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Abstract

The aim of this thesis is to investigate a Bayesian approach to signal process-
ing of Doppler radar data. The problem of interest involves measured Doppler
radar signals measured for golf players’ club swings where the frequency shifts
are related to the movements of physical objects. Smoothing the frequency
shifts of the Doppler signal allows for more accurate estimates of the speeds
of the physical objects of interest which is a step towards estimating the ve-
locities of the objects such as the club and ball and can allow one to calculate
their trajectories, as their starting points are known. This information would
be invaluable to golf players and coaches, who will be able to improve players’
skills based on the knowledge of club velocity at impact, the ball spin, and
other properties of interest of the golf swing.

We use a Bayesian statistical method called Bayesian spectrum analysis
(BSA) to analyse the Doppler signals that were divided into time intervals.
BSA allows us to estimate the spectral parameters of the Doppler radar sig-
nals in a probabilistic manner, as well as compare competing models in order to
select the most probable model from a list of models. We find that the Doppler
radar signals contained behaviour that is more complex than our BSA models
are able to describe. The BSA results are, however, still useful and can be
improved upon by including more prior information.

Our approach is to model the multitarget tracking of the frequency com-
ponents from BSA in the context of Bayesian probability theory, and to then
solve the marginal posterior distributions of the parameters of interest using
probabilistic graphical models (PGMs). We compensate for uncertainty in the
characteristics of our BSA results by modelling the local signal behaviour, as
well as the overall trend of the signal by grouping parts of the signal into
segments. These signal segments correspond to different parts of the physical
golf swing that contain a different number of objects’ Doppler shifts and dif-
ferent signal dynamics. We modelled the segment transition as a left-to-right
progression. PGMs are well suited to this modular approach and provide the
benefit of deconstructing the problem at hand into a set of local dependencies.
We also implemented a “missed-target” model using the PGMs framework.
The resulting model resembles a multitarget Kalman filter combined with a
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ABSTRACT iii

hidden Markov model. We implement the PGMs as both a fully discrete and a
hybrid cluster graph and are able to successfully smooth parts of the Doppler
radar frequency shifts. We find that the missed-target model and left-to-right
segment transition improve upon the conventional multitarget tracking and al-
low the PGMs to select the correct signal segment and to smooth over regions
where a frequency component was missing.

One of the challenges identified in our investigation is estimating both
the process noise and measurement noise of the multitarget tracking. Future
recommendations include using explicit duration models for the signal signal
segment transitions and using alternative discretisation methods.

Stellenbosch University  https://scholar.sun.ac.za



Opsomming

Die doelwit van hierdie tesis is die ondersoek na ’n Bayesiese benadering
tot seinprosessering van Doppler radar data. Die probleem van belang be-
hels gemete Doppler radarseine wat gerig is op gholfspelers wat gholfstokke
swaai. Veranderinge in die weerkaatste seine se frekwensies hou verband met
die bewegings van fisiese voorwerpe. Verbeterings op die benaderings van die
Doppler-verskuiwings kan lei tot meer akkurate skattings van die spoed van
die fisiese voorwerpe. Dit kan lei tot beter beramings van die snelhede van die
voorwerpe (soos die gholfstok en -bal) en kan ’n mens toelaat om hul trajekte
beter te bereken, aangesien hul beginpunte wel bekend is. Hierdie inligting sal
van onskatbare waarde vir gholfspelers en afrigters wees.

Ons maak gebruik van Bayesiese spektrale analise (BSA) om die Doppler-
sein, wat in tydstappe opgebreek is, te ontleed. BSA stel ons in staat om die
spektrale parameters van die Doppler radarseine met gebruik van waarskyn-
likheidsleer af te skat, asook om modelle te vergelyk en die mees waarskynlike
model te kies. Ons vind dat die Doppler radarseine vervat gedrag wat meer
kompleks is as wat ons BSA modelle kan beskryf. Die BSA resultate is egter
steeds nuttig en kan verbeter word deur meer inligting in te sluit.

Ons benadering is om die multi-teikenvolging van die frekwensie-komponente
van die BSA modelle in die konteks van Bayesiese waarskynlikheidsleer te plaas
en om dan die parameters van belang se marginale waarskynlikheidsdigtheids-
funksies te bereken met behulp van waarskynlikheidsgrafiese modelle (PGM’e).
Hierdie benadering vergoed vir die inherente statistiese aard van ons BSA re-
sultate deur die modellering van die plaaslike seingedrag, sowel as die algehele
tendens van die sein deur die groepering van die seinmonsters in seinsegmente.
Hierdie seinsegmente stem ooreen met die verskillende gedeeltes van die fisiese
gholfswaai wat verskillende aantal voorwerpe se Doppler-verskuiwings asook
verskillende seindinamika bevat. Ons modelleer die segment-oorgange as ’n
links-na-regs verloop. PGM’e is goed geskik vir hierdie modulêre benadering en
bied voordele aan soos om die probleem te ontbind in plaaslike afhanklikhede.
Ons was ook in staat om ’n “gemiste-teiken” model met behulp van die PGM-
raamwerk te implementeer. Die model lyk soos ’n multi-teiken Kalman filter
gekombineer met ’n verskuilde Markov model. Ons het die PGM’e as beide ’n
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diskrete en ’n hibriede bundelgrafiek gëımplementeer en was in staat daartoe
om verbeterings te maak op die Doppler-verskuiwings van die radar sein. Ons
het gevind dat die gemiste-teiken model en links-na-regs segment-oorgange ver-
beter op die konvensionele multi-teikenvolging en het toegelaat dat die PGM’e
die korrekte seinsegmente kies, asook om frekwensie-komponente op te spoor
in gebiede waar ’n frekwensie-komponent vermis was.

Een van die uitdagings wat gëıdentifiseer was in ons ondersoek, is die be-
raming van beide die proses- en metingsruis van die multi-teikenvolging. Aan-
bevelings sluit die gebruik van eksplisiete tydsduur modelle vir die sein segment
oorgange in, asook die gebruik van alternatiewe diskretiseringsmetodes.
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tion H(). Defined in Equation 3.5.4.

h Vector used to describe Gaussian density in Canonical form.

h2({ω}) The mean-square of the m projections of the data onto the
orthonormalized model components.

I Explicit and implicit prior knowledge in a Bayesian analysis.

I(ω) The imaginary part of the Fourier Transform of a signal.

i, j, k, l Indexing values.

J The total number of targets for multitarget tracking.

K Matrix used to describe Gaussian density in Canonical form.

K The number of values that a discrete random variable can
assume.
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L() A likelihood function.

Mj The jth signal model function.

m Total number of signal model component.

m The number of discrete random variables in a hybrid factor.

mmass Probability mass of a probability density.

N The number of samples in a set of data.

N A Gaussian probability density represented in covariance form
with mean and covariance matrix, µ and Σ respectively. x ∼
N (µ, Σ).

Nbi The neighbouring clusters of cluster i.

n The number of random variables in a factor.

P The total state-space.

P A state-space.

p(·) Probability density function.

Q Covariance matrix of process noise.

R(ω) The real part of the Fourier Transform of a signal.

r Total number of Θ parameters.

S A random variable of the active signal segment.

S Set of segment discrete random variables S = {S0, S1, ...}.
Si,j A sepset, consisting of the subset of random variables shared

between two clusters Si,j ⊆ Ci

⋂
Cj.

T The last time-step.

t Time.

ti The ith time-step.

u Measurement noise.

vr Radial speed.

wi The weight of the ith Gaussian probability density function.

w Process noise.

X A set of random variable of the state-space {X0, X1, ....}.
Y A set of random variables Y = {Y0, Y1, ...}
y(t) Function of the true signal.

α The linear chirp parameter of a sinusoid.

β The quadratic chirp parameter of a sinusoid.

Γ The Gamma function.

Θ A subset of parameters for parameter estimation.

θ Angle.

∆a Difference between two sets of a.

Stellenbosch University  https://scholar.sun.ac.za
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∆ω Difference between two sets of frequency parameters ω.

δi→j A message sent from cluster Ci to cluster Cj.

Λ Matrix used to denote linear relationship between Gaussian
densities.

λ The damping factor used in message passing.

µ The mean vector of a Gaussian density.

Σ The covariance matrix of a Gaussian density.

σ The standard deviation of the noise present in the signal.

Φ A factor in a cluster graph.

φ A place-holder value that is used when a target is not present.

Ψ The set of all factors in a graph Ψ = {Φ0,Φ1, ...} containing a
conditional probability density each.

Ω A set of parameters for parameter estimation.

ω A frequency parameter, measured in cycles/sample.

ω Set of frequency parameters ω = {ω0, ω1, ...}.
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Chapter 1

Introduction

Signal processing deals with the analysis of information-bearing signals that
often have complex characteristics. The time-varying behaviour in these sig-
nals can develop in ways that are not well understood or can be difficult to
model. A typical signal-processing problem is that one has a set of noisy mea-
surements and wishes to refine them, or estimate the hidden parameters of an
underlying model. Being able to incorporate different types of knowledge into
one’s signal model can allow one to extract more useful information and can
benefit from a probabilistic and systematic approach.

1.1 Motivation and Research Problem

The problem of interest involves measured Doppler radar signals measured for
golf players’ club swings. The Doppler radar frequency shifts relate to the
movements of physical objects which we wish to estimate using a probabilis-
tic approach to signal processing. The sampled signal is noisy with multiple
objects present in the same measurement, the objects and received signals in-
teract in complex ways, there are multi-path signals present, and the signal
is sometimes clipped causing harmonics to appear. Smoothing the frequency
shifts of the Doppler signal will allow more accurate estimates of the speeds
of the physical objects of interest. Accurately estimating the speeds is a step
towards estimating the velocities of the objects such as the club and ball and
can allow one to calculate their trajectories, as their starting points are known.
This information is invaluable to golf players and coaches, who will be able
to improve players’ skills based on knowledge about club velocity at impact,
the ball spin, and other properties of interest of the golf swing. In order to
smooth the signal, multiple objects present in the signal such as the club-head,
the ball or the divot need to be tracked. Figure 1.1 contains a spectrogram of
an example golf swing’s Doppler radar data. The spectrogram illustrates the
multiple frequency components present in the Doppler radar signal with some
frequency components that are weaker than others and barely visible.

1
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Figure 1.1: An example spectrogram of a golf swing’s Doppler radar data,
which contains multiple frequency components.

Being able to estimate our objects of interest’s frequency parameters can
be formulated as multitarget tracking, where the number of targets and their
states are jointly or separately estimated from sensor data using state-space
estimation [1]. In our application the Doppler frequency shifts are the targets
being tracked. Many of the difficulties of multitarget tracking are related to
handling the uncertainty around the measurement noise, process noise, data
association between targets, missed detections, false alarms, and unknown
birth and death rates of targets.

When tracking single or multiple targets using noisy measurements it is
difficult to model the entire signal, particularly if the target behaviour is com-
plex. It can often be the case that the local interactions and behaviour over
short time-periods of a signal are better understood, which makes piecewise
modelling an appealing alternative. Quantifiable domain knowledge about the
targets’ behaviour is also sometimes available, but it is not always certain how
to meaningfully incorporate it.

Our approach will be to model the multitarget tracking in the context
of Bayesian probability theory, and then to solve the marginal posterior dis-
tributions of the parameters of interest using probabilistic graphical models
(PGMs). We compensate for uncertainty in the characteristics of our mea-
sured Doppler radar signal by breaking it up into time-steps and modelling
the short-time signal, local signal behaviour, as well as the overall trend of
the signal by grouping time-steps into signal segments. These signal segments
correspond to different parts of the physical golf swing that contain a differ-
ent number of objects’ Doppler shifts and different signal dynamics. PGMs
are well suited to this modular approach and provide the benefit of decon-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

structing the problem at hand into a set of local dependencies. PGMs are
often used in machine learning problems where they show promise as seen by
the improvements made - for example, in speech-recognition where deep belief
networks are being used [2]. In conjunction, we will use a Bayesian statisti-
cal method called Bayesian spectrum analysis (BSA) to analyse the Doppler
signal in each time-step. Bayesian statistics provide a powerful way of includ-
ing prior information explicitly and have been successfully applied by using
BSA in astrophysics [3, 4], target identification using radar [5], and frequency
detection in biological time series [6].

1.2 Background

1.2.1 Bayesian Spectrum Analysis

The spectrogram is a useful signal-processing tool that provides frequency in-
formation by analysing short time-windows of a typically time-varying signal.
For each time-window, the periodogram is calculated over short, consecutive
and often partially overlapping signal windows to produce the spectrogram.
The discrete Fourier transform (DFT) is used to calculate the periodogram. If
the signal is semi-stationary for short time periods, the implicit assumptions
made by using the periodogram to find frequencies hold and provide meaning-
ful and accurate information for the spectrogram. Using Bayesian probability
theory, Jaynes [7] has shown that a scaled version of the periodogram gives the
ideal frequency estimate of discrete data containing a single sinusoid in white
noise. This gives a probabilistic justification for using the periodogram. Jaynes
also developed the chirpogram which estimates both the frequency and chirp-
rate of a chirped sinusoid signal [7]. Working on the foundation of Jaynes’
work, Bretthorst [8] developed a method, BSA, that generalises estimating
the parameters of a signal given a signal model. BSA specifies a customis-
able signal model that can contain multiple parameters, such as the change
in frequency or signal amplitude decay, and calculates their joint probability
density given the data. Bretthorst shows that the periodogram’s implicit as-
sumption of a single sinusoid in white noise does not hold for more complex,
time-varying signals. The periodogram and DFT, however, still prove useful
in many cases, as is evident from its continued wide-scale use in engineering
and other applications.

As an example, the probability of the frequency of a single sinusoid with
white noise, as shown in [8], is

p(ω|σ,D) ∝ exp

{
C(ω)

σ2

}
= exp

{ |DFT |2
Nσ2

}
,

with ω the frequency in cycles per sample, σ the standard deviation of the
noise, D the data that we have measured with N samples, and C(ω) the
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CHAPTER 1. INTRODUCTION 4

periodogram. BSA gives one the tools to create more complex signal models
and to include prior information about the parameters contained in these signal
models. Concepts such as noise, which is not present in the DFT, can now be
incorporated probabilistically.

1.2.2 State-Space Estimation

State-space estimation models are well-known techniques that include tempo-
ral domain knowledge by building it into the models. Among these are the
hidden Markov model (HMM) [9], where a set of discrete state-spaces are es-
timated at discrete time-steps, and Kalman filters [10], where the continuous
state-space at each time-step is modelled using Gaussian densities with linear
relationships between parameters in each time-step. In [11], Stone formulates
the problem of multitarget tracking in terms of Bayesian probability theory.
State-space estimation has also been formulated in terms of PGMs such as
in [12, 13, 14].

1.2.3 Probabilistic Graphical Models

PGMs include well-known examples such as HMMs [9], Bayes networks [15],
Markov random fields [16], and factor graphs [17] and have found use in fields
as diverse as speech recognition, image classification, and simultaneous locali-
sation and mapping [14]. An advantage of the PGM framework is the ability
to break a problem into smaller, more manageable parts. Instead of solving
the joint probability density or distribution of a model, the PGM solves the
marginal distributions of the random variables allowing otherwise intractable
problems to be solved. Some PGM algorithms only solve the most likely val-
ues of the model parameters. The piecewise modular approach absolves one of
modelling the entire system at once. A PGM inference algorithm, belief propa-
gation (BP), gives an exact solution to the marginal distribution of clique trees,
an undirected PGM with no loops [14]. Cluster graphs, clique trees containing
loops, can be solved using a variation on BP called loopy belief propagation
(LBP), which gives an approximate solution [14].

1.3 Objectives

With regard to the measured Doppler radar signal of golf swings, the objectives
of this study are to:

� Model the characteristics of short time-steps of the Doppler signal and
estimate the spectral parameters of the model in a probabilistic manner.

� Compare competing models of the short time-steps of the Doppler signal
in order to select the most probable model from a list of models.
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CHAPTER 1. INTRODUCTION 5

� Use a PGM to incorporate knowledge of the physical behaviour of the
signal to better estimate the signal behaviour within a given segment of
the golf swing.

� Model the changing dynamics and number of frequency components
present in the signal.

� Do the above with the aim of smoothing the estimates of Doppler fre-
quency shifts.

� Compare different implementations, namely between a discrete PGM
and a hybrid discrete-Gaussian PGM.

1.4 Outcomes and Contributions

The objectives of the research were met by employing the methods and ap-
proach set out below. These methods were used on simulated data and on
parts of measured Doppler radar data of golf swings where multiple objects’
Doppler frequency components were smoothed:

� We analyse the Doppler radar data that has been segmented into parts
that typically appear in the signal (such as the downward swing of the
club or the flight of the ball) using BSA to gain a better understanding
of the behaviour of the frequency components.

(a) The BSA models used had up to three frequency components and up
to three frequency parameters (frequency, linear chirp, and quadratic
chirp) making a total of nine different models. We explicitly model
compound signals containing multiple frequencies with behaviour
more complex than only stationary frequencies. The models option-
ally contain the noise present in the signal as a random variable.

(b) The models are made comparable using Bayesian probability theory.

(c) The more complex BSA models are selected more often than an
inspection of the spectrogram would suggest. We hypothesise that
there is more complexity present in the Doppler radar signals than
our BSA models can explain.

(d) The above results are congruent with simulated results where multi-
ple, close frequency components can have a single peak in the DFT
but BSA can detect the correct number of frequency components.

� BSA is used to model the Doppler radar signals for short time-periods of
the signal, similar to a spectrogram, in order to estimate the frequency
parameters with no information being shared between time-steps. These
analyses will form the basis of our PGMs and will be analogous to state-
space estimation observation likelihoods in Kalman filters.
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CHAPTER 1. INTRODUCTION 6

(a) Analysing shorter parts of the signal increases the likelihood that
the less complex BSA models are selected and match what we would
expect from the spectrogram. The improvement is to be expected,
as fewer non-linearities are likely to be present in shorter parts of
the signal.

(b) We include the energy of the signal noise as a parameter in the BSA
models to compensate for the difference between the underlying
Doppler shift behaviour and our BSA models. This noise parameter
is adjusted by inspection to increase the accuracy of our BSA model
selection. This is done in order to increase the likelihood of selecting
the correct number of frequency components.

(c) We hypothesise that our understanding of the underlying Doppler
radar signal is incomplete. Despite this, BSA still gives meaning-
ful results and it still proves useful in making comparisons between
different parts of the signal, as can be expected thanks to the rela-
tionship between BSA and the DFT.

(d) We use BSA not only to give us an estimate of the parameters
that we are modelling but also to determine the full probability
density function. This is crucial, as it enables us to use BSA in a
probabilistic framework such as PGMs.

� PGMs are designed that model the time-varying properties of the Doppler
radar signal within a segment of a golf swing.

(a) We smooth the frequency probability density functions calculated
with BSA for each time-step using a discrete PGM and a continuous
PGM. This can be seen as a state-space estimation smoothing of
the signal.

(b) This approach resembles other multitarget tracking methods.

� We include a discrete Markov chain which runs parallel with the state-
space estimation in our PGMs, thus giving a weighted quality to the
underlying analyses. Each state of the Markov chain describes a different
segment of the golf swing (for example, the downward swing of the club)
and therefore allows the system to decide in which segment of the swing
it is for each underlying BSA analysis. Each segment of the signal has a
relevant BSA hypothesis and signal dynamics.

(a) We show that a simple multitarget state estimation, without infor-
mation about segment progression, is not enough for the PGM to
select the correct BSA models and smooth the Doppler radar data.
Without specifying a strong prior probability distribution on the
number of targets or their dynamics, the underlying BSA model se-
lection is not sufficiently accurate for the PGMs to select the correct
BSA model.

Stellenbosch University  https://scholar.sun.ac.za
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(b) Enforcing a left-to-right progression of the signal segments in the
discrete Markov chain, similar to a HMM, improves the PGM and
allows it to select the correct BSA model more often. This differs
from the typical multitarget tracking methods, which encode target
births and deaths instead of this segment state progression. The
PGM now only has a limited number of segment changes available
and is better able to select the correct signal dynamics. Where there
is insufficient or incorrect information about a target’s Doppler fre-
quency from the BSA analysis, the PGM is now better able to
calculate the position based on the probability density functions of
the surrounding time-steps. For even more complex parts of the
Doppler radar signal, such as during the club impact, the left-to-
right progression is not sufficient for correct signal segment selection
without more temporal information or the correct model selection
of BSA.

(c) We include a “missed target” model, which allows our PGMs to
smooth over parts of the signal where the BSA models incorrectly
fail to detect a frequency component in the signal.

(d) We hypothesise that the lack of explicit duration modelling of the
signal segments is detrimental to estimating the frequency param-
eters.

� The above PGMs were implemented using both a fully discrete model,
where the continuous BSA parameters were discretised, and a hybrid net-
work where the parameters were approximated as multivariate Gaussian
density functions.

(a) We find that the discrete model allows more flexibility than the
Gaussian hybrid network in the design of the conditional probabil-
ity density functions. One is not restricted to one type of distri-
bution, but only the discretisation of the distribution as one can
approximate arbitrary probability density functions.

(b) Evenly discretising the BSA results can cause us to miss the sharp
peaks, which leads to problems in estimating the relative probabil-
ities between the different BSA models. We use Laplace’s method
to approximate integrating the model parameters out as a Gaus-
sian probability density function integral. This allows us to avoid
numerical integration and is a better approximation of the relative
model probabilities.

(c) We find that, as expected, the discrete PGM is significantly slower
computationally than the hybrid network. The number of param-
eters increase exponentially with the number of random variables,
and this leads to restrictions on the resolution of the discretisation.
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CHAPTER 1. INTRODUCTION 8

(d) The hybrid model is unforgiving when the process noise is not cor-
rectly estimated. In the discrete model one can model zero process
noise, whereas this leads to singularities in the case of the hybrid
model.

(e) The Gaussian is uni-modal and one needs a multi-modal probability
density function in order to model the joint probability of multiple
targets’ parameters without associating the parameters with a tar-
get identity. If there is no target identity, the joint probability
densities are symmetrical with multiple peaks. We therefore used
an implicit target identity where frequency components were arbi-
trarily assigned to the random variables in the Gaussian from the
highest to the lowest frequency.

(f) There are different limitations of the discrete and discrete-Gaussian
hybrid PGMs, and there is a trade-off between accuracy and com-
putational tractability. Both were sufficient to explore the concepts
presented in this work, with the hybrid network more likely to be
practically applicable in a portable Doppler radar unit.

1.5 Overview of this Work

The approach in this work consists of three levels, namely the bottom-level
BSA, the mid-level temporal state-space estimation that refines the signal
parameters and can reason about competing hypotheses, and the top-level
signal segment estimation describing which mid-level behaviour is active for
a given time-step. With BSA we estimate the frequency parameters of the
Doppler radar signal for short time-steps, similar to a spectrogram. However,
we use different competing hypotheses that have relative probabilities for the
signal. The other two levels are set up using prior knowledge about the local
and general signal behaviour.

1.5.1 Physical Signal and Setup

In Chapter 2 we discuss the physical setup and signal. The underlying sig-
nal is measured by a Doppler radar unit placed behind a golf player as the
player swings a golf club and hits a golf ball. The Doppler radar unit emits a
sinusoidal radar signal of an effectively constant frequency and measures the
reflected signal. The shift in frequency of the received signal relative to the
transmitted signal, the Doppler shift, is proportional to the speed of the object
from which it is reflected. Measuring the Doppler shift can thus give us the
radial velocity of objects relative to the Doppler radar unit. There are multiple
reflected sinusoids present in the signal that are reflected from different objects
or different parts of the same objects. The reflected sinusoids are distorted by
the shape of the object, change frequency over time, have non-linear changes
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CHAPTER 1. INTRODUCTION 9

in behaviour, and can be the result of unwanted targets such as the player’s
legs moving, different parts of the golf club, or harmonics caused by signal
clipping. The challenge is therefore to correctly estimate the Doppler shift
despite these unwanted effects.

1.5.2 Bayesian Modelling of the Underlying Signal

1.5.2.1 BSA

In Chapter 3 we discuss Bayesian parameter estimation and model selection
and present Bretthorst’s results for BSA in the general case. One of the in-
teresting results of BSA, as found in [7] by Jaynes, is that the periodogram is
a sufficient statistic for finding the frequency of a single sinusoid with white
noise. We discuss how BSA allows for other signal models such as multiple
frequency components being present or sinusoids with non-stationary frequen-
cies.

1.5.2.2 Experimental Results

Our experimental results using simulated data and the measured Doppler radar
signals are presented in Chapter 4. We find that BSA performs well on the
simulated signals with added white noise for both parameter estimation and
model selection. In order to analyse the Doppler radar signals, we segment
them into parts based on the number of frequency components present and
their dynamics. Figure 1.2 contains an example of a segmented Doppler radar
signal.
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Figure 1.2: An example of a segmented spectrogram of a golf swing’s Doppler
radar data. Each segment has either different frequency components or fre-
quency dynamics.
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Using stationary frequency models, the parameter estimation of simpler
parts of a Doppler radar signal gives results consistent with an inspection
of the spectrogram of the signal. The more complex signal segments do not
fit the models as expected and there seems to be more complexity than our
current BSA models can explain. This is likely due to the non-linear signal
frequency behaviour, the indirect measurement of the target, or other effects in
the signal we do not yet model. To help reduce the effect of the non-linearities
and to better capture the transient nature of the signal, we split the segments
into smaller windows for analysis such as is done in a spectrogram. For this
analysis we do not have much prior knowledge about the error in our signal
model and thus we cannot rely heavily on the sharpness of the peaks of the
parameter estimation results. BSA does not have the benefit of seeing the data
that is contained in the other time-steps using this strategy as-is. We suggest
that modelling the signal as multiple sinusoids with linear or quadratic chirp
rates is not enough to explain the complexity of the signal. This is likely due
to a single target reflecting a range of different frequencies that are close to
one another that relate to the different velocities of its different parts. Our
assumption of a maximum of three well-separated signals is an approximation
of the more complex underlying physical signal.

The model selection favours the more complex models, as they tend to
explain the data better despite the penalties Bayesian probability theory im-
poses for having more parameters. This is not a failure of BSA but a case of
our assumptions about the signal being too strict. One can attempt to model
these multiple, complex frequencies or somehow measure or calculate the error
one makes in using the simpler models. We manually increase the error factor
in our models for better model selection results. This could be automated in
future work. There tends to be a single strong frequency or group of very close
frequencies created by the object that we are interested in. If this were not so
then the spectrogram would not be as useful as it is in identifying the objects
present.

1.5.3 Refinement of the BSA Results

1.5.3.1 Bayesian State-Space Estimation

In Chapter 5 we frame the problem of state-space estimation as a problem of
Bayesian inference. Stating the problem within the Bayesian framework allows
us to use PGMs to solve the marginal posterior probabilities of the states we
wish to estimate. We briefly discuss three methods used in literature, namely
switching state-space estimation [18], track-oriented multiple hypothesis track-
ing [12], and joint multitarget probability density [19].
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CHAPTER 1. INTRODUCTION 11

1.5.3.2 PGM Theory

In Chapter 6 we give background information regarding the PGM approach
and the type of models we use. We use both a fully discrete and a hybrid
PGM that are made up of different types of factors. We implement the factors
in cluster graphs [14], which are undirected PGMs. The discrete factors in
our graphs take the form of a key-value paired table with the values that
random variables can assume as the key, and their probabilities the values.
The continuous factors are Gaussian probability density functions that are
manipulated in canonical form. The hybrid factors are a mixture of the discrete
and continuous factors; this allows for a mixture of discrete and continuous
random variables used within the same factor. They are described by a table
similar to the discrete factors where, instead of a probability for each key-
value pair, there is a Gaussian probability density function. When one uses
linear Gaussian probability density functions, these hybrid factors are called
conditional linear Gaussians (CLGs) [14]. We describe LBP and loopy belief
update (LBU), two similar algorithms that both allow the factors to share
knowledge about the random variables that they have in common. Using these
algorithms, one can calculate the marginal probabilities of the joint probability
density function that a graph factorises.

1.5.3.3 PGM Model Design

Chapter 7 contains our modelling of the Doppler radar signal behaviour. Fig-
ure 1.3 is a Bayes network representation of the lower- (green), mid- (blue),
and higher-level (red) transitions we used to describe the different sources of
domain knowledge we incorporated into our PGMs. The model is only used
conceptually in order to create the factors needed to implement the PGMs
using cluster graphs. In our PGMs the three levels of knowledge we used were:

� The different BSA estimations of the parameters at each time-step (lower-
level, indicated in green).

� The behaviour of the physical targets’ motion, which is described by the
parameter dynamics (mid-level, indicated in blue).

� The fact that each discrete signal segment occurs in a certain order and
other temporal information about signal segments (high-level, indicated
in red).

1.5.3.4 PGM Experimental Results

In Chapter 8 we discuss the challenges faced and lessons learned in this the-
sis. The challenges include selecting process noise for the hybrid model, the
effects of discretisation for our discrete model, and non-convergence of some

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 12

XT

S1S0 ST

XtX1X0

Dt

St

DTD0 D1

Figure 1.3: A Bayes network representation of the general model approach.

of the PGMs. We also compare the hybrid and discrete models where we find
that the discrete model offers more flexibility in creating factors, but that the
hybrid model is much less computationally expensive.

Chapter 9 contains examples of the results of our PGM models on Doppler
radar data. The experiments include intra-segment parameter smoothing for
different signal models, inter-segment transitions, and a missed target BSA
model. Restricting parts of the signals’ frequency component dynamics can
improve the results. For certain parts of the signal we needed to specify the
signal segment transitions where for other parts the models were able to au-
tomatically select the segments. We find that the missed-target model and
left-to-right segment transition improved upon the conventional multitarget
tracking and allowed the PGMs to select the correct signal segment and to
smooth over regions where a frequency component was missing.

1.5.4 Conclusions and Recommendations

In Chapter 10 we discuss the conclusions reached from our research, summarise
the results of this thesis, and make recommendations for future work. We
find that both the discrete and hybrid models were sufficient for exploring
the concepts presented in this thesis. The models allowed us to incorporate
our domain knowledge and improve our noisy measurements of the frequency
components present in the signal. Our recommendations include using different
BSA models, exploring the signal noise further in the BSA models, finding
better methods for selecting the PGM process noise, exploring other methods
for factor representations, and using explicit duration models.
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Chapter 2

Physical Setup

2.1 Introduction

The Doppler effect has found many practical uses in engineering and the sci-
ences whereby one can calculate the relative speed of objects from the fre-
quencies of reflected or emitted electromagnetic waves. In this chapter we will
discuss the physical setup of the Doppler radar unit that produces the radar
signal and measures the reflected Doppler shifted signals. The Doppler radar
unit is used to measure the velocity of a golf player’s swing and of the golf
ball.

2.2 Doppler Shift in Radar

The Doppler effect causes a difference in frequency from the transmitted signal
ft and the signal reflected from a moving object with a resulting frequency of
fr. We can calculate the the reflected signal’s frequency as

fr =

(
1 + vr/c0

1− vr/c0

ft

)
where the radial velocity of the target object, vr, is relative to the source of the
transmitted signal, and c0 is the speed of light in air [20]. For an approaching
target, vr is positive, and it is negative for a receding target.

The difference between the transmitted frequency ft and the received fre-
quency fr is the Doppler shift, fD:

fD = fr − ft =
2vr

c0 − vr
ft.

