checks for the leftmost of these
two lines, and if they start at the same location, the line that makes the smallest
angle with the first object line is selected (Lines 11 to 17). The selected line is the
first line in the updated unknown line and the set it comes from is selected as the
current set (Line 18). In Line 20 the updated unknown vertices are initialised with
the last vertex of the selected set. From here the lines in this set are followed (Lines
21 to 34) until one intersects with a line from the other set, which is checked for in
Line 23. If an intersection occurs, the intersection point is added to the updated
unknown lines’ vertices (Line 24) and the other set is followed by switching the
selected set (Line 26). In Line 24 the intersection distribution is calculated using
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Algorithm 7 Update Left Unknown Lines Algorithm
1: function UpdateUnknownLinesLeft(p(vnew),unew, p(zp),ϑ)
2: ip := first prior line not unknown, ϑip < 2 and uip < 1
3: io := first observed vertex, ϑio > 0
4: vl,obs := find observed unknown vertices and append vnew,io
5: no := number of vertices in vl,obs − 1
6: np := number of prior left unknown lines
7: vl,pre := v0:np−1 and append vnew,ip
8: i := min(io, ip)
9: c := obs if io < ip . observed lines are farther to the left

10: c := pre if ip < io . existing lines are farther to the left
11: if io = ip then . left existing and observed vertices are the same
12: θi := angle of line (vi,vi+1)
13: θo := angle of line (vi,vl,obs,no−1)− θi
14: θp := angle of line (vi,vl,pre,np−1)− θi
15: c := obs if θo ≤ θp
16: c := pre if θp < θo
17: end if
18: va, na := selected vl,c and nc . line selected by c, obs or pre
19: vb, nb := other vl,··· and n··· . line opposite of c, obs or pre
20: vl :=

[
va,na

]
21: while na > 0 and nb > 0 do . continue both sets have line to evaluate
22: for j := nb decrease to 1 do
23: if lines (vl,0,va,na−1) and (vb,j ,vb,j−1) intersect then
24: Insert intersection distribution in front of vl . UT(Eq. 3.2.8)
25: nb := j − 1
26: Switch values of va, na and vb, nb . switch selected sets
27: Exit loop
28: end if
29: end for
30: if no intersection then . end of line is reached
31: Insert va,na−1 in front of vl . add vertex to updated unknown lines
32: na := na − 1
33: end if
34: end while
35: Remove last vertex of vl
36: Replace vnew,0:np−1 with vl
37: return p(vnew)
38: end function

the unscented transform and Equation 3.2.8. Each time the end of the current line
is reached without an intersection occurring, the vertex at the end is added to the
updated unknown lines (Line 31). If the loop reaches the end of the current set, the
updated unknown lines are completely defined. In Line 35 the initial vertex of the
updated unknown lines is removed, because it is already contained in the model’s
object vertices. The existing unknown lines’ vertices are then removed from the
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model and replaced with the updated unknown lines’ vertices (Line 36).
In Figure 3.20(a), it is seen that the updated unknown lines follow the unknown

lines to the “inside” of the model. In (b), It is seen that the existing and observed
unknown lines are drawn from vertices in the middle of the updated model when
new segments are observed. The unknown line connected to the end of the model
are then selected as the start of the updated unknown lines. The intersection of the
existing and observed unknown lines in (c) shows that once the updated unknown
lines reach this intersection, they follow the other set of unknown lines.

Once the left and right unknown lines are updated, they are evaluated against
each other for intersections. If the left and right unknown lines intersect, as in
Figure 3.20(b), they are both terminated at the intersection point, since the added
information of these unknown lines indicates that the region further on is empty. In
the case of multiple intersections, the intersection closest to the rest of the model is
used.

Landmark Wrapping

In our modelling technique, we want to be able to enclose a landmark once the robot
has observed it from all sides. An enclosed landmark has no unknown lines at the
ends of the model, since the entire area is observed and the first and last vertices
are also connected with a line.

After the landmark vertices are updated, the first vertex, vl, and last vertex, vr,
of the landmark’s object lines are evaluated to reason whether they model the same
underlying vertex. The joint distribution over these vertices is

p(vl,vr) = N
([
µv,l
µv,r

]
,

[
Σv,ll Σv,lr

Σv,rl Σv,rr

])
, (3.2.91)

which is extracted from the full model parameter distribution. A distribution over
the difference between these two vertices are obtained, where the mean and covari-
ance are calculated as

µδ = µv,l − µv,r
Σδ = Σv,ll + Σv,rr −Σv,lr −Σv,rl.

(3.2.92)

The Mahalanobis distance of this distribution is calculated,

dmhl = µTδ Σ−1
δ µδ, (3.2.93)

and if it is smaller than 3, the vertices are assumed to model the same underlying
vertex.

If these vertices model the same vertex, the unknown lines are removed from
the model and the information about these vertices is combined. Since there are
dependencies between vertices in the model, this could affect other vertices in the
model. The distribution over the entire model should thus be updated. In the
canonical form, the current distribution over the vertices can be written as

C (Kv,hv) = C


vlvc
vr


K ll K lc K lr

Kcl Kvc Kcr

Krl Krc Krr

 ,
hlhc
hr


 , (3.2.94)
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where vc is the model vertices excluding the left and right object vertices. To
combine the information of the left and right vertex, we remove the right vertex and
add the information to the left vertex, which leads to the following distribution,

C
(
K ′v,h

′
v

)
= C

([
v′l
v′

] [
K ll +Krr +K lr +Krl K lc +Krc

Kcl +Kcr Kcc

]
,

[
hl + hr
hc

])
.

(3.2.95)
This is the updated distribution and can be transformed back to the normal form
to obtain the mean and covariance of the model.

If the landmark is enclosed, an object line also connects the first and last vertices
of the model. The vertex that is first is not important any more, only the order of
vertices is important. This means that a number of vertices at the end of the model
could be moved to the front, and still produce the same model.

The discussion of the landmark modelling, as well as associating measurement
with these landmark models and updating these models are now concluded. The
modelling method in this chapter is essential in the implementation of the SLAM
algorithm discussed in the following chapter.
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Chapter 4

SLAM with Vertex Parameter
Models

The aim of the landmark modelling method developed in Chapter 3 is to be used
in SLAM. We now discuss the development of a SLAM algorithm that uses this
landmark modelling method.

As discussed in Chapter 2, there are a number of SLAM algorithms that use
a landmark-based map. EKF-SLAM is a commonly-used algorithm for landmark-
based maps and therefore we base our SLAM algorithm on the EKF SLAM al-
gorithm. The basic EKF SLAM algorithm assumes point landmarks and updates
the belief over the robot states and landmark positions each time a landmark is
observed. This algorithm is a Bayes filter approach, which only calculates the be-
lief over the latest robot states and the landmark positions. Although we use EKF
SLAM, it is possible to use our landmark modelling method with any landmark-
based SLAM algorithm.

The EKF SLAM motion update is used directly in our approach, but we de-
rive a novel measurement update to simultaneously update the complete landmark
model and robot states when a landmark is observed. This is in contrast to other
approaches [11; 12; 13; 14] that estimate the location of each observed landmark
and update the belief over the robot states and landmark locations simultaneously.
In these other methods, the landmark model is updated separately.

In this chapter we discuss the details of the motion update, as well as all aspects
of the measurement update, which include measurement segmentation, landmark
correspondence, updating the belief over the full state space and adding new land-
marks to the map. An overview of the EKF is given first, since it is used in the
subsequent sections.

4.1 Overview of the EKF
In this section we give an overview of the EKF algorithm, based on the description
by Thrun et al. [1] that is used in the motion update in the next section. The EKF is
a recursive state estimator that calculates a Gaussian belief over the current states
of a system, st, using the belief over the previous states, st−1. To ensure that the
belief stays Gaussian, all nonlinear models are linearised. The EKF state estimation
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is done in two steps: a motion update that uses controls, ut, to calculate a predicted
belief of the new states, and an measurement update that uses measurements, zt,
to calculate a posterior belief of the states.

At the start of the EKF algorithm, a Gaussian belief over the previous states,
p(st−1|u0:t−1, z0:t−1) = N (µs,t−1,Σs,t−1), given all previous controls and measure-
ments is assumed to be available. In the motion update, the predicted belief over
the current states, p(st|u0:t, z0:t−1) = N (µ′s,t,Σ′s,t), given all controls and previous
measurements is calculated. The state transition from the previous states to the
current states is given by the noisy, nonlinear function

st = g(st−1,ut) + nr, nr ∼ N (0,R). (4.1.1)

The EKF is applicable to state transitions that can be described by this equation,
which comes from the modelling process of the problem. This function is linearised
using the first two terms of the Taylor series expansion. The partial derivative of g
with respect to st−1 is calculated at the linearisation point, which is chosen as its
value at the mean of the previous belief, µs,t−1, which results in the Jacobian

G = ∂g(st−1,ut)
∂st−1

∣∣∣∣
st−1=µs,t−1

. (4.1.2)

The mean of the predicted belief is calculated by passing the mean of the prior belief
through g,

µ′s,t = g(µs,t−1,ut) (4.1.3)

and the covariance matrix is calculated by using the Jacobian and the noise covari-
ance,

Σ′s,t = GΣs,t−1G
T +R. (4.1.4)

Next, the measurement update is performed to calculate the posterior belief
of the states, p(st|u0:t, z0:t) = N (µs,t,Σs,t), given all controls and measurements,
where the current measurements are also now included. The measurements received
are described by the noisy, nonlinear function

zt = h(st) + nq, nq ∼ N (0,Q), (4.1.5)

which is obtained in the modelling process of the problem. Similar to the motion
update, the partial derivative of h with respect to st is calculated at the linearisation
point, which is chosen as its value at the mean of the predicted belief, µ′s,t, resulting
in the Jacobian

H = ∂h(st)
∂st

∣∣∣∣
st−1=µ′s,t−1

. (4.1.6)

Using this Jacobian, the Kalman gain matrix is defined as

K = Σ′tHT (HΣ′tHT +Q)−1. (4.1.7)

By substituting the mean of the predicted belief into Equation 4.1.5, a predicted
measurement can be calculated and the mean of the posterior distribution can be
calculated as

µs,t = µ′s,t +K
(
zt − h(µ′s,t)

)
. (4.1.8)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. SLAM WITH VERTEX PARAMETER MODELS 55

The covariance matrix of the posterior belief can also be calculated as

Σs,t = (I −KH)Σ′s,t. (4.1.9)

The posterior belief of the states, p(st|u0:t, z0:t), given all available controls and
measurements have now been calculated. The derivations of these calculations are
given by Thrun et al. [1]. The motion update of the EKF described here is used in
our SLAM motion update in the next section, but the EKF measurement update is
not used in our SLAM measurement update.

