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Abstract  

The World Health Organization (WHO) determined that 10.4 million people died of 

tuberculosis (TB) in 2015 which makes TB the number one cause of death from a 

preventable infectious disease worldwide. Mycobacterium tuberculosis (Mtb) is the causative 

pathogen of TB and a frequent lack of clinical symptoms hampers the pathogen’s detection. 

Current diagnostic tests are limited when applied to low populations of bacteria in biological 

fluids, such as blood. A large volume of biological fluid is needed for a positive diagnosis. 

Obtaining multiple samples are, however, difficult, especially from children under six years. A 

smaller amount of biological fluid will be needed if the Mtb can be captured and concentrated 

within the sample. Polymer coated superparamagnetic magnetite nanoparticles (SPMNs) 

with affinity for the pathogen can be used as capturing substrates for Mtb followed by 

diagnosis via existing microscopy methods such as fluorescence microscopy (FM).  

In this thesis, modified chitosan and modified poly(styrene-alt-maleic anhydride) (SMA) were 

synthesized and utilized to coat SPMNs as well as electrospun into nanofibers to form 

potential Mtb capturing substrates. Chitosan and SMA were modified to from quaternary 

derivatives which can possibly interact with the Mtb cell wall. The nano-substrates were also 

surface functionalized with a carbohydrate binding protein, namely Concanavalin A (Con A), 

which can bind to the Mtb cell wall. Chitosan coated SPMNs were synthesized by in situ co-

precipitating Fe2+ and Fe3+ with chitosan followed by further modification. SMA coated 

SPMNs were synthesized by activating the iron oxide core with 3-

aminopropyl(triethoxysilane) (3-APTES) followed by further modification. Polymer nanofibers 

were electrospun via single needle electrospinning. The chitosan derivatives were 

electrospun into nanofibers by blending with non-ionogenic polymers, viz. polyvinyl alcohol 

(PVA), polylactide (PLA), polycaprolactam (Nylon 6), polyethylene oxide (PEO) and polyvinyl 

pyrrolidone (PVP) to facilitate electrospinning.  

The nano-substrates were evaluated for their affinity and thus capturing capabilities utilizing 

the mCherry fluorophore tagged bacillus Calmette-Guérin (BCG) strain of Mycobacterium 

bovis, a live attenuated Mtb-mimic. A preliminary nanofiber affinity study was conducted to 

determine which polymer-and-functional-moiety combination had the highest affinity for the 

bacteria utilizing FM (fluorescence microscopy). Quaternary SMA (SMI-qC12) had the highest 

affinity for BCG-mCherry (through electrostatic and hydrophobic interactions) followed by 

Con A immobilized chitosan (CS-EDC-Con A). The SPMNs were coated with three different 

polymer loadings and a dilution study performed to determine the limit of detection. The 0.9 

g loaded SMI-qC12 SPMNs had the highest affinity for BCG-mCherry determined via FM and 

TEM (transmission electron microscopy).   
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Opsomming 

Die wêreldgesondheidsorganisasie (WGO) het bepaal dat 10.4 miljoen mense gesterf het 

a.g.v tuberkolose (TB) in 2015 wat TB dus die vernaamste oorsaak van dood aan 

voorkombare aansteeklike siektes maak wêreldwyd. Mycobacterium tuberculosis (Mtb) is die 

patogeen wat TB veroorsaak en ‘n gereelde gebrek aan kliniese simptome belemmer die 

opsporing van die patogeen. Huidige diagnostiese toetse is beperk wanneer toegepas word 

op lae populasies van bakterieë in biologiese vloestowwe, soos bloed. ‘n Groot volume 

biologiese vloeistof word benodig vir ‘n positiewe diagnose. Die verkryging van veelvuldige 

monsters is egter moeilik, veral van kinders onder ses jaar. ‘n Kleiner hoeveelheid biologiese 

vloeistof word benodig as die Mtb vasgevang en gekonsentreer kan word binne die monster. 

Polimeer bedekte superparamagnetiese magnetiet nanopartikels (SPMNs) met ‘n affiniteit vir 

die patogeen kan gebruik word as vasvangingsubstrate vir Mtb gevolg deur diagnose via 

bestaande mikroskopie metodes soos fluoresensie mikroskopie (FM).  

In hierdie tesis is gemodifiseerde chitosan en gemodifiseerde poli (styreen-alt-

maleïensanhidried) (SMA) gesintetiseer en gebruik om SPMNs te bedek asook om 

nanovesels te elektrospin om potensiële Mtb vasvangingsubstrate te vorm. Chitosan en 

SMA is gemodifiseer om kwaternêre afgeleides te vorm wat moontlik ‘n interaksie kan hê 

met die Mtb selwand. Die nano-substrate is ook oppervlak gefunktionaliseer met ‘n 

koolhidraat bindende proteïen, naamlik Concanavalin A (Con A), wat kan bind aan die Mtb 

selwand. Chitosan bedekte SPMNs was gesintetiseer deur in situ mede-neerslag van Fe2+ 

en Fe3+ met chitosan gevolg deur verdere modifikasie. SMA bedekte SPMNs is gesintetiseer 

deur aktivering van die ysteroksied kern met 3-aminopropiel(trietoksiesilaan) (3-APTES) 

gevolg deur verdere modifikasie. Polimeer nanovesels was geëlektrospin via die enkelnaald 

elektrospin tegniek. Die chitosan afgeleides is tot nanovesels geëlektrospin deur vermenging 

met nie-ionogeniese polimere, nl. poliviniel alkohol (PVA), polilaktied (PLA), 

polikaprolaktaam (Nylon 6), poliëtileen oksied (PEO) and poliviniel pirrolidoon (PVP) om 

elektrospin te fasiliteer.  

Die nano-substrate is geëvalueer vir hul affinitiet en dus vasvangingsvermoë d.m.v die 

mCherry fluorofoor gemerkte bacillus Calmette-Guérin (BCG) stam van Mycobacterium 

bovis, ‘n lewendige verswakte Mtb mimiek. ‘n Voorlopige nanovesel affiniteitstudie is 

uitgevoer om te bepaal watter polimeer-en-funksionele-group kombinasie die hoogste 

affinitiet het vir die bakterieë d.m.v FM (fluoresensie mikroskopie). Kwaternêre SMA (SMI-

qC12) het die hoogste affiniteit gehad vir BCG-mCherry (deur elektrostatiese en hidrofobiese 

interaksies) gevolg deur Con A geïmmobiliseerde chitosan (CS-EDC-Con A). Die SPMNs is 

bedek met drie verskillende polimeer ladings en ‘n verdunningstudie is uitgevoer om die 
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opsporingsperk te bepaal. Die 0.9 g bedekte SMI-qC12 het die hoogste affiniteit gehad vir 

BCG-mCherry soos bepaal via FM en TEM (transmissie elektron mikroskopie).  
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Chapter 1 
Introduction 

 

1.1 Introduction  

Tuberculosis (TB) is one of the three primary poverty-related infectious diseases with a high 

morbidity and mortality rate. The management and diagnosis of childhood TB in developing 

countries remains challenging due to low bacilli yield.1 Mycobacterium tuberculosis (Mtb) is 

the causative pathogen of tuberculosis and is an intracellular pathogen that relies on the 

survival of the microorganism within host cells. This mode of infection and frequent lack of 

clinical symptoms hampers the pathogen’s detection. Current diagnostic tests are limited as 

it is difficult to detect low populations of bacteria in biological fluids, such as blood, sputum 

and lymph fluid.2 A large volume of biological fluid, for example sputum, is needed for a 

positive diagnosis. Obtaining multiple samples are, however, difficult, especially from 

children under six years.3 A smaller amount of biological fluid will be needed if the Mtb can 

be concentrated within the sample. Substrates with affinity for the pathogen can be used to 

capture and thus concentrate Mtb.  

Polymers with known affinity to Mtb can be used as substrates. Chitosan, a natural 

polysaccharide, possesses favourable properties, such as non-toxicity, antibacterial activity, 

bacterial adhesion, biodegradability and biocompatibility.4 The quaternary derivatives of N-

alkyl chitosan have been shown to have an even higher bacterial activity when compared to 

chitosan itself.5 Poly(styrene-alt-maleic anhydride) (SMA) can be used as biological 

substrate due to its low toxicity, low cost, bacterial adhesion and good biocompatibility and 

biodegradation. The reactive anhydride functional groups can be used to form quaternary 

ammonium derivatives of SMA with known Mtb affinity.6,7 Concanavalin A (Con A) 

immobilized to chitosan and SMA is a well-studied carbohydrate-binding protein and human 

receptor for the carbohydrate-based structures on the surface of Mtb, such as mannose. The 

interaction between these human receptors and mycobacterial mannose can facilitate the 

capture and concentration of Mtb.7 These polymers can be incorporated into nanofibers and 

nanoparticles and used as Mtb capturing platforms.  

Materials at nanoscale (nanoparticles and nanofibers) have tuneable properties, a high 

specific surface area and a high aspect ratio.8 These qualities are favourable for the 

adhesion of Mtb. Electrospinning can be used to produce quaternary ammonium chitosan 

and SMA nanofibers. Con A was immobilized to the chitosan and SMA fibers post-
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electrospinning to avoid degradation. Superparamagnetic iron oxide nanoparticles can be 

controlled with regard to shape, size and crystallinity followed by polymer coating to 

incorporate functional groups. Chitosan and SMA derivatives form a coating around 

magnetic iron oxide nanoparticles via chelation with the Fe-OH groups.9 The bacilli in a 

sample can thus be captured and concentrated to the substrates, followed by extraction via 

an external magnet. This will thus aid in fast and accurate diagnosis of TB utilizing for 

instance fluorescence microscopy. 

 

1.2 Objectives 

The overall aim of this research project is to develop polymer coated magnetic iron oxide 

nanoparticles with Mtb affinity and superparamagnetic properties for the efficient capture of 

Mycobacterium tuberculosis (Mtb) from a variety of specimen types to enable fast and 

accurate diagnosis of tuberculosis using conventional diagnostic methods such as 

fluorescence microscopy (FM). Mtb captured magnetic nanoparticles can be extracted via an 

external magnet followed by further analysis. Functionalized polymer nanofibers were also 

investigated as Mtb affinity substrates, as nanofibers have shown to have a high sensitivity 

for bacteria. Polysaccharide chitosan and SMA was used as polymers that can be modified 

with chemical moieties selected based on possible interactions with the Mtb cell wall. 

Chemical moieties include quaternary ammonium compounds and immobilized 

Concanavalin A (Con A).These polymers were electropun into nanofibers due to the high 

specific area and ease of use. Non-ionogenic polymers were needed to facilitate 

electrospinning of the modified chitosan. The suitability of the non-ionogenic polymers were 

evaluated via a, live attenuated Mtb mimic, Bacillus Calmette-Guérin (BCG) affinity study. 

Superparamagnetic iron oxide magnetic nanoparticles (SPMNs) coated with the polymer-

and-functional-moiety combination which captures BCG with the highest efficacy in the 

nanofiber study can give an indication of the sensitivity of the SPMNs w.r.t. BCG affinity. The 

following objectives have been identified in order to address this knowledge gap:  

 

1. Synthesize and characterize poly(styrene-alt-maleic anhydride) (SMA) and SMA 

modified with quaternary ammonium groups thus poly(styrene-[N-3-(N’-decyl-N’,N’-

dimethylammonium)propyl maleimide]) (SMI-qC10) and poly(styrene-[N-3-(N’-

dodecyl-N’,N’-dimethylammonium)propyl maleimide]) (SMI-qC12). Characterize 

chitosan (CS) and synthesize and characterize CS modified with quaternary 

ammonium groups CS-qC10 (N,N-(2-dimethyl)propyl-3-N’,N’-dimethyl-N’-

decylammonium chitosan chloride) and CS-qC12 (N,N-(2-dimethyl)propyl-3-N’,N’-
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dimethyl-N’-dodecylammonium chitosan chloride). Modify chitosan with linker 

molecules, such as glycine and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC), in order to immobilize Con A. 

 

2. The formation, crosslinking and characterization of SMA nanofibers immobilized with 

Con A as well as its quaternary derivatives. The formation, crosslinking and 

characterization of bi-component nanofibers consisting of CS-Con A, CS-qC10 and 

Cs-qC12 blended with non-ionogenic polymers, which include polyvinyl alcohol (PVA), 

polylactide (PLA) and Nylon 6, necessary to facilitate the electrospinning of modified 

chitosan. 

 

3. BCG affinity studies using OD600nm = 6/18.78 ×107 CFU/mL on the modified SMA and 

CS nanofibers to determine which polymer-and-functional-moiety combination 

captures BCG with the highest efficacy. 

 

4. Synthesize and characterize superparamagnetic iron oxide magnetic nanoparticles 

(SPMNs), coated with three different loadings of the polymer-and-functional-moiety 

combination which captures BCG with the highest efficacy in the nanofiber study. 

 

5. Dilution studies with BCG on the polymer coated SPMNs to determine sensitivity. 

 

1.3 Thesis layout  

Chapter 1: Introduction  

This chapter serves as an introduction to the research project and background to previous 

research. The objectives of the project will be given in a brief research description with the 

aims to be met.  

 

Chapter 2: Literature review  

This chapter introduces the historical and theoretical aspects that relate to the thesis. 

Background will be provided regarding tuberculosis, diagnosis of TB and nanotechnology 

(coated SPMNs and electrospinning nanofibers). Chitosan and SMA as well as its 

quaternary ammonium derivatives will be discussed. The use of Con A with regard to Mtb 

affinity will be described.  
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Chapter 3: Synthesis and characterization of precursor polymers 

This chapter describes the characterization of pristine chitosan and the synthesis and 

characterization of quaternized N-alkyl chitosan derivatives (CS-qC10 and CS-qC12). The 

synthesis and characterization of chitosan modified with linker molecules in order to 

immobilize Con A will be outlined. The synthesis and characterization of SMA and the 

quaternized derivatives of SMA (SMI-qC10 and SMI-qC12) are also included.  

 

Chapter 4: Chitosan based bi-component nanofibers and SMA based nanofibers 

This chapter describes the formation of bi-component polymeric nanofibers of CS-EDC-Con 

A (chitosan-glutaraldehyde-glycine-EDC-Con A), CS-qC10 and CS-qC12 blended with 

suitable non-ionogenic polymer partners to facilitate electrospinning as well as the 

subsequent crosslinking to produce aqueous/phosphate buffered saline (PBS) solution 

stability. The formation of SMA-Con A, SMI-qC10 and SMI-qC12 nanofibers as well as thermal 

crosslinking will be described. 

 

Chapter 5: Synthesis and characterization of superparamagnetic magnetite 

nanoparticles and nanocomposite materials 

This chapter details the synthesis and characterization of coated superparamagnetic 

magnetite nanoparticles (SPMNs) consisting of a SPMN core and three different polymer 

loadings of SMI-qC12 and CS-EDC-Con A, respectively. The polymer-and-functional-moiety 

combinations were determined via the BCG affinity study on the nanofibers.  

 

Chapter 6: Affinity studies between modified chitosan and modified SMA nano-

substrates and mycobacteria  

This chapter presents the evaluation of modified chitosan bi-component nanofibers and 

modified SMA nanofibers as potential capturing platforms for M. bovis BCG, the live virulent 

strain of M. tuberculosis. The polymer-and-functional-moiety combination with the highest 

BCG affinity was used to coat SPMNs followed by a dilution study to determine the limit of 

detection. 

 

Chapter 7: Conclusions and Recommendations  

This chapter provides a summary with regard to the conclusions gathered from this study. 

Conclusions will be made with regard to polymer modification, nanofiber morphology, super 

paramagnetic nanoparticles and the affinity studies. The chapter also discusses possible 

future work. 
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Chapter 2 
Literature review 

 

2.1 Introduction 

According to data collected by the World Health Organization (WHO) 10.4 million people 

died of tuberculosis (TB) in 2015. This makes the disease the number one cause of death 

from a preventable infectious disease worldwide.1 Early diagnosis and initiation of treatment 

is essential to reduce the TB burden. Delays in diagnosis and treatment contribute to 

increased TB transmission and severity of illness. Diagnostic and treatment delay are due to 

a number of socio-demographic, economic, behavioural and clinical factors. These factors 

include rural residence, being a smear-positive pulmonary TB (PTB) case, illiteracy, being an 

extra pulmonary TB (EPTB) case, old age and having multi-drug-resistant TB.2 TB infection 

control is especially crucial in areas with a high number of HIV infected residents. The risk of 

mortality and morbidity is significantly higher in patients infected with TB and HIV. The 

current TB vaccine, Mycobacterium bovis Bacillus Calmette–Guérin (BCG) does not prevent 

infection but may reduce mortality in children. Currently global initiatives have been launched 

to prevent, care and control TB namely the End TB Strategy.3,1 

 

2.2 Infection 

Mtb (the causative pathogen of TB) infection occurs via pulmonary exposure where active 

bacilli are inhaled from the environment. The factors that influence infection are mainly living 

and working conditions. Densely populated living and working areas with poor ventilation 

(prolonging duration of exposure) as well as immunocompetency with the virus could thus 

lead to Mtb infection. Mtb infection occurs when an infected carrier coughs, sneezes or talks 

and small droplets (1 to 5 µm in diameter) are aerosolized and expelled.4 These droplets 

contain the pathogenic species and can be inhaled. The lungs will attempt to phagocytize 

the pathogen and transport it across the alveolar epithelium where it is taken up by the 

lungs. A pro-inflammatory response will be triggered followed by immune cells forming 

encapsulated granuloma. This will lead to a cascade effect and to possible active TB.5  

Mtb is aerobic, non-motile, 1–10 μm in length, a rod shaped bacillus and intracellular 

pathogen that multiplies within macrophages. The bacterium triggers the production of free 

radicals but avoids being killed by the same radicals. Pathogenic Mtb can exist in dormant 
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form, latent TB, where no symptoms of the disease are shown. These patients cannot 

transmit the disease but they have a lifelong risk of TB reactivation.6 Mtb is resistant to 

disinfectants and Gram’s stain due to its complex cell wall with high molecular weight lipids. 

The pathogen is gram positive but the wax-rich cell wall lends the bacilli acid fast properties. 

The cell wall glycolipids and mycolic acids are responsible for some of the immune 

responses. Mtb can bind to a variety of host cell receptors such as surfactant protein 

receptors and macrophage receptors.4 A brief overview of the Mtb lifecycle is illustrated in 

Figure 2.1.   

  

 

2.3 Diagnosis of TB 

Strong government commitment and financing as well as community engagement are 

necessary in order to diagnose and manage TB. Currently there is a shortage in diagnostic 

tools and infrastructure in developing countries. Treatment is available to most TB patients 

but stock-outs and other delays in especially rural areas can result in ongoing transmission. 

The majority of multidrug-resistant cases have been treated but the cure rate is only 50%. 

There is thus a need for safer, shorter, and more efficacious diagnosis and drug 

administration.1 TB is diagnosed via clinical symptoms and chest radiography followed by 

laboratory results for confirmation. New diagnostic techniques have been developed but an 

accurate and reliable testing method is however not currently available. A “Gold standard” to 

detect and diagnose TB is thus yet to be found. Microscopic examination of sputum is widely 

used as it is rapid, inexpensive and allows quantitative estimation of the number of bacilli. It 

is however unable to distinguish tuberculosis bacilli from non-tuberculosis mycobacteria, and 

has a low sensitivity. Decontamination using N-acetyl-L-cysteine (NALC) and sodium 

hydroxide kills contaminating bacteria in sputum samples.7 Positive sputum smear samples 

should however undergo molecular testing such as polymerase chain reaction (PCR), 

Figure 2.1: An overview of the Mtb life cycle.
5
 

Stellenbosch University  https://scholar.sun.ac.za



Literature review 

 

8 | P a g e  
 

transcription amplification, ligase chain reaction and strand displacement amplification to 

confirm TB infection.4 Nucleic acid amplification tests provide faster results than acid-fast 

bacilli culture (using Ziehl–Neelsen or hematoxylin–eosin (H&E) staining) and has a higher 

sensitivity compared to sputum smear microscopy. Samples stained with Ziehl–Neelsen use 

conventional light microscopy. Fluorescent microscopy stains consisting of a mixture of 

auramine O and rhodamine B dyes binds to the nucleic acids within acid-fast bacilli as seen 

in Figure 2.2. Fluorescent staining has shown to be more sensitive and the slides can be 

read more rapidly compared to Ziehl-Neelsen staining. The WHO has thus endorsed a 

phase out of conventional Ziehl–Neelsen light microscopy in favour of auramine-rhodamine 

acid-fast bacilli staining. For molecular detection methods the amount of sputum can have a 

direct impact on the sensitivity of the test.8,9,7 The tests to detect previous exposure to the 

Mtb is the tuberculin skin test or purified protein derivate (PPD), enzyme-linked 

immunosorbent assay (ELISA) test and interferon gamma release assay.  

 

 

 

 

 

 

 

 

 

 

 

The limitations of diagnostic techniques are due to the low concentration of bacilli in samples 

as well as difficulty to detect immunology markers associated with Mtb. In order to obtain 

high specificity and low minimum detection limits, complex and expensive equipment are 

often needed. The equipment and trained personnel also adds to the running costs and 

feasibility. The WHO recorded 5.2 million cases of pulmonary tuberculosis in 2014. It was 

found that only 58% of the cases were confirmed by laboratory methods such as smear or 

culture. The remaining 42% of patients were however only diagnosed by clinical criteria 

(symptom history or chest X-ray). The findings are thus an indication that the availability of 

diagnostic tools is limited.7 Fast, effective, and lower cost diagnostic analysis is thus of 

importance.  

 

Figure 2.2: Acid-fast bacilli stain: Mtb stained with fluorescent auramine-rhodamine stain.
7
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For effective TB diagnosis Mtb has to be identified within a sample of bodily fluid obtained 

from a patient. The samples are most commonly found in respiratory specimens such as 

sputum, bronchial aspirates and bronchoalveolar lavage fluid. Tissues, normally sterile body 

fluids, blood, and urine can however also be analyzed. Infants and young children have 

difficulty coughing expectorated sputum. Sputum can be induced using saline with an 

ultrasonic nebulizer. Swallowed sputum can be obtained via gastric lavage but acidic gastric 

washings may decrease the viability of mycobacteria. Bronchoalveolar lavage (BAL) fluid 

can be obtained during a bronchoscopy but this method is invasive.7 The diagnosis of TB is 

especially hampered in children due to the low concentration of bacilli in obtained samples, 

low rate of positive culture and smear tests due to paucibacillary TB, lack of definitive 

diagnostic methods and variable clinical symptoms.10 A large amount of sample is needed 

for an accurate TB diagnosis. Alternatively the Mtb bacilli can be concentrated within the 

sample and extracted.  

Accurate and fast Mtb detection can be realized by obtaining good quality samples. The 

collected sample must have a high concentration of Mtb present, irrespective of the analysis 

technique used. A large sample volume or multiple samples is thus needed to obtain a high 

concentration.11 Alternatively a smaller volume can be used if the Mtb is concentrated within 

the sample. Nanotechnology and polymer science in conjunction with known molecular and 

cellular interactions can be used to improve the diagnostic success of TB.  

 

2.4 Nanotechnology  

Nanotechnology refers to the design, synthesis and application of matter at a molecular 

scale. Nanoscale refers to dimensions and tolerances of less than 100 nanometers and the 

possibility of manipulation of individual atoms and molecules. Nanotechnology has 

revolutionized science for several decades - improvements have been made in the fields of 

medicine and biology with regard to drug delivery, medical diagnostics and manufacturing. 