Since the speed of light in air is much greater than the radial speed of the
object, vr << c0, we can simplify the above equation to obtain

fD ≈
2vr
c0

ft.

13
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CHAPTER 2. PHYSICAL SETUP 14

If the target is moving with speed v and an angle θ with respect to the radar
line-of-sight, where θ = 0◦ for a directly approaching target and θ = 180◦

for a receding target, the radial velocity, vr, will be projected as v cos θ. The
Doppler shift is thus

fD ≈
2v

c0

ft cos θ,

which is proportional to the radial velocity of the target object [20].

2.3 Radar Unit

We have data from a Doppler radar unit with the unit setup as seen from the
side as shown in Figure 2.1. The ball is placed 3m in front of the unit, with the
ball trajectory away from the unit. The Doppler radar unit emits a sinusoidal
signal with a near constant frequency in the range 10.5 - 10.6 GHz. The unit
receives the transmitted signal’s reflections from objects. This received signal
is mixed down with the transmitted signal and passed through a low-pass filter.
The resulting compound signal contains the absolute frequency shifts of the
received signal relative to the transmitted signal’s frequency.

0-30 mm

+-3000 mm

+-1200 mm

204mm

Figure 2.1: The setup of the Doppler radar unit in the vertical plane (not
to scale). The trajectories over time of the club-head, ball and player are
indicated by the red, blue and black dotted directed lines respectively. Example
radar signal paths from the objects to the Doppler radar unit are indicated by
dashed lines in their corresponding colours. The green dashed path is a possible
alternative path that a reflected signal can follow for the club-head.
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In Figure 2.1 the object trajectories that create Doppler shifts are indicated
with dotted directed lines with the club in red, the ball in blue and the player
body in black. Example paths of the reflected signals caused by the objects
are shown by the dashed lines. The dashed green line indicates a possible
multi-path signal where a signal can be reflected against the ground before
being measured.

2.4 Example Doppler Signal Spectrogram

Figure 2.2 is a spectrogram of a Doppler radar signal of a golf swing such as
in Figure 2.1. It shows the resulting absolute Doppler frequency shifts caused
by the movement of the target objects. For each time-step, a window of 64
samples, multiplied with a Hamming window, is applied with a step-size of
16 samples between windows. We used the Hamming window to suppress the
side lobes of the periodogram which would otherwise be clearly visible in the
log scale. We do not use any window functions other than a flat window in
the rest of this thesis. Superimposed over the spectrogram are dashed lines
indicating which objects caused the frequency shifts, namely the ball, club-
head, the stick-flash phenomenon, and an example of a harmonic caused by
clipping. Other objects visible but not indicated are low-speed objects such as
the body of the player or other low-frequency noise components. These targets
of interest are explained in more detail in the following sections.

2.4.1 Low-frequency Components/Noise

There are low-frequency components present during the typical golf swing
which are clearly visible in the log spectrogram in Figure 2.2. The effect is
most pronounced during the club’s downward swing between time-steps 60 and
80. They are not as visible to this degree when the log of the spectrogram is
not taken.

2.4.2 Ball

The ball component has a relatively constant frequency compared to the other
components. Outside of the scope of the spectrogram, the frequency compo-
nent of the ball slowly drops to zero.

2.4.3 Club-head

The club is the object with the most complex behaviour where multiple parts
of the club cause reflected signals, most notably the club-head and the shaft.
The discontinuity around time-step 80 is caused by the momentum transfer
from the club-head to the ball during the golf-swing impact. The club-head
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reaching zero Hz/sample near time-step 40 is when its velocity is perpendicular
to the radar reflection path at that time-step. Before time-step 40, the Doppler
shift of the club-head is negative as it is moving towards the Doppler radar unit
– however, it appears positive on the spectrogram as it displays the absolute
frequency shift. The club-head is one of the strongest components, with the
stick-flash phenomenon sometimes being stronger. The high amplitude of the
club-head frequency component causes clipping of the measured signal, which
can cause harmonic frequencies to appear such as during time-steps 40 to 60.
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Figure 2.2: The spectrogram of a golf swing indicating the absolute frequency
shift from the transmitted signal which is proportional to the radial velocity of
the object. Imposed on the spectrogram are the frequency paths of the ball, club-
head, stick-flash (the radar reflection running up the shaft) and a harmonic
frequency caused by the clipping of the signal. There are also low-frequency
components created by the player motion or other unwanted effects.

2.4.4 Stick-Flash Phenomenon

The stick-flash phenomenon occurs when the club shaft moves into a position
perpendicular to the face of the radar unit, creating a larger target profile
and consequently a higher amplitude reflected signal. This part on the club
shaft, which has the largest target profile relative to the radar unit, moves
along different parts of the shaft for a short time before, during, and after the
moment of impact. There is a discontinuity in the stick-flash at the moment of
impact at time-step 80, which is similar to the club-head discontinuity. This
target also produces a strong frequency component that obscures the club-
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head at the moment of impact and clips the signal, thus causing harmonics to
appear.

2.4.5 Signal Clipping

Signal clipping occurs when the measured signal amplitude is larger than the
measuring equipment or the digital representation’s maximum amplitude. Fig-
ure 2.3 and 2.4 both contain the normalised histograms of the measured signal
amplitudes of different parts of the same signal from Figure 2.2. Figure 2.3
contains a part where the signal clipped and Figure 2.4 contains a part where
there was no clipping. We normalised the amplitudes to the maximum mea-
sured amplitude for both the clipped and non-clipped parts. One can see the
effects of clipping in Figure 2.3 where the (now normalised) maximum ampli-
tude is significantly more prevalent than in Figure 2.4. The signal clipping
causes multiple higher harmonic frequency components to appear in the spec-
trogram such as shown in the spectrogram in Figure 2.2.
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Figure 2.3: Normalised histogram
of a Doppler radar signal part that
contains clipping.
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Figure 2.4: Normalised histogram
of a Doppler radar signal part that
contains no clipping.

2.5 Conclusion

In this chapter we discussed the physical setup that measures the Doppler radar
signals. The spectrogram is very useful for inspecting the reflected, measured
signal as the relative speed of the targets of interest is proportional to the
Doppler shift of the reflected sinusoids relative to the transmitted sinusoid. It
does not, however, account for signal noise or an explicit signal model. We
also discussed effects in the signal that obscure our targets of interest, namely
the stick-flash phenomenon, multi-path sinusoids, and clipping. In this thesis
we will focus only on estimating the radial velocity of the objects which we
compare to the spectrogram.
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Chapter 3

Bayesian Spectrum Analysis

3.1 Introduction

Bayes’ theorem can be used as a method of inference. It allows one to up-
date one’s prior knowledge or “belief” about a parameter of interest with a
likelihood function which incorporates observed data. The parameters used in
the probability calculations are called random variables. Bayesian probability
theory is made possible by the product and sum rules and can be applied to
concepts such as nuisance parameters, parameter estimation, model selection
and selecting prior probabilities [8]. In this chapter we will discuss Bayes’ the-
orem and introduce the theory behind Bayesian spectrum analysis (BSA). We
also demonstrate the relation between the periodogram and BSA for a single
sinusoid in white noise. The general theory discussed here will be applicable
to the rest of this thesis, and specifically the BSA will form the lower level of
our PGMs.

3.2 Bayesian Probability Theory

In Bayesian probability theory one makes use of Bayes’ theorem to update
one’s prior state of knowledge by incorporating data using a statistical model.
This is done by using the product,

p(A,B|C) = p(B|A,C)p(A|C), (3.2.1)

and sum rules,

p(A) =
∑
B

p(A,B), (3.2.2)

of probability theory. The product rule allows us to relate random variables
to each other and the sum rule allows us to systematically remove them from
consideration by marginalising them. Marginalising random variables is done
by summing the probabilities of the unwanted discrete random variables and

18
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integrating out unwanted continuous random variables.

We have a hypothesis or hypothesis space, H, under consideration and
we wish to update our belief about this hypothesis with the data we have
collected, D. One can perform the necessary probability calculations on the
random variables using the above product and sum rules. To calculate the
probability density of the hypothesis space using Bayes’ theorem, we have:

p(H|D, I) =
p(D|H, I)p(H|I)

p(D|I)
. (3.2.3)

In this chapter we emulate Jaynes [7] and Bretthorst [8] by adding I to the
right of the conditioning bar “|”. Jaynes used this parameter to explicitly de-
note that there is certain information that we take as given when setting up
an experiment. Examples of this, sometimes implicit, information include the
class of alternative hypotheses being considered, the statistical model which
denotes the relationship between hypotheses, and the data and other informa-
tion we might have about the data or problem domain [7]. Our prior probabil-
ity for the hypothesis is p(H|I). This is our knowledge about the hypothesis
space H given the knowledge of the problem setup or other domain knowledge
contained in I before seeing the data. For a fixed value of our data, D, the
function that we use to update our state of knowledge about the hypothesis
is the likelihood function or statistical model p(D|H, I), the probability of the
data given the hypothesis. This function is what allows us to update our prior
knowledge with the data that we have observed. When H is fixed it is known
as the sampling distribution. p(D|I) serves as the normalising factor and is
also known as the global likelihood. It can also be written as

p(D|I) =
∑
H

p(D|H, I)p(H|I).

Bayes’ theorem gives us the posterior probability of our hypothesis given the
data p(H|D, I) which is our knowledge about H modified by obtaining new
information in the form of the data D.

The Bayesian approach allows us to pose hypotheses such as by Bretthorst
in BSA [8]: “What is the probability density of a frequency ω of a sinusoid
given the data, independent of the amplitude and phase?” and “Given sev-
eral possible models of the data, which model is more probable?”. The first
hypothesis assumes the model to be correct and is parameter estimation [21],
and the latter is model selection [22] where the correct model to be selected
is another parameter and is also handled as a random variable by Bayesian
probability theory.
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3.2.1 Nuisance Parameters

We want to focus our attention on a subset of parameters. Historically, pa-
rameters that one did not wish to estimate but were part of the model were
referred to as “nuisance” parameters. Using Bayesian probability theory, one
can allocate a prior probability density function to them and marginalise them
by either integrating or summing them out. The global likelihood is a special
case where all parameters are marginalised.

3.2.2 Discrete and Continuous Hypotheses

For a discrete hypothesis spaceH one has a probability distribution, p(Hj|D, I).
Marginalising all the parameters as nuisance parameters, the hypothesis space
is constrained to the following, with k discrete hypotheses under consideration:

k−1∑
i=0

p(Hi|D, I) = 1.

For a continuous hypothesis space h one can consider the problem as the
limiting case for an arbitrarily large number of discrete hypotheses [23]. The
rule for marginalising the hypothesis space as applied above then becomes:∫

dh p(h|D, I) = 1

for a continuous hypothesis space.

3.2.3 Sufficient Statistic

A function is a sufficient statistic of a random variable when, given the data, it
summarises all the relevant information for computing the random variable’s
likelihood function [14]. From [24] the sufficient statistic is a function where no
other function calculated from the same sample would provide any additional
information as to what the value of a parameter is. The following has to hold
for the function F to be a sufficient statistic of the parameter ω for the data
observed, D:

p(D|F , ω) = p(D|F).

This indicates that the likelihood function is conditionally independent of the
probability of ω, as all the relevant information is already contained in the
sufficient statistic F [24]. An example is a function which calculates the mean
of a set of data. It would be the sufficient statistic for the mean µ of a Gaussian
probability density function with known variance.
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3.2.4 Parameter Estimation

In parameter estimation our hypotheses are the possible values that a given
model’s parameters can assume. The model under consideration can be im-
plicitly included in I or explicitly stated on the right of the conditioning bar.
One aims not only to obtain the most likely values for a set of parameters, but
the probability density function of a range of possible values [21].

Rewriting Bayes’ theorem where our model parameters are Ω and Mj is
the jth model under consideration, we have:

p(Ω|D,Mj, I) =
p(D|Ω,Mj, I)p(Ω|Mj, I)

p(D|Mj, I)
. (3.2.4)

We might only be interested in a subset of the parameters Θ ⊂ Ω – then we
have:

p(Θ|D,Mj, I) =

∫
d(⊆ Ω)

p(D|Ω,Mj, I)p(Ω|Mj, I)

p(D|Mj, I)
,

where d(⊆ Ω) indicates that a subset of Ω is integrated out.

3.2.5 Model Selection

We can have more than one parameterised model under consideration and
wish to compare them. The probability of a model being the true model can
be treated as another random variable and we can calculate the probability
distribution of the models using Bayesian probability theory. Considering the
probability of the jth model Mj from k different models, we can rewrite Bayes’
theorem as:

p(Mj|D, I) =
p(D|Mj, I)p(Mj|I)

p(D|I)
=

p(D|Mj, I)p(Mj|I)∑k−1
i=0 p(D|Mi, I)p(Mi|I)

.

The model likelihoods can be calculated by marginalising the parameters of
the models:

p(D|Mj, I) =

∫
dΩ p(D|Ω,Mj, I)p(Ω|I)p(Mj|I).

According to Occam’s Razor [23] as applied to the sciences, if there is un-
certainty between hypotheses, the hypothesis with fewer assumptions should
be preferred. Bayesian probability has an analogous principle, the Occam fac-
tor, in which more complex models are implicitly penalised proportional to
their complexity by their prior probabilities [23]. The more complex hypothe-
ses with more parameters or spanning over larger parameter ranges require
higher likelihood functions in order to overcome the Occam factor penalty.
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It is worth considering that when only comparing the likelihood functions
of different models, if one is contained as a special case of the other, then the
simpler model will never be favoured. The Occam factor is thus crucial in
ensuring that the more complex model is favoured only when its likelihood
ratio is large enough to justify the added complexity. This is especially true
when we integrate out the parameters of our models, Ω, in order to calculate
the model probabilities.

In this work, we will typically assume that we have no information lead-
ing to a prior preference for one model over another, so the ratio between
each of the prior probabilities will be unity. The determining factor between
which model is more likely will be determined by the models’ global likelihoods
p(D|Mj).

3.2.6 Prior Probability Selection

According to MacKay, one cannot do inference without assumptions [25]. Us-
ing Bayesian Probability theory, we can quantify our assumptions using prior
probability density functions. If we do not have strong prior information about
a random variable, we would preferably keep the prior probability density
function as uninformative as possible given the knowledge about the random
variable.

Uniform Prior: If we know the range of values that a parameter can assume,
but not the likelihood of the values within that range, a uniform probability
density is appropriate. It denotes ignorance of the value of the random vari-
ables bounded within the allowed range of values. The probability density
is a constant within the range of interest and zero otherwise. We can have
an unbounded uniform prior that forms an improper prior, which cannot be
normalised [7].

Gaussian Prior: Gaussian priors are typically used for location parameters.
A Gaussian prior is appropriate when the variance and mean of a random
variable are known. It may also be the case that the range of possible values
the random variable can assume are unknown or unbounded. In [7], Bretthorst
justifies the use of Gaussian prior probability density functions by using the
principle of maximum entropy. The other well-known justification for Gaussian
prior probabilities is the central limit theorem [25]. The central limit theorem
states that the sum of a number of independent random variables with finite
variances will begin to approximate a Gaussian probability density function as
their number approaches infinity. If there are many small, random or pseudo-
random effects on a random variable, then its probability distribution may
approach a Gaussian density function.
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Jeffrey’s Prior: Jeffrey’s prior is a function which is uniform in the log
scale and is typically used for scale parameters [7]. It denotes ignorance of the
scale or magnitude of the values that the random variables can assume. The
improper and unbounded Jeffrey’s prior is formulated as:

p(σ|I) = 1/σ.

One needs to bound the prior with a range to be able to normalise it.

Hyperparameters: Sometimes our prior probability density functions con-
tain parameters themselves called hyperparameters, such as the standard de-
viation σ for Gaussian priors. The term is used to distinguish them from the
random variables of the model under consideration and they may differ de-
pending on the state of one’s prior knowledge. If we know their values we can
use them as they are; otherwise we can treat them as random variables that are
handled by probability theory and allocate prior probability density functions
to them also. Hyperparameters are often treated as nuisance parameters and
marginalised out [7].

3.3 Introduction to BSA

Depending on the prior information, the periodogram is a sufficient statistic
for the frequency of a single sinusoid present in white noise. The periodogram
can be used to calculate the probability density function of the frequency to an
arbitrary resolution, depending on the amount of zero-padding. This matches
one’s intuition that the DFT can be used to find the frequency components in
a signal, as the DFT is often used in frequency analyses in engineering and the
sciences. BSA makes apparent the limitations of the DFT when dealing with
more complex signals that contain multiple sinusoids or complex frequency
behaviour for which the periodogram is not a sufficient statistic. Often when
a signal is excessively noisy or there are changes in complex behaviour of the
frequency components, the DFT may not be useful for analysing the entire
signal, and methods such as the spectrogram are employed.

In the following sections we give a brief overview of Bretthorst’s generalised
approach to BSA in the case of a general signal model. A more detailed look
at Bretthorst’s derivation of BSA can be found in Appendix A. We will show
how this method allows one to model an arbitrary signal given a signal model
and amplitude, estimate its parameters, and find the most likely model given
the data.
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3.4 A BSA Example

In this section, we discuss an example analysis in order to clarify the end goal.
We have two simple simulated signals which we will analyse using BSA. In
Figure 3.1 we have two examples of BSA, one in each column. The left col-
umn shows the periodogram of a single sinusoid with an amplitude of 1 and 64
evenly spaced samples with white noise added (σ = 1) with the true frequency
of 0.2 Hz/sample. The periodograms have been zero-padded to 4096 samples.
The second and third graphs are the log probability density and probability
density functions of the model of a single frequency with unknown noise. Note
that the BSA log probability density is proportional to the periodogram, the
sufficient statistic.

In the second column we have the sum of two sinusoids with frequencies
of 0.2 and 0.25 Hz/sample respectively with the same energy noise added.
The two other graphs in the right column are the log probability density and
probability density of two frequencies with unknown noise. Since we have two
parameters for the model, the probability density is also two-dimensional. The
probability density is symmetric along the ω0 = ω1 axis due to the permuta-
tions of the frequencies where ω0 and ω1 could be either frequency in the signal.

Note how sharply peaked both probability densities are in the third row,
indicating the confidence level in the parameter estimates. This does not,
however, indicate the confidence in the models themselves. One would need
to carry out model selection in order to calculate the model probabilities.
Intuitively, one would expect the peaks in the periodogram to be the most
likely frequencies as the periodogram is often used to find the frequencies in a
measured signal. It is only when the noise becomes significant, the underlying
signals are complex, or frequency components are very close to one another,
that the periodogram starts to yield unreliable results.

3.5 BSA Parameter Estimation

This section gives a brief overview of the of BSA parameter estimation. It
is based on [8], unless otherwise specified. A more detailed overview of BSA
parameter estimation can be found in Section A.1.

With N data points D = {d1, ..., dN} sampled from y(t), the continuous
signal, at discrete times {t1, ..., tN}, the signal model M(t) and signal noise
e(t), we have the following equation to describe our data:

di = M(ti) + e(ti), (1 ≤ i ≤ N). (3.5.1)
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Figure 3.1: This figure has two examples of BSA, one in each column. The
left column contains the example of a single sinusoidal signal in noise. From
the top the figures are the periodogram, log of the probability density, and prob-
ability density functions of the frequency of the signal using a single signal
model with unknown noise. The peak of the periodogram coincides with the
peak of the BSA analysis. The second column contains an example of the BSA
of two signals in noise where the signals are well separated and equally strong
and clearly visible. From the top the figures are the periodogram, log of the
probability density, and probability density functions of the frequencies of the
signal with a two signal model with unknown noise. Note that the two peaks of
the probability density are equal and coincide with the top two maxima of the
periodogram.

All of the functions in the above equation are functions of time that have
been sampled at discrete times. The noise is assumed to be additive and
non-correlated.
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By following Bretthorst’s approach, we would like to calculate the param-
eters we are interested in, independent of those we do not wish to estimate.
We will generally assume that little prior information is available and that
the most informative prior information is in fact the functional form of the
model – for example, the number and types of parameters as well as the model
functions. This will also be true for our specific Doppler radar problem, as
we know little more about the underlying signal than that it is the sum of
reflected sinusoidal signals with Doppler-shifted frequencies. We assume that
the measured data can be separated into a signal and noise. The noise models
effects such as thermal or measurement noise. The parts of the model that we
cannot accurately specify or that are incorrectly specified can also be seen as
part of the noise [21].

The general form of the model from [8] is as follows:

M(ti) =
m∑
j=1

BjGj(ti,Θ) (3.5.2)

with Bj the amplitude multiplied with the jth model function Gj(ti,Θ), out
of m possible model functions. The set of r parameters that are going to be
estimated are

Θ = {Θ0, ...,Θr−1}.
The model parameters can be frequencies, chirp rates, signal decay or any ar-
bitrary set of parameters used to describe the signal.

Referring to the parameter estimation from Equation 3.2.4, the probability
of the model parameters, Θ, and nuisance amplitude parameters, B, given the
data and other prior information is

p(Θ,B|D,Mj, I) =
p(D|Θ,B,Mj, I)p(Θ,B|Mj, I)

p(D|Mj, I)
.

We wish to calculate the probability density of the random variables of interest
Θ independent of the amplitudes B to get

p(Θ|D,Mj, I) =

∫
dB p(Θ,B|D,Mj, I),

which is the probability of the parameters given the data. Because any infor-
mation we have about our model parameters Θ will not influence our knowl-
edge about the amplitudes B we can write our prior knowledge about these
independent parameters as:

p(B,Θ|Mj, I) = p(B, |Mj, I)p(Θ|Mj, I).
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We use a uniform prior for p(Θ|Mj, I) for both parameter estimation and
model selection. The prior for the amplitudes is approximated as an improper
uniform prior for simplicity. We discuss the details of Bretthorst’s approxima-
tion for parameter estimation in Appendix A.1.3.

The starting point to BSA parameter estimation is using a Gaussian prior
for the noise, which is the difference between the model function M(ti) and
the data di from Equation 3.5.1. Jaynes [7] and Bretthorst [8] justify using a
Gaussian prior for the noise by using the principle of maximum entropy and
the central limit theorem, as discussed in Section 3.2.6.

Bretthorst simplifies the calculations by calculating orthonormal (orthog-
onal and normalised) model functions from the original model functions:

Morth(ti) =
m∑
j=1

AjHj(ti,Θ), (3.5.3)

where the new model Morth(ti) now consists of orthonormalised amplitudes Aj
and model functions Hj(ti,Θ). From [8], the projection of the data onto the
orthonormal model function is calculated as

hj(Θ) ≡
N∑
i=1

diHj(ti,Θ), (1 ≤ j ≤ m), (3.5.4)

and the sufficient statistic is the mean-square of the observed projections:

h2(Θ) ≡ 1

m

m∑
j=1

[hj(Θ)]2. (3.5.5)

BSA contains the concept of noise as a hyperparameter in the form of the
noise variance σ2. If σ is known, then the joint probability of the Θ parameters
conditional on the data and the noise is:

p(Θ|D, I) ∝ exp

{
mh2(Θ)

2σ2

}
. (3.5.6)

If σ is not known, it is removed as a nuisance parameter. It is a scale parameter
and restricted to positive values. The uninformative prior probability for scale
parameters is the Jeffrey’s prior. Marginalising σ given the Jeffrey’s prior
(1/σ) gives us

p(Θ|D, I) ∝
[

1− mh2(Θ)

Nd2

]m−N
2

, (3.5.7)
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where the mean-square of the data d2 is calculated as follows:

d2 =
1

N

N∑
i=1

d2
i .

Equation 3.5.7 only becomes singular if one has perfect knowledge of the Θ
parameters. Equations 3.5.6 and 3.5.7 will allow us to calculate the frequency
and chirp parameters of an arbitrary number of sinusoids.

3.6 BSA Relation to Periodogram

In this section we will briefly relate the periodogram with BSA. The more
detailed derivation can be found in Appendix A.2. We would construct the
model as follows for a single sinusoid:

M1 sin(ti) = B1 sin(2πω) +B2 cos(2πω),

where m = 2 is the number of model functions. The projection of the data on
the orthonormal model functions from [8] are

h1(ω) ≈
N∑
i=1

di

√
2 cos(2πωti)√

N
,

and

h2(ω) ≈
N∑
i=1

di

√
2 sin(2πωti)√

N
.

Note the similarities to the projection of the data for the periodogram that
can be calculated as:

C(ω) =
1

N

[
R(ω)2 + I(ω)2

]
=

1

N

∣∣∣∣∣
N∑
j=1

dje
2πiωtj

∣∣∣∣∣
2

=
1

N
|DFT|2

and where the real and imaginary projections are:

R(ω) =
N∑
j=1

dj cos(2πωtj),

and

I(ω) =
N∑
j=1

dj sin(2πωtj).

From Equation 3.5.5 we then calculate

h2(ω) ≈ 1

2

[
N∑
i=1

di

√
2 cos(2πωti)√

N

]2

+
1

2

[
N∑
i=1

di

√
2 sin(2πωti)√

N

]2

= C(ω)

and arrive at the periodogram C(ω) as the sufficient statistic for a single sinu-
soid in white noise.
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3.7 BSA Model Selection

If one has a set of possible BSA models, how does one determine which one is
most likely to be the correct model? Given the data and the available prior
information, how strongly is that model supported relative to the alternatives?
The questions asked for model selection are different to those asked for param-
eter estimation but are solved using the same methods. This section is based
on [22], except where otherwise indicated. The details on BSA model selection
can be found in Appendix A.3.

The questions can be solved by calculating the joint probability density
function of the data and the parameters, and then integrating out the param-
eters. For BSA this cannot be done analytically. Using Bayes’ theorem we
have the likelihood function for our model under consideration:

p(D|Mj, I) =

∫
dΘ p(Θ|Mj, I)

×
∫
dA p(A|Θ,Mj, I)p(D|,A,Θ,Mj, I)

, (3.7.1)

where Mj is the jth model function under consideration with the parameters
of interest in the previous section Θ and the model function amplitudes A
being marginalised out.

Unlike our method of parameter estimation from the previous section, all
the numerical factors must be kept as they do not necessarily cancel out during
model selection. One can consider all the parameters as nuisance parameters
which are to be marginalised. Since we are ignorant as to which model is the
correct one, we use a uniform prior for the models. The following equation for
the model probability has the constants cancelling out:

p(Mj|σ,D, I) =
p(D|σ,Mj, I)�����p(Mj|I)∑s
k=1 p(D|σ,Mk, I)�����p(Mj|I)

=
p(D|σ,Mj, I)∑s
k=1 p(D|σ,Mk, I)

,

where s is the number of hypotheses under review and the prior for our models
is p(Mj|I) = 1/s.

From [22] we then have a model likelihood that is comparable between
models:

p(D|Mj, I) ≈ Γ
(m

2

)(N −m
2

)
v−0.5

1 ...v−0.5
r

×
[
mh2

2

] [
Nd2 −mh2

2

]m−N
2

∣∣∣∣∣∣
Θ̂

, (3.7.2)
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where defining

bkl ≡ −
∂2mh2

2∂Θk∂Θl

∣∣∣∣∣
Θ̂

, (3.7.3)

and vj is the jth eigenvalue of the matrix bjk. For models with multiple maxima
due to symmetry, we can multiply the model likelihood by the number of peaks.
For example, the two-peaked example in Figure 3.1 would be multiplied by 2,
otherwise we would only approximate the integral of one of the two identical
peaks.

3.8 Conclusion

BSA is a generalised method used to calculate the joint probability density
function of the parameters of a signal model given the signal data. It can
be used to calculate the parameters of arbitrary model functions if one can
carry out the necessary operations of Bayesian probability theory. We showed
the relation between BSA and the periodogram. The concepts of Bayesian
probability theory that were introduced before the derivation of BSA will also
be used in later chapters of this thesis.
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Chapter 4

BSA Experimental Results

4.1 Introduction

In this chapter we use BSA to do parameter estimation and model selection
on the Doppler radar data. The Doppler radar signal is broken up into long
segments that relate to the number of frequency components and the different
dynamics of each part of the signal. We analyse these longer segments to
gain a better understanding of the application of BSA to our data. We also
break up the signal into even smaller parts similar to a spectrogram. Both the
“noiseless” and specified noise power models are used in our analyses.

4.2 Signal Models

From the spectrogram there would appear to be a maximum of three sinu-
soids present at a time in the Doppler radar signal. We model single-, two-
and three-frequency models with three different types of behaviour for the sig-
nals – namely stationary, linear chirp, and quadratic chirp frequencies – which
brings it to nine models in total. The stationary frequency model assumes the
sinusoids of interest have a constant frequency. Signals with a linear chirp in
frequency are also known as sweep signals. The quadratic chirp model is an
extension of the linear chirp model and models the instantaneous frequency
forming a quadratic polynomial function.

For r stationary sinusoids the model function is:

M(ti) =
r−1∑
j=0

Bj,1 cos(2πωjti) +Bj,2 sin(2πωjti),

where then the two stationary sinusoid model function is

M(ti) = B0,1 cos(2πω0ti)+B0,2 sin(2πω0ti)+B1,1 cos(2πω1ti)+B1,2 sin(2πω1ti).

31
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For a sinusoid with linear chirp the model is

M(ti) =
r−1∑
j=0

Bj,1 cos(2πωjti + αjt
2
i ) +Bj,2 sin(2πωjti + αjt

2
i ),

which for a single linear chirp is the chirpogram model from [7]:

M(ti) = B0,1 cos(2πω0ti + α0t
2
i ) +B0,2 sin(2πωti + α0t

2
i ). (4.2.1)

One can extend the models to an arbitrary amount of frequency parameters,
but we only do so up until the quadratic polynomial chirp model – specifically

M(ti) =
r−1∑
j=0

Bj,1 cos(2πωjti+αjt
2
i+βjt

3
i )+Bj,2 sin(2πωjti+αjt

2
i+βjt

3
i ). (4.2.2)

4.3 Finding the Peak

In order to approximate the probability density functions of BSA for our model
selection from Section 3.7, we need to be able to find the peak. As used in [6],
where BSA is implemented for biological time series, we used the Nelder-Mead
optimisation technique [26]. The Nelder-Mead technique is a heuristic search
method to find the peak of a function that does not make use of derivatives
(see Appendix B.3).

For the model functions in the previous section we could choose that for
our models,

0 ≤ ti < N,

where N is the number of samples in the signal under analysis. Instead we
choose,

−N
2
≤ ti <

N

2
,

which simply means that the ω = {ω0, ..., ωr} parameters are the instantaneous
frequencies in the middle of the measured signal as opposed to the starting
frequency. It allows us to use the peaks of the absolute value of the DFT as a
starting point for the Nelder-Mead technique, as they tend to be close to the
instantaneous frequencies in the middle of a measured signal.

