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Abstract

More than sixteen isolates of iron-oxidizing bacteria belonging to the genus

Leptospirillum were included in this study, with the finding that they were clearly

divisible into two major groups. Group I leptospirilla had mol% G+C ratios

within the range 49-52%, three copies of rrn genes and based on 16S rRNA

sequence data, clustered together with the Leptospirillum ferrooxidans type strain

(DSM2705or LI5). Group II leptospirilla had mol% G+C ratios of 55-58%, two

copies of rrn genes and based on 16S rRNA sequence form a separate cluster.

Genome DNA-DNA hybridization experiments indicated that three similarity

subgroups were present amongst the leptospirilla tested with two DNA-DNA

hybridization similarity subgroups being found within group I. The two groups

could also be distinguished based on the sizesof their 16S-23SrRNA gene spacer

regions. We propose that the group II leptospirilla should be recognized as a

new species with the name Leptospirillum ferriphilum sp. nov. Members of the

two species can be rapidly distinguished from each other by amplification of

their 16S rRNA genes and carrying out restriction enzyme digests of the

products. Several but not all isolates of the group II leptospirilla, but none from

group I (L. ferrooxidans) were capable of growth at 45°C.

Plasmid DNA was isolated from strain ATCC49879 (L. ferrooxidans).

Restriction endonuclease mapping of what appeared to be about 60 kb of

plasmid DNA, established that two plasmids of approximately 30.0 kb and 27.0

kb were present. These were named p49879.1 and p49879.2 respectively.

Attempts to isolate the plasmids separately were not successful. Partial

sequencing of the two plasmids was carried out and sequence analysis of

p49879.1 and p49879.2 indicated that the plasmids shared regions of homology.

Total plasmid DNA was DIG-labelled and used as a probe in Southern

hybridization experiments with genomic DNA from all sixteen original

leptospirilla isolates as the target DNA. All leptospirilla belonging to Group I

gave a positive signal, little or no homology to Group II leptospirilla was

obtained. The region of homology present in all L. ferrooxidans strains was

localized to an area on plasmid p49879.2 showing high amino acid identity to a
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transposase/putative transposase of Methanosarcina acetivorans and plasmid

CPl from Deinococcus radiodurans Rl respectively. Whether these regions of

homology indicate that complete, functional transposons are present in all L.

ferrooxidans isolates still remains to be determined. Preliminary sequence

analysis of both plasmids resulted in the identification of regions with amino acid

sequence identity to the TnpA and TnpR of the Tn2l-like transposon family, and

the mobilization regions of IncQ-like plasmids (particularly that of pTFl from

At. ferrooxidans). Another potentially interesting ORF was identified in

p49879.2 with high amino acid sequence identity to an ArsR-like protein that

belongs to a second atypical family of ArsR transcriptional regulators. Whether

this protein is functional in the regulation of arsenic resistance genes has not yet

been determined, nor have other arsenic resistance genes been identified. Future

work includes further sequence analysis of these plasmids to better understand

their contribution to the isolates in which they are found.
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Opsomming

Meer as sestien isolate van die yster-oksiderende bakterieë, wat aan die genus

Leptospirillum behoort, is in die studie ingesluit en die resultate het getoon dat

dié groep verder in twee hoof groepe verdeel kan word. Groep I het "n mol%

G+C van tussen 49 % en 52% gehad, sowel as drie kopieë van die ribosomale

gene (rrn). Hiermeesaam het die 16SrRNA volgorde data getoon dat hierdie

isolate groepeer saam met Leptospirillum ferrooxidans (DSM2705T en LI5).

Groep II leptospirilla het "n mol% G+C van tussen 55% en 58% gehad sowel as

twee kopieë van die rrn gene en saam met die 16SrRNA volgorde data het hierdie

isolate "n aparte groep gevorm. Genoom DNA-DNA hibridisasie eksperimente

het gewys dat daar drie subgroepe onder die Leptospirillum wat getoets was is,

met twee naverwante groepe wat onder Groep I val. Daar kan ook tussen die

twee hoof groepe onderskei word op grond van die grootte van hul 16S-

23SrRNA intergeniese gebiede. Ons stel dus hier voor dat die Groep II

leptospirilla as "n nuwe spesie beskou word naamlik, Leptospirillum ferriphilum

sp, nov. Die twee spesies kan maklik onderskei word deur die PKR amplifikasie

produk van die 16SrRNA te verteer met restriksie ensieme. Vele, maar nie al

van die Groep II isolate kan by 45°C groei nie, terwyl geen van die Groep I

leptospirilla (L. ferrooxidans) kan nie.

Plasmied DNA was geisoleer uit Leptospirillum ferrooxidans ATCC49879.

Aanvanklike analise het gedui op die teenwoordigheid van een 60.0 kb plasmied.

Verdere restriksie ensiem kartering het wel getoon dat hierdie, in teen deel, twee

plasmiede van ongeveer 30.0 kb en 27.0 kb in grootte is: p49879.1 en p49879.2.

Pogings om die twee plasmiede apart te isoleer was onsuksesvol. Totale plasmied

DNA is gemerk met die Random primed DNA labelling kit (Roche diagnostics)

en gebruik as peiler in Southern klad eksperimente met genoom DNA, van al

sestien isolate, as teiken. Alle leptospirilla wat aan Groep I behoort het "n

positiewe sein gegee terwyl geen sein teen Groep II DNA opgemerk was nie. Die

area wat, tussen die plasmiede en Groep I homologie getoon het, is gelokaliseer

tot "n area op plasmied p49879.2 wat hoë amino suur identiteit toon aan "n

transposase geen van Methanosarcina acetivorans, en "n voorgestelde transposase
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geen op plasmied CPI van Deinococcus radiodurans Rl. Dit moet nog vasgestel

word of hierdie area van homologiedui op die teenwoordigheid van "n volledige,

funksionele transposon in alle L. ferrooxidans isolate. Gedeeltelike DNA

volgorde bepalings van beide plasmiede het gelei tot die identifikasie van areas

met hoë amino suur volgorde identiteit aan die TnpA en TnpR gene van die

Tn21-tipe transposon familie, sowel as aan die mobilisasie gene van IncQ-

soortige plasmiede (veral die van pTFI uit Acidithiobacillus ferrooxidans). "n

Oop lees raam van belang, wat op plasmied p49879.2geidentifiseer was, het hoë

amino suur volgorde identiteit aan "n ArsR-tipe geen getoon wat aan "n tweede

atiepiese familie van ArsR transkripsionele reguleerders behoort. Op die

stadium is dit nog onbekend of hierdie protein funksioneel is in die regulering

van arseen weerstandbiedenheidsgene.
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Abbreviations

A
Amp
ATCC
ATP
Ct,

aa

bp
~

C
C-terminal
CsCI
CSH
CTP
ctRNA
°C

Da
DIG
DNA
DNTP
dsDNA
DSMZ
dUTP

EDTA
EtBr

G
g
G+C
GTP

IR
IS

adenosine
ampicillin
American Type Culture Collection
adenosine 5' -triphosphate
alpha
amino acids

base pairs
beta

cytosine
carboxyl-terminus
cesium chloride
Cold Spring Harbour
cytosine 5' -triphosphate
countertranscribed ribonucleic acid
degrees Celsius

daltons
dioxigenin- Il-dUTP (DIG-dUTP)
deoxyribonucleic acid
deoxyribonucleotide triphosphate
double stranded deoxyribonucleic acid
Deutsche Sammlung von Mikroorganismen und Zellculturen
deoxyuridine triphosphate

ethylenediaminetetraacetic acid
ethidium bromide

guanine
gram(s)
guanine: cytosine ratio
guanine 5' -triphosphate

hour(s)
hydrochloric acid
sulfuric acid

intergenic region
insertion sequence

kilobase pair(s) or 1000bp
kilodaltons
bacterial inhibition constant
saturation constant

liter
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mA
mg
MgCh
mm
ml
mM
mm
M
mmol
mol%
!lg
!lI
!lM
!lm
umol
MS

NCBI
N-terminal
ng
nm
nt

OD6oo
ORF
oriT
oriV

PCR
PFGE
P
pmol

rDNA
RNA
rRNA
rpm

s
S
ssDNA
SDS
SET
sp
sp. nov.
SSC

T
TBE

iii

milliamp
milligram
magnesium chloride
minute(s)
milliliters
millimolar
millimeter
molar
millimole
mole percentage
microgram
microliter(s)
micromolar
micrometer
micromole
mineral sulfide

National Center for Biotechnology Information
amino-terminus
nanogram
nanometers
nucleotide

optical density at 600 nanometers
open reading frame
origin of transfer
origin of vegetative replication

polymerase chain reaction
pulse field gel electrophoresis
plasmid
picomole

ribosomal deoxyribonucleic acid
ribonucleic acid
ribosomal ribonucleic acid
revolutions per minute

secondes)
Svedberg unit
single stranded deoxyribonucleic acid
sodium dodecyl sulfate
sucrose EDT A buffer
species
new species
saline-sodium citrate

thymine
Tris-borate EDT A buffer
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TE
Tris
T-DNA
Tm
~Tm
Tn
TTP

u
uv
v
v/v

w/v

X-gal

y
%

iv

Tris EDTA buffer
Tris (hydroxymethyl) aminomethane
transfer deoxyribonucleic acid
melting temperature
change in melting temperature
transposon
thymine 5' -triphosphate

unit (of enzyme activity)
ultraviolet

volts
volume/volume

weight/volume

5-bromo-4-chloro-3-indolyl-~-galactoside

delta
lambda
micro
less than
greater than
approximatel y
gamma
percentage
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1.1 Introduction

The use of microorganisms for the benefit of mankind has been applied throughout

human history; from the production of various fermented foods and beverages to

mining practices of the early Phoenicians and Romans. Ironically, metal leaching has

been practiced in Spain, France, the United States, and other countries for many years

without knowing of the microbial contribution to the process (Lundgren and Silver,

1980; Brierley, 1982; Brierley, 1978). In 1947, bacteria associated with acid rock

drainage were discovered (Colmer and Hinkel, 1947). The bacterium isolated from

this environment was initially named Ferrobacillus ferrooxidans, and in 1951, after

further characterization (Colmer et al., 1950), was renamed Thiobacillus ferrooxidans.

More recently, the genus Thiobacillus was subdivided and a new genus,

Acidithiobacillus, was created to accommodate the highly acidophilic members of the

former genus. Hence, the bacterium previously referred to as Thiobacillus

ferrooxidans, is now known as Acidithiobacillus ferrooxidans (Kelly and Wood,

2000).

The biotechnology of microbial mining began in 1963 when results of laboratory

studies confirmed the involvement of bacteria in the solubilization of copper from

sulfidic ores (Razzel and Trussel, 1963). Research and development between 1960-

1980 yielded much information regarding bacterial involvement in the mining

industry. For example: phenotypic characteristics of leaching bacteria were

identified; metabolic pathways for iron- and sulfur- oxidizing bacteria were described

along with microbial-mineral interactions and mineral metabolism; the influence of

metal iron concentration and many environmental parameters on bioleaching were

quantified; the ecology of copper dump leach operations was studied, resulting in the

ability to employ large scale test facilities to evaluate copper bioleaching; and the use

of stirred-tank reactors for bioleaching was also extensively tested, improving the

efficiency of mineral sulfide oxidation. In the early 1990s, many commercial-scale

bioleachlbiooxidation plants were commissioned (Brierley, 1997). Currently the use

of microbes in commercial mining practices is widely accepted, offering the mining

industry cost-effective, simple, robust, high performance and environmentally friendly

alternatives to conventional methods of mineral processing.
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1.2 Microbial assisted- versus conventional- mining practices

Prior to the era of bacterially assisted mining, conventional methods such as the

smelting of sulfide minerals and burning of sulfide-rich fossil fuels were practiced.

Although the benefits of such practices were evident in the high mineral yields that

were obtained, the cost was, extensive environmental pollution. For example, the

large coal reserves in Illinois, having a high sulfur content, could not be burned

without releasing unacceptable levels of sulfur dioxide (Rawlings and Silver, 1995).

Mining and extraction also mobilizes _150xIQ12 g of sulfur per year, contributing -

50% to the net river transport of sulfate into the ocean (Edwards et ai, 2000). In

addition to this, mining exposes large sulfide ore bodies to weathering by water and

air, the combined activity of natural bacteria in this environment produces a noxious,

metal-laden, often highly acidic effluent (acid mine drainage [AMD]), which is a

serious and widespread form of stream and river pollution in many industrial and

postindustrial areas. In order to control mining-generated pollution, the United States

Surface Mining Control and Reclamation Act of 1977 set effluent quality standards

for mine water discharges (Table 1) (Unz and Dietz, 1986). This resulted in

escalating costs for the treatment of mine water generated by conventional mining

practices. Not only was the cost of mine waste treatment increasing, but so was the

need to mine at greater depths and work lower grade ore deposits, due to the depletion

of rich surface ore deposits. Hence, mining companies have increasingly been

looking for alternative methods to recover metals from lower grade ores, and the

tailings or residual, "worked" rock, accumulated from mining operations without the

associated economic and environmental burden.

Table 1.1: Effluent Limitations on Mine Water Pollutants as Mandated by the Surface Mining

Control and Reclamation Act of 1977.

Maximum Mean of daily values for

allowable 30 consecuti ve discharge

Pollutant value days

Iron, total (mgIl) 7.0 3.5

Manganese, total (mgIl) 4.0 2.0

Total suspended solids (mg/l) 70.0 35.0

pH 6.0-9.0 6.0-9.0
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Exploitation of microorganisms for the processing of ores has developed into one of

the major areas of biotechnology, with an estimated market value of over 10 billion

US dollars for 1998 (Johnson, 1998). Although the present commercial application

for microbial leaching is mostly confined to copper, uranium, and gold, the potential

of this technique may be applied to ores containing sulfides of zinc (Zn), lead (Pb),

cobalt (Co), nickel (Ni), bismuth (Bi), and antimony (Sb), as well as some oxide

minerals. A number of advantages in the use of microbial leaching over those of

classical physicochemical techniques exist.

i) The metal content of an ore is a major factor in the cost of metal recovery by

conventional mining techniques, and therefore requires ores of a higher grade as a

strating material. Bacterial activity is not as affected by ore grade and is applicable to

a range of lower ore grades as well as waste material from traditional ore processing

(Lundgren et al., 1986; Brierley, 1978; Brierley, 1982).

ii) Operating costs for bacterial leaching are frequently lower than conventional

processes as most processes operate at ambient temperatures and have lower energy

requirements.

iii) Environmental aspects of microbial leaching are less hazardous. Mine tailings and

wastes produced from physicochemical processes may be biologically leached when

exposed to rain and air, resulting in the formation of acid mine drainage (Schippers et

al., 1996). Tailings from microbial leaching operations are less chemically active and

the biological activity they can support is reduced by the extent to which they have

already been bioleached. Sulfurous emissions do not occur, and the waste, produced

in either liquid or solid form, can be contained (Lundgren et al., 1986).

iv) The treatment of recalcitrant ores with a microbial consortium prior to cyanidation

has also been shown to improve cyanidation performance. Ores from which gold

recovery was less than 50% with only conventional cyanide treatment, yielded greater

than 90% gold recovery when pretreated with a microbial consortium (Hutchins et al.,

1986).

This data presents a strong case for the incorporation of microbial assisted mining in

the suite of commercial operations available, although, the benefits of conventional

practices, when applied to high-grade ores, cannot be disputed. The treatment of
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lower grade ores with microbes is both economically and environmentally superior,

and will be reviewed here in detail.

1.3 Mechanisms of leaching

The oxidation of metal sulfides (MS) proceeds via different mechanisms depending

on whether the mineral is acid-soluble or acid-insoluble. Sand and coworkers

(Schippers and Sand, 1999; Schippers et al, 1996) have proposed two indirect

mechanisms: the thiosulfate- and polysulfide- mechanisms (Figure 1.1). The

thiosulfate mechanism is exclusively based on the oxidative attack by ferric Iron

(Fe3+) on acid-insoluble metal sulfides such as FeS2 (pyrite), MoS2 (molybdenite), and

WS2 (tungstenite). Thiosulfate is the main intermediate, and sulfate the main end

product. Using pyrite as an example the proposed reactions by Schippers and Sand

(1999) are,

In the polysulfide mechanism, dissolution of acid-soluble metal sulfides such as ZnS

(sphalerite), CuFeS2 (chalcopyrite), and PbS (galena), occurs via a combination of

ferric iron (Fe3+) and protons (H+), with elemental sulfur as the main intermediate.

Elemental sulfur may subsequently be oxidized to sulfate by sulfur-oxidizing bacteria.

For example,

(1.4)

(1.5)

This mechanism explains the ability of At. thiooxidans (a purely sulfur-oxidizing

bacterium) to leach some metal sulfides, those susceptible to hydrolysis by proton

attack, and not others (acid-insoluble).
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Thiosulfate
mechanism

Fe3+~

~A<. f. L.Q

Fe2+~

Fe3+~

~A<.f.L.Q

Fe2+~

I (At. f, At. t)

"SOl- + H+

[(At. f,At. t)

"Sg

Figure 1.1: Bioleaching via the thiosulfate- and polysulfide- mechanisms. Dashed lines

indicate the occurrence of intermediate compounds (Schippers and Sand, 1999)_

Indirect mechanisms are based upon the abiotic chemical oxidation of metal sulfides

and need not involve microorganisms, since ferric irons and protons may be

physically added to a system. For example, ferric sulfate [Fe2(S04hl is a strong

oxidant capable of dissolving a wide variety of MS minerals in the absence of oxygen

or viable bacteria (Hutchins et al., 1986),

CU2S+ 2Fe2(S04h ~ 2CUS04 + 4FeS04 + SO (1.6)
(chalcocite)

Although the reaction rate is fast, the abundance of Fe3+ irons is rate limiting.

However, numerous authors have reported acceleration in mineral leaching on the

addition of iron- and sulfur- oxidizing bacteria (Helle and Onken, 1988; Lacey and

Lawson, 1970). Boon et al. (1995) proposed a sub-process to this oxidation reaction

involving the reooxidation of ferrous iron to ferric iron by iron-oxidizing organisms.

(1.7)
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In acid consuming reactions (polysulfide mechanism) the chemical addition of acid to

a system can become costly. However, in the presence of sulfur-oxidizing organisms,

proton formation is a by-product of reduced sulfur oxidation. Therefore, the role of

microorganisms in indirect metal dissolution is to generate sulfuric acid (to ensure a

constant supply of protons for hydrolysis attack), and to recycle ferrous to ferric iron

(for an oxidative attack) (Schippers and Sand, 1999).

Since the reactions are purely chemical, with no direct contact/attachment of the

bacteria to the ore being necessary for mineral dissolution to take place, the leaching

mechanisms described here are referred to as non-contact (Figure 1.2) (Rawlings et

al., 1999b; Tributsch, 2001; Rawlings, 2002).

Whether the involvement of microorganisms in metal solubilization is solely chemical

has been questioned, as not only has attachment of active-leaching bacteria to the

mineral surface been shown to occur (Schippers et al. 1996), but it is also thought to

enhance dissolution. Microbial attachment to sulfide surfaces has been shown to

impact oxidative dissolution in the form of local, crystallographic ally controlled

etching of the sulfide surface (Bennet and Tribusch, 1978; Edwards et al., 1998;

Edwards et al., 1999); this does not occur in the presence of exclusively planktonic

chemolithotrophs (Edwards et al., 1998). Therefore another means of mineral sulfide

leaching has been proposed, a direct mechanism, which is thought to be mediated by

microorganisms attached to the mineral surface via enzymatic oxidation of the ferrous

iron and sulfide moieties of the mineral at the point of contact.

There is considerable doubt on the validity of the direct mechanism of bacterial

leaching due to inconsistencies obtained from experimental data. In an experiment

with At. ferrooxidans, sub-culturing of cells in an iron-free salt solution for the

analysis of sulfur metabolism, resulted in the complete loss of substrate degradation

(reviewed in Sand et al., 1995). This result does however depend on the mineral type

and would occur only if the mineral was itself free of iron. The cells were therefore

totally dependent on the presence of iron ions. A closer look at the mechanism of

bacterial adhesion to MS (Gehrke et al., 1998) identified extracellular polymeric

substances (EPS) of At. ferrooxidans and L. ferrooxidans, which contained between

0.5% and 5.0% of tightly bound ferric iron. These compounds were not removable by

washing procedures, but by centrifugation. Stripped cells needed several hours before
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reattachment to pyrite became detectable, whereas untreated cells started to adhere

within the first hour (Gehrke et al., 1998). From these results it seems that:

i) The attachment of bacteria to the MS surface is mediated by extracellular

polymeric compounds;

ii) The exoplymer contains a considerable supply of ferric iron, which seems to

be obtained from the surrounding medium, even if the mineral is devoid of

Iron;

iii) Iron-deficient cells are unable to degrade mineral sulfides due to the lack of

iron compounds in the exopolymeric layer, preventing attachment to the

mineral particles.

Work done by Blake et al. (1994), supported this theory by demonstrating that metal

ions (Fe3+) were needed to overcome the repellent effect that exists between the

negatively charged sulfide minerals and the bacterial cells. The presence of metal

cations in the exopolymeric layer causes a shift from negative to a slightly positive

value, enabling attachment. After exopolymer-mediated attachment, ferric ions

(within the EPS) oxidize the mineral sulfide; ferric iron is reduced to ferrous, which is

reoxidized to ferric by the iron-oxidizing microbes. The oxidation reactions take

place within the exopolymer layer between the cell and MS surface (Sand et al.,

1995). Evidence is available to suggest that the microbial mediated reoxidation of

ferrous iron can result in a localized increase in pH within the EPS, which aids

mineral dissolution (Fowler et al, 1999).

Although contact between bacterial cell and mineral surface may occur, the nature of

the dissolution reaction remains chemical, and is not enzymatic. The closest evidence

available to suggest a direct interaction between the bacterial membrane and the metal

and sulfide moieties in the mineral is from the work of Rojas-Chapana and Tributsch

(2001). Unidentified carrier molecules containing reactive thiol groups provided by

the amino acid cysteine were found to assist in pyrite oxidation within the EPS.

Although cysteine on its own was shown to rapidly oxidize pyrite in the absence of

bacteria, it is likely that cysteine found within the bacterial membrane could perform

the same function. The free-SH groups from pyrite react with the sulfhydryl group of

cysteine, resulting in cysteine being consumed by pyrite and an iron-sulfur species
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being released. Tributsch and colleagues (2001) have presented strong evidence that

close proximity between the cell and mineral surface is required for efficient

oxidation of certain metals (pyrite). However, since direct contact between the cell

surface (membrane) and the mineral does not seem essential, in the absence of firm

evidence of direct mineral-cell membrane contact, the term "contact leaching" is

preferred to that of direct leaching (Rawlings, 2002).

During contact leaching the EPS layers of bacteria feeding at the metal interface

become loaded with colloidal sulfur, sulfur intermediates, and mineral fragments,

much of which is released into the environment (Rojas-Chapana et al., 1998).

Released sulfur colloids, globules and particles feed other unattached/planktonic iron-

and sulfur- oxidizing bacteria in a co-operative leaching interaction. Figure 1.2

illustrates how the three proposed mechanisms of leaching (contact, non-contact, and

co-operative) work together in the biooxidation of pyrite.

- -_

non-contact leaching
Electron extraction due to Fe3+ attack on acid-
insoluble sulfides (thiosulfate intermediates) or
Fe3+ -proton attack on acid-soluble sulfides
(polythionate intermediates)

contact leaching
Iron-oxidizing organisms. Electron extraction as
for non-contact leaching with EPS serving as the
reaction space. Increased reaction rates due to
changes in pH, Fe3+ concentration and/or redox
potential within EPS. Leaching also due to
electrochemical polarization at high redox
potentials release of mineral fragments.

,,,
FeZ+ \eB ')
FeJ+ ~ ••

" ...~- - - - -.. EPS layer (capsule) reaction space

c,,-s~~- -,\ / Sulfur-oxidizing organisms. Cysteine-containin(raY... sulfur carrier proteins for bond breaking, resulting in
cell I .: release of sulfur colloids and other intermediates

I •••, .,
• cooperative leaching
.:~ Sulfur colloids, sulfur intermediates and mineral fragments

used by planktonic iron- and sulfur- oxidizing organisms to
generate Fe3+ and protons for non-contact leaching

" .,,,
Figure 1.2: Schematic diagram illustrating the proposed mechanisms of pyrite biooxidation

(Rawlings, 2002).
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1.4 Microbial bioleaching/biooxidation

The use of microorganisms in the extraction of metals from sulfide ores may be

referred to as either bioleaching or biooxidation depending on the phase of the final

metal product. Both processes use the same consortia of bacteria, the mesophilic At.

ferrooxidans, Acidithiobacillus thiooxidans (Kelly and Harrison, 1989), and

Leptospirillum ferrooxidans (Markosyan, 1972), the moderately thermophilic

Acidithiobacillus caldus (Hallberg and Lindstrom, 1994), Sulfobacillus species, and

Acidimicrobium ferrooxidans, as well as the thermophilic Acidianus and Sulfolobus

(Brierley, 1997). It is important to mention at this stage that although there is

evidence that 'L. ferrooxidans' comprises at least two groups, no attempt had been

made to distinguish between the two and they are collectively referred to as 'L.

ferrooxidans'. Further mention regarding the genus Leptospirillum will be made later.

In bioleaching the bacteria leach metals such as copper, zinc, uranium, nickel and

cobalt from their respective sulfide minerals; catalyzing the oxidation of an insoluble

inorganic substrate to a soluble form (Sand et al., 1995; Lundgren et al., 1986). The

metal of interest is placed in the solution phase, and handled for maximum metal

recovery, whilst the solid residue is discarded. Biooxidation refers to the pretreatment

of mineral sulfides, such as pyrite or arsenopyrite, which host/occlude the metal of

interest (gold or silver). Sulfide oxidation breaks down the mineral matrix and

exposes the entrapped metal (which remains in the solid phase), allowing greater

access to the metal via metal solubilizing chemicals such as cyanide.

Biooxidation and bioleaching are collectively referred to as "biomining"; there are

two main types of commercial biomining processes. The first type involves the

percolation of leaching solutions through crushed ore or concentrates that have been

stacked in columns, heaps, or dumps (Brierley, 1982). The second type makes use of

continuously operating, highly aerated, stirred tank reactors (reviewed in Rawlings

and Silver, 1995; Brierley, 1997). A large variety of metal containing ores (zinc, lead,

cobalt, nickel, bismuth, uranium and antimony), may be obtained through bacterially-

assisted oxidation of insoluble metal sulfides, however copper and gold-bearing

arsenopyrite ores are currently leached in the greatest tonnage (Rawlings and Silver,

1995).
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1.4.1 Dump, heap, and in situ leaching

In dump leaching, very large quantities of untreated, uncrushed, low-grade oxide and

sulfide minerals normally from open-pit mining operations, which cannot be

economically processed by any other means, are piled to depths of up to 350 meters

(Brierley, 1997). The leach dumps are usually located in valleys to use natural slopes

for stability and recovery of solutions (Figure 1.3) (Brierley, 1978). Leach

solutions/raffinate (iron- and sulfate- rich recycled wastewater) is/are introduced by

spraying, flooding, or injecting through vertical pipes (Lundgren and Silver, 1980),

and are not inoculated with leaching bacteria. The microorganisms are ubiquitous,

and when the correct conditions prevail, they proliferate. The fluid percolates through

the dump where metal-solubilization takes place. The "pregnant" or metal-laden

solution is collected for concentration/conditioning. The metal-free solution is then

recycled to the top of the dump.

Figure 1.3: lllustration of dump leaching. (www.spaceship-earth.deIREMlBergbau.html)

As a result of the construction methods used, dump leaching is a crude operation and

from a biological viewpoint, remains an essentially uncontrolled process. Copper

dump leaching was first initiated in the late 1960's (Brierley, 1978; Brierley, 1982)

and remains an economically viable process for copper recovery; in fact the

technology employed in dump leaching birthed the heap leaching technology

commercially applied today (Brierley, 1997).

---_ ---
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Heap leaching is more efficient than dump leaching, and is used to extract metals

from sulfide and oxide minerals of a higher grade than those subjected to dump

leaching. It also occurs on a smaller scale (2-10 meters in height), using finer,

crushed, pretreated (agglomerated) ore, deposited in mounds on pads lined with high-

density polyethylene to avoid solution loss, and on which aeration piping may be

placed (Lundgren and Silver, 1980). The ore is acidified with sulfuric acid and the

heaps are irrigated with solutions containing inorganic nutrients such as (NH4hS04

and KH2P04. Since bioleaching bacteria are ubiquitous, inoculation is unnecessary,

however the introduction of a bacterial inoculum could accelerate the leaching process

(Morin, 1997). After percolation, the metal-rich solutions are collected and treated

before recycling. Heap leaching is applied commercially to pre-treat low-grade

refractory-sulfidic gold ores, and also to leach copper from chalcocite ores (Brierley,

1997).

In situ bioleaching is a promising technique for the recovery of metals from low-grade

ores in inaccessible sites. It has been used for nearly 30 years to extract uranium and

copper from not only new mines, but depleted underground operations in which up to

30% of the metal values still remain in the mine walls and pillars (Lundgren and

Silver, 1980). The underground workings are blasted to fragment the ore and

establish permeability. Mine shafts may be left intact and aid aeration and recovery of

metal rich solutions (Sanmugasunderam, 1986). Haulage is not necessary, the ore

remains in place surrounded by mostly impermeable rock (Sand et al., 1993) where it

is irrigated by acidified mine water seeded with leaching bacteria. Metal-rich

solutions are pumped to the surface for metal recovery. Figure 1.4 is an example of

an in situ mining operation modeled on an experimental site in Romania (Sand et al.,

1993).
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cross-section longitudinal section

Figure 1.4: Diagram of the experimental ore body site of the in situ stope leaching at Ilba

Mine (Romania). Ladders are present on both sides of the ore for access to the top tunnel.

Basins for the collection of the leach liquor are blasted into the rock (Sand et al., 1993).

1.4.1.1 Bioleaching of copper ores

Copper leaching consists of the conversion of insoluble copper sulfides to soluble

CUS04 after oxidation, enhanced by acidophilic autotrophic bacteria (Rossi, 1990;

Espejo and Romero, 1997). Studies on the microbes present reveal a number of

bacterial species including At. ferrooxidans, At. thiooxidans, "Leptospirillum" species

and heterotrophs belonging to the genus Acidiphilium (Goebel and Stackebrandt,

1994; Harrison, 1984; Pizarro et al., 1996; Hutchins et al., 1986). Bioleaching of

copper ores is extensively practiced, and has been estimated to account for - 15%

(lxIQ6 tons of Cu) of the annual world production (Ehrlich and Brierley, 1990). The

methods routinely employed to extract copper from copper-bearing ores are dump-,

heap-, and in situ-leaching. Although use of stirred tank reactors is feasible, tank

processes have not yet been applied to copper commercially.
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Over 350 copper minerals exist; the most commonly investigated are chalcopyrite

(CuFeS2), chalcocite (CU2S), and covellite (CuS) (Lundgren and Silver, 1980;

reviewed in Rawlings and Silver, 1995). Chalcopyrite is the major primary sulfide

and is considered economically important, but bioleaching is nonviable due to the

long leach times at ambient temperatures. It has been reported that some chalcopyrite

waste dump operations, irrigated over a 4-6 year period, recovered a mere 15% of the

available copper (Schnell, 1997). More recently, attempts are being made to bioleach

chalcopyrite at temperatures of 65°C or greater. Because of the difficulties III

leaching chalcopyrite, the application of microbial assisted metal recovery to

secondary copper sulfides (chalcocite and covellite) has been more extensively

explored.

Copper is most often found in close association with the sulfide mineral pyrite (FeS2),

and it is the oxidation of pyrite which drives the changes in mineral composition

within the heap and dump operations. The overall reaction takes place at pH < 4 in

heaps and dumps, releasing large quantities of heat energy (Schnell, 1997), and

involves ferric leaching of the mineral sulfide to form ferrous iron and sulfate in

solution.

FeS2 + 14Fe 3++ 8H20 --7 15Fe2++ zso," + 16H+ (1.8)

Ferrous iron is reoxidized to ferric iron in the bacterial catalyzed reaction (Boon et al.,

1995).

(1.9)

Chemolithotrophic bacteria are involved in the dissolution of both primary and

secondary copper sulfide ores via the biological generation of sulfuric acid to supply

protons for hydrolysis attack and/or the maintenance of iron ions in an oxidized state

(Fe3+) for an oxidative attack (Schippers and Sand, 1999). The mechanisms differ

depending on whether the ores are acid soluble (chalcopyrite and chalcocite), or acid

insoluble (covellite). Acid insoluble MS are degradable only by an oxidizing attack

(Fe3+) (reaction 1.16), where as acid soluble MS may be dissolved by Fe3+ irons and

protons (chalcopyrite), or protons alone (chalcocite) (Schippers and Sand, 1999). In

the case where both Fe3+and protons are involved, the dissolution of the MS is started
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by a proton attack (reaction 1.10), and followed by a consecutive Fe3+ mediated

oxidation reaction (reaction 1.11).

Acid soluble copper sulfide ores

Primary:

Chalcopyrite (CuFeS2)

4CuFeS2 + 1702 + 2H2S04 -7 4CUS04 + 2Fe2(S04h + 2H20

CuFeS2 + 2Fe2(S04)3 -7 CUS04 + 5FeS04 + 2S

Secondary:

Chalcocite (CU2S)

Cu2S + 0.502 + 2H+ -7 Cu2++ CuS + H20

CuS + 0.502 + 2H+ -7 Cu2++ SO+ H20

SO+ 1.502 + H20 -7 sol + 2H+

CU2S+ 2.502 + 2H+ -7 2Cu2++ SO/- + H20

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

Acid insoluble copper sulfide ores

Secondary:

Covellite (CuS)

2Fe2++ 2H+ + 0.502 -7 2Fe3++H20

CuS + 2Fe3+-7 Cu2++ S + 2Fe2+

S + H20 + 1.502 -7 2H+ + sol
Net reaction: CuS + 202 -7CUS04

(1.16)

(1.17)

(1.18)

(1.19)

Reactions 1.14, 1.16, and 1.18 are all bacterially catalyzed, involving iron- and sulfur-

oxidizing bacteria. Although not shown, reactions 1.10 and 1.11 also include

bacterial catalyzed reactions as indicated by reactions 1.14 and 1.16.
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1.4.1.1.1 Copper recovery

Solubilized copper may be recovered from the metal-rich leach liquor by cementation

or solvent extraction and electrowinning.

Cementation involves the precipitation of copper from solution when the copper-acid

solution is allowed to make contact with iron scraps/fillings at a 3Fe: 1Cu ratio. The

following reaction occurs:

(Hutchins et al., 1986)

The "cement copper" is recovered and refined, while the "barren-solution" is recycled

to leaching.

Solvent extraction (SX) and electrowinning (EW) take place in a closed triple-loop-

circuit (Figure 1.5), which in three steps extracts, strips and purifies the copper from

the initial leach-solution. The initial leach solution, as it is harvested from a heap or

dump, often contains low copper concentrations. SX is a means of sufficiently

concentrating the copper in solution to warrant the expense of recovery by

electrowinning. EW occurs by the electrical reduction of copper ions to copper metal,

which is deposited onto suitable electrodes. The process takes place in acid resident

cells through which electrolyte is circulated. The cells contain a lead alloy anode and

either a stainless steel cathode or a copper starter sheet. Copper is harvested from the

cathode after a 7-day deposition cycle (Schnell, 1997), and is sold for the manufacture

of products, without the need for additional refining.

BARREN SOLUTION STRIPPED ORGANIC SPENT ELECTROLYTE

ELECTRO-
WINNING

'-V/
PREGNANT

LEACH SOLUTION
LOADED ORGANIC STRONG ELECTROL YTE

A B c
Figure 1.5: Solvent extraction via a closed triple-loop-circuit. (A) Pregnant leach solution is

introduced to an organic mixture where copper is extracted to the organic solution. The barren solution

is returned for further leaching. (B) Copper laden organic solution is brought into contact with a highly

acid spent electrolyte, stripping the copper from the organic solution. Barren organic solution exits

stripping cell and re-enters extraction circuit. (C) The strong electrolyte is sent to the electrowinning

plant. High purity copper is deposited by electrolysis and the electrolyte is returned to the SX stripping

cell (Schnell, 1997).
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1.4.1.2Bioleaching of uranium ores

Microbial leaching of uranium has been used since the middle 1960's (reviewed in

Hutchins et al., 1986). In 1988 approximately 300 tons of uranium was recovered

from the Dennison mine in the Elliot Lake district of Canada, with a value of over $25

million (US) (MCCready, 1988). Uranium occurs in the tetravalent (U4+) and

hexavalent (U6+) states in the natural environment; U4+ is insoluble, and when

oxidized to U6
+, becomes soluble (Brierley, 1978; Lovley, 1993). At. ferrooxidans

was shown to directly associate with the uranium ore during oxidation (DiSpirito and

Touvinen, 1982), in a reaction that requires oxygen. The association between cell and

mineral may simply be close contact, and does not necessarily imply a direct-

enzymatically induced leaching mechanism.

This does not however explain uranium leaching in oxygen-depleted environments (in

situ), where most commercial uranium leaching takes place (reviewed by Rawlings

and Silver, 1995). Heap leaching from low-grade uranium ores has however also

been reported in Russia (reviewed in Brierley, 1978).

In situ uranium leaching may be explained m a two-part process. Firstly, the

biological production of ferric iron- and sulfuric acid- containing solutions

(lixiviants), which require oxygen and is, therefore carried out on the surface.

Secondly the chemical solubilization of uranium by the lixiviant, which does not

require oxygen and is carried out underground.
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The ability to separate the biological- (leachate preparation) and chemical- oxidation

reactions (actual leaching reactions) is ideal for in situ leaching. Therefore, once the

uranium ore has been prepared (worked out stopes, or an unworked ore body,

fragmented via explosives), the leaching solution is applied through periodic spraying

or flooding. Uranium bearing solution drains to the lower portions of the mine and

accumulates in sumps. The solution is then pumped to the surface for uranium

recovery. It was estimated that the operation at the Denison mine made an additional

4 x106 tons of ore available that would have been unavailable to conventional

technologies. Due to a reduction in the world demand, uranium is however no longer

commercially bioleached in Canada. The Denison mine, which was the largest mine

that recovered uranium via bioleaching, ceased operating in 1993.

1.4.1.3Examples of current commercial scale irrigation-type processes

A number of irrigation-type metal recovery processes are in operation, and have been

for many years. Although mainly applied to the bioleaching of copper-containing

ores, heap reactors have also been used for treating refractory gold-bearing ores. The

Newmont Gold Company built a plant to demonstrate gold-ore pretreatment

technology in Carlin, Nevada. In this process the heap is flooded with an acidic-ferric

iron solution containing bacteria, and then with recycled heap reactor fluid (Brierley,

1997). The process allows low-grade ore with as little as 1 g of gold per ton of ore to

be processed, the cost of gold extraction being in the range of U.S. $ 4-6 per ton of

processed ore. An example of a current, successful copper dump leaching operation is

the Baja Ley Plant at the Chuquicamata Division of Codelco, Chile. The plant started

in 1993 and was designed to produce 15 000 tons of copper from a 0.35% copper run-

of-mine finger (ore bodies) operation. The plant produces copper at less than U.S. $

0.18/kg, with an overall estimated recovery of 20% (reviewed by Schnell, 1997). The

best-known copper dump leaching operation is located at the Kennecott Copper mine

in Bingham Canyon, Utah (Brierley, 1978 and 1982), with some of the dumps at this

site consisting of up to 4 billion tons of low-grade copper ore waste. The Quebrada

Blanca plant in northern Chile, which produces 75 000 tons CuI annum from

chalcocite ore containing 1.3% copper, is an example of a modern heap bioleaching

operation (Schnell, 1997). The plant started in 1994, and today produces a high

quality Grade A copper at approximately U.S. $ O.27/kg.
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Several in situ metal extraction processes are in operation. The San Manuel operation

of BHP Copper is one example (Schnell, 1997). San Manuel is located in the

southern western United States about 60 km northeast of Tucson, Arizona. The

operation came into being as an after-thought due to difficulty in mining the

remaining ore from an open pit operation. Initial in situ mining began in 1988 where

an array of injection wells were used to introduce acidified leaching solution into the

mineral deposit. The leach solution was gravity driven through the ore, and collected

in the abandoned underground workings where it was pumped to the surface.

Although fluid loss at San Manuel is about 13.5%, production of 20 000 tons of

copper cathodes per year was maintained. Gunpowder's Mammoth mine in

Queensland, Australia is another example of an irrigation-type in situ mining

operation (Brierley, 1997).

1.4.2 Stirred tank biooxidation

The use of aerated stirred tank bioreactors is generally reserved for the

leaching/oxidation of high-grade ores due to high capital and operating costs.

Although all of the commissioned commercial aerated, stirred tank reactor plants are

technically biooxidation facilities, as they operate with refractory-sulfidic gold

flotation concentrates as feed stocks; stirred-tank reactors can also be applied to

bioleach base metal concentrates (Brierley, 1997). The system comprises a number of

reaction vessels, primary reactors (typically two or three), operating in parallel, and

secondary reactors operating in series (Figure 1.6) (Lindstrom et al, 1992; van

Aswegen et ai, 1991). This arrangement achieves a longer retention time for the ore

(feed) in the primary reactors, allowing a stable bacterial population to be established

in order to prevent washout. The feed comprises a mineral concentrate suspended in

water, to which small amounts of nutrients [(NH4hS04 and KH2P04] have been

added. Between 50% and 70% of the sulfide sulfur is oxidized in the primary

reactors. Overall residence time for biooxidation typically varies between four and

six days.
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Figure 1.6: A typical biooxidation process flowsheet (www.goldfields.co.za).

Owing to the exothermic nature of the oxidation of mineral sulfides, the tanks are

equipped with cooling coils/water jackets, to maintain an optimum temperature to

facilitate microbial activity. Temperatures of 40eC and soec are maintained in the

commercial Biox® (Billiton S.A. Ltd) and BacTech (Australia) processes respectively.

Cooling water is circulated through stainless steel coils and the heat is removed in an

evaporative cooling tower. Oxygen is required as a terminal electron acceptor for

sulfide compound oxidation, and to support bacterial growth. Agitation and aeration

are produced by means of air-injection at the base of the reactors and mechanical

agitators/impellers provide acceptable oxygen transfer and utilization rates. The

impellers also serve to maintain the solids/ore in suspension, for maximum bacterial

exposure. Mineral composition determines whether the process is acid generating or

acid consuming; pyrite oxidation produces sulfuric acid, whereas arsenopyrite and

pyrrhotite oxidation consumes acid. A constant pH is maintained between 1.2-1.8 by

the addition of concentrated sulfuric acid, lime, or limestone. Depending on the

metal, different recovery procedures are carried out.
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1.4.2.1 Biooxidation of gold-bearing arsenopyrite ores

The principle sulfide minerals associated with refractory gold ores are arsenopyrite

(FeAsS), pyrite (FeS2), and pyrrhotite (FeS). Microorganisms are able to degrade the

surrounding sulfide matrix to achieve gold liberation via oxidation reactions, which

may be summarized as follows:

2FeAsS + 702 + H2S04 + 2H20 --7 2H3As04 + Fe2(S04h
(arsenopyrite)

FeS2 + 14Fe3++ 8H20 --7 15Fe2++ 2S0/- + 16H+
(pyrite)

4FeS + 902 + 2H2S04 --7 2Fe2(S04)3 + 2H20
(pyrrhotite)

These reactions require large quantities of oxygen, careful pH management, and are

highly exothermic. Gold-bearing concentrates are valuable substrates compared with

copper and uranium ores; therefore leaching is carried out in a more efficient and

controlled manner, via vat or stirred tank operations (refer to Figure 1.6). Within

these tanks, temperature, pH and oxygen supply are carefully monitored to satisfy the

requirements of the bacterial cultures. Typical operating conditions include

temperatures of 35°C-50°C, pH 1.2-2.0 and approximately 2.2 kilograms (kg) oxygen

per kg of sulfide oxidized. Failure to meet these requirements results in reduction of

sulfide oxidation and subsequent decrease in gold recovery. For example a high pH

influences sulfide oxidation through metal salt precipitation, resulting in the occlusion

of gold particles. Finally, the biooxidized ore is washed and neutralized (pH 7.0-8.0)

with lime or limestone in a two-stage neutralization plant to produce a stable solid

precipitate of iron and arsenic, which is deposited on a tailings dam. The biooxidation

product is washed in a counter-current circuit, removing excess iron that could inhibit

gold recovery. The circuit is designed to give an iron concentration of less than l g/l

in the underflow from the final thickener, which is then pumped to the cyanidation

circuit.

