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Abstract

Formal methods aim to apply the rigour of mathematical logic to the problem of guaranteeing
that the behaviour of (critical) software conforms to predetermined requirements. The appli-
cation of formal methods during program construction centers around a formal specification
of the required behaviour of the program. A development attempt is successful if the resulting
program can be formally proven to conform to its specification. For any substantial program,
this entails a great deal of effort. Thus, some research efforts have been directed at providing

mechani.al support for the application of formal methods to software development.

E.W. Dijkstra’s calculus of weakest precondition predicate transformers [39, 38] represents one
of the first attempts to use program correctness requirements to guide program development
in a formal manner. The calculus provides a set of rules that may be used to “discover”
programs by considering the formal specifications that they have to fulfill. Programs are
expressed in a powerful nondeterministic mini language, that can be seen as a minimal subset

of modern imperative programming languages.

In this thesis we examine the suitability of Dijkstra’s calculus for mechanically supported
application as well as what kind of mechanical tools will best support its use. For this
purpose, a small prototype implementation was undertaken. It is found that formalizing
Dijkstra’s calculus for purposes of mechanical support has an unfortunate side effect, in that
limitations are placed on the notation and strategies that a program developer may employ.
It also causes additional complexity in the logical formulae to be manipulated. Abstraction
mechanisms provide a powerful tool to combat these problems. In the second part of this
thesis, we consider a series of abstraction mechanisms that may be incorporated into the

calculus for this purpose, terminating in a generalization of Dijkstra’s calculus such that
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Opsomming

Formele metodes poog om die strengheid van wiskundige logika te gebruik om te waarborg
dat die gedrag van (kritiese) programmatuur voldoen aan gegewe vereistes. Die toepassing
van formele metodes tydens programontwikkeling sentreer rondom a formele spesifikasie van
die verlangde programgedrag. 'n Ontwikkelingspoging is suksesvol as daar formeel bewys
kan word dat die resulterende program aan sy spesifikasie voldoen. Vir enige substansiéle
program, verteenwoordig dit 'n aansienlike hoeveelheid werk. Verskeie navorsingspogings is
gerig op die daarstelling van meganiese ondersteuning vir die gebruik van formele metodes

tydens ontwikkeling van sagteware.

E.W. Dijkstra se calculus van swakste voorkondisie (“weakest precondition”) predikaattrans-
formators [39, 38] is een van die eerste pogings om vereistes vir programkorrektheid op 'n
formele en konstruktiewe wyse tydens programontwikkeling te gebruik. Die calculus ver-
skaf ’n aantal reéls wat gebruik kan word om programme te “ontdek” deur beskouing van
die formele spesifikasies waaraan hul moet voldoen. Programme word uitgedruk in ’n klein,
kragtige, nie-deterministiese taal, wat gesien kan word as 'n minimale subversameling van

moderne imperatiewe programmeertale.

In hierdie tesis word die geskiktheid van Dijkstra se calculus vir meganies ondersteunde
toepassing ondersoek, sowel as watter vorm van meganiese ondersteuning die beste sal wees.
Hiervoor is 'n klein prototipe implementasie onderneem. Daar word bevind dat formalisering
van Dijkstra se calculus ten einde meganiese cndersteuning moontlik te maak, die ongelukkige
newe-effek het dat beperkings geplaas word op die notasie en strategieé wat ’'n programon-
twikkelaar mag gebruik. Dit veroorsaak ook addisionele kompleksiteit in die logiese formules
wat gemanipuleer moet word. Abstraksie meganismes verskaf 'n kragtige werktuig om hierdie
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probleme te bekamp. In die tweede gedeelte van hierdie tesis, word 'n reeks abstraksie megan-
ismes wat in die calculus opgeneem kan word vir hierdie doel, beskou. Dit word afgesluit met
'n beskrywing van 'n veralgemening van Dijkstra se calculus wat programontwikkeling deur

formele stapsgewyse verfyning ondersteun.
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Chapter 1

Introduction

Since the 1960’s, the rapid increase in size and complexity of software systems has produced an

epidemic of projects that exceed their deadlines and budgets and result in unreliable products.

This situation persists even today. The genre of horror siories concerning computer mal-
functions based both on documented fact and fable continues to grow. A leading computer
journal®! has gone as far as running a regular column to record substantiated tales of this
kind. In the mind of the public such incidents understandably lead to growing distrust of and
concern over the use of computers in critical applications such as medical systems, defense,

aviation, factories, power plants and financial institutions.

Programmers have traditionally endeavoured to ensure the quality of software through sys-
tematic testing. Since exhaustive testing is impcssible for practical programs, a number of
carefully chosen test cases have to be constructed to be somehow “representative” of the entive
spectrum of possibilities. Since program outputs are in general not continuous functions of
their inputs, making extrapolation from a sample of empirical results unreliable for predict-
ing the outcome for all cases. These facts as well as practical experience show that program

testing can never provide a sufficient level of assuranc~ of the quality of life critical software.

This leads us to contend that the rigour of mathematical proof is the only way of substanti-
ating claims about software correctness.
1ACM SIGSOFT Software Eagineering Notes
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‘The extensive use of mathematical logic in the description and prediction of the attributes
of programs has become known as formal methods. Formal methods have been applied to

various aspects of the construction of correct, reliable, and efficient software. These include:

program specification —the provision of a formal specification of the intended behaviour

of a program;

program verification —demonstrating by means of a mathematical proof that a program

is consistent with its (formal) specification;

program transformation —performing correctness preserving transformations on a spec-

ification or program for the sake of refinement or optimization;

program synthesis —extracting 2 »rogram from a constructive proof that a result satisfy-

ing a specification exists.

In this thesis our concern is witii program verification—specifically using an axiomatic method

in the tradition of Floyd [51] and Hoare [34].

Historical Perspe«:iva

Floyd Uses Assertions . $3cecribe Program Behaviour

The cornerstone of axiomatic meti-ods of program verification was laid by Floyd in a seminal
paper, “Assigning Meanings to Programs” [51], delivered at a conference in 1967. Floyd
uses a flowchart model of programs with nodes representing program statements and arcs
the flow of control. His approach comprises attaching logical assertions to the arcs of a
program flowchart. An assertion must be true whenever control passes over the arc to which
it is attached. Program behaviour is specified by providing both an entry- and an erit-
condition for a program. The entry-condition expresses the information that can be assumed
about the initial state of the program variables, while the exit-condition details the sta‘e of
program variables after termination. Using these entry- and exit-conditions, corresponding
intermediate assertions are generated to annotate the internal arcs of the fiowchart.
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One has to prove that the exit-condition will be satisfied by the final state attained, after
execution starting from a state that satisfies the entry-condition. These proofs are built
around rules, given by Floyd, to derive from an entry-condition associated with a node, and

the node itself, the strongest exit-condition that can be guaranteed on leaving that node.

T'loyd was also the first to use well-ordered sets to prove program termination. His technique
involves the use of so-called W-functions. A W-function maps the program variables to a
well-ordered set (an ordered set with no infinitely decreasing sequences). A program is shown
to terminate by demonstrating for each arc that the value of the W-function decreases every

time control passes over that arc.

Hoare’s Deductive System for Program Correctness

Hoare’s 1969 paper, “An Axiomatic Basis for Computcr Programming” [84], represents the
next milestone in the development of axiomatic program verification methods. He proposes
that statements of program properties be viewed as theorems in a deductive system. An
ALGOL-like language is used as programming notation. Analogous to Floyd’s entry- and
exit-conditions, two logical assertions, a precondition and a postcondition, are used to specify

the behaviour of program constructs. The now familiar notation

P{S}R

is introduced by Hoare, to mean that if assertion P is true before execution of program §
begins, then the assertion R will be true on its completion. If such a fact can be formally

established in Hoare’s deductive system, we have a theorem, i.e.

F P{S}R.

The axioms of Hoare’s logical system comprise basic facts about “elementary” program oper-
ations such as integer arithmetic, as well as an axiom schema describing the effect of executing
an assignment instruction, while inference rules are given to describe the effect of sequential
composition of program statements, iteration, and other compound statements.
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To prove that a program S is consistent with its specification (consisting of a precondition P
and postcondition R), one starts with axioms about the elementary program statements and

applies Hoare’s inference rules repeatedly until the theorem - P{S} R is deduced.

This approach specifically excludes proofs of program termination. Manna and Pnueli later
extended Hoare’s work, presenting a more extensive deductive system for an ALGOL-like

language that includes a treatment of program termination [113]. The notation

{P}S{R}

has been used to denote that if assertion P is true before execution of program S begins, then

S will terminate and the assertion R will be true on its completion.

Dijkstra’s Programming Calculus

The foundational work of Floyd, Hoare, and others set the scene for constructive verifica-
tion techniques. Experience with the application of these early verification methods quickly
indicated that programs written without close guidance from their specifications, can be
extremely difficult to prove consistent with such specifications. To overcome this problem,
program development has to be interweaved with the construction of assertions that describe

its behaviour and may be used in demonstrating program correctness.

Dijkstra responded to this challenge by showing how assertions may be used to guide the
development of programs within a deductive system. In the classical reference works [39] and
[38] he developed a formal discipline or calculus for the derivation of programs that meet their
stated specifications. Dijkstra’s calculus provides a set of rules to be used in “discovering”
programs by considering the assertions they have to guarantee and allows a program and
its correctness proof to be constructed hand in hand. The basic procedure centers around
deciding on an assertion to be satisfied (a postcondition) and using the calculus to find a
program construct (and corresponding precondition) that will guarantee its truth.

Dijkstra’s main deductive tool is a set of functions called weakest precondition predicate trans-
Jormers. These are used to formalize the semantics of program constructs and drive the pro-
gram development process. In general, a predicate transformer is a function that associates
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one assertion with another. In particular:

The weakest precondition of a program construct § with respect to an assertion
(postcondition) R, denoted wpg(R) (or wp(S, R)), is that assertion (precondition)
that is satisfied by all program states such tuat execution starting from any one

of them will terminate in a state satisfying R, i.e.
{P}S{R}

is equivalent to
P = wps(R).

The fact that the weakest precondition transformer works “backwards” from a postcondition
to be established, makes it extremely well suited to the goal-directed activity of program

composition.

Because existing programming languages did not satisfy his requirements, Dijkstra invented a
unique “guarded command” language notation for the presentation of programs (algorithms)
developed in the weakest precondition calculus. Apart from primitive commands like skip
and assignment, the language contains an alternative and a repetitive construct that are built
up from guarded commands. A guarded command is a command (program statement) list
prefixed by a Boolean expression (guard), such that the command list will only be executed

if the Boolean expression evaluates to true, e.g.
ign—i=i+1

A novel characteristic of Dijkstra’s guarded command language is that it allows the expres-
sion of nondeterministic programs in a natural way, e.g. in the guarded command language
statement

f z<MAX - z:=z+10z2>2MAX - 2z:=z-11

a choice of which statement to execute when z = M AX, is to be made nondeterministically.
A nondeterministic mechanism is such that its initial state does not uniquely determine its

ensuing activities.
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The guarded command language formulated by Dijkstra is in effect a mini language that
embodies the bare essentials of any imperative programming language. Nondeterminism is
a powerful abstraction mechanism in the calculus, allowing one to describe in a concise and
elegant manner, a whole class of algorithms instead of a single deterministic one and to
separate concerns of correctness and efficiency by delaying decisions for the sake of efficient

implementation to later stages of development.

The Anti-formal Methods Stance and Some Limitations of

Formal Verification

Formal methods have been opposed by some computer science researchers. Anti-formal meth-

ods lobbyists (e.g. {35, 49]) have presented arguments including:

e Formal program verification does not seem to “scale up”, i.e., there is little evidence to
suggest that a large, complex verification may be accomplished as the sum of a number

of smaller, simpler verifications.

e “No matter how high the payoff, no one will ever be able to force himself to read the
incredibly long, tedious verifications of real-life systems, and, unless they can be read,

understood and refined, the verifications are worthless.” [35]

e Progress from the theoretical possibility of program verification towards verified pro-
grams becoming a “reality” in tlie wider computing industry, has to date been embar-

rassingly slow.

The author agrees with the view, expressed in [49], that one has to separate algorithms from
programs when issues of verification arise. The notion of an algorithm is more abstract than
that of a program. The intended interpretation of an algorithm is an abstract machine for
which there is not supposed to be a physical counterpa:t, i.e., its properties can be established
by definition. On the other hand the intended interpretation of a program is an abstract
machine that is supposed to have a physical machine counterpart. The properties of physical
machines can only be established inductively. (See [49]) for a detailed exposition.)
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Avra Cohn's discussion of the scope and limitations of the Viper microprocessor verification

effort [31) includes a similar caution concerning hardware “verification™:

“Ideally, one would like to prove that a chip correctly implemented its intended
behaviour in all circumstances; we could then claim that the chip’s behaviour was
predictable and correct. In reality, neither an actual device nor an intention are

objects to which logical reasoning can be applied.

In short, verification involves two or more models of a device, where the models
bear an uncheckable and possibly imperfect relation both to the intended design
and to the actual device. This point is not merely a philosophical quibble; ...”

Formal methods, like any other methods, have their limitations. This should not sound the

death knell of continued research effort in this area, because formal methods have already

made a positive contribution to the construction of reliable software:

e Formal specification methods have, and should continue to make, valuable contributions

to software engineering practices.

® Research into program verification has had very “practical” spin-offs in the form of
program validation techniques. These are also developments in the right direction—

towards the construction of more reliable software.

o By placing a mathematical foundation under the craft of programming, formal methods
provide intellectual tools that allow a firmer and more precise grip on complex subject
matter. Teaching proepective programmers the rigours of formal methods, can only have

a beneficial influence on the way in which they think about and construct software.

About This Thesis

This thesis concerns one of the fundamental issues in computer science—the construction
of reliable software. We have chosen to approach it via formal methods, specifically Dijk-
stra’s weakest precondition programming calculus. In making this decision, the following
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observations were decisive:

¢ The guarded command language, being a “minimal subset” of modern imperative lan-
guages, is easy to learn and allows a programmer to focus on correctness issues without
being distracted by language idiosyncrasies, while algorithms can easily be transformed

into standard programming notations after development.

o The guarded command language provides a simple and concise notation for the expres-

sion of algorithms.

¢ Algorithms are completely abstract entities, for which consistency with a formal speci-

fication can be formally established.

e Dijkstra’s calculus emphasizes a separation of correctness concerns from those of effi-

ciency, allowing a useful abstraction when developing an algorithm.

s The weakest precondition calculus is specifically tailored towards the copstruction of
correct algorithms, as opposed to a posteriori correctness proofs, and provides a unique
“calculational approach” to algorithm development. This makes it eminently suitable

for teaching program development in a formal framework.

e Dijkstra’s calculus is amenable to various extensions to experiment with more complex
features such as parallelism, fairness, formalized stepwise refinement and correctness

preserving program transformations.

The need for efficient program development has necessitated the use of increasingly sophis-
ticated mechanical tools to assist programmers. Such tools have become indispensable in
software production environments and have achieved undeniable success in allowing efficient
editing, storage, retrieval, and general administration of programs, syntax and semantic anal-
ysis, type checking, optimization, and assistance for program testing and “debugging”. The
evolution of the role of machines as programming assistants has also brought about certain
negative effects, including a reliance on sophisticated debugging aids to establish confidence

in unstable software, experimentation at the terminal or programming by trial and error.

Introductory texts on rigorous programming disciplines, such as [38, 66, 14, 40, 79], con-
centrate on the principles involved and assume no tools save pencil, paper, and intellectual
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machinery. Yet the opinion has been voiced, and is shared by the author, that if formal
methods are to enjoy wider usage, their application will have to be supported by mechani-
cal tools that will relieve a programmer from at least some of the detailed, time consuming
manipulations they involve.

Starting with such milestone mechanical program verification systems as those of {92] aad [58],
much research has been done in this area; some of which is reported in 1, 2, 3). Publications
such as [143, 70] describing implementations based on the weakest precondition paradigm
are, however, quite rare and only recently have works such as [4, 80), using the language of

guarded commands for the expression of algorithms, appeared.

Thesis Aim

This thesis is a survey of theoretical aspects regarding the following questions:

e How suitable, if at all, is Dijkstra’s weakest precondition calculus to be the basis of
mechanical tools for formal program (algorithm) construction?

o What kind of mechanical tools would best suit the use of Dijkstra’s calculus?

Thesis Outline

The investigation is divided into two parts: Part 1 introduces Dijkstra’s language of guarded
commands and its accompanying weakest precondition programming calculus and describes
some obstacles encountered in providing basic mechanical support for application of the cal-
culus, as well as suggestions for overcoming them. This comprises chapters 2 through 4.
Part 2 addresses one of the major obstacles to effective mechanically supported program de-
velopment using Dijkstra’s calculus as identified in Part 1, i.e. a lack of formal abstraction
mechanisms. A survey of abstraction mechanisms that could be incorporated into the calculus
is presented, and effects of their inclusion upon the calculus itself and its mechanisation are
discuseed. Part 2 spans chapters 5 through 8.

In Chapter 2, a semantic framework is presented as a formal frame of reference for Dijkstra’s
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calculus. Where necessary, the reader may reference Appendix A for some mathematical
background on material in this chapter, The treatment includes ihe concepts of the state of a
computation, the state space, state transformations, predicates, and predicate transformers;
ending with a discussion of the weakest precondition and weakest liberal precondition pred-
icate transformers. Apart from introducing notation, this chapter is intended to provide a
concise, fairly formal description of the key constituents of Dijkstra’s calculus, identify their
key properties and lemmas on which some of the results to follow, are based. A strong the-
oretical basis is essential for any verification system, manual or otherwise, as a mechanical

verification system without a solid theoretical foundation is of doubtful value.

Chapter 3 provides a summary of Dijkstra’s weakest precondition calculus. The constructs
that comprise the guarded command language are presented in turn, together with an op-
erational description and their weakest precondition semantics. Where applicable, theorems
that simplify the application of the theory in practical situations are presented. Discussions
on the basic data types used in guarded command programs, scope rules for declarations and
specifications and annotations of programs are also included. The last section of this chapter
explains and illustrates the main strategies for algorithm development in the calculus on a
programming problem. The contents of this chapter, introduces the reader to the syntax and
scmantics and application of the main agents that a mechanical verification system will have

to manipulate.

Chapter 4 contains the investigation into the suitability of Dijkstra’s calculus for mechanical
support. Discussions range from the need to formalize certain aspects of the calculus such as
the syntax, type system and specification language to various considerations for the calculation
of preconditions and proof obligations. Some suggestions are made on proof support and
support for interactive program development. When providing mechanical support, one has
to sacrifice the informal part of the mixture of formal and informal reasoning and presentation
that one finds in manual applications of Dijkstra’s calculus. One is limited by having to be
completely formal and work within the scope of rigorously delineated syntax and method.
Unless the explosion of complexity in formulas to be manipulated and the excessive burden of
proof obligations that this leads to can be minimized, the usefulness of a mechanical system
will be severely limited. One way to combat the limiting effects of complete formality is to
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provide abstraction mechanisims that will allow more powerful means of expression within the
bounds of formality enforced by the system, more concise notation, more generality and the

removal of excessive details from immediate consideration.

In Chapter 5 some mechanisms for abstraction are considered for inclusion in Dijkstra's
calculus. Three main possibilities are explored: procedural abstraction, data abstraction, and
abstraction mechanisms in the specification language. Dijkstra's calculus imposes limitations
on the usage of abstraction and refinement during program development. Such limitations
may be removed by extending the semantic framework of Chapter 2. This is done in Chapter 6.
The extended formal foundation obtained as a result, may be used to construct a refinement
calculus based on the weakest precondition paradigm, such as developed by R.J.R. Back [9, 8],
Joseph Moxris [130, 128]) and Carroll Morgan [121].

Chapter 7 is a discussion of the constructs and uses of such a refinement calculus. In this
calculus, specifications also become programs and executable programs are simply programs
that have been refined to such an extent that no unimplementable constructs remain. Step-
wise refinement is a formal manipulation in the refinement calculus, a fact that has interesting
implications for mechanical support. Both procedural and data refinements are considered.
Some perspectives on mechanical support for application of the refinement calculus are dis-
cussed.

Conclusions are presented in Chapter 8.
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Chapter 2

A Semantic Framework

What is your substance, whereof are you made,
That millions of strange shadows on you tend?
Since every one hath, every one, one shade,

And you, but one, can every shadow lend.

William Shatzspeare, Sonnet 53

A theoretical foundation is important for any formal method. The aim of the semantic
framework for Dijkstra’s weakest precondition calculus presented here, is to provide a suitable
level of formality for discussions to follow in Chapters 3, 6 and 7.

The well known concepts of the state of a computation and the state space are dafined,
followed by a characterization of boundedly nondeterministic mechanisms as state transfor-
mation functions. Predicates and predicate transformers are introduced, specifically weakest
precondition and weakest liberal precondition predicate transformers and the relationship be-
tween state transformations and weakest precondition transformers are highlighted. These
predicate transformers provide a means of defining programming language semantics in a way

that supports systematic program development from formal specifications.

The lattice theoretical framework adopted here has been used by a number of authors, since
it allows an elegant treatment of predicates and predicate transformers and is particularly
helpful when defining the semantics of iterative and recursive mechanisms. (The reader may

13
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also refer to [41] for a more thorough and formal introduction to the theory of predicate
transformer semantics than that presented here.) In Chapter 6 this framework is extended to
accommodate the more abstract mechanisms introduced in Chapter 7. Appendix A should
be referenced, where necessary, for background material on relations, orderings and lattices

as employed here.

2.1 Preliminary Notation

The Form of Arguments

Following [41, Chapter 4], a formal argument to show R = Q (similarly R = Q) for predicates
R and Q, will be written in the following concise and calculational format

R

= {hint why R = X}
X

= {hint why X = Q}
Q

Quantified Expressions

We use the notation (operation dummies : range : term), to denote the com-
bination of the values assumed by the term, according to the operation, as the
dummies vary over the given range. Unless the type of a dummy variable is

obvious from the context, it is given as part of the range, e.g.

(Vz,y:2ENAYyEN: 2> y>z -y > 0).
The range iteelf is omitted if it is obvious from the context, e.g.

(Vz,y::(~zVy)=(z = y)).
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2.2 State of a Computation

The state of a computation is a mapping associating identifiers with values and may be
interpreted as reflecting the values of all program variables at a given instant during program

execution.

Let Cyqr denote a computation involving a countable set of program variables, lar, taking

their values from a set of values, Val. A state of Var [8] is a function

o: Var— lal

The state space of Var is the set of all states of Var; denoted y,,. In general Xy,, may be

thought of as the cartesian product of the relevant data domains.

2.3 Nondeterministic Mechanisms

We distinguish between deterministic and nondeterministic computation mechanisms. Upon
activation, the activity of a deterministic mechanism is fully determined by its initial state,
i.e. its behaviour is fully reproducible. For a nondeterministic mechanism, activation in a
particular initial state will result in one out of a class of possible activities. Nondeterminism
is said to be bownded if a finite number of alternatives for continuing computation are available

at any moment.

2.4 State Transformations

The effect of activating a (nondeterministic) mechanism under an initial value assignment to
its variables, can be described by means of a function between an initial state and a nonempty
set of possible final states.

Let 1 denote a special undefined state (used to represent nontermination) and Ei,, the
state space Yy,, extended with this state, i.e. Ty, U {L}. We now define a (boundedly
nondeterministic) state transfor mation on Var [8, 140, 149] as a function
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t:Svar — {X C Bty : X = B, 0r (X # D and X C Sy, and X is finite)}

The meaning of a mechanism Sy, involving only variables from the set lar, is given by a state
transformation ¢g on Var, describing the effect of activating S in an environment containing
the program variables in Var. For an initial value assignment ¢ to Var, ts(o) represents the
set of possible final assignments to these variables, when § has terminated. The presence of
the undefined state 1 in {g(c) indicates the possibility of nontermination of S for this initial
state. Requiring § to be boundedly nondeterministic, dictates that for each initial state o,
either ¢5(o) is finite (and nonempty) or L € tg(o), see [141, page 455]). Our definition of tg
identifies all sets containing L with each other in the above definition—equating them all to
Bt .. This renders the possibility of nontermination indistinguishable from the guarantee of
nontermination and is done for the sake of conformance to Dijkstra’s weakest precondition
semantics (see [140, page 541-542] and [93, page 70]). Similar approaches that offer different
views on this issue may be found in [141, 34, 71, 93, 155].

In Nelson’s taxonomy of programming semantics calculi [133], the semantic model outlined
above is called the total correctness model. This model aliows an initial state to be related to
proper (terminating) outcomes as well as the “looping” outcome, without distinguishing pro-
grams that may not terminate from those that definitely will not. Each initial state is related
to at least one final state—indicating that “something” must happen when a mechanism is
activated in an initial state (see [93, 133] for descriptions of more general models). Although
no provision is made for distinguishing between run-time errors and infinite looping behaviour
as causes of nontermination, the state space may be extended suitably if this is desired. As
indicated in [133], various technical approaches can be applied to such a semantic model, e.g.
relations on states, Hoare logic, predicates or predicate transformers. Dijkstra’s calculus of

guarded commands [38] approaches the total correctness model via predicate transformers.
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2.5 Predicates and Predicate Transformers

A predicate transformer is a function that associates a predicate on the state space with an-
other predicate on the state space. The predicate transformer approach to program semantics
is based on the fact that a set of states of a computation can be characterized by a logical

formula in terms of program variables, and vice versa.

Using Bool to denote the set of truth values, Bool = {true, false}, we consider the poset
Bool
(Bool, T ) as obtained by partially ordering Bool as follows

Bool
z C yifz=>y.
BW‘ . . .
Now (Bool, T ) is a complete lattice with top element ¢rue and bottom element false (see

Appendix A.3).

A predicate on Var can be seen as an assignment of a truth value to every state in the state

space, Lyer. Thus a predicate on Var is a function
R : Xyer — Bool

A state o of Var is said to satisfy a predicate Ry, iff R(0) = true. We sometimes characterize
a set of states of Var by a predicate Ry,,, viz. the set of all states of Var that satisfy Ry,,;
denoted si (C Zy,,). The converse also applies.

Notationally, we do not distinguish between the syntactic (predicate formulas) and semantic
(truth-valued functions) nature of predicates, see [12, page 605). In the sequel we take the

liberty of referring to predicates also as “assertions” or “conditions”.
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Notation

F

T

1,223
el e2,...

[R]

]

denotes “false”; the predicate that is not satisfied by any state, i.e.
sr=W¥;

denotes “true”; the predicate that is satisfied by every state, i.e.
8T = Bvar.

denotes the predicate obtained by simultaneously replacing all free
occurrences of the variables x1,z2,... in the predicate R by ex-
pressions el,e2,... respectively. Such a substitution is only valid
if it results in a syntactically well formed predicate. Renaming of
bound variables in R may be necessary before the substitution com-
mences, to prevent variable occurrences in the expressions e; from
becoming bound. This syntactic manipulation is known as textual
substitution.

is used to denote a predicate Ry,,, universally quantified over all
its free variables;

denotes equality between predicates, so that

[R=Qq]

means that R and Q are equal as functions;

denotes the strength order between predicates, so that

[R=Q]

is read “R implies Q”, “R is at least as strong as Q” or “Q is at

least as weak as R”.

18

We denote the set of all predicates on lar by Predy,,. By results from Appendix A.3,

(Predy.,,C) is a complete lattice for the pointwise extended partial order on Bool, i.e. for

predicates Ry,, and Qvs,,:

KCQ=(Yo:0€ Sy, : Rio) T Qo).
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The top element of Predy,, is the predicate T which assigns the value frue to every state,
while the bottom element is the predicate F which assigns the value false to every state,

The following two lemmas from [130] show that the partial order on predicates corresponds
to logical implication and that the least upper bound of a set of predicates corresponds to

their disjunction:

Lemma 2.5.0.1 For P,Q € Predy,,:

PEQ=[P=q]

Lemma 2.5.0.2 For any set of predicates X = {R; :i € I} C Predy,,:

| JX=@i:iel:R)

2.6 Weakest Preconditions

The goal-directed nature of programming, suggests a prominent role for a predicate R, called
a posicondition, embodying the desired condition on the final state reached after activation
of some mechanism S. In reality such a postcondition could be satisfied by a number of
states—accommodating nondeterministic behaviour of S. A corresponding precondition is
used to characterize those initial states for which activation of § is guaranteed to terminate
in a final state satisfying R.

Let Ry,, denote a postcondition to be satisfied upon termination of a mechanism Sy,,.
The weakest precondition corresponding to R [38], denoted wp(S, R), is a predicate that
characterizes the set of all initial states such that activation of Sy,, is guaranteed to terminate

in a state satisfying Ry,,. In terms of a state transformation [8]:

[(Vo : 0 € Zv,, : wp(S, R)(0) = ts(0) C sr)]

Note that L ¢ sg, 30 15(0) is not allowed to contain L either. This guarantees termination of

S for the initial state 0. Requiring Z5(o) to be a subset of sy, refers to Dijkstra’s “demonic”
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(or “blind”™) interpretation of nondeterminism (38, 93, 133], in which the “worst” execution
path is chosen. A demonic implementation of nondeterminism may choose any execution path,
since an initial state o is considered suitable (o € s,,(s,r)) iff execution is guaranteed to reach
a final state in ap. This iz in contrast with the “angelic”(or “clairvoyant”™) interpretation of
nondeterminism [93, 133), where the “best” execution path is chosen. Here an initial state
is suitable iff at least one execution path leads to a state in sg. Such an implementation

employs backtracking or parallel evaluation.

The semantics of 2 mechanism Sy,, involving only variables from the set Var, may be given

by a predicate transformer on Var, i.e. a function

ps H Prt’dvm- — Pfedvm-

The weakest precondition predicate transformers wpsg, such that

[(VR: R € Predvq, : wps(R) = wp(S, R))]

are useful for this purpose ([140] may be referenced for a detailed exposition of the rela-
tion between the predicate transformer and state transformation approaches to programming

language semantics).

Let Sv., be an arbitrary mechanism and Qvg,, Rva, arbitrary predicates on Var. Dijkstra
identified the following “healthiness” properties that hold for weakest precondition predicate

transformers of executable mechanisms [38]:

Law of the Excluded Miracle (Strictness): [wps(F) = F]
Monotonicity: [(Q = R) = (wps(Q) = wps(R))]
Conjunctivity: [wps(Q) A wps(R) = wps(Q A R)]
Disjunctivity: [wps(Q)V wps(R) = wps(Q V R)]

Or-Coatimuity: [wps(In:n € N : Ry) = (In : n € N : wps(R,))] for any weakening
sequence of predicates, i.e. such that (Vn:n € N : [R, = Rasa])
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The technical effect of the Law of the Excluded Miracle is to exclude mechanisms that are
partial, i.e. that correspond to state transformations that map some initial state to the empty
set (of outcomes), while the or-continuity restiiction excludes mechanisms that exhibit un-

bounded nondeterminism.

In [87], Hoare investigates various “weakest precondition” predicate transformers in the con-
text of Dijkstra's healthiness criteria. He shows that Dijkstra’s wpg function is not the weak-
est healthy one, but the best for practical programming, since it does not require clairvoyant

(angelic) implementations (see above).

2.7 Weakest Liberal Preconditions

For a deterministic mechanism S, knowledge of how its associated predicate transformer
wps acts on any predicate R, completely determines its possible behaviour. The complete
characterization of a nondeterministic mechanism requires more. For that purpose the notion
of the weakest liberal precondition corresponding to a postcondition R, is employed. Denoted
wip(S, R), this condition characterizes the set of all initial states such that activation of Sy,,,
if it terminates, will reach a final state satisfying Rv,r. The relationship between the weakest

liberal precondition and the weakest precondition can be stated as
f(VR: R € Predv,, : wp(S, R) = wip(S, R) A wp(S,T))]

As above, the weakest liberal precondition predicate transformers, denoted wips, are functions
on Predy,, such that

[(VR : R € Predy,y : wips = wip(S, R))

For any mechanism S and a postcondition R, the possible behaviour of § can be completely
described by observing that every initial state of S falls into exactly one of the (disjoint) sets
characterized by the following predicates [38]:

¢ wps(R) (= (wips(R) A wps(T)))
Activation of S will establish the truth of R.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 2. A SEMANTIC FRAMEWORK 22

s wps(~R) (= (wips(~R) A wps(T)))
Activation of S will establish the truth of - A.

o wips(F) (= (wips(R) A wips(-R)))

Activation of S will fail to produce a properly terminating activity.

o wps(T) A ~wips(R) A ~wlps(—~R)
Activation of S will produce a terminating activity, but the initial state does not deter-

mine whether the final state will satisfy R.

o wips(R) A ~wps(T)
If activation of S produces a final state, that state will satisfy R, but whether termina-

tion takes place or not, is not determined by the initial state.

o wips(~R) A ~wps(T)
If activation of S produces a final state, that state will not satisfy R, but whether

termination takes place or not, is not determined by the initial state.

o ~(wlps(R)V wips(~R) V wps(T))
The initial state does not determine whether activation of § will produce a terminating

activity, nor whether R wiil be satisfied in the case of termination.