4.2 Motion Update
In the SLAM context, the motion update involves updating the belief over the robot
pose at each timestep. This update makes use of control inputs given to the robot’s
actuators or sensor information of the robot’s motion to predict the next pose of the
robot. During this step, the uncertainty over the robot’s pose usually increases due
to the added noise of the control inputs or sensor information.

At the start of the motion update we have a state vector, st−1 =
[
xTt−1 mT

]T
,

which includes the previous robot pose, xt−1, and a map vector of all landmarks,
m. We assume that we have a prior belief over this state vector, given all previous
evidence, p(st−1|E0:t−1) = N (µs,t−1,Σs,t−1), where the evidence, E0:t−1, includes
all previous Lidar measurements, z0:t−1, and all previous odometry measurements,
u0:t−1. The odometry measurements are used to describe the state transition from
the previous robot pose to the next pose, therefore they are used as the controls
discussed in the previous section. The goal of the motion update is to use the new
odometry measurements, ut, to obtain a predicted belief over the new state vector,
p(st|E0:t−1,ut) = N (µs,t,Σs,t), where st =

[
xTt mT

]T
includes the new robot pose

and not the previous robot pose.

xt−1

xt
δd

δθ,0

δθ,1

Figure 4.1 – Diagram of odometry motion model.

In this project the odometry motion model, as discussed in Thrun et al. [1,
p. 132-139] and visualised in Figure 4.1, is used to predict the robot’s pose. The
odometry motion model uses measurements of the incremental motion of the ro-
bot, from sensors such as wheel encoders, in contrast with using robot control in-
puts for the same purpose. These measurements are then converted to an initial
rotation, δθ,0, a forward translation, δd, and a final rotation, δθ,1, that describes
the robot’s incremental motion over the sampling period. The current pose of

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. SLAM WITH VERTEX PARAMETER MODELS 56

the robot, xt =
[
xt yt θt

]T
, can be calculated using the previous pose, xt−1 =[

xt−1 yt−1 θt−1
]T

, and the odometry measurements, ut =
[
δθ,0 δd δθ,1

]T
, where

xt = gx(xt−1,ut) = xt−1 +

δd cos(θt−1 + δθ,0)
δd sin(θt−1 + δθ,0)

δθ,0 + δθ,1

 . (4.2.1)

These odometry measurements are typically noisy,

ut = u′t + n, n ∼ N (0,Σn), (4.2.2)

where each measurement contains additive noise that we assume to be zero-mean
Gaussian distributed. Here u′t is the noiseless odometry measurements. The covari-
ance of the noise is defined as

Σn =

σ
2
θ,0 0 0
0 σ2

d 0
0 0 σ2

θ,1

 , (4.2.3)

where σθ,0 and σθ,1 are the standard deviations of the rotations and σd is the standard
deviation of the translation.

In this explanation we first give the calculation of the predicted belief over the
current pose alone, p(xt|E0:t−1,ut) = N (µx,t,Σx,t), and then extend this to the
calculation of the predicted belief of the entire state space. We approximate all
states as Gaussian random variables, therefore the transformation in Equation 4.2.1
needs to be linearised. We use the standard EKF SLAM motion update, similar to
the one explained in Thrun et al. [1, p. 312-322], but using the odometry motion
model instead of the velocity motion model. This motion update involves calculating
the Jacobian of Equation 4.2.1 with respect to xt−1, which is calculated as

Gx = ∂gx(xt−1,ut)
∂xt−1

= I +

0 0 −δd sin(θt−1 + δθ,0)
0 0 δd cos(θt−1 + δθ,0)
0 0 0

 . (4.2.4)

Since the process noise of this model is not additive to the state transition function,
we also need to calculate the Jacobian of Equation 4.2.1 with respect to the odometry
measurements, ut, as

Hx = ∂gx(xt−1,ut)
∂ut

=

−δd sin(θt−1 + δθ,0) cos(θt−1 + δθ,0) 0
δd cos(θt−1 + δθ,0) sin(θt−1 + δθ,0) 0

1 0 1

 . (4.2.5)

Assuming we have a prior belief over the previous pose, p(xt−1|E0:t−1) = N (µx,t−1,Σx,t−1),
we can calculate the mean of the predicted pose using Equation 4.2.1,

µx,t = µx,t−1 +

δd cos(θt−1 + δθ,0)
δd sin(θt−1 + δθ,0)

δθ,0 + δθ,1

 . (4.2.6)
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The covariance matrix of the predicted pose, can also be calculated using the Jac-
obians,

Σx,t = GxΣx,t−1Gx
T +HxΣnHx

T . (4.2.7)

The state vector in the SLAM scope includes the robot pose, as well as the map
vector, m, therefore the transformation from the complete previous state vector,
st−1, to the current state vector, st, needs to be calculated. In order to do this we
define a matrix,

F =
[
I [3×3] 0[M×3]

]
, (4.2.8)

whereM is the dimensions ofm, to expand the 3-dimensional pose vector to the full
state space. Since the map remains the same between timesteps, F can be used to
transform the pose transformation in Equation 4.2.1 to the higher-dimensional state
space of the complete state vector. Using the matrix F , Equation 4.2.1 is expanded
to the full state space:

st = st−1 + F T

δd cos(θt−1 + δθ,0)
δd sin(θt−1 + δθ,0)

δθ,0 + δθ,1

 . (4.2.9)

The Jacobian of this transformation with respect to st−1 is

G = I + F T

0 0 −δd sin(θt−1 + δθ,0)
0 0 δd cos(θt−1 + δθ,0)
0 0 0

F , (4.2.10)

and the Jacobian with respect to ut is

H = F T

−δd sin(θt−1 + δθ,0) cos(θt−1 + δθ,0) 0
δd cos(θt−1 + δθ,0) sin(θt−1 + δθ,0) 0

1 0 1

 . (4.2.11)

We can now calculate the predicted belief over the full state space, p(st|E0:t−1,ut) =
N (µs,t,Σs,t), using the prior belief, p(st|E0:t−1,ut) = N (µs,t,Σs,t), and odometry
measurements, ut. The mean of the predicted belief is calculated as

µs,t = µs,t−1 + F T

δd cos(µθ,t−1 + δθ,0)
δd sin(µθ,t−1 + δθ,0)

δθ,0 + δθ,1

 (4.2.12)

and the covariance matrix is calculated as

Σs,t = GΣs,t−1G
T +HΣnH

T . (4.2.13)

Once the robot’s pose is updated and the predicted belief, p(st|E0:t−1,ut), is
obtained, the measurements taken by the robot’s sensors can be used to perform
the measurement update.
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4.3 Measurement Update
In this section we discuss the measurement update used in this SLAM application,
which is executed every time the Lidar sensor takes new measurements. We first
discuss segmenting the measurements into sets, then associating these sets to land-
marks. Next, the update of the state space variables is discussed, followed by adding
new landmarks to the state space.

4.3.1 Measurement Segmentation

When new measurements are taken, they are first segmented into different sets
that are likely to come from the same landmark. Each of these sets are evaluated
separately in the landmark modelling, correspondence and updating steps.

We take a simple approach to the segmentation, similar to the approach in
Nieto et al. [14]. We only evaluate the difference in angle and the distance between
measurements, zp,i =

[
ri φi

]T
, which are defined as

∆φi,j = |φi − φj | (4.3.1)

and
di,j =

√
r2
i + r2

j − 2rirj cos(∆φi,j). (4.3.2)

If both of these values lie under certain thresholds, φthres and dthres, the two meas-
urements are assumed to come from the same landmark. These measurements are
then grouped in the same measurement set, Zp,k,

zp,i, zp,j ∈ Zp,k if ∆φi,j ≤ φthres and di,j ≤ dthres, (4.3.3)

where each measurement is only part of one set and a measurement can only be part
of a set if the conditions hold true with at least one other measurement in the set.

We choose these thresholds as φthres = 2φres, where φres is the angular resolution
of the Lidar, and dthres = 1. The value for φthres is chosen so that a single outlier or
faulty measurement will not split a measurement set and the choice for dthres assumes
that measurements that are closer than 1 m from each other come from the same
landmark. These choices can be adjusted for different applications, with different
sensors and prior information about the environment. Figure 4.2 shows an example
of this segmentation. Measurements with gaps between them (red and green) as well
as measurements far apart (green and blue) are separated into different segments.
A straight line section, as seen at the bottom of this figure is separated into different
sets when the measurements on this line are far apart.

Once these measurements are segmented into sets, each set, Zp,k, is evaluated
to determine whether it should be used in the measurement update. The reason for
this evaluation is that measurements that do not give sufficient information about a
landmark should not be used in the measurement update. The set will be evaluated
on the number of measurements and the linearity of the measurements. The number
of measurements are only compared to a threshold value, nthres, and if the set size
is less than this value, the set is not used in the measurement update. If the set
has enough measurements, the algorithm to choose initial lines for model selection,
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Figure 4.2 – Segmentation of measurements into sets. Different measurement sets are
shown in alternating colours.