1.4.2.1.1 Gold recovery

Biooxidation of gold-bearing ores is merely a pretreatment of the ore in preparation

for gold recovery by cyanidation. For the last 100 years cyanidation has been the

main process for extracting gold from ores (Morin, 1997). It involves the oxidation
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and dissolution of gold in a cyanide solution at ambient temperatures, forming a

highly stable chemical gold-cyanide complex. Gold is then extracted from solution by

adsorption on activated carbon, cementation on zinc dust or ion exchange on synthetic

resins, and ultimately refined. This process is renowned for its simplicity and

economic benefits when treating high-grade, accessible ores. However, the cost of

treating more inaccessible ores is high as grinding needs to be applied to make the ore

amenable to cyanidation. Even then not all ore responds well to cyanidation,

regardless of grinding; these ores are said to be refractory or recalcitrant. Gold ores

are refractory when iron sulfide minerals encapsulate the precious metal and hence are

unavailable for contact with cyanide (Hutchins et al., 1986).

Prior to the development of biooxidation, refractory ores were simply discarded with

the tailings of the milling circuit, or subjected to either roasting or pressure leaching.

However, due to the depletion of high-grade accessible ores, and the increasing

environmental pollution, for example the release of sulfur dioxide and arsenic into the

atmosphere during roasting, the need for new methods of refractory ore processing

arose. The use of microorganisms as a pretreatment of recalcitrant ores permits

cyanide access to the mineral and improves metal recovery. Gold recovery

percentages from less than 50% prior to bacterial ore pretreatment, to greater than

95% after biooxidation have been reported (Hutchins et al., 1986; Rawlings and

Silver, 1995); for this reason biooxidation and cyanidation are used in conjunction

with one another (Livesey-Goldblatt et al., 1983).

Additional bacterial assistance in the gold-extraction process occurs in the treatment

of cyanide waste. Cyanide presents a major source of pollution, in some mines

(Homes teak Mine in Lead, South Dakota), approximately 21 000 rrr' of wastewater

containing millimolar amounts of cyanide, is discharged daily (Whitlock and Smith,

1989). At this particular mine however, cyanide waste is passed over rotating

biological contactors (plastic disks containing up to 18 tons of bacterial biomass),

where it is metabolized to carbon dioxide and urea, and the urea ultimately to nitrate.

1.4.2.2 Commercial stirred tank processes

The first commercial stirred tank operation was commissioned in 1986 at the Fairview

mine in Barberton, South Africa. Since then similar plants have been built at Sao
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Bento (Brazil), Harbour Lights, Wiluna and Youanmi (Australia), Ashanti, Sansu

(Ghana), and Tamboraque (Peru) (Rawlings et al., 2002). The largest plant is at

Sansu, Ghana, which consists of 24 tanks of 1 000 000 liters each, processing

approximately 1000 tons of gold per day, earning half of Ghana's foreign exchange.

The Biox® (40°C) process designed by Gold Fields is used at all plants except

Youanmi, which uses BacTech (50°C) technology. Stirred tank processes are not

exclusively used for the processing of gold-bearing ores, but have been applied to

cobalt- (Kasese, Uganda), and nickel- containing ores (pilot scale BioNIC plant,

Billiton, S.A.) (Dew, 1997). With the exception of the Kasese plant, all other

commercial scale biooxidation tanks work on gold-bearing concentrates. The

extension of this technology to the recovery of copper, nickel and zinc is currently at a

pilot scale level.

The use of microorganisms in the treatment of mineral ores and mine wastewater is

more efficient both economically and environmentally when compared to

conventional mining practices. It is predicted that, in the future, "biomining" will

compete favorably with or in fact replace the more costly physical processes entirely

(Rawlings and Silver, 1995). In order to improve the process of microbial ore

oxidation, a more complete understanding of the microbes involved is needed.

1.5 Microbes in Biomining

Microbes, which are capable of oxidizing iron- and/or sulfur- containing minerals,

may be readily isolated from sites of natural mineral oxidation. They are ubiquitous

and may be divided according to preferential growth temperatures, mesophiles (25-

35°C), moderate therrnophiles (45-60°C), and extreme therrnophiles (60-80°C).

Although mineral oxidation can take place at a variety of temperatures, current

commercial processes do not operate at average temperatures above 55°C. In heap

and dump leaching a proposed average temperature range at which biooxidation

occurs is 20-35°C, while the temperature in commercial biooxidation tanks is

controlled at either 40°C or 50°C (Miller, 1997; van Aswegen, 1991). Processes that

operate at elevated temperatures (75-80°C) are under development. For this reason

the most commonly encountered microbes in mineral ore oxidation are the mesophilic

At. ferrooxidans, At. thiooxidans, and 'L. ferrooxidans', and the moderately
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thermophilic At. caldus and sulfobacilli (Norris et al., 1996; Golovacheva and

Karavaiko, 1979). Associated with these autotrophs are acidophilic, heterotrophic

bacteria belonging to the genus Acidiphilium (Harrison, 1984); which are not

primarily involved 10 mineral decomposition, but grow in a close commensal

relationship with the chemolithotrophic bacteria. Archaea have also been isolated

from commercial bioreactors and sites of acid mine drainage (Ferroplasma

acidophilum, Golyshina et al, 2000; Ferroplasma acidarmanus, Edwards et al., 2000;

Sulfolobus, Norris et al., 2000; Metallosphaera, Norris, 1997; and Acidianus, Segerer

et al., 1986). With the exception of the Ferroplasma these archea oxidize mineral

sulfides at elevated temperatures (65-80°C), which are not accommodated by the

current commercial processes, therefore these microorganisms will not be addressed

in further detail.

1.5.1 Microbial dominance in biomining

For many years At. ferrooxidans was considered to be the most important

microorganism in biomining processes that operate at 40°C or less (Rawlings and

Silver, 1995; Brierley, 1982). This was however the result of an incomplete

understanding of the biochemistry of biomining organisms as well as the limited

detection ability of the available techniques. Direct molecular analysis of DNA has

enhanced the ability to access microbial diversity, and rRNA gene analyses has

confirmed the view that conventional identification methods involving culturing,

overlooks many of the bacteria originally present in the system. Microbial diversity

in commercial bioleaching and biooxidation operations has been re-examined over the

last 10 years with the finding that At. ferrooxidans does not in fact play the dominant

role in some processes, which are dominated by At. caldus and 'Leptospirillum'

(Rawlings et al., 1999a; Espejo and Romero, 1997; Vásquez and Espejo, 1997;

Pizarro et al., 1996; Goebel and Stackebrandt, 1994; and Rawlings, 1995).

1.5.1.1 Bacterial dominance in irrigation-type processes

In 1995 Goebel and Stackebrandt conducted a study analyzing the microbial

biodiversity in an acidic water sample collected from a shallow pond fed by the run

off water from a chalcocite overburden heap. Primers were designed by comparison

of the 16S rRNA sequences from isolates and clones previously recovered from acidic
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mine water environments (Goebel and Stackebrandt, 1994; Lane et al., 1992) and 16S

rRNA sequences available from the Ribosomal Database Project (Larsen et al., 1993),

in order to screen genomic DNA recovered from bacterial cells. Of the 120 clones

analyzed 70 clustered with the known sequences from "Leptospirillum" isolates.

Only 37 clones were identified as being related to At. ferrooxidans.

Bacterial populations from a commercial scale copper leaching plant were analyzed

by PCR of the spacer regions between the 16S and 23S rRNA genes (Espejo and

Romero, 1997; Vásquez and Espejo, 1997; Pizarro et al., 1996). Amplification

products were compared with those from the main species isolated from bioleaching

systems. Although the relative abundance of each amplification product is not

directly proportional to the amount of bacteria present, it gives an indication of

population shifts during leaching. 'L. ferrooxidans' and At. thiooxidans were found to

dominate the process, whereas At. ferrooxidans was only detected at high ferrous iron

concentrations (> 5 gIl). 16S-23S product profiles at conditions of high acidity (pH

0.7) were also analyzed and were consistent with 'L. ferrooxidans' and At.

thiooxidans dominance, no product corresponding to At. ferrooxidans was present

(Vásquez and Espejo, 1997).

De Wulf-Durand et al. (1997) analyzed the diversity of acidophilic, bioleaching-

associated bacteria in the silver-catalyzed bioleaching of chalcopyrite at 37°C.

Primers derived from the 16S rRNA sequences of six groups of microorganisms

(Acidiphilium crypturn, 'L. ferrooxidans', Sulfobacillus thermosulfidooxidans, At.

caldus, At. ferrooxidans and At. thiooxidans) all involved in commercial bioleaching

of mineral ores were used as a selection tool. The primers used for identifying

Leptospirillum were designed both in this study (LEPT0679R), and in an earlier

study by Goebel and Stackebrandt (1995) (LEPT0176F). At. ferrooxidans and At.

thiooxidans were not detected. Although the moderately thermophilic Sulfobacillus

and At. caldus were present along with 'L. ferrooxidans', after passage of the batch

culture through the column and recirculation for a 30-day period; only 'L.

ferrooxidans' could be detected with a single PCR. 'L. ferrooxidans' therefore seems

to be the principal species responsible for iron oxidation in the column environment

studied.
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1.5.1.2 Bacterial dominance in stirred tank processes

PeR-based technology has also been applied in the detection of bacteria in continuous

flow bioreactors. In a study conducted to access the bioleachability of zinc sulfide ore

concentrates, strains identified as At. ferrooxidans, At. thiooxidans, 'L. ferrooxidans'

and A. cryptum on analysis of the 16S rRNA gene sequences, were isolated from both

the natural site and a batch bioreactor (Goebel and Stackebrandt, 1994). However,

only 'L. ferrooxidans' and a moderately thermophilic strain of At. thiooxidans (now

know to be At. caldus) could be recovered from a continuous bioreactor running under

steady-state conditions (pH 1-2, 35-400e).

Previously 16S rDNA from isolates of At. ferrooxidans, At. thiooxidans, At. caldus

and 'L. ferrooxidans' were cloned and mapped (Rawlings et al., 1999a; Rawlings,

1995). From a comparison of the restriction maps, restriction sites allowing rapid

identification of each species were discovered. Using this technology, bacteria in the

biooxidation plant at the Fairview mine (Barberton, South Africa), which operates at

400e and pH 1.6, were examined. A restriction pattern corresponding to At.

ferrooxidans was undetectable and the population was reported to be dominated by 'L.

ferrooxidans' and At. thiooxidans (Rawlings, 1995). Subsequent studies by this group

have shown that the restriction enzyme patterns of At. thiooxidans and At. caldus are

similar, and that the predominant sulfur oxidizing bacterium was almost certainly the

more thermotolerant At. caldus (Gardner and Rawlings, 2000), originally known as

the At. thiooxidans physiological group II (Rawlings et al., 1999a).

The bacterial population in commercial biooxidation tanks has also been investigated

with the microscopic immunofluorescence technique (Schloter et al., 1995). Results

differed to those of the peR-based techniques, as At. ferrooxidans was detected in

most samples, albeit that these bacteria were in the minority (reviewed in Rawlings et

al., 1999b). Bacterial proportions from the Sáo Bento (Brazil) and Fairview (South

Africa) biooxidation plants were 48-57% 'L. ferrooxidans', 26-34% At. thiooxidans,

and 10-17% At. ferrooxidans (Dewet al., 1997).

It is currently understood that At. ferrooxidans is not favored in processes where the

concentration of ferric iron greatly exceeds that of ferrous iron (high redox potential),
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as is found in continuously operating stirred tank reactors operating under steady-state

conditions (Rawlings et al., 1999b). Under these conditions 'L. ferrooxidans' is

found to be the primary iron oxidizer, in pyrite enrichments incubated at 40°C

(Norris, 1983), and At. caldus the primary sulfur oxidizer at 40°C and above (Goebel

and Stackebrandt, 1994). This is not to say that At. ferrooxidans cannot be the

dominant bacterium in dump/heap leaching operations where the ferrous iron

concentration in solution remains high (~ 5 gil) (Pizarro et al., 1996). Leptosprillum

spp. however seem to be widely distributed in highly acidic, metal-rich, natural and

industrial environments associated with sulfide mineral oxidation, which include

mines (both metal and copper), mine tailings, and the liquid waste (run off) that drains

from them. In the study of Edwards et al. (1999) the distribution of 'L. ferrooxidans'

in acidic drainage waters at a conventional mine site (Iron Mountain) in California

using fluorescent in situ hybridization was examined. Included in the probes were

LC206 and LF581, specific to 'L. ferrooxidans', which allowed 'L. ferrooxidans' to

be identified as the dominant iron-oxidizing bacterium present in extremely low pH

(0-1) and higher temperature (> 40°C) sites within the mine. Studies by Bond et al.,

(2000a and 2000b), performed at the same site, but using 16S rRNA analysis,

confirmed the abundance of Leptospirillum within this environment.

This study focuses on 'Leptospirillum'. Although each of the primary biomining

organisms will be addressed in short, a more extensive account of the understanding

to date of the genus Leptospirillum will be given.

1.5.2 Acidithiobacillus ferrooxidans

At. ferrooxidans is a Gram-negative, acidophilic (pH 1.5-2), obligate autotroph, whose

cells comprise short, straight rods approximately 1.0 11m in length and 0.5 11m in

diameter. At. ferrooxidans was the first organism isolated from an acidic bioleaching

environment (Colmer et al., 1950), and is capable of oxidizing both ferrous iron and

inorganic sulfur compounds. Although it is preferentially aerobic, oxygen may be

replaced by ferric iron as the electron acceptor in the presence of a reduced inorganic

sulfur compound (the electron donor) (Pronk, 1991). However, in situations of high

redox potential, At. ferrooxidans is inhibited by ferric iron (Kj = 3.1 mM Fe+) (Norris

et al., 1988). A study on a large number of At. ferrooxidans isolates was performed
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by Harrison (1982), in which at least four different DNA-DNA hybridization

similarity groups were convincingly determined. Hybridization percentages (10-50%)

were sufficiently low to warrant separation at the species level, Rosselló- Mora and

Amann (2001) suggested that genomes having hybridization percentages of less than

50-70% could be considered as belonging to a different species. Although DNA-

DNA hybridization percentages seemed convincing for a species level separation, the

values for mol% G+C were not as persuasive. Mol% G+C over all isolates was in the

range of 56-59%, with one strain (ml) at 65%. Subsequent sequencing of the 16S

rRNA of ml has confirmed that it belongs to a different, as yet unnamed genus

(personal communication). Since mol% G+C values that differ by 5% or less

generally indicate a single species (Stackebrandt and Goebel, 1994), a species level

separation suggested by the hybridization data is not supported.

1.5.3 Acidithiobacillus thiooxidans

At. thiooxidans was discovered and named by Waksmann and Joffe (1921). It is a

Gram-negative, obligately autotrophic, acidophile, and is restricted to using reduced

sulfur compounds as an electron donor (Kelly and Harrison, 1989). At. thiooxidans is

highly acid-tolerant (pH 0.5-5.5) and has an upper growth temperature limit of 35°C.

At. thiooxidans may also consist of more than one similarity group, with most strains

having a mol% G+C of 52-53%, strain DSM612 is an exception at 62% (Harrison,

1984). DNA-DNA similarity between At. thiooxidans and At. ferrooxidans is

approximately ~ 20% (Harrison, 1982).

1.5.4 Acidithiobacillus caldus

For many years At. caldus was mistaken for At. thiooxidans, however in 1994

Hallberg and Lindstrom described it as a separate species. At. caldus cells are short,

motile, Gram-negative rods, capable of chemolithoautotrophic growth on thiosulfate,

tetrathionate, sulfide, sulfur and molecular hydrogen (Hallberg and Lindstrom, 1994).

Unlike At. thiooxidans, At. caldus is also able to grow mixotrophically using yeast

extract or glucose. Growth does not occur on ferrous iron. At. caldus is a moderately

thermophilic acidophile with an optimum growth temperature of 45°C and pH range

of 2.0-2.5. A G+C content of 63.9% has been determined for the type strain
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DSM8584. No significant DNA-DNA hybridization has been detected with other

thiobacilli.

1.5.5 Sulfobacillus

Sulfobacilli are Gram-positive, moderately thermophilic, acidophilic, endospore-

forming bacteria, with rod shaped cells (Norris, 1996). Three species have been

formally described: Sulfobacillus thermosulfidooxidans (48-50 mol% G+C, 20-60°C,

pH 1.1-5.0) (Golovacheva, 1980), Sulfobacillus acidophilus (55-57 mol% G+C, 45-

50°C, pH 2) (Norris et al., 1996), and Sulfobacillus disulfidooxidans (53±1 mol%

G+C, 4-40°C with 35°C optimum, pH 0.5-6.0) (Dufresne et al., 1996). They are

capable of oxidizing ferrous iron and reduced sulfur compounds, growing

autotrophically and mixotrophically on ferrous iron, on elemental sulfur in the

presence of yeast extract, and heterotrophically on yeast extract. Autotrophic growth

on sulfur was obtained consistently for S. acidophilus alone.

1.5.6 Acidiphilium

Bacteria belonging to the genus Acidiphilium are acid-tolerant, Gram-negative

heterotrophs (Harrison, 1984). They are not primarily involved in mineral

decomposition, but grow 10 a close commensal relationship with the

chemolithoautotrophic bacteria (Hallberg and Johnson, 2001). As they are unable to

oxidize iron or sulfur, they probably grow on organic carbon excreted by the

chemolithotrophs. Removal of organic materials from the leachate, which would

otherwise inhibit the iron oxidizers, is a possible means of heterotrophic assistance in

sulfide mineral oxidation (Wichlacz and Thompson, 1988). Members of the genus

Acidiphilium are also able to use ferric iron as an electron acceptor during

heterotrophic growth at low oxygen levels. The regeneration of ferrous iron, which

serves as an electron donor for the iron oxidizers, is another possible contribution that

Acidiphilium make to biomining. Strains of Acidiphilium have often been to be found

in close, inseparable association with At. ferrooxidans (Goebel and Stackebrandt,

1994). In 1995 the genus Acidiphilium was reclassified into Acidiphilium and

Adidocella (Kishimoto et al., 1995).
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1.6 Leptospirillum

The genus Leptospirillum was first proposed over 25 years ago but has only recently

been validated by Hippe (2000). The information presented here describes only what

was known of Leptospirillum spp. prior to this study and will be supplemented in

Chapters 2 and 4.

1.6.1 Phylogeny

Two species of Leptospirillum have been described. The type strain L. ferrooxidans

(DSM2705), which was first isolated in 1972 from a copper deposit in Armenia

(Markosyan, 1972), and Leptospirillum thermoferrooxidans, isolated from acidic iron-

containing hydrothermal springs (pH -2, 45°C) on the island of Kunashir (Kuril

Islands) (Golovacheva et al., 1993). Only a limited amount of work has been carried

out on L. thermoferrooxidans, the culture of which has subsequently been lost. A

study on relationships among sulfur- and iron- oxidizing eubacteria by Lane et al.

(1992), discovered that, based on partial 16S rRNA sequence comparisons, L.

ferrooxidans and two L. ferrooxidans-like isolates were closely related to one another

(94%), but were not significantly related (80%) to any other bacterium whose 16S

rRNA sequence was available at the time (some 350 partial/complete sequences).

However, more recent information has placed 'L. ferrooxidans' within the proposed

Nitrospira phylum (Ehrlich, 1995). One of the closest bacterial relatives to members

of the genus Leptospirillum that has been reported so far is the magnetotactic

bacterium Magnetobacterium bavaricum (Goebel and Stackebrandt, 1995). 'L.

ferrooxidans' is only distantly related to the other important bacteria involved in

biomining, the acidithiobacilli (Figure 1.7). Phylogenetically, the genus

Acidithiobacillus is situated very close to the branch point between the ~- and 't:

subdivisions of the Proteobacteria (Lane et al., 1992; Rawlings, 2001).
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Acidithiobacillus ca/dus (DSM 8584)

Acidithiobaclflus thiooxidans (DSM 612)

Acidithiobacillus thiooxidans (ATCC 19377)

Acidlthlobaclflus ferrooxidans (ATCC 19859)

Acidihiobacillus ferrooxldans (ATCC 23270) Archaea. Eucarya

Figure 1.7: Phylogenetic relationship of Leptospirillum (with other Nitrospira group

members) and the acidithiobacilli involved in biornining to known bacteria based on 16S

rRNA sequence data. Greek symbols o; ~, y, 8 and e indicate subgroups within the division

Proteobacteria (modified from Rawlings, 1999c).

There is increasing evidence that 'L. ferrooxidans' comprises more than one species

(Harrison and Norris, 1985; Lane et al., 1992; Hallman et al., 1992; Sand et al., 1992;

Battaglia et al., 1994; Bond et al., 2000a). In the study by Harrison and Norris

(1985), six isolates comprising L. ferrooxidans and L. ferrooxidans-like bacteria were

examined. Analysis of DNA base composition grouped isolates with relatively low

(51 to 52%) and relatively high (55 to 56%) mol% G+C contents. This result was

further supported by DNA-DNA hybridization studies, in which two isolates had

DNA sequence similarity of71 to 73% while all other isolates had> 6 to 31% DNA-

DNA similarity. Unfortunately, all but the L. ferrooxidans type strain (DSM2705)

from this early study were lost (P.R. Norris, personal communication). Hallman et al.

(1992) carried out DNA-DNA hybridization studies with six isolates of leptospirilla.
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Two pairs of strains were 100% related to each other, and there was 38 to 50%

relatedness between these pairs and 31 to 50% relatedness among all other isolates.

Although evidence for the separation into two different species seemed apparent,

these studies were not taxonomically complete and were applied to only a small

number of members of the genus Leptospirillum.

Recently, 16S ribosomal DNA (rDNA) belonging to a third group ofleptospirilla was

amplified from DNA isolated directly from slime streamers of an acid mine drainage

site (Bond et al., 2000a). This third group was found to have low 16S rDNA

sequence similarity to the existing sequences (L. ferrooxidans and L. ferrooxidans-

like bacteria), and is thought to represent a new species within the genus

Leptospirillum. Since bacteria belonging to the third group have not been isolated in

pure culture, no further analysis has been conducted.

1.6.2 Leptospirillum thermoferrooxidans (Hippe 2000, 503 vP)

Description is based on the type strain L-88T, the only strain to be isolated, which has

since been lost. L. thermoferrooxidans is a Gram-negative, moderately thermophilic,

aerobic, chemolithoautotrophic bacterium with an optimum temperature of 45 to 50°C

(maximum, 55 to 60°C), pH optima of 1.65 to 1.9 (minimum pH 1.3) for growth and a

mol% G+C of 56% (Golovacheva et al., 1993). Utilizes ferrous iron as sole energy

source, but not iron-containing sulfide minerals (Johnson, 2002). The cells are

polymorphic, displaying vibrion-like (1.5-2.0 x 0.2-0.5 urn), and spiral (2.0-3.0 x 0.2-

0.5 urn) forms. Motile by means of a single polar flagellum, 25 nm in diameter.

When compared to the mesophilic 'L. ferrooxidans', L. thermoferrooxidans (strain L-

88) displayed a greater resistance to Fe2+. DNA-DNA relatedness to the type strain of

L. ferrooxidans is 26.7% (Golovacheva et al., 1993). The phylogenetic position of

this moderate thermophile remains unknown since it was lost prior to being deposited

in any culture collection.

1.6.3 Leptospirillum ferrooxidans (Hippe 2000, 503vp)

In this description, most of the data obtained was from the L. ferrooxidans type strain

(LI5T ex Markosyan 1972, also known as Z-2, ATCC29047, DSM2705), and may

therefore not apply to subsequently described species.
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Morphology: This organism constitutes small, Gram-negative, vibrioid or spiral-

shaped cells (0.9-2.0 nm in length and 0.2-0.5 nm in diameter) (Figure 1.8A and B)

(Johnson, 2001). Helical forms comprising 2-5 turns (Figure 1.8C) as well as helices

of over 20 turns have been observed depending on the growth conditions (Pivovarova

et al., 1981). Under conditions of extremely low pH coccoid and pseudococcoid

(highly coiled vibrios) forms have been observed. Cells are motile by means of a

single polar flagellum (18-22 nm in diameter) (Figure 1.8A). Polarity of the flagellum

has been shown to differ in some isolates, being sub-polar rather than polar, some

cells may also have two flagella (Goebel, 1997). Colonies are small (1-2 mm), round,

entire, orange to light brown colored, iron-encrusted forms (Johnson, 2001).

Variation in colony size is apparent between different strains of L. ferrooxidans. The

cell wall is similar to that of other Gram-negative bacteria. The cell membrane

consists of two electron dense layers (0.6-1.0 and 0.35-0.6 nm thick) with an

intervening electron-translucent layer (0.7-0.8 urn). Nuclear structures are visible in

the cells center, intracellular membrane structures are less apparent (Pivovarova et al.,

1981). Polyribosomes may occur in the cytoplasm, no ~- hydroxybutyrate reserves

were found. Cells are often submerged in a slime layer (100-450 nm thick), in the

absence of which abundant slime rivulets corning from the cells surface may be

observed.

A B c
Figure 1.8: Electron micrographs showing the different morphological states of L.

ferrooxidans. (A) Vibrioid-shaped cell with polar flagellum, (B) Spiral-shaped cells, and (C)

helical form with 2-5 turns (Johnson, 2001; Pivovarova et al., 1981).
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Physiology and biochemistry: Growth of L. ferrooxidans occurs on ferrous iron or

iron-containing sulfide minerals such as pyrite (FeS2) as sole energy source. Possibly

as a result of this substrate specificity, they have a high affinity for ferrous iron (Km =
0.25 mM Fe2+) relative to At. ferrooxidans (Km = 1.34 mM Fe2+) (Norris et al., 1988).

Optimum leaching efficiency is obtained at lower substrate concentrations than have

been reported for At. ferrooxidans (Sand et al., 1992); and L. ferrooxidans has also

been shown to be less inhibited by ferric iron (K, = 42 mM Fe3+) than At. ferrooxidans

tK, = 3.1 mM Fe3+) (Rawlings et al., 1999b). Owing to the redox potential (g» of the

Fe2+lFe3+ couple being very positive (+ 770 mV at pH 2), leptospirilla are forced to

use the 02/lhO redox couple (+ 820 mV) as their electron acceptor, and are therefore

obligately aerobic organisms (Rawlings, 2002). Mineral sulfide oxidation occurs via

the indirect/non-contact mechanism, where ferric iron acts to chemically oxidize the

mineral, in tum being reduced to ferrous iron. Ferric iron is kept in abundance by

bacterial reoxidation of ferrous iron. Direct attachment to the surface of pyrite has

also been reported (Schippers et al., 1996), close proximity may accelerate mineral

oxidation, which still occurs via an indirect/chemical interaction, mediated through

the exopolymeric slime layer (Sand et al., 1995). The exopolymeric layer is rich in

polysaccharides, has a significant ferric iron content, and apparently differs In

composition between ferrous sulfate- and pyrite- grown cells (Gehrke et al., 1995).

Leptospirillum spp. are obligate autotrophs, fixing carbon by the Benson-Calvin cycle,

active ribulose bisphosphate carboxylase has been found in cell-free extracts of L.

[errooxidans (Norris et al., 1995). Blake and Shute (1997) characterized a novel acid-

stable, acid-soluble, red cytochrome from L. ferrooxidans, which is rapidly oxidized

by ferrous iron in cell-free extracts, indicating that this cytochrome is a principal

component of the iron respiratory chain. L. ferrooxidans is highly acidophilic,

growing optimally at pH 1.3-2.0, with a lower pH limit of 1.1 (Battaglia et al., 1994).

However, Vásquez and Espejo (1997) showed L. ferrooxidans to be more acid-

tolerant, when reported to be the dominant iron oxidizer in a copper leaching study at

pH 0.7. Acidity is the result of ferric iron hydrolysis, and in the presence of sulfur-

oxidizing bacteria, the production of sulfuric acid. L. ferrooxidans is mesophilic,

growing optimally at 30-37°C, it is however tolerant of lower and higher temperatures

growing, albeit slowly, within a 10-45°C temperature range (Johnson, 2001). L.

ferrooxidans grows very poorly on solid media, probably due to the presence of
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organic materials within the gelling agent, to which it is highly sensitive. This has

however been overcome by the development of a specific bi-layered growth medium

(Johnson, 1995). This medium incorporates the use of acidophilic heterotrophic

bacteria, present in the lower half of the bi-layered medium, to utilize the organic

materials and facilitate L. ferrooxidans growth. Growth on solid media is slow, and

only visible after incubation for 7-14 days at 30°C. Doubling times in liquid ferrous

iron media is strain dependant and varies from 10 to over 20 hours (Norris et al.,

1988).

1.6.3.2 Genomic characteristics

As previously mentioned there is mounting evidence suggesting that mesophilic iron-

oxidizing bacteria identified, as 'L. ferrooxidans' comprise more than a single species.

Since members of the genus Leptospirillum have a limited range of physiological

characteristics that can be used in their identification (Johnson, 2001), genomic

characteristics are key to discovering suitable differences in order to determine

whether more than one species is represented. Genomic characteristics that are

necessary for this level of taxonomic classification are rRNA sequence analysis (the

16S rRNA gene in particular), determination of mol% G+C and DNA-DNA

hybridization/relatedness between isolates. However, since L. ferrooxidans and L.

ferrooxidans-like isolates have not yet been classified into two different species,

results from studies such as that by Harrison and Norris (1985) are represented as a

range and assigned to 'L. ferrooxidans'. Therefore the mol% G+C for 'L.

ferrooxidans' is 51-56% (Harrison and Norris, 1985). DNA-DNA hybridization

results with a range from > 6-100%, seem meaningless if used to describe a single

species. The 16S rRNA sequence of the L. ferrooxidans type strain L15T has been

determined and deposited in GenBank with the accession number X86776.
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1.7 Aims of this project

The first aim of this study was to determine the diversity of Leptospirillum isolates from

different geographical locations using a variety of molecular techniques to establish

whether there were sufficient differences to warrant subdivision at a species level

(Chapter 2). These studies provide an extended description of a number of

characteristics that can be used in the identification of the more commonly encountered

leptospirilla. From these findings, we propose that two distinct Leptospirillum species

are represented among these isolates. These results are in agreement with the current

evidence suggesting that the bacteria previously referred to as L. ferrooxidans, represent

more than one species.

The second aim was to determine which Leptospirillum type dominated industrial

biooxidation tanks. This would help to identify which species should be the focus of

long term molecular biology research.

The third aim of this study was to screen Leptospirillum isolates for plasmids (Chapter

3), with the long-term goal of further development of Leptospirillum for industrial

purposes. Exploration of the molecular biology of Leptospirillum is in its infancy, as

much of the attention to biomining organisms has been given to At. ferrooxidans. The

development of improved leaching bacteria is a growing field where biotechnologists

are challenged to improve the rate of cell growth and ore oxidation. Improvement of the

bacterium may occur by genetic engineering where new genetic material, carrying a

favorable characteristic, is gained by the bacteria. New genes are introduced into

foreign bacteria by plasmid (shuttle) vectors, which can replicate in genetically well-

characterized strains (E. coli) as well as the target bacterium (i.e. At. [errooxidans and L.

ferrooxidans). These vectors also carry selectable genetic markers that are expressed in

both organisms. The strategy adopted in the genetic manipulation of At. ferrooxidans,

was to utilize the well-characterized E. coli vectors by cloning into them the required At.

ferrooxidans origins of replication and selectable markers (Rawlings and Woods, 1995).

An important step in this process was isolating plasmids, found in a large number of At.

ferrooxidans strains, which are an obvious source of replication origins. No plasmids

have yet been reported in Leptospirillum, but these could similarly serve as sources of

replicons and selectable markers for the development of a genetic system for the

leptospirilla.
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2.0 Summary

The genetic diversity of sixteen Leptospirillum isolates from different geographical

locations was analysed by means of phylogenetic (16S rRNA, 16S-23S gene spacer

region), genomic (DNA-DNA hybridization, mol% G+C), and phenotypic

classification. In addition, partial analysis was carried out on three other isolates.

Clear separation into two major groups was evident. Group I leptospirilla had mol%

G+C within the range 49-52%, three copies of rrn genes and based on 16S rRNA

sequence data these isolates clustered together with the Leptospirillum ferrooxidans

type strain (DSM2705 or LI5). Group II leptospirilla had mol% G+C of 55-58%, two

copies of rrn genes and based on I6S rDNA sequence form a separate cluster.

Genome DNA-DNA hybridization experiments indicated that two similarity

subgroups were present amongst the leptospirilla tested within group I whilst all

leptospirilla tested from group II belonged to a single DNA-DNA hybridization

group. The two groups could also be distinguished based on the sizes of their 16S-

23S rRNA gene spacer regions. We propose that the group II leptospirilla should be

recognized as a separate species with the name Leptospirillumferriphilum sp. nov.

2.1 Introduction

The species concept is a controversial issue, and from as early as the 17th century

biologists have tried to develop a universally acceptable means of classification. The

concept of species interests both microbiologists and eukaryote taxonomists alike,

therefore the introduction of a more universal concept that covers all major groups of

organisms, making the species unit comparable is indeed tempting (Claridge et al.,

1997). At present, at least twenty-two different concepts have been developed to

accommodate species, all of which can be grouped (more or less) into three

categories, each with different theoretical commitment (Mayden, 1997; Hull, 1997).

A theoretical foundation has traditionally been regarded as a valuable characteristic of

a species concept, although its significance is disputed between philosopher and

scientist. In general scientists see less need to include a theoretical foundation in their

concepts; adding to this, the more theoretically significant a concept is, the more

difficult it is to apply (Hull, 1997).
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The Phenetic or Polythetic Species concept (PhSc): 'a similarity concept based on

statistically co-varying characteristics, which are not necessarily universal among the

members of the taxa' (Hull, 1997; Sokal and Crovello, 1970). This concept is

considered theory-free, and has been adopted to describe the prokaryotic species in

part.

The Evolutionary species concept (ESC): 'an entity composed of organisms which

maintains its identity from other such entities through time and over space, and which

has its own independent evolutionary fate and historical tendencies' (Mayden, 1997).

This is the most theoretically committed of all the species concepts and is regarded as

the only one that can act as a primary concept due to its ability to accommodate all

known species types. However, this concept has little significance for the

prokaryotes, as due to the limited knowledge (fossil record) available for this group of

organisms, no evolutionary fate of historical tendency can be predicted.

The Phylogenetic species concept (PSC): 'the smallest diagnosable monophyletic

unit with a parenteral pattern of ancestry and descent' (Hull, 1997). Regardless of

the lack of fossil record, the establishment of genealogical trees through the analysis

of gene sequences (e.g.: 16S rRNA) has been made possible among the prokaryotes.

However, phylogenetic reconstruction is then based on the analysis of a single gene,

which falls short in the representation of the whole organism.

These last two concepts are generally applicable among the different eukaryotic

lineages (Ereshefsky, 1992; Templeton, 1989).

The current approach adopted for the speciation of prokaryotes includes both a

phenetic and phylogenetic evaluation, combining as many different techniques as

possible (polyphasic), and is referred to as the phylo-phenetic species concept.
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2.1.1 The phylo-phenetic species concept

This concept combines the strengths of the PhSc and PSC's, adapting the guidelines

to suit prokaryotic capabilities. Phenetic classifications include both phenotypic and

genomic characters, both of which need to be included in an investigation for

taxonomic purposes; the lack of either could result in the rejection of a classification

proposal.

2.1.1.1 Phenotypic analysis

The phenotype is the visible or otherwise measurable physical and biochemical

characteristics of an organism, resulting from the interaction of genotype and

environment. Phenotypic classification is therefore based on morphology, physiology

and growth conditions of the organism (biochemistry). The morphology of a

bacterium includes cellular (shape, endospore, flagella, inclusion bodies, Gram

staining etc.) and colonial characteristics (colour, dimensions, form etc.).

Physiological and biochemical features include data on growth at different

temperatures, pH values, salt concentrations, atmospheric conditions (e.g.

aerobic/anaerobic) etc. These characteristics have been used in Bergey's Manual of

Determinative Bacteriology to reorganised taxa and genera divisions into 33 different

sections based on single or combinations of phenotypic traits. Since prokaryotes lack

complex morphological features, phenotypic analysis involves techniques that test

(directly or indirectly) different properties such as enzyme activities, substrate

utilization profiles and growth conditions. Although genomic data alone is sufficient

to allocate taxa in a phylogenetic tree, the consistency of phenotypic and genomic

characters is required to generate useful classification systems (Vandamme, 1996).

However, should two organisms be void of distinguishable phenotypic traits,

taxonomy is based on phylogenetic and genomic relationships (Lee et al., 1998).

2.1.1.2 Genomic analysis

Genomic information is obtained from the data retrieved from nucleic acids (both

DNA and RNA molecules). This may occur directly through sequencing, or

indirectly via DNA-DNA similarity percentages or mol% G+C values. As nucleic

acids are universally distributed, and their composition is largely independent of

environmental changes, these are excellent tools to be used as standards for wide-

ranging comparisons. Obviously the most complete source of genomic information is
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the entire bacterial genome, however this is not feasible as a quick means of analysis,

therefore other approaches have been developed.

2.1.1.2.1 mol % G+C

The primary structure of DNA is universal; in so much as it is comprised of four

nucleotide bases (A, T, G, and C). However, the relative ratio [G+C]/[A+ T] varies

from genome to genome. The G+C content is calculated as a percentage of the sum

of the four nucleotide bases, and is usually one of the genomic characteristics

recommended for the descriptions of species and genera. G+C contents among

prokaryotes are known to vary between 20-80% (Tamaoka, 1994), and differences in

DNA molecules greater than 20-30 mol% are almost void of common sequences

(Logan, 1994). A difference of 5 mol% is the common/acceptable range found within

a species (Rosselló-Mora and Amann, 2001). Although mol% differences are

taxonomically useful in group separation, the similarities in base compositions do not

necessarily indicate a close relationship, as the linear sequence of the bases in the

DNA molecules is not accounted for.

2.1.1.2.2 DNA-DNA relatedness

The use of whole genome DNA-DNA similarity is the standard technique for

prokaryotic species delineation (Lee et al., 1998). Data to support using this

parameter in setting the borders of speciation has been obtained from numerous

studies, where a correlation between genomic DNA- and phenotypic -similarity was

found (Stackebrandt and Goebel, 1994). There are several methodologies to measure

DNA-DNA relatedness, all of which rely on the same principle (Figure 2.1).

Ultimately, the overall pairing of the nucleic acid fragments is dependent upon similar

linear arrangement of the nucleotide bases along the DNA.

- _----
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Figure 2.1: The principle of DNA-DNA reassociation. (A) DNA's of two different

organisms are mixed and denatured to give a mixture of single-stranded DNA molecules (B).

Reassociation occurs under controlled conditions, resulting in the formation of hybrid

molecules (C). Comparison of (C) with (A) yields a degree/percentage of similarity.

The degree of relatedness between two DNA molecules is measured by two

parameters: (i) the relative binding ratio (RBR), and (ii) the difference in thermal

denaturation midpoints (A'Tm) (Johnson, 1989). RBR represents the relative amount

of heterologous DNA duplex formation in comparison to the homoduplex DNA,

which is considered to represent 100% reassociation. A number of different

techniques are available to determine RBR and can take place both in solution or on a

solid surface.

(1) DNA reassociation may be measured spectrophotometrically by

determining the initial rate of reassociation (De Ley et al., 1970), this

procedure compares the rates of reassociation of preparations of DNA

from organism A (VA) and from organism B (VB) with that of an equal

mixture of the two DNA preparations (VM).

(2) The reassociation of DNA is measured by determining the time and

concentrations at which one-half (COtll2) of the DNA has reassociated

(Britten and Kohne, 1968; Seidler and Mandel, 1971).
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(3) By use of a probe, either radioactively or biotin labeled, the reassociation

of the probe with excess unlabelled DNA can be followed by resistance to

SI nuclease or by adsorbtion to hydroxylapatite (Crosa et al., 1973;

Johnson et al., 1980). Alternatively, the use of a DIG-labeled probe in

conjunction with immobilized DNA on a membrane (nitrocellulose or

nylon); DNA reassociation can be determined via densitometry analysis of

the final autoradiograph (Sohier et al., 1999).

RBR results are therefore subject to differences that are related to the hybridization

technique used and should always include a known standard (i.e. Escherichia coli),

against which results may be measured (Grimont et al., 1980).

~Tm is measured once the heterologous DNA duplexes have formed, and reflects

thermal stability of the dsDNA. The melting temperature (Tm), or thermal

denaturation midpoint, is the temperature at which 50% of the dsDNA is denatured.

Since heteroduplex DNA's would account for a lower number of paired bases than

those from the homoduplex (due to the formation of fewer hydrogen bonds), the

expected Tm of heteroduplex DNA's would be lower than the homoduplex Tm.

DNA-DNA relatedness in this regard, ~Tm, is the difference between the homoduplex

DNA Tm and the heteroduplex DNA Tm, as illustrated in Figure 2.2.

It is currently recommended that values of 70% or higher RBR, and 5°C or lower

A'I'm, are reasonable borders to define a given species (Wayne et al., 1987). DNA

reassociation represents the best approach for the deduction of genotypic relationship

amongst closely related prokaryotes, followed by the G+C content. In fact, both

parameters are necessary for an adequate species classification (Rosselló-Mora and

Amann,2001).
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Figure 2.2: Thermal denaturation curves of a homoduplex DNA and two heteroduplex

DNA's (Reproduced from Rosselló-Mora and Amann, 2001).

2.1.13 Phylogenetic analysis

Ribosomal DNA (rDNA) has been used extensively in determining phylogenetic

relationships among microorganisms (Woese, 1987; Woese et al., 1990). rRNA's,

especially 16S rRNA, due to their high information content, conservative nature, and

universal distribution, allow most relationships (including the most distant) to be

measured (Rogall et al., 1990). However, two assumptions are basic for the validity

of this approach, namely that horizontal gene transfer has not occurred between rRNA

genes, and that the amount of evolution or dissimilarity between rRNA sequences of a

given pair of organisms is representative of the variation shown by the corresponding

genomes (Goodfellow et al., 1997).

Within a single bacterial genome, there are frequently multiple rRNA loci [seven

copies in E.coli (Morgan et al., 1977), ten in Bacillus subtilis (Loughney et al., 1982),

ten in Clostridium perfringens (Garnier et al., 1991), one in Mycobacterium sp.

(Bercovier et al., 1986), and one to two in Mycoplasma sp. (Amikam et al., 1984)].

Although rRNA sequences are, in general, believed to show low if any variability

within the same genome, heterogeneities between copies of 16S rRNA genes have

been reported (pettersson et al., 1998). Microheterogeneities (nucleotide differences)

are probably far more common than macroheterogeneities (insertions ranging from 50

to several hundred nucleotides), and have been reported in the form of nucleotide
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Figure 2.3: Secondary structure model for Ecoli 16SrRNA displaying hyper-variable regions, numbered V 1-\19.
respectively. V4 is absent in prokaryotic ssR As. Canonical base pairs are connected by lines. G:U pairs are
connected by dots, A:G-type pairs are connected by open circles, and other noncanonical pairings are connected by
solid circles. Thicker. longer solid lines connect "Tertiary" interactions. Every lOthposition is marked with a tick
mark. and every 50lh is numbered. Primary structure was determined by Brosius er al., 1978 and 1981.
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differences between multiple rrn operons within a genome (polymorphisms), although

such polymorphisms are rare. Examples of species where polymorphisms have been

identified include Haloarcula marismortui (Mevarech et al., 1989), Bacillus

sporothermodurans (pettersson et al., 1996), and Mycoplasma capricolum (pettersson

et al., 1998). The occurrence of variability in 16S rRNA genes between species and

subspecies has also been observed, at the rnicro- and macro-heterogeneity level. An

intervening sequence (lVS) of 148 bp was identified in the single 16S rRNA gene

copy of five out of twelve Campylobacter helveticus isolates on analysis of the 16S

rDNA peR products. This was the first report of an lVS in the 16S rRNA gene of a

eubacterium (Linton et al., 1994). A larger lVS was identified in the (lone) 16S

rRNA gene of Pyrobaculum aerophilum, a 713 bp intron, which upon excision is

circularised (Burggraf et al., 1993).

