
A Taxonomy of Minimisation Algorithms

for Deterministic Tree Automata

Johanna Björklund

(Ume̊a University, SE-901 87 Ume̊a, Sweden

johanna@cs.umu.se)

Loek Cleophas

(Ume̊a University, SE-901 87 Ume̊a, Sweden

and

Stellenbosch University, ZA-7602 Matieland, South Africa

loek@fastar.org)

Abstract: We present a taxonomy of algorithms for minimising deterministic bottom-
up tree automata (dtas) over ranked and ordered trees. Automata of this type and its
extensions are used in many application areas, including natural language processing
(nlp) and code generation. In practice, dtas can grow very large, but minimisation
keeps things manageable. The proposed taxonomy serves as a unifying framework that
makes algorithms accessible and comparable, and as a foundation for efficient imple-
mentation. Taxonomies of this type are also convenient for correctness and complexity
analysis, as results can frequently be propagated through the hierarchy. The taxon-
omy described herein covers a broad spectrum of algorithms, ranging from novel to
well-studied ones, with a focus on computational complexity.

Key Words: deterministic bottom-up tree automata, automata minimisation, algo-
rithm taxonomies

Category: F.1.1, F.4.3

1 Introduction

Deterministic bottom-up tree automata (dtas) and their generalisations have a

major role in natural language processing (nlp). Like the corresponding string

automata (dfas), dtas can grow quite large, so minimisation and reduction tech-

niques are necessary for efficient processing. To promote the practical application

of tree automata, we compile a taxonomy of dta minimisation algorithms. Each

algorithm has its own characteristics in terms of worst and average case com-

plexities, memory usage, robustness, and so forth, so their performance depends

on the input data and execution environment. It is therefore unlikely that a sin-

gle algorithm will be versatile enough to cover all use cases; rather we want a

reasonable set to choose from and a taxonomy helps us understand our options.

Algorithm taxonomies have several advantages. First and foremost, they

make algorithms more accessible and easier to compare, by placing them in a

uniform framework. Furthermore, as the presentation sets out from an abstract,

Journal of Universal Computer Science, vol. 22, no. 2 (2016), 180-196
submitted: 23/9/15, accepted: 22/1/16, appeared: 1/2/16 © J.UCS

high-level specification, they show how more concrete specifications can be ob-

tained by stepwise refinement. This process makes algorithm commonalities as

well as differences explicit. Taxonomies also support formal argumentation, e.g.

correctness proofs: since the root algorithm trivially satisfies its specification, if

each of the refinement steps is correct, then each algorithm so derived is also

correct. Finally, taxonomies allow for efficient implementation and maintenance

in terms of effort involved, and of code size and quality [Watson(1995)].

In this paper, we give a taxonomy of minimisation algorithms for dtas. Most

of the algorithms compute the Nerode congruence as an intermediate step. Two

of the algorithms—a dta version of Hopcroft & Ullman’s dfa minimisation

algorithm, and Brzozowski’s minimisation algorithm in a version for top-down

determinisable dtas—have not been previously presented for trees.

1.1 Related work

The theory underlying tree automata and tree transducers has been devel-

oped since the 1960s [Thatcher and Wright(1965), Brainerd(1967)]; see for ex-

ample [Engelfriet(1975), Gécseg and Steinby(1984), Gécseg and Steinby(1997),

Comon et al.(2007)] for surveys. The theory builds on that of finite state au-

tomata and was initially used as an alternative representation for context-free

languages, and to solve decision problems in mathematical logic [Doner(1970)].

[Kron(1975)] appears to be the first work focusing on practical algorithms;

apart from his work, most work for e.g. term rewriting or code generation in com-

pilers appeared from the early-to-mid-1980s onwards (see e.g. [Burghardt(1988),

Aho et al.(1989), Hoffmann and O’Donnell(1982), Aho and Ganapathi(1985)]).

Tree automata are useful in nlp because they capture the derivation pro-

cess of context-free rewriting systems. Weighted tree transducers later were

use e.g. to improve machine-translation quality [Yamada and Knight(2001)] and

target-language fluency [Galley et al.(2006)], and to support translation between

languages with different predicate-argument structure [Maletti(2011)].

Bottom-up tree automata can always be determinised without losing descrip-

tive power. This is not the case if we add weights [Borchardt(2005)], or change di-

rection: while non-deterministic top-down tas are as powerful as bottom-up ones,

deterministic top-down tas are more restricted. There is, for example, no deter-

ministic top-down ta to recognise {f [a, b], f [b, a]}. A slightly more powerful de-

vice is the r-l-deterministic top-down ta proposed by [Nivat and Podelski(1997)],

with a descriptive power strictly in-between deterministic top-down tas (which

they generalise) and tas.

In this paper, we have limited our scope to deterministic ranked automata,

and only considered standard forms of minimisation. Connecting minimisation

of unranked and ranked tree automata via stepwise tree automata is discussed

181Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

by [Martens and Niehren(2007)]. [Carrasco et al.(2007)] present an implementa-

tion of dta minimisation over unranked trees. This work is continued by the

same team of researchers with the incremental construction of minimal dtas for

unranked trees [Carrasco et al.(2008)].