Recent research has demonstrated its potential application to novel forms of disease 

detection and treatment. Nanotechnology has been used to change the mechanisms by 

which drugs are delivered and its application to scaffolds for nerve regeneration has been 

investigated. Research regarding the mechanisms and characteristics of medical 

nanoparticles and nanofibers has highlighted the pharmacologic potential in improving drug 

synthesis and carriers as well as the optimization of materials and reducing toxicity.12 

Nanotechnology enables the improvement of diagnostic techniques resulting in high 

throughput screening and possible point-of-care (POC) diagnostics.13 
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Previous research has been conducted that focussed on the optimization of existing TB test 

methods. Nanotechnology was utilized to synthesize affinity substrates to enable the capture 

and concentration of M. tuberculosis for improved diagnosis. In a study by Cronje, 

poly(styrene-co-maleic anhydride) (SMA) functionalized with a C12 aliphatic quaternary 

ammonium moiety was found to have the most effective affinity for BCG as well as M. 

tuberculosis.14 In a similar study by Du Plessis, poly(styrene-alt-maleic anhydride) (SMA) 

functionalized with Con A captured BCG most effectively due to saccharide binding of the 

protein. SMA modified with aliphatic quaternary ammonium moieties of chain lengths C8-C12 

also showed capturing abilities through ionic and hydrophobic interactions.15 Quaternized 

chitosan nanofibers and coated iron oxide nanoparticles where investigated with regards to 

BCG affinity by Fortuin. It was found that chitosan coated nanoparticles functionalized with a 

C12 aliphatic quaternary ammonium moiety (CS-qC12), captured the most BCG. N-

trimethylammonium chitosan chloride (TMC) blended with PVA, to produce nanofibers 

crosslinked with genipin, were found to have the strongest interaction with BCG of the 

nanofibers.16 

Nanofibers and nanoparticles have a high surface area to volume ratio and a porous 

structure which enables the use as affinity substrates.17,18 A nanoscale substrate, such as 

nanofibers and nanoparticles, with Mtb affinity can be used to concentrate the bacteria in the 

sample. The sample volume needed will thus be less and will aid in diagnostic analysis. 

Magnetic nanoparticles coated with a polymer that has affinity for Mtb can be used to 

concentrate the bacilli in the sample. The bacilli can be captured by the coated polymer and 

the magnetic iron oxide nanoparticles can adhere to an external magnet. An external 

magnetic field can thus be used to remove the concentrated bacteria from the sample.  

 

2.4.1 Nanoparticles  

Nanoparticles have unique properties compared to the bulk due to quantum effects at 

nanoscale. The properties of nanoparticles are influenced by the size and microstructural 

details of the core and the surface. Three main approaches are used to create 

nanomaterials namely the top-down, bottom-up and virtual approach. The top-down 

approach has been the traditional approach for miniaturization utilizing lithography. The 

bottom-up approach entails the self-assembly from molecular precursors in chemical 

solutions. The virtual approach technique is used by the computational theorists where new 

materials are created in computer simulations. Magnetism differs in some materials when 

one or more dimensions are reduced. The reduction in dimensions can result in the 

reduction of coordination number of atoms, reducing the hopping tendency of electrons from 

site to site. The kinetic energy (bandwidth) of electrons is also reduced and Coulomb 
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interactions/bandwidth ratio is enhanced, which enhances magnetism. The appearance of 

surface and interface states due to the reduced symmetry and changed boundary conditions 

plays an important role in inducing the magnetism in the materials of reduced dimensions.19 

Nanoparticles can be used in numerous fields, including physics and chemistry. The reduced 

dimensions of solid materials lead to novel, modifiable physical and chemical properties that 

differ from the bulk material. The ultra-small nanosize has revolutionized science as 

application to drug delivery, contrast enhancers in magnetic resonance imaging (MRI) and 

antimicrobial agents to kill bacteria resistant to antibiotics.18 The Massart’s method can be 

used to produce nanoparticles with a diameter less than 20 nm. These superparamagnetic 

iron oxide nanoparticles (SPIONs) have shown high field irreversibility and high saturation 

field.20 These qualities enable the particles to no longer show magnetic interaction after the 

external magnetic field is removed. This broadens the application of the nanoparticles in 

controlled magnetism as well as giving larger structures magnetic properties.  

Biocompatibility and toxicity of SPIONs are important criteria for the use in biomedical 

applications. Biocompatibility is determined by the magnetic responsive component (such 

as, magnetite, iron, nickel, cobalt, neodymium–iron–boron or samarium–cobalt), the final 

size of the particles (including the core), the coatings and the stability at neutral pH. The 

nanoparticles must have a high magnetization in order to control the movement of the 

particles in a sample with a magnetic field. Highly magnetic metals such as cobalt and nickel 

are toxic and susceptible to oxidation and can thus not be used. For biomedical applications 

iron oxide particles such as magnetite (Fe3O4) or its oxidised form maghemite (γ-Fe2O3) are 

most commonly used.20 Iron is polymorphic in nature with multiple oxidation states. Iron 

oxide nanoparticles will have different crystal structures depending on the oxidation state 

(Fe(II) or Fe(III)), Fe3O4 has a cubic inverse spinel structure.  

For this study magnetite will be synthesized due to its superparamagnetic properties as well 

as ease of synthesis via co-precipitation. The surface of the nanoparticles can be coated 

with a polymer as seen in biomedical applications.21 

 

2.5 Magnetite 

Magnetite (Fe3O4) and maghemite (γ-Fe2O3) are iron oxides which possess similar face 

centred cubic close-packed structure and are of interest due to their magnetic and biological 

properties as well as half-metallic behaviour.22 Magnetite is, however, the polymorph that 

shows the strongest magnetic properties.23 
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2.5.1 Synthesis 

Magnetic (magnetite) nanoparticles can be synthesized via co-precipitation with bases, 

micro emulsions, thermal decomposition and/or reduction, micelle synthesis, sol-gel, and 

hydrothermal synthesis.24 Co-precipitation is a simple method and commonly used to 

synthesize magnetic nanoparticles by titrating aqueous Fe(II)/Fe(III) salt solutions with a 

base under inert atmosphere. Co-precipitation is favourable due to the large gram-scale 

product that can be formed. The size, shape, and composition of the magnetic nanoparticles 

can be controlled by the type of salts used (chlorides, sulfates or nitrates), the Fe(II)/Fe(III) 

ratio, the reaction temperature, the pH and ionic strength of the solution.25
 Fe3O4 is 

thermodynamically stable under ambient laboratory conditions and forms readily under most 

solvent based nanoparticles synthesis conditions. The bulk material is redox active, while the 

surface composition is easily varied by slight changes to O2 partial pressure and substrate 

temperatures. The surface of Fe3O4 nanoparticles are often covered with a multilayer of α-

Fe2O3 (hematite) due to exposure to the ambient atmosphere and, as with most oxides, 

monolayer amounts of surface hydroxyl and physically adsorbed water.26 

 

2.5.2 Structure 

Magnetite has a face centred cubic (inverse) spinel structure, based on 32 O2− ions, close-

packed along the [111] direction as seen in Figure 2.3. Fe3O4 contains divalent and trivalent 

iron, contrary to other iron oxides. The cubic inverse spinel structure consists of a cubic 

close packed array of oxide ions, where all the Fe2+ ions occupy half of the octahedral sites 

and the Fe3+ are split evenly across the remaining octahedral sites and the tetrahedral sites. 

The stoichiometry of magnetite is Fe(II)/Fe(III) = 1/2, where the divalent ions may be partly 

or fully replaced by other divalent ions (Co, Mn, Zn, etc). This lends magnetite n- and p-type 

semiconductor characteristics. Magnetite however has the lowest resistivity among iron 

oxides due to its small bandgap (0.1 eV).27  

 

 

 

 

 

 

 

 

Figure 2.3: Crystal structure of hematite, magnetite and maghemite (black ball = Fe
2+

, green ball = Fe
3+

 and red 
ball =O

2-
). 
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2.5.3 Crystal growth 

The precipitation of nanoparticles from solution is a fundamental method of crystallisation 

where nucleation and crystal growth are the principle pathways for solid formation. Using this 

method the nuclei can grow uniformly by diffusion from the solution to the nanoparticle 

surfaces. Monodispersed nanoparticles can be formed by uniform nucleation followed by 

crystal growth without further nucleation. Multiple nucleations can however occur and result 

in uniform nanoparticles by Oswald ripening (large uniform crystals formed by crystal growth 

through the dissolution of small crystallites). Larger sized particles that are uniform can also 

be obtained by aggregation of small crystallites through coalescence. Crystal growth in 

solution is interface-controlled up to a certain critical size and beyond that size, the growth is 

diffusion controlled.20 Co-precipitation occurs via the LaMer mechanism defined by a short 

burst of nucleation from a supersaturated solution followed by slow growth of particles 

without notable additional nucleation. Magnetic nanoparticles can, based on Brownian 

relaxation and Néel relaxation theory as seen in Figure 2.4, produce heat accompanied with 

the relaxation process of nanoparticles. Magnetic nanoparticles are magnetized and the 

magnetic moment is gradually arranged via this synthesis.28 

 

 

 

 

 

 

 

2.5.4 Magnetism 

Magnetization describes the strength of the magnetic dipole moment of the magnetic 

nanoparticles at a certain magnetic field strength quantified as magnetic moment per volume 

of core material. The magnetic moment (depending on the core material) follows 

characteristic saturation behaviour. The magnetic behaviour of the nanoparticles is 

dependent on magnetic dipole interaction. A material with unpaired electrons will be 

paramagnetic and will be attracted by an external magnetic field. Paramagnetic ions in close 

proximity to each other will be influenced by the alignment of the magnetic dipoles. These 

ions can be ferrimagnetic, ferromagnetic or antiferromagnetic. A ferromagnetic material will 

have temporary magnetism due to the alignment of magnetic moments of the ions.30  

Figure 2.4: The energy barriers governing single domain particles (left) and the relaxation processes that 
influence the heating properties of magnetic nanoparticles (right). 

29
 

  

 

Stellenbosch University  https://scholar.sun.ac.za



Literature review 

 

14 | P a g e  
 

2.5.5 Nanoscale magnetism effects 

The magnetic properties of nanoparticles vary significantly from bulk materials in magnetic 

moment and anisotropy due to the influence of surface region atoms. The surface region 

atoms determine the magnetic properties of the system as a whole. The magnetic properties 

of magnetic nanoparticles can be either modified or deteriorated by size reduction. These 

properties include saturation magnetization and hysteresis loop (field irreversibility). 

Physicochemical and synthesis parameters, however, also affect magnetism. Ferri- or 

ferromagnetic nanoparticles will exhibit superparamagnetic behaviour in the regions smaller 

than their magnetic domains. Superparamagnetism is a transition from a ferri- or 

ferromagnetic state towards paramagnetic behaviour with high susceptibility and saturation 

magnetization.23 The critical size of the superparamagnetic transition depends on the value 

of the effective magnetic anisotropy constant. In colloidal suspensions of superparamagnetic 

nanoparticles or magnetic fluids the net magnetic attraction is greatly reduced due to 

thermally induced randomization of the individual nanoparticles’ magnetic moments.31 These 

particles thus show better dispersion in solution as they do not tend to magnetically interact 

with each other to form aggregates. Their magnetic susceptibility, however, still remains 

high. Superparamagnetic nanoparticles exhibit zero remanence (and coercivity) and will thus 

have zero average magnetism in the absence of an applied external magnetic field as seen 

in Figure 2.5. 25  

Figure 2:5: a) Magnetic hysteresis loops of pristine iron oxide SPMNs and chitosan coated SPMNs b) 
enlargement of the centre of the hysteresis loops.

32
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2.5.6 Coated SPMNs 

Magnetic nanoparticles show attraction towards one another which leads to aggregation. 

Coating the nanoparticles with various organic and inorganic shells enhances air or thermal 

stability, dispersion and reduces core loss of composites. It is, however, seen that the 

saturation magnetism is lowered leading to weaker magnetism.33 Surfactants and polymers 

can be used to coat the nanoparticles which improve dispersion in solution and binds 

functional groups to the surface of the nanoparticles.34 These functional groups can be used 

for further functionalization such as binding a protein, ligand or drug. Polymers can 

physically adsorb onto the surface of nanoparticles via electrostatic interactions, hydrophobic 

interactions and hydrogen bonding.  

Polymers with functional groups such as hydroxyl, amine and carboxyl groups can adsorb 

onto nanoparticle surfaces. Multifunctional magnetic composites have been synthesized by 

surface modification of iron oxide nanoparticles. Iron oxide has hydroxyl groups that can be 

used for further functionalization. Polymers with amino groups such as chitosan can adhere 

to the surface of iron oxide nanoparticles. Whereas iron oxide nanoparticles modified with 

aminosilane are able to further functionalize with SMA. 

Coating nanoparticles with a functional polymer can improve the stability, surface charge, 

functionality and targeting capability. The nanoparticles thus form less aggregates whilst 

broadening the end use. Depending on the polymer of choice amino groups, carboxylic 

acids, phosphates and sulphates can be bound to the surface of the nanoparticles. The 

coated nanoparticles will be stable in aqueous solution and can thus be applied to biological 

applications. Chitosan and SMA have shown to be biological compatible and can thus be 

modified and used for its BCG capturing capabilities.35  

 

2.6 Chitosan  

Chitosan is the N-deacetylated derivative of chitin, although the N-deacetylation is rarely 

complete. The structure of chitosan is composed of 2-amino-2-deoxy-β-d-glucopyranose 

(GlcN) and β(1→4)-linked 2-acetamido-2-deoxy-β-d-glucopyranose (GlcNAc) residues. A 

sharp distinction in nomenclature with respect to the degree of N-deacetylation between 

chitin and chitosan has however not been defined. Chitosan are of interest in commercial 

use due to its high percentage of nitrogen (6.89%) compared to synthetically substituted 

cellulose (1.25%). Chitosan can thus be used as a chelating agent. There is, however, a 

limitation with regard to its reactivity and processability. Chitosan is obtained from crab or 

shrimp shells and fungal mycelia. Chitin production is supplied by food industries such as 

shrimp canning. Whereas chitosan–glucan complexes are produced from fermentation 
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processes (of Aspergillus niger, Mucor rouxii, and Streptomyces) which involves alkali 

treatment.36 

 

 

 

 

 

 

 

 

Figure 2.6: Chemical structure of chitosan (1-DA (degree of acetylation)) (left) and chitin (DA =1) (right).
37

 

 

Chitosan consists of hydroxyl and amino groups, and possesses favourable properties, 

including non-toxicity, biodegradability, biocompatibility and bioactivity. These advantages 

lead to chitosan based materials being widely used in the biomedical field.38 With tissue 

engineering however, its application is limited due to its relative hydrophobicity and common 

bacterial infection after surgery.39 Most naturally occurring polysaccharides (cellulose, 

dextran, pectin, alginic acid, agar, agarose and carragenans) are neutral or acidic, whereas 

chitin and chitosan are highly basic.40 This property allows polyoxysalt formation, film 

formation, the ability to chelate metal ions and optical structural characteristics.  

Chitosan is soluble in dilute acids such as acetic acid and formic acid. The nitrogen content 

of chitosan is due to its primary aliphatic amino groups. Chitosan can thus undergo reactions 

typical of amines, including N-acylation and Schiff reactions. Chitosan derivatives can be 

obtained under mild conditions and is considered to be substituted glucans. At room 

temperature, chitosan forms aldimines with aldehydes. N-alkyl chitosan can be produced by 

hydrogenation of chitosan and simple aldehydes. The presence of substituents weakens the 

hydrogen bonds of chitosan; N-alkyl chitosans can thus swell in water despite the 

hydrophobicity of the alkyl chains.36 

Introducing quaternary groups on the chitosan backbone renders the polymer soluble over a 

wider pH range and enables strong cationic activity.41 From previous studies, it has been 

reported that quaternized chitosan derivatives exhibit higher antimicrobial and antimycotic 

activity compared to pristine chitosan.42 The incorporation of quaternized chitosan in 

electrospun nanofibers and nanoparticles will thus impart high antibacterial and antimycotic 

activity. Polycations present due to quaternization are able to bind to the cytoplasmic 

membrane of bacterial cells. The charge density of the polyelectrolyte increases with an 
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increase in the molecular weight, which leads to the enhanced adsorption of polycations 

onto the negatively charged cell surface.43 

 

2.7 SMA 

Poly(styrene-alt-maleic anhydride) (SMA) is a linear molecular chain polymer with regular 

alternating non-polar styrene and polar, reactive maleic anhydride. It has favourable 

properties such as low toxicity, low cost, and good biocompatibility and biodegradation. 

Modified SMA copolymers have been used as surface active agents, microbicides, external 

dopants, drug carriers, and sorbent for removal of heavy metal ions.44 SMA can be used to 

synthesize micro- and nanostructured materials through self-organization. Micelles can also 

be obtained by emulsion polymerization followed by using as latexes. Capsules of SMA can 

be formed utilizing a combination with gelatin or dodecanol. Templates can be formed 

utilizing the mesoscopic self-assembling morphology of SMA films.45 

 

 

 

 

 

 

 

SMA can be synthesized via conventional free radical copolymerization. SMA is soluble in a 

variety of solvents, depending on the ratio of styrene and maleic anhydride, due to the 

combination of polar and nonpolar monomers. Styrene and maleic anhydride has been 

copolymerized in N,N-dimethylformamide (DMF) in previous studies.46 SMA is a 

thermoplastic with a high heat resistance and good dimensional stability, qualities which are 

ideal for modification.47 

SMA can be functionalized and the degree of hydrophilicity modified through reaction with 

alcohols for esterification, amines for antibacterial activity and alkali.45 The reactive maleic 

anhydride units can undergo nucleophilic addition with amine compounds due to ring-

opening. SMA undergoes self-emulsification after addition of a nucleophile. The nucleophile 

can react with the maleic anhydride units and therefore introduce functional groups into the 

polymer chain. Tertiary amine and quaternary ammonium compounds have shown 

antimicrobial activity as well as bacterial adhesion.48 

Figure 2.7: Chemical structure of SMA.  
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Quaternized chitosan and SMA derivatives are thus polymers that indicate applicability in 

biological applications. Both polymers are biocompatible and have cellular adhesion 

properties necessary for bacterial affinity substrates. Nanomaterials such as nanoparticles 

and nanofibers can be utilized as substrates due to their enhanced properties. Quaternized 

chitosan and SMA can be electrospun into nanofibers with a large surface area to volume 

ratio. Iron oxide nanoparticles can chelate quaternized chitosan and quaternized SMA, 

forming coated magnetic nanoparticles. 

 

2.8 Electrospinning  

Nanofibers are fibers produced in the submicron range due to processing of the polymer 

solution. Electrospinning has received increasing attention due its favourable properties and 

is considered to be a vital scientific and commercial venture with global economic benefits. 

Various techniques are implemented for the production of nanomaterials; including drawing-

processing, template-assisted synthesis, self-assembly, solvent casting, phase separation, 

and electrospinning. Electrospinning is used the most frequently to produce nanofibers due 

to a high surface area to volume ratio and large number of inter-/intra-fibrous pores. 

Nanofibers are frequently used in the biomedical field using biocompatible and 

biodegradable (natural or synthetic) polymers.49 A high loading of bacterial microbes per unit 

mass can be obtained due to the large number of inter- and intra-fibrous pores.  

The basic single needle electrospinning setup includes a syringe containing polymer solution 

(attached to a pump for constant flow), metallic needle, power supply, and metallic collector. 

The pumped polymer solution is charged via the metallic needle, which causes instability in 

the polymer solution droplet. The reciprocal repulsion of charges produces a force that 

opposes the surface tension, leading to polymer solution flow in the direction of the electric 

field. A further increase in electric field causes the spherical droplet to deform into a conical 

shape. Ultrafine nanofibers emerge from the conical polymer droplet (Taylor cone) and are 

collected on the metallic collector (kept at optimal distance). A stable charge jet will be able 

to form when the polymer solution has sufficient cohesive force. The internal and external 

charge forces cause whipping of the polymer solution jet in the direction of the collector. This 

whipping motion stretches and slides the polymer chains past each other within the solution, 

leading to nanofibers.50 
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Figure 2.8: Principle of electrospinning.
51

 

 

Factors that influence fiber formation that should be optimised during experiments include 

the electrospinning setup (applied electric field, distance between the needle and collector 

and flow rate), solution (solvent, polymer concentration, viscosity and solution conductivity) 

and environmental (humidity and temperature) parameters.17  

 

2.9 Conclusion 

In conclusion, the characteristics, methods of infection and diagnosis of tuberculosis have 

been summarized. The difficulties diagnosing TB as well as the requirements for an accurate 

TB diagnosis was discussed. The main problem in diagnosis is the large specimen volume 

needed to obtain an acceptable bacterial yield. Nanotechnology in the form of nanofibers 

and nanoparticles in conjunction with polymer science can be used to address the issue of 

diagnosing TB.  
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Chapter 3 
Synthesis and characterization of precursor polymers 

 

3.1 Introduction 

Chitosan has favourable properties such as low toxicity, good biodegradability and 

biocompatibility. It has shown cellular adhesion as well as anti-bacterial qualities which is 

favourable in biomedical applications. Chitosan is insoluble in water, alkali, and most mineral 

acidic solutions. Chitosan is, however, soluble in organic acids, such as dilute aqueous 

acetic, formic acid and lactic acids.1 The primary amino and hydroxyl groups on the polymer 

backbone can be utilized as nucleophiles for chemical modification. Modified chitosan 

imparts functional properties which broadens possible applications.2 Nucleophilic substitution 

via the amino groups enables acetylation, iminization, alkylation, quaternization and metal 

chelation.  

Modifying chitosan can alter the hydrophilicity thereof due to additional side chains. 

Quaternized chitosan has shown anti-microbial activity where an increase in the quaternary 

ammonium moiety content and chain length of the alkyl substituent increases the anti-

bacterial properties.3 The increase in anti-microbial activity can be attributed to an increase 

in hydrophobicity. The hydrophobicity and cationic charge due to quaternization thus has a 

substantial effect on the antibacterial activity and thus cellular adhesion/affinity.4 

Concanavalin A (Con A) is a well-studied carbohydrate-binding protein and human receptor 

for the carbohydrate-based structures on the surface of Mtb, such as mannose. The 

interaction between the human receptors of Con A and mycobacterial mannose can facilitate 

the capture and concentration of Mtb.5 To facilitate Con A binding to chitosan, linker 

molecules are utilized viz. glutaraldehyde (GLU), glycine (GLY) and N-(3-

dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC). 

Poly(styrene-alt-maleic anhydride) (SMA) has favourable properties such as low toxicity, low 

cost, and good biocompatibility and biodegradation. SMA can be functionalized and the 

degree of hydrophilicity modified through reaction with amines for antibacterial activity.6 The 

reactive maleic anhydride units can undergo nucleophilic addition with amine compounds 

due to ring-opening. SMA undergoes self-emulsification after addition of a nucleophile. The 

nucleophile can react with the maleic anhydride units and therefore introduce functional 

groups into the polymer chain.7 
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3.2 Results and discussion  

In this chapter the characterization of pristine chitosan (Addendum A) and the synthesis and 

characterization of quaternized N-alkyl chitosan derivatives (CS-qC10 and CS-qC12) and CS-

GLU-GLY-EDC/CS-EDC (chitosan-glutaraldehyde-glycine-EDC) will be discussed as well as 

the synthesis and characterization of SMA and the quaternized derivatives of SMA (SMI-

qC10 and SMI-qC12). ATR-FTIR, 1H-NMR and 13C-NMR spectroscopy was used for 

characterization. These polymers were chosen for their possible adhesion to the cell wall of 

Mycobacterium tuberculosis (Mtb). 

 

3.2.1 CS-qC10 and CS-qC12 

N,N-(2-dimethyl)propyl-3-N’,N’-dimethyl-N’-decylammonium chitosan chloride (CS-qC10) and 

N,N-(2-dimethyl)propyl-3-N’,N’-dimethyl-N’-dodecylammonium chitosan chloride (CS-qC12) 

were synthesized via a two-step reaction. In the first step N-substituted CS were produced 

by modifying chitosan with a suitable modification agent (3-dimethylamino-2,2-

dimethylpropanal). For the second step, the tertiary amine was quaternized with 10-carbon 

and 12-carbon bromoalkane chains, respectively. The chemical structures of the synthesized 

quaternized chitosan derivatives can be seen in Figure 3.1. The two polymers differed only 

by two carbon atoms in the alkyl chain and thus had similar FTIR and NMR spectra, only 

CS-qC12 will thus be illustrated. The syntheses of these polymers were confirmed by 

characterization via ATR-FTIR, 1H-NMR and 13C-NMR spectroscopy.  

 

 

 

 

 

 

 

 

 

 

a) ATR-FTIR 

Figure 3.2 represents the FTIR spectra of pristine chitosan, N-substituted chitosan and CS-

qC12. 