4.4 Simulated Examples

Figure 4.1 is an example of a chirpogram (with a signal model such as in
Equation 4.2.1) for a simulated signal with linear chirp, and Figure 4.2 is a
chirpogram of a different simulated signal with quadratic chirp. In Figure 4.2
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Figure 4.1: The log of the chirpogram of a simulated signal with a linear
chirp: ω = 0.3, α = −0.001, β = 0.0. The density function has a single strong
peak by the correct parameter values.
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Figure 4.2: The log of the chirpogram of a simulated signal with a quadratic
chirp: ω = 0.2, α = −0.003, β = −0.00001. The density function is more
spread out in comparison to Figure 4.1.

the instantaneous frequency of the signal forms a quadratic polynomial func-
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tion but we only model it as a linear chirp. The signal with linear chirp has
a single strong peak where the quadratic chirp simulated signal’s peak shows
that there is more complexity present in the signal. We will compare these
chirpogram with Doppler radar data in Section 4.6.1.
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0
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ω = [0.3, 0.295], α = [0, 0], β = [0, 0], σ = 0.6

ω

|D
FT

(ω
)|

|DFT(ω)|:

(cycles/sample)

Figure 4.3: The absolute value of a zero-padded DFT of two very close sinu-
soids (ω0 = 0.3, ω1 = 0.295, σ = 0.6). The DFT cannot distinguish between
the two sinusoids.

Figure 4.3 and 4.4 are both from a third simulated signal. They indicate
the absolute value of the DFT and the log probability density of the two-
stationary-sinusoid model respectively. This simulated signal contains two si-
nusoids that have two very close frequencies with white noise added (σ = 0.6).
In the zero-padded DFT there is a single peak, but with the two-sinusoid model
it clearly indicates that two frequency components are present. Doing model
selection, the model with two stationary sinusoids is chosen above the other
stationary sinusoid models with near certainty, as can be seen in Table 4.1.
We will see examples of possible multiple close sinusoids in our Doppler radar
data in Section 4.6.

These examples show that the complexity of the underlying signal can ei-
ther be apparent from an inspection of the probability density function such
as can be seen in the difference between the signals from Figure 4.1 and 4.2, or
more subtle such as in Figure 4.3 and 4.4, where the same signal with different
models can give very different results. One needs to do model selection to find
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Figure 4.4: Log probability density function of two very close sinusoids with
peak: ω0 = 0.2998, ω1 = 0.2951. BSA separates and distinguishes between the
two sinusoids.

Table 4.1: The BSA model probabilities for two very close sinusoids ω0 = 0.3,
ω1 = 0.295 in Figure 4.4. The most likely model is correctly selected as the
two stationary-frequency model.

Single Stationary Two Stationary Three Stationary
Model Probability 9.1169e-35 9.9537e-01 4.6290e-03

the most likely model, as it is not always apparent from the probability density
function.

Figure 4.5 contains the spectrogram of a simulated signal where it is not
immediately apparent how many frequency components are present. There
appear to be many frequency components before time-step eight when, in
fact, there is only one quadratic chirped sinusoid. BSA selects the quadratic
chirp model with near 100% probability from the list possible models from
Section 4.2. More details on this specific example can be found in Appendix C.8
and other simulated examples can be found in Appendix C. Not only can
BSA select the correct model where the signal behaviour is unclear in the
periodogram or DFT, it can also do so when the behaviour is unclear in the
spectrogram.
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Figure 4.5: Spectrogram of a single sinusoid with quadratic chirp. It is not
immediately apparent from the spectrogram that there is only one frequency
component present. BSA, however, selects the correct model for this signal
with near 100% probability from nine possible models.

4.5 Doppler Radar Signal Noise and

“Noiseless” Model

As discussed in Chapter 3, BSA has a concept of signal noise unlike the DFT
or periodogram. Knowledge about the signal noise can be explicitly incorpo-
rated in the BSA models, even if the only knowledge is an uninformative prior
such as a Jeffrey’s probability distribution for the noise variance.

For the signal models from Section 4.2, most noise in the Doppler signal will
be attributed to the mismatch between the signal model and the true signal
behaviour. The noise is not necessarily thermal, measurement or other noise
from the environment. It is possible that there are targets that we do not fully
understand, or are not aware of, that will contribute to what our BSA models
will then see as noise. This is likely due to the complex shapes of the objects
which reflect the radar signal. As we do not have a good understanding of the
noise, we use the noiseless model from Equation 3.5.7 for parameter estimation
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and Equation 3.7.2 to approximate model selection in the following section:

P (Θ|D, I) ∝
[

1− mh2(Θ)

Nd2

]m−N
2

,

P (D|Mj, I) ≈ Γ
(m

2

)(N −m
2

)
v−0.5

1 ...v−0.5
r

×
[
mh2

2

] [
Nd2 −mh2

2

]m−N
2

∣∣∣∣∣∣
Θ̂

.

We used these same models for the simulated results and for the examples in
Appendix C.

4.6 Long Segment BSA

There are two typical types of signals for our Doppler radar data: a golf swing
with the club hitting a ball as in figure 4.6, and a golf swing that does not in-
volve hitting a ball, such as in Figure 4.7. We break up the two types of signal
into different signal segments that reflect our understanding of the underly-
ing signal behaviour. Each segment contains the same typical target objects
and target behaviour. In the long segment analyses, the selected models sug-
gest that the underlying complexity of the signal is greater than our expected
BSA hypotheses. The behaviour of the sinusoids and the signals contain non-
linearities that add complexity to the signals. We will see in Section 4.7 that
this also holds true for the shorter time-step analyses.

The following list includes the targets of interest that are present during
the given segments of the signals.

(A) The downward swing of the club.
Target objects: the club-head and sometimes low-velocity player body
motion. Present in Figure 4.6 and Figure 4.7.

(B) The ball post club swing.
Target objects: the ball. Present in Figure 4.6.

(C) The ball and club post stick-flash.
Target objects: the ball and club-head. Present in Figure 4.6.

(D) The club pre-impact.
Target objects: the club-head and stick-flash and sometimes low-velocity
player body. Present in Figure 4.6.
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Figure 4.6: Spectrogram of a golf swing hitting a golf ball segmented into
different parts: Window Size = 64, Step-size = 16. The frequency components
of interest are caused by the club (before and after impact), the stick-flash,
and the ball. The low-frequency component near time-step 60 is caused by the
motion of the player’s body.

(E) Stick-flash mid-swing.
Target objects: the club-head and stick-flash. Present in Figure 4.7.

(F) Post-impact ball and club.
Target objects: the ball, club-head and stick-flash. Present in Fig-
ure 4.6.

(G) Non-impact club post stick-flash.
Target objects: the club-head. Present in Figure 4.7.

The following subsections contain the typical findings of the analyses for
each segment of the signals. We provide example results for Segment A, B, D
and E and refer the reader to Appendix D for more examples of the signal parts.
In order to evaluate the results we superimpose the instantaneous frequencies,
calculated using the most likely BSA parameters, over the spectrogram. We
display the most likely model parameters in a table with their respective stan-
dard deviations that were calculated by approximating the probability density
functions as Gaussian functions.
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Figure 4.7: Spectrogram of a golf swing without hitting a ball segmented into
different parts: Window Size = 64, Step-size = 16. The frequency compo-
nents of interest are caused by the club and the stick-flash. The low-frequency
component near time-step 100 is caused by the motion of the player’s body.

4.6.1 Segment A: Club downward swing

Expected Model: Single Quadratic Chirped Sinusoid

Typical Results: For some signals Segment A had a single quadratic chirp
as the most likely model, such as the example in Figure 4.8, where others
had multiple quadratic chirps very close to each other. The multiple close
signals suggest that the signal does not always follow a quadratic chirp path
or that there is more complexity in the frequency range where the multiple
close sinusoids are found.

Example: The example in Figure 4.8 has a quadratic chirp as the most
likely model, but does not appear to match the spectrogram exactly. The
chirpogram in Figure 4.9 of our example Segment A resembles the example
chirpogram of a chirped simulated signal in Figure 4.1 and not the quadratic
chirped sinusoid in Figure 4.2. This suggests that despite the quadratic chirp
model being selected with high certainty above the chirp model, the frequency
change is not approximated well by a quadratic polynomial. One can see
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in Figure 4.8 how closely the chirpogram resembles the linear chirp model.
Despite this, the quadratic chirp model was selected with near 100% certainty.
Table 4.2 lists the most likely model’s parameters for the Segment A example
and their respective standard deviations. The standard deviations are small,
which indicates that the model is very confident of the model parameters. The
peak width of the DFT for the example would be 2

320
= 6.250e-03 for the 320

samples. In comparison the standard deviation for the centre instantaneous
frequency, ω0, is 5.011e-05. The peaks of the BSA probability distributions
become sharper the more data is available, which in part explains the small
standard deviations.

Table 4.2: The most likely signal parameters of Segment A Example 1. The
signal model is a single quadratic chirped sinusoid selected with near 100%
probability.

Model Probability ω0 α0 β0

1.00000e+00 1.01549e-01 3.65845e-04 -3.40525e-07

Std Dev 5.01091e-05 3.77107e-06 6.08204e-03
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Figure 4.8: Segment A (club downward swing) Example 1: Top two BSA
hypotheses’ instantaneous frequency super-imposed on the spectrogram. The
two most likely models have near identical instantaneous frequencies which do
not completely match the spectrogram.
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Figure 4.9: The chirpogram of Segment A (club downward swing) Exam-
ple 1. The probability distribution resembles a linear chirped sinusoid despite
the quadratic chirped model being the most likely model.

4.6.2 Segment B: Ball Post Club Swing

Expected Model: Single Stationary or Chirped Sinusoid

Typical Results: We expected this part of the signal to only contain the
ball. Depending on the signal strength reflected from the ball there is some-
times a consistent low-frequency component present such as can be seen in
Figure 4.10. Our initial impression was that this was caused by the spin of
the ball; however, an investigation of the log spectrogram showed that there
are consistently low-frequency effects throughout the golf swing, such as the
example from Figure 2.2. These low-frequency signal components are often ob-
scured by the stronger reflected signals. Some analyses of the ball also showed
multiple, very close signals in the region of the ball’s frequency component.
This effect would appear to be similar to that seen with the club downward
swing where the BSA sometimes indicates further complexity in a frequency
range than the spectrogram suggests.

Example: The example in Figure 4.10 contains a low-frequency component
and two very close frequency components where the ball Doppler shift is
present. In Section 4.4 we had a simulated example of two very close fre-
quency components. We hypothesise that the ball component itself contains
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more frequency components than is apparent in the spectrogram. This could
be explained by the fact that the ball is a three-dimensional object that reflects
multiple close frequencies caused by the different Doppler shifts of the differ-
ent spinning parts of the ball. The most likely parameters for the example are
in Table 4.3, which also have very small standard deviations. The standard
deviation of ω1 has a comparable order of magnitude to ω0 from Table 4.2 de-
spite having fewer samples, namely 160 compared to 320. This is likely due to
the relatively stationary nature of the frequency component near ω = 0.2408
and the relatively little noise in comparison to the example in Segment A. In
comparison, the other frequency components in Table 4.3 are less confident.

Table 4.3: The most likely signal parameters of Segment B Example 1. The
signal model is three stationary sinusoids selected with near 100% probability.

Model Probability ω0 ω1 ω2

1.00000e+00 2.44803e-01 2.40793e-01 1.91549e-02

Std Dev 1.93046e-04 1.11478e-05 2.85377e-04
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Figure 4.10: Segment B (ball post club swing) Example 1: Top two BSA
hypotheses’ instantaneous frequency super-imposed on the spectrogram. The
low-frequency component is likely caused by the low-frequency effects we saw
in Figure 2.2. The two very close frequency components could be caused by two
very close sinusoids.
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4.6.3 Segment C: Ball and Club Post Swing

Expected Model: Two Chirped Sinusoids

Typical Results: In this section we expect to start seeing signal segments
with multiple targets of interest. Segment C contains the ball and the club-
head after the ball has been hit. We expect two sinusoids to be the most likely
model, one with a negative chirp (the club) and one with a near-zero negative
chirp (the ball). Here we see the same effect of multiple sinusoids being present
in the frequency area of the ball, such as in Segment B. The club can also be
seen in the BSA. The club-head sometimes exhibits non-linear behaviour and
“wobbles”, which cause the BSA to attribute multiple sinusoids to it. This
is less surprising than the golf ball exhibiting multiple sinusoids and would
suggest that the club-head is not always a linear chirped sinusoid.

4.6.4 Segment D: Pre-impact Club-head and
Stick-flash

Expected Model: Two Chirped Sinusoids

Typical Results: We expected to see a positive chirped (club) and a nega-
tive chirped (stick-flash) sinusoid as the most likely model. What is noteworthy
about this segment is that the stick-flash, described in Section 2.4.4, completely
obscures the club-head frequency component pre-impact. The signal is further
complicated by the fact that the stick-flash component is so strong that it
tends to cause clipping of the measured signal, and the harmonic of the stick-
flash obscures other signals even further. The effects of the stick-flash obscure
the club-head even when removing the frequency areas where the stick-flash
is present from analyses. Like Segment A and Segment B, the stick-flash also
tends to contain multiple sinusoids in the BSA.

Example: The example in Figure 4.11 suggests that there is more complexity
in the stick-flash than can be described by our BSA models. Three chirped
sinusoids are attributed to the stick-flash and the club-head is not seen by
BSA. The model parameters are shown in Table 4.4.

Table 4.4: The most likely signal parameters of Segment D Example 1. The
signal model is three chirped sinusoids selected with near 100% probability.

Probability ω0 α0 ω1 α1 ω2 α2

1.00e+00 1.41e-01 -2.47e-03 1.29e-01 -2.57e-03 1.14e-01 -2.40e-03

Std Dev 2.72e-04 5.02e-05 1.09e-08 1.04e-04 3.10e-04 4.01e-05
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Figure 4.11: Segment D (pre-impact club-head and stick-flash) Example 1:
Top two BSA hypotheses’ instantaneous frequency super-imposed on the spec-
trogram. Only the stick-flash was picked up by BSA with multiple frequency
components being attributed to it.

4.6.5 Segment E: No Impact Stick-Flash

Expected Model: Two Chirped Sinusoids

Typical Results: This is similar to Segment D where the targets of interest
are the club-head and the stick-flash.

Example: The example in Figure 4.12 is noteworthy because the harmonic
frequency caused by the clipping of the stick-flash component shown in the
BSA results in a negatively chirped sinusoid. The club-head is also visible in
the BSA result in this example, which is a rarer occurrence as it is usually
obscured by the stick-flash. The model parameters are shown in Table 4.5.
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Table 4.5: The most likely signal parameters of Segment E Example 1. The
signal model is three chirped sinusoids selected with near 100% probability.

Probability ω0 α0 ω1 α1 ω2 α2

1.00e+00 1.28e-01 -7.61e-05 8.18e-02 -1.25e-03 1.51e-01 -3.95e-03

Std Dev 2.91e-04 2.54e-05 6.88e-05 4.85e-06 4.10e-04 2.38e-05
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Figure 4.12: Segment E (no impact stick-flash) Example 1: Top two BSA
hypotheses’ instantaneous frequency super-imposed on the spectrogram. The
club-head, stick-flash and a harmonic of the stick-flash was picked up by BSA.

4.6.6 Segment F: Post-impact Club-head, Ball,
Stick-flash

Expected Model: Three Chirped Sinusoids

Typical Results: Depending on the signal strength of the club-head, these
analyses either contain all three targets as expected, or BSA attributes two
sinusoids to either the ball or the stick-flash similar to Segment B and Seg-
ment D.
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4.6.7 Segment G: Club-head

Expected Model: Single Quadratic Chirped Sinusoid

Typical Results: This part resembles Segment C but without the ball being
present.

4.6.8 Summary of Results

The results of the BSA models tend to be very confident in both parameter
estimation and in model selection and do not always match our expectations
given the spectrograms of the signals. In contrast, our analyses of simulated
signals showed that BSA almost always picked the correct model. It is only
when the simulated signals are particularly noisy and the spectrogram becomes
uninterpretable that BSA struggles to select the correct model.

4.7 Short Time-step BSA

To reduce the effect of non-linearities on the signal of interest and to be able
to use state-space estimation-like methods, we do a short time-step analysis
of the Doppler radar signals. This approach is similar to a spectrogram where
instead of a periodogram we do a BSA analysis for each signal model for a
short window of the signal. Similarly to the spectrogram, we have a time-step
that is shorter than the window length to allow overlap of the analyses and a
higher time resolution. This will allow us to capture the non-linear effects of
the transitions between signal segments. For each BSA model we find the peak
of the probability density function for that model and its relative probability
to the other models. We will use this analysis as the basis of our PGM models
in later chapters.

4.7.1 Example Analysis

Figure 4.13 is an example of such an analysis. We superimpose a scatter-
plot on the spectrogram of the signal. We group the models into the number
of frequency components, namely one, two, or three frequency components.
For each BSA model group the scatter-plot is located on the marginal of the
most likely frequency parameters, ω. The size of each dot in the scatter-
plot indicates the relative probability of the BSA model group and thus the
relative likelihood of the number of frequency components present. This allows
us to see at a glance the most likely number of signals and their most likely
stationary frequency position. Figure 4.14 shows the relative probabilities of
the number of signals present in a time-step.
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Figure 4.13: Scatter-plot of BSA stationary sinusoid frequency values with
the unknown noise BSA model. The size of each marker indicates the prob-
ability of the specific BSA model. Note that some of the markers are very
close. For example, at time-step 40 two of the markers for the three frequency
components are close enough to overlap.
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Figure 4.14: The BSA model probabilities from Figure 4.13
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4.7.2 Short Time-step Parameter Estimation

Estimating parameters such as the linear and quadratic chirp parameters on
short windows of the Doppler signal is problematic as the number of samples
is often small enough that one gets contradictory information between time-
steps. Despite the chirp parameters varying so unpredictably between time-
steps, the frequency parameters, ω, are often much more reliable and more
closely resemble inspection of the spectrogram as can be seen in Figure 4.13.
Thus to avoid the unpredictability of the other spectral parameters and for
the sake of simplicity we will only use the ω parameters in further analyses.

4.7.3 Increasing Model Noise

We can see in this particular example in Figure 4.13 that the more complex
models are selected when there are seemingly less complex signals present.
Even if we were to account for the background noise or other signals present in
the spectrogram, the peaks are often grouped on the same frequency compo-
nent such as with the long segment analyses. For example, time-step 22 most
likely has three frequency components but two of them overlap on the same
frequency component. In order to compensate for our models not capturing
the signal complexity, we specify the noise component in the model. We sim-
ply do not marginalise the noise term σ. The value of the noise component
was selected by inspection, but this can be done by way of regularization or
machine-learning techniques. The result of choosing a noise component by
inspection can be seen in Figure 4.15 and 4.16. The simpler frequency models
are now selected more often in comparison.

4.8 Signal Complexity

In Chapter 2 we discussed the various effects present in the Doppler radar
signal, namely the multi-path effect, the stick-flash phenomenon, the fact that
objects reflect multiple or a range of sinusoids, and the fact that the signals
measured are the radial speeds of the objects relative the Doppler radar unit.
We did not expect our BSA models to be perfect fits for the signals, but the
complex models were consistently selected as the most likely model and with
very high certainty. Increasing the noise component in the BSA models miti-
gates the problem but only to a limited degree. Over longer periods the signal
displays more complex behaviour despite being segmented into parts where
there is seemingly little complexity in the spectrogram.

The more complex models being selected is not a failure of BSA but caused
by insufficiently complex signal models for the real-world signal. As can be
seen in Appendix C, simulated signals can easily be modelled and will give
accurate results. We could continue to define increasingly more complex signal
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Figure 4.15: Scatter-plot of BSA stationary sinusoid frequency values with
the specified noise BSA model. The size of each marker indicates the probability
of the specific BSA model. Note that the less complex models are now selected
more often compared to Figure 4.13.
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Figure 4.16: The BSA model probabilities from Figure 4.15
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models until the return on investment for the model selection improvements has
decreased due to the Occam factor. We might then find a model that would
describe the complex signal behaviour more completely. However, without
knowing more about the underlying physical signal, this might prove to be a
fruitless exercise. An alternative to more complex models would be to have a
better idea of the signal noise component, the part of the signal that we do
not attribute to the signal of interest.

4.9 Conclusion

We analysed the measured Doppler radar signal using nine different BSA mod-
els. We used the models to calculate the most likely model parameters and to
find the probability distribution of the BSA models in order to determine the
most likely BSA model. Both the long and short signal analyses suggest that
the Doppler radar data contain more complexity than our models are able to
explain or that there are possibly multiple very close signals. The most likely
models and parameters tend to be more complex than a cursory inspection of
the spectrogram would suggest. In contrast the BSA models work very well
on simulated data. We hypothesise that the Doppler radar signals are more
complex than the current BSA models that we use. Explicitly specifying the
amount of noise in the signal within our models and increasing it causes the
simpler signals to be selected more often, which supports our hypothesis. This
avoids having to model the higher complexity in the signal by effectively in-
cluding a baseline noise as an acceptable level of error for our models. It will
allow us to do better model selection in later chapters.

Despite the limitations we encountered by using our simple BSA models,
they still provide us more information than a simple spectrogram would, even
with the stationary frequency models. The stationary frequency models give
us a probability density function over the frequency components in the form of
a function that is the same dimension as the number of frequency components.
This allows us to have a joint probability density function of our targets despite
the measurement being a compound signal of all the target objects’ frequency
shifts.
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Chapter 5

Bayesian State-Space
Estimation

5.1 Introduction

In this chapter we will lay the groundwork for the estimation of the Doppler
frequency parameters in a form to which PGMs can be applied. We discuss
state-space estimation and briefly discuss a few different methods by which it
can be represented. Typically, state-space estimation is done with recursive
methods where, during each time-step, predictions are made for the next time-
step using a stochastic transition process.

State-space estimation can be formulated as a Bayesian inference problem
as shown by Stone et. al. [11]. Two examples of Bayesian approaches to
well-known state-space estimation methods are for the Kalman filter in [27]
and for HMMs in [28]. The difference in the Bayesian approach to traditional
state-space estimation is that one needs to specify prior distributions for the
model parameters explicitly, even if these priors denote one’s ignorance of the
random variable values. One should treat the starting state, other model pa-
rameters, and parameter transitions as prior information that is updated using
likelihood functions.

The same principles of Bayesian inference discussed in Section 3.2 can now
be applied with the end goal of estimating the states of the parameters of inter-
est. Our goal is now re-framed as calculating the marginal posterior probability
distributions of the parameters of interest. We will first state the single-target
tracking formulation explaining the target state-space, prior information, like-
lihood functions, and assumptions. Where necessary we will then extend the
formulation to multiple targets.

51
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5.2 Single-Target Tracking

A target can be any object or measured phenomenon the behaviour of which
we wish to track over time. For target tracking the motion of the object
is modelled in continuous time, but the observations are received at discrete
times. The following formulation of single-target tracking closely follows the
formulation by Stone et al. from [11].

5.2.1 Prior Information

Let Xt be the unknown target state at time t starting at t0 = 0. The prior
information about the target is represented by a stochastic process where sam-
ple paths of this process correspond to the possible target paths through the
state-space P. The state-space can be discrete, continuous, or a mixture of
the two.

The state of the target is typically a vector of components, for example
position or velocity. In our application on Doppler radar data, it will be the
BSA frequency parameters and their dynamics. In order to simplify state-space
estimation problems, the assumption is made that the state-space parameters
of each time-step form a Markov chain [11]. A Markov chain is a collection
of random variables Xt+1 = {X0...Xt+1} possessing the property that, given
the parameters of a time-step, the parameters of the following time-step are
conditionally independent of all other time-steps, that is to say

p(Xt+1|Xt Xt−1...X0) = p(Xt+1|Xt).

We will see in Chapter 6 that this approach is complementary to PGMs that
work well when a problem is broken up into local interactions between random
variables. The state-space must also then be chosen so that the parameter dy-
namics of the target are Markovian. This implies that there must be enough
parameters within the scope of the state-space to be able to give a good “snap-
shot” of the target behaviour during each time-step.

5.2.2 Likelihood Functions

Typically the random variables of interest, XT , are hidden and not observed
directly. One needs likelihood functions that depend only on the state of the
target at the time of the observation. The random variables that we observe
form part of our data DT . In a state-space estimation problem, there would
typically be sensors or some method of measuring the state or subset of the
state of the target of interest where the measurements are made at discrete
time-steps. One needs the probability of the data given the model parameters.
In the general case we have a set of observations for each discrete time-step:

DT = {D0, ...Dt, ...DT}, 0 <= t <= T,
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namely the data observed from time-step t0 = 0 to t = T . The values that our
states at each time-step can assume are described by the random variables:

XT = {X0, ...Xt, ...XT}, 0 <= t <= T.

Then the likelihood function for the kth time-step can be written as

L(Xk) = p(Dk|Xk),

which assumes that the observations for each time-step are independent of one
another and depend only on the target state for that time-step [11].

5.2.3 Posterior

In this section we use our prior information and assumptions to calculate
the posterior probability density of our hidden random variables. Since our
observations at time-step k depend only on the target state at time-step k, we
have [11]

p(DT |XT ) =
T∏
k=0

p(Dk|Xk).

From the Markov chain assumption of the state transition functions we also
have [11]

p(XT ) =
T∏
k=1

p(Xk|Xk−1)p(X0).

The joint posterior probability density function of the data and the hidden
variables is thus

p(XT ,DT ) = p(X0)p(D0|X0)
T∏
k=1

p(Dk|Xk)p(Xk|Xk−1). (5.2.1)

To calculate the marginal posterior of our states for each time-step we can use
the sum and product rules from Chapter 3:

p(Xk|Dt) =

∫
dX0, ..., dXk−1 p(Dt|Xt)p(Xt)

p(Dt)
, (5.2.2)

which is known as filtering [11]. In contrast, solving the posterior of the states
given all the data observed:

p(Xk|DT ) =

∫
dX0, ...,���dXk, ..., dXT p(DT |XT )p(XT )

p(DT )
, (5.2.3)

is known as smoothing [11].
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5.2.4 Bayes Network Representation

While we will not implement directed graphs in this thesis, we will, in order
to exercise our intuitions, represent the above prior probability and likelihood
distributions in the form of a Bayes network. Most of the relationships between
random variables in state-space estimation are causal and we found Bayes net-
works useful for thinking about and representing these causal relationships. In
Figure 5.1 there is a Bayes network representation of state-space estimation
which could be, for example, a Kalman filter or an HMM. The nodes are ran-
dom variables and the directed lines indicate that the random variables form a
parent-child relationship, which is described by a conditional probability den-
sity. The directed line from node Xt to Dt indicates the probability p(Dt|Xt).
The filled nodes have been observed.

Xt XTX1X0

Dt DTD0 D1

Figure 5.1: Bayes network representation of state-space estimation.

The Bayes network enables one to visualise the probabilistic link between
the model’s hidden parameters, X, and the observed random variables, D. Any
nodes that do not have a parent node, such as X0, need a prior probability
density for the graph to factorise a valid probability density. The graph in
Figure 5.1 factorises the probability density p(XT ,DT ). This means that
multiplying the conditional probability densities together will give one the
joint probability density. The directed lines between the nodes X0 → X1 → Xt

indicate that Xt is conditionally independent of X0 given X1 as per our Markov
chain assumption.

5.3 Multitarget Tracking

The multitarget tracking generalisation also closely follows the formulation
from [11]. For multitarget tracking, we may have an unknown number of tar-
gets bounded by a maximum number J . The state-space now contains the
states for each target P = {P 0, P 1, ...PJ } where previously there was only
one target state per time-step. We need to add an additional value, φ, to
each sub-state-space P to denote when a target is not present in the region
of interest. For example, if we have a maximum of two targets where we
track their positions {x0, x1} and only one target is present, we could have
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{x0 = 1, x1 = φ} [11].

The extended sub-state-space is P+ = P ∪{φ}. The state of the system at
time t would now be Xt = {xt,1, ..., xt,J } where xt,j ∈ P+ is the state of target
j at time t and the entire joint state-space would be Xt ∈ P+ = P+× ...×P+.
Unlike the single-target case, the likelihood functions can now contain the joint
probability of all the targets. The same calculations from the single target case
apply for the posterior distribution of the target state-space.

5.4 Relation to Kalman Filters

In Kalman filters, one represents the stochastic transitions between states
(where we ignore constant offsets for the sake of simplicity) as

Xt = ΛXt−1 + wt, (5.4.1)

and the observations as

Dt = HXt + ut,

where wt and ut are zero-mean multivariate Gaussian noise. The matrices Λ
and H describe the linear relationship between the parameters.

According to Stone et. al. [11], Kalman filtering is the result of viewing
tracking as a least squares problem. Recursive methods are used to solve the
problem with two phases for each iteration, namely update and predict. In
the update phase, the data Dt for the current time-step is incorporated. In
the predict phase, the parameters of the next time-step are predicted given
the updated state and the linear dynamics. When using Gaussian probability
densities to describe Xt and Dt in the above single-target tracking Bayesian
state-space estimation, the mean and covariance of the posterior Gaussians
for Xt are identical to the mean and covariance of the least squares solution
produced by the Kalman filter [11].

5.5 Discrete Markov Chains

Discrete state-space transitions have discrete probabilities that can be rep-
resented in a directed graph (not to be confused with Bayes networks). We
will represent these state-space graphs using nodes with double lines to avoid
mistaking them for Bayes networks. These directed graphs can be interpreted
as finite state-machine transitions where the nodes are possible states that
the model can assume during a time-step, and the directed edges indicate the
possible state transitions.
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5.5.1 Uninformative Transition Structure

In an uninformative discrete Markov chain, any state can go to any state with
equal probability, including itself. An example model can be seen in Figure 5.2
with three equally likely states. If the transition probabilities were uniform,
the model would be uninformative and equivalent to a uniform prior for the
state values.

A C

B

Figure 5.2: An uninformative discrete Markov chain. The model is only
uninformative if the three edges leaving each node are equally likely.

5.5.2 Left-to-right Transition Structure

An example use-case for left-to-right models are HMMs in speech-recognition,
where the phonemes in a word might follow a distinct order. Each state must
be visited once and only once and in a strict sequence. For each time-step
the transition options are to stay in the current state or to move to the next
state. The system therefore only has a finite number of state switches to fit
the model. Two null states are added in order to force the system to start and
stop at the correct states, one before the first time-step and one after the last
time-step.

An example left-to-right model can be seen in Figure 5.3 with the transition
probabilities indicated above the edges. The same transitions are described in
Table 5.1. The three states A,B, and C occur in that order. In Figure 5.4 the
prior for the state probabilities, without any data being observed, is graphed.
This example has 30 time-steps and includes no other information other than
the transition probabilities from Table 5.1.
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Figure 5.3: A left-to-right discrete Markov chain. States can progress in a
strict order.

Table 5.1: Transition table describing the probabilities of the left-to-right
discrete Markov chain from Figure 5.3.

Xt Xt+1 p(Xt+1|Xt)
Begin A 1.0
A A 0.5
A B 0.5
B B 0.5
B C 0.5
C C 0.5
C End 0.5
Elsewhere 0.0

5.5.3 Explicit Duration Transition Structure

Explicit duration models are also employed in HMMs such as the Ferguson
model from [29]. Here one can have multiple states that produce the same
output and are conceptually sub-states of the same state. The transition
probabilities can be fine-tuned to give one an arbitrary duration model for
each state depending on the number of sub-states and their probabilities. We
did not make use of explicit duration models in this thesis but believe that
the models that we use can benefit from their use. We refer the reader to
Appendix E for more information on explicit duration models.

5.6 Overview of Other Target Tracking

Works

In this section we briefly explore different approaches to multiple target track-
ing, but do not go into detail about their implementation.
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Figure 5.4: An example of the left-to-right model probabilities using the tran-
sitions in Table 5.1 for 30 time-steps. We plot the probabilities where no other
information is known about the states other than the prior transitions.

