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Abstract

Formal methods aim to apply the rigour of mathematical logic to the problem ofguaranteein!

that the beha.viour of (critical) software conforms to predetermined requirements. The appli­

ca.tion of formal methods during program construction centers around a formal specification

of the required behaviour of the program. A development attempt is successful if the resultin!

program can be formally proven to conform to its specification. For any substantial program,

this entails a great deal of effort. Thus, some research efforts have been directed at providing

mechani..al support for the application of formal methods to software development.

E.W. Dijkstra's calculus of weakest precondition predicate transformers [39,38] represents one

of the first attempts to use program correctness requirements to guide program development

in a formal manner. The calculus provides a set of rules that may be used to "discover"

prO!J'&IIlI!I by considering the formal specifications that they have to fulfill. Programs ue

expressed in a powerful nondeterministic mini language, that can be seen as a minimal subset

of modern imperative programming languages.

In this thesis we examine th~ suitability of Dijkstra's calculus for mechanically l'Upported

application as well as what kind of mechanical tools will best support its use. For this

PUrpOlle, a small prototype implementation was undertaken. It is found that formalizing

Dijkstra's calculus for purposes of mechanical support has an unfortunate side effect, in that

limitations are placed on the notation and strategies that a program developer may employ.

It also causes additional complexity in the logical formulae to be manipulated. Abstraction

mechanisms provide a powerful tool to combat these problems. In the second put of this

theais t we consider a series of abstraction mechanisms that may be incorporated into the

calculul for this ptll'pOle, terminatjn~ in a generalization of Dijkstra's calculus such that

iii
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OpsolDlDing

Formele metodes poog om die strengheid van wiskundige logika te gebruik om te waa.rborS

dat die sedrag van (kritiese) programmatuur voldoen aan sesewe vereistes. Die toepauins

van rormele metodes tydens programontwikkeling sentreer rondom a formele spesifikuie van

die verlansde programgedrag. 'n Ontwikkelingspoging is suksesvol as daar formee1 bewy.

kan word dat die resulterende program aa.n sy spesifika.sie voldoon. Vir enise subetansiile

pror;ram, verteenwoordig dit '0 aa.Bsienlike hooveelheid werk. Verskeie navorsinSlpoginp is

sens op die daarstelling van meganiese ondersteuning vir die gebruik van formele metodes

tydens ontwikkeling van sagteware.

E.W. Dijkstra se calculus van swakste voorkondisie ("weakest precondition") predikaattrans­

formators [39, 38] is een van die eerste pogings om vereistes vir programkorrektheid op 'n

forme1e en konstruktiewe wyse tydens programontwikkeling te gebruik. Die calculus ver­

sb! 'n aantal reels wat sebruik kan word om programme te "ontdek" deur belkouinr; van

die formele spesifibsies waaraan hul moot voldoon. Programme word uitsedruk in 'n klein,

kr~ise, nie-deterministiese taal, wat geaien kan word as '0 minimale subversameling van

moderne imperatiewe programmeertale.

In hier<lie t~s word die geskiktheid van Dijkstra Be calculus vir mesanies ondersteunde

toepUlinS ondenoek, sowel as watter vorm van meganiese ondenteuning die beste sal Weel.

Hiervoor i. 'n klein prototipe implementasie onderneem. Daar word bevind dat formalisering

van Dijbtra Ie calculus ten einde meganiete cndenteuning moontlik te maak, die onselullige

newe.eft"ek het dat beperkinS8 geplau word op die notasie en 8trat~ wat 'n progamon­

twikkelaar ma« sebruik. Dit veroorsaak ook addisionele kompleksiteit in die~ formules

wat semaaipaleer moet word. Abstraksie meganismea wnW 'n krastise werktui! om hierdie

v
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probleme te bebmp. In die tw~e gedeelte van hierdie teais, word 'n reek. ablttable mepa­

l.me. wat in die calculus opseneem Un word vir hierdie doel, beskou. Dit word alleIlu1t met

'n bMkrywins van 'n veralsemening van Dijkstra. Ie calculus wat prosramOlltwikkeUDI deur

formele stapegewyse verfyning ondersteun.
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Chapter 1

Introduction

Since the 1960's, the rapid increase in size and complexity ofsoftware systems has produced an

epidemic of projects that exceed their deadlines alld budgets and result in unreliable products.

This situation persists even today. The genre of horror 5t.ories concerning computer mal­

functions based both on documented fact and fable continues to grow. A leading computer

journal1 hu gone as far as running a regular column to record substantiated tales of this

kind. In the mind of the public 8uch incidents understandably lead to growing distru.t of and

concern over the use of computers in critical applications such as medical .ystems, defense,

aviation, factories, power plants and financial institutions.

Pr09ammers have traditionally endeavoured to ensure the quality of software throqh 8Y'"

tematic testing. Since exhaustive testing is impossible for practical programs, a. Dumber of

carefully clJoeen test cases have to be constructed to be somehow "representative" of the entu-e

spectrum. of pouibilities. Since program outputs are in general not continuous functions of

their inputs, making extrapolation from a sample of empirical results unreliable for predict­

iDg the outcome for all cues. Theile facts as well as practical experience show that propam

testin& can never provide a sufficient level of asauranc" of the quality of life critical aoftware.

This Ieada U8 to contend that the rigour of mathematical proof is the only way of 8ubltanti­

atiq claim, &boat toft.are correctness.

1 ACK SIGSOIT Software EqiMeriq Note.

1
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CHAPTER 1. INTRODUCTION 2

The extensive uae of mathematical logic ill the description and prediction of the attribute­

of prosram. hu become known u lonnal mtthodiJ. Formal method. have been appUecl to

varioul upectl of the construction of correct, reUable, and efficient IOftware. TheM include:

prosram specification -the provision of a formal specification of the intended behaviour

of a programj

prosram verification -demonstrating by means of a mathematic41 proof that a progam

is consistent "lith its (formal) specification;

prosram tranaformation -performing correctness preserving transformations on a spec­

ification or program for the sake of refinement or optimization;

program ayntheaia -extracting <:l. rr::ogram from a constructive proof that a result satisfy­

ing a specification exists.

In this thesis our concern is witll program verification-specifically using an axiomatic method

in the tradition of Floyd [51] and Hoare {84].

Historical PerspE'f: U"l3

Floyd Uses Assertions ~0 D,~~~riheProgram Behaviour

The cornerstone of axiomatic metLods of program verification was laid by Floyd in a IeIIliDal

paper, "Assigning Meanings to Programs" [51], delivered at a conference in 1967. Floyd

UHS a flowchart model of progaml with nodes representing progam ltatement. and arcs

the low of control. Hi, approach comprises attachin! logical aaeertioDI to the arcs of a

progam flowchart. An uaertion must be true whenever control puaea over the arc to which

it il attadaed. P~ behaviour is specified by providin! both an ent,.,- and an ezit­

conJilion fix ap~. The entry-condition expreues the information that can be Ulumed

abotIt tlte iDitial ,tate of the propam variables, while the exit-condition details the ,taae or
propam ftriabIeI after termUlatioll. Using theee entry- and exit-conditiolll, C0rJ8poadias

intemaeJiGe -...ertiotu are paerated to annotate the internal ara of the leowc:hart.
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CHAPTER 1. INTRODUCTION 3

One h.. to prove that the exit-condition will be satisfied by the final ata.te a.ttained, after

eXt-'Cution starlin! from & atate that .ati.fies the entry-condition. Thete proof. are buUt

around rules, liven by Floyd, to derive from all entry-condition aaaociated with a node, and

the node itself, the strongest exit-condition that can be guaranteed on leavins that node.

Floyd was also the fint to use well-ordered sets to prove program termination. His technique

involves the use of so-called W-/unctiom. A W-function maps the program variables to a

well-ordered set (an ordered set with no infinitely decreasing sequences). A program i.shown

to terminate by demonstrating for each arc that the value of the W-function decreases every

~ime control passes over that arc.

Ho~"s Deductive System for Program Correctness

Hoare's 1969 paper, "An Axiomatic Basis for Computer ~rogramming" [84], represents the

next milestone in the development of axiomatic program verification methods. He proposes

that statements of program properties be viewed as theorems in a deductive system. An

ALGOL-like lan«ttage is used as programming notation. Analogous to Floyd's entry- and

exit-conditions, two logical assertions, a precondition and a po,tcondition, are used to specify

the behaviour of program constructs. The now familiar notation

P{S}R

is introduced by Hoare, to mean that if assertion P is true before execution of program S

~n8, then the assertion R will be true on its completion. H such a fact can be formally

establi.hed in Hoare's deductive system, we have a theorem, i.e.

I- P{S}R.

The axioms of Hoare's l~calsystem comprise basic facts about "elementary" program oper­

atiou ncb. asin~r arithmetic, .. well as an axiom schema describing the effect ofexecuting

&It _pmeat instruction, while inference rules are given to describe the effect of sequential

compolitioll of pfOIlUIlstatements, iteration, and other compound statements.
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CHAPTER 1. INTRODUCTION 4

To prove that a program S is consistent with its specification (consisting of & precondition P

and postcondition R), one starts with axioms about the elementary prosram statements and

applies lloare's inference rules repeatedly until the theorem ~ P{S}R is deduced.

This approach specifically excludes proofs of program termination. Manna and Pnueli later

extended Hoare's work, presenting a more extensive deductive system for an ALGOL-like

language that includes a treatment of program termination [113]. The notation

{P}S{R}

has been used to denote that if assertion P is true before execution of program S begins, then

S will terminate and the assertion R will be true on its completion.

Dijkstra'il Programming Calculus

The foundational work of Floyd, Hoare, and others set the scene for constructive verifica­

tion techniques. Experience with the application of these early verification methods quickly

indicated that programs written without close guidance from their specificatioDJ, can be

extremely difficult to prove consistent with such specifications. To overcome this problem,

propam development has to be interweaved with the construction of assertions that describe

its behaviour and may be used in demonstrating program correctness.

Dijkstra responded to this challenge by showing how assertions may be used to suide the

development of programs within a deductive system. In the classical reference works [39] and

[38] he developed a formal discipline or calculus for the derivation ofp~s that meet their

stated specifications. Dijkstra's calculus provides a set of rules to be used in "dillCOVerins"

progama by considerins the assertions they ha.ve to guarantee and allows a prosram and

its correctneu proof to be constructed hand in hand. The basic procedure centers around

decidiDS OIl an assertion to be satisfied (a postcondition) and uains the calculus to find a

propam construd (and correspondins precondition) that will suarantee its truth.

Dijbtra'. maiD deductive tool is a eet of functions called~ precondition predicate tnnu­

!tn"fJter.. Thae are oed to formalize the aemantica of prOKJ'&Dl constructs and drive the pro­

gram development proceu. In seneral, .. predicate transformer is a function that U80Ciatea
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CHAPTER 1. INTRODUCTION

one auertion with another. In particular:

The weakest precondition of a program construct 5 with respect to an auertiOD

(postcondition) R, denoted wps(R) (or wp(S, R», is that auertion (precondition)

that is satisfied by all program states such that execution startin! Cram anyone

of them will terminate in a state satisfying R, i.e.

{P}S{R}

is equivalent t.o

P => wps(R).

5

The fact that the weakest precondition transformer works "backwards" from a postcondition

to be established, makes it extremely well suited to the goal-directed activity of program

compoeition.

Because exilting programming languages did not satisfy his requirements, Dijkstra invented a

unique IoIsuarded command" language notation for the presentation of propams (algorithms)

developed in the weakest precondition calculus. Apart from primitive commands like skip

and uaipment, the language contains an alternative and a repetitive construct that are built

up from glUlrdetl command... A guarded command is a command (pqram statement) list

prefixed by a Boolean expression (guard), such that the command list will only be executed

if the Boolean expression evaluates to true, e.g.

i #: n -+ i := i +1

A novel characteristic of Dijkstra's guarded commalld language is that it allows the expres­

ROO of nondetenninutic programs in a natural way, e.g. in the guarded command language

Itatement

if % < MAX -+ % := % + 1 0 % > MAX -+ x := x-I a- -
& choice of which ltatement to execute when % = MAX, il to be made DOIldeterministicaUy.

A BOD.determiDi.tic mechanism is such that its initial state does not uniquely determine its

esniaS adivitiet.
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CHAPTER 1. INTRODUCTION 6

The Auuded command langu&«e formulated by Dijkst,ra is in effect a mini lansu. that

embodies the bare essentials of lolly imperative proyamming lansua«e. Nondeterminilm i.

a powerful abstraction mechanism in the calculus, aUowins one to describe in .. condie and

elesant manner, a whole dass of algorithms instead of a single deterministic one and to

separate concerns of correctness and efficiency by delaying decisions for the sake of efficient

implementation to later stages of development.

The Anti-formal Methods Stance and Some Limitations of

Formal Verification

Formal methods have been opposed by some computer science researchers. Anti-formal meth­

ods lobbyists (e.g. [35, 49J) have presented arguments including:

• Formal program verification does not seem to "scale up" , Le., there is little evidence to

suggest that a large, complex verification may be accomplished as the sum of a number

of smaller, simpler verifications.

• "No matter how high the payoff, no one will ever be able to force himself to read the

incredibly long, tedious verifications of real-life systems, and, unless they can be read,

understood and refined, the verifications are worthless." [35]

• Progress from the theoretical possibility of program verification towards verified pro­

grams becoming a "reality" in the wider computing industry, has to date been embar­

rassin~y slow.

The authOl' agrees with the view, expressed in [49], that one has to separate algorithms from

provams when issues of verification arise. The notion of an algorithm is more abstract than

that of a program. The intended interpretation of an algorithm is an abstract machine for

which there is not suppo&ed to be a physical counterp...·t, i.e., its properties can be established

by definition. On the other hand the intended interpretation of a progam is an abstract

machine that il suppoeed to have a physical machine counterpart. The properties of physical

machine. can only be establi.hed inductively. (See [49]) for a detailed exposition.)
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CHAPTER 1. INTRODUCTION 7

Avra Cohn t
, discussion of the ICOpe and limitationl of the Viper microproce.1Of' verification

effort [31] includes a similar caution concernins hardware "verification":

"Ideally, one would like to prove that a chip correctly implemented its intended

behaviour in all circumstances; we could then claim that the chip'8 behaviour wu

predictable and correct. In reality, neither an actual device nor an intention are

objects to which logical reasoning can be applied.

In short, verification involves two or more mode18 of a device, where the models

bear an uncheckable and possibly imperfect relation both to the intended deeip

and to the actual device. This point is not merely a philosophical quibble; ••. "

Formal methods, like any other methods, have their limitations. This should not sound the

death knell of continued research effort in this area, because formal methods have already

made a positive contribution to the construction of reliable software:

• Formal specification methods have, and should continue to make, valuable contributions

to software engineering practices.

• Reseuch into program verification has had very "practical" spin-offs in the form of

program validation techniqUe!. TheBe are also developments in the risht direction­

towards the construction of more reliable software.

• By placing a mathematical foundation under the craft of programming, formal methods

provide intellectual tools that allow a firmer and more precise grip on complex subject

matter. Teaching prospective programmers the rigours of formal methods, can only have

a beneficial influence on the way in which they think about and construct eoftware.

About This Thesis

TJU. theai. concerna one of the fundamental iuues in computer science-the construction

or reliable IOftwart!. We have choeen to approach it via. formal methods, specifically Dijk­

atra'. weakeat prec:onditioD p~ammins calculus. In makins this decision, the foUowins
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CHAPTER 1. INTRODUCTION

obHrvationl were decisive:

8

• The luuded command lanlulle, beinl & "minimal lubJet" or modern imperative Jan.

pas", is easy to learn and allows a prosrammer to focua on correctoeea iNuei without

heiDI distracted by language idiosyncruies, while aJsorithms can euily be tran.formed

into standard programming nota.tions after development.

• The guarded command language provides a simple and concise notation for the expres·

lion of algorithms.

• Algorithms are completely abstract entities, for which consistency with a formalspeci·

fication can be formally established.

• Dijkstra'8 calculus emphasizes a separation of correctness concerns from those of effi·

clency, allowing a useful abstraction when developing an algorithm.

• The weakest precondition calculus is specifically tailored towards the construction of

correct algorithms, as opposed to a posteriori correctness proofs, and provides a. unique

"calculational approach" to algorithm development. This makes it eminently suitable

for teaching program development in a. formal framework.

• Dijkstra's calculus is amenable to various extensions to experiment with more complex

features 8uch as parallelism, fairness, formalized stepwise refinement and correctness

preserving program transformations.

The need for efficient program development has necessitated the use of increasin~y lIOphis­

ticated. mechanical tools to assist programmers. Such tools have become indispensable in

software production environments and have achieved undeniable 8uccess in aIIowiq efficient

editinl, stonse, retrieval, and leneral administration of programs, syntax and semutic anal­

ysis, type cheekinl, optimization, and assistance for progam testin~ and "debugin~". The

evolution of the role of machines as progamming assistants has also brout;ht about certain

n~ative effects, includin~ a reliance on sophi&ticated debuwng aids to establish confidence

in unstable IOftware, experimentation at the terminal or progamminl by trial and error.

IIltroductory texts OIl rigorous propamming disciplines, such as [38, 66, 14, 40, 19], con·

ceatrate OA tlte prillciplea involved and Ulume no tools Ave pencil, paper, and intellectual
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CHAPTER J. INTRODUCTION 9

machillery. Yet the opinion haa been voiced, and i••hared by the author, that if formal

methodl are to enjoy wider uJa&e, their application wUl have to be IUpported by medaui·

cal tooll that will relieve a prosrammer from at leut JOme of the detailed, time couamJq

manipulations they involve.

Starlin! with IUch milestone mechanical prosram verification .y.tems .. thOle of [92J aad [58J,

much telealch hu been done in this area; some of which i. reported in (1,2,3]. Publicatioll.

IUch .. [143, 70] delCribins :rnplementations bued on the weakett preconditioll paradipa

&re, however, quite rare and only recently have work. such AI [4, SO], oling the lupap or
puded cOIDolands for the exprellion of aJ!orithmll, appeued.

Thsia Aim

This thesis is a survey of theoretical aspects regarding the following questions:

• How .uitable, if at all, is Dijkstra's weakest precondition C<.dculus to be the basis of

mechanical tools for formal program (algorithm) construction?

• What kind of mechanical tools would best suit the use of Dijkstra.'s calculus?

Thsw Outline

The investigation is divided into two parts: Part 1 introduces Dijkstra'i langu~eof puded

commaadl and its accompanying weakest precondition programming calculu and deecribes

lOme obctacles encountered in providing buic mechanical support for application of tlte cal­

clllut .. well AI IUMeitioDS for overcoming them. Thi. compriee. daapten 2 throup 4.

Part 2 add..reaet ODe of the major obstacles to effective mechanically supported progam de­

velopment uug Dijbtra'. calculul as identified in Part 1, i.e. a lack. of formal abatraction

meclaaaiam•• A 11UVey ofabetractiOD mechanisms that could be incorporated into the calc.lus

ia preRa.ted, aDd effects of their inclusion upon the calculus itself and its mechanisatiOll are

diJcuIed. Part 2 IpaDI dlapten 5 through 8.

Ia COpter 2, a JeDWltic framework ia pre.ented as a formal frame of reference for Dijbtra'.
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caletiu.. Where nect'll&fy, the reader may reference Appendix A Cor lOIlIe mJllthematicaJ

bac:kpound on material in thi~ chapter. The treatment inc:ludea the COIlceptl of the .tate of.

computatioo, the atate apace, at.te tranlformationl, predic&tea, and predicate triUl.ronnen;

endinl with a diacuuion of the weakest precondition and weakeat liberal precolldltioll pred·

ieate ban,Cormen. Apart from introducing notation, this chapter ia intended to provide a

concile, fairly formal description of the key conttituents of Dijkstra'i calculUl, identify their

key properties and lemmas on which some of the result. to folio"", are baaed. A ttroDl the­

oretical bui. i. euential for any verification system, manual or otherwise, &I a mechanical

verification system without a solid theoretical foundation is of doubtful value.

Chapter 3 provides a summary of Dijbtra's weakest precondition calculus. The constructs

that comprise the guarded command language are presented in turn, tosether with an op­

erational description and their weakest precondition semantica. Where applicable, theorems

that .implify the applicatioll of the theory in practicalsituationa are presented. DisclllSion.

on the buic data types used in guarded command programs, scope rules for declarations and

specificationl and annotations of programs are alllO included. The last section of this chapter

explains and illustrates the main strategies for al~rithm develop11H!nt in the calculus on &

prOtp'&lDmin! problem. The contents of this chapter, introduces the reader to the syntax and

acmantica and application of the main agents that a mechanical verification system will have

to manipulate.

Chapter 4 contains the investigation into the suitability of Dijkstra's calculus for mechanical

support. Discuaions ran!e from the need to formalize certain aapecta or the calculus such as

the syntax, type system and specification language to various considerations for the calculation

of preconditions and proof obligations. Some sugsestionl are made on proof support ud

support for interactive program development. When providing mechanical IUPport, one has

to I&Crifice the informal part of the mixture of formal and informal reaaonins: and preeentation

tJaat one finda in manual application of Dijkltra's calculus. One is limited by havill8 to be

completely formal and work within the scope of riSorously delineated syntax and method.

UnIe. the expIoUon of complexity in formulu to be manipulated and the exeeuive burden of

proof obIisationa that this leads to can be minimized, the UllefulDess of a mechanical system

will be leverely limited. One way to combat the limiting effects of complete formality is to

Stellenbosch University http://scholar.sun.ac.za
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pr.>vide abltraction mecbanillUl that wiD allow more powerfulilleani of expreNiOil wl....l. t.
bound. or formality enforced by the .ystem, more concise notation, more paeraJit.Y .ad tile

removal of exceuive details (rom immediate con.ideration.

In Chapter 5 some meclIanism. for abstraction are coDiidered for indulioa in Dijbtra'.

calculus. Three maln poesibilities are explored: procedural abltractioa, data abitractioa, aad

abltractiOD mechanisms in the specification language. Dijkstra', calculu impmea limitatioll,

on the UAp of abstraction and refinement during prosram development. Such Umitatioll,

may be removed by extending the IIemantic framework of Chapter 2. Thi. i. dODe ia Chapter 6.

The extended formal foundation obtained 88 a reault, may be ueed to con,trud a refinement

adctIlu hued OD the weakest precondition paradigm, such u developed by R.J.R. Back [9, 8],

Joeeph Morris [130, 128] and Carroll Morgan [121].

Chapter 7 is a discullion of the constructs and uses of such & refinement calculus. In this

calculus, specifications also become programs and executable programs are simply progama

that have been refined to such an extent that no unimplementahle construd. remain. Step­

wise refinement i. & formal manipulation in the refinement calculus, & fact that hu intereitiDI

implications for mechanical support. Both procedural and data refinemeata are cOlilidered.

Some perspectives on mechanical IIUpport for application of the refinement weut.. are dis­

cussed.

Conclusions are presented in Chapter 8.
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Chapter 2

A Semantic Framework

What is your substance, whereof are you made,

That millions of strange shadows on you tend?

Since everyone hath, everyone, one shade,

And you, but one, can every shadow lend.

William Sha.~"ptare, Sonnt!t 53

A theoretical foundation is important for any formal method. The aim of the temuUC

fr.-:mework for Dijklltra'. weakest precondition calculus preeented here, is to provide ...uitable

level or formality for discuuionll to follow in Chapters 3, 6 and 7.

The well known concepts of the state of a. computation and the .tale apace are d~fuIed,

followed by a characterization of boundedly nondetermini.tic mechanillDJ u state traufor­

malion function•. Predicates and predicate transformers are introduced, lpecificaUy weakest

precondition and weakest liberal precondition predicate transformers and the reJatioDship be­

tween alate transformations and weakest precondition transformen are mghlipted. The.e

predicate transformers provide a means of defining prosramming languase semantics in a way

that 11lpports systematic program development from formal specifications.

The lattice theoretical framework adopted here has heeD uled by a number of authon, since

it allows &II elegant treatment of predicates and predicate transformers and is particularly

helpful when defining the lemantia of iterative and recursive mechanisms. (The reader may

13
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CHAPTER 2. A SEMANTIC FRAMEWORK

alto re(...r to [41] for a more tboroush and forlllal introduction to the theory of predicate

traD.former &emanUe. tban that pretentf.ld here.) In Chapter 6 lbi. framework g exte.decl to

accommodate the more ah.tract mechani.m. introduced in Cbapte-r 7. Appendix A .1a0ll1cl

be ref"'f(lncf.ld, where necessary, for background material on relation., orderinp aad lattic:el

u employed here.

2.1 Preliminary Notation

The Form of Argument!

Following [41, Chapter 4], a formal argument to show R =q (,dmilarly R => q) for predicates

R aDd q, will be written in the following concise and calculational format

R

5; {hint wby R == X}

X

• {hiat why X !5 Q}

Q

Quantified Expreuion8

We Ule the notation (operation dKmmie. : range : tema), to denotfl tile com­

bination of the values Ulumed by the term, accordins to the opendion, u the

.r..mmiu vary over the liven raJlfe. Unless the type of a dummy variable is

obvioul from the context, it it siven &8 part of the raDle, e.g.

(Vz, J : zEN A 11 EN: x > 11 => x - J > 0).

The ranse iteelf is omitted if it is obvious from the context, e.g.

(Yz" :: (.,z V J) =(z => r».
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2.2 State of a Computation

15

The state of a computation i, a mappins usociatins identifiera with value. and may be

interpreted as reflecting the values of all program variables at a siven instant durinS prOlJ'&Dl

execution.

Let Cv.,. denote a computation involving a countable set of pro,;ram variables, U&r, takin&

their value. from a set of values, lUI. A ,tate 01 WJr (8) is a function

(T : UJr 1-+ UJI

The .tClte 'pace 01 lGr is the set of all states of UJr; denoted EVaI" In general EVilI' may be

thoupt of u the cartesian product of tbe relevant data domains.

2.3 Nondeterministic Mechanisms

We diatillpiab between deterministic and nondeterminiltic computation mecbani'DlI. Upon

activatioll, tbe activity of a determinutic mechanilm is fully determined by it. initial .tate,

i.e. itl behaviour is fully reproducibl~. For a nondeterminUtic mechcmima, activation in a

particular initial state will result in one out of a class of pOl8ible activitiel. Nondetennini.m

is Aid to be 6ownd~d jf a finite number of alternatives for continuin& computation are available

at any moment.

2.4 State Transformations

The effect of activatinS a (nondeterministic) mechanism under an initial value assipment to

its variablea, can be deacribed by means of a function between an initial state and a. nonempty

let of pouible final .tates.

Let J. deaote a .pecial "ndefinal .tate (used to represent nontermination) and EV.. the

state IpaCe Ev.. extaded witb to state, i.e. EV.r U {J.}. We DOW debe a. (6mandal"

~)ate trtm6/ormalitm on lir [8, 140, 149J aa a functioa
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, : EVar .... {X £; E~G" : X = E~G" or (X f; eand X £; EVa" and X il finite)}

16

The meaning of a mechanism SVar, involving only variables from the set liIr, is given by a atate

transformation ts on liIr, describing the effect of activating S in an environment containin~

the progr&l1l variables in lilT. For an initial value assignment 0' to lUr, Is(O') repretentl the

eet of pouible final assignments to these variables, when S haa terminated. The pretence of

the undefined state .1 in ts(C1) indicates the possibility of nontermination of S for thi. initial

atate. Requiring S to be boundedly nondeterministic, dictates that for each initial Itate u,

either ts(CT) is finite (and nonempty) or .L E ts(u), see [141, pa,;e 455J. Our definition of Is

identifies all sets containing .L with each other in the above definition-equating them aU to

E~.r' This renders the possibility of nontermination indistinguishable from the guarantee of

nontermination and is done for the sak(~ of conformance to Dijkstra's weakest precondition

semantics (see [140, p~e 541-542J and [93, page 70]). Similar approaches that offer different

views on this issue may be found in [141, 34, 71, 93, 155].

In Nelson's taxonomy of programming semantics calculi [133], the semantic model outlined

above is called the total correctnel'I model. This model allows an initial state to be related to

proper (terminating) outcomes as well as the "looping" outcome, without distinguishing pr~

gams that may not terminate from those that definit~lywill not. Each initial state is related

to at least one final state-indicating that "something" must happen when a mechanism is

activated in an initial state (see [93, 133] for descriptions of more general models). Although

no provision is made for distinguishing between run-time errors and infinite looping behaviour

as causes of nontermination, the state space may be extended suitably if this is desired. As

indicated in [133], various technical approaches can be applied to such a semantic model, e.g.

relations on states, Hoare logic, predicates or predicate transformers. Dijkstra's calculus of

~arded commands [38] approaches the total correctness model via predicate transformers.
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2.5 Predicates and Predicate Transforlners

17

A predicate transformer is a function that ulOciatee a predicate on the .tate .pace with &D~

other predicate on the atate space. The predicate transformer approach to prosram lemutic:.

is bued on the fact that a. set of states of a computation can be characterized by & losica1

formula in terms of prQlram variables, and vice versa.

Ulin« Bool to denote the set of truth values, Bool = {true, /al"e}, we consider the POllet

(Bool, Be') as obtained by partially ordering Bool as follows

Bool
Now (Bool, C ) is a complete lattice with top element true and bottom element /al"e (see

Appendix A.3).

A predicate on lGr can be seen as an assignment of a truth value to every state in the state

.pace, Ev.,. Thus a prtdicate on lfIr is a function

R : EVar ..... Bool

A atate ~ of lOr is said to satisfy a predicate RVlJr iff R(~) =true. We IOmetirnes characterize

a set of ata.tes of lfIr by a predicate RVlJr, viz. the set of all states of lUr that satisfy RV.ri

denoted "R (~ EVor). The converse also applies.

Notationally, we do not distinguish between the syntactic (predicate formulas) and semantic

(truth-valued functions) nature of predicates, see [12, page 605]. In the sequel we take the

liberty of referring to predicates also as "assertions" or "conditions".
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Notation

18

T

~1,z2 ..
.1••2 .

fRl

denotes "false"; the predica.te that ia not aatisfied by any state, i.e.

3F =.;
denotes "true"; the predicate that is satisfied by every state, i.e.

&T = EV.r.

denotes the predicate obtained by simultaneously replacing all free

occurrences of the variables zl, z2, ... in the predicate R by ex­

preuions el, e2, •.• respectively. Such a substitution is only valid

if it results in a syntactica.lly well formed predicate. Renamins of

bound variables in R may be necessary before the substitution com­

mences, to prevent variable occurrences in the expressions fi from

becomins bound. This syntactic manipulation is known as teztual

nNtitution.

is used to denote a predicate RVar' universally quantified over all

its free variables;

denotes equality between predicates, so that

means that Rand Q are equal as functions;

denotes the strength order between predicates, so that

rR~Ql

is read "R implies Q", "R is at least as strong as Q" or "Q is at

least as weak as R".

We denote the set of all predicates on lUr by Predv.r. By results from Appendix A.3,

(PTedVartC) is a. complete lattice for the pointwise extended partial order on Bool, i.e. for

predicates RVar and QV.r:

Bool
R C 'l =rtq: a E EV.r: R(q) C 'l(a».
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The top element of Predv.r is the predicate T which &alisnl the value true to every .tate,

while the bottom element i. the predicata F which uliSDI the value /o.l,e to every .tate.

The following two lemmas from [130] show that the partial order OD predicate. wrrNpoad.

to losical implication and that the least upper bound of a set of predicates correapond. to

their disjunction:

Lemma 2.&.0.1 For P,Q e Predvar:

Lemma 2.&.0.2 For anJl lIet 0/ predicates X = {Ri : i e I} ~ Predvar:

uX == (3i : ; E 1 : Hi)

2.6 Weakest Preconditions

The goal-directed nature of programming, suggests a. prominent role for a predicate R, called

a poMcond;'ion, embodying the desired condition on the final state reached alter activation

of lOme mechanism S. In reality such a. postcondition could be satisfied. by a number of

states-accommodating nondeterministic behaviour of S. A corresponding pm:ondition is

ueed to characterize thOle initial states for which activation of S is ~aranteed to terminate

in a. final state satisfying R.

Let RY.r denote a. postcondition to be satisfied upon termina.tion of a mechanism BY.r.

The UHUu' precondition corresponding to R [38], denoted. wp(5, R), is a predicate that

characterizes the set of all initial states such that &Ctivation of SYa.r is suaranteed to termina.te

in a state satisfying RVar. In terms of a state transformation [8]:

rcvO': 0' E EV.r : wP(S,R)(O') = ts(O') ~ "R)l

Note that J. t "R, so ts(u) is not allowed to contain.i either. This guarantees termination of

S for tile initial.tate a. RequirinS ts(a) to be a. subset of "R, refers to Dijbtra.'s "demonic"
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(or "bUDd") interpretation of nondeterminilnl [38, 93, 133], in which the "wor.t" execution

path ia chOien. A demonic implementation ofnondelermini.m may (hOOM any execution path,

.inee aD initial.tale IT i. con.idered luitable «(1 e .tq(S.R) iff execution i'luaranteed to reach

a final Itate in ~R. Thi. is in contrast with the "anpUc"(or "c:lairvoyant") interpretatiOD of

nondetenniniam [93, 133], where the "best" execution path i. choseD. Here an initial .tate

is suitable iff at least one execution path leads to a state in ~R' Such an implementatioo

employs backtracking or parallel evaluation.

The lemantici of .. mechanism SV.r involving only variables from the set lftr, may be liven

by a predicate trau/onner on Ulr, i.e. a function

The weakest precondition predicate transformers wps, such that

f(VR: R E PredvGr : wps(R) =wP(S,R»l

are uJeful for thil purpOie ([140] may be referenced for Do detailed exposition of the rela­

tion between the predicate transformer and state transformation approaches to prosrammiDS

lansuase Iemanticl).

Let SVc,. be an arbitrary mechanism and QVczr, RVGr arbitrary predicates on lftr. Dijbtra

identified the foIlowinr; "healthiness" properties that hold for weakest precondition predicate

trauformen of executable mechanisms [38]:

Law ortbe Excluded Miracle (Stric:tneu): fwps(F) ==.11

MonotoDicity: f(Q => R) => (wps(Q) => wps(R»l

Coaj1Uldivity: r1OPS(Q) Awps(R) == wps(Q 1\ R)l

Di8j1lJM:tivity: r101's(Q) V 1DPs(R) => 1Dps(Q V R)l

Or-Coatiaaity: r1DPs(3n: n EN: Ra) =(371 : n eN: tops(Rnnl (or any weakeninr;

lM!qtlellte of predicates, i.e. IU.ch. that (Vn : n eN: rRw => Rn+tl)
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The tec:hnical effect of the Law of the Excluded Miracle is to exclude mechani.ml that are

parlio4 i.e. that corl'elpond to state transformationl that map some initial atate to the empty

Ht (of outcomes), while the or-continuity rest~ictiolt excludes mechanism. that exhibit UD­

bounded nondeterminism.

In [87], Hoare investigates various "weakest precondition" predicate transformen in the con­

text of Dijkstra's healthiness criteria. He shows that Dijkstra's wps function is not the \lleU­

est healthy onc, but the best for practical programming, since it doe. not require dairvoyant

(anplic) implenlentations (see above).

2.7 Weakest Liberal Preconditions

For a deterministic mechanism S, knowledge of how its associated predicate transformer

'tDPS act. on any predicate R, completely determines its possible behaviour. The complete

characterization of a nondeterministic mechanism requires more. For that purpose the notion

of the weMeM liberal precondition corresponding to a postcondition R, is employed. Denoted

1I11p(S, R), this condition characterizes the set of all initial states such tbat activation of SVa.r,

ifit terminates, will reach a final. state satisfying RVar. The relationship between the weakest

liberal precondition and the weakest precondition ca.n be stated as

f(VR : R E Predvar : wp(S, R) == wlp(S, R) 1\ wp(S, T»l

As above, the weakest liberal. precondition predica.te transformers, denoted ""ps, are functions

on Predvar such that

f(VR: R E Predvar : wlps =wlP(S,R)l

For aDy mechanism S and a postcondition R, the p08lible behaviour of S can be completely

cleKribed by obeervinC that every initial state of S falls into exactly one of the (disjoint) eets

cbracterized by the foIlowin& predicates [38]:

• 1I7J'.r(R) (= (.lps(R) A wps{T»)

AdiYatiu. of S wiD establiah the truth of R.
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• IVPs(..,R) (:I: (1Ulps(..,R) " wps(T»)

Activation of S will eet.bU.b the truth of ..,R.

• wlps{:F) (= (lOlps(R) " lOlps(..,R»)

Activation of S will fail to produce a properly terminating activity.

22

• wps(T) A ...wlps(R) 1\ ..,wlps(..,R)

Activation or S will produce a terminating activity, but the initial.tate does Dot deter-

mine whether the final state will satisfy R.

• 1Dlps(R) 1\ ..,wps(T)

H activation of S produces a. final state, that state will satisfy R, but whether termina-­

tion takes place or not, is not determined by the initial state.