From the definition of wipg, the {ollowing properties follow {38):

o [wips(T) = T1;
o [(wips(F)Awps(T)) = F]
Weakest liberal preconditions are considered more closely in [131], where it is shown that they

may be defined in several ways. They are also used in characterizing the property of program

robustness.
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Chapter 3

Dijkstra’s Programming Calculus

In Chapter 1 the reader was informally introduced to Dijkstra's programming calculus, that
provides rules, based on weakest precondition predicate transformers, for deriving a program
(algorithm) from a postcondition that states its desired outcome. Having provided a formal
framework in the previous chapter, we now set the scene for an investigation into the suitability
of Dijkstra’s calculus for mechanical support, by providing a concise overview of the syntax,
semantics and typical usage of its key constituents: program constructs, data types and
specifications.

Dijkstra introduced the main components of his weakest precondition calculus in [39]). This
was followed by a full presentation in [38]. Since then it has been used, with various exten-
sions and alterations, in numerous reference works including the following popular books on
programming methodology, [14, 40, 43, 66, 121]). The material presented here, is based, with

a few exceptions, on [38] and [66).

The program constructs of Dijkstra’s guarded command language are presented first. Weakest
precondition predicate transformers are used to characterize their semantics. In the case of
the alternative and repetitive constructs, thecrems that give guidance for their correct use in

practical situations, are also stated.

The data types that occur most frequently in program developments in [38] and [66] are
integers, Booleans, arrays and records. The use of these types in the context of Dijkstra’s
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calculus is discussed in section 3.2. This ix followed by a description of the scope rules that

apply to guarded command programs.

Program development in Dijkstra’s calculus is guided by » functional specification in the
form of two first order assertions—a precondition and a postcondition. In addition, internal
program annotations such as loop invariants, bound functions and assertions to assist in the
construction of correctness proofs, usually appear in guarded command programs. We state
some considerations for a }anguage suitable for the expression of such prog_ra;xx specifications

and internal assertions.

To consolidate the presentation, this chapter is concluded with a discussion and illustration

of typical strategies used during program development based on Dijkstra’s calcuius.

3.1 Program Constructs of a Guarded Command Language

A most important, but also a most elusive, aspect of any tool is its influence on
the habits of those who train themselves in its use. If the tool is a programming
language, this influence is- -whether we like it or not—an influence on our thinking
habits.

Edsger W. Dijkstra, Preface to [38]

In [33, Chapter 1] Dijkstra expounds the advantages of using a formal notation for the de-
scription of algorithms. An algorithm allows compact arguments about characteristics of the
mechanism it descrites and the choice of the guarded command language as a vehicle for the

presentation of algorithms, reflects the desire to retain this compactness.

The feature fror which the !anguage derives its name—guarded commands—are not pro-
gram statements in their own right, but are used as building blocks of both the alternative
and repetitive corstructs. Within these constructs, the use of guardrd commands allow for
the introduction of nondeterminism. The guarded corimand language is very small; apart
from the primitive commands abort, skip and ass:Z::ment, programs can be constructed

using sequential composition, conditional composition (alternative construct), iteration and
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encapsulation (local blocks). In the presentation to follow, the semantics of each construct is
formulated in termns of weakest precondition predicate transformers, but an operational de-
scription is also supplied. Their syntax is stated informally; a formal description in the form
of a context free grammar may be found in Appendix B. In the case of the alternative and
repetitive constructs, program development typically involves use of a precondition that is not
the weakest precondition itself, but one that is at least as strong. Such a precondition may
provide more insight into the program under development and avoid a pasticularly lengthy
ard involved weakest precondition calculation. For these cases, theorems from the literature
are given, to test the suitability of a potential precondition withouzt calculating the weakest
precondition itself.

1. No-Op

Syntax: skip
Operational Semantics: Execution leaves the current program state unchanged.

Predicate Transformer Semantics:
[wp(skip, ) = R] (1)
2. Faiture

Syntax: abort
Operational Semantics: Execution fails to reach a final state.

Predicate Transformer Semantics:
[wp(abort, R) = F] (2)
3. Assignment

Syntax: =z := e (simple assignment)

Also: z1,...,%p 1= €1,...,¢, (multiple or concurrent assignment),

where z,z1,...,2, are distinct variables and e, e;,...,e, are expressions.
Operational Semantics: A simple assignment, describes a state change involving a

single variable, whereas maultiple assignments are used to describe state changes
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involving more than one variable. We elaborate on the semantics of the concurreat
assignment, from which the meaning of the simple assignment should also be clear.
Execution involves evaluating the expressions ¢;, without affecting the program
state, to obtain values v; and then changing the program state by assigning each
of these values to the variables z; of corresponding subscripts, in any order. If
evaluation of one of the expressions e; leads to a not properly terminating activity,

the whole construct is allowed to fail to terminate properly.

Predicate Transformer Semantics:

[wp((z1,...,Zn :=€1,...,6n), R) =

(Vi:i21Ai< n: domain(e}) cand K)o on 3)

where the predicate domain(e;) characterizes the set of states in which the ex-
pression ¢; can be evaluated without causing failure. A recursive definition of
domain(e) based on the structure of expressions is given in Appendix C.
Example:
wp{(z,y 1=z divy,y+ 1),z > 100) = (y <> 0 cand z div y > 100)

4. Local block

Syntax: |[varz:T|S]|,
where z is a variable, 7" a type and § a program construct. This syntax is very
similar to that of constructs in [40, 125, 121).

Operational Semantics: Execution of a local block construct as depicted above,
extends the program state with a new variable = of type T, for the duration
of the execution of the program S, whereafter z is released. No restriction is
placed on the name of the new variable; in particular, local redeclaration of global
identifiers is allowed. The introduction of multiple variables within a single local
block is also permitted and involves using a list of variable declarations, such as
var 23 : Ty;22 : T3;. .. ;25 : T, instead of the single declaration var z : T.

Predicate Transformer Semantics: This semantics is from [S1]

[wp(ilvar = : T | S]I, R) = wp(S5, R)] 4)
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where y is a fresh variable, i.e. it is nol part of the existing state space and Sy
denotes the program construct obtained by systematically substituting y for z in
S. A definition of substitution in program constructs can be found in Appendix D.
As remarked in [81], this definition is not always correct. A problem occurs if y is
free in wp(S5y, R). Since this can only happen if z is not initialized by 5, we must
state the additional proviso that z is duly initialized. The handiing of variable
initialization and other issues related to the semantics of the local block construct

are discussed in more detail in sections 3.3 and 4.2.3.

Example:

wp{(|[var z : integer | z := 1]|),z = n) wp(y := 1,z =n)

T=n

5. Sequential compeosition

Syntax: 5;9;

Operational Semantics: Sequential composition is the primary mechanism for com-
bining basic programs to form more complex ones and it is traditionally depicted
by the semicolon operator. Execution of the above sequential composition will ac-
tivate program S in the current program state and upon its termination, activate

program S in the resulting program state.

Predicate Transformer Semantics:
[wp(S1; S2, R) = wp(S1, wp(S2, R))] (5)
Example:

wp((z:=k;y:=z4+1),z>0Ay>0) = wplz:=k,z>0A2> -1)
= k>0Ak> -1

= k>0



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DIUKSTRA’S PROGRAMMING CALCULUS 28

6. Conditional composition (alternative construct)

if G - §

oG S
Syntax: ? oo

o G, — S,

f,
where the G; are Boolean expressions—called guards; and the S; are program

constructs.

In what follows, we will use the abbreviations:

IF for if Gl - S]

0 G, - 5
0
0 G, -—= S,
fi

GG for (3i:Gy)

Operational Semantics: An alternative construct allows the selection and execution
of one command from among a given set. As can be seen above, it consists of a
set of guarded commands. During execution, a true guard is selected from among
the G; and its corresponding program S; is activated. If more than one guard is
true, this construct gives rise to nondeterminism. If none of the guards is true,
the result will be failure, i.e. equivalent to activating an abort command. Also, if
evaluation of a guard leads to a not properly terminating activity, then the whole
construct is allowed to fail to terminate properly.

Predicate Transformer Semantics:

[wp(IF, R) =
(Vi 2 domain(G;)) cand (GG A (Vi :: G; = wp(S;, R}))] (6)

Example:

wp(if z >=0—skipOsr<=0—z:=—zfi,2 >=0)
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= (>=0vz<=0A(z>=022z>=0A(z<=0=> -2z >=0)
= 7

Useful Theorem: In practical situations it is not always necessary to calculate the
weakest precondition of an alternative construct. It may happen that a previous
program development step provides a stronger assertion that has to serve as pre-
condition for an alternative construct yet to be developed. The following theorem
from [38] allows one to test whether a given assertion is indeed a precondition of a
proposed alternative construct, without having to calculate its weakest precondi-
tion.

Theorem 3.1.0.1 Consider the alternative construct IF and two predicates Q and
R satisfying:

(a) [Q = GG;

(B) [(Vi:1<iAi< n:(QAG;) = wp(Si, R))];

then:

[Q = wp(IF, R)]

7. Iteration (repetitive construct)

do Gy - 5
g G — 5
a
0 G, - S5,

od,
where the G; are Boolean expressions—called guards; and the S; are program

Syntax:

constructs.
We also introduce the following abbreviation:
DO for do G; — 5

0o G —- 5

O

O Ghn — Sa

od
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Operational Semantics: An iterative construct allows the repeated selection and
execution of one of a given set of commands. The construct is made up of a set of
guarded commands. When executed, a true guard is selected from among the G;
and its corresponding program S; is activated. This process is repeated unatil none
of the guards is true. If more than one guard is true, nondeterminism will resuit.
No assumptions are made as to fair selection of guarded commands. As soon as
no guard is true, the result is proper termination, i.e. equivalent to activating a
skip command. The whole construct is allowed to fail to terminate properly if

evaluation of a guard leads to an activity that does not terminate properly.
Predicate Transformer Semantics: Following [42], we require DO to be semanti-

cally equivalent to its first unfolding:

if G] - Sl;DO
G, — $2;DO

a

I}

oG, — S53:DO
0 -GG — skip

Assuming all guards to be well-defined, a few manipulations show that wp(DO, R)

is a solution of the following equation in predicate X

[X = (GG A (Vi :: G; = wps,(X))) V(-GG A R)] (7)
wp(DO, R)
= {definition of wp(IF,R) and the above semantic
equivalence}
(GG V ~GG) A (Vi : G; = wp(S;, wp(DO, R)) A (-GG =
wp(skip, R))

{predicate calculus and definition of wp(skip, R)}

(GG A (Vi :: G; = wp(S;, wp(DO, R)))) V (-GG A R)

The predicate wp(DO, R) is defined as the strongest solution of (7), i.e. that solu-
tion A such that, if B is any solution, then [A => B)]. The equation (7) is of the
form [X = f(X)] with f a predicate transformer. Now we have:
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wps;(X) is an or-continuous predicate transformer
= {definition of chain continuity and Lemma 2.5.0.2}
S is a chain continuous function on (Predy,,,C)
= {Theorem A.5.0.1}
J has a least fixed point
= {definition of least fixed point and Lemma 2.5.0.1}
puz.f(z) is the strongest solution of [X = f(X)].

Also, from Theorem A.5.0.1:

pz.f(z) = U{/™(F)Inzo
where

LH{S™(F)}nz0

= {Lemma 2.5.0.2}

Bn:n2>0: fr(F)
Thus [X = f(X)] has (3n : » > 0 : f*(F)) as its strongest
solution.

Useful Theorem: In practical situations the above definition does not provide direct
guidance for program development; hence the popularity of the following theorem
from [38], which allows the use of a predicate stronger than the weakest precon-
dition in driving development steps. In a sense, this predicate, the “invariant”,
embodies the essence of a repetitive construct. Hand-in-hand with the develop-
ment of a repetitive construct, goes an argument for its termination, based on a
well-ordered set. Our version of thic theorem corresponds to the formulation in
[42).

Theorem 3.1.0.2 (Fundamental Invariance Theorem for Loops) Consider
the repetitive construct DO, a predicate P and an integer function t on the state
space satisfying:
(a) [(PAGG)= (t > 0)];
() [(Vi:1<i<n:(PAGiAt=1z)=> wp(Si, P Al < z))] for all integer x;
then:

[P = wp(DO,~GG A P)],
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where wp(DO,~GG A P) is defined as the strongest solution of the following egqua-
tion in X
[X = (GG A (Vi G; = wp(5;, X)) V(~GG A R)].

Note; The predicate P is traditionally called the invariant of the repetitive con-

struct, while ¢ is known as the variant (bound) function and carries the termination

argument.

Example: Consider the following algorithm {v establish

z=a+b
without the use of multiplication.

{0}

z,y,% 1= a,b,0;

DO: do y#0Aeven(y) — y,z:=ydiv,z+z

0 odd(y) - yzi=y-lLz4z
od
{R:2=ax*b}

The weakest precondition of the above loop may now be calculated by finding
FUF), FA(F), F2(F), f3(F),... and forming the predicate (3n : n > 0 : f(F)),
where

F(X) = (GG A (¥i : G; = wp(S:, X))V (-GG A R)

Constructing the first four terms of this sequence:

PF) = F
SUF) = (((y # 0 A -odd(y)) V odd(y)) A (y = OV odd(y)) A ~odd(y))
V(y=0A-odd(y)Az=ax+b)

y=0Az=ax+b
(y#0Vodd(y))A(y=0Vodd(y)V(ydiv2Z=0A
—~odd(y div2)Az=a+b))A(-odd(y) V(y—1=0A

f(F)

—odd(y~ 1}Az+z=axb))V(y=0Az=a=b)
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® (odd(p)A(~odd(yp)V(y=1Az+z=0a+b))V(y=0A
z=a+b)

= (y=1Az+z=a*b)V(y=0A2=a=*b)
FYF) = (y#£0Vodd(y))A(y=0Vodd(y)V(ydiv2=1A
24+2+xz=a*b)V(ydiv2=0A2z=a%b))A(-odd(y)V
(y-1=1A2+42+z=a+b)V(y—1=0Az+z=as+bh)))V
(y=0A2=axb)
((odd(y)V(y=2Az+2%z=a+b))A(modd(y) V(y=2A
z+2¢z=axb)V(y=1Az+z=a+d)})V(y=0Az=asb)

(y=2Az+2+xz=a*b)V(y=1Az+z=a*b)V

(y=0Az=axb)
leads us to “guess” the general term:
fj(f)E(ai:USiAi<j:y=£/\z+y*z=a#b)

which can be proven by induction on j.

Hence
wp(DO, R) =
An:n20:(Fi:0<iAi<n:y=iAz+y*rz=a=+d))
Alternatively, we could use Theorem 3.1.0.2 and prove that
P=y>20Az4zsy=ax+b

is an invariant and
t=y
a bound function for the loop DO. It then remains to prove

[(~GG A P) = R}.

This method has the advantage of being easier to associate with the algorithm
under development as well as being more amenable to the application of heuristics

(to help in finding a suitable invariant and bound function).
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3.2 Data Types

Programs expressed in Dijkstra’s guarded command language refer to data objects of various
types. We give an overview of the most frequently used data types as found in examples of
program development in [38, 66]. A formal description of the synt.x of variable declarations

and reference may be found in Appendix B.

The data types Boolean and integer are basic to Dijkstra's programming calculus. Integer
subranges, in particular the natural numbers, are employed as well. We use “Modula-2-like”

declarations, e.g.

var
completed : boolean;
count : integer

Integer and Boolean arrays are also used extensively. An array is viewed as a function of
one argument with a finite domain consisting of consecutive integers. We require that, given
two array variables, the question of whether their values are equal, be decidable. Two array
variables have equal values iff, as functions, their domains are the same and their values are
equal in each point of the domain. This requirement necessitates finite domains. Furthermore,

the domain must be available for examination.

Dijkstra’s proposal to make this possible, is to use universal types “integer array” and
“Boolean array”, and consider the domain as part of any value of such a type. Consider-
ing an array variable ar, information about the domain may be extracted from its value by

means of three primitive integer-valued functions [38] (see table 1).

ar.Job | representing the lower domain bound
ar.hib | representing the upper domain bound
ar.dom | representing the number of points in the array domain

Table 1: Dijkstra’s functions for extracting array domain information.

These functions satisfy:
ar.dom = ar.hib —arlob+1>0
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This approach also lends itsell naturally to the definition of various operators that change

array domains {38] (sce table 2),

ar : shift(n) | shifts an array domain n places upwards, or downwards,
depending on the sign of n

ar : hiext(z) | extend an array domain with one point at the high or low
end, respectively,

ar : loext(z) | and assign the value of variable z as the function value in
the siew point

ar : hirem remove 3 point from the high or low end, respectively,

ar : lorem of an array domain

z,ar : hipop | the same as above, except that the function value in the lost
z,ar : lopop | domain point is preserved, by assigning it to a variable pro-
vided for that purpose

Table 2: Dijkstra’s functions for altering array domains.

Finally Dijkstra introduces two operators that affect function values of an array without

changing its domain [38] (see table 3).

ar : swap(i,j) | exchanges the function values in domain points i and j
ar : alt(i, z) changes the function value in the domain pcint i to the value
of variabie 2

Table 3: Dijkstra’s functions for changing array function values.

In section 4.2.4 below, the treatment of arrays is simplified somewhat, by considering the
domain of an array as a fixed entity that mwust be unambiguously stated when an array
variable is declared. This obviates the need for most of the primitive functions detailed
above. The following example shows a typical array declaration containing explicit domain

bounds:

ar : array[0..5] of integer

For an array variable ar,

ar{i]

is used to denote function application to the argument i—ar{i] is >nly defined if the argument



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DIJKSTRA’S PROGRAMMING CALCULUS 36

i is defined and falls within the domain of the function in ar. Following [66] we also introduce

notation for an array that has been altered in a specific domain point:

Let ar be an array, i a suitable argument for the function ar and e an expression

of the same type as the individual array values. Now

ar([i] : e)

denotes the array that is the same as ar except that its value in the domain point
iis e
e if t=j

ar(['l='-’)b']={arm oy

In keeping with tradition, the assignment ar := ar([i] : e) is abbreviated to ari] :=e.

We extend the above notation where necessary to allow for redefinition at several points of
an array domain. The following example reflects changes at two domain points, i and j, of

array ar:
f if j=k

ar(fi :e,[jl: f)lkl={ e if j#AkAi=k
arlk) if j#AkAi#k

Dijkstra also uses record types, [38, Chapter 15). The functional view of arrays may be
extended to record types, viewing a record as a function from a finite set of labels (field
names) to a set of values, see [66, page 92]. The following is an example declaration of a

record variable:

var
game : record
[ turns : integer;

won : boolean
[

With reference to the above declaration, the notation

game.won
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is used for function application to the argument won. Analogous to arrays we introduce

notation for a record that has been changed in a specific domain point [66):

Let = denote syntactic equality. Let rec be a record with ficld names m and

n, with f an expression of the same type as field m. Then
rec(.m: f)n

is the record that is the same as rec except that its value in the domain point m
is f:
f if m=n

reen if m#En

rec(.m: f)n = {

As for arrays, the assignment ree := rec(.m : f) is abbreviated to the traditional form

rec.m = f.

As in [66] we expand our view of arrays and records to include arrays of arrays (multidimen-
sional arrays), arrays of records, records of arrays and records of records. In keeping with the

above, these are internreted as higher order functions (see section 4.2.4).

To allow full generality in referring to subarrays of records and subrecords of arrays. the above

notation for alteration in a single domain point is expanded as follows [66}:

Let = denote syntactic equality. Let ar be an array and rec a record with
field names m and n. Let e and f be expressions of appropriate types. Let s and
t be suitable selectors for ar and rec, respectively. The term selector refers to a
finite sequence of field names (each prefixed with a dot) and subscript expressions
(individually enclosed in square brackets) e.g. [i][j].z. The null selector is denoted
by € and forms the identity element of the catenation operation, o, on identifiers

and selectors. Thus s o = s for a selector s.

ar(c:e) = e

rece:f) = f



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DIKSTRA'S PROGRAMMING CALCULUS 38

az([f]os: e)fj]

az[ji(s:e) if i=j
az(j} it i#5

recn(t: f) if m=n

rec(imot: flm = {

rec.n il m#n

Simple character variables as well as character arrays are often used in guarded command
programs, without a formal treatment of this data type being presented. In what follows we
use a character data type at least including all capital and lower case letters of the alphabet

as well as the ten decimal digits. We assume that the character data type is totally ordered.

Enumerated types are also useful in program development, e.g. use of the type “colour” in the
problem of the Dutch national flag [38, Chapter 14). Other types that are used in connection
with the programming calculus include sets, power sets, bags and sequences such as found in
[66, 121].

3.3 The Scope of Identifier Declarations

The guarded command language presented above has a block structure such as that found
in ALGOL, Modula-2 or Pascal, allowing the introduction of identifiers at the exact point
where the need for them arise, followed by their release after having served their purpose. A
Iocal block is delimited by the opening and closing brackets | and ]|, indicating the boundaries
within which locally declared identifiers form part of the state space. Within these boundaries,
the state space is temporarily extended to give access to the local identifiers.

As in Modula-2 and Pascal, no restriction is placed on the choice of local identifiers—
essentially allowing temporary redeclaration of a global identifier within a local block. This

is clearly reflected in the weakest precondition semantics of the local block construct:
[wp(l[var z : T | S]}, R) = wp(SZ, R)]
where y is a fresh variable and § initializes z.

As indicated in the definition, name clashes are handled by renaming all local identifiers. Aun-

other option is to temporarily rename those global identifiers appearing in the postcondition
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that are redeclared within the local block (see (81, page 118] or [130] for examples of this

approach). This would lead to the following weakest precondition semantics for local blocks:
[wp(l[lvar = : T'| S)|, B) = (wp(S, B)))¥]
where y does not occur free in R or § and z is initialized by S.

In contrast to the former approach, i.e. renaming of local identifiers, this has the advantage
of not requiring name substitutions within program constructs as well as limiting the number
of identifiers to be renamed to the minimum. However, a more subtle (and unwanted) conse-
quence of this choice of semantics becomes apparent when we consider extending our guarded
command language to include procedures, as we shall see in Chapter 5. Further discussion is

delayed until we approach that subject.

Permitting redeclaration of identifiers, allows a degree of freedom in the development of
local blocks, since the author of a local block need only be aware of those global identifiers
accessed within that block. This feature has also been criticized [38], because the state space
is contracted implicitly rather than explicitly and disallowing its use leads to a simplification

in the weakest precondition semantics of the local block construct.

The fact that locally declared identifiers are only accessible within their block of declaration
is in accordance with good programming practice—among other reasons because it limits
the program text a programmer has to consider in the case of an unintended change to
the value of a local variable. Some criticism has been leveled at the absence of a similar
limit on the access:bility of variables declared in surrounding blocks (“global” variables), see
[38, Chapter 10). To fulfill this need, Dijkstra proposes formally viewing local blocks as a
mechanism for altering the state space, rather than exclusively for extending it. This opens a
question of whether enumeration of all global identifiers accessible within a local block should
be mandatory at the start of every local block, or only in cases where contraction of the
state space (limited inheritance of global identifiers) is specifically required. In {38], Dijkstra
opts for the former alternative. As this burdens a programmer with having to write possibly
long lists of identifiers at the start of each local block, we will not pursue this suggestion
here. Later discussions on the introduction of abstraction mechanisms such as procedures

and modules, provide further perspectives on this issue.
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3.4 Specifications and Annotations

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to,’ said the Cat.
‘I don’t much care where—? said Alice.

‘Then it doesn’t matter which way you go,’ said the Cat,

Lewis Carroll, Alice’s Adventures in Wonderland

Development of a guarded command program involves the construction of one or more pro-
gram statements that together realize a functional specification of program behaviour. Such
a specification states the desired relation between the initial and final states of a computa-
tion. Since input and output mechanisms are not standard and difficult to axiomatize, it is
customary to assume that the initial state of a computation is directly determined by the
input and the final state by what is to be the output. As described in Chapter 2, we use a
predicate, called a postcondition, to characterize the allowable final states of a computation

and another predicate, the precondition, to characterize the corresponding initial states.

We use the following basic notation for specifications!:

[pre, post] (8)
where pre is the precondition and pest the postcondition.
To satisfy specification (8) we would have to develop a program § such that:

[pre = wps(post)]

or, stated operationally:

If execution of § is started in a state satisfying pre, then it is guaranteed to

terminate in a state satisfying post.

For completeness, a functional specification should also contain a list of all those variables

whose values may be changed. This list is called the frame [125]. Our notation is the same

1This motation is not part of the guarded command language



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DIUKSTRA'S PROGRAMMING CALCULUS 41

as in [124, 122, 125, 121, 123]:
z : [pre, post) (9)

where pre is the precondition, post the postcondition and = the frame.

It is important to realize that merely expressing a functional specification in the given notation

is by no means a guarantee of satisfiability. A specification (8) is satisfiable iff

(3§ :: [Q = wps(R)]).

A guarded command program is annotated with assertions expressing the program specifica-
tion, internal assertions such as loop invariants and bound functions. Internal annotations
are to be used in proving the program’s consistency with its specification. We follow the
convention of interspersing the guarded commands of a program with annotations enclosed in
curly braces, “{” and “}”. In particular, each loop must be annotated with an invariant and
a bound function. Figure 1 shows a guarded command program annotated with its specifica-
tion, as well as a loop invariant and a bound function. Placing an assertion in a program is
used to express properties that the state space must possess at that point of execution. Such

assertions act as lemmas or subgoals in proofs concerning the program.

{pre:b2> 0}
z,Y,2 := a,b,0;
{invar P: y > 0Az+zxy=a*b}

{bound ¢: y}

DO: do y#OAeven(y) — yz:=ydiv2,z+=z
O odd(y) - pzi=y—-liz+z
od

{post : z = a + b}

Figure 1: An annotated loop.

Till now we have placed little emphasis on the syntactic issues surrounding predicates (con-
ditions), but in time we shall have to be more specific about a suitable language in which
program assertions and specifications can be represented by formulas. An obvious candidate
is the set of first-order formulae over the state space and operators available in the guarded
command language. As pointed out in [11, 81}, this language is not sufficiently powerful to

express preconditions of iterative constructs. In terms of our semantic framework, this set
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of formulae does not exhibit a suitable lattice structure, From Lemmas 2.5.0.1 and 2.5.0.2
we see that the partial order on predicates should correspond to logical implication, while
the least upper bound of a set of predicates must correspond to their disjunction. Such a
disjunction is not always expressible in the above language. We reproduce an example from
[81):

Consider the set of conditions S={n=1,n=1x2,n=1x2x3,...}.
The least upper bound of Sisn=1vVvan=1x2vn=1x2x3...,1e an
infinite disjunction.

First order formulae equivalent to this disjunction would be

Fi:i2l:n=il)

or

@i:i21:n=([l7:1<jAF<i:])

both of which contain operators not present in the guarded command language.

In [38, 66, 40] and others, the language of first order formulae over the state space and the
guarded command program operators, extended by the use of special quantifiers (“sum”,
“product” and “number”) and conditional connectives (cand and cor) in the presence of
undefined expressions, is used to express conditions. A specification language encompassing
a bigger set of operators than a programming language is quite useful in providing more
compact ways of expression, but poses the problem of determining whether the extended

language is closed under infinite disjunctior or conjunction.

A theoretically simpler solution is proposed in [9, 11}, namely that infinite disjunctions and
conjunctions be allowed in the language of conditions. This leads to the use of formulas of the
infinitary logic L,.,, which is an extension of ordinary first-order logic allowing disjunctions
and conjunctions over countable sets of formulae, but quantification only over finite sequences

of variables. A completely formal treatment of this and other infinitary logics can be found
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Vz(v z=1i)

i=0
Figure 2: A formula of L.

in {101). In [10] this logic is shown to be the weakest one sufficiently rich to express the

conditions required for guarded commands.

Thus the pre- and postconditions used in specifications of guarded command programs, are
formulae of a suitable first order logic, such as L,,,,, and may be manipulated according to
the rules of this logic. This, together with the relevant theories about integers and other data
types involved in a specification, may form the basis of a formal argument (proof) that a

given mechanism satisfies (9) as an equation in §.

3.5 Developing Guarded Command Programs

Dijkstira intended weakest precondition predicate transformers to be used as the basis for a
calculus of program development. The term calculus is used to signify a set of formal rules
which, if successfully applied, will resuit in the derivation of a program which is consistent
with its specification. As in the case of in*2gral calculus though, simple mechanical application

of rules do not guarantee success,

In [66], various program development strategies and principles, which use weakest precondition
calculations in a constructive manner, are formulated. Weakest precondition calculations are

generally used for the following purposes [43]:
1. to identify a suitable guard to combine with a command in a guarded command con-
stract;
2. to identify a command that will ensure that an invariant is maintained;

3. to identify a subgoal (necessary precondition) to be established before a command can
be executed.
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Given a precondition @) and a postcondition R program development typically staris by
selecting, under guidance of the weakest precondition calculus, a program construct S for
which wp(S), R) is such that either

o [Q@ = wp($), R1)]

where [R) = R], in which case the program is complete; or

* [Q1 = wp(51, )]
with Q; a subgoal for establishing the original postcondition R, in which case we repeat
the above for the specification [@,Q;]. In this fashion we obtain a program consisting

of the sequential composition of commands Sy, Sp-1,-..,91.

The two main program construction strategies proposed by Gries, i.e. those for developing
alternative commands and loops, are derived from Theorems 3.1.0.1 and 3.1.0.2 above. These

strategies are as follows [66]):

Strategy for developing an alternative command: Invent guarded commands until the
proposed precondition @ of the construct implies that at least one guard is true (Q =

GG). To invent a guarded command:

¢ find a command C which will establish postcondition R in at least some cases;

e find a Boolean expression G satisfying G = wp(C, R) (or Q A G = wp(C, R));
and put them together to form G — C.

Strategy for developing a loop: Formulate a suitable invariant P and a bound function

t (see below). Invent guarded commands until:

e the loop invariant and the negation of the disjunction of the guards (-GG implies
that the postcondition R holds (P A -GG = R);

o the loop invariant and the disjunction of the guards implies that the value of the
bound function remains bounded from below by zero ((P A GG) = (t > 0)).

To invent a guarded command:
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e create a command C which makes progress towards termination (decreases the

bound function);

e develop a corresponding guard G to ensure that the invariant is maintained;

and put these together to form G — C.

A bound function is normally stated in terms of the guards of the guarded commands that
comprise a loop. There are no hard-and-fast rules for developing bound functions, but some

guidelines can be found in [66, 43).

As for bound functions, there are no mechanical rules for inventing loop invariants. Appli-
cation of existing heuristics need to be guided by a good measure of insight and ingenuity.
A general heuristic for finding a loop invariant is to weaken the postcondition of a loop con-
struct [66]. There are various ways of weakening a predicate, of which the following are often

successful in deriving an invariant from a postcondition [66]:
1. deleting a conjunct;

2. replacing a constant by a variable, together with suitable bounds on its allowable values;

3. enlarging the range of allowable values for a variable.

Sometimes input variables have to be modified themselves to form part of the result. In such
cases an invariant has to express the fact that part of the input remains unchanged, requiring
the additional technique of combining the pre- and postconditions of a loop (see [66, page
211]).

Other development strategies, specifically for stepwise refinement of guarded command pro-
grams may be found in [43].

3.5.1 An Example

To illustrate Gries’s main development strategies, we show part of the construction of a

solution to “Rubin’s probiem™:
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Determine whether a row containing only zeros is to be found in a given nonempty,

two dimensional array.

The formulation and specification of this problem is based on [43, page 414], which may be

referenced for a different derivation of the saine solution as well as the origins of the problem.

Problem Specification and Data Declarations

We assume declarations for two natural number constants, MAXCOL and MAXROW,

which give the dimensions of the array, as well as the following variables:

matriz : array [1.AJAXROWI][1.MAXCOL] of integer
found : boolean
lastrow,lastcol : integer

curcol,currow : integer

The variables currow and curcol give the row and column positions, respectively, which have
already been checked for zero entries, while lastrow and lastcol indicate the row and column,

respectively, up to which one has to keep looking for zeros.

We will also need three predicate abbreviations:

1. The predicate nonzero,

nonzero(matriz, mazcol, rowpos, colpos,lastcol) =
(Veol : 0 < col A col < colpos : matriz[rowpos][col] = 0)
A(lastcol = mazcol cor matriz{rowpos}[colpos + 1] # 0)

which states that, in a particular row (rowpos), all the entries up to a certain column
position (colpos) are zeros and, unless lastcol is the last column of the matrix, the

position colpos + 1 contains a non-zero entry.

2. The predicate allzero,

allzero(matriz, mazcol, rowpos) =

(Veol : 0 < col A col < mazcol : matriz[rowpos)[col] = 0)
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which states that a particular row contains only zero entries.
3. The predicate inbounds,

inbounds(mazindez,indez,lastindex) =

(0 < indez) A (index < lastindez) A (lastindezr < mazindez)

which states an ordering on array indices mazindez, indez, and lastindex.