Through the analysis of available 16S rRNA gene sequences of many different

microorganisms submitted to the EMBL or GenBank nucleotide sequence libraries,

the occurrence of heterogeneities were localised to eight hyper-variable regions

present in prokaryotic 16S rRNA's (Neefs et al., 1990). Variable regions are

illustrated in Figure 2.3 (opposite page) based on the 16S rRNA secondary structure

model of E.coli.

Owing to their highly conserved nature, closely related organisms are often found to

have nearly identical 16S rRNA gene sequences, therefore as evolutionary distances

decrease a point is reached where insufficient base sequence diversity exists to

differentiate strains of a given species. Although comparative analysis of 16S rRNA

is a good method to describe an initial phylogenetic affiliation between organisms, it

is necessary to use additional variable genetic markers to clarify interspecific and

intraspecific phylogenetic relationships (LeBlond-Bourget et al., 1996).

One solution to this problem is to use other evolutionary conserved genes/regions,

such as the 23S rRNA genes and the spacer regions between 16S- and 23S- rRNA

genes. At -2500 bp the 23S rRNA molecule is a larger information unit than the 16S

(-1550 bp), and in many cases has higher resolving power for phylogenetic

reconstructions (Ludwig et al., 1998; Ludwig and Schleifer, 1999). However, due to

its length, 23S rDNA sequencing has not been as popular as 16S rDNA sequencing,
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and the number of 23S rRNA sequences in the database is much smaller. In most

prokaryotes the ribosomal genes are arranged in the order 16S-23S-5S, with few

exceptions (Yoon et al., 1997). The rRNA genes are separated by intergenic spacer

regions (ISR) or intergenic regions (IR), which display large degrees of sequence and

length variation at both the genus and species levels. The ISR between the 16S and

23S genes contain regions with secondary structure and sometimes transfer RNA

(tRNA) genes (Perez Luz et al., 1998). In fact, spacer regions found within bacterial

genomes containing multiple rRNA loci, may also display a significant degree of

variation (intercistronic heterogeneity) (Jensen et al., 1993). For example in E. coli

K-12 there are seven ribosomal operons, in three of them the ISR contains two tRNA

genes (lSR2) for isoleucine and alanine (operons A, D, and H) with an average size of

about 450 bp. The remaining four ISR's (operons B, C, E, and G) have a single tRNA

gene for glutamic acid (ISRI) and are smaller in size (350 bp) (Condon et al., 1995).

It has been shown that due to the extreme divergence in length and sequence

polymorphisms of the spacers within the rrn loci, together with their location between

highly conserved rRNA genes, they can be used to successfully discriminate between

different species of prokaryotes (Zhang et al., 2001; Mehta and Rosato, 2001;

Abraham et al., 1999; Perez Luz et al., 1998; Gurtler and Stanisich, 1996).

Studies making use of the PCR-mediated amplification of all copies of the ISR's of

the 16S-23S rDNA of one or more bacteria are highly dependent on the availability of

suitable sequence present in the flanking termini of the 16S and 23S rRNA genes.

Full length sequences for the 16S rRNA gene have been reported for about 2500

different bacterial species (including over 18 000 entries in 1999) (Olsen et al., 1991;

Roselló-Mora and Amann, 2001), while full length sequences from only 21 species

that represent 18 genera of 23S rRNA genes are available (Gurtler and Stanisich,

1996). From this sequence data, conserved regions within the 16S and 23S genes

were identified as being suitable for the amplification of adjacent DNA's (Figure 2.4).
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Figure 2.4: Conserved regions within the E.coli rRNA operon. The boxed areas represent the

various genes of the bacterial rRNA operon. Some bacteria have two tRNA genes as shown;

others have either one (either tRNA glu, tRNA ala or tRNA ile) or none. The dark, bold lines

represent the intergenic spacer regions. Dark jagged lines represent breaks in the 16S and 23S

genes, which have not been shown fully. The 5S rRNA gene is not shown. The thin

numbered line shows the nucleotide numbering of the 16S and 23S rRNA genes of E.coli with

breaks shown as dashed lines. The numbers 1-10 represent the following nucleotide sequence

blocks. 16S rRNA gene; 1, 8-27; 2, 1390-1407; 3, 1491-1506; 4, 1525-1541. 23S rRNA

gene: 5, 21-38; 6, 115-132; 7, 188-208; 8, 422-437; 9, 441-460; 10, 456-474 (Gurtler and

Stanisich, 1996).

In order to amplify the spacer DNA, sequences 2, 3, and 4 are suitable; region 2 is

however the most highly conserved sequence present in eubacteria, archaea and

eukaryotes (Lane et al., 1985). Region 3 and 4 are present in most or many

eubacteria. Region 10 of the 23S rRNA gene is the most highly conserved; next, in

order of identity, are regions 6, 9, 8, 7, and 5. Therefore isolate analysis by means of

amplification of the 16S-23S rDNA ISR's is most likely to be successful using

regions 2 and 10 of the 16S rRNA gene and 23S rRNA gene respectively, for primer

construction (Gurtler and Stanisich, 1996).

The evolutionary rate of the 16S-23S rDNA spacer region is ten times greater than the

evolutionary rate of the 16S rDNA (LeBlond-Bourget et al., 1996). Hence these two

molecules provide different complementary phylogenetic information. The 16S

rDNA sequence is a good tool for inferring inter- and intragenic relationships (Fox et

al., 1992), while the 16S-23S spacer comparisons provide information concerning

intraspecific links and allows for the detection of recently diverged species.

Stellenbosch University http://scholar.sun.ac.za



48

Ribosomal operons have acquired paramount relevance for the study of bacterial

evolution and phylogeny. The rRNA 16S and 23S genes are the most widely used

molecular chronometers and have been instrumental in developing a comprehensive

view of microbial phylogeny and systematics (Gutell et al., 1994). As the rapid and

reliable identification of strains remains the most important task in taxonomy, 16S

rRNA analysis is a most valuable tool in bacterial classification above the species

level. Due to the highly conserved nature of the 16S rRNA, there is no linear

correlation between DNA-DNA similarity % and 16S rRNA similarity for closely

related organisms (Figure 2.5) (Stackebrandt and Goebel, 1994; Grimont, 1988),

therefore the bacterial species definition can never be solely based on sequence

similarity of rRNA's. However, for distinction at the species level 16S rDNA

analysis is extremely helpful in deciding whether sufficient relationship exists

between microorganisms to warrant the application of laborious DNA hybridization

/reassociation experiments. The resolution power of DNA hybridization still remains

significantly higher than that of sequence analysis, as DNA reassociation values may

be as low as 25% at rRNA similarity values of 99.8% (Amann, et al., 1992).
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Figure 2.5: 16S rRNA homology versus DNA-DNA reassociation values. The bar indicates

the DNA threshold value for species delineation (reproduced from Stackebrandt and Goebel,

1994).
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From Figure 2.5 it is evident that each method is strong in those areas of relationship

in which the other method fails to reliably depict relationships (Stackebrandt and

Goebel, 1994). 16S rDNA sequence analysis is the superior of the two methods from

the level of domains (starting at about 55%) to moderately related species (below

97.5%). Above this value DNA-DNA hybridization is the more accurate method for

determining relationship and can either be low or as high as 100%. The combined use

of these techniques, along with phenotypic confirmation, enables the confident

separation of strains at the species level.

This chapter describes the application of a combination of phylogenetic, genomic and

phenotypic techniques, to sixteen Leptospirillum isolates to determine the level of

relationship that exists within this sample group. Furthermore, partial analysis of a

further 3 strains was carried out. From these findings, we propose that two distinct

Leptospirillum species, Leptospirillum [errooxidans and Leptospirillum ferriphilum

sp.nov., are represented among these isolates.
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2.2 Materials and Methods

Materials and methods used in more than one chapter are presented in Appendix C

andD.

2.2.1 Bacterial strains, media and growth.

Strains used in this study are listed in Table 2.1. Strains were routinely grown at 30°C

in 800 ml mineral salts medium (% w/v): (NH4hS04, 0.2; K2HP04, 0.05;

MgS04.7H20, 0.05; KCl, 0.01; Na2S04, 0.1; and Ca(N03h, 0.001, supplemented with

FeS04.7H20 (500 mM) and 1000x trace elements solution (1 ,..tl/10 ml), and adjusted

to pH 1.6 with concentrated H2S04. Media used throughout this study is described in

detail in Appendix C. Strain purity was checked using the overlay technique of

Johnson (1995). Experiments at 45°C were carried out using the same media.

Ferrous iron concentration was determined by volumetric titration with potassium

dichromate using diphenylamine 4-sulfonic acid indicator (Vogel, 1961).

Table 2.1: Strains of Leptospirillum

Strain Type/ Source Origin GenBank
Groul2 Accession no".

P3a I Barrie Johnson Coal mine, North Wales, UK AF356837
ATCC49879 I Wolfgang Sand Romania AF356832
SY I Barrie Johnson Sygun Cu mine, North Wales, UK AF356839
N25 I Barrie Johnson New Zealand ND
Crys13 I Barrie Johnson Ag mine, Montana ND
BCT2 I Barrie Johnson Birch Coppice, UK AF356833
Parys I Barrie Johnson Parys Mountain, Anglesey Cu mine, AF356838

Wales
CF12 I Frank Roberto Idaho Co mine, USA AF356834
Chil-Lf2 I Barrie Johnson Cu mine Chile AF356835
DSM2705 I DSMZ, Markosyan strain (1972), Cu mine, X86776

Braunschweig, Armenia
Germany"

Fairview II Ellen Lawson South Africa AF356830
Warwick II Paul Norris Warwick, UK AF356831
ATCC49880 II Wolfgang Sand Romania ND
ATCC49881 II Wolfgang Sand Peru AF356829
Bionic 3.1 II Shelly Deane Nickel pilot plant, Billiton, South Africa ND
Mont. 4 II Peggy Arps Pyrite column, Montana, USA ND
Adapt II Shelly Deane Nickel pilot plant, Billiton, South Africa ND
BNMod II Shelly Deane Nickel pilot plant, Billiton, South Africa ND
617 II Shell~ Deane C01212erconcentrate, Zaire (1998) ND
a ND, not determined.
b DSMZ, Deutsche Samrnlung von Mikroorganismen und Zellkulturen.
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2.2.2 DNA preparation

Bacterial cells were harvested by centrifugation at 15 000 x g for 35 min and washed

with acid water (pH 1.2) to remove ferric ion precipitate. Cells were either used

immediately or stored frozen at -20°C in SET Buffer (25% sucrose, 2 mM EDTA, 50

mM Tris; pH 8.0). Prior to lysis, cells were treated with proteinase K (20 ng/Ill), at

37°C for 30 min. Cell lysis was achieved by the addition of 10% sodium dodecyl

sulfate (SDS). DNA was extracted via spooling and resuspended in TE buffer by

shaking overnight at 30°C.

2.2.3 16S rRNA copy number determination

For Southern hybridization experiments used in ribotyping, 5 ug chromosomal DNA

was digested with BamHI and the restriction nuclease fragments separated by agarose

gel electrophoresis. DNA was denatured in 0.25 M HCI, neutralised in 0.4 M NaOH

and transferred to nylon, Hybond N+, membrane (Amersham) by capillary blotting

overnight. The 1.5 kb 16S rDNA PCR product of isolate P3a (chosen randomly from

the 16 isolates) was labelled with digoxigenin using the DIG oligonucleotide 3'-end

labelling and detection kit (Roche Biochemicals) and used as the hybridization probe.

Hybridization temperature was 40°C. Washing was for 20 min at room temperature

followed by 20 min at 65°C. Membrane detection performed as per manufacturer's

instruction (Roche Biochemicals).

2.2.4 peR amplification for restriction enzyme mapping

PCR amplifications of the 16S rRNA gene were routinely carried out to generate a 1.5

kb band on electrophoresis using primers pfDD2 (5'-

CCGGATCCGTCGACAGAGTTTGATCITGGCTCAG-3') (8 to 27 E. coli

numbering), which contains cloning sites BamHI and Sal! towards the 5' end, and

primer prDD2 (5'- CCAAGCTTCTAGACGGITACCTTGTTACGACTT-3') (1512

to1492 E. coli numbering), which has HindIII and XbaI cloning sites. Approximately

100 ng of chromosomal DNA was subject to amplification in a total volume of 50 III

containing 20 mM (NH4hS04; 75 mM Tris-HCI, (pH 8.8 at 25°C); 0.1% (v/v) Tween

20; 3 mM MgCb; 2.5 IlM (each) deoxyribonucleotide (dATP, dCTP, dGTP, and

dTTP), 0.2 IlM of each primer; and 2U Redhot polymerase (Advanced

Biotechnologies). Denaturation was at 94°C for 60 s followed by 25 amplification
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cycles of 30 s at 94°C, 30 s at 52°C, and 90 s at 72°C. An additional 120 s at 72°C

and a cooling step at 4°C for 60 s completed the reaction. Reactions were carried out

in a Biometra® Personal Cycler. PCR product restriction enzyme analysis was

performed using EcoRV, Stu I, Kpnl, Aval, Smal, Agel, Mrol, Neal, AvrIl, Bfrl, Sspl,

Sadl and HindIII in order to generate a discriminatory banding pattern on gel

electrophoresis.

2.2.5 peR of the 16S rDNA for sequencing

Three different sets of prokaryotic specific primers targeting internal regions to the

16S rRNA gene were used. Forward and reverse sequencing primers from conserved

16S rRNA gene regions were made based on nucleotides 8 to 27, 517 to 536 and 1053

to 1074 in the forward direction, and nucleotides 1512 to 1492, 1074-1053 and 536-

515 in the reverse direction (E.coli numbering). A maximum of 50 ng of template

DNA was used per reaction in a 50 III volume combined with: 20 mM (NH4hS04; 75

mM Tris-HCI, (pH 8.8 at 25°C); 0.1% (v/v) Tween 20; 0.5 mM MgCh; 2.5 I-lM(each)

deoxyribonucleotide (dATP, dCTP, dGTP, and dTTP), 10 I-lMof each primer; and 2.5

U Redhot polymerase (Advanced Biotechnologies). Amplification protocol was as

follows: one cycle of 2 min at 96°C, followed by 25 cycles of; 45 s at 96°C, 30 s at

51°C, 90 s at 72°C, and finally one cycle of 45 s at 96°C, 30 s at 51°C, 3 min at 72°C.

PCR products were purified using the QIAquick PCR Purification Kit (Qiagen),

following manufacturer's recommendations. Concentrations were determined by a

single wavelength reading at 260 nm in an UV spectrophotometer.

2.2.6 Sequencing and analysis of the 16SrRNA gene

The 16S rDNA was sequenced using the dideoxy chain termination method. Cycle

sequencing reactions (maximum of 40 ng template DNA), using fluorescent labelled

Cy5-Far Red primers; were performed with a Thermosequenase™ Cycle Sequencing

Kit (Amersham Pharmacia Biotech UK Ltd.). Sequencing reactions were run on an

Alfexpress automated DNA sequencer (Pharmacia Biotech, Uppsala, Sweden). Each

isolate was sequenced in both the forward and reverse directions. PILEUP and

CLUST ALW were used for multiple sequence alignments and phylogenetic

dendrogram (Figure 2.7) construction was done using the DNAMAN for Windows

program, Version 4.13 (1994-99). A secondary-structure model of the 16S rRNA
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molecule transcribed from the primary sequence of isolate Fairview was constructed

by Robin GutelI (GutelI et al., 1994) and the file interpreted using the Aladdin

Ghostscript version 5.1 graphical interface software. Leptospirillum sequences

determined in this study were assigned GenBank accession numbers, listed in Table

2.1.

2.2.7 PCR amplification and analysis of the 16S-23S intergenic regions

The conditions used for 16S-23S amplification were the same as those used for 16S

rRNA gene amplification, except the annealing step took place at 45°C. Primers used

in amplification were G1.2 (5'-GTCGTAACAAGGTAICCG-3') and L1.2 (5'-

GCCIAGGCATCCACC-3') modelled on primers designed by Jensen et al. (1993).

2.2.8 mol % G+C

Genornic DNA was treated with ribonuclease A, at a final concentration of 50 ug/rnl,

for 30 min at 37°C. DNA was then phenol extracted, followed by ethanol

precipitation. Purified DNA was dissolved in O.lxSSC (SSC = 0.15 M NaCI plus

0.015 M sodium citrate, pH 7), at concentrations between 10-40 ug/ml and dialyzed

against O.lx SSC overnight. The DNA solutions were stored in O.lx SSC at 4oe.
The guanine plus cytosine (GC) content of the DNA was determined as described by

Harrison (1982).

2.2.9 DNA-DNA hybridization

Genomic DNA was prepared as for mol% G+C determinations, with the exception of

O.lx SSC dialysis. DNA was resuspended in TE buffer. Three two-fold dilutions, 1

ug starting concentration, of all genomic DNA were prepared in a denaturing solution

(final concentration 0.4 M NaOHIlO mM EDTA). Samples were boiled for 10 min,

flash cooled, and loaded onto a positively charged nylon membrane using a slot blot

manifold as described in Sambrook et al. (1989). The membrane was rinsed briefly in

2x SSC and air-dried. Genomic DNA probes were sonicated for seven 10 s periods

by a Biosonik III (Bronwill Scientific Inc., Rochester, N.Y) instrument at an energy

setting of 60% before labeling with digoxigenin using the DIG oligonucleotide 3' -end

labeling and detection kit (Roche Biochemicals). Hybridization was in DIG-Easy

Hyb at 40°C, followed by washing in Ix SSC at 25°C and a second washing in 0.1
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XSSC at 65°C. Quantification of hybridization signals was carried out on a Uvidoc

gel documentation system using the Alphaimager 2000 software. The method chosen

for DNA-DNA hybridization is not the technique most used in taxonomic

classification. The method of Crosa et al (1973) is widely accepted, however when

applied to a large sample number the number of hybridizations required (13 x 16 in

this study) becomes unwieldy. The current method is beneficial for two reasons: (i)

all isolates may be incorporated on to one blot, (ii) the use on a non-radioactive probe

enables the same blot to be stripped and reused for different probes, maintaining

consistency between experiments. Although blots could be reused, final hybridization

percentages were obtained as an average from blots prepared in triplicate.
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2.3.1 Number of rrn genes and ribotyping

Genomic DNA from nineteen different Leptospirillum isolates (Table 2.1) was

analysed in Southern hybridization experiments using 16S rDNA from strain P3a as a

probe (Figure 2.6A). Each band represented a single copy of an rm operon, as

genomic DNA was digested with BamRI and it had been established that none of the

Leptospirillum-derived 16S rDNA peR products had an internal BamRI cleavage

site. Two main groups of Leptospirillum could be distinguished from each other, one

with two rm operon copies and the other with three rm copies. This result was

confirmed by digestion of Leptospirillum genomic DNA with SaLI, which also has no

internal 16S rDNA cleavage site (Figure 2.6B). Where band numbers were unclear,

the blot was repeated (data not shown).

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A

2 6

Figure 2.6: Number of rrn genes illustrated by Southern blotting of all nineteen Leptospirillum

isolates, probed with DIG-labeled 16S rDNA from strain P3a. Genomic DNA cut with (A) BamHI and

(B) Sail. Part (A) is comprised of four different blots which were obtained at different stages of this

study, the band sizes between blots are not to scale, banding pattern are however comparable. Part (B)

confirms results obtained in (A) for most isolates tested, however isolates in lanes 2, 7, 8, and 14 were

not completely digested. (A) Lanes: 1, Fairview; 2, P3a; 3, Parys; 4, CF12; 5, Chil-Lf2; 6, Warwick; 7,

ATCC49879; 8, ATCC49880; 9, ATCC49881; 10, SY; 11, Bionic 3.1; 12, Mont 4; 13, Crysl3; 14,

BCT2; 15, N25; 16,617; 17, Adapt; 18, BN Mod; 19, DSM2705. (B) Lanes 1-13 same as in (A), lane

14, N25.

3 4 5 7 8

B
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A further subdivision of the two main groups into ribotype subgroups can be made

from a comparison of hybridization fragment sizes (Table 2.2). These subgroups

provide an indication of the positioning of BamRI restriction endonuclease sites

flanking the 16S rRNA genes. Four subgroups within each rm group were identified.

Interestingly, some members that belonged to the same subgroup were isolated from

very different geographical locations. For example the group with three rm gene

copies has a 5.08, 2.8, 2.1 kb ribotype subgroup containing leptospirilla isolated from

Romania, Montana and England, while the 5.0, 4.5 and 2.7 kb ribotype subgroup has

leptospirilla isolated from Wales, Idaho and Chile.

Table 2.2: Ribotyping fragment sizes

Isolate Fragments (kb)" Isolate Fragments (kb)"

3 rrn subgroup 2 rrn subgroup

P3a 5.10,2.9,2.6 Fairview 4.75, 1.97

N25 5.10,2.9,2.6 Adapt" 4.75, 1.97

DSM2705 5.10,2.9,2.6 BNModb 4.75, 1.97

ATCC49879 5.08, 2.8, 2.1 Warwick 10.5, 1.97

BCT2 5.08, 2.8, 2.1 ATCC49880 4.6, 1.97

Crys13 5.08, 2.8, 2.1 ATCC49881 4.6, 1.97

SY 5.08, 2.6, 2.4 617b 4.6, 1.97

Parys 5.0, 4.5, 2.7 Bionic 3.1 4.4, 1.97

CF12 5.0,4.5,2.7 Mont4 4.4, 1.97

Chil-Lf2 5.0, 4.5, 2.7

a Sizes of bands of genomic DNA following digestion with BámHI, separation of fragments
on an agarose gel and Southern hybridization with labelled 16 S rONA.
b isolates did not form part of the original study but were added during the course of the
investigation.

2.3.2 Sequence analysis of the 16S rDNA peR products

The 16S rRNA genes of ten of the sixteen Leptospirillum isolates were sequenced

directly from the PCR amplified products in both forward and reverse directions. A

homology matrix (Table 2.3) between these sequences and seven other Leptospirillum

sequences previously deposited in GenBanklEMBURDP databases was constructed.

Although the number of rm copies was not known for the isolates obtained from the

database, all seven previously deposited sequences grouped together with the 2 rm
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Table 2.3: Homology values derived from 168 rONA gene sequences

% Homology with:

........
,

Isolate 0\
::l- cor- oo '-'00 V'l 00 -0\ 0 N 0\ ~ 0\ ..lo:

"<:t r- ..... v r- u
U N ...J 6 U .9:l « N .~<Il N , r-U ~ C ..!. U .!; r- "<:t 0 ~ -r- C':l Cl) b >- r- V) Cl) 0 :s V) re V)t""l C':l 6 «l ~-c 0.. Cl 0.. V) co -c u, 0 0 ...J Cl 0

ATCC49879 100

Pla 99.9 100 3rrn
DSM2705 99.8 99.9 100

Parys 99.2 99.3 99.1 100

Chil-Lt1 99.2 99.3 99.1 99.7 100

CFI2 99.3 99.3 99.2 99.8 99.8 100

SY 99.4 99.5 99.5 99.2 99.2 99.-1 100

BCT2 98.2 98.2 98.H 98.3 98.3 98.5 98.4 100

ATCC4988I 93.-1 93.5 93.4 93.1 93.2 93.3 93.3 92.3 100

Fairview 93.5 93.6 93.4 93.2 93.3 93.3 93.3 92.4 100 100 2rrn
OS7 93.1 93.2 93.2 92.8 92.9 92.9 93.2 92.7 99.8 99.8 100

OS4 93.2 93.3 93.3 93.0 93.0 93.1 93.3 92.8 99.6 99.6 99.5 100

Lf30-A 93.0 93.0 93.0 92.7 92.7 92.7 92.9 92.3 99.1 99.1 99.-1 99.2 100

LA 92.6 92.8 92.8 92.4 92.4 92.5 92.7 92.3 98.7 98.7 98.8 98.5 98.6 100

DSM2391 (Bu-I) 93.1 93.2 93.2 92.7 92.8 92.8 93.0 92.6 98.5 98.5 98.2 98.5 98.7 99.0 100

Warwick 92.0 92.1 92.9 91.6 91.6 91.8 91.7 91.1 97.2 97.2 98.1 97.9 97.4 99.1 99.9 100

OSI7 92.6 92.7 92.9 92.2 92.3 92.3 92.5 92.1 98.0 98.0 98.1 97.9 98.3 98.9 99.7 99.7 100
- --- -- - ----- - ----------- -
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copy subgroup. Isolates within the group with 2 rm gene copies had 16S rDNA

sequences, which were 97.2-100% identical whereas those within the group with three

rrn gene copies were 98.2-99.9% identical. Sequence identity between the members

of the two groups was 91.0-93.4% (Table 2.3, opposite page).

A dendrogram of all strains of Leptospirillum for which sequences are available

illustrates the clustering of the two-rm groups (Figure 2.7). Two additional 16S

rRNA sequences were included in the dendrogram, Snottite clone SC07 and Slime

clone BA29 (Bond et al., 2000). These isolates do not fall into the two Leptospirillum

groups represented in this study and appear to form a third group. The snottite and

slime clone 16S rRNA sequences were obtained by PCR from a mixed, crude, cellular

extract using universal- and Bacteria- specific primer sets respectively. Although

these results indicate further diversity within the Leptospirillum genus, pure cultures

of these isolates have not been obtained and were therefore not available to be

included in this study as a way of comparison. The extent to which they differ

physically or physiologically from other leptospirilla has not yet been determined.
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0.05

Snottiteclone SC07
r----1..---Slime clone BA29

ATCC49879

Group III (?"n)

Group I (3 rrn)

BCT2
ATCC49881

OS4

Lf30-A Group II (2 rrn)

'---------------- Nitrospira moscoviensis

Figure 2.7: Evolutionary-distance dendrogram of leptospirilla based on approximately 1450

bp of 16S rDNA sequence. Branch points supported by bootstrap values of> 75% are shown

by solid circles, and those supported by bootstrap values between 50 and 75% are shown by

open circles. The scale bar represents changes per nucleotide. Based on 16S rDNA sequence

data, the genus Leptospirillum has been placed within the division Nitrospira, and Nitrospira

moscoviensis has been used as the outgroup. Database accession numbers are as follows:

snottite clone SC07, AF225453; slime clone BA29, AF225448; ATCC49879, AF356832;

P3a, AF356837; DSM2705, X86776; Parys, AF356838; Chil-Lf2, AF356835; CF12,

AF356834; SY, AF356839; BCT2, AF356833; ATCC49881, AF356829; Fairview,

AF356830; OS7, X86773; OS4, X86770; Lf30-A, X72852; LA, AJ237902; DSM2391 (Bu-

l), M79383; Warwick, AF356831; clone OS17, X86772; andN. moscoviensis, X82558.

Further comparison of the 16S rDNA may be conducted at the level of secondary

structure. When compared across the entire phylogenetic spectrum, about 40% of the

16S rRNA molecule is not completely conserved in its secondary structure (Gutell et

aI, 1985). Within these variable regions are sections that are conserved within

phylogenetic groups (defining kingdom-specific motifs), and other sections that show

variation even within phylogenetic groups. From analysis of all the prokaryotic 16S

rRNA sequences available in the database eight-hypervariable regions were identified

(Figure 2.3) (Neefs et al., 1990). Differences in the region of 16S rRNA between
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nucleotide positions 180 and 220 (variable region 2) have been shown to distinguish

between the various subdivisions of the purple bacteria (Figure 2.8) (Woese, 1987).

Examples are also available where a portion of the secondary structure has been

conserved, although not at the sequence level, i.e. the penultimate stem of E. coli 16S

rRNA, between bases 1409 and 1491 (Firpo and Dahlberg, 1998). This section is

characterized by a base helix (positions 1409-1416/ 1484-1491), which when mutated

caused either increased or decreased translational fidelity (Gregory and Dahlberg,

1995) and conferred resistance to aminoglycoside antibiotics (De Stasio et al., 1989).

This suggests the importance of helix preservation for its role in translation.

a /3;y
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220 • - •
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Figure 2.8: Differences in higher-order structural detail among the various subdivisions of

the purple bacteria for the region of 16S rRNA between positions 180 and 220. Composition

of a position is given when it is invariant or highly conserved within a subdivision, but it is

shown as a dot otherwise. Base pairs are indicated by connecting lines (Woese, 1987).

With the assistance of Robin GutelI (GutelI et al., 1994) a secondary structure

diagram of the Leptospirillum strain Fairview 16S rRNA was drawn (Figure 2.9).

Secondary structure comparison over the entire 16S rRNA sequence was only

performed for the ten isolates sequenced in this study. Nucleotide (nt) insertions and

deletions along the 16S rRNA secondary structure are the result of sequence changes

in the following isolates: nt 4 -ATCC49879, CFI2, P3a; nt 86 -P3a; nt 112 -Warwick;

nt 541 -P3a; nt 602 -SY; nt 664, nt 794, and nt 969 -BCT2; nt 1469 and 1470 -

BCT2, CFI2, SY, P3a, ATCC49879, Parys, and Chil-Lf2; nt 1516 -CFI2; nt 1520

and 1523 -BCT2; nt 1526 -all isolates but Fairview; and nt1527 -CF12.
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Figure 2. 9: Secondary structure model of the 16S rRNA sequence from Leptospirillum isolate Fairview. Comparative secondary structures, in
the regions of greatest variability, are represented in the insets. Single base changes are shown by replacement of the respective nucleotide with
one of the following: M=NC, R=NG, W=Arr, S=G/C, y=crr, H=NCrr, D=NGrr, and B=C/Grr. Filled arrows represent insertions; open
arrows indicate deletions, (nucleotide positions are indicated in brackets), further information provided in the text. 16S rDNA model drawn with
assitance of Robin GuteI!.
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Although variations In sequence between groups with 2 and 3 rrn gene copies

occurred in many regions of the 16S rRNA, most variation occurred within variable

regions 3 and 6. This was consistent with the Leptospirillum-like 16S rRNA

sequences present in the database (Figure 2.10).

450 * * * 491
DSM2391 (Bu-1)
Warwick
OS17

E LA
.... OS4N

Fairview
ATCC49881
OS7
DSM2705
ATCC49879
P3a

E Chi1-Lf2....
<') Parys

CF12
SY
BCT2

A

1000 * * * * * 1056

DSM2391 (Bu-I
Warwick
OS17

E LA
.... OS4N

Fairview
ATCC49881
OS7
DSM2705
ATCC49879
P3a

E Chil-Lf2....
<') Parys

CF12
SY
BCT2

B

Figure 2.10: Multiple alignments of two 16S rDNA variable regions. (A) Variable region 3

(nucleotide positions 450-491), and (B) variable region 6 (nucleotide positions 1000-1056).

Every io" nucleotide is marked with an asterisk. Separation into groups with 2 rrn and 3 rrn

copies is indicated by means of brackets. Shading: 100% homology = black, 75% homology,

grey. Accession numbers as in Figure 2.7.
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There have been reports of polymorphisms within multiple copies of 16S rRNA genes

within the same organism. For example, Mycoplasma capripneumoniae subsp.

capripneumoniae has two copies of 16S rRNA genes and between 11 and 24

differences in nucleotide sequence between the copies were found in 20 isolates

examined (pettersson et al., 1998). Sequence determinations for the 16S rRNA genes

of the leptospirilla sequenced in this study were carried out directly from the PCR

amplified product. Assuming that all copies of the 16S rRNA genes were amplified

with equal efficiency, then polymorphisms between gene copies would have resulted

in a mixed population of non-identical amplification products and ambiguous

sequence data in certain positions. No positions of sequence ambiguity were found

and all copies of 16S rRNA genes therefore appeared to be identical.

2.3.3 peR amplification and restriction enzyme mapping of the 16S rDNA

We have routinely used restriction enzyme mapping of amplified 16S rDNA as a

convenient method for rapidly identifying isolates of previously isolated iron- and

sulfur-oxidizing microorganisms present in biooxidation tanks (Rawlings, 1995;

Rawlings et al., 1999). We wished to determine whether this simple technique could

be used as quick screening method to distinguish between the major groups of

Leptospirillum. Comparison of the 16S rONA sequence data from this study and

from previously sequenced leptospirilla deposited in the GenBank and RDP databases

enabled us to identify several 6 bp recognition sequence restriction endonucleases

which would give different digestion patterns that could be used for this purpose.

Based on the view that the presence of a cutting site has more value than the absence

of a site, four endonucleases (Agel, Mrol, Ncol and Smal) were identified that allow

for specific identification of the group of leptospirilla with two rrn gene copies and

six endonucleases (Agel, AvrIl, Bfrl, EcoRV, Sspl and StuI) for specific identification

of the group with three rrn gene copies (Figure 2.11). The Agel cutting site was

present with the 16S rDNA of both groups but in sufficiently different positions to

allow specific identification.
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~
( 3 rrn group

o 500 1000

2 rrn group

o 500 1000

Figure 2.11: Map of 6 bp restriction endonuclease cutting sites within the 16S rRNA genes of

Leptospirillum isolates with 2 rm and 3 rrn copies. Sites which enable the 3 rm group to be

distinguished from the 2 rm group and which were consistent among all isolates used in this

study, or for which sequence information is available are marked with asterisks. Restriction

endonuclease sites present in all 3 rm group isolates (except BCT2) are marked with an a, and

those present in all isolates examined (except BCT2) and SY are marked with ab.

Although Apal, HindIII, Kpnl and Sadl cannot be used to distinguish between

leptospirilla, these restriction enzymes can be used as a diagnostic tool in

distinguishing between Leptospirillum, Acidithiobacillus caldus, At. ferrooxidans and

At. thiooxidans. To confirm the usefulness of this approach, 16S rDNA of

leptospirilla strains for which the 16S rDNA had not been sequenced, but for which

the number of copies of rm had been determined, was amplified by peR. Restriction

enzyme digests for Ncol, Smal, Bfr!, EcoRV, Ssp! and Stul were carried out and in

each case the Leptospirillum isolate could be correctly placed into the group with 2 or

3 rm gene copies based on the restriction enzyme digests (Figure 2.12).
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Figure 2.12: Restriction endonuclease patterns of 16S rDNA PCR products obtained from

Leptospirillum isolates for which the 16S rRNA gene sequence was not available. Expected

sizes of the fragments generated for the 3 rrn and 2 rrn groups are indicated in brackets (kb).

Underlined fragment sizes could not be seen in the photographs due to either obstruction by

the loading dye, or the gel being run too far. (A) Agel, (3 rrn, 1.3 and 0.2; 2 rrn, 1.01 and

0.49). (B) EcoRV, (3 rrn, 0.78, 0.325, 0.250, and 0.145; 2 rrn, 0.78, 0.575, and 0.14). (C)

Ncol, (3 rrn, 1.26, and 0.24; 2 rrn, 0.87, 0.39, and 0.24). (D) Bfrl, (3 rrn, 1.25 and 0.25; 2

rrn, 1.5). (E) Smal, (3 rrn, 1.4 and 0.1; 2 rrn, 0.95, 0.45, and 0.1). (F) Stul, (3 rrn, 1.1,0.2,

0.15, and 0.05; 2 rrn, 1.23, 0.2, and 0.07). Lanes: 1, A-Pstl (relevant sizes are given in

kilobases); 2, Bionic 3.1; 3, Mont 4; 4, ATCC49880; 5, 617; 6, Adapt; 7, BN Mod; 8,

Warwick (repeat as sequence is available); 9, N25; 10, Crys13. Isolates in lanes 2-8 fall into

the 2 rrn copy group, whereas isolates in lanes 9 and 10 fall into the 3 rrn copy group.
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2.3.4 Amplification product profiles of the 16S-23S intergenic region (IR)

The intergenic regions between the 16S and 23S rRNA genes were amplified in all 19

Leptospirillum isolates. Single and multiple banding patterns ranging in size from 3.0

kb-0.47 kb were obtained (Figure 2.13). PCR product profiles consisted of both

intense, highly reproducible fragments (primary products), as well as weaker

fragments (secondary products). Attempts to reduce the intensity of the secondary

products were made by altering PCR parameters. An increase in MgCh concentration

(from 3 mM to 5 mM) and annealing temperature (from 45°C-50°C) saw a reduction,

if not removal, of secondary products. On submission of this work to Applied and

Environmental Microbiology (Coram and Rawlings, 2002), reviewers pointed out that

secondary products are not used for classification purposes, and so secondary

products that could not be eliminated, were ignored.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.13: 16S-23S IR product profiles for Leptosprillum isolates used in this study.

Lanes: 1, A-Pst!; 2, Fairview; 3, Parys; 4, P3a; 5, CFI2; 6, Chil-Lf2; 7, Warwick; 8,

ATCC49879; 9, ATCC49880; 10, ATCC49881; 11, SY; 12, A-Pst!; 13, Bionic 3.1; 14, Mont

4; 15, Crys13; 16, N25; 17, BCT2; 18, Adapt; 19, 617; 20, BN Mod. 16S-23S product

profiles for L.ferrooxidans type strain DSM2705 were obtained aod were the same as those of

isolates P3a aod N25 (results oat shown).

A single 0.5kb IR spacer was amplified from leptospirilla of the group with two rrn

gene copies whereas IR spacers of a variety of sizes were amplified from leptospirilla

of the group with 3 rrn gene copies. Isolates P3a, N25, DSM2705, ATCC49879, and

Crys13 produced three different primary IR products, presumably a different sized

product from each of the 3 rrn gene copies (Table 2.4). These results are in
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agreement with existing evidence that multiple IR of varying sizes may be present

within a single species (Gurtler, 1999).

Table 2.4: Fragments sizes of the 16S-23S IR amplification products

Fragment size Fragment size
(kb) (kb)

P3a 2.3, 1.75, 1.0 Fairview 0.5

N25 2.3, 1.75, 1.0 Adapt" 0.5

DSM2705 2.3, 1.75, 1.0 BNModa 0.5

ATCC49879 2.3, 1.75, 1.0 Warwick 0.5

BCT2 1.9,0.47 ATCC49880 0.5

Crys13 3.0, 2.84, 1.6 ATCC49881 0.5
Sy 3.0, 1.6 617" 0.5

Parys 2.84 Bionic 3.1 0.5

CF12 2.84 Mont4 0.5

Chil-Lf2 2.84

"Isolate did not form part of the original study but was added during the course of the

investigation.

2.3.5 mol% G+C

Mol% G+C was obtained for fifteen of the original Leptospirillum isolates. Although

these values do not take into account the linear sequence of bases within the DNA

molecules, these results did indicate differences in relationship amongst the isolates.

G+C contents grouped into two definite temperature ranges, 48.8-51.9°C and 55.0-

58.0°C, for the 3 rrn and 2 rrn isolates respectively (Table 2.5). These ranges were

consistent with those of a previous study by Harrison and Norris (1985), where six

isolates comprising L. ferrooxidans type strain DSM2705 and other Leptospirillum-

like bacteria were found to form two G+C content groups of ca. 51% and 55-56%

respectively. Theoretically, bacterial genomes with differences greater than 20-30

mol% have virtually no sequences in common (Rosselló-Mora and Amann, 2001). It

has been shown that organisms that differ by more than 10 mol% are not likely to

belong to the same genus, where a 5 mol% difference is the common range found

within a given species. The mean differences between the two mol% G+C ranges

within this sample group was 5.63 mol%, and is well within the limit to justify a
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species separation. Although differences in mol% are taxonomically useful, the

criterion can only be used negatively (similarities in base composition alone may not

indicate similarity in linear base sequences), and should therefore be used in

conjunction with a more thorough analytical genornic parameter such as total DNA-

DNA hybridization.

Table 2.5: Leptospirillum G+C contents (mol%)

Isolate Mol% G+C
(±1%)"

3 rrn subgroup
P3a
N25
DSM2705
ATCC49879
BCT2
Crys13
SY
Parys
CF12
Chil-Lf2

51.9
51.9
51.7
51.7
51.0
50.7
48.8
51.5
51.2
50.1

2 rrn subgroup
Fairview 58.0
Warwick 54.9
ATCC49880 57.8
ATCC49881 56.6
Bionic 3.1 56.1

a isolates for which mol% G+C were not determined: Mont 4, Adapé, BN Modb, and 617b.

b Isolate did not form part of the original study but was added during the course of the investigation.

2.3.6 DNA-DNA hybridization

Although sequence analysis of the 16S rRNA is a valuable tool in investigating

phylogenetic relationships, it has been shown in several cases that almost identical

16S rRNA sequences have yielded DNA-DNA hybridization values of less than 70%,

indicating separate species (Stackebrandt and Goebel, 1994). For this reason DNA-

DNA hybridization was used in conjunction with 16S rRNA sequence analysis.

DNA-DNA hybridization percentages were obtained for 16 isolates using genomic

DNA from 13 leptospirilla as hybridization probes. Hybridization signals were

quantified by chemiluminescence detection, and percentages estimated by comparison

of hetero- to homo-duplex formation. Figure 2.14 illustrates the differences in

hybridization patterns obtained when a probe from each rrn group was used against

the collective set of isolates. Only Southern hybridization blots from probes
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DSM2705 (3 rrn group) and ATCC49881 (2 rrn group) are shown here, a more

complete complement of blots is presented in Appendix A. The higher the DNA

sequence similarity of probe to target DNA, the greater the binding affinity will be,

resulting in high hybridization percentages.
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Figure 2.14: Autoradiographs of slot blot hybridizations between fifteen Leptospirillum

isolates and representative DIG-labeled total genornic DNA probes from the respective rrn

subgroups. Probes: (A) 3 rrn subgroup: L.ferrooxidans type strain DSM2705; (B) 2 rrn

subgroup: ATCC49881. Target DNA is labelled accordingly. 2 rrn and 3 rrn groups are

indicated by means of brackets. Mont 4 DNA is not included in these slot blots, however

both probe and target DNA hybridization results are available in Appendix A.

Hybridization results are given in Table 2.6. The 3 rrn leptospirilla (group I) could be

divided into two DNA-DNA hybridization subgroups with 94-100% and 93-100%

similarity within a subgroup and 60-79% similarity between the two subgroups. We

have named the subgroups LI and 1.2. The 2 rrn leptospirilla (Group II) formed a

single DNA-DNA hybridization subgroup with 81-100% similarity. However, there

was only < 5-11% similarity between subgroups LI and 1.2 of the group I leptospirilla

and the group II leptospirilla.
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Table 2.6: DNA-DNA hybridization values between Leptospirillum rrn groups'

H~bridization(%)
GrouE I(3rm) Group II(2rm)

Subgroup I.1 Subgroup i.z
~be 0 -<

00 00i~late V) 00 00
0 N :::: 0- 0- ~ <"i"<t r- ...... "<t "<t u

U N .....l <'"l .$:l 8 u .~ u
'" -< 6u ;;;S N ....!. .~ U 't::

V) -< c '"E-< '" Cl) fJ 8 ;>< E-< E-< '" 0
c...'" z'" 6 '" '" ~<t: Cl c, !:Q Cl) .... <t: <t: iii

ATCC49879 100 95 96 94 63 64 67 75 74 72 <5 <5 <5 <5 <5
P3a 96 100 100 97 65 63 65 65 65 65 <5 <5 <5 <5 <5
DSM2705 100 100 100 100 68 64 64 72 78 64 8 5 Il 8 <5
N25 98 100 100 100 75 76 75 76 76 79 <5 <5 <5 <5 <5

CF12 62 68 75 76 100 98 100 96 98 93 <5 <5 <5 <5 <5
Crys13 69 70 66 69 97 98 98 100 94 90 <5 <5 6 6 8
BCT2 69 68 60 70 94 97 94 97 100 95 7 7 10 6 10

Fairview <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 100 97 99 81 100
ATCC49880 5 7 <5 <5 <5 <5 7 9 9 6 100 100 100 89 100
ATCC49881 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 95 99 100 82 100
Warwick <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 84 84 87 100 97
Bionic3.1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 96 97 97 95 100
Mont4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 98 97 97 97 100

•Labelled genomic DNA from each probe isolate was hybridized against genomic DNA from

all target isolates. Each hybridization was carried out at least three times. Mont 4 DNA was

used as a probe against all target DNA samples shown but served as target for only a few of

the probes shown. These results were the reciprocal of what is shown in this table, that is,

DNA hybridization was 98 to 100%with isolates Bionic 3.1 and ATCC49881 and <5% with

ATCC49879, DSM2705 and CF12 (not shown). With one exception, standard deviations of

DNA-DNAhybridization values ranged from 0 to 8%.