• wlps( ..,R) 1\ ..,wps(T)

If activation or S produces a. final state, that state will not satisfy R, but whether

termination takes place or 110t, is not determined by the initialltate.

• ..,(1Dlps(R) V 1I1Ips('"R) V lopS(T»

The initial.tate does not determine whether activation of S will produce a terminating

activity, nor whether R will be satisfied in the case of termination.

From tbe definition of wlps, the following properties follow (38):

• r1I1lps(T) == 11;

• f(wlps(F) " wps(T» =: F]

Weakest liberal preconditions are considered more closely in [131], where it is shown tbat they

may be defined in several ways. They are also used in characterizing the property ofp~ram

robotneu.
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Dijkstra's PrograDlDling Calculus

In Chapter 1 the reader was informally introduced to Dijbtra'lI Jlr~ramminlcalculi.., that

provides rules, bued on weakest precondition predicate tranlform~rs, for derivios a progaID

(al!orithm) from a postcondition that states its desired outcom~. Havins provided a formal

framework in the previous chapter, we now set the scene for an invest.ilation into the luitability

of Dijkatra'. calculus for mechanical support, by providiol a condie overview of the .yntax,

semantics and typical usa«e of its key constituents: prOlram con.tructa, data tyPft aDd

specificationa.

Dijkatra introduced the main components of his weakest preconditioD calculu. in [39]. Thi.

WM followed by a fun presentation in [38]. Since then it hu been oed, with varioal extell­

siona and alterationI, in numerous ref~rence works includins the toUowiDI popular boob oa

progamminl methodolO&f, [14, 40, 43, 66, 121]. The material Plesellted here, is hued, with

a few exceptions, on [38] and [66].

The progam constructs of Dijbtra's guarded command lanlU~e are presented first. Weakest

precondition predicate transformers are used to characterize their semantiC!. In the cue of

the alternative and repetitive constructs, theorems that give !uidance for their correct uae in

practical situations, are aIao stated.

The data types that occur most frequently in program developments in [38] and (66) are

intesera, BooIeanl, auaYI and records. The use of these types in the context of Dijbtra'.

23
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calculul i. dilcuued in section 3.2. Thill iK followed by a dt.'icriptioll of the lrope rulel tbat

r.pply to Iuarded command Plalrami.

Prop&Jl1 development in Dijkltra's calculu. is Iyided by it functional specUkatioa in the

fornl of two tint order assertious-a precondition and a. postcondition. In addition. inter.aI

pwsram annotation. IUch as loop invariants, bound iunetion1 and assertions to ....at in the

con.trudian of correctnels proofs. usually appear in guartJed command pro«ram.. We .tate
•

50me cOIlaiderat.ioul for a language luitable for the expression of such pr~am lpeclficatiool

ud internal Nlertionl.

To conlOlidat.e the presentation, this chapter is concluded with a. discussion and .nustration

or typicalstrates;ies used duting progralll development based on Dijkstra's calculus.

3.1 Program Constructs of a Guarded Command Language

A mOlt important, but also a most elusive, aspect of any tool is its influence on

the habit. of thOle who train themselves in its use. If the tool is a programming

IUIU&«e, this influence is- -whether we like it or not-an inft.uence on our thinkins

habits.

Ed&ger W. Dijbtra, Pre/ace to [38J

In [38, Chapler 1] Dijkstra expounds the advantages of using a. Cormal notation for the de­

KriptiOD of alsorithms. An algorithm allows compact arsuments about char&c:teristia of the

mechwlm it deKriha and the choice of the SUarded command language &II a vehicle fOl" the

praentatioD of ialgorithms, reft.ects the desire to retain this compactnen.

Tile feature fron; which the Iansuage deri\'es its name-guarded commands-are not pro­

pam ItatemeDU. in their uwn ript., but are used as buUdinl blocks of both the alternative

ad repetitive c.:or.ltl1lcta. Within these constructs, the use of guardrd commands allow for

Ute iatroclUCtioD of JtOIldetermiDilm. The guarded command language is very small; apart

&om tile primitive cODlmuds abony skip and ass;~~ment, pr~ams can he cOBstructed

"leqeatial compolition, conditional compoaition (altemative construct), iteration ud
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encapllllation (local blockl). In the preRntation to follow, tbe IK!mantic. of each conltrQct il

formula&ed in term. of weakeet precondition predicate tranlformer., but &II operatiaaa! de­

ICtiption i. allO lupplied. Their .yntu il .tated informally; a formal deICriptioD i. tile form

of a context free grammar may be found in Appendix B. In the cue of the altenaative aad

repetitive ~oultructl,propam de'..elopmeot typically involves use of a preconditioo tkat i. aot

the weakest precondition itself, but one that il at least as Itrong. Such a precooditioll may

providp. more iol1gbt into the program under development and avoid a particularly lengthy

."d involved weakett precondition calculation. For these C&&eI, theorell1J from the literature

are given, to test the suitability of a potential precondition WithOllt calculating the weakest

precondition itself.

1. No-Op

S)"ntax: .kip

Operational Semantics: Execution leaves the current program state unchanged.

Predicate Tranaformer Semantic.:

flOP(.kip,R) =Rl

2. lailure

Syntax: abort

Operational Semantic8: Execution fails to reach a final state.

Predic:ate Trandormer Semantics:

rwp(abori,R) =J1

3. A.uiSDment

SyDtax: %:= e (simple asaipment)

Also: %t, ••• ,%" := e., •.. ,e" (multiple or concurrent assi&nment),

where %,%1,' •• ,%n are distinct variables and e,elt ... ,en are expressiOOI.

(1)

(2)

Operational Semantic.: A simple assignment, describes a state change involviD& a

liosle variable, where.. multiple aasipmeots are used to describe state chanses
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involvin! more tban oue variable. We elaborate OIl tbe It!Dlantk. of t·he COIIcur,..,

uai,nment. from which tbe meaniolor the limple ...ilnment .1Iou1d allO be deal.

Execution involv. evaluaUnl tbe expreaioD' fit wUbout "'«Ua, the P.......

• tate. to obtain valu. Vi and then chanKin, the propanl stale by ••ipilll ucla

of these value. to the variables %i or corresponding subKriptl, in any order. If

evaluation ofone or the expressions ei leads to a not properly terminati., activity,

the whole construct is allowed to fail to terminate properly.

Predic.te Traa.former Semantics:

rWP«%h .•. ,%" := e" ... ,en), R) =
(Vi: i ~ 1 A is n: domain(cd) cand ll::::::;;:l (3)

where the predicate domain(ei) characteri~es the set of states in which tbe ex­

pression ei can be evaluated without causing failure. A recursive definition of

domain(e) bued on the structure of expressions is given in Appendix C.
Example:

1OP«%,lI := %div 11,11 +1),% > 1(0) == (II <> 0 cand %div, > 100)

4. Local block

Syntax: I[var % : T IS}I,

where % is a variable, T a type and S a. program cOilstru.ct. Tills syntax is very

similar to that of COIlstructs in [40, 125, 121].

Operatioaal Semantic.: Execu.tion of a local block construct u depicted above,

extends the program state with a new variable x of type T, for the duration

of the execution of the propam S, whereafter z il relealed. No rettriction is

placed on the Dame of the Dew variable; in particular, local redecluation of sIobaI

ideatifien il allowed. The introduction of multiple variables within a aiap local

block i. abo permitted aDd involve. U,iD! a li.t of variable dedaratiou, ,.da ..
YaI' %1 : T1iZ2 : T2; ••• i%" : Tlu instead or the anile declaratioll var z : T.

Predicate "1'nIadII'mer SeIDll.tic:a: TIUI8emantia i' from [&1]

rwp(Uwr % : T ISlI, R) :: 1r1JI(S;, R)1 (4)
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where., is a f."esh variable, i.e. it is not part of tlte emtiu, .tate .pace and S:
denotes the prosram conitruct obtained by .y.tematically .ub.titutin, , for % ia

S. A definition of lubltitution in prosram coll.trud, can be found in Appendix D.

As remarked in [81], this definition i'110L always correct. A problem oceun if r i.

free in wP(S:,R). Since this can only happen if% is not initialized by 5, we mUlt

state the additional proviso that % is duly initialized. The handline of variable

initialization and other iuues related to the semantiC8 of the local block CODltruct

are discussed in more detail in sections 3.3 and 4.2.3.

Example:

wp{{l[var %: integer I% := 1]1),% = n) - WP(If:= 1,z = n)

_ z=n

5. Sequential compcuition

Syntax: 51; 52

Operational Semantics: Sequential composition is the primary 1llechanism for com­

bining basic programs to form reore complex ones and it is traditionally depicted

by the semicolon operator. Execution of the above sequential composition will ac­

tivate program 51 in the current program state and upon its termination, activate

program 52 in the resulting program state.

Predicate Transformer Semantics:

(5)

Example:

wP«%:=k;y:=%+l),%>OAy>O) _ wp(z:=k,z>OAz>-l)

_ k>OAk>-l

_ k>O
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6. Conditioul compoeition (alternative cOlUtruet)

if G. - 5.
0 G'l - 82

Syntax:
0

0 Gn - Sn

28

8,

where the Gi are Boolean expressions-called guardsj and the Sj are prosram

constructs.

In what follows, we will use the abbreviations:

IF for if G.

o G'l

CI

o Gn

fl

GG for (3;:: Gi)

Operational Semantics: An alternative construct allow!' the selection and execution

of one command from among a given set. As can be seen above, it consists of a

set of guarded commands. During execution, a true guard is eelected from &monK

the Gi and i'ts corresponding program Si is activated. H more than ODe suud is

true, this construct gives rise to nondeterminism. H none of the !'Iuds is true,

the result will be failure, i.e. equivalent to activating an abort command. Abo, if

evaluation of a guard leads to a not properly terminating activity, then the whole

construct is allowed to fail to terminate properly.

flOP(IF,R) =
(Vi:: domain(Gi» cand (GG A (Vi:: Gi => wP(Si,R»)1 (6)

Example:

1Up(if z >= 0 - skip 0 z <= 0 - z:= -z fl,z >= 0)
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:: (z >= 0 V z <= 0)" (z >= 0 => z >= 0)" (z <= 0 =to -z >= 0)

='T

29

u.rul Theorem: In practical situations it is not always neceoary to calculate t_
weakest precondition of an alternative construct. It may happen that & prevkNl

program development step provides a stronger assertion that hu to Rrve u pre­

condition for an alternative construct yet to be developed. The followiDS theorem

from [38) allows one to test whether a given assertion is indeed & precondition of a

propOled alternative construct, without having to calculate its weakeat precondi.

tion.

Theorem 3.1.0.1 Consider the alternative construct IF and two pmlicc:du Q and

R Mlt;.!,ing:

(a) rQ =* GGli

{6} r<Vi: 1 S i" is n : (Q A Gi) => wP(Si,R)}l;

then:

rQ => wp(IF, R)l

7. Iten.tion (repetitive con.truct)

Syntax:

o Gn -+ Sn

od,
where the Gi are Boolean expressions-called guardr, and the Si are pr~am

constructs.

We also introduce the following abbrevia.tion:

DO for do G l -+ 51

D G2 -+ 52

D
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(7)

Operational Semantic.: An iterative con.lruct allow. the repeated .election and

execution of one of a liven set of commands. The coustrud il made up of a let of

luarded command•• When executed, a true luard i. aelected from &1110II1 tile 0;

and its correspondi"1 program S. i. activated. Thil procell i, repeated ••til DOlle

of the luard. is true. If more than one guard i, true, noodetermini.m will Nlalt.

No aaaumptioni are made u to fair selection of guarded comlll&Ddl. As IOOIl ..

no guard is true, the result is proper termination, i.e. equivalent to activa.tiDI a.

.kip command. The whole construct is allowed to fail to terminate properly if

evaluation of a guard leads to an activity tllat does not terminate properly.

Predicate Tran.Cormer Semantic.: Following [42], we require DO to be aemanti~

cally equivalent to its first unfolding:

if GJ -+ Sl;DO

0 G2 -+ !h;DO

(J

0 Gn -+ Sni DO

0 ..,GG -+ .kip

fl

Assuming all guards to be well-defined, a few manipulations show that wp(DO, R)

is a solution of the following equation in predicate X:

rx =(GG /\ (Vi :: Gi ::;.. wps, (X») V (...,GG /\ R)l

wP(DO,R)

- {definition of wP(IF,R) and the above semantic

equivalence}

(GG V -.GG) /\ (Vi:: Gi ::;.. wp(S.,wp(DO,R»)) 1\ (...,GG =>

1O]J(.kip, R»
- {predicate calculus and definition of wp(akip, R)}

(GG /\ (Vi :: Gi => WP(Si, wP(DO,R»» V (...,GG 1\ R)

The predicate IOp(DO, R) is dpfined as the strongest solution of (7), i.e. that solu­

tion A IUch that, if B is any solution, then rA => Bl. The equation (7) is of the

form rX =J(X)l with J a predicate transformer. Now we ha\'e:
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wps.(X) il an or-continuou. predicate trau.former

=> {definition of chain continuity and Lemma 2.5.0.2}

J il a chain continuou. function on (Predv.r,~)

=> {Theorem A.S.O.l}

J haa a leut fixed point

::} {definition of leut fixed point and Lemma 2.5.0.1}

pz.J(:t) is the Itrongest solution of rX =J(X)l.

AIIo, from Theorem A.S.O.I:

pz.f(z) == U{r(F)}n~o
where

U{fn(F)}"~o

_ {Lemma 2.5.0.2}

(3n : n ~ 0 : In(F»)

Thul rX == I(X)l has (3n : n ~ 0 : In(F)) as its strongest

IOlution.

31

U.lul Theorem: In practical situations the above definition does not provide direct

suidance for program development; hence the popularity of the followin& theorem

from [38], which allows the use of a predicate stronger than the weakest precon­

dition in driving development steps. In a sense, this predicate, the "invariant",

embodies the essence of a repetitive construct. Hand-in-hand with the develop-­

ment of a repetitive construct, goes an argument for its termination, bued on a

well-ordered set. Our version of this theorem corresponds to the formulation in

[42]-

Theorem 3.1.0.2 (Fundamental Invariance Theorem fOr Loop.) Comider

,he repetitive com'ruct DO, a predicute P and an integer Jllnction t on Uae $late

6pGCe 3a'ufring:

(a) rep 1\ GG) => (t > 0)1;

(6) HVi; 1 S i < n: ~P A G, At =:r:) => wp(S"P h t < z»l for all int.r z;

then:

rP => wp(DO, -,GG A P)l,
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""ere wp(DO, ..,GG AP) u tkJinetl u the .tro~.t IOlldion oJ the Jollowf,., equ­

lion in X:

rX • (GG A(Vi :: Gi .. WP(Si, X») V ("'(]G AR)l.

Note: The predicate P i. traditionally called the invari4m' of tbe repetitive COD­

struct, while' is known .. the variant (bound) f,mction and carrie. the termiDatioll

u«ument.

Example: Consider the following algorithm tv establish

without the use of multiplication.

{b ~ O}

Z,31,Z := a,b,O;

DO: do 1/ #; 01\ even(1I) - 31,Z:=:J div 2,z +Z

D odd(y) - 1/,z:=y-l,z+z

ad

The weakest precondition of the above loop may now be calculated by finding

reF), jl(F), j2(:F), j3(F), . .. and forming the predicate (3n : n ~ 0 : r(:F»,
where

j(X) =(GG 1\ (Vi:: Gi::} wp(SitX») V (..,GG 1\ R)

Constructing the first four terms of this sequence:

reF) - F

fl(F) - «(, ~ 01\ ...,odd(,» V odd(,» 1\ (y =0 V odd(,» 1\ ..,odd(y»

v(y =01\ ..,odd(,) 1\ z =a *b)

reF) - «y ~ 0 V odd(y» 1\ (y =0 Vodd(,) V(, div 2 =0 A

...,odJ(y div 2) 1\ % = a + II» A (..,ocId(,) V (, - 1 = 01\

-,odd(, - 1) 1\ % + z = a * II» V (y = 01\ z = a + 6)

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3. DIJKSTRA'S PROGRAMMING CALCULUS

• (odtI(,) A (-,odd(r) V (, =1 A z + :r =4. b» V e, =0 A

z = a *b)

II (r = 1" z +:r = 4 • ") V(, =0 A .J =•• 6)

/3(;) = «I ~ 0 Vodd(,» A(, =0 VodIl(,) V(, div 2 =1 A

% + 2 * :r =a*6) V(, div 2 = 0 A z = G. 6»" (-,oU(,) V

(, - 1:; 1 A %+2 *:r = a*II) V (, -1 = 0 A z +:r =4. '») V

(, = 0 A % = a *II)

:: «odd(JI) V (JI =2 A.J +2. Z = 4. II» A (..,otld(,) V (, = 2A

z + 2*z =4 *6) V (y =1 A z +:r =a .. 6») V (JI =0 A Z =G. 6)

_ (11 = 2 Az +2 • z = a *6) V(y = 1 Az +Z =4 • 6) V

(y = 0 A z = a. II)

leads us to "suess" the general term:

which can be proven by induction on j.

Hence

wP(DO,R) =
(3n : n ~ 0 : (3i : 0 5 i A i < n : r =i 1\ z +, •Z =4.6»

Alterna.tively, we could use Theorem 3.1.0.2 and prove that

is an invariant and

t=,
a bound function for the loop DO. It then remains to prove

f(...,GG" P) ~ Rl.

33

Thia method haa the advantage of beinS easier to associate with the alsorithm

UDder development as well as beinS more amenable to the application of heuristics

(to help in findins a lnitable invariant and bound function).
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3.2 nata Types

Prosram. expreued in Dijk.tra'. luarded command lanluace refer to data object. of varicMul

types. We pve an overview of the mOlt frequently ulled data typeg as found in example. of

pror;ram development in [38, 66). A formal description of the .ynt-x of variable dec1aratioa.

and reference may be found in Appendix B.

The data types Boolean and integer a.re basic to Dijkstra'. programminc calculUi. Int~er

lubruSe&, in particular the natural numbers, are employed as well. We use "Modula-2-like"

declarations, e.g.

var

completed

COIlnt

boolean;

intepr

Inteser and Boolean arrays are also used extensively. An array is viewed aa a. function of

one al8Ument with a finite domain consisting of consecutive integers. We require tha.t, pven

two array variables, the quesUon of whether their values are equal, be decidable. Two array

variables have equal values iff, as functions, their domains are the aame and their values are

equal in each point of the domain. This requirement necessitates finite domains. Furthermore,

the domain muat be available for examina.tion.

Dijkstra's proposal to make this possible, is to use universal types "integer array" and

"Boolean array", and consider the domain as part of any value of such a type. ConBider­

inc an array variable CIT, information about the domain may be extracted from ita value by

means of three primitive integer·valued functions [38] (see table 1).

aT.lob representing the lower domain bound
aT.bib repreaentiD& the upper domain bound
ClT.dom repreaentiD& the number of points in the array domain

Table 1: Dijkstra's functions for extracting array domain information.

T~ unctions satisfy:

ar.dom =aT.hib - ar.lob + 1 ~ 0
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Thil approach a.1lo lend, itleU naturally to the definition or variou. operator. that daaap

array domaiuli (aB] (ICe table 2).

or : shift(n) shiftl all array domain n placet upward., or downwudl,
depending on the lip of n

or: biext(z) extend an array domain with one point at the hip or low
end, respectively,

ar : Ioext(z) and asaian the value of variable z as the function value in
the new point

ar: hirem remove & point from the high or low end, respectively,
aT: Iorem of an array domain
z,ar : hipop the same as above, except that the function value in the ICMt
z,ar : lopop Idomain point il preserved, by Ulipin~ it to a variable pro-

vided for that purpose

Table 2: Djjlcstra's functions for altering array domains.

Finally Dijkstra introduces two operators that affect function values of an array without

changinr; its domain [38] (see table 3).

ar : swap(i,j) exchanges the function values in domain points i and j
ar : .It(i,:z:) changes the function value in the domain pc.int i to the value-

of variabie z

Table 3: Dijkstra's functions for changing array function values.

In section 4.2." below, the treatment of arrays is simplified lOIIlewhat, by conliderias the

domain of an array as a fixed entity that Il'ust be unambiguously stated when aD. array

variable is declared. This obviates the need for most of the primitive {unction. det.wed

above. The following example shows a typical array declaration c:>otaining explicit domain

bounds:

var

ar : array[O..5] of integer

For an array variable ar,

ar[i]

i. used to denote fUDdion application to the argument i-aT(iJ is >nly defined if the ~meDt

Stellenbosch University http://scholar.sun.ac.za



CllAPTER 3. DIJKSTRA '8 I'ROGR.1.AfAflNG CALCULUS 36

i ia defined and raUl within the domain of the function in ar. Followinl [(6) we allO introduce

notation for an array that hu been alteJ'C!d in a specific domain point:

Let ar be an array, i a suitable argument for the function ar and e an cxpreuioa

of the same type as the individual array values. Now

ar(li] : e)

denotes the array that is the same lUI ar except that its value in the domain point

i is e:

{

e if i = j
ar([i] : e)[j] =

ar[j] if i ¢. j

In keeping with tradition, the assignment ar := ar«i] : e) is abbreviated to ar[i] := e.

We extend the above notation where necessary to allow for redefinition at several points of

an array domain. The following example reflects changes at two domain points, i and i, of

array Clr:

/ if j = k

ar«i] : e, U] : /)[k] = e if j;j k A i =k

ar[k] if j #: k Ai#: k

Dijbtra also uses record types, [38, Chapter 15]. The functional view of arrays may be

extended to record types, viewing a record as a function from a finite l!Iet of labels (field

names) to a set of values, see [66, page 92]. The following is an example declaration of a

record variable:

game record

J[ turn"

won

]I

inteser;

boolean

With reference to the above declaration, the notation

game.won
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{
f if m == n

rec(.m : J).n =
rce.n if m ~ n

i. used Cor Cunction application to the argument won. AnalogouR to array. we introduce

notation Cor a record that has been changed ill a specific domain point [66J:

Let == denote syntactic equality. Let rcc be a record with field names mud

n, with f an expression of the same type as field m. Then

rec(.m: f).n

is the record that is the same as ree except that its value in the domain point m

is f:

As for arrays, the assignment ree := rec(.m : f) is abbreviated to the traditional form

rec.m:= f.

As in [66] we expand our view of arrays and records to include arrays of arrays (multidimen­

Idona! arrays), arrays of records, records of arrays and records of records. In keeping with the

above, these are inter~reted as higher order functions (see section 4.2.4).

To allow full generality in referring to subarrays of records and subrecords of arrdoj"!'. the above

notation for alteration in a single domain point is expanded as follows [66]:

Let == denote syntactic equality. Let ar be an array and Tee a record with

field names m and n. Let e and f be expressions of appropriate types. Let ~ and

t be suitable lelectors for ar and Tec, respectively. The term .elea:ior refers to a

finite sequence of field names (each prefixed with a dot) and subscript expressions

(individually enclosed in square brackets) e.g. [iJ(j].z. The null selector is denoted

by E and forms the identity element of the catenation operation, 0, on identifiers

and selectors. Thus ~ 0 E = ~ (or a felector ~.

CIrCE: e) = e

rec(E: /) - f
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":l([i] 0 & : e)UJ { axU](-: <) if i=j
=

azUl if i~j

{ ..<.11(1: f) if m571
rec(.m 0 t : J).1l -

rec.n if m~n

38

Simple character variables as well as character arrays are often used in guarded command

programs, without a formal treatment of this data type being presented. In what follows we

use a character data type at least including aJl capital and low~r case letters of the alphabet

as well as the ten decimal digits. We assume that the character data type is totally ordered.

Enumerated types are also useful in program development, e.g. use of the type "colour" in the

problem of the Dutch national flag [38, Chapter 14J. Other types that are used in connection

with the programming calculus include sets, power sets, bags and sequences such as found in

[66, 121].

3.3 The Scope of Identifier Declarations

The guarded command language presented above has a block structure such as that found

in ALGOL, Modula-2 or Pascal, allowing the introduction of identifiers at the exact point

where the need for them arise, followed by their release after having served their purpose. A

local block is delimited by the opening and closing brackets I[ anti 11, indicating the boundaries

within which locally declared identifiers form part of the state space. Within these boundaries,

the state space is temporarily extended to give access to the local identifiers.

As in Modula·2 and Pascal, no restriction is placed on the choice of local identifiers­

essentially allowing temporary redeclaration of a global identifier within a local block. This

is clearly reflected in the weakest precondition semantics of the local block construct:

fwp(I['\'Ilr z: T JSlJ,R) = wP(S;,R)l

where 11 is a fresh variable and S initializes x.

As indicated in the definition, name clashes are handled b.)r renaming all local identifiers. An­

other option i. to temporarily rename thoee sJobal identifiers appearjn~ in the pOl'tconditioo
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that are rededared ~'itbin the local block (lee [81, pase 118J or (130] for exalUplH of thi.

approach). 'fhis would lead to the followins weakest precondition semantici (or local bloekl:

rwp(l[varz: 7' ISJI,R) = (wP(S,R;»:l

where 11 does not occur Cree in R or Sand z is initialized by S.

In contrat to the Carmer approach, i.e. renaming of local identifiers, this hu the advant.

of not requirin! name substitutions within program constructs u weD as Bmitinl tbp. number

or identifien to be renamed to the minimum. However, a more 8ubtl~ (and unwanted) conse·

quence of this choice of semantics becomes apparent when we consider extending our IUlrded

command language to include procedures, as we shall see in Chapter 5. Further discuuion is

delayed until we approach that subject.

Permittins redeclaration of identifiers, allows a degree of freedom in the development of

local blocks, since the author of a local block need only be aware of those global identifiers

accessed within that block. This feature has also been criticized [38], because the state space

is contracted implicitly rather than explicitly and disallowing its use leads to a simplification

in the weakest precondition semantics of the local block construct.

The fact that locally declared identifiers are only accessible within their block of declaration

is in accordance with good programming practice-among other reuonl because it limits

the progam text a programmer has to consider in the case of an unintended chanse to

the value of a local varia.ble. Some criticism has been leveled at the absence of a similar

limit on the acceu;bility of variables declared in surrounding blocks ("sIobal" variables), Bee

[38, Chapter 10]. To fulfill this need, Dijkstra proposes formally viewing local blocks as a.

mechanism for altering the state space, rather than exclusively for extendins it. This opens a

question of whether enumeration of all global identifiers accessible within a local block should

be mandatory at the start of every local block, or only in cases where contraction of the

state space (limited inheritance of global identifiers) is specifically required. In [38], Dijkstra

opts for the former alternative. As this burdens a programmer with having to write possibly

1000g lists of identifiers at the stut of each local block, we will not pursue this sugestion

here. Later diacuuions on the introduction of abstraction mechanisms such as procedures

aDd modules, provide further perspectives on this issue.
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3.4 Specifications and Annotations

'Would you tell me, please, which way I ought to go from here?'

'That depends a good deal 011 where you want to get to,' said the Cat.

'I don't much care wbere-' said Alice.

'Then it doesn't matter which way you go,' said the Cat.

Lewis Carroll, Alice'8 Adventure8 in Wonderland
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Development of a guarded command program involves the construction oC one or more pra.

gram statements that together realize a functional specification of program behaviour. Such

a specification states the desired relation between the initial and final states of a computa­

tion. Since input and output mechanisms are not standard and difficult to axiomatize, it is

customary to assume that the initial state of a computation is directly determined by the

input and the final state by what is to be the output. As described in Chapter 2, we use a

predicate, called a postcondition, to characterize the allowable final states of a computation

and another predicate, the precondition, to characterize the corresponding initial states.

We use the following basic notation for specifications!:

[pre,po"t)

where pre is the precondition and po"t the postcondition.

To satisfy specification (8) we would have to develop a program S such that:

rpre ~ wps(po"t)l

or, stated operationally:

H execution of S is started in a state satisfying pre, then it is guaranteed to

terminate in a state satisfying P03t.

(8)

For completeness, a functional specification should also contain a. list of all those variables

whose values may be chan~ed. This list is called the frame [125]. Our notation is the same

JT_ .alatioll • aot pari of tile S"l'ded com.ud Jus--se
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as in [124, 122, 125, 121, 123]:

:r : [pre,po."]

where pre is the precondition, po"t the p06tcondition and :r the frame.

41

(9)

It is important to realize that merely expressing a functional specification in the given notation

is by no means a guarantee of satisfiability. A specification (8) is satisfiable iff

(38 :: rQ => wps(R)1).

A guarded command program is annotated with assertions expressing the program specifica.­

tion, internal assertions such as loop invariants and bound functions. Internal annotations

are to be used in proving the program's consistency with its specification. We follow the

convention of interspersing the guarded commands of a program with annotations enclosed in

curly braces, "{" and "}". In particular, each loop must be annotated with an invariant and

& bound function. Figure 1 shows a. guarded command program annotated with its specifica­

tion, as well as a loop invariant and a bound function. Placing an assertion in a program is

used to express properties that the state space must p068e8S at that point of execution. Such

uaertions act as lemmas or subgoals in proofs concerning the program.

{pre: b~ OJ
:r, y, z := a, b, OJ
{invar P : y ~ 0 A z + x *y = a *b}
{bound t : J1}
DO: do y#:-O A even(y) -+ y,x:= y mv 2,% + %

D odd{y) -+ 31, Z := 1/- 1, z +%

od
{po", :z = a *b}

Figure 1: An annotated loop.

Till now we have placed little emphasis on the syntactic issues surrounding predicates (con­

ditiou), but in time we shall have to be more specific about a suitable langu. in which

propam uaemans and Ipecifications can be represented by formulas. An obvious candidate

k the let of tint-order formulae over the state space and operators available in the «aarded

commud lan«aa«e. AI pointt:d out in [11, 81], this Ianguase is not sufficiently powerful to

exp~ preconditiou of iterative cOIlltructs. In terms of our semantic framework, thia set
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of formulae does not exhibit a suitable IRttice structure. From IJemmu 2.5.0.1 and 2.5.0.2

we see that the partial order on predicates should correspond to logical implication, while

the least upper bound of a set of predicates must correspond to their disjunction. Such a

disjunction is not always expressible in the above language. We reproduce an example from

[81]:

Consider the set of conditions S ={n =1, n =1 X 2, n =1 x 2 ~( 3, ...}.

The least upper bound of 5 is n = 1 V n = 1 x 2 V n = 1 x 2 x 3 .••, i.e. an

infinite disjunction.

First order formulae equivalent to this disjunction would be

(3; : ; > 1 : n = if)

or

(3i : i ~ 1 : n = <ni :1 < i "i :5 i : i»

both ofwhich contain operators not present in the guarded command language.

In [38, 66, 40] and others, the language of first order formulae over the state space and the

parded command program operators, extended by the use of special quantifiers ("sum",

"product" and "number") and conditional connectives (cand and cor) in the presence of

undefined expressions, is used to express conditions. A specification language encompassing

a biger set of operators than a programming language is quite useful in providing more

compact ways of expression, but poses the problem of determining whether the extended

lan!U~e is doted under infinite disjunction or conjunction.

A theoretically simpler solution is proposed in [9, 11], namely that infinite disjunctions and

conjunctiOll8 be allowed in the language of conditions. This leads to the uee of formulas of the

infillitary losie LliIJ.:.I' which is an extension of ordinary first-order logic allowing disjunctions

ud conjunctiOlls over countable sets of formulae, but quantification only over finite sequences

of variables. A completely formal treatment of this and other infinitaJ')' l~cs CaD be found
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0Cl

Vz(V Z = i)
i:ll:O

Figure 2: A formula of L"'I""
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in [101]. In [10) this logic is shown to he the weakest one sufficiently rich to express the

conditions required for guarded commands.

Thus the pre. and postconditions used in specifications of guarded command prosram., are

formulae of a suitable first order logic, such as L"'I"" and may he manipulated according to

the rules of this logic. This, together with the relevant theories about integers and other data

types involved in a specification, may form the basis of a formal argument (proof) that a

given mechanism satisfies (9) as an equation in S.

3.5 Developing Guarded Command Programs

Dijkstra intended weakest precondition predicate transformers to be used as the basis for a

calculus of program development. The term calculus is used to signify a set of formal rules

which, if successfully applied, will result in the derivation of a program which is consistent

with its specification. As in the case ofin·2gral calculus though, simple mechanical application

of rules do not guarantee success.

In [66], various progrum development stmtegie& and principles, which use weakest precondition

calculations in a constructive manner, are formulated. Weakest precondition calculations are

&enerally used for the following purposes [43]:

1. to identify a suitable guard to combine with a command in a guarded command con-

strud;

2. to identify a command that will ensure that an invariant is maintained;

3. to identify a subgoal (necessary precondition) to be established before a command can

be executed.
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Given a precondition Q and a postcondition R program development typically atllrta by

selecting, under guidance of the weakest precondition calculus, a program construct 51 for

which 1Op(5., R) is 8uch that eitber

• fQ => WP(Sh Rdl
where rRI => Rl, ill which case the program is complete; or

• rQl => wP(S.,Rdl

with Ql a 8ubgoal for establishing the original postcondition R, in which case we repeat

the above for the specification [Q,Ql]' In this fashion we obtcUn a program consisting

of the sequential composition oC commands 8n , 8n-l"'" 81'

The two main program construction strategies proposed by Gries, i.e. those for developing

alternative commands and loops, are derived from Theorems 3.1.0.1 and 3.1.0.2 above. These

strategies are as follows [66]:

Stratesy for developing an alternative command: Invent gU31'ded commands until the

proposed precondition Q of the construct implies that at least one guard is true (Q =>

GG). To invent a guarded command:

• find a command C which will establish postcondition R in at least some cases;

• find a Boolean expression G satisfying G => wP(C,R) (or Q A G => wP(C,R»;

and put them together to form G - C.

StratelY for developing a loop: Formulate a suitable invariant P and a bound function

t (see below). Invent guarded commands until:

• the loop invariant and the negation of the disjunction of the guards (..,GG) implies

that the postcondition R holds (P 1\ ..,GG ::> R);

• the loop invariant and the disjunction of the guards implies that the value of the

bound function remains bounded from below by zero «P A GG)::> (t > 0».
To invent & ~arded command:
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• create a command C which makes progress towards termination (decreuetl the

bound function);

• develop a corresponding guard G to ensure that the invariant is maintained;

and put these together to form G -+ C.

A bound function is normally stated in terms of the guards of the guarded commands that

comprise & loop. There are no hard-and-fast rules for developing bound functions, but some

guidelines can be found in [66, 43].

As for bound functions, there are no mechanical rules for inventing loop invariants. Appli­

cation of existing heuristics need to be guided by a good measure of insight and ingenuity.

A general heuristic for finding a loop invariant is to weaken the postcondition of a loop con­

struct [66]. There are various ways of weakening a predicate, of which the following are often

successful in deriving an invariant from a postcondition [66]:

1. deleting a conjunct;

2. replacing a constant by a variable, together with suitable bounds on its allowable values;

3. enlarging the range of allowable values for a variable.

Sometimes input variables have to be modified themselves to form part of the result. In such

cases an invariant has to express the fact that part of the input remains unchanged, requiring

the additional technique of combining the pre- and p06tconditions of a loop (see [66, pase

211]).

Other development strategies, specifically for stepwise refinement of ,;uarded command pro­

Slama may be fOund in [43].

3.5.1 An Example

To illutrate Gries'. main development strategies, we show part of the COBstruction of a

eollltiOll to "Rubin'. prohiem":
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Determine whether a. row containing only zerOB is to be found in a given lIoncmpty,

two dimcnsional array.

46

The Connulation and spccification oC this problem is based on [43, page 414], which may be

referenced for a different derivation of the same solution as well as the origins of the problem.

Problem Specification and Data Declarations

We assume declarations for two natural number constants, MAXCOL and MAXROW,

which give the dimensions of the array, as well as the following variables:

matrix

found

la.drow,la"teol

cureol, eurrow

array [l..J~1AXROW][l..MAXCOL] oC integer

boolean

integer

integer

The variables em"row and curcol give the row and column positions, respectively, which have

already been checked for zero entries, while la~trow and la~tcol indicate the row and column,

respectively, up to which one has to keep looking for zeros.

We will also need three predicate abbreviations:

1. The predicate nonzero,

nonzero(matrix, maxcol, rowpo~,colpo.s, la"tcol) =
(Vcol : 0 < col A col 5 colpo" : matriz[rowpo,,][col) = 0)

A(la"tcol =mazcol cor matriz[rowpo.s][colpo.s + 1] f; 0)

which states that, in a particular row (rowpo-,), all the entries up to a certain column

position (colpo&) are zer08 and, unless la&tcol is the last column of the matrix, the

position colpo3 + 1 contains a non-zero entry.

2. The predicate alluro,

allzero(matriz, mazcol, rowpo.s) =
(Vcol : 0 < col A col 5 mazcol : matrix[rowJJO")[col) =0)
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whic:h .tates that a particular row contains only zero entries.