Figure 3.1: Chemical structures of CS-qC10 and CS-qC12. 
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From the FTIR spectra of pristine chitosan, N-substituted chitosan and its quaternized 

derivatives (Figure 3.2), the peak at 1550 cm-1 can be assigned to the primary amine groups 

(N-H bend). The peak at 1630 cm-1 was assigned to the carbonyl stretch of chitosan’s 

acetamido moiety on the N-acetylglucosamine (chitin) residue. The C=O bond of the amide I 

increases dramatically in intensity after N-substitution and quaternization due to the 

formation of a more stable amide bond and a decrease in intramolecular hydrogen bonding 

of the amide, hydroxyl and amino groups of chitosan.8 The primary amine peak also 

increases after modification but less compared to the carbonyl peak.9 

A broad absorption band between 3050 and 3600 cm-1 (O-H, N-H stretch) were observed for 

chitosan, N-substituted chitosan and the quaternized chitosan derivatives. The bands at 

2923 and 2874 cm-1 (C-H stretch) were present in the quaternized chitosan derivatives due 

to the alkyl chains. The presence of alkyl chains were corroborated by the bending 

absorption of the methyl and methylene groups at 1352 and 1420 cm-1. These bands 

increased in intensity in the spectra of CS-qC10 and CS-qC12 compared to pristine chitosan 

and also confirmed the inclusion of long aliphatic chains onto the polymer backbone. The C-

O stretch at 1050 cm-1 increased in intensity after chemical modification.4 

 

b) 1H-NMR 

The 1H NMR spectrum of CS-qC12 is shown in Figure 3.3. The peak at 5.02 ppm can be 

assigned to the methine H-1 as seen in pristine chitosan. A broad overlapping peak can be 

seen for the chitosan polymer backbone H-9, H-10, H-3, H-4, H-6, H-5 and H-6’ at 4.08-3.59 

ppm. The peaks at 3.47 and 3.29 ppm can be assigned to H-7 and H-11 while the peaks at 

Figure 3.2: FTIR spectra of pristine chitosan, N-substituted chitosan and CS-qC12. 
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2.82 ppm can be assigned to the H-2 proton. The peak at 2.06 ppm can be assigned to the 

protons attached to the two methyl groups (H-22 and H-23). The peak at 2.21 ppm can be 

assigned to the protons attached to the two methyl carbons of the quaternary amine, 

deshielded by the electron withdrawing nitrogen atom. The peaks at 1.78 and 1.29 ppm can 

be assigned to the inner protons of the alkyl chain added during quaternization. The peak at 

1.10 ppm can be assigned to the methyl protons of the acetyl of β(1→4)-linked 2-acetamido-

2-deoxy-β-d-glucopyranose (GlcNAc). The peak at 0.88 ppm can be assigned to the terminal 

methyl protons of the alkyl chain H-21.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The degree of quaternization (DQ %) could be determined from the 1H-NMR spectra of the 

quaternized derivatives. The percentage quaternization is determined by the integral of the 

methine (H-2, 2.82 ppm) proton in relation to the integral area of the residual acetyl (1.1 

ppm), as seen by Equation 3.1.10 

 

                              DQ % = 1 − (

CH3 (res. acetyl)
3

H − 2
) × 100                                     3.1 

 

 

The DQ % was calculated to be 94 % for CS-qC10 and 96 % for CS-qC12.  

Figure 3.3: 
1
H-NMR spectrum of CS-qC12 at 80 ˚C in D20/acetic acid-d4 (70:30, v/v). 
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c) 13C-NMR 

Compared to pristine chitosan, quaternized chitosan (Figure 3.4) had additional upfield 

signals. The chemical shift at 53.1 ppm can be assigned to the carbons of the quaternary 

amine group, while the signal at 33.7 can be assigned to the two methyl carbons (C-22 and 

C-23).4 The signals at 32.2 ppm can be assigned to the methylene carbons of the inner alkyl 

chain, 20.0 ppm can be assigned to the terminal methyl carbons of the alkyl chain C-21.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 CS-EDC 

Pristine chitosan was modified with linker molecules (CS-EDC) in order to immobilize Con A.  

Chitosan was crosslinked with glutaraldehyde followed by activating with glycine and 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC). Epichlorohydrin can be used to covalently 

bond glycine to the crosslinked chitosan.11 Carbodiimide forms a urea derivative, O-

acylisourea, between the carbodiimide and carboxylic group of glycine. The primary amines 

of Con A can displace O-acylisourea via nucleophilic substitution resulting in an amide bond 

and thus protein immobilization.12 The synthesis of CS-EDC was confirmed by 

characterization via ATR-FTIR, 13C solid-state cross polarization magic-angle-spinning (CP-

MAS) and SP (single pulse) MAS NMR spectroscopy. Solid state NMR analysis was utilized 

due to crosslinking of chitosan during modification making the material insoluble per solution 

state NMR.  

Figure 3.4: 
13

C-NMR spectrum of CS-qC12 at 80 ˚C in D20/acetic acid-d4 (70:30, v/v). 
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a) ATR-FTIR 

Figure 3.6 represents the FTIR spectra of pristine chitosan, CS-GLU-GLY and CS-GLU-

GLY-EDC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The peak at 1627 cm-1 was assigned to the C=O stretching vibration and the intensity 

increases after crosslinking chitosan with glutaraldehyde as well as the addition of the linker 

molecules glycine and EDC. The increase in intensity can be attributed to the addition of 

C=O bonds in the form of aldehyde, carboxyl and stable carbodiimide groups. The N-H bend 

absorption band at 1550 cm-1, attributed to the free amino groups of pristine chitosan,  

disappeared after chemical modification due to crosslinking.13 The broad absorption band 

between 3000 and 3600 cm-1 was assigned to the (O-H, N-H stretch) of pristine chitosan as 

well as crosslinked chitosan. Bands at 2928 and 2872 cm-1 (C-H stretch) were present after 

crosslinking chitosan due to the alkyl groups of glycine and EDC. Characteristic bending 

Figure 3.5: Chemical structure of CS-EDC. 

Figure 3.6: FTIR spectra of pristine CS, CS-GLU-GLY and CS-GLU-GLY-EDC. 
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absorptions of the methyl and methylene groups at 1320 and 1370 cm-1 also corroborate the 

alkyl groups. 

 

b) Solid state 13C-NMR 

The characteristic peaks of pristine chitosan could be seen in Figure 3.7. From the SP-MAS 

13C-NMR spectrum, the chemical shift at 106.6 ppm can be assigned to C-1 while the 

characteristic peak for C-4 appears at 83.7 ppm. A small C-F rotor background signal can be 

seen at 112.3 ppm. Two overlapping peaks can be seen for C-5 and C-3 as well as for C-6 

and C-2 at 75.8 and 61.4 ppm respectively. The peak at 22.9 ppm can be assigned to the 

CH3 (acetyl) of residual chitin.14 At 43.5 ppm a side band of the larger signals occurred due 

to the 5 kHz MAS rate spinning. The side band is prevalent for the O-C-O groups. The SP 

spectrum showed protons with more quantitative relative intensities of the mobile and rigid 

regions. The peak at 61.4 ppm of C-6 and C-2 thus had the greatest intensity. The CP-MAS 

13C-NMR (Figure 3.8) spectrum had similar signals but discriminated against protons with 

low proton proximal densities or high mobilities.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: SP-MAS 
13

C-NMR spectrum of chitosan. 
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From the SP-MAS 13C-NMR spectrum of CS-EDC (Figure 3.9) broader signals can be seen 

due to more rigidity (faster T2 relaxation). The rigidity is attributed to the glutaraldehyde used 

as crosslinking agent as well as the modification agents. From the CP-MAS 13C-NMR 

spectrum of CS-EDC (Figure 3.10) additional broad peaks can be seen at 181.3 and 144.4 

ppm. The signal at 181.3 ppm can be assigned to the carbonyl (C-11) as well as the 

carbonyl of glutaraldehyde.15 The signal at 144.4 ppm can be assigned to the C=N (C-12) of 

the carbodiimide where the electronegative nitrogen atom leads to deshielding.16 A broad 

band can be seen at 32.9 ppm which can be attributed to the CH2 and CH3 groups of the 

modification agents.  

 

 

 

 

 

 

 

 

Figure 3.8: CP-MAS 
13

C-NMR spectrum of chitosan. 

Figure 3.9: SP-MAS 
13

C-NMR spectrum of CS-EDC. 
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3.2.3 SMA 

SMA was synthesized using conventional radical copolymerization which yielded an 

alternating copolymer as seen by Figure 3.11. The styrene and maleic anhydride will 

spontaneously arrange in an alternating sequence, as seen in radical polymerization 

mechanisms. SMA can be conveniently used as a precursor in the preparation of functional 

polymers. The reactive maleic anhydride can undergo a ring-opening reaction which enables 

chemical modification by linking active agents.6 3-(N,N-dimethylamino)-1-propylamine was 

used for the modification of SMA, where ring-opening of the maleic anhydride enabled 

nucleophilic addition of the primary amine. Heating at 170 ˚C enabled ring closure, thus 

resulting in the formation of styrene maleimide (SMI) (N-substituted maleimide). Addition of a 

bromoalkane resulted in quaternary ammonium SMI.  

 

 

 

 

 

 

 

 

 

Figure 3.10: CP-MAS 
13

C-NMR spectrum of CS-EDC. 

Figure 3.11: Chemical structure of SMA. 
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a) ATR-FTIR 

Figure 3.12 represents the FTIR spectra of SMA, poly(styrene-[N-3-(N’,N’-

dimethylamino)propyl maleimide]) (SMI-tC) and SMI-qC12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the FTIR spectra of SMA, the characteristic asymmetric and symmetric C=O stretch 

vibrations (1849 and 1776 cm-1) of the cyclic maleic anhydride can be seen. An absorption 

band at 1223 cm-1 can be seen for the cyclic ether (–C–O–C–) of the maleic anhydride 

residue. The absorption bands at 3027 and 2924 cm-1 can be assigned to the aromatic 

methine and aliphatic methylene stretch vibrations and the bands at 1631 and 1453 cm-1 can 

be assigned to the stretch vibrations (C=C) of the aromatic ring. The out-of-plane C-H bend 

vibrations of the monosubstituted aromatic ring can be assigned to the bands at 953 and 922 

cm-1. 

From the FTIR spectra of SMI-tC, the (C=O) imide carbonyl asymmetric and symmetric 

stretch vibrations can be seen at 1768 and 1700 cm-1. There is also a disappearance of the 

maleic anhydride residue bands at 1849 cm-1.17 The C-N vibration of the imide can be 

assigned to the peak at 1148 cm-1. The smaller band cyclic ether (–C–O–C–) band at 1214 

cm-1 compared to the band of SMA at 1223 cm-1 is an indication that some of the maleic 

anhydride reactive groups did not undergo imidization. Asymmetric and symmetric methyl 

and methylene stretching vibrations can be seen at 2922 and 2853 cm-1 due to the alkyl 

groups incorporated via 3-(N,N-dimethylamino)-1-propylamine. 

 

Figure 3.12: FTIR spectra of SMA, SMI-tC and SMI-qC12. 
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After quaternization (SMI-qC10 and SMI-qC12), an additional broad band appears between 

3100 and 3600 cm-1
 due to the quaternary ammonium nitrogen. The tertiary amine (SMI-tC) 

undergoes nucleophilic substitution and resulting quaternization after the addition of a 

bromoalkane. An increase in the intensity of the bands at 2922 and 2853 cm-1, is attributed 

to the methyl and methylene stretch vibrations of the alkyl chains.  

The degree of quaternization (DQ %) of the quaternary derivatives could be determined from 

the ATR-FTIR spectra due to the reference peak at 702 cm-1 (out of plane bending of the 

benzene ring) that remains constant during quaternization. The methyl groups of the N-alkyl 

amine moiety (SMI-tC), however, had a C-H band at 1344 cm-1 that increased in intensity 

after quaternization (due to introducing alkyl chains). The DQ % could thus be calculated by 

the ratio of the peak height at 702 and 1344 cm-1 for SMI-tC and the quaternized derivatives 

(SMI-qC10 and SMI-qC12) as seen by Equation 3.2.18 

 

                                         DQ% =
(peak height

704
1350

)
SMI−tC

(peak height
702

1344)
SMI−qCx

× 100                                    3.2 

 

The DQ % was calculated to be 89 % for SMI-qC10 and 88 % for SMI-qC12. 

 

b) 1H-NMR 

From the 1H NMR spectrum of SMA (Figure 3.13) a characteristic single broad peak can be 

seen at 6.8 – 7.5 ppm due to the aromatic protons of the styrene unit. Protons attached to an 

aromatic ring are deshielded and will have large chemical shifts due to the large anisotropic 

field. The broad peak at 2.34 ppm corresponds to the chemical shift of the methylene and 

methine protons of the styrene polymer backbone. Whereas the broad, unresolved peak at 

3.28 ppm can be attributed to the methine protons of the maleic anhydride polymer 

backbone. The maleic anhydride protons are attached to a carbon next to a carbonyl group 

(C=O) and will therefore have peaks downfield (compared to H-1,2) due to the 

electronegativity of the oxygen.19 
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c) 13C-NMR 

The 13C-NMR spectrum of SMA (Figure 3.14) has a characteristic peak at 173.6 ppm due to 

the carbonyl carbons of the maleic anhydride unit. The peaks at 128.8 ppm and 137.8 ppm 

are attributed to the aromatic ring carbons of the styrene unit (C-8,8’,9,9',10) and the 

aromatic carbon (C-7) respectively. The peaks at 52.8 ppm, 43.5 ppm and 34.9 ppm are due 

to the aliphatic methylene and methine carbons of the SMA backbone (C-4, C-1, C-3, C-2). 

The 13C-NMR spectrum of SMA thus agrees with literature.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: 
1
H-NMR of SMA in d-acetone. 

Figure 3.14: 
13

C-NMR of SMA in d-acetone. 
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3.2.4 SMI-tC 

a) 1H-NMR 

From the 1H-NMR spectrum of SMI-tC (Figure 3.15), a broad peak can be seen at 6.8-7.5 

ppm attributed to the deshielded protons attached to the aromatic ring. The peak at 2.39 

ppm is due to the methine of the styrene polymer backbone while the peak at 3.37 ppm is 

due to the deshielded methine protons of the maleic anhydride polymer backbone. Additional 

peaks in the upfield region can be seen for SMI-tC compared to SMA due to the imidization 

with 3-(N,N-dimethylamino)-1-propylamine. The terminal methyl groups are deshielded by 

the adjacent electron withdrawing nitrogen atom with a chemical shift at 2.15 ppm. The 

methylene protons (H-13) absorption peak overlaps at 2.15 ppm. The α-hydrogen (H-11) has 

a chemical shift at 2.94 ppm due to the adjacent nitrogen atom and electronegative carbonyl 

groups which lead to deshielding. The peak at 1.67 ppm can be attributed to the methylene 

absorption of the styrene polymer backbone with overlapping methylene absorption (H-12) of 

the alkyl chain.20 The imidization of SMA with 3-(N,N-dimethylamino)-1-propylamine to yield 

SMI-tC was thus successful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: 
1
H-NMR of SMI-tC in d-chloroform. 
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b) 13C-NMR 

The 13C-NMR spectrum of SMI-tC is characterized by a peak at 178.4 ppm due to the imide 

carbonyl carbons. This peak is more downfield than the carbonyl peak of SMA due to imide 

formation. The peak at 128.8 ppm can be attributed to the aromatic ring carbons of the 

styrene unit. The peak at 38.0 ppm due to the methylene carbon adjacent to the imide 

nitrogen and the imide carbonyl peak at 178.4 confirm that imidization occurred, replacing 

the maleic anhydride with a maleimide unit. The primary N-alkylamine used for imidization of 

the maleic anhydride has characteristic peaks at 45.4 and 58.5 ppm due to the methyl 

carbons (C-14,15) and methylene carbons (C-13) adjacent to the nitrogen of the tertiary 

amine. The peak at 25.9 ppm is also attributed to the methylene carbon of the aliphatic 

chain. The 13C-NMR spectrum of SMI-tC can thus confirm the successful imidization of SMA 

with 3-(N,N-dimethylamino)-1-propylamine.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.5 SMI-qC10 and SMI-qC12 

a) 1H-NMR 

SMI-tC was quaternized with two aliphatic bromoalkanes, namely 1-bromodecane (Br-C10) 

and 1-bromododecane (Br-C12). The 1H-NMR spectrum of SMI-qC12 (Figure 3.17) will be 

discussed as only the absorption band integration intensity of the peak at 1.22 ppm due to 

the methylene protons of the aliphatic chain differs slightly for SMI-qC10 and SMI-qC12. A 

Figure 3.16: 
13

C-NMR of SMI-tC in d-chloroform. 
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characteristic shielded, sharp peak at 0.84 ppm can be seen due to the terminal methyl 

groups of the C12 chain. Additionally a sharp signal at 1.22 ppm is attributed to the 

methylene protons of the aliphatic carbon chain (H-17 to 25). The broad peak at 1.69 ppm 

can be assigned to the aliphatic methylene protons of the styrene polymer backbone (H-2) 

the methylene next to the terminal methyl of the C12 chain (H-26) and the methylene on the 

N-alkylamine chain (H-12). The characteristic peak at 3.60 ppm can be assigned to the 

protons adjacent to the quaternary ammonium moiety (H-14,15) which partially overlaps with 

the band due to the protons on the maleic anhydride polymer backbone (H-3,4) at 3.37 ppm. 

The electronegative nitrogen and carbonyl groups will thus lead to deshielding and a higher 

chemical shift. The broad peak at 6.5-7.5 ppm can be attributed to the deshielded aromatic 

protons. The successful quaternization of SMI-tC using 1-bromododecane to yield SMI-qC12 

can thus be confirmed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 13C-NMR 

The 13C-NMR spectrum of SMI-qC12 (Figure 3.18) had similar peaks compared to SMI-tC 

with additional upfield peaks due to the additional alkyl chain. The methylene carbon signals 

in the alkyl chain (C18 to 25) are characterized by a peak at 32.0 ppm. Additionally the 

methyl group (C-27) of the C12 chain can be assigned to the upfield peak at 14.2 ppm. The 

additional upfield peaks thus confirms that nucleophilic substitution took place at the tertiary 

amine moiety of SMI-tC and that SMI-qC12 was obtained.20 

Figure 3.17: 
1
H-NMR spectrum of SMI-qC12 in d-chloroform. 
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3.3 Conclusion 

Pristine chitosan was modified via N-substitution and quaternized, forming CS-qC10 and CS-

qC12. Chitosan was modified with linker molecules in order to immobilize Con A, CS-EDC 

was thus synthesized. SMA was synthesized, modified to form SMI-tC and quaternized to 

form SMI-qC10 and SMI-qC12. The synthesis of the polymers were confirmed via ATR-FTIR, 

1H-NMR and 13C-NMR spectroscopy. The chemical structures of the polymers were chosen 

based on possible Mtb capturing capabilities and will subsequently be used as affinity 

substrates in the form of nanofibers and nanoparticles.  

3.4 Experimental  

3.4.1 Materials  

Chitosan (Sigma-Aldrich, Mw = 129 000, DDA 75) was used for the synthesis of N,N-(2-

dimethyl)propyl-3-N’,N’-dimethyl-N’-decylammonium chitosan chloride (CS-qC10), N,N-(2-

dimethyl)propyl-3-N’,N’-dimethyl-N’ dodecylammonium chitosan chloride (CS-qC12) and CS-

EDC. While styrene monomer (Merck, ≥ 99%) and maleic anhydride (Merck, 99%) was used 

for the synthesis of SMA as well as SMI-qC10 and SMI-qC12. The following chemicals were 

also utilized: isobutyraldehyde (Aldrich, 98%), formaldehyde solution (Merck, min 37%), 

dimethylamine solution (Riedel-de Haën, ca. 40%), acetic acid (Merck, ≥ 97.7%), NaBH4 

(Aldrich, 99%), acetone (Sigma-Aldrich, 99.5%), N-methyl-2-pyrrolidinone (Sigma-Aldrich, ≥ 

Figure 3.18: 
13

C-NMR spectrum of SMI-qC12 in d-chloroform. 
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99%), 1-bromodecane (Aldrich, 98%), 1-bromododecane (Aldrich, 97%), glutaraldehyde 

solution (Sigma-Aldrich, 50 wt% in H20), ethanol (Sigma-Aldrich, 99.5%), epichlorohydrin 

(Aldrich, 99%), glycine (Saarchem, 99%), 1,4-dioxane (Sigma-Aldrich, ≥ 99%), sodium 

hydroxide pellets (Merck, ≥ 97%), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) (Sigma-Aldrich, ≥ 99%), 2,2’-azobis(2-methylpropionitrile) (AIBN) 

(Sigma-Aldrich, 98%, recrystallized from methanol), ethyl methyl ketone (MEK) (Merck, ≥ 

99.5%), heptane (Sigma-Aldrich, 99%), isopropanol (Sigma-Aldrich, 99.5%), pentane 

(Sigma-Aldrich, 99.5%), N,N-dimethylformamide (DMF) (Associated chemical enterprises, 

99%), 3-(N,N-dimethylamino)-1-propylamine (Aldrich, 99%), diethyl ether (Sigma-Aldrich, 

99.5%), deuterium oxide (Merck, 99.96 atom % D), deuterated acetic acid-d4 (Sigma, ≥ 99.5 

atom % D), deuterated acetone-d6 (Merck, 99.9 atom % D) and deuterated chloroform-d1 

(Merck, 99.8 atom % D).  

 

3.4.2 Characterization techniques 

a) Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

Infrared spectra were obtained using a Nicolet FTIR spectrometer from Thermo-Fischer. An 

ATR accessory with a diamond/ZnSe internal reflection crystal was attached. The spectra 

were recorded from 4000 cm-1 to 500 cm-1 with a spectral resolution of 4 cm-1. 64 individual 

scans were taken to generate the spectra as well as 32 scans for the background spectra 

before each sample. Omnic software, version 8.1, was used for data acquisition and 

processing.  

 

b) Nuclear magnetic resonance (NMR) spectroscopy  

1H NMR and 13C NMR spectra were obtained using a Varian VXR 400 or 600 MHz 

instrument equipped with a Varian magnet (7.0 T). The pristine chitosan and modified 

chitosan polymers were dissolved in deuterium oxide (D2O) and deuterated acetic acid (d4-

acetic acid) in a 70:30 (v/v). The SMA derivatives were dissolved in deuterated chloroform 

(CDCl3) or deuterated acetone (d6-Acetone) depending on the solubility. CP-MAS 13C and 

SP-MAS 13C NMR was performed on chitosan and CS-EDC. The solid state NMR 

experiments were performed on a Varian VNMRS instrument operating at a frequency of 

126 MHz using the combined techniques of magic angle spinning (MAS) and cross-

polarization (CP) as well as magic angle spinning (MAS) combined with single pulse (SP). A 

4mm Vespel HX T3 MAS probe was used with 5 kHz MAS rate spinning. Analysis was 

performed at 25 ˚C.  
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3.4.3 Experimental  

a) 3-dimethylamino-2,2-dimethylpropanal  

An aldehyde, as illustrated in Scheme 3.1, was synthesized as modification agent in order to 

modify pristine chitosan, forming N-substituted chitosan. The synthesis is based on the 

patent by Bernhagen, et al.21 

 

 

 

 

 

Isobutyraldehyde (50.40 g, 0.7 mole) and aqueous 37% formaldehyde solution (56.7 g, 0.7 

mole) was placed in a three neck round bottom flask. 40 % dimethylamine solution (78.75 g, 

0.7 mole) was added. The reaction (pH 11) was heated to 100 ˚C and purged with N2 gas for 

5 hours. Thereafter the nitrogen gas was removed and the reaction refluxed for a further 24 

hours. The reaction was cooled and separated via a separating funnel. The organic phase 

(bottom layer) was placed in a rotary evaporator to remove the aqueous phase. An orange 

liquid product was obtained. 1H NMR (600 MHz, D2O) 𝛿 (ppm) 9.51 (s, 1H, H-1), 2.74 (s, 2H, 

H-3), 2.24 (s, 6H, H-4,5), 1.22 (s, 6H, H-6,7). 13C NMR (600 MHz, D2O) 𝛿 (ppm) 211.3 (C-1), 

69.5 (C-2), 68.5 (C-3), 45.6 (C-4,5), 24.6 (C-6,7). 

 

b) N-substituted chitosan 

The produced modification agent can selectively form a Schiff base with the amino groups of 

chitosan. A reducing agent, NaBH4, can then be added resulting in N-substituted chitosan. 