The precondition pre states our requirements for the initial values of M AXROW, MAXCOL
and mairiz

(MAXROW > 0)A(MAXCOL > 0)A

(Vrow : 0 < row A row < MAXROW : (Veol : 0 < col Acol £ MAXCOL :
matriz[row][col] € INTEGERS))

pre

The postcondition post states that there is either no row containing only zero entries, or the

row at position currow + 1 is such a row:

post = (Vrow:0< rowArow < currow: (Jecol:0< colAcol < MAXCOL :
nonzero(matriz, MAXCOL,row, col, col))A
(lastrow = MAX ROW cor alizero(matriz, MAXCOL,currow + 1))
A(lastrow = currow) A (found = (currow # MAX ROW))

Constructing a Solution

It is easy to see that the last conjunct of post may be established by the command:

found := currow # MAXROW

To obtain the next subgoal, we calculate wp({found := currow # MAXROW,post). This
gives:
posly = (Vrow:0 < rowArow < currow:(Jeol:0 < col Acol < MAXCOL :
nonzero{matriz, MAXCOL, row, col,col)))A
(lastrow = MAX ROW cor allzero(matriz, MAXCOL,currow + 1))

A{lastrow = currow)



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 3. DIJKSTRA'S PROGRAMMING CALCULUS 48

We will develop a loop DO to establish post;. Each iteration will examine one row of the
matrix in turn. If a row containing only zeros is found, we need not consider further rows
and the loop terminates immediately, otherwise iteration continues until all rows have been
considered. To avoid unnecessary repetition, we do not give details of the overall development

of DO;. The reader may use the following loop invariant

P, = inbounds(M AX ROW,currow,lastrow) A (Vrow :
0 < rowArow < currow:(3ecol:0 < col Acol < MAXCOL:
nonzero(malriz, MAXCOL,row,col,col)))A
(lastrow = M AXROW cor allzero(matriz, MAXCOL,currow + 1))

i

the bound function

ty = lastrow — currow

and the predicate

posta = inbounds(M AXROW, currow,lastrow) A (Vrow :
0 < rowArow < currow : (col : 0 < col Acol < MAXCOL :
nonzero(matriz, MAXCOL, row,col,col)) A (lastrow = MAX ROW)
Acurrow <> lastrow) A (t1 = T1) A (curcol = lastcol)
Anonzero(matriz, MAXCOL,currow + 1, curcol,lastcol)

(where T) is a logical constant representing the initial value of the bound function f;) to

confirm developments up to the point reflected in figure 3.

We now develop a loop DO3, using post; as postcondition. Each iteration of the loop will
examine one column of row currow + 1 for a zero entry. The loop terminates as soon as a

nonzero entry is found, otherwise it continues until all columns have been examined.

We find an invariant P, by weakening post;. We use the technique of changing a constant
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{pre}
{invar P}
{bound t,}
DOy: do  currow # lastrow -
{posta}

IFy: if curcddl = MAXCOL — lastrow:= currow
O curcol # MAXCOL — currow:= currow+1
fi
od;
{post:}
found := currow # MAXROW

{post}

Figure 3: Partial solution to Rubin’s problem.

(curcol = lastcol) in posiz to a variable which ranges over the column positions to be consid-

ered (0 < curcol A curcol < lastcol):

P; = inbounds(M AX ROW,currow,lastrow) A (Yrow : 0 < row
Arow < currow : (deol : 0 < col Acol < MAXCOL :
nonzero{matriz, MAXCOL,row,col,col)) A (lastrow = MAX ROW)A
(currow <> lastrow) A (t; = T1) A inbounds(MAXCOL,
curcol,lastcol) A nonzero(matriz, MAXCOL, currow 4 1, curcol,lastcol)

It is clear that iteration must continue until curcol = lastcol, which literally means that the
last column position which could give us success has been examined. From this we derive the

bound function
t2 = lastcol — curcol
and we choose for our first guarded command, the guard
G'3 = curcol # lastcol

Immediately we have P; A~G2 => posty, indicating that not more than one guarded command
will be necessary. Also P, AGa =12 > 0.
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We now develop a command to be guarded by G;. This command must decrease {3 and
reestablish P2. We can immediately identify two sensible ways of decreasing the bound

function:

1. Increment the column index curcol by one, i.e. use the command curcol := curcol + 1.

This is a logical step to take when the next column contains a zero.

2. Set lastcol to the current column position, i.e. lastcol := curcol. This should be done
when the next column does not contain a zero, as the current column then contains the

last consecutive zero from the beginning of this row.

This case analysis shows that we need an alternative construct I F; comprising at least two

guarded commands.

For the first case we calculate:
wp(curcol := curcol + 1, P;) =
inbounds{ M AX ROW, currow,lastrow) A (Vrow : 0 < rowA
row < currow : (Jeol : 0 < col Acol < MAXCOL :
nonzero(matriz, MAXCOL,row,col,col)) A (lastrow = M AX ROW)A
(currow <> lastrow) A (t; = T1) A inbounds(MAXCOL, curcol + 1,
lastcol) A nonzero(matriz, MAXCOL, currow + 1, curcol + 1,lastcol)

The only conjunct which is not implied by Pz A Gz is 1w ul: ‘zjcurrow + 1]{curcol + 1] = 0. We

choose this expression as the guard for the command curcol := curcol + 1.

For the second case we calculate:
wp(lasicol := curcol, P2) =
inbounds(M AX ROW, currow, lastrow) A {Vrow : 0 < rows.
row < currow : (Jeol : 0 < col Acol < “TAXCOL :
nonzero(matriz, MAXCOL,rov-. -..,col)) + (lastrow = MAX ROW)A
(currow <> lastrow) A(ty = T1) A viiernda(Af AXCOL,curcol,
curcol) A nonzero(matriz, MAXCGI, .-~-0.-1,curcol,curc.l)

For the above to be implied by P; A G, matriz[curro:2+ ij[curcol + 1] # 0 must hold. We
choose this expression as the guard for the command lastcol := curcol.
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The completed program is shown in figure 4. The reader may verify that the initializations

are correct.

{pre}

currow,lastrow := 0, MAX ROW,;

{invar P;}

{bound ¢,}

DOy: do currow # lastrow — curcol,lastcol := 0, MAXCOL;
{invar P}
{bound ¢;}

DOz: do  curcol # lastcol —
IF;: if matriz[currow + 1)fcurcol +1) =0 — curcol := curcol + 1
O matriz[currow + 1)[curcol +1)#0 — lasteol := curcol
fi

RS TE I | curcol = MAXCOL — lastrow := currow
o curcol # MAXCOL — currow:= currow+1

{pesh}
found := currow # MAXROW
{post}

i sure 4: Solution to Rubin’s problem.
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Chapter 4

Mechanical Support for Dijkstra’s

Calculus

We now start our investigation of the main concern of this treatise, namely the suitability of
Dijkstra’s programming calculus to be used in mechanically supported program (algorithm)
development as well as the type of tools that would best assist its application. The discussion
centers around a prototype implementation that was undertaken to obtain insight into these

issues, as well as a survey of results from other projects, as reported in the literature.

The first section details aspects of program development using Dijkstra’s calculus that are
amenable to automation and explains the main considerations and criteria that guided the

form and content of the prototype implementation.

After this, different aspects of the mechanization of precondition calculations are discussed.
First, a brief overview is given of the formal syntax adopted for annotated guarded command
programs. A grammar for the language accepted by the prototype implementation appears
in Appendix B. After this, requirements for the manipulation and representation of expres-
sions during precondition calculations receive attention. Problems regarding the semantics
of programs containing references to uninitialized variables are pointed out and a number
of poesible solutions are evaluated. We also discuss the formalized use of logical constants

in program annotations. The treatment of data types, specifically arrays and records, in

52
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Dijkstra’s calculus and in the prototype implementation is considered, together with some
suggestions for generalization and extension. This section is concluded with a discussion of

problems surrounding multiple assignments to compound variables and the use of quantified

expressions in program annotations.

The next section explores support mechanisms for generating and discharging the proof obli-
gations arising from application of Dijkstra’s calculus. The batch paradigm of verification
condition generation is considered first. Here we pay special attention to the role played by
program annotations and certain logical constants. This is followed b a discussion of some of
the problems to be solved in trying to formalize the specification language used with guarded
command programs. These include the lack of expressiveness of its underlying first-order
logic as well as the informal treatment of undefined terms. After this, some perspectives are
given on ways in which to support interactive program development. Finally, some desirable
features are highlighted for the proof support component of a mechanical program develop-

ment system based on Dijkstra’s calculus. Special consideration is given to the simplification
of logical formulae.

Conclusions are presented in section 4.4.

4.1 Considerations for a Prototype System

We proceed by identifying and discussing various aspects of program development using Dijk-
stra’s calculus that show potential for being partially or completely automated:

calculation of (weakest) preconditions: This activity is basic to the application of Dijk-
stra’s programming discipline, in that further program development steps are guided by
these conditions and they play an important role in the proof obligations that stem from
the development. Following the rules of the weakest precondition calculus, calculating
the weakest precondition of a program construct with respect to a given postcondition
is a mechanical procedure in all but one case. In general, calculation of the weakest
precondition of a repetitive construct is not as simple, because it is based on induction

[146] and requires the formulation of a property that will carry an inductive proof.
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In practical terms it also turns out to be more convenient to work with a suitable
approximation of the weakest precondition itself. The responsibility of supplying an
invariant condition and a bound function from which a proof of correctness of a repetitive

construct can be constructed, traditionally rests with the programmer.

generation of invariants and bound functions: Supplying a suitable invariant and bound
function for a loop under construction, requires a thorough understanding of its intended
purpose and modus operandi as well as a certain amount of ingenuity. Since there is
no “algorithm” for producing invariants and bound functions (see section 3.5), they
cannot be generated solely by mechanical means and their semi-automated generation
involves heuristics. A programmer is expected to use his/he: deeper understanding of
the principles involved to control the application of heuristic strategies and to salvage
the situation when these fail to produce a solution. Some mechanical help may be

beneficial, but the programmer remains the main protagonist in this operation.

proof assistance: Use of the weakest precondition calculus generates proof obligations to
te fulfilled in showing consistency between programmer supplied annotations and de-
veloped code. Proof obligations take the form of a set of logical formulae such that
proving the validity of these formulae in a suitable first order logic, is sufficient to prove
that an implementation meets its specification. These formulae are called verification
conditions. Generating verification conditions car be completely automated, provided
that a specification and, in the case of a repetitive construct, an invariant and a bound

function are supplied.

Mechanically generated verification conditions tend to be lengthy, obscuring useful facts
for further program development. Certain automatic theorem proving techniques may

be applied to simplify these conditions before proving takes place.

Incompleteness and undecidability results for the subject domain under consideration,
indicate that proofs of verification conditions are not fully automatable. Nevertheless,
partially automated theorem proving is very desirable in relieving programmers from

detailed symbol mauipulation and reducing the probability of human error.

supporting development strategies: Strategies for the development of guarded com-

manc programs and invariants, such as those mentioned in section 3.5, are characteristic
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of the application of Dijkstra’s calculus. Since the main program development strate-
gies are guided by precondition calculations and theorem proving operations, meaningful
automation of programming strategies must be built on good mechanizations for per-

forming such functions and their successful integration into an interactive environment.

general development support: We classify administrative support such as storage and
retrieval of programs and proofs, pretty-printing, editing, and support for user interac-

tion under this heading,.

In deciding on the exact form and extent of a prototype implementation, the following facts

and criteria were used as the guidelines:

e The main purpose of the implementation is to gain insight and not to produce a highly

sophisticated and generally “useful” system.

e The prototype should be suitable for incremental enhancements by future efforts ex-
ploiting the knowledge gained, or for connection to existing components from other
sources, such as a powerful algebraic simplifier, theorem prover or proof editor where

these seem appropriate.

¢ Due consideration should be given to whatever lessons can be learned from other similar

projects.

¢ Mechanical tools are not meaningful unless they are powerful enough to be preferable

to paper and pencil, yet convenient to use.

e Aspects of using the calculus that occupy considerable time, without having significant

intellectual content are good candidates for automation.

¢ Unique aspects of the calculus are more likely to deliver interesting or new results when
automated than features that show a high degree of similarity to those of other program

verification or development systems.

e The fact that Dijkstra’s discipline of programming is specifically suitable for the de-
velopment of algorithms, suggests that mechanical support for the method could find
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application in teaching environments. To make such a system accessible to a wide

audience, it should have minimal resource requirements.

Stand-alone mechanical systems supporting most of the above aspects, such as the Gypsy
Verification Environment [1, 3, 57] and the Stanford Pascal Verifier [69, 1, 2], are large sys-
tems developed over several years (in the case of Gypsy—more than a decade). Smaller
implementations are often integrated with sophisticated theorem proving environments such
as [61, 4] in HOL and [80] in the Karlsruhe Interactive Verifier, or used in conjunction with
existing special-purpose tools such as arithmetic simplifiers {143]. For the current purposes, a
simple prototype was constructed, focusing on the most fundamental and obvious candidates
for automation, while providing a good foundation for future research, i.e. calculation of pre-
conditions and generation of verification conditions, with limited attention to administrative

support.

Research in automated theorem proving techniques and systems encompasses a vast spectrum
[109, 107] and there are no clear-cut solutions to the intricate problems encountered in this
field. Issues such as powerful hardware, productive user direction of mechanical provers as well
as management of recorded proofs and provision for reusable theories to extend knowledge,
form part of the kaleidoscope of factors that distinguish an invaluable tool from a constant
source of frustration. This thesis is not intended as a contribution to mechanical theorem
proving research. Therefore, I did not include a theorem proving component in the prototype.
It could be used, however, to gather information about specific theorem proving requirements,

imposed on an automated theorem prover by the use of Dijkstra’s calculus.

The majority of existing mechanical verification systems, generate proof obligations (verifi-
cation conditions) in batch mode. A programmer has to supply a specification as well as a
suitably annotated program before verification conditions are generated. However, mechan-
ical support for a calculational style of stepwise program development, guided by weakest
precondition transformers (as embodied in Gries’s program development strategies (see sec-
tion 3.5)), should be interactive. In such an environment (weakest) precondition calculations,
algebraic simplifications and the generation and discharging of verification conditions are in-
terleaved with administrative functions, to guide and support a programmer in every step of

the process of program construction.
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It is important that interactive support for program development does not impose unnecessary
restrictions on programmers. For example, a programmer should be able to undo undesirable
development steps with as little impact on remaining work as possible and should have control
over strategies used by the system and the order in which subgoals are tackled or proof
obligations discharged where this is irrelevant to the correctness of the method. At the same
time an implementation of program development strategies should be carefully constructed
not to compromise soundness. In the light of the above, it seems that mechanical support for
the use of development strategies (for programs, invariants, and/cr bound functions) needs

to be quite sophisticated in order to be meaningful.

Another obstacle to interactive support is the sheer bulk and complexity of the mechanically
computed preconditions that are displayed during program development. Unless 2 highly
effective mechanical simplifier, integrated with the system, is available to reduce the precon-
ditions to such an extent that they may be readily grasped by a programmer, the fact that
preconditions are computed interactively loses most of its attraction [143]. Because of these
considerations, the prototype implementation does not provide direct support for formal pro-
gram construction and follows the (admittedly less than ideal) batch paradigm of verification
condition generation. It is used in conjunction with an existing programmable text editor,
that has been customized with macroe to help a programmer apply Gries’s programming
strategies.

The prototype system was implemented in Modula-2 on an IBM-compatible personal com-
puter.

4.2 Generating (Weakest) Preconditions

4.2.1 Formalizing the Syntax

To facilitate calc:lation of (weakest) preconditions, a formal presentation of the syntax of
guarded command language programs, annotated with first order predicate formulas (program
assertions), is necessary. The syntax of guarded command statements, as well as suitable
integer and Boolean expressions is given in BNF in [40]. Building on this foundation, 2 context
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free grammar was developed for annotated guarded command programs. This grammar

appears as Appendix B. A number of its features are listed here:

e Variable declarations follow the syntax used in section 3.2, and provides for the standard
types INTEGER, BOOLEAN, and CHARACTER, as well as arrays and records.

o The domain of an array type must be an integer subrange, bounded by explicitly stated
integer constants (see section 3.2). To cater for domains such as the well known [0..n—1},

domain bounds are allowed to take the form of simple expressions involving constants.

¢ Provision is made for global as well as local declarations of integer, Boolean, and char-

acter constants. Constants of compound data types are not catered for.
e Program statements include all the constructs listed in section 3.1.

e The requirement that an invariant as well as a bound function be supplied with each
repetitive construct, is syntactically enforced. This is quite reasonable since no demon-
stration of correctness is possible without these and there are no facilities for mechani-

cally generating them.

¢ Program statements may be interspersed with first order predicate formulas or asser-
tions, the syntax of which differs from that of the Boolean expressions allowed in gnarded

commands in that the following are allowed only in assertions:

— the implication operator, =>;

— quantified expressions involving the quantifiers NUMBER, SUM, PRODUCT, FORALL,
and EXISTS;

— explicit reference to arrays and records that have been changed in one or more

domain points, using the notation of section 3.2.

e Any program assertion (or bound function) may be optionally labelled with a name.
This rame may be used as an abbreviation for the formula itself in subsequent program
annotations. In addition, one may introduce parameterized predicaie abbreviations that
may be used (with suitable arguments) in any program annotations. Predicate abbre-
viations are discussed in Chapter 5.
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¢ Quantified expressions follow the syntacticai pattern outlined in section 2, with the
additional requirements:

— that the type of the quantification varjable be explicitly stated and must be one of
INTEGER, CHARACTER, or BOOLEAN;

—~ that no more than one dummy variable is allowed;

— that the numerical quantifiers SUM, PRODUCT, and NUMBER be used only
with finite ranges (see section 4.2.6 below), which is enforced by limitations on the

syntax of the range predicate.

The grammar given in Appendix B was transformed into an equivalent LL(1) grammar to
facilitate construction of a recursive descent (predicative) parser. The desire to obtain a gram-

mar that is LL(1), required no noteworthy deviations from the syntax used in the literature.

In Appendix E, a solution for “Rubin’s problem” (see section 3.5) is shown in the syntax

accepted by the parsing component of the prototype implementation.

4.2.2 Representing and Manipulating Expressions

Generating preconditions and verification conditions require only very simple manipulations
on the expressions involved. Apart from performing syntactic and basic semantic checking

(such as type analysis), the only noteworthy manipulations are:

e renaming of bound variables in nuantified expressions and local variables when calcu-

lating a precondition for a local block, e.g. in determining
wp(|[var z : T,y : Tz | 5], R(z,¥));
e textual substitution as found in
R;::iz.r div 2,z+y’

® construction of an expression from subexpressions, e.g. when using the disjunction of the

guards, GG, a bound function, £, and an invariant, P, of a loop to form the verification

condition

(PAGG)= (t>0).
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A brief discussion of suitable data structures for the representation of expressions subject to
such operations, as well as the handling of variable renaming during textual substitution and

precondition calenlations for local blocks, follows.

Suitable data structures

The choice of data structures for the representation of expressions is one of the most significant
decisions to be made in constructing mechanical tools for program development using formal
methods. The speed at which manipulations can be performed may be the determining factor
for a user whether or not to abandon paper and pencil in favour of a mechanical system,
Expression simplification and theoremn proving operations typically have the greatest impact
by far and data structures should be geared towards providin... the greatest possible efficiency
for these operations [137). The prototype implementation has no theo:em proving component

and the design of its data structures does not contain any specific features for its support.

Handling of expressions in the prototype implementation dictated the following basic require-

ments:

e The data structures needed to represent expressions from program text and annotations,

should be efficiently constructable during parsing.

e The data structures used for expressions should allow the basic manipulations listed

above to be carried out as efficiently as possible.

e Data structures used for expressions should not make undue demands for space as this

may become a critical resource in processing even relatively small programs:

— even small programs sometimes require manipulation of long and complicated as-
sertions; of which more are generated when calculating preconditions and generat-
ing proof obligations;

- simplification and theorem proving activities typically generate large sets of logical

formulae and consequently make significant demands on the available memory;

— other operations such as parsing and editing will simultaneously require space for

their data structures.
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e Since no theorem proving or simplification currently takes place on the verification
conditions generated, their end is simply to be recorded for the programmer’s scrutiny.
The data structutes used for expressions should allow this information to be easily

converted into a user appreciable format.

After considering these requirements, it was decided that representing expressions as binary
tree structures presented a good solution. The operations called for, can be implemented
by simple tree traversal, insertion, and deletion operations, Because one expression may
be required for different purposes in a number of verification conditions, it was found that
copying of expressions happens very frequently. This is a costly operation that will be well
worth optimizing if it continues to play as important a role in simplification and theorem

proving operations.

Instead of labeling individual nodes that represent variables with the name and type of the
variable, expression trees reference a symbol table, that is constructed during program parsing,
for information on variables. This makes renaming of bound variables very fast and because
the symbol table also contains scope information, references to local and global variables with
the same name are always easy tu distinguish. The symbol table is currently implemented
as a binary search tree. Its performance could be enhanced by changing this to a more

sophisticated representation.

Variable renaming

Calculation of the weakest precondition of an assignment construct involves textual substi-
tution in the postcondition. If such a postcondition involves quantified expressions, correct
substitution requires that variable capture within the scope of a quantifier be avoided by

renaming bound variables. For example, in

(Vk : R(k): (3z : S(z) : P(k,m,n,z)))":% (10)

rtkxej

the bound variables k£ and x will have to be renamed, to prevent references to variables z
and k, introduced into this scope by substitution, from being interpreted as references to the
bound variables with the same names.
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For the calculation of
wi|[var z : Ty, y: T3 | S)|, R(z, y)) (11)

all references to the local variables x and y in the construct S have to be replaced by fresh

variables, i.e. variables that do not occur free in R or in 5.

Two useful options for the renaming of variables are open to a mechanical system:

1. Prompt the programmer for a suitable renaming.

2. Construct a new name by appending a special prefix or suffix to the name of an existing

variable.

The first option is attractive in that a program developer retains complete control over the
identifiers used in verification conditions associated with a program. Presumably, this makes
verification conditions easier to understand. After implementing this capability, it was found
to be very inefficient. The verification condition generator has no guarantee of the suitability
of a replacement name supplied by a programmer for its intended purpose. If, for example,
the bound variable k, in (10) is renamed to j, it will probably have to be renamed again.
One may argue that programmers will be judicious in their choices when renaming variables,
but a mechanical procedure will have to check whether this is indeed so. In the case of (11)
this involves scanning both R and S, possibly repeatedly, to ensure that names supplied to
resolve clashes do not already appear there.

The second alternative has the advantage that it may be efficiently implemented. Since vari-
able names are altered only slightl;, the cornection with the program text remains apparent.
Using a special character such as “#” to prefix or suffix names that have to be altered is
impractical, because the same identifier may be used any number of times in different con-
texts. In [63] different uses of the same identifier are distinguished by using the program line
rumber on which an identifier is introduced as a suffix for all occurrences of that identifier
in verification conditions. I have implemented a similar scheme that renames an identifier z

to nOz, where n is a unique number, in cases where ambiguity arises. This notation uses a
“@"” to separate the identifier and number, instead of the more common “.”, to prevent con-

fusion with a record identifier qualified by a field name. Line numbers are not used, because
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they need not be unique—nothing prevents the introduction of the same identifier as bound

variable for different quantifiers on the same program line.

Since each program block and each quantilied expression represent a new scope level, identi-
fiers may be distinguished by expanding them to include a reference to the level at which they
were introduced. As a program is parsed, the parser numbers the scope levels sequentially in
the order that they are encountered and these unique numbers are used to distinguish identi-
fiers where ambiguity arises. This is a similar arrangement to the use of module or procedure
names to identify names declared in different contexts e.g. designating a variable I0check
declared in a module FI0 as FI0.I0check in Modula-2 or Ada {see [53]). If constructs such
as procedures and modules are added to the guarded command language, the current scheme

provides the scope to accommodate these as in the above example.

Because the representation chosen for expressions uses a symbol table when referring to
variables, expanding all references to a certain variable to its full, unique form is accomplished

by a very simple change to the symbol table entry for that variable.

Name substitutions within program constructs, as used for local biocks, require no additional

or different procedures than those for renaming in logical formulae.

4.2.3 Variable Initialization

What is the value of a variable after its declaration? Different approaches to this question
include considering new variables to have a special “undefined” value upon their creation, or
implicit initialization with a neutral value such as zero for all integer variables and “true”
for all Boolean variables. None of these approaches is ideal. Our approach to this matter
distinguishes between global and local variables. Where no treatment of input and output
mechanisms is given, it is customary to assume that the initial state of a computation is
represented by the values that global variables initially possess. Application of the weakest
precondition calculus starting from a desired postcondition, will eventually produce a precon-
dition stating a suitable initial state, and thus, suitable initial values for the global variables

of the computation.

Variables introduced in Jocal blocks present a different scenario. A practical way in which
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to illustrate this, is to consider a typical situation that arises in proving the correctness of a

local block constructed during a program development:

{pre} B : |[var z : T'| §)|{post}

We wish to show that the (weakest) precondition of the block, B, with respect to the post-

condition, post, is a logical consequence of the precondition, pre, i.e.

[pre = wp(B, post)]

It is clear that pre has to be independent of the local variable z and thus that we cannot

prove the above unless wp( B, post) is also independent of 2, i.e. for any condition R,
[(Vv :: wp(B, R); = wp(B, R))]
or, in terms of our semantics, for any fresh variable y:
[(Vo :: wp(S5, R = wp(S}, R))] (12)

Unfortunately the weakest precondition semantics that we have assigned to local blocks does
not guarantee that this condition will hold. In particular, it fails to hold iff 2 is not initialized

by S. Various ways of addressing this problem were considered.

An unsatisfactory solution

At a first glance, the simplest approach seems to be not requiring local variables to be initial-
ized explicitly, thus assuming that newly declared local variables are of arbitrary value. The
only explicit requirement is that the initial value of the variable be of the appropriate type.
This sounds elegant enough; a view that is borne out by the simple change required to build
this into the semantics of the local block:

[wp(llvar z : T| S]I, R) = (Yy : y € T : wp(Sy, R))] (13)

Thus we are now requiring that S establish the postcondition R regardless of the initial value
of z. This is similar to the approach adopted in the definition of the verification oriented



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. MECHANICAL SUPPORT FOR DIJKSTRA’S CALCULUS 65

language, Euclid [158] and is in accordance with the semantics of the local block construct as

given in [130].

Such semantics for the local block construct is however in violation of our semantic frame-
work. Because we allow infinite data types, the predicate transformer thus defined is not or-
continuous and would therefore allow unbounded nondeterminism, e.g. |[var y : T' | z := y]|

sets y to any integer—an unbounded number of choices!

As a result of the above, the requirement that all variables be initialized before they are

referenced, is unavoidable.

Dijkstra’s regimen

In {38, Chapter 10] Dijkstra suggests that the guarded command language be restricted in
order to ensure that variables are explicitly initialized before being referenced. His proposal
includes syntactically recognizable initializing statements as well as a rigid discipline for their

use.

Dijkstra’s regimen requires that all private and inherited identifiers be listed upon block entry.
The textual scope of a variable private to a block extends from the start of the block to its
end, with the exception of nested blocks that do not inherit it. This textual scope is divided
into the “passive scope” where it may not be referenced and it does not form part of the state
space and the “active scope” where the variable may be referenced. The passive and active
scopes of a variable are separated by an initializing statement that has to be placed in such

a way that, independent of values of guards:

1. exactly one initializing statement for that variable will be executed inside its textual
scope;
2. no statement from the active scope of the variable can be executed between block entry

and the execution of the initializing statement.

Though the measures proposed by Dijkstra would accomplish our goal, they are quite com-
plicated. The treatment of array variables is also less than ideal. Dijkstra does not propose
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any program construct that can assign values to individual points in the domain of an array

without explicitly listing them, i.e. for array variables ar and br we cannot use
ar:=br

but only
ar[0],ar[1], ar(2), ar{3}, ar[4] := br[0), br[1}, br(2}, br{3], br[4]

Neither can we use the loop

ii=0

do i#n — arli] = brli];
ii=i+1

od

to initialize ar, since no initializations are allowed to take place inside loops. If we consider
the domain of an array variable as fixed (as we do here) tkis regimen, in effect, limits the array

variables used in local blocks to those with domains that are small enough to list exhaustively.

Hemerik’s suggestions

In [81] explicit initialization of local variables is enforced by the imposition of the following
syntactic condition:

z € INIT(S)V z ¢ USE(S)

for all variables z declared in a local block |[varz : T | S].

The set USE(S) can be informally described as the set of all variables occurring in an ex-
pression in § (or in its interspersing annotations), while INIT(S) can be seen as the set of
all variables assigned to by every possible execution of § and not used in any expression
before being assigned a value (see [81, Chapter 4] for definitions). Constructing these sets is

a straightforward syntactic procedure.

An advantage of using Hemerik’s proposal is that it does not require any syntactic extensions
to the guarded command language. In particular, we do not need syntactically distinguishable
initialization statements. Its main disadvantage is that it displays the same shortcomings as

Dijkstra’s discipline in the treatment of arrays with fixed domains.
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Final considerations

Our aim remains to ensure that the equivalence (12) above, holds for every local block in a
guarded command program. Why not generate this as an additional verification condition to
be satisfied by every local block? In the first place it is preferable 1o enforce such conditions
without the need for theorem proving. Secondly, the fact that we will never explicitly generate
the weakest precondition of a local block containing loop constructs, makes this condition

practically impossible to check,

The condition (12) merely formalizes the notion that the weakest precondition of alocal block
is independent of any local variables declared in that block. Is it possible to ascertain this by a
syntactic check on logical formulae? Because we will rarely generate the weakest precondition
itself, we have to strengthen this question to: Can we establish that the weakest precondition is
independent of local variables by some syntactic check on any given or generated precondition

{formula)? The answer is no.

i
var

i : integer;

ar array(0..n] of integer
|

i1:=0;

invar {(Vk:0 < k Ak <i:ar(k]=brlk])}
bound {n - i}
do i#n — arli]:=brli)

t:=1i+1
od
R:{(Vi:0< jAj < n:ar[j]=0br[iD}

Il

{post}
Figure 5: Making a local copy of an array.

Using the given loop annotations in the process of calculating a precondition for the local

block in figure 5, we obtain the following:

(VE:0< kA Kk <0:ar[k] = br[k]).
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This precondition is a tautology and thus independent of local variables, but without the

application of the relevant simplification procedure, this cannot be deduced.

We are forced to conclude that the only practical way of ensuring proper initialization of local
variables, is to augment our guarded command language in such a way that syntactic checks,
such as those proposed by Dijkstra or Hemerik, are applicable. Hemerik's suggestions seem
to be the most promising. A syntactically distinguishable initialization statement for arrays

will have to be devised to allow the use of arrays with large, fixed domains.

Another solution to this problem would be to accept the local block semantics stated in
equation (13). This requires that we disregard the or-continuity healthiness condition for
weakest precondition predicate transformers. Chapters 6 and 7 describe a calculus where this

situation exists.

The prototype implementation does not contain a solution to the problem of uninitialized
variables. For each local block, a syntactic check is performed to ensure that the generated
or given precondition does not contain any references to local variables. As indicated above

though, such a check is in general not strong enough.

Representation of initial values in program annotations

It is quite customary to introduce so-called logical constants, ghost variables or specification
variables that do not form part of the state space to represent initial values of variables in
program specifications and annotations. In [66] logical constant identifiers are distinguished
from program identifiers by the convention that capital letters are reserved for the former and
small letters for the latter, e.g.

z:[z =X,z > X].

In [125] 0-subscripted variables are reserved for logical constants that represent initial values

of program variables.

As pointed out in [66)] verification conditions have to be proven to be universally true (tau-

tologies), e.g. a verification condition

(z=X)=>wp(z:=z24+1,z> X)
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involving the logical constant X, should be understood as

[(YX u(z=X)=>wp(z:=z+ 1,z > X))].

Thus a verification condition is universally quantified over all its logical constants. In effect,
the logical constants are a special type of local variable for use only in program annotations.
In a formal environment, a mechanism for the declaration of logical constants should be
made available to allow semantic checks on their usage and explicitly delimit their scope.
Conventions such as the use of capital letters or 0-subscripts, that are inconvenient when one
wants to refer to the value of a variable in more than one previous program state (see e.g.

{121, page 51}), then become superfiuous.

Apart from the exception mentioned below, the prototype implementation does not include
a mechanism for the formal introduction of general logical constants and thus precludes their
use. A good candidate for such a mechanism is given as part of the refinement calculus in
[121] and is discussed in Chapter 7.

It is interesting to note that the omission of logical constants cause more than a mere incon-
venience in the annotation of guarded command programs. In the Fundamental Invariance
Theorem for Loops, a logical constant is used to represent the initial value of the bound func-
tion in the correctness proof. In annotating nested loops, one has no choice but to refer to this
logical constant in stating the effect of executing an inner loop on the bound function of the
outer loop. This has prompted the inclusion of a mechanism for introducing a specific logical
constant, representing the initial value of a bound function, i~ guarded command program

annotations. More details follow in section 4.3.1.

4.2.4 A Meaningful Type System

At present the type system is very spartan. In order to provide more flexibility, a greater
range of expression and better abstraction facilities, it seems desirable to extend the range
of available data types, enhance the flexibility of types such as arrays and records and allow
user-defined types.

The prototype implementation of array and record types is limited in a number of ways
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(see below). These limitations will be accentuated if user-defined procedures and functions
are included in the guarded command language. For complete flexibility, the suitability of
polymorphic types, such as discussed in [117, 77], for inclusion in the type system of a guarded
command language, is worth investigating. Since type inferencing is naturally associated with
polymorphic types, this also provides scope for omitting type descriptors when introducing

variables, e.g. in quantified expressions.

Using data types that are well suited to a particular problem domain is crucial in examples
done by hand, but is difficult in systemns that provide mechanical support, because of the
need for complete formality. Including more standard data types in the guarded command
language provides one way of addressing this issue. Some candidates for inclusion are character
strings, integer subranges, rational numbers, real numbers, pointers, enumerated types, sets,
and sequences. Some of these types, e.g. real numbers, are difficult to axiomatise. Pointers
are contentious and some suggestions have been made for mechanisms allowing the creation
and manipulation of dynamic variables without the explicit use of pointers, e.g. [142, 153].