3. The predicate inbound..,

inbounda(rnoxintKz, indt:x,lo..tindez) =
(0 S index) 1\ (index S la..tindex) 1\ (la..tindex S rnaxindex)

which states an ordering on array indices maxindez, index, and la..tindez.

41

The precondition pre states our requirements for the initial values of MAX ROW, MAXCOL

and ma'rix

pre == (MAXROW > 0) 1\ (MAXCOL > 0)1\

CtJrow : 0 < row 1\ row S MAXROW: (Vcol : 0 < col 1\ col S M AXeOL :

matrix[row][col] E INTEGERS»

The postcondition po..t states that there is either no row containing only zero entries, or the

raw at position currow +1 is such a row:

PO'" == (Vrow: 0 < TOW 1\ row $; currow: (3col: 0 < col 1\ col < MAXCOL:

nonzero(matrix, MAXCO L, row, col, col»A

(la..trow = M AXROW cor alizero(matriz,MAXCOL,currmo +1»

I\(la..trow = currow) A (found = (currow f- MAXROW»

Coutruetinl a Solution

It is easy to see that the last conjunct of po..t may be established by the command:

found := cllrrow I: MAXROW

To obtain the next 8ubgoal, we calculate wp(found := currow f- MAXROW,po..t). This

!ives:

poatl - (VrolO: 0 < 1'010 1\ row < currow : (3col : 0 < col 1\ col < M AXCOL :

nonzero(matrix, M AXCOL, row, col, col»)1\

(lm1'010 =MAXROW cor allzero(motriz,AIAXCOL,currow + 1»

A(lutTOID =cllrrOlO)
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\Ve wiD develop a loop DOl to est_bUlh PO"l. Each iteration will examine one row of the

matrix in turn. If a row cOlltainin& olily :&erol il found t we need not con.ider further row.

and the loop terminates imluediately, otherwise iteration continues until all rowl have been

considered. To avoid unnecessary repetition, we do not give details of the overall developmeat

of DOl. The reader may use the foilowiD~ loop invariant

PI == in601.nd,(MAXROW,currow,la,,trow) '' (Vrow:

0< row A row ~ eurrow: (3eol: 0 < col A col < M AXCOL:

nonzero(matriz, M AXCOL, row, colt col»)"

(la,trow = JrfAXROW cor allzero(matTiz, M AXCOL,cUTTOW +1»

the bound function

tl = la,tTow - currow

and the predicate

po.st2 = inbound,{.MAXROW,currow,la,trow) " {Vrow :

o< row A TOW .s currow : (3col : 0 < col A col < M AXCOL :

nonzero(matriz,MAXCOL,TOW,col,col» " (la,trow =MAXROW)

A(currow <> la,trow) A (h =Tt) A (cureoi =luteol)

"nonzero(matraz, MAXCOL, CUTrow + 1, curcol, la,teol)

(where T1 is a logical constant representing the initial value of the bound function t1) to

confirm developments up to the point reflected in figure 3.

We now develop a loop D02 , using PO,t2 as postcondition. Each iteration of the loop will

examine one column of row currow + 1 for a zero entry. The loop terminates as soon as a

nonzero entry b found, otherwise it continues until all columns have been examined.

We find an invariant P2 by weakening po,t2. We use the technique of chan8iD! a constant
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{prf!}

{invar PI}
{bound tl}
DOl: do currow 1: la~trow

{po"t:z}
I FI: if eUTeol = M AXCOL la~trow:=eurrow

o eureol t- M AXCOL eurrow:= eurrow +1
fl

od;
{po.!tl}
found := currow t- MAX ROW
{po"t}

Figure 3: Partial solution to R.ubin's problem.
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(curcol = 103tcol) in ,o"t2 to a variable which ranges over the column positions to be consid­

ered (0 S curcol Acurcol S 10"tcol):

P2 = inbounch(MAXROW, currow, la"trow) A ('frour : 0 < TOW

Arow S currow: (3col : 0 < col A col < MAXCOL:

nonzero(matrjx,MAXCOL~row,col,col»A(laatTow =MAXROW)A

(currow <> 103trow) A (tl =Tt ) A inbound&(MAXCOL,

curcol,la3tcol) A nonzero(matrix,MAXCOL,currow +1,curcol,lutcol)

It is clear that iteration must continue until eurcol = la"tcol, which literally means that the

lut column position which could give us success has been examined. From this we derive the

bound function

t2 == la"teol - eureol

and we choose for our first guarded command, the guard

G2 =eureol :I la3teol

Immediately we have P2A .,G2 => fJO"t2, indica.ting that not more than one guarded command

will be:neceuary. AlIlO P2 A G2 => t2 > o.
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w~ now develop a command to be guarded by G2. Thie command mUlt d~reue '2 aad

reestabli.h P2. We can immediately identify two sensible way. of decreuin& the bound

function:

1. Increment the column index cureol by one, Le. use the command eureol := c.reol + 1.

This is a logical step to take when the next column contains a zero.

2. Set '""tcol to the current column p06ition, i.e. la.stcol := cureol. This should be done

when the next column does not contain a zero, as the current column then contains the

lut consecutive zero from the beginning of this row.

This case analysis shows that we need an alternative construct I F2 comprising at least two

lUarded commands.

For the first case we calculate:

wp(curcol := curcol + 1, P2) =
inboKnd,,(MAXROW,currow,la.strow) A (Vrow: 0 < TOW/\

row < curTOW: (3col: 0 < col A col < M AXCOL :

nonzero(matriz,MAXCOL,row,col,col» A (la8trow = JUAXROW)/\

(CUTT01U <> la.strow) A (tl =Tt) A inbouncU(MAXCOL,cUTCol +1,

la"tcol) A nonzero(matTiz,MAXCOL,curTow + 1,cuTcoi + I,la.stcol)

The only conjunct which is not implied by P2 AG2 is mul, ,'x[cuTrow + l][curcol+1] =o. We

choose this expression as the guard for the command ctn'tJol := cuTeol +1.

For the second case we calculate:

1Dp(ltuteol := eUTeol, P2) =
in6ot&nd",(MAXROW,cuTrow,la"trow) A {VTOW: 0 < TOW/.

row < CUTrow : (3col : 0 < col/\ c.ol < ~·'fAXCOL :

nonzero(mo.triz, MAXCOL, TOt;". .:,: ,col» t. (la!J'row = J,fAXROW)A

(C.TT01D <> la",tTow) A (t. = Ttl A ~')'P'!~d..,(~A,.J .~j(COL,CMTcol,

c.Tcol) /\ nonzeTo(matTiz, AIAXCOI. -/" """'oD -i. Iteurcol,cuTc...l)

For the above to be implied by P:r /\ G2, matriz[cuTTO:~'+ iJ(curcoi + I] f; 0 must Loid. \Ve

choo.e this expressioo as the suard for the command '""Icol := cureol.
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The complett"d Vrosram is .howll ill fisure 4. The reader may verify that the initialization.

are correct.

cureol = AIAXCOL -+ la3trow:= currow
eureol :F M AXCOL -. currow:= eurrow +1

-. eureol,la3tcol:= O,MAXCOLj

eurcol := eureol +1
la3tcol := eurcol

eureol :F la.stcol -.
if matriz[eurrow + l][cureol +1] = 0 -+

o matriz[currow + l][curcol + IJ :F 0 ­
ft

<Ml;
-[Pi";;t.;}
]';";: if

e­
ft

{pr~}

ct~rr01U,la3trCtlU := 0, MAXROW;
{invar Pi}
{bound tl}
DOl: do currow #: la.strow

{invarP2}
{bouDd t2}
002 : do

IF2 :

00;
{pG,!tl J
Jm;.nd := carrow :F MAXROW
{pNr}

fr':gue 4: Solution to Rubin'8 problem.

Stellenbosch University http://scholar.sun.ac.za



Chapter 4

Mechanical Support for Dijkstra's

Calculus

We now start our investigation of the main concern of this treatise, namely the suitability of

Dijkstra's programming calculus to be used in mechanically supported program (algorithm)

development as well as the type of tools that would best assist its application. The discussion

centers around a prototype implementation that was undertaken to obtain insight into these

iuuel, u well 88 a survey of results from other projects, as reported in the literature.

The first section details aspects of program development using Dijkstra's calculus that are

amenable to automation and explains the main considerations and criteria that guided the

form and content of the prototype implementation.

Mter this, different aspects of the mechanization of precondition calculations are discussed.

First, a brief overview is given of the formal syntax adopted for annotated. guarded. command

programs. A grammar for the language accepted by the prototype implementation appears

in Appendix B. After this, requirements for the manipulation and representation of expres­

sions during precondition calculations receive attention. Problems r~arding the eemantics

of progams containing references to uninitialized variables are pointed out and a. number

of p06Sible solutions are evaluated. We also discuss the formalized use of logical constants

in progam annotations. The treatment of data types, specifically arrays and records, in

52
...
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Dijkltra·. calculus and in the prototype implem~ntation it cOlllidered, tOlcther with lOme

luuestionl for leneraJization and extcnsion. This section i. concluded with a dilCuuioo of

problems surroundins multiple usisnments to compound variables and the use of quantified

expressions in program annotations.

The next section explorcs support mechanisms for generating and discharging the proof obli­

gations arising from applica.tion of Dijkstra's calculus. The batch paradigm of verification

condition generation is considered first. Here we pay special attention to the role played by

program annotations and certain logical constants. This is foUowed b~' a discussion of lOme of

the problems to be solved in trying to formalize the specificatiun language used with guarded

command programs. These include the lack of expressiveness of its underlying first-order

losic as well as the informal treatment of undefined terms. After this, some perspectives are

given on ways in which to support interactive program development. Finally, some desirable

features are highlighted for the proof support component of a mechanical program develop­

ment system baaed on Dijkstra's calculus. Special consideration is given to the simplification

of JoAical formulae.

Conclusions are presented in section 4.4.

4.1 Considerations for a Prototype System

We proceed by identifying and discussing various aspects of program development using Dijk­

atra's calculus that show potential for being partially or completely automated:

c:alculation of (weakest) precondition.: This activity is basic to the application ofDijk­

stra's programming discipline, in that further program development steps are ~ded by

these conditions and they play an important role in the proofobligations that stem from

the development. Following the rules of the weakest precondition calculus, calculating

the weakest precondition of a program construct with respect to a given postcondition

is a mechanical procedure in all but one case. In general, calculation of the weakest

precondition of a repetitive construct is not as simple, because i~ is baaed on indudiOll

[146] aDd requirN the formulation of a property that will carry an inductive proof.
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In practical terms it also turns out to be more convenient to work with a luitabJe

approximation of the weakest precondition itself. The responsibiUty of lupplyins: an

invariant condition and a bound function from which a proofofcorrectness ofa repetitive

construct can be constructed, traditionally rests with the programmer.

generation of invariants and bound functions: Supplying a suitable invariant and bound

function for a loop under construction, requires a thorough understanding of ita intended.

purp06e and modus operandi as well as a certain amount of ingenuity. Since there is

no "algorithm" for producing invariants and bound functions (see section 3.5), they

cannot be generated solely by mechanical means and their semi-automated generation

involves heuristics. A programmer is expected to use his/her deeper understanding of

the principles involved to control the application of heuristic strategies and to salvage

the situation when these fail to produce a solution. Some mechanical help may be

beneficial, but the programmer remains the main prote&gonist in this operation.

proof a..i.tanee: Use of the weakest precondition calculus generates proof obligations to

be fulfilled in showing consistency between programmer supplied annotations and de­

veloped code. Proof obligations take the form of a set of logical formulae such that

proving the validity of these formulae in a suitable first order logic, is sufficient to prove

that an implementation meets its specification. These formulae are called verifimti(Jn

conditiom. Generating verification conditions can be completely automated, provided

that a specification and, in the case of a repetitive construct, an invariant and a bound

function are supplied.

Mecltanically generated verification conditions tend to be lengthy, obscuring useful facts

for further program development. Certain automatic theorem proving techniques may

be applied to simplify these conditions before proving takes place.

Incompleteness and undecidability results for the subject domain under consideration,

indicate that proofs of verification conditions are not fully automatable. Nevertheless,

partially automated theorem proving is very desirable in relieving programmers from

detailed symbol mawpulation and reducing the probability of human error.

supporting development strategies: Strategies for the development of guarded com­

man~ p~ams and invariants, such as those mentioned in section 3.5, are characteristic
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of the application of Dijkstra's calculus. Since the main prosram development Itrate­

Aies are suided by precondition calculatiolls and theorem provins operations, meaninsful

automation of programming strategies must be built on good mechanizationl for per­

forming such functions and their successful integration into an interactive environment.

pnera} development IUpport: We classify administra.tive support 8uch as lltorase and

retrieval of programs and proofs, pretty-printing, editing, and support for user interac­

tion under this heading.

In decidinl on the exact form and extent of a prototype implementation, the following facts

and criteria. were used as the guidelines:

• The main purpose of the implementation is to gain insight and not to produce a highly

sophisticated and generally "useful" system.

• The prototype should be suitable for incremental enhancements by future efforts ex­

ploiting the knowledge gained, or for connection to existing components from other

sources, such as a powerful algebraic simplifier, theorem prover or proof editor where

these seem appropriate.

• Due consideration should be given to whatever lessons can be learned from other similar

projects.

• Mechanical tools are not meaningful unless they are powerful enough to be preferable

to paper and pencil, yet convenient to use.

• Aspects of using the calculus that occupy considerable time, without having significant

intellectual content are good candidates for automation.

• Unique aspects of the calculus are more likely to deliver interesting or new results when

automated than features that show a high degree of similarity to those ofother program

verification or development systems.

• The fact that Dijkstra's discipline of programming is specifically suitable for the de­

velopment of algorithms, su~ests that mechanical support for the method could find
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application in teacbing environmenta. To make 8uch a system acrelllible to & wide

audience, it should have minimal relOurce requirementl.

Stand-alone mechanical systems supporting most of the above aspects, lIuch &I the Gyp.y

Verification Environment [1, 3, 57] and the Stanford Pascal Verifier [69, 1, 2], are larse .y.­
terns developed over several yearl (in tbe cue of Gypsy-more than a. decade). Smaller

implementations are often integrated with sophisticated theorem provins environments luch

as [61, 4] in HOL and [SO] in the Karlsruhe Interactive Verifier, or used in conjunction with

existins special-purpose too]s such as arithmetic simplifiers [143]. For the current purpOleI, a

simple prototype was constructed, focusing on the most fundamental and obvious candidates

for automation, while providing a good foundation for future research, i.e. calculation of pre­

conditions and generation of verification conditions, with limited attention to administrative

support.

Research in automated theorem proving techniques and systems encompasses a vast spectrum

[109, 107] and there are no clear-cut solutions to the intricate problems encountered in this

field. luues such u powerful hardware, productive user direction of mechanical provers as well

as manasement of recorded proofs and provision for reusable theories to extend knowled~e,

form part of the kaleidoscope of factors that distinguish an invaluable tool from a constant

IOUlce of frustration. This thesis is not intended as a contribution to mechanical theorem

proving research. Therefore, I did not include a theorem proving component in the prototype.

It could be used, however, to gather information about specific theorem provinS requirements,

imposed on an automated theorem prover by the use of Dijkstra's calculus.

The majority of existing mechanical verification systems, generate proof obligations (verifi­

cation conditions) in batch mode. A programmer has to supply a specification u well as a

suitably annotated propam before verification conditions are generated. However, mechan­

ical support for a calculational style of stepwise program development, guided by weakest

precondition transformers (as embodied in Gries's program development strategies (see sec­

tion 3.5», should be interactive. In such an environment (weakest) precondition calculations,

al«ebraic simplifications and the ~eneration and discharsins of verification conditions are in­

terleaved with. administrative functions, to guide and support a. progammer in every step of

tke proceu of propam construction.
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It is important that interactive support for program development doelnot impose unnecellary

restridioal on pro«rammen. For example, a prosrammer should be able to undo undesirable

development Itept with as little impact on remaining work as poaible and should have control

over stratesies ueed by the system and the order in which subsoala are tackled or proof

obligations discharged where this is irrelevant to the correctnelll of the method. At the same

time an implementation of program development strategics should be carefully conltructed

Dot to compromiae soundness. In the light of the above, it seems that mechanical support for

the Ole of development strategies (for programs, invariants, and/cr bound functiODI) needl

to be quite sophisticated in order to be meaningCul.

Another obstacle to interactive 8upport is the sheer bulk and complexity of the mechanicaJly

computed preconditions that are displayed during program development. Unle88 a highly

eft"ective mecl1anical simplifier, integrated with the system, is available to reduce the precon­

ditions to such an extent that they may be readily grasped by a programmer, the fact that

preconditions are computed interactively loses most of its attraction [143]. Because of these

considerations, the prototype implementation does not provide direct support for formal pro­

pam con.troction and follows the (admittedly leBS than ideal) batch paradism of verification

condition r;eneration. It is used in conjunction with an existing programmable text editor,

that has been customized with macros to help a programmer apply Gries's programmins

strater;ies.

The prototype system was implemented in Modula-2 on an IBM~compatible personal com­

puter.

4.2 Generating (Weakest) Preconditions

4.2.1 Formalizing the Syntax

To facilitate calculation of (weakest) preconditions, a formal presentation of the syntax of

parded command lanr;u~e progama, annotated with first order predicate fOrmulas (p~ram

auertiOll.l), is necessary. The syntax of guarded command statements, as well &8 suitable

iAter;erad Boolean exprellions is ~ven in BNF in [40]. Building on this foundation, a context
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free pammar waa developed for annotated luuded command prosrams. Thi. grammar

appean u Appendix B. A number of its featurN are lilted here:

• Variable declarations follow the syntax used in section 3.2, and provides for the .tandard

types INTEGER, BOOLEAN, and CHARACTER, u well as arrays and records.

• The domain of an array type must be an integer subrange, bounded by explicitly stated

inieser constants (ace section 3.2). To cater for domains such as the well known (O.,n-l),

domain bounds are allowed to take the form of simple expressions involvinS constants.

• Provision is made for global as well as local declarations of integer, Boolean, and char­

acter constants. Constants of compound data types are not catered for.

• Progam statements include all the constructs listed in section 3.1.

• The requirement that an invariant as well as a bound function be supplied with each

repetitive construct, is syntactically enforced. This is quite reasonable since no demon­

stration of correctness is possible without these and there are no facilities for mechani­

cally generating them.

• Pqram statements may be interspersed with first order predicate formulas or asser­

tions, the syntax of which differs from that of the Boolean expressions allowed in guarded

commands in that the following are allowed only in assertions:

- the implication operator, =>i

- quantifi~ expressions involving the quantifiers NUMBER, SUM, PRODUCT, FORALL,

and EXISTS;

- explicit reference to arrays and recorda that have been mansed in one or more

domain points, using the notation of section 3.2.

• Any prosram assertion (or bound function) may be optionally labelled with a. name.

ThiI name may be uled as an abbreviation for the formula itself in subsequent prosram

aDnotations. In addition, one may introduce parameterized predicate a6brer1iatiom that

may be used (with suitable arguments) in any prot;ram annotations. Predicate abbre­

viations are di.cuued in Chapter 5.
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• QUaDtified expreuionl follow the .yntactial pattern outlined in lection 2, with the

additional requirement.:

- that the type of the quantification variable be explicitly stated and mu.t be one of

INTEGER, CIIARACTER, or BOOLEAN;

- that no more tllan one dummy variable is allowed;

- that the numerical quantifiers SUM, PRODUCT, and NUMBER be uled only

with finite ranges (see section 4.2.6 below), which is enforced by limitation. on the

syntax of the range predicate.

The srammar given in Appendix B was transformed into an equivalent LL{l) srammar to

facilitate construction ofa recursive descent (predicative) parser. The desire to obtain a sram­

mar that il LL(!), required no noteworthy deviations from the syntax used in the literature.

In Appendix E, a solution for "Rubin's problem" (see section 3.5) is shown in the syntax

accepted by the parsing componellt of Ule prototype implementation.

4.2.2 Representing and Manipulating Expreslionl

Generatins preconditions and verification conditions require only very simple manipulation.

on the expressions involved. Apart from performing syntactic and basic semantic theekins

(such as type analysis), the only noteworthy manipulations are:

• renaming of bound variables in t'!uantified expressions and local variables when calcu­

lating a precondition for a local block, e.g. in determinins

wp(l[var z : ThY: T21 SJI,R(z,Y»i

• textual substitution as found in

• construction ofan expression from subexpressions, e.g. when usin~ the disjunction of the

pards, GG, a bound function, t, and an in\'ariant, P, of a loop to form the verificatioo

COIldition

(P" GG) => (t > 0).
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A brief diacuMioll of suitable data atrudurH for tlte represeutation of exprH.ionl ..ubjed to

.uch operations, as well as the handlinl of variable ren.ruing durin, textual .ubltitution &lId

preconditioo ca1~ulatiolll for local blocks, follow••

Suitable data struetUre8

The choice ofdata structures for tile representation orexpressions is one of the 1000t .iSDifica.nt

decision. to be made in constructing mechanical tools for prosram development uling formal

method•. The speed at which manipulations can be performed may be the determining factor

for a ueer whether or not to abandon paper aud pencil in favour of a mechanical .y.tern.

ExpreuiOil simplification and theorem proving operations typically have the greatest impact

by far and data structures should be geared towards providin,r, the greatest poaible efficiency

for thelle operations [137J. The prototype implementation has no theo:em proving component

and the design of its data structures does not contain any specific features for its support.

Handling of expreuions in the prototype implementation dictated the following basic require-­

meat.:

• The data .tructures needed to represent expressions from pr~ram text and annotations,

should be efficiently constructable during parsing.

• The data. structures used for expressions should allo91 the basic manipulations listed

above to be carried out as efficiently as p068ible.

• Data structures used for expressions should not make undue demands for space as this

may become a. critical resource in processing even re1ativcly small programs:

- even small programs sometimes require manipulation of long and complicated as·

aertiona; of which more are generated when calculating preconditiolls a.nd generat·

ing proof obligationSi

- simplification and theorem proving activities typically generate Ial&e &eta of logical

formulae and consequently make significant demands on the available memory;

- other operations such as parsing and editing will simultaneously require space for

their data .tructUfeS.
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• Since no theorem provhll or .impURcation currently takN place on the verificatioa

conditiolls lenerated, their end is .imply to be recorded fQr the prosrammer'llCrutiuy.

The data structure. used for expreuionl should allow this information to be eMily

converted into a URr appreciable format.

After conliderins these requirements, it was decided that representing expressions as binary

tree structures preaented a good solution. The operation. calJed (or, can be implemented

by .imple tree traversal, insertion, and deletion operations. Decauae one expreNion may

be required for different purposes in a number of verification conditions, it wu (ound that

copying of expreuions happens very frequently. This is a costly operation that will be well

worth optimizing if it continues to play as important a role in simplification and theorem

proving operations.

Instead of lahelinl individual nodes that represent variables with the name and type of the

variable, expreuion trees reference a symbol table, that is constructed during prosram paninA,

for information on variables. This makes renaminr; of bound vanabies very fut and becauae

the .ymbol table also contains scope information, references to local and !lobal variables with

the same name are alwa.ys easy tu distinguish. The symbol table is currently implemented

as & binary search tree. Its performance could be enhanced by chansins this to a more

IOphisticated representation.

Variable reDamins

Calculation of the weakest precondition of an assignment construct involves textual substi­

tution in the postcondition. If such a postcondition involves quantified expressions, correct

substitution requires that variable capture within the scope of a quantifier be avoided by

renaminA bound variables. For example, in

(Vk : R(k) : (3z : S(z) : P(k, m, n,z»);'.;.k,rej (10)

the bound \'Viables J: and z will have to be renamed, to prevent references to variables z

and k, introduced into this ECOpe by substitution, from being interpreted as references to the

boud variables with the same names.
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For the calculation of

lt1p(l[var z : Tl' II : T2 ISJI, R(z,,»
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(11)

all references to the local variables z and 1/ in the construct S have to be replaced by (relh

variables, i.e. variables that do not occur free in R or in S.

Two useful options for the renaming of variables are open to a mechanical system:

1. Prompt the programmer for a suitable renaming.

2. Construct a new name by appending a special prefix or suffIX to the name of an existing

variable.

The fiI!t option is attractive in that a. program developer retains complete control over the

identifiers used in verification conditions associated with a program. Presumably, this makes

verification conditions easier to understand. After implementing this capability, it was found

to be very inefficient. The verification condition generator has no guarantee of the suitability

of a replacement name supplied by a programmer for its intended purpose. Ifl for example,

the bound variable k, in (10) is renamed to j, it will probably have to be renamed aAain.

One may arsue that programmers will be judicious in their choices when renamins variables,

but a mechanical procedure will have to check whether this is indeed 80. In the cue of (11)

this involves scanning both Rand S, possibly repeatedly, to ensure that names supplied to

resolve clashes do not already appear there.

The second alternative has the advantage that it may be efficiently implemented. Since vari·

able names are altered only slightlj', the connection with the program text remains apparent.

UsinS a special character such as "I" to prefix or suffix names that have to be altered is

impractical, because the same identifier may be used any number of times in different con·

texts. In [63] different uses of the same identifier are distinguished by usinS the program line

number on which an identifier is introduced as a suffix for all occurrences of that identifier

in verification conditions. I have implemented a similar scheme that renames an identifier z

to nOz, where n is a unique number, in cases where ambiguity arises. This notation uses a

"0" to separate the identifier and number, instead of the more common ".", to prevent con­

fuion with a record identifier qualified by a field name. Line numbers are not used, because
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'hey need noL be unique-noLhins prevents the introduction of the lame identifier u bound

variable for different quantifiers on the lame prosram Une.

Since each program block and each qunntHicd expreuion represent a new scope level, ideati..

fiers may be di~tinguished by expanding them to include a reference to the level at wh~ch they

were introduced. As .. program is parsed, the parser numbers the scope levels sequentially in

the order that they are encountered and these unique number. are uJed to di.tinSui.h identi­

fieri where ambisuity arises. This is a similar arrangement to the use of module or procedure

names to identiCy names declared in different contexts e.g. designating .. variable IOch.clt

declared in a module rIO as FIO.I0ch.clt in Modula-2 or Ada (see [53]). If conltructs luch

u procedures and modules are added to the guarded command lallguage, the current scheme

provides the scope to accommodate these as ill the above example.

Because the representation chosen for expressions uses a symbol table when referring to

variables, expanding all references to a certain variable to its full, unique form is accomplished

by .. very simple change to the symbol table entry for that variable.

Name substitutions within program constructs, as used for local blocks, require no additional

or different procedures than th06e for renaming in logical formulae.

4.2.3 Variable Initialization

What is the value of a variable after its declaration? Different approaches to this question

include considering new variables to have a special "undefined" value upon their creation, or

implicit initialization with a neutral value such as zero for all integer variables and "true"

for all Boolean variables. None of these approaches is ideal. Our approach to this matter

distinguishes between global and local variables. Where no treatment of input and output

mechanisms is given, it is customary to assume that the initial state of .. computation is

represented by the values that global variables initially possess. Application of the weakest

precondition calculus starting from a desired postcondition, will eventually produce a precon­

dition .tatiD~ a suitable initial state, and thus, suitable initial values for the ~obal variables

of the computation.

Variables introduced in local blocb present a different scenario. A practical way in which
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to iIlultrate this, is to consider .. typicallituation that arises in provins the correctDei' of a

local block constructed during a program development:

{pre}B: I[var:r : T ISJI{po..t}

We wish to show that the (weakest) precondition of the block, B, with respect to the post·

condition, PO"', is a. logical consequence of the precondition, pre, i.e.

rpre ~ wp(B,po"t)l

It is clear that pre has to be independent of the local variable :r and thus that we cannot

prove the above unless wp(B, po.d) is also independent of x, i.e. for any condition R,

f('v'v:: wP(B,R); == wP(B,R»l

Of, in terms of our semantics, for any fresh variable 1/:

f('v'v:: wp(S:,R)~ == wP(S;,R»l (12)

Unfortunately the weakest precondition semantics that we have assigned to local blocks does

not parantee that this condition will hold. In particular, it fails to hold iff z is not initialized

by S. VuiOU5 ways of addressing this problem were considered.

An unsati.ractory aolution

At a fint ~ance, the simplest approach seems to he not requiring local variables to be initia!·

ized explicitly, thus assuming that newly declared local variables are of arbitrary value. The

only explicit requirement is that the initial value of the variable be of the appropriate type.

This BOunds elegant enough; a view that is borne out by the simple change required to build

this into the semantics of the local block:

rwp(l[var z: T I SJI,R) =('v'1/: 1/ E T: wP(S;,R»l (13)

Thus we are now requiring that S establish the postcondition R regardless of the initial value

of %. This is similar to the approach adopted in the definition of the verification oriented
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1anauaae, Euclid (158) and il ill accordance with the semantics of the local block cOIl.trud &I

liven in (130}.

Such aemanLics for the local block construct is however in violation of our aemantic frame­

work. Because we allow infinite data types, the predicate transrormer thus defined i. not or­

continuous and would thereCore allow unbounded nondeterminism, e.g. I[var II : T I z := .lI
lets J to any integer-an unbounded number of choices!

AI a result of the above, the requirement that all variables be initialized beCore they are

referenced, is unavoidable.

Dijbtra'. resimen

In [38, Chapter 10] Dijkstra suggests that the guarded command language be restricted in

order to ensure that variables are explicitly initialized before being referenced. lIis proposal

includes syntactically recognizable initializing statements as well as a rigid discipline for their

Ule.

Dijkatra's regimen requires that all private and inherited identifiers be listed upon block cntry.

The textual scope of a variable private to a block extends from the atart of the block to its

end, with the exception of nested blocks that do not inherit it. This textual scope is divided

into the "passive scope" where it may not be referenced and it does not form part of the state

space and the "active scope" where the variable may be referenced. The passive and active

scopes of a variable are separated by an initializing statement that has to be placed in such

a way that, independent of values of guards:

1. exactly one initializing statement for that variable will be executed inside ita textual

scope;

2. no statement from the active scope of the variable can be executed between block entry

and the execution of the initializing statement.

Though the measures proposed by Dijkstra would accomplish our ~oaI, the)" are quite COlD­

plicated. The treatment of array variables is also leu than ideal. Dijkatra does not pJ'OpoIe
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any prOll'am construct that can &asign values to individual pointl in the domain of all Ilray

without explicitly Hllin« them, i.e. for array variablel aT and 6r we cannot Ule

aT:= bT

but only

flr[OJ,aT[lJ, ar(2), ar[3J, ar[4J := 6r[OJ, 6Tll], 6r[2J,6r[3], br[4]

Neither can we Ulle the loop

i:= 0

do i:F n -+ ar[i]:= 6T[i];

i := i +1

od

to initialize ar, since no initializatiolls are allowed to take place inside loops. If we consider

the domain of an array variable as fixed (as we do here) this regimen, in effect, limits the array

variables used in local blocks to those with domains that are small enough to list exhaustively.

Hemerik'a ausgeationa

In (81] explicit initialization of local variables is enforced by the imposition of the following

syntactic condition:

z E INIT(S) Vz ¢ USE(S)

for all variables z declared in a local block I[var z : T ISU.

The set USE(S) can be informally described as the set of all variables occurring in an ex·

pression in S (or in its interspersing annotations), while INIT(S) can be seen as the set of

all variables assigned to by every possible execution of S and not used in any expression

before beinK assigned a value (see [81, Chapter 4] for definitions). Constructing these sets is

a straiptforward syntactic procedure.

An advanta!e of using Hemerik's proposal is that it does not require any syntactic extensions

to the guarded command language. In particular, we do not need syntacticaJJy distinguishable

initialization statements. Its main disadvantage is that it displays the same shortcomin~ as

Dijutra'. discipline in the treatment of arrays with fixed domains.
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Final consideration.

67

Our aim remains to ensure tbat tbe equivalence (12) above, bold. for every local block in a

suarded command program. Why not generate this as an additional verification condition to

be R\il$fied by every local blodf? 1n the first place it is preferable to enforce aucb condition.

without the need for theorem proving. Secondly, the fact that we will never explicitly senerate

the weuest precondition of a local block containing loop constructs, mU8 thi& condition

prac\icany impoaaible to check.

The condition (12) merely formalizes the notion that the weakest precondition of aloc:al block

is independent of any local varia.bles dec\a.red in that block. Is it possible to aacert.ain thil by a

syntactic check on logical formulae? Because we will rarely generate the weakeat precondition

itself, we ha,'e to strengthen this question to: Can we establish that tIle weakest precondition is

independent of local variables by some syntactic check on any given or generated precondition

(formula)? The answer is no.

If
var

I integer;
ar array[O..n] of inteser

i:= 0;
invar {(Vk : 0 ::5 k" k < i : ar[k] =br[k])}
bound {n - i}
do i ~ n -., ar[i]:= br[i];

i:= i + 1
od
R : {(Vj : 0 < j A j < n : ar[jl = bTU])}

)I
{po.5t}

Figure 5: Making a local copy of an array.

Usins the siven loop annotations in the process of calculating a precondition for the local

block in fisure 5, we obtain the following:

(Vk : 0 :::; k A k < 0 : ar[k] = br[k».
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This precondition is a tautolOlO' and thul independent of local variables, but without the

application of the relevant simplification procedure, tllIl canllot be deduced.

We are forced to conclude that the only practical way of eusurins proper initialization of local

variables, is to ausment our guarded command language in such a way that syntactic checka,

such as those proposed by Dijkstra or lIemerik, are applicable. lIemerik'••uggestions seem

to be the most promisins. A syntactically distinguishable initialization statement (or arrays

will have to be devised to allow the use of arrays with large, fixed domains.

Another solution to this problem would be to accept the local block semantics stated in

equation (13). This requires that we disregard the or-continuity healthiness condition for

weakest precondition predicate transformers. Cltapters 6 and 7 describe a calculus where this

situation exists.

The prototype implementation does not contain a solution to the problem of uninitialized

variables. For each local block, a syntactic check is performed to ensure that the generated

or ~ven precondition does not contain auy references to local variables. As indicated above

thou«h, luch a check is in general not strong enough.

Rep.reMntation of initial values in prosram annotations

It is quite customary to introduce scrcalled logical conatant6, gh06t variable. or .pecification

variable. that do not form part of the state space to represent initial values of variables in

program specifications and annotations. In [66] logical constant identifiers are distinguished

from prosram identifiers by the convention that capital letters are reserved for the former and

small letters for the latter, e.g.

z : [z =X,z > Xl.

In [125] o-subscripted variables are reserved for logical constants tilat represent initial values

of prosram variables.

As pointed out in [66] verification conditions have to be pro\"en to be universally true (tau­

tolQSies), e.~. a verification condition

(x = Xl => wp(z := z + l,z > X)
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involvinl t he ~ical con.tant X, should be under.tood as

r('~x :: (z =X) => wp(z := z +1,z > XJ)l.

a9

Thus a verification condition is universally quantified over all its logical con.tants. Ia effect,

the 1000ca! constants are a special type of local variable for use only in prosram unotatiOD"

In a formal environment, a mechanism for the dedaration of losicaJ constant. should be

made available to allow semantic checks on their usage and explicitly delimit their .cope.

Conventions luch u the Ule of capital letters or O'lmbscripts, that are inconvenient when one

wanta to refer to the value of a va.riable in more than olle previous prosram .tate (lee e.!.

[121, p&!e 51D, then become superfluous.

Apart from the exception mentioned below, the prototype implementation does not include

a mechanism for the formal introduction of general logical constants and thus precludes their

UR. A!ood candidate for such a mechanism is given as part of the refinement calculus in

[121] and i. discussed in Chapter 7.

It is interestinK to note that the omission of logical COllstants cause more than a mere incon­

venience in the annotation of guarded command programs. In the Fundamental Invanance

Theorem for Loops, a logical constant is used to represent the initial value of the bound func­

tion in the correctness proof. In annotatin,; nested loopl, one has no choice but to refer to this

logical coostant in stating the effect of executing an inner loop on the bound fundion of the

outer loop. This has prompted the inclusion of a mechanism for introducinr; a .pedfic lo«ica1

constant, representing the initial value of a bound function, ir: guarded command progam

annotations. More details follow in section 4.3.1.

4.2.4 A Meaningful Type System

At present the type .ystem is very spartan. In order to provide more flexibility, a &reater

ruse of expreuion ud better abstraction facilities, it seems desirable to extend the ruse

of available data types, enhance the flexibility of types such as ural'S and records and aU!)W

uer-defiJled types.

TIle prototype implementation of array and record types is limited in a number of 'Wa)·S
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(see below). These limitations will be accentuated if user·defilled }.roccdurcil and function.

are included in the guarded command language. lor complete flexibility, the auitability of

polymorphic types, such as discussed in [117, 77], for inclusion in the type system of a guarded

command language, is worth investigating. Since type inferencillg is naturally associated with

polymorphic types, this also provides scope for omitting type descriptors when introducing

variables, e.g. in quantified expressions.