Algorithm 3, is executed using these measurements. If this algorithm returns only
one line, the set will not be used in the measurement update, since it is deemed that
it does not contain enough information for landmark correspondence or update.

All the valid measurement sets are used further in the measurement update,
checking for associations to existing landmarks or using the measurements to cre-
ate new landmarks. The discarded sets are, however, not used further, but their
measurements can be used to calculate unknown lines of other landmarks.

4.3.2 Landmark Correspondence

A crucial part of doing SLAM with landmarks is associating new measurements to
specific landmarks. In the previous section, we discussed how to retrieve measure-
ments from a single landmark and in Section 3.2.2 we discussed a way of measuring
if a set of measurements originate from a landmark. The approach in Section 3.2.2,
however, assumes that the robot pose is known, which is not the case in SLAM. To
use this method, we select a likely pose, given the measurements and the landmark
and then evaluate the measurements against the landmark.

To select this likely pose, we align the measurements with the landmark. The
iterated closest point (ICP) algorithm, originally proposed by Besl and McKay [15],
is a commonly-used scan-matching technique designed to align two point clouds to
each other. We now discuss the ICP algorithm and the adaptation we make to use
it with ou landmark model.

Given two point clouds, P =
{
p0, · · · ,pn−1

}
and Q =

{
q0, · · · , qm−1

}
, we want

to obtain a rotation and translation, given by the transformation parameters t =[
tx ty tθ

]T
, to transform Q to Q′, where Q′ is aligned with P. The transformation

from Q to Q′ is given by

q′i = Rqi +
[
tx
ty

]
, (4.3.4)
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where
R =

[
cos tθ − sin tθ
sin tθ cos tθ

]
(4.3.5)

and q′i ∈ Q′. The ICP algorithm associates every point in Q to the closest point in
P, resulting in an association

ci = arg min
j

∣∣∣∣∣∣qi − pj∣∣∣∣∣∣ , (4.3.6)

so that pci
is the closest point to qi and the distance between these points is

di = qi − pci
. (4.3.7)

Once these associations are made, the algorithm attempts to minimise the mean
square error between all point pairs by optimising the transformation parameters t.
The distance between the transformed point, q′i, and its associated point in P is

d′i = q′i − pci
(4.3.8)

and the Jacobian of this equation with regards to t, linearised around t = 0, is

J i =
[
1 0 −qy,i
0 1 qx,i

]
. (4.3.9)

The transformation vector is then calculated with the following equations,

H =
∑
i

JTi J i

b =
∑
i

JTi di

t = H−1b,

(4.3.10)

and the transformed set Q is calculated with Equation 4.3.4.
This process of finding the corresponding points and calculating t is repeated

iteratively by replacing Q with Q′ until t converges to 0. This results in a Q′ which
is aligned with P. It should be noted that t calculated here only describes the
transformation of the last iteration and not the transformation from the original
set to the aligned set. The complete transformation vector, tf , can be obtained by
maintaining the transformation vector of the original set to the current set in each
iteration of the ICP. This is done by initialising tf := 0 and updating it after each
iteration, by applying the new transformation to it,

tf :=

tf,x cos tθ − tf,y sin tθ + tx
tf,x sin tθ + tf,y cos tθ + ty

tf,θ + tθ

 . (4.3.11)

It should also be noted that the ICP algorithm uses all points in Q once, but not
necessarily all point in P. Some points in P could also be used multiple times. This
means that aligning Q to P and aligning P to Q could result in different alignments.
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We want to align a measurement set, Zc = {zc,0, · · · , zc,n−1}, defined in the
inertial Cartesian reference frame, to a landmark described by lines. Both of these
have uncertainty over them, but for the purpose of alignment we only consider the
means of the distributions. The measurements are already in a point cloud form, but
the landmark model is not. To use the ICP algorithm with the landmark model,
the perpendicular distance of each measurement to the closest line in the model
is calculated. The distance from measurement zc,i =

[
zx,i zy,i

]T
to the jth line,

parameterised by vj =
[
vx,j vy,j

]T
and vj+1 =

[
vx,j+1 vy,j+1

]T
, is calculated by

ei,j = (zx,i − vx,j) sinψj − (zy,i − vy,j) cosψj , (4.3.12)

where ψj is the angle of the line, calculated as

ψj = arctan
(
vy,j+1 − vy,j
vx,j+1 − vx,j

)
. (4.3.13)

This equation is derived in Appendix A. As in Section 3.2.2, only the visible lines
are considered in this calculation, given the current pose estimate.

Each measurement is associated with its closest line,

ci = arg min
j
ei,j . (4.3.14)

If it is an unknown line, uci > 0.5, and the measurement lies behind the line, the
measurement is not used in this iteration of the ICP, since we have no information
about that part of the environment. However, if a measurement lies in front of an
unknown line it is in the empty region of the line and should be used in the alignment
to move it behind the line. If this is the case or the line is an object boundary,
uci ≤ 0.5, the closest point on that line is considered for the ICP algorithm and the
difference vector of Equation 4.3.7 is replaced with

di = ei,ci

[
− sinψj
cosψj

]
. (4.3.15)

The ICP algorithm is adapted to use this closest distance to calculate t and Z ′c, the
transformed measurement set, for each iteration.

The estimated pose, xicp, after each iteration of the ICP algorithm can be cal-
culated by applying the complete transformation, tf , to the original pose, x =[
x y θ

]T
,

xicp =

x cos tf,θ − y sin tf,θ + tf,x
x sin tf,θ + y cos tf,θ + tf,y

θ + tθ

 . (4.3.16)

During the execution of the ICP algorithm, this pose estimate is used to reason
whether lines of the model are visible or not. The final pose estimate, when the
ICP algorithm has converged, is then used as the pose estimate to reason about
correspondence with the landmark. In Figure 4.3, two examples of the ICP algorithm
are shown where misaligned measurements are successfully aligned to the landmark.
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In (b) it can be seen that the measurements in front of the unknown line is moved
behind it in the alignment. When the measurements are behind the unknown line,
they have no further effect on the alignment and the part measurement associated
with the object boundaries can be successfully aligned to the model.

(a) (b)

Landmark lines

Measurements

Aligned measurements

Figure 4.3 – Measurement to landmark alignment using ICP.

Once this pose estimate is obtained, the method discussed in Section 3.2.2 can
be used to decide whether the measurements come from the landmark. However,
we do not want to perform the ICP algorithm between each measurement set and
landmark as this can be computationally very expensive. A lot of landmarks will
be far from the measurement set, which we can ignore beforehand. To ignore these
landmarks, we evaluate the distance between the centroid of the measurement set
and the reference points of the landmarks and ignore landmarks if this distance is
above a threshold. Landmarks are also only considered if they fall in the robot’s
field of view.

For each measurement set, an ICP pose estimate is obtained for each landmark
in its vicinity. Using the method discussed in Section 3.2.2, we can reason whether
the measurements can come from the landmark if measured from the estimated pose.
This method can, however, associate multiple landmarks to a measurement set. To
select a single landmark from these possible matches we use the maximum likelihood
correspondence. The likelihood that is evaluated is the combined likelihood that the
measurements fit the model and that the robot pose is at the estimated pose. The
log likelihood in Equation 3.2.21, log (p(zp|v,xicp)), is obtained, taking into account
the unknown likelihoods as in Equation 3.2.43, and the log likelihood that the robot
pose is at the ICP pose estimate is calculated as

log(p(x = xicp)) = −0.5
(
log(2π|Σx|) + (xicp − µx)TΣ−1

x (xicp − µx)
)
, (4.3.17)

where p(x) = N (µx,Σx) is the distribution over the robot pose. These two log
likelihoods are added together to obtain the likelihood that the measurements taken

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. SLAM WITH VERTEX PARAMETER MODELS 63

at the estimated pose match the landmark,

log(p(zp,x = xicp|v)) = log (p(zp|v,xicp)) + log(p(x = xicp)). (4.3.18)

The measurement set is then associated with the landmark resulting in the highest
likelihood. If it is not corresponded to a landmark, the measurements are considered
to be added to the map as a new landmark, which is explained in Section 4.3.4.

Once the measurements are associated with the landmark, we evaluate if the
measurements contain enough information about the landmark to perform a useful
update. To do this we find the measurement-to-line correspondences, c. We consider
a line observed if at least two measurements are associated with it. If at least two
object boundary lines, with unknown probability ui ≤ 0.5, are observed, the inform-
ation is deemed sufficient. If this check is passed, the landmark and measurement
set are used in the state space update discussed in the next subsection. The estim-
ated pose, xicp, associated with this correspondence is also used in the landmark
updating step discussed in Section 3.2.3 and used in the state space update.

4.3.3 State Space Update

Once the measurement sets are associated with landmarks, the measurements are
used to simultaneously update the landmark parameters and other variables in the
SLAM state space.

In this approach of SLAM, each landmark is represented by a single reference
point, ri, in the classical EKF SLAM state space and the line model of the land-
mark is conditionally independent of the robot states and other landmarks, given its
reference point. The chosen structure contains a distribution over the robot states,
x, and all the landmark references, p(x, r0, · · · , rn−1), for n landmarks, as well as a
distribution over each landmark model, given its reference, p(vi|ri). A factor graph
representation [22] of this structure is shown in Figure 4.4. This chosen structure
aims to decrease the complexity of the state space significantly.

r0

v0

x

ri

vi

rn−1

vn−1

· · · · · ·

Figure 4.4 – Factor graph representation of the proposed state space structure [22].
The landmark models are only connected to its references, which are then connected to
the robot states and other references.