2.3.7 Leptospirilla capable of growth at 45°C

One of the few physiological differences reported between leptospirilla is that some

isolates are capable of growth at temperatures of> 40°C (Golovacheva et al., 1993;

Schrenk et al., 1998). We have previously investigated the bacteria present in pilot

plants operating at 4SoC and found that large numbers of leptospirilla were present

(Rawlings et al., 1999). Furthermore there is a report of a Leptospirillum that is

capable of iron-oxidation at SSoC and which is considered to constitute a separate

species, Leptospirillum thermoferrooxidans. We wished to determine to which group

the leptospirilla adapted in pilot plants to grow at 4SoC belonged and whether any of

the non-adapted isolates of leptospirilla were also capable of growth at 4SoC. Each of

the sixteen original isolates was tested for the ability to oxidize ferrous iron at 30°C

Stellenbosch University http://scholar.sun.ac.za



70

and 45°C. In addition, the three leptospirilla isolated from bioreactors operating at

45-55°C were included (Adapt, BN Mod and 617). Several members of the

leptospirilla group with two copies of rrn genes including those not previously

exposed to bioreactors operating at 40°C or above were able to oxidize iron at 45°C

(Table 2.7). However, the rate of iron oxidation was slower than at 30 or 40°C and no

leptospirilla from the group with three rrn gene copies were able to oxidize iron at

45°C.

Table 2.7: Ability of leptospirilla to grow at 45°C

Isolate Growth at 45°C
(±)

3 rrn subgroup
P3a
N25
DSM2705
ATCC49879
BCT2
Crys13
SY
Parys
CF12
Chil-Lf2

2 rrn subgroup
Fairview
Warwick
ATCC49880
ATCC49881
Bionic 3.1
Mont4
Adapt" +
BNMod" +
617" +

+

+
+

a Isolate did not form part of the original study but was added during the course of the

investigation.

2.3.8 Physiological and physical analysis of the two groups of leptospirilla

We examined the type strain of L. ferrooxidans (DSM2705) and a representative of

the type II leptospirilla (ATCC49881) for physiological and physical differences

besides temperature tolerance. Both species/groups had properties similar to those

reported for L. ferrooxidans (Hippe, 2000; Johnson, 2001). Both leptospirilla were

catalase negative and peroxidase positive. They were of similar size (0.3 - 0.5 urn in

width, 0.9 - 3.0 urn in length) with ATCC49881 being at the narrower end of the
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width range. Both species were vibrio-shaped in young cultures (up to 4 days),

helical (2 to 5 turns) in older cultures and motile by means of a single polar flagellum.

Figure 2.1S: Electron micrograph of type II leptospirilla (isolate Fairview).

Both species grow autotrophically at the expense of pyrite mineral with doubling

times in the range of 12-15 h. Whether an appreciable difference in growth rate

between the two groups exists has not been established. Owing to the small size and

number of leptospirilla cells, it is difficult to accurately determine growth rate.

However, the rates of ferrous iron oxidation between isolate ATCC49881 and L.

ferrooxidans DSM2705 were compared. Prior to this comparison, ferrous iron

oxidation for each isolate was optimized with regard to temperature and pH; testing

ranges of 20-45°C and 0.8-2.0 respectively. For ATCC49881 optimum ferrous iron

oxidation occurred between 37-40°C, but could be extended at both ends of this range

to 30°C and 45°C respectively. The temperature range for ferrous iron oxidation of

DSM2705 was more limited, occurring within the range of 30-40°C, while the

temperature optimum (37-40°C) appeared to be similar. Both isolates were capable of

oxidizing ferrous iron over a narrow pH range (1.4-2.0), with optimum pH values for

each isolate as follows: pH 1.4 to 1.8 for ATCC49881 and pH 1.6 to 2.0 for L.

ferrooxidans. From this data, optimum temperature and pH values of 37°C and pH

1.8 were selected for use in the comparison of ferrous iron oxidation between

ATCC49881 and L. ferrooxidans DSM2705 (Figure 2.16).
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Figure 2.16: Ferrous iron oxidation (in hours). Graphs are drawn from a mean of four

different experiments.

From these results it appears as though ATCC49881 was able to oxidize ferrous iron

faster than DSM2705. Whether this is a strain phenomenon or applicable to each

species as a whole was addressed by performing batch culture iron oxidation

experiments on other strains selected randomly from each species group. Figure 2.17

shows the comparison of ferrous iron oxidation between ATCC49879 (L.

ferrooxidans) and Fairview (type II leptospirilla).
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Figure 2.17: Ferrous iron oxidation (in hours). Graphs are drawn from a mean of three

different experiments.
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Again the type II leptospirilla (Fairview) seemed to oxidize ferrous iron at a higher

rate than the type I leptospirilla (ATCC49879- L. ferrooxidans). Therefore, the same

trend as with ATCC49881 and DSM2705 appeared evident. However, when the data

from these two experiments which were carried out under as near identical conditions

as possible were combined, there was no clear indication that one Leptospirillum

species oxidized iron more rapidly than the other (Figure 2.18).
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Figure 2.18: Comparison of ferrous iron oxidation ability of type I (DSM2705 and

ATCC49879- L. ferrooxidans) vs type II (ATCC49881 and Fairview) leptospirilla.

Therefore, it seems that the rate of ferrous iron oxidation is unique to each strain, and

is not a consistent characteristic of either Leptospirillum species.
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2.4 Discussion

Studies on mesophilic leptospirilla by several workers (Goebel and Stackebrandt,

1995; Goebel and Stackebrandt, 1994; Hallman et al., 1993; Harrison and Norris,

1985; Lane et al., 1992) have indicated that more than one species of Leptospirillum

exists. Nevertheless, all mesophilic leptospirilla have been generally referred to as L.

[errooxidans or Leptospirillum-like bacteria as there has been insufficient

physiological grounds or molecular information to decide whether these leptospirilla

represented more than one species. Genomic criteria commonly used to identify two

bacteria as belonging to the same species are mol% G+C values that differ by 5% or

less and genome DNA-DNA hybridization of about 70% or greater (Stackebrandt and

Goebel, 1994). Comparison of 16S rRNA sequence data has been reported to be a

somewhat less reliable criterion for separation of organisms into species. As a result

of the compilation of data carried out by Stackebrandt and Goebel (1994), it was

suggested that organisms with 16S rRNA sequence identities of less than 97% are

unlikely to have DNA-DNA hybridization values of above 60%. Similar comparisons

have been carried out by Rosselló-Mora & Amann (2001) and they suggested a

slightly more relaxed interpretation, that genomes should have less than 50-70%

DNA-DNA hybridization before being considered as belonging to different species.

Unlike genomic comparative techniques, where grounds for species separation IS

governed by specific homology/similarity percentages, phenotypic analysis IS

designed to reflect the degree of similarity represented within the organisms under

analysis through the comparison of a large set of independently varying characters.

One or two phenotypic characteristics are inadequate to define a species, and many

individual characteristics have been shown to be insufficient as parameters for

determining genetic relatedness. Nevertheless, taken as a group, phenotypic

characteristics do provide descriptive information, which aid in the recognition of

taxa. Evidence of this application is available in Bergey's Manual of Systematic

Bacteriology (1984-1989), where bacteria have been divided into 33 different

sections, comprising different taxa and genera, described according to a variety of

characteristics. Although genetic information often provides sufficient information to

justify a species-level separation on its own, the Committee on Reconciliation of

Approaches to Bacterial Systematics recommended that a bacterial species
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classification should also provide diagnostic phenotypic characteristics (Wayne et al.,

1987).

Both genomic, and to a lesser extent, phenotypic characteristics were analysed for the

leptospirilla represented in this study. Phenotypic analysis proved difficult due to the

metabolic limitations of the bacterium (ferrous iron or ferrous iron-containing sulfide

minerals, such as pyrite serves as the sole energy source). Of the characteristics that

could be tested (morphology and growth at various temperature and pH values), minor

differences in pH ranges were obtained. Differences were however discovered when

testing the ability for growth at 45°C. Only members of the type II leptospirilla were

able to oxidize iron at 45°C. These isolates included leptospirilla both previously

exposed (Fairview, Adapt, BN Mod, and 617) and unexposed (ATCC49880 and

ATCC49881) to bioreactors operating at 40°C. Although not all members of the type

II group were able to grow at 45°C, none of the type I letospirilli (L. ferrooxidans)

grew at 45°C. The differences obtained in growth temperature cannot be used as a

diagnostic tool in distinguishing between the two species since the ability to grow at

45°C was not universal within the type II leptospirilla. Nonetheless, the capability of

some type II leptospirilla to grow at elevated temperatures was a clear difference,

although not taxonomically useful on its own.

The late arrivals to this study (Adapt, BN Mod, and 617) were isolated from pilot

plant tanks operating at 45-55°C. This raised the possibility that they could have been

isolates of the previously reported but now lost Leptospirillum thermoferrooxidans

(Golovacheva et al., 1993). However, when grown in pure culture, none of these

isolates were capable of growth above 45°C. In addition to this, results from the

analysis of 16S rRNA sequence, rm copy number, 16S-23S rRNA intergenic spacer

region, and DNA-DNA hybridization, indicated that these were type II leptospirilla.

These isolates, although able to grow at 45°C, only achieved elevated temperature

tolerance by raising the temperature in small increments over the period of a few

weeks. Therefore the ability of the type II isolates to grow at 45°C reflected an ability

to tolerate rather than thrive at this temperature. Why some strains could be isolated

from the mixed culture, particulate environment of a stirred tank, which was
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maintained at 55°C, but struggled to grow at 45°C when in a pure culture, non-

particulate environment is uncertain.

We suggest that the mesophilic leptospirilla investigated in this study may be sub-

divided into two groups and that the differences between these groups are sufficient

for them to be regarded as separate species. Although differences in the phenotypic

traits tested between the species were minor, the genomic diversity was vast. The

mean difference between the mol% G+C ranges of 49-52 vs 55-58% (average- 6%) is

within the recommended 5% or greater mol% G+C difference needed to justify a

separate species. The 16S rRNA sequence identity of 91-93% between the two

groups was also sufficiently low, which suggests that separation into two species is

warranted « 97%). In addition, the groups differ in that one group has two copies of

rrn genes while the other group has three copies. Based on the amount of difference

between the 16S rRNA sequences of the two groups, one would expect DNA-DNA

hybridization values of less than 60% (see Figure 2.4) (Stackebrandt and Goebel,

1994). DNA-DNA hybridization values between group I and group II leptospirilla

were much lower than this, falling in a range of < 5 to 11%. Since genomes that

display less than 50-70% DNA-DNA hybridization homology are considered as

belonging to a different species (Rosselló-Mora and Amann, 2001), the low degree of

homology further supports the separation into two species. Conversely, differences in

hybridization between subgroups 1.1 and 1.2 (60 to 79%) fall within the suggested

guidelines for organisms to be considered as a single species (50-70%).

The differences in size of the intergenic region between the 16S-23S rRNA genes,

namely 0.5 kb for all type 11- and 0.47- to 3.0-kb for all type 1- leptospirilla, also adds

support for the separation of type II leptospirilla into a separate species. However,

whether the type I leptospirilla represent only a single species is not as clear. Within

the size range of the group I 16S-23S rRNA IR amplification products, definite

subgroups were identified. Isolates P3a, N25, DSM2705, and ATCC49879 grouped

together with the same number and size fragments as well as isolates Parys, CFI2,

and Chil-Lf2. The remaining isolates BCT2, Crys13, and SY were more varied,

however Crys13 had a fragment in common with Parys, CFI2, and Chil-Lf2. DNA-

DNA hybridization results only supported the division of isolates into subgroups 1.1
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(ATCC49879, P3a, DSM2705, and N25) and 1.2 (CFI2, Chil-Lf2, Parys, Crys13,

BCT2, and SY) within the type I leptospirilla. 16S-23S rRNA intergenic region

analyses might therefore be a technique, which could be used to identify, isolate

grouping at levels finer than subgroup/subspecies. Whether the differences between

these subgroups are sufficient to support a further species level division is doubtful.

Based on the above evidence we propose that the leptospirilla used in this study

should be divided into two species, one of which consists of two distinct subgroups or

genomovars (Rosselló-Mora and Amann, 2001). The name, L. ferrooxidans should be

used for group I because the L. ferrooxidans type strain (DSM 2705) belongs to this

group and we propose that a new species name is required for group II. In the

absence of a distinguishing physiological property between all members of both

species, we suggest that the name Leptospirillum ferriphilum (jerri iron; philum

loving) could be used for the group II leptospirilla. This name reflects a common

property of all leptospirilla, which is that they use only ferrous iron as their electron

donor. The name L. ferriphilum has been validated by the International Committee on

Systematic Bacteriology (Validation List No. 86, 2002).

One of the aims of this study was to determine which Leptospirillum type dominated

industrial biooxidation tanks. This would help to identify which species should be the

focus of long-term molecular biology research. Five of the nineteen strains tested in

this study were obtained from industrial pilot plants (Fairview, Bionic 3.1, Adapt, BN

Mod, and 617). The isolates from the commercial biooxidation tanks at the Fairview

mine, and the nickel pilot plant (Billiton) were from the group II leptospirilla (L.

ferriphilum). Likewise the 45°C adapted 617 and 55°C adapted BN Mod and Adapt

isolates belonged to the group II leptospirilla and are therefore also L. ferriphilum.

These five isolates are representative of the bacterial dominance in South African

industrial biooxidation plants operating at 40°C, and do not include overseas plants or

plants operating at a different temperature. In a continuous culture study on a culture

being prepared for a commercial cobaltiferous pyrite ore bioleaching operation, a

Leptospirillum-like bacterium (strain L8) was isolated with an optimum pH of 1.3 to

1.6 and temperature of 37.5°C but which could grow at 45°C (Battaglia et al., 1994).

This bacterium had a G+C ratio of about 55.6 mol%, which suggests that it was also a
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group II Leptospirillum (L. ferriphilum) rather than L. ferrooxidans. These findings

confirm the importance of L. ferriphilum in industrial operations, but do not

necessarily negate the importance of L. ferrooxidans. It would be interesting to

determine whether strains of the 3 rrn gene copy L. ferrooxidans group are found in

industrial heap leaching or aeration tank type processes that operate at temperatures of

lower than 40°C. Since none of the L. ferrooxidans strains examined in this study

were capable of growth at 45°C, it may be that these bacteria were non-competitive in

the tanks that we investigated, all of which operated at temperatures of 40°C or

higher. However, L. ferrooxidans may well be important in industrial processes that

operate at temperatures lower than this.

Description of Leptospirillum ferriphillum sp.nov.

Leptospirillum ferriphilum (Jerri iron; philum loving). This description is based on

this study and that reported by Sand (Sand et al., 1992). Cells are small curved rods

or spirilla, measuring 0.3-0.6 11mwide and 0.9 to 3.5 11mlong. Young cells are

vibrio-shaped but in cultures older than 4 days cells are mostly spiral-shaped with 2 to

5 turns. Cells are Gram-negative, spore-forming and motile by means of a single

polar flagellum. Growth is aerobic and chemolithotrophic with ferrous iron or pyrite

but not sulfur serving as the energy source. Optimum pH is 1.4 to 1.8, and

temperature 30-37°C with some isolates having the ability to grow at 45°C. Cells are

catalase negative and peroxidase positive. G+C content of the DNA is 55-58%, 2

copies of rrn genes, and based on 16S rRNA sequence analysis cells form

phylogenetic cluster which is separate from Leptospirillum ferrooxidans. Size of the

16S-23S rRNA intergenic region is conserved among isolates at 500 bp. The type

strain is strain ATCC 49881 that is the same as strain P3A provided by Sand and

originally isolated in Peru (Sand et al., 1992).
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3.0. Summary

A plasmid search was carried out for all Leptospirillum isolates used in this study by

means of Pulsed Field Gel Electrophoresis (PFGE). Owing to the instability of

Leptospirillum total DNA when set in agarose plugs, only three isolates, which

contained plasmids, were identified with certainty (49879, CF12, and Parys). The

inconsistency in plasmid detection prevents ruling out the presence of plasmids in the

remaining isolates. Regardless of the ability to detect plasmids, isolation proved

difficult. Plasmid p49879 was the only plasmid to be isolated successfully. This

plasmid was DIG-labeled and used as a probe against the remaining fifteen isolates.

All members of L. ferrooxidans species gave a positive signal on hybridization

whereas L. ferriphilum species members showed little or no homology. The apparent

species bias was investigated in an attempt to determine whether plasmid homology

further contributed towards the phylogenetic relationship already shown to exist

amongst isolates. The region of homology present in all L. ferrooxidans strains was

localized to an area showing high amino acid identity to a transposase/putative

transposase of Methanosarcina acetivorans and plasmid CPI from Deinococcus

radiodurans Rl respectively. The origin of the region of homology could therefore

be either plasmid or chromosomal. Whether these regions of homology indicate that

complete, functional transposons are present in all L. ferrooxidans isolates still

remains to be determined.

This chapter describes the preliminary mapping, sequencing, and characterization of

plasmid DNA isolated from L. ferrooxidans ATCC 49879, and a study of the

homologous region shared amongst L. ferrooxidans isolates. Since mobilization

genes and Tn2l-like regions were found on the plasmid DNA a brief review of

plasmid transfer and some characteristics of the widespread transposon Tn2l are

given.

3.1. Introduction

Bacterial plasmids are genetic elements involved in the spread of information within

the environment. A plasmid by definition is an extra chromosomal genetic element

that confers a local selective advantage (i.e. in a specialized ecological niche or a

specific set of environmental conditions), as opposed to the essential activities of the

bacterial cell encoded on the chromosome (Coplin, 1989). The selective or
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phenotypic trait conferred by the plasmid is not always a mere competitive advantage,

but is often crucial for bacterial survival in a particular niche. Examples of such traits

are antibiotic and heavy metal resistance, pathogenicity factors, degradation of

aromatic compounds, and ultraviolet (UV) resistance. These functions provided by

the plasmid are referred to as accessory since they are not essential for plasmid

existence, but may select for plasmid retention and possible transfer to others hosts.

Some plasmids are cryptic and have acquired mechanisms to ensure that they are

stably inherited, or rely on a high copy number to prevent them from being lost.

Genes such as these form part of what is collectively referred to as the "plasmid

backbone", which includes genes and sites required for typical plasmid associated

functions such as replication, conjugation and stability (reviewed in Rawlings and

Tietze,2001).

The minimum requirement for the existence of a plasmid is the ability to replicate; the

genes and sequences, which playa role in replication and its control, are referred to as

the basic replicon. Replicons consist of an oriV (vegetative origin), and typically one

or more proteins essential for plasmid replication. The oriV constitutes the site at

which replication commences and is required in cis for replication to occur (Rawlings

et al, 1993). The genes that code for the essential replication proteins may be

provided in trans. A number of different replication protein configurations exist.

Despite the knowledge accumulated on plasmid replication only a limited number of

replicons have been studied in detail. Plasmids may be categorized by the different

strategies that they employ to initiate and control replication. Two general strategies

to facilitate the loading and assembly of the replisome multicomplex at the origin of

replication exist.

3.1.1 Plasmid replication systems

3.1.1.1 Theta replication: This involves strand opening at the origin, followed by

initiation of leading strand synthesis (Figure 3.1). Two subgroups occur within the

theta replicons; one requires host encoded DNA Polymerase I for initiation of DNA

synthesis (Pol.A-dependent) and the other relies on plasmid-encoded proteins for

initiation (PoIA-independent). Within the DNA PolA-dependent subgroup there are

plasmid families whose replication relies on host-encoded proteins alone (i.e.: ColE1

family). Replisome structure and the mechanism of DNA elongation and termination
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are likely to be common in PolA-dependent and PolA-independent plasmids,

differences arise in the mechanism of initiation (Marians, 1992).

o,
(9"

, 5'

o,
())

Leading strand Motion of replication fork

Lagging strand
(Okazaki fragments)

Figure 3.1: A diagrammatic representation of the theta mode of replication. An enlargement of

DNA synthesis at the replication fork is shown in the inset. Open circle, origin of replication; closed

circle, terminus; open square, replication forks

(http://www.urmc.rochester,edu/smd/mbi/med/lecZ.html).

3.1.1.1.1 PolA-independent plasmids

The overall structures of the origins of replication of PolA-independent plasmid

replicons have common features (Figure 3.2). These origins typically consist of: (i)

recognition sites for the site-specific DNA binding protein (Rep initiator); in most

cases a set of short repeated DNA sequences of approximately 20 bp known as iterons

serve as binding sites. In IncFII replicons, imperfect palindromes have been shown to

occur (Giraldo and Diaz, 1992). (ii) One or more sites for the E. coli DnaA protein

(dnaA boxes); (iii) an A+T rich region adjacent to the iterons; and commonly (iv)

GATC sequences. The GATC sequences are target sites for the host Dam methylase

which, when methylated, are thought to positively affect initiation (Crooke, 1995).

The exact mode of interaction is unknown; direct contact of the methylase to initiation

factors is possible, or perhaps methylated DNA is more easily unwound promoting a

better DnaA protein interaction. Methylation is not essential for replication; its role is

primarily post-replication. The presence of methylation on the parental strand ensures

Stellenbosch University http://scholar.sun.ac.za



84

that changes induced by the proofreading function of DNA-Poll, occur on the

daughter strand.
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Figure 3.2: Origins of replication of some representative theta-replicating plasmids from

gram-negative bacteria. (A) PolA-independent replicons. (B) PolA-dependent replicons.

The symbols used are as follows: Arrowheads within boxes, iterons found in origins of

replication (ori) and incompatibility (inc) regions; A+T or G+C, regions rich in these bases;

arrowheads over A+T-rich regions, repeats (n-mers). Promoters are indicated as open

arrowheads. Solid rectangles indicate dnaA boxes, and solid circles, dam methylation sites

(del Solar et al, 1998).
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Initiation of replication generally follows the model proposed for replication at arie

of E. coli (Kornberg and Baker, 1992). The initiator Rep protein binds to the iterons

of the origin and distorts DNA conformation causing a localized "melting" of the

double helix at the adjacent A+T rich region (Figure 3.3). This occurs with varying

degrees of assistance from DnaA. Opening of the DNA helix facilitates entry and

incorporation of the DNA helicase (DnaB) to one of the strands to form the pre-

B
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priming complex. Rep proteins can also interact directly with the helicase (Ratnaker

et al, 1996) and can playa role in the delivery and activation of the helicase in the

replication fork (Konieczny and Helinski, 1997). Binding of the DNA helicase

extends the initial replication bubble enabling entry of the primase. Association of the

primase (DnaG) at the replication fork is the result of a direct interaction with the

DNA helicase, which is necessary for optimal primer synthesis (Lu et al, 1996).

Entry of DNA Polymerase III holoenzyme completes primosome construction,

priming and synthesis of leading and lagging strand extension follows (Kornberg and

Baker, 1992).

on..T~A
V

Figure 3.3: Initiation of theta-type replication in PolA-independent plasmids. (i) Plasmid

replicon with iterons at ori, (ii) initiator proteins bind to iterons forming a nucleoprotein

complex at the origin, (iii) localized dentaturation at A+T rich region, host encoded single

stranded binding proteins bind ssDNA, (iv) open helix facilitates binding of primosome and

progression of replication fork as in Figure 3.1(Marians, 1992).

The IncQ plasmid family, whose prototype is RSFlOlO, replicate via a strand

displacement mechanism (a subgroup of theta replication). Members of this family

require three different plasmid-encoded proteins, an initiator protein (Repe), a

helicase (RepA), and a primase (RepB), for initiation of DNA replication. These

proteins promote initiation at a complex origin, and replication then proceeds in either

direction by strand displacement. The first few steps in replication initiation are

similar to those of the theta replicating PolA-independent plasmid replicons, however

different proteins drive them. For the sake of completion an explanation of these
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steps will be repeated, including a detailed description of the roles of the respective

IncQ plasmid-encoded replication proteins.

The minimalori region of RSFI010 includes 3.5 20 bp iterons plus a 174 bp region

containing a 28 bp GC-rich stretch and a 31 bp AT-rich segment (Figure 3.4)

(reviewed in Rawlings and Kusano, 2001; del Solar et al, 1998). The origin extends

further incorporating two small 40 bp palindromic sequences containing the plasmid-

specific single stranded DNA initiation sites, ssiA and ssiB (Sakai and Komano,

1996). The ssiA and ssiB sites initiate the priming of single stranded DNA synthesis

on opposite strands in leftward and rightward directions, respectively (Miao et al,

1993). Palindromes favor the formation of hairpins. The upper part of the putative

stem is essential for replication, whilst base complementarity and sequence specificity

in the lower part of the stem are important for primer synthesis (Sakai and Komano,

1996; del Solar et al, 1998). The start point for plasmid synthesis was mapped to the

3' flanking region of each inverted repeat.

RSFIOI0 replication is independent of E.coli DnaA, DnaB, DnaC, and DnaG proteins

as well as RNA polymerase, but is dependent on host DNA Polymerase III and DNA

gyrase. Replication initiation begins with binding of the 31 kDa RepC protein, which

is active as a dimer, to the iterons in the oriV. Binding of RepC causes the localized

melting of the DNA at the A+T-rich region in oriV (Kin and Meyer, 1991). A

secondary interaction of RepC to a site within the A+T-rich region, approximately 60

bp away from the iterons has been suggested. RepC induced DNA melting facilitates

the entry of the RepA protein. RepA has a molecular mass of 30 kDa in its

monomeric form, and exists as hexamers in an active form. It has two activities: a

ssDNA dependent ATPase (stimulated by non-specific ssDNA) and a 5'-3' helicase

(del Solar et al, 1998). RepA helicase activity unwinds the dsDNA in an ATP-

dependent manner, promoting the exposure and activation of the ssi sites in a ssDNA

configuration. The single strand ssiA and ssiB sites are now ready for specific

recognition and priming of synthesis of the complementary single strand by RepB'

pnmase.
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Figure 3.4: Replication of plasmid RSFIOIO by the strand displacement mechanism. (I)

Replicon of RSFIOIO, sites of RepB (inverted repeat [convergent open arrows]) and RepC

(iterons [boxes]) interaction are indicated. AT-rich indicate regions rich in these bases.

Dotted line separates regions of duplex opening and DNA-priming. (II) RepC binds to the

iterons at oriV, causing a localized melting of the DNA at the AT -rich region. (III) RepA

binds at the open DNA complex, unwinding the DNA and exposing single strand ssiA and

ssiB sites. (IV) RepB' binds to ssiA and ssiB, priming and replication follows (Sakai and

Komano, 1996).

The RepB primase occurs in two forms, a 78 kDa MobA-RepB fusion protein (Figure

3.5) and a 36 kDa RepB'. Both are encoded by the same reading frame, the

translation start codon of RepB' is downstream from that of RepB (Rawlings and

Kusano; Sakai and Komano, 1996). RepB' has a primase activity on ssiA and ssiB.

No other template sequences are utilised by this enzyme (Haring and Scherzinger,

1989). Exposure of the stem-loop structure in the ssi sites is probably required for

RepB' to initiate replication (Miao et ai, 1993). It is strongly suggested that RepB'

primase is responsible for the initiation of DNA synthesis on both strands by the

formation of DNA primers. Initiation at either ssi can occur independently and

replication proceeds continuously. RepA helicase facilitates displacement of non-

replicated parental strand forming a D-Ioop. Opposed continuous replication from

iterons

I - - --

priming & reptteatton
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each ssi results in the formation of single stranded displaced circles carrying either

ssiA or ssiB, these sequences are used to initiate synthesis of the complementary

strand, converting ssDNA templates to double stranded supercoiled circles (del Solar

et al, 1998).

2001 8684/1

CJ
c::::::c::::::: DD

oriV oriT mobAirepB cae repA.
mobC mobB repB' orfE

repC su/II strA. strB

Figure 3.5: Genetic map of plasmid RSF1010 of the IncQ family. Genes and structural

features: oriV, origin of vegetative replication; oriT, origin of transfer; mobA, mobB, and

mobC, mobilization genes; repA, repB, repB' and repC, replication genes; cae, control of

repA and repC regulator; oriE, open reading frame of unknown function; sulIl, sulfonamide-

resistant dihydropteroate synthase; strA and strB, streptomycin aminoglycoside

phosphotransferase (Rawlings and Tietze, 2001).

3.1.1.1.2 PolA-dependent plasmids

The PolA-dependent plasmid replicons carry ongms of replication that display a

lesser degree of similarity to those of the PolA -independent replicons (Figure 3.2B),

and consequently include diverse modes of replication initiation. In contrast to the

PolA-independent replicons, where replisome assembly occurs before DNA

replication, replisome assembly occurs after an initial synthesis of the leading strand

carried out by host PolA (DNA Polymerase I). The reason for this is that the "starting

points" of initiation are replication signals that are functional only in the single-

stranded conformation and are exposed and activated by a strand displacement

reaction (Figure 3.6) (Marians, 1992). Following primer synthesis, PolA attaches to

the displaced single strand at a 3'OH terminus to initiate DNA synthesis and

replisome assembly. While the latter two steps appear to be highly conserved, the

mechanism of primer formation differs greatly.
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Figure 3.6: Initiation of theta-type replication in PolA-dependent plasmids. (i) Recognition

of promoter at origin by either host RNAP (ColEl) or plasmid-encoded initiator proteins

(ColE2), (ii) RNA transcript is synthesized, (iii) replisome assembly, (iv) DNA replication

proceeds normally from replication fork as in Figure 3.1 (Marians, 1992).

In the ColEI family the host-encoded RNAP and RNaseH perform primer synthesis.

RNAP recognizes the external promoter (RNAII PI» (Figure 3.2B) and synthesizes an

RNA transcript that extends beyond the initiation site of DNA replication. An

RNA/DNA hybrid is formed on one template strand, either transiently or in a stable

Dvloop. RNaseH cleaves the RNA moeity at one of three consecutive A residues,

providing a 3'OH terminus for initiation of PolA-directed DNA synthesis (Espinosa et

al,2000).

The Co1E2 family relies on the priming function of the plasmid encoded initiator

protein. The Rep protein recognises and binds to the origin where it synthesizes a

short RNA molecule, with a unique structure of 5'-ppApGpA (Takechi, 1995). The

hosts DNA Pol A recognize this primer.

Primer formation in the pAM~ 1 family is not yet fully understood, although thought

to involve RNAP transcript synthesis followed by plasmid encoded Rep processing

(Reeder and Lang, 1994). There are two models which tentatively describe the role of

Rep. Once the RNA transcript has been synthesized the Rep protein acts either as an

"annealase" or "stop-protein", in both cases halting RNA chain elongation and

inducing cleavage of the nascent transcript approximately 10 nucleotides from the 3'

end. This processing releases the 5' end of the transcript, generating a short cleavage

product for use as a primer.
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Once the first step of initiation is achieved no more specific events are required and

the different replicons can take advantage of the host replication enzymes to fulfil

remaining steps of replication and eventually termination.

3.1.1.2 Rolling circle replication (RCR)

A large number of small multi copy plasmids in different bacteria have been found to

replicate by a rolling-circle (Re) mechanism. Although differences in the mod~ of

replication exist between the different families, a basic pattern does exist. Replication

is initiated by the plasmid-encoded Rep protein, which introduces a site-specific nick

in the parental [+] strand, at a DNA region termed goubIe §.trandQrigin, dso. The nick

introduces a 3' -OH end, which serves as a primer for leading strand synthesis. In

some plasmid families the Rep protein becomes covalently attached to the 5'

phosphate end of the DNA through a phosphotyrosine linkage. Elongation from the

3'-OH, probably done only by host proteins, is accompanied by the displacement of

the parental [+] strand. This continues until the replisome reaches the reconstituted

dso.

Lagging strand synthesis, which occurs at single §.trand Qrigin (sso), and generally

depends on the host RNAP, converts ssDNA intermediates into dsDNA forms.

Finally replication products are supercoiled by the host DNA gyrase (Figure 3.7).

Essential factors required for Re-replication in plasmids are collectively referred to

as, the leading strand initiation and control region (LIe). This comprises the double

strand origin (dso), the rep gene, and the plasmid elements involved in control (del

Solar et al, 1993). Based on homologies observed in the essential LIe module, five

plasmid families have been defined, their prototypes being (i) pT181, (ii) pMV158,

(iii) pe1941, (iv) pSN2, and (v) pUlOlIpJVI. (major Re families are underlined). A

complete list of plasmids in each family is reported in Khan (1997).
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Figure 3.7: Diagrammatic representation of rolling circle replication (RCR). dso, double

strand origin; sso, single strand origin (Modified from Espinosa et al., 1995).

3.1.1.2.1 Double strand origins (dso)

Replication of the parental [+] strand is initiated from the leading-strand origin (dso)

and proceeds in a unidirectional manner. Two loci have been defined within the dso,

namely, the bind and nic regions (del Solar et al, 1998). The former is the binding

site of the Rep initiator protein, whereas the latter contains the site where Rep cleaves

the plasmid DNA (nick site). These two regions can either be adjacent to each other

(pT18l family) or can be separated by a spacer region of 13 to 91 nucleotides

(pMV158 family) (Khan, 1997). Most origins, with the exception of the pUBllO

origin (pC194 family), contain sequences that have the potential to form secondary

hairpin structures (Figure 3.8). Sequence flexibility in the nic and bind regions

promotes a DNA topology, which facilitates Rep binding (Gruss and Ehrlich, 1989;

Alonso et al, 1988). The nick region contains inverted repeats able to generate one or

two hairpin structures, the Rep nic site is generally located on unpaired regions (loop)

of the hairpin.
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Figure 3.8: Secondary structure created at the dso origins of replication of plasmids pMV158

(A) and pT 181 (B) for the initiation of rolling circle replication. The bind and nic regions are

indicated, as are the approximate sites where nicking takes place (nick). Thin arrows indicate

sites where the initiator Rep proteins act; iterons, arrowheads in boxes; IR, inverted repeats;

open triangles, promoters; A+T/G+C, areas rich in these bases; copG, transcriptional

repressor of repE. (del Solar et al, 1998).

DNA sequences of the bind regions consist of either an inverted repeat contiguous to

the nick site (IRIII in the pT181 family), or a set of two or three direct repeats

(iterons), which are separated from the nick site by intervening sequences (pMV158

family). Figure 3.8 shows a structural comparison between the bind regions of these

two plasmid families (del Solar et al, 1998). It seems that only the pMV158 family

contain directly sequences within their dso (del Solar, 1993).

Essential regions involved in the interaction with the plasmid initiator protein vary

and have been determined for the different plasmid families (Wang, et al 1993; Gruss

and Ehrlich, 1989; del Solar et al, 1998). A typical feature however is that the nic

regions are highly conserved among replicons of the same family, whereas differences

are found at the bind loci.

Not only is the dso a site for replication initiation, but for termination as well. For

plasmids of the pT181 family it has been shown that after a round of replication the

replication fork proceeds approximately 10 nucleotides beyond the regenerated Rep

nic site (due to Rep-DNA association at the RH IRII and IRIII), where replication is

arrested and Rep cleaves at nic (Khan 1997). Only the nic site (not the bind site) has

been shown to be necessary for termination, via a specific, albeit weak, interaction.

Finally the Rep protein is inactivated by covalent attachment of an oligonucleotide
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(lOmer) to the active tyrosine residue, which is responsible for nicking-closing of the

DNA. Prevention of Rep initiation recycling is critical in the control of over-

replication (del Solar et al, 1998). The model for pT181 termination does not apply to

the pMV158 family since the Rep protein does not remain covalently bound to the

DNA, no alternative models for leading-strand termination have been reported.

3.1.1.2.2 Single strand origins (sso)

Lagging strand synthesis initiates and terminates at the sso. The SSOs are non-coding

DNA regions able to generate large stem-loop structures, which function in an

orientation dependent manner. This suggests that the ssDNA to dsDNA conversion

requires unpaired sequences within the secondary structure that constitute the sso

(Espinosa et al, 2000). Unlike DSOs, SSOs are generally not homologous among

plasmids belonging to the same family. Several SSOs have been identified based on

their secondary structures, such as SSOA (pT181 and pC194), SSOu (pUBllO), SSOr

(pTA1060 and pBAA1) and SSOw (pWV01) (Boe, 1989; Khan, 1997; del Solar et al,

1998 and Meyer et al, 1998). Plasmid pMV158 bears both a SSOA and a SSOu. SSOs

are generally host specific (SSoA-type origins), however some SSOu origins have been

shown to display a wider host range (Boe, 1989), which could contribute to plasmid

promiscuity and horizontal transfer amongst related bacteria.

Analysis of the DNA sequence and structure of the SSOA of various plasmids showed

the presence of two conserved unpaired regions (Figure 3.9) (Novick, 1989). A 6-

nucleotide sequence 5' TAGCGAff 3' (CS6) located in the central loop of the

secondary structure and a recombination site, RSB, involved in plasmid

recombination. The RNA polymerase has been shown to bind to ssDNA only if an

intact RSB sequence is present, which is expected to be in the dsDNA formed by the

secondary structures, and synthesis of an -20 nucleotide RNA primer which is

subsequently terminated at CS6. CS6 marks the site for RNA pnmer synthesis

termination and the point at which the host DNA Polymerase I initiates DNA

synthesis (Khan, 1998). Other sequence structures reported in SSO's include two

inverted repeats (IR1 and !R2) of pWV01 SSOw, and sequence that weakly resembles -

35 and -10regions in plasmid pLS 1 and pT181. Following replication initiation,

lagging strand synthesis commences until replication is terminated.
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Figure 3.9: Comparison between folded

structures of SSOA (pEI94) and SSOu

(pUBllO). The brackets and arrows indicate

the major start sites of lagging-strand

replication from these SSOs. The bracket in

pE194 SSOA also corresponds to the conserved

CS6 sequence. The first stem-loop structure

located at the bottom of the pE 194 SSOA

corresponds to RSs, which is the binding site

for RNA polymerase (Khan, 1997).

pE1114 uo. pUB110 "Ou

3.1.1.2.3 Initiator proteins

The role of the plasmid encoded Rep protein in RCR is two-fold. Firstly a nicking

activity is essential for initiation of replication, whilst cleavage and joining (in a type I

topoisomerase-like fashion) is essential for replication termination. The Rep proteins

for each plasmid family, regardless of their differences, display both of these qualities.

Rep proteins encoded by RC-replicating plasmids have several conserved motifs that

are shared with the Tra/Mob proteins involved in plasmid transfer through

conjugation (discussed later) (Pansegrau and Lanka, 1991; Waters and Guiney, 1993).

The presence of two other domains corresponding to enzymatic activity and metal

binding were also shown. Interestingly plasmids of the pT181 family do not have this

last motif.

The Repe of pT181 functions as a dimer although dimerisation may occur after

RepC has bound to its target DNA (Zhao and Khan, 1997). The conserved

phosphodiester bond 5'-ApT-3' is cleaved by residue Tyr191 of RepC, which remains

covalently bound to the 5'-phosphate end generated by the cleavage reaction (Thomas

et ai, 1995). Once a RepC dimer has been used it becomes inactive for a few rounds

of replication because of the attachment of an oligonucleotide to one of its subunits,

generating a heterodimer, RepC/C* (Rasooly, 1994). Biochemical analysis has shown
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Stellenbosch University http://scholar.sun.ac.za



RepC to be identical to RepC*, except for the absence of the active tyrosine residue in

the modified protein. Since the pT181 RepC assembles as a dimer on the DNA, the

acti ve Tyr 191 residues of both subunits probabi y participate in the transesterification

reactions during the termination step.

The RepA of pC194 was shown to have two different catalytic residues, one (Tyr

214) involved in nicking of the DNA during initiation and the second (Glu 210),

activates a water molecule causing the hydrolysis of a phosphodiester bond resulting

in termination. Re-initiation in this case is prevented by the utilization of a glutamate

residue in place of a tyrosine during the termination step (Khan, 1997).

The RepB of pMV158 does not form a stable covalent tyrosyl-phosphodiester bond

with its target DNA (Moscoso et ai, 1997). A transient bond between RepB and a

DNA sequence containing the cleavage site of RepB (5'-GpA-3') could however

mediate the initiation of replication. A weak covalent interaction between RepB and

the nick site that could mediate nicking and closing was predicted from analysis of the

chirality of the phosphate involved in cleavage (del Solar et al, 1998). Figure 3.10

illustrates the functional organization of the pTI81-, pMVI58-, and pCl94-farnily

replicons.

pT181

pMV158

pC194

~ .. cop rep

Figure 3.10: Functional organization of Re plasmids belonging to three different families.

Maps are not drawn to scale. Direction of gene transcription and direction of replication from

the origins (DSO's) are shown. Plasmid pMV158 encodes two copy control genes (an

antisense RNA and a repressor), which are transcribed in opposite directions. Plasmid

pMV158 contains both ssoA and ssoU sequences, whereas the other plasmids contain only

one SSO. Ori, double-strand origin; sso, single-strand origin; rep, initiator gene; cop, copy

control genees); pre, recombinase gene; mob, mobilization function; tet, tetracycline

resistance gene; cat, chloramphenicol resistance gene (Khan, 1997).

95
Stellenbosch University http://scholar.sun.ac.za



96

3.1.1.3 Control of plasmid replication

The basic strategy employed by plasmids to maintain themselves in host cells is the

coupling of plasmid DNA replication to the growth of the host cell. This is achieved

through the synthesis of inhibitors (negative regulators) to curtail replication, should

plasmid copy number rise above a certain level. Mechanisms controlling replication

have been studied in various systems, and several types of inhibitors have been

detected. (i) Antisense RNA (ColEl and pT18l); (ii) both antisense RNA and a

repressor protein (pMV158 and Rl), and (iii) DNA sites for binding of initiator

proteins (F, PI, RK2, and R6K).

3.1.1.3.1 Control by antisense RNA

Control by antisense RNA can be either direct (ColEl), or indirect (pT181). Direct

regulation occurs when the inhibitor prohibits the synthesis of an RNA primer, while

indirect regulation controls the level of a rate-limiting Rep protein. In both cases

control is performed by antisense RNAs (80-150 nt), complementary to a region in the

5' end of the target transcript (preprimer RNA for replication or rep mRNA), also

called "countertranscribed" RNAs (ctRNAs) (Novick, 1987; Novick, 1989). The

inhibitory interaction involves complementary base pairing between inhibitor and

target transcripts at the unpaired hairpin loop region of their secondary structures.

The complex formed by this interaction is called a "kissing" complex, which modifies

the secondary structure of the target transcript, thereby interfering with its function

(Tomizawa, 1982; Wong, 1985; Masukata, 1986). Figure 3.11 shows a diagrammatic

comparison of direct versus indirect regulation of inhibitor-target plasmids, and the

mutational effects of ctRNA on plasmid replicons.

In plasmid ColEI (as previously mentioned) initiation of replication depends on the

formation of an RNA primer (RNAII), which is made by host encoded RNAP and

processed by RNaseH. Processing of the DNA-RNA hybrid is required for the

transition from RNA to DNA synthesis, by generating a 3'-OH end recognized by

Poll. The availability of the 3' -OH end is rate limiting for initiation, and therefore the

target of ctRNA binding (del Solar et al, 1998). Hybrid formation between the

antisense RNAI and the preprimer RNA II occurs only when the secondary structure

of the nascent RNAII transcript comprises three stem-loop domains (I, II, and III),

which are complementary to the hairpin structures formed by RNAI (Figure 3.11A).
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This association alters the secondary structure of the preprimer, the 3' -OH end of

which is no longer available to hybridize to the DNA, preventing DNA-RNA hybrid

formation. This removes the target for RNaseH processing and inhibits the initiation

of replication (Tomizawa, 1981). Formation of stem-loops I; II, and III depends on

the associations formed between areas a, ~, and y which occur along the length of the

RNAII transcript (Cesareni et al, 1991). When RNA polymerase has transcribed

approximately 200 nucleotides, I, II, and III are formed, this conformation is only

transient as the polymerization of several more nucleotides disrupts stem III and

creates a new, longer stem (IV), which is stabilized by hydrogen bonding between a

and ~ sequences. As transcription proceeds, two mutually exclusive structures

become possible, depending on whether ~ remains paired with a, or instead

contributes to the formation of a new stem-loop structure (V), by pairing with the

downstream complementary sequence y. A ~y complex causes hairpins I, II, and III to

reform, RNAI can therefore associate with RNAII-~y and as a consequence reduce the

plasmid copy number. An auxiliary role is provided by the Rop protein (Som and

Tomizawa, 1983). Rop acts as a stabilizer, increasing the formation efficiency of the

"kissing" complex and thus decreasing the efficiency of replication.

