
!

Navigational precision of an autonomous
ground vehicle using multiple sensors

by
Frederik Jacobus Potgieter

March 2016

Thesis presented in partial fulfilment of the requirements for the degree
of Master of Engineering (Mechatronic) in the Faculty of Engineering at

Stellenbosch University

Supervisor: Dr WJ Smit

i

Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof (save
to the extent explicitly otherwise stated), that reproduction and publication thereof
by Stellenbosch University will not infringe any third party rights and that I have
not previously in its entirety or in part submitted it for obtaining any qualification.

March 2016

Copyright © 2016 Stellenbosch University

All rights reserved

Stellenbosch University https://scholar.sun.ac.za

ii

Abstract

This thesis investigated the navigational precision of an autonomous ground
vehicle by fusing different sensors as a means of localization and navigation.
Different GPS (Global Positioning System) modules (regular, RTK (Real Time
Kinematic) and differential GPS) in conjunction with a digital compass and optical
encoders were used as sensors for capturing data regarding the robot’s position.
The Arduino Mega 2560 with an 8-bit Atmel microcontroller was used to control
all robot functions while MATLAB was used to plot all navigational output data.

To implement the localization and navigation, background information had to be
gained regarding the functioning of the GPS, motor speed control, fusion of
sensor data and algorithms used by the sensors. After this was done all the
hardware required to implement navigation was purchased, compatibility
between all the components was ensured, housings for the sensors were
manufactured, the current platform was modified and a power source sufficient to
power everything was selected. Next software was implemented to: control the
hardware, capture all the data from the sensors, fuse sensor data, map the
environment, establish localization and navigate between waypoints and finally
display all the captured data to the user.

Before determining the navigational precision of the robot, it needed to be
confirmed whether the Piksi RTK GPS could be used as a benchmark for
precision comparison of the other sensors. Next case studies tested the
navigational precision when: doing multiple runs of the same map, using
different complimentary filter values, enabling differential GPS, altering the
robot’s speed, introducing wheel slippage, magnetic interference and GPS drift is
present and when sensors fail.

The high precision with which the Piksi RTK GPS is able to locate the robot gives
it the ability to be implemented in various other autonomous and navigation
scenarios. Multiple runs of the same map concluded that the consistency of the
navigational precision was good enough that data between different runs could
be compared. The optimal complimentary filter constant was found
experimentally, it was seen that differential GPS resulted in more precise
navigation and that the lowest robot speed resulted in the most precise
navigational results. Wheel slippage and magnetic interference had a large
effect on the robot’s position estimation while GPS drift had little effect. Finally it
was seen that any single sensor failure resulted in the robot being unable to
navigate.

Future work that affects the navigational precision can include: use of different
data fusion algorithms, fusion of Piksi RTK GPS data with odometry data, more
stable or different robot platform, additional sensor to detect wheel slippage,
algorithm to detect magnetic interference and the use of stronger Piksi RTK GPS
direct communication antennas.

Stellenbosch University https://scholar.sun.ac.za

iii

Opsomming

Hierdie tesis ondersoek die navigasie presisie van ’n outonome voertuig deur die
integrasie van verskillende sensors as ’n wyse van lokalisering en navigasie.
Verskillende GPS (globale posisioneringstelsel) modules (gewoon, intyds
kinematies en differensiële GPS) in samewerking met ’n digitale kompas en
optiese enkodeerders is gebruik as sensors vir die insameling van data
aangaande die robot se posisie. Die Arduino Mega 2560 met ’n 8-bis Atmel
mikrobeheerder is gebruik om al die robot funksies te beheer terwyl MATLAB
gebruik is om die navigasie uitset data te vertoon.

Om die lokalisering en navigasie te implementeer het hulle eerstens agtergrond
kennis aangaande GPS, motor snelheid beheer, integrasie van sensor data en
algoritmes wat deur sensors gebruik word ingesamel. Na afloop daarvan is al die
nodige hardeware om navigasie te implementeer aangekoop, versoenbaarheid
tussen al die komponente verseker, omhulsels vir die sensors vervaardig, die
huidige platform aangepas en daar is besluit op ’n voldoende kragbron om alles
aan te dryf. Daarna is die sagteware geïmplementeer wat: al die hardeware
beheer, al die data van die sensors ontvang, die sensor data saamsmelt, ’n kaart
van die omgewing skep, tussen koördinate navigeer en uiteindelik al die
ingesamelde data aan die gebruiker vertoon.