5.6.1 Switching State-space Estimation

Switching state-space estimation models (SSSEMs) [18], also known as switch-
ing linear dynamical systems, combine discrete and continuous parameters. An
example Bayes network representation of an SSSEM can be seen in Figure 5.5.
The continuous parameters, Xt and Dt, are now conditioned on the discrete
parameters At. These discrete random variable are typically used either for
data association, to determine which object an observation is allocated to for
multitarget tracking, or dynamic switching, to determine which set of dynamic
behaviour should describe the transitions of the targets [18]. There are many
different recursive methods used to perform multitarget tracking using SSEMs,
such as multiple-hypothesis tracking (MHT) [11]. Some methods of SSSEM do
not consider all the different hypotheses at each time-step; instead they only
track the most likely hypothesis and switch between them if the observations
warrant it [14].

5.6.2 Track-oriented Multiple Hypothesis Tracking

One variation of MHT using data association is track-oriented multiple hy-
pothesis tracking (TOMHT) [12]. This method keeps a pruned set of potential
“tracks” where each track is a target data association hypothesis. Over time
the tracks form a track tree of the different hypotheses, which contains dif-
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Figure 5.5: Switching state-space estimation model

ferent explanations for the observed data. For each time-step TOMHT solves
a constrained optimisation problem in order to calculate the hypothesis that
most likely fits the data. For each track there is a single target-tracking al-
gorithm which tracks a target based on each of the different data association
hypotheses. Over time these trees are then pruned by keeping only the most
likely tracks for reasons of computational tractability. Target “births” and
“deaths” are also tracked as hypotheses. A target birth is the addition of an-
other target to track, and a target death is a target that has left the region
under consideration. In [12] these track trees are implemented using factor
graphs.

5.6.3 Joint Multitarget Probability Density Tracking

An alternative to assigning SSSEM or to have different tracks is to describe
the joint probability density of the targets at each time-step, such as in joint
multitarget probability density tracking (JMPDT) [19]. The targets have sep-
arate measurements, but do not have identities associated with them as in
data association switching. Targets are tracked in the joint probability of all
the targets under consideration. Target deaths and births are modelled within
the transitions between time-steps. JMPDT [19] uses a particle filter [30] to
make forward predictions of what the joint density of the targets’ parameters
are, and updates the prediction using observations of the target positions. The
Bayes network representation of the JMPDT would be the same as Figure 5.1.
The method performs inference for the marginal probability densities at each
time-step, effectively calculating Equation 5.2.2 similar to the Kalman filter.

5.7 Model Developed in Thesis

In this section we briefly contextualise the model we developed in this thesis.
Our “targets” are the frequency components identified using BSA. We will
track their behaviour and dynamics over time using state-space estimation
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techniques. We will discuss this approach in further detail in Chapter 7 after
discussing the necessary PGM theory in the next chapter. In Figure 5.6 we
have extended the traditional state-space estimation’s Bayes network from
Figure 5.1 with an additional discrete Markov chain (indicated in red). We
will use the additional Markov chain to enforce a left-to-right transition of
the signal segments discussed in Section 4.6. We segmented the signal into
different parts that represent the different number of frequency components
and different signal dynamics. Although our model in Figure 5.6 appears

XT

S1S0 ST

XtX1X0

Dt

St

DTD0 D1

Figure 5.6: Bayes network as a conceptual representation of the model de-
veloped in this thesis. An additional discrete Markov chain (indicated in red)
is added to incorporate additional temporal information.

similar to the SSSEM from Figure 5.5, it has subtle differences. Note that the
data is not conditioned on the discrete nodes as with SSSEM. The SSSEM
is used to perform dynamic switching or data association. We will not need
data association as we have the joint probability density of all the targets of
interest. Dynamic switching can be handled in the lower half of Figure 5.6
without branching out the discrete random variables as is done by SSSEM. In
our model the discrete Markov chain will be an additional level of “switching”
that is conceptually a level above the multitarget dynamics. It will allow us to
add additional temporal information to our analyses and describe the evolution
of the Doppler radar signal over time.

5.8 Conclusion

In this chapter we demonstrated the formulation of state-space estimation as
a Bayesian inference problem. The important components necessary to de-
scribe one’s models are the prior information which includes the Markov chain
assumption of state transition, and the form of the likelihood functions which
allow one to incorporate data such as in Bayes’ theorem. We explored the
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problem of single target tracking and extended it to multitarget tracking. We
demonstrated a few discrete state-transition structures such as the left-to-right
model, which will be useful for fixing the order of signal segment progression
for our Doppler radar data. Formulating state-space estimation as Bayesian
inference will allow us to solve state-space estimation problems using Bayesian
inference techniques such as PGMs, where we will solve Equation 5.2.3. The
model that we develop in Chapter 7 was contextualised with reference to other
works in the literature.
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Chapter 6

Probabilistic Graphical Models

6.1 Introduction

Probabilistic graphical models (PGMs) are declarative representations of sta-
tistical models. The graphs can compactly represent statistical relations be-
tween random variables by encoding their independence assumptions and fac-
torising their joint probability density function. PGMs can be used for repre-
sentation, inference, and learning of statistical models [31].

Inference is done in PGMs by algorithms that calculate the marginal prob-
ability densities of the joint probability. This is beneficial when only the
marginal probabilities are of interest or when calculating the joint probability
is intractable. An example of a marginal probability density of interest would
be Equation 5.2.3:

p(Xk|DT ) =

∫
dX0, ...,���dXk, ..., dXT p(DT |XT )p(XT )

p(DT )
.

The graphs in PGMs can be directed, undirected, or a mixture of the
two. In both graph types, nodes correspond to random variables, and edges
correspond to the interactions between the random variables. We will examine
the representation and inference of undirected graphs (specifically clique trees
and cluster graphs) in more detail in this chapter.

6.2 Conditional Independence

PGMs factorise a joint probability density, thereby encoding a probability den-
sity function over a set of random variables [32]. Conditional independence can
reduce the number of interactions between random variables inside the PGMs.
In many applications, the random variables of interest interact with only a few
other random variables directly. This can allow for computational tractability

62
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and compact representations within PGMs. In Chapter 5 we discussed state-
space estimation, which makes use of the fact that it is often easier to encode
the local interactions as opposed to the joint probability density. These local
interactions can be in the form of conditional probability densities (CPDs)
that encode the interactions and conditional independences between random
variables.

One can use the product rule from Equation 3.2.1, p(A,B) = p(A|B)p(B),
to factorise joint probability densities into a product of CPDs. An example
of conditional independence is two random variables A and B that are condi-
tionally independent given the random variable C so that

p(A|B,C) = p(A|C).

If each random variable could assume N discrete values, the CPD p(A|B,C)
would have N3 different probabilities. The CPD p(A|C), however, only has
N2 different probabilities. The CPDs in the joint probability p(A,B,C) can
be described more compactly using conditional independence:

p(A|B,C)p(B|C)p(C) = p(A|C)p(B|C)p(C).

6.3 Clique Trees and Cluster Graphs

We briefly introduced a type of directed graph, Bayes networks, in Chapter 5
that was used to exercise our intuition about state-space estimation models.
In this section we introduce the concepts necessary for the representation and
inference in the undirected graphs, clique trees and cluster graphs.

6.3.1 Nodes and Edges as Factors and Sepsets

In clique trees the relationships between random variables are described by
more generalised CPDs called factors. These factors factorise the graph but
can also represent the intermediate, unnormalised steps in our probability
calculations. The different factors we use in this thesis are discrete, continuous,
and hybrid factors. The nodes in our graphs, called cliques, contain one or more
factors and are connected to each other with undirected edges containing a
non-empty subset of random variables called separator sets or sepsets, S [14].
The sepsets allow the knowledge about the random variables they contain to
be shared between cliques. In Section 6.3.5 we discuss how each clique, C , can
pass a message, δ, to a neighbour along its edges under the right circumstances,
consisting of their own and their other neighbours’ beliefs. These messages are
also encoded as factors.
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6.3.2 Querying Graph Beliefs

The inference algorithms performed on the graphs change each clique’s belief
B about its random variables [14]. In Section 6.3.9 we will discuss how these
beliefs become congruent with the other cliques’ beliefs. The graph is then said
to have converged. Beliefs are also represented by factors and when normalised
they are CPDs. Calculating the marginal probability density of a cluster’s
belief after the PGM has converged is known as querying the PGM. Querying
the converged PGM results in the marginal of the joint probability density of
the random variables factorised by the PGM. One can only query a PGM on
the random variables, or a subset thereof, that are contained within each of
the clusters.

6.3.3 Graph Structure and Definition

Clique trees have the restriction of being acyclic and cannot contain loops. The
graphs in Figure 6.1a and Figure 6.1b factorise the same probability density.
The first contains no loops and the second contains a single loop. The loopy
generalisation of a clique tree is called a cluster graph. Instead of cliques, the
nodes are called clusters.

The more formal definition of a cluster graph paraphrased from [14] is the
following:

Cluster Graph: A cluster graph, G, for a set of factors, {Φ0, ...Φn}, over
the set of random variables, X, is an undirected graph where each node, which
is a cluster Ci, is associated with a subset of X.

Φ0 × Φ1

A,B,C

A,C,D

Φ2 × Φ3

(a) Clique tree.

Φ0

A,B

Φ1

B,C

Φ2

A,D

Φ3

C,D

(b) Cluster graph.

Figure 6.1: Both PGMs factorise the same joint probability density,
p(A,B,C,D), which is the normalised product of the factors: Φ0,Φ1,Φ2,Φ3.
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In this thesis we will refer to both clique trees and cluster graphs as cluster
graphs unless explicitly emphasising a graph’s tree structure.

6.3.4 Family Preservation Property

The family-preservation property of cluster graphs requires that each factor
Φ must be associated with a cluster C such that the scope of the factor is a
subset of the cluster, namely Scope[Φ] ⊆ Ci [14]. In this thesis the clusters
will consist of a single factor each.

6.3.5 Belief Propagation

Pearl [33] introduced belief propagation (BP), which is an iterative algorithm.
It consists of a set of local message-passing rounds that continue until all nodes
agree on their shared belief. The algorithm is also known as sum-product
message passing [14]. In tree-structured graphs such as clique trees, the BP
message-based marginals converge to the exact marginals.

The message δi→j from cluster Ci to Cj is the cluster Ci multiplied by its
incoming messages, excluding the message that Cj sends to Ci. The message
is marginalised to the scope of the sepset, Si,j, which is equal to, or a subset
of, the intersection between the clusters:

Si,j ⊆ Ci

⋂
Cj. (6.3.1)

We can formally define a message passed using BP as:

δi→j =
∑

Ci\Si,j

Φi ×
∏

k∈(Nbi\{j})

δk−i

 . (6.3.2)

In the above equation we use the notation “\” for the set difference and
“Nb” for neighbouring factors. The scope of the random variables that are
marginalised, Ci \ Si,j, is thus the random variables in Ci excluding the ran-
dom variables in Si,j. The values that k assume in the product are the indices
of the clusters neighbouring the cluster Ci, Nbi, excluding the index j. An
outgoing message from cluster i to j is the product of the factors in the cluster
and all incoming messages, excluding the message from j to i, marginalised to
the scope of the sepset. An outgoing message therefore does not contain the
information from the cluster that it is sending its message to.

An example of a message being passed can be seen in Figure 6.2, where
a message δ3→4 is being sent from C3 to C4. The message can only be sent
if the incoming messages δ0→3, δ1→3, and δ2→3 are defined. The outgoing
message can be calculated as the product of the factor in C3 with the incoming
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messages from the left. Any random variables not in the scope of the sepset
are marginalised, giving us:

δ3→4 =
∑
B,C

(Φ3 × δ0→3 × δ1→3 × δ2→3).

A,B

Φ2

B,C

Φ0

C,D

Φ1

B,C,E

Φ3

C3

E,F

Φ4

C4δ2→3

δ1→3

δ0→3

δ3→4

δ4←3

Figure 6.2: An illustration of the message-passing algorithm used in BP.
The cluster C3 sends a message to the cluster to its right using the incoming
messages from the left.

In clique tree graphs one starts passing messages from the leaf nodes (the
outer clusters with only a single edge) of the graph, and then messages propa-
gate inwards towards the root cluster. A cluster can only pass a message when
all other incoming messages have been received. Once the root cluster has
the messages needed to propagate its own message back, the flow of messages
returns in the opposite direction towards the leaf nodes. In general, any node
can be selected as the root cluster.

6.3.6 Belief Update

In the belief update (BU) algorithm (also known as the Lauritzen-Spiegelhalter
algorithm) [34], there is a subtle yet important difference to BP when calcu-
lating the messages. For the message, δi→j from cluster Ci to Cj, we multiply
in all incoming messages and then divide out δj→i instead of leaving it out of
the calculation. Mathematically the two methods appear identical, as dividing
out a factor which has been multiplied in should have no effect. BU messages
are defined as:

δi→j =

 ∑
Ci\ Si,j

Φi ×
∏

k∈(Nbi)

δk−i

 /δj→i. (6.3.3)
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Taking the same example from Section 6.3.5 for Figure 6.2 the message will
be calculated as

δ3→4 =

(∑
B,C

Φ3 × δ0→3 × δ1→3 × δ2→3 × δ4→3

)
/δ4→3.

According to [14], BP and BU are equivalent in the exact case – however,
as we will discuss in Section 6.6, when making approximations in the factor
operations they give different results.

6.3.7 Loopy Belief Propagation/Update

In cyclic graphs one can perform loopy belief propagation or update (LBP/LBU).
Just as in BP/BU, messages are sent between clusters but now messages can
be sent without necessarily requiring the other incoming messages to do so.
To be able to send a message from a cluster which is not a leaf node and which
has not received any incoming messages, all messages are initialised to be un-
informative or vacuous before message passing begins. Vacuous messages are
equivalent to multiplying a factor by 1. This method of message passing does
not necessarily compute exact marginal probabilities and is a form of approx-
imate inference [14]. For graphs that contain loops, there is no guarantee of
convergence [14]. Despite the lack of guarantee it has been empirically shown,
such as in [35], that these graphs still give good performance in many cases.

Any cluster can in theory pass a message to any other cluster in any order
in LBP/LBU. However, scheduling the order in which messages are propagated
can affect the speed of convergence and even the convergence point if conflicting
messages are passed in a cyclical manner.

6.3.8 Running Intersection Property

The running intersection property (RIP) of cluster graphs requires precisely
one direct path for each pair of clusters that information about any particular
random variable can take. The cluster graph satisfies RIP if for each variable
X ∈ X, such that X ∈ Ci and X ∈ Cj, there is exactly one path between Ci

and Cj for which X ∈ Sl,k for all edges between clusters, (Ci, ...,Cl,Ck, ...,Cj),
in the path [14].

RIP implies that all edges associated with X form a tree that spans all
the clusters that contain X. The fact that some path of information about X
must exist between the clusters containing it, forces information to flow be-
tween these clusters and they must agree on the marginal of X when the graph
is converged. This also mitigates information cycling in endless loops due to
contradictory cyclic messages. Variables that are strongly correlated can still
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allow strong cyclic arguments to occur in loopy graphs despite adhering to RIP.
An example is if in Figure 6.1b the random variable pairs A−B, B−C, C−D
are strongly positively correlated but A−D are strongly negatively correlated.

An illustration of RIP can be seen in Figure 6.3 where we indicate the
sepsets between the clusters with sharp-edged rectangles. For example, exam-
ining the random variable B, if there is a path from the cluster CA,B to CB,C,F

(indicated in blue) there may not be another path (indicated in red) without
violating RIP.

B,C

B

B

F

E

A,B

B,C, F

B,C,E

E,F

Figure 6.3: An illustration of the RIP. If the sepset (indicated in blue) is
present, the sepset (indicated in red) will violate RIP if added.

6.3.9 PGM Beliefs and Convergence

The belief Bi of a cluster Ci is defined as the product of the initial factor and
all incoming messages from each neighbouring cluster Ck:

Bi = Φi ×
∏
k∈Nbi

δi→k. (6.3.4)

As the messages are passed in a PGM using LBP/LBU, the beliefs of each
cluster will change over time. A cluster graph is converged if for each edge
connecting the clusters we have:∑

Ci\ Si,j

Bi =
∑

Cj\ Si,j

Bj. (6.3.5)

If the cluster graph satisfies RIP, the marginal belief of any random variable
is identical in all clusters that contain it. Querying a cluster will give Bi or
some subset of the belief [32].
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6.3.10 Message Scheduling

For clique trees using BP/BU, the order in which messages are sent is con-
strained by which clusters are able to send a message. In contrast, in cluster
graphs using LBP/LBU any cluster can generally send a message at any time.
There are many different methods for scheduling the message-passing order
that will have an effect on whether and how quickly a graph converges. Syn-
chronous BP passes messages from all clusters simultaneously for each iteration
of message passing [14]. Asynchronous message passing sends a single message
per iteration depending on the message scheduling. One scheduling method is
passing messages via round-robin scheduling where the messages are updated,
one after the other, in the same arbitrary order for each iteration of message
passing [33]. Another method of scheduling is to propagate a message as soon
as one of the input messages has changed [35]. Residual belief propagation
(RBP) in Elidan et al. [35] updates the message with the highest message
residual, the distance between the current value of the message, and the value
of the message after it is updated.

Elidan [35] shows that RBP converges significantly more reliably than syn-
chronous and round-robin message passing and has shorter convergence times.
The intuitive argument behind RBP is that not all messages are equally useful
toward achieving convergence. If a message has not changed its value signifi-
cantly since the previous iteration, it would be redundant to pass the message
again, while sending a message that has a greater difference to its previous
value is more likely to be informative to the cluster it is sending a message
to [35]. Although the word propagation is in the method name, it can be
applied to both LBP and LBU.

6.3.11 Message Damping

Message damping is a process that smooths messages between message-passing
iterations [14]. The message being sent, δi→j, is the average between the
previous message, δold

i→j, and the new message, δnew
i→j, giving us

δi→j = λδnew
i→j + (1− λ)δold

i→j.

The damping severity is regulated by choosing 0 < λ ≤ 1. When λ = 1 there
is no damping, but for other values of λ the messages are partially updated.
Damping messages reduces the fluctuations in messages being passed between
clusters in graphs with many loops [14].

6.4 Discrete Table Factors

Representing a discrete factor can be done in a table which lists the probabil-
ities of each of the combinations of possible values that the random variables
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can assume. Despite the computational limitations, discrete table representa-
tions are still very useful if the number of random variables and possible values
is kept low.

6.4.1 Representation

With n variables, and K = |dom(Xi)| possible values for each, this requires
specifying Kn numbers which can cause the representation of a joint probabil-
ity to become very large. By not representing zero probabilities in the table,
one has a sparser representation. Encoding conditional independences can fur-
ther help reduce the number of probabilities to be specified, but the factors
can still be too large to perform inference in a reasonable time.

Table 6.1 is an example of a discrete factor representing the CPD p(A,B|C).
For it to be a valid CPD, the probabilities for each value of C need to sum
to 1 for the factor to be normalised. The discrete factor can also represent
the intermediate, unnormalised steps where the factor operations are being
performed.

Table 6.1: An example discrete factor representing p(A,B|C).

A B C p(A,B|C)
0 0 0 0.25
1 0 0 0.45
1 1 0 0.30
0 0 1 0.15
0 1 1 0.25
1 1 1 0.60
Elsewhere 0.00

6.4.2 Operations

In order to perform inference on PGMs with the discrete factors we need to
define the following operations.

Multiplication Multiplication is performed by calculating the product of
the probabilities where the values of the shared random variables match. Ran-
dom variables that are not shared between the factors create a Cartesian prod-
uct of the new combinations.

Division This is similar to multiplication where random variables of the
same scope’s probabilities are divided. Typically one does not divide by ran-
dom variables outside the shared scope. The operation is not defined if the
denominator is zero and the numerator is not.
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Marginalisation Marginalising a random variable in a discrete factor is
done by summing all the different entries for the random variable to one entry
for each combination of the remaining random variables.

Normalisation To normalise a discrete factor, divide all probabilities in the
table by the sum of the table so that the table then sums to 1.

Message Residual The software used for the discrete factors calculates
the distance between factors using Kullback-Leibler divergence [36]. For two
discrete factors Φ0 and Φ1, from [25], the Kullback-Leibler divergence of Φ1

from Φ0 is defined to be

dKL(Φ0||Φ1) =
∑
i

Φ0(i) log

(
Φ0(i)

Φ1(i)

)
.

The above equation is a measurement of the departure of the density described
by Φ1 from Φ0 and is non-symmetric [25].

6.5 Continuous Gaussian Factors

In contrast with discrete factors where we need to specify any non-zero proba-
bility, we can represent probabilities using parameterised continuous functions.
If the probability densities of interest are not parameterised, a trade-off can be
made between approximating them with parameterised functions or using dis-
cretising techniques. The Gaussian probability density function is commonly
used to approximate uni-modal probability density functions. The other ad-
vantage is that a Gaussian function is described by only two parameters, the
mean and covariance matrix.

6.5.1 Representation

For a Gaussian probability density function over X we have

p(X) =
1

(2π)n/2|Σ|1/2 exp

[
−1

2
(X− µ)TΣ−1(X− µ)

]
.

The probability density function is parameterised by the mean, µ, and the
covariance matrix, Σ, and is represented in the covariance form as

X ∼ N (µ, Σ).

An alternative representation is the canonical form:

N (µ, Σ) = C(X;K,h, g).
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The canonical parameters are calculated by taking the log of the probability
density function p(X) and are:

K = Σ−1,

h = Σ−1µ,

g = −1

2
µTΣ−1µ− log((2π)n/2|Σ|1/2), (6.5.1)

where n is the number of random variables. The different representations are
useful for different operations performed on the Gaussian probability density
function.

The vacuous canonical form, which is analogous to an improper probability
density function of 1 over all random variables, is defined as

K = all 0,

h = all 0,

g = 0.

When a factor is multiplied with or divided by a vacuous factor it has no effect.

6.5.2 Operations

Some operations on Gaussian functions are easier to perform in canonical form,
and some in covariance form. For the purposes of this thesis we perform all
operations in canonical form to avoid performing matrix inversions on large
matrices. The derivations for the following operations can be found in [37].

Multiplication

C(X;K1,h1, g1)× C(X;K2,h2, g2) = C(X;K1 +K2,h1 + h2, g1 + g2)

Factors of different scopes are extended by adding zeros to the K matrices and
h vectors, and then performing the above.

Division

C(X;K1,h1, g1)

C(X;K2,h2, g2)
= C(X;K1 −K2,h1 − h2, g1 − g2)

Division is done similarly to multiplication but is only defined if the numera-
tor’s scope is equal to or larger than the scope of the denominator.

Normalisation To normalise a Gaussian function in canonical form, g is
recalculated using Equation 6.5.1.
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Message Residual For the message residual, one can use the Kullback-
Leibler divergence such as for the discrete factor. The software we developed
for this thesis did not yet have the Kullback-Leibler divergence functionality
completed for the Gaussian factors. Instead we used the sum of the squared
element-wise differences between the K, h, and g parameters of the two factors:

d =
∑
|K0 −K1|2 +

∑
|h0 − h1|2 + |g0 − g1|2.

Marginalisation Marginalisation is easily done in covariance form as one
simply reduces the scope of the Σ and µ to the new subset of random variables:

X,Y ∼ N (µ, Σ).∫
dY N (µ, Σ) = N (µX, ΣXX),

where we have

Σ =

[
ΣXX ΣXY

ΣYX ΣYY

]
; µ =

(
µX

µY

)
.

One can also perform marginalisation in the canonical form:∫
dY C(X,Y : K,h, g) = C(X;K ′,h′, g′),

with
K ′ = KXX −KXYK

−1
YYKYX,

h′ = hX −KXYK
−1
YYhY,

g′ = g
1

2
(log |2πK−1

YY|+ hTYK
−1
YYhY). (6.5.2)

where, the matrices, KYY, KXY are submatrices of the K matrix – namely, it
is reduced to the scope of the random variables in the subscripts:

K =

[
KXX KXY

KYX KYY

]
; h =

(
hX

hY

)
. (6.5.3)

6.5.3 Linear Gaussian

Gaussian factors would not be as useful for state-space estimation as they are
if we could not capture the conditional dependence between random variables.
By using linear Gaussians one can capture the linear dependence between
random variables. For the two multivariate Gaussian random variables Y and
X, with lengths m and n respectively, one can capture the linear relationship
between them as

X = Λ×Y + b + w.
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The matrix Λ (m × n) and vector b (n) describes the linear relationship be-
tween X and Y. The vector w is the zero mean process noise that has a
covariance matrix ΣWW. Without the process noise, the relationship between
Y and X is no longer stochastic and causes the density function to be singu-
lar. This is how a Kalman filter represents the linear relationships between
parameters such as those discussed in Section 5.4.

Writing Y as
p(Y) = N (Y;µY,ΣYY)

and writing X conditioned on Y we have:

p(X|Y) = N (X;µX|Y,ΣX|Y)

or
p(X|Y) = N (X; ΛY + b,ΣWW).

From [37] we can write their joint probability density function p(Y,X) as:

p(Y,X) = N (Y,X;µYX,ΣYX)

with

µYX =

[
µY

ΛµY + b

]
and

ΣYX =

[
ΣYY ΣYYΛT

ΛΣYY ΣWW + ΛΣYYΛT

]
=

[
ΛTΣ−1

WWΛ + Σ−1
YY −ΛTΣ−1

WW

−Σ−1
WWΛ Σ−1

WW

]−1

For simplicity we assume the offset of the linear relationship b to be zero.
From [38] we can then write the Linear Gaussian in canonical form using
Bayes’ theorem

p(X|Y) =
p(Y,X)

p(Y)
,

using division of Gaussian densities defined in Section 6.5.2 where

KX|Y = KY,X −KY,Y = KX,Y − Σ−1
Y,Y,

and given that the hX|Y vector is vacuous as we have no prior yet we have the
following:

KX|Y =

[
ΛTΣ−1

WWΛ −ΛTΣ−1
WW

−Σ−1
WWΛ Σ−1

WW

]
,

hX|Y =

0
...
0

 ,
gX|Y = − log((2π)n/2|Σ|1/2).
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Message Scheduling of Linear Gaussians The canonical form of a linear
Gaussian such as above is a potential function and not a Gaussian probability
density. One cannot normalise or marginalise the canonical linear Gaussian
without first multiplying it with a Gaussian function. This means that fac-
tors which are linear Gaussian functions cannot send messages until they have
received messages which allow them to be marginalised [14]. Initialising all
messages as vacuous will therefore not allow the factors to send messages such
as with the discrete factors. These factors will therefore have to wait for in-
coming messages to be able to send messages.

In [14] Koller and Friedman suggest using an order-constrained message-
passing algorithm where the messages are carefully scheduled to allow the
factors to become normalisable and able to send messages. We discuss our
approach in Section 8.3.1, where we allow unnormalisable factors only to send
vacuous messages.

6.6 Hybrid Conditional Linear Gaussian

The conditional linear Gaussian (CLG) is a hybrid factor that combines con-
tinuous and discrete factors to represent both types of random variables in a
single factor. It is represented using a table with each entry of the table be-
ing a Gaussian. Multiplication and division are done similarly to the discrete
tables, but instead of multiplying and dividing probabilities, one multiplies
and divides Gaussian factors instead. Marginalising out continuous variables
is done as with the Gaussian factors where the random variables are integrated
out for each Gaussian factor in the table. The challenge is when one wants
to marginalise out a discrete variables, as summing the Gaussian factors to-
gether gives one a mixture Gaussian function consisting of weighted Gaussian
functions summed together.

Instead of representing the mixture Gaussian factors, an approximation can
be made by collapsing the mixture Gaussian factors with some projection into a
single Gaussian that minimises the error in some manner. M-Projection [39, 14]
does so by minimising the Kullback-Leibler distance [25], dKL(p||p̂), between
the mixture Gaussian, p, and the Gaussian p̂ that approximates it. This
form of marginalisation is known as weak marginalisation. From [14], the new
collapsed mean and covariance matrix, given the weight of each Gaussian, wi,
where

∑k
i=1wi = 1 is

µ =
k∑
i=1

wiµi,

Σ =
k∑
i=1

wiΣi +
k∑
i=1

wi(µi − µ)(µi − µ)T . (6.6.1)
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Taking into account that the integral of the new Gaussian factor, mmass, is the
sum of each integral of the Gaussian factors in the mixture, one can recalculate
g, similarly to Equation 6.5.1, as:

g = −1

2
µTΣ−1µ− log((2π)n/2|Σ|1/2) + log(mmass).

6.6.1 Approximate Messages in BP and BU

Performing weak marginalisation will cause the messages sent using either
BP or BU to be approximated messages. The effects on the messages are
different for BP and BU. In BU the incoming message, which is cancelled out,
is used to determine the approximation as it is multiplied in before the weak
marginalisation is performed. We discuss the impact this has on our graphs in
more detail in Section 8.3.2.

Approximate Message-passing Convergence For approximate message
passing we will need to have an alternative definition for convergence than
from Section 6.3.9. With the approximated messages the clusters will not
necessarily share the same marginal beliefs. We can define convergence as the
state in which the messages being passed differ from their previous iteration
with a sufficiently small margin [14].

6.7 Comparison of Discretised and Hybrid

Computational Tractability

An alternative to describing continuous random variables by using parame-
terised functions is to discretise them. As a rule of thumb, discretised fac-
tors require greater computational processing than continuous or hybrid fac-
tors [14]. As discussed in Section 6.4.1, a discrete factor contains Kn proba-
bilities for n variables, and K possible values. The exact number of numerical
operations for the factor operations (multiplication, marginalisation, etc.) are
based on the sparsity of the discrete factors. A Gaussian factor, on the other
hand, is represented using a K matrix with n2 entries, a vector of length n
and a single g value. A CLG has a table of Gaussian factors and thus contains
Km Gaussian factors for m discrete variables that have K possible values. Our
CLG representations tend to be much more compact than the exponentially
sized discretised factors since they only have two discrete random variables
per CLG cluster. These random variables also have less possible values than
the discretised continuous random variables. Based on the above considera-
tions, and despite the multiplications for CLG factors being more complex,
the discrete factor operations tend to require many more numerical operations
compared to those of the hybrid factor.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. PROBABILISTIC GRAPHICAL MODELS 77

6.8 Conclusion

In this chapter we introduced the theory behind PGMs where we specifically
looked at clique trees, undirected graphs with no loops, and cluster graphs, the
loopy generalisation of clique trees. We showed how inference can be performed
on these graphs using belief propagation or belief update and, more generally,
loopy belief propagation or loopy belief update. Discrete random variables can
be represented by a table of probabilities, and continuous random variables by
parameterised functions such as Gaussian functions. We showed how one can
have a graphical model with a mixture of discrete and continuous random
variables, namely hybrid PGMs. The theory discussed in this chapter is used
to implement the PGMs modelled in the next chapter.
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Chapter 7

PGM Model Design

7.1 Introduction

In Chapter 4 we applied BSA to our Doppler radar data in both large signal
segments and shorter time-steps. In this chapter we discuss the model we
developed to smooth the shorter, spectrogram-like analyses while incorporat-
ing temporal information about the transitions of the longer segments. The
concepts of state-space estimation from Chapter 5 will be combined with the
PGM theory covered in Chapter 6.