The measurements obtained from the landmark are transformed to an observed
distribution over the landmark parameters, as explained in Section 3.2.3, using the
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estimated pose obtained from the previous subsection. The reference point of the
landmark is thus never measured directly and the EKF SLAM measurement up-
date cannot be used directly to simultaneously update the line model parameters,
landmark reference points and robot states with this structure. In contrast to other
methods that use reference points of the landmarks in the state space update, we
derive a new state space update to update all states, including the line model para-
meters, simultaneously.

We now only consider the ith landmark, represented by ri and vi, and group all
other reference points in a map vector, mi =

[
rT0 · · · rTi−1 rTi+1 · · · rTn−1

]T
.

We omit the index i for the rest of this subsection for simplicity.
We assume that we have a joint distribution, given all previous evidence, E0:t−1,

which is factorised as

p(x,m, r,v|E0:t−1) = p(x,m, r|E0:t−1) p(v|x,m, r, E0:t−1), (4.3.19)

where the evidence includes all previous Lidar measurements, z0:t−1, and odometry
measurements, u0:t. The first factor is denoted as Φ1 = p(x,m, r|E0:t−1) and in the
second factor v is assumed to be conditionally independent of x andm given r and
is denoted as Φ2 = p(v|r, E0:t−1)

When new measurements, zt, are received from this landmark, a distribution
over the landmark parameters can be obtained, given the robot states and new
measurements, introducing a new factor, Φ3 = p(v|x, zt). This distribution is the
observed distribution discussed in Section 3.2.3. These three factors are visualised
in the first graph of Figure 4.5.

x

rv

Φ1

Φ2

Φ3

m
x

rv

Φ4

m
x

rv

Φ5

Φ8

m

= ≈

Figure 4.5 – Factor graph representation of the measurement update derivation. The
first graph shows the prior factors, Φ1 and Φ2, as in Figure 4.4 and the new factor, Φ3,
obtained from the new measurements. A joint factor over all states is created in the
second graph and then in the last graph approximated as the structure in Figure 4.4.

These three factors are combined to produce a joint factor over all states,

Φ4 = p(x,m, r,v|zt, E0:t−1) = p(x,m, r|E0:t−1)p(v|r, E0:t−1)p(v|x, zt), (4.3.20)

visualised in the second graph of Figure 4.5. From this joint factor, we want to
obtain the structure in the last graph of Figure 4.5, which is similar to Figure 4.4,
given by

p(x,m, r,v|zt, E0:t−1) ≈ p(x,m, r|zt, E0:t−1)p(v|r, zt, E0:t−1). (4.3.21)
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This is, however, an approximation, since the model parameters, v, actually depend
on its reference, r and the robot states, x, where the exact equation is

p(x,m, r,v|zt, E0:t−1) = p(x,m, r|zt, E0:t−1)p(v|x, r, zt, E0:t−1). (4.3.22)

The marginal distribution over the robot states and references is obtained by
marginalising out the landmark parameters from the joint distribution, Φ4,

Φ5 = p(x,m, r|zt, E0:t−1) =
∫
p(x,m, r,v|zt, E0:t−1)dv. (4.3.23)

The approximate conditional distribution over the landmark parameters is calcu-
lated by marginalising out x and m from Φ4,

Φ6 = p(r,v|zt, E0:t−1) =
∫ ∫

p(x,m, r,v|zt, E0:t−1)dxdm, (4.3.24)

and then reducing it to v,

Φ8 = p(v|r, zt, E0:t−1) = p(r,v|zt, E0:t−1)
p(r|zt, E0:t−1) , (4.3.25)

where
Φ7 = p(r|zt, E0:t−1) =

∫
p(r,v|zt, E0:t−1)dv. (4.3.26)

The process of calculating these factors in the canonical form is now explained.
The first three factors are first defined in the canonical form and then the other
factors are subsequently derived. The distribution over the robot states and land-
mark references given all previous measurements is defined as

Φ1 = p(x,m, r|E0:t−1) = C


xm
r

 ;

Kxx Kxm Kxr

Kmx Kmm Kmr

Krx Krm Krr

 ,
hxhm
hr


 . (4.3.27)

This factor is obtained after the motion update by converting the state space to the
canonical form.

The conditional distribution of Φ2 can be represented by a noisy linear relation-
ship between r and v, given by

v = A2r + b2 + n2, n2 ∼ C(K2,0), (4.3.28)

and is expressed in the canonical form as

Φ2 = p(v|r, E0:t−1) = C
([
r
v

]
;
[
AT

2K2A2 −AT
2K2

−K2A2 K2

]
,

[
−AT

2K2b2
K2b2

])
. (4.3.29)

This factor is created by using the values of Avr, bvr and Kv that are obtained
from the previous time this landmark was observed and updated, calculated at the
end of the measurement update. These parameters, however, need to be extended
to the dimensions of the updated model to be used in this update. The extended
parameters are calculated as

A2 = F TAvr,

b2 = F Tbvr,

K2 = F TKvF ,

(4.3.30)
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where F is the transformation matrix described in Section 3.2.3.
Similar to Equation 4.3.28, the conditional distribution of Φ3 can be represented

by a noisy linear relationship between x and v, given by

v = A3x+ b3 + n3, n3 ∼ C(K3,0), (4.3.31)

and is expressed in the canonical form as

Φ3 = p(v|x, zt) = C
([
x
v

]
;
[
AT

3K3A3 −AT
3K3

−K3A3 K3

]
,

[
−AT

3K3b3
K3b3

])
. (4.3.32)

A3, b3 and K3 is obtained with the landmark updating step in Section 3.2.3, where
A3 = Avx, b3 = bvx and K3 = Kv,obs. We note that the full information matrices
of Φ2 and Φ3 are both singular, but they are never inverted.

To obtain the joint distribution over all states, all the factors are multiplied
together, as in Equation 4.3.20, which means that the information matrices and
vectors can be added together [22]. The joint distribution is thus expressed as

Φ4 = p(x,m, r,v|zt, E0:t−1) = C



x
m
r
v

 ;K4,h4

 , (4.3.33)

where the information matrix is given by

K4 =


Kxx +AT

3K3A3 Kxm Kxr −AT
3K3

Kmx Kmm Kmr 0
Krx Krm Krr +AT

2K2A2 −AT
2K2

−K3A3 0 −K2A2 K2 +K3

 (4.3.34)

and the information vector is given by

h4 =


hx −AT

3K3b3
hm

hr −AT
2K2b2

K2b2 +K3b3

 . (4.3.35)

We have now calculated the updated joint distribution, given all measurements
up to the current timestep, visualised by the middle graph of Figure 4.5. Next,
the approximate factorisation of this distribution, as shown in the last graph of Fig-
ure 4.5, is calculated. This requires that the marginal distribution, p(x,m, r|zt, E0:t−1),
and the conditional distribution, p(v|r, E0:t−1), are calculated.

The marginal distribution over x, m and r is calculated by marginalising out v
from Φ4, as in Equation 4.3.23. This factor is expressed in the canonical form as

Φ5 = p(x,m, r|zt, E0:t−1) = C


xm
r

 ;K5,h5

 , (4.3.36)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. SLAM WITH VERTEX PARAMETER MODELS 67

where the information matrix is given by

K5 =

Kxx +AT
3K3A3 Kxm Kxr

Kmx Kmm Kmr

Krx Krm Krr +AT
2K2A2



−

−AT
3K3
0

−AT
2K2

 (K2 +K3)−1

−AT
3K3
0

−AT
2K2


T (4.3.37)

and the information vector is given by

h5 =

hx −AT
3K3b3

hm
hr −AT

2K2b2

−
−AT

3K3
0

−AT
2K2

 (K2 +K3)−1(K2b2 +K3b3). (4.3.38)

Next, the conditional distribution, p(v|r, E0:t−1), should be calculated. To do
this we first calculate the marginal distribution over r and v, as in Equation 4.3.24.
This distribution is expressed as

Φ6 = p(r,v|zt, E0:t−1) = C
([
r
v

]
;K6,h6

)
, (4.3.39)

where the information matrix is given by

K6 =
[
Krr +AT

2K2A2 −AT
2K2

−K2A2 K2 +K3

]

−
[
Krx Krm

−K3A3 0

] [
Kxx +AT

3K3A3 Kxm

Kmx Kmm

]−1 [
Kxr −AT

3K3
Kmr 0

]
(4.3.40)

and the information vector is given by

h6 =
[
hr −AT

2K2b2
K2b2 +K3b3

]

−
[
Krx Krm

−K3A3 0

] [
Kxx +AT

3K3A3 Kxm

Kmx Kmm

]−1 [
hx −AT

3K3b3
hm

]
.

(4.3.41)
We define the matrix being inverted here as

K ′ =
[
Kxx +AT

3K3A3 Kxm

Kmx Kmm

]
(4.3.42)

and by using blockwise inversion [23], the inverse of this matrix is calculated as

K ′−1 =
[

K ′−1
xx −K ′−1

xx KxmK
−1
mm

−K−1
mmKmxK

′−1
xx K−1

mm +K−1
mmKmxK

′−1
xx KxmK

−1
mm

]
, (4.3.43)

where
K ′xx = Kxx +AT

3K3A3 −KxmK
−1
mmKmx (4.3.44)
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is the Schur complement of Kmm in Equation 4.3.42.
The joint distribution over r and v is sufficient to calculate the canonical form

parameters of the conditional distribution over v given r, given by Equation 4.3.25.
Although the marginal distribution over r is also present in Equation 4.3.25, its
canonical parameters has no effect on the parameterisation of Φ8. Therefore, Φ7
does not need to be calculated.