Using data types that are well suited to a particular problem domain is crucial in examples

done by hand, but is difficult in systems that provide mechanical support, becaule of the

need for complete formality. Including more standard data types in the guarded command

1anSUa&e provides one way of addressing this issue. Some candidates for inclusion are character

strings. integer subranges, rational numbers, real numbers. pointers. enumerated types, sets,

and sequences. Some of these types. e.g. real numbers, are difficult to axiomatise. Pointers

are contentious and some suggestions have been made for mechanisms allowing the creation

and manipulation of dynamic variables without the explicit usc of pointers, e.g. [142, 153J.

Treatments of pointers in weakest precondition semantics may be found in [127, 126, 129. 17].

Itmechanical proofsupport is to be offered, the inclusion of a wealth of data types complicates

proof procedures immensely, because of the number and the extent of the theories involved.

Extending the current typ::- system to include facilities for user-defined types and .ubtypes,

should also be able to cOlnribute towards the use of types most suitable for an algorithm

under development. Ultimately, the use of abstract data types seems ideal. This allow. a

high degree of ftexibility without requiring excessive extensions to the standard type system.

A pl'Op'aJDmer may use the exact level of data abstraction required and gains convenience

of expression and the advantage of shorter, less complicated verification cOIlditioDs. Data

abstractioa. is investigated further in Chapters 5 and 7. Again, the implications for mechanical

proofsupport are far reaching. Under such circumstances, a mechanical prover should support

uler buildiD~of (reusable) theories for new data types, ensuring that no ~cal inconsistencies

result (see discu.ion in [70, p~e 1064-1066]). and provide mechanisms for their efficient

inclUlioD in simplification and reasoning procedures.

Mechanical.apport fOl' program development in the weakest precondition calculus wiD benefit

&om a thoroup investi~ation into and probably significant extensions to the type system
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used in puded command prosram•• 'fhi. i. DeaI.itated by the n~d for expreAiv.... aad

Jlexibility in the face of complete formality of syntax and ..mantia. The nature and .pirit of

Dijbtra', calculus sUMeita that we stand to pin the mOlt by introducins luitable abltractioa

mechaniams-thus data abstraction facilitiea d..:serve special attention. Chan.. to the type

system wiD have a definite effect Oil the requirements (or a mechanical proof Iy.tflll to support

prosram development.

Handlin& arr~. and record.

The inclusion of arrays and records in Dijkstra's calculus allows the Cormulation of many

non-trivial alsorithms in a natural way. Their use also leads to a number of complication.,

including:

• prosram annotations and verification conditions involving arra.ys and record. are fre­

quently more complex and more difficult to read;

• special syntax has to be introduced to handle the initialization of array.;

• textual subltitution u well as rules for the correct use of multiple auisnment (and

procedure call) constructs require reformulation to take into acCOUllt the pouibiliLy or
aliuing;

• the underlying logic of the specification language is complica.ted by iuuea such u quan­

tification over arrays and the treatment of undefined values;

• due to the above, proofs of verification conditions may also become more complicated.

The pro;;otype implementation imposes certain limitations on the use of arrays and records.

The followiaS discuuion hi~lights the most noteworthy, offerins sUMCStions for future eJ[­

tenaiOlls:

No drudured constants: It is useful to be able to introduce arrays and records whoee

'Values are not to be chanSed as constants. No specific problems are (oreeeen in liftinS

tu reatrictioD..
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Fixed. Suite. iu&eser domain.: The Cact that array domains arc limited to inte&er. i.

not c!8jCutial and expansion to include other domain type8 should pOle no problem••

Jlaving fixed array domains is in accordance with mOlt traditional treatments of arrays

in programming languages, but in contrast to that of [38]. As mentioned in section 4.2.3

above, special arrangements are necessary for the initialization of arraya with large

fixed domains, jf correctness of.local blocks js to be fully verified. Introducing suitable

operators for domain manipulation and examination, such as those listed in fJ,.e.tion 3.2,

the fixed domain requirement would be simple to remove. The requirement of finite

domains is necessary to ensure that r:hecking two arrays for e<luality, remains decidable.

Explicit. array domain bound.: This limitation may be removed if primitive functions

representing the lower and upper domain bounds are introduced (see section 3.2). These

functions will have to be generalized to extract the domain bounds of higher order

(multidimensional) arrays (see [33, page 209] for an example of how this can be done).

Considering domain bounds as part of the value of an array data object (as in [38,68])

will allow construction of more flexil"le programs and should be a worthwhile extension.

E:<plicit bounds may then be considered as stating limits all the array domain, and thus

as details of implementation.

Few operatan: Most of the array opera.tors introduced by Dijkstra change the domain

of arrays. These are all candidates for future extensions. Another useful suggestion .is

found in [66, Chapter 5], where a notation is suggested for the restriction of an array

to a section of its full domain. Given suitable integer expressions et and e2, satisfying

et :$; e2 +1, the notation ar[et .•e2] denotes array ar restricted to a domain bounded by

the values of el and e2.

Dijkstra proposes only two operators, na.!nely swap and alt, that change just tIle func­

tion values of an array. Of these, we use the operator alt, for changing the function

value in one domain point. We adopt the well known notation ar[i] := x, instead of

the more c!1mberson~e ar : alt(i,z) (see section 3.2). Other useful operators, such as

swap, could also be added, as necessary. We do not allow the assignment ar := br for

array \'ariables ar and br, because of its potential for misleading a programmer about

its economics where the domains of ar and br are large (see [38, page 1021). Dijkstra
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and Oriel both allow the ulignment or enumerated conltautl to array variablH to Ii­

multaneoully chan~e the \'alue of the arra)' in more than one domain point. Tboup

I feftl that the multiple assignment construct is more flexible and suffident for curUllt

purpoleS, the use of enumerated con~tants does allow a more CO?pact notation.

In [66, Chapter 5} relational operators such as =, f:., <, >, ~ and ~ are applic:!d to arrays.

They denote component-wise comparisons and are proposed as abbreviations for certain

frequently uaed program assertions, e,g,

ar <:c

instead of

(Vi: 0 ~ i A i < n : ar[i] < :c).

Such abbreviations provide abstraction when constructing a program specification and

may aid program understanding. On the other hand, these abbreviations can lead to

confusion when performing manipulations, since -'(ar , z) is in general not equivalent

to ar ~ :c (see [66, page 93] for more examples). If abbreviations of this kind are

to be allowed, it seems desirable to expand them to their full form during program

development manipulations-possibly with the option of contracting them asain when

the program haa been completed. Additionally, it is strongly recommended that distinct

relational operator symbols are introduced to avoid confusion. To allow mechanical

manipulation and simplification of formulas containing such operah'f8, the underlyiD~

calculus will have to be extrnded with rules for their manipulation,

New array operators may provide the means for more succinct, elC!,ant formulation

of program properties, but their introduction requires careful consideration. One has

to ensure that the increased burden of providing effective measures to handle them in

Cormal manipulations, is justified. Operators specific to a particular problem domain

should be introduced by other means such as user-defined procedures and Cunctions or

u aU contained libraries.

As for anays, the only operators currently implemented 011 records are alteration of

the record value in a single domain point, or in a number of specified domain points

(multiple auisnment).
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No anay quantification: From a logical point of view, quantification over array. l4!ad.

to the realm of weak second order logic. All example of lucb ulage may be found in

(33). One of the consequenccs of allowinl quantification over array. is that primitive

functions for extracting the upper and lower domain bound fwtn all array value (Iuch

as bib and lob in section 3.2) become imperative. Without them the behaviour of

quantifiers would be different, For example,

(V(n : integer) :: (V(ar: array[l..n] of integer):: P{ar,n») (14)

would differ from

(V(ar: array[l..n] of integer):: (V(n: integer):: P(ar,n»)

Using functions lob and hib, the assertion (14) could be written as:

(V(n : integer) ::

(V(ar : array of integer): ar.lob =1 A ar.hib =n: Pear, n»)

More details are available in [33, Chapt~r 7].

Bisher order array. and record.: In [66, Chapter 5] Gries discusses arrays of arrays.

This extends the notion of an array as an integer, Boolean or character valued functionj

allowing arrays themselves as array ranges. As an example consider the array variable

declared as follows:

ax : array[O.. lO] of array[l..5] of integer

Based on this declaration, ax refers to the complete array, ax[O] refers to the array ass0­

ciated by ax with the domain element 0, while axli](j] (for suitable integer expressions

i and j) refers to a single integer.

This view is not fully supported in the prototype implementation. Our view corresponds

to the multidimensional arrays found in languages such as ALGOL, FORTRAN, and

PL/l as well as the PL/CV verification system [33]. An n-dimcnsional array is treated as

a function from a finite set ofcon~cuti".einteger n-t.uples (ac4:ording to the lexicosraphic

ordering) to a. set of simple values such as integers or characters. Assuming thc arra}'

declaration &$ above, one may reret to individual fundion ~""ues using the notation
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Clz[i][j], while oz[i] has no meaning in this context. Multidimclllional arrays provide a

Ies. complicated alternative to the "arraya of arraya" approach. The laU~r ii, however,

more flexible and provides suitable notation for delcribing the effect of lOme of the

operators that change all the function values of an array.

For the other higher order objects such as arrays of records and records of arraya, the

situation ilsimilar.

4.2.5 Multiple Assignment to Conlpound Variables

In section 3.1, the multiple assignment construct is described. This discussion focuses on

assignment to simple, distinct variables and the notion of simultaneous textual substitution

was found to describe its semantics adequately. For compound variables, such as arrays and

records, the multiple assignment construct is generalized to the form

where the Xi are variable identifiers, ~i are appropriate selectors and each fi is an expression

of a type compatible with that of Xi 0 ~i.

The semantics of this construct is complicated by the possibility of aliasing among the Xi O&i­

Two variable reference, x 0 ~ and JI 0 t, comprising identifiers x and 11 and selectors & and I,

are aliaxd if one is an initial segment of the other, i.e. the latter references part of the value

of the former [67]. From the following examples, it should be clear that aliasing is in ~eneral

not a syntactic property:

TfC.m and Tec are aliased;

TeC.m and rec.n are not aliased;

or[i] and OTV] are aliased only if i = j;

ar[i] and ar[i - 1] are not aliased;

i and ar[i] are not aliased

Compliance with the semantics of the original multiple assir;nment construct n;quires defininr;

the weakest precondition of the seneral multiple assignment as the conjunction of the ...·eak~t
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preconditions of all potisible ortlerinl8 of assignments [65j:

wp(ar[Xl),' •• ,ar[xn) := t'1,' •• , en, R) == /\ n::(z, :el ....,z,,:r,,)
(il •••••i,,)

where (i..... ,in ) represents a permutation of(1, •.• ,7I).

16

This formidable definition is due to the requirement that the components of a multiple aa­

signment be executed in any order. Since it is not particularly palatable, we simplify the

definition by eliminating its nondeterminism. As in [66], we specify the semantics of the

~eneral multiple assignment construct as follows:

Syntax:

(15)

where the Xi are variable identifiers, Sj are appropriate selectors and each ei is an

expression of a type compatible with that of Xi 0 "i.

Operational Semantics: The variables specified by the Xi 0 "i are determined and the

expressions Poi are evalua.ted to yield values Vi. This is followed by the assignment of

each Vi to the Xi 0 "i of corresponding subscript in left to right order.

Predicate Tran.rormer Semantics:

(Vi: i > 1 Ai < n : domain(x' 0 s·) cand domain(e'» cand Rzlo.I •.•.,z"o·"l (16)
- - I • I el •••••e"

where the predicates domain(xi 0 "i) and domain(ej) characterize the set of states in

which the expressions Xi 0 "n and ei cCt.n be evaluated without causing failure (see

Appendix C for a definition).

To make the latter meanindul we assume the following definition (66, pa~e 129] of R~, where

z is a list of identifiers, each concatenated with a selector, and e is a list of expressions of

appropriate types, containin~ the same number of clements as ~.

1. H? is a list oC distinct identifiers (thus all selectors in x are equal to E), R~ denotes

conventional textual substitution.
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2. If a and II are distinct identifier.,

77

Thus, adjacent reference expression pairs may be exchanged, provided they besin with

different identifiers.

3. If id"ntifier a does not begin any of the x"

Thus, multiple assignments to subparts of a compound object a can be seen as & lingle

assignment to a.

Thus we sacrifice the more abstract nondeterministic definition in favour of its more workable

deterministic counterpart, shown above. Under these circumstances, one may well ask whether

the use of the general multiple assignment is still justified. It is suggested, in [65], that its

use can still aid program understanding as well as precondition calculations, by being more

concise and straightforward than an equivalent sequence of simple assignments. TLe multiple

aaaipment

p, b(p], b[i] := b(P], b[i],p

and equivalent assignment sequences [65]

t:= p;

p:= b[t]j

b[t] := 6[i]; and

b{i] := t

illustrate this point.

t := Pi

t2 := b(i]j

t3 := b(p);

bli] := t;

bIt] := t2;

p:= 13

In the prototype implementation, the general multiple assignment construct is treated deter­

ministically, accordinr; to the semantics outlined here, while assignments to simpl~ variables

are still treated nondeterministically, according to (3). Thus, a multiple assisnment construct
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is not ucepted if it cont.uns more than one uaisnment to the lame limple variable (iden­

tifier). This is a debatable decision. One may &r!UC that it is unfortunate to diJtlnlUi.h

betwfttn simple and compound variables here, after taking trouble to hide their ditrer~ncel

with a functional view. Another valid objection i. that if a con.trud haa different leI11antiu

for different data objects, it would be less confusin« to separate the di&tinct CaRl notatioeally

as well-resultin~ in separate language constructs. 1 feel that different ulir;umentl to the

RIlle simple variable are clarified by expressing them as separate simple uailnments. In the

end the decision to view reassignment of a simple variable within a multiple auir;nment U an

abuse of notation, is a personal one. It could easily be altered if a more pleasinl alternative

presents itself.

Using definition (15) or (16), the weakest precondition of an assignment construct involvinl

arrays is simple to calculate. In contrast, it can be rather troublesome to simplifYi typically

involving case analysis as shown in the following:

wp(aTli] := 7,arli] ~ ar[jl" ar[j] ~ ar[k»

- (ar[i] ~ aT{j] AaTU] ~ ar[kJ):~((iJ:7)

- aT([i}: 7)[i] ~ ar([i] : 7)[j] " ar([i] : 7)[j] ~ BT([;] : 7)[k]

_ (i ~ i A i ~ k A 7 ~ aTU] A arU] ~ ar[kJ) V

(i = i "i ~ k" 7 > 7" 7 ~ ar[k}) V

(i f. i A i = k A 7 ~ aT[j] " aTU] ~ 7) V

(i =i " i =k " 7 ~ 7 A 7 ~ 7)

In leneral, considering an assignment ar[j] := e and a postcondition containing n references

arlit], ... ,4r[ill ] involving array ar, the corresponding pr;;condition will contain n references

ar(j : e)[i1],. •• ,aT(j : e)[ill]. Such a precondition could hI; broken down into 2" cues, Un­

derstanding the precondition may thus require effort exponential in the number of references

in the postcondition invol\.ing the array being changed. This complexity seems to be un­

avoidable, as it is rooted in dynamic aliasing-two different variables i and j, used as array

aelecton, can yield two different names arli] and aTU] for the same array value and these

Dames chanle dynamically as i and j change, To control this complexity, Gries sUMesu that

the number of references to the array be kept to a minimum and that enough restrictive
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information be maintained in prosram uacrtiolll to allow the t icatnumt of many lubC:HeIL in

a Ihnilar (uhion.

4.2.6 Quantified Expressions

As explained in section 4.2.1 and Appendix B t the prototype implementation allows quantified

expressions of the form

(quantifier (dummy tUpe): range: term)

where

quantifier is one of NUMBER, SUM, PRODUCT, FORALL, and EXISTS;

dummy is a single variable;

type indicates the type of the dummy variable and is one of the primitive types INTEGER,

CHARACTER, or BOOLEAN;

ranse is a(n) (optional) Boolean expression;

term is an expression of a type matching the specific quantifier.

We highlight some of the interesting issues surrounding quantified expressions as currently

implemented:

Type of the dummy variable: As stated in section 2, the type of a dummy variable is

traditionally omitted if it is obvious from the context. From the point of view of parsing

and type analysis, the introduction of a dummy variable is similar to the declaration

of a local variable. Allowing the freedom of omitting type information would require a

type inferencins mechanism, which is not available currently.

Multiple dummy v.amble.: The fact that multiple dummy variables are currently not

allowed, is merely a syntactic restriction. It would be quite a simple matter to extend

the prototype yammar and parser to accommodate this variation.
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Special rana_: The requirement that the raJl~e must be a DooI...an exprenion exclude.

abbreviations luch as

O~j<n

for a dummy variable i, that abound. ia the literature. This extells;on should, however,

be easy to incorporate.

For the numerical quantifiers SUM and PRODUCT we require additionally, following

(40, page 141), that the equation

range 1\ term ~ 0

in the dummy variable has a finite number of solutions. This cxcludes expressions, such

as

that do not denote proper intcger expressions. This requirement is satisfied by limiting

the dummy variable to a finite range. Syntactically, the range expression is limited to

the conjunction of two Boolean expressions, one establishing the lower and the other

the upper bound for the range of the dummy variable, e.g.

O<jl\j<n

(also see Appendix B). For the quantifier NUMBER, the equation

range 1\ term

in the dummy variable is similarly required to have a finite number of solutions. This

restriction is achieved as for SUM and PRODUCT.

4.3 Proof Obligations

4.3.1 Generating Verification Conditions

We now outline the well·known procedure for batch generation of verification conditions from

an uaotated parded command program, as implemented in the prototype implementation.
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'rile fhat step is to parse .. &uartled command pr~ram and its annotationl, perCormbl tile

flees.ary .ylttadie and lemalltie cllecb. At the .ame time data ,tructura, contalnin« tbe
euenUaJ information tor verification condition construction, are built. MOlt .ubltaaUaJ pro­

Irama consist of a sequence of program statements. Followhl& the definition or the weakelt

precondition transformer tor sequenciug, verincation couditions ate generated in badLward.

o:der relative to the order of tJ!eIe ,tatement•• Thu. for a ,imple prOlram of the form SI,S2,

annotated with a precondition and a p06tcondition as follows:

HI, such that HI =wp(52, Q) (or merely Ht => wp(82, Q» will Lte calculated first, followed by

WP(ShRt) (or R2' such that R2 => wp(Slt Rt». One verification condition will be generated,

i.e.

The universal quantification, shown explicitly here, is implicit in actual conditions.

Currently all verification conditions are recorded in a text file in tlte order that they are

Aenerated. No algebraic simplifications are carried out.

Internal annotationa

A progammer is allowed to place assertions bet.ween sequentially composed program state­

ments. These assertions provide a way ot decomposing a complex verification .tep iDto a

number of more manaseable steps. For a program of the form {P}St {Q}; S2{R}, the foUow­

in& two verification conditions will be generated:

and

The prototype implementation does not allow annotations of the Corm:
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lIowever for compound ,tatement. liuch u local block" alternative and repetitive WA.trud',

the foilowinl.ituaUoll. may adle:

{Pi} I[var ... I {PdS{Q2}]1 {Qi}

In each ot these cases, the following two verification conditions will be generated (in addition

to any others):

and

Alternative constructl Weakest precondition calculations are only ronducted for alter­

native COBltructs that are not already annotated with a precondition. H a precondition is

supplied with such a construct, Theorem 3.1.0.1 is applied, generating two verification condi­

tions (see Theorem 3.1.0.1) which guarantee that the given precondition is at least as Itron~

as the weakest precondition.

Repetitive coutrud. Weakest preconditions of loops are not calculated, instead all loops

must be annotated with an invariant and a bound function that may be used for verifyin~ its

correctness. A typical loop, L, may be annotated as follows:

{PI

{invarX}

{bound t init T}

L

{Q}
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Uiins the Fundamental hn..dance Theorem for Loopa (Theorem 3.1.0.2). thn..'C! verifteation

conditions are senerated, one of which refer. to the IOSical COllstant 1'. The verific."Uon

condition

is also generated.

As Dlentioned above, the general use of logical COJlstanta is not supported in th'! prototype

implementation. A logical constant, representing the initial value of a bound (unction, doe.

appear in the Fundamental Invariance Theorem for I.oops, but it seems u thou~h thi. con­

stant could be generated by Ute system. Unfortunately, this is not always poI.ible. Nested

loops represent an exception.

{bound tl}
L1 : do

{invar Pd
L'l: do ... od

ad

Figure 6: Ncsted loops.

Consider the schematic example in figure 6. To show termination of the outer loop, Lt, we

will generate a verification condition stating that each iteration of L1 decreases the value of

the bound function '1' All we "know" about the effect of executing the inner loop, L2' i..

contained in its annotations, particularly the invariant P2. Thus, P-z must state the effects of

executios L 2 00 the value Of'l- For this we need a logical constant repre8enting the ~"'ue of

'. here.re execution of the inner loop. \Ve also need to ensure that the function of this I~cal

constant is clear to a mcc!tanica! verification condition generator, 50 that it wiJI use the same

constant when generating verification conditions for L 1• The "Rubin's problem~ example of

section 3.5 contains an example of correctly annotated nested loops.

In summary: not only does one need to use a log.,cal constant in correctly annotatins nested

loops, but this constant must be the AIIle as the constant found in one of the \"erification
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condition. ~cnerated by ush,S the Fundamental Im'afiance Theorem (or Loopl. The only way

to accompli.h this i. to allow the prosraJllmer to choote the name for the con.tant in lucb a

way that it will also be unambir;uously identified to the verification system. In the prototype

implementation. this is accompli.hed by stipulating that the phrue init T. where T i. a

suitable n&llle for a logical constant representing the initial value or a bound function. must

appear with the definition of each bound function.

Appendix E shows the verification conditions r;enerated for the "Rubin·' problem" example

of IeCtion 3.5.

4.3.2 A Suitable Specification Language

The lanplle used in the literature for expressing annotations and specifications of r;uarded

command prosrams. is a first-order language allowing references to common data objects such

u intesera and characters, This language is defined onIy informally. givinr; it eome flexibility to

be extended to accommodate data types. operators or notation used in individual examples.

To allow for mechanical calculation of (weakest) preconditions, generation of verification

conditions and formal proofs ofconsistency between specifications and their guarded command

implementationII. the specification language has to be formalized. Within lIuch a formal

lettin~, a more critical assessment or the specification langu. is inevitable and llOIDe of its

shortcomings allO become apparent. The design of a specification laDpa«e is a crucial iuae

with far reaching implications for many aspects of prosram development and conailtency

proofs, see e.g. [55, 72, 52]. Some basic requirements for such a lan~lIe are as follows:

Formality: This requirement should be taken to mean both:

• that specifications .hould be formal-as oppOlled to informal. A1thoup informal

specifications can play an invaluable role in p~am development. they tend to be

ambiguous. imprecise, and incomplete. They are also not amenable to automated

processing or mathematical manipulation and cannot support the Ole of formal

method••

• that the specification langaa«e should be given a formal definition. Without a

formal definition it is difficult to see what 8i~ficaDceCaD be attached to a "proof'"
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of consistency between a apedficatio.n and its implementation.
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Jntuitivenes. and Naturalnu.: These char&cteriltica take into account the fact that pro­

gam specifications and annotations are also meant for human coanprehen.ion aDd ap.

predation. Because the construction and P"oceslin~ of specifications cannot be fully

automated, such requirements remain important.

ConciIeDeS': A common complaint about formal specifications is that the specification of

& program is longer (and more complicated) than the program itself. A specification

lansu"!e .hould be geared towards clear and succinct formulation of program propertiet.

Abstraction: Just like for programs, abstraction mechanisms should be applicable to spec­

ifications to make them more manageable and allow separation of concerns.

The specification language as currently implemented in the prototype does not lend itself

readily to conciseness ofexpression and contains no abstraction mechanisms apart from simple

predicate abbreviations (see section 5.3). This leads to rather unmanageable logical formulu

havins to be manipulated and used in deriving further program steps. It is difficult to say to

what depee these deficiencies could be rectified, especially as it seems to be quite a pervasive

problem within the "standard paradigm" of program verification [54]. One may experiment

with lOme additions to the language in an attempt to alleviate the situation, but this may

jeopardize the formal basis of the lansuage and bring little relief at that. Another aspect

of the specification lan~uage that may have a bearing on these shortcominss, should abo be

considered, i.e. itl underlying logic. The following list of desirable properties for l~cs of

specification lanSUa«es appears in [72]:

Sound...: This property is the very least that should be expected of a logical system for

conductins proof. about progam properties.

Completeaeu: Althoup desirable, ner;ative results such as Gooel's Incompleteness Theo-­

rem, ""eat that it may be incompatible with other crucial aspects, such u IOUDdness,

in Josia or interest.

EatreaeluDeat: The involvement of social processes in proofs sugest that a widely known

&ad accepted Josie i. needed to serve as a standard. It is also desirable to have a )arse
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"library" of reuonable model and proof theoretic rHult. to call upon when Decellary.

Only fir.t-order losic meuuret up to thi. requirement.

Exp....iveDeU: This property i. needed to characterize a .pecification in the intended

way. First-order losie lacks expressiveneu as there are non.tandard model. of tlte

firat-order Pel!no axioms. In addition one may also demand that by concepti (e.s.

well-roundedness) be expressible in a "natural" manner.

Free....: Quantifier. should not range over error objects, e.g. in arithmetic

and

o+5 div 0 = 5 div 0

should not be logical consequences of the laws

and

(ttIz :: 0 +z = z)

Only free 1000ca l:a.ve the property of being free of existential pre-suppositions.

CoIUI&ructiwnea: Because pr~amll construct solutions, constructive proofs best cap­

ture the nature of programmint; logic. Only intuitioni.tic logiCi (and perhape their S4

counterparts under the Tarski-McKinsey translation) have thi. property.

Deduction Property: The Deduction Theorem allows the rule of conditional proof to be

inCOlpOl'ated in a natural deduction system, making it easy to ale. A number or many­

wJued Josicalack this property.

Bin&iIdra Property: A reasonable definition of a Hintikka model eet (or system) mUlt

exist, .ach that it follows from this definition that any model 8(:t i. satisfiable. This

property is nec:euary for the development of reuonable Smullyan tree, Beth tableau

aDd Geaben eequenzen systems. It may also be useful for showiop; satiafiability or

edabIi.lUn~the Crai~ property (see below). Relevance losics lack this property.
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Prenex Property: Resolution alld varioul other theorem proviuK technique. require tbat

a prenex conjunctive normal form theorem mUlt hold. Some modal and tenM Josic.

lack this property.

Crais Property: The Craig Interpolation Lemma must hold for a logic to have a reuoa.able

model theory. The correctness of Nelson and Oppen's cooperating decision procedures

[134] also depends upon this property. Some modal and tense logics lack this property.

Apart from completeness, expressiveness, freeness, and constructiveness, a standard first·

order logical system has all the above properties, making it an obvious candidate for the

foundation of a specification language. Many variations of standard first-order losic are

pouible and some variants may be more appropriate as the basis for reasoning about and

describing program properties than others. In [33}, for example, the authors use a classical

many-sorted applied predicate calculus \ ..~th equality and definitions, in which a constructive

subsystem is distinguished.

On the other hand, first-order logic is now considered by many as not being rich enough for

the formulation and proof of many interesting properties of programs. A purely firat-order

framework, for example, is not conducive to the use of induction in proving properties of

programs and their data types. This is a serious drawback, as inductive arguments have

proven to be a very natural way of expresaing such proofs [54]. One reaction to this deficiency

haa been the use of higher-order logics [61, 4}.

Hit is important that reasoning about program correctness takes place within a formal system,

the lack of expreuiveneu of the first-order logic underlying our specification. langua«e also

b«om. problematic. A. informally shown in section 3.4 and formally in lUI, the eet of first­

order formulae over the .tate space and operators available in the guarded command lanSUa«e,

i. Ilot rich enoqh to express the weakest preconditions of loops. An extension of ordinary

fiut-order losic that .now. conjunctions and disjunctions over a countably infinite number of

rorm1l1ae i.sufficient for this purpoee and is ued to this effect by authors such as Back [9, 11]

and Demerit [81]. The Josie, L wtw, obtained in this way, is essentially .tronser than ordiu&I'Y

IrIt-order Josie. One can, for example, give a cat~orical characterizatiOll of the standud

IIlOCl4':l. of arithmetic by a. aillge Ru\ellCe or L\otllw- Althou~b. LW\w is "doee" to OI'dinuy
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first~order logic in mauy respects, it does include inference rulcs that may require an infinite

number of premises to be proved and thu. proof. are allowed to be of infinite lenstb. In.lead

of sivin« a completely Cormal proof by showin« the sequence of Cormulae that coa.titute the

prooC, one has to resort to induction in such cues to show the existence of a certain proof

sequence. Another approach is found in [112], where Manna shows that if one is allowed to

use predicate variables, then the weakest preconditions of nondeterministic programs can be

expresaed in (ordinary) firat-order logic. In comparison to Dijkstra.'s formulation of weakest

preconditions, howevert the use of predicate variables makes Manna's formulation complicated

and difficult to use in reasoning about program properties.

Another problem encountered in expressing properties of guarded command programs in a

standard first-order language, is the treatment of undefined terms. As Dijkstra's calculus

includes certain mechanisms for dealing with undefinedness, we discuss this topic in more

detail.

Dealml with undeflnednels

Partial functions frequently occur in algorithms. The following examples present some sources

of such partiality:

• finite machine arithmetic can make x + '1J unrepresentable for large x and '1J;

• the natural number expression z - y can be undefined;

• mod(x,O) and div(z,O)i

• ar[x] is undefined for array ar, if x is outside its domain;

• the use of user-defined functions such as Jad(-1), where

Jad(x) = if z = 0 -+ fact:= 0

o z ~ 0 -+ fact:= z *fad(z - 1)

ft

OJle of au primary auumptiOlla has been that predicates are total functions 011. the atate

apace. How .hoald we thea interpret mod(z, 0) = mod(,,0)1
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The problem of what truth value should he given to a sentence involving a term that "haa no

denotation", has been studied by JUallY mathematicians, philosophers and computer scientists.

Varioua solutions have been prop08ed, many of which give rise to non·clusical Josia (lee (15)

for references).

In order to give a formal treatment, predicates may be considered as representins either

partial functions with values in the set Bool = {T, F} or total functiCJns with values in

Bool3 = {T,F,l.BooI}. The first option leads to a strict treatment of undefinedness, i.e. the

value of a logical formula is undefined whenever at least one of its arguments is undefined. The

latter alterna.tive allows a lazy, non-strict treatment of undefinedness, that is more convenient

for the purpose of algorithm specification and verification (see [22, page 247-249]). The

formalization of three-valued predicates demands the solution of two tllstinct problems:

1. A calculus of three-valued predicates has to be constructed.

2. A I~c suitable for proving facts expressed in terms of three-valuGd predicates has to

be established.

Three-valued IoSical calculi There are various ways of extending the classical two-valued

predicate calculus to cater for three logical values. Two well known three-valued calculi

propOled in the literature are a calculus described by Kleene [103] and one described by

McCarthy [115]. These calculi have the following noteworthy properties [104]:

1. The propositional connectives of both Kleene (...,K, VK, AK, ::}K) and McCarthy ('M,

VM, AM, ::}AI) extend the classical connectives, Le. they coincide with them on the

valuel T and F. In addition, certain classical relationships are still satisfied, e.~.

nun are, however, c1a8Iicallawlluch as the law of the excluded middle:

aV(...,a)=T

tlaat do aat JaoId i. either of theBe calculi.
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2. Both calculi allow for lazy evaluation of expressions. This mean8 that ill evaluatinl

a VM b (or a VK b), if a evaluates to T, then b need not be evaluated, since the value of

the whole expression is T regardless of the value of 6.

3. The connectives of both calculi are monotone in the usual cpo over Bool3:

Every monotone function in Boola has the property that if one of its arguments is

replaced by 1.Boo" then the value of the function either stays unchanged or becomes

1.Bool' In addition, the former case is only possible if the function is constant in that

ar!Ument,1O that its evaluation may be lazily omitted. Monotonicity is important, since

it is a prerequisite for application of the fixed point theorem as used ill section 3.1. In

addition, all functions that are monotone in Bool3 are implementable even when 1.Bool

represents a non-terminatmg computation, while non-monotone functions are not.

4. McCarthy's connectives are left-strict, i.e. they assume the value 1.Bool whenever their

firat (leftmost) argument is l.Bool. This property makes McCarthy's connectives imple­

mentable on a sequential machine. They are not right-strict and hence VM and AM

are not commutative. Kleene's connectives are right-strict, but not left-strict. Thus,

KJeene's calculus requires parallelism to implement (see [22] for more details).

5. The quantifiers VM,3M and VK,3K extend the classical V and 3 to the th~valued

caae and generalize conjunction and disjunction in the calculi of McCuthy and Kleene,

respectively. Definitions and a comparative discussion may be found in [22].

TJte plOpClRtional connectives of McCarthy seem more widely acceptable for 8Oft..-are speci­

ficatm aad verification [22] and have been used in this context in [20, 21]. The connectives

VII &ad All are lOud bl Euclid, ALGOL-W, C, and Ada (as and thea &ltd or eIR). They

appeal'ia Dijbtra'. weakeat precondition calculus as eand and cor. Kleene'. calculua is u8ed

JOt IOftware specification and development in [96,97].
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Lolie. ineorporatiDI three-valued predieatn One approach is to construct a three­

valued Josie corresponding to & chOien calculus of three-valued predicates. This approach i.

explored in (15,96,97,90, 104]. Since some proof rules and techniquel from two valued Josie
are not applicable in such a framework, proving theorems sometimes require more than usual

skill and different styles of reasoning [15, 22J.

A number of approaches are based on the desire to retain a two-valued logic for reason­

ing about program auertions. This exploits the existing body of "two-valued intuition" in

reaaoning and allows mechanical support by a variety of existing systems. In [20, 21, 22]

two-~alued predicates, called superprediCtJte~, are added to a three-valued predicate calculus.

These lSuperpredicates are binary relations between predicates and provide a bridge between

a calculus of three-valued predicates and a classical two-valued logic. The enriched calculus

is shown to be convenient for formulating propositions concerning program correctness and

pqram transformations, with proofs carried out in clusicallogic. In LCF [59] two levels of

truth values are used. Terms, representing values that can be computed, can be undefined,

thus allowing three truth values for Boolean expressions, while assertions about terms are

two-valued. These two levels are connected through a non-monotone, strong equality predi­

cate. A simllar approach is advocated by Tennent in [152]. The PL/CV verification system

also uses two-valued logic for reasoning about program correctness. In this framework, two

approaches to the problem of undefined terms are prop06edj one requiring changes to proof

rules of the predicate calculus, while the other does not. A detailed exposition is available in

[33].

Undetnedneu in Dijkstra'. calculus Dijkstra's calculus does not include a formal treat­

ment of undefinedness, but only some measures for preventing the evaluation of undefined

terms wherever these occur. A brief discussion of the main sources of partiality zt..nd how they

may be dealt with, from the perspective of the prototype implementation, folJows.

Bounded machines: One source of partiality in programs is the finite bounds of computing

machines. Real machines perform finite arithmetic and can accommodate only a finite

state space-Jeadin~to undefined values if such bounds are exceeded.
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In [38, Chapter 26] Dijkstra points out that havins integer variables impliel an un·

bounded state space for guarded command prosralM. Such prOlrarn. are implicitly

intended for the hypothetical "Unbounded Machine" (UM). 8ince for aU initial .tates

satisfying wp(S, T), the number of computation steps u well as the nondetermini.m

exhibited by a mechanism S are bounded, a. "Sufficiently Large Machine" (8LM) that

can simulate the behaviour of the UM on its computation, is generally realizable. Fi­

nally Dijkstra suggests that since it is troublesome to determine a priori the size of the

SLM suitable for a particular computation, the machine we use should have the addi·

tional feature of checking, as computation proceeds, whether it is large enough for that

computation. H this is not the case, the machine should explicitly refuse to continue

the computation. The 8LM with such a feature is called a "I1opefully Sufficiently Large

Machine" and the notion of a weakest liberal precondition (see Chapter 2) may be used

to describe its boundedness.

In keeping with these views, we do not consider it the duty of a. programmer to incorpo­

rate implementation dependent parameters into arguments about program correctness.

In effect, we are targeting our programs for the UM, thus eliminating machine bounds

as a potential source of undefinedness. This is in the spirit of separation of concerns,

&8 advocated by Dijkstra. On the other extreme it is possible to consider the bounded­

ness of real machines very explicitly in the development of correct programs, including

machine bounds in program specifications and ensuring that these bounds are nowhere

exceeded by suitably extending program assertions. This may add considerable com­

plexity to the already complex process of formal program development. Ensuring the

correctness of Pascal programs on bounded machines is explored in some detail in [32],

while [158] discu88e8 correctness of Euclid programs in the same context.