In the model for the control of replication of pT181 it is proposed that synthesis of the

Rep initiator (RepC) is inhibited by two ctRNAs (RNAI and RNAII), which are

complementary to the untranslated 5' -end of the rep mRNA (Kumar, 1985; Novick,

1987; and Novick, 1989). Both RNA species can form the ctRNA-mRNA hybrid, but

act independently of each other. Hybrid formation results in a conformational change

at a region disassociated from the region of complementarily (Figure 3.9B). As the

ct-Rep mRNA complex is transcribed, hairpin structures resembling transcription

termination sites are formed, resulting in the premature termination of transcription.

Therefore transcriptional attenuation is the mechanism for controlling the copy

number of pT181 (del Solar et al, 1998). Overexpression of the RepC protein of

pT181 has also been shown to inhibit plasmid replication (Khan, 1998), due to the

formation of inactive RepC-origin complexes. Thus while initiator proteins are

normally rate limiting for replication, regulation of replication by the initiators may

also occur under conditions in which the Rep proteins are overexpressed.
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Figure 3.11: Direct versus indirect regulation of inhibitor-target plasmids. (A) ColEl: Two

convergent promoters PrI and PrIl. Synthesis from PrIl (RNAIl) results in the formation of

the preprimer necessary for replication initiation. Synthesis from PrI (RNAI) yields a short

-108 nucleotide transcript. Pairing of the preprimer sequences, cxand p, is required for the

formation of the downstream hairpin necessary for preprimer processing; binding of RNAI to

RNAIl prevents this (Tomizawa et al, 1981). Formation of the py complex reinstates hairpins

I, II, and III necessary for RNAI binding, and as a consequence results in a reduction of

plasmid copy number (Cesareni et ai, 1991). (B) pT181: Three different promoters PrIlIl,

PrIll, and PrIV. RepC mRNA is trancribed from promoters PrIll and PrIV. Two small RNA

species (RNAI and II) are transcribed from a single promoter PrI within the leader from the

opposite strand. Pairing of sequence 1 and 2 (labeled arrows) prevents the formation of the 2-

3 stem, which is thought to interfere with translation of the initiator protein repe (wavy line),

and it is the 1-2 pairing that is blocked by RNAIIII binding to RNAIIIIIV (Kumar and

Novick, 1985). Pr, Promoter; SD, Shine-Dalgarno site; ori, replication origin (Novick, 1987).
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B.2 Plasmid p49879.2 hybridization results

B.2.1 NotI probes B.2.2 SacII probes

p2Nl
B.2.3 Sail probes

p2Sc3 p2Sc4

.-
0"1
-.l

p2S1 p2S2 p2S4 p2SS p2S6 p2S7

Stellenbosch University http://scholar.sun.ac.za



99

3.1.1.3.2 Control by both antisense RNA and a transcriptional repressor

Control in these systems is two-fold, inhibiting expression at both transcriptional

(repressor protein) and post-transcriptional (ctRNA) levels. Post-transcriptional

mediated inhibition also involves a "kissing" complex between target and inhibitor

transcripts, blocking translation initiation of the respective rep mRNAs.

Replicative control of plasmid Rl is modulated by the products of the copy number

control genes copA and copB (Wagner and Simons, 1994). CopA is an unstable

antisense RNA complementary to the leader region (CopT) of the rep mRNA, and is

the primary inhibitor (Figure 3.12). The CopA-CopT hybrid inhibits RepA synthesis

by hindering the translation of a leader peptide-encoding gene tap, which is

translationally coupled to RepA (Blomberg et al, 1992). The CopB protein plays a

secondary role by repressing transcription of repA from a promoter, P2, located

downstream of copB. Under steady-state conditions CopB is in abundance and totally

represses transcription from P2. The repA mRNA synthesized at this time takes the

form of a polycistronic copB-tap-repA mRNA. Inhibition at P2 is derepressed when

the copy number drops or is low at the early stages of plasmid establishment, and

repA is transcribed as tap-repA mRNA.