Similar to Equation 4.3.28, the conditional distribution of Φ8 can be represented
by a noisy linear relationship between r and v, given by

v = A8r + b8 + n8, n8 ∼ C(K8,0) (4.3.45)

and is expressed in the canonical form as

Φ8 = p(v|r, E0:t−1) = C
([
r
v

]
;
[
AT

8K8A8 −AT
8K8

−K8A8 K8

]
,

[
−AT

8K8b8
K8b8

])
. (4.3.46)

We now calculate the values of A8, b8 and K8 to parameterise this conditional
distribution. Since Φ8 = Φ6

Φ7
, the information matrix of Φ8 can be calculated by

subtracting the information matrix of Φ7 from the information matrix of Φ6,[
AT

8K8A8 −AT
8K8

−K8A8 K8

]
= K6 −

[
K7 0
0 0

]
(4.3.47)

and similarly the information vectors can be subtracted,[
−AT

8K8b8
K8b8

]
= h6 −

[
h7
0

]
. (4.3.48)

Since Φ7 has no information about v, the lower right of the expanded matrix in
Equation 4.3.47 is zero. Therefore, K8 can be calculated using only K6. By sub-
stituting in the values of K6 in Equation 4.3.47, K8 is calculated as

K8 = K2 +K3 −
[
−K3A3 0

]
K ′−1

[
−AT

3K3
0

]
∴K8 = K2 +K3 −K3A3K

′−1
xx A

T
3K3.

(4.3.49)

Similarly, the lower left of the expanded matrix of Φ7 in Equation 4.3.47 is zero.
Therefore, the lower left of K6 is equal to the lower left of the information matrix
of Φ8,

−K8A8 = −K2A2 −
[
−K3A3 0

]
K ′−1

[
Kxr

Kmr

]
(4.3.50)

and A8 is calculated as

∴ A8 = K−1
8

(
K2A2 −K3A3K

′−1
xx

(
Kxr −KxmK

−1
mmKmr

))
. (4.3.51)

Similar to the information matrix, the lower part of the extended information
vector of Φ7 is zero and b8 is calculated by substituting in the lower part of h6 into
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Equation 4.3.48,

K8b8 = K2b2 +K3b3 −
[
−K3A3 0

]
K ′−1

[
hx −AT

3K3b3
hm

]
∴ b8 = K−1

8

(
K2b2 +K3b3 +K3A3K

′−1
xx

(
hx −KxmK

−1
mmhm −AT

3K3b3
))
.

(4.3.52)
The matrices K8 and A8 and vector b8 are sufficient to describe factor Φ8, which
is the updated belief of the landmark parameters. The parameters are assigned
according to Avr := A8, bvr := b8 and Kv := K8, which are used to calculate the
parameters of Φ2 when the landmark is observed again. The updated covariance
matrix of this landmark’s vertices is also obtained by inverting the information
matrix, Σv = K−1

v . The parameters of Φ5 and Φ8 have now been calculated in
terms of the parameters of Φ1, Φ2 and Φ3, which concludes the update step depicted
in Figure 4.5.

This state space update process, calculating the parameters of Φ5 and Φ8, is
repeated for each landmark observed in a timestep. The updated distribution after
each iteration, Φ5, forms the first factor of the next iteration, Φ1. After all the itera-
tions, the updated distribution, Φ5, is transformed back to the mean and covariance
parameterisation,

p(x, r0, · · · , rn−1|zt, E0:t−1) = N (µs,Σs) = N
(
K−1

5 h5,K
−1
5

)
, (4.3.53)

where µs =
[
µTx µTr,0 · · · µTr,n−1

]T
is the mean vector of the robot states and all

the reference points. This posterior distribution, p(x, r0, · · · , rn−1|zt, E0:t−1), in the
normal form is then used in the next motion update.

Although this state space update is developed for the specific SLAM algorithm
and landmark parameterisation that we implement, it can be used with other prob-
abilistic landmark parameterisations as well as different robot states and reference
dimensions.

Once all the iterations of the state space update are performed, the means of all
the landmarks, in the inertial reference frame, are recalculated with

µv,i = Avr,iµr,i + bvr,i, (4.3.54)

where µv,i is the means of the vertices of the ith landmark and Avr,i and bvr,i are
the transformation parameters of this landmark. The mean and covariance of the
landmark can now again be used for the purposes of detecting and updating the
landmark.

After the landmark means are recalculated, each observed landmark’s unknown
lines are updated, as discussed in Section 3.2.3. This update is performed with the
updated mean of the robot pose, µx.

4.3.4 New Landmark

Each set of measurements that is not associated with an existing landmark in Sec-
tion 4.3.2, is used to create a new landmark, explained in Section 3.2.1, using the
mean of the robot pose, µx, as the estimated pose for landmark creation. These
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landmarks are added after the state space update is done for the observed landmarks.
This results in a more accurate estimate of the pose and better linearisation.

We now consider a single new landmark, with vertices v, where vi =
[
vx,i vy,i

]T
.

The new landmark is, however, evaluated for detectability before it is added to the
map. This evaluation is done before the unknown lines are added at the ends the
model, but the unknown probabilities, u, of the fitted lines are calculated. A measure
for the detectability of the landmark is obtained by evaluating the deviation in the
angles of consecutive lines and the number of object boundaries of a model, where we
assume a line is an object boundary if ui ≤ 0.5. The angle of each line is calculated,

ψi = arctan
(
vy,i+1 − vy,i
vx,i+1 − vx,i

)
, (4.3.55)

then the absolute difference between each pair of consecutive lines is calculated,

∆ψi = |ψi+1 − ψi| (4.3.56)

and the sum of these angles is obtained,

ψsum =
∑
i

∆ψi. (4.3.57)

If ψsum is greater than a threshold, ψthres, and if the the model consists of at least
two object boundaries, we assume that the landmark’s detectability is good enough
and it can be added to the map.

To add a landmark to the map, a reference point for the landmark is created
and appended to the state space, s. The reference point, r, is chosen as the mean
of the landmark vertices, which is calculated with

µr = µv = 1
k

∑
i

vi, (4.3.58)

where k is the number of vertices.
The unknown lines at the ends of the model are now added, as explained in Sec-

tion 3.2.1, and v now refers to the complete model with unknown lines added. With
the landmark creation, a conditional distribution over the landmark parameters is
obtained, given the estimated robot pose,

p(v|x = µx) = N (µv,Σv) . (4.3.59)

The transformation parameters, Avx and bvx, as well as the information matrix,
Kv = Σ−1

v , are obtained with model creation, as discussed in Section 3.2.1. These
parameters describe the relationship between x and v, therefore the state space
update is performed to represent the states as in Figure 4.4, decoupling x and v.
The parameters above thus define factor Φ3 in Section 4.3.3.

The linear relationship between v and r is given by

v = Avrr + bvr + n, n ∼ C(Kv,0), (4.3.60)
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where
Kv = Σ−1

v

Avr =
[
I [2×2] · · · I [2×2]

]T
bvr = µv −Avrµr,

(4.3.61)

which define the factor Φ2 in Section 4.3.3. Since r is an artificial point, which is
placed at the mean of the vertices, we choose the transformation matrix, Avr, so
that each vertex, vi, is just an offset from the reference.

Since the reference point is created with regards to the model parameters, there
is no prior information about where the reference is in the global frame. The para-
meters associated with r in Φ1 are thus all populated with zeros,

Krr = 0[2×2]

Krx = KT
xr = 0[2×3]

Krm = KT
mr = 0[2×2n]

hr = 0[2],

(4.3.62)

where n is the number of existing landmarks. These parameters for Φ1, Φ2 and
Φ3 are now used in Section 4.3.3 to update the complete state space for each new
landmark and obtain the state space representation as in Figure 4.4.

When the robot is placed in an unknown environment and starts to observe
it, the robot creates models of new landmarks and adds them to its map of the
environment. As the robot moves through the environment, its pose estimate is
first updated with the motion update and subsequently the measurement update
is performed, associating measurements to landmarks, updating the belief of the
robot’s pose and its environment and adding new landmarks to the map. These
updates are typically performed at timesteps when measurements are received and
odometry information is available and are repeated for each such timestep.

In this chapter the development of the SLAM algorithm was discussed. This
SLAM algorithm is a crucial part of this project, since the aim is to identify land-
marks for SLAM. A novel measurement update was therefore created to incorporate
the landmark modelling method of Chapter 3.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 5

Results

The SLAM algorithm discussed in Chapter 4 is implemented using the landmark
modelling discussed in Chapter 3. The algorithms are implemented in Python, due
to the simplicity of this high-level programming language. The use of the numpy
library also simplifies the implementation of matrix operations significantly. Python
is, however, much slower than languages such as C++, but the tests are more
focussed on the precision of these methods, rather than the execution time. In this
chapter we analyse this method by executing it in designed simulated environments
as well as two real-world datasets.

5.1 Simulations
We create multiple environments in which the simulated robot moves around to show
different aspects of the designed algorithms. In all the simulations we approximate
the robot as a single point, with the Lidar sensor at the same position.

In these simulations we simulate a typical SICK LMS Lidar sensor with a field
of view of φFOV = 180◦, an angular resolution of φres = 1◦ and maximum range of
rmax = 30m. The standard deviation of the noise of the range and angle measure-
ments are σr = 0.03m and σφ = 0.2◦ respectively. The motion noise differs for each
simulation.

Single Landmark

In the first simulation, a single object is placed in the environment. The robot
moves around the landmark and observes new parts of the landmark. In each step,
the measurements are aligned to the landmark model and then associated with the
landmark. Once the measurements are associated with the landmark, they are used
to update the landmark model and the robot pose.