Treatments of pointers in weakest precondition semantics may be found in [127, 126, 129, 17].

If mechanical proof support is to be offered, the inclusion of a wealth of data types complicates
proof procedures immensely, because of the number and the extent of the theories involved.
Extending the current typ~ system to include facilities for user-defined types and subtypes,
should also be able to conribute towards the use of types most suitable for an algorithm
under development. Ultimately, the use of abstract data types seems ideal. This allows a
high degree of ftexibility without requiring excessive extensions to the standard type system.
A programmer may use the exact level of data abstraction required and gains convenience
of expression and the advantage of shorter, less complicated verification conditions. Data
abstraction is investigated further in Chapters 5 and 7. Again, the implications for mechanical
proof support are far reaching. Under such circumstances, a mechanical prover should support
user building of (reusable) theories for new data types, ensuring that no logical inconsistencies
result (see discussion in [70, page 1064-1066]), and provide mechanisms for their efficient

inclusion in simplification and reasoning procedures.

Mechanical support for program development in the weakest precondition calculus will benefit
from a thorough investigation into and probably significant extensions to the type system
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used in guarded command programs. This is necessitated by the need for expressivences and
flexibility in the face of complete formality of syntax and semantics. The nature and spirit of
Dijkstra’s calculus suggests that we stand to gain the most by introducing suitable abstraction
mechanisms—thus data abstraction facilities dcserve special attention. Changes to the type
system will have a definite eflect on the requirements for a mechanical proof system to support

program development.

Handling arrays and records

The inclusion of arrays and records in Dijkstra’s calculus allows the formulation of many
non-trivial algorithms in a natural way. Their use also leads to a number of complications,

including:

e program annotations and verification conditions involving arrays and records are fre-

quently more complex and more difficult to read;
e special syntax has to be introduced to handle the initialization of arrays;

e textual substitution as well as rules for the correct use of multiple assignment (and
procedure call) constructs require reformulation to take into account the possibility of
aliasing;

e the underlying logic of the specification language is complicated by issues such as quan-

tification over arrays and the treatment of undefined values;

e due to the above, proofs of verification conditions may also become more complicated.

‘The proiotype implementation imposes certain limitations on the use of arrays and records.
The following discussion highlights the most noteworthy, offering suggestions for future ex-

tensions:

No strurtured constants: It is useful to be able to introduce arrays and records whose

values are not {0 be changed as constants. No specific problems are foreseen in lifting
this restriction.
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Fixed, finite, integer domains: The fact that array domains are limited to integers is
not essential and expansion to include other domain types should pose no problems.
Having fixed array domains is in accordance with most traditional treatments of arrays
in programming languages, but in contrast to that of [38]. As mentioned in section 4.2.3

above, special arrangements are necessary for the initialization of arrays with large
fixed domains, if correctness of local blocks is to be fully verified. Introducing suitable
operators for domain manipulation and examination, such as those listed in section 3.2,
the fixed domain requirement would be simple to remove. The requirement of finite

domains is necessary to ensure that ~hecking two arrays for equality, remains decidable.

Explicit array domain bounds: This limitation may be removed if primitive functions
representing the lower and upper domain bounds are introduced (see section 3.2). These
functions will have to be generalized to extract the domain bounds of higher order
(multidimensional) arrays (see [33, page 209] for an example of how this can be done).
Considering domain bounds as part of the value of an array data object (as in [33, 68])
will allow construction of more flexible programs and should be a worthwhile extension.
Explicit bounds may then be considered as stating limits on the array domain, and thus

as details of implementation.

Few operators: Most of the array operators introduced by Dijkstra change the domain
of arrays. These are all candidates for future extensions. Another useful suggestion is
found in [66, Chapter 5], where a notation is suggested for the restriction of an array
to a section of its full domain. Given suitable integer expressions e; and ez, satisfying
e; < e2+ 1, the notation arfe;..e2] denotes array ar restricted to a domain bounded by

the values of ey and ej.

Dijkstra proposes only two operators, namely swap and alt, that change just the func-
tion values of an array. Of these, we use the operator alt, for changing the function
value in one domain point. We adopt the well known notation ar(i] := z, instead of
the more c:mberson:e ar : alt(i,z) (see section 3.2). Other useful operators, such as
swap, could also be added, as necessary. We do not allow the assignment ar := br for
array variables ar and br, because of its potential for misleading a programmer about

its economics where the domains of ar and br are large (see [38, page 102]). Dijkstra
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and Gries both allow the assignment of enumerated constants to array variables to si-
multaneously change the value of the array in more than one domain point. Though
I feel that the multiple assigniaent construct is more flexible and sufficient for current

purposes, the use of enumerated con~tants does allow a more co'~pact notation.

In [66, Chapter 5] relational operators such as =, #,<,>, < and 2 are applied to arrays.
They denote component-wise comparisons and are proposed as abbreviations for certain

frequently used program assertions, e.g.

ar<zx

instead of
(Vi:0<iAi<n:arfi]<z).

Such abbreviations provide abstraction when constructing a program specification and
may aid program understanding. On the other hand, these abbreviations can lead to
confusion when performing manipulations, since -(ar « z) is in general not equivalent
to ar 2 z (see [66, page 93] for more examples). If abbreviations of this kind are
to be allowed, it seems desirable to expand them to their full form during program
development manipulations—possibly with the option of contracting them again when
the program has been completed. Additionally, it is strongly recommended that distinct
relational operator symbols are introduced to avoid confusion. To allow mechanical
manipulation and simplification of formulas containing such operatcrs, the underlying

calculus will have to be ext-nded with rules for their manipulation.

New array operators may provide the meauns for more succinct, elegant formulation
of program properties, but their introduction requires careful consideration. One has
to ensure that the increased burden of providing effective measures to handle them in
formal manipulations, is justified. Operators specific to a particular problem domain
should be introduced by other means such as user-defined procedures and functions or

as self contained libraries.

As for arrays, the only operators currently implemented on records are alteration of
the record value in a siagle domain point, or in a number of specified domain points

(multiple assignment).
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No array quantification: From a logical point of view, quantification over arrays leads
to the realm of weak second order logic. An example of such usage may be found in
[33). One of the consequences of allowing quantification over arrays is that primitive
functions for extracting the upper and lower domain bound from an array value (such
as hib and lob in section 3.2) become imperative. Without them the behaviour of

quantifiers would be different. For example,

(V(n : integer) :: (V(ar : array[l..n] of integer) :: P(ar,n))) (14)
would differ from

(V(ar : array{l..n] of integer): (V(n : integer) :: P(ar,n)))
Using functions lob and hib, the assertion (14) could be written as:

(V(n : integer)

(V(ar : array of integer): ar.lob = 1 A ar.hib = n : P(ar,n)))
More details are available in [33, Chapter 7].

Higher order arrays and records: In {66, Chapter 5] Gries discusses arrays of arrays.
This extends the notion of an array as an integer, Boolean or character valued function;
allowing arrays themselves as array ranges. As an example consider the array variable

declared as follows:
az : array[0..10] of array[i..5] of integer

Based on this declaration, az refers to the complete array, az[0] refers to the array asso-
ciated by az with the domain element 0, while az{i][j] (for suitable integer expressions

i and j) refers to a single integer.

This view is not fully supported in the prototype implementation. Our view corresponds
to the multidimensional arrays found in languages such as ALGOL, FORTRAN, and
PL/1 as well as the PL/CV verification system [33]. An n-dimensional array is treated as
a function from a finite set of consecutive integer n-tuples (according to the lexicographic
ordering) to 2 set of simple values such as integers or characters. Assuming the array

declaration as above, one may refe: to individual function values using the notation
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az[i][j}, while az[i} has no meaning in this context. Multidimensional arrays provide a
less complicated alternative to the “arrays of arrays™ approach. The latter is, however,
more flexible and provides suitable notation for describing the effect of some of the

operators that change all the function values of an array.

For the other higher order objects such as arrays of records and records of arrays, the

situation is similar.

4.2.5 Multiple Assignment to Compound Variables

In section 3.1, the multiple assignment construct is described. This discussion focuses on
assignment to simple, distinct variables and the notion of simultaneous textual substitution
was found to describe its semantics adequately. For compound variables, such as arrays and

records, the multiple assignment construct is generalized to the form
.'L'] 931,...,.'17,‘ 08“ = Bl,...,en

where the z; are variable identifiers, s; are appropriate selectors and each ¢; is an expression

of a type compatible with that of z; 0 s;.

The semantics of this construct is complicated by the possibility of aliasing among the z; 0s;.
Two variable references z o s and y o ¢, comprising identifiers  and y and selectors s and ¢,
are aliased if one is an initial segment of the other, i.e. the latter references part of the value
of the former {67]. From the following examples, it should be clear that aliasing is in general
not a syntactic property:

reccm and rec are aliased;

reccm and rec.n are not aliased;

arfi] and erfj] are aliased only if & = j;
arfi] and ar{i — 1) are not aliased;

i and arfi] are not aliased

Compliance with the semantics of the original multiple assignment construct requires defining

the weakest precondition of the general muitiple assignment as the conjunction of the weakest
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preconditions of all possible orderings of assignments [G5):
warfey),...,arfen) =€y en, R) = A B (2103 emitn)
(ih“uin)

where (iy,...,i,) represents a permutation of (1,...,n).

This formidable definition is due to the requirement that the components of a multiple as-
signment be executed in any order. Since it is not particularly palatable, we simplify the
definition by eliminating its nondeterminismn. As in [66], we specify the semantics of the

general multiple assignment construct as follows:

Syntax:

T1081yeeesTn 08y 1= €1y00e,€n (15)

where the z; are variable identifiers, s; are appropriate selectors and each e; is an

expression of a type compatible with that of z; 0 ;.

Operational Semantics: The variables specified by the z; o s; are determined and the
expressions e; are evaluated to yield values v;. This is followed by the assignment of

each v; to the z; o s; of corresponding subscript in left to right order.

Predicate Transformer Semantics:

[up(zi081,...,zp 08, :=€1,...,65,R) =

(Vi:i2>1Ai< n: domain(z; o s;) cand domain(e;)) cand R7}%%;-¥n"] (16)

where the predicates domain(z; o s;) and domain(e;) characterize the set of states in
which the expressions z; 0 s, and ¢; can be evaluated without causing failure (see

Appendix C for a definition).

To make the latter meaningful we assume the following definition |66, page 129] of RZ, where
T is a list of identifiers, each concatenated with a selector, and € is a list of expressions of

appropriate types, containing the same number of elements as ¥.

1. If 7 is a list of distinct identifiers (thus all selectors in ¥ are equal to £), RE denotes

conventional textual substitution.
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2. H a and b are distinct identifiers,

F,a08, 50!,7 - !,bol.uoa.‘i
mc Jak = m.!. 1

Thus, adjacent reference expression pairs may be exchanged, provided they begin with

different identifiers.

3. If identifier a does not begin any of the z;,

l— aon.....aoa.,.!= a,T -I
et a(ariessednien )]

Thus, multiple assignments to subparts of a compound object a can be seen as a single

assignment to a.

Thus we sacrifice the more abstract nondeterministic definition in favour of its more workable
deterministic counterpart, shown above. Under these circumstances, one may well ask whether
the use of the gereral multiple assignment is still justified. It is suggested, in [65], that its
use can still aid program understanding as well as precondition calculations, by being more
concise and straightforward than an equivalent sequence of simple assignments. Tle multiple
mignn{ent

P, blp}, i) := b[p] i, p

and equivalent assignment sequences [65]

ti=p ti=p
p:= bt]; 12 := bfi;
b = il and 13 := bl
i) := ¢ bfé] :=t;
bit] := 12;
p:=13

illustrate this point.

In the prototype implementation, the general multiple assignment construct is treated deter-
ministically, according to the semantics outlined here, while assignments to simple variables

are still treated nondeterministically, according to (3). Thus, a2 multiple assignment construct
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is not accepted if it contains more than one assignment to the same simple variable (iden-
tifier). This is a debatable decision. One may argue that it is unfortunate to distinguish
between simple and compound variables here, after taking trouble to hide their differances
with a functional view. Another valid objection is that if a construct has different semantics
for different data objects, it would be less confusing to separate the dictinct cases notationally
as well—resulting in separate language constructs. I feel that different assiguments to the
same simple variable are clarified by expressing them as separate simple assignments. In the
end the decision to view reassignment of a simple variable within a multiple assignment as an
abuse of notation, is a personal one. It could easily be altered if a inore pleasing alternative

presents itself.

Using definition (15) or (16), the weakest precondition of an assignment construct involving
arrays is simple to calculate. In contrast, it can be rather troublesome to simpiify; typically

involving case analysis as shown in the following:

wp(ar(i] := 7,arli] > arlj] A arlj] > arlk])
= (arli] 2 erlj] A ar(j] 2 ar{k])gi (1)
= ar([i] : i} 2 ar((i} : 5] A ar(fi] : T)[5] 2 ar([8] : 7)[K]
= ({#JANi#£KAT2ar[jlAar]j] 2 ar[k])V
(E=JAT#EATZ2TATZ arlk])V
G#EFAi=kAT2 ar[flAar[fj>T)V
((=FjAi=kATZTAT2T)

In general, considering an assignment ar{j] := e and a postcondition containing n references
arfi1],...,ar[is) involving array ar, the corresponding precondition will contain n references
ar(j : e)fi1),...,ar(j : e)[ia). Such a precondition could be broken down into 2" cases. Un-
derstanding the precondition may thus require effort exponential in the number of references
in the postcondition involving the array being changed. This complexity seems to be un-
avoidable, as it is rooted in dynamic aliasing—two different variables i and j, used as array
selectors, can yield two different names ar[i] and ar(j] for the same array value and these
names change dynamically as i and j change. To control this complexity, Gries suggests that

the number of references to the array be kept to a minimum and that enough restrictive
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information be maintained in program assertions to allow the t;eatment of many subcases in

a similar fashion.

4.2.6 Quantified Expressions

As explained in section 4.2.1 and Appendix B, the prototype implementation allows quantified

expressions of the form
(quantifier (dummy : type): range : term)

where

quantifier is one of NUMBER, SUM, PRODUCT, FORALL, and EXISTS;
dummy is a single variable;

type indicates the type of the dummy variable and is one of the primitive types INTEGER,
CHARACTER, or BOOLEAN;

range is a(n) (optional) Boolean expression;

term is an expression of a type matching the specific quantifier.

We highlight some of the interesting issues surrounding quantified expressions as currently

implemented:

Type of the dummy variable: As stated in section 2, the type of a dummy variable is
traditionally omitted if it is obvious from the context. From the point of view of parsing
and type analysis, the introduction of a dummy variable is similar to the declaration
of a local variable. Allowing the freedom of omitting type information would require a

type inferencing mechanism, which is not available currently.

Multiple dummy variables: The fact that multiple dummy variables are currently not
allowed, is merely a syntactic restriction. It would be quite a simple matter to extend

the prototype grammar and parser to accommodate this variation.
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Special ranges: The requirement that the range must be a Boolean expression excludes
abbreviations such as
0<j<n

for 2 dummy variable j, that abounds ia the literature. This extension should, however,

be easy to incorporate.

For the numerical quantifiers SUM and PRODUCT we require additionally, following
{40, page 141}, that the equation

range A term # 0

in the dummy variable has a finite number of solutions. This excludes expressions, such

as
(Vi:0<i:(-1)),

that do not denote proper integer expressions. This requirement is satisfied by limiting
the dummy variable to a finite range. Syntactically, the range expression is limited to
the conjunction of two Boolean expressions, one establishing the lower and the other

the upper bound for the range of the dummy variable, e.g.
0<jAj<n
(also see Appendix B). For the quantifier NUMBER, the equation

range A term

in the dummy variable is similarly required to have a finite number of solutions. This
restriction is achieved as for SUM and PRODUCT.

4.3 Proof Obligations

4.3.1 Generating Verification Conditions

We now outline the well-known procedure for batch generation of verification conditions from

an annotated guarded command program, as implemented in the protolype implementation.
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The first step is to parse a guarded command program and its annotations, performi:g the
niecessary syntactic and semantic checks. At the same lime data structures, contalning the
essential information for verification condition construction, are built. Most substantial pro-
grams consist of a sequence of program statements. Following the definition of the weakest
precondition transformer for sequencing, verification conditions are generated in backwards

order relative to the order of these statements. Thus for a simple program of the form 5y; 532,

annotated with a precondition and a postcondition as follows:

{P}$1:5:{Q},

Ry, such that B; = wp(S2,Q) (or merely R; = wp(S2,Q)) will be calculated first, followed by
wp(S1, R1) (or R, such that Rz = wp(S1, R;)). One verification condition will be generated,

ie.
rP = wp(Sl, Rl)].

'The universal quantification, shown explicitly here, is implicit in actual conditions.

Currently all verification conditions are recorded in a text file in the order that they are

generated. No algebraic simplifications are carried out.

Internal annotations

A programmer is allowed to place assertions between sequentially composed program state-
ments. These assertions provide a way of decomposing a complex verification step into a
number of more manageable steps. For a program of the form {P}S:1{Q}; S2{ R}, the follow-

ing two verification conditions will be generated:
rQ = WP(SQ,R).I

and

[P = wp(slio)]'

The prototype implementation does not allow annotations of the form:

{P}5:1{Q1}{Q2}; S2{ R}.



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. MECHANICAL SUPPORT FOR DINKSTRA'S CALCULUS 82

However for compound statements such as local blocks, alternative and repetitive constructs,

the following situations may arise:

{P1}|[var ... | {P3}S{Qa}]] {1}

{P}if B — {P}5{Q2}...8 {Ch}

{invar P} do B — {P;}5{Q3}...0d {Q1}

In each of these cases, the following two verification conditions will be generated (in addition
to any others):
rPl = Pz]

and

[Q2 = Q].

Alternative constructs Weakest precondition calculations are only conducted for alter-
native constructs that are not already annotated with a precondition. If a precondition is
supplied with such a construct, Theorem 3.1.0.1 is applied, gererating two verification condi-
tions (see Theorem 3.1.0.1) which guarantee that the given precondition is at least as strong

as the weakest precondition.

Repetitive constructs Weakest preconditions of loops are not calculated, instead all loops
must be annotated with an invariant and a bound function that may be used for verifying its

correctness. A typical loop, L, may be annotated as follows:

{P}

{invar X'}
{bound t init T}
L

{Q}
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Using the Fundamental Invariance Theorem for Loops (‘Theorem 3.1.0.2), three vesification
conditions are generated, one of which refers to the logical constant 7. The verification

condition
[P = X]

is also generated.

As mentioned above, the general use of logical constants is not supported in the prototype
implementation. A logical constant, representing the initial value of a bound function, does
appear in the Fundamental Invariance Theorem for Loops, but it scems as though this con-

stant could be generated by the system. Unfortunately, this is not always possible. Nested

loops represent an exception.

{bound t;}
Li: do

{invar P}
Ly: do...od

od
Figure 6: Nested loops.

Consider the schematic example in figure 6. To show termination of the outer loop, L;, we
will generate a verification condition stating that each iteration of L; decreases the value of
the bound function #;. All we “know” about the effect of executing the inner loop, L,, is
contained in its annotations, particularly the invariant P,. Thus, P; must state the effects of
executing Lz on the value of ¢;. For this we need a logical constant representing the value of
t; before execution of the inner loop. We also need to ensure that the function of this logical
constant is clear to 2 mecnanica! verification condition generator, so that it will use the same
constant when generating verification conditions for L;. The “Rubin’s problem™ example of

section 3.5 contains an example of correctly annctated nested loops.

In summary: not only does one need to use a log cal constant in correctly annotating nested

loops, bat this constant must be the same as the constant found in one of the verification



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 4. MECHANICAL SUPPORT FOR DIJKSTRA'S CALCULUS 84

conditions generated by using the Fundamental Invariance Theorem for Loops. The only way
to accomplish this is to allow the programmer to choose the name for the constant in such a
way that it will also be unambiguously identified to the verification system. In the prototype
implementation, this is accomplished by stipulating that the phrase init T, where T is a
suitable name for a logical constant representing the initial value of a bound function, must

appear with the definition of each bound function.

Appendix E shows the verification conditions generated for the “Rubin’s problem” example

of section 3.5.

4.3.2 A Suitable Specification Language

The language used in the literature for expressing annotations and specifications of guarded
command programs, is a first-order language allowing references to common data objects such
as integers and characters. This language is defined only informally, giving it some flexibility to
be extended to accommodate data types, operators or notation used in individual examples.
To allow for mechanical calculation of (weakest) preconditions, generation of verification
conditions and formal proofs of consistency between specifications and their guarded command
implementations, the specification language has to be formalized. Within such a forinal
setting, a more critical assessment of the specification language is inevitable and some of its
shortcomings also become apparent. The design of a specification language is a crucial issue
with far reaching implications for many aspects of program development and consistency
proofs, see e.g. [55, 72, 52]. Some basic requirements for such a language are as follows:

Formality: This requirement should be taken to mean both:

e that specifications shouid be formal—as opposed to informal. Although informal
specifications can play an invaluable role in program development, they tend to be
ambiguous, imprecise, and incomplete. They are also not amenable to automated
processing or mathematical manipulation and cannot support the use of formal
methods.

e that the specification language should be given a formal definition. Without a
formal definition it is difficult to see what significance can be attached to a “proof™
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of consistency between a specification and its implementation.

Intuitiveness and Naturalness: These characteristics take into account the fact that pro-
gran: specifications and annotations are also meant for human comprehension and ap-
preciation. Because the construction and psocessing of specifications cannot be fully

automated, such requirements remain important.

Conciseness: A common complaint about formal specifications is that the specification of
a program is longer (and more complicated) than the program itself. A specification

language should be geared towards clear and succinct foriulation of program properties.

Abstraction: Just like for programs, abstraction mechanisms should be applicable to spec-

ifications to make themm more manageable and allow separation of concerns.

The specification language as currently implemented in the prototype does not lend itself
readily to conciseness of expression and contains no abstraction mechanisms apart from simple
predicate abbreviations (see section 5.3). This leads to rather unmanageable logical formulas
having to be manipulated and used in deriving further program steps. It is difficult to say to
what degree these deficiencies could be rectified, especially as it seems to be quite a pervasive
problem within the “standard paradigm” of program verification [54]. One may experiment
with some additions to the language in an attempt to alleviate the situation, but this may
jeopardize the formal basis of the language and bring little relief at that. Another aspect
of the specification language that may have a bearing on these shortcomings, should also be
considered, i.e. its underlying logic. The following list of desirable properties for logics of
specification languages appears in [72]:

Soundness: This property is the very least that should be expected of a logical system for
conducting proofs about program properties.

Completeness: Although desirable, negative results such as Godel’s Incompleteness Theo-
rem, suggest that it may be incompatible with other crucial aspects, such as soundness,
in logics of interest.

Entrenchment: The involvement of social processes in proofs suggest that a widely knowa
and accepted logic is needed to serve as a standard. It is also desirable to have a jarge
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“library” of reasonable model and proof theoretic results to call upon when necessary.

Only first-order logic measures up to this requirement.

Expressiveness: This property is needed to characterize a specification in the intended
way. First-order logic lacks expressiveness as there are nonstandard models of the
first-order Peano axioms. In addition one may also demand that key concepts (e.g.

well-foundedness) be expressible in 2 “natural” manner.

Freeness: Quantifiers should not range over error objects, e.g. in arithmetic
0+5divo=0

and

04+5divo=5div0

should not be logical consequences of the laws
(Vz::0%z=0)

and
(Vz:0+2=2)

Only free logics kave the property of being free of existential pre-suppositions.

Constructiveness: Because programs construct solutions, constructive proofs best cap-
ture the nature of programming logic. Only intuitionistic logics (and perhaps their S4
counterparts under the Tarski-McKinsey translation) have this property.

Deduction Property: The Deduction Theorem allows the rule of conditional proof to be

incorporated in a natural deduction system, making it easy to use. A number of many-
valued logics lack this property.

Hintikka Property: A reasonable definition of a Hintikka model set (or system) must
exist, such that it follows from this definition that any model sct is satisfiable. This
property is necessary for the development of reasonable Smullyan tree, Beth tableau
and Gentzen sequenzen systems. It may also be useful for showing satisfiability or
establishing the Craig property (see below). Relevance logics lack this property.
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Prenex Property: Resolution and various other theorem proving techniques require that
a prenex conjunctive normal form theorem must hold. Some modal and tense logics

lack this property.

Craig Property: The CraigInterpolation Lemma must hold for a logic to have a reasonable
model theory. The correctness of Nelson and Oppen’s cooperating decision procedures

[134] also depends upon this property. Some modal and tense logics lack this property.

Apart from completeness, expressiveness, freeness, and constructiveness, a standard first-
order logical system has all the above properties, making it an obvious candidate for the
foundation of a specification language. Many variations of standard first-order logic are
possible and some variants may be more appropriate as the basis for reasoning about and
describing program properties than others. In [33], for example, the authors use a classical
many-sorted applied predicate calculus v'th equality and definitions, in which a constructive

subsystem is distinguished.

On the other hand, first-order logic is now considered by many as not being rich enough for
the formulation and proof of many interesting properties of programs. A purely first-order
framework, for example, is not conducive to the use of induction in proving properties of
programs and their data types. This is a serious drawback, as inductive arguments have
proven to be a very natural way of expressing such proofs [54]. One reaction to this deficiency
has been the use of higher-order logics [61, 4].

If it is important that reasoning about program correctness takes place within a formal system,
the lack of expressiveness of the first-order logic underlying our specification language also
becomes problematic. As informally shown in section 3.4 and formally in {11], the set of first-
order formulae over the state space and operators available in the guarded command language,
is not rich encugh to express the weakest preconditions of loops. An extension of ordinary
first-order logic that allows conjunctions and disjunctions over a countably infinite number of
formulae is sufficient for this purpose and is used to this effect by authors such as Back [9, 11]
and Hemerik [81). The logic, Lu,w, obtained in this way, is essentially stronger than ordinary
first-order Jogic. One can, for example, give a categorical characterization of the standard
model of arithmetic by a single sentence of L. Although L, is “close” to ordinary
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first-order logic in many respects, it does include inference rules that may require an infinite
number of premises to be proved and thus proofs are allowed to be of infinite length. Instead
of giving a completely formal proof by showing the sequence of formulae that constitute the
proof, one has to resort to induction in such cases to show the existence of a certain proof
sequence. Another approach is found in [112], where Manna shows that if one is allowed to
use predicate variables, then the weakest preconditions of nondeterministic programs can be
expressed in (ordinary) first-order logic. In comparison to Dijkstra’s formulation of weakest
preconditions, however, the use of predicate variables makes Manna's formulation complicated

and difficult to use in reasoning about program properties.

Another problem encountered in expressing properties of guarded command programs in a
standard first-order language, is the treatment of undefined terms. As Dijkstra’s calculus

includes certain mechanisms for dealing with undefinedness, we discuss this topic in more
detail.

Dealing with undefinedness

Partial functions frequently occur in algorithms. The following examples present some sources
of such partiality:

¢ finite machine arithmetic can make z + y unrepresentable for large z and y;

o the natural number expression z — y can be undefined;

¢ mod(z,0) and div(z,0);

e ar[z] is undefined for array ar, if z is outside its domain;

o the use of user-defined functions such as fact(—1), where

fact(z)= if 2=0 — fact:=0
O 2#0 — fact:=zx* facl(z - 1)
f

One of our primary assumptions has been that predicates are total functions on the state
space. How should we then interpret mod(z,0) = mod(y,0)?
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The problem of what truth value should be given to a sentence involving a term that “has no
denotation”, has been studied by many mathematicians, philosophers and computer scientists,
Various solutions have been proposed, many of which give rise to non-classical logics (see [15)

for references).

In order to give a formal treatment, predicates may be considered as representing either
partial functions with values in the set Bool = {7,F} or total functicns with values in
Booly = {T,F,Lpsn)}. The first option leads to a strict treatment of undefinedness, i.e. the
value of a logical formula is undefined whenever at least one of its arguments is undefined. The
latter alternative allows a lazy, non-strict treatment of undefinedness, that is more convenient
for the purpose of algorithm specification and verification (see [22, page 247-249]). The

formalization of three-valued predicates demands the solution of two distinct problems:

1. A calculus of three-valued predicates has to be constructed.

2. A logic suitable for proving facts expressed in terms of three-valucd predicates has to
be established.

Three-valued logical calculi There are various ways of extending the classical two-valued
predicate calculus to cater for three logical values. Two well known three-valued calculi
proposed in the literature are a calculus described by Kleene {103] and one described by
McCarthy [115]. These calculi have the following noteworthy properties [104]:

1. The propositional connectives of both Kleene (-x, Vi, A, = k) and McCarthy (-,
Vams AM, = u) extend the classical connectives, i.e. they coincide with them on the
values 7 and F. In addition, certain classical relationships are still satisfied, e.g.

a=>pb=(~pa)Vpb
a Ak b= -k((~ka) Vi (-xb))
There are, however, classical laws such as the law of the excluded middle:
av(-a)=T

that do not bold inr either of these calculi.
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2. Both calculi allow for lazy evaluation of expressions. This means that in evaluating
aVar b (or a Vg b), if a evaluates to 7', then b need not be evaluated, since the value of

the whole expression is T regardless of the value of .

3. The connectives of both calculi are monotone in the usual cpo over Bools:

T F

N

L Bool

Every monotone function in Boolz has the property that if one of its arguments is
replaced by Lpo, then the value of the function either stays unchanged or becomes
Lpoot- In addition, the former case is only possible if the function is constant in that
argument, so that its evaluation may be lazily omitted. Monotonicity is important, since
it is a prerequisite for application of the fixed point theorem as used in section 3.1. In
addition, all functions that are monotone in Bool; are implementable even when L g,

represents a non-terminating computation, while non-monotone functions are not.

4. McCarthy’s connectives are left-strict, i.e. they assume the value 1 g,,; whenever their
first (leftmost) argument is L g.,1. This property makes McCarthy’s connectives imple-
mentable on a sequential machine. They are not right-strict and hence Vas and Apr
are not commutative. Kleene’s connectives are right-strict, but not left-strict. Thus,

Kleene’s calculus requires parallelism to implement (see [22] for more details).

5. The quantifiers Vas,dps and Vi ,Ix extend the classical V and 3 to the three-valued
case and generalize conjunction and disjunction in the calculi of McCarthy and Kleene,

respectively. Definitions and a comparative discussion may be found in [22].

The propositional connectives of McCarthy seem more widely acceptable for software speci-
fication and verification [22] and have been used in this context in {20, 21]. The connectives
Var and Apg are found in Euclid, ALGOL-W, C, and Ada (as and then and or else). They
appear in Dijkstra’s weakest precondition calculus as cand and cor. Kleene’s calculus is used
for software specification and development in [96, 97).
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Logics incorporating three-valued predicates One approach is to construct a three-
valued logic corresponding to a chosen calculus of three-valued predicates. This approach is
explored in {15, 96, 97, 90, 104]. Since some proof rules and techniques from two valued logic
are not applicable in such a framework, proving theorems sometimes require more than usual

skill and different styles of reasoning (15, 22].

A number of approaches are based on the desire to retain a two-valued logic for reason-
ing about program assertions. This exploits the existing body of “two-valued intuition” in
reasoning and allows mechanical support by a variety of existing systems. In [20, 21, 22]
two-valued predicates, called superpredicates, are added to a three-valued predicate calculus.
These superpredicates are binary relations between predicates and provide a bridge between
a calculus of three-valued predicates and a classical two-valued logic. The enriched calculus
is shown to be convenient for formulating propositions concerning program correctness and
program transformations, with proofs carried out in classical logic. In LCF [59] two levels of
truth values are used. Terms, representing values that can be computed, can be undefined,
thus allowing three truth values for Boolean expressions, while assertions about terms are
two-valued. These two levels are connected through a non-monotone, strong equality predi-
cate. A similar approach is advocated by Tennent in [152]. The PL/CV verification system
also uses two-valued logic for reasoning about program correctness. In this framework, two
approaches to the problem of undefined terms are proposed; one requiring changes to proof
rules of the predicate calculus, while the other does not. A detailed exposition is available in
[33].

Undefinedness in Dijkstra’s calculus Dijkstra’s calculus does not include a formal treat-
ment of undefinedness, but only some measures for preventing the evaluation of undefined
terms wherever these occur. A brief discussion of the main sources of partiality and how they

may be dealt with, from the perspective of the prototype implementation, follows.

Bounded machines: One source of partiality in programs is the finite bounds of computing
machines. Real machines perform finite arithmetic and can accommodate only a finite
state space—leading to undefined values if such bounds are exceeded.
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In [38, Chapter 26] Dijkstra points out that having integer variables implies an un-
bounded state space for guarded command programs. Such programs are implicitly
intended for the hypothetical “Unbounded Machine” (UM). Since for all initial states
satisfying wp(S5,T), the number of computation steps as well as the nondeterminism
exhibited by a mechanism S are bounded, a “Sufficiently Large Machine” (SLM) that
can simulate the behaviour of the UM on its computation, is generally realizable. Fi-
nally Dijkstra suggests that since it is troublesome to determine a priori the size of the
SLM suitable for a particular computation, the machine we use should have the addi-
tional feature of checking, as computation proceeds, whether it is large enough for that
computation. If this is not the case, the machine should explicitly refuse to continue
the computation. The SLM with such a feature is called a “Hopefully Sufficiently Large
Machine” and the notion of a weakest liberal precondition (see Chapter 2) may be used

to describe its boundedness.