CopA

~~~ I
( t I

+
Iei> e CopT

coe~y.
,

y. 7k~ reeA ori Rl
i ).:: ::::·::·.·::··:····1 I ... I I I~
Pl P2

...P3

CopA e je!! r-.
../

'''iiillliiii'

CopNCopT dupln• bin?ofCopA,

i tap irep_:_t_ ......._ i Ir.nol~Gtin~

escape ........
~-

CopT 000

Figure 3.12: Control of replication of plasmid Rl by CopA RNA and CopB. Genes and sites of the

basic replicon are shown. Promoters (filled triangles): PI, copB promoter, P2, repA promoter, P3, copA

promoter. Negative regulation is indicated by minus signs. The consequences of antisense RNA

binding or of RepA mRNA escape are shown schematically. Details are discussed in the text (Wagner

and Simons, 1994).
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In the case of plasmid pMV158 the inhibition is carried out primarily by CopG, a

transcriptional repressor, which binds to and represses transcription from a single

promoter for both the copG and repB genes (Figure 3.13). The ctRNA (RNAII),

which is complementary to a region of the cop-rep mRNA between the copG and

repB genes, is the secondary element involved in copy number control (del Solar et al,

1998).

crRNA

~I
Per copG

c::::J ..

.11r~B

cop repmRNi U
Figure 3.13: Control of plasmid replication by both antisense RNA and a transcriptional

repressor in pMV158. Transcripts are shown as continuous lines, with arrowheads indication

direction of synthesis. mRNAs are shown with thicker lines than antisense RNAs; ctRNA,

thin line with small arrowhead. Other symbols: rectangles, promoter; a.r.b.s, atypical

ribosome-binding site; parallel vertical lines, mRNA-ctRNA interaction; minus, inhibitory

RNA-RNA or protein-DNA interactions. Per, promoter for eopG and repB genes (del Solar

et al, 1998).

3.1.1.3.3 Control by iterons

In theta-replicating iteron containing plasmids, both the Rep protein and iterons are

involved in regulation of replication. The Rep proteins of most iteron-containing

plasmids are autoregulated (del Solar et al, 1998; Nordstrom, 1990). Two

mechanisms for the involvement of iterons in inhibition have been proposed. (i) The

titration model, which assumes that the Rep protein is rate limiting for initiation and

that the iterons titrate the Rep protein away from the origin thus limiting the

frequency of initiation (Pal and Chattoraj, 1988; Tsutsui et al, 1983). Whether iterons

are present at the oriV alone (pSC101, R6K, and RK2), or both within and outside of

the oriV (Pl), this model is only plausible if two different forms of the Rep protein are

involved in autoregulation and initiation respectively. This would ensure that

inhibitor titration could not be overcome by derepression of rep (Chattoraj et al,
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1988). In these replicons it has been shown that replication is initiated through the

binding of a monomeric form of Rep to the iterons at the oriV, whereas autoregulation

occurs through binding of a dimeric form of Rep to an inverted repeat sequence

partially similar to the iterons. (ii) The second model is based on the initiator protein

having at least two DNA binding sites, one on each monomer, and that the protein has

the ability to bind simultaneously at both sites (Mukherjee et al, 1988). When Rep

proteins bind to and saturate the iterons of the origin, initiation occurs if the plasmid

copy number is low. As the number of copies increases, Rep molecules bound to the

iterons of one origin begin to interact with similar complexes generated on other

origins (Khatri et al, 1989; McEachern et al, 1989). Plasmid molecules pair through

Rep-Rep interactions and cause a steric hindrance to the function of both origins

resulting in inactivation of replication (Figure 3.14). This is called the "handcuffing",

or steric hindrance model.

oriV r----------.._

(a)

~t
(bl ~

(c)

Figure 3.14: Model for copy number control in plasmids using iterons. The figure shows the

ori region of plasmid PI. (a) RepA protein binds to iterons both within and outside of ori,

protein-protein interactions occur between RepA proteins of the same origin (b), and origins

of different plasmids (c), both of which are reversible (Nordstrom, 1990).
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3.1.2 Replicon-associated incompatibility

Not only is the replicon involved in plasmid replication and control, but it also

determines plasmid compatibility status. Plasmid incompatibility is the inability of

two co-resident plasmids to be stabily inherited in the absence of external selection

(Novick, 1987; reviewed in Rawlings and Tietze, 2001), and cannot be assigned to the

function of a single gene, but is the result/consequence of the normal activities of

certain plasmid maintenance and replication functions. Incompatibility may be either

symmetric or vectorial. Symmetric incompatibility (where co-resident plasmids are

lost with equal probability), results when co-resident single replicons share essential

replication and maintenance functions and are unable to correct fluctuations arising

from the random selection of plasmid copies for replication and partitioning events.

Vectorial incompatibility (where one plasmid is lost exclusively or with higher

probability) is usually the result of interference of replication by cloned plasmid

fragments containing replication control or maintenance systems, or by certain copy

control mutations of directly regulated plasmids (Novick, 1987). Incompatibility can

result either directly or indirectly from plasmid determined negative regulation

systems designed for copy number control and maintenance. These systems may be

grouped into inhibitor-target- and iteron binding regulation. Negative mechanisms for

the control of plasmid copy number via antisense RNA and iteron binding have both

been discussed in the previous section, therefore only the incompatibility conferred by

plasmids utilizing these systems will be addressed.

3.1.2.1 Inhibitor-target regulation

The synthesis of inhibitory RNA's is constitutive and responsible for controlling copy

number fluctuations in bacterial cells. Should any two plasmids using inhibitor-target

regulation be isogenie for the ctRNA coding region, they will be incompatible.

Plasmid selection for replication inhibition is random, however in a study of a system

containing cloned ctRNA determinants strong, vectorial incompatibility was

expressed as such clones displace any sensitive plasmid (Molin and Nordstrom,

1980). The secondary regulatory factors for ColEl and Rl, the Rop and CopB

proteins respectively, do not cause incompatibility alone, but enhance the

incompatibility activity of the cloned inhibitor (Tomizawa, 1984).
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3.1.2.2 Iteron Regulation

The two modes for iteron mediated regulation are (i) titration of the initiator protein

which reduces replication initiation and/or (ii) replicon "handcuffing", which

prohibits replication (Chattoraj, 2000). Deletion of these repeats leads to an increased

but still controlled copy number (Pal et al, 1988; Nordstrom, 1990), while the

introduction of extra copies reduces the replication frequency, i.e., the repeats cause

incompatibility (Gardner et al, 2001; Lin et al, 1987; Persson and Nordstrom, 1986;

Tsutsui, 1983). Plasmids that share iteron sequences are incompatible as they

compete for the binding of a limiting, essential replication protein and plasmid

replication becomes random.

3.1.3 Secretion systems

The transfer of cellular components, such as proteins, toxins, hydrolytic enzymes

including genetic material from one bacterial cell to another may occur. Directed

secretion pathways exist which involve some means of translocation of the exported

substrate across the cell membrane. Substrate transfer may occur directly (cell to

cell), or indirectly, where substrates are transported to the extracellular milieu in order

to make contact with the target cells. Mechanisms responsible for such movements

have been described, and are referred to as Type I-V secretion systems. Systems I, II,

III, and V (reviewed by Linton and Higgins, 1998; Sandqvist, 2001; Plano et al, 2001;

and Jacob-Dubuisson, 2001 respectively), will not be addressed here.

3.1.3.1 Type IV secretion systems

Type IV secretion systems are classified by their capacity to transfer protein

substrates intercellularly (Christie, 2001). Transfer occurs via macromolecular

transfer systems that share a common ancestry with the conjugation machinery

(mating pair formation, mpf, complex) of Gram-negative bacteria. Thus, conjugation

systems appear to form a sub-group of type IV systems that have the additional ability

to translocate DNA-protein complexes.

Type IV secretion systems are present in several pathogens of plants and mammals for

example: Agrobacterium tumefaciens (transfer of oncogenic T-DNA and several

effector proteins to the nuclei of plant cells); Helicobacter pylori (the delivery of the

145kDa CagA protein to mammalian cells); and Bordetella pertussis (exports the
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pertussis toxin, PT) (Christie, 1997; Christie, 2001). Each of these systems requires

the formation of a macromolecular protein complex, which spans the cell membrane,

consisting in part of a coupling protein which ATP-dependently "docks" the substrate

for transfer at the receptor/pore of the plasma membrane. Substrate translocation

differs between systems. The A. tumefaciens T-DNA transfer system and the H.

pylori CagA export system are thought to export substrates in one step across the

membrane directly to the eukaryotic cytosol. Included in this group of transfer

proteins that are non-covalently associated with ssDNA are the Sog primase by

plasmid Collb-P9, and RecA by the F and RP4 plasmid transfer systems (Rees and

Wilkins, 1990). The B. pertussis PtI system is thought to export PT in two steps

across the cell envelope to the extracellular milieu. Secreted holotoxin then binds to

the mammalian cell membrane (Christie, 2001).

Regardless of whether DNA-protein complexes or proteins alone are transferred,

sequence analyses of the genetically defined transfer regions have revealed that many

of the deduced proteins are highly similar to the Tra proteins of broad host range

(BHR) plasmids. In addition, the genes encoding homologous proteins are usually

located at similar positions in the respective transfer operons (Table 3.1).

T-DNA transfer in A. tumefaciens has been studied extensively (Christie, 1997;

Sundberg, 1999; Christie, 2001), and is used as a reference point for the type IV

systems. It also provides a convincing link between protein transfer and plasmid

conjugation systems. Comparative studies between A. tumefaciens T-DNA transfer

and RP4 conjugation systems were performed (only parallels are drawn here). For a

detailed account of conjugation see section 3.1.3.2. Substrates for the nicking

enzymes of both systems, T-DNA border sequences and the RP4 origin of transfer

(oril) exhibited a high degree of sequence similarity. The nicking enzymes VirD2 of

pTi and Tralof RP4, possessed conserved active-site motifs located within the N-

terminal regions of these proteins. Purified forms of both proteins were found to

complement nick site cleavage in the opposing system. Both VirD2 and TraI were

found to remain covalently bound to the 5'-phosphoryl end of the nicked DNA at

conserved tyrosine residues Tyr-29 and Tyr-22 respectively, and both proteins also

displayed type I topoisomerase rejoining activity (Christie, 1997; Pansegrau, 1993a;

Pansegrau, 1993b, Pansegrau, 1994).
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Table 3.1: Gene organisations of type IV systems known or postulated to translocate

macromolecuar substrates intercellularly, The A tumefaciens virB gene products shown

across the top assemble as the T-DNA transfer system. The underlying examples of type IV

systems are composed of homologues of some or all of the VirB proteins. The top group

(above dashed lines), transfer DNA between bacteria, the B. pertussis and H. pylori systems

deliver known substrates (PT and CagA respectively) to mammalian cells. The L.

pneumophila dot/icm gene products are homologues of the Shigella flexneri ColIb-P9 (Incl)

transfer proteins. This system can conjugally transfer DNA, but its proposed role in virulence

is to export effector proteins (part of a diagram from Christie, 2001).

3.1.3.2 Conjugation

Plasmids of E. coli have been classified into approximately twenty incompatibility

(Inc) groups according to the specificity of their replication machinery (Couturier, et

al, 1988). With the exception of the IncF and Inel complexes, little or no

DNA/protein similarity among the transfer systems of the other Inc complexes exists.

Of the twenty only six have been analysed in detail with regard to conjugation. A

general trend in the mode of conjugation amongst Gram-negative bacteria does

however exist, with minor differences.
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Conjugation is the process whereby genes are transferred from one bacterial cell to

another through plasmid-encoded functions. This occurs in both Gram-positive and -

negative bacteria. The conjugative transfer process requires a cis-acting site, the

origin of transfer (oriJ), and two other trans-acting complexes: the mating pair

formation system (Mpf), responsible for donor-recipient contact, and the DNA

transfer and replication system (Dtr). Conjugative plasmids may be either self-

transmissible or mobilizable. The former carry a self-sufficient transfer system,

whereas the latter are not self-transmissible but can be transferred via conjugation in

the presence of a transmissible "helper" plasmid. Self-transmissible plasmids

therefore have the unique ability to promote an intimate cellular association between

donor and recipient cells facilitating the formation of a "mating bridge" through

which plasmid DNA may be transferred (Figure 3.15).

A B c D

Figure 3.15: Diagrammatic representation of the process of conjugation. (A) Plasmid-

carrying donor cells express sex pili; (B) Pilus mediated pair formation, relaxosome (+)

catalyzed oriT cleavage; (C) ssDNA transfer, complementary strand synthesis in donors and

recipients; (D) T-DNA recircularises and supercoils.
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3.1.3.2.1 Origin of transfer (orin

The origin of transfer plays a central role in both initiation and termination of DNA

transfer, and is the only site required in cis for DNA processing and transfer. Through

comparison of a wide variety of transfer origins, five families of oriT sequences

which show strong nucleotide conservation in the vicinity of the nic site have been

identified (Zechner et al, 2000).

Although the sequence of each oriT is unique to its cognate plasmid type, similarity in

the structure at oriT often allows plasmids from different families to cross-

complement each other (Furuya and Komano, 2000). The oriT not only includes

binding sites necessary for the nicking (nic) and initiation of DNA transfer, but single

strand initiation sites (ssi) that are required for the triggering of complementary DNA

synthesis in both donor and recipient cells as well (Rohrer and Rawlings, 1993). The

ori'T region is characterised by the presence of one or more sets of inverted repeats.

Divergent promoters are also a common feature within the oriT of most plasmids

studied, and encode proteins involved in oriT binding and relaxosome formation

(Drolet et al, 1990). Divergent transcription is capable of creating a region of

negative supercoiling between the two advancing RNA polymerases, which would

stimulate unwinding of the DNA. In the case of pTF1 (isolated from

Acidithiobacillus ferrooxidans, Holmes et al, 1984), this would promote the formation

of a single-stranded DNA structure in the minimaloriT region for binding of the

plasmid encoded DNA transfer protein MobL (Drolet and Lau, 1992). In contrast, the

two proteins (TraI and TraJ) that react with the oriT of RP4, interact only with

supercoiled DNA, although the site of nicking is single stranded (Pansegrau et al,

1990). Initiation of DNA processing at oriT has been studied extensively in vivo and

in vitro using plasmids of the incompatibility group P and will be used (specifically

RP4) to give a more detailed account of the reactions which take place at the oriT.

The generation of a single DNA strand is the first step in DNA transfer and is initiated

by the formation of a nucleoprotein complex at oriT of plasmid encoded proteins

(TraJ, -I, -H, and -K). TraJ binds asymmetrically to the 19 bp imperfect inverted

repeat sequence in oriT by recognising a 10 bp palindromic sequence (sr) in the right

half of the repeat (Figure 3.16) (Pansegrau and Lanka, 1996; Pansegrau et al, 1994;

Pansegrau et al, 1993b; Ziegelin et al, 1989). TraI (DNA relaxase) then binds to the

Stellenbosch University http://scholar.sun.ac.za



108

TraJ.srj (TraJ bound at its binding site) complex via a protein-protein interaction with

TraJ, as well as recognising and binding to sri, a 6 bp sequence in the nic region in

between the right end of the 19 bp repeat and nic.

( It I· ?

100 bp

ptraJ PtraK

Relaxase operon nic......... , ~ Direction of
"""IIIIIl DNA transfer Leader operon

srj sri'r-::iiI ~ ....._
L--.:::::!.",. - _
traJ ......... - - _

..". - - '........ '3._.k - - nic

A;GGGACAG~AAGGAACACCCGCTCGC~GC~C~CC~G~~
TTCCCTGTCACTTCATCCTTGTGGGCGAGC~CCG TGGATAGGACGGGCCGAC

L- _' , ,

E1
traK

Traj binding (srj) Tral recognition
site (sri)

relaxosome formation/initiation

specific termination

Figure 3.16: Organisation of the transfer origin of RP4. Transcription of relaxase and leader

operons initiating at divergent promoter sites within oriT is indicated by horizontal arrows.

Bold horizontal arrows mark an inverted repeat sequence adjacent to the cleavage site (nic).

Binding sites for transfer gene products Tral, TraJ and TraK (sri, srj, and srk respectively) are

drawn as shaded bars. Open bars represent the 5' terminal regions of the transfer genes traJ

and traK. Arrowheads show the 5' ends. Part of the nucleotide sequence of oriT is depicted

below: inverted repeat sequences are indicated by horizontal arrows, dots mark deviations

from the symmetry. Black regions within sr) indicate nucleotides that are protected against

attack by hydroxyl radicals in the presence of TraJ. Nucleotides that are recognised by Tral

are drawn with a shaded background. A wedge marks the position of the cleavage site

(Zieglin et al, 1989).
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Two additional proteins encoded by the relaxase and leader operon, TraH and TraK,

also participate in relaxosome formation and influence cleavage at oriT. TraH does

not bind DNA itself but stabilises the complex at oriT by binding to the TraJ and TraI

proteins. TraK interacts specifically with oriT by wrapping srk, a 180 bp region

downstream of nic, around a core of TraK (Ziegelin et al, 1992). TraK.srk induces

additional supercoiling which is thought to influence the localoriT topology,

exposing the single stranded nic region, thereby facilitating the interaction of TraI

with its target site (Pansegrau et al, 1993b). The Tral-mediated cleavage reaction at

nic of oriT consists of a reversible transesterification initiated by nucleophilic attack

of the phosphodiester moiety at nic by the hyroxyl group of TraI tyrosine 22.

Cleavage results in covalent attachment of TraI to the 5' -terminal 2' -deoxycytidine

residue at nic (Pansegrau et al, 1993b).

Active site characterisation of the relaxases of both RP4 (TraI) and RSF1010 (MobA)

indicated that they rely on only one active tyrosine for DNA strand transfer

(Pansegrau et al, 1993b). The monomeric form of relaxase is therefore insufficient

for second cleavage and hence for termination. A model has been proposed

suggesting that the relaxosome functions as a dimer, each catalytic site being

responsible for either initiation or termination of DNA transfer (Pansegrau and Lanka,

1996). This model is similar to that of replication termination in RCR plasmids

discussed earlier. Termination at oriT has been studied extensively and a common

sequence/structure requirement is evident in each case. For plasmid RSF1010

(Rl162) the oriT consists of a specific nick site and a 10 bp inverted repeat with one

mismatch situated 8 bp from the nick site. The 10 bp IR as well as the sequence

around the nick site was shown to be required for termination (Furuya and Komano,

2000). Similar results were obtained for plasmid R64 whose oriT consists of two

inverted repeats (17 bp and 8 bp respectively) and a nick site (Furuya and Komano,

1991). The nick site and both inverted repeats are required for efficient termination,

however the 8 bp IR probably serves as an enhancer of protein binding to 17 bp IR. It

has been postulated that during termination of DNA transfer, formation of a hairpin

loop structure at the inverted repeat is required for resealing of the transferred DNA at

the reconstituted nic site by the respective plasmid relaxase, which is still covalently

bound to the 5' end of the transferred DNA (Furuya and Komano, 2000). This model

is comparable to replication termination in RCR plasmids, discussed earlier.
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3.1.3.2.2 Mating pair formation systems:

The current model for bacterial conjugation involves the formation of a stable

interaction between donor and recipient cells. This entails an intimate association

through the formation of physical intercellular contacts, which take the form of

extracellular filaments called sex pili. Studies on the F pilus revealed that it is

composed of a major subunit, pilin, of 70 amino acids (Anthony et al, 1999). Pilin is

processed from a 121-amino-acid precursor, propilin, encoded by the traA gene of

plasmid F. Propilin is inserted in the inner membrane through the action of TraQ, an

F-pilin-specific chaperone in a process which requires ATP and an active proton

motive force (Majdalani et al, 1996). Mature pilin is stored in the inner membrane

where it is assembled into a functional pilus filament by the assembly proteins to form

the Mpf-complex (Anthony et al, 1999). Cell contact occurs between the pilus tip and

surface of the recipient cell. Pilus retraction, caused by depolymerisation of pilin

subunits, ensures direct cell-to-cell contact, followed by the formation of a "mating

bridge" through which DNA may be transferred. Pilus-recipient contact also enables

the donor to detect whether the recipient harbours an identical or related plasmid, as

plasmid-bearing status is displayed through surface or entry exclusion (Zechner et al,

2000). Exclusion proteins expressed by the plasmids are presented on the cell surface

as an abundant outer membrane lipoprotein, which halts the interaction of the pilus tip

with the recipient cell. Proteins TraT (OM) and TraS (1M) of the IncF! plasmid Fare

involved in blocking mating pair stabilisation (surface exclusion), and the signal for

DNA transfer (entry exclusion), respectively between donor cells (Achtman et al,

1977; Manning et al, 1980; Perumal and Minkley, 1984; Anthony et al, 1999). Entry

exclusion is followed by disengagement of the two bacterial cells.

Most models of the physical association of bacteria during conjugation are based on F

plasmid mediated conjugation (Silverman, 1997). The thick, flexible F pili have been

described as the "universal" mating type correlated with mating on either liquid or

solid substrates. Recent studies on RP4 mediated conjugation, which is

approximately four orders of magnitude greater on solid substrate than on liquid,

disputes the role of a "universal" pilus mediated physical association (Samuels et al,

2000). The presence of junctions in matings mediated by Tra2 mutant donors (trbC,

pilin mutant), suggested that pili are not essential for close contact to occur in RP4

mediated matings. However, no DNA transfer was shown to take place through these
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"mutant" junctions, suggesting a role in correctly targeting a protein needed for

junction stabilisation and DNA transfer for the pili of RP4 (Haase et al, 1995).

In all plasmid families the mating pair formation genes (tra) are proposed to be

responsible for pilus production, cell to cell contact, and the formation a trans-

membrane channel through which DNA is transferred. The exact identity of these

trans-membrane channels is not known, however, electron microscopy has revealed

electron dense regions of cell envelope termed "conjugational junctions", protein

complexes that span the cell envelopes of donor and recipient (Samuels et al, 2000).

Many questions about the assembly process of the Mpf-complex remain unanswered.

Conjugation mediated by the IncPa plasmid RP4 has become a model system for

several reasons. (i) The promiscuity of RP4 transfer between diverse taxa is

analogous to the movement of plasmid-borne antibiotic genes in clinical situations.

(ii) Horizontal gene transfers due to plasmid movement are important for evolutionary

and ecological study. And (iii), RP4 bears similarities to other Type IV secretion

systems (Samuels et al, 2000). A detailed study of the IncPa RP4 conjugative

transfer apparatus has therefore contributed to a better understanding of the cellular

interactions that take place.

Two distinct regions of RP4, Tra1 and Tra2, encode essential transfer functions

(Pansegrau and Lanka, 1996). The Tral region mainly encodes DNA processing

functions (TraH, TraI, TraJ, TraK, and TraM) for the generation of the single-stranded

DNA molecule, which is transferred to the recipient cell. The Tra2 core region (11

genes) and traF of Tral belong to the mating pair formation system (Lessl et al,

1994). TraG, also encoded by Tra1, is thought to connect the gene products of Tra1

(relaxosome), and Tra2 (Mpf complex). Since a close cell-to-cell interaction is

needed for DNA transfer from donor to recipient cell, mpf components were proposed

to form a membrane pore or channel. Sequence alignments of Tra2 gene products

indicated that proteins TrbC, -G, -H, and -L fulfill some requirements for outer

membrane localisation, such as signal sequences and membrane spanning regions,

suggesting that most, if not all, of these proteins are membrane associated (Lessl et al,

1992). Disruption of the Mpf-containing cells and subsequent separation of cell
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membranes in density floatation gradients led to the discovery of an additional

membrane fraction, Mpf-containing membranes (MeM), whose density was close to

that of the outer membrane (Grahn et al, 2000). This fraction contained all Mpf

components, except TrbB, the only soluble protein of the Tra2 region. Interestingly

cytoplasmic (LPAse) and outer membrane (OmpA) marker proteins were also found

in this fraction, suggesting a rearrangement of the cell envelope architecture. This

evidence strongly suggests that the Mpf proteins form a complex that connects the

cell- and outer membrane fractions by binding them together. TrbB belongs to a

group of proteins called the PulE family (Motallebi- Veshareth et al, 1992). They are

typically involved in the export and building of type IV pili, and serve as the energy-

delivering protein for the export of components through the outer membrane. The

TrbB protein also contains a signature sequence common in lipoproteins targeted to

the outer membrane (Lessl et al, 1992a).

From the protein localisation experiments performed by Grahn et al (2000), results

indicate that the RP4 relaxosome is located in the cytoplasm and is associated with the

cytoplasmic membrane (Figure 3.17). This association is independent of the

membrane spanning Mpf-complex, since TraI and TraL were partially localised to the

cytoplasmic membrane in the absence of the Tra2 region proteins. Even in the

presence of Mpf components, TraL was found in the outer membrane fraction.

Relaxosome proteins TraH and TraK were found to be associated with the

cytoplasmic fraction of the floatation gradients. TraG associated with the cytoplasmic

membrane independent of the presence of the Tra2 region. Interestingly, during

floatation experiments TraG was found in an intermediate band, supporting its

potential role as an interface between the RP4 Mpf system and the relaxosome.

Whether this model can be extended to other Gram- negative Inc plasmid systems is

still to be determined.
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Figure 3.17: A model of the membrane spanning and membrane associated DNA transfer

apparatus of RP4 across the E.coli membrane (Grahn et al, 2000).

3.1.3.2.3 DNA transfer and replication systems

The systems involved in DNA transfer and replication require the formation of a

multi-protein complex at the origin of transfer called the relaxosome. Each Inc family

has different relaxosome components, but generally share a common method for

initiation and replication. DNA relaxases are the key enzymes in the initiation of

transfer DNA replication and catalyse site- and strand-specific cleavage at the nick

site (nic) of a transfer origin (oriT). Relaxases do not initiate transfer in vivo in the

absence of other proteins, so together with accessory proteins that may be either

plasmid- or host- encoded, they form the stable nucleoprotein complex at oriT (Byrd

and Matson, 1997; Zechner et al., 2000). The accessory proteins assist in; i) nick site

recognition, binding and initiating relaxosome formation, and ii) stabilization of the

complex at oriT. DNA transfer is supposed to occur via a ssDNA intermediate

generated by a rolling circle-type DNA replication mechanism, followed by re-

circularisation in the recipient cell. It is thought that re-circularization is mediated by

the molecule of relaxase that is linked covalently to the 5' end of the transferring

DNA. The 3' end of this strand is believed to undergo continuous extension by the

replicative DNA polymerase of the donor cell, thereby generating an internal nic site.

Relaxase bound to the leading end of the intermediate recognises the site, and through

a cleavage-rejoining trans esterification, releases a monomeric circle of DNA (Lanka
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and Wilkins, 1995). DNA transfer and replication (DTR) systems of the Inc groups

most studied will be addressed below.

IneP-type: DNA relaxases of the IncP-type appear to be the most widely distributed.

They display a common domain structure consisting of an N-terminal catalytic

domain and a C-terminal domain of variable size that apparently mediates interactions

with other components of the transfer machinery (Zechner et al, 2000). The N-

terminal catalytic domain contains three conserved motifs, which include at least one

invariant residue. Motif I has a conserved tyrosine residue (Tyr-22) whose exchange

with a leucine resulted in complete loss of DNA cleavage activity (Pansegrau et al,

1994). This result is in agreement with the expected role of Tyr-22 in the formation

of the covalent linkage to the DNA 5' terminus, the nucleophilic agent of the relaxase

centre (Pansegrau et al, 1993b). Tyr-22 is in fact a universally conserved residue in

all listed relaxases, and is supposed to be pivotal for catalytic activity. Mutations in

motif II (serine 74) did not abolish cleavage activity, but when exchanged with an

alanine exhibited a strong topoisomerase type I-like activity on the negatively

supercoiled origin of transfer of RP4. Thus motif II is thought to be involved in tight

binding of the nick region (Pansegrau et al, 1994). Motif III (histidine 116) is also

involved in catalytic activity, as mutational analysis drastically reduced the DNA

cleavage activity of TraI. His-116 is thought to be involved either in activation of the

Tyr-22 hydroxyl group by proton abstraction (Pansegrau et al, 1994), or it could

mediate the proton transfer reaction to the 3' terminus that creates the leaving 3'

hydroxyl group in the cleavage reaction (pansegrau and Lanka, 1996). Therefore it

has been proposed that motifs I and II are in close contact and together form part of

the catalytic center of TraI, whilst motif II sustains the topology needed for efficient

cleavage at nic. Figure 3.18 gives a diagrammatic representation of how motifs I, II,

and III work together in the catalytic center of TraI. Assembly of the relaxosome

complex of RP4 has already been discussed in a previous section.
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Figure 3.18: A model of the Tral catalytic center. Proposed locations of motifs I, II, and III

are indicated, interactions between amino acid residues or between amino acid residues and

the DNA are represented by arrows. The nick site (nic) is marked by a wedge (Pansegrau et

al, 1994).

IncF and IncW type: The relaxases encoded by IncF and IncW plasmids have a

common domain structure consisting of an N-terminal relaxase and aC-terminal

5'-73' DNA helicase domain (Byrd and Matson, 1997). Physical linkage of these

domains was shown to be important, as dissection of the two domains from each other

lowered the transformation frequencies by several orders of magnitude (Llosa et al,

1996). Binding via the relaxase domain could possibly enhance the helicase

concentration at the transfer origin, or the helicase activity could also be responsible

for providing the motive force for DNA transport across the bacterial membranes.

The catalytic domain also carries a tandem arrangement of tyrosine residues. Recent

evidence indicates that both tyrosines are actively involved in the cleavage reaction

(Zechner et al, 2000). Virtually nothing is known about the role of protein-protein

interactions in relaxosome assembly and will therefore not be addressed any further.

IncQ type: IncQ and other plasmids of this subgroup have a basic mobilization

system which consists of MobA, MobB, and MobC proteins, which congregate to

form a nucleoprotein complex at an oriT-containing region. MobA is a

multifunctional protein: the N-terminal domain encodes the DNA relaxase (MobA),

while the C-terminal domain encodes a primase (RepB). The RepB primase occurs in

two forms, a 78 kDa MobA-RepB fusion protein and a 36 kDa RepB' protein, which

is translated from an initiation codon downstream of and in the same reading frame as

the fusion protein (Figure 3.5) (reviewed in Rawlings and Tietze, 2001). Although

Stellenbosch University http://scholar.sun.ac.za



116

the two domains appear to function independently of each other, the influence of

RepB presence in DNA transfer is different for the various plasmid families. In some

cases, such as IncQ plasmid pTfFC2 (Rohrer and Rawlings, 1993), the absence of

RepB does not affect transfer or the frequency thereof. In contrast, in a study of

R1162, the MobA-linked form of the primase increased the efficiency of the transfer

system (Henderson and Meyer, 1999). MobA recognises the IR sequences at the oriT,

binds, and induces a site-specific cleavage at the nic site via its active site tyrosine

residue (Tyr-24). MobA remains covalently attatched to the single-stranded DNA

substrate and guides the displaced strand intothe recipient cell. Although MobA does

not require any accessory protein for cleavage of single- or double- stranded DNA

substrates in vitro, the reaction is enhanced in the presence of plasmid encoded

accessory proteins MobB and MobC.

MobB is synthesised from within the mobA gene, in a different reading frame, while

MobC is transcribed divergently from a gene that lies on the opposite side of oriT

(Rawlings and Tietze, 2001) (Figure 3.5). MobC assists in unwinding of the DNA at

the region of the nic site, allowing easier access to the oriT for the larger MobA

protein. MobB enhances the reaction between MobA and the oriT by stabilizing the

relaxosome and shifting the DNA cleavage-joining equilibrium to the cleaved state

(perwez and Meyer, 1996). Initiation of DNA synthesis in the recipient cell is

dependent on the specific plasmid-encoded primase RepB (RepB') (Henderson and

Meyer, 1996).

Members of the IncQ group have been isolated which deviate from the three-protein

mobilization region. Plasmid pTFI appears to have only two mobilization proteins,

MobL and MobS. Amino acid sequence alignments identify MobL as having

sequence related to the N-terminal relaxase region of MobA and MobS being related

to MobC (Drolet et al, 1990; Rawlings and Kusano, 1994). No protein equivalent to

the MobB, or to a DNA primase has been identified on plasmid pTFI (Rawlings and

Tietze,2001).

3.1.4 Comparison of systems

Parallels may be drawn between the plasmid-associated rolling circle replication

(RCR), T-DNA transfer in A. tumefaciens, and bacterial conjugation. All three
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involve plasmid replication of the rolling circle type. The first takes place within a

cell while the latter two take place during DNA transfer between cells. In each case

not only are the processes of initiation, DNA transfer and termination similar, but also

the specific reaction sites required for each process display high degrees of sequence

similarity (Waters and Guiney, 1993; Guzman and Espinosa, 1997). Interestingly A.

tumefaciens plasmid pTi, in addition to the virulence genes (vir) that mediate the

process of T-DNA transfer, encodes a bacterial conjugation system called Tra. This

system mediates transfer of the entire plasmid between agrobacteria (Lanka, 1995).

Although it has been suggested that these systems evolve from a common ancestor

(conjugation and Type IV transfer systems), is there a possibility that they might be

converging to form one multi-system with a lower energy demand on the cell?

3.1.5 Transposons

In addition to genes required for maintenance and transfer, plasmids frequently carry

embedded mobile genetic elements called transposons. Transposons have the ability

to move from one carrier replicon to another, providing the bacteria with genome

flexibility, which is often necessary to cope with the stresses of a continuously

changing environment. Three classes of transposable elements have been defined on

a structural basis. Class I includes all known insertion sequences (IS) and the

composite transposons which consist of two insertion sequences flanking additional

DNA. Class II include transposons that do not contain any recognisable IS. Class III

includes mutator bacteriophages that amplify their genome using a transposition

mechanism (Merlin et al, 2000). The first recognized largest and most widely

distributed example of a transposon is the multiply composite transposon Tn2l, which

belongs to a subgroup of the Tn3 family of transposable elements (Liebert et al,

1999). Interest in this transposon has been stimulated due to the involvement of the

Tn2l-family in the distribution of antibiotic resistance in clinical environments.

The Tn3 family of transposable elements (class II) is characterized by flanking

inverted repeats of about 38 bp, a transposase (tnpA) and aresolvase (tnpR) gene, and

a res site of approximately 130 bp at which the resolvase acts (Clennel et al, 1995;

Liebert et al, 1999). The organization of genes in the Tn3 family falls into two

classes (Figure 3.19). Transposons with a divergent gene arrangement (B) are

referred to as the Tn3 transposon subfamily, whilst transposons with tnpR and tnpA
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transcribed in the same direction (A) are described as the Tn501 subfamily (Sherratt,

1989). Tn21 falls into the latter subgroup, which also have a variable region (XX),

which frequently contain genes encoding for metal or antibiotic resistance (reviewed

in Rawlings and Kusano, 1994).

XX res tnpR tnpA
lXX ~A .. II-H

tnpR res tnpA
B .. - ~ ~

Figure 3.19: Gene organization of class II transposons. (A) Tn501 subfamily: transcription

of tnpR and tnpA in the same direction; res is 5' of tnpR and tnpA (Tn501, Tn1721, Tn21,

TnSS1, Tn917). (B) Tn3 subfamily: divergent transcription of tnpR and tnpA from a central

res site (Tn3, TnJOOO, Tn2S01, and Tn4430). Solid triangles, IR sequences; XX, variable

DNA segment; ____,orfs for transposition functions; hatched boxes, resolution sites (res)

(Sherratt, 1989).
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3.1.5.1 Transposon Tn21

Transposon Tn21 carries genes involved in its own transposition (tnp), a mercury

resistance operon (mer), and a potentially independently mobile DNA element called

an integron, which will be described later (Figure 3.20).

merA
IRtlIp

~ ....~. ..t~fA., .. '"'Kt~P!:iitn M

Transposition genes 4.1kb
merE

mer genes 4.6kb

Figure 3.20: Structural organization of transposon Tn2l. The three main sections of Tn2l

are shown, the transposition region (tnp), the integron, and the mer operon. The tnp region

consists of genes for the transposase (tnpA), the resolvase (tnpR), the putative transposition

regulator (tnpM), and the resolution site (res). The integron consists of the 5' and 3'

conserved insertion sequences, and remnants of the tni transposition gene module; it carries

only one integrated gene cassette, aadAl. The mercury resistance operon consists of

regulatory and structural genes (unlabelled) (Part of diagram from Liebert et al, 1999).

3.1.5.1.2 The transposition module (tnp) and mode of interaction

Transposition of transposon Tn21 is carried out by the transposase, TnpA.

Transposases of this family are at least 70% homologous to each other and share, as

do many other transposases, a DD-E motif (Liebert et al, 1999). The two conserved

aspartates (D) are usually separated from the conserved glutamate (E) by

approximately 35 amino acids; the DD-E motif is part of the enzyme catalytic site and

is involved in binding bivalent metallic ions (Polard and Chandler, 1995). Replicative

transposition of Tn21 involves specific recognition of and binding to the terminal

inverted-repeat (IR) elements of Tn21 by TnpA. Repeats are fairly conserved

amongst members of the same transposon family however; the interchangeability of

transposases in transposition is limited (Sherratt, 1989). The DD-E motif traps two
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magnesium Ions destabilizing the phosphodiester bond at the 3' ends of the

transposable element (IR). The weakened bond is now susceptible to nucleophilic

attack by a water molecule, liberating the transposons 3' -OH end. A second

nucleophilic cleavage occurs on the target DNA resulting in transposon-target linkage

and ultimately cointegrate formation. The sites of insertion, defined by a 5 bp

duplication of target DNA, are usually rich in AT residues with little other

conservation in sequence (Liebert et al, 1999).

The resolvase (tnpR) catalyzes site-specific recombination between supercoiled DNA

and two directly repeated copies of the transposon DNA at the res site, resulting in

both the donor and target replicons containing one copy of the transposon (Stark et al,

1989). The resolvases from the Tn3-like transposons fall into a series of

complementation groups characterized by their specificities for the DNA sequence at

res. Within each group, the resolvases have a greater than 80% amino acid identity

and can act at res sites from all members of the same group (Soultanas et al, 1995).

The res site is approximately 115 bp long and contains three highly conserved

subsites (I, II, and 111),which are involved in binding of the resolvase. Each of the

three sites in the Tn3 subfamily constitutes a pair of inverted 9 bp repeats, with the

consensus TGTCYRTT A, which spans a central spacer (Sherratt, 1989). The sizes of

the spacer regions for each site is different; site I, 10 bp; site II, 16 bp; and site III, 7

bp. Each subsite is believed to bind aresolvase dimer, this occurs at both

recombination loci. Protein-DNA complexes at each res site interact to form a

synaptic complex, where strand exchange takes place at the center of subsite I, the

"crossover site" (Stark et al, 1989). Sites II and III stabilize the complex via protein-

protein interactions. The function of the putative tnpM gene (351 bp) is unknown.

Although it is not necessary for transposition, it has been proposed that tnpM

produces a protein, which could enhance Tn2l transposition and suppress cointegrate

resolution (Hyde and Tu, 1985).

3.1.5.1.3 In2 Integron

Integrons are genetic units that carry determinants for a site-specific recombination

system allowing them to capture genes, which can determine antibiotic resistances,

and are located on mobile DNA fragments known as "gene cassettes" (Recchia and

Hall, 1997). Integrons also carry promoter/s that are functional in a wide range of
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bacteria, ensuring not only expression of the trapped gene cassette, but ready mobility.

Since integrons often occur on plasmids, the extent of mobility is determined by

plasmid host range. Broad host range plasmids therefore contribute to the interspecies

spread of integron-associated resistance (Stokes and Hall, 1989). lntegrons in Gram-

negative bacteria have been classified into three different classes based on similarities

between the integron-encoded integrases, which are involved in transposition (Merlin

et al, 2000).

The integron (ln2) found in Tn21 is a class I integron carrying only one integrated

gene cassette, aadAl. The aadAl gene determines resistance to streptomycin and

spectinomycin (Liebert et al, 1999). In2 is 11 kb and is flanked by 25 bp imperfect

inverted repeats (IRj and !Rj), which are in tum bound by a 5 bp direct duplication of

the sequence between the transposition and mercury genes. Since a 5 bp duplication

is the target site for transposition, Tn21 must be the result of the entry of integron In2

into an ancestral tnp-mer transposon. In2 encodes a RecA-independent, site-specific

integration system that is responsible for the acquisition of gene cassettes that encode

antibiotic resistance genes. !n2 has an incomplete set of transposition (tni) genes and

cannot transpose itself, movement is ensured by the use of transposition proteins

provided in trans (Brown et al, 1996). The backbone of In2 consists of three distinct

regions: 5' -conserved segment (5' -CS) the 3' -conserved segment (3' -CS), and

remnants of the tni transposition gene module (Figure 3.19). The 5'- CS and 3'- CS

lie on either side of the cassette insertion point.

The 5' - CS includes three repeats at its lefthand side that are predicted to bind the tni

transposase (Radstrom et al, 1994). It also carries a secondary promoter, P2, found

only in In2 and close relatives. The 3' - CS contains three ORFs: qacEJJ1, suil, and

orf5 (Stokes and Hill, 1989). The qacliál confers marginal resistance to quaternary

ammonium compounds. The suil gene encodes a 279aa sulfonamide-resistant

dihydropteroate synthase, which is able to replace the bacterial enzyme targeted by

this group of drugs. The function of orf5 is not known (Liebert et al, 1999). In

conclusion, the 3' - CS contains genes associated with resistance to antiseptics and

disinfectants. The tni transposition module carries only one complete gene, tniA, and
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a truncated version of the tniB of Tn5053; deeming it redundant for transposition

(Radstrom et al, 1994).

3.1.5.1.4 The mer operon

The mer region is flanked by two inverted repeats, Tn2l IRmer on the left and In2 IRt

on the right (Figure 3.19). The mercury resistance operon of Tn2l contains regulatory

genes (merR and merD) and structural genes (merT, merP, mere and merA), which

encode the NADH-dependent flavin oxidoreductase, mercuric reductase (MerA), two

inner membrane proteins (Mere and Mere), and a periplasmie protein (MerP). This

region is sufficient to confer resistance to Hg (Il) (Liebert et al, 1999). In general the

resistance mechanism is based on the reduction of mercuric (Hg2+) ions to volatile

elemental mercury (Hgo) (Silver and Phung, 1996). The model for mercuric reduction

is a follows: Hg (II) enters the periplasm where it is bound by a pair of cysteine

residue in MerP. Transfer from MerP to the cysteine residues in MerT and Mere

occurs; MerTIMere facilitate movement of the ion across the cytoplasmic membrane

via a series of ligand exchange reactions. Hg (II) is delivered to the active site of

MerA, which catalyses the reduction of Hg (II) to Hgo. This less reactive monoatomic

gas diffuses from the cell and surrounding medium (Silver and Phung, 1996).

This chapter describes the screening of all Leptospirillum isolates analyzed in this

study for plasmids, with the long-term goal of the further development of

Leptospirillum for industrial purposes. These findings represent the first isolation of

plasmids from Leptospirillum ferrooxidans.
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3.2 Materials and Methods

3.2.1 Bacterial strains

Leptospirillum strains used in this plasmid study are shown in Table 3.3. Plasmid

detection within isolates is indicated. E. coli strains used in mobilization experiments

are shown in Table 3.2.

Table 3.2: E.coli strains used in mobilization experiments

Strain Genotype Reference

E. coli S17-1

E. coli CSH56

ree deriv of 294 (hsdR, pro) with

RP4-2Tc::Mu Km::Tn7

F ara l1(lacpro) supD nalA thi

Simon et al., 1983

Cold Spring

Harbour (CSH)

3.2.2 Pulsed Field Gel Electrophoresis (PFGE)

PFGE was conducted using a Beckman Geneline Transverse Alternating Field system.

Total genomic DNA was prepared by resuspending cell cultures in SET buffer to

OD600 =1-2.5 (1.6 is optimal). Cells were incubated with 20 mg/ml proteinase K

(Merck) for 30-60 minutes at 37°C. Samples were added to a low melting point

agarose (Seaplaque) at 1.1% final concentration and applied to a 2x2x25 mm "plug"

mold. Samples were extracted and incubated in TE containing 1% (w/v) SDS until

opaque appearance of plugs started to clear. Agarose entrapped cells were lysed

within the plugs by incubation in ES solution (Na-Iauroyl sarcosine 10 gil, 168 gil

EDTA, pH 8) containing 1 mg/ml proteinase K at 37°C for 30 minutes and then

overnight at 50°C. Overnight washes in ESP solution at 50°C were repeated to ensure

clean plugs. To remove proteinase K, plugs were washed in ES solution overnight at

SO°C. Rinsing in TE buffer (2x 30 min) at room temperature inactivated any residual

proteinase K. Plugs were then incubated in Pefabloc proteinase inhibitor (Boeringer

Mannheim) at 4°C overnight and washed in TE. Plugs were stored in ES or TEso at

4°C until used. Plugs were equilibrated in lx PFGE running buffer prior to use.
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Agarose gels (1% w/v) were made with 1xPFGE running buffer. Gels were

electrophoresed at 140 mA for 15.5 h with a 2-second pulsed time.

3.2.3 Preparation of plasmid DNA (gentle lysis technique)

Cells were harvested from 10 litres of 9K medium at 9000 rpm for 35 min, and

washed in 10 ml Ix mineral salts medium. Cells were collected at 9000 rpm for 10

min, and resuspended in 10 ml SET buffer (50mM Tris, 2mM EDTA, 25% sucrose,

pH 8.0). Incubation for l hour at -20°C to weaken the cell walls followed. 1 ml 10%

SOS was added and incubated at 4°C for 10 min followed by 37°C for 10 min. The

lysate was then centrifuged at 18 000 rpm for 1 hour to remove debris and

chromosomal material. Supernatant was collected. 1 g/ml CsCI was added; the

refractive index was left unaltered at approximately 1.4. Owing to the high sucrose

content lowering of the refractive index to 1.396 required large amounts of TE, which

resulted in a diffused plasmid band after ultra-centrifugation. 200!-l1 EtBr (lO mg/ml)

was added and centrifuged at 10 000 rpm for 10 min to remove residual protein.

Supernatant was loaded into Vti65 tubes and centrifuged overnight at 55 000 rpm

(20°C) in a Beckmann Ultracentrifuge (RCF average 275444, RCF maximum

297805). Plasmid bands were extracted from the CsCI gradient. EtBr and CsCI were

removed using salt-saturated isopropanol and ethanol washes respectively. Plasmid

DNA was quantified against a known Lambda DNA standard.

3.2.4 DNA sequencing and analysis

All plasmid subelones were sequenced on an ABI 3100 Genetic Analyzer, using

Sequencing Analysis 3.7 software. Computer analysis of nucleic acid sequence as

well as deduced protein sequence was carried out using the DNAMAN for windows

program, Version 4.13 (1994-99). BLAST searches (Altschul et al., 1990) were

conducted on the World-Wide-Web (http://www.ncbi.nlm.nih.gov).

3.2.5 Mobilization experiments

Sub-clone p l Sl in pUC19 was transformed into E.coli S17-I, and transformants were

selected for growth on LA plates with ampicillin (100 ug/ml) and streptomycin (50

ug/ml). Single colonies of donor (S17-1) and recipient (CSH56) bacteria were grown

separately overnight at 37°C. Antibiotics were added to all donor cultures to maintain
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selection of the plasmids. Cells were washed three times in 0.8% NaCl solution and

mixed in al: 1 ratio. 100 ,..tl of the mixed sample was spotted onto an agar plate

without antibiotics and incubated at 37°C overnight. Agar plugs were excised, and

the cells were resuspended in 10 ml 0.8% saline by shaking at room temperature for

30 min. Cells were collected from all 10 ml of saline and washed three times to

remove extracellular ~-lactamase and prevent the growth of satellite colonies at low

dilutions. Serial dilutions were plated onto LA ampicillin (lOa )..lg/ml)-streptomycin

(50 ug/ml) plates to count donors and onto LA ampicillin (lOa ug/mlj-nalidixic acid

(50 ug/ml) plates to count transconjugants.
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3.3.1 Screening of Leptospirillum isolates for plasmid presence

Undigested total DNA from cells of all Leptospirillum isolates was separated using

Pulsed Field Gel Electrophoresis (PFGE). DNA stability within the agarose plugs

was not consistent, often resulting in degraded DNA on electrophoresis, which

obscured the detection of plasmid bands (Figure 3.21A). However, degradation

patterns varied between isolates and experiments, this enabled the identification of

plasmid DNA with certainty from L. ferrooxidans isolates ATCC49879, CF12, and

Parys (Figure 3.21B). DNA from plasmid 49879 was DIG-labelled and used as a

probe against the pulsed field gels of undigested total Leptospirillum DNA, plasmid

bands could be identified for isolates 49879, Parys and CF12 (Figure 3.22). This

implies that regions with homologous sequences must exist between the three

plasmids. Since uncut samples were run, this result cannot be used to size plasmid

bands. Inconsistency in plasmid detection prevented ruling out the possibility that

plasmids may also be present in some of the remaining isolates (Table 3.3).

1 3 4

Figure 3.21: Pulsed-Field gel of uncut cells of a selection of Leptospirillum isolates. (A) Lane 1, A

concatamers (respective band sizes are indicated by solid arrows); Lane 2, Parys; Lane 3, ATCC49879.

A plasmid band is clearly present in Lane 3 (isolate ATCC49879), and is indicated by an open arrow.

An example of the degraded DNA smears often obtained is shown in Lanes 2. (B) Lane 1, molecular

weight marker A cut with KpnI. Lane 2, ATCC49879; Lane 3, CFI2; Lane 4, Parys. The top A band is

a combination of the 29.4kb and 17kb bands due to association via the cohesive ends.

2123

47kb_

29.4kb-

17kb-

lOOk
SOk

A B
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Figure 3.22: Southern blot of undigested total DNA from cells of selected Leptospirillum isolates

probed with DIG-labeled plasmid 49879 DNA. Lane 1, Fairview; lane 2, DSM2705; lane 3,

ATCC49879; lane 4, P3a; lane 5, Parys; lane 6, CF12; lane 7, BCT2.

Table 3.3: Summary of plasmid presence detected in this study using PFGE.

Strains Species (L. Origin Plasmid presence

ferrooxidans or L. detected in this study

ferriphilum) using PFGE

P3a L. ferrooxidans Coal mine, North Wales, UK No

ATCC49879 L. ferrooxidans Romania Yes

SY L. ferrooxidans Sygun Cu mine, North Wales, UK No

N25 L. ferrooxidans New Zealand No

Crys13 L. ferrooxidans Ag mine, Montana No

BCT2 L. ferrooxidans Birch Coppice, UK No

Parys L. ferrooxidans Parys Mountain, Anglesey Cu Yes

mine, Wales

CF12 L. ferrooxidans Idaho Co mine, USA Yes

Chil-Lf2 L. ferrooxidans Cu mine, Chile No

DSM2705 L. ferrooxidans Markosyan strain, (1972), Cu No

mine, Armenia

Fairview L. ferriphilum South Africa No

Warwick L. ferriphilum Warwick, UK No

ATCC49880 L. ferriphilum Romania No

ATCC49881 L. ferriphilum Peru No

Bionic 3.1 L. ferriphilum Nickel pilot plant, South Africa No

Mont.4 L. ferriphilum Pyrite column, Montana, USA No
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3.3.2 Plasmid isolation

Although plasmid presence was identified in three of the L. ferrooxidans strains

(Figure 3.21B), isolation was complicated. A variety of standard isolation procedures

and modifications thereof were applied to these strains with limited success. In order

to reduce the likelihood of size being the limiting factor in plasmid isolation, each

method was tested with a series of control plasmids ranging in size from 3 kB (pSK)

to 60 kB (RP4). Although the size of plasmid p49879 was not known, the method

ultimately chosen for plasmid isolation yielded workable (ug) amounts of each

control plasmid. The procedure involved a gentle lysis technique, to minimize DNA

nicking, and was applied to isolates ATCC49879, CFI2, and Parys. Success was

varied and plasmid DNA, only from strain ATCC49879, could be consistently

isolated in very small (ng) amounts. A possible reason for the difficulty in plasmid

isolation from strains CFI2, Parys, and ATCC49879, could be the result of a low

plasmid copy number. As only plasmid 49879 was isolated, this plasmid was studied

further, and used to investigate whether similar plasmids or part thereof, exist in the

other Leptospirillum isolates represented in this study.

3.3.3 Restriction endonuclease digestion of plasmid 49879

In order to size the plasmid, restriction endonuclease digestions were carried out with

rare cutting enzymes; NotI, Pad, PmeI and XbaI were identified as suitable. Plasmid

DNA was digested and separated via PFGE.

Digestion with NotI generated nine bands (approximate sizes: 0.7-, 1.3-, 7/8.0-, 10.0-,

11/12.0-, l7.0-, 20.0-, 23.0-, and 30.0 -kb), a collective size of -120 kb. Band

intensities were not uniform (Figure 3.23), suggesting either partially digested bands

or the presence of two plasmids, each with a different copy number.

Although six of the nine NotI fragments were cloned (bands 1-4, 8 and 9 in Figure

3.23) and used at various stages of this study (discussed later), subelones 1-4 were

instrumental in understanding the reason for the existence of different plasmid band

intensities.
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Figure 3.23: Restriction endonuclease analysis of p49879 with Notl. Lane 1 contains

molecular weight marker A cut with Smal. The top A band is a combination of the 19.4 kb

and 8.2 kb bands due to association via the cohesive ends. Lanes 2 and 3 NotI digested

p49879. Lane 3 clearly shows the different band intensities. Bands of equal intensity are

marked by shaded arrows, high intensity (.... ) and low intensity (¢:::::::». The 0.7 kb and 1.3

kb bands (bands 8 and 9) are not visible on this gel.

Subelones 1-4 were digested with NotI and separated on a pulsed field gel along with

NotI digested p49879 (Figure 3.24A). A Southern blot was prepared and probed with

each individually labelled subclone. Results are shown for subelones 1, 2, 3, and 4 in

Figure 3.24-B, -C, D, and -E respectively. Subclone 2, as expected hybridized only to

itself and to the corresponding band within the p49879 NotI digestion. This same

hybridization loyalty was achieved for each of the three remaining subclones;

however additional hybridization signals were also obtained. Subclone 1 (-7/8.0 kb)

and 3 (-11/12.0 kb) both hybridized to subclone 4 (-17/18 kb) and vice versa.