Arrays and other partial functions: In the prototype implementation arrays as well as

the two standard functions mod and div are the primary sources ofundefinedness. Dijk­

atra shows that in preconditions generated by application of his calculus, undefinedness

i' avoided by expanding any predicate P involving a program expression e to

domain(e) cand P.
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Heret the predicate domain(e) characterizes the let of .tatel in which the expretiiOft e

can be evaluated without cau.ins failure. Such domain predicatel may be mechanically

pnerated (see Appendix C for a definition that may be uled for thi. purpote)·. Fur­

thermore a program developer should make use of the operaton cand and cor in the

formulation of guards and other Boolean expressions to avoid undefinednetl. Ironically,

injudicious use of these operators may also lead to undefinedneu, e.l. for ar[O••7I - 1]

the expreuion

i S n cand ar[i - IJ > 0

may be undefined. This necessitates the generation of a domain predicate wherever

prosram expressions containing cand or eor appear in preconditions. For the above

expression, the following domain predicate would be generated

domain(i S n) cand (i :::; n => domain(ar[i - 1] > 0»

- i S n => (ar.lob :5 i-I A i-I < ar.hib

- i~n~OSi-1

In formulatinl propam specifications and annotations, bounded quantifiers should also

be employed for this purpose [95, page 57-61] e.g. use

i < n - 1 cand ali] < ali +1)

instead of

i < n - 1 A ali] < ali +1]

and

(Vi: i ~ 0 A i :5 n - 1 : ali) > 5)

instead of

(Vi :: (i > 0 Ai S n - 1) => ali] > 5)

Notice that the equivalence

(Vi: R : P) =(Vi :: R => P)

from [14, pase 239] does not apply if P may become undefined.

lTD additioul c:u.plexity i. prec:olld.it.ioII. tile prototype implemenWio. dUM aoi DeI.de 0" tI'ea&-
mat 0( eda_----tleMai. predjcat.ea aft not utomatically seaerated.
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A disuh'antage of not having a formal treatment of undcfinedncsi is that the felpon.ibility for

avoidinc undefined terms (and predicates) ultimately reats with the programmer. In providinl

mechanical support for reasoniug about program assertions, a formal proof theory hu to be

established. In the framework of Dijkstra's calculus, a two-tiered approach 8uch as followed

in LCF seems a suitable candidate as it obviates the need for acquiring reasoning prowess in

an exotic logic. However, further investigation is necessary.

Note: Two other potential sources of partiality that we do not have to contend with in the

prototype are user-defined functions and subrange types. It should be possible to accommo­

date these in a similar fashion to the above.

Concluding remarks on the specification language

In conclusion, it is obvious that the specification language for guarded command programs,

as implemented in the prototype (see Appendix B for a formal description), is far from ideal.

Apart from certain cosmetic changes, it is also not clear how the situation may be improved

satisfactorily. Most of the shortcomings pointed out, seem to be directly attributable to its

underlying standard first-order logical formalism. If this logic is to be abandoned in favour

of a richer and more expressive system, which one do we choose? A higher order logic

would allow inductive arguments and more concise formulations of certain properties, the

l~c LI.tItIll would give expressiveness, while a logic allowing reasoning about partial functions

would remove problems in dealing with undefined terms. Each of these alternatives also has

complications of its own and we may well find that there is more to lose than to gain in

changing to a more exotic logic. A deeper investigation than that conducted here wi'iJ he

necessary to fully explore all the options. If we consider (as we do, in Chapters 5 and 1)

extending the guarded command language to allow for various mechanisms of procedural and

data abltraction, it becomes more important that abstraction mechanisms also be appUcable

to specifications. It may then be worthwhile to consider the use of an established specification

laaPaKe, such as Z [150] or Larch [76, 75], with guarded command programs.
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4.3.3 Perspectives on Program Development Support

95

When verification conditions are generated in batcb mode u done by the prototype imple­

mentation, a programmer does not receive any help in conltructill~ a correct progam, hal

only in showing that it is correct after its construction. Some macros were implemented in

a programmable text editor to support application of Gries stratC!ies for deveiopiDlloopi

and alternative commands, but because no semantic checks or theorem proving is performed,

these provide very limited help. Even for small programs, verification condition. senerated

under these circumstances may be extremely complex and detailed (see Appendix E for some

examples), as they represent all the correctness arguments that should have been considered

during the development.

H incremental program development support can be provided, smaller proof obligations may

be generated and discharged on a continual basis, allowing a factorization of the proof burden.

Additionally, the programme~ is in a better situation to apply domain-specific knowledge at

an early stage to simplify propositions to be proven and to find mistakes. The philoeophy

of "yedfying the correctness of a constructed program", is exchanged for "maintaining the

correctness ofa program under construction". In what follows, some perspectives on providing

interactive mechanical program development support are presented.

Initial requirements

As a starting point we refer back to section 4.1 to obtain the folIowin,list of basic functions

to be supported by a mechanical program construction assistant:

1. interactive precondition calculations, with a recalcula.tion facility to allow incremental

changes to programs and annotations;

2. automated simplifications on preconditions and verification conditions as they are sen·

erated;

3. interactive ~eneration (and proving) of verification conditions;
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4. facilities fOf dilplayinK and editing program. (pouibly annotated with leaerated pre.

condit,ions) and uaertiofill;

5. the capabiUty of interleaving the above operations u necessary during program COD·

atruction.

Verification conditions may be recorded for pl'Oof at a later stage Of, preferably, an interactive

theorem prover may be provided as part of the system (see lection 4.3.4 {or lugatiou on

proof luppart). Because proofs of program properties play an important part in propun

development strategies, a Cormal reasoning component is necessary if support fot application

of IUch strateciel is envisioned. A program development system may also offer automated

application of techniques for discovering invariants and bound functions, e.g. manipulations

for weakening a predicate and for combining predicates may be provided.

Dnelopment stratel_

Apart from variations in the sophistication and extent of basic features which a. prosram

development system ma.y offer, ROme variation in the amount of guidance that a. prosra.mmer

will receive, is a1ao pouible.

One approach is to provide the features listed above and allOW' a uler to apply them at

will during progam construction. This approach is exemplified in a project undertaken by

Odyaaey Research Associates [143, 70] to assess the feasibility of constructing formally verified

Ada propam.:

Their prototype implementa.tion centers around a syntax-directed (structure) editor, Pene­

lope, that can be used to create and edit abstract syntax trees that repreeent parts of an anno­

tated Ada prosram. Penelope computes (approximated) weakest preconditions as attributes

of the noda of a syntax tree, incrementally recomputing and propap.ting changed conditioos

throap the tree as a prosram is deftloped. A simplifier, bued on the Nelaoa.-Oppen aI­

pithm for cooperating decision procedures [134], as well as faciUties for UliDg lemmu aad

axiom8 of theoria .. rewrite rule. are available in Penelope. Verification conditions are ~.

erated i.crementally, with automatic updatins as a. prosram or its annotations chanse. To
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IUpport proof. of verification condition., a Iub·editor il available, enablinl ulen to COA.truct

proof. ulinl a sequent calculul. Penelope'. theorem proviDI f.eiliU. are not extenJive, but

are uRlu) in that proof. of verification condition. that have chanSed are "replayed", witla

any partl that are DO lonser valid, indicated to the user. The Penelope editor wu produced

from a suitable attribute lfaDlmar using the Cornell Synthesizer Generator [144, 1.5J. The

predicate transformers implemented in the ~ditor were derived from a denotationallemantia

of Ada.

Syntax directed ediliaS [110] is a well-known concept in intesrated programmins environment.

that exploit pqram structure in supporting interactive program construction. H .uch aD

editor can be sen.erated from a formal description, such as an attribute !l'ammar in the cue

of Penelope, it provides an excellent vehicle for experimenting with extensions to the lyDtax

and semantics oC the programming language.

A hiper level of support is p08sible by integrating the basic functions liven above into a

number of prosram development strategies, 8uch as those proposed by Gries (66] and Dromey

[43J. Such a syltem guides a user through the process of program construction by propotinS

su~oaIa for the development, accordins to lOme built-in strategy, whUe promptins the ueer

for decisions and information that fall outside its jurisdiction. An implementation of Gries's

prosram development strategies within the framework of the Karlsruhe Interactive Verifier

(KIV) [SO], is described in [SO}:

This implementation involved a formalization of Gries's development method usinS a !H!quent

calculus for a dynamic losic DL, which is the underlying logic of KIV. The implemented

prosram development strategies construct and manipulate proof trees, repreaentinl progam

developments that are provably cODsistent with a specification. The goal of progun de­

velopment is expreesed as a ~ca1 formula, which is placed in the root of such a proof

tree. Subprograms and !Uards still to be developed, are repreaented by metavariables in tree

BOdes. The propammins strategies suide the user through an expansion of the proof tree in

atop-down tuhion, during which metavariables are systematically instantiated. Progam de­

velopment it completed when the root contains no more metavariables and the leaves contain

oaIy predicate losic fonnulu. A URI may cancel undeairable development steps by invokins

a Mbacktrackins" function, which removes all developments up to the last recursive invocatioa
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of the main development strategy.
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One advantase of implementing Dijkatra'a calculu. in a IOphilticated theorem prover IUch u

KIV (80) or HOL [50) (see [61, 4] for descriptionl of luch projects) i. the formal ...urance

of aoundneu that may be obtained. The programming langulle semantics i. formalized in

the Josie supported by the prover. Then soundness preserving method. may be employed

to formally derive the strategies for generation of verification conditions and for prosram

development from the semantics. This guarantees that results obtain~ from application of

IUch Itrat._ are logical consequences of the underlying program lIemanticl. 'fhi_ kind of

UlurAnce iI, fOl' instance, not possible for the traditional verification system conailting of &

verification condition generator and a separate theorem proving subsystem or even for .ystem.

IUch as [143, 70]. Another advantage is that it is simple to extew} :.t e ~arded command

laagul«e under consideration to include new constructs such 3B pro(~l.l.tes. Systems such as

KIV and HOL also preeent excellent opportunities for experimentillg with different methods

or limplification and proof of verification conditions (see [4]).

FiDal co...icler.tio...

There il DO evidence to sugest that a. programmer usiJli, ...!ij\"ltra'$ .:..k!t~~·..~ will ~ply only

certain development .trat" (such .. those of [66]). If f\7( ·:A:·.~;~t lih-. hfonnal nature of

paper and peIlcil developments eeem to indicate otherwiae. VV'lli"! !l\lVi~ may benefit ma.t

from ltep-by-step guidance, it is more important to build & mechi':niaU t'uppOl't system for

interactiw prosramming in such & way that it allows a great deal of iJ9Xibility for the Uler:

• A progammer should be allowed to apply any development technique that produces a

propam that is conai.tent with the specification.

• It i. very important that a progammer .hould be able to revile or undo previous

development ltept at any stap as more knowledge is gained. Any development 01" proof

steps inJIuenced by such a change should be indicated.

• A propammer .hould have the freedom of determining the order in whichIU~ are

tackled. Thi... allow. development to proceed bottom-up, top-down or indeed in auy

other teq1leace.
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• A prOKrammer should be allowed to seled the desree of annotation diJpJayed with

prOiram code during development.

ThUJ one should ai~n tl'r a slst \im that is able to:

1. allow a programmer to store, retrieve, view, and edit completed and partially completed

development~ of guarded command progrtsmSj

2. calculate .precor.ditiows of programs at request to aid in development steps or OIl itl own

initiative as P<IJ't (ll' .pr:.....robliga.tions;

3. m4U>i:.. know.n ;:.r.>:,! ~j_JOr obligations arising from a development step as soon as they

b~'(,.oml~ applica.ble;

4. uaist a programmer in discharging proof obligations at request.

It would be ~ful if such a system could provide a way of experimenting with automation of

development strate&iea and other heuristics such as those for developinr; loop invariants. One

lur;r;eetion il to allow a user to capture frequently used strategies and heuristics as "progams"

in & metalansuap which may then be "ex.ecuted" by the system. This principle is applied to

theorem provinr; in systems 8uch as LCF, KIV, and HOL, where the system may be extended

with useful patterns of inferencing discovered by users by "codinr;" theee in the form of ttJctic6

and tadiaJU [118]. Other approaches to automation of development stratesies such as found

in expert-IYltem baled or transformation-based systems, e.g. [36,50,91,139,148,151] should

a1Io be in....tigatecl.

Another factor that i. of vital importance in supporting interactive application of Dijbtra'l!I

calculu .is the control. of complexity. On the one hand this means that every effort should be

made to limplify the~cal formulae displa.yed and manipulated during program development

ud OIl tile other, that during the development of programs, a p~ramme!' ~hould be able to

"hide" detaill that are considered unnecessary at that stage. Informal pros;am &IlJlotatioDs

are abo ueful in this r~ard and their use should be allowed.

The IUCcelleS ofprojects IUch as [143, 10),[4] and [SO] show that there are merits to usinr; either

& .tructue editor generator or a IIOphisticated theorem proving environment for implementing
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experimentallupport Iy.tems Cor procrammins in DijkltriL'. calculu•. Both alternative. offer

f&CiliUM for experimentin& with varioul ..peets of the calculul u well u the type or IUpport

provided to programmerl. A thorouSh comparative .tudy will be neceaary to recommead

one of these alternatives over the otber. Meanin&ful interactive IUpport, incluclins theorem

proving Cacilities t will ouly be possible on hardware such as powerful workstations.

4.3.4 Perspectives on Proof Support

General

Thoup the prototype implementation offers no proof support mechanisms, it is clear that

IUch a component would be crucial even if elementary mechanical pqram development

support is to be provided. The topic is therefore pursued briefly here.

The logical formulae generated as proof obligations through the application of Dijkstra's

calCulUlt are very similar to those resulting from standard pqram verification methods for

eequential progams, such 88 Hoare logic or the inductive assertion method. (Compare for

example t.he verification conditions generated for "Rubin's problem" by the prototype (see

Appendix E), to the verification condition examples in a. paper such as [92].) A mechanical

theorem prover or proof assistant suitable for the latter, should thus be equally suitable for

supporting the use of Djjkstra's calculus.

As mentioned in section 4.1 much research has been done in the area of mechanical support

for formal reasoning. A good survey of computer support for the type of formal reuoning re-­

suiting from BOftware engineering applications may be found in [107]. Although &Ornep~

verification environments with integrated reasoning facilities, such as Gypsy and the Stanford

Pascal Verifier, exist, dedicated formal reasoning systems generally offer better features. The

latter may be roushly divided into two classes:

1. hi&hly automc..t-=d systems, IUch as reM>lution provers and the Boyer-Moore prover [26]

(lee [109] for a survey of such systems)

2. interactive proof editors and proof checkers 8uch as LCF and HOL.
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Hiply automated theorem provers typically conduct sy.tematic eeuche. for proofs. Beeaulle

of tbe .ize of the search space t COml)lex heuristiclI and/or user advice are often uled to

constrain and direct search efforts. They are limited by undecidability results for mOlt theoriH

of interest to IOftware ensineering applications and by requiring a user to have an intimate

knowledge ofthe system's complicated search routines and heuristics in order to guide it down

the right paths in case of failure.

MOlt interactive formal reasoning assistants concentrate on a goal-directed approach to proof

construction. The U5er extracts subgoals for proof from a goal, and new lubgoals from these

in turn, until the prover is able to invoke its routines for automated proof to deduce that the

IU~oa1s are true. Some features that have been identified as useful and desirable for proof

aubtants for software engineering applications are (also see [107] and [98,99]):

1. Although completely automated theorem proving is not practical in this area, a powerful

automatic proving component may be used to good effect as part of interactive theorem

proving. Such & component serves to eliminate much of the tedium of obvious reason­

in& steps. Good examples of techniques that have heen used with success in automatic

provers are implementations of (combinations of) decision procedures for decidable the­

ories, term rewriting and congruence closure algorithms for equational reaaoninr; and

different variations of resolution.

2. Another way of combating the tedium of proof construction is to derive new rules of

inference and to allow frequently used patterns of inference to be "coded into" a theorem

provin& system, thus building up a repertoire of proof strategies suitable to different

types ofproblems. Such patterns ofreasoninr; are called tactia (and tactical8) [118]. The

LeF, KIV, and HOL systems, among others, support tactical rea8Oning. Ima&inative

matching alsorithms must be used to help a, user in locating lemmas, inference rules,

and tactics that may be applied in specific situations.

3. To allow for ftexibillty during proof construction, the user should have access to different

proof' styIes: natural deduction, backwards as well as forwards reasoning, constructing

a proof by sketching a. proof outline and refining it to an appropriate level of detail.

Wlterever pouible, the choice of which subgoal to prove next should rest with the Ulel'.
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Backtracking to various stages of proof cODstruction should be pooible.

102

4. Instead ofaupportinl only I'formal" proof., for which the expected gains may not justify

the effort, "rigorous" proofs may be allowed. One step towards this i. to permit & uler

to asaert the truth of certain conjectures without formally justifyinS them. The .y.tem

should keep track of all 5uch lemmas on which a proof depends and prevent circularitie-.

5. All pouible measures should be taken to ensure soundness of rellOning tools. In par­

ticular the 80undneu of derived inference rules and tactica muat be formally ensured.

H a user is allowed to add axioms to the system, the beat usurAcnce that can be liven

is lOundneu relative to a given logical calculus and a set of UlleNlUpplied axiom•.

6. To manage the expl06ion of detail that occurs in proofs of reasonable size, a definition

m~hanilm for the folding and unfolding of abbreviations is useful. A specific discipline

for hiding irrelevant details of proofs should be applied during their construction.

1. To accommodate proofs about the data types used in programs, it is important that

a prover be able to handle theories of data types containing axioms and some logical

consequencel thereof that are useful in constructing proof•• The prover should provide

built-in theories for common data types BUch &8 integers, BooIeana and characters.

To handle compound data types such as arrays, parameterization of theoriea may be

employed. Facilities for constructing new theories should be provided to handle proof

obli~ations arising from treatments of programs containing definitioDl of abstract data

types {see section 5.2}. Reuse of theories may be encouraged by supporting various ways

of constructing new theories from existinS ones. It is important that the inrormation in

theories is used effo..:dively, thus it is conceivable that information such as tactics, decision

procedures, simplification methods, normal forms, etc. could form part of theories. This

aspect is not yet considered as state of the art in theorem proving systems [107]. Various

kinda of induction are amon~ the proof techniques that have proven to be useful for

propositions involvin~ popular data types and this should be supported by a prover.

8. Because proofs may take long to complete, it is desirable to be able to store and retrieve

partially completed proofs.

9. The structure of a proof is frequently expressed as a tree, called a proof tree or, more
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senerally, .. an acyclic sraph (lee [99]). The uler interface of a theorem provins .y.tem

Ihould allow a user to navisate, extend and edit luch Itructufs in a natural way.

Structure editor·like interfacel have much to offer in this resard.

Verification conditions are typically long and complex logical formulae (see Appendix E for

examples). They are usually implications of the form:

and in many cues the consequent is a minor modification of the antecedent. In [4, Chapter

8] a. collection of tactics is given which help to automate some of the proof effort required to

prove IUch verification conditions in the HOL prover.

Simpliflc:ation of IoSical formulae

For interactive program development support, the single most important facility that should

be provided is the simplification of preconditions and other logical formulae senerated durinS

pr~am construction.

There are a number of (sometimes conflicting) reasons for simplifyinS verification conditions:

• to make them easier to read and understand;

• as a. means of proving (or disproving) them;

• to reduce them to a fonn that allows effective use of other proof procedures.

We aIJo find that many of the preconditions that would be generated durin,; program deveiop­

ment are 110 Ions and complicated that, unless sisnificant simplification can be performed OIl

them, a propammer may overlook vital information to drive further progam developments.

Thi. fact il borne out by implementations such as [143].

Thi. type of simplification is very difficult. The main problem is that there are 80 many

way. ia which to simplify any given logical formula-no general canonical (orm exist.. When

a ftri&catioIl conditioo il in a form that allows efficient proceslin~ by automated proviD«
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r.tilities, it may indeed be particularly obscure to a human reader and vice verll.. lIere ue

lOme of the simplifications that may be performed:

A minority of the candidates for simplification are trivial to recognize and simplify, e.!.

propositional terms such u PAT, PAP, P V P and P V:F may be rewritten to P, while

others such as P V T and P A :F may be reduced to T and :F, respectively. In addition

arithmetic terms may be simplified by performing arithmetic on integer literals.

Many obvious simplification steps may be performed automatically by implementins deci­

sion proc~Urel or term rewriting algorithms for decidable theories. Such theories include

propoeitionallogic:, the theory of equality with uninterpreted function symbols, Prellburger

arithmetic, the theory of real numbers under + and ., the theory of arrays under .tore

and Mlec:t and the theory of lists under car, cdr, cons and atom. (These theories are all

quantifier-free.) There are also simplification techniques for arithmetic terms that deduce

iDtepr inequalities by keeping track of the bounds imposed on integer variables in logical

formulae, in terms of other variables and constants.

All the theories involved, provide equivalences that may be used for "rewriting" logic:al for­

mulae e.s.

rA =* (B =* (C =* D») =(A A B) =* (C =* D) =(AA B A C) =* Dl

and

However, for most of these one cannot say offhand which form is to be preferred. The

context in which a formula appears may have to be ueed as a guide in such situations.

Another good example is to be found in the manipulation of the range and term expressions

of quantified formulae, that may be combined or split in various ways (see [14] or [40] for a

list of equivalences). e.g.

r(Vi : 0 < i A i :s k +n : ali] > 0) =
(Vi: 0 < i A i :s k : ali) > 0) A (Vi: k < i A i < k +n : a[al > 0)1

The best. way to control mechanical simplifications of this kind, is to allow &II much uler

pidance as poaible and attempt to build up a set of usable heuristia throup. ex]M!rience.
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Much experimentation may be necessary to find & good simplification method for the forDlulae

manipulated during use of Dijkstra's calculus. The sa/est route to follow, would be to .tart

with an automatic simplifier that only simplifies terms belonging to theories or lubtbeoriet

with well understood normal forms. It should rather do too little than too much. More

simplification coulp6 e done under direct control of the user. Provided efficient and effective

ways can be found to incorporate additional simplifications into the automated simplifier, it

may be expanded as more knowledge is gained.

4.4 Conclusion

Formalization of Dijkstra.'s calculus is necessary to allow meaningful mechanical support for

its use.

On the one hand, 1068 of the ability to mix formal and informal arguments and notation

limits the applicability of the calculus. To combat this effect, special care should be applied

in providing a powerful and flexible type system for guarded command programs as well as

an expresaive and poweaful specifica.tion language. At the same time, it is important not to

di'resard the effects of choices made in these matters on the construction of proofs.

Another nC!ative effect of complete formality is additional complexity in applying Dijkstra's

calculus, e.~. preconditions and verification conditions senerated durin~ mechanical applica­

tion of the calculus are often prohibitively complicated, while the effort of constructins formal

proof. of obvious results may not justify the effort expanded. (This is aptly illustrated by

the verification conditions generated from the "Rubin's problem" example of section 3.5 (see

Appendix E». This is a decidedly unattractive feature for potential users and puts the uaeful­

Deu ofmechanical support in question. Such complexity does not appear in textboob such as

[38, 66, 14, 40, 43] becaUJe a large degee of informality is allowed. It is pOIIible to allow BOlDe

infolmality in mechanically supported program development, e.g. by supporting "ri~rous"

iutead eX "formal" proofs of prop'&lll properties, allowing informal as well &8 formal progam

annotatioas and not unneceuarily restricting the development stratesies allowed.

Another factor that limits complexity in examples done by hand is the conscious use of
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.bltrac:tion. Providinl Cormal mechani.nll of abttraction in prost.m development will provide

a way of factorinl prosr.1Il development &0 control complexity durinl mechanical p'OIram

con.truction. Abstraction mechanism. may also provide & buil Cor tbe conltructioll aad

recordinl oC a meanin&ful and informative development "hi.tory" of & pr<J8fam luch U relults

from paper and pencil developments. These coneiderations prompted further inveltiAatioll.

In Part 2 of this thesis a survey of possible abstraction mechanisms for Dijbtra'. c:alc:ulu. i.

presented.
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Providing for the ForInal Use of

Abstraction
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Chapter 5

Abstraction MechanisDls for

Dijkstra's Calculus

In this chapter we investigate facilities for three kinds of abstraction in Dijkstra's weakest

precondition calculu8: procedural, data, and specification abatraction.

Procedural and data IIbstraction are related cOlicepts. A procedural abstraction represents

a mappin~ from a set of input values to a set of output values (usually implemented &8 a

procedure or subroutine). Thus we are allowed to ignore the details of the mapping and

cODsider only its effect. The domain and range of a procedural abstraction cORsitt of data

abstractions. A data abstraction provides a set of data values and a set of operations to

manipulate these values. The behaviour of a procedural abstraction is defined solely in terms

of the abstract da.ta objects thus created, ignoring details of how such ohject8 are concretely

represented for implementation.

To &nilt in the development and managem~t ;jf complex specifications, we may similarly

introduce abltractions that reduce the amount of detail under consideration at anyone time.

108
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5.1 Procedural Abstraction

Prosram development il frequently characterized by the identification and lubHquent iadi·

vidual development of coherent aubtuks within the main development procell. l'lti. i. the

well known PWCE'SS of procedural abstraction at work. Alternatively, if we view the COIlatruc­

tion or a rrogram accordiilS to a specification as a constructive proof, procedural al»tractioa

embodies the formulation and proof of lemmas. f~ventually all components are intelratt-d,

typically by placinS parameterb:ed prot.:edure calls at the point. of abttr.etian. Procedural

abetractioo plaYB an integral role in stepwise program development and formallzinl & mech·

ni.m for it. application in the weakest precondition calculul, deserves attention. Axiomatic

treatment.. of the .emantics of procedure construdlt are complicated Ly the inftuen«:e of vari·

OUI traditions as well as the fact that 80 many iuues are involved: local variables, abstraction,

parameterization, procedures, recursion.

Recent treatmentiBuch aa [81, 120] attempt to timplify matters by considerins some of thete

concerns .epvately.

Stayinl within the lemantic: framework of Chapter 2, we Collow the nme prop"llion u

ia [81]. The local block construct can be seen as a. first step in ,he invetltisation of the

Ie1IlUtiCi of & procedure construct, in that it may he uk.~ to consider the introductaon of local

nomenclature in isolation from other aspects. We also consider t!le effects of parameterizativn

before combinins t.hese features into a seneral pr'lcedure construct that makes provision for

procedural abatraction.

5.1.1 Local Blocks Revisited

In Chapter 3 the following two alternatives for the semantics of local blocks were considered:

rwp(l[var x: T I Sll, R) = wP(S;,R)l

where, is a fresh variable and S initializes z; or

rlOP(UvarZ: T I S]I,R) = (wP(S,~»:l

where .. does no~ occur free in R or 5, and x is initialized by S

(17)

(18)
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The lint Ilternr~\ive requires renaminc of local variablet in progam text, wbile the HCOAd

UHI temporary renamins ofSlobal identifiert in certain prOlram auertion•• In [6] it i. poi.ted

out that when we consider the introduction of procedures, a more lubtle differeace bet...

these two semantics allO appearl.

Conlider a parameterleu procedure P with body:

%:= 11

It i. our desire to interpret all procedure Calli according to the ALGOL·60 copy rule, which

atates that a procram that calla a procedure is equivalent to one in which the procedure name

i. replaced by the text of the procedure body, with suitable renaminc or local variables to

avoid Dame clashes. Usio,; this rule and (17), we find:

lVP«r := OJ I[var 11: inteser I JI := 5; pm, % = 0)

== wP«JI:= 0, wp(l[var JI: intepr 111 := 5j P)I,% = 0»

== wP{JI:= 0, wP«z := 5; P), % = 0»

- wp(r:= O,1UP«Z := 5; % := r), % = 0»

== T

while (18) slv.:

1U1J(,:= OJ Ilvar,: intepr 1,:= 5jP)I),z = 0)

_ 1OP«,:= O,lOP«r := 5; P), % =0»

_ 1OP«,:= O,tOp«,:= 5;% := ,),% = 0»

= F

'ftu (17) 1e&da to a .tuum where each procedure call it evaluated is tlte envilOlUDellt is

wlaida tile proceclue )au beeD declared, i.e• • tGtic 1COpe, w~iIe (18) relectl tile eMf) wJaere

procedue can. are ewluted in the environment of tile call, or .t"...ic -=ope. Oar aoiee

of (17) tor tH MJDUtica of Ioca1 bIocb i. iD accordance witla \he fact t.at all ALGOlrlike

taap.- ale a Itatic ICOpe a.l1UDptioa.
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15.1.2 Parameterized Statement.

To Itudy parameterization, we introduce parameterized .tatementl fC!Rmblins Hemerik'. "at..

.tractionl" and "applicationl", [81, page 121].

Syntax:

Uvalue z : Tl; value result U: T2 ; result z : T3 I S]I<e, v, 10)

Comments:

• z, r, and % are the formal parameter, and their types are given by T., T2' aDd T3'

respectively;

• the attributes value, value re8ult, and I'ftult determine the detailA of parameter

treatment (see [66] for details);

• there may be any number of value, value mult, and result formal parameters;

• S is & r;uarded command program construct;

• e, v, and ware the actual parameterl with e an expression matchin~ the typE; of z,

and v and w variables matching the types of JI and z, respectively.

ReatrictiOl1s:

1. S has no access to global variables;

2. actual value result and rauli parameters must be mutually different;

3. 1OP(S,R) must be independent c( z for any condition R. This means that S iDi­

tializes z, formally:

for any condition R, r(Vv:: wP(S,R): =wP(S,R»li

4. S must be trauparent to % [114, 18]. Transparency of S to z means that S contains

no uaipment to % and no parameterized statement with % as actual value result

or result parameter, ilrmally:

for any constant Ie of suitable type, rz = Ie => wlp(S,% = Ie)l.

SelDaDtic.: We conlider the statf!ment

I[value z : Tl; value result II : T2; result z : T3 I S]I(e, 17, 10)
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to be equivalent to the local block:

I[conlt ~ = e var, :T3; z : 731 , := v; .9; v, w := "zlJ

Under the usumption that the formal parameters are not redeclarationl of &Iobal ide.­

tifier., we obtain the following weakest precondition semantics:

rwp(l[value:t: T1i value result JI: T2; mult z: T3 1S]I(c,v,w),R)

=~wp(S,R;::'»:::1 (19)

DiK....ioD or..umptionl and re-trietiona

No llohal identiften in S: In [114, page 308-309] Martin shows how this restriction may

be lifted. Easentially Sloba! variables are treated as additional value and value rault

parameters dependinl) on how they are used in S. Martin points out that structured

&lobal variables present some difficulty in deciding whether the whole Rtructured variable

or only lOme component should be declared ar the global entity. A treatment of~bal.

restricted to simple identifiers may be found in [67, page 568].

Mutually dift'erent actual result and value result parameters: Thi. restriction ad­

dresses the iuue of aliasing. Considering (19) we find that if the actual value rault

and retult parameters are aliased, the innermost substitution hu to be undentood in

terms of the definition of multiple substitutions in section 4.2.4. Thus, a 1eft-to-rilht

order is imposed on multiple substitutions involvins the same variable. Thi. approach

i. uled in [61, 66] and (in essence) [28]. Other arproachea to handlinl) aliuing fre­

quently involve distinguishing between variables (locations) and their values (e.l. in

[24]), or in the ease of [5] between program identifiers, locations, and valuesi aUowin~

diued identifiers to be recognized as such by their being ma.pped to the same location

iden:.ifier.

Moat reference works, however, forbid aliasing between value retult and ~ult pa­

rameten. Aa pointed out in [120], aliasing may cause parameterization to loee the

important property of monotonicity, i.e. in general:
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where Sir and Srr denote program statement. 51 and 52, fespectively, parameterized

in the lame way.

Even equality may be 100t:

wp(llrault z,y: inteser 1z:= 0;,:= 1]I(a,0),6 =0)

~ wp(l[rault Jlt z: inteser 1Z := 0; JI := 1]1(6,6),6 = 0)

Thul, aliuinl inhibits the use of .tatement parameterization for stepwise refinement

(He Chapter 7).

If it il forbidden, the absence of aliasing among the appropriate actual parameten

must be formally eetablished. A simple solution is to have a verifica.tion condition

pnerator examine actual parameters fOf aliasing as far &8 possible. Where freedom from

&liuing cannot be determined, an appropriate disjointness condition must be generated

and conjoined to the weakest precondition of the parameterized statement. A more

elaborate trea.tment is found in [147]. Here program specifications are expreued in &ll

auplented .pecification logic wherein program identifiers are diatinluilhed from their

meaninp, allowins "non-interference" conditions to be fc,J'muiated explicitly a.a part of

a l'pecification.

S muat initialise the reault parameten: Requirinl that aup(S, R) be independent of z,

is the l&IIle &I the restriction impoeed on local blocks in Chapter 4 to ensure that all

local variables are properly initialized. For practical reaaonl, this condition lhould be

reformulated 10 that it is syntactically enforceable durins partinS. A full discu.ion of

the requirementl for performinr; 8uch a check can be found in section 4.2.3.

No rededaration of Slobal identifier.: The restriction that prohibits formal parame­

ters from being redeclarationll or global identifiers, can be lifted if a suitable renaminr;

is applied to all formal parameters, i.e.

f1Op(l[mue z: T1; value reault y: T2; reault z: T3 1S]I(e,v,1O),R)

= (lOp(sr,v,z BtI,W)"'",
- P,f," , "" Te,v

where P, I, and r are fresh variables and S initializes z.

Tranaparency of S to the formal value parameten:: This requirement is a formal en­

forcement of the concept of a value parameter. Altholl~ it is not strieUy neceuary
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to enforce transparency on parameterized .tatement., it allow. a .impler treatment of

procedural abstraction below. 1'ralll'parency i. enforceable by & .imple .yntactir. check

on S: no usignments to the formal value parameter. and no parameterized .tatement.

using the formal value parameters as actual value rauli or rault parameter. ue

allowed.

Reference parametera: Reference parameters allow implementations that are more effi­

cient in terms of time and space, but cause additional complication.. The reference

works [67] and [66] include weakest precondition semantics for thi. parameter passing

mechanism.

5.1.3 A Procedure Construct

So far we have considered ... local block construct that makes provision for the introduction of

local nomenclature and a mechanism for statement parameterization that adds ftexibility to

pqram text through the use of parameters. To make provision for procedural abstraction,

procedure dec1llatioDs and calls are introduced.

Procedure declaration

The following syntax for procedure declarations bears a strong resemblance to the parame­

terized statements above and is also similar to that of [66]:

proe p (value z : Tl; value result 'II : T2; result % : T3): IHP}B{Q}]I

Commentl:

• %,11,% are the Jonnal parameter6 of procedure p-all the above comments about the

formal parameters of parameterized statements apply also to the formal parameters of

proceduret;

• B is a guarded command program construct-called the body of the procedure
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• P and Q are auertiool embodyins the lpecification of the procedure p, with P a lunctioa

or ~ and , only, and Q & function of z", and z only;

• reatrictiolll and Ulurnptionl cOJlcernins the formal parameterI and the body 01 the

procedure declaration are as dilculsed above for parameterized Itatementl;

• each procedure declaration leadI to the generation or a verification COIlditiOll ltatiDS

that B il conliatent with ita lpecification, i.e. :

which il Ulumed to have been proven when writing procedure calls bued OD this dec~

laration.

Procedure caU

Syntax: p(e, v, 10)

Commentl:

• Thil call Ulumel a declaration for procedure p .. above;

• e. v, and 10 are the actual parameter. with e an expression matching the type of the

formal value parameter :r. and the variables 11 and 10 matchinr; the typs of the

formal value result parameter JI and the formall'Mult parameter oZ, reapectively;

• usumptioDI and restrictions for actual parameters are as discuBled above for pa­

rameterized statements;

• recursive procedure calls are excluded here (see page 121).

Semantic.: AI for parameterized statements, we consider the procedure call

p(e,v,w)

to be equivalent to the local block:

Ilconat z = e var r :T2; z : T3 I JI := v; B; v, 10 := r, zl]

Auuminr; that the formal parameters are not redeclarations of r;1obal identifiers, the

~t precondition &emanUca is as follows:

(20)
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proorrula

To compute the weake.t precondition of a procedure call, detailed knowledse of the proc:.e­

dure body i. required. Using a procedure call u an abltraction mechanl.m, one deli,. to

concentrate on what the procedure does, i.e. itl specification, U oppOled to a detailed de­

acripuon oC how it accomplishes this tuk. Thus, Crom the specification [P,Q] oC & procedure,

i.e. predicates P and Q such that

we want a rule enabling us to construct a predicate U such that:

rU =? wp(p(e, v, w), R)l

for a given predicate R.