In Section 5.7 we contextualised our model with respect to other multitar-
get approaches. Our targets of interest are the frequency components identified
using BSA which we wish to smooth. In this chapter we discuss the modelling
thereof in more detail. Using PGMs we model multitarget state-space estima-
tion and add a discrete Markov chain, describing the signal segment transitions
parallel to the traditional multitarget tracking. This additional Markov chain
enforces a left-to-right progression of signal segments that determine the un-
derlying state-space estimation dynamics and the active BSA model for each
time-step. This differs from the traditional multitarget state-space estimation
approach of modelling target birth and death rates within the target tran-
sitions. The extra temporal information allows the models to smooth over
regions where the measurements are noisy or where a frequency component is
missed. The transitions only allow the PGM to switch between signal segments
in a specific strict order. To better enable the transition over areas where the
targets do not appear in BSA, we implement a “missed target” model. We
use both a fully discrete and a hybrid PGM that follow the same overarching
principles but differ in implementation and how we construct the factors.

78
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7.2 General Model Overview

This section contains the general approach to modelling the PGMs. The exact
design of the factors differs between the discrete and a hybrid PGMs which we
discuss in Section 7.3 and 7.4.

7.2.1 Model Assumptions

We make the same assumptions as in Section 5.2.1 which are summarised
below:

1. The maximum number of targets is known.

2. The state-space transitions are a Markov chain.

3. Observations are made at discrete time-steps and are independent of the
measurements of other time-steps.

4. The discrete state-space describing the number of targets include a “tar-
get not present” value, φ.

Assumption 3 implies uncorrelated noise between time-steps, which is not true
for our spectrogram-like BSA approach. The unknown and unmodelled effects
in the signal are considered to be noise in our BSA models and are not neces-
sarily uncorrelated between time-steps. These assumptions simplify the PGMs
by including conditional independences between the time-steps.

7.2.2 Graph Modelling Approach

Our PGM approach consists of three levels:

� lower-level competing BSA likelihood functions of the signal

� mid-level multitarget state-space estimation of those parameters with
additional parameter dynamics

� high-level discrete signal segment transitions

Figure 7.1 is a Bayes network representation of our approach with green, blue,
and red directed edges representing the lower-, mid-, and high-level transitions
respectively. Once again we are only using the Bayes network to exercise our
intuition about the approach.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. PGM MODEL DESIGN 80

XT

S1S0 ST

XtX1X0

Dt

St

DTD0 D1

Figure 7.1: A Bayes network representation of the general model approach.
Green: lower-level (likelihoods), Blue: mid-level (multitarget parameter dy-
namics), Red: high-level (Segment transitions).

The lower- and mid-level state-space transitions are similar to the approach
discussed in Bayesian multitarget state-space estimation in Section 5.3. The
Doppler radar data “observed” during each time-step are represented by the
bottom nodes, DT = {D0, ..., DT}. The data is broken into parts and used
to calculate the BSA probability density functions for each time-step, as dis-
cussed in Section 4.7. The mixture of discrete and continuous random vari-
ables, XT = {X0, ..., XT}, determine the signal frequency parameters and their
dynamics, Ωt as well as the active BSA model, Mt , for each time-step t so
that

Xt = {Ωt,Mt},
Ωt = {ωt,∆ωt, at,∆at}. (7.2.1)

These parameters, which are described in Table 7.1, will allow us to refine
the likelihood functions that describe our stationary frequency parameters,
ωt = {ωt,0, ωt,1, ωt,2}, given the active BSA model, Mt ∈ {1, 2, 3}.

Table 7.1: The state-space estimation parameters of interest describing the
signal’s frequency dynamics

ω Stationary frequency parameters
∆ω Difference in frequency parameters between time-steps

a Difference in ∆ω between time-steps
∆a Difference in a between time-steps

We add a discrete Markov chain, ST = {S0, ...ST}, parallel to the tra-
ditional switching state-space estimation as the high-level transitions for the
Doppler radar signal segments from Section 4.6. The Markov chain is con-
nected to each time-step St → Xt which is necessary to propagate information
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about the segments to the signal dynamics.

In our PGMs, the three levels of the model correspond loosely to the three
different sources of knowledge we used to construct the model in Figure 7.1:

� The different BSA estimations of the parameters at each time-step, in-
cluding the frequency estimates and the probability of each BSA model
which is described by their relative BSA lower-level likelihood functions
(indicated in green).

� The fact that each time-step’s parameters are dependent on the previ-
ous time-step in a way that is limited by the behaviour of the physical
targets’ motion, which is described by the mid-level parameter dynamics
(indicated in blue).

� The fact that each discrete signal segment occurs in a certain order, and
other temporal information about signal segments which is described by
the high-level segment transitions (indicated in red).

7.2.3 Prior Probability Density Functions

The three levels of knowledge we incorporate are built into the PGM as prior
probability density functions in the following factors. Generally we do not
have much prior information about the random variables other than the rela-
tionships between them and the possible values that they can assume. This
means that for the discrete random variables we assume a uniform prior over
the region of interest with the CPD correctly normalised.

7.2.3.1 High-level Signal Segment Estimation

We model the transition between the different long signal segments from Sec-
tion 4.6 (downward club swing, ball only, etc.) with a discrete Markov chain.
The transitions describe a strict left-to-right progression of signal segments as
described in Section 5.5.2. This forces the model to decide on the ideal loca-
tion to transition between signal segments as they are limited in number and
can only occur in a certain order. The state transition factors are described
by the following CPDs:

p(St|St−1), 0 < t ≤ T,

p(S0), t = 0.

An example of a segment transition containing three segments can be seen in
Table 7.2.
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Table 7.2: A discrete factor describing an example left-to-right segment tran-
sition of three segments.

St St−1 p(St|St−1)
segment 1 Begin 1.0
segment 1 segment 1 0.5
segment 2 segment 1 0.5
segment 2 segment 2 0.5
segment 3 segment 2 0.5
segment 3 segment 3 0.5

End segment 3 0.5
Elsewhere 0.0

Between the high- and mid-level factors there are factors which translate
the segment random variables, ST , to the active BSA models:

p(Mt|St), 0 ≤ t ≤ T.

Each BSA model may appear in multiple signal segments. An example of such
a factor can be seen in Table 7.3 where the model, M = 1, occurs in both
signal segment S = 1 and S = 3.

Table 7.3: A discrete factor describing an example relationship between signal
segments and the active BSA model

Mt St p(Mt|St)
model 1 segment 1 0.5
model 2 segment 2 1.0
model 1 segment 3 0.5

Elsewhere 0.0

7.2.3.2 Mid-level State-space Estimation

The mid-level state-space estimation describes the dynamics of our frequency
parameters and is similar to the multitarget state-space estimation from Chap-
ter 5. The parameter dynamics are described by the following CPDs:

p(Ωt,Mt|Ωt−1,Mt−1), 0 < t ≤ T,

p(Ω0|M0)p(M0), t = 0.

The BSA models differ in the number of targets present and thus have a
different number of parameters to estimate, and different signal dynamics. The
dynamics are linear relationships such as used in Kalman filters. However,
these dynamics will be conditioned on discrete random variables. For each
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combination of the three BSA models we would have a linear relationship
between the frequency parameters:

Ωt = ΛΩt−1 + wt

As an example, the linear relationship between a single-frequency component
to a single-frequency component transition is as follows:

ωt+1

∆ωt+1

at+1

∆at+1

 =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1



ωt

∆ωt
at

∆at

+ w.

The full list of frequency transitions and their linear relationships can be found
in Section F.1. In Section 7.2.5 we discuss in more detail how we handle
transitions between different numbers of frequency components.

7.2.3.3 Likelihood Functions

The lower-level likelihood functions are calculated similarly to the analysis
of short-step parameter estimation from Section 4.7.2. We have the same
approach of breaking the signal up into overlapping windows similar to a spec-
trogram with a window size of 64 samples and a step-size of 16 samples. We
employ the nine BSA models used throughout Chapter 4 to calculate the com-
peting hypotheses for a given window. For the sake of simplicity, and because
the BSA models from Chapter 4 do not fully explain the data complexity, we
only calculate the probability density functions for the stationary frequencies.
This gives us more conservative estimates of the frequency parameters.

The likelihood functions have the following form:

p(Dt|ωt,Mt), 0 ≤ t ≤ T,

where ω are the stationary frequency parameters and M indicates the active
BSA model. In this case we have likelihood functions for only a subset of the
state-space of interest so that ω ⊂ Ω.

7.2.4 Factor and State-space Symmetry

Our state-space estimation models do not need to contain target identity, as
we have the joint probability density function of the frequency components for
each time-step. As discussed in Chapter 3, the BSA joint probability densities
are symmetrical, as each of the frequency components present in the Doppler
radar data can be associated with any of the frequency parameters. For a
two-dimensional probability density function with a clearly defined maximum,
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there are two identical peaks and symmetry around the ω0 = ω1 axis. A three-
dimensional probability density function would have 6 (3!) identical peaks.

The discrete factors can easily encode the symmetry, but doing so increases
the size of the factors by the number of symmetrical peaks. For the sake of
computational tractability we remove the symmetry in the discrete factors
and renormalise them to contain their original model probability ratios. The
Gaussian factors cannot describe the symmetry as they contain a single peak.
Therefore for both factor types the lack of symmetry creates implicit tar-
get identity, which must somehow be maintained. Each frequency parameter,
{ωt,0, ωt,1, ωt,2}, is now associated with a specific frequency component in the
Doppler radar signal. This subtly differs from the data association in Sec-
tion 5.6.1, which requires one to associate measurements with targets. A data
association problem might have multiple measurements that are associated
with multiple targets. Our single “measurement” (BSA factor) is associated
with up to an arbitrary number of targets (three in our case), which always
gives us all of the hypotheses. The targets of interest do not cross paths in
our Doppler radar signals since the frequency components tend to move away
from each other, and so we can arbitrarily assign the frequency components’
identities from the highest to the lowest frequency.

7.2.5 Implicit Target Identity When
Adding/Removing Targets

As discussed in the previous section, we have implicit target identity due to
the removal (discrete model) or lack (hybrid model) of symmetry in the fac-
tors. Although the model does not explicitly designate a target to a frequency
component, this can be handled implicitly by the frequency component tran-
sitions. For example, we could have two frequency components at time-step t,
{ωt,0, ωt,1}, and the top frequency component dies away. The transition factor
would then model that the component of the one frequency model at time-step
t + 1 would be the continuation of the lower frequency component from the
previous time-step, ωt,1 → ωt+1,0. The linear transition of the above example
then is the following:


ωt+1,0

∆ωt+1,0

at+1,0

∆at+1,0

 =


0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1





ωt,0
∆ωt,0
at,0

∆at,0
ωt,1

∆ωt,1
at,1

∆at,1


+ w.
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We handle the addition of a new frequency component by multiplying a
transition factor with an uninformative prior for the new component. For the
discrete models this is a uniform prior and in the case of the hybrid model this
is a Gaussian with a large variance. One could add more prior information at
this point where, for example, one could have a prior based on the starting
frequency of the ball component. We do not do so, however, as the BSA peaks
are so sharp that any prior that does not have a comparable variance has little
effect.

7.2.6 Posterior

We could calculate the posterior probability of our model by multiplying all
the factors together:

p(DT ,XT ,ST ) = p(Ω0|M0)p(M0|S0)p(S0)

×
T∏
0

p(Dt|ωt,Mt)p(Mt|St)

×
T∏
1

p(Ωt,Mt|Ωt−1,Mt−1)p(St|St−1).

Calculating the joint probability density function p(DT ,XT ,ST ) and then
marginalising to the random variables of interest is computationally intractable
for a large number of total time-steps T + 1. However, as discussed in Chap-
ter 6, we can use PGMs to calculate the marginal probability densities. The
approximate marginal posterior probability density functions are calculated
using LBU [14] with RBP scheduling [35] without having to multiply all the
factors together. We query the relevant clusters to find the posterior prob-
ability densities of the active signal segment and the stationary frequency
parameters. This is equivalent to calculating

p(Xk|DT ) =

∫
dX0...���dXk...dXT dST p(DT ,XT ,ST )

p(DT )
(7.2.2)

for our parameters at each time-step t, where Xk = {Ωk,Mk}.

7.3 Discrete Model

Discretising the continuous parameters in our PGM may cause the inference
to be computationally intractable, as the number of probabilities represented
in the factors become prohibitively large. The Bayes network in Figure 7.1 is
sparsely connected between the signal segments and the parameter dynamics
which means that there are seemingly not many random variable interactions
to describe in our PGM. However, some of the complexity is hidden in the Xt
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node transitions that describe the parameter dynamics. The discrete factor
sizes of the parameter dynamics are large even for a low resolution of sampling.
To be able to perform inference within a reasonable time-frame while also
maintaining an adequate discrete resolution, we will need to make full use of
conditional independence between the random variables.

7.3.1 Likelihood Functions: Discretisation of BSA

We discretise the continuous random variables by:

� calculating the probability density functions at regular intervals.

� multiplying them by their volume element to make them probabilities.

� storing them in a table.

Multiplying each sample by a volume element approximates the integral of
probability density function in that volume.

7.3.2 Discrete Prior Factors

We can reduce the connections between random variables by encoding more
conditional independences. The frequency component values ω = {φ, 0.1} can
only occur in the single frequency model, implying that Mt = 1. We can thus
write the likelihood function factors as p(ω). This is also true for the dynamics
of the mid-level transitions, since we need to make use of place-holder values
for those random variables as well.

We can reduce the factor size of our parameter dynamics by modelling con-
ditional independence between the parameter from Table 7.1. As an example,
the product of a time-step’s parameter dynamics with a prior density on the
previous time-step dynamics and the current BSA model:

p(ωt+1,∆ωt+1, at+1,∆at+1|ωt,∆ωt, at,∆at,Mt+1)

× p(ωt,∆ωt, at,∆at,Mt+1),

can be separated into smaller CPDs since many of the random variables are
conditionally independent of each other:

p(ωt+1|ωt,∆ωt+1)p(∆ωt+1|∆ωt, at+1)p(at+1|at,∆at+1)

× p(∆at+1|∆at,Mt)p(∆at|Mt+1)p(Mt+1).

The resulting PGM after including conditional independences can be seen in
Figure 7.2. The graph now contains many more clusters, but the size of the
factors needed to factorise the joint probability density has been greatly re-
duced. This also serves as a good example of how decomposing the problem
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into smaller factors can allow computational tractability for PGM inference.

The segment transition factors are similar to the general approach as de-
scribed in Section 7.2.3.1, however, the linear relationships for the mid-level
dynamics are now split over multiple factors. We also do not model the pro-
cess noise as with a the linear Gaussians from Section 6.5.3 and instead use
a uniform prior over the range of possible values. The discrete factors have
linear relationships over a smaller subset of random variables, for example, for
the CPD of p(ωt+1|ωt,∆ωt+1), the relationship can be described as

[
ωt+1

]
=

[
1 1
0 1

] [
ωt

∆ωt+1

]
.

Similar factors are constructed for p(∆ωt+1|∆ωt, at+1) and p(at+1|at,∆at+1).

We need to use place-holder values in the discrete factors to cater for
the transitions between the different dynamics of the different BSA models
which are all contained within the same discrete table. An example of how
we calculate the inner workings of the linear relationship described above for
p(ωt+1|ωt,∆ωt+1) can be seen in Table 7.4. More examples of how we calcu-
late the discrete factors can be found in Appendix F.2. The other transition
factors have the same premise; we exhaustively list all possible values while
making use of place-holder values and then normalise the factor as a CPD.
The use of the place-holder values also ensure that the transitions are unique
for each model transition.

Table 7.4: This table describes how we calculate the possible values for the
discrete factors of the form p(ωt+1|ωt,∆ωt+1). The random variables on the
right of the conditioning bar (denoted with the double line), determine the
possible values of the random variables on the left of the conditioning bar for
the given model transition. The place-holder values in the factor are φ, A, B,
C, and D. The φ value denotes that there is no target, A and C indicate a
transition of the top target, and B and D of the bottom target.

Model Transition ωt+1,0 ωt+1,1 ωt,0 ωt,1 ∆ωt+1,0 ∆ωt+1,1

1 freq to 1 φ ωt,1 + ∆ωt,1 φ ωt,1 φ ∆ωt,1
2 freq to 2 ωt,0 + ∆ωt,0 ωt,1 + ∆ωt,1 ωt,0 ωt,1 ∆ωt,0 ∆ωt,1

1 freq to 2 A ωt+1,0 ωt,1 + ∆ωt,1 φ ωt,1 A ∆ωt,1
1 freq to 2 B ωt,1 + ∆ωt,1 ωt+1,1 φ ωt,1 ∆ωt,0 B
2 freq to 1 C φ ωt,1 + ∆ωt,1 ωt,0 ωt,1 C ∆ωt,1
2 freq to 1 D φ ωt,0 + ∆ωt,0 ωt,0 ωt,1 ∆ωt,0 D
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Figure 7.2: Discrete Doppler radar PGM. The red, blue, and green clusters
indicate the high-level segment transitions, mid-level parameter dynamics, and
lower-level likelihood functions respectively.

7.4 Hybrid Model

The hybrid discrete-continuous model is constructed using CLGs where the
continuous random variables are approximated with Gaussian densities. Since
the parametric representation of the frequency dynamic is more compact (see
Section 6.7), we do not need to make as much use of conditional independence.

7.4.1 Likelihood Functions: Continuous BSA Factors

We find the peak of the BSA using the Nelder-Mead algorithm as discussed in
Section 4.3. We approximate the covariance matrix for each BSA model using
Laplace’s method [25] (see Appendix B.2) and their relative probabilities are
encoded in the g term of the Gaussian factors.
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7.4.2 Hybrid Prior Factors

Using the linear relationships in Section 7.2.3.2, we can describe the factors
using linear Gaussians for each of the possible BSA model transitions. The
high-level transitions from Section 7.2.3.1 are discrete factors which can pass
messages to CLG factors by summing the log probability of the discrete factor
with the g value in the relevant Gaussian factor. In a similar way the CLG
factors can pass messages to the discrete factors by marginalising out all the
continuous random variables and calculating the probability from the g value
for each Gaussian factor. The resulting hybrid cluster graph can be seen in
Figure 7.3. Note that there are much less clusters than the discrete cluster
graph, since we can more compactly represent the CPDs.

S3, St

S3,M3S2,M2S1,M1

Mt,Ωt,MT ,ΩT

MT ,ωT

St, ST

M3,Ω3,Mt,Ωt

Mt,ωt

S1, S2 S2, S3M0, S0 S0, S1

St,Mt ST ,MT

M2,Ω2,M3,Ω3M1,Ω1,M2,Ω2M0,Ω0,M1,Ω1M0,Ω0

M2,ω2 M3,ω3M0,ω0 M1,ω1

Figure 7.3: Hybrid Doppler radar PGM. The red, blue, and green clusters
indicate the high-level segment transitions, mid-level parameter dynamics, and
lower-level likelihood functions respectively.

7.4.3 False Alarms and the Missed-target Hypothesis

In state-space estimation methods, the target birth and death rates are coupled
with the concepts of false alarms and missed targets. False alarms are when
a target is detected but is not actually present, and missed targets are when
a target is present but not detected. Within our own models, the fact that
we are using competing hypotheses with different numbers of targets serves
the function of a false-alarm model. The PGMs can always default back to a
BSA hypothesis with fewer targets and handle a false alarm if the surrounding
observations and signal segment transitions do not support the presence of a
target.

While we found that our models could perform without the concept of a
missed-target model, the hybrid model greatly benefits from implementing it.
We take the results of a BSA and multiply it with a Gaussian prior probability
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density function in order to create the missed-target model, which competes
with the other BSA models. The variance of the undetected target is very large
in order to allow the other time-steps’ BSA factors to influence the system’s
knowledge of the undetected target. This will allow the system to extrapolate
a path for the target given the signal dynamics without having any input
for that target from BSA. For example, we can take a single frequency BSA
and multiply it with a univariate Gaussian prior to create a two-frequency
hypothesis where one of the targets is a missed target.

7.5 Conclusion

In this chapter we discussed our approach to modelling PGMs which we apply
to Doppler radar data in Chapter 9. The concepts from Chapter 3, 5, and
6 come together in order to create a multitarget tracking PGM that includes
temporal information about signal segment transitions. Our overall approach
was conceptually similar for the two graph types but differed in how we con-
structed the discrete and hybrid PGMs’ factors. The discrete factors required
more conditional independence to be built into the graph. We discussed how
concepts such as process noise, false-alarms, and missed targets applied to our
application within the context of PGMs.
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Chapter 8

Implementation Details and
Challenges

8.1 Introduction

In this chapter we discuss the implementation details, constraints, and associ-
ated challenges of the discrete and hybrid models. We need to consider the fact
that discretising our BSA factors has effects on inter-BSA model probabilities.
There are subtleties in the CLG factors such as constraints on message-passing
scheduling, message approximations, and choosing the linear Gaussian process
noise. To perform inference on our models, we use LBU with RBP. We choose
LBU, as the software is further developed and potentially performs better for
the hybrid model which we discuss in Section 8.3.2.

8.2 Discretisation

One of the challenges we face with the discrete factors is the computational
intractability of the PGMs when the resolution of the discretisation is high. As
discussed in Section 6.4.1, the number of probabilities that need to be repre-
sented in a discrete factor increase exponentially with the increase in random
variables. This consequently increases the number of mathematical operations
that need to be performed in order to calculate factor multiplication, cancel-
lation, normalisation, and marginalisation. However, reducing the resolution
degrades the accuracy of the discrete approximation as it can fail to capture
the shape of the original probability density. It also affects the relative proba-
bilities between BSA models (p(M)). The sharp peak of the most likely point
in the likelihood functions may be missed when calculating the probability
density function values at regular intervals as discussed in Section 7.3.

We mitigate some of these effects by binning a finer-resolution discretisation
into a lower resolution. Our approach to creating the discrete BSA factors is
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the following:

1. Calculate the probability density function values at regular intervals at
a higher resolution (256 intervals per dimension).

2. Bin and average the values to a lower resolution (32 intervals per dimen-
sion).

3. Multiply the averaged probability density with a volume element to cre-
ate a probability for the discrete factor.

While the averages more closely resemble the probability in the region being
approximated, a very sharp peak may still be missed using the approach above
and thus skew the relative BSA model likelihoods. In order to mitigate this,
we calculated the relative BSA model probabilities within a factor by using the
model selection from Section 3.7. We adjust the factors so that the sum of the
relative probabilities between the models is equal to the relative probabilities
of the models: ∑

Φ(M = 1)∑
Φ(M = 2)

=
p(M = 1|D)

p(M = 2|D)
,

where
∑

Φ(M = 1) is the element-wise sum of the values in the factor Φ
relating to the single stationary frequency model. This ensures that there is a
more accurate portrayal of the marginal probability of the models so that:∑

ω

Φ ≈
∫
dω p(D|ω,M).

8.3 CLG Factors Implementation Subtleties

8.3.1 Message Passing Constrained by Matrix
Inversion and Unnormalisable Factors

While it is simpler to marginalise a Gaussian density in covariance form such
as discussed in Section 6.5.2, one would then need to convert the Gaussian
factors between covariance and canonical form when passing messages. The
limits on computational precision when calculating the matrix inversions in the
CLG factor operations can negatively influence the accuracy of the results [14].
This is especially a problem if the process noise for the linear Gaussians from
Section 6.5.3 is very small. We avoid inverting the matrix K by keeping
the factors in the canonical form when marginalising, which only inverts a
submatrix of K such as from Equation 6.5.2:

K ′ = KXX −KXYK
−1
YYKYX,
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where K ′ is the new K matrix for the marginalised Gaussian and from Equa-
tion 6.5.3

K =

[
KXX KXY

KYX KYY

]
.

However, this would still require that KYY be invertible for each Gaussian
within a CLG factor in order to marginalise a continuous random variable.

When a model consists of only Gaussian factors, there is no need to invert
K when one follows the approach above. However, in order to marginalise
discrete random variables in the CLG factors, there are additional restrictions
on the K matrices. If K is not invertible for a particular Gaussian, we cannot
calculate the probability mass of that Gaussian. This also means that the
Gaussian cannot be normalised, hence we call such Gaussians “unnormalis-
able”. CLG factors containing unnormalisable Gaussians cannot marginalise
discrete random variables, as they require weak marginalisation from Equa-
tion 6.6.1:

K−1 = Σ =
k∑
i=1

wiK
−1
i +

k∑
i=1

wi(µi − µ)(µi − µ)T .

This can prevent such clusters from sending messages in our hybrid model.
Figure 8.1 (which is a subset of the hybrid model from Figure 7.3) indicates
the messages passed to a mid-level transition cluster. The subscript in each
message indicates the scope of the random variables in the message. The clus-
ter Ct will only be able to send a message to Ct+1 or CM if it has received
a non-vacuous message from Ct−1. Canonical-form linear Gaussians such as
those contained in Ct are not normalisable unless multiplied with a factor con-
taining the continuous random variables they are conditioned on [14]. The
mid-level clusters will therefore have to wait for specific incoming messages to
be able to send their messages. The cluster Ct is thus order constrained [14] by
Ct−1 since it can only send a message once it has received a message from Ct−1.

Scheduling the CLG message passing requires some method of identifying
which clusters are order-constrained by which other clusters [14]. For the sake
of simplicity, we instead use the following approach when attempting to send
a message from a CLG cluster:

1. Attempt to marginalise a CLG factor in a cluster for an outgoing mes-
sage.

2. If it succeeds, create the message.

3. If it fails due to an unnormalisable Gaussian factor, create a vacuous
message instead.
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Mt,ωt

St+1,Mt+1 CM

Ct+1

Mt+1,Ωt+1,Mt+2,Ωt+2

Ct

Mt,Ωt,Mt+1,Ωt+1

Ct−1

Mt−1,Ωt−1,Mt,Ωt

δMt
↓

← δΩt+1,Mt+1

δωt,Mt
↑

δΩt,Mt
→

Figure 8.1: Subset of Figure 7.3, the hybrid Doppler radar PGM. It indicates
the messages passed to a mid-level transition cluster containing a CLG factor.

4. RBP accordingly schedules the messages according to the message resid-
uals.

In this way we can employ the same LBU algorithm used for the discrete factors
and avoid writing a custom message-passing algorithm for the CLG graphs.
RBP will automatically move the perpetually vacuous messages to the bottom
of the message schedule until their clusters have received the necessary inputs
from their neighbours. Once marginalisation is possible for a CLG factor,
its message residuals will change accordingly and the cluster will also start
sending non-vacuous messages. In Figure 8.1 this means that Ct requires a
non-vacuous message from Ct−1.

8.3.2 LBU and LBP Approximated Messages

The weak marginalisation we perform means that we will be sending approx-
imated messages when performing inference on the hybrid model. As dis-
cussed in Section 6.6, weak marginalisation is performing M-Projection, which
minimises the Kullback-Leibler distance between the projection and the true
density function. The approximation process makes a trade-off in that when
certain regions of the probability space are better approximated, other regions
will have a worse approximation [14]. However, there is a difference between
LBU and LBP when approximating messages. For LBP, all messages but one
are multiplied in when weak marginalisation takes place, whereas for LBU, all
incoming messages are multiplied in first. For example, in Figure 8.1, when
sending a message from Ct to Ct+1, the approximation will include δΩt+1,Mt+1

in LBU but not LBP. Thus LBU, in contrast with LBP, takes into account
the current approximation δΩt+1,Mt+1 , sent from Ct+1, potentially focusing the
approximation on “more relevant” parts of the probability space [14]. This is
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similar to the principle used in expectation propagation [40] in which messages
are approximated by using all incoming messages.

We do not use damping (from Section 6.3.11) for our hybrid as it also
creates a mixture of Gaussian densities such as those found in weak marginal-
isation. We wish to avoid approximating the message as much as possible.

8.3.3 Process Noise

The process noise in conjunction with the measurement noise determine how
at each time-step an “observation” (in our case the BSA factors) is weighed
against the messages coming from the neighbouring time-steps. For example,
in Figure 8.1 the variances of the Gaussians in the hybrid message δωt is de-
termined by the measurement noise (in our case, the BSA confidence in the
parameters selected). In turn, the variances of the Gaussians in the hybrid
messages δΩt,Mt and δΩt+1,Mt+1 are determined by the process noise w.

A very small measurement noise will require a small process noise to allow
for observations to be smoothed by the model dynamics – otherwise the ob-
served data will carry too much relative weight in determining the frequency
parameters. On the other hand, if the model transitions do not match the
true signal behaviour, a small process noise can be detrimental to the results
and the graph will discount the information from the BSA factors. Ideally one
would find a middle ground which reflects the accuracy of the processes in the
parameter dynamics relative to the signal noise.

The covariance of the process noise can be calculated as the expected value
of the signal dynamics [41]:

Q = E[Ω ΩT ].

In our case we only smooth the signal and have no input into the signal pro-
cesses. This makes it difficult to determine the process noise since we do not
have a clear understanding of E[Ω ΩT ]. As we could not find an easily imple-
mented way to automatically select the process noise, we do so by inspecting
the results and adjusting the process noise. This resembles a method described
in [41]; however, in our case we have the advantage of being able to use the
spectrogram as a starting point:

1. Generate a spectrogram of the signal of interest.

2. Superimpose a linear model over it by inspection and look for the maxi-
mum deviation from our linear model.

3. Use the maximum deviation as two times the standard deviation of the
process noise (which will contain ≈ 98% of the values) as a rule of thumb.
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4. Manually adjust and fine-tune the process noise to obtain better results.

8.4 Finding the BSA Peak

In order for us to be reasonably certain that our use of the Nelder-Mead
optimisation method [26], discussed in Section 4.3, finds the peak in the BSA
probability density function, we choose multiple good starting points for the
optimisation technique. The starting points for the algorithm are the top four
local maxima in the zero-padded (1024) periodogram. We use a very simple
method, namely looking at the nearest neighbours in the periodogram to find
the local maxima.

8.5 Non-convergence of PGMs

In both the discrete and the hybrid model, the PGMs occasionally do not
converge within a reasonable time. This was more likely to happen in the
particularly loopy discrete graphs. It would occur in both models if there were
parts where the BSA did not reflect the parameter dynamics used to describe
the frequency components. This was mitigated by the use of the missed target
model from Section 7.4.3 for the hybrid PGMs.

8.6 Conclusion

We discussed the challenges we faced in implementing the models in Chapter 7.
We experienced challenges such as selecting the process noise, the effects of
discretisation, the message-passing scheduling, non-convergence of graphs, and
challenges surrounding the computational tractability of our models. In the
next chapter we will demonstrate the experimental results of the implementa-
tion of the models.
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Chapter 9

PGM Experimental Results

9.1 Introduction

In this chapter we apply the PGMs modelled in Chapter 7 to the Doppler radar
data. Our PGMs calculate the posterior probabilities of the random variables
in each cluster. We query our graphs for the frequency parameters and the
BSA model for each time-step, namely p(ωt,Mt). To be able to visualise the
frequency parameters, we use an approach where we represent the different
frequency components on one axis using different colours for each BSA model.
The result is a weighted frequency representation much like a “probabilistic”
spectrogram.

We demonstrate the use of the two PGM models from Chapter 7, the
discrete model, and the hybrid model. Both models smooth the frequency
parameters of the short time-step BSA from Section 4.7.2. We had moderate
success with the Doppler radar data, and demonstrate some of the methods we
used to mitigate the uncertainty surrounding the underlying signal behaviour.