Minimisation is provably harder for non-deterministic devices, just as it is

in the case of string automata; it is EXPTIME-complete for non-deterministic

tas [Martens and Niehren(2007)]. Heuristic algorithms for non-deterministic ta

minimisation based on the use of various bisimulation and simulation relations as

a substitute for the Nerode congruence are investigated in [Abdulla et al.(2007),

Högberg et al.(2009), Abdulla et al.(2009)]. Standard minimisation algorithms

are language-preserving, but sometimes it is acceptable to allow a limited number

of mistakes to obtain a compact representation. This idea is explored under the

name hyper-minimisation, and has been treated for unweighted and weighted

tree automata [Holzer and Maletti(2010), Maletti and Quernheim(2012)].

Algorithm taxonomies have been used for computational problems such as

sorting [Darlington(1978), Broy(1983)] and attribute evaluation [Marcelis(1990)].

The Taxonomy-BAsed Software COnstruction (Tabasco) project compiled taxo-

nomies for the explicit purposes of correctness-by-construction and simplify-

ing implementation and benchmarking. Applications of Tabasco included the

minimisation of deterministic string automata [Watson(1995)]. [Cleophas(2008)]

applied TABASCO to tree automata construction and pattern matching algo-

rithms, relating the previously mentioned algorithms originating from code gen-

eration, and presenting them in a unifying framework. While some of the algo-

rithms included use techniques to reduce the size for the resulting tree automata,

minimisation as such was not covered.

2 Preliminaries

Sets and numbers. We write N for the set of natural numbers including 0. For

n ∈ N, [n] = {i ∈ N | 1 ≤ i ≤ n}. Thus, in particular, [0] = ∅. The cardinality

of a set S is written |S|, and the powerset of S is denoted by pow (S). Given a

subset S′ of S, we write S′ for the complement of S′ with respect to S.

Relations. Let E and F be equivalence relations on S. We say that F is

coarser than E (or equivalently: that E is a refinement of F), if E ⊆ F . The
equivalence class or block of an element s in S with respect to E is the set [s]E =

{s′ | (s, s′) ∈ E}. Whenever E is obvious from the context, we simply write [s]

instead of [s]E . It should be clear that [s] and [s′] are equal if s and s′ are in

relation E , and disjoint otherwise, so E induces a partition (S/E) = {[s] | s ∈ S}
of S. We denote the identity relation {(s, s) | s ∈ S} on S by IS .

Strings and trees. An alphabet is a finite non-empty set. The empty

string is denoted by ε. For an alphabet Σ, a Σ-labelled tree is a partial function

182 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

t:N∗ → Σ such that the domain dom (t) of t is a finite prefix-closed set, and for

every node v ∈ dom (t) there exists a k ∈ N such that {i ∈ N | vi ∈ dom (t)} = [k].

Here, k is called the rank of v. The subtree of a tree t rooted at v is the tree t/v

defined by dom (t/v) = {u ∈ N
∗ | vu ∈ dom (t)} and t/v(u) = t(vu) for every

u ∈ N
∗. If t(ε) = f and t/i = ti for all i ∈ [k], where k is the rank of ε in t, then

we denote t by f [t1, . . . , tk]. If k = 0, then f [] is shortened to f .

A ranked alphabet is an alphabet Σ =
⋃

k∈N
Σ(k), partitioned into pairwise

disjoint subsets Σ(k). For every k ∈ N and f ∈ Σ(k), the rank of f is rank (f) = k.

We use r for the maximum rank of a symbol in Σ. The set TΣ of all trees over

Σ consists of all Σ-labelled trees t such that the rank of every node v ∈ dom (t)

coincides with the rank of t(v). Nodes labeled by symbols of rank 0 are called

leaves. A tree language is a subset of TΣ .

For a set Q (of e.g. states) we denote by Σ(Q) the set of trees

{f [q1, . . . , qk] | k ∈ N, f ∈ Σk, and q1, . . . , qk ∈ Q} .

Contexts and substitution. Let Σ be a ranked alphabet and let � �∈ Σ

be a special symbol of rank 0. The set of contexts over Σ is the set

CΣ = {c ∈ TΣ∪{�} | there is exactly one v ∈ dom (c) with c(v) = �} .

Consider a context c ∈ CΣ and let v ∈ dom (c) be the unique node such

that c(v) = �. The substitution of a tree t into c, denoted c[[t]], is defined by

dom (c[[t]]) = dom (c) ∪ {vu | u ∈ dom (t)} and

c[[t]](w) =

{
c(w) if w ∈ dom (c) \ {v}, and
t(u) if w = vu for some u ∈ dom (t) .

Tree automata. Formally, a deterministic tree automaton (dta) is a tuple

M = (Q,Σ, δ,Qf) where Q is a finite set of states ; Σ is a ranked alphabet of

input symbols ; δ:Σ(Q) → Q is the partial transition function; and Qf ⊆ Q is

the set of final states. The size of M , written |M |, is |δ|.
We define the behaviour of M on trees in TΣ∪Q, where states are considered

to be symbols of rank 0. Let δ̂:TΣ∪Q → Q be defined by

δ̂(t) =

{
t(ε) if t(ε) ∈ Q

δ(t(ε)[δ̂(t1), . . . , δ̂(tk)]) if t(ε) ∈ Σ(k)

The language recognised by M is L(M) = {t ∈ TΣ | δ̂(t) ∈ Qf}. From here on,

we identify δ with δ̂.

In several of the algorithms, we iterate over the set of contexts representing

left-hand sides of transition rules with a gap in them:

Cδ = {c ∈ CΣ∪Q | δ(c[[q]]) is defined for some q ∈ Q} ,

183Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Figure 1: A taxonomy of minimisation algorithms for dta. The numbering is

with respect to the algorithm numbers in this paper.