Voor hulle kon kyk na die navigasie presisie van die robot, het hulle eers bepaal
of die intyds kinematiese GPS gebruik kan word as ’n maatstaf vir die vergelyking
van presiesheid van die ander sensors. Volgende is daar deur gevallestudies die
navigasie presisie getoets wanneer: herhaaldelike lopies van dieselfde kaart
gedoen is, verskillende komplimentêre filter waardes gebruik is, die differensiële
GPS aangeskakel is, die robot se snelheid verander is, wielglip ingesluit is,
magnetiese inmenging en GPS dryf teenwoordig is asook wanneer enige van die
sensors faal.

Die hoë presisie waarmee die Piksi intyds kinematiese GPS in staat was om die
robot te lokaliseer gee dit die vermoë om in verskeie ander outonome en
navigasie verwante situasies geïmplementeer te word. Verskeie lopies van
dieselfde kaart het gewys dat die konsekwentheid van die navigasie presisie
voldoende was om data tussen verskillende lopies met mekaar te vergelyk. Die
optimale komplimentêre filter konstante is eksperimenteel gevind, dit is
waargeneem dat differensiële GPS tot meer presiese navigasie gelei het en dat
die stadigste robot snelheid die mees presiese navigasie resultate gelewer het.
Wielglip en magnetiese inmenging het ’n groot invloed op die robot se posisie
vasstelling gehad, terwyl GPS dryf ’n klein effek gehad het. Uiteindelik is
waargeneem dat ’n enkel sensor faling veroorsaak het dat die robot nie kan
navigeer nie.

Toekomstige werk wat die navigasie presisie affekteer kan die volgende insluit:
die gebruik van verskillende data integrasie algoritmes, die integrasie van die
Piksi RTK GPS data met verplasingsmeter data, meer stabiele of ander platform,
addisionele sensor om wielglip waar te neem, algoritme om magnetiese
inmenging waar te neem en sterker Piksi RTK GPS kommunikasie antennas.

Stellenbosch University https://scholar.sun.ac.za

iv

Dedicated to my family and friends
who are always there for me

Stellenbosch University https://scholar.sun.ac.za

v

Acknowledgements

The financial assistance of the National Research Foundation (NRF) towards this
research is hereby acknowledged. Opinions expressed and conclusions arrived
at, are those of the author and are not necessarily to be attributed to the NRF.

I wish to thank my supervisor, Dr WJ Smit, for his advice and guidance in my
research.

Stellenbosch University https://scholar.sun.ac.za

vi

Table of Contents

List of figures ... viii!
List of tables ... x!
Nomenclature .. xi!
1! Introduction ... 1!

1.1! Background ... 1!
1.2! Objectives .. 2!

1.2.1! Literature study ... 2!
1.2.2! Hardware .. 3!
1.2.3! Software .. 3!
1.2.4! Experimental data ... 3!

1.3! Motivation .. 4!
2! Literature study ... 5!

2.1! Satellite navigation .. 5!
2.1.1! General satellite navigation .. 5!
2.1.2! Differential GPS .. 6!
2.1.3! RTK GPS .. 7!

2.2! PID controllers ... 11!
2.3! Sensor fusion .. 13!

2.3.1! Complimentary filter .. 13!
2.3.2! Kalman filter .. 14!
2.3.3! Filter comparison .. 19!

2.4! Tilt compensated compass .. 20!
2.4.1! Current heading .. 20!
2.4.2! Accelerometer calibration ... 25!
2.4.3! Magnetometer calibration ... 27!

3! Design .. 33!
3.1! Hardware .. 33!

3.1.1! DC motors ... 33!
3.1.2! Motor driver ... 34!
3.1.3! Piksi GPS .. 35!
3.1.4! Optical encoders ... 36!
3.1.5! Digital compass .. 39!
3.1.6! Adafruit GPS ... 40!
3.1.7! Microcontroller .. 41!
3.1.8! Battery .. 42!
3.1.9! Complete system .. 43!
3.1.10! Cost .. 45!

3.2! Arduino code ... 45!
4! Experimental Setup .. 56!

4.1! Measurement uncertainty ... 56!
4.1.1! Overview ... 56!
4.1.2! Origin .. 56!
4.1.3! Measuring uncertainty .. 57!

4.2! RTK GPS positional data .. 58!
4.3! All sensors positional data ... 62!