Even though we do not have all the puzzle pieces to decisively solve the
multitarget tracking problem, the Bayesian approach does have the advantage
that it is easily extendible with more prior information about the signal. It
improves upon the conventional multitarget tracking.

9.1.1 Representation of Results

We wish to estimate the posterior marginal probabilities of the frequency com-
ponents and the active BSA model such as in Equation 7.2.2:

p(Xk|DT ) =

∫
dX0...���dXk...dXT dST p(DT ,XT ,ST )

p(DT )
,
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where we defined Xk in Equation 7.2.1 as the set containing our frequency
dynamics parameters and the active BSA model:

Xk = {Ωk,Mk}.

As discussed in Section 6.3.2, the converged PGMs can be queried on the ran-
dom variables contained within a cluster. We are specifically interested in a
subset of Xk, which represents the smoothed stationary-frequency parameters
of our BSA factors, and the active BSA model, namely ωk and Mk. However,
it is difficult to visualise the resulting multidimensional probability density
function. To achieve this goal, and since the frequency components and their
relation to one another change over time, we use a spectrogram-like represen-
tation that combines the three BSA models. In order to still clearly discern the
different hypotheses, we display the results as a red/green/blue (RGB) image.
The intensity of each of the colours is proportional to the relative probability
density of each of the three possible BSA models. The colour black would then
indicate the absence of frequency components.

An example of how different combinations of RGB values create different
colours can be seen in Figure 9.1. The intensity of each of the RGB values
is shown in Figure 9.1a, and the combinations of full-intensity RGB values
are shown in Figure 9.1b. We use the properties of red/green/blue images to
display multiple BSA hypotheses on top of one another in the same image.

We do the following in order to represent the multidimensional p(ωt,Mt)
for each time-step t:

1. Query p(ωt,l,Mt) for each frequency parameter l and each BSA model k.

2. For each of the models Mt = k, sum the l marginal frequency components
together. This produces “composite” probability densities for each of the
three BSA models.

3. Weigh each of the three composite probability densities by the marginal
probability of that BSA model p(Mt = k).

4. Assign a colour to each of the models: red for one frequency compo-
nent, blue for two frequency components, and green for three frequency
components.

5. Normalise each of the three weighed composite probability densities by
dividing them by the maximum value between all three probability densi-
ties. This highlights the parts in which there are frequency components.

The above approach allows us to easily compare the relative probability
densities of the different BSA models and how they change over time. An
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Figure 9.1: Images can be represented using varying brightness in red green
and blue. Figure (a) shows red, green, and blue of varying brightness cor-
responding to the relative probability density of a frequency component. Fig-
ure (b) displays different full intensity colour combinations of red, green, and
blue with the intensity indicated in the format: {R;G;B}
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(a) Simulated summed marginal probability density
functions that are normalised to the maximum value.
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(b) The RGB represen-
tation of Figure (a).

Figure 9.2: In Figure (a) we see simulated examples of summed marginal
probability density functions for a given time-step. Each colour represents
a BSA model. Using the values from a graph such as Figure (a), we can
represent the graph as an RGB image for each time-step in order to visualise
the graphs as they change over time. Figure (b) is an example RGB time-step
of Figure (a).
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example result of the steps above can be see in Figure 9.2a. In order to add
an extra dimension, time, we display the representation of each time-step as a
column in an RGB image, much like a spectrogram does with the periodogram.
The example time-step in Figure 9.2a would then appear as in Figure 9.2b.
The disadvantage of this representation, however, is that when the probability
density peaks are particularly sharp or spread out, they become difficult to
see. In order to mitigate the effect, we enlarge the regions of interest when
this occurs.

9.2 Discretise Model Results

We limit the discrete analyses to two dimensions, as the factors become very
large if we add a third dimension. In the case of the discrete factors that do
not contain Mt, the probability of the single sinusoid is still easy to calculate
since ωt uniquely determines the model. The probability of the place-holder
φ, which indicates that a target is not present, is the probability of the single
frequency component model:

p(ω0 = φ) = p(Mt = 1).

9.2.1 Discrete: Segment C-B

In this example we demonstrate the effect that restricting the frequency com-
ponents’ dynamics can have on the segment transitions. Segment C contains
the ball and the club-head after the ball has been hit, and Segment B contains
only the ball post club swing. In the spectrogram in Figure 9.3 this corre-
sponds to two sinusoids transitioning to only a single sinusoid near time-step
35. Our minds automatically complete the path of the lower-frequency com-
ponent backwards to time-step 0. However, at that time-step there is a higher
peak at 0.04 Hz/sample, which is likely caused by motion of the golf player.
The analyses below will demonstrate the effects of an additional target that is
not modelled by the dynamics. In this example the ball contained a reflective
material that causes the “wobble” seen in the top frequency component. The
discrete factors are, however, too low in resolution to pick this effect up.

The analysis in Figure 9.4 correctly switches from the two-frequency model
to the one-frequency model. Some low-frequency noise picked up by BSA
causes a “jump” in the frequency component near time-step five. The signal
dynamics attempt to smooth the transition between the noise (the unexpected
frequency component) and the true position of the club head.

In Figure 9.5 we show the results of changing the dynamics of the analysis
to only allow a negative frequency chirp for the bottom frequency component.
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Figure 9.3: The spectrogram of Segment C and B of Doppler radar data.
There are two strong sinusoids visible, one stationary (the ball) and one with a
negative chirp (the club head). Note the presence of low-frequency components,
which are stronger than the club head at time-step 0. There is also a slight
“wobble” in the frequency component of the ball caused by a reflective material
that was placed in the ball.
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Figure 9.4: PGM analysis of Segment C and B of Doppler radar data.
The segment transitions are correctly estimated. However, the lower-frequency
noise is incorrectly seen as part of the club head between time-step 0 and 5.

This is done by setting the probabilities of positive values of ∆ω1 to zero. The
analysis now correctly extrapolates the frequency parts that are missing from
the BSA factors. If we know something about the nature of the signal dynam-
ics, restricting it to a subset of behaviour can be beneficial to smoothing the
signal.
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Figure 9.5: PGM analysis of Segment C and B of Doppler radar data with a
restriction of a negative chirp on the lower-frequency component. The segment
transitions are correctly estimated. Since the lower-frequency component is
restricted to having a negative chirp, the model can now correctly smooth the
club head’s frequency backwards in time.

9.2.2 Discrete: Segment A-E-G

Figure 9.6 is the spectrogram of a golf swing without a ball containing Seg-
ments A, E and G. To simplify the analyses, we manually removed the low-
frequency component near time-step 35 from consideration in the BSA factors
by setting them to zero. In this example there are three segments but only
two possible BSA models. The transitions are from a one-frequency component
to two components and back to one component. Modelling this left-to-right
behaviour would not be possible without our parallel Markov chain, which
describes the segment transitions. The same underlying BSA model is used
by both Segment A and Segment G. The example from Section 9.2.1 could,
however, be modelled without a Markov chain if the two-frequency model was
restricted to transitioning to a one-frequency model.

Figure 9.7 contains the analysis of the signal without any left-to-right seg-
ment transitions enforced. The analysis incorrectly shows that there is only
a single frequency component present throughout most of the signal. This is
despite the harmonics that can be seen in Figure 9.6. Remember from Sec-
tion 4.7.3 that we need to manually adjust the noise component in order for
our PGMs to make a reasonable estimation of the underlying BSA model.
Without this adjustment, BSA would select two very close frequency compo-
nents for the club-head. Note the magenta (purplish-red) parts of the analyses
at time-step 0 and near time-step 40. The magenta colour indicates that the
analysis considered both the one-frequency and two-frequency models as likely
hypotheses for those time-steps. These time-steps contrast with the results in
the previous section in Figure 9.4 and Figure 9.5 where the PGM was very
certain of the BSA model.
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Figure 9.6: The spectrogram of Segments A, E and G of Doppler radar data.
There is one frequency component (club head), then two (club head and stick-
flash) and then one again (club head). (We ignore the low-frequency component
near time-step 35.) However, the club head is obscured during the stick-flash.
There are also harmonics present in the spectrogram as there was clipping
present in the signal.
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Figure 9.7: PGM analysis of Segment A, E and G of Doppler radar data with-
out left-to-right segment transitions. The segment transitions are not correctly
estimated, with the single-frequency model being chosen as the most likely for
the most of the signal. Note the magenta parts of the analysis, which indicate
a mixture of single- and two-frequency models near time-step 0 and 40.

Including the left-to-right segment transitions improves the analysis as can
be seen in the following example. In contrast to the model without left-to-right
transitions in Figure 9.7, the analysis in Figure 9.8 correctly shows that there
are two signals present during the stick-flash, and smooths over the missing
BSA by extrapolating the results from either side. Note that the same BSA
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model occurs in Segment A and G but are related to different segments in the
analysis.
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Figure 9.8: PGM analysis of Segment A, E and G of Doppler radar data
which includes the left-to-right segment transitions. The segment transitions
are correctly estimated with high certainty. The analysis smooths over the part
where the club head was not visible in the spectrogram.

9.3 Hybrid Model Results

In order to calculate the results for visualisation, we calculate the Gaussian
probability density functions using the mean and covariance matrices of the
marginal probability densities. The results of the hybrid model often have
very sharp peaks, since the underlying BSA factors are very sharply peaked
as we saw in Chapter 4. The resulting sharp BSA probability densities are
not present in the discrete analyses, which have a very low resolution due to
binning.

9.3.1 Hybrid: Segment C-B

In this section we discuss the results for a signal with the same segment transi-
tions as in Section 9.2.1. Figure 9.9 contains the spectrogram of a signal with
very similar behaviour to the signal from Figure 9.3. In this example the ball
did not contain a reflective material.

Figure 9.10 contains the PGM analysis of the signal using the hybrid model.
It correctly transitions from the two-frequency model to the one-frequency
model. The peaks are so sharp that they are barely visible. The hybrid model
analysis is similar to the discrete analysis in Figure 9.4 in the sense that it also
saw the low-frequency player motion frequency component at 0.04 Hz/sample
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Figure 9.9: The spectrogram of Segment C and B of Doppler radar data. This
signal is a similar to Figure 9.3. There are two strong sinusoids visible, one
stationary (the ball) and one with a negative chirp (the club head). Note the
presence of low-frequency components, which are stronger than the club head
at one point.

as part of the club head. In this case, however, we are not able to restrict
the signal dynamics of the lower-frequency component to a negative chirp, as
Gaussian probability densities cannot be restricted to only positive or negative
values. Since the peaks are so sharp and difficult to see, we enlarge the top
and bottom parts of the analysis in Figure 9.11 and Figure 9.12 respectively.
Decreasing the process noise will not work in this example, since the PGMs
start to encounter issues with computational problems when inverting subma-
trices.
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Figure 9.10: PGM analysis of Segment C and B of Doppler radar data. The segment transitions are correctly estimated.
However, the lower-frequency noise is incorrectly seen as part of the club head at time-step 0. This is similar to the discrete
model analysis in Figure 9.4. For the hybrid model, the peaks are very sharp and almost not visible as a result. This is caused
by the sharp BSA factor peaks.
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Figure 9.11: An enlargement of the top region of Figure 9.10. Note the sharp
peaks.
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Figure 9.12: An enlargement of the bottom region of Figure 9.10. Note the
sharp peaks and the “jump” of the frequency component between time-step 0
and 1.

As a second experiment, we use artificially created covariance matrices
with a variance of 0.01 but still use the the original BSA means. The resulting
analysis is shown in Figure 9.13. The result is less sharply peaked and follows
the linear dynamics of the PGM more closely. In this case we are able to
only adjust the ratio between the process noise and measurement noise by
artificially increasing the measurement noise.
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Figure 9.13: PGM analysis of Segment C and B of Doppler radar data using
the BSA means but with artificially created covariances. The segment transi-
tions are correctly estimated. The peaks are much less sharp than Figure 9.10
and the signal dynamics much more closely resemble the linear Gaussian dy-
namics.

9.3.2 Hybrid: Segment F-C-B

In this section we include the use of the three-frequency model, which we could
not do for the discrete model. Figure 9.14 is the spectrogram of the signal
containing Segment F, C, and B. The spectrogram contains three frequency
components (from the top, the ball, club head, and stick-flash), then two (the
ball and club head), and then only one (the ball). Note that the club-head
frequency component is relatively faint between time-step 0 and 30.
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Figure 9.14: The spectrogram of Segment F, C, and B of Doppler radar data.
There are three strong sinusoids visible, one stationary (the ball) and two with
a negative chirp (the club head in the middle and stick-flash at the bottom).
Note the middle frequency component is relatively weak from time-step 0 to 30.

Figure 9.17 contains the hybrid model analysis without the left-to-right seg-
ment transitions and Figure 9.15 contains the enlargement of its top region.
Note that there are sharp peaks, which are similar to the peaks in Figure 9.10.
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Figure 9.15: This is an enlargement of the top region of Figure 9.17.

The magenta and cyan (light-blue) indicate a mixture of possible BSA models
similar to that which occurred for the discrete model in Figure 9.7. Where the
magenta indicates a mixture of one-frequency and two-frequency models, the
cyan indicates a mixture of two-frequency and three-frequency models.

When we include the left-to-right segment transitions in the analysis, we
have the result in Figure 9.18, with the top region enlarged in Figure 9.16. In
contrast to the previous example, the segment transitions are now correctly
estimated.

20 40 60 80

0.210

0.215

0.220

RGB of Segment F-C-B

M = 1
M = 2
M = 3

Time-steps (number)

ω
(c

y
cl

e
s/

sa
m

p
le

)

Figure 9.16: This is an enlargement of the top region of Figure 9.18. Note
the sharp peaks
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Figure 9.17: PGM analysis of Segment F, C and B of Doppler radar data without left-to-right segment transitions. For
the hybrid model, the peaks are very sharp and almost not visible as a result. This is caused by the sharp BSA factor peaks.
Note the uncertainty between the active BSA model indicated by the cyan and magenta colours.
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Figure 9.18: PGM analysis of Segment F, C and B of Doppler radar data. The segment transitions are correctly estimated.
For the hybrid model, the peaks are very sharp and almost not visible as a result. This is caused by the sharp BSA factor
peaks.

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 9. PGM EXPERIMENTAL RESULTS 112

9.3.3 Hybrid: Segment A-E-G

For the following analyses we manually specified the time-steps of the segment
transitions in order to demonstrate the missed-target model. The signal dy-
namics are not enough on their own to help the PGM determine the segment
transitions without the help of the BSA factors’ model probabilities. However,
in the case where the frequency is missed, the BSA model probability is wrong.
If we did not specify the segment transitions, the result would be much like in
Figure 9.7 where the single-frequency model dominates even with left-to-right
segment transitions.

Figure 9.19 contains the spectrogram of the signal part under analysis,
which is the same signal in Section 9.2.2 but with slightly fewer time-steps.
In this case we once again ignore the low-frequency component created by the
player’s body near time-step 24 for the sake of simplicity. We do so, by disal-
lowing the Nelder-Mead optimisation technique from Section 4.3 to search for
a peak in that region.
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Figure 9.19: The spectrogram of Segments A, E and G of Doppler radar
data. This spectrogram is the same signal as Figure 9.6. There is one frequency
component (club head), then two (club head and stick-flash) and then one again
(club head). (This is ignoring the low-frequency components between time-step
23 and 33.) During the stick-flash, the club head is obscured.

Figure 9.20 contains the left-to-right analysis of the signal with the segment
transitions specified. BSA did not detect the club head during the stick-flash
(time-step 24 to 33) and rather hypothesises two very close signals which are
then smoothed by the PGM. We use artificially created covariances such as
was done in Figure 9.13 with the result shown in Figure 9.21; however, this
still does not give us the desired result of smoothing over the empty region
where we expect the club-head to be.
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Figure 9.20: PGM analysis of Segment C and B of Doppler radar data. The
segment transitions were not estimated and were instead specified in order to
demonstrate the difference the missed target model makes in Figure 9.22.
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Figure 9.21: PGM analysis of Segment C and B of Doppler radar data using
the BSA means but with artificially created covariances. The segment transi-
tions were not estimated and were instead specified in order to demonstrate the
difference the missed target model makes in Figure 9.22.

We include the missed target model from Section 7.4.3 for the top frequency
component of the two-signal for the analysis in Figure 9.22. To create our two-
frequency model (which contains a missed target), we take the lower frequency
component, the stick-flash, from the single frequency BSA and we multiply it
with a Gaussian with a variance of 1 and mean of 0.15 to create a very uncertain
prior for the missed-target frequency component. In this case the PGM can
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successfully smooth over the region where the club head was invisible to BSA.
For the discrete model with a similar signal in Section 9.2.2, we did not need
the missed-target model. We hypothesise that this is due to the noise floor
being created by binning the probability density function. The binning from
the discretisation creates a noise floor that is high enough for the PGM to find
a path for the missed target. The peak of the BSA factor therefore does not
have as large an impact if it is wrong in the discrete model. For the hybrid
model, however, there is no such floor as the Gaussian function dies away from
the peak very quickly. The Gaussian peak therefore has a bigger influence and
“pulls” the probability of the signal dynamics towards it.
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Figure 9.22: PGM analysis of Segment C and B of Doppler radar data. The
missed target model is able to smooth the position of the club head where it was
not visible to BSA.

9.3.4 Hybrid: Segment A-A’-D

In the next few analyses we include the low-frequency component in Segment
A caused by the player’s movement, which had previously been excluded from
consideration for the BSA. We call the part containing the low-frequency com-
ponent Segment A’ to differentiate it from what we had previously only referred
to as Section A. We once again make use of the missed-target model but this
time it is for Segment D. Since the club head is obscured by the stick-flash, we
do not know where the true frequency component should be. We thus need to
make an educated guess of the behaviour of this frequency component (even if
we do not know enough about it), as it is a requirement for using the missed-
target model. We use the end of the player-movement frequency component
to signify the start of our missed-target model and presuppose that the missed

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 9. PGM EXPERIMENTAL RESULTS 115

target has the same ∆ω from when the club head was still visible to BSA. To
create our two-frequency model, we use the same approach as in Section 9.3.3.
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Figure 9.23: The spectrogram of Segments A and D of Doppler radar data.
There is one frequency component (club head), then two (club head and player
motion), and then a different two (club head and stick-flash). In this example
we distinguish between Segment A without player motion as A, and with player
motion as A’. However, during the stick-flash, the club head is obscured.

Figure 9.24 contains the analysis without using the missed-target model
where the signal segment transitions are specified. BSA could not detect the
club head during the stick-flash, and models two close frequency components.
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Figure 9.24: PGM analysis of Segment A and D of Doppler radar data. The
segment transitions were not estimated and specified in order to demonstrate
the difference the missed-target model makes in Figure 9.25.
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Figure 9.25 contains the analysis with the missed-target model where it
was unnecessary to specify the signal segments as the system automatically
detected the correct signal segments. In this case the PGM had more informa-
tion specified than in Section 9.3.3 in the form of the low-frequency component
caused by the player’s body. The disappearance of a frequency component al-
lows the PGM to detect the segment transition. The missed-target model can
now extrapolate the position of the club head during Segment D based on the
behaviour of the club head during Segment A’. The colour becomes fainter
over each time-step since there are no longer any BSA factors indicating the
position of the club head and the effects of the process noise build up over
time.
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Figure 9.25: PGM analysis of Segment C and D of Doppler radar data. The
missed-target model is able to smooth the position of the club head where it was
not visible to BSA. Note the faint colour of the club head. It continues as a
linear extension from the previous segment without receiving any information
from the BSA factors.

We enlarge Segment D in Figure 9.26 and indicate the mean of the missed-
target model. The frequency component continues its downwards trend over
the time-steps, becoming ever fainter as the PGM becomes ever less certain of
its position.

9.3.5 Hybrid: Segment A-A’-D-F-C-B

In this analysis we combined the analyses from Section 9.3.2 and Section 9.3.4.
We still needed to specify the signal segments, but were able to smooth the fre-
quency components and extrapolate the frequency component that was missing
in Segment D. Figure 9.28 contains the analysis of the entire golf swing.
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Figure 9.26: This is an enlargement of the top region of Figure 9.25. We
include the maximum values of the club-head position. Note that the PGM
becomes more uncertain of the club head position for each time-step.
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Figure 9.27: The spectrogram of Segments A, D, F, C, and B of Doppler
radar data. This spectrogram contains the frequency components from Fig-
ure 9.23 and Figure 9.14.
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Figure 9.28: PGM analysis of Segments A, D, F, C, and B of Doppler radar data. The missed-target model is able to
smooth the position of the club head where it was not visible to BSA from time-steps 34 to 51. The smoothed position is,
however, so faint that one cannot see it in this figure. The segment transitions were not estimated and needed to be specified.
The large variance near time-step 30 (the last step for M = 1) is likely due to a combination of the faint frequency component
which can be seen in the spectrogram and the jump in frequency to the new BSA model.
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Figure 9.29: This is an enlargement of the first region of Figure 9.28. The
smoothed club head is very faint, and we therefore included the error bars and
the mean. Note that the PGM is more certain of the club-head position at the
edges of the missing-target model’s segment.

Figure 9.29 is an enlargement of the first region of Figure 9.28. We include
error bars in order to demonstrate the uncertainty of the missed-target model.
In this example, once again, the PGM did not change the initial BSA estimates
very much. Decreasing the process noise will also not work in this example
such as in Section 9.3.1.

9.4 Conclusion

We had moderate success in smoothing the Doppler radar frequency compo-
nents where some parts of the signals were more easily smoothed and others.
It struggles somewhat more on the simulated data without the factors adding
extra information. The methods developed, namely the left-to-right Markov
chain and the missed-target model, allowed us to improve upon the conven-
tional multitarget tracking. These methods compensated for our uncertainty
surrounding the behaviour of the Doppler radar signals. With more domain
knowledge, which could be more easily incorporated in the PGM framework,
the smoothing of the Doppler radar frequency components could be improved
even further.
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Chapter 10

Conclusion and
Recommendations

10.1 Conclusion

In this thesis we demonstrated a Bayesian approach to signal processing. The
signals of interest, containing the Doppler shifts of objects moving during a
golf swing, were analysed using BSA and then smoothed using PGMs. In order
to develop our approach we combined three different methods, namely BSA,
state-space estimation, and PGMs. Our approach resulted in spectrogram-like
Bayesian analyses of the frequency components in the Doppler radar signals.
While we did not automate all the processes related to the multitarget tracking
of the golf swing, we were able to demonstrate how a Bayesian approach can
be advantageous. This is a systematic approach where the principles can be
applied to spectrum analyses and multitarget tracking. Some of the problems
we solved include how to model the progression of different parts of the signal
(segment transitions), and what to do when the measurements are missing
(missed-target model) or too confident (we increased the model noise).

10.1.1 Doppler Radar Signals

The signals we analysed were measured Doppler radar signals where the Doppler
effect allowed us to relate relative frequency shifts to the physical objects that
move in a golf swing. These signals, however, contain effects such as thermal
noise, multi-path effects, clipping, and frequency components that are not well
understood. Classical methods such as the DFT and spectrogram have no con-
cept of noise, unwanted target, or missed target. Analysis of the Doppler radar
signals can benefit from the techniques we explored in this thesis, as they do
contain these concepts.

120
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10.1.2 Bayesian Spectrum Analysis

We discussed Bayesian probability theory and demonstrated the use of Bret-
thorst’s BSA [8]. Bayes’ theorem allows us to estimate a model’s parameters
by treating them as random variables and to compare different competing
models. We demonstrated these concepts in BSA on simulated and Doppler
radar data signals where the models did not make the implicit assumption of
single sinusoid in white noise such as is made by the periodogram [8].

We performed two types of analyses on the Doppler radar data: a long
segment analysis and a shorter time-step spectrogram-like analysis. The long
segments relate to the number of targets and dynamics present in each part
of the signal. The mismatch between our models and the true signal was seen
as noise by BSA, which is not present as a concept in the periodogram or
spectrogram.

In the long segment analyses, the selected models suggested that the under-
lying complexity of the signal was greater than our BSA models could explain.
The model selection favours the more complex models despite the penalties
Bayesian probability theory imposes for having more complexity (such as hav-
ing a larger number of parameters). This is not a failure of BSA, but a case
of our assumptions about the signals being too strict and the frequency be-
haviour being more complex than is explained by our models. The shorter
analyses reduced the effects of the non-linearities in the Doppler radar signal.
However, the short signal analyses still suggested that the Doppler radar data
contain more complexity than our models are able to explain, such as that
there are possibly multiple very close signals (so close that their peaks overlap
in the DFT). The appearance of the multiple very close frequency components
is likely due to an object reflecting a range of different frequencies that are
very close to one another and that relate to the different velocities of different
parts of the object. Explicitly specifying the amount of noise in the signal in
our BSA models allowed the simpler signals to be selected more often, which
supports our hypothesis about the signal complexity. Less of the signal thus
needs to be attributed to the signal model when increasing the noise power.

There tended to be a single strong frequency or group of very close fre-
quencies created by the object that we are interested in. This proved to be
invaluable for use in our PGMs, since with the time-step analyses the prob-
lem can be framed as a multitarget state-space estimation with the frequency
components seen as targets.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 10. CONCLUSION AND RECOMMENDATIONS 122

10.1.3 State-space Estimation

We discussed how multitarget state-space estimation can be framed as Bayesian
inference [11]. In conjunction with the BSA, we could use state-space estima-
tion for smoothing the Doppler radar data parameters in a form in which
PGMs can be used.

We discussed three different approaches used in the literature, TOMHT [11],
switching state-space estimation [18], and JMPDT [19]. Our own model is a
combination of multitarget tracking with a left-to-right transition of signal
segments which includes additional temporal information.

10.1.4 Probabilistic Graphical Models

The PGMs we used are called cluster graphs. They are loopy, undirected
graphs, which can represent the state-space estimation transitions as proba-
bility factors that factorise the joint probability density. We discussed the two
types of factors used in this thesis and their operations – namely the discrete
factor and the hybrid discrete Gaussian factor. We discussed the different al-
gorithms that can be used to perform inference on them, specifically LBP [33],
LBU [14], as well as the method of dynamically scheduling messages, RBP [35].
We used LBU with RBP scheduling.

The concepts from Bayesian state-space estimation allowed us to model
our approach to smoothing the Doppler radar data’s frequency components as
PGMs. We developed a model in which the traditional state-space estimation
transitions are combined with a discrete Markov chain for the signal segments
discussed in Section 4.6. In order to exercise our intuition about the problem,
we represent the model as a Bayes network and then implement it as cluster
graphs. Using the parallel Markov chain, we could enforce a left-to-right pro-
gression of the Doppler radar data signal segments which relate to the different
parts in the signal. The factors used for the discrete and hybrid models differed
in that more conditional independences were included in the discrete model
to allow for computational tractability. We also constructed a missed-target
model for the hybrid model.

The challenges we faced included message-passing constraints and process
noise for the hybrid PGM. As expected, the discrete model had more computa-
tional constraints in respect of the number of frequency components we could
represent. We also needed to consider the different effects that LBU and LBP
have on the approximate message passing of our hybrid PGM. We make use of
LBU, since both [14] and [40] suggest that the LBU approximation potentially
focusses on the more relevant parts of the probability space.
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While our approach could not generalise to the whole Doppler radar signal,
we were able to successfully demonstrate the concepts discussed in the above
sections on parts of the signals. The models we constructed allowed us to
include domain knowledge in a probabilistic and systematic manner. Our use
of the segment transitions and missed-target model improved the standard
mulitarget tracking. The components developed in this thesis can be used in
other multitarget tracking applications.

10.2 Recommendations and Future Work

In this section we discuss approaches that could further assist in achieving
the goal of fully automated target tracking of the Doppler radar data. Of
the recommendations mentioned here, we suggest that the most promising ap-
proaches would be systematically quantifying the measurement and process
noise for the model dynamics, and using explicit duration models.

Future work could aim to:

� Employ better methods in estimating process noise. As mentioned in
Section 8.3.3, one of the difficulties in creating our state-space estima-
tion models lay in selecting our process noise for our linear Gaussian
transitions. The process noise is also not necessarily the same through-
out the entire signal.

� Use explicit duration models (See Appendix E), which can include more
temporal information on the duration of the signal segments.

� Use more complex BSA models to better capture the Doppler radar
data behaviour. The additional parameters could also be used within
the PGMs to better smooth the frequency components.

� Alternatively explore the noise in the Doppler radar data further by
estimating the signal noise given the BSA model. See Section A.4 for
Bretthorst’s [8] formulation of estimating the noise variance.

� Include the level of trust in the BSA results as a factor in the PGMs.
This could effectively increase the “measurement” noise in the models
and mitigate the sharp peaks in the BSA results.

� Use alternate discretisation approaches of the factors such as Particle
Filters [27] or MCMC techniques [42]. These methods have other chal-
lenges to overcome, such as determining the burn-in period and the curse
of dimensionality [43].
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� Use Gaussian mixture models [44], which would be able to approximate
multi-modal probability density functions and avoid weak marginalisa-
tion.

� Model the position of the objects being tracked and not merely smooth
the relative frequency shifts. This would require using the multiple chan-
nels in the Doppler radar unit and the phase differences between them.
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Appendix A

BSA Detail

In this chapter we give a more detailed overview of Bretthorst’s generalised
approach to BSA in the case of a general signal model and will closely follow
the calculations done in [8, 21, 22].

A.1 BSA Parameter Estimation

With N data points, D = {d1, ..., dN}, sampled from y(t), the continuous
signal, at discrete times {t1, ..., tN}, the signal model M(t) and signal noise
e(t), we have the following equation to describe our data:

di = M(ti) + e(ti), (1 ≤ i ≤ N). (A.1.1)

All of the functions in the above equation are functions of time that have
been sampled at discrete times. The noise is assumed to be additive and non-
correlated.

The general form of the model as from [8] is:

M(ti) =
m∑
j=1

BjGj(ti,Θ) (A.1.2)

with Bj the amplitude multiplied with the jth model function Gj(ti,Θ), out
of m possible model functions. The set of r parameters that are going to be
estimated are

Θ = {Θ0, ...,Θr−1}.
The model parameters can be frequencies, chirp rates, signal decay or any ar-
bitrary set of parameters used to describe the signal.

The case of estimating the frequency of a single sinusoid in noise gives us
the following model [8]:

M(ti) = B1 cos(2πωti) +B2 sin(2πωti),

126
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with m = 2 model functions, cos and sin, with unknown amplitudes, B1 and
B2, and a single model parameter for the frequency of the signal, ω. Note that
the assumption is made that each of the amplitudes in the set B = {B1, B2, ...}
is constant throughout the signal. This is not a limitation, as one can include
and parameterise the change in amplitude in the model function, Gj(ti,Θj).

The parameter estimation from Equation 3.2.4 is

p(Ω|D,Mj, I) =
p(D|Ω,Mj, I)p(Ω|Mj, I)

p(D|Mj, I)
.

Here the model parameters, Θ and model amplitudes B, are our hypothesis so
that Ω = {Θ,B}. We will not write Mj on the right of the conditioning bar,
since for parameter estimation the implicit assumption that the correct model
is selected can be encoded in I. Using the above equation, the probability of
the model parameters, Θ, and nuisance amplitude parameters, B, given the
data and other prior information is

p(Θ,B|D, I) =
p(D|Θ,B, I)p(Θ,B|I)

p(D|I)
.