Example 1. For the transition table

δ = {(a, p), (b, q), (f [p, q], p), (f [q, p], p), (f [p, p], p)} ,

we have

Cδ = {f [p,�], f [q,�], f [�, p], f [�, q]} .

Nerode congruence. The upward language of q ∈ Q, written L↑
M (q), is

the set of contexts {c ∈ CΣ | δ(c[[q]]) ∈ Qf}. Similarly, the downward language of

q is L↓
M (q) = {t ∈ TΣ | δ(t) = q}. The Nerode congruence [Nerode(1958)] is the

coarsest congruence relation E on Q with respect to δ. In other words, E(p, q) if
and only if L↑(p) = L↑(q) for all p, q ∈ Q.

3 Abstract DTA Minimisation

For the remainder of this paper, let M = (Q,Σ, δ,Qf) be a DTA, and let E
be the Nerode congruence on M . To avoid trivial corner cases, we assume that

|Q| > 1 and that M is reduced in the sense that for all q ∈ Q, L↓
M (q) �= ∅ and

L↑
M (q) �= ∅ (which also implies that Qf �= ∅).
[Figure 1] shows a taxonomy of dta minimisation algorithms. A pair of al-

gorithms A and B is in an ancestor-descendant relationship in the taxonomy if

B can be obtained by adding detail to the specification of A. At the top-most

level, we have the prototypical [Algorithm 1]. It takes as input a dta M , and

uses an abstract statement S to compute M ′ satisfying the postcondition, i.e. to

find the minimal language-equivalent dta M ′. [Algorithm 1] spans two families

of algorithms, one that centers on the computation of the Nerode congruence E ,
and one that uses repeated transition reversal and determinisation. The latter

184 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

is something of a rare bird among minimisation algorithms and is treated sepa-

rately in [Section 6].

Algorithm 1 Abstract dta minimisation algorithm

Precondition: M = (Q,Σ, δ,Qf) is a dta

1: M ′ : S
Postcondition: LM = LM ′ and M ′ is minimal

Continuing down the left taxonomy branch, we come to the slightly more

concrete [Algorithm 2] as a refinement. It uses the fact that once the Nerode

congruence E is known, the canonical automaton M ′ is easily computed.

Definition 1 cf. [Buchholz(2008), Definition 3.3]. The aggregated dta with

respect to M and E , denoted by (M/E), is the dta ((Q/E), Σ, δ′, Q′
f) given by

Q′
f = {[q] | q ∈ Qf} and δ′(f [[q1], . . . , [qk]]) = [δ(f [q1, . . . , qk])]. The transition

function δ′ is well-defined because E is a congruence relation.

Lemma2. Let M ′ = (M/E), then L(M) = L(M ′) and M ′ is state minimal.

Recall that we consider the size of an automaton to be the size (i.e. number

of entries) of its transition table (i.e. |δ|), rather than the size of its state set

(i.e. |Q|). This makes it easier to understand how algorithms behave on partial

automata (as opposed to total automata, which must necessarily be large when

there are high-ranked symbols in the input alphabet). Since we restrict ourselves

to deterministic and reduced automata, Lemma 2 (cf. [Högberg et al.(2009)]) is

still applicable.

Lemma3. A reduced DTA is state minimal if and only if it is transition mini-

mal.

Proof. Let M be a state-minimal reduced DTA and let M ′ be a transition-

minimal reduced DTA for L(M). We show that the two automata are isomorphic.

Since bothM andM ′ are deterministic, for every state p inM ′ there is a state
q ∈ M such that L↓

M (p) ⊆ L↓
M ′(q). From this it follows that L↑

M (p) = L↑
M ′(q).

This means that the language recognised by M ′ does not change if all pairs of

states p and p′ in M ′ are merged, for which there is a state q in M such that

L↓
M (p) ⊆ L↓

M (q) and L↓
M (p′) ⊆ L↓

M (q). Since any such merge would decrease the

number of transitions of the already supposedly transition-minimal M ′ with at

least 1, there can be no such states p and q. In other words, there is a one-to-one

mapping ϕ between the states of M and M ′, such that L↑
M (q) = L↑

M ′(ϕ(q)).

Since both machines are reduced, a transition of the form f [q1, . . . , qk] in M

implies that there is a transition f [ϕ(qq), . . . , ϕ(qk)] in M ′. In other words, M ′

has no fewer transitions than M . 	

185Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Algorithm 2 Abstract dta minimisation algorithm based on E
Precondition: M = (Q,Σ, δ,Qf) is a dta

1: E : S

2: M ′ ← (M/E)
Postcondition: LM = LM ′ and M ′ is minimal

[Algorithm 2] describes a family of algorithms, differing in how E is computed.

4 Algorithms based on partition refinement

In this section, we consider a family of algorithms that find E by partition re-

finement. They compute a series of gradually more refined hypothesis relations

E0, E1, E2, Relation E0 is the coarsest equivalence relation that respects the

separation of Q into final and non-final states. Relation Ei+1 is obtained from Ei
by selecting a subset of the blocks B1, . . . , Bk, and “splitting” the relation with

respect to these. Intuitively, this is done by separating all pairs of states p, q

such that there is some Bj , j ∈ [k], and some context c such that exactly one of

δ(c[[p]]) and δ(c[[q]]) is in Bj . To avoid repeated splitting against the same block,

the algorithms also maintain a series of equivalence relations F0,F1,F2, For

every i ∈ {0, 1, 2, . . .}, it holds that Ei is a refinement of Fi, and blocks are copied

from Ei to Fi as they are used for splitting.