In Figure 5.1(a), it is shown that the algorithm is able to align the measurements
and associate them with the landmark when only part of the landmark is observed
and new measurements lies behind an unknown line. As the robot moves around
the landmark, the new vertices that are added to the model have higher uncertainty
over them, which is clear in (b) and (c). This is due to the robot’s uncertainty
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(a) (b) (c)

(d) (e) (f)

Figure 5.1 – Results with a single landmark. Each figure shows the belief of the robot
before the motion update with the smaller green ellipse, as well as its true pose in blue.
The corresponding measurements of the previous step is shown in yellow. The belief
of the robot after the motion update, prior to the measurement update, is shown with
the bigger green ellipse, along with the new true robot pose in blue. The measurements
corresponding to the mean of this robot pose are shown in red and the landmark model
is shown in black. The final figure (f) only shows the robot pose, measurements and
updated landmark model after the final measurement update.

increasing and subsequently the uncertainty over the new observed vertices increase
as well.

Once the initial vertices are observed again, together with the last added vertices,
as in Figure 5.1(e), the uncertainty over the last vertices decreases significantly due
to the new correlation with the initial vertices, which can be seen in (f). The
uncertainty of the unobserved vertices also decrease after this measurement update,
due to its correlation with the observed vertices. This is the effect of loop closure in
SLAM, which is shown here for the parameters of a single landmark.

It is also shown that as the landmark model gets updated, its unknown lines
are updated as well. Once the unknown lines from the two sides intersect, it is
terminated at that intersection point, which is clear in Figure 5.1(c). When the
robot completes a full loop around the landmark, the algorithm has the ability to
close the landmark and connect the first and last vertices of the landmark, as in (e)
and (f).

Note that the algorithm is unable to join two line segments that can possibly be
represented by a single line. In (c) the measurements could indicate that the bottom
observed line should be extended, but another line segment is created instead. These
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two line segments, which can be seen in (d), describe different sections of the same
underlying line, but are modelled as two lines.

0 1 2 3 4 5 6 7

Step

0
1
2
3
4
5
6
7

Figure 5.2 – Mahalanobis distances of posterior poses around the single landmark.
Each pose is evaluated against the true pose after the measurement update is performed.

The Mahalanobis distance, given by Equation 3.2.30 and discussed in Section 3.2.1,
is used to evaluate the pose estimates during the simulation. The Mahalanobis dis-
tance is a normalised distance between a vector and a Gaussian distribution over
the vector space. This distance is a measure of the number of standard deviations
the vector is away from the mean of the distribution. The square of the Mahalan-
obis distance is expected to be chi-squared distributed with a mean of 3 for the
3-dimensional pose.

The Mahalanobis distances between the posterior pose distributions and the true
poses are shown in Figure 5.2, where the poses 1-6 relate to the posteriors in (a)-
(f) in Figure 5.2. It is seen here that as the robot moves around the object, the
robot becomes overconfident in its pose estimate and the Mahalanobis distance is
very high in steps 3 and 4. This overconfidence could be caused by overconfidence
of the vertex measurements or effects of linearisation. When the initial vertices
are observed again, the Mahalanobis distance improves significantly. This is due
to errors in the calculation of the pose estimate as the robot moves away from its
initial pose, but as it observes some of the initial parts of the landmark again, some
of these error are corrected.

In Figure 5.3, the final model is shown against the real object. The model is
not perfect, but the 3-σ confidence ellipses capture the corners of the actual model
in most cases. The vertices modelled when the Mahalanobis distance of the pose is
high are less accurate. The model created depends heavily on the measurements it
obtained and the robot’s uncertainty at that time.

Small Environment

The next simulation has four objects placed in the environment. The robot observes
these objects at different timesteps at first and then observes the first landmark
again to perform loop closure.

In the first three steps of Figure 5.4, the robot only observes new landmarks and
no landmarks already modelled. Thus, the uncertainty over the robot’s pose does not
decrease when observing these new landmarks and subsequently the uncertainties
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Figure 5.3 – Final model of a single landmark. The real object is shown in grey and
the landmark vertices after the last measurement update are shown in black.

over the landmark references in (b) and (c) are high. The correlation between the
two landmarks observed in the third step is higher than the rest, since they are
observed together. This is, however, not visible in the figure.

(a) (b) (c)

Figure 5.4 – First three steps in a small environment. The belief over the robot pose
(green), along with the landmark references (purple) and landmark models (black) are
shown for each step. The measurements (red) and actual pose (blue) are also shown.

In the fourth step, seen in Figure 5.5, the robot observes the first landmark
again, along with the landmark added last. This causes loop closure, where all
the landmark reference estimates are improved significantly and consequently the
landmark models are better aligned with the actual environment.

Curved Landmarks

The previous simulations only consisted of objects constructed out of straight lines.
In the next simulation, we use some landmarks with curved edges to show how
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Figure 5.5 – Loop closure in a small environment. This is the step following that of
Figure 5.4. The first figure shows the beliefs prior to the measurement update and the
second figure shows the updated beliefs. The environment objects are shown in grey.

the algorithm handles these landmarks. The robot takes a larger loop through this
environment and takes more steps.

In Figure 5.6 the simulated environment is shown, as well as the true robot poses
through the environment and the poses estimated only using the odometry sensors.
The completed simulation is shown, with the landmarks created and the robot pose
estimates at each timestep. It is seen that the models of the curved landmarks do
resemble the objects sufficiently well: although these straight-line approximations
seem crude, the measurements of these landmarks are associated with them and the
landmarks are updated with measurements from different perspectives.

Another observation is that the landmark at the bottom left of the map is mod-
elled by two landmarks. This is caused by measurements that are not associated
with the landmark, but used instead to model a new landmark. The missed as-
sociation can be caused by the specific viewpoint of the robot or failure to align
the measurements with the landmark. Although later information can suggest that
these to landmarks model the same object, the algorithm is unable to join these
landmarks into one.

The robot poses estimated by the SLAM algorithm are very close to the real
robot poses. The confidence ellipses of these poses are, however, barely visible, which
means that the robot is very certain about its pose and this could be problematic.
Although the mean of the pose belief is very close to the actual pose, the robot is still
more certain than it should be in some timesteps. This is more easily seen when
evaluating the Mahalonobis distances as shown in Figure 5.7. The Mahalanobis
distance is very high for many poses and although the mean of the final pose belief
is very close to the true pose, the Mahalanobis distance for this pose is extremely
high. This overconfidence of the pose could be a result of approximations made in
our landmark modelling and updating approach. Another possibility is that it is due
to the EKF motion update and other linearisation applied in the SLAM algorithm.
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Figure 5.6 – Environment with curved landmarks. The true poses of the robot (blue)
are shown along with the poses only estimated using the odometry (red). The resulting
landmarks (black), after the entire simulation is completed, are shown along with the 3-σ
confidence ellipses of the references (purple). The estimated pose after the measurement
update at each timestep is also shown (green) with its 3-σ confidence ellipses, as well
as the true pose (blue).
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Figure 5.7 – Mahalanobis distances of posterior poses in the curved landmark envir-
onment. Each pose is evaluated against the true pose after the measurement update is
performed.

The timesteps during this simulation took an average execution time of 1.8 s to
perform the motion and measurement update. Although this execution time is high,
the implementation is done in Python, which is a high-level language that does not
get compiled. Implementing these algorithm in a faster programming language such
as C++, would result in much faster execution times.

Realistic Environment

In the final simulation, we aim to create a more realistic environment by simulating
a house plan with objects in it. The map of this environment is shown in Figure 5.8.
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The scale of this environment is larger than the previous simulations and the robot
attempts to make a larger loop within the environment. The robot also takes 511
steps in this environment, where the previous simulation only has 21 steps.

Figure 5.8 – Map of simulated house with true robot path.

The objects in this simulation differ in size and the walls have long straight
sections, which are not in the other simulations. All the objects in this environment
exist of straight lines with a lot of 90◦ angles between lines, but some of the objects
have very small cornered segments, that could be missed by Lidar measurements.
Associating measurements to the correct landmarks is thus more challenging in this
environment.

In Figure 5.9, the robot path estimated by the odometry sensors is shown, as
well as the path estimated by the SLAM algorithm. The measurements taken by
the robot at all timesteps are also shown, as seen from the true robot pose. From
this figure, it is clear that the SLAM algorithm corrects the path significantly from
odometry the estimate, but the updated SLAM estimate contains some drift that is
not corrected by the end of the simulation.

Some of the timesteps, after the measurement update, are shown in Figure 5.10.
During this simulation 79 landmarks are created. In (a) it is seen that the robot
maintains a good estimate of its pose and the landmarks created is a sensible model
of the environment. When the robot moves around to (b), however, the robot’s
pose estimate is offset from the true pose. This drift can also be seen in the top
line of the map, which should be straight, but starts to curve downwards. In (c)
the robot corrects its position estimate, but its orientation is off. This can be seen
when looking at the measurements, which are not aligned with landmarks. The
cause of this offset in orientation is the three vertical landmarks at the bottom of
the map, where the robot associates measurements from the leftmost landmark to
the landmark in the centre. The faulty associations cause the robot to become
overconfident about its pose and cannot be corrected in this simulation. In (d) it
is shown that the pose estimate at the end of the simulation is significantly off and
new landmarks are created with measurements that actually come from landmarks
already modelled.
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Figure 5.9 – Estimated robot paths through simulated house. The true path of the
robot through the environment is shown (blue), along with the path estimated only with
the odometry sensors (red) and the path estimated by the SLAM algorithm (green).
The measurements, as seen from the true path, are also shown (black) and a scale of
the axis is given in metres.

Although the high frequency of measurements, with small motion steps between
measurements, should give the robot a more accurate estimate of its pose, the uncer-
tainties over the landmark models, and subsequently the pose, become very small.
These small uncertainties result in the robot becoming overconfident and not being
able to close the loop. The association errors during the simulation also introduces
false information, which causes the landmark and pose estimates to become confid-
ent of the wrong values.

This concludes the test of the algorithms in simulation. In these simulations most
of the effects modelled are ideal. In the next section we will test the algorithms in
practical datasets with real Lidar and odometry measurements, which introduces
other difficulties.