The probability of parameters given only the information I represents the state
of knowledge about the parameters before the data were measured, which
is our prior, p(Θ,B|I). The other factors in the equation are p(D|Θ,B, I)
the likelihood function, p(Θ,B|D, I) the posterior, and p(D|I) the normalis-
ing constant [21]. Our goal is to calculate the parameters of interest Θ and
marginalise out the amplitudes B to get

p(Θ|D, I) =

∫
dB p(Θ,B|D, I),

which is the probability of the parameters given the data.

A.1.1 The Likelihood Function

The model parameter and amplitude likelihood function is constructed by tak-
ing the difference between the model function, M(ti) or the “true signal”, and
the data, D, which gives us the noise, e(ti). Jaynes [7] and Bretthorst [8]
justify using a Gaussian prior for the noise by using the principle of maximum
entropy and the central limit theorem as discussed in Section 3.2.6. Generally
not much is known about the noise except that the noise carries finite total
power.

The following calculations come from [8]. The probability density of a noise
sample at time ti given prior information I is

p(e(ti)|σ, I) =
1√

2πσ2
exp

{
−e(ti)

2

2σ2

}
,
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where σ is the standard deviation of the noise values e(ti). Everything not
explained by the parameter values of the model will be made part of the noise,
and the accuracy of the parameter estimates depends on the estimated noise
variance [21].

Using the product rule of probability theory for the whole set of e(ti) values,
for 1 ≤ i ≤ N , and supposing that they are independent gives us:

p(e(t1), ..., e(tN)|σ, I) =
N∏
i=1

[
1√

2πσ2
exp

{
−e(ti)

2

2σ2

}]
. (A.1.3)

From Equation A.1.1, we can see that the error e(ti) is the difference between
our model and the data observed. It follows that the probability that one
should obtain this particular noise sample, which is also the likelihood L of
the parameters under consideration, is

p(D|B,Θ, σ, I) = L(B,Θ, σ) = (2πσ2)−(N/2)

N∏
i=1

[
exp

{
− [di −M(ti)]

2

2σ2

}]
.

The multiplication can be written as a sum inside the exponent function:

L(B,Θ, σ) = (2πσ2)−(N/2) exp

{
− 1

2σ2

N∑
i=1

[di −M(ti)]
2

}
(A.1.4)

Substituting A.1.2 in our model equation for M(ti) and multiplying out the
square of the difference between the data and the model function gives us

L(B,Θ, σ) = (2πσ2)−(N/2) exp

{
−NQ(Θ)

2σ2

}
, (A.1.5)

where we define

Q(Θ) ≡ d2 − 2

N

m∑
j=1

N∑
i=1

BjdiGj(ti,Θ) +
1

N

m∑
j=1

m∑
k=1

gjk(Θ)BjBk (A.1.6)

and

gjk(Θ) ≡
N∑
i=1

Gj(ti,Θ)Gk(ti,Θ), (A.1.7)

where j and k are the row and column of the matrix respectively. The mean-
square of the data d2 is calculated as follows:

d2 =
1

N

N∑
i=1

d2
i .

We have yet to marginalise the nuisance parameters – the model amplitudes
B. In the following section we will simplify Equation A.1.5 by making all terms
which are not on the diagonal zero in the matrix gjk(Θ).
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A.1.2 The Orthonormal Model Equations

The following calculations are still from [8]. Supposing redundant model func-
tions are removed so that gjk(Θ) is positive-definite and of rank m (the number
of model functions), let ekj(Θ) be the jth component of the kth normalised
eigenvector of gjk(Θ) and λj(Θ) the corresponding eigenvalue:

m∑
k=1

gjk(Θ)elk(Θ) = λl(Θ)elj(Θ).

Note that gjk is a function of the model parameters of interest and thus λ and
e are too. We can define new orthonormal (orthogonal and normalised) model
functions:

Hj(ti,Θ) =
1√
λj(Θ)

m∑
k=1

ejk(Θ)Gk(ti,Θ) (A.1.8)

and have a new guaranteed orthonormal gjk(Θ) matrix redefined as:

ϕjk(Θ) =
N∑
i=1

Hj(ti,Θ)Hk(ti,Θ).

The model Equation A.1.2 can now be rewritten in terms of the orthonormal
functions Hj(Θ):

Morth(ti) =
m∑
j=1

AjHj(ti,Θ). (A.1.9)

Where the new amplitudes A are linearly related to the old amplitudes B for
each set of values of the model parameters:

Bk =
m∑
j=1

Ajejk(Θ)√
λj(Θ)

and Ak =
√
λk(Θ)

m∑
j=1

Bjejk(Θ)). (A.1.10)

A.1.3 Elimination of Nuisance Parameters

We still follow the calculations from [8], except where indicated. We now have
our orthonormal model functions and are able to eliminate the parameters
that we do not wish to estimate. Typically this would be the now orthonor-
mal amplitude parameters, A, as we wish to estimate parameters such as the
frequency, chirp, decay, etc. We will marginalise the amplitude parameters for
the general case with an arbitrary number of model functions.

Substituting Equation A.1.9, our orthonormalised model functions, into
Equation A.1.4, our likelihood function, we have

L(B,Θ, σ) = (2πσ2)−(N/2) exp

{
− 1

2σ2

N∑
i=1

[di −Morth(ti)]
2

}
,
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and since we can rewrite the equation in terms of the new amplitudes A, we
have

L(A,Θ, σ) = (2πσ2)−(N/2)

× exp

{
− N

2σ2

[
d2 − 2

N

m∑
j=1

Ajhj(Θ) +
1

N

m∑
j=1

A2
j

]}
, (A.1.11)

with hj(Θ) defined as:

hj(Θ) ≡
N∑
i=1

diHj(ti,Θ), (1 ≤ j ≤ m). (A.1.12)

Here hj(Θ) is the projection of the data onto the orthonormal model function
Hj(ti,Θ). This will help us calculate the sufficient statistic and summarise all
of the information in the data for inferences about the nonlinear parameters
[21]. This is the function that is especially important with regard to finding
the most likely set of parameters given the data.

In order to remove the amplitudes, we need a prior probability density
function for their values. We use Gaussian probability density functions, as
the amplitudes are location parameters. It is assumed the data determine the
parameters much better than the prior, so the variance on the prior for the
amplitudes is assumed to be very large. Therefore, over the region where the
direct probability of the data is at its peak, the prior will look like a uniform
prior [21]. In the limit of the Gaussian probability density function’s variance
to infinity, the prior will be an improper uniform prior. This unbound uniform
prior is strictly speaking not a probability distribution at all. This is not a
problem for parameter estimation, as the infinities introduced always cancel
out when the distribution is normalised. This is not true for model selection,
and improper priors cannot be used. We will use properly bounded priors in
Section A.3. The amplitudes can be marginalised analytically using multivari-
ate Gaussian integrals (see Appendix B.1). For now we ignore the normalising
constants. Approximating the prior for the amplitudes and integrating them
out, we obtain [21]

L(Θ, σ) ∝ σ−N+m × exp

{
−Nd

2 −mh2(Θ)

2σ2

}
, (A.1.13)

where we define

h2(Θ) ≡ 1

m

m∑
j=1

[hj(Θ)]2 (A.1.14)

as the mean-square of the observed projections.
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If σ is known, then the joint probability of the Θ parameters conditional
on the data and the noise is:

p(Θ|D, I) ∝ exp

{
mh2(Θ)

2σ2

}
. (A.1.15)

If σ is not known, it is removed as a nuisance parameter. It is a scale parameter
and restricted to positive values. The uninformative prior probability for scale
parameters is the Jeffrey’s prior. Marginalising σ given the Jeffrey’s prior
(1/σ) gives us

p(Θ|D, I) ∝
[

1− mh2(Θ)

Nd2

]m−N
2

. (A.1.16)

The above function only becomes singular if one has a perfect knowledge of
the Θ parameters. Equations A.1.15 and A.1.16 will allow us to calculate the
frequency and chirp parameters of an arbitrary number of sinusoids.

A.2 BSA Relation to Periodogram

In this section we will demonstrate the relation between the periodogram and
BSA. We wish to calculate the sufficient statistic for a model to an arbitrary
resolution using Equation A.1.14:

h2(Θ) ≡ 1

m

m∑
j=1

[hj(Θ)]2.

As per our model function Equation A.1.2, we can calculate the sufficient
statistic for a signal model. For a single sinusoid model we would construct
the model:

M1 sin(ti) = B1 sin(2πω) +B2 cos(2πω)

where m = 2 is the number of model functions.

The first step would be calculating the gij matrix using Equation A.1.7 to
create our orthonormal model functions:

gij(ω) =

[ ∑k=−T
k=T cos2(2πωk)

∑k=−T
k=T cos(2πωk) sin(2πωk)∑k=−T

k=T cos(2πωk) sin(2πωk)
∑k=−T

k=T sin2(2πωk)

]
,

where i and j are the row and column of the matrix respectively. For uni-
form time sampling the off-diagonal terms are zero and the diagonal can be
approximated as

gij(ω) ≈
[
N
2

+ sin(2πNω)
2 sin(2πω)

0

0 N
2
− sin(2πNω)

2 sin(2πω)

]
.
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Calculating our orthonormal model functions using Equation A.1.8, we have

H1(t, ω) ≈ cos(2πωt)√
N
2

+ sin(2πNω)
2 sin(2πω)

,

H2(t, ω) ≈ sin(2πωt)√
N
2
− sin(2πNω)

2 sin(2πω)

.

When N � 1 then our model functions are approximately

H1(t, ω) ≈
√

2 cos(2πωt)√
N

,

H2(t, ω) ≈
√

2 sin(2πωt)√
N

.

The projection of the data on the orthonormal model functions are, from
Equation A.1.12:

h1(ω) ≈
N∑
i=1

di

√
2 cos(2πωti)√

N
,

h2(ω) ≈
N∑
i=1

di

√
2 sin(2πωti)√

N
.

Note the similarities to the projection of the data for the periodogram that
can be calculated as:

C(ω) =
1

N

[
R(ω)2 + I(ω)2

]
=

1

N

∣∣∣∣∣
N∑
j=1

dje
2πiωtj

∣∣∣∣∣
2

=
1

N
|DFT|2

and where the real and imaginary projections are:

R(ω) =
N∑
j=1

dj cos(2πωtj)

and

I(ω) =
N∑
j=1

dj sin(2πωtj).

From Equation A.1.14 we then calculate

h2(ω) ≈ 1

2

[
N∑
i=1

di

√
2 cos(2πωti)√

N

]2

+
1

2

[
N∑
i=1

di

√
2 sin(2πωti)√

N

]2

= C(ω)

and arrive at the periodogram C(ω) as the sufficient statistic for a single sinu-
soid in white noise.

One need not approximate gij and the orthonormal functions Hj, and can
calculate them exactly. For the case of the single sinusoid, the error caused by
the approximations is negligible and becomes smaller for larger values of N .
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A.3 BSA Model Selection

If one has a set of possible BSA models, how does one determine which one is
most likely to be the correct model? Given the data and the available prior
information, how strongly is that model supported relative to the alternatives?
The questions asked for model selection are different to that of parameter es-
timation but are solved using the same methods. This section is based on [22],
except where otherwise indicated.

The questions can be solved by calculating the joint probability density
function of the data and the parameters, and then integrating out the param-
eters. For BSA this cannot be done analytically. Using Bayes’ theorem we
have the likelihood function for our model under consideration:

p(D|Mj, I) =

∫
dΘ p(Θ|Mj, I)

×
∫
dA p(A|Θ,Mj, I)p(D|,A,Θ,Mj, I)

, (A.3.1)

where Mj is the jth model function under consideration with the parameters
of interest in the previous section Θ and the model function amplitudes A
being marginalised out.

Unlike our method of parameter estimation from the previous section, all
the numerical factors must be kept as they do not necessarily cancel during
model selection. One can consider all the parameters as nuisance parameters
to be marginalised. Since we are ignorant as to which model is the correct one,
we use a uniform prior for the models. The following equation for the model
probability has the constants cancelling out:

p(Mj|σ,D, I) =
p(D|σ,Mj, I)�����p(Mj|I)∑s
k=1 p(D|σ,Mk, I)�����p(Mj|I)

=
p(D|σ,Mj, I)∑s
k=1 p(D|σ,Mk, I)

,

where s is the number of hypotheses under review and the prior for our models
is p(Mj|I) = 1/s.

Our parameter likelihood from Equation A.1.11 is multiplied with the prior
probability density functions over the parameters we wish to marginalise, and
then we integrate them out to determine the model likelihood function in
Equation A.3.1 as follows:

p(D|Mj, σ, I) = (2πσ2)−(N/2)

∫
dΘdA p(Θ,A|Mj, I)

× exp

{
− N

2σ2

[
d2 − 2

N

m∑
j=1

Ajhj(Θ) +
1

N

m∑
j=1

A2
j

]}
. (A.3.2)
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Because any information we have about our model parameters Θ will not
influence our knowledge about the amplitudes, A, we can write our prior
knowledge about these independent parameters as:

p(A,Θ|Mj, I) = p(A, |Mj, I)p(Θ|Mj, I).

We have vague information about the amplitudes A. They are location pa-
rameters and Gaussian probability density functions are therefore appropriate.
As Gaussian priors do not restrict random variables to be either negative or
positive and we have little information about the mean, we select a zero mean
Gaussian for each amplitude. Assuming that the different amplitudes are in-
dependent of each other, the probability of all the amplitudes is a product of
Gaussian probability density functions and thus

p(A|γ,Mj, I) = (2πγ2)
m
2 exp

{
−

m∑
k=1

A2
k

2γ2

}
, (A.3.3)

is our prior. This introduces a new parameter γ, which is the standard devia-
tion of our prior Gaussian densities and is a hyperparameter. We are assuming
little prior information so that we have σ � γ and the same precision for all
the amplitudes.

Substituting our prior A.3.3 into A.3.2 we have

p(D|Mj, σ, γ, I) = (2πσ2)−(N/2)(2πγ2)
m
2

∫
dΘ p(Θ|Mj, I)

×
∫ ∞
∞

dA exp

{
−

m∑
k=1

A2
k

2γ2

}

× exp

{
− N

2σ2

[
d2 − 2

N

m∑
j=1

Ajhj(Θ) +
1

N

m∑
j=1

A2
j

]} (A.3.4)

as the likelihood of our model parameters and model amplitudes given the
model and the hyperparameter γ. Integrating out the nuisance amplitudes
which are Gaussian integrals (see Appendix B.1), we obtain:

p(D|Mj, σ, γ, I) = (2πσ2)−(N/2)

[
σ2 + γ2

σ2

]−(m/2)

×
∫
dΘ p(Θ|Mj, I) exp

{
−Nd

2

2σ2
+

mh2γ2

2σ(γ2 + σ2)

} (A.3.5)

Since we assume σ � γ, we can simplify the equations by means of the
following approximations:

σ2 + γ2

σ2
= 1 +

γ2

σ2
≈ γ2

σ2
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and

γ2

σ2(γ2 + σ2)
=

(σ2 + γ2)

σ2(σ2 + γ2)
− σ2

σ2(σ2 + γ2)
=

1

σ2
− 1

σ2 + γ2
≈ 1

σ2
− 1

γ2

thus giving us

p(D|Mj, σ, γ, I) ≈ (2π)−(N/2)σm−Nγ−m

×
∫
dΘ p(Θ|Mj, I) exp

{
− [Nd2 −mh2]

2σ2
− mh2

2γ2

}
(A.3.6)

We now only need to marginalise the parameters Θ which we cannot do
analytically. To avoid numeric integration, we can perform a Taylor expansion
on the peak of h2. The values that maximise the posterior probability for the
model Mj are designated as Θ̂ ≡ {Θ̂0, ..., Θ̂r−1} where r is the total number
of parameters. One then obtains:

h2 ≈ h2

∣∣∣
Θ̂
−

r∑
k=1

r∑
l=1

bkl
m

(Θ̂k −Θk)(Θ̂l −Θl), (A.3.7)

where defining

bkl ≡ −
∂2mh2

2∂Θk∂Θl

∣∣∣∣∣
Θ̂

. (A.3.8)

With this approximation, the global likelihood of the data Equation A.3.6
may be written as

p(D|Mj, γ, σ, I) ≈ (2π)−(N/2)σm−Nγ−m exp

{
−Nd

2

2σ2
+
muh2

2

}∣∣∣∣∣
Θ̂

×
∫
dΘ p(Θ|Mj, I) exp

{
−u

r∑
k,l=1

bjk(Θ̂k −Θk)(Θ̂l −Θl)

2

}, (A.3.9)

where

u ≡ 1

σ2
− 1

γ2
.

To be able to perform the integrals, the prior probability p(Θ|Mj, I) must
be assigned. These parameters are usually location parameters where the ap-
propriate prior would once again be a Gaussian distribution. This is especially
true if the parameters can be either positive or negative and they have a finite
mean-square value.

In our our application we know the possible ranges for our parameters, for
example the frequencies: 0 < ω <= 0.5. It is only when the information in
the prior is comparable to the data that the prior probability will make much
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difference. The prior p(Θ|Mj, I) is a constant and can be placed outside the
integral. The value of the uniform prior depends on which model is under
consideration, and the bounds of its parameters:

p(D|Mj, γ, σ, I) ≈(2π)−(N/2)σm−Nγ−mp(Θ|Mj, I)

×
∫
dΘ exp

{
−mh

2

2γ2
−
[
Nd2 −mh2

2σ2

]}∣∣∣∣∣
Θ̂

(A.3.10)

Where vj is the jth eigenvalue of the matrix bjk. We can now do the integral
over the non-linear model parameters to obtain:

p(D|Mj, γ, σ, I) ≈ (2π)−(N/2)σm−Nγ−mv−0.5
1 ...v−0.5

r

× exp

{
−mh

2

2γ2
−
[
Nd2 −mh2

2σ2

]}∣∣∣∣∣
Θ̂

(A.3.11)

This is analogous to Laplace’s Method [25] where the function is approximated
by a Gaussian (see Appendix B.2). To get rid of the variances, σ and γ, the
integrals are approximated as follows:∫ Hγ

Lγ

dγ
γ−m exp(−mh2/sγ2)

γ log(Hγ/Lγ)
≈ Γ(m/2)

2 log(Hγ/Lγ)

[
mh2/2

]−m/2
and∫ Hσ

Lσ

dσ
σm−N exp(−[Nd2 −mh2]/2σ2)

σ log(Hσ/Lσ)
≈ Γ

(
N−m

2

)
2 log(Hσ/Lσ)

[
Nd2 −mh2

2

]m−N
2

.

Cancelling the parts of model comparison that are not parameter dependent,
we then have a model likelihood that is comparable between models:

p(D|Mj, I) ≈ Γ
(m

2

)(N −m
2

)
v−0.5

1 ...v−0.5
r

×
[
mh2

2

] [
Nd2 −mh2

2

]m−N
2

∣∣∣∣∣∣
Θ̂

. (A.3.12)

For models with multiple maxima due to symmetry, we can multiply the model
likelihood by the number of peaks. For example, the two-peaked example in
Figure 3.1 would be multiplied by 2, as otherwise we would only approximate
the integral of one of the two identical peaks.

A.4 BSA Estimated Noise Variance 〈σ2〉
The following formulation of estimating the noise variance comes from [8].
Suppose we estimated our signal model parameters Θ, we are now interested
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in the noise standard deviation σ. Bretthorst derives the variance directly.
Bretthorst calculates the posterior moment of 〈σs〉 with any power of s. Us-
ing A.1.13 (The general likelihood function before integrating σ out) and a
Jeffrey’s prior 1

σ
then integrating to get the expected value we have:

E(σs|Θ, D, I) = 〈σs〉 =

∫∞
0
dσ σs−1L(σ|Θ, D, I)∫∞

0
dσ σ−1L(σ|Θ, D, I)

we obtain

〈σs〉(Θ) = Γ

(
N −m− s

2

)
Γ

(
N −m

2

)−1
[
Nd2 −mh2

2

]s/2
.

So for s = 2 one would have

〈σ2〉(Θ) =
1

N −m− 2

[
Nd2 −mh2

2

]
.

This estimation is dependant on the parameters, Θ. This matches our intu-
ition as the degree to how well our model would explain the data is different
depending on values for the parameters. The lowest amount of noise is where
the model parameters’ probability density function is at its peak and a better
fit therefore needs to attribute less of the measured data to noise.
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Miscellaneous Integrals and
Algorithms

B.1 Gaussian Integrals

The integral of an arbitrary Gaussian function is:∫ ∞
−∞

dx a e−(x−b)2/2c2 =
√

2a |c| √π.

B.2 Laplace’s Method

From [25] we briefly discuss Laplace’s Method. We wish to approximate a
function as a Gaussian probability density function. For Laplace’s Method we
have an unnormalised probability density P ∗(x), whose normalising constant
is

ZP ≡
∫
dx P ∗(x)

and which has a peak at a point x0. We Taylor-expand the logarithm of P ∗(x)
around the peak and only keep the first two terms

log(P ∗(x)) ' log(P ∗(x0))− 1

2
(x− x0)TA(x− x0),

where A is the second derivative (the Hessian) of

− log(P ∗(x))|x=x0
.

The first-order term of the Taylor-expansion is zero as we take the derivative at
the maximum of the function. The normalizing constant can be approximated
by

ZP ' P ∗(x0)

√
(2π)dim

det A
and mean and covariance matrix of the Gaussian approximation is x0 and A
respectively.

138
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B.3 Nelder-Mead Optimisation

The Nelder-Mead algorithm [26] is method used to find the minimum or maxi-
mum of an objective function. For n dimensions the algorithm maintains n+1
test points arranged as a simplex, which is a special polytope with n + 1 ver-
tices. It extrapolates the objective function’s behavior at each test point in
order to find a new test point which will replace one of the old test points.
The Nelder-Mead algorithm typically requires one or two function evaluations
at each step. In this thesis we used the minimize function from the SciPy [45]
library with the Nelder-Mead method.

Stellenbosch University  https://scholar.sun.ac.za



Appendix C

Simulated Signal BSA

C.1 Introduction

In this appendix we have examples of BSA applied to simulated sinusoids
with additive white noise. We use the noiseless model from Equation 3.5.7 for
parameter estimation and Equation 3.7.2 to approximate model selection. In
the results we can see that typically the correct model is selected.
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C.2 Single Stationary Sinusoid
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Figure C.1: DFT of a simulated single stationary sinusoid. ω0 = 0.3, σ = 0.6
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Figure C.2: Spectrogram of a simulated single stationary sinusoid. ω0 =
0.3, σ = 0.6
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Table C.1: Estimated parameters and model selection of a simulated single
stationary sinusoid. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 9.93598e-01 2.02742e-05 3.18200e-12

ω0 3.00000e-01 2.99955e-01 2.99947e-01 2.99956e-01
α0 0.00000e+00 - -1.21168e-05 -1.21431e-05
β0 0.00000e+00 - - -5.12003e-09
ω1 0.00000e+00 - - -
α1 0.00000e+00 - - -
β1 0.00000e+00 - - -
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 6.34758e-03 1.60834e-11 5.84138e-24

ω0 3.00000e-01 2.99956e-01 2.54592e-01 2.55627e-01
α0 0.00000e+00 - 9.56709e-05 3.39535e-05
β0 0.00000e+00 - - -7.64918e-03
ω1 0.00000e+00 2.54931e-01 2.99952e-01 2.99930e-01
α1 0.00000e+00 - -1.32510e-05 -8.75546e-06
β1 0.00000e+00 - - 1.85851e-08
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 3.36834e-05 6.24590e-17 4.96921e-33

ω0 3.00000e-01 2.99962e-01 1.90820e-01 2.99941e-01
α0 0.00000e+00 - -4.52856e-02 -7.07495e-06
β0 0.00000e+00 - - -3.68935e-09
ω1 0.00000e+00 2.54924e-01 2.35950e-01 3.83395e-01
α1 0.00000e+00 - -1.63652e-03 2.52114e-03
β1 0.00000e+00 - - -8.64191e-04
ω2 0.00000e+00 4.20401e-01 2.99949e-01 2.21199e-01
α2 0.00000e+00 - -1.26409e-05 -2.07116e-03
β2 0.00000e+00 - - -3.88624e-03
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C.3 Two Stationary Sinusoids
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Figure C.3: DFT of two simulated stationary sinusoids. ω0 = 0.3, ω1 =
0.2, σ = 0.6
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Figure C.4: Spectrogram of two simulated stationary sinusoids. ω0 =
0.3, ω1 = 0.2, σ = 0.6
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Table C.2: Estimated parameters and model selection of two simulated sta-
tionary sinusoids. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 2.62487e-40 4.44905e-45 1.20737e-51

ω0 3.00000e-01 2.99867e-01 2.99866e-01 2.99714e-01
α0 0.00000e+00 - -4.37176e-06 -4.01071e-06
β0 0.00000e+00 - - 9.92394e-08
ω1 2.00000e-01 - - -
α1 0.00000e+00 - - -
β1 0.00000e+00 - - -
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 9.91538e-01 1.44053e-10 4.92731e-24

ω0 3.00000e-01 2.99853e-01 2.99852e-01 1.99673e-01
α0 0.00000e+00 - -1.42964e-06 6.52387e-06
β0 0.00000e+00 - - 6.01076e-08
ω1 2.00000e-01 1.99778e-01 1.99770e-01 2.99767e-01
α1 0.00000e+00 - 6.60783e-06 -1.39242e-06
β1 0.00000e+00 - - 5.39858e-08
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 8.46164e-03 1.08317e-14 1.53447e-34

ω0 3.00000e-01 2.99853e-01 1.99714e-01 1.99728e-01
α0 0.00000e+00 - 2.93097e-06 7.43383e-06
β0 0.00000e+00 - - 4.98801e-08
ω1 2.00000e-01 1.99778e-01 1.58722e-01 2.62885e-01
α1 0.00000e+00 - 1.24913e-03 1.68332e-05
β1 0.00000e+00 - - 1.59978e-04
ω2 0.00000e+00 3.86466e-01 2.99861e-01 2.99799e-01
α2 0.00000e+00 - -1.95381e-06 -4.37508e-07
β2 0.00000e+00 - - 5.99437e-08
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C.4 Three Stationary Sinusoids
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Figure C.5: DFT of three simulated stationary sinusoids. ω0 = 0.3, ω1 =
0.2, ω2, σ = 0.6.

2 4 6 8 10 12
Time Steps

0.0

0.1

0.2

0.3

0.4

0.5

ω

Spectrogram ω = [0.3, 0.2, 0.1], α = [0, 0, 0], β = [0, 0, 0]
σ = 0.6

Figure C.6: Spectrogram of three simulated stationary sinusoids. ω0 =
0.3, ω1 = 0.2, ω2, σ = 0.6.
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Table C.3: Estimated parameters and model selection of three simulated sta-
tionary sinusoids. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 8.27621e-55 1.89592e-59 8.68450e-66

ω0 3.00000e-01 2.00018e-01 2.00016e-01 1.99650e-01
α0 0.00000e+00 - -1.13041e-06 4.15793e-07
β0 0.00000e+00 - - 2.50871e-07
ω1 2.00000e-01 - - -
α1 0.00000e+00 - - -
β1 0.00000e+00 - - -
ω2 1.00000e-01 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 9.63051e-36 3.40526e-45 4.48875e-58

ω0 3.00000e-01 9.99796e-02 9.99822e-02 1.99662e-01
α0 0.00000e+00 - -1.02823e-05 1.41510e-06
β0 0.00000e+00 - - 2.34452e-07
ω1 2.00000e-01 2.00011e-01 2.00008e-01 9.96498e-02
α1 0.00000e+00 - -6.14636e-07 -1.02617e-05
β1 0.00000e+00 - - 2.11876e-07
ω2 1.00000e-01 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 1.00000e+00 3.09933e-15 7.46976e-35

ω0 3.00000e-01 2.00020e-01 9.99643e-02 1.99700e-01
α0 0.00000e+00 - -1.23550e-05 -5.65848e-07
β0 0.00000e+00 - - 2.06555e-07
ω1 2.00000e-01 2.99873e-01 2.99869e-01 3.00091e-01
α1 0.00000e+00 - 3.99170e-06 4.76510e-06
β1 0.00000e+00 - - -1.30740e-07
ω2 1.00000e-01 9.99629e-02 2.00015e-01 9.96988e-02
α2 0.00000e+00 - -1.60306e-06 -1.20395e-05
β2 0.00000e+00 - - 1.65745e-07
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C.5 Single Chirped Sinusoid
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Figure C.7: DFT of a single simulated chirped sinusoid. ω0 = 0.3,
α = −0.001.
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Table C.4: Estimated parameters and model selection of a single simulated
chirped sinusoid. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 3.68023e-47 9.99999e-01 1.50480e-07

ω0 3.00000e-01 2.73556e-01 2.99889e-01 2.99875e-01
α0 -1.00000e-03 - -1.00927e-03 -1.00929e-03
β0 0.00000e+00 - - 8.88859e-09
ω1 0.00000e+00 - - -
α1 0.00000e+00 - - -
β1 0.00000e+00 - - -
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 6.13254e-48 7.66185e-07 9.19785e-19

ω0 3.00000e-01 2.73949e-01 2.61976e-01 2.86466e-01
α0 -1.00000e-03 - -1.07922e-02 1.75017e-04
β0 0.00000e+00 - - 2.42885e-04
ω1 0.00000e+00 3.04866e-01 2.99917e-01 2.99942e-01
α1 0.00000e+00 - -1.00908e-03 -1.00127e-03
β1 0.00000e+00 - - -3.42771e-08
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 1.94936e-44 4.32574e-13 7.36697e-29

ω0 3.00000e-01 3.24848e-01 2.99901e-01 2.99630e-01
α0 -1.00000e-03 - -1.01222e-03 2.80488e-03
β0 0.00000e+00 - - 2.61168e-06
ω1 0.00000e+00 3.24848e-01 2.42505e-01 4.15430e-01
α1 0.00000e+00 - -2.13823e-03 -5.88997e-03
β1 0.00000e+00 - - -6.86799e-03
ω2 0.00000e+00 3.12734e-01 4.14774e-01 2.99883e-01
α2 0.00000e+00 - -1.39062e-02 -1.00282e-03
β2 0.00000e+00 - - -1.64266e-08
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Figure C.8: Spectrogram of a single simulated chirped sinusoid. ω0 = 0.3,
α = −0.001.
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Figure C.9: Theoretical instantaneous frequency of the top two hypotheses.
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C.6 Two Chirped Sinusoids
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Figure C.10: DFT of two simulated chirped sinusoids.
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Table C.5: Estimated parameters and model selection of two simulated chirped
sinusoids. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 1.03193e-27 7.81440e-32 5.10969e-39

ω0 3.00000e-01 3.00082e-01 1.00199e-01 3.00069e-01
α0 0.00000e+00 - 2.01079e-03 4.56158e-06
β0 0.00000e+00 - - 1.45866e-08
ω1 1.00000e-01 - - -
α1 2.00000e-03 - - -
β1 0.00000e+00 - - -
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 6.71500e-29 9.98912e-01 3.84042e-14

ω0 3.00000e-01 1.66342e-01 1.00197e-01 1.00195e-01
α0 0.00000e+00 - 2.00873e-03 2.00867e-03
β0 0.00000e+00 - - 9.74745e-09
ω1 1.00000e-01 3.00083e-01 3.00078e-01 3.00066e-01
α1 2.00000e-03 - 7.20653e-06 7.18612e-06
β1 0.00000e+00 - - 1.39862e-08
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 3.07792e-27 1.08821e-03 2.34199e-23

ω0 3.00000e-01 1.64503e-01 1.00253e-01 2.99921e-01
α0 0.00000e+00 - 2.00387e-03 1.94807e-06
β0 0.00000e+00 - - 6.65765e-08
ω1 1.00000e-01 1.64503e-01 3.00026e-01 1.00345e-01
α1 2.00000e-03 - 1.79772e-06 2.00419e-03
β1 0.00000e+00 - - -6.36205e-08
ω2 0.00000e+00 3.00084e-01 5.00678e-02 4.98346e-02
α2 0.00000e+00 - 8.01603e-03 8.01732e-03
β2 0.00000e+00 - - 1.26541e-07
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Figure C.11: Spectrogram of two simulated chirped sinusoids.
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Figure C.12: Theoretical instantaneous frequency of the top two hypotheses.
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C.7 Three Chirped Sinusoids
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Figure C.13: DFT of three simulated chirped sinusoids.
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Table C.6: Estimated parameters and model selection of three simulated
chirped sinusoids. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 3.83334e-54 2.65924e-45 6.02460e-60

ω0 3.00000e-01 1.90214e-01 2.00297e-01 2.04168e-01
α0 -2.00000e-03 - 5.32161e-04 1.17856e-03
β0 0.00000e+00 - - 3.78020e-06
ω1 2.00000e-01 - - -
α1 5.00000e-04 - - -
β1 0.00000e+00 - - -
ω2 1.00000e-01 - - -
α2 2.00000e-03 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 1.85865e-55 3.16411e-27 3.92384e-40

ω0 3.00000e-01 2.00958e-01 9.98582e-02 9.96457e-02
α0 -2.00000e-03 - 1.98417e-03 1.98084e-03
β0 0.00000e+00 - - 1.42917e-07
ω1 2.00000e-01 1.90259e-01 2.00233e-01 1.99824e-01
α1 5.00000e-04 - 5.27852e-04 5.29073e-04
β1 0.00000e+00 - - 2.43423e-07
ω2 1.00000e-01 - - -
α2 2.00000e-03 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 2.37456e-57 1.00000e+00 1.59574e-20

ω0 3.00000e-01 2.11362e-01 2.00007e-01 9.96245e-02
α0 -2.00000e-03 - 5.07929e-04 1.98046e-03
β0 0.00000e+00 - - 1.73373e-07
ω1 2.00000e-01 1.90242e-01 9.98667e-02 2.00216e-01
α1 5.00000e-04 - 1.98180e-03 5.06532e-04
β1 0.00000e+00 - - -1.24178e-07
ω2 1.00000e-01 2.01185e-01 3.00075e-01 3.00301e-01
α2 2.00000e-03 - -2.00480e-03 -2.00679e-03
β2 0.00000e+00 - - -1.51997e-07
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Figure C.14: Spectrogram of three simulated chirped sinusoids.
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Figure C.15: Theoretical instantaneous frequency of the top two hypotheses.
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C.8 One Quadratic Chirped Sinusoid
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Figure C.16: DFT of a single simulated quadratic chirped sinusoid.
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Table C.7: Estimated parameters and model selection of three simulated
chirped sinusoids. The most likely model is indicated in blue.