The N-substituted chitosan was synthesized based on the experimental procedure of 

Zhanyong Guo et al. as illustrated in Scheme 3.2.9 

 

 

 

 

 

 Scheme 3.1: Synthesis of 3-dimethylamino-2,2-dimetylpropanal. 
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Chitosan (3 g) was dissolved in 300 mL of 0.5 % acetic acid at room temperature. After 

which 3-dimethylamino-2,2-dimethylpropanal (6.46 g, 0.05 mol) was added with stirring. After 

24 hours 10 % NaBH4 (0.15 mol) was added and the reaction stirred for 24 hours. The white 

product was precipitated in acetone, filtered and dried at 60 ˚C for 24 hours. Major IR 

absorptions: 3176, 1638, 1565, 1402, 1352, 992, 945, 809 cm-1.1H NMR (400 MHz, 

D2O/acetic acid-d4 (70:30, v/v)) 𝛿 (ppm) 4.95 (m, H-1), 4.00 (m, H-9), 3.80 (m, H-3, 4, 6), 

3.64 (m, H-5,6’), 3.45 (m, H-7), 3.02 (s, H-2), 2.15 (-+N(CH3)2), 2.12 (p, H-12,13), 1.22 (s, 

H3C=O).13C NMR (400 MHz, D2O/acetic acid-d4 (70:30, v/v)) 𝛿 (ppm) 99.9 (C-1), 77.8 (C-4), 

74.7 (C-5), 73.1 (C-9), 72.8 (C-3), 63.6 (C-6), 59.9 (C-2), 59.3 (-N-CH3 x2), 32.9 (C-12,13).  

 

c) Quaternary chitosan derivatives 

The quaternized chitosan derivatives were synthesized via the precursor polymer, N-

substituted chitosan. N-substituted chitosan can react with an alkyl bromine, where the 

tertiary amine groups of chitosan can attack the electropositive carbon atoms attached to the 

bromine via nucleophilic substitution. Quaternary chitosan can thus be formed, as illustrated 

in Scheme 3.3. 

 

 

 

 

Scheme 3.2: Synthesis of N-substituted chitosan. 
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i) CS-qC10 

N-substituted chitosan (3 g) was dispersed in N-methyl-2-pyrrolidone (150 mL) and 1.5 mL 

acetic acid for 24 hours. At this point 1-bromododecane (27 g) was added dropwise, the 

reaction heated to 100 °C and stirred for 48 hours. The yellow product was precipitated in 

excess acetone, filtered and dried at 60 ˚C for 24 hours. Major IR absorptions: 3286, 2930, 

2875, 1646, 1554, 1408, 1375, 1304, 1150, 1050, 1020 cm-1. 1H NMR (400 MHz, D2O/acetic 

acid-d4 (70:30, v/v)) 𝛿 (ppm) 5.07 (m, H-1), 4.06 (m, H-9, 10), 3.90 (m, H-3, 4, 6), 3.80 (m, 

H-5, 6’), 3.57 (t, H-7), 3.36 (m, H-11), 2.92 (s, H-2), 2.16 (-+N(CH3)2), 1.85 (H-20,21), 1.45 – 

1.39 (-CH2-), 1.28 (H3C=O), 0.97 (H-19). 13C NMR (400 MHz, D2O/acetic acid-d4 (70:30, 

v/v)) 𝛿 (ppm) 101.0 (C-1), 80.9 (C-4), 78.1 (C-5), 73.5 (C-3), 63.8 (C-6), 59.1 (C-2), 53.3 (-N-

CH3 x2), 33.8 (C-20,21), 32.5 (-CH2-), 25.4 (-CH3, Acetyl), 20.3 (C-19). 

ii) CS-qC12 

N-substituted chitosan (3 g) was dispersed in N-methyl-2-pyrrolidone (150 mL) and 1.5 mL 

acetic acid for 24 hours. At this point 1-bromododecane (27 g) was added dropwise, the 

reaction heated to 100 °C and stirred for 48 hours. The yellow product was precipitated in 

excess acetone, filtered and dried at 60 ˚C for 24 hours. Major IR absorptions: 3316, 2923, 

2874, 1629, 1510, 1426, 1375, 1305, 1150, 1027, 985 cm-1. 1H NMR (400 MHz, D2O/acetic 

acid-d4 (70:30, v/v)) 𝛿 (ppm) 5.02 (m, H-1), 3.98 (m, H-9, 10), 3.85 (m, H-3, 4, 6), 3.72 (m, 

H-5, 6’), 3.47 (t, H-7), 3.29 (m, H-11), 2.82 (s, H-2), 2.21 (-+N(CH3)2), 2.01 (H-22,23), 1.78 – 

1.29 (-CH2-), 1.1 (H3C=O), 0.88 (H-21). 13C NMR (400 MHz, D2O/acetic acid-d4 (70:30, v/v)) 

𝛿 (ppm) 100.5 (C-1), 80.3 (C-4), 77.8 (C-5), 73.1 (C-3), 63.5 (C-6), 59.0 (C-2), 53.1 (-N-CH3 

x2), 33.7 (C-22,23), 32.2 (-CH2-), 25.2 (-CH3, Acetyl), 20.0 (C-21).  

Scheme 3.3: Synthesis of quaternary chitosan via N-substituted chitosan. 
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d) CS-GLU-GLY-EDC 

The pristine chitosan required modification via linker molecules for Con A immobilization. 

Chitosan was crosslinked with glutaraldehyde followed by activating with glycine and 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC) as seen in Scheme 3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 g Chitosan was dissolved in 250 mL of 1% acetic acid. Thereafter 50 mL glutaraldehyde 

(50 wt%) was added and stirred for 8h. The product was filtered and washed with ethanol 

and distilled water. The produced crosslinked CS (5 g) was dispersed in 50 mL distilled 

water, 50 mL ethanol and 10 g epichlorohydrin. The reaction was refluxed for 3h at 100 ̊C, 

filtered and washed with ethanol and distilled water. The produced CS was added to 5 g 

glycine dispersed in 100 mL dioxane where after 40 mL of 1M NaOH was added. The 

reaction was refluxed for 12 hours at 100 ̊C, filtered and washed with water and acetone. 

The dark brown product was dried in a vacuum oven at r.t. The produced CS-GLU-GLY 

(1,193 g) was dispersed in 40 mL PBS (pH 7) with stirring. At this point 0,192 g EDC was 

added and stirred at r.t. for 8 h. The red-brown product was filtered, washed with PBS and 

dried at r.t. in a vacuum oven. Major IR absorptions: 3266, 2928, 2872, 1628, 1410, 1367, 

1320, 1031 cm-1. SP-MAS 13C NMR (126 MHz) 𝛿 (ppm) 111.5, 101.7 (C1), 75.1 (C-5,3), 61.6 

Scheme 3.4: Synthesis of chitosan-EDC via linker molecules. 
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(C-6,2), 32.7-23.7 (CH2,CH3). CP-MAS 13C NMR (126 MHz) 𝛿 (ppm) 181.3 (C=O), 144.4 

(C=N), 101.7 (C-1), 75.6 (C-5,3), 61.8 (C-6,2), 42.9-23.8 (CH2, CH3).  

 

e) SMA  

SMA could be synthesized via conventional radical copolymerization using styrene monomer 

and maleic anhydride monomer with AIBN as initiator, as seen in Scheme 3.5 

 

 

 

 

Styrene monomer (15 g, 0.14 mol), maleic anhydride (14 g, 0.14 mol) and 2,2’-azobis(2- 

methylpropionitrile) (AIBN, 0.1182 g, 7.20×10-4 mol) were dissolved in 200 mL methyl ethyl 

ketone (MEK) at room temperature. The reaction mixture was purged with N2 for 30 min, 

placed in a heated oil bath at 60 °C for 1 hour and refluxed for 16 hours at 60 °C without N2 

gas. The reaction mixture was cooled to room temperature, precipitated in 500 mL 

isopropanol and washed with heptane. Any unreacted monomer and residual solvent was 

removed under vacuum at 50 °C overnight. Major IR absorptions: 3027, 1849, 1776, 1710, 

1223, 760, 700 cm-1. 1H NMR (600 MHz, acetone): δ (ppm) 7.12 (m, H-8,8’,9,9’,10 

(aromatic)), 3.28 (m, H-3,4), 2.34 (m, H-1,2). 13C NMR (600 MHz, acetone): δ (ppm) 173.6 

(m, C-5, 6), 137.8 (s, C-7), 128.8 (s, C-8,8’,9,9’,10 (aromatic)), 52.8 (s, C-4), 43.5 (s, C-1,3) 

34.9 (s, C-2).  

 

f) SMI-tC 

SMA was reacted with a modification agent (3-(N,N-dimethylamino)-1-propylamine). The 

reactive maleic anhydride functional group of SMA could undergo a ring opening reaction 

with the addition of the modification agent, followed by ring closure at increased 

temperatures. The resulting product and thus imidization yielded SMI-tC as seen in Scheme 

3.6.  

 

 

Scheme 3.5: Synthesis of SMA via conventional radical polymerization. 
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SMA (10 g, 49 mmol MAnh) was dissolved in 50 mL DMF at room temperature. 3-(N,N-

dimethylamino)-1-propylamine (15 g, 147 mmol) was added dropwise to the solution. The 

reaction was placed in a heated oil bath at 170 °C for two hours, whereafter it was 

precipitated into diethyl ether, filtered and dried under vacuum at 60 °C overnight. Major IR 

absorptions: 3444, 2940, 2768, 1768, 1690, 1399, 1344, 1149, 757, 702 cm-1. 1H NMR (400 

MHz, CDCl3): δ (ppm) 7.13 (m, H-8,8’,9,9’,10 (aromatic)), 3.37 (m, H-3,4), 2.94 (s, H-11), 

2.39 (s, H-1), 2.15 (s, H-13,14,15), 1.67 (p, H-2,12).13C NMR (400 MHz, CDCl3): δ (ppm) 

178.4 (d, C-5,6), 161.3 (s, C-7), 128.8 (m, C-8,8’,9,9’,10 (aromatic)), 58.5 (s, C-13), 57.5 (s, 

C-4), 45.4 (s, C-14,15), 41.0 (s, C-1,3), 38.0 (s, C-11), 36.6 (s, C-2), 25.9 (s, C-12). 

 

g) Quaternary SMA derivatives  

The quaternized SMA derivatives were synthesized via the precursor polymer, SMI-tC. The 

tertiary amine group of SMI-tC reacted with excess bromoalkane which formed quaternized 

SMA as seen in Scheme 3.7.  

 

 

 

 

 

 

Scheme 3.6: Synthesis of SMI-tC. 
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i) SMI-qC10  

Poly(styrene-[N-3-(N’,N’-dimethylamino)propyl maleimide) (SMI-tC) (3 g, 10,4 mmol MAnh) 

was dissolved in 50 mL DMF after which 1-bromodecane (2.88 g, 13 mmol)  was added 

dropwise at r.t. The reaction was stirred at 110 °C for 48 hours, cooled, precipitated in 

diethyl ether, filtered and washed three times with pentane. The SMI-qC10 polymer was dried 

under vacuum at 60 °C overnight to remove residual solvent. Major IR absorptions: 3416, 

2922, 2853, 1768, 1662, 1454, 1400, 1350, 1151, 704 cm-1. 1H-NMR (600 MHz, CDCl3): δ 

(ppm) 7.12 (m, H-8,8’,9,9’,10 (aromatic) ), 3.46 (m, H-14,15), 3.23 (s, H-3,4,11), 2.92 (s, H-

1,13,16), 1.76 (s, H-2,12,24), 1.24 (s, H-17-23), 0.87 (s, H-25). 13C NMR (600 MHz, CDCl3): 

δ (ppm) 173.9 (s, C-5,6), 162.8 (s, C-7), 128.0 (s, C-8,8’,9,9’,10 (aromatic)), 65.3 (s, C-16), 

63.2 (s, C-13), 55.6 (s, C-4), 51.3 (s, C-14,15), 43.3 (s, C-1,3), 32.0 (s, C-11), 31.9 (s, C-2), 

26.8 (s, C-18-23), 26.4 (s, C-12), 22.8 (s, C-17-23), 14.2 (s, C-25). 

ii) SMI-qC12 

Poly(styrene-[N-3-(N’,N’-dimethylamino)propyl maleimide) (SMI-tC) (3 g, 10.4 mmol MAnh) 

was dissolved in 50 mL DMF after which 1-bromododecane (3.45 g, 13,8 mmol)  was added 

dropwise at r.t. The reaction was stirred at 110 °C for 48 hours, cooled, precipitated in 

diethyl ether, filtered and washed three times with pentane. The SMI-qC10 polymer was dried 

under vacuum at 60 °C overnight to remove residual solvent. Major IR absorptions: 3401, 

2922, 2853, 1768, 1695, 1453, 1401, 1355, 1149, 1024, 757 cm-1. 
1H-NMR (300 MHz, 

CDCl3): δ (ppm) = 7.07 (m, aromatic), 3.60 (s, H-14,15), 3.37 (s, H-3,4,11), 3.22 (s, H-

1,13,16), 1.69 (s, H-2,12,26),1.22 (s, H-17-25), 0.84 (s, H-27). 13C NMR (300 MHz, CDCl3): δ 

(ppm) 178.8 (s, C-5,6), 163 (s, C-7), 128.8 (s, C-8,8’,9,9’,10 (aromatic)), 64.7 (s, C-16), 62.5 

Scheme 3.7: Synthesis of quaternary SMA via SMI-tC. 
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(s, C-13), 55.3 (s, C-4), 51.3 (s, C-14,15), 43.5 (s, C-1,3), 36.6 (s, C-11), 35.3 (s, C-2), 32.0 

(C-18-25), 26.4 (s, C-12), 22.7 (s, C-17,26), 14.2 (s, C-27).  
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Chapter 4 
Chitosan based bi-component nanofibers and SMA 

based nanofibers 

4.1 Introduction  

Electrospinning is a favourable method for producing continuous polymer fibers with 

diameters in the nano-scale range. Fibers generated by conventional methods such as 

spinning from melt or solution are in the 5-500 µm range and thus not favourable for 

biological applications where a high surface area is needed. During electrospinning, an 

external electric field is imposed on the polymer solution or melt, the solution and spinning 

conditions will thus greatly affect fiber formation. The diameters and morphology of the 

nanofibers will depend on parameters such as the polymer type, polymer chain 

conformation, viscosity and concentration of solution, conductivity, polarity and surface 

tension of the solvent. Spinning conditions such as applied field strength, distance between 

needle tip and collector plate and the feeding rate also need to be optimized for efficient fiber 

formation.  

Electrospinning continuous fibers of polyelectrolyte polymers (such as chitosan) via aqueous 

solutions have previously been considered impossible due to the repulsive forces between 

the ionogenic groups as well as their ability to form specific intra- and intermolecular 

interactions. In recent years, nanofibers could, however, be electrospun from ionogenic 

polymers by utilizing mixed solutions of ionogenic polymer and non-ionogenic polymer.1,2 

Blending with non-ionogenic polymers improves the electrospinnability as well as the 

physical and mechanical properties of the chitosan/bi-component nanofiber mats. Suitable 

non-ionogenic partners for electrospinning of chitosan include polylactide (PLA), poly(vinyl 

alcohol) (PVA), poly(vinyl pyrrolidone) (PVP), poly(ethylene oxide) (PEO)3 and 

polycaprolactam (Nylon 6)4 as seen in Figure 4.1.  

 

 

 

 

 

Figure 4.1: Chemical structures of the relevant non-ionogenic polymers. 
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The different non-ionogenic polymers were blended with the chitosan derivatives (CS-EDC, 

CS-qC10 and CS-qC12) followed by electrospinning into bi-component nanofibers in order to 

determine which modified chitosan and bi-component combination captures Mtb most 

efficiently.  

SMA is an ideal Mtb capturing platform due to its high heat resistance, dimensional stability, 

thermoplasticity and low toxicity. The reactive maleic anhydride groups enables polymer 

modification, SMI-qC10 and SMI-qC12 were thus synthesized. The maleic anhydride of SMA 

can also undergo surface functionalization post-electrospinning, such as Con A 

immobilization.5 SMA and the quaternized SMA derivatives were electrospun by dissolving 

the polymers in suitable organic solvents.  

Chitosan was modified via linker molecules which activated the polymer for surface 

functionalization with Con A post-electrospinning. Con A was chosen as surface 

functionalization agent due to its ability to bind to mannose on the Mtb cellular wall.6 

Nanofibers of the SMA derivatives and chitosan derivatives were produced to determine 

which polymer and functional moiety combination captures Mtb most efficiently.  

 

4.1.1 Non-ionogenic polymers  

a) Polyvinyl alcohol 

PVA has many important applications, for example, drug delivery, membrane preparation 

and medical field applications such as artificial pancreas, hemodialysis and implantable 

medical devices, as it is non-toxic, water soluble and biocompatible. Blending PVA with 

chitosan can improve the mechanical properties, chemical properties and production cost 

compared to neat chitosan fibers. Favourable intermolecular interactions can be developed 

between the different polymers by using different weight ratios of chitosan and PVA.7 PVA is 

hydrophilic in nature and the water solubility of PVA based materials must therefore be 

reduced for use in aqueous media.8 

b) Polylactide 

PLA is biodegradable, biocompatible and has a high strength and appropriate degradation 

rate for musculoskeletal applications. The aliphatic polyester has been applied to biomedical 

applications such as surgical sutures, substrates for tissue regeneration and carriers for drug 

and gene delivery.9 PLA is brittle, has low hydrophilicity, low elongation at break and does 

not contain reactive side-chain groups. These properties will thus affect the hydrophilicity 

and brittleness of the chitosan/PLA nanofiber mats. 
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c) Polycaprolactam 

Nylon 6 has superior mechanical properties and fiber forming ability compared to other 

synthetic and natural polymeric materials. Nylon 6 has a high chemical and thermal stability 

and resembles the collagen protein in its backbone structure and can thus be used in 

biomedical applications such as bone tissue engineering. Nylon 6 is stable in human bodily 

fluids, has a hydrophobic surface and tight crystalline structure. The lack of water retention 

and wettability limits its application in biofilters, biosensors and tissue engineering.10  

d) Polyethylene oxide  

PEO is a hydrophilic, biocompatible and water soluble polymer that has frequently been 

used in biomedical applications.11,12 The viscosity of neat chitosan in the spinning solution is 

high due to the strong hydrogen bonding between the NH2 and OH groups of the polymer 

chains. Blending with PEO in the polymer solution decreases the viscosity of the spinning 

solution due to the change in intra- and intermolecular interactions of the chitosan chains. 

The PEO molecules are capable of binding onto the chitosan backbone which increases the 

solubility of chitosan as well as decreasing the viscosity. Selfassociation of the chitosan 

chains increased by forming new hydrogen bonds between the OH groups of PEO and water 

molecules.13 

e) Polyvinyl pyrrolidone 

PVP is non-toxic, biocompatible, hydrophilic, has good complexation properties and film 

forming ability and can thus be used in the biomedical field.1 The synthetic linear polymer is 

frequently used in controlled drug release, tissue engineering and wound dressing. It is 

soluble in water as well as many organic solvents and is thus versatile for electrospinning. 

Chitosan and PVP are compatible and miscible polymers due to hydrogen bond interactions 

between the carbonyl groups of PVP and the amino and hydroxyl groups of chitosan. A 

homogeneous blend can thus be formed for the electrospinning solution.14  

 

4.2 Results and discussion 

The aim of the nanofiber study was to electrospin the quaternized derivatives of chitosan 

(CS-qC10 and CS-qC12) and SMA (SMI-qC10 and SMI-qC12), SMA and CS-EDC into 

nanofibers via single needle electrospinning. The chitosan derivatives were blended with 

suitable non-ionogenic polymers. The nanofibers were crosslinked for stability in aqueous 

media and analysed via SEM (scanning electron microscopy). The SMA and CS-EDC 

nanofibers were surface functionalized with Con A for Mtb affinity. Water contact angle 

(WCA) measurements were used to determine the hydrophilicity or hydrophobicity of the 
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2µm 2µm 

2µm 1µm 

nanofibers. The horseradish peroxidase (HRP) enzymatic assay was used to determine the 

biological activity of the Con A immobilized to the nanofibers.  

 

4.2.1 Electrospinning chitosan derivatives/non-ionogenic polymer bi-component 

nanofibers with crosslinking 

The electrospinning and polymer solution parameters greatly affect nanofiber formation. 

Varying one parameter will affect the other parameters thus optimal spinning conditions must 

be determined experimentally. The optimal polymer concentration of the chitosan derivatives 

were 3 wt%. Higher polymer concentrations lead to incomplete dissolution and gelation of 

the spinning solution. The ideal weight percentages of the non-ionogenic polymers were 

experimentally determined to be 14 wt% for PVA, 17 wt% for PLA, 25 wt% for Nylon 6, 12 

wt% for PEO and 20 wt% for PVP, respectively. A number of parameters determined the 

optimal spinning solution such as solution viscosity, chain entanglement due to molecular 

weight and surface tension.  

A critical polymer concentration is needed in order to obtain continuous fibers from 

electrospinning without defects. Sprayed droplets (beading) occurs below this concentration 

due to insufficient chain entanglements to stabilize the Coulombic repulsion within the 

ejected polymer solution jet. Uniform and homogenous fibers can be formed when the 

applied electric field overcomes the surface tension of the polymer solution. The surface 

tension has an upper and lower boundary if all the other variables are constant. The 

formation of droplets, beads and fibers can thus be controlled by the surface tension of the 

polymer solution. Lowering the surface tension of the solution (higher than the critical 

polymer concentration) aids electrospinning at lower electric fields.15 Figure 4.2 illustrates 

the critical polymer concentration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: SEM images of CS-EDC (3 wt%) blended with PVA a) 10 wt% (Mw=49 kD), b) 10 wt% (Mw=300 kD), 
c) 12 wt% (Mw=300 kD), d) 14 wt% (Mw=300 kD), in a 40/60 ratio. 

b 

c d 

a 
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PVA as blending polymer was added in a low weight percentage (10 wt%) and molecular 

weight (Mw=49 kD) (Figure 4.2, a) which resulted in large, irregular electrosprayed droplets 

due to insufficient chain entanglement and low viscosity. Addition of higher molecular weight 

bi-component polymer (Mw=300 kD) (b) improved the fiber morphology due to an increase in 

chain entanglements. Beading is, however, observed at 10 wt% PVA. At 12 wt% PVA 

(Mw=300 kD) (c) minimal beading was observed due to the increase in viscosity. Finally at 

14 wt% PVA (Mw=300 kD) (d) smooth, continuous fibers were electospun and a 

homogenous fiber mat could be obtained. At a PVA weight percentage higher than 14, the 

high viscosity spinning solution resulted in polymer jet instability. 

The chitosan derivatives and non-ionogenic blending polymers were separately dissolved 

and blended in a 40/60 ratio (CS/bi-component polymer, w/w). Inclusion of the non-ionogenic 

polymers facilitated electrospinning and improved mechanical stability. A higher ratio of non-

ionogenic polymer is favourable for electrospinning as seen by literature.15 A 40/60 ratio 

(CS/bi-component polymer) was thus chosen to facilitate electrospinning while retaining the 

favourable bacterial adhesion properties of chitosan. 

The CS/PVA nanofibers were electrospun by separately dissolving 3 wt% CS in 0.2 M 

1,2,3,4-butanetetracarboxylic acid (BA) and 14 wt% PVA in distilled water. Multicarboxylic 

acids such as BA have been utilized as environment-friendly solvents and in situ crosslinking 

agents for chitosan electrospinning. The acidity of BA can protonate the amine groups of 

chitosan and dissolve the polymer. Numerous carboxylic acid groups also provide multiple 

ionic bindings for chitosan thus ionic crosslinked nanofibers can be formed. Multicarboxylic 

acids are also favourable to maintain chitosan’s biocompatibility and non-toxicity.16 SEM was 

used to determine the diameter and morphology of the CS/PVA nanofibers as seen in Figure 

4.3.  

 

CS/PLA nanofibers were electrospun by separately dissolving 3 wt% of the chitosan 

derivatives and 17 wt% of poly(L-lactide) (PLA) in TFA/DCM (trifluoroacetic 

acid/dichloromethane) (70/30, v/v). PLA has a high strength and was thus a suitable 

a b c 

Figure 4.3: SEM images of a) CS-EDC/PVA nanofibers (330 ± 67 nm), b) CS-qC10/PVA nanofibers (437 ± 74 nm) 
and c) CS-qC12/PVA nanofibers (264 ± 54 nm). 

1µm 
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blending polymer. The produced nanofiber mats were insoluble in phosphate buffered saline 

(PBS) solution. The nanofibers were, however, brittle and further crosslinking with 

glutaraldehyde vapour was required for extended exposure to aqueous media. SEM was 

used to determine the diameter and morphology of the CS/PLA nanofibers as seen in Figure 

4.4.  