[Algorithm 3(a)] shows a prototype version of such a of partition-refinement

algorithm. For the presentation, we use the contexts representing left-hand sides

of transition rules with a gap in them (see Section 2) and a pair of auxiliary

functions to manage equivalence relations.

Definition 4. Let B ⊆ Q.

– We write cut (B) for the subset B2 ∪B
2
of Q2.

– We write split (B) for the set of all pairs (q, q′) in Q2, for which there is a

c ∈ Cδ such that exactly one of δ(c[[q]]) and δ(c[[q′]]) is in B.

Correctness can be argued by observing that E must refine {Qf , Qf}, and
that for every i ∈ {0, 1, 2, . . .}, Ei is a refinement of E , since a pair of states

are only separated if there is a witness to show that they are distinct under

the Nerode congruence. When the refinement steps converge, the result is a

congruence relation, and this must happen when all blocks are singletons, if not

earlier. The final piece of the puzzle is that the union of two congruence relations

is again a congruence relation, coarser than both of them. This means that the

refinement process cannot arrive at two distinct coarsest possible refinements.

Different strategies exist for selecting the blocks that are used for splitting. By

simply picking one block at a time at random, as in [Algorithm 3(b)], we have an

186 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Table 1: The worst-case complexities of the algorithms in our taxonomy. Recall

that m is the transition table size, n the number of states, and r the maximum

rank of a symbol in the input alphabet. It can be shown that for each algo-

rithm, when considering the case where r = 1 (i.e. trees representing strings),

the complexity reduces to the known complexity for the respective string case

variants.

Algorithm Complexity

Hopcroft & Ullman’s algorithm O
(
rmn2

)
Moore’s algorithm O(rmn)

Hopcroft’s algorithm O(rm logn)

The Fastar algorithm O
(
(rm)n−2n2

)
Brzozowski’s algorithm O(2n

nr

)

easily implemented algorithm that runs in time O
(
rmn2

)
[Högberg et al.(2009)],

where m is the size of the transition table and n the number of states [see Ta-

ble 1]. This can be improved with Hopcroft’s strategy of always splitting against

the smaller half. The idea is that if a block B ∈ Fi is the union of two blocks B′

and B′′ in Ei, c is a context in Cδ, and we know

– the set of states P = {q ∈ Q | δ(c[[q]]) ∈ B}, and
– the set of states P ′ = {q ∈ P | δ(c[[q]]) ∈ B′}

then set {q ∈ P | δ(c[[q]]) ∈ B′′} is simply P \ P ′, as M is deterministic.

Hopcroft’s algorithm (here presented as [Algorithm 3(c)]) was originally de-

fined for dfas, and extended by [Paige and Tarjan(1987)] to non-deterministic

string automata. Their addition is the observation that if the state p can move on

a context c in n ways to a block B, and in m ways to the smaller block B′ ⊆ B,

where m ≤ n, then p can move in n −m ways to the block B \ B′. Paige and

Tarjan’s (and thus Hopcroft’s) algorithms were generalised to (weighted and non-

deterministic) tree automata by [Högberg et al.(2009)], whose algorithm runs in

O(rm log n) time when the input is unweighted and deterministic.

An alternative efficiency gain is to work layer-wise, and simultaneously split

against all blocks discovered in the previous iteration. This leads to Moore’s algo-

rithm [Moore(1956)], which was later generalised to dtas by Brainerd (see [Algo-

rithm 3(d)]). For trees, the algorithm first appeared in 1968 in [Brainerd(1968)];

Brainerd’s earlier PhD thesis [Brainerd(1967)] leaves the algorithm implicit. The

same layer-wise algorithm appears in [Comon et al.(2007)], and is covered im-

plicitly in [Gécseg and Steinby(1984), pp. 93–94].

187Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Algorithm 3 Four partition refinement algorithms

Precondition: M = (Q,Σ, δ,Qf) is a dta

1: (E0, F0, i) ← (F
2 ∪ F 2, Q2, 0)

2: while Ei �= Fi do

3: � (a) Prototypical partition refinement

4: Choose B ⊆ (Q/Ei)
5: Fi+1 ← Fi \

⋃
Bi∈B cut (Bi)

6: Ei+1 ← Ei \
⋃

Bi∈B split (Bi)

� (b) Basic block-wise algorithm

4: Choose Bi ∈ (Q/Ei)
5: Fi+1 ← Fi \ cut (Bi)

6: Ei+1 ← Ei \ split (Bi)

� (c) Hopcroft’s algorithm

4: Choose Si ∈ (Q/Fi) and Bi ∈ (Q/Ei) s.t. Bi ⊂ Si and |Bi| ≤ |Si| /2
5: Fi+1 ← Fi \ cut (Bi)

6: Ei+1 ← Ei \ split (Bi)

� (d) Moore’s algorithm

4: � All blocks in (Q/Ei) are implicitly chosen

5: Fi+1 ← Ei
6: Ei+1 ← Ei \

⋃
B∈(Q/Fi+1)

split (B)

7: i ← i+ 1

8: end while

Postcondition: Ei = E

In Moore’s algorithm, the refinement steps can be implemented using the

non-comparative sorting algorithm Radix sort. Radix sort is usually attributed

to Herman Hollerith’s work on tabulating machines in the late 19th century.

The sorting algorithm relies on a positional form of representation, such as the

arabic numerical system, and sorts keys one position at a time. When Radix sort

is invoked in Moore’s algorithm, the set of transitions associated with a state q

is translated into a positional representation, encoded as an integer key, for q.