Stellenbosch University https://scholar.sun.ac.za

vii

5! Results ... 64!
5.1! RTK GPS positional data .. 64!
5.2! All sensors positional data ... 66!

5.2.1! Case study 1: Multiple runs ... 67!
5.2.2! Case study 2: Altering complimentary filter constant 69!
5.2.3! Case study 3: Adafruit GPS DGPS .. 71!
5.2.4! Case study 4: Robot ground velocity ... 73!
5.2.5! Case study 5: Wheel slippage ... 74!
5.2.6! Case study 6: Magnetic interference and GPS drift 75!
5.2.7! Case study 7: One or multiple sensors fail 79!

6! Conclusions .. 80!
7! Appendix A: RTK GPS ... 82!
8! Appendix B: Case study 1 .. 84!
9! Appendix C: Case study 2 .. 88!
10! Appendix D: Case study 4 .. 91!
11! Appendix E: Case study 7 ... 95!
12! References .. 98!

Stellenbosch University https://scholar.sun.ac.za

viii

List of figures
Figure 2-1: GPS coordinate system .. 6!
Figure 2-2: RTK GPS signal ... 9!
Figure 2-3: Ionospheric error .. 9!
Figure 2-4: PID loop .. 11!
Figure 2-5: Complimentary filter .. 13!
Figure 2-6: Initial system state .. 15!
Figure 2-7: System state after time interval .. 16!
Figure 2-8: Magnetic field vector ... 20!
Figure 2-9: Conversion between coordinate frames ... 21!
Figure 2-10: Top left: no distortion, top right: hard-iron deviation, bottom left:

soft-iron deviation, bottom right: hard and soft-iron deviation 28!
Figure 3-1: Robotic platform ... 33!
Figure 3-2: Motor driver .. 34!
Figure 3-3: Piksi GPS ... 36!
Figure 3-4: Optical encoder .. 36!
Figure 3-5: Totem-pole output buffer .. 37!
Figure 3-6: LSM303DLHC module .. 39!
Figure 3-7: Bi-directional logic level converter .. 40!
Figure 3-8: Adafruit GPS ... 41!
Figure 3-9: Complete breadboard layout .. 43!
Figure 3-10: Individual components .. 44!
Figure 3-11: Navigational procedure coding part 1 ... 46!
Figure 3-12: Navigational procedure coding part 2 ... 47!
Figure 3-13: Axis system conversion .. 51!
Figure 4-1: Base station Piksi RTK GPS with external power source and active

antenna ... 59!
Figure 4-2: Robot with rover Piksi RTK GPS, active antenna, laptop and battery

 .. 60!
Figure 4-3: Waypoints for navigation .. 61!
Figure 4-4: Map to be navigated ... 62!
Figure 4-5: Complete experimental setup ... 63!
Figure 5-1: Run 1 RTK GPS positional data ... 65!
Figure 5-2: Case study 1 navigated map .. 67!
Figure 5-3: Case study 1 cumulative DRMS error .. 68!
Figure 5-4: Cumulative DRMS error for different complimentary filter constants 70!
Figure 5-5: Case study 2 navigated map .. 70!
Figure 5-6: Case study 2 cumulative DRMS error .. 71!
Figure 5-7: Case study 3 navigated map .. 72!
Figure 5-8: Case study 3 cumulative DRMS error .. 72!
Figure 5-9: Case study 5 navigated map .. 74!
Figure 5-10: Case study 5 cumulative DRMS error .. 75!
Figure 5-11: Map to be navigated ... 76!
Figure 5-12: Case study 6 with magnetic interference navigated map 77!
Figure 5-13: Case study 6 with magnetic interference cumulative DRMS error . 77!
Figure 5-14: Case study 6 with GPS drift navigated map 78!
Figure 5-15: Case study 6 with GPS drift cumulative DRMS error 78!
Figure 7-1: Run 2 RTK GPS positional data ... 82!
Figure 7-2: Run 3 RTK GPS positional data ... 82!