True Model 1 Stationary 1 Chirp 1 Qua Chirp
Probability - 1.16112e-27 1.69484e-31 1.00000e+00

ω0 2.00000e-01 1.55591e-01 1.55538e-01 1.99697e-01
α0 -3.00000e-03 - 6.86067e-05 -2.96326e-03
β0 1.00000e-05 - - 1.02660e-05
ω1 0.00000e+00 - - -
α1 0.00000e+00 - - -
β1 0.00000e+00 - - -
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 2 Stationary 2 Chirp 2 Qua Chirp
Probability - 8.93356e-26 3.02874e-30 2.30012e-12

ω0 2.00000e-01 1.57739e-01 1.99693e-01 4.00038e-01
α0 -3.00000e-03 - -2.04223e-03 4.01834e-03
β0 1.00000e-05 - - -6.29045e-07
ω1 0.00000e+00 1.57746e-01 1.85008e-01 1.99707e-01
α1 0.00000e+00 - -4.93335e-03 -2.96307e-03
β1 0.00000e+00 - - 1.02623e-05
ω2 0.00000e+00 - - -
α2 0.00000e+00 - - -
β2 0.00000e+00 - - -

True Model 3 Stationary 3 Chirp 3 Qua Chirp
Probability - 6.09888e-22 1.74159e-28 1.58673e-23

ω0 2.00000e-01 1.57801e-01 1.74325e-01 4.14915e-02
α0 -3.00000e-03 - -6.10444e-04 -2.14417e-05
β0 1.00000e-05 - - -1.02920e-02
ω1 0.00000e+00 1.57801e-01 1.81061e-01 1.75765e-01
α1 0.00000e+00 - -2.89347e-04 1.33060e-04
β1 0.00000e+00 - - 4.97540e-04
ω2 0.00000e+00 1.81610e-01 1.84939e-01 1.99874e-01
α2 0.00000e+00 - -4.92379e-03 -2.95907e-03
β2 0.00000e+00 - - 1.01643e-05
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Figure C.17: Spectrogram of a single simulated quadratic chirped sinusoid
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Figure C.18: Theoretical instantaneous frequency of the top two hypotheses.
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Appendix D

Doppler Radar Signal BSA

D.1 Introduction

In this appendix we use BSA on Doppler radar data. We use the noiseless
model from Equation 3.5.7 for parameter estimation and Equation 3.7.2 to
approximate model selection. The results are summarised in Section 4.6.

D.2 Signal Segments

We divided the Doppler radar signals into seven possible segments see Fig-
ure D.1 for a golf swing hitting a ball and Figure D.2 where no ball was hit.

Segment A: the downward swing of the golf club towards the ball and
possibly low velocity movement of the player.

Segment B: the golf ball only.

Segment C: the golf ball and post-impact golf club.

Segment D: the downward swing of the golf club and stick-flash pre-impact
and possibly low velocity movement of the player.

Segment E: the golf club and stick-flash with no impact .

Segment F: the golf club, stick-flash and ball post-impact .

Segment G: the golf club with no impact and after stick-flash .

159
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Figure D.1: Spectrogram of a golf swing hitting a golf ball segmented into
different parts: Window Size = 64, Stepsize = 16.
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Figure D.2: Spectrogram of a golf swing without hitting a ball segmented into
different parts: Window Size = 64, Stepsize = 16.
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D.3 Segment A: Golf Club Pre-Impact

D.3.1 Example 1
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Figure D.3: Segment A Example 1: DFT of Segment A containing a non-
linear chirped signal around ω = 0.1 and low frequency noise from player
movement around ω = 0.01
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Figure D.4: Segment A Example 1: Spectrogram of Segment A containing a
non-linear chirped signal around ω = 0.1 and low frequency noise from player
movement around ω = 0.01 time-step
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Figure D.5: Segment A Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.1: Segment A Example 1: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 5.84543e-88 1.31767e-08 1.00000e+00

ω0 1.09936e-01 1.00709e-01 1.01549e-01
α0 - 3.67783e-04 3.65845e-04
β0 - - -3.40525e-07
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 1.89992e-82 9.74774e-11 2.61342e-10

ω0 1.09674e-01 1.00673e-01 1.01446e-01
α0 - 3.56401e-04 3.65217e-04
β0 - - -3.05506e-07
ω1 1.00316e-01 1.02332e-01 2.85188e-02
α1 - 5.24731e-04 3.55360e-03
β1 - - -6.79413e-06
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 1.08009e-67 4.24825e-13 1.00635e-12

ω0 1.11077e-01 9.92517e-02 2.95174e-01
α0 - 1.42578e-04 4.45709e-04
β0 - - -2.81844e-06
ω1 1.11077e-01 1.00641e-01 1.01376e-01
α1 - 3.35834e-04 3.65903e-04
β1 - - -2.86003e-07
ω2 9.95685e-02 1.02070e-01 2.03593e-02
α2 - 5.31948e-04 3.55566e-03
β2 - - -5.20240e-06
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D.3.2 Example 2
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Figure D.6: Segment A Example 2: DFT of Segment A containing a non-
linear chirped signal around ω = 0.1 and low frequency noise from player
movement around ω = 0.03
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Figure D.7: Segment A Example 2: Spectrogram of Segment A containing a
non-linear chirped signal around ω = 0.1 and low frequency noise from player
movement around ω = 0.01 time-step

0 50 100 150 200 250 300
data point #

0.0

0.1

0.2

0.3

0.4

0.5

ω

Theoretical Instantaneous Frequency of Top Two Hypotheses

1st: 2D quadratic chirp
2nd: 3D chirp

Figure D.8: Segment A Example 2: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.2: Segment A Example 2: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 3.56968e-176 1.72207e-41 7.08154e-08

ω0 1.20646e-01 9.61201e-02 9.68794e-02
α0 - 7.59337e-04 7.56767e-04
β0 - - -3.06713e-07
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 2.88416e-171 2.48736e-33 9.99622e-01

ω0 1.19522e-01 1.00002e-01 9.99378e-02
α0 - 3.48366e-04 4.28169e-04
β0 - - -4.97058e-07
ω1 1.19523e-01 9.61390e-02 9.69402e-02
α1 - 7.58981e-04 7.54113e-04
β1 - - -3.19767e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 5.49060e-163 3.77804e-04 8.52046e-12

ω0 1.19541e-01 9.13467e-02 1.03033e-01
α0 - 7.65585e-04 2.68244e-04
β0 - - 1.20802e-06
ω1 6.86320e-02 9.15815e-02 9.81887e-02
α1 - 6.93738e-04 1.75204e-04
β1 - - 1.44669e-06
ω2 1.19541e-01 9.66538e-02 9.72193e-02
α2 - 7.48793e-04 7.48368e-04
β2 - - -3.86999e-07
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D.4 Segment B: Ball Only

D.4.1 Example 1
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Figure D.9: Segment B Example 1: DFT of Segment B a chirped signal
around ω = 0.24 and a low frequency component around ω = 0.02
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Figure D.10: Segment B Example 1: Spectrogram of Segment B containing
a chirped signal around ω = 0.24
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Figure D.11: Segment B Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.3: Segment B Example 1: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 1.09799e-52 1.09994e-48 9.60692e-56

ω0 2.40773e-01 2.40765e-01 2.40754e-01
α0 - -1.53998e-05 -1.52208e-05
β0 - - 1.72591e-08
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 1.54779e-14 1.86034e-18 2.84151e-77

ω0 2.44819e-01 2.40775e-01 2.40806e-01
α0 - -1.22918e-05 -1.45535e-05
β0 - - 3.63290e-08
ω1 2.40793e-01 2.42048e-01 2.41738e-01
α1 - -2.74134e-05 -2.04413e-05
β1 - - -3.36357e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 1.00000e+00 1.00635e-22 1.89992e-82

ω0 2.44803e-01 2.40747e-01 2.40893e-01
α0 - -1.15483e-05 -2.04602e-05
β0 - - 9.33571e-08
ω1 2.40793e-01 5.49429e-03 2.40037e-01
α1 - 1.45386e-03 4.01027e-07
β1 - - 1.69379e-07
ω2 1.91549e-02 2.42267e-01 3.22724e-02
α2 - -2.95890e-05 -7.43140e-03
β2 - - 5.05236e-05
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D.5 Segment C: Club and Ball Post-Impact

D.5.1 Example 1
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Figure D.12: Segment C Example 1: DFT of Segment C a signal around
ω = 0.24, a chirped single around ω = 0.12 and low frequency noise from
player movement around ω = 0.04
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Figure D.13: Segment C Example 1: Spectrogram of Segment C containing
a signal around ω = 0.24, a chirped single around ω = 0.12 and low frequency
noise from player movement around ω = 0.04 time-steps 1 to 6

0 50 100 150 200 250 300
data point #

0.0

0.1

0.2

0.3

0.4

0.5

ω

Theoretical Instantaneous Frequency of Top Two Hypotheses

1st: 3D quadratic chirp
2nd: 3D chirp

Figure D.14: Segment C Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.4: Segment C Example 1: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 1.95712e-63 2.06958e-65 4.95433e-70

ω0 2.40547e-01 2.40573e-01 2.40726e-01
α0 - 3.41154e-05 3.38097e-05
β0 - - -6.49250e-08
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 7.80940e-46 4.37377e-40 9.33170e-34

ω0 1.12811e-01 1.22427e-01 2.40679e-01
α0 - -4.55851e-04 3.30849e-05
β0 - - -3.75858e-08
ω1 2.40538e-01 2.40569e-01 1.20425e-01
α1 - 3.53177e-05 -4.83167e-04
β1 - - 1.14647e-06
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 4.65503e-32 2.94096e-10 1.00000e+00

ω0 2.40537e-01 1.12123e-01 1.20306e-01
α0 - -2.92599e-04 -4.84716e-04
β0 - - 1.11141e-06
ω1 1.11395e-01 2.40569e-01 2.40688e-01
α1 - 3.51525e-05 3.33435e-05
β1 - - -4.58812e-08
ω2 1.14584e-01 1.22487e-01 1.13314e-01
α2 - -4.93172e-04 -5.90591e-04
β2 - - 2.12971e-06
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D.5.2 Example 2
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Figure D.15: Segment C Example 2: DFT of Segment C a signal around
ω = 0.24, a chirped single around ω = 0.07 and low frequency noise around
ω = 0.02
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Figure D.16: Segment C Example 2: Spectrogram of Segment C containing
a signal around ω = 0.24, a chirped single around ω = 0.07 and low frequency
noise around ω = 0.02
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Figure D.17: Segment C Example 2: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.5: Segment B Example 2: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 1.03801e-51 2.70334e-57 1.42196e-59

ω0 2.43910e-01 2.43912e-01 2.43914e-01
α0 - 1.19885e-06 1.19824e-06
β0 - - -5.44952e-10
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 4.62880e-44 1.33358e-54 7.43686e-65

ω0 2.43575e-01 2.43785e-01 2.43869e-01
α0 - 1.22160e-06 1.89033e-06
β0 - - -1.05086e-08
ω1 2.44055e-01 2.44150e-01 2.44027e-01
α1 - 2.53800e-06 3.02131e-06
β1 - - 3.76429e-08
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 2.34205e-42 1.00000e+00 5.95873e-57

ω0 2.43910e-01 2.43943e-01 2.43913e-01
α0 - -4.49463e-07 1.37391e-06
β0 - - 1.65970e-09
ω1 8.12714e-02 2.43429e-01 6.88473e-02
α1 - -3.97403e-06 -3.49320e-04
β1 - - 2.56082e-07
ω2 8.12715e-02 6.95552e-02 4.40073e-02
α2 - -3.50840e-04 -1.41550e-03
β2 - - -9.96614e-06
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D.6 Segment D: Club and Stick-Flash

Pre-Impact

D.6.1 Example 1
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Figure D.18: Segment D Example 1: DFT of Segment D a chirped signal
around ω = 0.1 and ω = 0.17 and possibly a harmonic of that signal around
ω = 0.3
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Figure D.19: Segment D Example 1: Spectrogram of Segment D containing
a chirped signal around ω = 0.2 and ω = 0.1 and a harmonic of that signal
around ω = 0.4 and ω = 0.3
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Figure D.20: Segment D Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.6: Segment D Example 1: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 1.91765e-54 3.04718e-12 1.22286e-52

ω0 1.07006e-01 1.28813e-01 1.24580e-01
α0 - -2.51798e-03 -1.56109e-03
β0 - - -7.54240e-06
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 1.97541e-55 7.84298e-06 2.18709e-19

ω0 1.02620e-01 1.41018e-01 1.28453e-01
α0 - -2.39893e-03 -4.34757e-03
β0 - - -1.37072e-05
ω1 1.09277e-01 1.28586e-01 1.28230e-01
α1 - -2.51685e-03 -2.46518e-03
β1 - - 6.82905e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 2.46091e-62 9.99992e-01 1.85486e-20

ω0 1.04758e-01 1.41185e-01 1.16052e-01
α0 - -2.46994e-03 -2.52113e-03
β0 - - -2.17134e-06
ω1 8.79806e-02 1.28631e-01 1.26516e-01
α1 - -2.56964e-03 -2.43075e-03
β1 - - 3.34600e-06
ω2 8.79806e-02 1.14272e-01 1.30513e-01
α2 - -2.39537e-03 -3.01291e-03
β2 - - 1.06812e-06
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D.6.2 Example 2
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Figure D.21: Segment D Example 2: DFT of Segment D a chirped signal
around ω = 0.13 and ω = 0.1 and possibly a harmonic of that signal around
ω = 0.27
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Figure D.22: Segment D Example 2: Spectrogram of Segment D containing
a chirped signal around ω = 0.13 and ω = 0.1 and a harmonic of that signal
around ω = 0.3 and ω = 0.27
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Figure D.23: Segment D Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.7: Segment D Example 2: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 3.41382e-57 2.42914e-38 4.22246e-42

ω0 9.29244e-02 1.24324e-01 1.22775e-01
α0 - -1.81308e-03 -1.37696e-03
β0 - - -3.55484e-06
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 1.28718e-46 4.22925e-12 7.89238e-06

ω0 9.06712e-02 1.25172e-01 1.22217e-01
α0 - -1.69984e-03 -2.46699e-03
β0 - - 8.47934e-06
ω1 9.06712e-02 1.21081e-01 1.29845e-01
α1 - -1.78412e-03 -2.53152e-03
β1 - - 4.41835e-06
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 8.14462e-56 9.99992e-01 4.90119e-21

ω0 1.05713e-01 1.25155e-01 1.29437e-01
α0 - -1.67801e-03 -3.23810e-04
β0 - - 3.14062e-06
ω1 9.05732e-02 1.20603e-01 1.26362e-01
α1 - -1.76192e-03 -2.60763e-03
β1 - - 7.63363e-06
ω2 9.05732e-02 1.34857e-01 1.26301e-01
α2 - -1.68182e-03 -2.60681e-03
β2 - - 7.66123e-06
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D.7 Segment E: Club and Stick-Flash No

Impact
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Figure D.24: Segment E Example 1: DFT of Segment E containing multiple
chirped signals
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Figure D.25: Segment E Example 1: Spectrogram of Segment E containing
a chirped signal from around ω = 0.12 to ω = 0.01 and its harmonic from
around ω = 0.22, time-step 2, to ω = 0.12, time-step 12 and a signal ω = 0.12
from time-step 12 to 17.
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Figure D.26: Segment E Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.8: Segment E Example 1: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 1.78231e-54 9.43333e-59 9.87136e-53

ω0 1.24916e-01 1.24976e-01 7.92215e-02
α0 - 3.51032e-05 -7.41974e-04
β0 - - -2.88852e-06
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 9.76050e-49 2.06664e-45 9.10756e-48

ω0 1.27009e-01 8.50343e-02 7.14325e-02
α0 - -1.08403e-03 -2.35601e-04
β0 - - -4.09540e-06
ω1 1.27009e-01 1.50726e-01 8.33530e-02
α1 - -3.95640e-03 -1.09775e-03
β1 - - 4.86832e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 7.70643e-68 1.00000e+00 2.92082e+56

ω0 1.27093e-01 1.28067e-01 1.26849e-01
α0 - -7.60878e-05 -2.53433e-04
β0 - - -3.73998e-07
ω1 1.27093e-01 8.17663e-02 1.27513e-01
α1 - -1.25331e-03 -2.77401e-05
β1 - - 3.99262e-07
ω2 1.18433e-01 1.51091e-01 8.20565e-02
α2 - -3.95223e-03 -1.26471e-03
β2 - - -1.03192e-07
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D.7.2 Example 2
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Figure D.27: Segment E Example 2: DFT of Segment E containing multiple
chirped signals
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Figure D.28: Segment E Example 2: Spectrogram of Segment E containing
a chirped signal from around ω = 0.11 to ω = 0.04 and its harmonic from
around ω = 0.2, time-step 2, to ω = 0.11, time-step 12 and a signal ω = 0.12
from time-step 12 to 14.
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Figure D.29: Segment E Example 2: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram
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Table D.9: Segment E Example 2: Estimated parameters and model selection
of three simulated chirped sinusoids. The most likely model is indicated in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 2.35149e-31 1.61748e-33 5.31476e-40

ω0 1.09951e-01 1.09833e-01 1.09767e-01
α0 - 9.75306e-05 9.73808e-05
β0 - - 3.55186e-08
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 8.82630e-31 9.39473e-01 3.49453e-12

ω0 6.62759e-02 8.03286e-02 7.95695e-02
α0 - -1.04872e-03 -1.05529e-03
β0 - - 5.31333e-07
ω1 1.09904e-01 1.09452e-01 1.09204e-01
α1 - 1.04554e-04 9.60170e-05
β1 - - 1.81311e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 2.69992e-30 6.05267e-02 1.26394e-17

ω0 1.06329e-01 1.09609e-01 1.10754e-01
α0 - 1.61543e-04 5.05496e-05
β0 - - 9.89374e-07
ω1 1.09175e-01 1.09530e-01 7.96669e-02
α1 - 1.34414e-04 -1.07213e-03
β1 - - 5.28679e-07
ω2 6.62769e-02 8.02698e-02 1.10712e-01
α2 - -1.06450e-03 5.67457e-05
β2 - - -2.00554e-07
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D.8 Segment F: Club, Stick-Flash and Ball

Post-Impact

D.8.1 Example 1
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Figure D.30: Segment F Example 1: DFT of Segment F containing three
signals.

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. DOPPLER RADAR SIGNAL BSA 189

2 4 6 8 10
Time Steps

0.0

0.1

0.2

0.3

0.4

0.5
ω

Spectrogram Doppler Radar Data Part F

Figure D.31: Segment F Example 1: Spectrogram of Segment F containing a
signal around ω = 0.21, a chirped signal around ω = 0.1 and a chirped signal
around ω = 0.04.
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Figure D.32: Segment F Example 1: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram.
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Table D.10: Segment F Example 1: Estimated parameters and model selec-
tion of three simulated chirped sinusoids. The most likely model is indicated
in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 3.64181e-26 6.40605e-26 4.44928e-29

ω0 2.15553e-01 2.86082e-02 2.65994e-02
α0 - -3.74075e-04 -2.43965e-04
β0 - - 2.70936e-06
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 7.41855e-21 9.50721e-10 3.35897e-16

ω0 3.56186e-02 2.86007e-02 2.66064e-02
α0 - -3.75445e-04 -2.44837e-04
β0 - - 2.71066e-06
ω1 2.15545e-01 2.15658e-01 2.14995e-01
α1 - -2.94732e-05 -3.88583e-05
β1 - - 6.25976e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 665028e-12 1.00000e+00 1.33521e-08

ω0 3.75126e-02 2.15673e-01 2.66187e-02
α0 - -3.65779e-05 -1.37258e-04
β0 - - 3.54688e-06
ω1 2.15601e-01 3.21418e-02 2.73138e-02
α1 - -4.81974e-04 -1.45972e-04
β1 - - 3.97048e-06
ω2 3.75126e-02 2.96735e-02 2.15005e-01
α2 - -3.03075e-04 -3.94227e-05
β2 - - 6.36121e-07
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D.8.2 Example 2
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Figure D.33: Segment F Example 2: DFT of Segment F containing three
signals
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Figure D.34: Segment F Example 2: Spectrogram of Segment F containing a
signal around ω = 0.29, a chirped signal around ω = 0.12 and a chirped signal
around ω = 0.03.
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Figure D.35: Segment F Example 2: Top two BSA hypotheses’ instantaneous
frequency super-imposed on the spectrogram.
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Table D.11: Segment F Example 2: Estimated parameters and model selec-
tion of three simulated chirped sinusoids. The most likely model is indicated
in blue.

1 Stationary 1 Chirp 1 Qua Chirp
Probability 4.51410e-22 1.23416e-25 1.84175e-31

ω0 3.28959e-02 3.26290e-02 3.27703e-02
α0 - -1.17807e-04 -1.19950e-04
β0 - - -2.15838e-07
ω1 - - -
α1 - - -
β1 - - -
ω2 - - -
α2 - - -
β2 - - -

2 Stationary 2 Chirp 2 Qua Chirp
Probability 3.99187e-13 9.62903e-21 1.84500e-32

ω0 3.28742e-02 3.26197e-02 3.28542e-02
α0 - -1.12511e-04 -1.16839e-04
β0 - - -3.50862e-07
ω1 2.85265e-01 2.85254e-01 2.85604e-01
α1 - 4.23973e-06 -7.55904e-08
β1 - - -5.72819e-07
ω2 - - -
α2 - - -
β2 - - -

3 Stationary 3 Chirp 3 Qua Chirp
Probability 1.00000e+00 3.55393e-12 9.41303e-30

ω0 1.13881e-01 3.26251e-02 3.27881e-02
α0 - -1.18036e-04 -1.25503e-04
β0 - - -2.53818e-07
ω1 3.29699e-02 1.13927e-01 2.85606e-01
α1 - 1.64782e-05 -6.56369e-06
β1 - - -5.29721e-07
ω2 2.85268e-01 2.85250e-01 1.13087e-01
α2 - -5.64955e-06 2.19024e-05
β2 - - 1.35435e-06
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Explicit Duration Model
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Figure E.1: Left-to-right model
prior probabilities.
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Figure E.2: Minimum Duration
model prior probabilities.

E.1 Explicit Duration

Explicit duration models are also employed in HMMs such as the Ferguson
model from [29]. Here one can have multiple states that produce the same
output and are conceptually the sub-states of the same state. The transition
probabilities can be fine-tuned to give one an arbitrary duration model for
each state depending on the number of sub-states and their probabilities.
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Figure E.3 is an example of an explicit duration model from [29]. The tran-
sition probabilities can be tuned to create arbitrary prior state probabilities.
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A3

C1

C2

Figure E.3: Ferguson Explicit Duration Markov chain

E.2 Minimum Duration

A minimum duration model is a subset of the explicit duration models that
forces the model to stay within a certain state for a fixed number of time-steps
before being able to transition to the next time-step [29]. The model must
step through each sub-state before reaching the next state. This is particularly
useful as it disallows the model from staying in a certain state for only one
time-step and moving to the next state too soon. Figure E.4 shows how one can
set up the transitions for the minimum duration model. The model behaves
just like the left-to-right model but needs to pass through all the sub-states
before reaching the next state. Figure E.2 shows how the model is forced
to stay in each state for at least five time-steps before moving to the next
state. Contrast this with Figure E.1 where the model can immediately start
to transition to the next state.
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Figure E.4: Ferguson Minimum Duration Markov chain
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Appendix F

Factor Details

F.1 Linear Transitions

In this section we list the possible linear relationships between our frequency
components and their dynamics for different BSA model transitions. We only
demonstrate for one- and two-frequency models, however, the same principles
extend to the three-frequency model.

Single-frequency Model to single-frequency Model
ωt+1

∆ωt+1

at+1

∆at+1

 =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1



ωt

∆ωt
at

∆at

+ w.

Two-frequency Model to Two-frequency Model

ωt+1,0

∆ωt+1,0

at+1,0

∆at+1,0

ωt+1,1

∆ωt+1,1

at+1,1

∆at+1,1


=



1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1





ωt,0
∆ωt,0
at,0

∆at,0
ωt,1

∆ωt,1
at,1

∆at,1


+ w.
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Two-frequency Model to One-frequency Model Top Frequency Sur-
vives


ωt+1,0

∆ωt+1,0

at+1,0

∆at+1,0

 =


1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0





ωt,0
∆ωt,0
at,0

∆at,0
ωt,1

∆ωt,1
at,1

∆at,1


+ w.

Two-frequency Model to One-frequency Model Bottom Frequency
Survives


ωt+1,0

∆ωt+1,0

at+1,0

∆at+1,0

 =


0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1





ωt,0
∆ωt,0
at,0

∆at,0
ωt,1

∆ωt,1
at,1

∆at,1


+ w.

One-frequency Model to Two-frequency Model Multiply a one-frequency
model to one-frequency model transition with a prior for the new frequency
component.

F.2 Discrete Factor Examples

In Table 7.4 and F.2 we demonstrate how we calculate the discrete factors.
The random variables on the right of the conditioning bar (denoted with the
double line), determine the possible values of the random variables on the left
of the conditioning bar for the given model transition. We only demonstrate
p(ωt+1|ωt,∆ωt+1) and p(∆ωt+1|∆ωt, at+1). However, the other transition
factors have the same premise; we exhaustively list all possible values while
making use of place-holder values and then normalise the factor as a CPD.
The use of the place-holder values also ensure that the transitions are unique
for each model transition.
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Table F.1: This table describes how we calculate the possible values for the
discrete factors of the form p(ωt+1|ωt,∆ωt+1). Note that there are two sce-
narios each for switching between the signal models; one involving the top
frequency component and one the bottom.

Model Transition ωt+1,0 ωt+1,1 ωt,0 ωt,1 ∆ωt+1,0 ∆ωt+1,1

1 freq to 1 φ ωt,1 + ∆ωt,1 φ ωt,1 φ ∆ωt,1
2 freq to 2 ωt,0 + ∆ωt,0 ωt,1 + ∆ωt,1 ωt,0 ωt,1 ∆ωt,0 ∆ωt,1

1 freq to 2 A ωt+1,0 ωt,1 + ∆ωt,1 φ ωt,1 A ∆ωt,1
1 freq to 2 B ωt,1 + ∆ωt,1 ωt+1,1 φ ωt,1 ∆ωt,0 B
2 freq to 1 C φ ωt,1 + ∆ωt,1 ωt,0 ωt,1 C ∆ωt,1
2 freq to 1 D φ ωt,0 + ∆ωt,0 ωt,0 ωt,1 ∆ωt,0 D

Table F.2: This table describes how we calculate the possible values for the
discrete factors of the form p(∆ωt+1|∆ωt, at+1). Note that it takes two time-
steps for the dynamics to switch between different signal models.

Model Transition ∆ωt+1,0 ∆ωt+1,1 ∆ωt,0 ∆ωt,1 at+1,0 at+1,1

1 freq to 1 φ ∆ωt,1 + at,1 φ ∆ωt,1 φ at,1
2 freq to 2 ∆ωt,0 + at,0 ∆ωt,1 + at,1 ∆ωt,0 ∆ωt,1 at,0 at,1

1 freq to 2 A A ∆ωt,1 + at,1 φ ∆ωt,1 A at,1
1 freq to 2 a ∆ωt+1,0 ∆ωt,1 + at,1 A ∆ωt,1 a at,1
1 freq to 2 B ∆ωt,1 + at,0 B φ ∆ωt,1 at,0 B
1 freq to 2 b ∆ωt,0 + at,0 ∆ωt+1,1 ∆ωt,0 B at,0 b
2 freq to 1 C C ∆ωt,1 + at,1 ∆ωt,0 ∆ωt,1 C at,1
2 freq to 1 c φ ∆ωt,1 + at,1 C ∆ωt,1 c at,1
2 freq to 1 D ∆ωt,0 + at,0 D ∆ωt,0 ∆ωt,1 at,0 D
2 freq to 1 d ∆ωt,0 + at,0 φ ∆ωt,0 D at,0 d
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