CS/Nylon 6 nanofibers were electrospun by separately dissolving 3 wt% of the chitosan 

derivatives and 25 wt% of Nylon 6 in acetic acid/formic acid (2/1, v/v). The CS/Nylon 6 

nanofibers were insoluble in aqueous media after stabilizing the nanofiber mats at 100 ˚C for 

1h after electrospinning. The nanofiber mats were rinsed with 0.05 M NaOH followed by 

distilled water to remove acid residues. SEM was used to determine the diameter and 

morphology of the CS/Nylon 6 nanofibers as seen in Figure 4.5.  

 

 

The CS/PVA, CS/PLA and CS/Nylon 6 nanofibers were stable in PBS and could thus be 

utilized as affinity substrates as described in Chapter 6. The nanofibers blended with Nylon 6 

had the smallest diameters (111-204 nm) and standard deviation of 19-41 nm. The 

nanofibers blended with PVA and PLA had larger diameters and standard deviations, with 

264-437 nm avg. diameter and standard deviation 54-74 nm for PVA and 202-349 nm avg. 

diameter and standard deviation 46-93 nm for PLA. It was also seen that the CS-qC10 fibers 

had larger diameters than the other CS derivatives when blended with PVA, PLA or Nylon 6.  

Figure 4.4: SEM images of a) CS-EDC/PLA nanofibers (218 ± 46 nm), b) CS-qC10/PLA nanofibers (349 ± 93 nm) 
and c) CS-qC12/PLA nanofibers (202 ± 46 nm). 

a b c 

Figure 4.5: SEM images of a) CS-EDC/Nylon 6 nanofibers (111 ± 19 nm), b) CS-qC10/Nylon 6 nanofibers (204 ± 
41 nm) and c) CS-qC12/Nylon 6 nanofibers (141 ± 25 nm). 

 

a b c 

1µm 

1µm 
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The CS/PEO nanofibers were electrospun by separately dissolving 3 wt% CS in 10 wt% 

acetic acid and 12 wt% PEO in distilled water. The CS/PVP nanofibers were electrospun by 

separately dissolving 3 wt% CS in 10 wt% acetic acid and 20 wt% PVP in distilled water. 

PVP is hydrophilic and required crosslinking via thermal treatment at 120 ˚C for 3h as soon 

as possible after electrospinning. The chitosan derivatives are soluble in aqueous media and 

required crosslinking when blended with hydrophilic bi-component polymers (PVP and PEO). 

Crosslinking agents were thus used to prevent dissolution and thus impart stability in 

aqueous media. The crosslinking agents with reactive functional groups are able to 

covalently bind the polymer chains to each other and retain nanofiber morphology in water. 

Glutaraldehyde, genipin and photocrosslinking agents were utilized to crosslink the 

nanofibers and the chemical structures can be seen in Figure 4.6 and 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glutaraldehyde has been used to covalently crosslink nanofibers for stability in aqueous 

media. It is, however, known to be cytotoxic.17 There are discrepancies in literature regarding 

the crosslinking mechanism of chitosan with glutaraldehyde. The proposed mechanism is 

where crosslinking proceeds with Schiff base formation between the terminal aldehyde 

groups of glutaraldehyde and the amino groups of chitosan assuming without formation of 

Michael-type adducts with the terminal aldehyde group.9 The CS/PEO and CS/PVP 

nanofibers were crosslinked by exposing the fiber mats to glutaraldehyde vapour. The 

nanofibers, however, swelled and dissolved when placed in PBS solution as seen in Figure 

4.8 (b) and (d). 

Figure 4.7: Photocrosslinking agents TEGDMA (left), DAS (middle) and DMPA (right). 

Figure 4.6: Crosslinking agents glutaraldehyde (left) and genipin (right). 
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Genipin was investigated as an alternative natural and lower cytotoxic crosslinking agent. 

The compound is derived from the fruits of the plant Gardenia jasminoides Ellis and has 

been used for crosslinking biopolymers of proteins and polysaccharides containing residues 

with primary amine groups.18 Similarly to glutaraldehyde crosslinked nanofibers, the CS/PEO 

and CS/PVP nanofibers in situ crosslinked via genipin dissolved in PBS as seen in the case 

of the CS/PEO nanofibers Figure 4.9 (b).  

 

 

 

 

 

 

The CS/PVP nanofibers were crosslinked with photocrosslinking agents by adding 4.5 wt% 

TEGDMA (triethylene glycol dimethacrylate), 1 wt% DMPA (2,2-dimethoxy-2-

phenylacetophenone), 1 wt% DMSO (dimethyl sulfoxide) and 1.5 wt% DAS (4,4’-diazido-

2,2’-stilbenedisulfonic acid disodium salt tetrahydrate) (weight % of total polymer content) to 

the spinning solution. TEGDMA is a crosslinking agent for chitosan with DMPA as photo-

initiator whereas DAS is a suitable crosslinking agent for PVP in aqueous solution.1 

a b 

c d 

Figure 4.8: SEM images of glutaraldehyde crosslinked nanofibers a) CS-EDC/PEO (161 ± 30 nm), b) EDC/PEO 
nanofibers after exposed to PBS, c) CS-EDC/PVP nanofibers (167 ± 44 nm) and d) CS-EDC/PVP nanofibers 

after exposed to PBS. 

 

Figure 4.9: SEM images of genipin crosslinked nanofibers a) CS-EDC/PEO (132 ± 35 nm), b) EDC/PEO 
nanofibers after exposure to PBS. 

a b 
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Photocrosslinking, however, formed beaded fibers (a) and a gel network after PBS treatment 

(b) as seen in Figure 4.10.  

 

 

 

 

 

 

 

The CS/PEO and CS/PVP nanofibers were inherently hydrophilic due to blending with water 

soluble PEO and PVP and could not be crosslinked. These fibers were thus removed from 

the nanofiber study.  

 

4.2.2 Electrospinning SMA derivative nanofibers 

SMA nanofibers were produced by dissolving 18 wt% polymer in DMF/acetone (1/2, v/v). 

The SMI-qC10 and SMI-qC12 nanofibers were dissolved in DMF/methanol (1/1, v/v) with 28 

wt% and 25 wt% polymer respectively. The optimal polymer weight percentage was 

experimentally determined. The nanofiber mats required stabilization at 120˚ C for 2h for 

optimal dimensional stability. Smooth, continuous and bead free fibers were formed at 

relatively high polymer weight percentages as seen in Figure 4.11.  

 

 

From the SEM images, it was determined that the SMA fibers had the smallest avg. diameter 

at 380 ± 145 nm. The SMI-qC10 and SMI-qC12 nanofibers had similar diameters, 494 ± 143 

nm and 482 ± 109 nm respectively. These fibers were insoluble in PBS and could thus be 

utilized as affinity substrates for BCG-mCherry bacteria as described in Chapter 6.  

Figure 4.10: SEM images of photocrosslinked PVP nanofibers a) CS-EDC/PVP (145 ± 41 nm), b) EDC/PVP 
nanofibers after exposure to PBS. 

 

a b 

Figure 4.11: SEM images of SMA nanofiber derivatives a) SMA (380 ± 145 nm), b) SMI-qC10 (494 ± 143 nm), and 
c) SMI-qC12 (482± 109 nm). 

a b c 

1µm 
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4.2.3 Con A immobilization on CS-EDC and SMA nanofibers  

Chitosan was crosslinked with glutaraldehyde and modified via linker molecules (glycine and 

EDC) in order to immobilize Concanavalin A. EDC forms a stable reactive urea derivative 

(O-acylisourea) with the glycine bonded to chitosan. The primary amines of Con A can 

displace the O-acylisourea intermediate via nucleophilic substitution resulting in an amide 

bond and Con A immobilization as seen in Scheme 4.1.19 

 

 

 

 

 

 

 

 

 

 

 

Con A was immobilized to the SMA nanofibers via covalent bonding. The nanofibers were 

surface functionalized with Con A via an imidization reaction. The reactive and easily 

accessible α-amine groups of Con A can react with the anhydride groups of SMA under 

neutral conditions resulting in SMI-Con A functionalized nanofiber mats as seen in Scheme 

4.2. Manganese and calcium ions were added to the PBS solution to preserve its 

polypeptide conformation, thus retaining binding activity.5,20 

 

 

 

 

 

The Con A immobilized nanofibers were analyzed with SEM to determine the change in 

morphology and fiber diameter. The average fiber diameter of the CS-EDC and SMA fibers 

did not differ significantly after Con A immobilization. The SMA fibers had a 380 ± 145 nm 

Scheme 4.2: Imidization reaction (immobilization) of SMA with Concanavalin A. 

Scheme 4.1: Concanavalin A immobilization to modified chitosan. 
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avg. diameter compared to 384 ± 182 nm for SMI-Con A while the CS-EDC nanofibers had 

an avg. diameter of 330 ± 67 nm compared to 281 ± 57 nm for CS-EDC-Con A. Con A 

formed aggregates attached to the fiber surface as seen in Figure 4.12 (b) and (d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 Water contact angle measurements 

Surface characteristics such as topography, chemistry and surface energy affect the 

substrate’s ability to adsorb or spread water on its surface. The wettability, and thus the 

ability to spread water over the substrate surface, will consequently affect the interaction and 

adhesion to cells and bacteria.21 It has been found that contact angles less than 90˚ 

correspond to high wettability and a hydrophilic substrate, while contact angles larger than 

90˚ correspond to low wettability and thus a hydrophobic surface as illustrated in Figure 

4.13. 

 

 

 

 

 

The chitosan derivatives in the nanofiber study are inherently hydrophilic and water soluble. 

Blending with hydrophobic PLA and Nylon 6 as well as BA crosslinked PVA improved the 

Figure 4.13: Static water contact angle (WCA) measurements with a) θ < 90˚ and b) θ > 90˚.
26

 

a b 

Figure 4.12: SEM images of a) CS-EDC, b) CS-EDC-Con A, c) SMA, d) SMI-Con A nanofibers. 

a b 

c d 

1µm 

2µm 
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dimensional stability of the nanofiber mats in aqueous solution. Water contact angle (WCA) 

measurements were thus performed on the CS/PLA, CS/Nylon 6 and CS/PVA nanofibers. 

All the nanofiber mats were hydrophilic and wetted the surface completely as soon as a 1µL 

water droplet was placed on the samples. In order to determine the 

hydrophilicity/hydrophobicity of the various samples, solvent cast films were used for water 

contact angle measurements. The chitosan derivatives solvent cast films were hydrophilic 

and the water droplet wetted the surface immediately. Contact angle measurements could, 

however, be obtained for the PLA, Nylon 6 and PVA films and were 70˚, 73˚ and 74˚ 

respectively. The hydrophilicity of the non-ionogenic polymer films was thus similar. Blending 

the chitosan derivatives with the non-ionogenic polymers did not have a significant effect on 

the WCA measurements, only a slight decrease in hydrophobicity was seen (Figure 4.14 b, d 

and e). Con A was immobilized on the CS-EDC blended polymer films and a significant 

increase in hydrophilicity was observed as seen in Figure 4.14 (c) with a water contact angle 

of 51˚ for CS-EDC/PVA-Con A. The amino acid residues of Con A are able to form hydrogen 

bonds with the water molecules and will thus improve the wettability of the film.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SMA derivatives are relatively hydrophobic due to the styrene units in the polymer 

backbone.23 The SMA derivative nanofibers thus had poor wettability (Figure 4.15 a, c, d). 

Poor wettability is unfavourable for bacterial adhesion but the fibers had favourable 

properties such as dimensional stability and minimal swelling in water. The SMI-Con A 

nanofibers (Fig 4.15 b) had a significant decrease in hydrophobicity due to the ability of Con 

A to form hydrogen bonds with the water molecules which is favourable for bacterial affinity. 

Figure 4.14: Water contact angle measurements of polymer films a) PVA (74˚), b) CS-EDC/PVA (72˚), c) CS-
EDC/PVA-Con A (51˚), d) CS-qC10/PVA (71˚), e) CS-qC12/PVA (72˚). 

a b c 

d e 
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4.2.5 Horseradish peroxidase assay 

The horseradish peroxidase (HRP) enzymatic assay was performed on the nanofiber 

substrates to determine the biological activity of the immobilized Con A. Con A is able to 

bind to mannose and will therefore bind to the mannose rich glycoprotein (HRP). The HRP 

bound to the Con A on the fibers can be determined in the presence of a substrate and 

oxidizing agent.24 The substrate is oxidized by HRP using an oxidizing agent which can be 

detected spectrophotometrically. In this HRP assay, the various CS-EDC-Con A and SMI-

Con A nanofibers were incubated with HRP in PBS solution for three hours at room 

temperature, followed by rinsing to remove non-binding HRP. The substrate 2’-azino-bis(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) and oxidizing agent (H2O2) was added before 

measuring the absorbance at 405 nm (ΔA405nm) for 30 minutes. The colour change from 

green to dark blue was observed for all the fibers, which confirms qualitatively that HRP was 

bound to biologically active Con A immobilized to the nanofibers (Figure 4.16). The amount 

of biologically active Con A immobilized to the nanofibers was quantitatively determined as 

15.1 % for CS-EDC/PVA-Con A, 11.3 % for CS-EDC/Nylon-Con A and SMI-Con A and 7.5 

% for CS-EDC/PLA-Con A. The % biologically active Con A is comparable to literature.25  

 

 

 

 

Figure 4.15: Water contact angle measurements of nanofibers a) SMA (136˚), b) SMI-Con A (61˚), c) SMI-qC10 

(125˚), d) SMI-qC12 (134˚). 

 

a b 

c d 
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4.3 Conclusion 

The chitosan derivative nanofibers were blended with non-ionogenic bi-component polymers 

in order to improve the stability of the polymer solution jet during electrospinning. The 

nanofibers will be used as bacterial affinity substrates in aqueous solution and, therefore, 

required dimensional stability and minimal swelling in water. The CS/PVA crosslinked with 

BA, CS/PLA crosslinked with glutaraldehyde and CS/Nylon 6 nanofibers retained its stability 

in aqueous solution and could, therefore, be used as bacterial affinity substrates. The SMA 

derivatives were electrospun without additional polymers and were stable in PBS after heat 

treatment. Con A was immobilized via linker molecules to chitosan (CS-EDC) and to SMA. 

Con A aggregates could be seen on the surface of the nanofibers via SEM. WCA 

measurements were performed on the chitosan derivative films and SMA derivative 

nanofibers to determine the hydrophilicity/hydrophobicity. The chitosan derivative films were 

hydrophilic whereas the SMA nanofibers were relatively hydrophobic which could impede 

bacterial adhesion. Con A immobilization improved the hydrophilicity of the films and 

nanofibers due to hydrogen bonding of Con A’s amino acid residues with water, which could 

possibly improve bacterial adhesion. A HRP assay confirmed that the immobilized Con A 

was biologically active.  

 

4.4 Experimental 

4.4.1 Materials 

The following non-ionogenic polymers were used for this part of the project: polyvinyl alcohol 

(PVA) (Mw = 85-145 kD, 99 % hydrolized), poly(L-lactide) (PLA) (Mw= 259 kD), 

polycaprolactam (Nylon 6) (density = 1.084 g/mL at 25 °C), polyethylene oxide (PEO) (Mw = 

300 kD), polyvinyl pyrrolidone (PVP) (Mw = 360 kD) and were purchased from Sigma 

Aldrich. The following chemicals were used for this part of the project: 2,2’-azino-bis(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) (Sigma Aldrich, 10 mg tablets), KH2PO4 (Aldrich, 

Figure 4.16: SMA-Con A with HRP (left) and without HRP (right). 
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99+ %), H2O2 (Merck, 35 %), bovine serum albumin (Sigma Aldrich, ≥ 96 %), Triton X-100 

(Sigma Aldrich, laboratory grade), peroxidase from horseradish Type VI-A (950-2000 unit/mg 

solid using ABTS), 1,2,3,4-butanetetracarboxylic acid (Aldrich, 99 %), trifluoroacetic acid 

(Sigma Aldrich, 99 %), DCM (Sigma Aldrich, 99.5%), acetic acid (Merck, ≥ 97.7 %), formic 

acid (Merck, ≥ 99 %), DMF (Associated chemical enterprises, 99%), Acetone (Sigma-

Aldrich, 99.5%), Methanol (Sigma Aldrich, 99.5 %), glutaraldehyde (Sigma Aldrich, 50 wt% in 

H2O), genipin (Sigma-Aldrich, ≥ 98%), TEGDMA (Sigma Aldrich, 95 %), dimethyl sulfoxide 

(DMSO) (Merck, ≥ 99.9%), 2,2-dimethoxy-2-phenylacetophenone (DMPA)(Aldrich, 99 %), 

4,4’-diazido-2,2’-stilbenedisulfonic acid disodium salt tetrahydrate (DAS)(Sigma Aldrich, ≥ 99 

%), Concanavalin A from Canavalia ensiformis (Jack bean) Type VI (Sigma Aldrich), CaCl2 

(Merck, 98 %), MnCl2 (Sigma Aldrich, beads 99 %), NaCl (Scienceworld, 98.2 %), KCl 

(Saarchem, 98.5 %), Na2HPO4 (Nice laboratory chemicals, 99 %).  

 

4.4.2 Characterization techniques  

a) Scanning electron microscopy (SEM)  

The micrograph images of the nanofibers were obtained using a MERLIN scanning electron 

microscope (SEM). The fibers on aluminum foil were cut into approximately 1 ×1 cm squares 

and placed on the SEM stub via double sided carbon tape. After which the SEM stubs were 

sputter coated with gold under vacuum prior to imaging. The images were analyzed via SEM 

Image Studio, an imaging analysis program, in order to obtain the fiber diameter and size 

distributions.  

 

b) Water contact angle (WCA)  

Static contact angle measurements were used to determine the hydrophobicity or 

hydrophilicity of the polymer nanofiber surfaces. Magnification could be achieved via a Zeiss 

microscope unit. For each sample a 1 µL drop of distilled water was placed on the fiber mat 

followed by capturing the magnified image using a Nikon SMZ-2T (Japan). Static contact 

angles could be measured using Carl Zeiss AxioVision LE software. In Figure 4.17 the 

marked parameters needed to calculate the contact angle can be seen on the water droplet, 

followed by using Equation 4.1 to determine the static contact angle. Ten water droplets of 

each sample were needed to determine the average water contact angle.  

 

                                                      𝜃 = 2 × tan−1 (
ℎ

𝑟
)                                                    4.1          
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c) Horseradish peroxidase (HRP) enzymatic assay  

A HRP assay was used to determine the biological activity of Con A immobilized to the 

nanofibers. The enzymatic assay of peroxidase (EC (enzyme commission) 1.11.1.7) (Sigma 

Aldrich) with ABTS as a substrate was used. A 13.6 mg/mL KH2PO4 solution was prepared 

with distilled water (pH 5.0 at 25 °C). ABTS (5.0 mg/mL) was added to this solution and 

referred to as the substrate. A 0.3 % (w/w) hydrogen peroxide solution was freshly prepared 

using a 35 % (w/w) hydrogen peroxide solution and referred to as H2O2. The diluent was 

prepared in distilled water using 5.4 mg/mL KH2PO4, 2.5 mg/mL bovine albumin and 5.0 

mg/mL Triton X-100 (pH 6.8 at 25 °C). A 1 mg/mL stock solution of peroxidase enzyme from 

horseradish Type VI-A (HRP) (950-2000 units/mg solid) was prepared using cold diluent and 

referred to as enzyme. The Con A immobilized nanofiber samples (5 mg) were incubated in 

1.0 mL of diluted enzyme solution (1 mg/L) for 3 hours on a laboratory shaker at rt. The Con 

A-HRP fibers were subsequently washed with diluent three times, for 10 min at a time, to 

remove any non-binding HRP. The reagents were pipetted into cuvettes as summarized in 

Table 4.1. 

 

Table 4.1: Reagents added to the cuvettes for the blank and sample (test) solution (millilitres). 

 Blank Sample solution 

Substrate 2.9 2.9 

H2O2 0.1 0.1 

Diluent 0.05 - 

Enzyme - Con A-HRP nanofibers (5 mg) 

 

The contents of the cuvettes were mixed by inversion followed by determining the increase 

in absorbance at 405 nm (A405nm) for 30 min at 0.02 second intervals with a UV 

spectrophotometer. The fastest rate was determined by the increase in the slope for each 

Figure 4.17: Static water contact angle measurements needed to determine the WCA. 
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sample. In Figure 4.18 for the SMI-Con A-HRP nanofibers, the maximum change in 

absorbance in the 6th minute was used as the maximum linear rate for both the test and the 

blank sample. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The biological activity of the Con A immobilized on the nanofiber substrates could be 
quantified by calculating the units of HRP bound per mass of Con A nanofiber substrate, 
Equation 4.2.  
 
 

                  
Units

mg solid
=

∆A405nm
min

(sample) −
∆A405nm

min (blank) × 3.05 × DF

36.8 × 0.05
                     4.2 

 
3.05 = Final volume in cuvette (millilitres) 
DF = Dilution factor of enzyme  
36.8 = Millimolar extinction coefficient of oxidised ABTS at A405nm  

0.05 = Volume enzyme used (millilitres) 

 
From Equation 4.2, it was determined that for the SMI-Con A nanofibers 3 units/mg solid 

HRP was bound to the fibers. By definition, one unit will oxidise 1.0 μmole ABTS per minute 

(pH 5.0 at 25°C), therefore, 3 units/mg solid will oxidise 3.0 μmole of ABTS per minute. The 

final concentration of ABTS in the cuvette was 8.7 mM (26.5 μmole), of which only 3 μmole 

was oxidised, thus only 11.3 % of the immobilized Con A was biologically active. 

 

4.4.3 Experimental procedures  

a) Electrospinning set-up  

The nanofibers were produced via horizontal, single needle electrospinning. The setup 

includes a high voltage power supply and a syringe pump that is attached to a syringe 

containing polymer solution. The tip of the needle will be charged and the nanofibers 

Figure 4.18: Absorbance curve of the HRP incubated SMI-Con A nanofibers. 
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deposited onto a conductive collection plate. Disposable 5 mL syringes and 0.9 × 40 mm 

(blunt) steel needle tips were used during electrospinning. 

 

b) Chitosan bi-component nanofiber preparation  

For the PVA blended nanofibers, a 3 wt% polymer solution of CS-qC10, CS-qC12 and CS-

EDC were prepared by dissolving in 0.2 M 1,2,3,4-butanetetracarboxylic acid. PVA polymer 

solution (14 wt%) was prepared separately by dissolving in distilled water. For the PLA 

nanofibers, a 3 wt% polymer solution of CS-qC10, CS-qC12 and CS-EDC and 17 wt% 

polymer solution of PLA were separately prepared by dissolving in TFA/DCM (70/30, v/v). In 

the case of the Nylon 6 nanofibers, a 3 wt% polymer solution of CS-qC10, CS-qC12 and CS-

EDC and 25 wt% polymer solution of Nylon 6 were separately prepared by dissolving in 

acetic acid/formic acid (2/1, v/v). The Nylon 6 solution was dissolved by heating at 80 ˚C for 

8h. For the PEO nanofibers, a 3 wt% polymer solution of CS-qC10, CS-qC12 and CS-EDC 

were prepared by dissolving in 10 % acetic acid solution. PEO polymer solution (12 wt%) 

was prepared separately by dissolving in distilled water. In the case of PVP nanofibers, a 3 

wt% polymer solution of CS-qC10, CS-qC12 and CS-EDC were prepared by dissolving in 10 

% acetic acid solution. PVP polymer solution (20 wt%) was prepared separately by 

dissolving in distilled water.  

In all cases, the solutions were stirred at room temperature for 24 h followed by combining 

the non-ionogenic polymer/CS solutions in a 60/40 ratio (10 g, w/w). The nanofibers were 

fabricated by electrospinning the respective polymer solutions at a flow rate of 0.013 mL/min, 

needle tip to collector distance of 20 cm and a voltage of ±15 kV. The nanofibers were 

collected on a large petri dish covered with aluminium foil. The nanofibers were placed in an 

oven at 100 ˚C for 1h to thermally crosslink and insure stability. The nanofibers were rinsed 

with distilled water and dried before use.  