These keys are then used to sort the states into equivalence classes. In practise,

Line 6 is replaced by

6: Ei+1 ← RadixSort({(q, [δ(c1[[q]])]Ei
· · · [δ(ck[[q]])]Ei

) | q ∈ Q})

188 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

where c1, . . . , ck is an arbitrary enumeration of Cδ. The key here is thus a se-

quence of block labels, where the ith label is the block of Ei to which δ takes

tree ci[[q]]. In the string case, this optimisation brings the worst-case complexity

of O
(
kn3

)
down to O

(
kn2

)
. In the tree case, it goes from O

(
rmn2

)
to O(rmn),

but as m can be up to nr, the relative gain is smaller. For the string case,

Algorithm 4 Computing E from the complement side (Hopcroft & Ullman).

Precondition: M = (Q,Σ, δ,Qf) is a dta

1: L(ρ) ← ∅, for all ρ ∈ Q2

2: D ← Qf ×Qf ∪Qf ×Qf

3: for (p, q) �∈ (Qf ×Qf ∪Qf ×Qf) do

4: for c ∈ Cδ do

5: ρ ← (δ(c[[p]]), δ(c[[q]]))

6: if ρ ∈ D then

7: separate((p, q))

8: else

9: L(ρ) ← L(ρ) ∪ {(p, q)}
10: end if

11: end for

12: end for

Postcondition: D = E

Algorithm 5 Separate pair ρ and all affected pairs of states

1: function separate(ρ)

2: D ← D ∪ {ρ}
3: for ρ′ ∈ L(ρ) \ D do

4: separate(ρ′)
5: end for

6: end function

the average-case time complexities of Moore’s and Hopcroft’s algorithms were

recently shown to be O(n log logn) [David(2012)] (”for the uniform distribution

on complete deterministic automata”; see that paper for more details), but it is

an open question how these results translate to the tree case.

The partition refinement can also be done through aggregation of the com-

plement relation of E , that is, state distinguishability relation D. [Algorithm 4],

due to [Hopcroft and Ullman(1979)], does precisely this. It iterates over all pairs

189Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

of states (p, q) not yet distinguishable. For each such pair, it checks whether the

pair can be distinguished based on what is currently known about D, and then

adds information about what additional information would cause p and q to be

put into different equivalence classes. For this purpose, each pair of states (r, s)

has a set L((r, s)) of pairs of states. If (p, q) is in L((r, s)), this means that if

r and s turn out to be distinguishable, then so will p and q. The pair (p, q)

is therefore placed in L(δ(c[[p]]), δ(c[[q]])) for every c ∈ Cδ. The algorithm uses

the function separate (see [Algorithm 5]) to update D whenever it manages to

distinguish a new pair.

Theorem5. Algorithm 4 is in O
(
rmn2

)
.

Proof. The initialisation of L and D is in O
(
n2

)
. The two ‘for’ loops are executed

at most O
(
n2

)
and O(rm) times, respectively. The latter figure is simply the

number of contexts that can be built from the transition table.

The function separate is invoked at most once for every ρ ∈ Q × Q. Aside

from adding ρ to D, separate involves the computation of a set difference and

a sequence of recursive calls. In an efficient implementation, the set difference

would be replaced by removing ρ′ from all L(ρ) as soon as we learnt that ρ′ ∈
D. This comes at a total cost of O

(
rmn2

)
that is spread out over the entire

computation. The recursive calls are “for free” since we have already counted

the number of invocations of separate. The total amount of work done by separate

is thus in O
(
rmn2

)
.

Summing up, we see that the computational complexity of Algorithm 4 is in

O
(
n2

)
+O

(
rmn2

)
+O

(
n2

)
+O

(
rmn2

)
= O

(
rmn2

)
. 	

5 An algorithm based on partition aggregation

The congruence relation E can also be found through partition aggregation, as

suggested by the Fastar research group in [Cleophas et al.(2009)]. This method

starts with a singleton partition for each state of the initial dta and approaches E
by iteratively merging partitions found to be equivalent. When no more changes

occur, we have found the solution.

This algorithm, presented as [Algorithm 7], starts out knowing that each

state is equivalent to itself, and that each pair of final and non-final state is

distinguishable. While there exist state pairs for which it is not known whether

they are equivalent or distinguishable, function equiv in [Algorithm 6] is used to

compute equivalence of such a pair of states, based on a recursive definition of

E : it is the greatest equivalence relation on Q such that

E(p, q) ≡ (p ∈ Qf ≡ q ∈ Qf) ∧
∧

c∈Cδ
E(δ(c[[p]]), δ(c[[q]])).

An additional variable, S, kept global for efficiency, is used during recursion

to keep track of state pairs that are tentatively assumed equivalent. To ensure

190 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Algorithm 6 Point-wise computation of (p, q) ∈ E for dtas

Precondition: S is a globally accessible set variable, initialised to ∅.
1: function equiv(p, q, k)

2: if k = 0 then

3: eq ← p ∈ Qf ≡ q ∈ Qf

4: else if k �= 0 ∧ (p, q) ∈ S then

5: eq ← true

6: else if k �= 0 ∧ (p, q) �∈ S then

7: eq ← p ∈ Qf ≡ q ∈ Qf

8: S ← S ∪ {(p, q), (q, p)}
9: eq ← eq ∧∧

c∈Cδ
equiv(δ(c[[p]]), δ(c[[q]]), k − 1)

10: S ← S\{(p, q), (q, p)}
11: end if

12: return eq

13: end function

Postcondition: equiv(p, q, k) ≡ (p, q) ∈ E

termination of the recursive computation, function equiv takes a third parameter,

bounding the recursion depth. Depending on whether equiv determines a pair

(p, q) to be equivalent or distinguishable, it is added to Ei+1 or Fi+1; in the

former case, as equivalence is transitive, transitive closure is applied to Ei+1.