Stellenbosch University https://scholar.sun.ac.za

ix

Figure 7-3: Run 4 RTK GPS positional data ... 83!
Figure 7-4: Run 5 RTK GPS positional data ... 83!
Figure 8-1: Case study 1 navigated map run 2 ... 84!
Figure 8-2: Case study 1 cumulative DRMS error run 2 84!
Figure 8-3: Case study 1 navigated map run 3 ... 85!
Figure 8-4: Case study 1 cumulative DRMS error run 3 85!
Figure 8-5: Case study 1 navigated map run 4 ... 86!
Figure 8-6: Case study 1 cumulative DRMS error run 4 86!
Figure 8-7: Case study 1 navigated map run 5 .. 87!
Figure 8-8: Case study 1 cumulative DRMS error run 5 87!
Figure 9-1: Cumulative DRMS error for different complimentary filter constants

run 2 .. 88!
Figure 9-2: Case study 2 navigated map run 2 ... 88!
Figure 9-3: Case study 2 cumulative DRMS error run 2 89!
Figure 9-4: Cumulative DRMS error for different complimentary filter constants

run 3 .. 89!
Figure 9-5: Case study 2 navigated map run 3 ... 90!
Figure 9-6: Case study 2 cumulative DRMS error run 3 90!
Figure 10-1: Case study 4 navigated map 30 rpm .. 91!
Figure 10-2: Case study 4 cumulative DRMS error 30 rpm 91!
Figure 10-3: Case study 4 navigated map 40 rpm .. 92!
Figure 10-4: Case study 4 cumulative DRMS error 40 rpm 92!
Figure 10-5: Case study 4 navigated map 50 rpm .. 93!
Figure 10-6: Case study 4 cumulative DRMS error 50 rpm 93!
Figure 10-7: Case study 4 navigated map 60 rpm .. 94!
Figure 10-8: Case study 4 cumulative DRMS error 60 rpm 94!
Figure 11-1: Case study 7 navigated map no Adafruit GPS 95!
Figure 11-2: Case study 7 cumulative DRMS error no Adafruit GPS 95!
Figure 11-3: Case study 7 navigated map no encoders 96!
Figure 11-4: Case study 7 cumulative DRMS error no encoders 96!
Figure 11-5: Case study 7 navigated map no compass 97!
Figure 11-6: Case study 7 cumulative DRMS error no compass 97!

Stellenbosch University https://scholar.sun.ac.za

x

List of tables
Table 2-1: Different error types ... 7!
Table 2-2: Effect of tuning PID parameters ... 12!
Table 2-3: Ziegler-Nichols optimal tuning parameters .. 12!
Table 2-4: Accelerometer orientation .. 26!
Table 3-1: Data packet .. 35!
Table 3-2: Piksi GPS electrical properties .. 35!
Table 3-3: Optical encoder electrical properties ... 37!
Table 3-4: Tilt compensated compass electrical properties 39!
Table 3-5: Adafruit GPS electrical properties .. 40!
Table 3-6: Current requirements of sensors ... 42!
Table 3-7: System cost ... 45!
Table 3-8: SBP (Swift Navigation Binary Protocol) message structure 55!
Table 4-1: Distances between waypoints ... 61!
Table 5-1: Average deviations from actual path ... 65!
Table 5-2: Case study 1 DRMS errors .. 68!
Table 5-3: Case study 2 DRMS errors .. 71!
Table 5-4: Case study 3 DRMS errors .. 73!
Table 5-5: Case study 4 DRMS errors .. 73!
Table 5-6: Case study 5 DRMS errors .. 75!
Table 5-7: Case study 6 DRMS errors .. 79!
Table 5-8: Case study 7 DRMS errors .. 79!

Stellenbosch University https://scholar.sun.ac.za

xi

Nomenclature

! state transition matrix that applies the system parameters from the
previous epoch on the current ones when process noise is absent

!! symmetrical matrix
!! geomagnetic field strength

!! input matrix that determines how much each system input affects the
state vector

!! speed of light in a vacuum, taken as 299!792!458!m · s!!
!! distance of a line on the surface of the sphere
!!"#$! combination of !!"#$, !!"#$% and !!"#$%
!!"#$,!"# ! estimate of the soft-iron distortion
!!!"# ! hard-iron distortion matrix
!!!"#,!"# ! estimate of the hard-iron distortion
!!"#$% ! misalignment matrix
!!"#$% ! scale factor matrix
!!"#$! soft-iron distortion matrix
!! difference between the setpoint and plant output
!! probability density function
!! gravity of earth, taken as 9,81!m · s!!
!! gravitational vector
!!! misalignment matrix
!!! offset
!!! combination of !!, !! and !!
!!! scale factor

!! transformation matrix which maps and converts the state vector
values into the current equation domain