 

c) SMA and quaternized SMA nanofiber preparation  

A 18 wt% polymer solution of SMA was dissolved in DMF/acetone (1/2, v/v) and stirred for 

24h. For the SMI-qC10, a 28 wt% polymer solution of SMI-qC10 was dissolved in 

DMF/methanol (1/1, v/v) and stirred for 24h. In the case of SMI-qC12, a 25 wt% polymer 

solution of SMI-qC12 was dissolved in DMF/methanol (1/1, v/v) and stirred for 24h. In all 

cases, the nanofibers were fabricated by electrospinning, the SMA polymer solution at a flow 

rate of 0.027 mL/min, needle tip to collector distance of 20 cm and a voltage of ±15 kV. The 

nanofibers were collected on a large petri dish covered with aluminium foil. The nanofibers 

were placed in an oven at 120 ˚C for 2h to insure stability.  
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d) Crosslinking chitosan/ bi-component nanofibers 

i) Glutaraldehyde vapour crosslinking 

Glutaraldehyde crosslinked nanofibers were obtained by exposing the nanofibers (PEO/CS, 

PVP/CS and PLA/CS) to 10 mL glutaraldehyde vapour (50 wt%) in a petri dish placed in a 

desiccator for 24 h. The nanofibers were then dried in a vacuum oven at 30 ˚C for 24 h. 

ii) Genipin crosslinking 

0.5% (w/v) genipin was added to the polymer spinning solutions of PEO/CS and PVP/CS at 

room temperature with constant stirring, 3 min prior to electrospinning each polymer blend 

solution. The nanofiber mats were removed from the collector plate and immediately 

exposed to water vapour in a desiccator at r.t. for 24 h. A petri dish filled with 5 mL distilled 

water was placed in the desiccator to produce water vapour. The nanofiber mats were 

washed with ethanol and dried under vacuum at 30 ˚C for 24 h.  

iii) Photocrosslinking  

Photocrosslinked nanofibers were obtained by adding 4.5 wt% TEGDMA, 1 wt% DMPA, 1 

wt% DMSO and 1.5 wt% DAS (weight % of total polymer content) to the spinning solution of 

PEO/CS and PVP/CS. The nanofibers were produced as soon as a homogeneous spinning 

solution was obtained. To perform crosslinking the nanofiber mats were irradiated with a UV 

lamp (1500 W, 20 cm away from the nanofiber mats) for 8 h.  

e) Con A immobilization  

A 10 mM phosphate buffered saline (PBS) solution was prepared in distilled water (8 g NaCl, 

0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, pH 7.4, in 1 L distilled water). 10 mg nanofibers 

were placed in 1 mL PBS containing Con A (4 mg/mL), MgCl2 (0.01 mg/mL) and CaCl2 (0.01 

mg/mL). The samples were incubated on a laboratory shaker at 37 ˚C for 1h, followed by 

rinsing with PBS (3 times for 10 min at a time) and dried at r.t. in a vacuum oven.  
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Chapter 5 
Synthesis and characterization of superparamagnetic magnetite 

nanoparticles and polymer coated nanocomposite materials 

 

5.1 Synthesis of pristine and polymer coated magnetic 

nanoparticles 

5.1.1 Magnetite nanoparticle formation  

Three different approaches can be used to create nanoparticles namely the top-down, 

bottom-up and virtual approach. The top-down approach has been the traditional approach 

for miniaturization utilizing lithography. The bottom-up approach entails the self-assembly 

from molecular precursors in chemical solutions. The virtual approach technique is used by 

computational theorists where new materials are created in computer simulations.1 In this 

study, the bottom-up approach will be followed where dissolved Fe2+ and Fe3+ ions are co-

precipitated from solution to form magnetite (Fe3O4). Monodisperse iron oxide nanoparticles 

can be synthesized by controlling the nucleation and crystal growth of the nanoparticles.  

With the co-precipitation method, the nuclei can grow uniformly by diffusion from the solution 

to the nanoparticle surfaces. Monodispersed nanoparticles can be formed by uniform 

nucleation followed by crystal growth without further nucleation. Crystal growth in solution is 

interface-controlled up to a certain critical size and beyond that size, the growth is diffusion 

controlled.2 Co-precipitation occurs via the LaMer mechanism defined by a short burst of 

nucleation from a supersaturated solution followed by slow growth of particles without 

notable additional nucleation as seen in Figure 5.1.3, 4 

 

 

 

 

 

 

 

Figure 5.1: The principle of nanoparticle formation due to the LaMer mechanism.   
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5.1.2 Synthesis of pristine Fe3O4 SPMNs via co-precipitation  

Co-precipitation is a simple method and commonly used to synthesize magnetic 

nanoparticles by titrating aqueous Fe(II)/Fe(III) salt solutions with a base under inert 

atmosphere. Co-precipitation is favourable due to the large gram-scale product that can be 

formed. The size, shape, and composition of the magnetic nanoparticles can be controlled 

by the type of salts used (chlorides, sulfates or nitrates), the Fe(II)/Fe(III) ratio, the reaction 

temperature, the pH and ionic strength of the solution.5
 Fe3O4 is thermodynamically stable 

under ambient laboratory conditions and forms readily under most solvent based 

nanoparticles synthesis conditions.  

The co-precipitation method was first developed by Massart. Fe(III) and Fe(II) was dissolved 

in an acidified aqueous solution in a 2:1 stoichiometric ratio. After this, a strong base was 

added which produced a black nanoparticle precipitate. It was noted that the nanoparticles 

were uniform in diameter and spherical and that oxygen had to be removed from the reaction 

vessel.6 The synthesis of iron oxide under ideal conditions as described above, is seen in 

Reaction 5.1 below.  

 

                                         2Fe3+ +  Fe2+ + 8OH− → Fe3O4 + 4H2O                        5.1 

 

The nanoparticles are, however, unstable when synthesized at room temperature or in the 

presence of oxygen. Oxygen may oxidize the nanoparticles to form Fe(OH)3 as seen in 

Reaction 5.2 or to form maghemite (𝛾-Fe2O3) as seen in Reaction 5.3.7,8 

 

                                              Fe3O4 +
1

4
O2 + 4

1

2
H2O → 3Fe(OH)3                             5.2 

                                                        2Fe3O4 +
1

2
O2 → 3Fe2O3                                       5.3 

 

Ideal synthesis conditions have been determined by literature. Bubbling the aqueous 

solution with N2 gas prevents oxidation and reduces the particle diameter. A pH ≥ 9 is 

required to precipitate the nanoparticles out of solution, excess base is thus used for 

precipitation. A stoichiometric ratio ≥ 2:1 for Fe(III):Fe(II) will result in larger, irregular 

nanoparticles while a ratio ≤ 2:1 results in maghemite, both ratios were thus avoided.9,10 Fast 

addition of the base is required during precipitation to reduce agglomeration and to reduce 

the diameter of the nanoparticles.11 A higher synthesis temperature was used to impart 

higher crystallinity and consequently higher saturation magnetization.12  
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5.1.3 Synthesis of polymer coated SPMNs 

Iron oxide has surface hydroxyl groups that can be used for complex formation with polymer 

coatings.13 Polymers such as chitosan have amino, hydroxyl and ether groups that can 

adhere to the surface of iron oxide nanoparticles via hydrogen bonding. Chitosan coated 

nanoparticles can be (in situ) synthesized via co-precipitation of Fe2+, Fe3+ and dissolved 

chitosan. The polymer coating will improve dispersion in solution and thus aggregation.14 

The pristine chitosan forms a shell around the iron oxide core due to polymer chelation. The 

outer chitosan coating can be functionalized to form CS-EDC as outlined in Chapter 3 as 

well as Con A immobilized as outlined in Chapter 4.  

The iron oxide core can also be surface activated with 3-aminopropyl(triethoxysilane) (3-

APTES).15 The amino groups created on the surface of iron oxide via 3-APTES can be used 

to coat with SMA. The reactive maleic anhydride of SMA can easily react with amine groups, 

creating imide bonds, as illustrated by Scheme 5.1.16 Further functionalization of SMA with 

3-(N,N-dimethylamino)-1-propylamine and 1-bromododecane will result in SMI-qC12 coated 

superparamagnetic magnetite nanoparticles (SPMNs) as outlined in Chapter 3.  

 

 

 

 

 

 

 

 

 

CS-EDC-Con A and SMI-qC12 coated SPMNs were synthesized due to the BCG-mCherry 

(bacterial affinity) results of the nanofiber study in Chapter 6. Three different polymer 

loadings were used (0.1 g, 0.5 g and 0.9 g polymer per 1 g iron oxide nanoparticles) to 

determine the effect of polymer loading. 

 

5.2 Results and discussion 

The aim of this section of the study was to synthesize and characterize pristine SPMNs as 

well as the modified chitosan (CS-EDC-Con A) coated SPMNs and SMI-qC12 coated 

Scheme 5.1: 3-APTES activation of Fe3O4 nanoparticles and SMA coating. 
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SPMNs. The nanoparticles were characterized via XRD (crystal structure and average 

crystallite size), TEM (particle diameter and aggregation), TGA (wt% polymer coating), FTIR 

(functional group analysis), EDX (elemental composition of the nanoparticle surface), HRP 

(biological activity of Con A) and SQUID (saturation magnetization and 

superparamagnetism).  

 

5.2.1 Powder X-ray diffraction 

Pristine Fe3O4 nanoparticles were synthesized and powder X-ray diffraction (P-XRD) was 

used to determine the crystallinity and the phase purity of the nanoparticles. Figure 5.2 

shows the XRD diffractogram of pristine (uncoated) SPMNs. 

 

 

 

 

 

 

 

 

 

 

 

 

The XRD diffractogram obtained from pristine Fe3O4 nanoparticles was compared to 

literature as well as the database standard for magnetite. It was found that the XRD pattern 

and relative intensities correlated to literature with characteristic peaks at 2𝜃 = 18.4°, 30.2°, 

35.6°, 43.2°, 53.6°, 57.2°, 62.8° and 74.2° corresponding to the (111), (220), (311), (400), 

(422), (511), (440) and (533) planes respectively.17 The magnetite nanoparticles thus have a 

face centred cubic lattice structure as assigned to magnetite by the database standard (Joint 

Committee on Powder Diffraction Standards, JCPDS file No.00-019-0629).18 

Peaks of the other phases such as maghemite (𝛾-Fe2O3) are not detected, which is an 

indication of phase purity. The peaks of maghemite for the (110), (210) and (211) planes are 

not found in the diffractogram of the iron oxide nanoparticles, as the intensities would be 

stronger than that of the (111) plane.19 A peak at 41.2˚ (113) for the oxidized hematite (∝-

Figure 5.2: X-ray diffractogram pattern of pristine Fe3O4 nanoparticles. 
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Fe2O3) phase is not seen in the diffractogram. Fe3O4 (magnetite) is thus the dominant phase 

for the synthesized nanoparticles. The synthesized magnetite nanoparticles were also black 

compared to maghemite and hematite nanoparticles which would be brown.20 

The average crystallite/core size of the pristine Fe3O4 nanoparticles can be calculated from 

line broadening analysis using the Scherrer equation (Equation 5.4). The full width at half-

maximum (FWHM) of the strongest diffraction peak (311) was used to determine the 

average core size.17 

 

                                                   DP =
kλ

βcosθ
                                            5.4 

Where Dp the average size of the crystalline domains 

k is the Scherrer constant (0.89) 

λ is the X-ray wavelength (1.5406 nm) 

β is the peak full width at half maximum (FWHM), 

and θ is the Bragg diffraction angle  

 

The average crystallite size of the pristine Fe3O4 nanoparticles, using the Scherrer equation, 

was calculated to be 6.6 nm. The Scherrer formula, however, provides a lower boundary of 

the average particle size. The average crystallite diameter estimated from XRD is related to 

the volume weighted average particle size, whereas, the number weighted value is 

calculated from TEM results. The XRD average particle size measurements also do not 

include aggregates of nanoparticles or larger nanoparticle clusters.21 

 

5.2.2 Transmission electron microscopy 

Transmission electron microscopy (TEM) (distilled water as solvent) was utilized to 

determine the effect of polymer loading on the iron oxide nanoparticles with respect to 

morphology, diameter and size distribution. Uncoated SPMNs were compared to 0.1 g, 0.5 g 

and 0.9 g polymer loading per 1 g uncoated SPMNs. In Figure 5.3 uncoated SPMNs (a) as 

well as the three different polymer loadings of CS-EDC-Con A (b-d) and SMI-qC12 (e-g) are 

represented. The polymer coating around the iron oxide core can also be identified in 0.5 g 

CS-EDC SPMNs (h) and 0.5 g SMI-qC12 SPMNs (i).  
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The pristine uncoated nanoparticles were aggregated in Figure 5.3 (a) compared to the 

polymer coated nanoparticles with 0.1 g and 0.5 g polymer coating (b,c,e,f). Aggregation is 

observed for uncoated nanoparticles due to the nanoparticles that have attraction towards 

each other. Coating with a polymer shell enhanced the dispersion in aqueous solution.14 The 

nanoparticles with 0.9 g polymer loading, however, showed aggregation, possibly due to the 

polymer coating of adjacent nanoparticles binding to each other.  

Table 5.1: Summary of average diameter and standard deviation for uncoated and polymer coated Fe3O4 
nanoparticles. 

 
Uncoated 

SPMNs 

0.1 g CS-

EDC-Con 

A SPMNs 

0.5 g CS-

EDC-Con 

A SPMNs 

0.9 g CS-

EDC-Con 

A SPMNs 

0.1 g 

SMI-qC12 

SPMNs 

0.5 g 

SMI-qC12 

SPMNs 

0.9 g 

SMI-qC12 

SPMNs 

Average 

diameter (nm) 

8.2 ± 

2.06 
8.7 ± 2.03 

10.2 ± 

2.88 

12.5 ± 

6.16 
9.3 ± 2.63 

10.1 ± 

1.80 

10.2 ± 

2.13 

a b c 

d e f 

g h i 

Figure 5.3: TEM images of a) pristine SPMNs, b) 0.1 g CS-EDC-Con A SPMNs, c) 0.5 g CS-EDC-Con A 
SPMNs, d) 0.9 g CS-EDC-Con A SPMNs, e) 0.1 g SMI-qC12 SPMNs, f) 0.5 g SMI-qC12 SPMNs, g) 0.9 g SMI-

qC12 SPMNs, h) 0.5 g CS-EDC SPMNs, i) 0.5 g SMI-qC12 SPMNs. 
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a 

b 

c & d 
e 

f 

The uncoated and coated nanoparticles were largely spherical and had a slight increase in 

diameter with the increase in polymer loading (Table 5.1). A thin layer of modified chitosan 

and SMI-qC12 coated the nanoparticles and thus lead to an increase in diameter. The size 

distribution was relatively constant with a 2 nm standard deviation for most nanoparticles 

except 0.9 g CS-EDC-Con A SPMNs.  

 

5.2.3 Thermogravimetric analysis 

The percentage content of the polymeric coating around the SPMN core was determined via 

thermogravimetric analysis (TGA). The TGA curves of the modified chitosan (CS-EDC) and 

modified SMA (SMI-qC12) with 0.1 g, 0.5 g and 0.9 g polymer loading are depicted in Figure 

5.4. The weight loss steps were compared to literature which enabled characterization.  

 

 

In Figure 5.5 and Figure 5.6, the first derivative weight loss curves of the modified chitosan 

and SMA SPMNs are depicted. The first derivative curves were used to identify the 

magnitude of loss during specific degradation steps as well as the temperature range. 

 

 

 

 

Figure 5.4: TGA curves of a) 0.1 g CS-EDC SPMNs, b) 0.9 g CS-EDC SPMNs, c) 0.5 g CS-EDC SPMNs, d) 0.5g 
SMI-qC12 SPMNs, e) 0.1 g SMI-qC12 SPMNs, f) 0.9g SMI-qC12 SPMNs. 
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From Figure 5.4, 5.5 and 5.6, three distinct weight loss steps are observed for the polymer 

coated SPMNs. The first weight loss step is due to the loss of adsorbed water on the 

polymer surface as well as surface hydroxyls. This weight loss step occurred from 25 ˚C to 

100 ˚C for the SMI-qC12 SPMNs (2–3 % weight loss) and from 25 ˚C to 150 ˚C for the CS-

EDC SPMNs (4-8 % weight loss). CS-EDC is more hydrophilic compared to SMI-qC12 and 

will thus adsorb more water to the polymer surface. The second and third weight loss steps 

occurred from 100˚C to 600 ˚C for the SMI-qC12 SPMNs and from 150 ˚C to 600 ˚C for the 

Figure 5.5: TGA first derivative curves of CS-EDC SPMNs with 0.1 g, 0.5 g and 0.9 g polymer loading. 

Figure 5.6: TGA first derivative curves of SMI-qC12 SPMNs with 0.1 g, 0.5 g and 0.9 g polymer loading. 
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CS-EDC SPMNs. These weight loss steps can be attributed to the released volatiles and 

disintegration of the polymer coating.15,22 

Pristine SPMNs had a minor weight loss of 2 % from 100 ˚C to 600 ˚C. The coated polymers 

had a weight loss due to degradation of the polymer coating in this temperature range and 

Equation 5.5 can thus be used to determine the percentage polymer coating.  

 

                                           Coating % =  Wc(%) − Wu(%)                                       5.5 

 

Wc (%) is the percentage of polymer weight lost by the modified chitosan and SMA coated 

iron oxide nanoparticles and Wu (%) is the percentage weight lost by the uncoated iron oxide 

nanoparticles. 

 

Table 5.2: Summary of the wt% polymer coating of the CS-EDC and SMI-qC12 coated Fe3O4 nanoparticles. 
 

 

0.1 g CS-

EDC 

SPMNs 

0.5 g CS-

EDC 

SPMNs 

0.9 g CS-

EDC 

SPMNs 

0.1 g SMI-

qC12 

SPMNs 

0.5 g SMI-

qC12 

SPMNs 

0.9 g SMI-

qC12 

SPMNs 

Coating % 17.75 34.25 34 44 45 52.5 

 

In Table 5.2, it is indicated that the SMI-qC12 SPMNs had a higher weight percentage 

polymer coating compared to the CS-EDC SPMNs. This could be due to the nanoparticle 

synthesis, in situ chitosan coating followed by modification vs. SMA coating of pristine iron 

oxide nanoparticles and modification. Other factors such as the hydrophobicity and 

crystallinity of SMA, size of the polymer and packing density also affect the coating %. A 

direct correlation (linear trend) between polymer loading and coating % was not observed. A 

higher coating % was, however, achieved with 0.9 g polymer loading compared to 0.1 g 

polymer loading. 

 

5.2.4 Attenuated total reflectance Fourier transform infrared spectroscopy 

Fourier transform infrared (FTIR) spectra were utilized to confirm the polymer coating of CS-

EDC and SMI-qC12 around the superparamagnetic magnetite nanoparticles. The FTIR 

spectra is illustrated in Figure 5.7 CS-EDC SPMNs (in black), SMI-qC12 SPMNs (in red) and 

pristine (uncoated) SPMNs (in blue). The FTIR spectra illustrate that CS-EDC and SMI-qC12 

was functionalized onto the iron oxide core. The FTIR spectra of CS-EDC and SMI-qC12 was 

assigned in Chapter 3 and used to identify the polymer coating.  
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The characteristic Fe-O vibration of magnetite is observed at 580 cm-1 for pristine iron oxide 

nanoparticles as well as the polymer coated nanoparticles. An O-H stretch (3243 cm-1) and 

bend vibration (1628 cm-1) can also be assigned for the uncoated nanoparticles due to 

surface hydroxyl groups. The CS-EDC SPMNs had a C-O vibration at 1031 cm-1 which is 

characteristic of the chitosan polymer backbone.23 For the SMI-qC12 SPMNs, a significant 

increase in the intensity of the bands at 2959 and 2771 cm-1 can be attributed to the methyl 

and methylene stretch vibrations of the SMI-qC12 alkyl chains. An additional vibration at 1022 

cm-1 can be assigned to the Si-O symmetric stretch of 3-APTES used for nanoparticle 

surface activation.24 

 

5.2.5 Energy dispersive X-ray spectroscopy 

Elemental composition analyses were used to confirm the presence of major elements in the 

synthesized uncoated iron oxide nanoparticles as well as the CS-EDC and SMI-qC12 

polymer coated SPMNs. Energy dispersive X-ray (EDX) spectroscopy was utilized to 

quantitatively determine the elemental composition. The pristine SPMNs were largely 

composed of iron and oxygen elements (Table 5.3) as expected. The presence of additional 

carbon and nitrogen in the samples confirmed the CS-EDC and SMI-qC12 polymer coating 

around the SPMNs. 

 

 

 

 

580 

3243 

1628 

1031 
2959 2771 

1022 

Figure 5.7: FTIR of CS-EDC SPMNs, SMI-qC12 SPMNs and uncoated SPMNs. 
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Table 5.3: Summary of the elemental composition of CS-EDC and SMI-qC12 coated Fe3O4 nanoparticles. 

 Fe% O% N% C% Na% Si% P% Cu% Cl% 

Uncoated SPMNs 59.65 33.4 - 5.1 - 1.55 - 0.31 - 

0.1 g CS-EDC SPMNs 31.69 41.31 2.35 16.76 3.57 2.17 0.37 1.36 0.41 

0.5 g CS-EDC SPMNs 24.81 26.13 3.83 39.11 2.9 1.42 0.67 0.76 0.38 

0.9 g CS-EDC SPMNs 36.79 14.09 2.32 40.01 2.96 0.53 1.09 1.08 1.12 

0.1 g SMI-qC12 SPMNs 52.46 34.78 0.46 9.62 - 2.27 - 0.4 - 

0.5 g SMI-qC12 SPMNs 60.48 30.05 0.36 6.63 - 2.12 - 0.33 0.02 

0.9 g SMI-qC12 SPMNs 55.51 31.06 0.35 10.1 - 2.08 - 0.9 - 

 

 

5.2.6 Horseradish peroxidase enzymatic assay  

The horseradish peroxidase (HRP) enzymatic assay (as described in Chapter 4) was 

performed on the CS-EDC-Con A nanoparticles to determine the biological activity of the 

immobilized Con A. A colour change from green to dark blue was observed for the CS-EDC-

Con A-HRP nanoparticles which confirm qualitatively, that HRP was bound to biologically 

active Con A immobilized to the nanoparticles (Figure 5.8). The amount of biologically active 

Con A immobilized to the nanoparticles was quantitatively determined to be 7.5 %.  

 

 

 

 

 

 

 

 

 

5.2.7 Superconducting quantum interference device 

A superconducting quantum interference device (SQUID) was used to determine the 

magnetic properties of the synthesized pristine (uncoated) magnetite nanoparticles. SQUID 

was used to determine the saturation magnetization of the nanoparticles as well as their 

superparamagnetic behaviour. For superparamagnetic nanoparticles, the size of the 

nanoparticles are smaller than the critical limit (14 nm) in which single domain nanoparticles 

are observed. When an external magnetic field is applied, the single domain magnets will 

Figure 5.8: CS-EDC-Con A SPMNs without HRP (left) and with HRP (right). 
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align all their magnetic moments in the same direction. The resulting magnetization is thus 

the largest possible for that specific material and size. Superparamagnetic particles are 

characterized by zero magnetic remanence and coercivity in the absence of an external 

magnetic field and will thus not have magnetic memory.25 The magnetization curves of 

pristine SPMNs and chitosan coated SPMNs are shown in Figure 5.9. The curve represents 

the long moment or magnetization as a function of the applied magnetic field (at 300 K).  

 

 

 

 

 

 

 

 

 

 

 

 

 

The SQUID results indicated that the uncoated and chitosan coated nanoparticles were 

superparamagnetic due to zero coercivity and zero remanence. The saturation 

magnetization was 29.0 emu/g for the uncoated nanoparticles compared to 22.6 emu/g for 

the chitosan coated nanoparticles. The polymeric coating thus decreased the effective 

magnetic moment but superparamagnetic properties were retained.24 The nanoparticles also 

experimentally indicated that magnetism was not retained after the removal of an external 

magnetic field. The synthesized nanoparticles were dispersed in distilled water to form a 

ferrofluid and could be manipulated with an external magnet. The nanoparticles lost 

magnetization immediately after removal of the external magnet.  

 

5.3 Conclusion 

Superparamagnetic magnetite nanoparticles (SPMNs), CS-EDC and SMI-qC12 coated 

SPMN nanocomposites were synthesized via co-precipitation. The chitosan coated and SMA 

coated nanoparticles could be surface functionalized followed by characterization.  

 

Figure 5.9: SQUID magnetization curves of pristine (uncoated) SPMNs (red) and chitosan coated SPMNs 
(black). 
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The presence of polymer coating as well as the purity, size and morphology of the 

nanoparticles were determined. XRD indicated that magnetite was formed due to phase 

purity and the average crystallite/core size was calculated to be 6.6 nm. TEM was utilized to 

determine the particle diameters of the uncoated and coated nanoparticles. The uncoated 

nanoparticles had an average diameter of 8.2 nm, which is larger compared to XRD due to 

possible magnetically dead layers around the nanoparticles.26 The polymer coating around 

the nanoparticles reduced aggregation and a thin layer of polymer coating could be seen. 