Several proof rulel Cor the correctness of procedure calls have been publi.hed, including the

traditional treatments [85,92,45,47, 67J and [66, 114, 17] which apply .pecifically to guarded

command prosrams under weakest precondition semantics. In [17], Bijllma et aI. prove the

foUowinl formula

rwp(B, V);;: 1\ A; => wp(p(e, v, w), R)1

where V and A are any two predicates luch that A is independent of , and %, and

(21)

(22)

Formula (21) can be interpreted as a "skeleton" proof rule. From it, the three mOlt prominent

procedure call proof rules for weakest precondition semantics may be obtained by suitable

choices for the predicates V and A.

• Chac.iDI Q fOr V and (Vy,z :: V => R;;:') for A, we obtain a rule dUl' to Gries, [66,

pap 153] (here formulated in terms of a logical constant m ulled in the procedure

specification, [P, Q])
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• ChOOlin~ q for V and tettin! A be detcrminod by (22), delivetl Martin'. rule, [ll~1

(.hown here with a tosical COllstant m)

r(3m :: P:,'l A A: ::} wp(p(e, V t w), R»l

• choosing ("'1m :: P: =? Q) for V and (VfI, z :: V ~ R::~) for At gives the rule formulated

by BijIsrna et aI. [17] (where m is a logical constant used in the procedure .pecification)

[«3m :: p:''J) A (VfI, z :: ("'1m :: P:,'J ::} Q:) * R;::'» => wp(p(e, v, w), R)1

In [18], Bijlsma et aI. prove that the proof rules oC Martin and Gries are equivalent, in the

lenle that the predicate (U) in Gries's rule is the weakest predicate obtainable from Martin'.

rule. Martin'. rule does not require A to be the weakest solution of (22), arguins that a

.troBler predicate may be easier to establish and sufficient for a particular .ituatioo. In [17]

it i. Mown that the predicate U delivered by Gries's rule, is at least u .trong u that delivered

by the rule of HijJ.ma et aI. These two rules coincide when there is at mOlt one value of m

u.ti.fying P:.~, and when m does not actually occur in P or Q.

In [67, 66] Griel propOllel another proof rule that may be euier to apply by hud u it

eliminates the complicated conjunct (V"z :: Q: =? R::~). Thil rule is ooly applicable under

certain circum.tances and requires that the pOfitconditioo of a procedure call be oC the form

QE::''' I where the free variables of predicate 1 are disjoint from v and 1U.

From the point of view of mechanical generation of verification condition., a proof rule .hould

be simple to apply. This exclude. candidatea such u the above where the p<MtcOlaclition i.

DOt a timple identifier, or as in Martin'l rule, where the predicate A i. not medaanica11y

coutructed. Mechanical application of a procedure call proof rule abo make. it importut

tlaat tile predicate U it deliven i. u weak as pouible. In thil respect the rule c;C Bijl6ma et.

aI. i. the JDOIt attractive ooe, since it satisfies the followins "sharpne&l" theorem, [17]

Theorem l.l.S.l (Sharpnes8 Theorem) U' U be the predicafe
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1/_ pmlieate X 1G,;'fit.

rx =* wp(p(t,v,w),R)1

lor ariM proa:dure p with proctdure bodll B 6atg/lliRf/ rp ~ 1UP(B, Q)1 f then

Another iuue of vital importance for procedure call proof rules is lIOundoet'5. The foilowiD~

lOundnea theorem is Ihown to hold for the rule of Bijlsma et aI. [17J

Tbeolem l.l.S.2 (Saundn•• Theorem) Let U be the pralicate

(3m :: p:''J) 1\ (VII, z :: (Vm :: P:': => Q:> => R~::').

For an, proctdwre p with procedure bodJl B 6Idi8/Jlirag rp =* wP(B,Q>l, we h4ve

rU => wp(p(e,v,w),R)l·

The lOundneu or Griet'. rule is proven ill [136], while an informal arsument to thi. effect i.

preeented fOl' Martin'. rule in (114).

Incorporatias proc:edUI'eS ~nto Dijk.tra'. calculu

A means of referriD& to the initial values of variables, specifically parameters, become. in­

dilpeuable in a lpecification lan&uaAe for SUarded command progranu Uliur; procedures.

A formal mechanism for the introduction of 10!ica1 constants, such u propoeed in [121], i.

preferable in a mechanical verification environment (see Chapter 7).

Ia tJae above proof rulel we placed no restriction on reference to the formal ~ue parameters

ia the predicate Q. As pointed out in [66], the substitution Q: used in these proof rules,

OJIly mat:ea aeue if z still hu the initial value of e upon termination of the procedure body.

Thil i. partly achieved by our requirement that B be transpuent to %. However, tile 1l8e of

Rl1Ictured data object... actual parameters necessitates an additional requirem.eat, aamely

that adual Yal_ parameten not be affected by uaipments to otlter actual puameten

duiA« tile eJtec1ltioD. of the procedure body. This kind of poteDtiaJ for interference between
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~dual parameten senerally require. the generation of .. verification condition to euure that

it doet not realize, makins it difficult and expenlive to enforce mechanically. A p'....&tic

alternative il to eliminate potential problem. by conftnins referenCft to the ftl.. parameten

in annotationl oC a procedure tCt the precondition, u.inS Josjcal con.tull e1HWbere. Apart

from heinl syntactically enrorceable, the use of logical con.tant. provide a formal.......t.

and sound way of adapting the procedure specification to use the .am~ ~deDtilen .. tile

postcondition of a call (see [66, p8!e 155] for an example).

A dilcuuion in the previous chapter pf>inted out the need for a flexible type .y.... for a

parded command lanpage used with mechanical prosram development .upport. ProcedUreI

provide more evidence to this effect. To make procedures as seneraJly a.pplicable u poNible

and keep the use of expensive proof procedures to & minimum, it is in our interett to make

the t)pes of formal parameters as general as p08sible. Thus it is advantaceou" for example,

to conuder the bounds of an array as part of the value of an array object and not .. part

or the type. General polymorphic types seem to offer the moet valuable direction for further

investi&a.tion on this matter [117].

5.1.4 Function.

User-defined functions are traditionally treated as special instances of procedUreI, beeaule of

the dole correspondence between the syntax of their definitions. Their semantic .lata ii,

however, quite different. Procedure definitions create new progam constructs, the meaninS

of which is defined in terms of weakest precondition predicate tr&Dsformert, while a function

definition creates a. new function that may be applied to program variables in expreaioas

within propam constructs and annotations. The standard references for Dijbtra'. weakest

precondition calculus do not include a treatment of user-defined functions.

We may learn some lesIOnS hy considering user-defined functions in traditional references such

as [30. 92, 47] usllig the partial correctness paradigm, but not all their results are applicable

here. The total COtrectnets semantic model as well as our nondeterminism assumption have

effects on the formulation of proof rules for user-defined functions:

• Fiom the references [7, 135] we find that the original function proof rule proposed by
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Clint and Jloare [30} introduces a:nllOUndue88 into Jloare logics, but not 10 under a total

correctneal interpretation•

• In (47) it is pointed out that standard aJ~ebraic simplification rules may fail for ex­

pressions involving user-defined "functions" in the l)fesence of nondeterminillD, linee

/f.z) = /(~) is not necessarily true if f has a nondeterministic definition.

Mistakes in some published proof rules have highlighted the importance of substantiating all

new rules with a.t least a proof of soundne!s. This fa.Us beyond the scope of this treaUIe, thus

1 will not do more than make BOrne suggestions for the contents of a suitable proof rule for

ueer-defined fURctioRs in tbe weakest precondition calculus:

1. There are some options for the type of functions users are to be allowed to define. We

may, for example, allow only function definitions consisting of a single expression, or

y;e may allow functions to be defined by an arbitrary set of guarded commands that

uaign a value to a. specicl. "return" variable, representing f(z). Functions that limply

act u abbreviation, for arbitrary complex ~.xpressions, are not as powerful as tile more

seneral Mprocedure--like" functions and their sem&.ntics win also be simpler, e.!.: they do

not introduce nondeterminism and do not require a proof that the function declaration

conforms to lOIIle given specification, as necessary for procedures.

2. To alIow a1!ebraic simplification of expressions to proceed as for ordinary mathematical

fundiOllI, it may be worthwhile to impose a condition ensuring single--valuedness OIl

the definitions of uler-defined functior.s. An example of such a condition is found as

one of the premilel of the proof rule for Euclid function declarations [4;-, P. 15]. To

'!IIlare that the order of evaluation of function. within an expreIMion does not matter,

uer-deiDed functions Ihould allO not ~ allowed to have side ~Jfectl.

3. Smce fuctioa '.,rplication can be used freely as part. of expressions in !'larded oommand

propaml, further pouibilltiel for undefinedneaa are introduced and the domain predi­

ute c.aJculated u part or the (weakest) precondition of ea<:h p~alD c:onltruct has to

iJlel.de tile function precondition. For detailed di.\,:u5sions of this topic, sec section 4.3.2

aad specificaDy [33, Chapter 6].
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4. Allume that function definition. have the followinl .yntax:

fundion J (value z : T): I[{P}B{Q)JI

similar to and with the .ame restriction. u (or procedure declaration. u explaiaecl

above. Also assume that the function name is used . . a variable to ltore the reilidt

of the fuuction to be returned from a function call. JUlt as for procedureI, it will be

necessary to prove that SUcll & declaration conforms to its siven lpecification, i.e.

We want to formulate a proof rule to help us verif)' properties of expreuionl containins

an application J(e) oCthis function to a suitable expression e. As a buis, one may ltart

with a stripped-down version of the Euclid function rule [47] (which correspOilda to the

proof rule of Clint and Hoare [30)), i.e.

P:} wP(B.Q)

P; => Q~(e)

The Euclid rule contains various other premi~, including thOle for recursive function.

and IinsJe-valuedneas. The remaining task is to determine which other premilel or

restrictions, if any, are required in the setting of the weakest precondition CalCulUI.

5.1.5 Recursion

The omillion of a programming concept as powerful and "fundamental" as recuraioa from

Dijbtra'. calculuI, h.. led to some criticism [78] and various propouls for ill incllUion, e-s.

[34, 114,81, 133,130,8,82,83, 125, 121]. In [38] Dijkatra remarks that while the lemantics

of a repetitive construct can be defined in terms of a recurrence relation between predicates,

senei'd recumon requires a recurrence relation between predicate transformers. Recallinr;

that repetition ia theoretically and practically the most complicated construct of the basic

calculus, it is clear that rocursion will present new ch31len&es to both our formal -emantic

machinery and its application to progam developments. We elaborate 011 ~me oC the illuft.
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hUla.tic. at neunive procedure call.

In previou. Melion. " haWl .hown the development of a mechaai.m for proced.ral ab­

.traction, inc1udinl facUitiei for local variable. and different kina of parameten. AUow!q

recunive procedure call. will make our procedure cootruct. more powerful, but tWr already

complicated Hmantic. will become even more 80. To make the tr.lition more maaapable we

may tint ,tudy the effect. of recursion in isolation by conliderinl only puameterleu recuniW!

procedura without local variablet.

Direct rec:union

Consider .. procedure p declared as follows:

proc p:

{P} B: 1[ ••• iP; ... ]1 {Q}

We want to define wp(p, R) for a. call p and a p08tcondition R. UlinS equation (20), we

obtain:

rwp(p,R) == wP(B,R)l·

Because B contains another call p, we obtain a semantic equation that ...umes the form:

for a predicate transformer Y.

ry == F(Y)l, (23)

Thi••itu&tioo caIJa to mind our treatment of the semantics of iteration in Chapter 3. There

we found .. similar semantic equation, (7), of the form

(24)

fora~'eX.

We wi.1a to follow the .ame procedure here, as we did tor iteration, but there is a. major

diJrereace: (23) i... equation in predicatE transformers. III order to arpe that F .has a least

bed paillt ad to obtaill au expression for it, we will apply Kleeoe's Limit Theorem A.5.0.1
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(lee Appendix A.5). This theorem r~uirH that F be a chain conUnuoul fundioa over

a complete lattice, For this purpose we need to impOie .. lattice .trudure Oft predJcate

trallsformer•• Our current semantic framework dON not provide .uch ...tructure, bllt may

euily be extended to this effect. This is done in Chapter 6. We also need to prove tkat F i.

indeed chain continuoUi. Examples of luch proof. appear u Theorem. 4.25 and 4.27 in [81].

From the Limit Theorem we then obtain the result that F has a least fixed point with

flAz.F(z) == U{F"(·bori)}n~ol·

There are practical situations in which equation (23) reduces to the form (24). Thi. occur. if

1I1P(B t R) can be written as a function of wP(p,R), since we then obtain:

fwP(ptR) =wP(B,R) =f(wP(p,R»l

for some predicate transformer f. Such recursions are called tail recur.riOf18. They can be

implemented by procedures ill which each recursive call is a dynamically last call.

Indirect recunion

Consider procedures p and qt declared as follows:

procp:

{Pp } Bp : 1[ ... ;q; ... ]1 {Qp};

proc q:

{P,} B,: 1[ ••• ;p; •. ·]1 {Q,};

For these we will obtain two mutually dependent semantic equations of the form:

rx

for predicate transformers X and Y.

and

F(X,Y)l

G(X, Yll

(25)
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The5e equations must be dved simultanoollsly. Following [130] we now define

(F,G)(z,V) =(F(z,JIl,G(z,JI»

for predicate transformers z and y.

Usin~ results from Chapter 6 and Appendix A.3, it would be easy to .how that (F,G) i. a

function on a complete lattice of predicate transformer pairs. We could then rewrite (25) AI

[(X,Y) == (F,G)(X,Y)l.

As above, one has to prove i;hat (F, G) illl ~hain continuous (see [81]), before charaderizins it.

least fixed point by:

px.(F,G)(z) =U{(F,G)n(abort,abort)}n~o.

This result can also be generalized to more than two mutually recursive procedures [81].

Introduc:inl parameter.

To acHe'lp. full generality for recursive procedures, the above treatment can be extended to

include parameters. The most comprehensive coverage of this topic i. to be found in [81,

Chapter 4}. This material combines results obtained for parameterized statements with thme

for parameterless lecursive procedures. A definition of the relevant weakest precondition

predicate transformer appears on page 155 of [81]. As expected, this definition is complex

and offers no direct guidance in development of individual progams.

Proof rules

As for non-recursive procedures, we want to use calls of recursive procedures as an abstraction

mechanism. To achieve the desired abstraction, we formulate a proof rule that wiD enable us

to prove procedure calls correct uains only the information contained in the procedure sped·

ficatioa. At the same time we will obtain a more practical method ofdoing rorrectn4!!U proofs

tlaaa by appulins directly to the complicated semantic equation fo" the weakest pret:ondition

itlelf.
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Proor rule. for recursive procedure. are inductive in nature. In etlCnce we prove that the pro­

cedure body poueIIH a certain property on the hypot.heli. that every recul'live call pouelle.

it. 1ernliDation of a sequence of recunive cal;' i. e.tabli.bed, u for loopl, by .howia, that

each call decreues a non-nelative inteser-valued function (a bound function). An example

of such a proof appears on pages 310-311 of [114]. Proof rules for recursion in th~ weakelt

precondition calculus are given in [114, 81, 130].

In [130], theorems are presented to show how the concept of a variant/bound fundion can

be employed to simplify correctness proofs of recursive procedures. Mutually recur.ive pro­

cedures are also discussed in outline, but parameterization is not included. TbeR rnult.

apply to a more leneral setting than the one under consideration here and are not directly

applicable to our situation.

Recursive procedures, ;'\8 we have approached them, are covered in [114,81]. In [114], Martin

explains how to go about the inductive correctness proof and gives a correspondiDI extension

to his proof rule for non-recursive procedures (see section 5.1.3 above) to be used in the

induction step. Mutual recursion is not addressed. A comprehensive, formal treatment of

the semantics of recursive procedures is given in [81], including the formula.tion of pl'Oof rules

for procedures with and without parameters. With some notational adaptations, the most

&eneral proof rule presented there is as follows:

I- r(p A t = x) => wP(B,Q)l

where z is an arbitrary non-negative integer and t represents the inteser-valued bound func­

tion.

To handle calls for which a postcondition other than an instance of Q is to be used, this rule

should be used in conjunction with a version of Hoare's Rule of Adaptation [85]:

rp ~ wp(p(e, v, w),Q)l
r<3m :: P A (Vv, .. :: Q => R» => wp(p(e, v, 10), R)1
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It- il pouible to combine these rules, but the result i. quite unwieldy! The precondition.

that they souerate will ~ jUlt u unwieldy, but that Rem. inHCapable in the lisbt of tbe

inherently complex semaIltk, of recu.-.ive constructs. Apart from thi. complexity, there are

no obvious obstacles to the mechanical application of these proof rules. We would require

that recursive procedures be syntactically recognizable aa luch (as i8 the cue in laDlU"

like Pascal and Modula-2) 150 that & verification condition generator will know when to use the

inductive proof rule instead of the ordinary one. Just as for loop8, each recursive procedure

Ihould &lao be annotated with a bound function, &I well as a logical constant that can be

used to represent its initial value.

The reader should note that the above proof rule only covers the case of a sin&le recuraive

procedure. Hemerik [81] mentions that it may be extended to cover mutually recursive pro­

cedures. Such an extension will bring about an additional increase in complexity; we wiD,

for example, no longer be able to argue termination of a recursive call in il!lOlation, but will

require a bound function formulated itl terms of all the procedure bodies involved.

5.1.6 Procedural Refinement

In [120] an extra dimension is given to the discussion of procedural abstraction. As above,

procedure call and parameterization are also introduced and studied separately. AddWooally,

the concept of procedural abstraction is formally introrfuced in its own right.

Procedure calls are still und~r8tood via the ALGOL-60 copy rule and parameterization is

treated as an independent substitution mechanism. Parameters may be used to adapt any

progam CrA!m~nt, including procedure calls and specifications, to specific circumstances.

Procedural abstraction is described by a predicate pair, consistin~of & precondition and &

p<»tcondition, that specify the effect of a mechanism upon the program state. Such specifi­

cation .tatement. are treated as "fint~class citizens" of the language by ~ving their weakest

preconditiOD aemantics as for any program construct. In addition, a notion of correctness­

pIeM!rVing procedural refinement i. defined. This extends the domain of applicability of the

copy rule to accommodate calls to procedures for which executable code has not been devel·

oped yet and, by formalizin& the process of stepwise refinement, takes us into the territory of
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a reftnement calculu••

Formal .upport for procedural refinement i. a natural next ltep in the procell of introducin&

more powerful abstraction rnechanisms into DijkJtra.'. calculul. It would be int.erestinc to

see to what extent the complexity of program development and corredneu proof'a may be

reduced by such a measure as well as its demands on a mechanical support 'yltem. A

refinement calculua with provision for the calculation of procedural refinements, i. described

in Chapter 7.

5.2 Data Abstraction

Abstract programs (algorithms) should manipulate suitably abstract data. Though abstract

data types may need to be represented in terms of more primitive types for implementation

purpoees, this need should have no effect on usage of the abstract objects. Data abstraction

reduc. complexity by separating the description of essential behavioural properties of data

at a particular level from the representational detail of lower levels, organized to exhibit theR

properties. Thus we consider an abstract da.ta type to be a. class of data objects whereof the

behaviour is completely characterized by a finite set of (abstract) operations that act upon

members oC the clUB.

Providins a Cormal mechanism for data abstraction allows factoring of prOlram development

into two (01' more) stages:

1. Use the properties of an abstract data type, as given in its specification, during formal

development of algorithms operating on objects of that type.

2. Develop a representation for the abstract data type such that the implementations of

the abstract operations are consistent with their specifications.

There are two main approaches to the specification of data abstractions, sometimes refened to

&I "operational" and "definitional". Surveys of these approaches may be found in [;3, 108].

The definitional approach involves specifying abstract data types by stating their desired

properties instead of living a method for constructing them.
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Two prominent exampletl of definitional specification techniques are alsebraic specifications

(56,44,23, 14] and an axiomatic approach lugelted by Hoare (86]. The a1sebraic approach

Ulel equational axiom. to specify propertiea of af»tract data types. Data tyPft are defined

to be heterogeneous alsebru. lIoare's method involvel the Ule of predicate locie pre- and

p06tconditions for describing the behaviour of each operation of an abstract data type and

requires minimal adaptation to be incorporated into Dijbtra'. calculu.. A comparooa of

these two approaches appears in [13]. Here it is pointed out that problC'ms requirins a data

abatraction closely related to a data type available in the underlyins specification 1ansuage, are

best handled uaing lloare's method. Conversely if a data abstraction not readily repreaented

by a data type in the specification language is required, algebraic techniques are .uperior.

These conclusions emphasize the importance of very carefuUy selecting the data types to

be included in the specification language if we are to use specifica.tion technique6 based on

Hoare's suggestions. The set of basic data types should be as rich as possible to allow the

widest poeaibJe range of applicability. It is safe to assume that we will need such basic

types as sets, bags, and sequences, but furtiler study is necessary to determine other suitable

candidates.

&.2.1 Hoare's Method

The following is a summary of Hoare's treatment of abstract data types as found in [86]:

Concepts

We consider a program that manipulal('~an abstract variable t of type T. For implementation

pU::p08eS, t is represented by the concrete variables Cl, C2, ••• ,en whose types are more directly

or efficiently implementable. The primitive operations on i are represented by procedures

(and/or functions) P1,P1, ••• ,Pm whose bodies operate on the concrete variables. Hoare uses

the notation of the SIMULA 67 class declar3tion to express the concrete representation of a

type T (see fiSUre 7).

An abstract variable t of type T is declared using the notation:
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clauT:
I[

liar

Cl : ••• ;

C2 : ••• ;

en : ••• ;
proc PI ("formal parameters"): IHP1}BdQl}]l;
proc P'l ("formal parameters"): IHP2}B2{Q,}]J;

proc Pm ("formal parameters"): I({P",}B", {Q",}JI;
B

]1

where B represents an optional program fragment to initialize the concrete variables.

Figure 7: Concrete representation of a typical type T.

var (T)t

while operations on t are denoted by compound identifiers as follows:

The meaning of class declarations and procedure calls as above can be given in terms of

textual substitution. For T of the form given in figure 7, var (T)t is equivalent to figure 8.

For an example illustrating these concepts, see [86] or [47].

Correctneu proof'a

CoD,ider the program

llvar (T)t; SJI

for whicla we wi.h to prove
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va.r
t'Cl : , •• j

t.e2 : lit •• i

'.e" :.... ;
proe t,Pl ("formal parameters"): U{P:}BHQlJJli
proc t.P3 ("formal parameters"): H{~}BHQ~}]I;

proc t.Pm ("Cormal parametersH
): I[{P~}B:"{Q:"}]I;

B'

where each of B' and the P'i, Bt, and Q~ is obtained from the corresponding B, 1';, Hi, and
Qi by prefixing all occurrences of the concrete variable and procedure identifiers with "t.".

Figure 8: Meaning of the abstract declaration var (T)t.

P{I[var (T)tj S]I}Q.

According to [861, this may be accomplished by showing:

1. "that the concrete representation given for the type T exhibits all the properties ex­

pected of it by the program S";

2. that the abstract program, S, is consistent with its specification.

:r.tabliahiDI corredneu oC the concrete repreleDtation This involves showing that

each operation of the form

is eq1livaleDt to aa auipment

WMre Ii is a primitive operation OIl I, required by the abstract progam.
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Similarly, the initiaJilatioD progam B nlUll be .hown to be equivaJent to &Il ...ipmeat of~

.ult.ble initial value, to, (rom the .b.tract .pace, to t.

To perform tbeae proof. we need an expreuion of tbe relatioDJlUp between the abltract ucI

concrete spaces involved. This i. liven in the form ofa representation (unction A(CJ t C:I, ••• ,c.),

that mapa the concrete variablea to the ab.trad object repretented by them. In IDUY CMII,

the repretentation function il many-one.

Many practicallituationl also require use of an invariant I(Ca,C2,". ,c.), that deft.. lOUIe

relatiollahip between the concrete variables. In~tialization oC T mUlt be .hawn to .tablilh I

ud each abatract operation to maintain it.

Thu. the following m +1 theorems have to be proven:

T{B}I A.A = to

and

(26)

for all procedure bodies Bi.

E.tablishius correct... of the abstract prosram In provin! P{S}Q, one will have

to prove conciitions of the form:

To allow the desired abstraction in thi! proof, we may use theorems (26) above to formulate

a fonllal proof rule that is applicable here. An example of such a proof rule for the E!lclid

laDp~e, may be found in [47].

DiK....ion

The"t! are many possible extensions to the class concept as described above, e-s. :
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• AUow c:luses to have formal paramett"n that may be replaced with diffeJ'('nt actual

parameters in declarations. This Sivet cllU d"finitions a wider ranse of applicability.

Euclid modules include this facility and (47) lIIay be referenced for the proof' obUption.

relu1tinS therefrom.

• A number of programming languages include a construct that allow••upport for both

data abltraction and general encapsulation. Extendin~our view of the clua formali.m

in thil way, would allow the declaration of IIOme concrete variables of a clau .. "private"

and otheR u "public". Euclid modules [47J allow both the declaration oClocaJ variablea,

that are not visible outside the Icope of the module definition, and variable. that are

vilibJe to the abstract program. A module's interface with programs that make use of

it is Itated explicitly through an "import" and an "export" list.

• The ability to define generic classes that may be used as the basis for constructing

other classes would be very useful. One way to achieve this is to allow classes that

define polymorphic types. A suggestion for modules with ~his property is described by

Gries and Prins [68J (also see below).

• The class mech&l1ism may be extended to allow treatment of recursive type definitions.

This would allow construction and manipulation of types such as lists and trees in a

natural manner.

The proof rule for Euclid modules as presented in [47] may be seen as an example of the

formalized application of Hoare's suggestions concerning data abstraction. This rule is very

complicated as it contains all the intricacies associated with correctness proofs fur procedures,

functions, and recursion. It has the form:

1,2,3,4,5,6,7, (8.1, 8.2, 8.3, 8.4) I- 8.5
P{~ t : T(a); S}R A Ql

where premises 1-6 are properties required of the module definition, that need to be verified

only once. Premiee 1 states that the instantiation precondition is met and must be proven

every time an abstract variable of the type concerned, is declared. Premise 8 u~ the verified

module definition (premises 1-6) to verify the uses of abstract \'ariables of this type. These

premilS are described in more detail tn [4;} and [73).
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Hoare'. method doe. not provide any lupport for the development of data abttractiou con·

Ii.tent with siven specificationl, but only for provinS lurh conlisteney. Thu. no Illidance i.

provided in the formulation of a. proposed data refinement. Only once it hu been propOled,

can it, validity be verified. Guaranteed termination and nondeterminilm in data typel ia alto

not considered. These lnues are addressed by developins & weakest precondition lelDutia

for data abatractions.

1.2.2 Griea-Prina Modules

In (68) Gries and Prins make some suggestions for extending the weakest precondition calculus

with a module construct that may be used to describe data abstractions. This theory is

devel -oed further in [64].

A ftexib1e type system, offering the following features, is assumed:

• A faciUty for type definitions: This should give the name of the type as well as the

synux of operations on values of the type. Figure 9 shows an example from (64).

type RAT/0N AL
I[

"+": RATIONAL ..... RAT/ONALpreftx;
"+": RATIONAL x RATIONAL ..... RATIONAL in8x;
".N: RATIONAL x RATIONAL t-+ RATIONALinftxj
"IN: RATIONAL x RATIONAL ..... RATIONALinftx;
IntToRat: inteser 1-+ RATIONAL prefix;

11

Figure 9: A type definition.

• Polymorphism: This allows the use of parameters for modules and procedures whereof

tJae types may vary from one situation to another. The notation % :?T i. ueed to indicate

tltat tile type of identifier % can vary from use to use.

• Type infereaciDS: If the type or an identifier can be determined from the prog&ID, it

aeed aol be explicitly stated.

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5. ABSTRACTION MECllANISMS FOR DIJKSTRA'S CALCULUS 134

A Griel-Prins module i. used to define .. restricted implementation of (the value of) aD abstract

type. Different variables of the lame type in an ab.tract prosram may be implemented utal

difFerent implementation modules. This is indicated by the Ule of implementatioa directiVei

in an abstract program:

wr %,1/: integer HQ;

implement % by STACKARRAY(lOO);

implement 1/ by LINKLIST;

inB ni

To allow a more flexible interface between an abstract program and implementation modules

lor the types used therein, procedures and functioDs are no longer used to implement data

type operations. Parameterized statements and expressions are used instead.

A typical module has the form shown in figure 10. Here t is an abstract and e a concrete

variable; more than one of each of wllich may be present in a module. The body of the

module consists of pairs of abstract operations and their concrete implementations, of which

one representative statement, Sf and one expression, Ih with their respective implementations,

are shown in this example.

module M ("parametersll
):

I[
var

t : T, repr e: Te;

{invar J(t,e)}
[J {Ps}St(t, var - z : T) into Se(e,z')

into le(e)
]I

Figure 10: A typical Gries-Prins module.

Patterns of the lorm:
var- z: Tor

exp- e :Te

.tmnt - oS
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are ueed in the definitions of ab.tract operationa to allow aimultaneou. description or a dua

of operation" Such pattern. specify a type or form restriction tbat mUlt be obeyed by tile

text or the variable portions of tbese statementI or exprellion.. The example i. lIure 10

IhOWI that the lecond arlument of Sf can be any variable z of type T. The correlpollmlll

variable in the implementation is z'.

Developiq correct module.

Abetract programs containing implementation directives may be developed with the aid of the

weakest precondition calculus as any other guarded command program. No explicit weakelt

precondition semantics for such programs is given in [68], but the (oUawing proof rule for

their correctness, is formulated:

rp => wP(B,Q)l,M correct,M and B compatible
rP => wp(implement t by M in B ni, Q)1

A module M must be developed and shown correct relative to a representation invariant,

[(t,c), which is a predicate relating abstract and concrete values. This invariant may .pec:ify

a function (compare to Hoare's representation function above), or in leneral, a relation.

• To be correct, each pair St, Sc must maintain (or establish, in the cue of iDitializinl

operations) the representation invariant, thus ensuring that the valuel of' and c are

always related by I. Other values produced by St and Se (such as x and x' in fipre 10)

must always be equivalent. Thus development of a correct module involves finding

suitable preconditions Ps such that

rps ~ wP«S..(c,x');St(t,:7:»,I" x =x')l

It is pointed out in [68] that this definition ill not !eneral enou~ for nondeterminis­

tic operations. The following generalized rule can be used to determine Ps for any

implementation that is at least as noodeterminiitic as the abstract operatioa. A full

ju.tiication for it. contentI i. to be found in (68].
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• Exprenion pairs f .. Ie are simpler to find luitable preconditions for, lince no Itate

chUSH are involved. We Ule the rule:

A module M that implements abstract object t, using representation invariant 1, is compatible

with an abstract program {P}B{Q} if the following three conditions are met [68]:

• Every operation on the abstract variable t appearing in B must be matched within

module M.

• An operation in B with precondition U, that is matched by a template in M with

precondition Ps, must be shown to satisfy:

- u => Ps, if t is not free in U, or

- U AI => Ps, ift is free in U.

• t may not be free in Par Q.

Example, of deveJopins modules in this style are to be found in [68] and [64].

Mechanical support for manipulation of Gries-Prins modules will require a hiSh level of JO.

phistication in order to be useful. A good structure editor is recommended for this purpoee

in [68]. Some areu that provide problems are:

1. Sophisticated pattern matching algorithms may be necessary to ensure flexibility in

matching patterns in an abstract program with implementation templates in a module

(durinS substitution of implementations for abstract operations).

2. Becaue both the type and implementation of variables and expressions have to match

in a KiVell context, one will have to provide both a type inference mechanism and an

implementation inferencer. These must ensure tha.t the type and implementation of

variabIs and expreuionl are deduced from the text wherever pouible.

3. Ueda........ few modale interactioD and intercollllection are not defined (eee [23] for ex­

ample. fi buic modale iaterCOlUleCtions and their (aI~braic)semantics). It is tllend'ore
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Dot clear how to handle situationa that require one module to reference repretentatiOOI

liven in other modules. Flexible meuures for module connection provide ICOpe for reuse

0( existing modules in new applications.

4. Aspects surrounding the type system need further clarification, e.g.

• which types, if any, should be considered as concrete types of the prosramming

lanr;uar;e;

• exactly what kind of type definitions will be allowed and

• how will recursively defined types be handled?

5. The use of abstract data types in programs present additional requirements for the

specification language used with guarded command programs [143]. A useful "basic"

set of abstract data types, together with suitable new notation for them, mlL~t be

incorporated into the specification language and extension facilities for the lanr;uage

should be provided, to allow formulation of properties in terms of user-defined ab5tract

types.

6. Mechanical proof support is significantly complicated by the use of abstract data types.

In order to simplify and prove logical formulae that refer to abstract data types, &

mechanical prover must provide facilities for constructing and effectively using theories

of data types [94]. To stimulate reuse of theories it is also important to provide powerful

facilities for buildin~ new theories from existing ones, e.g.

• extending a theory by adding items (sorts, constants, axioms, etc.);

• merging theories, possibly containing common elements;

• instantiating abstract parameters of a parameterized theory;

• generalizing (abstracting) from existing theories (so that the latter become in­

stances of the new theory)

These requirements are non-trivial to accomplish (alllO see section 4.3.4 and [107,98]).

7. The interface between a module and its environment must be ri~rouslydefined. This

may have aD effect on the validity of data type induction, which is a valuable proof

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5. ABSTRACTION MECHANISMS FOR DIJKSTRA '5 CALCULUS 138

technique for proving properties of abstract data types. Jlow may we enlure that the

principle of data type induction balds for a particular module? In Euclid, for example,

this may be attained through careful use of the module import and export list.: if DO

"var" !lobals are imported and no portion of the internal data structures is exported u

"var", data type induction is valid over the type in question (see [13] and (47] for more

details).

5.2.3 Data Refinement

Beeaule the difference between an abstract type and the concrete types available in & pro­

yamming lanpar;e may be quite significant, a number of successive data refinements may

be necesu.ry before a suitable implementation for au abstract data type is obtained. Unless

the "in-between" 8t.S of data refinement have formal statu8, mechanical support for such

developments can at best be ad hoc and proof obligations may not be factored over the devel­

opment. A formal relation of data refinement, which allows development of an implementation

by piecewiee data refinement, is presented as part of the refinement calculus in Chapter 7. In

[128] and [123] this refinement relation is used as the basis for a calculational style of prosram

construction, which emphasizes the progressive calculation of data refinements as oppoeed to

propoeiD! them and then attempting to prove their correctness.

5.3 Abstraction in specifications

Due to various factors, guarded command program specifications are sometimes complex and

lenphy. Here we want to consider specification language features that allow abstraction from

lOme of the detail that is necessary Cor a. Cormal proof of consistency between specification

and p~am code.

The UJe of a66reviGtimu for complicated or recurring predicates in constructing pqram

specifications and annotations is quite well known. A first step ..owards this goal was taken in

tlte prototype implementation by allOWiD! each pr~am annotation to be optionally labelled

witla a name that may be uaed instead of the actual assertion formula. in other pJ'OKl'UD
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annotations (see section 4.2.1). An obvious extension to this practice i. to seneralize the

abbreviations allowed 110 that not only pwsram assertion. themselves may be abbreviated,

but a1Io any other predicate to be used in prosram annotations. The followins .hortcominp

of such abbreviations were observed:

• The predicate formula that is being abbreviated, is formulated in terms of the state

space existing at the point where the abbreviation is defined. This cauleS problema in

two situations:

1. Where an abbreviation is used in the scope of a. quantifier, variable occurrences in

the abbreviated formula may become bound, e.g. using the abbreviation

le.!& == (Vi: 0 ~ i Ai < n : A[i] < B[i])

in the context:

(V(n: character):: ... le.!~ •• •).

2. Where an abbreviation is used in a local block, renaming of global variables ap­

pearing in the abbreviated formula. cannot be allowed, e.g. using the abbreviation

for le&& above, in the local block

nvar n: charader ISlI

would be illegal.

Under these circumstances, the abbreviated formulas have to be sc::anned to locate any

potential problems.

• When textual substitution is being performed on. an auertion that UIIeS abbreviations,

abbreviations for formulas involving the variable(s) OOins substituted for have to be

expanded to their full form. For example, in calculating P:+l' where P conwas a

rererace to the predicate Ie••, u defined above, Ie•• will have 10 be expaacled to aUow

....tit.tica of " +1 for n. TJai. me... that all abbreviated formulas have to eitller be

ICaaJIed beroftIlaad to determiaecl whether they contain refereacee to ••cla. YUiables, 01'

expaadecl ntomatica11y.
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To solve these problems and provide 1Il0re functionality for predicate abbreviations, param­

eterized abbreviations were introduced. Since no variables apart from the parameter. are

al:owed in abbreviated formulas, the need to perform substitutions can be detected by exam­

ining the list of actual parameters and not the abbreviated formula itsdf. Cluhes with quan­

tification variables or local variables as mentioned above, cannot occur. The other advantase

is that parameterized abbreviations are much more widely applicable. As with procedures,

a more flexible type system, ideally incorporating polymorphism, will make parameterized

abbreviations even more useful.