Theorem6. Algorithm 7 is in O
(
(rm)n−2n2

)
.

Proof. In the computation of the function equiv , the recursion depth is n − 2.

Moreover, each invocation of equiv makes at most mr calls to itself; one for each

context in Cδ. Since the main loop is executed at most n2 times, this yields a

total complexity of O
(
(rm)n−2n2

)
.

While this algorithm is inferior to Hopcroft’s algorithm in terms of worst-

case performance [see Table 1], it also has an advantage: intermediate results are

usable to reduce the original dta, albeit not yet to a minimal one.

For the dfa case, [Watson and Daciuk(2003)] showed that the complexity of

the function equiv could be brought down from O(|Σ|n−2
) to O

(
n2α(n2)

)
by

combining memoisation with the classical union-find approach [Aho et al.(1974)].

This reduced the overall complexity from O(|Σ|n−2
n2) to O

(
n4α(n2)

)
), where

α denotes the inverse of Ackermanns function which is such that α(n) ≤ 5 for all

n ≤ 22
16

. The experiments conducted by the same set of authors suggest that the

resulting algorithm also performs well in practice. The same approach is likely

to be helpful also in the tree case: ‘union’ allows us to efficiently merge equiv-

alence classes and ‘find’ helps to propagate evidence against state equivalence.

The exact savings are however still an open question.

191Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Algorithm 7 Incrementally compute E (Fastar)

Precondition: M = (Q,Σ, δ,Qf) is a dta

1: (S, E0, D0, i) ← (∅, IQ, (Qf ×Qf) ∪ (Qf ×Qf), 0)

2: � Invariant: Ei ⊆ Ei+1 ⊆ E and Di ⊆ Di+1

3: while ∃(p, q) ∈ Ei ∪ Di do

4: if equiv(p, q, |Q| − 2) then

5: Ei+1 ← (Ei ∪ {p, q}2)+
6: Di+1 ← Di

7: else

8: Ei+1 ← Ei
9: Di+1 ← Di ∪ {p, q}2

10: end if

11: i ← i+ 1

12: end while

Postcondition: Ei = E

6 Brzozowski’s algorithm

In this section, we give a dta analog of Brzozowski’s algorithm for minimis-

ing dfas [Brzozowski(1962)], an algorithm that is perhaps more surprising than

it is practical. Unlike the previously described algorithms, it does not explic-

itly compute the Nerode congruence, but rather depends on repeated deter-

minisation and reversal. Due to the determinisation steps, the algorithm is ex-

ponential in the worst-case, though practical benchmarking suggest that it is

sometimes competitive with the previously mentioned partition-refinement al-

gorithms [Watson(1995)].

Brzozowski’s dfa minimiser is the sequence of four dfa manipulations re-

verse; determinise; reverse; determinise. As the name suggests, reverse reverses

all transitions in the dfa and makes final states start states and vice-versa, re-

sulting in a (generally non-deterministic) automaton accepting the reverse of the

words accepted by the original dfa. Determinise builds an equivalent dfa from a

non-deterministic automaton. The algorithm relies on two important properties:

1. In a dfa, all distinct pair of states p and q have disjoint left-languages; if this

were not the case, there would be a word w labeling paths from the start state

to both p and to q, and hence the automaton would be non-deterministic.

2. Determinise takes an automaton as input and builds a new one whose states

are sets of states taken from the input automaton. Each such new state’s

right-language is the union of its constituents’ right-languages (in the in-

put automaton). This is a property of all state-merging algorithms, such as

determinisation, but also equivalence-based minimisation algorithms.

192 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Thanks to the first property, the first three components of Brzozowski’s algo-

rithm yield an equivalent non-deterministic automaton whose right languages

are pairwise disjoint. With that as input and the second property, the final de-

terminization gives a dfa with pairwise inequivalent states—a minimal dfa.

[Algorithm 8] extends this to a dta minimiser, where the comments capture

the aforementioned arguments. The reverse operations of the dfa minimiser are

of course embedded within the notions of top-down and bottom-up determin-

isation. Top-down determinisation of a dta thus corresponds to reversing the

dta into a (generally non-deterministic) top-down tree automaton, followed by

a subset construction—yielding a deterministic top-down ta whose states’ up-

languages are pairwise disjoint—say M ′. Determinisation of non-deterministic

top-down tree automata (ntdtas) is a straightforward generalisation from the

string case, and the reader is referred to e.g. [Cleophas(2008), Section 3.4.3] for

a formal definition and treatment. It should be noted that such determinisation

is not (losslessly) possible for any ntdta, as there are languages for which no

deterministic version exists: Consider e.g. the language consisting of trees f [a, b]

and f [b, a]. A deterministic top-down tree automaton from the start state, say

qs, has a transition on f to a single state, say q1 and then requires transitions

on both a and b from q1 to exist in order to accept both trees, yet as a result

will also accept e.g. f [b, b]. The precondition of [Algorithm 8] therefore mentions

the important restriction that the algorithm is restricted to tas that can be

(losslessly) top-down determinised.