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Figure 3.24: (A) Pulsed Field Gel of whole p49879 DNA and four p49879 subelones

corresponding to bands 1-4 in Figure 3.23, all digested with Not!. Lane x contains molecular

weight marker A cut with Smal; lane a, whole p49879 DNA; lane b, subclone 1; lane c,

subclone 2; lane d, subclone 3; lane e, subclone 4. Gels (B)-(E), Southern blot of (A) probed

with, (B) Subclone 1 (-7/8.0 kb), (C) Subclone 2 (-lO.Okb), (D) Subclone 3 (-11/12 kb), and

(E) Subclone 4 (-17 /18 kb). Fragments are identified on the various gels with their

corresponding subclone numbers.

From this result we suspected that subclone 4 (17/18.0 kb) was a partially digested

plasmid band comprising subelones 1 (7/8.0 kb) and 3 (11/12.0 kb). This was later

confirmed through sequencing data. Although subclone 4 was the only plasmid band

of lower intensity to be successfully cloned, the same theory of "partial banding" was

applied to all lower intensity bands. Feint hybridization signals were obtained in lane

1 of Figures 3.24-B, -C, and -D to the -20.0 kb and -23.0 kb plasmid bands. This

could be the result of a partial association between subclone 4 and subelones 8 (- 0.7

kb) and 9 (-1.3 kb), which were not represented on this gel.

Not! restriction endonuclease sites are prone to methylation by an independent

methyltransferase system present in E.coli K strains, with a target sequence of CG
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(mcrA). This system is different to the dam and dcm methylases which modify the

adenine residues in the sequence GATC to N6-methyl adenine and the internal cytosine

residues in the sequences CCAGG or CCTGG to 5-methylcytosine respectively.

Therefore, should the Notl sites joining subelones 1 and 3 be methylated, subclone 4

could be the result of two unresolved plasmid bands. Subclone 4 was passaged

through dcm /dam Ecoli strain GM2929 in order to remove methylation should it be

present. Plasmid DNA was re-isolated and digested with Notl to determine whether

methylation had been removed. Subclone 4 remained intact. The degree to which

dam- and dcm- methylation differs from that of mcrA methylation could be sufficient

reason for the lack of de-methylation to the Notl site in subclone 4. A mcrá. E.coli

strain was not available and it was decided to not pursue further investigation into the

proposed presence of partial plasmid bands.

Digestion with PacI and XbaI individually yielded a single band of approximately

30.0 kb, whilst Pmel yielded a smaller, single band of approximately 27.0 kb (Figure

3.25A). For each of these three digests large amounts of DNA remained in the wells.

This could either be the result of partial digestion, or the presence of two plasmids, a

-30.0 kb plasmid with one site each of Pad and Xbal and a -27.0 kb plasmid with a

single Pmel site. Should the unresolved DNA in the wells be the result of partial

digestion, plasmid 49879 would have a minimum of two restriction endonuclease sites

for each of the enzymes Pad, Xbal, and Pmel to enable the release of the bands

mentioned above on digestion. Double restriction endonuclease digest combinations

of these restriction enzymes could then generate up to four bands, depending on

restriction site positioning. However, should the unresolved DNA in the wells be the

result of two plasmids, double restriction endonuclease digests using Xbal-Pmel and

Pad-Pmel would result in two bands per digest, 30.0 kb and 27.0 kb. Double

restriction endonuclease digests with Pad-Pmel and Xbal-Pmel supported this,

generating two distinct bands of -30.0 kb and -27.0 kb with no residual DNA

remaining in the wells (Figure 3.25B). The likelihood of restriction endonuclease site

positioning for three enzymes on a single plasmid yielding the exact predicted sizes of

27.0 kb and 30.0 kb is slim. However, this cannot be disregarded as being impossible.

Therefore, although results suggested the presence of two plasmids this was not

assumed to be correct, unless further evidence was obtained to support this claim.

The presence of two plasmids is not inconsistent with the proposal of feint plasmid
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bands being the result of partial digestion, since both plasmids appear to have a

similar copy number due to comparable band intensities as shown in Figure 3.25A.

Regardless of this result, the possibility that plasmid DNA represented a single

plasmid was not discarded.

2 3 4 5 234

29.9+
17kb

29.9kb

17kb

19.4+
12.2kb_

19.4kb_

12.2kb_

8.2kb_
8.1kb

A B

29.9+
17kb

29.9kb

17kb

Figure 3.25: Restriction endonuclease analysis of p49879 with Pad, Xbal and Pmel. Lane 1

contains molecular marker A-Smal. (A) Lane 2, Xbal; lane 3, Pmel; lane 4, Pad; lane 5,

molecular marker A-Kpnl. (B) Lane 2, Xbal-Pmel; lane 3, Pad-Pmel; lane 4, molecuIer

marker A-KpnI.

3.3.4 Mapping of 49879 plasmid DNA

Mapping was achieved through a combination of Southern hybridization, restriction

endonuclease analysis and sequencing. Single digests (performed in duplicate) of

plasmid DNA with NotI, SalI, HindIII, SphI and SadI; were separated via standard

gel electrophoresis. Gels were blotted and probed with whole-labeled p49879 DNA

(Figure 3.26).
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1 2 3 4 5 Notl SaIl Sadl

__ 2.4kb
-2.3kb
-2.0kb
-1.8kb
-1.75kb

-1.16kb

B

Figure 3.26: Southern blot (template blot) of restriction endonuclease digests of p49879

DNA probed with whole DIG-labeled 49879 plasmid DNA. (A) Lane 1, NotI; lane 2, Sail;

lane 3, HindIII; lane 4, SphI, and lane 5, Sad!. (B) Fragment sizes generated by the NotI, SaLI

and SadI digests of p49879 DNA. The 1.3 kb and 0.7 kb NotI fragments, not visible in

Figure 3.23 may be seen here. The Sail 0.3 kb and 0.14 kb fragments, known to exist, are not

visible. P- indicates the presence of partial bands. Fragment sizes in bold print designate the

presence of a doublet.

-1.75kb
-1.6kb
-1.5kb
-l.4kb

These blots were used as templates to (i) screen large subclone numbers for inserts of

different sizes as predicted by the total plasmid digests, and (ii) to link adjacent

subclones. The latter was achieved when a probe, generated using different restriction

enzymes to those of the target DNA, produced two or more hybridization signals.

This principle is illustrated in Figure 3.27.

-1.3kb

-O.7kb

-O.5kb

A
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Figure 3.27: Principle of adjacent clone linkage through hybridization. (i) Linear DNA map

with restriction endonucleases sites A, B, and C. Bold bar beneath map (C) represents a DIG-

labeled probe which overlaps fragments Bl and B2. (ii) The Southern blot generated from

digestion of the DNA in (i) probed with C. Hybridizing fragments are in bold. Non-

hybridizing fragments are shown as dotted lines. B I and B2 are both homologous to C and

therefore are likely to be linked.

Initially all five restriction enzymes mentioned above were used to generate plasmid

subclones, eventually only NotI, SalI, and SadI were used extensively in mapping.

The latter yielded a good size spread of fragment sizes, while three of the large

fragments generated by NotI digestion, were cloned early in this study.

Of the thirty-seven possible clones generated by the single Noti, Sall and SadI

digests, thirty-four were eventually captured. Once subclone origin was identified as

belonging to plasmid 49879, each clone was mapped and further sub-cloned using

enzymes NotI, SalI, and Sad!. The ends of each clone were sequenced and processed

using DNAMAN v 4.13 (Lynnon Biosoft, 1999). Nucleotide sequence was examined

and ORF's were identified using the BLASTX algorithm program (Altschul et al,

1990). Although sequence data was able to identify a few ORF's that linked adjacent

clones, a large proportion of the amino acid sequence identities obtained at the clone

ends were spurious. Map construction therefore relied predominantly on the results

generated from Southern hybridization and restriction endonuclease digestion.
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Figure 3.28: Preliminary two-part map of plasmid 49879 DNA. Dashed arrows represent uncloned nanking regions. Double dot-dashed lines represent fragments not yet
cloned, but provisionally placed through Southern hybridization. Bold double dot-dashed line represents the 7.0kb-SacJl fragment referred to in the text. The 1.3kb-No(}
fragment of Group2 is cloned. but has been placed only by Southern hybridization. Amino acid identity to the transposuseof Tn21 (mpA) is shown by a labeled arrow,
representing gene orientation. Fragment sizes are indicated below the maps in kilobases.
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Using a combination of the three techniques, subelones were found to separate into

two main groups (Figure 3.28, opposite page) with a 7.0 kb-SadI fragment,

seemingly common to both groups through hybridization homology (Figure 3.29) and

amino acid sequence identity (TnpA) obtained through sequence analysis of the ends

of adjacent and overlapping fragments. This fragment was thought to bridge the two

groups, generating a single plasmid map. Additional inter-group homology, in the

vicinity of this apparent "join" region, was also obtained and are listed as follows: (the

7.0 kb-SadI fragment, seemingly common to both subclone groups is indicated in

bold print) (i) 7/8.0 kb-NotI hybridized to 30.0 kb-NotI, 4.75 kb-Sal!, 3.2 kb-Sal!, and

7.0 kb-SacII. (ii) 0.7 kb-NotI hybridized to 30.0 kb-NotI, 5.0 kb-Sal!, 2.8 kb-Sal!,

and 9.0 kb-Sad!. (iii) 11/12.0 kb-NotI hybridized to 30.0 kb-NotI, 4.75 kb-Sal!, and

7.0 kb-SacII. (iv) 1.812.0 kb-SadI hybridized to 30.0 kb-NotI, 4.75 kb-Sal!, and 7.0

kb-SacII. (v) 6.0 kb-Sal! hybridized to 30.0 kb-NotI, 4.75 kb-Sal!, 7.0 kb-SacII, and

6.0 kb-Sad!. (vi) 6.0 kb-SadI hybridized to 7/8.0 kb-NotI, 8.0 kb-Sal!, 6.0 kb-Sal!,

l.8/2.0 kb-SadI, and 7.0 kb-SacII. (vii) 4.75 kb-Sal! hybridized to 7/8.0 kb-NotI, 8.0

kb-Sal!, 1.8/2.0 kb-SadI, and 7.0 kb-SacII. All Southern hybridization results are

recorded in Appendix B. The 7.0 kb-SadI fragment was uncloned at this stage,

therefore a probe was constructed by excising the appropriate band from an agarose

gel. Hybridization results confirmed homology to 30.0 kb-NotI, 7/8.0 kb-NotI, 8.0

kb-Sal!, 4.75 kb-Sal!, and 3.2 kb-Sal! (Figure 3.29D).

Although hybridization results indicated that homology existed between the two

groups at the 7.0 kb-SadI region, feasibility of joining the two groups at this fragment

did not seem likely. Firstly, the predicted restriction endonuclease maps of Sal! and

NotI did not align. The 7.0 kb-SadI fragment of Group 1 should have an internal

Not! site (generating insert fragments of -3.0 kb and -4.4 kb on digestion with NotI

and SadI), while the 7.0 kb-SadI fragment of Group 2 should have internal Sal! and

Not! sites (generating fragments of -4.0 kb, -3.1 kb, and -0.1 kb on digestion with

NotI, Soli, and SadI). Secondly, if the extrachromosomal DNA from L. ferrooxidans

ATCC49879 was from a single plasmid with two fragments (group1 and group2)

joined at the transposase gene, the fragments surrounding tnpA in each group would

be the same. This was not found to be, as the fragments adjacent to the 7.0 kb-SadI

fragment of Group I differed to those fragments adjacent to the 7.0 kb-SadI fragment

of Group2.
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Figure 3.29: Southern blots of whole 49879 plasmid DNA digested with SadI only (A-C)

aswell as NotI, SaLI, and SadI (D). Probes: (A) whole-labeled 49879 plasmid DNA, (B) 7/8.0

kb NotI fragment from Group l , (C) 4.75 kb Sal! fragment from Group2, and (D) 7.0kb SadI

gel excised fragment. The bold arrow indicates the 7.0 kb SadI fragment, seemingly

common to both groups. Sizes of all bands, which gave homology to the gel-excised 7.0 kb

Sadl probe, are indicated in (D), and are in agreement with the sub-clone layout in Figure

3.28. A partial map of the two groups is given below the hybridization results, indicating the

relevant regions.

In order to take a closer look at this region, an attempt at cloning the 7.0 kb-SadI

fragment was made. The appropriate band was excised from an agarose gel, ligated

into pSK and transformed. Several transformants were screened for the presence of a

7.0 kb insert. Digestion of miniprepped DNA with Sall, Noti, and SadI revealed the

presence of two different 7.0 kb-SadI fragments with banding signatures
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corresponding to the predicted restriction patterns of each group (Figure 3.30). The

Group 1 7.0kb-SacII fragment gave a 3.0 kb and 4.4 kb insert band as well as a 3.0 kb

vector band, when digested with Sadl, Sall and Notl (Figure 3.30, Lane 3). The

Group 2 7.0 kb-Sadl fragment gave 4.0 kb, 3.1 kb, and 0.1 kb insert bands as well as

a 3.0 kb vector band (Figure 3.30, Lane 4).

Figure 3.30: Restriction endonuclease patterns of the Group 1 and Group 2 7.0 kb-SadI

fragments from plasmid p49879. Lane 1, A-Pst!; lane 2, 7.0 kb-SadI fragment (Group 1)

digested with SadI; lane 3, 7.0 kb-SadI fragment (Group 1) digested with SacII/Sall/NotI;

lane 4, 7.0 kb-SadI fragment (Group 2) digested with SadI/SaII/NotI; lane 5, 7.0 kb-SadI

fragment (Group 2) digested with Sad!. In lane 3 the 3.0 kb doublet appears as a single

bright band. The 0.1 kb band generated from digesting the 7.0 kb-SadI fragment of Group 2

with SadI, SalI,and NotI (Lane 4) is indicated by a solid arrow.

The existence of two 7.0 kb-Sadl fragments went undetected when the 7.0 kb-Sadl

probe was constructed, as a mixture of both fragments would have been present in the

excised gel slice. This hybridization experiment was repeated with the individual,

DIG-labeled, 7.0 kb-Sadl fragments (Figure 3.31). Results indicated a difference

between the two fragments when only one of the probes hybridized to a 3.2 kb-Sall

fragment predicted to be present in Group 2 (Figure 3.31B). The 7.0 kb-Sadl probe,

believed to be of Group I origin, also hybridized more strongly to the 7/8.0 kb-Notl

and 8.0 kb-SalI fragments of Group 1 than to the 30.0 kb-Notl and 4.75 kb-Sall

fragments of Group 2. Inter-group hybridization homology was still apparent, but
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probably due to the regions of homologous sequence (tnpA) already shown to be

present in both groups. Results at this stage seemed to support the two-group/plasmid

interpretation of subclone separation.

4.75kb

30.0kb

A B

NotI NotI -E I I~
7/8.0kb 30.0kb l.3kti

Sam Sam
8.0kb 4.75kb 3.2kb

SadI
7.0kb

SadI
7.0kb

Group 1 Group 2

Figure 3.31: Template blots probed with (A) Group 17.0 kb-SadI fragment, and (B) Group 2

7.0 kb-SadI fragment. The 30.0 kb-Not! and 7/8.0 kb-NotI fragments hybridize to both

probes due to sequence homology at the tnpA region (refer to Figure 3.28). A difference in

hybridization homology between the two probes lies with the 3.2 kb-SaLI fragment which

hybridizes to the Group 2 7.0 kb-SadI probe and not the Group 1 7.0 kb-SadI probe. A

partial map of the two groups is given below the hybridization results, indicating the relevant

regions.

An interesting observation was made in an over-exposure of the Southern blot in

Figure 3.31A (Figure 3.32). Feint hybridization signals were obtained to the 11/12.0

kb-NotI fragment. From the preliminary restriction endonuclease map of Group 1,

this result would be inconsistent unless Group 1 fragments were circularized through
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an association of the 7/8.0 kb and 11/12.0 kb NotI fragments at the NotI site internal

to the 7.0 kb-SadI subclone.

---+4.75kb

NotI Sal! SadI

30.0kb
11/12.0kb

7/8.0kb
,..---+8.0kb

7.0kb

Figure 3.32: Overexposed Template blot probed with the 7.0 kb-SadI fragment ex Group 1.

11/12kb-NotI fragment (p1N4) is giving a positive hybridization signal.

Analysis of the sequence data derived from the outer ends of the 7/8.0 kb and 11/12.0

kb NotI fragments of Group 1 identified an ORF with amino acid sequence identity to

a hypothetical protein of Sphingomonas aromaticivorans, which was found to straddle

both fragments, circularizing the clones of Groupl to form a - 30.0 kb plasmid,

p49879.1 (Group 1). Although the homology to this hypothetical protein was low

(therefore not included in Table 3.2), a weak relationship was found on both the 7/8.0

kb and 11/12.0 kb NotI fragments. Results from the digestion of plasmid DNA in

section 3.3.3 with Pad, XbaI, and PmeI, did indeed represent two different plasmids

of approximately 30.0 kb (p49879.1-Group 1) and 27.0 kb (p49879.2- Group 2)

respectively. Inter-group homology detected via Southern hybridization was a result

of similar genes being present on clones from within both groups. Already mentioned

is the transposase (tnpA) of Tn2l, responsible for hybridization homology amongst

clones: 30.0 kb-NotI, 7/8.0 kb-NotI, 8.0 kb-Sal!, 6.0 kb-Sal!, 4.75 kb-Sal!, 7.0 kb-

SadI, 7.0 kb-SadI, 6.0 kb-SadI, and 1.8/2.0 kb-SadI (Group 1 fragments are

underlined). The ORF responsible for hybridization homology amongst clones: 6.0

kb-SalI, 5.0 kb-Sal!, 2.8 kb-Sal!, 30.0 kb-NotI, and 0.7 kb-Not!, is the MobL from

pTFl of Acidithiobacillus ferrooxidans.
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The extrachromosomal DNA from L. ferrooxidans ATCC49879 therefore constitutes

two plasmids, p49879.1 (- 30.0 kb) and p49879.2 (- 27.0 kb), which although they

share a certain degree of homology, are not identical.

3.3.5 Partial sequence analysis of p49879.1 and p49879.2

The sequence information available for both plasmids is incomplete as only the ends

of each clone were sequenced in either the forward or reverse directions. Nucleotide

sequence data was processed and ORF's were identified using the BLAST algorithm

program (Altschul et al, 1990). Not all ORF's could be identified, with some giving

very low amino acid identity and similarity percentages to known proteins in the

database. Physical maps of the individual plasmids p49879.1 and p49879.2, including

all positive identities obtained from predicted amino acid sequence analysis regardless

of the degree identity /similarity, are represented in Figures 3.33 (opposite, page) and

3.37 respectively. However, ORF's displaying a maximum e-value of 0.001, over no

less than 20% of the target protein, are reported in more detail. In addition to these

criteria, ORF identification was also based on selection from the top five most closely

related proteins. The location and identity of "significant" ORF's present on

p49879.1 and p49879.2 are given in Table 3.4 and Table 3.5 respectively. More than

one homologue is given in certain instances to emphasize relationship or function.

3.3.5.1 p49879.1

ORF 1 (ParA) shows high amino acid (aa) identity (84%) and similarity (90%), albeit

over a small region (46 aa), to the partition protein, ParA (212aa), of P. alcaligenes.

Partitioning systems are associated with plasmids, and provide stability to the replicon

during cell division. The function of ParA is that of an ATPase, whilst some ParA's

also act as site-specific DNA binding proteins (Gerdes et al, 2000).

ORF 2 (TnpA) displayed an 81% aa sequence identity to 45.5% of the C-terminal

region of the transposase (tnpA) for Tn21 (Plasmid RIOO). ORF 6 (TnpR) displayed a

67% aa identity over 98.4% of the resolvase from the mercury resistant transposon,

Tn5037, found in a mercury-resistant At. ferrooxidans isolate. The At. ferrooxidans

resolvase has an 88% aa sequence identity to 85% the N-terminal region of the Tn21

resolvase (tnpR) and is considered Tn21-like (Rawlings and Kusano, 1994). Multiple

sequence alignments of the deduced TnpR (Figure 3.34) and TnpA (Figure 3.35)
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Table 3.4: Location and size of ORFs present in p49879.1 and closest relationship to known proteins

ORF Approximate No. TOlal Proportion Homologue [I Organism Evvalue " % Identity/ Accession
position of predicted aa of protein b % similarity number

3a no. from • (%)
ORFI 440-580

(ParA) 46 212 21.7 Partition protein ParA Pseudomonas alealigenes 2e·l~ 84/90 U88088

ORF2 3670-5050
(TnpA) 450 988 45.5 Transposase for Tn21 Plasmid RI 00 e ns 81/87 NC_002134

ORF3 7350-6750
(Mobl) 207 378 54.8 Mobilization protein: Acidithiobacillus [errooxidans 4e·24 35/49 X52699

MobL (ORF2) of pTFI

(MobA) 156 709 22,0 Mobilization protein (MobA) Plasmid RSFIOIO 2e·08 31/45 NC_001740
ORF4 8360-8510

(MobS) 54 98 55.1 Mobilization protein: A cidithiobacillus ferrooxidans 5e'()7 50/74 X52699
MobS (ORF6) of pTFI

(MobC) 64 94 68,1 Mobilization protein (MobC) Plasmid RSFIOJO 4e·Il(' 37/63 M28829

ORF5 24880-25140 83 107 77.6 Putative DNA binding protein £.coliOI57:H7 8e.()8 46/65 BAB38021

ORF6 25300-25810
(TnpR) 186 183 98.4 Resolvase (Tn5037) Acidithiobacillus ferrooxidans 7e·M 67/80 AJ251743

(TnpR) 186 183 98.4 Resolvasc (Tn2J) Plasmid R 100 8e·61 63/77 NC_002134

ORF7 27530-27800d 93 93 100 Hypothetical protein Xylella fastidiosa 5e·19 67/80 AE004023

• Criteria for ORF identification: maximum e-value of 0,0 over no less than 20% of the target protein. selected from within the top 10 closest protein relationships,
b Indicates % of known protein that query protein from p49879.1 was homologous to.
"An E (Expect) value of one represents the chance that in the available database you might expect to sec one match with a similar score simply by chance (Kirby er 01.2002).
d The orientation of this ORF is undetermined and could also lake the order of position 27700-27970,
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sequences to other transposase and resolvase proteins showed 75.7% and 75.1%

homology respectively; this correlates with the 70% homology which members of the

Tn21 family have been reported to share (Grinsted et al, 1990). The transposase and

resolvase genes are also transcribed in the same direction, which is in agreement with

those of the Tn21 transposon subgroup (Figure 3.19). Whether these are functional or

pseudo genes is still to be determined.

Tn5037
Tn501
Tn21
Atf
p49879.1
p49879.2

Tn5037
Tn501
Tn21
Atf
p49879.1
p49879.2

Figure 3.34: Multiple sequence alignment of TnpR proteins from L. ferrooxidans

ATCC49879 plasmids against TnpR proteins from Tn2l-like transposons. Shading black =

100% homology; dark grey = 75% homology; light grey = 50% homology. Accession

numbers: Tn5037-CAA70238; Tn50l-NP085427; Tn2l-BAA78804; Acidithiobacillus

ferrooxidans (At./) Tn5037-CAC69253/AJ251743. Amino acid codes are given in Appendix

E.

ORF 3 and ORF 4 showed homology to products of mobilization genes. ORF 3

displayed a 35% aa sequence identity over 55% of the MobL of plasmid pTFI from

At. ferrooxidans. A 31% aa sequence identity to the partly related MobA/RepB

protein of RSFlOIO was also obtained. Both proteins function as relaxases

responsible for DNA nicking at the oriT site before conjugal transfer takes place.

ORF 4 had a 50% aa sequence identity to 55% of the C-terminal region of the At.

ferrooxidans pTFI MobS protein, and 37% aa sequence identity to 68% of the MobC

protein of pRSFI0I0. MobS of p'Tfl and MobC of RSFI010 are accessory proteins

involved in plasmid mobilization (Rawlings and Tietze, 2001). As a result of

incomplete sequence it is uncertain to which protein the sequence of ORF 4 is most
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Tn5037
Tn50!
Tnll
Ar.f
p49879.1
p49879.2

Tn5037
Tn50!
TnU
Ar.f
(>49879.1
p49879.2

Figure 3.35: Multiple sequence alignment of TnpA proteins from L. [errooxidans 49879 plasrnids against TnpA proteins from Tn2/-like transposons. Shading:
black = 100% homology: dark grey = 75% homology; light grey = 50% homology. Accession numbers: Tn5037-CAA 70236: Tn50/-NP085428; Tn2/-
BAA 78805: Acidithiobacillus ferrooxidans (At.f)-CAC69254.
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similar. The mobS/C-like and mobUA-like genes of p49879.1 are also divergently

transcribed, which is in agreement with the lncQ-like plasmid systems (Figure 3.5).

Owing to the identification of both a MobL and MobS, the only other outstanding
I"

factor in a mobilizable plasmid system is an origin of transfer (oriD. Thus the region

between ORF 3 and ORF 4, suspected of accommodating the oriT (based on other

systems), was examined. The conserved consensus sequence of the RSFIOlO/pTfl

oriT family was identified and is shown in Figure 3.36. Although the presence of a

complete, functional mobilization system had not yet been determined, the pIS I

subclone of p49879.1 carrying ORF's 3 and 4 (Figure 3.33) was tested for the ability

to be mobilized. pIS I was excised, cloned into the non-mobilizable vector PUCI9,

and transformed into E. coli S17.1 cells containing the self-transmissible plasmid RP4

(lncP) on the chromosome. The RP4 system is able to provide the genes necessary

for mating pair formation, thus establishing cell-to-cell contact with the recipient

(CSH56), whilst the genes necessary for DNA transfer and replication should be

provided by the pIS 1 subclone, if the complete ORF's are present. This system was

tested in parallel with a positive plasmid control, E. coli S17.I::RP4 (a suitable

conjugation donor) containing the complete mobilization gene system of At.

ferrooxidans plasmid pTF-FC2. The control plasmid with the pTF-FC2 system was

mobilized at high frequency (> 1.0 transconjugantldonor) (Rohrer and Rawlings,

1992), but no mobilization was detected for E. coli S17.1: :RP4 containing pIS 1. This

result is not conclusive as the presence of a complete system has not yet been

determined.

p49879.l TTGCATAAGTGCGCCCTTC
pTFl TACTCTAAGTGCGCCCTTG
RSF1010 ACCGGTAAGTGCGCCCTCC

Figure 3.36: Alignment of p49879.l oriT region. Nucleotide positions that are conserved

within the same family of oriT sequences are underlined and bolded. GenBanklEMBL

accession numbers: RSFlOlO, M28829; pTFl, XS2699.

ORF 5 and especially ORF 7 share extensive similarity with proteins whose functions

have not yet been clearly defined (Table 3.2).
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subelones are drawn to scale.
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3.3.5.2 p49879.2

ORF 1 (MobL) (Figure 3.37, opposite page) had a 35% aa identity to 30% of the N-

terminal region of the At. ferrooxidans pTFI MobL protein. pTFI appears to have

only two mobilization proteins, MobL, which has an aa sequence related to the first

386 aa of the N-terminal relaxase region of RSFlOlO MobA, and MobS, which is

related to RSFI0I0 MobC (Rawlings and Tietze, 2001). Whether there is an

equivalent to MobS or MobC requires additional sequencing.

ORF 2 shared extensive aa homology to an ArsR-family transcriptional regulator of

Deinococcus radiodurans. The arsR gene forms part of an ars operon that drives an

arsenic resistance mechanism, and encodes a repressor that controls the basal levels of

ars operon expression. Since L. ferrooxidans is used in commercial biooxidation

processes to recover gold from arsenopyrite ores (Rawlings and Silver, 1995), and

total arsenic levels greater than 13 gr1 have been reported in arsenopyrite

biooxidation tanks (Dewet al, 1997), the presence of an arsenic resistance mechanism

would not be unexpected. Plasmid-associated arsenic efflux resistance mechanisms

have been well documented (Silver and Walderhaug, 1992; Cervantes et al, 1994;

Silver, 1996); a transposon-based system has also been reported in Tn2502 of plasmid

pYV of Yersinia enterocolitica (Neyt et al, 1997). Two families of ArsR-like proteins

have been shown to exist (Figure 3.38) (B.Butcher, PhD thesis, personal

communication). The CLUSTALW program was used for multiple sequence

alignments. ORF 2 of p49879.2 has similarity to the second group, of which only one

member has been shown to function as an ArsR, At. ferrooxidans ArsR. A multiple

aa sequence alignment of ORF 2 against the second group of ArsR-like proteins

confirmed the presence of conserved homology regions known to exist in ArsR-like

proteins (Figure 3.39). A 'helix-tum-helix motif, which members of this family of

regulatory proteins (ArsR-like) are reported to contain, is present in p49879.2. This

indicates the existence of a DNA binding domain and possibly a regulatory function

of some description.

Examples of other bacteria found in arsenopyrite biooxidation tanks, known to carry

arsenic resistance mechanisms include At. ferrooxidans (Butcher et al, 2000), and At.

caldus (de Groot, et al., 2001; Dopson et al, 2001). Genes for resistance to the

inorganic salts of metals, such as cadmium, mercury, and arsenic are found both on
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Table 3.5: Location and size of ORF's present in p49879.2 and closest relationship to known proteins

ORF Approximate No. TOIal Proponion Homologue • Organism E-valuec % Idenuty/ Accession
position of aa predict cd aa of protein b % similarity numbcr

no. from II (%)
ORFI 340·1

(Mobl) 114 378 30.2 Mobilization protein: Acidithiobacillus ferrooxidans le'{)l 35/53 X52699
MobL (ORF2) of pTFI

ORF2 1510-1780
(ArsR) 90 109 82.6 ArsR-fami ly Deinococrus radioduraus 2e-{)(' 35/51 AE002005

transcriptional regulator

ORF3 5450-4720 246 247 99.6 Hypothetical protein Sulfotobus solfataricus 5e'~o 45/60 Y08256
(ORF C06001)

ORF4 8760-9630
(NifS) 292 410 71.2 NifS protein homologue Rickettsia conorii 6e·22 46170 AAL03268

ORF5 10680-
(TniR) 10400 93 204 45.6 TniR protein Plasmid pSB 102 6e·J~ 61170 AJ304453

ORF6 12770-
(TnpA) 12250 172 477 36.1 Transpesase Metlianosarcina acerivorans le·2(, 40/54 AEOI0812

152 333 45.6 Putative transposae D. radioduraus RI plasmid ePI 6 ·18 36/51 AEOOl827c
ORF7 14330-

(TnpA) 13020 439 988 44.4 Transpesase for Tn21 Plasmid RI 00 0.0 83/88 NC_002134

-B6 987 44.2 Transposuse (Tn5037) AI. [errooxidans 0.0 82/87 AJ251743
ORF8 20330-

(TnpR) 20750 I·HJ 186 75.3 Resolvasc (Tn5037) AI. [errooxidans 7e·sl 71181 AJ251743

140 186 75.3 Rcsolvasc for Tn2l Plasmid RI 00 IColi' 65178 NC_OO2134

a Criteria for ORF identification: maximum e-valuc of 0.0 over no less than 20"1 of the large! protein. selected from within the top 10 closes I prolein relationships.
hlndicates % of known protein that query protein from p49879.2 was homologous 10.

C An E (Expect) value of one represents the chance that in the available database you might expect 10 see one march with a similar score simply by chance (Kirby et (II. 2002).
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plasmids and in chromosomes (Rensing et al, 1999). Although high aa sequence

identity was obtained to an arsenical resistance-like repressor family, the presence of

arsenic resistance genes themselves in p49879.2 has not yet been found.

100%

S'uureus Cade ----------------,

Bxubtilis skin ArsR -----------------'

Ecoli chromosome ArsR ------,

E.coli R773 An;R -------'

Yienterocolitica pYVe227 ArsR ---------'

Foemgtnosa chromosome ArsR ------------'

SyllCChOCOCCIIS sp. SmlB --------------,

Nosloc sp. ArsR NP_486806 ----------------'

Scxylosus pSX267 ArsR

Ssuoeus pl258 ArsR

Arumefaciens NP_385183 ---------,

S.meliloliNP_385183 ----------'

M.loli NP_103579 ----------,

Cereseeusus NP _420316 ----------'

Suneliloti pSyrnB NP _437556 ---------,

A.lllmefodelis pAT NP _396254 ---------'

Rsalanaceanen NP_522690 -------------'

At.ferrooxidans AfSR ---------------'

M.loli NP_103576 --------------'

M.lllberclliosis NP_217156 ----------------,

Lferroosidans p49879.2 ArsR ---------------'

Figure 3.38: Dendrogram of all ArsR-like proteins represented in the database. The division

into two groups is evident with the putative ArsR-family transcriptional regulator of ORF 2

(p49879.2), grouping within the second group. Abbreviated names/accession numbers

represent the following: Group 1: S.aureus CadC, P20047; B.subtilis skin ArsR, BAA06967;

E.coli chromosome ArsR, NP_312400; E.coli R773 ArsR, BAB91569; Y.enterocolitica

pYVe227 ArsR, NP_052440; P.aeruginosa chromosome ArsR, AF010234; Synechococcus

sp. SmtB, P30340; Nostoe sp. ArsR, NP_486806; S.xylosus pSX267 ArsR, AAA27587;

S.aureus p1258 ArsR, AAA25636. Group 2: NP_103579, Probable arsenate reductase M.loti;

NP_354498, A.tumefaciens ArsR-like protein; NP_437556, Putative regulation protein

S.meliloti; NP_522690, Putative arsenical resistance operon transcriptional regulation protein

R.solanacearum; NP_385183, Hypothetical transcriptional regulation protein S.meliloti;

NP_217156, Hypothetical protein M.tuberculosis; NP_103576, Hypothetical protein M.loti;

NP_396254, ArsR-like protein A.tumefaciens; NP_420316, Transcriptional regulator ArsR-

family Cerescensus. At.f ArsR, AF69241.
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p49879.2 A"R-1;ke '~~~~~~~~RQMILEQLETTSEKRKSLANVTPFLREKKEQS - - - - - - - - .
NP_103579 "I! ME GAPELCQPILQAVTCKC - .. - .
NP_354498 GATELCAPLIAELTPCCCQEAEAL .............•.•....
NP_437556 GHASVRA SLNEQNPCRVASSTPAEGGNG .
NP_522690 EACPEFSAAGCKC .
NP_385183 GHPDVCAPLVADLTPCCSPMDRPASRSHRSEGGGMDGEAADRKN
NP_217156

NP_103576
NP_396254
At.fArsR
NP_420316

NP_354498
NP_437556
NP_522690
NP_385183
NP_217156

NP_103576
NP_3%254

At.fArsR

NP_420316

DAACNP .. AAGDAAA .
~fE':~E=~r.r.;;c~~:X:::r:GHPEICA ... QAVEVAACGVQTAEAKRW - ••••• - •••••

GTRDCALSGETRSPSVQEGNQ _ .... __ . _ ...•••••.•
GAPQICAPLSAIVSGGMACGAAKA ...........• __ ...•••
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64
64
64
64
64
64
90
64
64
68
56

119
110
117
121
107
137
119
106
119
118
109

Figure 3.39: Multiple aa sequence alignment of ORF 2 (ArsR) from p49879.2 against Arsk-

like proteins from the database. Open boxes indicate conserved regions. Underlined aa

represent 'helix-tum-helix' motifs. Accession numbers represent the following: NP_103579,

Probable arsenate reductase M. loti; NP_354498, A. tumefaciens ArsR-like proetin;

NP_437556, Putative regulation protein S. meliloti; NP_522690, Putative arsenical resistance

operon transcriptional regulation protein R. solanacearum; NP_385183, Hypothetical

transcriptional regulation protein S. meliloti: NP_217156, Hypothetical protein M.

tuberculosis; NP_103576, Hypothetical protein M. loti; NP_396254, ArsR-like protein A.

tumefaciens; NP_420316, Transcriptional regulator ArsR-family C. crecentus. At.f ArsR,

AF69241.

ORF 3 shared identity/similarity (45%/ 60%) with a hypothetical protein from S.

solfataricus of unknown function. S. solfataricus has been reported to share some

physiological properties with L. ferrooxidans, they are both acidophiles and have the

ability to oxidize Fe (Rawlings and Woods, 1995). The presence 'Of this common

unresolved protein in both bacteria is interesting as it could contribute to the ability to

function/survive in the extreme environments in which they exist. However, it is

more likely to simply be fortuitous.

ORF 4 gave a 46% aa sequence identity to the NifS protein homologue of Rikettsia

conorii. The nijS gene product (NifS) is a pyridoxal phosphate-binding enzyme that

catalyzes the desulfurization of L-cysteine to yield L-alanine and sulphur (Zheng et al,

1994). This activity, in the context of nitrogen fixation, is thought to be required for

full activation of the nitrogenase component proteins encoded by the nifHDK genes.

The nitrogenase component proteins (Fe- and MoFe-protein) both contain

metalloclusters required for their respective activities, the proposed model for NifS
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interaction is the biosynthesis of the metalloclusters by providing the inorganic sulfur

required for Fe-core formation (Zheng et al, 1994). The nitrogenase enzyme, encoded

by the nif HDK genes, is responsible for N2 fixation and is important for any organism

inhabiting environments that lack fixed nitrogen. Nitrogen fixation genes can be

either chromosomal or plasmid-borne (Finan et al, 2001), and have been reported to

exist in the biomining bacteria At. ferrooxidans (Pretorius et al, 1987) and L.

ferrooxidans (Norris et al., 1995). NifS, and NifS-like proteins (IscC, CSd and CsdB

from E. coli), are often not associated with nitrogen fixation systems and are still

classified members of the homodimeric pyridoxal 5' -phosphate (PLP)-dependent

family of enzymes (Lima, 2002). These enzymes are proposed to function as sulphur-

delivery proteins for iron-sulphur clusters, thiamin, 4-thiouridine, biotin, and

molybdopterin. Owing to the original identification of the nifS sequence in the nif

cluster of Azotobacter vinelandii and Azotobacter chrococcum it was named as a nif

gene.

ORF 5 is similar (61% aa identity/ 70% aa similarity) to the TniR protein of plasmid

pSB102. Plasmid pSB102 carries a mercury resistant transposon, designated Tn5718,

which is 10 414 bp in size (Schneiker et al, 2001). It is delimited by 25 bp inverted

repeats (IR) and flanked by 5 bp direct repeats, the 25 bp IRs show significant

similarity to integron repeats (Brown et al, 1996). Tn5718 contains 14 putative

ORF's, five of which are named tniA, tniB, tniQ, tniR, and tniM. Tni genes are

integron-based transposition genes, which mediate transposition via cointegrate

formation followed by site-specific cointegrate resolution. Cointegrate resolution is

catalyzed by the product of the tniR gene at the res region (Kholodii et al, 1995).

TniR is the integron equivalent of TnpR.

ORF 6 is similar (40% aa identity/ 54% aa similarity) to the transposase of M.

acetivorans and to the putative transposase (36% aa identity/51 % aa similarity) of

plasmid CP1 from D. radiodurans Rl. These transposases share a 28.5% aa identity

to each other, and a 27.1 % aa identity to the C-terrninal region of the Tn21-like

transposases. Thus the transposase of ORF 6 is related, but not identical to that of

ORF7.
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ORF 7 (TnpA) had high aa sequence identity (83%) to 44% of the C-terminal region

of both the transposase for Tn21 of plasmid RIOO, and the transposase of Tn5037

from At. ferrooxidans (82%). All three aa sequences were included in the multiple

alignment in Figure 3.31; the TnpA of p49879.2 displayed an overall aa homology of

78.3% to the aa sequences of the other TnpA proteins. ORF 8 (TnpR) also showed

high aa identity over 76% of the N-terminal region to the resolvases in both the At.

ferrooxidans Tn5037 (71%) and Tn21 of Plasmid RIOO (65%). Both of which belong

to the Tn21 family of resolvases. A multiple aa sequence alignment of Tn21-like

resolvases including ORF 8 of p49879.2 gave an overall aa homology of 84.7%

(Table 3.3). Since it has been suggested 70% aa homology is required to group

resolvases into the Tn21 family (Liebert et al., 1999), it would seem that ORF 8 of

p49879.2 is a resolvase of this type. ORF's 7 and 8 are also divergently transcribed,

which is characteristic of the Tn3-like family of transposable elements (Merlin et al,

2000). Transposase and resolvase genes transcribed in this manner surround a central

res site (Figure 3.19), however, insufficient sequence data was available to detect the

presence of a res site.

3.3.6 Plasmid homologyin L. ferrooxidans isolates

To determine whether the plasmids found in ATCC49879 had sequences, which were

also present in other strains, 10 L. ferrooxidans and 6 L. ferriphilum isolates were

screened using whole, DIG-labeled, p49879 DNA as a probe. Total DNA was

digested with Sail, separated via standard gel electrophoresis, and transferred to a

nylon membrane. All L. ferrooxidans isolates gave hybridization signals of varying

intensities (Figure 3.40). Very weak, or no, hybridization signals were obtained for L.

ferriphilum isolates. This indicated that only L. ferrooxidans isolates housed DNA

with sufficient homology to p49879.1 and p49879.2 to give a positive signal. In order

to determine the identity of the homologous region/s each DIG-labeled plasmid sub-

clone was hybridized against the above-mentioned blot.
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L. ferrooxidans L. ferriphilum

Figure 3.40: Southern blot of all sixteen Leptospirillum strains probed with whole DIG-

labeled p49879 .lIp49879 .2. Definite bands and/or smears are apparent for all L. ferrooxidans

isolates (lanes 3-12), weak or no hybridization signals were apparent for L. ferriphilum

isolates (lanes 14-19). Feint smears in lanes 9, 10, and 11 are the result of a low DNA

concentration. Lane 4 appears to be empty; a separate blot was prepared for this isolate where

a positive signal was obtained (results not shown). Lanes 2 and 13 have no DNA, lane 1

p49879.lIp49879.2, lane 3 ATCC49879, lane 4 P3a, lane 5 N25, lane 6 DSM2705, lane 7

CFI2, lane 8 Chil-Lf-, lane 9 Parys, lane 10 Crys13, lane 11 BCT2, lane 12 SY, lane 14

Fairview, lane 15 Warwick, lane 16 ATCC49880, lane 17 ATCC49881, lane 18 Bionic 3.1

and lane 19 Mont 4. Species separation is further indicated through brackets.

The region of homology that gave a positive hybridization signal for all L.

[errooxidans isolates was localized to an area on p49879.2 only, which constituted

subelones p2S5 and p2S6 (Figure 3.41). Subelones on either side of these fragments

were also tested for hybridization. Probes p2S2 and p2S4 gave little or no homology

to any isolates, while probes p2S 1 and p2S7 hybridized to only a few selected isolates

from both L. [erriphilum and L. ferrooxidans species. Homology in these cases could

possibly be ascribed to the presence of MobL and TnpA respectively. Since

hybridization with p2S7, which carries the predominant portion of the TnpA for Tn21

(Plasmid RIOO), was poor for all Leptospirillum isolates, it can be concluded that the

TnpA sequence on p2S6 does not account for the positive hybridization signal

received for all L. ferrooxidans isolates.
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Figure 3.41: Southern blot of all sixteen Leptospirillum strains probed with DIG-labeled sub-

clone p2S6 containing aa identity to a putative transposase. Definite bands are apparent in all

L. ferrooxidans isolates (lanes 3-12), weak or no hybridization signals are apparent in L.

ferriphilum isolates (lanes 14-19). The band in lane 12 appears feint due to overexposure of

the membrane in this region; in other blots this region is not affected (results not shown).

Lanes 2 and 13 have no DNA, lane 1 p49879.lIp49879.2, lane 3 ATCC49879, lane 4 P3a,

lane 5 N25, lane 6 DSM2705, lane 7 CFI2, lane 8 Chil-Lf-, lane 9 Parys, lane 10 Crys13, lane

11 BCT2, lane 12 SY, lane 14 Fairview, lane 15 Warwick, lane 16 ATCC49880, lane 17

ATCC49881, lane 18 Bionic 3.1 and lane 19 Mont 4. Species separation is further indicated

through brackets.

Results from the sequence analysis of p2S5 gave weak homology to a hypothetical

protein of P. aeruginosa (E=0.89, 46% aa identity/ 57% aa similarity over 3.3% of the

protein). Approximate nucleotide positions 11500-11800 of p49879.2, within p2S6,

gave low aa identity (26%) faa similarity (40%) values to a conserved hypothetical

protein of unknown function from Sulfolobus solfataricus (E=0.005). The region

within p2S5, which gave highest homology to a known protein in the database,

occurred at position 12.7-12.3 kb. Amino acid sequence identity was to a transposase

of M. acetivorans (ORF 6, Table 3.3), which is localized to the chromosome (Galagan

et al, 2002), and a putative transposase of plasmid CPl from D. radiodurans Rl. The

area of homology shared between all L. ferrooxidans isolates IS therefore a

transposase/putative transposase, the origin of which can either be plasmid or

chromosome based.
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Stellenbosch University http://scholar.sun.ac.za



150

Chapter 4

General Discussion

This study includes both a largely genome-based taxonomic- (Chapter 2), and

plasmid- based (Chapter 3) investigation of members of the genus Leptospirillum.

Evidence for the importance of 'Leptospirillum' in biomining has been obtained

through a number of studies (Rawlings et al., 1999a; Rawlings et al., 1999b; Vásquez

and Espejo, 1997; Espejo and Romero, 1997; De Wulf-Durand et al., 1997; Pizarro et

al., 1996; Goebel and Stackebrandt, 1995; Rawlings, 1995; Goebel and Stackebrandt,

1994). However, little is known of the taxonomy, biology and genetic make up of this

genus. Members of the genus Leptospirillum have a limited range of physiological

characteristics that can be used in their identification (Johnson, 2001). One objective

of the present study was therefore to determine the diversity of leptospirilla isolates

from different geographical locations using a variety of molecular techniques to

establish whether there were sufficient differences to warrant sub-division at a species

level. These studies provide an extended description of a number of characteristics

that can be used in the identification of the more commonly encountered leptospirilla.

Genetic and phenotypic tools, specified by the currently accepted approach for the

speciation of prokaryotes (Rosselló-Mora and Amann, 2001), were applied to a

sample group of sixteen bacteria previously described as L. ferrooxidans or L.

ferrooxidans-like. During the course of this study an additional three isolates were

included in this sample group (Adapt, BN Mod, and 617). These strains were isolated

out of pilot plant tanks from the Billiton Process Research laboratories in South

Africa, where the biooxidation of a range of ores at different temperatures (45-55°C)

was being tested. The inclusion of strains that have the ability to grow at elevated

temperatures improves the diversity of the study. Results indicate that two distinct

groups were represented within the sample selection, and that the differences were

sufficient to warrant a species level division. Based on the evidence obtained, we

proposed that the leptospirilla investigated in this study represent two different

species, L. ferrooxidans (type strain DSM2705) and L. ferriphilum (type strain

ATCC49881). This work was published in Applied and Environmental Microbiology
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(Appendix G); the name L. ferriphilum was validated by the International Committee

on Systematic Bacteriology (Appendix H).

Prior to this work, limited phylogenetic studies on a relatively small number of

members of the genus Leptospirillum had been reported. Harrison and Norris (1985)

obtained evidence to suggest that there was considerable variation between isolates

belonging to the genus Leptospirillum. One group of isolates had a mol% G+C of ca.

51% and another a mol% G+C of 55-56%. This result was further supported by

DNA-DNA hybridization studies, in which two isolates had a DNA sequence

similarity of 71-73% while all other isolates had> 6-31% DNA-DNA similarity.

Unfortunately, all strains but the L. [errooxidans type strain (DSM2705) from this

early study were lost (Norris personal communication). Hallmann et al. (1993)

carried out DNA-DNA hybridization studies with six isolates of leptospirilla. Two

pairs of strains were 100% related to each other and there was 38-50% relatedness

between these pairs and 31-50% relatedness between all other isolates. No attempts

to classify these groups of isolates into different species have been made; collectively

they are referred to as L. ferrooxidans or L. ferrooxidans-like bacteria. A moderately

thermophilic Leptospirillum with an optimum temperature of 45-50°C (maximum 55-

60°C), a mol% G+C of 56% and a DNA similarity of 27% with a mesophilic strain

was reported (Golovacheva et al., 1993). This strain was named L.

thermoferrooxidans, but has also been lost and so was unavailable for comparative

studies (Johnson, 2001). The genus name Leptospirillum, and species names

[errooxidans and thermoferrooxidans have been validated (Hippe, 2000). Recently

16S rDNA belonging to a third group of leptospirilla was amplified from DNA

isolated directly from slime streamers of an acid mine drainage site, however, bacteria

belonging to the third group have not been isolated in pure culture (Bond et al.,

2000a).

Therefore, from past and present studies, the current status of the genus

Leptospirillum is that it contains three different species, which have been described

and published, with the likelihood of the existence of a fourth species from the work

of Bond et al. (2000a). Current understanding is that leptospirilla are one of the most

metabolically restricted bacteria known with only ferrous iron serving as the electron

donor, and oxygen as the electron acceptor. They are also obligately acidophilic,
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relying on a low pH « 2) to maintain iron (Fe3+) solubility and facilitate energy

production. These severe physiological restrictions may also place restrictions on

genomic diversity. One may have expected evolutionary pressure to expand the

ecological niche of Leptospirillum, resulting in new metabolic capabilities. This

appears not to have happened, and leptospirilla remain highly competitive within this

restricted niche. Leptospirillum have a highly optimized ability to oxidize iron (Km =
0.25 mM Fe2+), and are not subject to ferric iron inhibition. Since iron oxidation is so

highly optimized, any genetic drift that may occur, would probably take place in

functions unrelated to aerobic iron oxidation. This would lend support to the finding

that few phenotypic differences exist between all three described species, which are in

fact separated on a predominantly genornic level.

What forces could drive the occurrence of genornic variation, of up to 95% non-

hybridization, between such metabolically restricted, and seemingly closely related

species as L. ferrooxidans and L. ferriphilum? Possibly, adaptation to environmental

pressures such as temperature or geographical separation. Although we were unable

to report vast differences in temperature optima between species, growth of L.

ferriphilum was marginally faster than that of L. ferrooxidans at 37°C. This tolerance

of higher temperature was supported by the observation that some L. ferriphilum

isolates were able to grow at 45°C. This could however be the result of previous

exposure to higher temperatures. The fact that L. ferriphilum were found to be the

dominant Leptospirillum species in South African biooxidation tanks that operate at

40°C is all supportive, though not definitive proof of tolerance of higher temperatures

by L. ferriphilum. This is not to say that L. ferrooxidans are not present in other

commercial processes, but merely an observation that L. ferriphilum is more tolerant

of these particular conditions. Inability of L. ferrooxidans isolates to grow at 45°C

could also be the result of lack of evolutionary pre-exposure to high temperatures.

The isolates in this study were indeed representative of a wide range of geographical

locations, and geographical separation has been known to drive speciation. However

it is unlikely that this factor played a role in the differences between L. ferrooxidans

and L. ferriphilum, since not only were isolates from both species found in different
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locations, but also in one instance ATCC49880 (L. ferriphilum) and ATCC49879 (L.

ferrooxidans) were isolated from the same mine in Romania.

The understanding of taxonomic diversity within the genus Leptospirillum is in its

relative infancy. Information obtained from this study is by no means a complete

interpretation of leptospirilla variation, but it has contributed to discerning the most

prominent species present in some biomining processes. Genetic tools can make a

considerable contribution to an investigation of the physiology of the organism. For

example, to resolve the function of a gene, it can be mutated or disrupted.

Introduction of the mutated gene into the wild type organism, followed by

homologous recombination, results in the disruption of the wild type gene. The study

of mutants in which a protein of interest is no longer synthesized can help to establish

its function. The construction of null mutants by marker exchange mutagenesis

would be possible if a reliable genetic transfer system for Leptospirillum was

available. Owing to the extensive knowledge base available on E. coli, it is used as a

"micro-laboratory" in which gene constructs are manufactured, after which they are

introduced into the host of interest. Currently no genetic system exists for L.

[errooxidans or L. [erriphilum. However, genetic transfer systems have been

described for the acidithiobacilli, At. ferrooxidans (Liu et al., 2000; Peng et al.,

1994a; Peng et al., 1994b; Kusano et al., 1992), At. thiooxidans (Jin et al., 1992) and

At. caldus (unpublished data, personal communication, L. van Zyl), which share the

same extreme ecological niche. In order to develop such a system, all the parameters

necessary for the genetic engineering of the bacterium must be available. These

include a suitable transfer system, plasmid vectors, and selectable genetic markers.

Potential transfer systems include conjugation, electrotransformation and

transformation. In conjugation, the plasmid is transferred from the donor to recipient

cell through a mating process. In order for conjugation-type transfer to be possible a

few parameters need to be met. The vector must be mobilizable, and able to replicate

in both donor and recipient cells. A medium that provides suitable conditions for both

donor and recipient to mate is required. Originally it was thought that due to the vast

physiological differences between the sulfur oxidizing organisms and E. coli, the

development of a direct conjugation-type transfer system would be challenging. This

was mainly due to the low pH levels « 2) required by the biomining organisms,

which could affect E. coli during mating. A suitable mating medium, which supports
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both sulfur oxidizers and E. coli, has been developed (Peng et al., 1994c). This

medium, referred to as 2:2 medium, contains 0.5% yeast extract, and has been pH

optimised to within a range of 4.6-4.8 (Liu et al., 2000). At. ferrooxidans, At.

thiooxidans, At. caldus, and E. coli (lower pH limit of 4.4) are able to tolerate this pH

range, and sulfur remains in solution. The development of a conjugative-type transfer

system in Leptospirillum poses a more formidable task. Unlike the acidithiobacilli,

leptospirilla do not utilize sulfur, and have an obligatory requirement for iron. A

requirement for iron places restrictions on the maximum pH of the media because

ferric iron rapidly forms a jarosite precipitate at pH values above 2. Not only is iron

affected at pH values> 2, but growth of the bacteria is inhibited. Organic substrates

also hinder leptospirilla growth. Therefore the development of a suitable medium for

the direct transfer of plasmids from E. coli to Leptospirillum by conjugation may not

be possible. There is however the possibility of transferring the plasmid vector

through an intermediate-, or series of intermediate- hosts, with growth requirements

compatible to those of E. coli and Leptospirillum. For instance, a facultative

autotroph that has the ability to grow at both low and high pH values (e.g.

Halothiobacillus neopolitanus or Acidithiobacillus albertensis). In doing this,

metabolic induced incompatibility between the two organisms is ruled out.

Transformation is a method for inserting naked DNA into a cell. Some cells are

naturally transformation competent, although this has not been shown for any

biomining organisms. Treating cells with chemical substances (i.e. calcium) in order

to make them competent can artificially induce a state of transformation competence.

Application of this method to acidophilic bacteria (At. ferrooxidans) has proven

difficult, and no means of making cells competent using chemicals has been reported.

Electrotransformation, also known as electroporation, is the transfer of naked DNA

into bacterial cells by the application of a high voltage electrical discharge, and is a

transformation procedure that is finding increasing application to a wide range of

bacteria, often resistant to routine methods (Kusano, et al., 1992).

Electrotransformation has been used to transfer a plasmid into a strain of At.

ferrooxidans (Kusano et al., 1992). However, this method could not be generally

applied to At. ferrooxidans as only one out of thirty strains was transformed.
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Electroporation may be suitable for Leptospirillum as the need for a medium in which

both donor and recipient cells can mate is overcome.

Suitable vectors include broad host range plasmids and/or endogenous plasmids with

the ability to replicate in the host of interest. Shuttle vectors, capable of being used in

E. coli and the organism of interest, may be made from well-characterized E. coli

vectors with a multiple cloning site for easy gene sub-cloning, plus an origin of

replication for the required host and at least one selectable marker that can be

expressed in both organisms. Broad host range plasmids of the IncQ (RSFI 010) and

IncP (RP4) plasmid families have been transferred successfully in the conjugation-

type systems of the acidithiobacilli. Although indigenous plasmids have been isolated

from each of these sulfur-oxidizing organisms, they have not been used as vectors.

No plasmids had yet been isolated from Leptospirillum. This is not to say that the

IncQ and IncP broad host range plasmids could not be used as shuttle vectors with

this genus. However, Leptospirillum belong to the Nitrospira group, which is far

removed from the Proteobacteria like E. coli and the acidithiobacilli. Whether current

broad host range plasmid vectors would be broad host range enough to be able to

replicate in Leptospirillum is unknown.

A suitable selectable marker completes the requirements for a functional genetic

system. Antibiotic resistance markers have been widely used as selectable genes in

heterotrophic bacteria. However, antibiotics are unstable in low pH and high metal

iron-containing media. In the case of the acidithiobacilli, the pH of the 2:2 mating

medium is high enough (pH 4.6-4.8) for kanamycin to remain active. Kanamycin is

stable at relatively low pH levels (- 4), and has been the selective marker of choice

for the At. ferrooxidans, At. thiooxidans, and At. caldus genetic systems. Although

kanamycin has been successfully used as a selectable marker with the acidithiobacilli,

the probability of the survival of antibiotic resistance markers in low pH « 2), iron-

containing selection medium, such as that required for leptospirilla, is highly unlikely.

Markers conveying metal ion tolerance could possibly be used. Arsenic (Peng et al.,

1994a) and mercury (Kusano et al., 1992) resistance genes are likely candidates as

they have the potential for conferring industrially significant characteristics. Mercury
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is however not a stringent selectable marker as it volatilises from plates during long

incubation periods required for leptospirilla to grow. As a result of its instability, At.

ferrooxidans colonies isolated on mercury containing media often do not carry the

plasmid of interest (Kusano et al., 1992).

This study reports the first isolation of plasmids from Leptospirillum. In a previous

study, a plasmid was identified, though not isolated in the Fairview culture (L.

ferriphilum) (unreported, personal communication, C. Dominy). The presence of this

plasmid was not confirmed in this study. Although pulsed field gel evidence for

plasmid presence in L. ferrooxidans (Parys and CF12) was obtained in this work,

plasmid DNA could only be isolated from L. ferrooxidans (ATCC49879). Plasmid

DNA from ATCC49879 although initially thought to be a single - 60.0 kb plasmid,

consisted of not one but two plasmids of approximately 30.0 kb and 27.0 kb, for

p49879.1 and p49879.2 respectively.

Sequence analysis of p49879.1 and p49879.2 indicated that the plasmids were not

identical but shared regions of homology. This included amino acid sequence identity

to the TnpA and TnpR of the Tn2l-like transposon family, and the mobilization