5.2 Practical Datasets
During the simulations, many of the effects being modelled are ideal and known.
Firstly, the noise simulated is Gaussian distributed and the parameters of this Gaus-
sian distribution are known. This is not necessarily the case for real sensors, but the
Gaussian noise assumption is commonly made. The parameters of the noise, how-
ever, need to be estimated. These parameters can often be found in the datasheets
of sensors, if available, or can be estimated by a statistical evaluation.
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Figure 5.10 – Different steps during the house simulation. All the modelled landmarks
(black) are shown for the each timestep, along with the robot pose belief (green), true
pose (blue) and the measurements (red). The true path history is also shown for each
timestep. Note that the scales, given in metres on the axis, of the four figures differ
from each other.

Another assumption made is that the odometry information and Lidar measure-
ments are obtained at the same time. With real sensors, however, the odometry
information and Lidar measurements are often out of sync and obtained at different
frequencies, but both typically have timestamps associated with them. This problem
can be overcome by extrapolation of the odometry measurements at the time when
the Lidar measurements are obtained. We do this by assuming the robot motion
is constant between two odometry measurements and using a fraction of the latest
odometry reading, according to the fraction of time when the Lidar measurements
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are received.
The simulated environment is also assumed to be flat and the measurements

are assumed to be taken at the same height. This is usually the case for indoor
environments, but outdoor environments often contain uneven terrain, which causes
the robot to pitch and roll. The true path and poses of the robot in real data are
also not always available. In the simulations, it is assumed that the Lidar sensor and
the centre of the robot’s odometry is at the same location, which is usually not the
case with real robot’s. Therefore a transformation between the odometry pose and
Lidar pose needs to be performed between the motion and measurement updates.

Taking these non-ideal effects into account, we now test our landmarking method
on two datasets, and indoor dataset set taken at the Università di Milano-Bicocca
in Milan, Italy, and an outdoor dataset taken at Victoria Park in Sydney, Australia.

5.2.1 The Bicocca Dataset

The Bicocca dataset [24; 25] is an indoor multi-sensory dataset taken in two buildings
connected with bridges. Features in the environment include hallways, chairs, tables
and a library. The terrain is smooth for the largest part of this environment, with
the exception being the two sloped bridges that connect the buildings.

Figure 5.11 – Estimated robot path (black) and measurements (red) in the Biccoca
dataset prior to any measurement updates. The scale of this environment is given in
metres on the axes.
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Multiple datasets have been taken in this environment of which we only use the
“Bicocca_2009-02-25b” dataset. The robot is equipped with multiple sensors, such
as cameras, Lidar, sonar, IMU and odometry sensors. We, however, only make use
of the odometry sensor and the front-facing SICK LMS Lidar sensor. The odometry
information is obtained at a 50 Hz frequency and the Lidar measurements at 75 Hz.
The Lidar sensor also has a FOV of φFOV = 180◦, an angular resolution of φres = 1◦
and a maximum range of rmax = 80m. Since measurements that are very far away,
at this angular resolution, have little information about landmarks, we assume the
maximum range is rmax = 30m and ignore any measurement farther than this range.

In Figure 5.11, all the measurements obtained from the dataset as well as the
odometry estimate of the robot’s path are shown. The measurements in this dataset
are taken at a high frequency of 75 Hz, but we run the tests using subsampled meas-
urements. The subsampled frequencies of 1 Hz and 5 Hz are chosen for the tests. Al-
though this subsampling discards useful information, the multitude of measurements
from the 75 Hz measurement rate can cause the robot to become very overconfident.
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Figure 5.12 – Results with the Bicocca dataset using different scan frequencies. The
landmarks created (black), as well as the SLAM estimate of the robot path (green) are
shown. The odometry estimate of the robot path is also shown (blue) as well as the
latest measurements (red). The scales and locations of these figures are also given in
metres on the axes.

In Figure 5.12, the results of the start of the Bicocca dataset is shown for the
1 Hz and 5 Hz test. In the 1 Hz test, the robot creates a decent model of the
environment, but it drifts as it moves along. When the robot reaches the bridge
section, which is located where the robot stops in Figure 5.12(a), it struggles to find
good landmarks due to a lot of pillar-like structures, which causes it to drift more
and make faulty associations. For the 5 Hz test, the model of the map seems to
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be more accurate than the 1 Hz test case. Due to faulty associations around the
corner, however, the robot’s estimate becomes completely wrong.

Although the implementation of our method failed to complete a full loop through
the entire dataset, the initial results show that the model describes the environment
well. If a more robust method to associate landmarks is designed, our modelling
approach could be useful in an environment like this.

5.2.2 The Victoria Park Dataset

The Victoria Park dataset [12] is an outdoor dataset taken in a park filled with trees
and bushes. The terrain in this environment is uneven and could cause variation in
measurements taken at different heights on objects and measurements hitting the
ground.

The robot is equipped with an odometry sensor and a SICK LMS Lidar sensor.
This Lidar operates at an angular resolution of φres = 0.5◦ and a scanning frequency
of 50 Hz. The data in this dataset is already in a synchronised format, where
the odometry information describes the motion between Lidar scans. The other
measurement parameters are the same as for the Bicocca dataset.

Figure 5.13 – Estimated robot path (black) and measurements (red) in the Victoria
Park dataset prior to any measurement updates. The scale of this environment is given
in metres on the axes.

In Figure 5.13, all the measurements obtained from the dataset as well as the
odometry estimate of the robot’s path are shown. From this figure, it is seen that
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the environment is a lot less dense than in the Bicocca dataset, which is expected
for an outdoor environment. The objects in this environment are often far from the
robot and relatively small, which means that a low number of measurements are
obtained from each object. Therefore, to be able to model landmarks, the number
of measurements needed for an informative set of landmarks in the segmentation
process is adjusted for this test to nthres = 4.
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Figure 5.14 – Results with the Victoria Park dataset at different timesteps. The
landmarks created (black) as well as the SLAM estimate of the robot path (green) are
shown. The odometry estimate of the robot path is also shown (blue) as well as the
latest measurements (red). In (a) the measurement beams are shown to visualise the
amount of measurement of each landmark. The scales and locations of these figures are
also given in metres on the axes.

Figure 5.14 shows results of different steps in the Victoria Park dataset. In
(a), which is the start of the dataset, it can be seen that the robot receives a
maximum of 4 measurements from any single landmark. The robot moves along
to timestep 50, which is shown in (b), and identifies a number of landmark in this
environment, while maintaining a good estimate of its pose. At timestep 58, however,
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the difference in angle between the real robot and its mean is big, causing the
landmarks and measurements to be misaligned, as seen in (c). Since the landmarks
in this environment are not very descriptive, these measurements are not associated
with their correct landmarks, which causes the robot to drift further.

These results show that in its current stage, our modelling method is not suitable
for outdoor environments. With some adaptations, such as using multiple measure-
ment sets to align data or to group multiple objects as a landmark, the method
could be improved for outdoor applications.

Some promising results are shown in this chapter, but in larger environments,
the robustness of the methods has to be improved significantly to make it a viable
solution in practical applications.
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Conclusions

The main focus of this project was to develop a method to model and identify
landmarks from 2D Lidar measurements to be used in SLAM. In this chapter we
give an overview of the development and draw some conclusions from the results.

We first did a study of existing SLAM algorithms and approaches to Lidar-based
SLAM from the literature in Chapter 2. From this study we identified possible gaps
in current research as well as methods that are useful for our approach.

In our approach, we chose to use objects as landmarks and model these objects
by a set of straight lines. Although this approximation seems crude, the probabilistic
approach used to model these lines is expected to allow a sensible model of curved
segments as well. The results show that curved objects can indeed be modelled,
associated and updated with this approach. This approximation could, however, be
a cause of the overconfidence of the robot seen in the results.

The probabilistic landmark model allowed us to derive a likelihood function of
obtaining measurements from the landmark. This likelihood function was then used
to compare different models with the BIC and select the model that represents the
measurements with the highest likelihood. Since the computation of all possible
models is intractable, a method was developed to iteratively reduce the number of
lines in between models and only compare these models. Although this method
does not guarantee the selection of the best model, it proved to still result in a
good model describing the measurements. From the observation that the models
created of landmarks often have a lot fewer vertices than the measurements they are
modelled from, a method was developed to initialise the model selection algorithm
with a lower number of lines fitted to the data, which speeds up the model selection
process.

Once a method was developed to create a model from the measurements, the
model was adapted to describe occlusion boundaries in the environment. These lines
were added at the ends of a model after model selection and a likelihood function was
derived for these lines. These lines proved useful when measuring parts of an object
not seen before, both to associate these measurements to the correct landmark and
to update the landmark in these previously occluded areas.

The next step was to develop a method to decide whether a set of measurements
comes from a landmark. Although the likelihood function was already derived, it
is not a good method to make an association decision. Instead, we calculated the

86

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSIONS 87

Mahalanobis distances of the error between the measurements and expected meas-
urements and evaluated this against a threshold. This method, however, assumed
a known pose and thus requires the measurements to be aligned to the landmark.
Therefore, the ICP algorithm was adapted to align the measurements to the land-
mark model. This method could, however, be sensitive to the initial condition and
converge to a local minimum instead of the global minimum, which could cause
incorrect associations.

A method was also developed to update a landmark model when new measure-
ments of the landmark are obtained. The method estimates the vertices of the model
from the new measurements, using measurement-to-line correspondences from the
existing model. Using the existing model and the new observed model, the method
was able to update the distribution over the model parameters as well as extend the
model with new observed sections.

After the development related to the modelling was completed, a SLAM al-
gorithm was developed that uses this landmark modelling to create a map of the
environment. The motion update of the EKF SLAM algorithm was used with an
odometry motion model. However, a new measurement model was derived which
uses the observed model parameters to simultaneously update the model paramet-
ers and robot pose. To reduce complexity, some approximations have been made in
the derivation, removing direct correlations between the robot pose and the model
parameters.