Following top-down determinisation, bottom-up determinisation corresponds

to reversing M ′—yielding a non-deterministic ta—and then determinising that

automaton, resulting in a dta whose states’ downward languages are pairwise

unique, making it minimal.

Theorem7. Brzozowski’s algorithm for tree automata is in O(2n
nr

).

Proof. The top-down and bottom-up determinisation of M are both in O(2n
r

),

which is also the maximal size of the output automata. When composed, the

two operations have a combined complexity of O(2n
nr

). 	

7 Conclusion

On the practical side, the next step is to implement and benchmark the algo-

rithms, so as to improve our understanding of how their performance depends

on characteristics of the data and the input environment. The main challenge

will be to find representative data sets for different NLP tasks. Once complete,

the resulting toolkit will be shared with the community as open source.

Due to the hierarchical nature of the domain, algorithms on tree automata

appear particularly suited for parallelisation, either on a multi-core CPU or

193Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

Algorithm 8 A Brzozowski-analog for dta minimisation

Precondition: M = (Q,Σ, δ,Qf) is a dta and M can be top-down deter-

minised

1: M ′ ← top-down determinise(M)

2: � M ′ is equivalent to M and up-languages of M ′ states are pairwise disjoint

3: M ′′ ← bottom-up determinise(M ′)
4: � M ′′ is equivalent to M and downward languages of M ′′ states are pairwise

unique

Postcondition: LM = LM ′′ and M ′′ is minimal

GPU, or distributed across a network. A specification in Hoare’s CSP is already

available for [Algorithm 6] [Cleophas et al.(2009)]. It would be valuable to obtain

similar ones for the other algorithms, and to implement and benchmark such

parallelised versions.

On the theoretical side, it would be interesting to extend the taxonomy to

cover also the non-deterministic and possibly weighted case, and to provide cor-

rectness proofs and a complexity analysis of [Algorithm 4] and [Algorithm 8].

Acknowledgments

The authors are indebted to Bruce W. Watson at Stellenbosch University for his

helpful input, in particular related to the discussion of Brzozowski’s algorithm.

References

[Abdulla et al.(2007)] Abdulla, P. A., Högberg, J., Kaati, L.: “Bisimulation minimiza-
tion of tree automata.”; International Journal of Foundations of Comp. Sci.; 18
(2007), 4, 699–713.

[Abdulla et al.(2009)] Abdulla, P. A., Hoĺık, L., Kaati, L., Vojnar, T.: “A uniform
(Bi-)simulation-based framework for reducing tree automata”; Electronic Notes in
Theoretical Computer Science; 251 (2009), 0, 27 – 48; proceedings of the Interna-
tional Doctoral Workshop on Mathematical and Engineering Methods in Computer
Science.

[Aho and Ganapathi(1985)] Aho, A. V., Ganapathi, M.: “Efficient tree pattern match-
ing: an aid to code generation”; Proceedings of the 12th ACM Symposium on
Principles of Programming Languages; 334–340; 1985.

[Aho et al.(1989)] Aho, A. V., Ganapathi, M., Tjiang, S. W. K.: “Code generation us-
ing tree matching and dynamic programming”; ACM Transactions on Program-
ming Languages and Systems; 11 (1989), 4, 491–516.

[Aho et al.(1974)] Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The design and analysis
of computer algorithms; Addison-Wesley Series in Computer Science and Informa-
tion Processing; Addison-Wesley, Reading, MA, 1974.

[Borchardt(2005)] Borchardt, B.: The theory of recognizable tree series; Akademische
Abhandlungen zur Informatik; Verlag für Wissenschaft und Forschung, 2005.

[Brainerd(1967)] Brainerd, W. S.: Tree Generating Systems and Tree Automata; Ph.D.
thesis; Purdue University (1967).

194 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

[Brainerd(1968)] Brainerd, W. S.: “The minimalization of tree automata”; Information
and Control; 13 (1968), 5, 484–491.

[Broy(1983)] Broy, M.: “Program construction by transformations: a family tree of
sorting programs”; A. W. Biermann, G. Guiho, eds., Computer Program Synthesis
Methodologies; 1–49; Reidel, 1983.

[Brzozowski(1962)] Brzozowski, J. A.: “Canonical regular expressions and minimal
state graphs for definite events”; Mathematical Theory of Automata; volume 12 of
MRI Symposia Series; 529–561; Polytechnic Press, Polytechnic Institute of Brook-
lyn, 1962.

[Buchholz(2008)] Buchholz, P.: “Bisimulation relations for weighted automata”; The-
oretical Computer Science; 393 (2008), 13, 109 – 123.

[Burghardt(1988)] Burghardt, J.: “A tree pattern matching algorithm with reasonable
space requirements”; Proceedings of the 13th Colloquium on Trees in Algebra and
Programming (CAAP); volume 299 of Lecture Notes in Computer Science; 1–15;
1988.

[Carrasco et al.(2007)] Carrasco, R. C., Daciuk, J., Forcada, M. L.: “An implementa-

tion of DTA minimization”; J. Holub, J. Žďárek, eds., Implementation and Appli-
cation of Automata; volume 4783 of LNCS; 122–129; Springer Berlin Heidelberg,
2007.

[Carrasco et al.(2008)] Carrasco, R. C., Daciuk, J., Forcada, M. L.: “Incremental con-
struction of minimal tree automata”; Algorithmica; (2008).