regions of IncQ-like plasmids (particularly that of pTFl from At. ferrooxidans). Both

regions are known to play important roles in the survival/spread of plasmids within a

bacterial community via horizontal transfer. Whether either of these systems is

functional still remains to be determined. The mere presence of a mobilization region

suggests the existence of a mating system in leptospirilla. Another interesting ORF

was identified in p49879.2 with high aa sequence identity to an ArsR-like protein that

belongs to a second atypical family of ArsR transcriptional regulators (Butcher and

Rawlings, 2002). No conserved CVC motif within the ars binding site is present

within this group of regulators, however some members have still been shown to

function as regulators of the ars system. Although the regions flanking this ORF have

not yet been sequenced, sufficient space is available to allow for the existence of the

other arsenic resistance genes (arsBC), reported to be associated with this family of

transcriptional regulators (addressed in Butcher et al., 2000). Should additional

arsenic resistance genes be present and functional, being plasmid-based, they could

serve as selective markers in a plasmid transfer system. An ArsR has however been

reported to occur on the IncIl plasmid R64 without additional arsenic resistance genes
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and was found not to be involved in arsenic resistance but rather alleviated type I

restriction endonuclease digestion (Rastorguev et al., 1998).

Although this is the first conclusive report of plasmid presence in Leptospirillum,

plasmids are widely associated with bacteria involved in metal leaching from ores.

The occurrence of more than one plasmid within a strain is also not unique. From as

early as 1980, chemoorganotrophic Acidithiobacillus ferrooxidans (TFG-O) and

Acidiphilium acidophilus (AFG-l) were shown to contain plasmids of different

molecular weights (Mao, 1980), whilst 13 different strains (TF1- TF13) within the

same species of At. ferrooxidans were shown to carry many different sizes of plasmid

DNA (Martin et al., 1981). Often plasmids originating from different bacterial

strains, within the same species, would share high sequence homology (Shiratori,

1991). When high homology between two resident plasmids exists, an unstable

situation could result as the plasmids could occur in either a cointegrated- or

separated- state. This did not however seem to be the case with plasmids p49879.1

and p49879.2. Although p49879.1 and p49879.2 were always isolated together,

Southern hybridization results indicated that they existed in a separated state as

individual plasmids. Plasmids are believed not to encode functions crucial to bacterial

survival, such as ferrous iron oxidizing functions in iron-oxidizing lepta spirilla.

Instead plasmids are believed to encode inessential functions that are likely to

contribute to bacterial competitiveness.

The current plasmid study amongst Leptospirillum isolates, although removed from

that of a taxonomic approach seems to lend support to the presence of two species of

Leptospirillum in a way that was not expected. A region was identified on plasmid

p49879.2, which when used as a probe against whole DNA obtained from all isolates,

was present in only one species and not the other. The region on p49879.2 (ORF 6,

Figure 3.37), with aa sequence identity to a putative transposase, was found to share

homology with all L. ferrooxidans isolates, but no L. ferriphilum isolates represented

in this study. Why this transposase should be present in L. ferrooxidans from four

geographical locations (North America, South America, Europe and New Zealand),

but not in L. ferriphilum is puzzling. One would expect that the transposon should

have been able to move readily between species. What makes this even more

surprising is the presence of mobilization genes on plasmid p49879.2. Although
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preliminary tests showed that the mob genes were not functional in E. coli, this could

be the result of differences in host specificity. The absence of interspecies transfer is

surprising when one considers that L. ferrooxidans ATCC49879 (which has the

transposon) and L. ferriphilum ATCC49880 (which does not have the transposon)

were both isolated from the same mine in Romania. This transposon appears

therefore to have entered L. ferrooxidans and has become distributed in L.

ferrooxidans strains around the world but has not entered L. ferriphilum.

Owing to the close association of some L. ferrooxidans and L. ferriphilum isolates,

without indication of interspecies transfer having taken place, the separation of

Leptospirillum isolates into two different species is further supported. Although

evidence for the apparent lack of interspecies transfer is not particularly strong, should

this be true, it would imply that a gene transfer barrier of unknown description exists

between the two species. It is difficult to imagine what such a barrier might be.

A potential barrier is the possibility of the existence different restriction endonuclease

systems in L. ferriphilum and L. ferrooxidans. The restriction-modification (RM)

system in bacteria is a small-scale "immune system" for protection from infection by

foreign DNA. This system is composed of a restriction endonuclease enzyme and a

methylase enzyme, of which each bacterial species and strain has their own

combination. A modification methylase methylates the DNA at the same recognition

sequence that the restriction endonuclease uses to bind to the DNA prior to cleavage.

This activity discriminates "self' DNA from "foreign" DNA. Incoming DNA would

not be protected by methylation, and is subject to degradation by the restriction

endonuclease. DNA stabilization is only achieved if the incoming DNA does not

harbor a RM system with the same target sequence specificity. Should this occur,

stabilization would be blocked, and both native and incoming DNA susceptible to

degradation. Therefore, L. ferriphilum might have a different RM system to that of L.

ferrooxidans, which would explain transposon presence in one species and not the

other. However, this speculation needs to be tested.

Future work involves the complete sequencmg of both plasmids p49879.1 and

p49879.2. This would enable the possible identification of origins of replication

(oriV), not only for the development of vectors or shuttle vectors for use in a genetic
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system, but to determine how the replicon relates/compares to those of plasmids in

other bacteria outside of this ecological niche. The identification of genes and sites

involved in conjugative transfer such as origins of transfer (oril), DNA transfer and

replication genes, as well as mating pair formation genes would assist in determining

whether the plasmids are self-transmissible or mobilizable. By comparison to

currently known mobilization regions, this would in turn establish the nature of an

appropriate conjugation helper plasmid for use in a genetic system. Although the

possibility of a direct E. coli to Leptospirillum conjugation-type transfer system seems

unlikely, information concerning these regions would add to the knowledge base of

plasmid mobilization, should an applied function not be served. Furthermore, the

identification of genes that are actively transported within the horizontal gene pool,

should they provide a selective/competitive advantage to the host, could possibly be

used as selectable markers. This information would address both a fundamental and

applied interest. Ultimately, apart from possibly understanding the lack of inter-

species transfer between L. ferrooxidans and L. [erriphilum of p49879.2 or part

thereof, the suitability of these plasmids for use in the development of a genetic

system for Leptospirillum will be determined.
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Appendix A

DNA-DNA hybridization (slot blots)

Sections A.I, A.2, and A.3 are slot blots of target DNA from 16 Leptospirillum

isolates (indicated vertically in bold print), which have been hybridized against 13

different Leptospirillum probes (indicated in italics along the top horizontal axis of

the blots). Sections A.I and A.2 do not include isolate Mont 4, which is represented

in section A.3 along with representative members of each of the two groups.

Although blots were performed in triplicate and with different concentrations of

DNA, a sample result represented by one biotIDNA concentration per probe is given

in each case.

A.I 2 rrn subgroup probes

Probe DNA

Fairview Warwick ATCC ATCC Bionic 3.1
49880 49881

ATCC 49880

ATCC 49881
2 rrn subgroup

Bionic 3.1

ATCC 49879

3 rrn subgroup

(Leptospirillum ferrooxidans)

DSM 2705
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A.2 3 rrn subgroup probes

Probe DNA

ATCC PJ'l
49879

DSM CF12 Crys13 BCT2

Fairview

ATCC49880

ATCC49881

DSM 2705

161

2 rrn subgroup

3 rrn subgroup

(Leptospirillum ferrooxidans)
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A.3 Mont 4 target DNAand representative Leptospirillum

ATCC 49881

Bionic 3.1

Mont4
<
Z
Q ATCC 49879....~
OJ)
s..~ DSM 2705Eo-;

CF12

SY

Probe DNA

ATCC
49881

Mont4 ATCC
49879

CF12DSM
2705

162

2 rrn subgroup

3 rrn subgroup

(Leptospirillum ferrooxidans)
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Appendix B

Plasmid p49879.1 and p49879.2 mapping blots

The master/template Southern blots of combined p49879.1 and p49879.2 plasmid

DNA digested with NotI (1), SaIl (2), HindIII (3), SphI (4), and SacII (5), are

indicated in the window (A and B). Blot B has been dissected (C) in order to indicate

fragment sizes and identification according to plasmid maps in Figures 3.33 and 3.37

respectively. DIG-labeled probes were constructed from most of these fragments and

hybridized against one of the original blots (A or B). Sections B.1 and B.2 illustrate

the hybridization results obtained. Probes used in each hybridization are indicated at

the base of each blot, the letter A or B in the bottom right corner of each blot indicates

which template blot was used.
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1 234 5 NotI

IIII2.0kb (pIN4)
1O.Okb(pIN3)

Okb (piNI)

-1.3kb (p2NI)

8.0kb (pIS8)
7.0kb (PIS4)
6.0kb (pISl)

(p2S 1)
.........4.75kb (p2S7)
_4.0kb (p2S2, pIS3)
__ 3.5kb (pIS2)
<; 3.2kb(p2S8, p2SlO)

2.8kb (p2S9)

-1.75kb (p2S4)

".~~ -I.6kb (p2S6)
-1.5kb (pIS5)

1.4kb (pIS7)

SadI

(p2Sc5)
(piSelO, p2Sc4)
(p2Sc3)

-4.75kb (pISc2)
-4.3kb (pISc5)
- 3.2kb (plSc9)
____2.4kb (p2Sc 1)
- 2.3kb (p2Sc2)
-2.0kb (piSei, pISc6)== 1.8kb (plSc7)

1.75kb (plSc4)

-O.7kb (pIN2)

-1.16kb (plSc3, plSc8)

.__. -O.5kb (p2S5)

A ~B '
C

A and B: Master/template Southern blots of combined p49879.1 and p49879.2 plasmid DNA

C: Dissection of blot B, indicating fragments sizes and clone identification. Fragment sizes shown in bold print indicate the presence of
a doublet.

......s
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Appendix C

Media, buffers and solutions

All media, buffers and solutions were sterilized by autoclaving at 121°C for 20

minutes. Heat labile substances were filter sterilized using 0.22 11mmembrane filters

(Millipore).

C.I Media

C.1.110x Mineral salt solution

(NH4)2S04

KCI

K2HP04

MgS04.7H20

Ca(N03h.4H20

Na2S04

pH to 2.5 with H2S04 and autoclave.

C.1.2 FeS04.7H20

FeS04.7H20

pH to 1.2 with H2S04 and autoclave.

C.1.3 IOOOxTrace elements

ZnS04.7H20

CuS04.5H20

MnS04.4H20

CoCb.6H20

Cr2(S04)3·15H20

Na2B407.10H20

NaMo04.2H20

30.0 g.r!

1.0 g.r!

5.0 g.r!

5.0 g.l'

0.14 g.r!

14.5 g.r!

186 g.r!

10.0 g.r!

1.0 g.r!

1.0 g.r!

0.5 g.r!

0.5 g.r!

0.5 g.r!

0.5 g.r!

Add 530 111.r!H2S04 and autoclave.

The mineral salt and trace element solutions were added aseptically to the iron

solution, and the pH adjusted to pH 1.6 with H2S04; this is referred to as 9K medium.
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C.1.4 Luria-Bertani media

Bactotryptone

NaCI

Yeast extract

10 g.l-I

10 g.rl

5 g.rl

Solid media contained 1.5% (w/v) agar

C.2 Media additives

C.2.1 Antibiotics

Antibiotic stock solutions were as follows

Ampicillin (Amp) in water 100 mg/ml

Streptomycin (Strep ) in water 50 mg/ml

Naladixic acid (Nal) in O.lN NaOH 50 mg/ml

All antibiotics were filter sterilized and stored at -20°C.

C.2.2 X-Gal (5-bromo-4-chloro-3-indolyl-~-galactoside)

X-Gal (2% w/v) 0.2 g

Dimethylformamide 10 ml

The solution was stored in aliquots at -80°C.

C.3 Buffers and solutions

C.3.1 DNA loading buffer (6x)

Bromophenol blue

Sucrose

0.25 g

40.0 g

Distilled water to 100 ml

C.3.2 EDTA (Ethylene diamine tetracetic acid, O.5M pH 8)

EDTA.2H20 168.1 g

Distilled water to 1000 ml

pH was adjusted to 8 with NaOH (ION)
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C.3.3 Ethidium bromide

A solution of 10 mg/ml (2,7-diamino-10-ethyl-9-phenyl-phenanthridinium bromide)

was made in distilled water and stored in the dark.

C.3.4 20x SSC

Nael

Sodium citrate

175.3 g.r'

88.2 g.r'

Adjust pH to 7.4 with NaOH (lON) and autoclave.

C.3.5 TE buffer

Tris 1.21 g.l-1

0.34 g.l-1EDTA

Adjust pH to 8 and autoclave.

C.3.6 lOx TBE

Tris

Boric acid

108 g

55 g

40.0 mlEDTA (O.SM, pH8)

Distilled water to 1000 ml

C.3.7 20x PFGE buffer

Tris 24.2 g

2.9 g

5.0 ml

EDTA (free salt)

Glacial acetic acid

Deionized water to 1000 ml

C.3.8 ES solution

EDTA 16.8 g

1.0 gNa-lauroyl sarcosine

Distilled water to 100 ml

Adjust pH to 8 with NaOH (lON) and autoclave.

Stellenbosch University http://scholar.sun.ac.za



C.3.9 ESP solution

ES solution containing 1 mg/ml proteinase K

C.3.10 SET buffer

Sucrose

EDTA (O.SM, pH8)

Tris (1M, pH8)

Distilled water to 200 ml

C.3.11 TEso for PFGE

Tris

EDTA (Na2)

Adjust pH to 7.6 and autoclave.

50 g

0.8 ml

lOml

3.6 g.rl

16.8 g.rl

C.3.12 Pefabloc SC (Roche biochemicals)

2 mg/167 III distilled water (SOmM stock), use at final concentration of 1-5 mM

Store at -20°C.
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Appendix D

General techniques

General techniques such as agarose gel electrophoresis, and the transformation of

E.coli were carried out as stated in Sambrook et al. (1989). Strains used in

transformation experiments are listed in section DA.

D.I DNA isolation and restriction endonuclease digestion

E.coli plasmid DNA was isolated from small (5ml) and large (200ml) overnight

cultures according to the method of Ish-Horowicz and Burke (1981). Chromosomal

and plasmid DNA digestions were carried out according to manufacturer's

specifications (Roche Biochemicals). Where necessary DNA was precipitated with

10% (v/v) Na-citrate (lM, pH 5.2), 2 volumes 100% EtOH, and centrifuged at 14000

rpm for 10 min.

D.2 Cloning and ligation protocols

Digested DNA fragments to be subeloned were electrophoresed in 0.8% agarose gels

containing Ix TBE buffer and ethidium bromide. Bands were excized under long UV

(365 nm) light. DNA was electroeluted from the gel slices, precipitated and

resuspended in TE buffer. Inserts were combined with digested plasmid vector DNA;

all ligations were done overnight at 15°C in a 20 III volume. The total DNA

concentration was always in the order of 5-10 pmol/ml reaction volume. Physical

maps of plasmids that were used as cloning vectors are represented in Appendix F.

D.3 Southern hybridization

Pulsed field and agarose gels for use in Southern hybridization were placed in 0.25M

HCl solution for 30 minutes to facilitate depurination. The DNA was neutralized in

O.4N NaOH (Saarchem), and transferred to nylon Hybond N+ membrane (Amersham)

by capillary blotting overnight, whereupon excess buffer was removed and the

transfer completed by dry blotting the gel for a further 4-6 h. The membrane was pre-

hybridized at 40°C with DIG Easy Hyb solution (Roche Biochemicals) for a

minimum of 30 min, and hybridized at 40°C overnight with a DIG oligonucleotide 3'-

end labeled probe. Washing was for 20 min at room temperature followed by 20 min
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at 65°C. Membrane detection performed as per manufacturer's instruction (Roche

Biochemicals).

D.4 Bacterial strains used in transformations

Strain Genotype Reference/origin

Escherichia coli JMl09 endAl recAl gyrA96 thi

hsdR17 (rk", mk+) relAl

supE44 tl.(lac-proAB) [F'

trad36 proAB laclqZtl.M15]

Promega Corp. USA

Escherichia coli DH5a <j>80dlacZtl.M15 endA 1

recAl gyrA96 thi-l hsdR17

(rk", mk+) relAl supE44

deaR tl.(lacZYA-argF) U169

Promega Corp. USA
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Appendix E

Amino acid codes

Amino acid Codes Abbreviation

Alanine Ala A

Arginine Arg R

Asparagine Asn N

Aspartic acid Asp D

Cysteine Cys C

Glutamine GIn Q

Glutamic acid Glu E

Glycine Gly G

Histidine His H

Isoleucine He I

Leucine Leu L

Lysine Lys K

Methionine Met M

Phenylalanine Phe F

Proline Pro P

Serine Ser S

Threonine Thr T

Tryptophan Trp W

Tyrosine Tyr Y

Valine Val V
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Appendix F

Physical maps of vectors

8smB I 51
Drd I 91

NdeJ 183
Nar I/J<a.~ I 2:15

B,;:11245

Fr.f,:f~~6
-4. Pvu II 306 PolyJJJlker
'o~ clunlng -sites

'.L__ ---- 396-454

Pvu I2066
..<Iva II 2059 pUCl9

2686 bp

rvu II628
TIl1641
Sap 1683

Ahd 11694

£~o5711~l33

polylinker region
400 B4n Il Ava I 420 440 460
Ecll36 II Xma I Sse8387 I
Sac I Sma I Xba I ----.;;;n- Hlnd ru

aglgaattCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACëTGëAGGCATGCAAGCHGGcgtaaicat91
EooR I KPn I 'Baiiiiiï SaïI Sph I
Apo I Acc65 I H!nc II

Acc.1

8$pM I

F.I pUCl9 (http://www.biology.ucsc.edu/classes/bio20Ucontent/molbio2/puc19.gif)
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Nael131

Sspl442

PvuJ 2416

T7 ,

pBluescript II KS (+/-)
phagemid vector

2961 bp

KpnJ 759 13 t
BssH 11792

CStmtagene

F.2 Bluescript KS+ (pBS-KS+). Bluescript SK+ differs in the orientation of the

multiple cloning site (MCS) polylinker between the KpnI and Sad sites. Stratagene,

San Diego, CA, USA.

207

333

pUC8M20
2722

pUC8M21
2725 DrotI728

Sc.f 122/

F.3 pUCBM21 (Roche biochemicals)
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Appendix G

Publication of taxonomic study
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Iron-oxidizing bacteria belonging to the genus Leptospirillum are of great importance in continuous-How
commercial biooxidation reactors, used for extracting metals from minerals, that operate at 40°C or less. They
also form part of the microbial community responsible for the generation of acid mine drainage. More than 16
isolates of leptospirilla were included in this study, and they were clearly divisible into two major groups.
Group I leptospirilla had G+C moles percent ratios within the range 49 to 52% and had three copies of rrn
genes, and based on 16S rRNA sequence data, these isolates clustered together with the Leptospirillum
ferrooxidans type strain (DSM2705 or L15). Group II leptospirilla had G+C moles percent ratios of 55 to 58%
and had two copies of rrn genes, and based on 16S rRNA sequence data, they form a separate cluster. Genome
DNA-DNA hybridization experiments indicated that three similarity subgroups were present among the
leptospirilla tested, with two DNA-DNA hybridization similarity subgroups found within group I. The two
groups could also be distinguished based on the sizes of their 16S-23S rRNA gene spacer regions. We propose
that the group II leptospirilla should be recognized as a separate species with the name Leptospirillum
ferriphilum sp. nov. Members of the two species can be rapidly distinguished from each other by amplification
of their 16S rRNA genes and by carrying out restriction enzyme digests of the products. Several, but not all,
isolates of the group II leptospirilla, but none from group I (L.ferrooxidans), were capable of growth at 45°C.
All the leptospirilla isolated from commercial biooxidation tanks in South Africa were from group II.

Bioleaching and biooxidation of minerals are industrial pro-
cesses which involve a consortium of acidophilic iron- and/or
sulfur-oxidizing bacteria (21). Acidithiobacillus ferrooxidans
(previously Thiobacillus ferrooxidans) was the first microorgan-
ism isolated from an acidic leaching environment, and subse-
quently, microbial research in this field has centered around
the elucidation of the properties of this chemolithoautotrophic
bacterium. Although A. ferrooxidans was considered to be the
primary biological catalyst in biornining processes, leptospirilla
have been found to be the dominant iron-oxidizing bacteria in
industrial continuous-flow biooxidation tanks, such as those
used for the treatment of gold-bearing arsenopyrite concen-
trates (19, 20). There are several possible reasons for this,
probably the most important being that the high ferric-ferrous
iron ratio present in biooxidation tanks is less inhibitory to
leptospirilla than it is to A. ferrooxidans (22). In many environ-
mental samples, Leptospirillum has also been shown to out-
number Acidithiobacillus at a ratio of 2:1 under appropriate
conditions (25). Temperatures above 40°C and pH values be-
low 1.0 are two other conditions more suitable to the growth of
leptospirilla than acidithiobacilli. Under these conditions, lep-
tospirilla have been reported to be important contributors to
the generation of acid mine drainage and its associated envi-
ronmental problems (26). Together, these findings have sug-

• Corresponding author. Mailing address: Department of Microbi-
ology, University of Stellenbosch, Private Bag Xl, Matieland, 7602,
South Africa. Phone: 27 21 808 5848. Fax: 27 21 808 5846. E-mail:
der@sun.ac.za.

gested that leptospirilla are more important to both uncon-
trolled (natural) and deliberate mineral bioleaching and
biooxidation processes than has been generally recognized.
Bacteria belonging to the genus Leptospirillum are small,

gram-negative, vibrio- or spiral-shaped cells (14, 16). They are
obligately chemolithotrophic organisms, fixing carbon by the
Benson-Calvin cycle, using ferrous iron as their sole electron
donor and oxygen as their electron acceptor (11, 14). These
obligately acidophilic bacteria grow optimally in inorganic me-
dia within the pH range 1.3 to 2.0. Since they use only ferrous
iron as an electron donor, they are among the most metabol-
ically restricted organisms known. Possibly as a result of this
substrate specificity, they have a high affinity for ferrous iron
(Km = 0.25 mM) relative to A. ferrooxidans (Km = 1.34 mM)
(17). Optimum leaching efficiency is obtained at lower sub-
strate concentrations than have been reported for A. ferrooxi-
dans (25).

Limited phylogenetic studies of a relatively small number of
members of the genus Leptospirillum have been reported. Har-
rison and Norris (10) obtained evidence to suggest that there
was considerable variation among isolates belonging to the
genus Leptospirillum. One group of isolates had a moles per-
cent G+C content of ca. 51%, and another group had a G+C
content of 55 to 56%. This result was further supported by
DNA-DNA hybridization studies, in which two isolates had
DNA sequence similarity of 71 to 73% while all other isolates
had >6 to 31% DNA-DNA similarity. Unfortunately, all but
the L. ferrooxidans type strain (DSM2705) from this early study
were lost (P. R. Norris, personal communication). Hallmann et
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Strain Source

TABLE 1. Strains of Leptospirillum

Origin Gen8ank accession no."Type or group

P3a
ATCC 49879
SY

Barrie Johnson
Wolfgang Sand
Barrie Johnson

N25
Crys13
BCT2
Parys

Barrie Johnson
Barrie Johnson
Barrie Johnson
Barrie Johnson

CF12
Chil-Lf2
DSM2705

Frank Roberto
Barrie Johnson
DSMZ, Braunschweig,
Germany"

Fairview
Warwick
ATCC 49880
ATCC 49881
Bionic 3.1
Mont4

II
II
II
II
II
II

Ellen Lawson
Paul Norris
Wolfgang Sand
Wolfgang Sand
Shelly Deane
Peggy Arps

Coal mine, North Wales, United Kingdom
Romania
Sygun Cu mine, North Wales, United

Kingdom
New Zealand
Ag mine, Montana
Birch Coppie, United Kingdom
Parys Mountain, Anglesey Cu mine,

Wales
Idaho Cu mine
Cu mine, Chile
Markosyan strain (1972), Cu mine,

Armenia

AF356837
AF356832
AF356839

ND
ND
AF356833
AF356838

AF356834
AF356835
X86776

South Africa
Warwick, United Kingdom
Romania
Peru
Nickel pilot plant, Billiton, South Africa
Pyrite column, Montana

AF356830
AF356831
ND
AF356829
ND
ND

u ND, not determined.
b DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen.

al. (8) carried out DNA-DNA hybridization studies with six
isolates of leptospirilla. Two pairs of strains were 100% related
to each other, and there was 38 to 50% relatedness between
these pairs and 31 to 50% relatedness among all other isolates.
A moderately thermophilic Leptospirillum isolate with an op-
timum temperature of 45 to 50°C (maximum, 55 to 60°C), a
moles percent G+C of 56%, and a DNA similarity of 27% with
a mesophilic strain was reported (5). This strain was named
Leptospirillum thermoferrooxidans, but it has also been lost and
so is unavailable for comparative studies (14). The genus name
Leptospirillum and the species names [errooxidans and thermo-
[errooxidans have recently been validated (11). Also recently,
16S ribosomal DNA (rDNA) belonging to a third group of
leptospirilla was amplified from DNA isolated directly from
slime streamers of an acid mine drainage site; however, bac-
teria belonging to the third group have not been isolated (2).
Members of the genus Leptospiril/um have a limited range of

physiological characteristics that can be used in their identifi-
cation (14). One objective of the present study, therefore, was
to determine the diversity of Leptospiril/um isolates from dif-
ferent geographical locations using a variety of molecular tech-
niques to establish whether there were sufficient differences to
warrant subdivision at a species level. These studies provide an
extended description of a number of characteristics that can be
used in the identification of the more commonly encountered
leptospirilla. A second aim was to determine which Leptospi-
ril/um type dominated industrial biooxidation tanks. This
would help identify which species should be the focus of long-
term molecular biology research. From these findings, we pro-
pose that two distinct Leptospiril/um species are represented
among these isolates.

MATERIALS AND METHODS

Bacterial strains, media, and growth. The strains used in this study are listed
in Table I. Strains were routinely grown at 30°C in 800 ml of basal medium
[(NH.hSO., 0.2% (wt/vol); K2HPO., 0.05% (wt/vol); MgSO•. 7H20, 0.05%
(wt/vol); KCI, 0.01% (wt/vol); and Ca(N03b 0.001% (wt/vol)] supplemented

with FeSO•. 7H20 (500 mM) and adjusted to pH 1.6with concentrated H2S04,

Strain purity was checked using the overlay technique of Johnson (13). Experi-
ments at 4SOC were carried out using the same medium. The ferrous iron
concentration was determined by volumetric titration with potassium dichromate
using diphenylamine 4-sulfonic acid indicator (28).
DNApreparation. Bacterial cells were harvested by centrifugation at 15,000 X

g for 35 min and washed with acid water (pH 1.2) to remove ferric iron precip-
itate. The cells were either used immediately or stored frozen at -20°C in SET
buffer (25% sucrose, 2 mM EDT A. 50 mM Tris; pH 8.0). Prior to lysis, the cells
were treated with proteinase K (20 ng!~I) at 37"C for 30 min. Cell lysis was
achieved by the addition of 10% sodium dodecyl sulfate. DNA was extracted via
spooling and resuspended in Tris-EDTA buffer by overnight shaking at 30°e.

DNA techniques and Southern hybridization. Standard methods as described
by Sambrook et al. (24) were used for restriction enzyme digestions and gel
electrophoresis. Restriction enzymes and buffers were obtained from Roche
Biochemicals and used in accordance with the manufacturer's specifications. For
Southern hybridization used in ribotyping, 5 ug of chromosomal DNA was
digested with BamH!, and the restriction nuclease fragments were separated by
agarose gel electrophoresis. The DNA was denatured in 0.25 M HCI, neutralized
in 0.4 M NaOH, and transferred to a nylon Hybond N+ membrane (Amersham)
by capillary blotting overnight. The l.5-kb 16S rDNA PCR product of isolate P,a
(chosen randomly from the 15 isolates) was labeled with digoxigenin using the
DIG oligonucleotide 3'-end labeling and detection kit (Roche Biochemicals) and
used as the hybridization probe. The hybridization temperature was 40°C.Wash-
ing was done for 20 min at room temperature, followed by 20 min at 65°e.
Membrane detection was performed in accordance with the manufacturer's
instructions (Roche Biochemicals).

peR amplification for restriction enzyme mapping. PCR amplifications of the
16S rRNA gene were routinely carried out to generate a l.5-kb band on elec-
trophoresis using the primers pfDD2 (5'-CCGGATCCGTCGACAGAGTTTG
ATCITGGCTCAG-3'), which contains BamHI and Sal! cloning sites towards
the 5' end, and primer prDD2 (5'-CCAAGCTTCTAGACGGITACCTTGTTA
CGACTT-3'), which has HindIII and Xbal cloning sites. Approximately 100 ng
of chromosomal DNA was subjected to amplification in a total volume of 50 ~I
containing 20 mM (NH.hSO., 75 mM Tris-HCI (pH 8.8 at 2YC), 0.1% (vol/vol)
Tween 20, 3 mM MgCI2,2.5 ~M each deoxyribonucleotide (dATP, dCTP, dGTP,
and dTTP), 0.2 11Meach primer, and 2 U of Redhot polymerase (Advanced
Biotechnologies). Denaturation was performed at 94°C for 60 s followed by 25
amplification cycles of 30 s at 94°C, 30 s at 52°C, and 90 s at 72°e. An additional
120 s at 72°C and a cooling step at 4°C for 60 s completed the reaction. The
reactions were carried out in a Biometra Personal Cycler. PCR product restric-
tion enzyme analysis was performed using EcoRV, StuI, KpnI, Aval, Sma I, Agel,
MroI, NcoI, AvrIl, BfrI, Ssp!, SacII, and HindIII in order to generate a discrim-
inatory banding pattern on gel electrophoresis.
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PCR of 16S rDNA for sequencing. Three different sets of prokaryotic specific
primers targeting internal regions of the l6S rRNA gene were used. Forward and
reverse sequencing primers from conserved l6S rRNA gene regions were made
based on nucleotides 8 to 27, 517 to 536, and 1053 to 1074 in the forward
direction and nucleotides 1512 to 1492, 1074 to 1053, and 536 to 515 in the
reverse direction (Escherichia coli numbering). A maximum of 50 ng of template
DNA was used per reaction in a 50-fLlvolume combined with 20 mM (NH.hSO.,
75 mM Tris-HCI (pH 8.8 at 25'C), 0.1% (vol/vol) Tween 20, 0.5 mM MgCI2' 2.5
fLMeach deoxyribonucleotide (dATP, dCTP, dGTP, and dTTP), 10 fLMeach
primer, and 2.5 U of Redhot polymerase. The amplification protocol was as
follows: one cycle of 2 min at 96'C, followed by 25 cycles of 45 s at 96'C, 30 s at
51'C, and 90 s at n'c, and finally one cycle of 45 s at 96'C, 30 s at SI'C, and 3
min at n'c. The PCR products were purified using the QIAquick PCR purifi-
cation kit (Qiagen), following the manufacturer's recommendations. Concentra-
tions were determined by reading at 260 nm in a UV spectrophotometer.
Sequencing and analysis of the 16S rRNA gene. The 16S rDNA was sequenced

using the dideoxy chain termination method. Cycle-sequencing reactions (with a
maximum of 40 ng of template DNA), using fluorescently labeled Cy5-Far Red
primers, were performed with a Thermosequenase cycle-sequencing kit (Amer-
sham Pharmacia Biotech United Kingdom Ltd.). The sequencing reactions were
run on an Alfexpress automated DNA sequencer (Pharmacia Biotech, Uppsala,
Sweden). Each isolate was sequenced in both the forward and reverse directions.
PILEUP and CLUSTALW were used for multiple sequence alignments, and
phylogenetic dendrogram construction (see Fig. 2) was done with the DNAMAN
for Windows program version 4.13. A secondary-structure model of the 16S
rRNA molecule transcribed from the primary sequence of isolate Fairview was
constructed by Robin GutelI (7), and the file was interpreted using Aladdin
Ghostscript version 5.1 graphical interface software.
PCR amplification and analysis of the 16S-23S Intergenie region (lR). The

conditions used for 16S-23S amplification were the same as those used for 16S
rRNA gene amplification, except the annealing step took place at 45'C. The
primers used in amplification were G1.2 (5'-GTCGTAACAAGGTAICCG-3')
and LI.2 (5'-GCCIAGGCATCCACC-3'), modeled on primers designed by
Jensen et al. (12).
Moles percent G+C content. Genomic DNA was treated with RNase A at a

final concentration of 50 ug/ml for 30 min at 37'C. The DNA was then phenol
extracted, foliowed by ethanol precipitation. The purified DNA was dissolved in
0.1x SSC (I x SSC is 0.15 M NaCi plus 0.D15 M sodium citrate, pH 7) at
concentrations between 10 and 40 fLglmland dialyzed against 0.1x SSC over-
night. The DNA solutions were stored in 0.1x SSC at 4'C. The G+C content of
the DNA was determined as described by Harrison (9).
DNA-DNAhybridization. Genomic DNA was prepared as for moles percent

G+C content determinations, with the exception of 0.1x SSC dialysis. DNA was
resuspended in Tris-EDTA buffer. Three twofold dilutions, l25-ng starting con-
centration, of ali genomic DNAs were prepared in a denaturing solution (final
concentration, 0.4 M NaOH-1O mM EDTA). Samples were boiled for 10 min,
flash cooled, and loaded onto a positively charged nylon membrane using a slot
blot manifold as described by Sambrook et al. (24). The membrane was rinsed
briefly in 2x SSC and air dried. Genomic DNA probes were sonicated for seven
10-s periods with a Biosonik III instrument (Bronwill Scientific Inc., Rochester,
N.Y.) at an energy setting of60% before being labeled with digoxigenin using the
DIG oligonucleotide 3'-end labeling and detection kit. Hybridization was in
DlG-Easyhyb at 40'C, followed by washing in 1x SSC at 25'C and a second
washing in 0.1X SSC at 65'C. Quantification of hybridization signals was carried
out on a Uvidoc gel documentation system using Alphaimager 2000 software.
Nucleotide sequence accession numbers. The Leptospirillum sequences deter-

mined in this study were assigned the GenBank accession numbers listed in
Table 1.

RESULTS

Number of rrn genes and ribotyping. Genomic DNA from
16 different Leptospirillum isolates was analyzed in Southern
hybridization experiments using 16S rDNA from strain P3a as
a probe. Each band represented a single copy of an rrn operon,
as genomic DNA was digested with BamHI and it had been
established that none of the Leptospirillum-derived 16S rDNA
PCR products had an internal BamHI cleavage site. Two main
groups of leptospirilla could be distinguished from each other,
one with two rrn operon copies and the other with three rrn

APPL. ENVIRON. MICROBIOL.

TABLE 2. Some molecular characteristics of the
leptospirilla in this study

Isolate Ribotyping Mol% G+C 16S-23S IR Ability to grow
(kb)" (±l%)b (kb) at 45'C'

3 Tm subgroup
P3a 5.10, 2.9, 2.6 51.9 2.3, 1.75, 1.0
N25 5.10,2.9,2.6 51.9 2.3, 1.75, 1.0
OSM2705 5.10, 2.9, 2.6 51.7 2.3, 1.75, 1.0
ATCC 49879 5.08, 2.8, 2.1 51.7 2.3, 1.75, 1.0
BCT2 5.08, 2.8, 2.1 51.0 1.9, 0.47
Crys13 5.08, 2.8, 2.1 50.7 3.0, 2.84, 1.6
SY 5.08, 2.6, 2.4 48.8 3.0, 1.6
Parys 5.0, 4.5, 2.7 51.5 2.84
CF12 5.0, 4.5, 2.7 51.2 2.84

2 Tm subgroup
Fairview 4.75, 1.97 58.0 0.5 +
Adapt" 4.75, 1.97 NO 0.5 +
BN Mod" 4.75, 1.97 NO 0.5 +
Warwick 10.5, 1.97 54.9 0.5
ATCC 49880 4.6, 1.97 57.8 0.5 +
ATCC 49881 4.6, 1.97 56.6 0.5 +
617d 4.6, 1.97 NO 0.5 +
Bionic 3.1 4.4, 1.97 56.1 0.5
Mont 4 4.4, 1.97 NO 0.5

a Sizes of bands of genomic DNA following digestion with Bam HI, separation
of fragments on an agarose gel, and Southern hybridization with labeled 16S
rDNA.

b ND, not determined.
C +, growth; -, no growth.
d Isolate did not form part of the original study bULwas added during the

course of the investigation.

copies. This result was confirmed by digestion of Leptospirillum
genomic DNA with SalI, which also has no internal 16S rDNA
cleavage site (results not shown). A further subdivision of the
two main groups into ribotype subgroups can be made from a
comparison of hybridization fragment sizes (Table 2). These
subgroups provide an indication of the positioning of BamHI
restriction endonuclease sites flanking the 16S rRNA genes.
Four subgroups within each rrn group were identified. Inter-
estingly, some members that belonged to the same subgroup
were isolated from very different geographical locations. For
example the group with three rrn gene copies has a 5.08-, 2.8-,
2.1-kb ribotype subgroup containing leptospirilla isolated from
Romania, Montana, and England, while the 5.0-, 4.5-, and
2.7-kb ribotype subgroup has leptospirilla isolated from Wales,
Idaho, and Chile.
Sequence analysis of the 16S rDNA peR products. The 16S

rRNA genes of 10 of the 16 Leptospirillum isolates were se-
quenced directly from the PCR-amplified products in both
forward and reverse directions. A homology matrix (not
shown) between these sequences and five other Leptospirillum
sequences previously deposited in GenBank, EMBL, and Ri-
bosomal Database Project databases was constructed. Isolates
within the group with two rrn gene copies had 16S rDNA
sequences which were 97.2 to 100% identical, whereas those
within the group with three rrn gene copies were 98.2 to 99.9%
identical. Sequence identity between the members of the two
groups was 91.0 to 93.4%. A dendrogram of all strains of
Leptospirillum for which sequences are available illustrates the
clustering of the two rrn groups (Fig. I). With the assistance of
Robin GutelI (7), a secondary-structure diagram of the Lepto-
spirillum strain Fairview 16S rRNA was drawn (not shown).
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Snottiteclone SC07
r-----L---Slime clone BA29

ATCC49879

Group III (?rrn)

Group I (3 rrnï
L. ferrooxidans

BCT2
ATCC49881

OS4

Lf30-A Group II (2 rm)
L. ferriphilum

'------------------- Nitrospira moscoviensis

FIG. 1. Evolutionary-distance dendrogram of leptospirilla based on approximately 1,450 bp of 16S rDNA sequence. Branch points supported
by bootstrap values of >75% are shown by solid circles, and those supported by bootstrap values between 50 and 75% are shown by open circles.
The scale bar represents changes per nucleotide. The two DNA-DNA hydridization subgroups (Table 3) within the leptospirilla with three rm gene
copies (group I) are indicated with brackets. Based on 16S rDNA sequence data, the genus Leptospirillum has been placed within the division
Nitrospira, and Nitrospira moscoviensis has been used as the outgroup. Database accession numbers are as follows: snottite clone SC07, AF225453;
slime clone BA29, AF225448; ATCC 49879, AF356832; P3a, AF356837; DSM2705, X86776; Parys, AF356838; Chil-Lf2, AF356835; CF12,
AF356834; SY, AF356839; BCT2, AF356833; ATCC 49881, AF356829; Fairview, AF356830; OS7, X86773; OS4, X86770; Lf30-A, X72852; LA,
AJ237902; DSM2391(Bu-1), M79383; Warwick, AF356831; clone OS17, X86772; and N. moscoviensis, X82558.

Although variations in sequence between groups with two and
three rm gene copies occurred in many regions of the 16S
rRNA, most variation occurred within variable regions 3 and 6
(not shown). There have been reports of polymorphisms within
multiple copies of 16S rRNA genes within the same organism.
For example, Mycoplasma capripneumoniae subsp. capripneu-
moniae has two copies of 16S rRNA genes, and between 11 and
24 differences in nucleotide sequence between the copies were
found in 20 isolates examined (18). The sequencing of the 16S
rRNA genes of the leptospirilla in this study was carried out
directly from the PCR-amplified products. Assuming that all
copies of the 16S rRNA genes were amplified with equal effi-
ciency, polymorph isms between gene copies would have re-
sulted in a mixed population of nonidentical amplification
products and ambiguous sequence data in certain positions. No
positions with sequence ambiguity were found, and all copies
of 16S rRNA genes therefore appeared to be identical.

peR amplification and restriction enzyme mapping of 168
rDNA. We have routinely used restriction enzyme mapping of
amplified 16S rDNA as a convenient method for rapidly iden-
tifying isolates of previously isolated iron- and sulfur-oxidizing
microorganisms present in biooxidation tanks (19, 20). We
wished to determine whether this simple technique could be
used as a quick screening method to distinguish between the
major groups of Leptospirillum. Comparison of the 16S rDNA
sequence data from this study and those from previously se-
quenced leptospirilla deposited in the GenBank and Ribo-

somal Database Project databases enabled us to identify sev-
eral ó-bp recognition sequence restriction endonucleases
which would give different digestion patterns that could be
used for this purpose. Based on the view that the presence of
a cutting site has more value than the absence of a site, four
endonucleases (Agel, Mrol, Ncol, and Smal) were identified
that allow for specific identification of the group of leptospirilla
with two rm gene copies and six endonucleases (Agel, AvrIl,
Bfr!, EcoRV, Sspl, and Stul) were identified for specific iden-
tification of the group with three rm gene copies (Fig. 2). The
Agel cutting site was present with the 16S rDNAs of both
groups but in sufficiently different positions to allow specific
identification. Although Apal, HindIII, Kpnl, and SacIl cannot
be used to distinguish among leptospirilla, these restriction
enzymes can be used as diagnostic tools in distinguishing be-
tween Leptospirillum, Acidithiobacillus caldus, A. [errooxidans,
and Acidithiobacillus thiooxidans. To confirm the usefulness of
this approach, 16S rDNAs of Leptospirillum strains for which
the 16S rDNA had not been sequenced but for which the
number of copies of rm had been determined were amplified
by PCR. Restriction enzyme digests for Mrol, Ncol, Smal, Bfrl,
EcoRV, Sspl, and Stul were carried out, and in each case the
Leptospirillum isolate could be correctly placed in the group
with two or three rm gene copies based on the restriction
enzyme digests.
Amplification product profiles of the 168-238 IRs. The IRs

between the 16S and 23S rRNA genes were amplified in all 16
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FIG. 2. Map of 6-bp restriction endonuclease cutting sites within the 16S rRNA genes of L. ferrooxidans and L. ferriphilum. Sites which enable
L. ferrooxidans to be distinguished from L. ferriphilum and which were consistent among all isolates used in this study or for which sequence
information is available are marked with asterisks. Restriction endonuclease sites present in all L. ferriphilum isolates examined except BCf2 are
marked with an a, and those present in all isolates examined except BCT2 and SY are marked with a b.

Leptospirillum isolates. Both single and multiple banding pat-
terns ranging in size from 3.0 to 0.47 kb were obtained (Table
2). PCR product profiles consisted of both intense, highly re-
producible fragments (primary products) and weaker frag-
ments, the presence of which varied depending on amplifica-
tion purposes (secondary products). As secondary products are
not used for classification purposes, they were ignored. A sin-
gle 0.5-kb IR spacer was amplified from leptospirilla of the
group with two rrn gene copies, whereas IR spacers of a variety
of sizes were amplified from leptospirilla of the group with
three rrn gene copies. Isolates P3a, N25, DSM2705, ATCC
49879, and Crys13 produced three different primary IR prod-
ucts, presumably a different-size product from each of the
three rrn gene copies. These results are in agreement with
existing evidence that multiple IRs of various sizes may be
present within a single species (6).

DNA-DNAhybridization. Although sequence analysis of 16S
rRNA is a valuable tool in investigating phylogenetic relation-
ships, it has been shown in several cases that almost identical
16S rRNA sequences have yielded DNA-DNA hybridization
values of less than 70%, indicating separate species (27). For
this reason, DNA-DNA hybridization was used in conjunction
with 16S rRNA sequence analysis. DNA-DNA hybridization
percentages were obtained for 16 isolates using genomic DNAs
from 13 leptospirilla as hybridization probes. The results are
given in Table 3. The group I leptospirilla could be divided into
two DNA-DNA hybridization subgroups with 94 to 100% and
93 to 100% similarity within a subgroup and 60 to 79% simi-
larity between the two subgroups. We have named the sub-
groups 1.1 and 1.2.Group II leptospirilla formed a single DNA-
DNA hybridization subgroup with 81 to 100% similarity.
However, there was only <5 to 11% similarity between sub-
groups 1.1 and 1.2of the group I leptospirilla and the group II
leptospirilla.
Leptospirilla capable of growth at 45°C. One of the few

physiological differences reported among leptospirilla is the
fact that some isolates are capable of growth at temperatures

of >40°C (5, 26). We have previously investigated the bacteria
present in pilot plants operating at 45°C and found that large
numbers of leptospirilla were present (20). Furthermore, there
is a report of a Leptospirillum isolate that is capable of iron
oxidation at 55°C and that is considered to constitute a sepa-
rate species, L. thermoferrooxidans. We wished to determine to
which group the leptospirilla adapted in pilot plants to grow at
45°C belonged and whether any of the nonadapted Leptospi-
ril/um isolates were also capable of growth at 45°C. Each of the
16 original isolates was tested for the ability to oxidize ferrous
iron at 30 and 45°C. In addition, three new leptospirilla
(Adapt, BN Mod, and 617) isolated from bioreactors operating
at 45 to 55°C were introduced into the study at this stage.
Several members of the Leptospiril/um group with two copies
of rrn genes, including those not previously exposed to biore-
actors operating at 40°C or above, were able to oxidize iron at
4SOC (Table 2). However, the rate of iron oxidation was lower
than at 30 or 40°C, and no leptospirilla from the group with
three rrn gene copies were able to oxidize iron at 4SOC.
Lack of marked physiological or physical dilferences be-

tween the two groups of leptospirilla. We examined the type
strain of L. ferrooxidans (DSM2705) and the proposed type
strain of Leptospirillum ferriphilum (ATCC 49881) for physio-
logical and physical differences besides temperature tolerance.
Both species had properties similar to those reported for L.
ferrooxidans (11, 14). They were of similar size (0.3 to 0.5 urn
wide and 0.9 to 3.0 urn long), with L. ferriphilum at the nar-
rower end of the width range. Both species were vibrio shaped
in young cultures (up to 4 days), helical (two to five turns) in
older cultures, and motile by means of a single polar flagellum.
They oxidized iron at similar rates (at 37°C), with a doubling
time of 12 to 15 h, and could grow autotrophically at the
expense of pyrite mineral (data not shown). In addition, both
grew optimally on ferrous iron medium within similar pH
ranges (pH 1.4 to 1.8 for L. ferriphilum and pH 1.6 to 2.0 for L.
ferrooxidans). Both leptospirilla were catalase negative and
peroxidase positive. These physical and physiological observa-
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TABLE 3. DNA-DNA hybridization values between Leptospirillum groups I and II and between subgroups"

Hybridization (%)

Probe
Group I (3 117l) L. [errooxidans

Group II (2 "n) L. [erriphilum
isolate Subgroup 1.1 Subgroup 1.2

ATCC P3a DSM2705 N25 CF12 Chil-Lf2 Parys Crys13 BCT2 SY Fairview ATCC ATCC Warwick Bionic
49879 49880 49881 3.1

ATCC 49879 100 95 96 94 63 64 67 75 74 72 <5 <5 <5 <5 <5
P3a 96 100 100 97 65 63 65 65 65 65 <5 <5 <5 <5 <5
DSM2705 100 100 100 100 68 64 64 72 78 64 8 5 11 8 <5
N25 98 100 100 100 75 76 75 76 76 79 <5 <5 <5 <5 <5

CF12 62 68 75 76 100 98 100 96 98 93 <5 <5 <5 <5 <5
Crys13 69 70 66 69 97 98 98 100 94 90 <5 <5 6 6 8
BCT2 69 68 60 70 94 97 94 97 100 95 7 7 10 6 10

Fairview <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 100 97 99 81 100
ATCC 49880 5 <5 <5 <5 <5 <5 7 9 9 6 100 100 100 89 100
ATCC 49881 <5 7 <5 <5 <5 <5 <5 <5 <5 <5 95 99 100 82 100
Warwick <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 84 84 87 100 97
Bionic 3.1 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 96 97 97 95 100
Mont 4 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 98 97 97 97 100

a Labeled genomic DNA from each probe isolate was hybridized against genomic DNA from all target isolates. Each hybridization was carried out at least three times.
Mont 4 DNA was used as a probe against all target DNA samples shown but served as a target for only a few of the probes shown. These results were the reciprocal
of what is shown in this table, that is, DNA hybridization was 98 to 100% with isolates Bionic 3.1 and ATCC 49881 and <5% with ATCC 49879, DSM2705, and CF12
(not shown). With one exception, standard deviations of DNA-DNA hybridization values ranged from 0 to 8%.

tions are in close agreement with those reported for L. ferriphi-
lum strain P3a (now called ATCC 49881), which was a gift from
Wolfgang Sand (25).

DISCUSSION

Studies of mesophilic leptospirilla by several workers (3, 4, 8,
10, 15) have indicated that more than one species of Leptospi-
ril/urn exists. Nevertheless, all mesophilic leptospirilla have
been generally referred to as L. [errooxidans or Leptospirillurn-
like bacteria, as there have been insufficient physiological
grounds or molecular information to decide whether they rep-
resented more than one species. Criteria commonly used to
identify two bacteria as belonging to the same species are G+C
moles percent ratios that differ by 5% or less and genome
DNA-DNA hybridization of about 70% or greater (27). Com-
parison of 16S rRNA sequence data has been reported to be a
somewhat less reliable criterion for separation of organisms
into species. As a result of the compilation of data carried out
by Stackebrandt and Goebel (27), it was suggested that organ-
isms with 16S rRNA sequence identities of less than 97% are
unlikely to have DNA-DNA hybridization values above 60%.
Similar comparisons have been carried out by Rosselló-Mora
and Amann (23), and they suggested a slightly more relaxed
interpretation, that genomes should have less than 50 to 70%
DNA-DNA hybridization before being considered as belong-
ing to different species.
We suggest that the mesophilic leptospirilla investigated in

this study may be subdivided into two groups and that the
differences between these groups are sufficient for them to be
regarded as separate species. Differences in G+C moles per-
cent ratios of 49 to 52 versus 55 to 58% and 16S rRNA se-
quence identities of 91 to 93% suggest that division into two
species is warranted. In addition, the groups differ in that one
group has two copies of rrn genes while the other group has

three copies. The DNA-DNA hybridization results support
separation into two species, as there was a low level of hybri-
zidation between the group I and group II leptospirilla. The
differences in hybridization between subgroups I.1 and 1.2 fall
within the suggested guidelines for organisms to be considered
as a single species. The differences in size of the IRs between
the l6S-23S rRNA genes support separation into two species.
Based on the above evidence, we propose that the leptospirilla
used in this study should be divided into two species, one of
which consists of two distinct subgroups, or genomovars (23).
The name L. [errooxidans should be used for group I because
the L. [errooxidans type strain (DSM2705) belongs to this
group, and we propose that a new species name is required for
group II. In the absence of a distinguishing physiological prop-
erty for all members of both species, we suggest that the name
L. ferriphi/urn (ferri, iron; phi/urn, loving) could be used for the
group II leptospirilla. This name reflects a common property of
allieptospirilla, which is that they use only ferrous iron as their
electron donor, and it will have to be validated by the Inter-
national Committee on Systematic Bacteriology.
PCR amplification of 16S rDNA genes followed by restric-

tion enzyme digestion and separation of the fragments on an
agarose gel is a relatively simple procedure compared with
DNA-DNA hybridization, 16S rRNA sequencing, and South-
ern hybridization studies. Since the restriction enzyme diges-
tion maps shown in Fig. 2 were consistent between the two
main species of leptospirilla identified in this study, this could
be used as a routine identification method. Where identifica-
tion is uncertain, more comprehensive tests should be carried
out.

One aim of this study was to identify which type of Lepto-
spirillurn was present in samples taken directly from the com-
mercial biooxidation tanks which operate at the Fairview mine
(Barberton, South Africa). These tanks are used to oxidize
gold-bearing arsenopyrite concentrates and operate at pH 1.6
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and 40°C (21). The isolate from the commercial biooxidation
tanks at the Fairview mine was from the group II leptospirilla
(two rm gene copies). Likewise, the 45"C-adapted BN Mod,
Adapt, and 617 isolates belonged to the group II leptospirilla
and are therefore of a different species than L. [errooxidans. In
a continuous culture study on a culture being prepared for a
commercial cobaltiferous pyrite ore bioleaching operation, a
Leptospirillum-like bacterium (strain L8) with an optimum pH
of 1.3 to 1.6 and an optimum temperature of 37.5°C, but which
could grow at 45°C, was isolated (1). This bacterium had a
G+C ratio of about 55.6 mol%, which suggests that it was also
a group II leptospirillum rather than L. [errooxidans. Itmust be
pointed out that the commercial processes in which we report
that only group II leptospirilla were present operate at tem-
peratures of 35 to 40°C or higher. It would be interesting to
determine whether strains of the L. [errooxidans group with
three rm gene copies are found in industrial heap leaching- or
aeration tank-type processes that operate at temperatures
lower than 35°C. Since none of the L. [errooxidans strains that
we examined were capable of growth at 45°C, it may be that
these bacteria are noncompetitive at temperatures of 35 to
45°C but may well be important in industrial processes that
operate at lower temperatures.
Although it was hoped that the selection of more than 16

Leptospirillum isolates from many geographical locations
would give a broad representation of Leptospirillum diversity,
there are clearly some types of leptospirilla that were not
represented in this group. It is unlikely that any of the isolates
in this study are the same species as the moderately thermo-
philic L. thermoferrooxidans. L. thermoferrooxidans was re-
ported to have an optimum growth temperature of 45°C and
was capable of iron oxidation at 55°C, which is considerably
higher than any isolate in this study. Since the culture has been
lost, it was not possible to compare the leptospirilla in this
study with L. thermoferrooxidans. The 16S rRNA sequence of
this moderate thermophile is also unreported.
During a recent investigation of the microorganisms present

in a subaerial slime from the Iron Mountain acid mine drain-
age site in California, a 16S rRNA sequence for what is pro-
posed to be a third type of leptospirillum was discovered (2).
Sequences corresponding to this Leptospirillum group III rep-
resented the majority of the clones in a clone bank of 16S
rDNA genes prepared from the Iron Mountain slime. There
are no reports of leptospirilla belonging to group III having
been isolated in pure culture. No leptospirilla belonging to
group III were present in our studies based on the direct
amplification of 16S rDNA from total DNA isolated from
biooxidation tanks nor in our collection of cultured environ-
mental samples. However, the existence of group III illustrates
the diversityof leptospirilla, some of which may await discovery.
Description of Leptospirillum ferriphilum sp, nov. Leptospi-

rillum [erriphilum (jerri, iron; philum, loving). This description
is based on this study and that reported by Sand et al. (25).
Cells are small curved rods or spirilla, measuring 0.3 to 0.6 J-Lm
wide and 0.9 to 3.5 J-Lmlong. Young cells are vibrio shaped, but
in cultures older than 4 days, cells are mostly spiral shaped with
two to five turns. Cells are gram negative, spore forming, and
motile by means of a single polar flagellum. Growth is aerobic
and chemolithotrophic, with ferrous iron or pyrite but not
sulfur serving as the energy source. Optimum pH is 1.4 to 1.8
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and temperature 30 to 37°C, with some isolates having the
ability to grow at 45°C. Cells are catalase negative and perox-
idase positive. G+C content of the DNA is 55 to 58%, there
are two copies of rm genes, and based on 16S rRNA sequence
analysis, the cells form a phylogenetic cluster which is separate
from L. [errooxidans. The size of the 16S-23S rRNA intergenic
region is conserved among isolates at 500 bp. The type strain is
strain ATCC 49881, which is the same as strain P3aprovided by
Sand and originally isolated in Peru (25).
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Appendix H

Validation of new bacterial name Leptospirillum ferriphilum
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VALIDATION LIST NO. 86

Validation of publication of new names and new combinations
previously effectively published outside the IJSEM

The purpose of this announcement is to effect the valid publication of the following new names and new combinations under the
procedure described previously [Int J Syst BaclerioI27(3), iv (1977)]. Authors and other individuals wishing to have new names
and/or combinations included in future lists should send the pertinent reprint or a photocopy thereof to the IJSEM Editorial Office
for confirmation that all of the other requirements for valid publication have been met. It should be noted that the date of valid
publication of these new names and combinations is the date of publication of this list, not the date of the original publication of
the names and combinations. The authors of the new names and combinations are as given below, and these authors' names will
be included in the author index of the present issue and in the volume author index. Inclusion of a name on these lists validates
the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be
construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be
shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new
combination.

Name Proposed as: Author(s) (reference) Priority* Nomenclatural type]

Alkalispiriltutu gen. nov. Rijkenberg et al. (5) 2 Alkalispirillum mobile
Alkulispirillum mobile sp. nov. Rijkenberg et al. (5) 2 Strain SL-I (= DSM 12769)
Anaeromyxobacter gen. nov. Sanford et al. (6) 7 Anaeromyxobacter dehalogenans
Anaeromyxobacter dehalogenans sp. nov. Sanford et al. (6) 7 Strain 2CP-1 (= ATCC BAA-258)
Desulfovibrio vietnamensis sp. nov. Dang et al. (2) 3 Strain G3 100 (= DSM 10520)
Enterococcus gill/us sp. nov. Tyrrell et al. (8) 4 Strain PQI (= ATCC

BAA-350 = CCUG 45553)
Enterococcus pallens sp. nov. Tyrrell et al. (8) 4 Strain PQ2 (= ATCC

BAA-351 = CCUG 45554)
Lactobacillus [erintoshensis sp. nov. Simpson el al. (7) 5 Strain R7-84 (= CIP 106749)
Leptospirillumferriphilum sp. nov. Coram and Rawlings (I) Strain P3a (= ATCC 49881 = DSM

14647t)
Thermaerobacter nagasakiensis sp. nov. Nunoura et al. (4) 8 Strain Tsla (= JCM 11223 = DSM

14512)
Tsukamurella strandjordii corrig.§ sp. nov. Kattar el al. (3) 6 Strain 32-92 (= ATCC
(Tsukomurello strandjerdae [sic]) BAA-173 = DSM 44573t)

For references to Validation Lists 1-71, see Int J Syst Bacleriol49 (1999) 1325. Lists 72-85 were published in Int J Syst Evol Microbial
50 (2000) 3. 423. 949.1415.1699,1953 and 51 (2001) 1,263,793,1229,1619,1945 and 52 (2002) 3, 685.
• Priority number assigned according to the date the documentation and request for validation are received.
t Abbreviations ATCC, American Type Culture Collection, Manassas, VA, USA; CJP, Collection of the Institute Pasteur, Paris.
France; CCUG. Culture Collection, University of Gëteborg, Gëteborg, Sweden; DSM, DSMZ- Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; JCM, Japan Collection of Microorganisms, RJKEN, Saitama,
Japan.
t According to the DSMZ online catalogue.
§Name has been corrected on validation.
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