Finally, our method is tested with simulations as well as real-world datasets.
The first simulations showed that good landmarks of the environment could be
created and the landmarks could be associated and updated. Some correspondences
were missed, but it did not prove to be critical. The modelling proved to work
for objects with both straight and curved segments. These simulations, however,
also showed that the robot tends to become overconfident about its pose. The
final simulation aimed to be more realistic with the robot making a larger loop
through the environment. Due to the overconfidence in the robot’s pose and faulty
correspondences, the robot failed to close the loop and created new landmarks of
objects that were previously modelled, but at different locations.

In the tests performed on the real-world datasets, the robot failed to complete
full loops through the entire environments. In the Bicocca dataset, the robot initially
created a good representation of the environment, but drifted due to overconfidence
and faulty correspondences. The Victoria Park dataset proved to be more difficult,
with few measurements received from any single object, making it difficult to create
models and make associations. Other environmental effects, such as the uneven
terrain, also created challenges in this dataset. Despite these challenges, the robot
was able to create landmarks and keep a good estimate of its path during the start
of the test. Once the robot’s uncertainty became too large, however, it failed to
associate measurements to the correct landmarks due to the low recognisability of
the landmarks.

The developed landmark modelling method seems to be a good proposal for
modelling landmarks from Lidar measurements. In its current form, however, it is
not robust enough to be implemented in practice.
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6.1 Contributions
In this section we discuss the original contributions made in this project. This
is mainly focussed on the landmark modelling method and the new measurement
update we developed.

The landmark modelling method we developed describes the shape of objects
in the environment. This method create probabilistic, parametric models of these
shapes were developed, which differs from similar approaches that created a point
cloud model of the objects. The probabilistic, parametric models of landmarks al-
lowed us to develop a method to update the models of landmarks when new segments
of landmarks are observed. Other existing methods to model landmarks from Lidar
measurements are unable to update the landmark models when new segments of
landmarks are observed. This ability to update the landmark models are very use-
ful to maintain a good description of the environment as the robot moves through
the environment.

Secondly, we developed a novel measurement update for the SLAM algorithm
which incorporates the probabilistic, parametric landmark models. Other approaches
to landmark-based SLAM with Lidar measurements only uses classical SLAM al-
gorithms, such as EKF SLAM, and only estimate the locations of landmarks in the
environment. Our measurement update, however, is developed to simultaneously
update the distributions over the robot states, landmark references and landmark
models, which was not previously possible.

These two contributions allow a robot to maintain a better description of a
new environment it observes. Further possible improvements to these models are
discussed in the following section.

6.2 Future Work
In this section we discuss some possible improvements and adaptations which could
be made to the methods described throughout this thesis. From evaluating the
results, it is clear that the main problems in the tests arise from overconfidence in
the robot pose and faulty correspondences. The suggested improvements are mostly
focussed to address these issues.

A possible improvement to the current model is to introduce a “coarseness” to
the straight lines. This proposed coarseness aims to capture the variation in the
distance of measurements from the lines, creating more accurate models for curved
models. The coarseness could also be used to increase the uncertainty of the observed
vertex parameters, which could improve the issue of overconfidence.

Another suggestion is to look into using other features from Lidar measurements,
such as the the curvature keypoints used by Bosse and Zlot [16], to obtain a lower
bound for the model selection algorithm. This could possibly improve the consist-
ency of models, which can lead to more robust correspondences. Pose-invariant
information between data, similar to the method used in Himstedt et al. [17], could
be useful for making correspondences or to get an initial alignment between meas-
urements and landmarks.
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To make correspondences more robust, a post-measurement update verification
could be developed to verify the correspondences between measurements and land-
marks. If correspondences are not verified in this step, the measurement update
could be reversed and executed again with only the verified correspondences.

A recommendation which could be useful in datasets such as Victoria Park,
where a low number of measurements are obtained from a single object, is to group
different objects together as a landmark. This could make correspondences to these
landmarks more robust. This adaptation will, however, need significant changes
from the current design. An alternative to this is to use multiple measurement sets
and landmarks in the alignment step, which could also make correspondences more
robust.

Other suggestions to improve the current model is to be able to join two line
segments if they seem to be a straight line and to combine different landmarks
that model the same object. Single-line landmarks could also be included to give
information about the orientation and position normal to the line, but not about its
position parallel to the line.

Implementing these recommendations could make the proposed modelling method
more robust and useful in a larger variety of environments.
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Appendix A

Line Fit Derivation

In this appendix we provide the derivation of the equation to fit a line paramet-
erised by two points, p0 =

[
x0 y0

]T
and p1 =

[
x1 y1

]T
, to a set of data points,

Z = {zc,0, · · · , zc,n−1}, where zc,i =
[
zx,i zy,i

]T
, by minimising the perpendicular

square error between the data and the line. The equation of the line is

pα = (1− α)p0 + αp1 (A.0.1)

p0

p1

zc,i

ψ

di
ei

θi

zc,i − p0

θi

ψ

ei
di

p′0 p′1

z′c,i

x0 x1

y0

y1

zy,i

zx,i

Figure A.1 – Diagram of the error between a single measurement and a line. A
coordinate system transformation is done to obtain the second diagram with the line
on the x-axis.

For a single data point, visualised in Figure A.1, the perpendicular error between
the line and the point can be written as

ei = di sin θi, (A.0.2)

but this requires the calculation of di and θi. By transforming the coordinate frame
so that the line lies on the x-axis and p0 is the origin, results in a simpler form of
this equation,

ei = (zx,i − x0) sinψ − (zy,i − y0) cosψ, (A.0.3)

where ψ is the angle of the line. For the first part of this derivation we assume the line
is parameterised by p0 and ψ and then we calculate p1 according to these parameters.
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It is noted that with this parameterisation, an infinite number of parameters define
the same line, we therefore choose p0 and p1 to be as simple as possible.

For the best line fitted to this data, we want to minimise the sum over the error
of all the points,

E =
∑
i

e2
i

= sin2 ψ
∑
i

(zx,i − x0)2 − sinψ cosψ
∑
i

(zx,i − x0)(zy,i − y0) + cos2 ψ
∑
i

(zy,i − y0)2

=
∑
i

((zx,i − x0) sinψ − (zy,i − y0) cosψ)2 .

(A.0.4)
To obtain the minimum, the derivatives of this function with respect to the different
parameters is calculated and set to 0. First the function is derived with respect to
p0,

∂E

∂x0
= −2

∑
i

((zx,i − x0) sinψ − (zy,i − y0) cosψ) sinψ = 0

(zx − x0) sinψ = (zy − y0) cosψ
∂E

∂y0
= −2

∑
i

((zx,i − x0) sinψ − (zy,i − y0) cosψ) cosψ = 0

(zx − x0) sinψ = (zy − y0) cosψ,

(A.0.5)

where zx and zy is the mean of the data. Both of these derivatives result in the
same equations and from these it can be seen that setting p0 equal to the mean of
the data satisfy these equations.

x0 = zx

y0 = zy
(A.0.6)

Next the derivative of Equation A.0.4 with respect to ψ is calculated,

∂E

∂ψ
= 2

∑
i

((zx,i − x0) sinψ − (zy,i − y0) cosψ)

× ((zx,i − x0) cosψ + (zy,i − y0) sinψ) = 0∑
i

(zx,i − x0)2 sinψ cosψ +
∑
i

(zx,i − x0)(zy,i − y0)(sin2 ψ − cos2 ψ)

−
∑
i

(zy,i − y0)2 sinψ cosψ = 0.

(A.0.7)
By rearranging terms a with some trigonometric identities, this is simplified,

2 sinψ cosψ
cos2 ψ − sin2 ψ

= 2
∑
i(zx,i − x0)(zy,i − y0)∑

i(zx,i − x0)2 −
∑
i(zy,i − y0)2

2 tanψ
1− tan2 ψ

= 2
∑
i(zx,i − x0)(zy,i − y0)∑

i(zx,i − x0)2 −
∑
i(zy,i − y0)2 .

(A.0.8)
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If we introduce a variable B as the negative inverse of this equation, we obtain the
quadratic equation,

2 tanψ
1− tan2 ψ

= − 1
B

tan2 ψ − 2B tanψ − 1 = 0

tanψ = B ±
√
B2 + 1,

(A.0.9)

which can easily be solved if B is known. We make the following substitutions,

a =
∑
i

(zy,i − y0)2 −
∑
i

(zx,i − x0)2

b = 2
∑
i

(zx,i − x0)(zy,i − y0),
(A.0.10)

and from Equation A.0.8 and Equation A.0.9 we obtain

− 1
B

= b

−a
B = a

b

tanψ = a

b
+

√(
a

b

)2
+ 1

tanψ = a+
√
a2 + b2

b
.

(A.0.11)

ψ

a+
√
a2 + b2

c
b

Figure A.2 – Diagram of triangle with ψ.

If we draw the triangle of ψ, as in Figure A.2, with the numerator and denomin-
ator of Equation A.0.11 as its sides, we obtain the following equation for its diagonal
side,

c =
√(

a+
√
a2 + b2

)2
+ b2

=
√

2
(
a2 + b2 + a

√
a2 + b2

)
.

(A.0.12)

With these we calculate the values for the sin and cos of ψ, without calculating the
exact angle,

cosψ = b

c

sinψ = a+
√
a2 + b2

c
.

(A.0.13)
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Now that we have a equation for p0 and ψ, we can calculate any point on the
line and use it as the second parameter of the line. We define this second point at
a distance β from p0, which is calculated as

x1 = x0 + β cosψ
y1 = y0 + β sinψ.

(A.0.14)

Equations A.0.6, A.0.10, A.0.12, A.0.13 and A.0.14 are now sufficient to obtain
the parameters of the best fitted line from the data.
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