In keeping with these views, we do not consider it the duty of a programmer to incorpo-
rate implementation dependent parameters into arguments about program correctness.
In effect, we are targeting our programs for the UM, thus eliminating machine bounds
as a potential source of undefinedness. This is in the spirit of separation of concerns,
as advocated by Dijkstra. On the other extreme it is possible to consider the bounded-
ness of real machines very explicitly in the development of correct programs, including
machine bounds in program specifications and ensuring that these bounds are nowhere
exceeded by suitably extending program assertions. This may add considerable com-
plexity to the already complex process of formal program development. Ensuring the
correctness of Pascal programs on bounded machires is explored in some detail in [32],

while [158] discusses correctness of Euclid programs in the same context.

Arrays and other partial functions: In the prototype implementation arrays as well as
the two standard functions mod and div are the primary sources of undefinedness. Dijk-
stra shows that in preconditions generated by application of his calculus, undefinedness

is avoided by expanding any predicate P involving a program expression e to

domain(e) cand P.
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Here, the predicate domain(e) characterizes the set of states in which the expression ¢
can be evaluated without causing failure. Such domain predicates may he mechanically
generated (see Appendix C for a definition that may be used for this purpose)l. Fur-
thermore a program developer should make use of the operators cand and cor in the
formulation of guards and other Boolean expressions to avoid undefinedness. Ironically,
injudicious use of these operators may also lead to undefinedness, e.g. for ar[0..n — 1]
the expression
i<ncandar[i-1}>0

may be undefined. This necessitates the generation of a domain predicate wherever

program expressions containing cand or cor appear in preconditions. For the above

expression, the following domain predicate would be generated

domain(i < n) cand (i < n = domain(arfi — 1] > 0))
= i<n=>(ardob <i—1Ai-1<arhib

= 1€n=0<5i-1

In formulating program specifications and annotations, bounded quantifiers should also
be employed for this purpose [95, page 57-61] e.g. use

i < n—1 cand afi] < afi + 1)

instead of
i<n-~1Aali] <afi+1]
and
(Vi:i>0Ai<n—1:afi] > 5)
instead of

(Viz(:20Ai<n-1)=afi] >5)
Notice that the equivalence
(Vi:R: P)=(Viz=R= P)

from [14, page 239] does not apply if P may become undefined.

1To avoid additional complexity in precondilions the prototype implementation does not include any treat-
ment of undefinedness—domain predicaies are not automatically generated.
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A disadvantage of not having a formal treatment of undefinedness is that the responsibility for
avoiding undefined terms (and predicates) ultimately rests with the programmer. In providing
mechanical support for reasoning about program assertions, a formal proof theory has to be
established. In the framework of Dijkstra'’s calculus, a two-tiered approach such as followed
in LCF seems a suitable candidate as it obviates the need for acquiring reasoning prowess in

an exotic logic. However, further investigation is necessary.

Note: Two other potential sources of partiality that we do not have to contend with in the
prototype are user-defined functions and subrange types. It should be possible to accommo-

date these in a similar fashion to the above,

Concluding remarks on the specification language

In conclusion, it is obvious that the specification language for guarded command programs,
as implemented in the prototype (see Appendix B for a formal description), is far from ideal.
Apart from certain cosmetic changes, it is also not clear how the situation may be improved
satisfactorily. Most of the shortcomings pointed out, seem to be directly attributable to its
underlying standard first-order logical formalism. If this logic is to be abandoned in favour
of a richer and more expressive system, which one do we choose? A higher order logic
would allow inductive arguments and more concise formulations of certain properties, the
logic L,,., would give expressiveness, while a logic allowing reasoning about partial functions
would remove problems in dealing with undefined terms. Each of these alternatives also has
complications of its own and we may well find that there is more to lose than to gain in
changing to a more exotic logic. A deeper investigation than that conducted here wiii he
necessary to fully explore all the options. If we consider (as we do, in Chapters 5 and 7)
extending the guarded command language to allow for various mechanisms of procedural and
data abstraction, it becomes more important that abstraction mechanisms also be applicable
to specifications. It may then be worthwhile to consider the use of an established specification
language, such as Z [150] or Larch {76, 75], with guarded command programs.
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4.3.3 Perspectives on Program Development Support

When verification conditions are generated in batch mode as done by the prototype imple-
mentation, a programmer does not receive any help in constructing a correct program, but
only in showing that it is correct after its construction. Some macros were implemented in
a programmable text editor to support application of Gries strategies for developing loops
and alternative commands, but because no semantic checks or theorem proving is performed,
these provide very limited help. Even for small programs, verification conditions generated
under these circumstances may be extremely complex and detailed (sce Appendix E for some
examples), as they represent all the correctness arguments that should have been considered

during the development.

If incremental program development support can be provided, smaller proof obligations may
be generated and discharged on a continual basis, allowing a factorization of the proof burden.
Additionally, the programmer is in a better situation to apply domain-specific knowledge at
an early stage to simplify propositions to be proven and to find mistakes. The philosophy
of “verifying the correctness of a constructed program”, is exchanged for “maintaining the
correctness of a program under construction”. In what follows, some perspectives on providing

interactive mechanical program development support are presented.

Initial requirements

As a starting point we refer back to section 4.1 to obtain the following list of basic functions

to be supported by a mechanical program construction assistant:

1. interactive precondition calculations, with a recalculation facility to allow incremental

changes to programs and annotations;

2. antomated simplifications on preconditions and verification conditions as they are gen-

erated;

3. interactive generation (and proving) of verification conditions;
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4, facilities for displaying and editing programs (possibly annotated with generated pre-

conditions) and assertions;

5. the capability of interleaving the above operations as necessary during program con-

struction.

Verification conditions may be recorded for proof at a later stage cr, preferably, an interactive
theorem prover may be provided as part of the system (see section 4.3.4 for suggestions on
proof support). Because proofs of program properties play an important part in program
development strategies, a formal reasoning component is necessary if support for application
of such strategies is envisioned. A program development system may also offer automated
application of techniques for discovering invariants and bound functions, e.g. manipulations

for weakening a predicate and for combining predicates may be provided.

Development strategies

Apart from variations in the sophistication and extent of basic features which a program
development system may offer, some variation in the amount of guidance that a programmer

will receive, is also possible.

One approach is to provide the features listed above and allow a user to apply them at
will during program construction. This approach is exemplified in a project undertaken by
Odyssey Research Associates [143, 70] to assess the feasibility of constructing formally verified
Ada programs:

Their prototype implementation centers around a syntax-directed (structure) editor, Pene-
lope, that can be used to create and edit abstract syntax trees that represent parts of an anno-
tated Ada program. Penelope computes (approximated) weakest preconditions as attributes
of the nodes of a syntax tree, incrementally recomputing and propagating changed conditions
through the tree as a program is developed. A simplifier, based on the Nelson-Oppen al-
gorithm for cooperating decision procedures [134], as well as facilities for using lemmas and
axioms of theories as rewrite rules are available in Penelope. Verification conditions are gen-

erated incrementally, with automatic updating as a program or its annotations change. To
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support proofs of verification conditions, a sub-editor is available, enabling users to coastruct
proofs using a sequent calculus. Penelope’s theorem proving facilities are not extensive, but
are useful in that proofs of verification conditions that have changed are “replayed”, with
any parts that are no longer valid, indicated to the user. The Penelope editor was produced
from a suitable attribute grammar using the Cornell Synthesizer Generator [144, 145]. The
predicate transformers implemented in the editor were derived from a denotational semantics

of Ada.

Syntax directed editing [110)] is 2 well-known concept in integrated programming environments
that exploit program structure in supporting interactive program construction. If such an
editor can be generated from a formal description, such as an attribute grammar in the case
of Penelope, it provides an excellent vehicle for experimenting with extensions to the syntax

and semantics of the programming language.

A higher level of support is possible by integrating the basic functions given above into a
number of program development strategies, such as those proposed by Gries [66] and Dromey
{43]. Such a system guides a user through the process of program construction by proposing
subgoals for the development, according to some built-in strategy, while prompting the user
for decisions and information that fall outside its jurisdiction. An implementation of Gries’s
program developmeit strategies within the framework of the Karlsruhe Interactive Verifier
(KIV) [80}, is described in [80}:

This implementation involved a formalization of Gries’s development method using a sequent
calculus for a dynamic logic DL, which is the underlying logic of KIV. The implemented
program development strategies construct and manipulate proof trees, representing program
developments that are provably consistent with a specification. The goal of program de-
velopment is expressed as a logical formula, which is placed in the root of such a proof
tree. Subprograms and guards still to be developed, are represented by metavariables in tree
nodes. The programming strategies guide the user through an expansion of the proof tree in
a top-down fashion, during which metavariables are systematically instantiated. Program de-
velopment is completed when the root contains no more metavariables and the leaves contain
oanly predicate logic formulas. A user may cancel undesirable development steps by invoking
a “backtracking” function, which removes all developments up to the last recursive invocation
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of the main development strategy.

One advantage of implementing Dijkstra’s calculus in a sophisticated theorem prover such as
K1V [80] or HOL [60] (see [61, 4] for descriptions of such projects) is the formal assurance
of soundness that may be obtained. The programming language semantics is formalized in
the logic supported by the prover. Then soundness preserving methods may be employed
to formally derive the strategies for generation of verification conditions and for program
development from the semantics. This guarantees that results obtained from application of
such strategies are logical consequences of the underlying program semantics. This kind of
assurance is, for instance, not possible for the traditional verification system consisting of a
verification condition generator and a separate theorem proving subsystem or even for systems
such as [143, 70]. Another advantage is that it is simple to exten :* e guarded command
language under consideration to include new constructs such as procecures. Systems such as
K1V and HOL also present excellent opportunities for experimenting with different methods
of simplification and proof of verification conditions (see [4]).

Final considerations

There is no evidence to suggest that a programmer usinj, .iijkatra's cales'ss will apply only
certain development strategies (such as those of [66]). If ~u: iz, b+ informal nature of
paper and pencil developments seem to indicate otherwise. Vvn;*: novices may benefit most
from step-by-step guidance, it is more important to build 2 mechanical support system for
interactive programming in such a way that it allows a great deal of exibility for the user:

e A programmer should be allowed to apply any development technique that produces a
program that is consistent with the specification.

e It is very important that a programmer should be able to revise or undo previous
developnient steps at any stage as more knowledge is gained. Any development or proof
steps influenced by such a change should be indicated.

e A programmer should have the freedom of determining the order in which subgoals are
tackled. Thic allows development to proceed bottom-up, top-down or indeed in any
other sequence.
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o A programmer should be allowed to select the degree of annotation displayed with

program code during development.

Thus one should ai: «r a sysizm that is able to:

1. allow a programmer to store, retrieve, view, and edit completed and partially completed

development: of guarded command progri:as;

2. calculate precorditions of programs at request to aid in development steps or on its own

initiative as part of vr.~f ubligations;

3. mak. known w7y v oof obligations arising from a development step as soon as they

beocome applicable;

4. assist a programmer in discharging proof obligations at request.

It would be useful if such a system could provide a way of experimenting with automation of
development strategies and other heuristics such as those for developing loop invariants. One
suggestion is to allow a user to capture frequently used strategies and heuristics as “programs”
in a metalanguage which may then be “exccuted” by the system. This principle is applied to
theorem proving in systems such as LCF, KIV, and HOL, where the system may be extended
with useful patterns of inferencing discovered by users by “coding™ these in the form of tactics
and tacticals [118]. Other approaches to automation of development strategies such as found
in expert-system based or transformation-based systems, e.g. [36, 50, 91, 139, 148, 151] should
also be investigated.

Another factor that is of vital importance in supporting interactive application of Dijkstra’s
calculus is the control of complexity. On the one hand this means that every effort should be
made to simplify the logical formulae displayed and manipulated during program development
and on the other, that during the development of programs, a programmer should be able to
“hide” details that are considered unnecessary at that stage. Informal program annotations
are also useful in this regard and their use should be allowed.

The successes of projects such as [143, 70],[4] and [80] show that there are merits to using either

a structure editor generator or a sophisticated thecrem proving environment for implementing
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experimental support systems for programming in Dijkstra’s calculus. Both alternatives offer
facilities for experimenting with various aspects of the calculus as well as the type of support
provided to programmers. A thorough comparative study will be necessary to recommend
one of these alternatives over the other. Meaningful interactive support, including theorem

proving facilities, will ouly be possible on hardware such as powerful workstations,

4.3.4 Perspectives on Proof Support
General

Though the prototype implementation offers no proof support mechanisms, it is clear that
such a component would be crucial even if elementary mechanical program development

support is to be provided. The topic is therefore pursued briefly here.

The logical formulae generated as proof obligations through the application of Dijkstra’s
calculus, are very similar to those resulting from standard program verification methods for
sequential programs, such as Hoare logic or the inductive assertion method. (Compare for
example the verification conditions generated for “Rubin’s problem” by the prototype (see
Appendix E), to the verification condition examples in a paper such as [92].) A mechanical
theorem prover or proof assistant suitable for the latter, should thus be equally suitable for
supporting the use of Dijkstra’s calculus.

As mentioned in section 4.1 much research has been done in the area of mechanical support
for formal reasoning. A good survey of computér support for the type of formal reasoning re-
sulting from software engineering applications may be found in {107]. Although some program
verification environments with integrated reasoning facilities, such as Gypsy and the Stanford
Pascal Verifier, exist, dedicated formal reasoning systems generally offer better features. The
lIatter may be roughly divided into two classes:

1. highly autom:'.ed systems, such as resolution provers and the Boyer-Moore prover [26]
(see [109] for a survey of such systems)

2. interactive proof editors and proof checkers such as LCF and HOL.
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Highly automated theorem provers typically conduct systematic searches for proofs. Because
of the size of the search space, complex heuristics and/or user advice are often used to
constrain and direct search efforts. They are limited by undecidability results for most theories
of interest to software engineering applications and by requiring a user to have an intimate
knowledge of the system’s complicated search routines and heuristics in order to guide it down

the right paths in case of failure.

Most interactive formal reasoning assistants concentrate on a goal-directed approach to proof
construction. The user extracts subgoals for proof from a goal, and new subgoals from these
in turn, until the prover is able to invoke its routines for automated proof to deduce that the
subgoals are true. Some features that have been identified as useful and desirable for proof

assistants for software engineering applications are (also see [107] and [98, 99]):

1. Although completely automated theorem proving is not practical in this area, a powerful
automatic proving component may be used to good eflect as part of interactive theorem
proving. Such a component serves to eliminate much of the tedium of obvious reason-
ing steps. Good examples of techniques that have been used with success in automatic
provers are implementations of (combinations of)) decision procedures for decidable the-
ories, term rewriting and congruence closure algorithms for equational reasoning and

different variations of resolution.

2. Another way of combating the tedium of proof construction is to derive new rules of
inference and to allow frequently used patterns of inference to be “coded into” a theorem
proving system, thus building up a repertoire of proof strategies suitable to different
types of problems. Such patterns of reasoning are called tactics (and tacticals) (118]. The
LCF, KIV, and HOL systems, among others, support tactical reasoning. Imaginative
matching algorithms must be used to help 2 user in locating lemmas, inference rules,

and tactics that may be applied in specific situations.

3. To allow for flexibility during proof construction, the user should have access to different
proof styles: natural deduction, backwards as well as forwards reasoning, constructing
a proof by sketching a proof outline and refining it to an appropriate level of detail.
Wherever possible, the choice of which subgoal to prove next should rest with the user.
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Backtracking to various stages of proof construction should be possible,

4. Instead of supporting only “formal” proofs, for which the expected gains may not justify
the effort, “rigorous” proofs may be allowed. One step towards this is to permit a user
to assert the truth of certain conjectures without formally justifying them, The system

should keep track of all such lemmas on which a proof depends and prevent circularities.

5. All possible measures should be taken to ensure soundness of reasoning tools. In par-
ticular the soundness of derived inference rules and tactics must be formally ensured.
If a user is allowed to add axioms to the system, the best assurance that can be given

is soundness relative to a given logical calculus and a set of user-supplied axioms.

6. To manage the explosion of detail that occurs in proofs of reasonable size, a definition
mechanism for the folding and unfolding of abbreviations is useful. A specific discipline

for hiding irrelevant details of proofs should be applied during their construction.

7. To accommodate proofs about the data types used in programs, it is important that
a prover be able to handle theories of data types containing axioms and some logical
consequences thereof that are useful in constructing proofs. The prover should provide
built-in theories for common data types such as integers, Booleans and characters.
To handle compound data types such as arrays, parameterization of theories may be
employed. Facilities for constructing new theories should be provided to handle proof
obligations arising from treatments of programs containing definitions of abstract data
types (see section 5.2). Reuse of theories may be encouraged by supporting various ways
of constructing new theories from existing ones. It is important that the information in
theories is used eff.ctively, thus it is conceivable that information such as tactics, decision
procedures, simplification methods, normal forms, etc. could form part of theories. This
aspect is not yet considered as state of the art in theorem proving systems [107]. Various
kinds of induction are among the proof techniques that have proven to be useful for
propositions involving popular data types and this should be supported by a prover.

8. Because proofs may take long to complete, it is desirable to be able to store and retrieve
partially completed proofs.

9. The structure of a proof is frequently expressed as a tree, called a proof tree or, more
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generally, as an acyclic graph (see [99]). The user interface of a theorem proving system
should allow a user to navigate, extend and edit such structures in a natural way.

Structure editor-like interfaces have much to offer in this regard.

Verification conditions are typically long and complex logical formulae (see Appendix E for

examples). They are usually implications of the form:
AlAAQA.o-AAn #C]ACzA--.ACm

and in many cases the consequent is a minor modification of the antecedent. In [4, Chapter
8] a collection of tactics is given which help to automate some of the proof effort required to

prove such verification conditions in the HOL prover.

Simplification of logical formulae

For interactive program development support, the single most important facility that should
be provided is the simplification of preconditions and other logical formulae generated during

program construction.

There are a number of (sometimes conflicting) reasons for simplifying verification conditions:

¢ to make them easier to read and understand;
» as 2 means of proving (or disproving) them;

o to reduce them to a formn that allows effective use of other proof procedures.

We also find that many of the preconditions that would be generated during program deveiop-
ment are 5o long and complicated that, unless significant simplification can be performed on
them, a programmer may overlook vital information to drive further program developments.
This fact is borne out by implementations such as [143].

This type of simplification is very difficult. The main problem is that there are so many
ways in which to simplify any given logical formula—no general canonical form exists. When

a verification condition is in a form that allows efficient processing by automated proving
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facilities, it may indeed be particularly obscure to a human reader and vice versa. lere are

some of the simplifications that may be perforined:

A minority of the candidates for simplification are trivial to recognize and simplify, e.g.
propositional terms such as PAT, PA P, PV P and PV F may be rewritten to P, while
others such as PV 7 and P A F may be reduced to 7 and F, respectively. In addition

arithmetic terms may be simplified by performing arithmetic on integer literals.

Many obvious simplification steps may be performed automatically by implementing deci-
sion procadures or term rewriting algorithms for decidable theories. Such theories include
propositional logic, the theory of equality with uninterpreted function symbols, Pressburger
arithmetic, the theory of real numbers under + and *, the theory of arrays under store
and select and the theory of lists under car, cdr, cons and atom. (These theories are all
quantifier-free.) There are also simplification techniques for arithmetic terms that deduce
integer inequalities by keeping track of the bounds imposed on integer variables in logical

formulae, iz terms of other variables and constants.

All the theories involved, provide equivalences that may be used for “rewriting” logical for-

mulae e.g.
[A=(B=(C=>D)))=(AAB)= (C=>D)=(AABAC)= D]

and

[z<yvz=y=z<y]

However, for most of these one cannot say offhand which form is to be preferred. The
context in which a formula appears may have to be used as a guide in such situations.
Another good example is to be found in the manipulation of the range and term expressions
of quantified formulae, that may be combined or split in various ways (see [11] or [40] for a

list of equivalences). e.g.
[(Vi:0<iAi<k+n:afi]>0)=
(Vi:0<iAi<k:a[i]>0)A(Vi:k<iAi<k+n:di] >0)]

The best way to control mechanical simplifications of this kind, is to allow as much user
guidance as possible and attempt to build up a set of usable heuristics through experience.
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Much experimentation may be necessary o find a good simplification method for the formulae
manipulated during use of Dijkstra’s calculus, The safest route to follow, would be to start
with an automatic simplifier that only simplifies terms belonging to theories or subtheories
with well understood normal forms. It should rather do too little than too much. More
simplification coulp6 e done under direct control of the user. Provided efficient and effective
ways can be found to incorporate additional simplifications into the automated simplifier, it

may be expanded as more knowledge is gained.

4.4 Conclusion

Formalization of Dijkstra's calculus is necessary to allow meaningful mechanical support for

its use.

On the one hand, loss of the ability to mix formal and informal arguments and notation
limits the applicability of the calculus. To combat this effect, special care should be applied
in providing a powerful and flexible type system for guarded command programs as well as
an expressive and poweiful specification language. At the same time, it is important not to

disregard the effects of choices made in these matters on the construction of proofs.

Another negative effect of complete formality is additional complexity in applying Dijkstra’s
calculus, e.g. preconditions and verification conditions generated during mechanical applica-
tion of the calculus are often prohibitively complicated, while the effort of constructing formal
proofs of obvious results may not justify the effort expanded. (This is aptly illustrated by
the verification conditions generated from the “Rubin’s problem” example of section 3.5 (see
Appendix E)). This is a decidedly unattractive feature for potential users and puts the useful-
ness of mechanical support in question. Such complexity does not appear in textbooks such as
{38, 66, 14, 40, 43] because a large degree of informality is allowed. It is possible to allow some
informality in mechanically supported program development, e.g. by supporting “rigorous”
instead of “formal” proofs of program properties, allowing informal as well as formal program

annotations and not unnecessarily restricting the development strategies allowed.

Another factor that Jimits complexity in examples done by hand is the conscious use of
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abstraction. Providing formal mechanisms of abstraction in program development will provide
a way of factoring program development to control complexity during mechanical program
construction. Abstraction mechanisms may also provide a basis for the construction and
recording of a meaningful and informative development “history” of a program such as results
from paper and pencil developments. These considerations prompted further investigation.
In Part 2 of this thesis a survey of possible abstraction mechanisms for Dijkstra’s calculus is

presented.

th
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Providing for the Formal Use of
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Chapter 5

Abstraction Mechanisms for

Dijkstra’s Calculus

In this chapter we investigate facilities for three kinds of abstraction in Dijkstra’s weakest

precondition calculus: procedural, data, and specification abatraction.

Procedural and data abstraction are related concepts. A procedural abstraction represents
a mapping from a set of input values to a set of output values (usually implemented as a
procedure or subroutine). Thus we are allowed to ignore the details of the mapping and
consider only its effect. The domain and range of a procedural abstraction consict of data
abstractions. A data abstraction provides a set of data values and a set of operations to
manipulate these values. The behaviour of a procedural abstraction is defined solely in terms
of the abstract data objects thus created, ignoring details of how such objects are concretely

represented for implementation.

To assist in the development and management >{ complex specifications, we may similarly

introduce abstractions that reduce the amount of detail under consideration at any one time.

108
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5.1 Procedural Abstraction

Program development is frequently characterized by the identification and subsequent indi-
vidual development of coherent subtasks within the main development process. T'uis is the
well known process of procedural abstraction at work. Alternatively, if we view the construc-
tion of a program accordiag to a specification as a constructive proof, procedural abstraction
embodies the formulation and proof of lemmas. Eventually all components are integrated,
typically by placing parameterized procedure calls at the points of abstraction. Procedural
abstraction p'ays an integral role in stepwise programn development and formalizing a mech-
anism for its application in the weakest precondition calculus, deserves attention. Axiomatic
treatmenis of the semantics of procedure constructs are complicated Ly the influence of vari-
ous traditions as well as the fact that so many issues are involved: local variables, abstraction,

parameterization, procedures, recursion.

Recent treatments such as [81, 120] attempt to cimplify matters by considering some of these

concerns separately.

Staying within the semantic framework of Chapter 2, we follow the same progression as
in [81]. The local block construct can be seen as a first step in the investigation of the
semantics of a procedure construct, in that it mayv be used to consider the introduction of local
nomenclature in isolation from other aspects. We also consider the effects of parameterizatiun
before combining these features into a generai procedure construct that makes provision for

procedural abstraction.

5.1.1 Local Blocks Revisited

In Chapter 3 the fullowing two alternatives for the semantics of local blocks were considered:

[wp(|[var z : T | S]|, R) = wp(S5, R)] (17)
where y is a fresh variable and § initializes z; or
[wp(i[var z : T | 5], R) = (wp(S, R))X] (18)

where y does not occur free in R or S, and z is initialized by §
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The first alternative requires renaming of lncal variables in program text, while the second
uses temporary renaming of global identifiers in certain program assertions. In [6} it is pointed

out that when we consider the introduction of procedures, a more subtle difference between

these two semantics also appears.

Consider a parameterless procedure P with body:

2=y

It is our desire to interpret all procedure calls according to the ALGOL-60 copy rule, which
states that a program that calls a procedure is equivalent to one in which the procedure name
is replaced by the text of the procedure body, with suitable renaming of local variables to

avoid name clashes. Using this rule and (17), we find:

wp((y := O; |[var y : integer | y := 5; P]|),z = 0)
= wp((y :=0,wp(|[var y : integer |y :=5; P]|,z = 0))
= wp(y:=0,wp((2:=5; P),z =0))

wp(y := 0, wp((z := §; 2 := ),z = 0))

T

while (18) gives:

wp((y := 0;|[var y : integer |y := 5; P]|),z = 0)
wp((y = 0,wp((y := 5 P),z = 0))

wp((y :=0,wp((y := 5;z := y),z = 0))

F

0

Thus (17) leads to a situation where each procedure call is evaluated in the environment in
which the procedure has been declared, i.e. static scope, while (18) reflects the case where
procedure calls are evaluated in the environment of the call, or dynemic scope. Our chaice
of (17) for the semaatics of local blocks is in accordance with the fact that all ALGOL-like

languages use a static scope assumption.
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5.1.2 Parameterized Statements

To study parameterization, we introduce parameterized statements resembling Hemerik’s “ab-

stractions” and “applications”, [81, page 121).
Syntax:

[[value z : Ty; value result y : T3; result 2 : T3 | S)|(e,v,w)

Comments:

® z,¥, and z are the formal parameters and their types are given by 11,73, and T3,
respectively;

¢ the attributes value, value result, and result determine the details of parameter
treatment (see [66] for details);

o there may be any number of value, value result, and result formal parameters;

¢ S is a guarded command program construct;

¢ ¢,v, and w are the actual parameters with ¢ an expression matching the type of z,

and v and w variables matching the types of y and z, respectively.
Restrictions:

1. S has no access to global variables;
2. actual value result and result parameters must be mutually different;

3. wp(S5, R) must be independent f z for any condition R. This means that S ini-
tializes z, formally:
for any condition R, [(Vv :: wp(S, R): = wp(S, R))];

4. S must be transparent to z [114, 18]. Transparency of S to z means that S contains
no assignment to z and no parameterized statement with z as actual value result
or result parameter, formally:

for any constant k of suitable type, [z = k = wip(S,z = k)].
Semantics: We consider the statement

[[value z : T1; value result y: 75; result z : 73 ] Sj|(e, v, w)
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to be equivalent to the local block:
llconst z =evary:T3;2: 13| y 1= v; Siv,w =y, 1|}

Under the assumption that the formal parameters are not redeclarations of global iden-

tifiers, we obtain the following weakest precondition semantics:

[wp{|[value z : T}; value result y : T3; result z : T3 | S]|(e, v, w), R)
= (wp(S,Ryy)e (19)

Discussion of assumptions and restrictions

No global identifiers in S: In [114, page 308-309) Martin shows how this restriction may
be lifted. Essentially global variables are treated as additional value and value result
parameters depending on how they are used in S. Martin points out that structured
global variables present some difficulty in deciding whether the whole structured variable
ot only some component should be declared ar the global entity. A treatment of globals
restricted to simple identifiers may be found in [67, page 568].

Mutually different actual result and value result parameters: This restriction ad-
dresses the issue of aliasing. Considering (19) we find that if the actual value result
and result parameters are aliased, the innermost substitution has to be understood in
terms of the definition of multiple substitutions in section 4.2.4. Thus, a left-to-right
order is imposed on multiple substitutions involving the same variable. This approach
is used in [67, 66] and (in essence) [28]. Other approaches to handling aliasing fre-
quently involve distinguishing between variables (locations) and their values (e.g. in
[24]), or in the case of [5] between program identifiers, locations, and values; allowing
cliased identifiers to be recognized as such by their being mapped to the same location
iden.ifier.

Most reference works, however, forbid aliasing between value result and result pa-
rameters. As pointed out in [120], aliasing may cause parameterization to lose the

important property of monotonicity, i.e. in general:

(VQ :: wp(51,Q) = wp(52,Q) # (VR :: wp(ST"", R) = wp(S3" , R))
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where ST*" and $3*" denote program statements S) and 53, respectively, parameterized

in the same way.

Even equality may be lost:

wp(|[result z,y : integer | z :=0;y := 1]|(a,a),a = 0)
# wp(|[result y,z : integer | z := 0;y := 1]|(a,a),a = 0)

Thus, aliasing inhibits the use of statement parameterization for stepwise refinement

(see Chapter 7).

I it is forbidden, the absence of aliasing among the appropriate actual parameters
must be formally established. A simple solution is to have a verification condition
generator examine actual parameters for aliasing as far as possible. Where freedom from
aliasing cannot be determined, an appropriate disjointness condition must be generated
and conjoined to the weakest precondition of the parameterized statement. A more
elaborate treatment is found in [147]. Here program specifications are expressed in an
augmented specification logic wherein program identifiers are distinguished from their
meanings, allowing “non-interference” conditions to be formuiated explicitly as part of

a specification.

S must initialize the result parameters: Requiring that wp(S, R) be independent of z,
is the same as the restriction imposed on local blocks in Chapter 4 to ensure that all
local variables are properly initialized. For practical reasons, this condition should be
reformulated so that it is syntactically enforceable during parsing. A full discussion of

the requirements for performing such a check can be found in section 4.2.3.

No redeclaration of global identiflers: The restriction that prohibits formal parame-
ters from being redeclarations of global identifiers, can be lifted if a suitable renaming
is applied to all formal parameters, i.e.

fwp(|[value z : T}; value result y : T;; result 2 : T3 | S]|(e,v,w), R)
= (op(SELE, Ry

P 2T
where p, g, and r are fresh variables and § initializes 2.

Transparency of § to the formal value parameters: This requirement is a formal en-
forcement of the concept of a value parameter. Although it is not strictly necessary
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to enforce transparency on parameterized statements, it allows a simpler treatment of
procedural abstraction below. Transparency is enforceable by a simple syntactic check
on §: no assignments to the formal value parameters and no parameterized statements
using the formal value parameters as actual value result or result parameters are
allowed.

Reference parameters: Reference parameters allow implementations that are more effi-
cient in terms of time and space, but cause additional complications., The reference
works [67] and [66] include weakest precondition semantics for this parameter passing

mechanism.

5.1.3 A Procedure Construct

So far we have considered a local block construct that makes provision for the introduction of
local nomenclature and a mechanism for statement parameterization that adds flexibility to
program text through the use of parameters. To make provision for procedural abstraction,

procedure declarations and calls are introduced.

Procedure declaration

The following syntax for procedure declarations bears a strong resemblance to the parame-

terized statements above and is also similar to that of [66]:

proc p (value z : T'1; value result y : T2; result z : T3) : |[{P}B{Q}]|

Comments:

® z,¥,z are the formal parameters of procedure p—all the above comments about the
formal parameters of parameterized statements apply also to the formal parameters of

procedures;

e B is a guarded command program construct—called the body of the procedure
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o P and @ are assertions embodying the specification of the procedure p, with P a function

of z and y only, and Q a function of z,y, and z only;

e restrictions and assumptions concerning the formal parameters and the body of the

procedure declaration are as discussed above for parameterized statements;

e each procedure declaration leads to the generation of a verification condition stating

that B is consistent with its specification, i.e. :

[P = wp(B,Q)],

which is assumed to have been proven when writing procedure calls based on this dec-

laration.

Procedure call

Syntax: p(e,v,w)
Comments:

o This call assumes a declaration for procedure p as above;

e e,v, and w are the actual parameters with e an expression matching the type of the
formal value parameter z, and the variables v and w matching the types of the

formal value result parameter y and the formal result parameter z, respectively;

e assumptions and restrictions for actual parameters are as discussed above for pa-

rameterized statements;

¢ recursive procedure calls are excluded here (see page 121).

Semantics: As for parameterized statements, we consider the procedure call
e, v,w)
to be equivalent to the local block:
[const z =evary:Ty;2: Tl y:= v; B;v,w := y, 2]}

Assuming that the formal parameters are not redeclarations of global identifiers, the

weakest precondition semantics is as follows:

[wp(p(e,v,w), R) = (wp(B, RyY))EE (20)
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Proof rules

To compute the weakest precondition of a procedure call, detailed knowledge of the proce-
dure body is required. Using a procedure call as an abstraction mechanism, one desires to
concentrate on what the procedure does, i.e. its specification, as opposed to a detailed de-
scription of how it accomplishes this task. Thus, from the specification [P, Q)] of a procedure,
i.e. predicates P and Q such that

[P = wp(B,Q)],

we want a rule enabling us to construct a predicate U such that:

[U = wp(p(e,v,w), R)]

for a given predicate R.