Polymer loading (0.1 g, 0.5 g and 0.9 g) did not increase the average diameter of the 

nanoparticles significantly. From TGA, a direct correlation (linear trend) between polymer 

loading and coating % was not observed. A higher coating % was however achieved for 0.9 

g polymer loading compared to 0.1 g polymer loading. FTIR and EDX were used to confirm 

that the iron oxide nanoparticles were coated with a polymer layer. An HRP assay estimated 

the biological activity of Con A immobilized to the CS-EDC nanoparticles. The uncoated and 

coated nanoparticles were analysed w.r.t magnetization utilizing SQUID. The nanoparticles 

retained superparamagnetism, with a slight decrease in saturation magnetization after 

polymer coating.  

 

5.4 Experimental 

5.4.1 Materials 

SMA (poly(styrene-alt-maleic anhydride)) was synthesized as outlined in Chapter 3. The 

following chemicals were used in this part of the project: iron (III) chloride hexahydrate (98 

%, Sigma-Aldrich), iron (II) chloride (97%, Sigma-Aldrich), acetic acid (Merck, ≥ 97.7%), 

ammonium hydroxide (25% in H2O, Merck), ethanol (Sigma-Aldrich, 99.5%), acetone 

(Sigma-Aldrich, 99.5%), methanol (Sigma-Aldrich, 99.5%), chitosan (Sigma-Aldrich, Mw = 

129 000, DDA 75), glutaraldehyde solution (Sigma-Aldrich, 50 wt% in H20),  epichlorohydrin 

(Aldrich, 99%), glycine (Saarchem, 99%), 1,4-dioxane (Sigma-Aldrich, ≥ 99%), sodium 

hydroxide pellets (Merck, ≥ 97%), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) (Sigma-Aldrich, ≥ 99%), (3-aminopropyl)triethoxysilane (3-APTES) 

(Aldrich, 99%), THF (Sigma-Aldrich, 99.5%), DMF (Associated chemical enterprises, 99%), 

isopropanol (Sigma-Aldrich, ≥ 99%), 3-(N,N-dimethylamino)-1-propylamine (Aldrich, 99%), 

diethyl ether (Sigma-Aldrich, 99.5%), 1-bromododecane (Aldrich, 97%), pentane (Sigma-

Aldrich, 99.5%), hexane (Sigma-Aldrich, 99.5%) Concanavalin A from Canavalia ensiformis 

(Jack bean) Type VI (Sigma Aldrich), CaCl2 (Merck, 98 %), MnCl2 (Sigma Aldrich, beads 99 

%), NaCl (Scienceworld, 98.2 %), KCl (Saarchem, 98.5 %), Na2HPO4 (Nice laboratory 

chemicals, 99 %). 
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5.4.2 Characterization Techniques  

a) Powder X-ray diffraction (P-XRD) 

A Siemens D8 Advance diffractometer using Cu Kα radiation (λ = 1.5406 Å) operated at 40 

kN and 30 mA was utilized to determine the structural properties of the pristine SPMNs. XRD 

patterns were recorded in the range 10 - 80° (2θ) with a scan step of 0.034°. The average 

crystallite size (<D>, Å) could be calculated from line broadening of the XRD spectrum using 

the Scherrer formula. The samples were dried for 24 h in a vacuum oven at room 

temperature before analysis, followed by milling the nanoparticles into a fine powder and 

uniformly packing the nanoparticles into a sample holder to insure a quality diffractogram. 

The obtained spectrum was corrected for instrumental line broadening and baseline 

corrected.  

b) Transmission electron microscopy (TEM)  

TEM was utilized to determine the particle size and morphology of the nanoparticles.  A JEM 

1200EXII model (JEOL, Japan) microscope was used with an accelerated voltage of 120 kV 

for all the samples. The samples were dried in a vacuum oven at 60°C for 24 h followed by 

milling into a powder. 1 mg of the SPMN samples was dispersed in distilled water and 

sonicated for 10 min, after which a drop was pipetted on a carbon-coated 200 mesh copper 

grid. The samples were dried under ambient conditions, attached to the sample holder and 

placed in the microscope. An average diameter and size-distribution could be determined by 

measuring more than 100 particles.  

c) Thermogravimetric analysis (TGA)  

TGA was performed with a Q500 TA instrument in the temperature range of 25 - 600 °C. Pt 

crucibles were used with about 6 mg dried nanoparticles, under dynamic N2 atmosphere (50 

mL/min) and a heating rate of 10 °C/min. The sample holder was calibrated and the samples 

weighed in a sample component that was flushed with N2 gas and dried. 

d) Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

Infrared spectra were obtained using a Nicolet FTIR spectrometer from Thermo-Fischer. An 

ATR accessory with a diamond/ZnSe internal reflection crystal was attached. The spectra 

were recorded from 4000 cm-1 to 500 cm-1 with a spectral resolution of 4 cm-1. 64 individual 

scans were taken to generate the spectra as well as 32 scans for the background spectra 

before each sample. Omnic software, version 8.1, was used for data acquisition and 

processing.  
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e) Energy dispersive X-ray spectroscopy 

The phase compositions of the nanoparticles were quantified using a FE-SEM MERLIN 

Scanning Electron Microscope (SEM) equipped with an Oxford Instruments® 133 KeV 

detector and Oxford INCA software. An energy dispersive X-ray spectrometer (EDS) was 

attached to the microscope and enabled the determination of the chemical or elemental 

composition of the nanoparticles. (1 mg) of the SPMN samples was dispersed in distilled 

water and sonicated for 10 min followed by pipetting on aluminium foil. The samples were 

dried in a vacuum oven and the aluminium foil with nanoparticles mounted on a stub with 

double sided tape. The sample was then coated with a thin layer of gold, mounted on the 

SEM stage and analyzed. The beam conditions during the quantitative analyses were 20 kV 

and approx. 1.4 nA, with the working distance at 15 mm and the specimen beam current -

3.92 nA.  

f) Horseradish peroxidase (HRP) enzymatic assay  

A HRP assay was used to determine the biological activity of Con A immobilized to the 

nanoparticles as described in Chapter 4. The enzymatic assay of peroxidase (EC 1.11.1.7) 

(Sigma Aldrich) with ABTS as a substrate was used. 50 mg CS-EDC-Con A nanoparticles 

were incubated in 1.0 mL dilute enzyme solution (1 mg/L) for 3 hours on a laboratory shaker 

at rt, followed by washing with diluent. 

g) Superconducting quantum interference device (SQUID)  

A SQUID magnetometer was utilized to determine the magnetic nature of pristine SPMNs 

and polymer coated nanoparticles. A reciprocal sample option was chosen for the samples 

and performed on a SQUID magnetometer (7 Tesla Magnet). A 10-7 electromagnetic units 

(emu) resolution was reached. A liquid SPMN sample (50 mg of 50 mmol L-1) was 

embedded in specific drop-shaped cuvettes (5 mm diameter and 15 mm length). Hysteresis 

curves were determined at 300 K fixed temperature with a field strength of 0 to 30 kOe. The 

background of the diamagnetic part of the cuvette was minimized by performing all 

measurements in a parallel magnetic field in the longitudinal direction to the cuvette. The 

specific magnetization was calculated in emu/g iron using the signal intensity of the 

magnetization (emu) and the exact net weight.  
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5.4.3 Experimental procedures  

a) Synthesis of pristine SPMNs 

Pristine SPMNs were synthesized via a co-precipitation reaction developed by Massart 

where iron(III) chloride and iron(II)chloride were dissolved in acidic media and precipitated in 

a base to form magnetite nanoparticles.6 

The experiment was performed under N2 atmosphere. 100 mL of 0.5 % (v/v) aqueous acetic 

acid was bubbled in a three-necked roundbottom flask for 30 min. 1 g FeCl3.6H2O and 0.235 

g FeCl2 was added and dissolved for 30 min at 80 ̊C. A pale brown solution was obtained. 

17.4 mL of 25 % degassed ammonium hydroxide was rapidly added with vigorous stirring 

which precipitated the nanoparticles. The solution turned black and was stirred for 1h. The 

roundbottom was placed in the sonicator at 70 ̊C for 45 min. The black precipitate was 

isolated with a magnet and washed 4 times with ethanol and degassed water. The sample 

was placed in a vacuum oven at 60 ̊C for 24h.  

b) CS-EDC-Con A modified coated SPMNs 

Chitosan coated iron oxide nanoparticles were synthesized followed by modification via 

crosslinking (glutaraldehyde) and linker molecules. Con A was immobilized onto the dried 

CS-EDC nanoparticles.  

The experiment was performed under N2 atmosphere. 100 mL of 0.5 % (v/v) aqueous acetic 

acid was bubbled in a roundbottom flask for 30 min. 0.08 g/ 0.4 g/ 0.73 g solid chitosan (0.1 

g/ 0.5 g/ 0.9 g chitosan per 1g Fe3O4) was dissolved in acetic acid solution for 2h at 80 ̊C. 1 

g FeCl3.6H2O and 0.235 g FeCl2 was added and dissolved for 30 min. A pale brown solution 

was obtained. 17.4 mL of 25 % degassed ammonium hydroxide was rapidly added with 

vigorous stirring to precipitate the chitosan coated nanoparticles. The solution turned black 

and was stirred for 1 h. The roundbottom was placed in the sonicator at 70 ̊C for 45 min. The 

black precipitate was isolated with a magnet and washed 4 times with ethanol and degassed 

water. The sample was placed in a vacuum oven at 60 ̊C for 24h. The nanoparticle 

aggregates were milled to a fine powder. 

1 g chitosan coated nanoparticles were dispersed in 125 mL distilled water and 25 mL 

glutaraldehyde. (50 %, 5.6 M) The solution was stirred at 400 rpm for 8h. The obtained 

nanoparticles were washed with ethanol and water 3 times. The nanoparticles where placed 

in a vacuum oven at 60 ̊C for 24h. 

1 g crosslinked chitosan coated nanoparticles were suspended in 100 mL distilled water, 100 

mL ethanol and 10 g epichlorohydrin. The mixture was refluxed at 100˚C for 3 h. The product 

was magnetically separated and washed with ethanol and distilled water. 10 g glycine was 
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suspended in 200 mL 1,4-dioxane in a roundbottom. The solution was mixed with the 

produced nanoparticles. 80 mL 1.0 M NaOH was added. The mixture was refluxed for 12 h 

at 100˚C followed by magnetically separating. The product was washed with water and 

acetone and placed in a vacuum oven to dry. 

1 g CS-GLU-GLY nanoparticles were dispersed in 40 mL phosphate buffered saline (PBS) 

solution. 0.1 g EDC was added and the mixture stirred at 400 rpm for 8h. The nanoparticles 

were collected with a magnet and washed with PBS 5 times. The nanoparticles were placed 

in a vacuum oven to dry.  

50 mg nanoparticles were placed in 1 mL PBS solution containing Con A (4 mg/mL), MgCl2 

(0.01 mg/mL) and CaCl2 (0.01 mg/mL). The samples were incubated on a laboratory shaker 

at 37 ˚C for 1h, followed my rinsing with PBS (3 times for 10 min at a time) and dried under 

ambient conditions in a vacuum oven.  

c) SMI-qC12 coated SPMNs 

The pristine iron oxide nanoparticles were activated with 3-APTES followed by coating with 

SMA and further functionalizing to form SMI-qC12 coated SPMNs.  

1 g milled Fe3O4 nanoparticles were soaked in 60 mL methanol in a three-necked 

roundbottom flask and sonicated for 30 min. Ammonium hydroxide (6 mL, 25 % in water) 

was added and further sonicated for 10 min. 3-APTES (4 mL) was dropwise added under N2 

atmosphere and vigorous stirring and heated to 50 ˚C for 8h. The 3-APTES activated 

nanoparticles were magnetically separated, washed with ethanol and water and then dried in 

a vacuum oven. 

0.1 g/ 0.5 g/ 0.9 g SMA was dissolved in 100 mL THF in a roundbottom flask. 1 g 3-APTES 

SPMNs were added while stirring followed by sonication for 15 min. The reaction was then 

refluxed for 3 h at 60 ˚C. The reaction was cooled, isopropanol added to precipitate the SMA 

and the SMA coated SPMNs magnetically separated. The coated nanoparticles were 

washed with hexane and dried in a vacuum oven at 60 ˚C.  

1 g SMA coated SPMNs were dispersed in 25 mL DMF followed by adding 3-(N,N-

dimethylamino)-1-propylamine (3.3 g) dropwise to the solution. The reaction was heated and 

refluxed at 170 ˚C for 2h. The reaction was cooled, precipitated in diethyl ether and 

magnetically separated. The SMI-tC coated SPMNs were dried in a vacuum oven at 60 ˚C. 

1 g SMI-tC coated SPMNs were dispersed in 20 mL DMF at rt. 1-bromododecane (1.15 g) 

was added dropwise with stirring and the reaction heated to 110 ˚C for 48 h. The reaction 

was cooled, precipitated in diethyl ether, magnetically separated and washed 3 times with 

pentane. The SMI-qC12 SPMNs were dried in a vacuum oven at 60 ˚C. 
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Chapter 6 
Affinity studies between modified chitosan and modified SMA nano-

substrates and mycobacteria 

 

6.1 Introduction 

The capturing capabilities (or bacterial affinity) of the nano-substrates are influenced by the 

characteristics of the Mycobacterium tuberculosis (Mtb) cell wall, the functionalized 

substrates as well as the experimental conditions. A favourable experimental temperature, 

pH and incubation period will thus be used and the influence of bacterial concentration 

determined. The cell wall chemistry of Mtb and the binding mechanism of Mtb to the 

functionalized nano-substrates will thus be investigated.  

 

6.1.1 Mtb Cell Wall Chemistry 

The Mtb cell wall chemistry is complex with a large amount of high molecular weight lipids. 

This makes the bacteria resistant to disinfectants and laboratory stains such as Gram’s 

stain. The pathogen is gram positive but the wax-rich, hydrophobic cell wall lends the bacilli 

acid fast properties. The cell wall glycolipids and mycolic acids are responsible for some of 

the immune responses. Mtb can bind to a variety of host cell receptors such as surfactant 

protein receptors and macrophage receptors.1 

The Mtb has a multilaminate cell wall composed of peptidoglycan, complex polysaccharides, 

covalently linked lipids and free lipids/lipoglycans (Figure 6.1). The bacterium has 

characteristic mycolic acids where these long chain α-branched, β-hydroxylated fatty acids 

are covalently linked to the arabinogalactan polysaccharide layer. A glycolipid layer forms an 

outer “mycomembrane” around the mycolic acid layer which is characteristic of Gram 

negative bacteria. The outer layer of the mycobacterium membrane is composed of a variety 

of lipids such as trehalose dimycolates (TDMs), glycopeptidolipids (GPLs), phthiocerol 

dimycocerosates (PDIMs), sulfolipids, phenolic glycolipids (PGLs), lipooligosaccharides and 

mannose containing biomolecules such as mannose-capped lipoarabinomannan (Man-

LAM).2 The outer layer is electron dense and negatively charged which can associate with 

substrates via surface electrostatic interactions.3  
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6.1.2 Interactions between Mtb and substrates  

Bacterial adhesion to substrates and host cells can occur via mechanisms such as 

biospecific (protein-protein or carbohydrate-protein) and non-biospecific (hydrophobic or 

electrostatic).4 Substrate surfaces with immobilized Concanavalin A (Con A) protein can be 

used for biospecific bacterial adhesion. Con A is a carbohydrate binding protein that can 

bind to the mannose containing groups on the outer Mtb cell wall layer.5 Chemically modified 

substrates with hydrophobic quaternary ammonium groups such as quaternary chitosan and 

SMA have shown to possess bacterial adhesion via non-specific hydrophobic and 

electrostatic interactions. Quaternary ammonium groups are able to damage host cells by 

disrupting the cellular membrane which leads to cell lysis and death. The molecular weight 

and the alkyl chain length of quaternary ammonium cations can affect the anti-bacterial 

activity.6,7 Substrates containing 12-14 carbon alkyl chain lengths have shown to be effective 

against Gram positive and Gram negative bacteria.8 These anti-bacterial studies can be an 

indication of bacterial adhesion.  

 

6.2 Results and Discussion 

The modified chitosan bi-component nanofibers and modified SMA nanofibers (as described 

in Chapter 4) as well as the CS-EDC and SMI-qC12 SPMNs (as described in Chapter 5) 

coated with three different polymer loadings will be tested for their affinity towards Mtb. 

These modified polymers were chosen for their possible capability to capture Mtb. Bacillus 

Calmette–Guérin (BCG) was used as Mtb mimic as it is the live attenuated strain 

of Mycobacterium bovis and genetically similar to Mtb.9 The BCG was fluorescent protein 

encoded (mCherry), as staining BCG captured nanofibers stained the bacteria as well as the 

fibers. 

Figure 6.1: Simplified cell wall structure of Mycobacterium tuberculosis.
2
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A preliminary BCG-mCherry affinity study was performed on the nanofibers in order to 

determine which polymer-and-functional-moiety combination had the highest affinity for the 

bacteria. The nanofibers were incubated in BCG-mCherry followed by rinsing the nanofibers 

three times for 10 min with phosphate buffered saline (PBS) solution. The captured bacteria 

on the nanofibers were evaluated as an indication of chemical interaction and thus BCG-

mCherry affinity. The SPMNs nanoparticles were coated with the two polymer-and-

functional-moiety combinations with the highest BCG affinity in the nanofiber study (SMI-

qC12 and CS-EDC-Con A) in three different polymer loadings. A dilution study was 

performed on the nanoparticles in order to determine the sensitivity and thus limit of 

detection of bacteria. The nanofibers and nanoparticles were evaluated for BCG-mCherry 

affinity by fluorescence microscopy (FM), light microscopy (LM) and transmission electron 

microscopy (TEM). 

 

6.2.1 Nanofibers 

CS-EDC-Con A, CS-qC10 and CS-qC12 were electrospun into bi-component nanofibers with 

polyvinyl alcohol (PVA), poly(L-lactide) (PLA) and polycaprolactam (Nylon 6) and 

crosslinked. The SMA-Con A, SMI-qC10 and SMI-qC12 nanofibers were also electrospun and 

crosslinked as outlined in Chapter 4.  

 

a) BCG-mCherry affinity studies 

10 mg of the crosslinked nanofiber mats were placed in 5 mL BCG-mCherry culture followed 

by incubating at 37 °C for 1 h on a laboratory shaker. The nanofibers were removed and 

washed three times with PBS for 10 min to remove bacteria that were not fully attached to 

the surfaces. The fibers blended with PVA were in situ crosslinked with 1,2,3,4-

butanetetracarboxylic acid (BA) while the fibers blended with PLA were crosslinked with 

glutaraldehyde for stability. All the nanofibers were stabilized with heat in order to insure 

stability in PBS. The nanofiber mats were incubated at a concentration of OD600nm = 6/18.78 

×107 colony-forming units (CFU)/mL to determine which polymer-and-functional-moiety 

combination had the highest BCG-mCherry affinity.10 A confocal microscope in fluorescence 

and transmission modes was used to detect BCG-mCherry captured on the nanofiber 

substrates (excitation wavelength of 543 nm to visualize the red bacteria). The nanofibers 

were evaluated and compared for BCG-mCherry capture as seen in Figure 6.2 where FM is 

used to visualize bacteria on the nanofiber mats and LM overlaid with FM to visualize the 

morphology at the given area (Addendum B). Each nanofiber mat was tested for negative 

controls (without BCG-mCherry) and no fluorescence was observed.  
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Figure 6.2: Fluorescence microscopy (FM) images of nanofibers incubated in OD600nm=6 a) SMI-Con A, b) 
SMI-qC10, c) SMI-qC12, d) CS-EDC-Con A/PVA, e)CS-qC10/PVA, f) CS-qC12/PVA, g) CS-EDC-Con A/PLA, h) 

Cs-qC10/PLA, i) CS-qC12/PLA, j) CS-EDC-Con A/Nylon 6, k) CS-qC10/Nylon 6, l) CS-qC12/Nylon 6. 
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The SMI-qC12 nanofibers showed the greatest affinity towards BCG-mCherry bacteria as 

seen in Figure 6.2 (c). Various red fluorescent rod shaped bacterial colonies attached to the 

nanofiber surface for the SMI-qC12 nanofibers compared to more disperse single bacteria 

and single colonies for the various chitosan nanofibers. The densely packed bacteria 

colonies could be attributed to biofilm formation on the surface of the nanofibers. A biofilm is 

formed when the bacteria attach to the nanofiber surface followed by the stress induced self-

production of an extracellular polymeric matrix that holds the bacteria together. The 

extracellular polymeric matrix consists of exopolysaccharides, proteins, DNA and lipids 

(including glycolipids and mycolic acid).11,12 The positively charged quaternary ammonium 

moieties of SMI-qC12 and CS-qC12 can interact with the negatively charged electron dense 

bacteria cell wall (lipid layer) via electrostatic interaction. The electrostatic interaction leads 

to attachment of the bacteria to the nanofiber surface. The hydrophobic alkyl chains of C12 

can also attach to the hydrophobic outer layer (mycolic acids) of the bacteria cell wall which 

contributes to BCG-mCherry affinity.13 Hydrophobicity is chain length dependent, the C12 

chains thus had a higher BCG-mCherry affinity compared to C10 due to an increase in 

hydrophobicity.   

For the modified chitosan nanofibers, Figure 6.2 (d-l), CS-EDC-Con A had the highest 

affinity for BCG-mCherry when blending with the all the non-ionogenic polymers (PVA, PLA 

and Nylon 6). Con A can bind to the carbohydrate based structures on the surface of BCG-

mCherry such as mannose. Mannose is present in the form of mannose-capped 

lipoarabinomannan (Man-LAM) and is accessible for specific interactions with Con A.2 The 

modified chitosan derivatives blended with PLA, Figure 6.2 (g-i), had the highest affinity for 

BCG-mCherry compared to the other non-ionogenic blending polymers (PVA and Nylon 6). 

PLA is relatively hydrophobic and biocompatible which could improve adhesion to the 

hydrophobic outer layer of the bacteria.14
 

The SMI-qC12 nanofibers had the highest affinity for BCG-mCherry while the CS-EDC-Con A 

nanofibers had the highest affinity for BCG-mCherry among the chitosan derivatives. These 

polymer-and-functional-moiety combinations were thus utilized to coat SPMNs. 

 

6.2.2 SPMNs 

The SMI-qC12 and CS-EDC-Con A superparamagnetic magnetite nanoparticles (SPMN 

nanocomposites) with 0.1 g, 0.5 g and 0.9 g polymer loading per 1 g magnetite nanoparticles 

were evaluated for their affinity towards mycobacteria. The synthesis and characterization of 

SMI-qC12 SPMNs and CS-EDC-Con A SPMNs are outlined in Chapter 5. A dilution study 

was performed to determine the limit of detection of the nanoparticles.  
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a) BCG-mCherry affinity studies 

50 mg of the pristine SPMNs and polymer coated SPMNs were placed in 5 mL BCG-

mCherry culture followed by incubating at 37 °C for 1 h on a laboratory shaker. The 

nanoparticles were magnetically separated and washed three times with PBS for 10 min to 

remove bacteria that were not fully attached to the surfaces. A magnet can be placed 

underneath the nanoparticles, which attracts the nanoparticles out of the BCG-mCherry 

culture solution. The BCG-mCherry can be decanted followed by washing with PBS. The 

superparamagnetic magnetite nanoparticles can thus be dispersed in bacteria solution, 

adhere to the bacteria via the functionalized polymer followed by extracting the nanoparticles 

with an external magnet. Refer to Figure 6.3 for the chemical structures of the functionalized 

polymers that were used to coat the SPMNs.  

 

 

 

 

 

 

 

 

 

The nanoparticles with different polymer loadings (0.1 g, 0.5 g and 0.9 g) were evaluated 

and compared for BCG-mCherry capture as seen in Figure 6.4 and 6.5 where FM is used to 

visualize the nanoparticles attached to the bacteria. A dilution study with ten-fold serial 

dilutions was performed to determine the limit of detection. LM overlaid with FM was used to 

visualize the morphology at the given area (Addendum C). The pristine SPMNs did not have 

fluorescence at the excitation wavelength of BCG-mCherry.  