It is not clear during which stage of simplification or theorem proving, if at all, abbreviar­

tions in logical formulae should be expanded to their full form. One extreme i8 to expand aU

abbreviations before any simplification starts as this may allow more opportunities for simpli­

fication. This approach is simple to implement, but suffers from the obvious disadvantage that

formulae will become longer and less readable. This is especially bad for human interaction.

Mechanical simplifications on expanded formulae may leave them even less comprehendable

to a human. The other E'xtreme approach is to incorporate manipulation "rules" for abbre­

viations into the theorem proving process where they may be used for rewriting purposes.

Such & process may allow "bigger" simplification steps and should be euier for a human to

pide. On the other hand it would require a very sophisticated theorem prover. Allowing

& user to formulate rules of manipulation for abbreviations will also rab:e concerns for their

soundness, which may be difficult to establish. In {4, Chapter 8J some examples are !iven to

illustrate how properties of abbreviated formulae may be used in mechanical simplification of

verification conditions.

It is difficult to envision other abstraction facilities for specifications in the current Betting. To

adequately manage specifications of complicated problems we may need to decompoee them

into simpler "pieces", while operations that allow the construction of complex specifications

&om simpler ones may also be useful. There is an obvious connection between decomposition

ofcc:mplex apedficationJ and procedural and data refinement, which may be exploited during

program conatrudioD within a unified framework IUch as the refinemeat ca1culUi of Chapter 7.

A specificatiOli Imp. allowing IUch refinements should al80 have a rich. .et of suitably

alMtract data types to allow concise and natural formulation of abstract lpecificatiou. An
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interesting example of powerful abstraction mechanisms in a specification lansu8le, i. the

schema calculus of Z [150]. In considering changes or extensions to the specification lUlU.

used with guarded command programs, some consideration should be given to theae or other

abstraction facilities.

5.4 Conclusion

Procedural abstraction, as provided by proof rules for procedure calls, provides a valuable

way of decomposing I'rogram construction. The complexity of procedure proof rules stems

from the inclusion of parameterization and recursion, but these may also be treated separately

[120].

Another source of complexity, i.e. the couching of specifications and algorithms in terms of

low level data structures) may be addressed by mechanisms for data abstraction, 8uch as

claaaes or modules. The accommodation of data abstraction is a more difficult problem than

that of providing procedural abstraction and some details of approaches such as [68] have yet

to be formalized before mechanical support can be considered.

The use of prClcedural and data abstraction facilities dictates the use of a more powerful

specification language. A richer (and extendible) set of data types and facilities for composinl

and decomposing specifications seem to be required. Mechanical provers used for proofs of

properties of data abstractions should have well developed mechanisms for the handlin~ of

theories of user·defined data types. Advantages of using procedural and data abstractions in

mechanically supported program development include:

• they form a natural basis for a (rudimentary) "record" of program development;

• they may be used in limiting the proof obligations arising from chan~ to a pqram

development.

Tku~oIprocetlurMMltltI~t~ ~trMlioD6uUt!l16~ Io~tlown mel1Jod01PJOKrMll c0I16truc­

tioD. In reality progam development would proceed from an abstract specificatioA throap
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a luitable implementation is reached. The framework of Dijkltra'. caleulu. dOH not accom­

modate lomlal applications of procedural and data refinement., aJthoup it may be tued to

establilh the correctness of the results. The main obttacle i. that the result of a refinement

step that does not immediately produce program code, haa no (ormal meanins and i. there­

fore not amenable to formal correctnel8 arguments. Thus we cannelt US-! Dijkltra'. weuh••

to answer crucial questions such as:

• Is a development step indeed a refinement, i.e. does it produce a reeult that it in lOme

sense "dOler to program code" than what we had before its application? Thi. would

require a formal notion of refinement between specification/program hybrids.

• Dou a refinement step "preserve correctness"? Proor obligations may be factored over

the development process if each refinement step can be shown to maintain correctness,

instead of proving correctness only of the resulting code.

• Which refinement steps would be appropriate in a particular situation? 'fhis would

imply a calculus that may be employed to "calculate" correct refinements.

Support for formal program development using procedural and data. refinement, requires

support for arbitrary levels of abstraction within the development calculus. Thi. may k

achieved by extending Dijkstra's calculus to a calculu3 of refinement.
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Chapter 6

An Extended ~~elIlantic FraDlework

In Chapter 2 a lattice theoretical semantic framework for Dijkstra's pfO!rammiDS weulu. is

preeented. This framework rests on the lattice PredvGr oC predicates, which in tum is built

on the lattice Bool of truth values.

As described in Chapters 4 and 5, some of the complexity impoeed by the formality ofmechan­

ical application of the calculus may be countered by introducing more powerful mechanisms

of abetraction. To accommodate program development by refinement oC abitractiOl1s we have

to add a further formal layer to our current framework, by constructing a lattice of preeli­

cate trUll(ormers bued on Predv.,.. This extension allows an elep.nt formal treatment oC

general recursion and simplifies procedural and data abstraction by preeenting a unified view

of pqrams and specifications. The ordering impoeed. on predicate transformers, expresees

the concept of "correctne18 preserving refinement". It offen a buis for the formulatioR of a

refinement coleul... in which programs may be developed from spedficatiODs by a 8I!riea of

formal applications of the stepwise refinement technique. Each construct in this prosreaioa

retains formal status as part of the calculus.

6.1 A Lattice of Predicate Transformers

According to Chapter 2 a predicate transformer is a function that aaaociates ODe predicate

with another, i.e. as&wrJng a state space Ev.,. baaed on a countable let lUr oC pl'OIram

143
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\I~ui.b1ft, a pJTtlitale lraJUI/onuer on I1Ir i. a function

P : Pretlv.,. .... PretlV.r

144

We denote the let of all predicate transCormen on \Ur by Ptrafav.r' By relultl from Ap­

pendix A.3, (P'ranv.r,f;) is a complete lattice for the pointwise extended partial order oa

PretlV.r, i.e. for predicate tran.Cormers p. and P2:

(27)

The top element or PtrORV.r is the predicate transformer magic which maps every predicate

to the predicate T, while the bottom element is the predicate transformer abort that maps

every predicate to the predicate F.

6.2 Healthiness Conditions Reconsidered

ID .hiftinS our attention from executahll» programs to abltract prosraml/.peclficatiool, we

DO 10Ilser require that aU mechanisms be executable. This allows us to questiOli Dijkstra's

healthiness conditions for weakest precondition predicate trusCormen in (:·rder to sain more

expressive power. A similar process has been followed by a number of authors, e.s. in

[9, 8, 12, 25, 124, 122, 123, 130, 133], dropping lOme of the healtltineu conditiOilI lau al­

lowed. treatments of specifications, ~ca1 constants, parallel plOlraml, procedura~ aad data

reti.nement. We consider three such seneralizatioDs:

Miracles: In [133] Nelson extends Dijkstra's ~uarded command calcuiull by removin~ the

Law of the Excluded Miracle. He calls the relultin& semantic model the general model,

as it is a. «eneralization of the total correctness model that also includes I()oocalled partial

commands or "miracles", i.e. mechanisms that relate IOmc initialltate to no final state.

Miracles are useful in that they simplify the progam developmcnt proceu {124, 122]

by aUowiJaS simpler applicability cooditions for p~ram refinements. They alia allo9:

proof' of certain data refinement. that are not provable in the total correctDal model
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[119J. Finally they lead to a .implification of the theory [88, 133, 130]. Unlike [133]

we provide 110 operational interpretation for miraelet-thou&h they form part of the

refinement calculu., they mUlt be removed durinl prosram development, u executable

prosrams are required to map every initialatate to lome finaistate(I).

Nondetermini.m: Dijkstra's calculus enCOmp&ll8e8 mechanisms that display only bounded

nondeterminism. This is a result of the requirement that the weakest prec:ondition pred.

icate transfomlen of all mechanisms under consideration be or-continuous (38]. Honde­

terminiam i. a useful abstraction device in program dt!velopment and may be used, in

particular, where further refinement of an abstract program is to take place. In thil situ­

ation it is somewhat artificial to allow only mechanisms that lead to choice from amons

a finite number of alternatives. To accommodate the needs of a program refinement

calculus, we therefore drop the healthiness condition relating to or-continuity. Never­

theless, unbounded nondeterminism is not impiementable and subsequent refinements

muat introduce suitable bounds in order to obtain an executable program.

ConjuDctivity: To add expressive power, we will also allow programs S for which the

Jcnowledse that an initial state satisfies both wP(S,Q) and wP(S,R) is not a sufficient

basis for concluding that a final atate satisfying Q1\ R will be established. Such programs

violate Dijkstra's conjunctivity healthiness condition. This ~eneralization is useful in

that it allows a formal treatment of logical constants in terms of weakPSt precondition

semantics (see Chapter 7).

Thul we shall limit our calculus to mechanisms such that their weakest precondition predicate

transformers display the monotonicity and disjunc~ivityhealthiness properties as eet out in

Chapter 2.

These weakest precondition predicate transformers are embedded in the lattice PtrClRVar, or

more specifically, in the lattice [Predvar - PredVar]M of monotonic predicate traasrOlDlerl.

AI.hown ill Appendix A.3, [Predv.r - PredVar]M is a complete lubIatUce or PtrGftv.,. and

Iau the AIDe bottom and top elements.
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6.3 A Relation of Refinement

...6

Tile orderins relation on (weakeat precondition) predicate traa.formen, .. del•• in (27)

above, it called the refinement reltJtion. This relation iI uHd in a Dumber or refenace worb,

indudiDS [9, 8, 12, 124, 122, 121, 130), and is enentially the AIIle u the Smyth orderial [1.91.
To amplify notation, we formulate the definition of PI C P2 for mechani.a (pl'OlJ'AlU) PI

and P2 as follows:

rPI C P2 == WPPI C wPl'2(== (VR: R E Predvar : wPP1(R) => 1DPPJ(R»)l,

thereby effectively identifying mechanisms with their weakest precondition predicate tran.­

formers. Informally we may give the meaning of PI C P2 as:

Mechanism P2 satisfies at least all specifications satisfied by Pl.

Thi. implies that P2 may be used as a replacement for PI in every context where wpPl(R)

has been shown to hold for a particular predicate R. We say P2 "refines" Pl.

OperatiOli.ally, PI C P2, whenever P2 resolves nondeterminism in Ph or terminates when ."

mipt Dot.
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Chapter 7

A ProgralD RefinelDent Calculus

Progam development by stepwise refinement is a familiar concept in programminr; method­

oIosY [37, 156], during which a program is derived from an initial specification by carrying

out a sequence of refinement steps. Both procedural and data refinements may be involved,

ideally proceeding in parallel. The sequence of refinements used to construct a program form

a detailed history of development that is useful when the resulting program must be changed

or desip decisions revised.

There are definite advantages to the formalization of this process, such that only formal,

provably eemantics-preserving refinements are carried out:

1. the resulting program is correct by construction (Thus an argument for the correctness

of a progam is decomposed. according to the sequence of abstractions comprjsin~ the

propam development.);

2. prop&m development may be supported by mechanical tools;

3. refinements of r;eneral importance may be recorded and reused in other developments;

<t. seneral "patterns" of program development (spanning more than one refinement) may

be COIlstructed for reuse.

TheR are the buic ideas behind trunsformtJUonal progrumming [138, 48]. In this paradism,

prosrama are constructed by successive applications of correctness-preservinS trunsformation

147
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rvle,.atartins with a Cormalspecification and ending with a(n) (executable) prosram. lIere a

prosram transCormation rule il a partial rnappins Crom one program "heme (clUi or related

pqraml) to another, such that a certain semantic relation holds between them. Predicatet,

called enabling condition" are used to restrict the domains of partial transformation rula,

i.e. they state proof obligatiolts to be discharged when applying the rule.

The refinement calculus described here (and its theoretical framework in Chapter 6) i, &

~eneralization of Dijbtra's weakest precondition calculus, that embodies a formal notion of

correctness-preserving stepwise refinement, with transformation rules for formal construction

of pregams from specifications. Pioneering work on this kind of calculus was performed by

R.J.R. Back [9, 10,8], with independent contributiolls by other researchers, most notably C.

Morgan [124, 122, 121, 123] and J. Morris [130, 128]. As the notation of [9, 10, 8] differs

substantially from the other two sources, most of the material presented here is drawn from

the work of Carroll Morgan and J06eph Morris.

The first section introduces the concept of abstract programs and gives examples of how the

parded command language of Chapter 3 may be extended to express such programs. These

extensions include generalizations of the semantics of local blocks and iteration, and new

constructs such as specification statements, program conjunction t and modules. Data types

suitable for use in abstract programs are also discussed..

Section two presents stepwise refinement as a formal manipulation on abstract proyama.

Both procedural and data refinement are considered. Laws of refinement are introduced as a

mechanism for showing (and calculating) correct refinements of programs without revertin~

to definitions in terms of weakest preconditiollS. The constructive use of type information

and ~eneral program invariants during program refinement, is also discussed.

The last section gives aome perspectives on mechanical support for use ofa refinement calculus.

1.1 Abstract Programs

Darinl the process of constructing a program by stepwise refinement, a specification is ays·

tematically tranmrmed into a program. To give formal status to the in-between sta«es of
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propam development, & unified view or pror;ram. and specifications i' adopted. The notion

or & pror;ram is eeneralized to encomp...pecification.. Thu. we may view the Itepwile

refinement procen u that of trall,formine an ab.tract pqram into a concrete/executable

Prosram, by forminl a series of "increuinslY concrete" progaml in which ab.trad aad con­

crete constructs are freely mixed. We will sometimes refer to executable pror;ra.nu AI code.

The lupage used for expressing (abstract) programs mUlt encompass both executable pro­

cramming JanPa&e constructs and high-level specification constructs. Specification langu...

are typically richer than programming languages, containing more expreuive, not neceullily

implementable, statements and a selection of richer data types. The lancuace uled for ab­

stract pqrams in the refinement calculus, is built around the guarded command lansuA!e of

Dijkstra's calculus, with more general semantics for some constructs (e.g. local blocks and it­

eration) and augmented with more powerful constructs, BOrne of which are not implementable.

A wider selection of data types is also allowed to encompass descriptions of abstract and con­

crete data. There is however, no formal standard for this language. In the sections to follow

we describe typical features of such a language as found in the literature.

7.1.1 Language Extensions

A apecitlcation atatement

Specification statements are obtained by giving a formal status to the "specifications" of

section 3.4. They allow a uniform treatment of specifications and executable progams, which

is the basis of the refinement calculus. The syntax of a typical specification statement is [124]:

where 1I7h ... , 10" is a list of changing variables-called the frame, and pre and po.!t are

predicate formulas, respectively called the precondition and the po6tcorulilion.

Informally, this specification statement denotes a program that, if the initial state satisfies

pret will chuKe only the variables 10., ••• ,Wn to attain a final state satisryjD~JKMt.
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To formalize the above, we give corresponding predicate transformer semantics (124):

rwp{w : (pTe,po..t]~ R) == pre" (Vw :: peJlJt =? R)l

150

(28)

As an informal justification of this choice of semantics, consider tl1at pre describes the atates

in which termination of the above specification statement is guaranteed, and thus appears u

the first conjunct of the weakest precondition. To ensure that R holds on termination, the

second conjunct requires that, in all states in which [pre,po"t] terminates (described by po"t),

R also holds. A formal justification of this semantics is given in [124].

Considering some extreme examples of specifications, it is clear that this construct allows us

to write programs that violate some of the healthiness conditions of Dijkstra's calculus:

• A program called magic, that always terminates, establishing the impossible:

w : [7,.1"]

Magic violates the Law of the Excluded Miracle. We adopt the convention of reCerring

to all programs that violate this law as miracles.

• A program called choose w, that always terminates, but assigns any value of its choice

to 10:

w: [7,T)

Choo~ 10 violates the or-continuity healthiness requirement, for any 10 belonging to a

type comprising infinitely many values.

Various abbreviations for special specification statements have been formulated, e.g. [121]

• A formula appearing as a conjunct oC both the pre- and postconditions of a specification,

may be written once, in between the two, i.e.

10: (pre,inv,po~t] means 10: [pre A inv,po~t A inv]

The formula inv above, is called a 3pecificotion invariant.

• H the frame is empty and the postcondition is 'I, both may be omitted. We use

{pre} instead of: (pre, T]
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These commands are called a••umptioM. The Ulumpt.ion {pre} behave- like .klp if

pre il true; otherwlle like abon.

• If the frame il empty and the precondition i. '1', both Inay be omitted, i.e.

(poIt] meanl : [T,po"t]

Such commands are called coercWnI. The above coercion behaves like .kip if poIt i.

true; otherwise like the program magic.

Local blocb

Without the need for or-continuity and the Law of the Excluded Miracle, we may seneralize

the semantics of the local block constru··t ~o a form that can be used to describe formal data

refinements. We first consider:

rwp(l[var x: T I5ll,R):= (V11:: wP(S;,R))l

This semantics solves previous problems with uninitialized variables, but displays unbounded

nondeterminilm if the type T is infinite. For the treatment of data refinement to follow 7.2.2,

it is alllO convenient to have explicit initialization of local variables. Adding this, we obtain

the syntax [128, 123]:

I[var x : T I I • 5]1

where I is a predicate that must hold after initialization of the variable(s) %, and. is ueed to

IIeparate the initialization predicate from the block body, S.

The corresponding semantics is M follows:

rwp(l[var z : Til. Slt,R) =(V1/:: 1: => wP(S;,R»l

where , ia a fresh variable.

Local bIocb can a1110 be miraculous, e.!_

fwP(l[var % : T I:F. S]I,:F) =11

(29)
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Pl'OIram conjunction
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To formalize the usc of losical constant., Morsan introduces the concept or pf'OJIf'dm conj.mc.

'ion [123]. The seneralized program conjunction of progra.m S over a variable i of type T, i.

written:

I[con i : T ISlI

IDformally, this construct chooses a value for i that makesllubaequent preconditions true wher­

ever p088ible, whereas a local block construct randomly ChOO6C8 a value for a local variable.

Consider, for example, the following program to increase the value of %:

I[con initval : T I% : [z = initt'al, z > initvalJJl

The weakest precondition semantics of program conjunction reflects this duality with (29):

rwp(l[con i : T I 5]1, R) =(3j :: wp(aS'}, R»l (30)

Losical cOBstants are most often used to represent initial values of variables. PJ'O!ram conjunc­

tion eliminates the need for conventions such as capit.a11etters or ()..lIubscripts to distinlUish

initial values of variables from the variables themselves ~.Hd avoids the limitations of such an

approach. Naming conventions for logical constants repJ'e&enting initiai values may still be

desirable as abbreviations, but theae can now be defined formally (see e.l. [121, page 52]).

SupplyinK type information with the introduction c.lf each logical con.tant mAy be made com·

pullory, to allow simple mechanical type checking. Otherwise type ~ferencjngwould hav~ to

be applied when mechanical processing takes place.

PM!l'ams in~olvingp.agam conjunction may not obey Dijkatra's conjunctivit)" property for

"healthy" predicate transformers.

ProcedUl'a, parameten, and modules

The extended semantics of the refinement c:alculus gives more flexibility than before, in that

proceduBi ab8tractioJl il now available through the use of specification statements. However,
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procedure declarations are still important as a mechanism for avoidins repeated refinement.

of the .une specification and Cor clearly exhibiting the structure or a prosram. Procedure.

and parametera in the context of the refinement calculul, ue discuued in (120) and [121J. The

l&D1e notation used in [66] and Chapter 5 may be adopted (121, Chapter 12J. The IeI1lUtiCI

of procedure calls is still based on the ALGOL·60 copy rule.

To allow parameterization of any command, systematic substitution of an expreasion (or

variable) for another variable in a command is formally defined (120]. Substitution by value,

ualue ~,,,II, and relUll is included. The semantics is the same as for the parameterized

statements in Chapter 5, except that references to global entities are no longer prohibited. A

parameterized statement of Chapter 5

I[wlue z: Tt;wlue result y: T2;result z: T3 f Sll(e,v,w)

would now simply appear in the form

S[value z : T1 , value result J/ : 72,result z :T3\e, v, w]

Modules are introduced into the refinement calculus in [121, Chapter 16]. They act u mech...

nisms of encapsulation and data abstraction and may be formulated to be largely independent

of their environment, thus creating potential for their reuse in other contexts. Syntactically,

these modules are close to those found in Euclid [47]. They consist of:

1. an export list, stating the names of all local variables and procedures accessible outside

'~te module;

2. an import list, stating the names of all non-local variables and procedures accessible to

the module;

3. a list of declarations of local entities, such as variables and procedures;

4. an initialization, that is a formula constraining the initial values of local variables.

No weakest precondition semantics is given for modules, but [121] shows how formal stepwile

refinement. may be used to transform an abstract definition modMle into a more concrete

ma"lmtenlfllion mod,,1e in order to obtain a correct implementation of a SpecificatioD.
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Iteration and recunion
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Because Dijkatra's or-continuity requirement for predicate tran.formers dDei not apply to the

refinement calculus, Kleene's Limit Theorem can no longer be used to .how the exi.tence

of least fixed points for the semantic equations arising (rom loops and other tail recurlive

constructs. Instead, a generalized theorem due to Hitchcock and Park may be UIed (see

Theorem A.5.0.2 in Appendix A.5). This theorem only requires monotonicity of the seman­

tic functions, but characterizes the desired least fixed point in terms of iterated function

compoeition over ordinals instead of the natural numbers which previously .ufficed.

This necesaitates a reformulation of the Fundamental Invariance Theorem for Loope 3.1.0.2.

The inte&er-va!ued bound functions of Dijkstra's calculus are no longer general enough, so

that we must now have a bound function t such that either

• ,: Ev.r .... (D,C) fur some poset (D,C) and r(p" GG) => (t E C)l where C ~ D and

(C,!:) is well-founded (see [132, 42} or [130})i or

• t is an ordinal-valued function on the state space and rep A GG) => (t E ~)1 for some

ordinal A(see [25] or [130)).

At a A1ance, the first alternative seems the easier of the two for practical proofs, but only

experimentation will show if this is actually the case. It is clear that ordinuy first order Io!ic

is not general enough for the construction of such termination proofs as one cannot express

the property of well-foundedness in it.

In [121}, Mor~an uses the notation

rep IBer

for a recunive pqram. p_ Here p is a program. name and B is a pro«ram scheme probably

COIltaiBiJil the command p. Viewing B as a function from PtranVar to Ptranv.n the meaning

of nda a. coo.tcuct i. Biven as pz.B(z). The existence of this fixed point may be shown usin~

TJaeorem A.5.0.2 (lee Appendix A.5).

A metllod b cOIIltl1lctins recu.nive procedures, with or without parameten, by formal.tep­

__ rebemeat i. siva in [121]. In [130], theorems illustratiD'; the validity of this approach~
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are proveD. Tile method involves Ihowlns termination of recur-lve proceduret by findine a

bound function of exactly the lame nature u that for a loop (lee above). Such a (unctioa

mUlt be .hawD to deliver & sequence of decreuinc valuel in lOme wen·founded let (pollibly

an ordinal) corresponding to the sequence of recurllve calli. Mutual (indirect) recunioa. i.

also discuued (also see pqe 121).

7'.1.2 Data Types

A rich type system is required to allow formulation ~tld refinement of suitably abstract lpeel·

lcations in the refinement calculus. The basis of the type discipline used in [121], is that any

aet il allowed to act as a data type.

Standard types may include truth values, characters, and various sets of numbers e.g. nat­

ural numbers, integers, rational numbers, reals, and complex numbers. New types may be

constructed from existins ones by various set operators. Other compound data types used

ia [121] include bags, powersets, and sequences, while Cartesian products and maps are also

UJed in [96]. Gries's work resarding data abstraction and program refinement [68,64] sugeata

that it would &110 be useful to have a flexible mechanism for the definition of new wtract

types, specifically allowing recursive type definitions and the use of type variables (for type

pgymorphillm).

A clear delineation must be given as to which types may appear in code.

7.2 Formalized Stepwise Refinement

7.2.1 Procedural (Algorithmic) Refinement

The pal of procedural refinement is to reduce the expressive statements of abstract proyams

to (.cieal1y) executable ODeI. Usin! the refinement relation preaented in Chapter 6, one

may develop exec.table propamB from their specifications throu!h a lequence of formal,

c:orred... prMerViJlS refinements.

AccordiDC to this orden_s, & pfOSl'&lD P:a refines & progam PI iff e'\"ery specification sati.fied
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by P. i. abo uti,fiM by P~. Formall.y:

fP. (; P,. (VB: R e PrttlV.r: 1UPPa(R) ~ IflpPJ{R))l.

Wlaea we Jevek,p a pqram P from a lpecificatioo X throush lucceaive correciaeu pre­

lefViq refiHIMDt' t we CODstruct a sequence of pqram. relattod by the refinemeat. relat.ioa

.. foIlowa:

For tlli. procedure to be lOund, the refinement relation must be tran.itive. Tbi. property

follow. from tile ddinition of the refinement relation (see Chapter 6).

We IIOW couider two crucial atratesies to be applied during stepwise pror;ram development

hued OD tllia refinement relation.

Top-ciowa development

aae powerful aad well-known strotegy that may be applied here, is top-down development,

whicJa combiDn the Ule of abstract program fragments with piecewise refinement.

We ilIatr. the tet'hnique on a typical step in the above development: Given a(n) (abstract)

propam P",(l s: m < k), construct a pqram Pm+! such that P'" C P",+l. Anumin! that

contain. the abltract pror;rams 51,52, ••• , S,u we now use these as subgoals for the develop­

ment process and construct pr~ramsT 1, T2, ... ,Tn such that

(Vi: 1 < i ~ n : 5i ~ Ti).

Mterwa.rda, piecewile refinement is applied, replacing each 5i in Pm hy its corresponding 7i.

This live. & new propam

P"'+l =P". [Tit T2 , ... , Til]

wJaicla may befllrther refined ifneressary. Continuing in this manner results in a "tree-shaped"

dE.vehplIIeJlt hi.tory.
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To be IOUnd, the above procedure mUlt ~uarantee that Pm ~ Pm+! hold•. ThUi we require

that the refinement relation poueu the folJowinl property: The let of progam. (predicate

tran.Cormers) under coolideration admits piecewile refinement, i.e.

hold. whenever PI C P2 holds. A proof of this property UIeS the fact that procraml are b.Ut

up from buic constructs such as assignment and skip statement., usinS procram cOIlItr.cton

luch as lequential compOlition, conditional composition, and iteration. The proof coui.tl of

.howinC that each pro«ram constructor is monotone with respect to the refinement relation.

An example or luch a proof for a guarded command langu~e may be found in [9].

Transitivity is also necessary to ensure that X ~ P holds eventually.

Retlnement law.

If procram development proceeds by proposing new refinements and proving them to follow

{rom their anceston usin~ first principles, the burden oC proof is unnecessarily hip. To help

in findinc suitable refinements and reducing proof ohligatiolls, refi~ment 1410. are formulated.

Such a law can be seen as a (partial) function:

RL : PtranYar ...... Ptranv.r

such that (VP : P E PtranYllr : P C RL(P». A refinement law is usually not defined for

all pOllible pro«rams, but applies only to programs conformin~ to siven syntactic and/or

aemantic restraints.

It is convenient to present these laws in the form [124]

before - refinement"d r&d"'"
-":::---""""'::=---'1 e - co "Ion
after - refinement

where ~fore-re.finementand after-refinement are "program templates" showin~ the form of

propaml to which the rule may be applied and that result from its application, respectively,

while ,ide - condition is a predicate that must be shown to hold for application of the rule to

be valid. TIlUI, the rule means: "if ,ide-condition is universally valid, then before-refinemt:nJ

b after-refinement holds".
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A I.tp .election of ulerul refinement laWI il ghren u an appendix in [121]. ThHe lawl raap

from leneral ones, luch u:
w : (pre, po"t]

w : [pre',po.ttJpre * pre'

for weakenin! a precondition and
w,:r.: : [pre,po&t)
w : (pre,po&t]

(or contractins the (rame, to lawl for introducing specific executable conltructl, e.!.

w :r.: : [pre po&l], , pre ~ po,tW

w:= E E

W : [pre,po't] d d' . . t
I[var z : T Iw,z : [pre,po"t]]l wan :r.: are ISJOIn

Use of refinement laws allows formal program development to take place at a higher level than

when calculation of predicate transformers is used directly. The prop;ram development style

is aaaJosous to natural deduction proofs. For the sake of clarity, development steps bued on

appUcatiOil of a refinement law should be annotated with a reference to that law. Example.

of procram development using the refinement calculus may be found in [124, 125, 121].

Refinement senerally strengthens a specification. Though over-strengthened specifications

can never be refined to code (as they are miraculous), refinement laws provide no check

~ain.t strengthening a specification too much. This keeps the law. as simple .. pouible,

but allows one to embark on a sequence of unproductive refinements without noticin« it. A

separate feasibility test may be applied at a programmers discretion whenever such & lituatioo

is luspected. This test is based on Dijkstra's Law of the Excluded Miracle, which states

wp(P,:F) = :F

for all executable programs P.

If a specification is miraculous (and thus can never be refined to code) it will therefore fail

the followinS feasibility test:

The specification w: (pre,po"t] is feasible iff

pre =} (3w :: poIt)
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1.2.2 Data Refinement

159

Data refinement i. a Ipedal cue of procedural reftnement, that concentratN 011 replachlS

tlte ahltract data typea found in an abstract propanl with ,impler or more effidenUy imple­

meDtable types, suitable for refined code. As in the foundational papen (128, 123], we ,iew

data refinement as a sPf!Cial cue of refinins a local block, i.e. a refinement tr&DIformiq ..

abltract block

I{var t : 7t I1 • 5'JI

to a cOlicrete block

Ilvar c:Tc I I' • S'll

where I and 5 do not refer to the concrete variable(s) c, and I' and 51 do not refer to the

abltract variable(s) t. The essence of such a transformation is that the abstract variable' and

operation. on it are replaced with the concrete variable c and correepondins operation, on

c. Apart from' and c the local blocks may share variables-that are referred to u common

tNlricWe..

A data refinement of the form shown above has two important characteristics:

1. The concrete block is a procedural refinement of the abstract block:

2. The COilcrete progam 5' retains the alsorithmic structure of its abetract counterpart S.

In limple terms, this means that data refinement will transform sequential CODlpolition

in aa abltract Pro«ram to sequential composition in the concrete pqrun, and similarly

for local blocks, alternation, iteration, and recursion. Proofs to this efl'ect may be found

in [128J and [123]. This property is very important, because it ensures that piecewise

data rebement (similar to piecewise procedural refinement) is a valid mOOu. operandi.

A data rebement i. facilitated by:

1. expreaiDX the relationship between the abstract and concret.e variables usinS a .uitable

relatioA, AI, called an oNtradion invariant. AI may not refer to common vuiables

that are ....iped to by S or 5';
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2. daOOling a concrete initialization I' .uch that [123}:

r/' =to (3t:: Al A 1)1.

The fl.t. refimmcnt relation is formally defined as follow. [123]:

160

A prosram S on abstract variable t is data refined by a progam S' on concrete variable c,

under the ab&t.raction invariant AI (written S ~AIlt,c 5' or jUlt S ~ 5') whenever

r<3t :: Al A wp(S, X}) ~ wP(S',(3t:: AI A X»1

for all X E PredVar not containing Cree occurrences oC c.

Two alternative Cormulations of data refinement were proposed by Gries and Prins (68J and

elaeD aDd Udding [29], respectively. These definitions and the Morris/Morgan/Gardiner

venia. siven above, are shown to be equivalent in [29]. Practical application of the different

deiaitiolls with a view to comparin~their ease of use may be found in [64] and [111]. Thou&h

the Griel/Prin. and Chen/Udding data refinement rules are presented in a form that allow.

ODe to uaume the truth of the abstraction invariant and prove a simpler formulation, they

are not necell&liJy euier to apply in all situations,·

To avoid having to apply the, rather complicated, definition of data refinement to every refine­

ment in practical situations, the same procedure is followed as for procedural refinement-law.

ofdata refinement are derived. Examples of such laws, as well as their application in progam

development, may be found in [128, 123] (among otbers).

Another factor that considerably eases program development by the application of data refine­

ment, is the trend to give data refinement laws a calculational style. The idea of caJculatiD~

data refinements, rather than propose them and then prove them correct, ori!inated in [89].

where a relational settin~ is used instead of the predicate transformers under cOlisideratiOll

IIere (aIBo see [88]). A data refinement law is called a calculator [100, 123] if it deli\"ers

the weakest (II108t seneral) concrete program from the abstract progam. under the given

abstraction invariant. The followjn~examples of data refinement calculators are from [123]:

1A -.wu ••plificalio. u.o applia to tlte Ptlorm/Morau/Gardi.er form if tlte aL.uKtio. iaYariut i~
fuctioaal (.e (121) _ [123]).
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Inj,Mli..,ion Ctlkulator: II S ~ 5' 'hen

I(var' : T. IJ. Slit: I[var c : 7~ I (3t :: Al A J) • S'll

Specification calculator: For all program' P,

t,z : (pre,]JO"'] ~ P

il anll oral, il
c,z: [(3t:: Al Apre),(3t:: AI I\po,')] 6 p

un

As in procedural refinement, miracles again play an important role in data refinemeat. By

not ratridinl data. refinements only to those that do not introduce mirac1el, refinement

calculators ma.y be formulated without proof obligations (compare the alternation calculator.

of [128, Theorem 4] and [123, Lemma. 6]). In [119] it is also shown that miracles allow proof' of

certain data refinements that were not otherwise provable. A detailed diKuuion of pOIitive

effects or miracle. in the refinement calculu8 is presented in [122].

7.2.3 Type. and Invariants

An extension to the refinement calculu8, rega.rding the use of type information in progam

derivation, is presented in [125]. With this extension, typed local variable declaration. aft"ect

the meaning of commands within their scope and progam development may be formally

aided by this information.

In [125], type information is treated as a specialldnd of 10001 invariant. A progammer may

declare any predicate formula to be a local invariant, using the notation:

I[inv 11 SJI.

Thi. is taken to mean that the invariant 1 is assumed initially, automatically maintained

by every command ill S, and thus also established finally. Whlle this ~ an example of an

uplici' invariant, declaration of local variables ~ves rise to implicit invariants, e.~. the local

declaratioD

I[varz: T I ••• ]1
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implicitly introduces tbe invariant :t E T, preHrved everywbere in itllcope.

1&2

To allow typinS information u ~ll u any additional invariant. Itated by a propammer to

have a formal effect on prosram development, tbe meanins of & luuded commud prosram

i. now siven relative to all invariant, called the corded. The semantin of the UlUal propam

con.tructa is siven in terms of WPl: the weakest precondition in context 1 (1M [125, pap

282)). Thu. we have for inst&llce:

and

Twnl tbe context I to be T, results in the usual weakest precondition semantia for the

luarded command lusu&!e.

Procedural refinement in context, Cl, is now also defined [125]:

HP 1;/ Q) =I[inv I IPlI C I[inv I IQlIl

wbere C i. defined as {ollows [125]: For programs P and Q we have P C Q jff

for all postconditions R and all contexts 1.

This is a Dot the refinement relation of Chapter 6 and section 7.2.1 above, althoup it shares

many or the features of the latter and most refinement laws remain valid for the new relation

(lee [125] for details).

The advant~eof introducing a local invariant J, is that within its scope the context may be

atrenA'hened, allowinK one to use the refinement relation C 11\.1, which is euier to establish

than Cl (see [125, Theorem 5.5]). At first it seems surprising that the imposition or additional

invariants do not necessarily increase the proof obligations of program development. MOI'!an

and Vickers show that invariants are automatically maintained durinS pregam development,

makinl it unnecessary to prove this, e.g. calculating:

wn(l[inv:l: EN I z := -5]1,:1: EN)
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== WP¥EN(Z:= -5,% EN)

:: zEN A(-5 e N;t. -5 e N)

;; zeN

163

we lee that the invariant is maintained even though it appears to have been broken. or coune

this i' a miracle:

wPT(I[inv zEN IZ := -5]1,.1")

_ WPzE}/(z := - 5, .1")

=: Z E .N A (-5 EN=; .1")

- zEN

A check should be applied to exclude any such miracles from the final program. In [125,

Section 6] 11.1'11 are ~ven for the removal of explicit local invariants in order to obtain [ode.

Part of this proc:eu i. the discharging of certain proof obligations e.g. in the law [125]:

ninv J Iz := ell C/ z := e

for any CCMltext 1, provided (l AJ) =; Ji.

Thus removal of a local invariant will fail if the program is miraculous, e.g. for the prosram

I[inv zEN I z := -5]1

we cannot prove % eN=> -5 E .N and therefore cannot apply the above law to eliminate the

invariant. This is a kind of type checking, although it encompasses more-compliance with

arbitrary invariants may be established.