Several proof rules for the correctness of procedure calls have been published, including the
traditional treatments [85, 92, 45, 47, 67} and [66, 114, 17] which apply specifically to guarded
command programs under weakest precondition semantics. In [17], Bijlsma et al. prove the
following formula

[wp(B, V)52 A AZ = wp(p(e,v,w), R)] (21)

where V and A are any two predicates such that A is independent of y and z, and
[VAA= R} (22)
Formu'a (21) can be interpreted as a “skeleton” proof rule. From it, the three most prominent

procedure call proof rules for weakest precondition semantics may be obtained by suitable
choices for the predicates V and A.

e Choosing Q for V and (Vy,2 = V = R;Y) for A, we obtain a rule due to Gries, [66,
page 153] (here formulated in terms of a logical constant m used in the procedure
specification, [P, Q])

[(3m = PEY A (Vy,z = Q = REY)) = wp(p(e, v, w), B)]



Stellenbosch University http://scholar.sun.ac.za

CHAPTER 5. ABSTRACTION MECHANISMS FOR DIJKSTRA’S CALCULUS 117

¢ Choosing Q for V and letting A be determined by (22), delivers Martin's rule, [114)

(shown here with a logical constant m)
[(3m 2 FEY A AT = wp(p(e, v, w), R))]

e choosing (Vm :: PY = Q) for V and (Vy,z :: V = R}Y) for A, gives the rule formulated
by Bijlsma et al. [17] (where m is a logical constant used in the procedure specification)

[((3m = PEX) A (Y, 2 5 (Vi 2 FEY = Q) = RyY)) = wp(p(e,v,w), R)]

In (18], Bijlsma et al. prove that the proof rules of Martin and Gries are equivalent, in the
sense that the predicate (/) in Gries’s rule is the weakest predicate obtainable from Martin’s
rule. Martin’s rule does not require A to be the weakest solution of (22), arguing that a
stronger predicate may be easier to establish ard sufficient for a particular situation. In [17]
it is shown that the predicate U delivered by Gries’s rule, is at least as strong as that delivered
by the rule of Bijlsma et al. These two rules coincide when there is at most one value of m

satisfying P, and when m does not actually occur in P or Q.

In [67, 66] Gries proposes another proof rule that may be easier to apply by hand as it
eliminates the complicated conjunct (Vy,z :: Q7 = R}'Y'). This rule is only applicable under
certain circumstances and requires that the postcondition of a procedure call be of the form

QY% A I where the free variables of predicate I are disjoint from v and w.

From the point of view of mechanical generation of verification conditions, a proof rule should
be simple to apply. This excludes candidates such as the above where the postcondition is
not a simple identifier, or as in Martin’s rule, where the predicate A is not mechanically
constructed. Mechanical application of a procedure call proof rule also makes it important
that the predicate U it delivers is as weak as possible. In this respect the rule of Bijlsma et

al. is the most attractive one, since it satisfies the following “sharpness™ theorem, [17)

Theorem 5.1.3.1 (Sharpness Theorem) Let U be the predicate

@Am: FEY)A(Vy,z:(Ym: PEY = Q) = R)Y)
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If & predicate X satisfies
[X = wp(p(e, v, w), R)]

Jor any procedure p with procedure body B satisfying [P = wp(B,Q)], then

[X = U].

Another issue of vital importance for procedure call proof rules is soundness. The following

" soundness theorem is shown to hold for the rule of Bijlsma et al. [17]

Theorem 5.1.3.2 (Soundness Theorem) Let U be the predicate
Bm = PEYYA(Vy, 2 (Vm  PEY = Q7)) = RYY).
For any procedure p with procedure body B salisfying [P = wp(B,Q)], we have

rU = wp(p(e, v, ‘HJ), R)] *

The soundness of Gries's rule is proven in [136), while an informal argument to this effect is

presented for Martin’s rule in [114).

Incorporating procedures into Dijkstra’s calculus

A means of referring to the initial values of variables, specifically parameters, becomes in-
dispensable in a specification language for guarded command programs using procedures.
A formal mechanism for the introduction of logical constants, such as proposed in [121], is

preferable in a mechanical verification environment (see Chapter 7).

In the above proof rules we placed no restriction on reference to the formal value parameters
in the predicate . As pointed out in [66], the substitution QF used in these proof rules,
only makes sense if z still has the initial value of ¢ upon termination of the procedure body.
This is partly achieved by our requirement that B be transparent to z. However, the use of
structured data objects as actual parameters necessitates an additional requirement, namely
that actual value parameters not be affected by assignments to other actual parameters
during the execution of the procedure body. This kind of potential for interference between
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actual parameters generally requires the generation of & verification condition to ensure that
it does not realize, making it difficult and expensive to enforce mechanically. A pragmatic
alternative is to eliminate potential problems by confining references to the value parameters
in annotations of a procedure tc the precondition, using logical constants elsewhere. Apart
from being syntactically enforceable, the use of logical constants provide a formal, elegant,
and sound way of adapting the procedure specification to use the same identifiers as the
postcondition of a call (see [66, page 155] for an example).

A discussion in the previous chapter pointed out the need for a flexible type system for a
guarded command language used with mechanical program development support. Procedures
provide more evidence to this effect. To make procedures as generally applicable as possible
and keep the use of expensive proof procedures to 2 minimum, it is in our interest to make
the types of formal parameters as general as possible. Thus it is advantageous, for example,
to consider the bounds of an array as part of the value of an array object and not as part
of the type. General polymorphic types seem to offer the most valuable direction for further

investigation on this matter [117).

5.1.4 Functions

User-defined functions are traditionally treated as special instances of procedures, because of
the close correspondence between the syntax of their definitions. Their semantic status is,
however, quite different. Procedure definitions create new program constructs, the meaning
of which is defined in terms of weakest precondition predicate transformers, while a function
definition creates a new function that may be applied to program variables in expressions
within program constructs and annotations. The standard references for Dijkstra’s weakest

precondition calculus do not include a treatment of user-defined functions.

We may learn some lessons by considering user-defined functions in traditional references such
as [30, 92, 47] using the partial correctness paradigm, but not all their results are applicable
here. The total correctness semantic model as well as our nondeterminism assumption have

effects on the formulation of proof rules for user-defined functions:

e From the references 7, 135] we find that the original function proof rule proposed by
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Clint and Hoare [30] introduces unsoundness into Hoare logics, but not so under a total

correctness interpretation.

In {47] it is pointed out that standard algebraic simplification rules may fail for ex-
pressions involving user-defined “functions” in the presence of nondeterminisin, since

fiz) = f(z) is not necessarily true if f has a nondeterministic definition.

Mistakes in some published proof rules have highlighted the importance of substantiating all

new rules with at least a proof of soundness. This falls beyond the scope of this treatise, thus

I will not do more than make some suggestions for the contents of a suitable proof rule for

user-defined functions in the weakest precondition calculus:

1.

There are some options for the type of functions users are to be allowed to define. We
may, for example, allow only function definitions consisting of a single expression, or
we may allow functions to be defined by an arbitrary set of guarded commands that
assign a value {o a special “return” variable, representing f(z). Funciions that simply
act as abbreviations for arbitrary complex expressions, are not as powerful as the more
general “procedure-like” functions and their semantics will also be simpler, e.g. : they do
not introduce nondeterminism and do not require a proof that the function declaration

conforms to some given specification, as necessary for procedures.

To allow algebraic simplification of expressions to proceed as for ordinary mathematical
functions, it may be worthwhile to impose a condition ensuricg single-valuedness on
the definitions of user-defined functions. An example of such a condition is found as
one of the premises of the proof rule for Euclid function declarations [47, page 15]. To
ensure that the order of evaluation of functions within an expression does not matter,

user-defined functions should also not be allowed to have side effects.

. Since function zoplication can be used freely as part of expressions in guarded ccmmand

programs, further possibilities for undefinedness are introduced and the domain predi-
cate caiculated as part of the {weakest) precondition of each program construct has to
include the function precondition. For detailed discussions of this topic, see section 4.3.2
and specifically [33, Chapter 6].
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4. Assume that function definitions have the following syntax:
function f (valuez : T): |[{P}B{Q}]I

similar to and with the same restrictions as for procedure declarations as explained
above. Also assume that the function name is used - . a variable to store the result
of the function to be returned from a function call. Just as for procedures, it will be

necessary to prove that such a declaration conforms to its given specification, i.e.

[P = wp(B,Q)].

We want to formulate a proof rule to help us verify properties of expressions containing
an application f(e) of this function to a suitable expression e. As a basis, one may start
with a stripped-down version of the Euclid function rule [47] (which corresponds to the
proof rule of Clint and Hoare [30]), i.e.

P = wp(B,Q)
Pz = Q.

The Euclid rule contains various other premises, including those for recursive functions
and single-valuedness. The remaining task is to determine which other premises or

restrictions, if any, are required in the setting of the weakest precondition calculus.

5.1.5 Recursion

The omission of a programming concept as powerful and “fundamental” as recursion from
Dijkstra’s calculus, has led to some criticism [78] and various proposals for its inclusion, e.g.
[34, 114, 81, 133, 130, 8, 82, 83, 125, 121]. In [38] Dijkstra remarks that while the semantics
of a repetitive construct can be deiined in terms of a recurrence relation between predicates,
general recursion requires a recurrence relation between predicate transformers. Recalling
that repetition is theoretically and practically the most complicated construct of the basic
calculus, it is clear that recursion will present new challenges to both our formal semantic

machinery and its application to program developments. We elaborate on some of the issues.
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Semantics of recursive procedure calis

In previous sections we have shown the development of a mechanism for procedural ab-
straction, including facilities for local variables and different kinds of parameters. Allowing
recursive procedure calls will make our procedure constructs more powerful, but their already
complicated semantics will become even more 80. To make the transition more manageable we
may first study the effects of recursion in isolation by considering only parameterless recursive

procedures without local variables.

Direct recursion

Consider a procedure p declared as follows:
procp:

{P}YB: |[...ims... 1 {Q}

We want to define wp(p, R) for a call p and a postcondition R. Using equation (20), we
obtain:
[wp(p, R) = wp(B, R)].

Because B contains another call p, we obtain a semantic equation that assumes the form:
[Y = F(Y)], (23)
for a predicate transformer Y.

This situation calls to mind our treatment of the semantics of iteration in Chapter 3. There

we found a similar semantic equation, (7), of the form
[X = f(X)], (24)

for a predicate X.

We wish to follow the same procedure here, as we did for iteration, but there is a major
difference: (23) is an equation in predicate transformers. In order to argue that F has a least
fixed point and to obtain an expression for it, we will apply Kleene’s Limit Theorem A.5.0.1
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(see Appendix A.5). This theorem requires that F' be a chain continuous function over
a complete lattice. For this purpose we need to impose a lattice structure on predicate
transformers. Our current semantic framework does not provide such a structure, but may
easily be extended to this effect. This is done in Chapter 6. We also need to prove that F is
indeed chain continuous. Examples of such proofs appear as Theorems 4.25 and 4.27 in [81).
From the Limit Theorem we then obtain the result that F has a least fixed point with

[uz.F(z) = |_[{F"(abort)}n30].

There are practical situations in which equation (23) reduces to the forin (24). This occurs if

wp(B, R) can be written as a function of wp(p, R), since we then obtain:

[wp(p, R) = wp(B, R) = f(wp(p, R))]

for some predicate transformer f. Such recursions are called lail recursions. They can be

implemented by procedures in which each recursive call is 2 dynamically last call.

Indirect recursion

Consider procedures p and ¢, declared as follows:

procp:

{B} By: |[...5q:... 1 {Qp}s

procgq:

{Fq} By : I[...;p;... 11 {Qq}i
For these we will obtain two mutualiy dependent semantic equations of the form:

[X = F(X)Y)]
and (25)
[Y = GX,7)]

for predicate transformers X and Y.
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These equations must be solved simultancously. Following [130] we now define
(F,G)(z,y) = (F(z,y),G(2,¥))

for predicate transformers z and y.

Using results from Chapter 6 and Appendix A.3, it would be easy to show that (F,G) is a

function on a complete lattice of predicate transformer pairs. We could then rewrite (25) as
[(X,Y) = (F,G)(X,Y)].

As above, one has to prove ihat (F,G) is chain continuous (see [81]), before characterizing its

least fixed point by:

pz(F,G)(z) = LI{(F, G)"(abort,abort)}a>o.

This result can also be generalized to more than two mutuaily recursive procedures [81].

Introducing parameters

To achieve full generality for recursive procedures, the above treatment can be extended to
include parameters. The most comprehensive coverage of this topic is to be found in 81,
Chapter 4]. This material combines results obtained for parameterized statements with those
for parameterless 1ecursive procedures. A definition of the relevant weakest precondition
predicate transformer appears on page 155 of [81]. As expected, this definition is complex

and offers no direct guidance in development of individual programs.

Proof rules

As for non-recursive procedures, we want to use calls of recursive procedures as an abstraction
mechanism. To achieve the desired abstraction, we formulate a proof rule that will enable us
to prove procedure calls correct using only the information contained in the procedure speci-
fication. At the same time we will obtain a2 more practical method of doing correctness proofs
thar by appealing directly to the complicated semantic equation for the weakest precondition
itself.
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Proof rules for recursive procedures are inductive in nature, In essence we prove that the pro-
cedure body possesses a certain property on the hypothesis that every recursive call possesses
it. Termination of a sequence of recursive calis is established, as for loops, by showing that
each call decreases a non-negative integer-valued function (a bound function). An example
of such a proof appears on pages 310-311 of {114). Proof rules for recursion in the weakest
precondition calculus are given in [114, 81, 130).

In {130}, theorems are presented to show how the concept of a variant/bound function can
be employed to simplify correctness proofs of recursive procedures. Mutually recursive pro-
cedures are also discussed in outline, but parameterization is not included. These results
apply to a more general setting than the one under consideration here and are not directly

applicable to our situation.

Recursive procedures, a8 we have approached them, are covered in {114, 81]. In [114], Martin
explains how to go about the inductive correctness proof and gives a corresponding extension
to his proof rule for non-recursive procedures (see section 5.1.3 above) to be used in the
induction step. Mutual recursion is not addressed. A comprehensive, formal treatment of
the semantics of recursive procedures is given in [81], including the formulation of proof rules
for procedures with and without parameters. With some notational adaptations, the most

general proof rule presented there is as follows:

I Py, A0S gV, < z) = wp{p(e1,v1,w1), e o N,
[(P:,.'?u,, AO< t:.'.‘:u,. <z)=> wP(p(en’ Vn, Wn), Q:,',’,{vz,..w. )]
F[(PAL=2) > wp(B,Q)]

[(P;'gm AD< t:o'l-'”o) = wp(p(eo, vo, wo), Q:t;?";.% )]

where z is an arbitrary non-negative integer and ¢ represents the integer-valued bound func-
tion.
To handle calls for which a postcondition other than an instance of Q is to be used, this rule

should be used in conjunction with a version of Hoare’s Rule of Adaptation [85):

[P = wp(p(e, v, w),Q)]
f(Am :: P A(Vv,v : Q = R)) = wp{p(e,v, w), R)]
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I is possible to combine these rules, but the result is quite unwieldy! The preconditions
that they generate will be just as unwieldy, but that seems inescapable in the light of the
inherently complex semantics of recursive constructs. Apart from this complexity, there are
no obvious obstacles to the mechanical application of these proof rules. We would require
that recursive procedures be syntactically recognizable as such (as is the case in languages
like Pascal and Modula-2) so that a verification condition generator will know when to use the
inductive proof rule instead of the ordinary one. Just as for loops, each recursive procedure
should also be annotated with a bound function, as well as a logical constant that can be

used to represent its initial value.

The reader should note that the above proof rule only covers the case of a single recursive
procedure. Hemerik [81] mentions that it may be extended to cover mutually recursive pro-
cedures. Such an extension will bring about an additional increase in complexity; we will,
for example, no longer be able to argue termination of a recursive call in isolation, but will

require a bound function formulated in terms of all the procedure bodies involved.

5.1.6 Procedural Refinement

In {120] an extra dimension is given to the discussion of procedural abstraction. As above,
procedure call and parameterization are also introduced and studied separately. Additinnally,

the concept of procedural abstraction is formally intrcduced in its own right.

Procedure calls are still understood via the ALGOL-60 copy rule and parameterization is
treated as an independent substitution mechanism. Parameters may be used to adapt any
program fragrient, including procedure calls and specifications, to specific circumstances.
Procedural abstraction is described by a predicate pair, consisting of a precondition and a
postcondition, that specify the effect of a mechanism upon the program state. Such specifi-
cation statements are treated as “first-class citizens” of the language by giving their weakest
precondition semantics as for any program construct. In addition, a notion of correctness-
preserving procedural refinement is defined. This extends the domain of applicability of the
copy rule to accommodate calls to procedures for which executable code has not been devel-
oped yet and, by formalizing the process of stepwise refinement, takes us into the territory of
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a refinement calculus.

Formal support for procedural refinement is a natural next step in the process of introducing
more powerful abstraction mechanisms into Dijkstra’s calculus. It would be interesting to
see to what extent the complexity of program development and correctness prools may be
reduced by such a measure as well as its demands on a mechanical support system. A
refinement calculus with provision for the calculation of procedural refinements, is described

in Chapter 7.

5.2 Data Abstraction

Abstract programs (algorithms) should manipulate suitably abstract data. Though abstract
data types may need to be represented in terms of more primitive types for implementation
purposes, this need should have no effect on usage of the abstract objects. Data abstraction
reduces complexity by separating the description of essential behavioural properties of data
at a particular level from the representational detail of lower levels, organized to exhibit these
properties. Thus we consider an abstract data type to be a class of data objects whereof the
behaviour is completely characterized by a finite set of (abstract) operations that act upon

members of the class.

Providing a formal mechanism for data abstraction allows factoring of program development

into two (or more) stages:

1. Use the properties of an abstract data type, as given in its specification, during formal

development of algorithms operating on objects of that type.

2. Develop a representation for the abstract data type such that the implementations of

the abstract operations are consistent with their specifications.

There are two main approaches to the specification of data abstractions, sometimes referred to
as “operational” and “definitional”. Surveys of these approaches may be found in [73, 108].
The definitional approach involves specifying abstract data types by stating their desired
properties instead of giving a method for constructing them.
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Two prominent examples of definitional specification techniques are algebraic specifications
(56, 44, 23, 74) and an axiomatic approach suggested by Hoare {86]. The algebraic approach
uses equational axioms to specify properties of abstract data types. Data types are defined
to be heterogeneous algebras. Hoare’s method involves the use of predicate logic pre- and
postconditions for describing the behaviour of each operation of an abstract data type and
requires minimal adaptation to be incorporated into Dijkstra’s calculus. A comparison of
these two approackes appears in [73]. Here it is pointed out that problems requiring a data
abstraction closely related to a data type available in the underlying specification language, are
best handled using Hoare’s method. Conversely if a data abstraction not readily represented
by a data type in the specification language is required, algebraic techniques are superior.
These conclusions emphasize the importance of very carefully selecting the data types to
be included in the specification language if we are to use specification techniques based on
Hoare’s suggestions. The set of basic data types should be as rich as possible to allow the
widest possible range of applicability. It is safe to assume that we will need such basic
types as sets, bags, and sequences, but further study is necessary to determine other suitable

candidates,

5.2.1 Hoare’s Method

The following is a summary of Hoare’s treatment of abstract data types as found in [86]:

Concepts

We consider a program that manipulatcs an abstract variable ¢ of type T'. For implementation
pusposes, t is represented by the concrete variables ¢, ¢2, .. ., ¢, whose types are more directly
or efficiently implementable. The primitive operations on i are represented by procedures
(and/or functions) p;,p3,...,pm whose bodies operate on the concrete variables. Hoare uses
the notation of the SIMULA 67 class declaration to express the concrete representation of a

type T (see figure 7).

An abstract variable ¢ of type T is declared using the notation:
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class T :
Il
var
(4] 1
~ RETEH
Cn -

proc p (“formal parameters”) : [[{P,}By{Qu)]l
proc p; (“formal parameters”) : [{{P.}B2{@2}]l;

;Jroc pm (“formal parameters”) : |[{ Pm}Bm{Qm}l;
B

1l

where B represents an optional program fragment to initialize the concrete variables.

Figure 7: Concrete representation of a typical type 7.

var (T}t
while operations on ¢ are denoted by conpound identifiers as follows:
t.p;(“actual parameters”)

The meaning of class declarations and procedure calls as above can be given in terms of

textual substitution. For T of the form given in figure 7, var (T')¢ is equivalent to figure 8.

For an example illustrating these concepts, see [86] or [47].

Correctness proofs
Consider the program
|[var (T)¢; S|

for which we wish to prove
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var
eyt
Legt...

;.c,. T
proc .p; (“formal parameters”) : |[{P]}B1{Q1}]};
proc t.p; (“formal parameters”) : [[{P3}B2{Q3}}l;

proc t.pm (“formal parameters”) : |[{F;}B,,{Q: 15
B

where each of B’ and the P'i, B!, and Q! is obtained from the corresponding B, F;, B;, and
Q; by prefixing all occurrences of the concrete variable and procedure identifiers with “¢.”.

Figure 8: Meaning of the abstract declaration var (T')t.

P{|[var (T)¢; S]I}Q.
According to [86], this may be accomplished by showing:

1. “that the concrete representation given for the type T exhibits all the properties ex-
pected of it by the program §7;

2. that the abstract program, S, is consistent with its specification.

Establishing correctness of the concrete representation This involves showing that
each operation of the form

t.pj(a;,az...,ax)
is equivalent to an assignment

t:= fi(t,a1,a3,...,a;)

where f; is a primitive operation on ¢, required by the abstract program.
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Similarly, the initialization program B must be shown to be equivalent (o an assigament of 3
suitable initial value, o, from the abstract space, to ¢.

To perform these proofs we need an expression of the relationship between the abstract and
concrete spaces involved. This is given in the form of a representation function A(¢y,63,...,6x),
that maps the concrete variables to the abstract object represented by them. In maay cases,

the representation function is many-one.

Many practical situations also require use of an invariant Z(cy,¢3,...,¢4), that defines some
relationship between the concrete variables. In;tialization of T' must be shown to establish 7

and each abstract operation to maintain it.
Thus the following m + 1 theorems have to be proven:
T{BHANA=1

and
A=tATAP{B;}Q; AIAA= fj(t) (26)

for all procedure bodies B;.

Establishing correctness of the abstract program In proving P{5}Q, one will have

to prove conaitions of the form:

U{t.pi(a1,a2...,ax)}V

To allow the desired abstraction in thie proof, we may use theorems (26) above to formulate
a formal proof rule that is applicable here. An example of such a proof rule for the Euclid
language, may be found in [47].

Discussion

There are many possible extensions to the class concept as described above, e.g. :
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o Allow classes to have formal parameters that may be replaced with different actual
parameters in declarations. This gives class definitions a wider range of applicability.
Euclid modules include this facitity and [47] may be referenced for the proof obligations

resulting therefrom.

e A number of programming languages include a construct that allows support for both
data abstraction and general encapsulation. Extending our view of the class formalism
in this way, would allow the declaration of some concrete variables of a class as “private”
and others as “public”. Euclid modules [47] allow both the declaration of local variables,
ikat are not visible outside the scope of the module definition, and variables that are
visible to the abstract program. A module’s interface with programs that make use of

it is stated explicitly through an “import” and an “export” list.

o The ability to define generic classes that may be used as the basis for constructing
other classes would be very useful. One way to achieve this is to allow classes that
define polymorphic types. A suggestion for modules with this property is described by
Gries and Prins [68] (also see below).

¢ The class mechanism may be extended to allow treatment of recursive type definitions.
This would allow construction and manipulation of types such as lists and trees in a

natural manner.

The proof rule for Euclid modules as presented in [47] may be seen as an example of the
formalized application of Hoare’s suggestions concerning data abstraction. This rule is very
complicated as it contains all the intricacies associated with correctness proofs for procedures,

functions, and recursion. It has the form:

1,2,3,4,5,6,7,(8.1,8.2,8.3,84) |- 8.5
P{vart:T(a); S}RA Q)

where premises 1-6 are properties required of the module definition, that need to be verified
only once. Premise 7 states that the instantiation precondition is met and must be proven
every time an abstract variable of the type concerned, is declared. Premise 8 uses the verified
module definition (premises 1-6) to verify the uses of abstract variables of this type. These
premises are described in more detail in [47] and [73).
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Hoare’s method does not provide any support for the development of data abstractions con-
sistent with given specifications, but only for proving such consistency. Thus no guidance is
provided in the formulation of a proposed data refinement. Only once it has been proposed,
can its validity be verified. Guaranteed termination and nondeterminism in data types is also
not considered. These issues are addressed by developing a weakest precondition semantics

for data abstractions.

5.2.2 Gries-Prins Modules

In [68] Gries and Prins make some suggestions for extending the weakest precondition calculus
with a module construct that may be used to describe data abstractions. This theory is

devel -ved further in [64].

A flexible type system, offering the following features, is assumed:

e A facility for type definitions: This should give the name of the type as well as the

syntax of operations on values of the type. Figure 9 shows an example from {64).

type RATIONAL

Il
“t+": RATIONAL — RATION AL prefix;

“4": RATIONAL x RATIONAL — RATIONAL infix;
“« . RATIONAL x RATIONAL — RATION AL infix;
“/*: RATIONAL x RATIONAL — RATION AL infix;
IntToRat : integer — RATIONAL prefix;

Il

Figure 9: A type definition.

o Polymorphism: This allows the use of parameters for modules and procedures whereof
the types may vary from one situation to another. The notation z :?7T" is used to indicate
that the type of identifier 2 can vary from use to use.

o Type inferencing: If the type of an identifier can be determined from the program, it
need mot be explicitly stated.
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A Gries-Prins module is used to define a restricted implementation of (the value of ) an abstract
type. Different variables of the same type in an abstract program may be implemented using
different implementation modules. This is indicated by the use of implementation directives

in an abstract program:

var z,y : integer seq;
implement z by STACKARRAY (100);
implement y by LINKLIST;

in B ni

To allow a more flexible interface between an abstract program and implementation modules
for the types used therein, procedures and functions are no longer used to implement data

type operations. Parameterized statements and expressions are used instead.

A typical module has the form shown in figure 10. Here ¢ is an abstract and ¢ a concrete
variable; more than one of each of which may be present in a module. The body of the
module consists of pairs of abstract operations and their concrete implementations, of which
one representative statement, S; and one expression, f;, with their respective implementations,

are shown in this example.

module M (“parameters”) :

Il

var
t:T; repr c:T

{inva;' I(,c)}
0 {Ps}Si(t,var~z:T) into S.(c,z')

" o (P} () into  f.(c)

Figure 10: A typical Gries-Prins module.

Patterns of the form:
var—z:T:

exp—e:T,

stmnt — s
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are used in the definitions of abstract operations to allow simultaneous description of a class
of operations. Such patterns specify a type or form restriction that must be obeyed by the
text of the variable portions of these statements or expressions. The example in figure 10
shows that the second argument of S; can be any variable z of type T. The corresponding

variable in the implementation is 2'.

Developing correct modules

Abstract programs containing implementation directives may be developed with the aid of the
weakest precondition calculus as any other guarded command program. No explicit weakest
precondition semantics for such programs is given in [68], but the following proof rule for

their correctness, is formulated:

[P = wp(B,Q)], M correct, M and B compatible
[P = wp(implement t by M in B ni, Q)]

A module M must be developed and shown correct relative to a representation invariant,
I(t,c), which is a predicate relating abstract and concrete values. This invariant may specify

a function (compare to Hoare’s representation function above), or in general, a relation.

e To be correct, each pair S, 5. must maintain (or establish, in the case of initializing
operations) the representation invariant, thus ensuring that the values of ¢ and ¢ are
always related by I. Other values produced by S; and S (such as z and 2’ in figure 10)
must always be equivalent. Thus development of a correct module involves finding

suitable preconditions Ps such that
[Ps = wp((5-(c,z’); Su(t, =), I A z = z')]

It is pointed out in [68] that this definition is not general enough for nondeterminis-
tic operations. The following generalized rule can be used to determine Ps for any
implementation that is at least as nondeterministic as the abstract operation. A full
justification for its contents is to be found in [68].

rP s = UP(S«:(C,I'), ﬁ"1:'(3"!("3)1 ~IAz= 3')))]
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o Expression pairs fi, f. are simpler to find suitable preconditions for, since no state

changes are involved. We use the rule:

[Py = fi(t) = fe(e)]

A module M that implements abstract object ¢, using representation invariant I, is compatible

with an abstract program {P}B{Q} if the following three conditions are met [68]:

¢ Every operation on the abstract variable ¢ appearing in B must be matched within

module AM.

e An operation in B with precondition U, that is matched by a template in M with

precondition Pg, must be shown to satisfy:

— U= Pg,ift is not free in U, or

- UAIi= Ps,iftisfreein U.

e ¢ may not be free in P or Q.

Examples of developing modules in this style are to be found in [68] and [64].

Mechanical support for manipulation of Gries-Prins modules will tequire a high level of so-
phistication in order to be useful. A good structure editor is recommended for this purpose

in [68]. Some areas that provide problems are:

1. Sophisticated pattern matching algorithms may be necessary to ensure flexibility in
matching patterns in an abstract program with implementation templates in a module

(during substitution of implementations for abstract operations).

2. Because both the type and implementation of variables and expressions have to match
in a given context, one will have to provide both a type inference mechanism and an
implementation inferencer. These must ensure that the type and implementation of
variables and expressions are deduced from the text wherever possible.

3. Mechanisms for module interaction and interconnection are not defined (see [23] for ex-
amples of basic module interconnections and their (algebraic) semantics). It is therefore
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not clear how to handle situations that require one module to reference representations
given in other modules. Flexible measures for module connection provide scope for reuse

of existing modules in new applications.
. Aspects surrounding the type system need further clarification, e.g.

e which types, if any, should be considered as concrete types of the programming

language;
e exactly what kind of type definitions will be allowed and

e how will recursively defined types be handled?

. The use of abstract data types in programs present additional requirements for the
specification language used with guarded command programs [143]. A useful “basic”
set of abstract data types, together with suitable new notation for them, musi be
incorporated into the specification language and extension facilities for the language

should be provided, to allow formulation of properties in terms of user-defined abstract

types.

. Mechanical proof support is significantly complicated by the use of abstract data types.
In order to simplify and prove logical formulae that refer to abstract data types, a
mechanical prover must provide facilities for constructing and effectively using theories
of data types [94]. To stimulate reuse of theories it is also important to provide powerful
facilities for building new theories from existing ones, e.g.

¢ extending a theory by adding items (sorts, constants, axioms, etc.);

e merging theories, possibly containing common elements;

e instantiating abstract parameters of a parameterized theory;

o generalizing (abstracting) from existing theories (so that the latter become in-

stances of the new theory)

These requirements are non-trivial to accomplish (also see section 4.3.4 and [107, 98]).

7. The interface between a module and its environment must be rigorously defined. This

may have an effect on the validity of data type induction, which is a valuable proof
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technique for proving properties of abstract data types. How may we ensure that the
principle of data type induction holds for a particular module? In Euclid, for example,
this may be attained through careful use of the module import and export lists: if no
“var” globals are imported and no portion of the internal data structures is exported as
“var”, data type induction is valid over the type in question (see [73] and [47] for more
details).

5.2.3 Data Refinement

Because the difference between an abstract type and the concrete types available in a pro-
gramming language may be quite significant, a number of successive data refinements may
be necessary before a suitable implementation for an abstract data type is obtained. Unless
the “in-between” stages of data refinement have formal status, mechanical support for such
developments can at best be ad hoc and proof obligations may not be factored over the devel-
opment. A formal relation of data refinement, which allows development of an implementation
by piecewise data refinement, is presented as part of the refinement calculus in Chapter 7. In
[128] and [123] this refinement relation is used as the basis for a calculational style of program
construction, which emphasizes the progressive calculation of data refinements as opposed to

proposing them and then attempting to prove their correctness.

5.3 Abstraction in specifications

Due to various factors, guarded command program specifications are sometimes complex and
lengthy. Here we want to consider specification language features that allow abstraction from
some of the detail that is necessary for a formal proof of consistency between specification

and program code.

The use of abbreviations for complicated or recurring predicates in constructing program
specifications and annotations is quite well known. A first step ;owards this goa] was taken in
the prototype implementation by allowing each program annotation to be optionally labelled
with a name that may be used instead of the actual assertion formula in other program
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annotations (see section 4.2.1). An obvious extension to this practice is to generalize the
abbreviations allowed so that not only program assertions themselves may be abbreviated,

but also any other predicate to be used in program annotations. The following shortcomings

of such abbreviations were observed:

o The predicate formula that is being abbreviated, is formulated in terms of the state

space existing at the point where the abbreviation is defined. This causes problems in

two situations:

1. Where an abbreviation is used in the scope of a quantifier, variable occurrences in

the abbreviated formula may become bound, e.g. using the abbreviation
less=(Vi:0<iAi<n: Ali] < Bli)

in the context:

(V(n : character) :: ...less...).

2. Where an abbreviation is used in a local block, renaming of global variables ap-
pearing in the abbreviated formula cannot be allowed, e.g. using the abbreviation

for less above, in the local block
|[var n: character | 5]}
would be illegal.