 

 

 

Figure 6.3: Chemical structures of SMI-qC12 (left) and CS-EDC-Con A (right). 
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Figure 6.4: FM images at OD600nm = 7 for a) 0.1 g CS-EDC-Con A SPMNs, b) 0.5 g CS-EDC-Con A 
SPMNs, c) 0.9 g CS-EDC-Con A SPMNs, d) 0.1 g SMI-qC12 SPMNs, e) 0.5 g SMI-qC12 SPMNs, f) 0.9 
g SMI-qC12 SPMNs, at OD600nm = 0.7 for g) 0.1 g CS-EDC-Con A SPMNs, h) 0.1 g SMI-qC12 SPMNs, 
i) 0.5 g SMI-qC12 SPMNs, j) 0.9 g SMI-qC12 SPMNs, at OD600nm = 0.07 for k) 0.1 g SMI-qC12 SPMNs 

and l) 0.5 g SMI-qC12 SPMNs. 
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The coated SPMNs had similar BCG-mCherry affinity for the initial dilution of OD600nm = 

7/21.91×107 CFU/mL as seen in Figure 6.4 (a-f). Only the 0.9 g CS-EDC-Con A SPMNs 

Figure 6.4 (c) had less rod shaped captured bacteria but fluorescence was still observed. 

After the second dilution of OD600nm = 0.7/2.19 ×107 CFU/mL, however, no fluorescence were 

observed for the 0.5 g CS-EDC-Con A SPMNs and 0.9 g CS-EDC-Con A SPMNs. After the 

third dilution of OD600nm = 0.07/0.22 ×107 CFU/mL, only the SMI-qC12 SPMNs captured 

bacteria as seen in Figure 6.4 (k, l) and Figure 6.5. The SMI-qC12 SPMNs thus had the 

highest affinity for BCG-mCherry which was also observed in the nanofiber study. The 

SPMNs, however, captured less bacteria compared to the nanofibers which can be 

attributed to the number of functional groups available to bind to the bacteria. Less functional 

groups are available due to the polymer coating that binds to the hydroxyl groups of iron 

oxide. The effect of the polymer loading could not be estimated from FM as the 0.1 g, 0.5 g 

and 0.9 g SMI-qC12 SPMNs had similar BCG-mCherry affinity at the lowest OD600nm = 0.07 

dilution. The adhesion of the nanoparticles to the bacteria was thus investigated with TEM.  

 

b) TEM 

Transmission electron microscopy (TEM) was used to observe the physical adhesion of the 

SPMNs to the bacteria. The nanoparticles used at a BCG-mCherry dilution of OD600nm = 7 

were dispersed in PBS, sonicated, placed on TEM grids and dried under ambient conditions. 

The 0.9 g CS-EDC-Con A SPMNs and 0.1 g SMI-qC12 SPMNs did not show BCG-mCherry 

attachment via TEM. In Figure 6.6 the SPMNs attached to BCG-mCherry can be observed.  

 

 

Figure 6.5 Fluorescence microscopy image at OD600nm = 0.07 for 0.9 g SMI-qC12 SPMNs. 
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The large rod shaped bacteria with a diameter of 2.5-4 µm was observed in Figure 6.6. The 

polymer coated SPMNs formed darker areas around the bacteria. The interface between the 

bacteria and the nanoparticles can be seen in Figure 6.6 (d). A lighter area is observed 

where the nanoparticles are attached to the bacteria which could be attributed to bacterial 

shrinkage after drying.15 The 0.9 g SMI-qC12 SPMNs showed the highest affinity for BCG-

mCherry, Figure 6.6 (f), where colonies of bacteria were attached to the nanoparticles 

compared to individual bacteria for the lower polymer loadings.  

 

6.3 Conclusion 

BCG-mCherry was used as a fluorophore tagged Mtb mimic and could be successfully 

captured onto the modified chitosan/non-ionogenic polymer nanofibers, modified SMA 

nanofibers, CS-EDC-Con A SPMNs and SMI-qC12 SPMNs. The modified polymers were 

functionalized with quaternary ammonium groups as well as Con A.   

The SMI-qC12 nanofibers showed the greatest affinity towards BCG-mCherry bacteria. 

Bacteria were captured due to the positively charged quaternary ammonium moieties of 

Figure 6.6: TEM images of nanoparticles incubated with BCG-mCherry at OD600nm = 7 a) BCG-mCherry 
bacteria, b) 0.1 g CS-EDC-Con A SPMNs , c and d) 0.5 g CS-EDC-Con A SPMNs, e) 0.5 SMI-qC12 SPMNs, f) 

0.9 SMI-qC12 SPMNs. 

a b c 

d e f 
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SMI-qC12 that can interact with the negatively charged electron dense bacteria cell wall (lipid 

layer) via electrostatic interaction. The hydrophobic alkyl chains of C12 can also attach to the 

hydrophobic outer layer (mycolic acids) of the bacteria cell wall which contributes to BCG-

mCherry affinity. CS-EDC-Con A had the highest affinity for BCG-mCherry for the modified 

chitosan nanofibers. Bacteria can thus be captured by Con A that binds to the carbohydrate 

based structures on the surface of BCG-mCherry such as mannose. The modified chitosan 

nanofibers blended with PLA as non-ionogenic blending polymer had the highest BCG-

mCherry affinity. PLA is relatively hydrophobic and biocompatible which could improve 

adhesion to the hydrophobic outer layer of the bacteria. 

SPMNs were coated with SMI-qC12 and CS-EDC-Con A at 0.1 g 0.5 g and 0.9 g polymer 

loadings. The SMI-qC12 SPMNs had the highest BCG-mCherry affinity with a sensitivity of 

OD600nm = 0.07/0.22 ×107 CFU/mL. The 0.9 g SMI-qC12 SPMNs captured the most BCG-

mCherry bacteria as determined via TEM.   

Based on the results non-specific electrostatic and hydrophobic interactions (SMI-qC12) lead 

to a higher BCG-mCherry affinity compared to specific carbohydrate-protein binding (CS-

EDC-Con A).  

 

6.4 Experimental  

6.4.1 Characterization Techniques 

a) Fluorescence microscopy (FM) 

The modified chitosan and SMA nanofibers as well as the modified chitosan and SMA 

coated SPMNs were imaged using a Zeiss LSM 880 confocal microscope (ZEN 2.3 

software) coupled with an Argon multiline laser. The nanofibers were placed in a thin layer 

on a microscope slide in order to visualize the bacteria. The nanoparticles were sonicated in 

PBS for 10 seconds followed by placing a drop on the microscope slide. An argon laser with 

an excitation wavelength of 543 nm was used (GaAsP detector 32+2 PMT) for excitation of 

mCherry fluorescence. Transmission and Light microscopy images were obtained 

simultaneously with a transmitted light detector T-PMT. 

b) Transmission electron microscopy (TEM)  

The nanoparticles that captured BCG-mCherry was visualised with TEM. A JEM 1200EXII 

model (JEOL, Japan) microscope with a 120 kV accelerated voltage was used. 1 mg 

nanoparticles were sonicated in PBS for 10 seconds followed by placing a drop on a carbon-
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coated 200 mesh copper grid. The grids were dried at ambient conditions before attaching to 

the sample holder on the microscope.  

 

6.4.2 BCG-mCherry study 

a) BCG-mCherry culture 

mCherry-expressing BCG (BCG-mCherry) was obtained by transforming BCG Pasteur with 

pMSG432 (episomal plasmid encoding mCherry and enabling hygromycin resistance). The 

BCG-mCherry strains were grown at 37 °C in Middlebrook 7H9 growth medium 

supplemented with 10% albumin/dextrose/saline, 0.5 % glycerol and 0.05% Tween-80 in 50 

μg/mL hygromycin to an OD600nm of 1. The culture was subsequently inoculated in 20 ml 

Sauton’s medium (OD600nm = 0.05) and further incubated at 37 °C until the culture reached 

an OD600nm of 6-7. 

b) Affinity Studies 

i) Nanofibers  

10 mg nanofiber mats were placed in polytops followed by pipetting in a 5 mL aliquot of BCG 

culture solution and sealing the polytops with parafilm. The polytops were incubated at 37 °C 

for 1 hour on a laboratory shaker. The nanofiber mats were removed and washed three 

times in PBS for 10 min followed by placing the mats in clean polytops.  

ii) Nanoparticles 

50 mg nanoparticles were placed in polytops followed by pipetting in a 5 mL aliquot of BCG 

culture solution and sealing the polytops with parafilm. The polytops were incubated at 37 °C 

for 1 hour on a laboratory shaker. The nanoparticles were separated with a magnet and 

washed three times in PBS for 10 min followed by placing the nanoparticles in clean 

polytops. 
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Chapter 7 
Conclusions and recommendations 

 

7.1 Conclusions 

The synthesis and characterization of modified chitosan and SMA polymers, which were 

electrospun into nanofibers and which were used to synthesize coated superparamagnetic 

magnetite nanoparticles, were presented in this thesis as Mycobacterium tuberculosis (Mtb) 

capturing platforms. The nano-substrates were evaluated for their affinity and thus capturing 

capabilities utilizing the mCherry fluorophore tagged bacillus Calmette-Guérin (BCG) strain 

of Mycobacterium bovis. BCG-mCherry was used as the live attenuated Mtb-mimic bacteria 

due to the pathogenic nature of Mtb.   

 

7.1.1 Polymer modification  

Chitosan was modified to yield quaternized derivatives with a permanent cationic charge by 

functionalizing with quaternary ammonium moieties. Poly(styrene-alt-maleic anhydride) 

(SMA) was synthesized via conventional free radical copolymerization and could be modified 

to form quaternary ammonium maleimide derivatives (SMI). Chitosan required 

functionalization with linker molecules in order to immobilize Concanavalin A (Con A) 

carbohydrate binding protein. These quaternary derivatives and Con A functionalized 

polymers were selected and synthesized due to possible chemical interaction and thus 

affinity for the BCG-mCherry cell wall.  

Quaternary chitosan was synthesized by modifying chitosan with 3-dimethylamino-2,2-

dimethylpropanal to yield the N-substituted chitosan precursor polymer. 3-dimethylamino-

2,2-dimethylpropanal formed a Schiff base with the amino groups of chitosan, followed by 

adding a reducing agent (NaBH4) to yield N-substituted chitosan. After which 1-

bromodecane and 1-bromododecane were used to synthesize N,N-(2-dimethyl)propyl-3-

N’,N’-dimethyl-N’-decylammonium chitosan chloride (CS-qC10) and N,N-(2-dimethyl)propyl -

3-N’,N’-dimethyl-N’-dodecylammonium chitosan chloride (CS-qC12) respectively.  

Pristine chitosan required modification via linker molecules for Con A immobilization. 

Chitosan was crosslinked with glutaraldehyde followed by activation with glycine and 1-ethyl-

3-(3-dimethylaminopropyl) carbodiimide (EDC) thus forming CS-EDC.  
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SMA was modified with 3-(N,N-dimethylamino)-1-propylamine, where ring-opening of the 

maleic anhydride functional group enabled nucleophilic addition of the primary amine. 

Heating at 170 ˚C enabled ring closure and thus resulting in the formation of poly(styrene-[N-

3-(N’,N’-dimethylamino)propyl maleimide]) (SMI-tC). Addition of 1-bromodecane and 1-

bromododecane resulted in poly(styrene-[N-3-(N’-decyl-N’,N’-dimethylammonium)propyl 

maleimide]) (SMI-qC10) and poly(styrene-[N-3-(N’-dodecyl-N’,N’-dimethylammonium)propyl 

maleimide]) (SMI-qC12) respectively. 1H NMR, 13C NMR, ATR-FTIR and 13C solid-state cross 

polarization magic-angle-spinning (CP-MAS) NMR for CS-EDC were used as 

characterization techniques to verify the formation of these compounds. 

 

7.1.2 Nanofibers  

CS-EDC, CS-qC10 and CS-qC12 were blended with poly(vinylalcohol) (PVA), polylactide 

(PLA) and polycaprolactam (Nylon 6) and electrospun via single needle electrospinning into 

polymer nanofibers with an average diameter of 264-437 nm, 202-349 nm and 111-204 nm, 

respectively. 1,2,3,4-butanetetracarboxylic acid was used as insitu crosslinking agent for the 

PVA blended fibers, while glutaraldehyde was used to crosslink the PLA fibers. PEO and 

PVP were electrospun and crosslinking agents namely glutaraldehyde, genipin and 

photocrosslinking agents were investigated. The PEO and PVP nanofibers were however 

soluble in phosphate buffered saline (PBS) solution and thus removed from the study. SMA, 

SMI-qC10 and SMI-qC12 were electrospun into nanofibers with average diameters of 380 nm, 

494 nm and 482 nm respectively. Con A was immobilized to the SMA nanofibers and the 

CS-EDC/PVA, CS-EDC/PLA and CS-EDC/Nylon 6 nanofibers and the amount of biologically 

active Con A was determined to be 11.3 %, 15.1 %, 7.5 % and 11.3 % respectively. The 

modified chitosan derivatives required heat treatment at 100˚C while the SMA derivatives 

required heat treatment at 120˚C to crosslink and impart stability in PBS. Water contact 

angle measurements (WCA) were performed on the chitosan derivative films and SMA 

derivative nanofibers to determine the hydrophilicity/hydrophobicity in solution.  

 

7.1.3 Nanoparticles 

Pristine superparamagnetic magnetite nanoparticles (SPMNs) were produced via chemical 

co-precipitation of Fe2+ and Fe3+ ions (2:1) by addition of excess base (ammonium 

hydroxide) in aqueous solution under N2 atmosphere. N2 gas prevented oxidation and 

reduced the particle diameter. XRD determined that the nanoparticles were relatively pure in 

phase. The nanoparticles were magnetically characterized via SQUID magnetometry which 

indicated that the nanoparticles were superparamagnetic. The SPMNs had zero coercivity 

and zero remanence and a saturation magnetization of 29.0 emu/g. 
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SMI-qC12 followed by CS-EDC-Con A was determined to be the polymer-and-functional-

moiety combinations which captured the most BCG-mCherry bacteria. The SPMNs were 

thus polymer coated with SMI-qC12 and CS-EDC-Con A which also prevented aggregation. 

The nanoparticles were coated with 0.1 g, 0.5 g and 0.9 g polymer per 1 g pristine SPMNs to 

determine the most effective polymer loading. CS-EDC-Con A SPMNs were synthesized via 

insitu co-precipitation of Fe2+, Fe3+ and chitosan followed by modification of the polymer 

coating. SMI-qC12 SPMNs were synthesized by activating the iron oxide core with 3-

aminopropyl(triethoxysilane) (3-APTES) followed by SMA coating and further modification of 

the polymer. The coated SPMNs were characterized via transmission electron microscopy 

(TEM), thermogravimetric analysis (TGA), attenuated total reflectance Fourier transform 

infrared (ATR-FTIR) spectroscopy and energy-dispersive X-ray (EDX) spectroscopy which 

confirmed that the nanoparticles were coated with polymer. TGA indicated that a higher 

coating % was achieved for 0.9 g polymer loading compared to 0.1 g polymer loading and a 

slight increase in average nanoparticle diameter was seen for the coated SPMNs via TEM. 

An HRP assay was performed on the CS-EDC-Con A SPMNs which confirmed the biological 

activity of Con A immobilized to the nanoparticles. SQUID magnetometry was performed on 

chitosan coated SPMNs and a decrease in saturation magnetization was observed, 22.6 

emu/g compared to pristine SPMNs. The SPMNs however retained superparamagnetism 

after polymer coating.  

 

7.1.4 BCG-mCherry affinity 

A preliminary BCG-mCherry affinity study was performed on the nanofibers to determine 

which polymer-and-functional-moiety combination captured the most BCG-mCherry bacteria. 

Fluorescence microscopy (FM) and light microscopy (LM) were used to count the bacteria. 

The SMI-qC12 nanofibers followed by the CS-EDC-Con A nanofibers had the highest affinity 

for BCG-mCherry. The SMI-qC12 nanofibers could adhere to the BCG-mCherry cell wall via a 

combination of electrostatic and hydrophobic interactions whereas the Con A immobilized to 

the CS-EDC-Con A nanofibers could adhere to BCG-mCherry via the carbohydrate binding 

properties of the protein. The chitosan derivative nanofibers blended with PLA had the 

highest affinity for BCG-mCherry which was attributed to the hydrophobicity and 

biocompatibility of PLA. Hydrophobicity can improve adhesion to the hydrophobic outer layer 

of the bacteria. 

A BCG-mCherry affinity and dilution study was performed on the SMI-qC12 SPMNs and CS-

EDC-Con A SPMNs at 0.1 g 0.5 g and 0.9 g polymer loadings. The nanofibers were more 

sensitive to BCG-mCherry bacteria compared to the SPMNs which could be attributed to 

chelation of the polymer coating to the iron oxide core and thus less available functional 
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groups. A larger amount of polymer could also be visualized via FM for the nanofibers 

compared to the SPMNs with a thin polymer coating. The SMI-qC12 SPMNs had the highest 

BCG-mCherry affinity with a sensitivity of OD600nm = 0.07/0.22 ×107 CFU/mL. The 0.9 g SMI-

qC12 SPMNs captured the most BCG-mCherry bacteria as determined via TEM. The results 

can conclude that non-specific electrostatic and hydrophobic interactions (SMI-qC12) lead to 

a higher BCG-mCherry affinity compared to specific carbohydrate-protein binding (CS-EDC-

Con A). 

The objectives of this thesis, to synthesize polymer coated SPMNs that can be used to 

capture and extract mycobacteria, was essentially met as outlined in Chapter 1. The optimal 

polymer-and-functional-moiety combination and polymer loading for BCG-mCherry affinity 

was also estimated. These polymer coated SPMNs can thus potentially be used to 

concentrate bacteria in a specimen, followed by extraction with an external magnet and 

analysis via FM, SEM and TEM.  

 

7.2 Recommendations 

The SPMNs with higher polymer loadings (0.9 g) had a higher affinity for BCG-mCherry. 

Polymer loadings higher than 0.9 g were, however, not investigated in this study. The 

synthesis of SPMNs with higher polymer loadings can thus be explored as well as the effect 

of higher polymer loading on particle diameter and superparamagnetism. In this thesis, the 

iron oxide core was activated with 3-APTES followed by SMA coating. Previous research 

also coated the iron oxide core with a silica layer followed by activation with 3-APTES.1 An 

additional silica layer may affect the SMA coating and can thus be investigated. Con A could 

possibly be crosslinked to the polymer coated SPMNs to improve binding. The use of 

polymerase chain reaction (PCR) could be investigated as a molecular testing technique to 

verify if mycobacteria were captured on the SPMNs. Optimization of the parameters are, 

however, required to attain accurate PCR results. The nanofibers and polymer coated 

SPMNs were not evaluated for affinity to Mtb. A Mtb affinity study could thus be performed 

on the nanofibers and nanoparticles to determine if the results correlate with the BCG-

mCherry affinity study.  
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Addendum A 

 

Chitosan  

Chitosan is the N-deacetylated derivative of chitin obtained by alkaline treatment, although 

the N-deacetylation is rarely complete. The structure of chitosan is composed of 2-amino-2-

deoxy-β-d-glucopyranose (GlcN) and β(1→4)-linked 2-acetamido-2-deoxy-β-d-

glucopyranose (GlcNAc) residues. The monomers thus differ with either an amino or an 

acetamide group as C2-substituent in the saccharide ring as seen in Figure A.1.1 

 

 

 

 

 

 

The degree of N-acetylation (DA) of chitosan can be measured as the average number of 

GlcNAc per 100 chitosan monomers in percentile units and thus the fraction of N-acetyl-d-

glucosamine units. A DA distribution can be seen in the various chitosan chains due to its 

natural origin and variations in processing conditions. The conversion of chitin to chitosan 

can be verified by the ratio of GlcNAc to GlcN structural units. Chitosan is fully or partially N-

deacetylated when the DA is less than 30% and where the degree of N-deacetylation (DDA) 

is thus ≥ 70%. The DA and DA distribution influences the solubility due to the distribution of 

free amino and N-acetyl groups. The deacetylated amino groups of GlcN can be protonated 

in an acidic solution which enables chitosan to dissolve under acidic conditions.2 

 

a) ATR-FTIR 

 

The ATR-FTIR spectrum of pristine chitosan is shown in Figure A.2.  

 

 

 

 

Figure A.1: Chemical structure of chitosan (1-DA (degree of acetylation)) (left) and chitin (DA=1) (right). 
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Chitosan is of natural origin and extracted from the exoskeleton of crabs. A varying 

distribution of deacetylation and molecular weight can thus occur. The polymer was thus 

characterized followed by modification and characterization. The characteristic peaks can be 

assigned via literature as seen in Figure A.2. In the spectrum of chitosan a broad peak at 

3050-3600 cm−1 is attributed to the N-H and O-H stretching vibrations, the peak at 2874 cm−1 

can be assigned to the C-H stretching vibration of the methylene groups, the peaks at 1630 

cm−1 and 1550 cm−1 are assigned to the carbonyl stretching and the N-H deformation 

(amide I, amide II band), respectively, the peak at 1420 cm-1 represents the C-N vibration, 

while the peak at 1050 cm−1 is attributed to the C-O-C stretching vibration.3,4 

 

b) NMR 

The medium molecular weight (Mw = 129 kD) unmodified chitosan polymer was purchased 

with a reported degree of N-deacetylation (DDA) of 75 – 85% and used as parent polymer.  

The 1H NMR spectrum of pristine chitosan (Figure A.3) can be characterized by the peak at 

5.28 ppm due the methine protons of chitosan carbon 1 (C-1). The peak at 4.28 ppm is due 

to the methine protons (C-3 and C-4) and the methylene C-6 protons of the glycopyranose 

unit. The overlapping absorption peak at 4.11 ppm can be attributed to the methine protons 

C-5 of the glycopyranose unit and those of methylene C-6’ protons of the glucopyranose 

(chitin) unit. The methine proton, C-2 of the glycopyranose ring can be assigned to the peak 

at 3.58 ppm. The peak at 2.41 ppm can be assigned to the methyl protons of the acetamido 

groups (chitin residue) and the overlapping weak acetic acid (AcOH) peak.3 

 

Figure A.2: FTIR spectrum of pristine chitosan. 
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The DDA was determined using the integrals of the peaks H-1 corresponding to the 

deacetylated monomer and the three protons of the acetyl group (2.41 ppm). The Equation 

A.1 was used.5 

                                                  DDA% =
H1D

H1D +
HAc

3
 
× 100                                               A. 1 

 

The DDA of chitosan was determined to be 75%, in percentile units per 100 chitosan 

monomer units. 

From the 13C NMR spectrum of chitosan Figure A.4 the peaks at 177.2 and 25.1 ppm, 

adjacent to the solvent signals, can be attributed to the carbonyl and methyl groups of the 

monomeric chitin due to incomplete deacetylation. The chitin residue signal can be 

enhanced by the temperature of NMR analysis (80 ˚C) where partial conversion to chitin can 

occur.6 The chemical shift of 100.8 ppm can be assigned to C-1, 80.4 ppm to C-4, 77.7ppm 

to C-5, 73.1 ppm to C-3, 63.3 ppm to C-6 and 59.0 ppm to C-2. 7 

 

Figure A.3: 
1
H-NMR spectrum of chitosan at 80 ˚C in D20/Acetic acid-d4 (70:30, v/v). 
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Addendum B  

 

 

 

 

Figure A.4: 
13

C-NMR spectrum of chitosan at 80 ˚C in D20/Acetic acid-d4 (70:30, v/v). 

 

a b c 

d e f 
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Addendum C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g h i 

j k l 

Figure B: Fluorescence microscopy (FM) and Light microscopy (LM) images of nanofibers incubated in 
OD600nm=6 a) SMI-Con A, b) SMI-qC10, c) SMI-qC12, d) CS-EDC-Con A/PVA, e)CS-qC10/PVA, f) CS-qC12/PVA, 

g) CS-EDC-Con A/PLA, h) Cs-qC10/PLA, i) CS-qC12/PLA, j) CS-EDC-Con A/Nylon 6, k) CS-qC10/Nylon 6, l) 
CS-qC12/Nylon 6. 

a b c 

d e f 
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Figure C.1: Fluorescence microscopy overlaid with Light microscopy images at OD600nm = 7 for a) 0.1 g CS-
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k) 0.1 g SMI-qC12 SPMNs and l) 0.5 g SMI-qC12 SPMNs. 

Figure C.2: Fluorescence microscopy overlaid with Light microscopy image at OD600nm = 0.07 for 0.9 g SMI-
qC12 SPMNs. 
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