If ooly implicit invariants, due to local variable declarations, are present, mechanical type

checking is enough to exclude miracles. or course we require that for all types allowed in

propam code the type of any expression be mechanically dedlr:ea.ble from the types of its

cOD.titucDt terms.

The lormal treatment of types advocated by Morgan and Vickers not only allows typios

information to playa constructive role during program development, but sives the ability to

factor details, IUch .. type (or feasibility) checking. This is a practical way of lishtenins the

burdea of proof auociated with formal program development.

Stellenbosch University http://scholar.sun.ac.za



CJIAP1'ER i. A PROGRAM REFINEMENT CALCULUS

7.3 Some Perspectives on Mechanical Support

164

AI with Dijkatra'. calculu., mechanic&1aupport for application of the refinement calculus haa

to .tart with formalization of the calculus. The langulle used for expretlhlg ab.tract pro­

Iraml ia not formally defined in the literature and thia need. to be addressed. Formalizatioo.

and implementations oCthe refinement calculus have been undertaken in HOL [13, 4], but both

are quite limited and do not provide interactive mechanical tools for program development.

Specific attention to the following aspects is necessary:

• The use of unbounded nondeterminism dictates that induction over either the ordinals

or well-founded sets be used to prove termination of loops and recursions. Either or

both of these should be accommodated in the language used for predicate!•

• The type system must be formalized. A rich, flexible type system is necessary to al­

low both expreuive, concise specifications and efficient implementations. To support

stepwise refinement, abstract and concrete types should be allowed to coexist in pro­

pams. This approach is in the spirit of the wide-lpectrum lpecifiaJtion/progrornming

IGngtUI~" used in some program transformation systems, e.g. CIP-L [46] in elP and

P A""dA [105] in PROSPECTRA. These languages incorporate a variety of constructs,

Ianlin! from high-level specification constructs to low-level, implementation-oriented

ones and allow the cc nstruction of abstract programs that contain a mixture of the.e.

Another interesting characteristic of CIP-L is that instead of a fixed set of specific data

type!, it has a general mechanism for introducing data types by algebraic specifications.

Another option worth investigating is the connection of a guarded command programmin!

l&Dp~e with the specification language Z [157]. Such an approach will draw benefit from

the fact that Z is a well established specification language and a number of mechanical tools

for aupporting ita use have been developed.

As with Dijbtra'. calculus, the refinement calculus is not intended as a set of rules that ma.y

limply be applied to a specification in a mechanical manner in order to produce a correct

implementation. Thus tools to support its use should concentrate on efficient manipulation

and management of details, without restricting the ability of the user to ~uide and control
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the development process. Once Blain the degree of mechanical support provjded may ran,&e

from batch oriented systems that accept a ".cript" of program development and senerate

lemmu to validate ita correctness (e.g. the tool act for VDM described jn [lOOl» to interactive

.y.tema which allow a user to select and apply pre-proven rcfinclU~ut laws (and Itrat.esies),

with the system !enerating lemmas from the side·conditions. Systems of the latter kind

will face problems common to general interactive program transformation systems. Typical

components of an interactive refinement sUPllort system would be (also see [138]):

A compoaent tor atorins, manasins, and apply-ins refinement lawa: Predefined re­

finement laws must be rapidly accessible and it is preferable to have facilities for extend­

ins the set of laws maintained by the system and possibly for combining existill! laws

into refinement strategies. Depending on the size of the law set, it may be necessary

to divide it into smaller sets by purpose, e.g. separate procedural and data. refinement

law. and sroup together laws relating to data refinement using particular data types.

Support for automated selection and application of laws is difficult and it is probably

better to make the user responsible for selecting each individual law to apply. Differ­

ent matchios techniques may be implemented to allow the system to identify concrete

instances of a law.

A component for docurnentins the development procesa: Depending 00 the IOphis~

tication of t.his facility, it may also be used to minimize the amount of reprocesains

required to reflect changes to a program development.

A component for generating lemmas and for proof support: The generation oflem­

mas stems from side-conditions associated with refinement laws and should not be dif­

ficult to automate. Issues regarding proof support remain basically the same as for

Dijk.tra'. calculus. Meaningful interactive support for data refinement requires the

ability to use a variety of data type theories efficiently in simplification of formulae

(also see section 5.2.2).

A component to support user interaction during program construction: A struc­

ture editor-like interface seems suitable for the type of interaction required.
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Conclusion

The prototype implementation which was conducted for this investigation is too limited to

be a practical tool for the construction of guarded command programs conformios to their

lpecificationl. Nevertheless, some valuable lessons have been le",rnt from its implementation

and use:

Ahhoup Dijkltra's calculus has a formal foundation, it is used in an informal manner in the

literature. To allow efficient and sound mechanical processing and formal reasonios about

correctnell, various aspects of the calculus must be formalized. These include the specification

JanSU., the let of data types used in program construction, initialization of variables, the

Ule of IQSical constant. and the treatment of undefined terms.

Apart from findins suitable formalizations for the above, meaningful mechanicallupport

depend. mainly on two interrelated aspects:

• The ability to counter the limitations imposed by complete formality.

• The ability to control complexity in formal program developments.

Me&SUre8 to accomplish these goals include:

• Implementation of a rich set of data types and a powerful specification lop. is

required.

166
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• We allO need efficient symbol manipulation procedur~ to calculate precondition., len­

erate verification conditions and .implify loslcal formulae. One of the Itrol'elt req_ire­

meat. for mec:hanical.impliftcation and proof IUpport i. the ability 01 a prover/lIi.pliler

to efl'ectiveJy employ domain-specific knowledp ariliaS (roln the UM of variou data

types.

• A ftexible approach to prQKram development support i, neceau.ry. Interactive .upport i.

both feaaible and desirable, but further investisation will be neuuary to determine tile

extent and exact form such Iupport .hould take. Provision ofa repertoire ofdevelopment

Itratesie., u well u mechanilms for formulating and storins new .tratesiet .botald be

provided. A Itructure editor-like environment seems to be a suitable interface lOr .uch

pqram development.

• The (strictly) controlled use of informality, e.g. in proofs of verification conditions will

allO help to counter excessive complexity.

Another way of combatiDI complexity is to enhance the calculus itself by introducins.uitable

mechani.m. for procedural and data abstraction. Some candidates were disc:uued in thil

thetis. However, a .wtable return on luch an inveltment will probably be adaieved only if the

extenlioas &0 u far u .upportinl arbitrary levels of abetracLion durins prosram development.

Thil lead. quite naturally to a refinement calculus luch u thOle developed by J. Back, C.

Morsu ud J. Monia.

The refinement calculu. allows a transformational approadl to prosram developmeat, which

lend. iteelf well to mechanical support. A number of seneral progam trauformatioa 'yllema

ue in existence and have been used with some success. Because of the ab.tractioa facilities

provided in the refinement calculus and because proof obliptions can be effectively factored

over tile development, it is hoped that pr~am development "",ill take place more smoothly

aad that fewer proofs, at a hisher level, will be necessary. Some formalization of the calculus

!a Dec:euuy before interactive tools may be developed to support its use, but it is a worthy

directioD m future research efforts.
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Basic Concepts, Notation and

Terminology

'When 1 use & word,' Humpty Dumpty said in rather a scornful tone, 'it means

jUlt what I choose it to mean-neither more nor less.'

'The question is,' said Alice, 'whether you can make words mean so many

different thin!•.'

'The question is,' said Humpty Dumpty, , which is to be master-that's all.'

LeWi6 Carroll, Through 'he Looking GlaM

The definitions and properties of relations stated here, may be found in most introductory

texts OIl aI&ebra or discrete mathematics for computer science such as [16,27,154]. Posels and

lattices are treated thoroughly in the works [19,62]. The origins of the fixed point theorems

ailed here, are discussed in [106] and the section dealing with ordinals is based 0'.1 [116] and

[101].

A.1 Relations

A Irina,., relation R on a set S is a subset of the Cartesian product S X S. Gi\'en t1lo'O elements

i. S, lay :t and J, we write :tRy when (z,g) e R. For sin~rlicit}· l\'e sometimes refer to a

168
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binary relation simply as & relation.

10

Let Z",z be any elenumta or a let Sand R a binary relation OR S. We oy that the relation

R il

reflexive iff (Vz: z E S: zRz)

irre8exive iff (Vz : z E S: (z,z) ~ R

Iymmetric jff (Vz,,,: z E SA 11 E S : :tRy ~ yRz) c'

antiaymmetric iff (Vz,y: z e SA 11 e S: (zRII A 1IRz) * (z =11»

traDutive iff (Vx",% : xES 1\ JJ E S 1\ z E S: (xRr 1\ JlRz) ~ :eRz)

linear iff (V:t,II: z E SA JI E 5: zRJI V JlRx)

well-founded iff there does not exist an infinite sequence (XiliEN" of

(noetherian) elements Zi in S such that (Vi: i eN: zi+lRzi)

A relation R on a set S ia an equivalence relation if it is reflexive, symmetric and transitive.

Such & relation partitions the set S into disjoint noncmpty equivalence claues Si as foilowl:

5 =5. U 52 U •••, and for each i and j such that i ~ j:

Given seta A, B and C and relations R. ~ A x B and R2 ~ B xC, the compo$ition of R2

and Rl is the relation R2 0 Rl ~ A xC, defined as follows:

For a relation R on a let 5, we define:

R" ={ the identity relation if n = 0

R 0 R,,-l if n > 0
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A.2 Orderings

170

A relation t;; 011 a set S is a parUal ordering it it is reflexive, anti.ymme~ric and ~r&lllitiYe.

A par1iall, ordef"fd 6d (or POle' for sbort) is an algebraic Ihudure (5,1;) conli.Uns or a

nonempty set S alld a partial ordering ~ 011 S. Where no ambiguity can relult, we aometima

omit the ordering relation and simply say that 8 is a partially ordered set.

Let (8,1;) be a poset and T ~ 8:

• T haa an upper bound u E 8 jff (Vx : x E T: x ~ u).

• An element u in 5 is a lea,t upper bound (join) (or lub for short) of T iff (Vv : v e S :

(v C v) == (Vx : x e T : x ~ v», Le. u C v for every upper bound v of T. If it exists,

the join of a set T is unique and is denoted by UT. We write % U 1/ for U{x,1/}.

• T has a lower bound Ie S jff (Vx : x E T: I ex).

• An element 1in S is a greatest lower bound (meet) (or glb for short) of T iff {Vic: k E

S: (k C I) == (Vx : xE T: I C x», i.e. Ie l; I for every lower bound Ic of T. If it existl,

the meet of a set T is unique.

• An element .L in S js a bottom (/eMt element) of S iff (Vx : xES : .L ex); similarly

an element T in 5 is a top (greate.st element) iff (Vx : xES: x C T).

A poset (S,C) where the relation C is linear, illl called a totally ordered 3ft. Such a relation

is called a comple:e partial order (or cpo).

A chain T in a POllet (5, C), is a nonempty subset which is totally ordered by C. A function

f on S is chain continuoUlJ iff

for all nonempty chains l' such that both sides of the equation are defined.

A function f on a poset (S,~) is monotonic iff

(Vx,¥: z E S 1\ 1/ E S: % t; y => f(z) t; f(.»
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A.3 Lattices

A POiet (L, 1;), in which every pair of elements bas a meet and a join i. called a. ItJ"ke.

171

A complete lattice haa the additional characteristic that each of its nonempty .ubJetI hu a

meet and a join. It can be shown that:

• Every finite totally ordered set is a complete lattice.

• Every complete lattice has a bottom and a top.

A sublet T of a complete lattice (L,!;) is a complete 6ublattice of L if all meets and joins of

sublets of T are also in T.

1 2
If (LI,C) and (L2'C) are complete lattices, it can be shown that (LI x L2,C) is also a

complete lattice with !; defined by:

1 2
(Zh Z2) b (UIIY2) == %1 !; Ul A %2 C Y2.

Also, ror any TeLl X L2'

This result can also be generalized to Ll x L2 X ••• X L...

L
Let A be a nonempty set and (L,C) a lattice. The set [A. -+ L] of functions from A to L is

/
partially ordered by C, called the pointwise eztemion of U~ partial order on L and defined

by:
/ L

I C 9 =(Vz: z E A: fez) C g(z»

It can be shown that this makes [A -+ L] a lattice which is complete iff L is complete.

A L
For a poeet (A, C) and a lattice (L, C), the eet of monotonic funeLions from A to L is denoted

[A -+ LI..,. It can be shown that ([A -+ LIM, t) forms a sublattice of [A -+ L] and that. for

& complete lattice L, [A -+ LIM is also & complete lattice that. has the same bottom and top

elemeata as (A -+ L].
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A.4 Ordinals and Cardinals

172

A definition of the ordinals rest on axiomatic set theory and .hould be carefully cOD.lrudlMl

around the Russell paradox, see [116].

An ordinal is a set 5 with the properties

('Ix: xES: z ~ 5)

aDd

(VXt'll: z E S 1\ 'II e S: x e 'II V z = 'II V 'II ex)

Followins convention, we use small Greek letters to denote ordinals; w representins the first

iafiDite ordinal, i.e. the set of natural numbers. There exist ordinals of arbitrarily large

cardinality.

The member.hip relation forms a linear well~foullded order Oil the class of ordinals. For

ordinal. 0 and {J, we use the notation

(I < {j for (I E {J and

Q ~ fJ for Q =fJ V Q < fJ

Becnlt! the daaa of ordinals is well~foullded with respect to the orderins ~, mathematical

induction over the ordinals is valid. This is also called tramfinite induction. One formulation

of transfinite induction is as follows [116]:

Let ON denote the class of all ordinals and P(x) a predicate with free variable z. H, for any

ordinal fj, whenever P(o) holds for all ordinals Q < fJt then P(fJ) holds, then P("') holds for

all>' eON:

(VfJ: fJ EON: (Va : a EON 1\ a < fJ : P(a» => P(fJ» => (V>' : >. EON: P("'»

This is simply an ir.·-,fance of the principle of well-founded induction, where the ordering

relation is linear.

For all ordinals a and {J, ordinal addition (0' +/1), multiplication (a X IJ) and exponentiation

(Q~) may be defined (see [116]).

Tile cardiaal number of a set S is the smallest ordinal number cardinall}' equh"a1ent to S~
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The smallest infinite cardinal number is W = Wo. If 8 is a nonzero ordinal number, thea we

use WI to denote the smallest cardinal number greater than aU WE for e< 8.

A.5 Fixed Points

Let (A,e) be a poset and J a function f: A 1-, A. An element x E A is called afized point

of / iff fez) = z. An element x E A is called a lea8t fu:ed point of / iff /(x) = z 1\ (Vy : II E

A: f(,) =11 ~ x!; y). If the least fixed point of f exists, it is denoted by IIZ./(Z).

Theorem A.I.O.1 (Limit Theorem (Kleene» If f i8 a chain continuoul function over

a complete lattice, then J hal a least fu:ed point which is u{/n(1.)}n~O'

(Thu u a modified verIion of the original theorem, see {106, 133, 103].)

Theorem A.5.0.2 (Generalized Limit Theorem (Hitchcock and Park» GilH!n a com­

plete lattice L with bottom 1. and a function / E [L ~ L)M. nre define:

fOP·) = 1., />'(1.) = Ut/(r(1.» : 7 < ,\} for ordinal ,\ I- O.

Then there ezi6t6 an ominal a, 6uch that /lx./(x) = /0(1.).

(Thu u a modified version of the original theorem, due to Nelson, see {133}.}
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Appendix B

A CFG for Annotated Guarded

CODllDand PrograDls

The following notational conventions apply:

• Terminal symbols are written in quotations.

• The notation {item} is used to denote item I £.

Program ..- "PROGRAM" 'lid" 'I:" Block..-
Block ..- "H" {Preamble} {Assertion} VerUnitList "U" I..-
Preamble ..- "CONST" CODstList {"TYPE" TypeList}..-

{"VAR" VarList} {"{" "AUBREV" AbbrevList "}"} "I"
"TYPE" TypeList {"VAR" VarList}

{"{" "AUBREV" AbbrevList "}"} "I"
"YARn VarList {"{" "AUBREV"AbbrevLi5t "}"} "I"
"{" "ABBREV"AbbrevList "}" "I"

ConstList "- "id" "=" Constant {";" CODstList}..-
Constant ..- {Sign} "integer" I "character" I "TRUE" I "FALSE"..-
Sign ..- "+" I "-"..-

174
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TypeLiat 00- TypeDecI {";" TypeLilt}00-

TypeDecI ..- "id" "=" CompTypeSpec..-
CompTypeSpec ..- "ARRAY" "l" {Siln} Bound "••" {Silll} Bound "Jtt..-

"OF" TypeSpec I "RECORD" "1[" YarLilt "1I"
TypeSpec ..- "id" 1Compl'ypeSpec..-
Bound ..- "id" {Sign "integer"} I "integer" {Sign "integer"}..-

VarLiat 00- YarDed {";" VarLilt}00-

VarDed ..- IdList ":" TypeSpp.c00-

IdLiat 00- "id" {"t" IdList}00-

AbbrevList "- Abbreviation {";" AbbrevList}..-
Abbreviation ..- "id" "(" Partist "t "=" AssertExpr..-
ParLial ..- ParDeel tIC;" ParList}..-
ParDee! ..- IdList ":" "id"..-

Allertion ..- "{" {"id" ":"} AssertExpr "}"00-

AumExpr 00- 5impleAssert {"=>" AssertExpr}..-
SimpleAuert 00- AssertDisj {Relop SimpleAssert}..-
Relop 00- "="1">="1">"1"<="1"<"1"<>"00-

AuertDilj ..- AssertConj {Orop AssertDisj}..-
Orop ..- "+" 1"-" I"OR" 1"COR"..-
AuertConj ..- Asse:tTerm {Andop AssertConj}..-
Andop ..- "AND" 1"CAND" I"DIV" 1"MOD" 1"."..-
AuertTerm 00- {Notop} AssertFactor..-
Notop ..- "+" I "-" I "...."..-
AuenFactor ..- "id" VarSpec I "C" AuertExpr ")" I "(" QuaatExpr Ii)" I..-

"inteser" I "character" I "TRUE" IIoIFALSE"

VarSpec ..- "(" ArsLilt ")" I "(" ValueChul8 ")" Selector I..-
{Selector}

ArxLilt ..- AssertExpr {"," Ar~List}00-
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VaJueCball!etI ..- Selector ":" Expr {W," ValueChanletl}..-
Selector ..- 14[" Expr "J" {Selector} 114." "id" {Selector}..-

QuantExpr ..- LosQuant W(tt "id" ":" wid" ")" ":" {Expr} ":"..-
AaertExpr I
NumQuant "(" "id" ":" "id" ")" ":" "(" DoundExpr ")tt

"AND" "(" BoundExpr ")" ":" AssertExpr

LosQuant ..- "FORALL" I "EXISTS"..-
NumQuant ..- "NUMBER" I "SUM" I "PRODUCT" I..-
BoundExpr ..- Disjunction LesaGreater "id" I..-

"id" LessGrcater Disjunction

LessGreater ..- ">=" I ">" I "<=" I "<"..-

Expr ..- Disjunction {Relop Disjunction}..-
Disjunction ..- Conjuncthn {Orop Disjunction}..-
Conjunction ..- Term {Andop Conjunction}..-
Term ..- {Notop} Factor..-
Factor ..- CompVarSpec I "(" Expr ")" I "integer" I "character" I..-

"TRUE" I "FALSE"

CompVarSpec ..- "id" {Selector}..-
VerUnitList ..- Statement {Assertion} {";" VerUnitList}..-
Statement ..- "SKIP" I "ABORT" I AssignList I..-

Alternation I VarInvar Repetition I Block

AuipLiat ..- VarSpec Assign Expr..-
AlSip ..- ":=" I "," AssignLilt ","..-
Alternation ..- "IF" {GuardComSet} "FI"..-
GuardComSet "- GuardCom {"I" GuardComSet}..-
GuardCom ..- Expr "->" VerUnitList..-
VarInvar ..- Invariant Variant I Variant Invariant..-
Iavariut ..- "{" "INVARtt {"id" ":"} AuertExpr "}"..-
Variaat ..- "{" "IJOUND" {"id"} "INIT" "id" ":" AssertExpr "}ft..-
Repetitioa ..- "DO" {GuardCoIllSet} "OD"..-
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Appendix C

The predicate dornain(e)

The domain predicate is defined for all expressions e appearing in progralh8. We want

tlomcdn(e) == T iff e is well·defined. The definition is bued on the BNF for the Donter­

minal "Expr" in the grammar of Appendix D. It does not include compound data objects

IUch as arrays of arrays, arrays of records and records with array fields.

Bued on the rule

Expr ::= Disjunction {Relop Disjunction}

we start by defining:

domain(Disjunctionl Relop Disjunction2) == domain (Disjunctionl) A domain(Disjunction2)

For "Disjunctions" we have two separate cases:

177
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.tom.in(Coajundioo 14+" Di.junction)

• domain(Conjunctioo 14_" Diljunction)

• domain(Conjunctioo "OR" Di.junction)

iE domain(Conjunction) 1\ cIomain(Di.junction)

domqin(Conjunction "COR" Disjunction)

;;; domain(Conjunction) cand (-, Conjunction => domain(Di.junction»

For "Conjunction." we have:

cIomain(Term "DIV" Conjunction) =domain(Term "MOD" Conjunction)

= domain(Term) A (domain(Conjunctioll) cand Conjunction :f: 0)

domain(Term "CAND" Conjunction)

== domain(Term) cand (Term => domain(Conjunction»

tlomClin(Term "." Conjunction) =domain(Terrn "AND" Conjunction)

= domClin(Term) 1\ domain(Conjunction)

A "Term" con.i.ta of a "Factor" or its nega.tion:

domain(Notop Factor) == domain(Factor)

178

We divide "Fadors" into three groups according to how they are constructed. For these we

define:

cIornain("'id") _ domain("id"".""id") _ dOrRClin("inteser")

=dornain("character") _ domain('"TRUE") _ domain("'FALSE")

=T
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tIonI.in("id" "(" Expr "]")

• IIomain(Expr) and ("id" .Iob S Expr A Expr S wid" .hib

domain(U( " Expr ")") =domain(Expr)

179
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ifz=z

if z :I z 1\ JI :I z

if z:F z Ay = w

Appendix D

Substitution in ProgralD

Constructs

The substitution of a variable y for a variablp. x in a program construct C, is denoted C;. The

followin! definition is based on Definition 4.6 in [81, Chapter 4] as well as the grammar in

Appendix B. Wherever substitution in expressions is indicated, ordinary textual substitution

should be used:

abort: = abort

.kiP: =skip

(z := expr)~ = z; := ezpr:

(I[var z : T 15m; =
I[var z : T 18]1
I[var z : T I 5;1I
I[var v : T r (5;)~]J

(81;52); = 51;; 82;

(ifGl- 51 O ••• OGn - Snl): =

if Gl; - 51;0 ... OGn; - 8n; tl

(do Gl- 51 O • •• oGn - Sn ad); =

do Gl; - 51;0 .. . 0Gn; - Sn; od

180
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Appendix E

An Annotated Progranl and its

ves

The solution to Rubin '5 problcm shown in scction 3.5, is prescnted hcre in the format of a

text file as accepted by the prototype implementation. Line numbers are given for reference

purpoees.

1 PROGRAM Rubin

2 I [

3 COIST

4 IIlICOL • 10;

6 . JIllROV • 10

6

7 TYPE

8 TABLE • ARRAY [1 •.MAlROW] OF lRRAY [1 •. lUleOL] OF lIT

9

10 VAIl

11 aatrix : TABLE;

12 found : BOOL;

13 lutrow, Iuteol lIT;

14 cureol, curro.- : lIT

181
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{IFIAft inbounda (KAIROW. currov, la.trow) AID

(FORALL (row : lIT) : (0 < rov) AID (rov <- eurrov) :

(£lISTS (col : 1ST) : (0 < col) AID (col < KAICOL) :

Donzero(aatrix,MAICDL,row,eol,eol») AID «Iaatrow • MAIROW) CDR

a1lzero(aatrix,MAICOL,currov+l»}

{BotJID t1 lilT T1 : laatrow-currov}

DO curro. () lutrow -) curcol, la.teol :- 0, IUXCOL;

}

I

{(MAlROW ) 0) AID (KAlCOL > O)}

{IOAil iDbounda (IU.XROW, cur::,')., lutrow) UD

(FORALL (row : lIT) : (0 < ro.) AID (ro. <- curro.)

lIT) •

1nbound.(.axindex, index, lastindex : liT) -

(0 <- index) AID (index <- I ••tindex) AID (l••tindex <­

.axindex)

aIlzero(••trlx TABLE; .axeol : lIT; rowpo. : lIT) •

(lDRALL (col liT): (0 < col) AID (col <- .axeol)

.atrix[rowpo.] [col] - 0);

16

US {lIBBV

17 nonzero(.atrix TABLE; .axeol, rowpo., colpo., la.teol

18 (FORALL (col liT) (0 ( col) AID (col (- eolpo.) :

19 .atrix[rowpo.][eol] - 0) AID «I.-teol - .axeol) COR

20 <.atrlx[rowpoa][colpoa+l] (> 0»;

21

22

23

24

25

26

27

28

29

30

31

32

33 currow, lastrow :- 0, MllROW;

34

35

38

37

38

39

40

41

42

43

44

46
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{inboundl (MAIROW, currow, la.trow) AID

(FDRALL (row : lIT) : (0 ( row) AND (rov (- currow)

(EXISTS (col : liT) : (0 ( col) AID (col ( KAICDL) :

Donzero(••trix,MAXCOL,rov,col,col») AID (la.trow - KAIROW)

AID (currow (> lutrow) AID (t1 - T1) AID (curcol - luteol)

AID nonzero Caatrix.KAICOL.eurrow+1.curcol,lasteol)}

68

57 00;

68

59

eo
81

e2

83

M

65

ee
67

IF curcol - MAXCOL -) lastrov :- currow

I cureol () KAICOL -) eurrow :- currow+1

68 FI

89 aD;

70

71 found:- currow () MAIROV

72

73 {(rOIlLL (row lIT) (0 ( row) AID (rov (- currow) :

74 (IlISTS (col lIT) (0 ( col) AID (col ( KAICOL) :

76 DODZero~trix.Ml1eOL.row.eol.col») AID «lutrow - KllRDW) COR

7e allzero(aatrix.IIlICOL,currow+1» AID (lutrov • curro.) DD

4e (EXISTS (col : lIT) : (0 ( col) AID (col ( MAleOL) :

47 DonzeroCaatrlx.KAXCOL,row,col,col») AID (laatrow • MAXIOV)

48 AID (curro. () l ••trow) AID (tl - T1)

49 AID inbounda(MAICOL, curcol,l••teol) AID nonzero C••trix,KAICOL,

60 curro.+l,curcol,l••tcol)}

51 {SOUID t2 lilT T2 : l ••tcol-eureol}

52

53 DO cureol () l ••teol -)

64 IF a.trix[currow+l] [curcol+l] - 0 -) curcol :- curcol+l

55 a.trix[eurrow+1][eurcol+1] () 0 -) lalteol :- eurcol

FI
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77 (found - (currow <) KAI~OV»}

78 ] I

184

The prototype generated the output file shown below, for this problem. 1'he file contain. the

rez;ult. of precondition calculations as well as all verification conditions to be proven in order

to show consistency with the given specification. Please note:

• Reference is made to "UNITS", which consist of a programming statement in the main

prO!ram text, to!ether with its postcondition.

• Formulae labelled with the words "Statement precondition" show the result of a pre­

condition calculation. All other formulae are verification conditions to be proven.

• No simplifications of formulae have been performed.

U1IT at liDe 71

I •••••••••••••••••

Stat..-nt precondition:

«FORlLL row : (0 < row) AID (rov <- currow) : (EXISTS col : (0 <

col) lID (col < KAleOL) : nonzero (.atrix_ M'leOL_ row, col,

col») AID «l••trow - MAXRDW) COR allzero (.atrix, IUXCOL _ currow + 1» AID

(laatrow • curro.) liD «currow () "lIRDV) • (currow <) MAIROV»)

UlIT at 1iDe 35

, , .
(1) - (currow <> laatro.) AID (inbounD (MAlao", currow, laatrow) lID (FOIlALL

row : (0 < row) AID (row <- currow) : (EXISTS col : (0 < col) OD (

col < IUlCOL) : DODZero <_trix, MlXeOL, row, col, col») lID «

Stellenbosch University http://scholar.sun.ac.za



APPENDIX E. AN ANNOTATED J'ROGHAAI AND ITS ves

lutrow • MAIRON) COR allzero (••trix, MAlCOL, currow + 1»)

185

«'ORALL row : (0 < ro.) AID (ro. <- currow) : (EIISTS col : (0 <

col) 'ID (col ( KAleOL) : nonzero (.~trix, K'leOL, row, col,

col») .10 «l••trow • MAIRON) COR allzero (••trix, KAICOL, curro. + 1» '10

(laatrow • currow) AID «curro. <> KAIRON) - (curro. () M'IRON»)

(2) (currow <) laatrow) '10 (inbound. (KAIRON, curro., l ••trow) '10 (FDRALL

row : (0 < row) '10 (row <- currow) : (EIISTS col : (0 < col) AID (

col < MllCOL) : nonzero (..trix, K'leOL, row, col. col») '10 «
lutrow - MURDV) COR allzero (aatrix. KneOL, curro. + 1»)

a)

«laatrow - currow) ) 0)

(3) (1) (inbound. (MAIROW. curro•• l ••trow) '10 (FORlLL row (0 <

row) AID (row <- currow) : (EXISTS col : (0 < col) '10 (col <

MllCOL) : DOnzero (••trix. KAXeOL, row. col. col») '10 (laatrow a

KlXIOV) AID (currow <> l ••trow) AID (tl - Tl) '10 (curcol - l ••tcol) AID

nonzero (atrix, IUlCOL. currow + 1~ curcol. luteal»

->

«curcol - KAXeOL) OR (curcol <> K'XeOL»

(2) (inbound. (KllROV. currow. la.trow) '10 (FORALL row : (0 <

row) AID (row (- currow) : (EXISTS col : (0 ( col) 'ID (col <

MllCOL) : DOnzero (..trix. KAleOL. row. col. col») '10 (laatrow a

IIAXROV) AID (currow () lutrow) AID (1;1 a Tl) AID (curcol - luteol) AID

DODZero (atrix, KAleDL, currow + 1, eureo1, lasteo1» AID (curcol ­

IIlXCOL)

«currow - currow) ( T1) AID (inboundll OlAlROW, currow, curro.) AID (FaULL

row : (0 ( xow) 00 (row (- currow) : (EXISTS col: (0 < col) 00 (
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col < KAleOL) ~ nonzero (aatrix, "AICOL, ro., col, col») AND «
curro. - MAlROW) COR allzero (aatrix, HAXCOL, curro. + 1»)

(inbounda (MAIBOW, currow, laltrow) AID (FORALL row : (0 <

row) .10 (rov <- eurro.) : (EXISTS col : (0 < col) AID (col <

MlXCOL) : nonzero (aatrix, HAICOL, rov, col, col») AID (laltrow ­

MAIROW) .10 (curro. (> lastrow) AID (t1 - T1) AID (cureol - lalteol) AID

nonzero (aatrix, MAlCOL, currov + 1, curcol, laateol» AID (curcol (>

MAICOL)

«laatrow - (currov + 1» ( Tl) AID (inbounds (MAIBOW, (currow + 1),

laatro.) AID (FORALL rov : (0 < rov) AND (rov <- (currow + 1» (EXISTS

col : (0 < col) AID (col < MAXCOL) : nonzero (aatrix, KAICOL,

ro., col, col») AID «lastrow • MAXROW) COR allzero (aatrix,

KAleOL, (curro. + 1) + 1»)

186

(1) - (curcol <> lasteol) AND (inbounds (MAIBOW, currow, lastrow) AID (FORALL

row : (0 < row) AID (~o. <- currow) : (EXISTS col : (0 < col) AID (

col < MlICOL) : nonzero (aatrix, KAXCOL, rov, col, col») AID (

lutrow - MUROW) AID (currOY <> lutrov) AID (tl • Tl) AID inboundl (

IlAICOL. cureol. luteal) AID nonzero (aatrix, KAICOL, curro. + 1,

curcol, lutcol»

(inbound, (MAlROW, currow, la.trow) AID (FORALL row : (0 ( ro.) AID (

row <- currow) : (EXISTS col : (0 < col) AID (col < KAICOL) :

nonzero (aatrix, MllCOL, roY, col, col») A~~ (lastrow • MAlROW) AID (

currow (> laatro.) AID (tl - Tl) AID (curcol - lastcol) AID nonzero (

aa'trix, IUICOL, currOY + I, curcol, lastcol»

(2) (curcol <> lutcol) 00 (inbound, (MAIROW, curro., laatro.) AID (FOItALL

row : (0 < row) AID (row <- currow) : (EXISTS col : (0 < col) AID (
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col < "AleOL) : nonzero (aatrix, "'ICOL, row, col, col») AID (

l ••trow - MAXROW) AID (currow () 1••trow) AID (tl • T1) AID inbound. (

HAlOOL, curcol, l ••tcol) AID nonzero (••trix, "AlCOL, currow + 1,

curcol, l ••tcol»

«laatcol - curcol) > 0)

(3) (inbound. (MAllOW, currow, laltrow) AID (FORALL row : (0 <
row) AID (rov <- currow) : (EXISTS col : (0 < col) AID (col <

lAIcaL) : nonzero (••trix. "AleoL, row, col, col») '10 (la.trow ­

MlXROW) AID (curroy <> lastrow) AID (tl - Tl) AID inbounda (KAXCOL,

curcol, la.tcol) AID nonzero (aatrix, "'XeOL, currow + I, curcol,

laatcol» AID «l••tcol - curcol) - T2) AND (curcol <> lastcol)

«..trix [currow + 1] [curcol + 1] - 0) OR (aatrix [currow + 1] [

curcol + 1] <> 0» AID «aatrix [currow + 1] [cur~ol + 1] - 0) -> «
laatcol - (curcol + 1» < T2) 'ID (inbound. (MAXROW, currow,

laatrow) AID (FORALL rov : (0 < rov) '10 (row <- currow) : (EXISTS

col : (0 < col) AID (col < KAleOL) : nonzero (a.trix, KAICOL,

row, col, col») AID (laatrow - MAXIOW) AID (currow <> laatrow) AID «
laatrow - currow) - Tl) AID inbounda (KAXCOL, (eureol + 1), la-tcol) AID

nonzero (..trix, MAXCOL, curro. + 1, (curcol + I), lasteol») AID «
..trix [currow + 1] [curcol + 1] <> 0) -> «curcol - curco}) <

12) AID (iDboundi (MlIROW, currow, lastrow) '10 (FORALL row : (0 <

row) AID (row <- currow) : (EXISTS col : (0 < col) AID (col <

IUXCOL) : DOnzero (aatrix, HAleOL, row, col, col») AID (lutrotr •

IUIIOV) lID (currow <> lutrow) 1ID «l••trow - currow) • Tt) AID

inbounda (IIllCOL, curcol, curcol) AID nonzero Caatrix, IUICOL,

currow + 1, curcol, curcol»)

(inbounda (1IlUOV, currow, lutrow) AID (FORALL row (0 < row) ...ID (

187
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row <- currow) : (EXISTS col : (0 < col) AID (col < "AICOL) :

nonzero (aatrix, MAXCOL, row, col, col») AID «l..trow • "AllOW) COl

allzero (aatrix, KAXCOL, currow + 1») AID «l••trow - currow) -

T1) AID (currow <> l ••trow)

->

(inbound. (MAIBOW, currov, l ••trow) AID (FORALL rov : (0 < row) AID (

row <- curro.) : (EXISTS col : (0 < col) AID (col < "AICOL) :

nonzero (aatrix, "AICOL, ro~, col, col») AID (l••trow - "AtROW) AID (

curro. <> l ••trow) .10 «l••trow - currov) - T1) AID inbound. (

IUICOL, 0, IUICOL) AID nonzero (aatrix, HAICOL, currov + 1, 0,

IUlCOL»

Stat..-nt precondition:

(iDbounda (lUlROW, curro., lastrov) AID (FORALL rov : (0 < rov) AID (

row <- curro.) : (EXISTS col : (0 < col~~AID (c~l < "AXCOL) :

nODZero (aatrix, HAICOL, rov, col, col») AID «lastrov - HAXROW) COR

allzero (aatrix, KAlCOL, currov + 1»)

OIIT at line 33., ".
«RAIROV > 0) AID (KAXCOL > 0»

->

UDbounda (MURQV, 0, OIROW) AID (FOULL row : (0 < row) AID (

row <- 0) : (EXISTS col : (0 < col) AID (col < KAICOL) : nonzero (

aa'trix. IIAICOL, row, col, col») AID «ItUROV - OXBOW) COR allzero (

aatrix. KAlCOL, 0 + 1»)
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