Under these circumstances, the abbreviated formulas have to be scanned to locate any
potential problems.

o When textual substitution is being performed cx an assertion that uses abbreviations,
abbreviations for formulas involving the variabie(s) being substituted for have to be
expanded to their full form. For example, in calculating P2, ;, where P contains a
refereace to the predicate less, as defined above, less will have to be expanded to aliow
substitution of » + 1 for n. This means that all abbreviated formulas have to either be
scaaned beforehaad to determined whether they contain refereaces to such variables, or
expanded automatically.
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To solve these problems and provide more functionality for predicate abbreviations, param-
eterized abbreviations were introduced, Since no variables apart from the parameters are
aiiowed in abbreviated formulas, the need to perform substitutions can be detected by exam-
ining the list of actual parameters and not the abbreviated formula itscli, Clashes with quan-
tification variables or local variables as mentioned above, cannot occur. The other advantage
is that parameterized abbreviations are much more widely applicable. As with procedures,
a more flexible type system, ideally incorporating polymorphism, will make parameterized

abbreviations even more useful.

It is not clear during which stage of simplification or theorem proving, if at all, abbrevia-
tions in logical formulae should be expanded to their full form. One extreme is to expand all
abbreviations before any simplification starts as this may allow more opportunities for simpli-
fication. This approach is simple to implement, but suffers from the obvious disadvantage that
formulae will become longer and less readable. This is especially bad for human interaction.
Mechanical simplifications on expanded formulae may leave them even less comprehendable
to a human. The other extreme approach is to incorporate manipulation “rules” for abbre-
viations into the theorem proving process where they may be used for rewriting purposes.
Such a process may allow “bigger” simplification steps and should be easier for a human to
guide. On the other hand it would require a very sophisticated theorem prover. Allowing
a user to formulate rules of manipulation for abbreviations will also raice concerns for their
soundness, which may be difficult to establish. In [4, Chapter 8] some examples are given to
illustrate how properties of abbreviated formulae may be used in mechanical simplification of

verification conditions.

It is difficult to envision other abstraction facilities for specifications in the current setting. To
adequately manage specifications of complicated problems we may need to decompoee them
into simpler “pieces”, while operations that allow the construction of complex specifications
from simpler ones may also be useful. There is an obvious connection between decomposition
of complex specifications and procedural and data refinement, which may be exploited during
program construction within a unified framework such as the refinement calculus of Chapter 7.
A specification language allowing such refinements should also have a rich set of suitably
abstract data types to allow concise and natural formulation of abstract specifications. An
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interesting example of powerful abstraction mechanisms in a specification language, is the
schema calculus of Z [150]. In considering changes or extensions to the specification language
used with guarded command prograins, some consideration should be given to these or other

abstraction facilities.

5.4 Conclusion

Procedural abstraction, as provided by proof rules for procedure calls, provides a valuable
way of decomposing program construction. The complexity of procedure proof rules stems
from the inclusion of parameterization and recursion, but these may also be treated separately

[120].

Another source of complexity, i.e. the couching of specifications and algorithms in terms of
low level data structures, may be addressed by mechanisms for data abstraction, such as
classes or modules. The accommodation of data abstraction is a more difficult problem than
that of providing procedural abstraction and some details of approaches such as [68] have yet

to be formalized before mechanical support can be considered.

The use of procedural and data abstraction facilities dictates the use of a more powerful
specification language. A richer (and extendible) set of data types and facilities for composing
and decomposing specifications seem to be required. Mechanical provers used for proofs of
properties of data abstractions should have well developed mechanisms for the handling of
theories of user-defined data types. Advantages of using procedural and data abstractions in

mechanically supported program development include:

e they form a natural basis for a (rudimentary) “record” of program development;

¢ they may be used in limiting the proof obligations arising from changes to a program
development.

The use of procedural and data abstraction suggests a top-down method of program coastruc-

tion. In reality program development would proceed from an abstract specification through
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a suitable implementation is reached. The (ramework of Dijkstra’s calculus does not accom-
modate formal applications of procedural and data refinements, although it may be used to
establish the correctness of the results. The main obstacle is that the result of a refinement
step that does not immediately produce program code, has no formal meaning and is there-
fore not amenable to formal correctness arguments. Thus we cannct us? Dijkstra’s calculus

to answer crucial questions such as:

e Is a development step indeed a refinement, i.e. does it produce a result that is in some
sense “closer to program code” than what we had before its application? This would

require a format notion of refinement between specification /program hybrids.

¢ Does a refinement step “preserve correctness”? Proof obligations may be factored over
the development process if each refinement step can be shown to maintain correctness,

instead of proving correctness only of the resulting code.

e Which refinement steps would be appropriate in a particular situation? This would

imply a calculus that may be employed to “calculate” correct refinements.

Support for formal program development using procedural and data refinement, requires
support for arbitrary levels of abstraction within the development calculus. This may be
achieved by extending Dijkstra’s calculus to a calculus of refinement.
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Chapter 6

An Extended “emantic Framework

In Chapter 2 a lattice theoretical semantic framework for Dijkstra’s programming calculus is
presented. This framework rests on the lattice Predy,, of predicates, which in turn is built

on the lattice Bool of truth values.

As described in Chapters 4 and 5, some of the complexity imposed by the formality of mechan-
ical application of the calculus may be countered by introducing more powerful mechanisms
of abstraction. To accommodate program development by refinement of abstractions we have
to add a further formal layer to our current framework, by constructing a fattice of predi-
cate transformers based on Predy,,. This extension allows an elegant formal treatment of
general recursion and simplifies procedural and data abstraction by presenting a unified view
of programs and specifications. The ordering imposed on predicate transformers, expresses
the concept of “correctness preserving refinement”. It offers a basis for the formulation of a
refinement calculus in which programs may be developed from specifications by a series of
formal applications of the stepwise refinement technique. Each construct in this progression

retains formal status as part of the calculus.

6.1 A Lattice of Predicate Transformers

According to Chapter 2 a predicate transformer is a function that associates one predicate

with another, i.e. assuming a state space Iy,, based on a countable set lar of program

143
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variables, a predicate transformer on Var is a function

P : Predya, — Predy,,

We denote the set of all predicate transformers on Var by Pirany,,. By results from Ap-
pendix A.3, (Ptrany,,,C) is a complete lattice for the pointwise extended partial order on

Predy,,, i.e. for predicate transformers P, and P;:

rP1 C Pp=(YR: R€ Predy,r : PA(R)C Pz(R))] (27)

The top element of Pirany,, is the predicate transformer magic which maps every predicate
to the predicate 7, while the bottom element is the predicate transformer abort that maps
every predicate to the predicate F.

6.2 Healthiness Conditions Reconsidered

In shifting our attention from executahle programs to abstract programs/specifications, we
no longer require that all mechanisms be executable. This allows us to question Dijkstra’s
healthiness conditions for weakest precondition predicate transformers in crder to gain more
expressive power. A similar process has been followed by a number of authors, e.g. in
[9, 8, 12, 25, 124, 122, 123, 130, 133], dropping some of the healthiness conditions has al-
lowed treatments of specifications, logical constants, parallel piograms, procedura! and data

refinement. We consider three such generalizations:

Miracles: In [133] Nelson extends Dijkstra’s guarded command calculus by removing the
Law of the Excluded Miracle. He calls the resulting semantic model the general model,
as it is a generalization of the total correctness model that also includes so-calied partial
commands or “miracles”, i.e. mechanisms that relate some initial state to no final state.
Miracles are useful in that they simplify the program development process {124, 122]
by allowing simpler applicability conditions for program refinements. They also allow
proof of certain data refinements that are not provable in the total correctness model
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{119). Finally they lead to a simplification of the theory [88, 133, 130]. Unlike {133}
we provide no operational interpretation for miracles—though they form part of the
refinement calculus, they must be removed during program development, as executable

programs are required to map every initial state to some final state(s).

Nondeterminism: Dijkstra’s calculus encompasses mechanisms that display only bounded
nondeterminism. This is a result of the requirement that the weakest precondition pred-
icate transformers of all mechanisms urder consideration be or-continuous [38]. Nonde-
terminism is a useful abstraction device in program development and may be used, in
particular, where further refinement of an abstract program is to take place. In this situ-
ation it is somewhat artificial to allow only mechanisms that lead to choice from among
a finite number of alternatives. To accommodate the needs of a program refinement
calculus, we therefore drop the healthiness condition relating to or-continuity. Never-
theleas, unbounded nondeterminism is not implementable and subsequent refinements

must introduce suitable bounds in order to obtain an executable program.

Conjunctivity: To add expressive power, we will also allow programs S for which the
knowledge that an initial state satisfies both wp(S,Q) and wp(S, R) is not a sufficient
basis for concluding that a final state satisfying Q A R will be established. Such programs
violate Dijkstra’s conjunctivity healthiness condition. This seneralization is useful in
that it allows a formal treatment of logical constants in terms of weakest precondition

semantics (see Chapter 7).

Thus we shall limit our calculus to mechanisms such that their weakest precondition predicate
transformers display the monotonicity and disjunciivity healthiness properties as set out in

Chapter 2.

These weakest precondition predicate transformers are embedded in the lattice Ptrany,,, or
more specifically, in the lattice [Predy., — Predy,.]sm of monotonic predicate transformers.
As shown in Appendix A3, [Predyer — Predy.,|a is a complete sublattice of Pirany,, and
has the same bottom and top elements.
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6.3 A Relation of Refinement

The ordering relation on (weakest precondition) predicate transformers, as defined in (27)
above, is called the refinement relation. This relation is used in a number of refereace works,
including [9, 8, 12, 124, 122, 121, 130}, and is essentially the same as the Smyth ordering [149].
To simplify notation, we formulate the definition of P; C P; for mechanisms (programs) P;

and P, as follows:

[P, C P; = wpp, C wpp,(= (VR : R € Predy,, : wpp,(R) = wpp,(R)))],

thereby effectively identifying mechanisms with their weakest precondition predicate trans-

formers. Informally we may give the meaning of P, C P, as:
Mechanism P, saﬁ.isﬁes at least all specifications satisfied by P;.

This implies that P, may be used as a replacement for P, in every context where wpp,{R)

has been shown to hold for a particular predicate R. We say P, “refines” P;.

Operationally, P, C P,, whenever P, resolves nondeterminism in P;, or terminates when .-"

might not.
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Chapter 7

A Program Refinement Calculus

Program development by stepwise refinement is a familiar concept in programming method-
ology [37, 156), during which a program is derived from an initial specification by carrying
out a sequence of refinement steps. Both procedural and data refinements may be involved,
ideally proceeding in parallel. The sequence of refinements used to construct a program form
a detailed history of development that is useful when the resulting program must be changed

or design decisions revised.

There are definite advantages to the formalization of this process, such that only formal,

provably semantics-preserving refinements are carried out:

1. the resulting program is correct by construction (Thus an argument for the correctness
of a program is decomposed according to the sequence of abstractions comprising the
program development.);

2. program development may be supported by mechanical tools;
3. refinements of general importance may be recorded and reused in other developments;

4. general “patterns” of program development (spanning more than one refirement) may

be constructed for reuse.

These are the basic ideas behind transformational programming [138, 48]. In this paradigm,

programs are constructed by successive applications of correctness-preserving transformation

147
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rules, starting with a formal specification and ending with a(n) (executable) program, Here a
program transformation rule is a partial mapping from one program scheme (class of related

programs) to another, such that a certain semantic relation holds between them. Predicates, |
called enabling conditions, are used to restrict the domains of partial transformation rules,

i.e. they state proof obligations to be discharged when applying the rule.

The refinement calculus described here (and its theoretical framework in Chapter 6) is 2
generalization of Dijkstra’s weakest precondition calculus, that embodies a formal notion of
correctness-preserving stepwise refinement, with transformation rules for formal construction
of programs from specifications. Pioneering work on this kind of calculus was performed by
R.J.R. Back [9, 10, 8], with independent contributions by other researchers, most notably C.
Morgan [124, 122, 121, 123] and J. Morris [130, 128]. As the notation of [9, 10, 8] differs
substantially from the other two sources, most of the material presented here is drawn from

the work of Carroll Morgan and Joseph Morris.

The first section introduces the concept of abstract programs and gives examples of how the
guarded command language of Chapter 3 may be extended to express such programs. These
extensions include generalizations of the semantics of local blocks and iteratior, and new
constructs such as specification statements, program conjunction, and modules. Data types

suitable for use in abstract programs are also discussed.

Section two presents stepwise refinement as a formal manipulation on abstract programs.
Both procedural and data refinement are considered. Laws of refinement are introduced as a
mechanism for showing (and calculating) correct refinements of programs without reverting
to definitions in terms of weakest preconditions. The constructive use of type information

and general program invariants during program refinement, is also discussed.

The last section gives some perspectives on mechanical support for use of a refinement calculus.

7.1 Abstract Programs

During the process of constructing a program by stepwise refinement, a specification is sys-

tematically transformed into a program. To give formal status to the in-between stages of
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program development, a unified view of programs and specifications is adopted. The notion
of a program is generalized to encompass specifications. Thus we may view the stepwise
refinement process as that of transforming an abstract program into a concrete/executable
program, by forming a series of “increasingly concrete” programs in which abstract and con-

crete constructs are freely mixed. We will sometimes refer to executable programs as code.

The language used for expressing (abstract) programs must encompass both executable pro-
gramming language constructs and high-level specification constructs. Specification languages
are typically richer than programming languages, containing more expressive, not necessarily
implementable, statements and a selection of richer data types. The language used for ab-
stract programs in the refinement calculus, is built around the guarded command language of
Dijkstra’s calculus, with more general semantics for some constructs (e.g. local blocks and it-
eration) and augmented with more powerful constructs, some of which are not implementable.
A wider selection of data types is also allowed to encompass descriptions of abstract and con-
crete data. There is however, no formal standard for this language. In the sections to follow

we describe typical features of such a language as found in the literature.

7.1.1 Language Extensions
A specification statement

Specification statements are obtained by giving a formal status to the “specifications” of
section 3.4. They allow a uniform treatment of specifications and executable programs, which

is the basis of the refinement calculus. The syntax of a typical specification statement is [124]:

Wy, ..., Wy : [pre, post]
where wy,...,w, is a list of changing variables—called the frame, and pre and post are
predicate formulas, respectively called the precondition and the postcondition.

Informally, this specification statement denotes a program that, if the initial state satisfies

pre, will change only the variables w;,...,w, to attain a final state satisfying post.
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To formalize the above, we give corresponding predicate transformer semantics [124]:

fwp(w : [pre, post], R) = pre A (Vw :: post = R)] (28)

As an informal justification of this choice of semantics, consider that pre describes the states
in which termination of the above specification statement is guaranteed, and thus appears as
the first conjunct of the weakest precondition. To ensure that R holds on termination, the
second conjunct requires that, in all states in which [pre, post] terminates (described by post),
R also holds. A formal justification of this semantics is given in [124].

Considering some extreme examples of specifications, it is clear that this construct allows us

to write programs that violate some of the healthiness conditions of Dijkstra’s calculus:

o A program called magic, that always terminates, establishing the impossible:
w:[T,F]

Magic violates the Law of the Excluded Miracle. We adopt the convention of referring

to all programs that violate this law as miracles.

e A program called choose w, that always terminates, but assigns any value of its choice
to w:

w:[T,T}
Choose w violates the or-continuity healthiness requirement, for any w belonging to a

type comprising infinitely many values.

Various abbreviations for special specification statements have been formulated, e.g. [121]

e A formula appearing as a conjunct of both the pre- and postconditions of a specification,
may be written once, in between the two, i.e.
w : [pre,inv, post] means w : [pre A inv, post A inv]

The formula inv above, is called a specification invariant.

o If the frame is empty and the postcondition is 7, both may be omitted. We use

{pre} instead of : [pre, T}
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These commands are called assumptions. The assumption {pre} behaves like skip if

pre is true; otherwise like abort.

o If the frame is empty and the precondition is 7, both may be omitted, i.e.

Ipost] means : [T, post]
Such commands are called coercions. The above coercion behaves like skip if post is

true; otherwise like the program magic.

Local blocks

Without the need for or-continuity and the Law of the Excluded Miracle, we may generalize
the semantics of the local block constru-t 0 a form that can be used to describe formal data

refinements., We first consider:
[wp(l[var = : T | §]|, R) = (Vy = wp(S;, R))]

This semantics solves previous problems with uninitialized variables, but displays unbounded
nondeterminism if the type T is infinite. For the treatment of data refinement to follow 7.2.2,
it is also convenient to have explicit initialization of local variables. Adding this, we obtain

the syntax [128, 123]:

[varz:T | IeS]

where I is a predicate that must hold after initialization of the variable(s) z, and e is used to
separate the initialization predicate from the block body, S.

The corresponding semantics is as follows:

fwp(|[var = : T| I e S)i, R) = (Vy : I = wp(S;, R))] (29)
where y is a fresh variable.
Local blocks can also be miraculous, e.g.

[wp(lfvar = : T | F o S]|, ) = T}
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Program conjunction

To formalize the use of logical constants, Morgan introduces the concept of program conjunc-
tion [123]. The generalized program conjunction of program S over a variable i of type T, is

written:
llconi:T|S]|

Informally, this construct chooses a value for i that makes subsequent preconditions true wher-
ever possible, whereas a local block construct randomly chooses a value for a local variable.

Consider, for example, the following program to increase the value of z:
l[con initval : T | z : [z = initval,z > initval]}|

The weakest precondition semantics of program conjunction reflects this duality with (29):

[wp(l[con i : T | S)|, R) = (3j = wp(S}, R))] (30)

Logical constants are most often used to represent initial values of variables. Program conjunc-
tion eliminates the need for conventions such as capital letters or 0-subscripts to distinguish
initial values of variables from the variables themselves and avoids the limitations of such an
approach. Naming conventions for logical constants representing initiai values may stili be
desirable as abbreviations, but these can now be defined formally (sce ¢.g. [121, page 52]).
Supplying type information with the introduction of each logical constant may be made com-
pulsory, to allow simple mechanical type checking. Otherwise type inferencing would have to
be applied when mechanical processing takes place.

Programs involving piogram conjunction may not obey Dijkstra’s conjunctivity property for

“healthy” predicate transformers.

Procedures, sarameters, and modules

The extended semantics of the refinement calculus gives more flexibility than before, in that

procedural abstraction is now avaiiable through the use of specification statements. However,
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procedure declarations are still important as a mechanism for avoiding repeated refinements
of the same specification and for clearly exhibiting the structure of a program. Procedures
and parameters in the context of the refinement calculus, are discussed in [120) and [121]. The
same notation used in (66] and Chapter 5 may be adopted (121, Chapter 12]. The semantics
of procedure calls is still based on the ALGOL-60 copy rule.

To allow parameterization of any command, systematic substitution of an expression (or
variable) for another variable in a command is formally defined [120]. Substitution by value,
value resull, and result is included. The semantics is the same as for the parameterized
statements in Chapter 5, except that references to global entities are no longer prohibited. A

parameterized statement of Chapter 5

|[value z : Ty; value result y : T; result z : T3 | S]|(e, v, w)
would now simply appear in the form

S[value z : T}, value result y : 75, result z : Tz\e, v, w]

Modules are introduced into the refinement calculus in {121, Chapter 16]. They act as mecha-
nisms of encapsulation and data abstraction and may be formulated to be largely independent
of their environment, thus creating potential for their reuse in other contexts. Syntactically,

these modules are cloge to those found in Euclid [47]. They consist of:

1. an ezport list, stating the names of all local variables and procedures accessible outside

*ke module;

2. an import list, stating the names of all non-local variables and procedures accessibie to

the module;
3. alist of declarations of local entities, such as variables and procedures;
4. an initialization, that is a formula constraining the initial values of local variables.
No weakest precondition semantics is given for modules, but {121] shows how formal stepwise

refinements may be used to transform an abstract definition module into a more concrete

implementation module in order to obtain a correct implementation of a specification.
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Iteration and recursion

Because Dijkstra’s or-continuity requirement for predicate transformers does not apply to the
refinement calculus, Kleene’s Limit Theorem can no longer be used to show the existence
of least fixed points for the semantic equations arising from loops and other tail recursive
constructs. Instead, a generalized theorem due to Hitchcock and Park may be used (see
Theorem A.5.0.2 in Appendix A.5). This theorem only requires monotonicity of the seman-
tic functions, but characterizes the desired least fixed point in terms of iterated function

composition over ordinals instead of the natural numbers which previously sufficed.

This necessitates a reformulation of the Fundamental Invariance Theorem for Loops 3.1.0.2.
The integer-valued bound functions of Dijkstra'’s calculus are no longer general enough, so

that we must now have a bound function ¢ such that either

® t: Zyer — (D,E) for some poset (D,C) and [(P A GG) = (t € C)] where C C D and
(C,) is well-founded (see {132, 42] or [130]); or

e t is an ordinal-valued function on the state space and [(P A GG) = (t € A)] for some
ordinal A (see [25] or {130]).

At a glance, the first alternative seems the easier of the two for practical proofs, but only
experimentation will show if this is actually the case. It is clear that ordinary first order logic
is not general enough for the construction of such termination proofs as one cannot express

the property of well-foundedness in it.

In [121}, Morgan uses the notation
rep|Ber

for a recursive program p. Here p is a program name and B is a program scheme probably
containing the command p. Viewing B as a function from Ptrany,, tc Ptrany,,, the meaning
of such a construct is given as uz.B(z). The existence of this fixed point may be shown using
Theorem A.5.0.2 (see Appendix A.5).

A method for constructing recursive procedures, with or without parameters, by formal step-
wise refinement is given in [121]. In [130], theorems illustrating the validity of this approach,
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are proven. The method involves showing termination of recursive procedures by finding a
bound function of exactly the same nature as that for a loop (see above). Such a function
must be shown to deliver a sequence of decreasing values in some well-founded set (possibly
an ordinal) corresponding to the sequence of recursive calls. Mutual (indirect) recursion is
also discussed (also see page 121).

7.1.2 Data Types

A rich type system is required to allow formulation #ud refinement of suitably abstract speci-
fications in the refinement calculus. The basis of the type discipline used in [121}, is that any
set is allowed to act as a data type.

Standard types may include truth values, characters, and various sets of numbers e.g. nat-
ural numbers, integers, rational numbers, reals, and complex numbers. New types may be
constructed from existing ones by various set operators. Other compound data types used
in [121] include bags, powersets, and sequences, while Cartesian products and maps are also
used in [96]. Gries’s work regarding data abstraction and program refinement [68, 64] suggests
that it would also be useful to have a flexible mechanism for the definition of new abstract
types, specifically allowing recursive type definitions and the use of type variables (for type

polymorphism).

A clear delineation must be given as to which types may appear in code.

7.2 Formalized Stepwise Refinement

7.2.1 Procedural (Algorithmic) Refinement

The goal of procedural refinement is to reduce the expressive statements of abstract programs
to (efficiently) executable ones. Using the refinement relation presented in Chapter 6, one
may develop executable programs from their specifications through a sequence of formal,
correctness preserving refinements.

According to this ordering, a program P; refines a program P; iff every specification satisfied
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by P is also satisfied by P». Formally:

[P, G Py = (YR: R € Predy,, : wpp,(R) = wpp(R)))].

When we Jevelop a program P from a specification X through successive correctness pre-
serving refinements, we construct a sequence of programs related by the refinement relation
as follows:

XCPRC..CPREP

For this procedure to be sound, the refinement relation must be transitive. This property
follows from the dcfinition of the refinement relation (see Chapter 6).

We now comsider two crucial strategies to be applied during stepwise program development
based on this refinement relation.

Top-down development

One powerful and well-known strategy that may be applied here, is top-down development,

which combines the use of absiract program fragments with piecewise refinement.

We illustrate the technique on a typical step in the above development: Given a{n) (abstract)
program P (1 < m < k), construct a program Py such that P, C Pnii. Assuming that

Pm = Pm[Sl,Sb-'-’Sn]

contains the abstract programs S,,Sz,..., Sn, we now use these as subgoals for the develop-

ment process and construct programs 7'1,T2,...,T, such that
(Vi:1<i<n:5;CT;).

Afterwards, piecewise refinement is applied, replacing each S; in P,, by its corresponding T;.
This gives a new program
Pm-l-l = Pm[ThT27° . '1Tu]

which may be further refined if necessary. Continuing in this manner results in a “tree-shaped”

develrpment history.
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To be sound, the above procedure must guarantee that Py L P4y holds. Thus we require
that the refinement relation possess the following property: The set of programs (predicate

transformers) under consideration admits piecewise refinement, i.e.
P[R] C P{P;)

holds whenever P; C P; holds. A proof of this property uses the fact that programs are built
up from basic constructs such as assignment and skip statements, using program constructors
such as sequential composition, conditional composition, and iteration. The proof consists of
showing that each program constructor is monotone with respect to the refinement relation.

An example of such a proof for a guarded command language may be found in [9].

Transitivity is also necessary to ensure that X C P holds eventually.

Refilnement laws

If program development proceeds by proposing new refinements and proving them to follow
from their ancestors using first principles, the burden of proof is unnecessarily high. To help
in finding suitable refinements and reducing proof obligations, refinement laws are formulated.

Such a law can be seen as a (partial) function:
RL : Ptrany,, — Ptrany,,

such that (VP : P € Ptrany,, : P € RL(P)). A refinement law is usually not defined for
all possible programs, but applies only to programs conforming to given syntactic and/or

semantic restraints.

It is convenient to present these laws in the form [124]

before — refinement

side — condition
after — refinement condt

where before-refinement and after-refinement are “program templates” showing the form of
programs to which the rule may be applied and that result from its application, respectively,
while side - condition is a predicate that must be shown to hold for application of the rule to
be valid. Thus, the rule means: “i side—condition is universally valid, then before-refinement
= afler-refinement holds™.
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A large selection of useful refinement laws is given as an appendix in [121], These laws range

from general ones, such as:
w : [pre, post]
w : [pre/, post)pre = pre'

for weakening a precondition and

w,z : [pre, post)
w : [pre, post]
for contracting the frame, to laws for introducing specific executable constructs, e.g.

w,z : [pre, post)
wi=F

w : [pre, post)
|[var z : T | w,z : [pre, post])|

pre = postg

w and z are disjoint

Use of refinement laws allows formal program development to take place at a higher level than
when calculation of predicate transformers is used directly. The program development style
is analogous to natural deduction proofs. For the sake of clarity, development steps based on
application of a refinement law should be annotated with a reference to that law. Examples

of program development using the refinement calculus may be found in [124, 125, 121).

Refinement generally strengthens a specification. Though over-strengthened specifications
can never be refined to code (as they are miraculous), refinement laws provide no check
against strengthening a specification too much. This keeps the laws as simple as possible,
but allows one to embark on a sequence of unproductive refinements without noticing it. A
separate feasibility test may be applied at a programmers discretion whenever such a situation

is suspected. This test is based on Dijkstra’s Law of the Excluded Miracle, which states
wp(P,F)=F
for all executable programs P.

If a specification is miraculous (and thus can never be refined to code) it will therefore fail
the following feasibility test:
The specification w : [pre, post] is feasible iff

pre = (Jw :: post)
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7.2.2 Data Refinement

Data refinement is a special case of procedural refinement, that concentrates on replacing
the abstract data types found in an abstract program with simpler or more efficiently imple-
mentable types, suitable for refined code. As in the foundational papers [128, 123}, we view
data refinement as a special case of refining a local block, i.e. a refinement transforming an

abstract block
vart:T; | I e S}

to a concrete block

|[[varc: T, | I' o §')|
where I and § do not refer to the concrete variable(s) ¢, and I’ and $’ do not refer to the
abstract variable(s) t. The essence of such a transformation is that the abstract variable ¢ and
operations on it are replaced with the concrete variable ¢ and corresponding operations on
¢. Apart from ¢ and ¢ the local blocks may share variables—that are referred to as common

variables.

A data refinement of the form shown above has two important characteristics:

1. The concrete block is a procedural refinement of the abstract block:

[vart : Ty | I« Y| E|[varc: T. | I' e 5]}

2. The concrete program 5’ retains the algorithmic structure of its abstract counterpart §.
In simple terms, this means that data refinement will transform sequential composition
in an abstract program to sequential composition in the concrete program, and similarly
for local blocks, alternation, iteration, and recursion. Proofs to this effect may be found
in [128] and [123]. This property is very important, because it ensures that piecewise
data refinement (similar to piecewise procedural refinement) is a valid modus operandi.

A data refinement is facilitated by:

1. expressing the relationship between the abstract and concrete variables using a suitable
relation, Al, called an abstraction invariant, Al may not refer to common variables
that are assigned to by S or 5';
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2. choosing a concrete initialization I’ such that [123}:

[I' = (3t:: AIA D).

The data refinement relation is formally defined as follows {123]:

A program S on abstract variable ¢ is data refined by a program S’ on concrete variable ¢,
under the abstraction invariant AI (written § <4/, S’ or just § < S§’) whenever

[(3t 2 AT A wp(S, X)) = wp(S', (3t :: Al A X))]
for all X € Predy,, not containing free occurrences of c.

Two alternative formulations of data refinement were proposed by Gries and Prins {68] and
Chen and Udding {29), respectively. These definitions and the Morris/Morgan/Gardiner
versioa given above, are shown to be equivalent in [29]. Practical application of the different
definitions with a view to comparing their ease of use may be found in [64] and [111]. Though
the Gries/Prins and Chen/Udding data refinement rules are presented in a form that allows
one to assume the truth of the abstraction invariant and prove a simpler formulation, they

are not necessarily easier to apply in all sitvations.!

'To avoid having to apply the, rather complicated, definition of data refinement to every refine-
ment in practical situations, the same procedure is followed as for procedural refinement—laws
of data refinement are derived. Examples of such laws, as well as their application in program

development, may be found in [128, 123] (among others).

Another factor that considerably eases program development by the application of data refine-
ment, is the trend to give data refinement laws a calculational style. The idea of calculating
data refinements, rather than propose them and then prove them correct, originated in [89),
where a relational setting is used instead of the predicate transformers under consideration
here (also see [88]). A data refinement law is called a calculator [100, 123] if it delivers
the weakest (most general) concrete program from the abstract program, under the given

abstraction invariant. The following examples of data refirement calculators are from {123]:

A similar simplification also applies to the Morris/Morgan/Gardiner form if the abstraction invariant i
fanctional (see {128) or [123]).
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Initialization calculator: If § < §' then

livar t: T, | o S)|C|[varc: T | (Bt ATAT) e §))

Specification calculator: For all programs P,
t,z : [pre,post] X P

if and only if
¢,z : [(3t :: AI A pre),(3t :: A Apost)] E P

As in procedural refinement, miracles again play an important role in data refinement. By
not restricting data refinements only to those that do not introduce miracles, refinement
calculators may be formulated without proof obligations (compare the alternation calculators
of [128, Theorem 4] and {123, Lemma 6]). In [119] it is also shown that miracles allow proof of
certain data refinements that were not otherwise provable. A detailed discussion of positive

effects of miracles in the refinement calculus is presented in [122].

7.2.3 Types and Invariants

An extension to the refinement calculus, regarding the use of type information in program
derivation, is presented in [125). With this extension, typed local variable declarations affect
the meaning of commands within their scope and program development may be formally

aided by this information.

In [125], type information is treated as a special kind of local invariant. A programmer may

declare any predicate formula to be a local invariant, using the notation:
|[inv I ] S).

This is taken to mean that the invariant I is assumed initially, automatically maintained
by every command in S, and thus also established finally. While this is an example of an
ezplicit invariant, declaration of local variables gives rise to implicit invariants, e.g. the local
declaration

[varz: T ...]]
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jmplicitly introduces the invariant 2 € T', preserved everywhere in its scope,.

To allow typing information as well as any additional invariants stated by a programmer to
have a formal effect on program development, the meaning of a guarded command program
is now given relative to an invariant, called the contezt. The semantics of the usual program
constructs is given in terms of wp;: the weakest precondition in context I (see [125, page

282]). Thus we have for instance:
[wpy(z :=e,R) = IA(I = R)]

and
[wpi([linv J | S]], R) = wpias(S, R)]

Taking the context I to be 7, results in the usual weakest precondition semantics for the

guarded command language.

Procedural refinement in context, Cy, is now also defined [125]:
[(PE;1Q)=|linv!|P)|C|linvI]|Q]l]
where C is defined as follows [125): For programs P and Q we have PC Q iff

wpy(P, R) = wpi(Q, R)
for all postconditions R and all contexts I.

This is a not the refinement relation of Chapter 6 and section 7.2.1 above, although it shares

many of the features of the latter and most refinement laws remain valid for the new relation
(see [125) for details).

The advantage of introducing a local invariant J, is that within its scope the context may be
strengthened, allowing one to use the refinement relation C;a7, which is easier to establish
than Cy (see [125, Theorem 5.5]). At first it seems surprising that the imposition of additional
invariants do not necessarily increase the proof obligations of program development. Morgan
and Vickers show that invariants are automatically maintained during program development,

making it unnecessary to prove this, e.g. calculating:

wpr(|linv z € N | z := -5]|,z € N)
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= wpeen(z:=—-5,2€N)
= TENA(~SEN S -5€N)
= 2€EN
we see that the invariant is maintained even though it appears to have been broken. Of course
this is a miracle:
wpr(|linv z € N | z := -5]|, F)
= wpren(z = -5,F)
= zeENA(-5eN=F)
= z€N

A check should be applied to exclude any such miracles from the final program. In [125,
Section 6) laws are given for the removal of explicit local invariants in order to obtain code.

Part of this process is the discharging of certain proof obligations e.g. in the law [125]:
invJ|z:=e]|Crz:i=e
for any context [, provided (I A J) = J7.
Thus removal of a local invariant will fail if the program is miraculous, e.g. for the program
flinvz €N |z := -5

we cannot prove z € N = —5 € A and therefore cannot apply the above law to eliminate the
invariant. This is a kind of type checking, although it encompasses more—compliance with

arbitrary invariants may be established.