[Cleophas et al.(2009)] Cleophas, L., Kourie, D. G., Strauss, T., Watson, B. W.:

“On minimizing deterministic tree automata”; J. Holub, J. Žďárek, eds., Prague
Stringology Conference, Prague, Czech Republic, 2009; 173–182; 2009.

[Cleophas(2008)] Cleophas, L. G. W. A.: Tree Algorithms: Two Taxonomies and a
Toolkit; Ph.D. thesis; Dept. of Mathematics and Computer Science, TU Eindhoven
(2008).

[Comon et al.(2007)] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez,
D., Tison, S., Tommasi, M.: “Tree automata: Techniques and applications”; (2007).

[Darlington(1978)] Darlington, J.: “A synthesis of several sorting algorithms”; Acta
Inf.; 11 (1978), 1–30.

[David(2012)] David, J.: “Average complexity of Moores and Hopcrofts algorithms”;
Theoretical Computer Science; 417 (2012), 0, 50 – 65.

[Doner(1970)] Doner, J.: “Tree acceptors and some of their applications”; Journal of
Computer and System Sciences; 4 (1970), 5, 406–451.

[Engelfriet(1975)] Engelfriet, J.: “Tree Automata and Tree Grammars”; Lecture Notes
DAIMI FN-10; Aarhus University (1975).

[Galley et al.(2006)] Galley, M., Graehl, J., Knight, K., Marcu, D., DeNeefe, S., Wang,
W., Thayer, I.: “Scalable inference and training of context-rich syntactic trans-
lation models”; Proceedings of the 44th Annual Meeting of the Association for
Computational Linguistics; 961–968; ACL, Stroudsburg, PA, USA, 2006.

[Gécseg and Steinby(1984)] Gécseg, F., Steinby, M.: Tree Automata; Akadémiai Kiadó,
Budapest, 1984.

[Gécseg and Steinby(1997)] Gécseg, F., Steinby, M.: Tree Languages; volume 3 of
Handbook of Formal Languages; 1–68; Springer, 1997.

[Hoffmann and O’Donnell(1982)] Hoffmann, C. M., O’Donnell, M. J.: “Pattern match-
ing in trees”; Journal of the ACM; 29 (1982), 1, 68–95.

[Högberg et al.(2009)] Högberg, J., Maletti, A., May, J.: “Backward and forward bisim-
ulation minimization of tree automata”; Theoretical Comp. Sci.; 410 (2009), 37,
3539–3552.

[Holzer and Maletti(2010)] Holzer, M., Maletti, A.: “An n log n algorithm for hyper-
minimizing a (minimized) deterministic automaton”; Theoretical Comp. Sci.; 411
(2010), 38–39, 3404–3413.

195Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

[Hopcroft and Ullman(1979)] Hopcroft, J. E., Ullman, J. D.: Introduction to Au-
tomata Theory, Languages, and Computation; Addison-Wesley, Reading, Mas-
sachusetts, USA, 1979.

[Kron(1975)] Kron, H.: Tree templates and subtree transformational grammars; Ph.D.
thesis; University of California, Santa Cruz (1975).

[Maletti(2011)] Maletti, A.: “Survey: weighted extended top-down tree transducers —
part I: Basics and expressive power”; Acta Cybernetica; 20 (2011), 2, 223–250.

[Maletti and Quernheim(2012)] Maletti, A., Quernheim, D.: “Unweighted and
weighted hyper-minimization”; International Journal on the Foundations of Comp.
Sci.; 23 (2012), 6, 1207–1225.

[Marcelis(1990)] Marcelis, A. J. J. M.: “On the classification of attribute evaluation
algorithms”; Science of Computer Programming; 14 (1990), 1–24.

[Martens and Niehren(2007)] Martens, W., Niehren, J.: “On the minimization of XML
schemas and tree automata for unranked trees”; J. Comput. Syst. Sci.; 73 (2007),
4, 550–583.

[Moore(1956)] Moore, E. F.: “Gedanken-experiments on sequential machines”;
C. Shannon, J. McCarthy, eds., Automata Studies; 129–153; Princeton University
Press, Princeton, NJ, 1956.

[Nerode(1958)] Nerode, A.: “Linear automaton transformations”; Proceedings of the
American Mathematical Society; 9 (1958), 4, 541–544.

[Nivat and Podelski(1997)] Nivat, M., Podelski, A.: “Minimal ascending and descend-
ing tree automata”; SIAM Journal on Computing; 26 (1997), 39–58.

[Paige and Tarjan(1987)] Paige, R., Tarjan, R.: “Three partition refinement algo-
rithms”; SIAM Journal on Computing; 16 (1987), 6, 973–989.

[Thatcher and Wright(1965)] Thatcher, J. W., Wright, J. B.: “Generalized finite au-
tomata”; Notices of the American Mathematical Society; 12 (1965), 820, 65T–469.

[Watson(1995)] Watson, B. W.: Taxonomies and Toolkits of Regular Language Algo-
rithms; Ph.D. thesis; Dept. of Mathematics and Comp. Sci., TU Eindhoven (1995).

[Watson and Daciuk(2003)] Watson, B. W., Daciuk, J.: “An efficient incremental DFA
minimization algorithm”; Natural Language Engineering; 9 (2003), 1, 49–64.

[Yamada and Knight(2001)] Yamada, K., Knight, K.: “A syntax-based statistical
translation model”; Proceedings of the 39th Annual Meeting on Association for
Computational Linguistics; 523–530; ACL, Stroudsburg, PA, USA, 2001.

196 Bjoerklund J., Cleophas L.: A Taxonomy of Minimisation Algorithms ...