If only implicit invariants, due to local variable declarations, are present, mechanical type
checking is enough to exclude miracles. Of course we require that for all types allowed in
program code the type of any expression be mechanically ded: ceable from the types of its

constituent terms.

The formal treatment of types advocated by Morgan and Vickers not only allows typing
information to play a constructive role during program development, but gives the ability to
factor details, such as type (or feasibility) checking. This is a practical way of lightening the
burden of proof associated with formal program development.
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7.3 Some Perspectives on Mechanical Support

As with Dijkstra's calculus, mechanical support for application of the refinement calcuius has
to start with formalization of the calculus. The language used for expressing abstract pro-
grams is not formally defined in the literature and this needs to be addressed. Formalizations
and implementations of the refinement calculus have been undertaken in HOL {13, 4], but both
are quite limited and do not provide interactive mechanical tools for program development.

Specific attention to the following aspects is necessary:

e The use of unbounded nondeterminisin dictates that induction over either the ordinals
or well-founded sets be used to prove termination of loops and recursions. Either or

both of these should be accommodated in the language used for predicates.

¢ The type system must be formalized. A rich, flexible type system is necessary to al-
low both expressive, concise specifications and efficient implementations. To support
stepwise refinement, abstract and concrete types should be allowed to coexist in pro-
grams. This approach is in the spirit of the wide-spectrum specification/programming
languages, used in some program transformation systems, e.g. CIP-L [46] in CIP and
PA™dA [105) in PROSPECTRA. These languages incorporate a variety of constructs,
ranging from high-level specification constructs to low-level, implementation-oriented
ones and allow the ccnstruction of abstract programs that contain a mixture of these.
Another interesting characteristic of CIP-L is that instead of a fixed set of specific data
types, it has a general mechanism for introducing data types by algebraic specifications.

Another option worth investigating is the connection of a guarded command programming
language with the specification language Z [157]. Such an approach will draw benefit from
the fact that Z is a well established specification language and a number of mechanical tools

for supporting its use have been developed.

As with Dijkstra’s calculus, the refinement calculus is not intended as a set of rules that may
simply be applied to a specification in a mechanical manner in order to produce a correct
implementation. Thus tools to support its use should concentrate on efficient manipulation

and management of details, without restricting the ability of the user to guide and control
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the development process. Once again the degree of mechanical support provided may range
from batch oriented systems that accept a “script” of program development and generate
lemmas to validate its correctness (e.g. the tool set for VDM described in [102]) to interactive
systems which allow a user to select and apply pre-proven refinement Jaws (and strategies),
with the system generating lemmas from the side-conditions. Systems of the latter kind
will face problems common to general interactive program transformation systems. Typical

components of an interactive refinement support system would be (also see [138]):

A component for storing, managing, and applying refinement laws: Predefined re-
finement laws must be rapidly accessible and it is preferable to have facilities for extend-
ing the set of laws maintained by the system and possibly for combining existing laws
into refinement strategies. Depending on the size of the law set, it may be necessary
to divide it into smaller sets by purpose, e.g. separate procedural and data refinement
laws and group together laws relating to data refinement using particular data types.
Support for automated selection and application of laws is difficult and it is probably
better to make the user responsible for selecting each individual law to apply. Differ-
ent matching techniques may be implemented to allow the system to identify concrete

instances of a law.

A component for documenting the development process: Depending on the sophis-
tication of this facility, it may also be used to minimize the amount of reprocessing

required to reflect changes to a program development.

A component for generating lemmas and for proof support: The generation of lem-
mas stems from side-conditions associated with refinement laws and should not be dif-
ficult to automate. Issues regarding proof support remain basically the same as for
Dijkstra’s calculus. Meaningful interactive support for data refinement requires the
ability to use a variety of data type theories efficiently in simplification of formulae

(also see section 5.2.2).

A component to support user interaction during program construction: A struc-

ture editor-like interface seems suitable for the type of interaction required.
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Conclusion

The prototype implementation which was conducted for this investigation is too limited to
be a practical tool for the construction of guarded comimnand programs conforming to their
specifications. Nevertheless, some valuable lessons have been learnt from its implementation

and use:

Although Dijkstra’s calculus has a formal foundation, it is used in an informal manner in the
literature. To allow efficient and sound mechanical processing and formal reasoning about
correctness, various aspects of the calculus must be formalized. These include the specification
Janguage, the set of data types used in program construction, initialization of variables, the

use of logical constants and the treatment of undefined terms.
Apart from finding suitable formalizations for the above, meaningful mechanical support
depends mainly on two interrelated aspects:

e The ability to counter the limitations imposed by complete formality.

¢ The ability to control complexity in formal program developments.

Measures to accomplish these goals include:

e Implementation of a rich set of data types and a powerful specification language is
required.

166
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¢ We also need efficient symbol manipulation procedures to calculate preconditions, gen-
erate verification conditions and simplify logical formulae. One of the strongest require-
ments for mechanical simplification and proof support is the ability of a prover/simplifier
to effectively employ domain-specific knowledge arising from the use of various data

types.

e A flexible approach to program development support is necessary. Interactive support is
both feasible and desirable, but further investigation will be necessary to determine the
extent and exact form such support should take. Provision of a repertoire of development
strategies, as well as mechanisms for formulating and storing new strategies should be
provided. A structure editor-like environment seems to be a suitable interface for such

program development.

e The (strictly) controlled use of informality, e.g. in proofs of verification conditions will

also help to counter excessive complexity.

Another way of combating complexity is to enhance the calculus itself by introducing suitable
mechanisms for procedural and data abstraction. Some candidates were discussed in this
thesis. However, a suitable return on such an investment will probably be achieved only if the
extensions go as far as supporting arbitrary levels of abstraction during program development.
This leads quite naturally to a refinement calculus such as those developed by J. Back, C.
Morgan and J. Morris.

The refinement calculus allows a transformational approach to program development, which
lends itself well to mechanical support. A number of general program transformation systems
are in existence and have been used with some success. Because of the abstraction facilities
provided in the refinement calculus and because proof obligations can be effectively factored
over the development, it is hoped that program development will take place more smoothly
and that fewer proofs, at a higher level, will be necessary. Some formalization of the calculus
is necessary before interactive tools may be developed to support its use, but it is a worthy

direction for future research efforts.
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Appendix A

Basic Concepts, Notation and

Terminology

‘When I use a word,” Humpty Dumpty said in rather a scornful tone, ‘it means
just what I choose it to mean—neither more nor less.’

‘The question is,’ said Alice, ‘whether you can make words mean so many
different things.’

“The question is,’ said Humpty Dumpty, ¢ which is to be master—that’s all.’

Lewis Carroll, Through the Looking Glass

The definitions and properties of relations stated here, may be found in most introductory
texts on algebra or discrete mathematics for computer science such as [16, 27, 154]. Posets and
lattices are treated thoroughly in the works [19, 62]. The origins of the fixed point theorems
used here, are discussed in [106] and the section dealing with ordinals is based on [£16] and
[101).

A.1 Relations

A binary relation R on a set S is a subset of the Cartesian product § x §. Given two elements

in S, say z and y, we write zRy when (z,y) € R. For simplicity we sometimes refer to a
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binary relation simply as a relation,

Let z,y,z be any elements of a set S and R a binary relation on 5. We say that the relation
Ris

reflexive if (Vzr:z€S:zRx)

irrefiexive if (V2:2€S5:(z,2)¢R

symmetric if (Vz,y:z€SAyeS:zRy=yRz) ¢

antisymmetric iff (Vr,y:z2€SAy€eS:(zRyAyRz)= (z=1y))
transitive iff (Vz,y,z:2€SAYyeESA2z€S:(aRyAyR2)=> zR2)
linear if (Vz,y:z€SAy€eS:zRyVyRz)

well-founded iff there does not exist an infinite sequence (z;)ien of

(noetherian) elements z; in S such that (Vi :i € N : 2;41 Rz;)

A relation R on a set S is an equivalence relation if it is reflexive, symmetric and transitive.
Such a relation partitions the set § into disjoint nonempty equivalence classes S; as follows:

S=51U85;U..., and for each i and j such that i # j:

e 5NnS8;=6;
o (Vz,y:z€ S;Ay€ S;:zRy);
o (Vr,y:x € S;Ay€S;:(zRy)).
Given sets A, B and C and relations By C A X B and Ry C B x C, the composition of R

and R; is the relation B0 Ry C A x C, defined as follows:

(Vz,2:2€ANz€C :2(Rao Ry)zif By:y€ B:zRyyAyR;2)
For a relation R on a set S, we define:

R = { the identity relation if n=0

Ro R*? if n>0
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A.2 Orderings

A relation C on a set § is a partial ordering if it is reflexive, antisymmetric and transitive.
A partially ordered set (or poset for short) is an algebraic structure (5,C) consisting of a
nonempty set S and a partial ordering C on §. Where no ambiguity can result, we sometimes

omit the ordering relation and simply say that S is a partially ordered set.

Let (S,C) be a poset and T C §:

¢ T has an upper boundu € S iff (Vz:2 € T:x C u).

e An element u in S is a least upper bound (join) (or lub for short) of T iff (Yv:v € S5 :
(kCv)=(Vz:2€T:zL v)),ie uLl vfor every upper bound v of T. If it exists,
the join of a set T is unique and is denoted by | |T. We write x U y for | [{z, y}-

o T has a lower bound l € Sift (Vz:2€T:IC z).

e An element I in S is a greatest lower bound (meet) (or gib for short) of T' iff (Vk : k €
S:H(kED)=(Vz:2€T:1C z)), ie. k £ for every lower bound k of T. If it exists,

the meet of a set T is unique.
e An element L in S is a bottom (least element) of S iff (Vz : z € § : 1 C z); similarly
an element T in S is a top (greatest element) iff (Vz:2 € S:z2E T).
A poset (5,C) where the relation C is linear, is called a tolally ordered set. Such a relation

is called a complete partial order {or cpo).

A chain T in a poset (S,L), is a nonempty subset which is totally ordered by C. A function

fon S is chain continuous iff

UD = j/(@):z €T}
for all nonempty chains 7' such that both sides of the equation are defined.

A function f on a poset (5, C) is monotlonic iff

(Vz,y:z€SAyeS:zCy= f(z)C f(¥))
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A.3 Lattices

A poset (L,L), in which every pair of elements has a meet and a join is called a laltice,
A complete lattice has the additional characteristic that each of its nonempty subsets has a
meet and a join. It can be shown that:

¢ Every finite totally ordered set is a complete lattice.

o Every complete lattice has a bottom and a top.
A subset T of a complete lattice (L,C) is a complete sublattice of L if all meets and joins of
subsets of T are also in T'.

1 2
If (L1,C) and (L2,C) are complete lattices, it can be shown that (L; x L2,C) is also a
complete lattice with C defined by:

1 2
(z1,22) E (b)) =1 C i Az2C .

Also, for any T C Ly x La,

|_|T = (U{z; 13z (z1,23) € T)},U{xz : (321 5 (24,22) € TH)).
This result can also be generalized to Ly X Ly X ... X Ln .

L
Let A be a nonempty set and (L,C) a lattice. The set [A — L] of functions from A to L is
J
partially ordered by C, calied the pointwise extension of tl: partial order on L and defined
by:
f L
fEg=(Vz:z € A: f(z) C o(2))

It can be shown that this makes {A — L] a lattice which is complete ifT L is complete.

For a poset (A, IE ) and a lattice (L, é), the set of monotonic functions from A to L is denoted
[A — L]ag. It can be shown that ([4 — L]M,é) forms a sublattice of [A — L] and that, for
a complete lattice L, [4 — L]a is also a complete lattice that has the same bottom and top
elements as {4 — L),
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A.4 Ordinals and Cardinals

A definition of the ordinals rest on axiomatic set theory and should be carefully constructed

around the Russell paradox, see [116].

An ordinal is a set § with the properties
(Vz:x€S8:2CH)

and

(Vz,y:c€SAy€eS:z€yVa=yVy€Ez)

Following convention, we use small Greek letters to denote ordinals; w representing the first
infinite ordinal, i.e. the set of natural numbers. There exist ordinals of arbitrarily large

cardinality.

The membership relation forms a linear well-founded order on the class of ordinals. For
ordinals a and 8, we use the notation

a<fforaefand

alBiora=8vVva<p

Because the class of ordinals is well-founded with respect to the ordering <, mathematical
induction over the ordinals is valid. This is also called transfinite induction. One formulation
of transfinite induction is as follows [116]:

Let ON denote the class of all ordinals and P(z) a predicate with free variable z. If, for any
ordinal 3, whenever P(a) holds for all ordinals a < B, then P(8) holds, then P()) holds for
al A€ ON:

(VB:B€ON:(Va:a€ONAa < §:P(a))= P(B))= (VA: A € ON : P(X))

This is simply an ir:tance of the principle of well-founded induction, where the ordering

relation is linear.

For all ordinals @ and 3, ordinal addition (a + §), multiplication (@ x 3) and exponentiation
(a®) may be defined (see [116]).

The cardinal number of a set § is the smallest ordinal number cardinally equivalent to §.
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The smallest infinite cardinal number is w = wy. If 8 is a nonzero ordinal number, then we

use wp to denote the smallest cardinal number greater than all wg for £ < 8.

A.5 Fixed Points

Let (A,C) be a poset and f a function f: A~ A. An element z € A is called a fized point
of fiff f(z) = z. An element = € A is called a least fized point of fiff f(x)=zA(Vy:y €
A: f(y) =y = z C y). If the least fixed point of f exists, it is denoted by pz.f(z).

Theorem A.5.0.1 (Limit Theorem (XKleene)) If f is a chain continuous function over
a complete lattice, then [ has a least fixed point which is LJ{f"(1)}n>0-
(This is a modified version of the original theorem, see [106, 133, 103].)

Theorem A.5.0.2 (Generalized Limit Theorem (Hitchcock and Park)) Given a com-
plete lattice L with botlom L and a funclion f € [L — L)p. We define:

oL =4, FAL) = L{AF(L) 1 7 < A} for ondinal X # 0.

Then there exists an ordinal a, such that px.f(z) = f*(1).

(This is a modified version of the original theorem, due to Nelson, see [133].)
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A CFG for Annotated Guarded

Command Programs

The following notational conventions apply:

¢ Terminal symbols are written in quotations.

o The notation {item} is used to denote item | e.

Program “PROGRAM” “id” “:” Block
Block = “)[" {Preamble} {Assertion} VerUnitList “||” |
Preamble == “CONST” ConstList {“TYPE” TypeList}
{“VAR” VarList} {*{” “ABBREV” AbbrevList “}"} “|”
“TYPE” TypeList {“VAR” VarList}
{“{” “ABBREV” AbbrevList “}"} "
“VAR”" VarList {“{” “ABBREV"AbbrevList }"} "
“{" “ABBREV”AbbrevList “}" 4|*
ConstList == “id” “=" Constant {*;” ConstList}
Constant = {Sign} “integer” | “character” | “TRUE" | “FALSE”
Sign u= 447 |«
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TypeList
TypeDecl

CompTypeSpec

TypeSpec
Bound

Varlist
VarDecl
IdList

AbbrevList
Abbreviation
ParList
ParDecl

Assertion
AssertExpr
SimpleAssert
Relop
AssertDisj
Orop
AssertConj
Andop
AssertTerm
Notop
AssertFactor

VarSpec

ArgList

-4 w—
o —

TypeDect {“;” TypeList}

“id” “=" CompTypeSpec

“ARRAY” “[" {Sign} Bound “..” {Sign} Bound “J"
“OF” TypeSpec | “RECORD” “|[” VarList “]|"
“id” | CompTypeSpec

“id” {Sign “integer”} | “integer” {Sign “integer”}

VarDecl {“" VarList}
IdList “” TypeSpec
“id” {“,” IdList}

Abbreviation {“;” AbbrevList}

“id” “(” ParList “)” “=" AssertExpr
ParDecl {“;” ParList}

IdList “:” “id”

“f" {“id” “"} AssertExpr “}"

SimpleAssert {“=>" AssertExpr}

AsgertDisj {Relop SimpleAssert}

P | Gl | U n | G P | U | gD
AssertConj {Orop AssertDisj}

4gn | 7 | “OR” | “COR”

Asse:tTerm {Andop AssertConj}

“AND” | “CAND” | “DIV” | “MOD” | “&”
{Notop} AssertFactor

wpr | e | wam

“id” VarSpec | “(" AssertExpr “)” | “(” QuantExpr “)" |
“integer” | “character” | “TRUE” | “FALSE”

“(" ArgList “)” | “(” ValueChanges “)" Selector |
{Selector}

AssertExpr {“,” ArgList}
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ValueChanges
Selector

QuantExpr

LogQuant
NumQuant

BoundExpr

LessGreater

Expr
Disjunction
Conjunction
Term
Factor

CompVarSpec
VerUnitList

Statement

AssignList
Assign
Alternation
GuardComSet
GuardCom
Varlnvar
Invariant
Variant
Repetition

e

[]
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Selector “:” Expr {%,” ValueChanges}
“I* Expr “]" {Selector} | “.” “id” {Selector})

LogQuant ¢(" “id” “:* “jd" “)* “* {Expr} “"

AssertExpr |

NumQuant “(” “id” “:” “id” )" «* 4(” BoundExpr “)"
“AND” 4" BoundExpr “)” “:” AssertExpr

“FORALL"” | “EXISTS”

“NUMBER" | “SUM” | “PRODUCT" |

Disjunction LessGreater “id” |

“i{d” LessGreater Disjunction

“>=” I “>” I “<=” I “<”

Disjunction {Relop Disjunction}
Conjunction {Orop Disjunction}

Term {Andop Conjunction}

{Notop} Factor

CompVarSpec | (" Expr “)” | “integer” | “character” |
“TRUE” | “FALSE”

“id” {Selector}

Statement {Assertion} {“;” VerUnitList}
“SKIP” | “ABORT” | AssignList |
Alternation | Varlnvar Repetition | Block
VarSpec Assign Expr

“:=" | “,” AssignList “,”

“IF” {GuardComSet} “FI”

GuardCom {“|” GuardComSet}

Expr “~>" VerUnitList

Invariant Variant | Variant Invariant

“{” “INVAR” {“id” “"} AssertExpr “}"
“{” “BOUND" {“id"} “INIT" “id” “" AssertExpr “}"
“DO” {GuardComSet} “OD”
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The predicate domain(e)

The domain predicate is defined for all expressions e appearing in programs. We want
domain(e) = T iff e is well-defined. The definition is based on the BNF for the nonter-
minal “Expr” in the grammar of Appendix B. It does not include compound data objects

such as arrays of arrays, arrays of records and records with array fields.
Based on the rule

Expr ::= Disjunction {Relop Disjunction}

we start by defining:

domain{Disjunctionl Relop Disjunction2) = domain (Disjunctionl) A domain{Disjunction2)

For “Disjunctions” we have two separate cases:
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domain{Conjunction “+" Disjunction)
= domain(Conjunction “~" Disjunction)
= domain(Conjunction “OR” Disjunction)

= domain(Conjunction) A domain(Disjunction)

domqin{Conjunction “COR” Disjunction)
= domain{Conjunction) cand (-» Conjunction => domain(Disjunction))

For "Conjunctions” we have:

domain(Term “DIV” Conjunction) = domain(Term “MOD” Conjunction)
= domain(Term) A (domain{Conjunction) cand Conjunction % 0)

domain{Term “CAND” Conjunction)
= domain(Term) cand (Term = domain{Conjunction))

domain(Term “»” Conjunction) = domain(Term “AND” Conjunction)

domain(Term) A domain{Conjunction)

A "Term” consists of a “Factor” or its negation:

domain{Notop Factor) = domain(Factor)

178

We divide “Factors” into three groups according to how they are constructed. For these we

define:

domain(“id")
= domain(“character”)

=T

]

domain{“id”“.”“id”)
domain{“TRUE")

domain(“integer™)
domain{“FALSE")
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domain(“id” “[" Expr “|")
= domain{Expr) cand (“id".lob < Expr A Expr < “id".hib

domain{“( ” Expr “)") = domain{Expr)



Stellenbosch University http://scholar.sun.ac.za

Appendix D

Substitution in Program

Constructs

The substitution of a variable y for a variable z in a program construct C, is denoted C;,. The
following definition is based on Definition 4.6 in [81, Chapter 4] as well as the grammar in
Appendix B. Wherever substitution in expressions is indicated, ordirary textual substitution
should be used:

abort] = abort
skip}, = skip
(z:=expr)y =zi:=expry
(Ivar z: T | S]I); =
[varz: T | ]| ifz=2
llvar z : T | 5] ifz#zAy#z2
fvar v : T [(Si)3]l fz#zAy=w
(S1;82)F = S1Z: 5%
(if Gl - §10...0Gn — Snfi)} =
if G1Z — S1Z0...0GnE — Snt fl
(do G1— 510...0Gn — Snod); =
do G1j — §1;0...0Gn] — Snj od
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Appendix E

An Annotated Program and its

V(Cs

The solution to Rubin’s problem shown in section 3.5, is presented here in the format of a
text file as accepted by the prototype implementation. Line numbers are given for reference

purposes.

PROGRAM Rubin :

I
CONST

1

2

3

4 MAXCOL = 10;

5 . BAXROW = 10

6

7 TYPE

8 TABLE = ARRAY [1..MAXROW] OF ARRAY [1..MAXCOL] OF INT
9

10 VAR
i1 matrix s+ TABLE;
12 found : BOOL;

13 lastrow, lastcol : INT;

14 curcol, currow : INT
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15

16 {ABBREV

17 nonzero(matrix : TABLE; maxcol, rowpos, colpos, lastcol : INT) =

18 (FORALL (col : INT) : (0 < col) AND (col <= colpos) :

19 matrix[rowpos][col] = 0) AND ((lastcol = maxcol) COR

20 (matrix[rowpos] [colpos+1] <> 0));

21

22 allzero(matrix : TABLE; maxcol : INT; rowpos : INT) =

23 (FORALL (col : INT) : (0 < col) AND (col <= maxcol) :

24 matrix[rowposjicol] = 0);
25
26 inbounds(maxindex, index, lastindex : INT) =

27 (0 <= index) AND (index <= lastindex) AND (lastindex <=
28 maxindex)

29 }

30 |

31 {(MAXROW > 0) AND (MAXCOL > 0)}

32

33 currow, lastrow := O, MAXROW;

34

35 {INVAR inbounds (MAXROW, currow, lastrow) AND

as (FORALL (row : INT) : (O < row) AND (row <= currow) :

a7 (EXISTS (col : INT) : (0 < col) AND (col < MAXCOL) :

38 nonzero(matrix,MAXCOL,row,col,col))) AND ((lastrow = MAXROW) COR
39 allzero(matrix,MAXCOL,currow+i))}

40 {BOUND t1 INIT T1 : lastrow-currow}

41

42 DO currow <> lastrow -> curcol, lastcol := 0, MAXCOL;

44 {INVAR inbounds (MAXROW, cur-ow, lastrow) AND
(FORALL (row : INT) : (0O < row) AND (row <= currow) :

&
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46 (EXISTS (col : INT) : (O < col) AND (col < MAXCOL) :

47 nonzero{matrix,MAXCOL,row,col,col))) AND (lastrow = MAXROW)
48 AND (currow <> lastrow) AND (t1i = T1)

49 AND inbounds(MAXCOL, curcol,lastcol) AND nonzero (matrix,MAXCOL,
50 currow+i,curcol,lastcol)}

51 {BOUND t2 INIT T2 : lastcol-curcol}

52

53 DO curcol <> lastcol ->

54 IF matrix{currow+1] [curcol+l] = 0 => curcol := curcol+l

56 i matrix[currow+i] [curcol+1] <> 0 -> lastcol := curcol
58 FI

57 0D;

58

59 {inbounds (MAXROW, currow, lastrow) AND

60 (FORALL (row : INT) : (O < row) AND (row <= currow) :

61 (EXISTS (col : INT) : (0 < col) AND (col < MAXCOL) :

62 nonzero(matrix,MAXCOL,row,col,col))) AND (lastrow = MAXROW)
63 AND (currow <> lastrow) AND (ti = T1) AND (curcol = lastcol)
64 AND nonzero (matrix,MAXCOL,currow+i,curcol,lastcol)}

€5

€6 IF curcol = MAXCOL -> lastrow := currow

67 | curcol <> MAXCOL -> currow := currow+i

68 FI

69 0OD;

70

71 found := currow <> MAXROW

72

73 {(FORALL (xrow : INT) : (O < row) AND (row <= currow) :

74 (EXISTS (col : INT) : (0 < col) AND (col < MAXCOL) :

75 nonzero(matrix,MAXCOL,row,col,col))) AND ((lastrow = MAXROK) COR
76 allzero(matrix ,MAXCOL,currow+1)) AND (lastrow = currow) AND
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17 (found = (currow <> MAXROW))}
78 i

The prototype generated the output file shown below, for this problem. The file contains the
results of precondition calculations as well as all verification conditions to be proven in order

to show consistency with the given specification. Please note:

¢ Reference is made to “UNITS”, which consist of a programming statement in the main

program text, together with its postcondition.

o Formulae labelled with the words “Statement precondition” show the result of a pre-

condition calculation. All other formulae are verification conditions to be proven,

o No simplifications of formulae have been performed.

UNIT at line 7%
AR50 04 0440000

Statement precondition:

((FORALL row : (0 < row) AND (row <= currow) : (EXISTS col : (0 <

col) AND (col < MAXCOL) : nonzero (matrix, MAXCOL, row, col,

col))) AND ((lastrow = MAXROW) COR allzero (matrix, MAXCOL, currow + 1)) AND
(lastrow = currow) AND ((currow <> MAXROW) = (currow <> MAXROW)))

UNIT at line 35
S8R0 ANS

(1) ~ (currow <> lastrow) AND (inbounds (MAXROW, currow, lastrow) AND (FORALL
row : (0O < row) AND (row <= currow) : (EXISTS col : (0 < col) AND (
col < MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND ((
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lastrow = MAXROW) COR allzero (matrix, MAXCOL, currow + 1)))

">

((FORALL row : (O < row) AND (row <= currow) : (EXISTS col : (0 <

col) AND (col < MAXCOL) : nonzero (m:itrix, MAXCOL, row, col,

col))) AND ((lastrow = MAXROW) COR allzero (matrix, MAXCOL, currow + 1)) AND
(Lastrow = currow) AND ((currow <> MAXROW) = (currow <> MAXROW)))

(2) (currow <> lastrow) AND (inbounds (MAXROW, currow, lastrow) AND (FORALL
row : (0 < row) AND (row <= currow) : (EXISTS col : (0 < col) AND (

col < MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND ((

lastrow = MAXROW) COR allzero (matrix, MAXCOL, currow + 1)))

=

((lastrow ~ currow) > 0)

(3) (1) (inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 <
Tow) AND (row <= currow) : (EXISTS col : (0 < col) AMD (col <

MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND (lastrow =
MAXROW) AND (currow <> lastrow) AND (t1 = T1) AND (curcol = lastcol) AND
nonzero (matrix, MAXCOL, currow + i, curcol, lastcol))

=>

((curcol = MAXCOL) OR (curcol <> MAXCOL))

(2) (inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 <

row) AND (row <= currow) : (EXISTS col : (O < col) AND (col <

MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND (lastrow =

MAXROW) AND (currow <> lastrow) AND (t1 = T1) AND (curcol = lastcol) AND
nonzero (matrix, MAXCOL, currow + 1, curcol, lastcol)) AND (curcol =
MAXCOL)

o>

((currow - currow) < Ti) AND (inbounds (MAXROW, currow, currow) AND (FORALL
row : (O < zow) AND (row <= currow) : (EXISTS col : (0 < col) ARMD (
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col < MAXCOL) : nonzerc (matrix, MAXCOL, row, col, col))) AND ((
currow = MAXROW) COR allzero (matrix, MAXCOL, currow + 1)))

(inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 <
row) AND (row <= currow) : (EXISTS col : (0 < col) AND (col <
MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND (lastrow =
MAXROW) AND (currow <> lastrow) AND (ti = T1) AND (curcol = lastcol) AND
nonzero (matrix, MAXCOL, currow + 1, curcol, lastcol)) AND (curcol <>
MAXCOL)
=>
((astrow - (currow + 1)) < T1) AND (inbounds (MAXROW, (currow + 1),
lastrow) AND (FORALL row : (O < row) AND (row <= (currow + 1)) : (EXISTS
col : (0 < col) AND (col < MAXCOL) : nonzero {matrix, MAXCOL,
row, col, col))) AND ((lastrow = MAXROW) COR allzero (matrix,
MAXCOL, (currow + 1) + 1)))

(1) “ (curcol <> lastcol) AND (inbounds (MAXROW, currow, lastrow) AND (FORALL
row : (O < row) AND (row <= currow) : (EXISTS col : (0 < col) AND (
col < MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND (
lastrow = MAXROW) AND (currow <> lastrow) AND (t1 = T1) AND inbounds (
MAXCOL, curcol, lastcol) AND nonzero (matrix, MAXCOL, currow + i,
curcol, lastcol))

=)

(inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 < row) AND (
row <= currow) : (EXISTS col : (0 < col) AND (col < MAXCOL) :

nonzero (matrix, MAXCOL, row, col, col))) AN” (lastrow = MAXROW) AND (
currow <> lastrow) AND (t1 = T1) AND (curcol = lastcol) AND nonzero (

matrix, MAXCOL, currow + 1, curcol, lastcol))

(2) (curcol <> lastcol) AND (inbounds (MAXROW, currow, lastrow) AND (FORALL
row : (0O < row) AND (row <= currow) : (EXISTS col : (0 < col) AND (
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col < MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND (
lastrow = MAXROW) AND (currow <> lastrow) AND (t1 = T1) AND inbounds (
MAXCOL, curcol, lastcol) AND nonzero (matrix, MAXCOL, currow + 1,
curcol, lastcol))

=)

((lastcol - curcol) > 0)

(3) (inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 <

row) AND (row <= currow) : (EXISTS col : (0 < col) AND (col <
MAXCOL) : nonzero (matrix, MAXCOL, row, col, col))) AND (lastrow =
MAXROW) AND (currow <> lastrow) AND (t1 = T1) AND inbounds (MAXCOL,
curcol, lastcol) AND nonzero (matrix, MAXCOL, currow + 1, curcol,
lastcol)) AND ((lastcol - curcol) = T2) AND (curcol <> lastcol)

=)

((matrix [currow + 1] [curcol + 1] = 0) OR (matrix [currow + 1] [
curcol + 1] <> 0)) AND ((matrix [currow + 1] [curcol + 1] = 0) => ((
lastcol - (curcol + 1)) < T2) AND (inbounds (MAXROW, currow,
lastrow) AND (FORALL row : (0 < row) AND (row <= currow) : (EXISTS
col : (0 < col) AND (col < MAXCOL) : nonzero (matrix, MAXCOL,

row, col, col))) AND (lastrow = MAXROW) AND (currow <> lastrow) AND ((
lastrow - currow) = T1) AND inbounds (MAXCOL, (curcol + 1), lastcol) AND
ronzero (matrix, MAXCOL, currow + 1, (curcol + 1), lastcol))) AND ((
matrix [currow + 1] [curcol + 1} <> 0) => ((curcol - curcol) <

T2) AND (inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 <
row) AND (row <= currow) : (EXISTS col : (0 < col) AND (col <
MAXCOL) : nonzerc (matrix, MAXCOL, row, col, col))) AND (lastrow =
MAXROW) AND (currow <> lastrow) AND ((lastrow - currow) = T1) AND
inbounds (MAXCOL, curcol, curcol) AND nonzero (matrix, MAXCOL,

currow + 1, curcol, curcecl)))

(inbounds (MAXROW, currow, lastrow) AND (FORALL row : (0 < row) AND (

187
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row <= currow) : (EXISTS col : (0 < col) AND (col < MAXCOL) :

nonzero {matrix, MAXCOL, row, col, col))) AND ((lastrow = MAXROW) COR
allzero (matrix, MAXCOL, currow + 1))) AND ((lastrow - currow) =

Ti) AND (currow <> lastrow)

=>

(inbounds (MAXROW, currow, lastrow) AND (FORALL row : (O < row) AND (
row <= currow) : (EXISTS col : (0 < col) AND (col < MAXCOL) :

nonzero (matrix, MAXCOL, row, col, col))) AND (lastrow = MAXROW) AND (
currow <> lastrow) AND ((lastrow - currow) = Ti) AND inbounds (
MAXCOL, O, MAXCOL) AND nonzero (matrix, MAXCOL, currow + 1, O,
MAXCOL))

Statement precondition:

(inbounds (MAXROW, currow, lastrow) AND (FORALL row : (O < row) AND (
row <= currow) : (EXISTS col : (0 < col) AND (cul < MAXCOL) :

nonzero (matrix, MAXCOL, row, col, col))) AND ((lastrow = MAXROW) COR
allzero (matrix, MAXCOL, currow + 1)))

UNIT at line 33
ARBRSRRARRARRNAREES

((MAXROW > 0) AND (MAXCOL > 0))

=>

(inbounds (MAXROW, O, MAXROW) AND (FORALL row : (O < row) AND (

row <= 0) : (EXISTS col : (0 < col) AND (col < MAXCOL) : nonzero (
matrix, MAXCOL, row, col, col))) AND ((MAXROW = MAXROW) COR allzero (
matrix, MAXCOL, O + 1)))
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