!! ionospheric distance error
!! current
!! identity matrix
!! epoch
!! ! gain at the point of oscillation
!! ! differential gain coefficient
!! ! integral gain coefficient
!!! proportional gain coefficient
!! ! Kalman gain, which minimizes !!!!
!! payload
!! magnetic field vector
!! ! rotated magnetic field vector
!!,!"##$!%$& ! corrected magnetometer values
!! carrier phase ambiguity / integer ambiguity
!! number of satellites
!! number of measurements
!! ! period of the oscillations
!! ! posteriori estimate error covariance matrix
!!!! priori estimate error covariance matrix
!! process noise covariance matrix
!!! centre of the ellipsoid

Stellenbosch University https://scholar.sun.ac.za

xii

!!"! orthogonal matrix that has the eigenvectors of ! as column entries
!! resistance
!! radius of the earth, taken as 6!378,137!km
!! measurement noise covariance matrix
!!! pitch rotation matrix
!! ! roll rotation matrix
!!! yaw rotation matrix
!! tropospheric distance error
!! time
!! ! time difference between receiver clock and satellite clock
!!" ! satellite offset from reference time
!!"! receiver offset from reference time
!! ! satellite ! time
!! ! time message was received as recorded by the receiver
!!! message true reception time
T! arbitrary rotation
!! ! input vector that contains all the system inputs
!! voltage

!! ! measurement noise vector containing noise values for all the system
measurement values

!! ! is the process noise vector containing noise values for all the state
vector values

!!"# measurement average
!! ! earth centered system ! coordinate for satellite !
!! measurement !
!! ! earth centered system ! coordinate for receiver
!! ! state vector storing the model system parameters
!!!! priori state estimate
!! ! earth centered system ! coordinate for satellite !
!! ! earth centered system ! coordinate for receiver
!! ! earth centered system ! coordinate for satellite !
!! ! earth centered system ! coordinate for receiver
!! ! vector containing all the system measurements

! inclination angle
! latitude
∆! heading between two sets of coordinates
∆! absolute difference between the longitude of two coordinates

∆! angle between the two sets of coordinates with its origin at the earth
centre

! carrier phase measurement noise, satellite ephemeris errors and
multipath errors

! carrier phase measurement
! carrier wavelength
! mean
! current heading
! roll
! yaw
! straight distance between receiver and satellite

Stellenbosch University https://scholar.sun.ac.za

xiii

! standard deviation
!! variance
!! standard deviation in a northern direction
!! standard deviation in an eastern direction
! time integration variable between 0 and the current time !
! pitch

Stellenbosch University https://scholar.sun.ac.za

1

1 Introduction
This section will provide background information regarding autonomous
navigation, ways of robot localization, the original aim of the research and the
current systems in use. The objectives – which include a literature study that
must be completed, hardware and software design and implementation, and
obtaining experimental results – will be listed. Lastly the motivation for
conducting this research will be discussed.

1.1 Background

Extensive research has been done in the field of autonomous navigation for both
indoor and outdoor situations using different platforms (aerial, ground and
underwater). Let’s first give a more definitive description for the term
“autonomous navigation”. This includes condition monitoring, continuous sensing
of the environment, navigation by processing sensor data and / or previously
known data of the environment and finally task execution. Condition monitoring
in the scope of this research topic only includes the robot being able to sense
when operating power is low and being able to navigate to the base station for
recharging. Sensing the environment will be done using various sensors,
including optical encoders, a compass and different GPS modules. Using this
sensor data the robot can navigate to a goal state. Task execution entails the
robot being able to autonomously navigate between waypoints and return to its
base station.

When looking at robot localization there are two methods that can be applied,
these are the absolute and relative approaches. The absolute approach requires
prior knowledge of the environment and some way for the robot to take
measurements with regard to known parameters present in the environment.
Using GPS is a way of applying the absolute approach. The relative approach
only uses sensors on the robot to determine its position with regard to its starting
point. Two popular ways to get relative data is by using odometry and / or a
compass as a way of dead reckoning as discussed in (Borenstein and Liqiang
Feng, 1996). By combining these two methods one can fuse the data received
from the various sensors to obtain a more accurate position estimate of the robot
as discussed in (Goel et al., 2015).

This reseach was started with the aim of ultimately being implemented on an
autonomous ground vehicle in a CSP (concentrating solar power) plant. The
STERG (Solar Thermal Energy Research Group) at Stellenbosch University
currently investigates solar energy as a way of generating electricity on a large
scale. A common way of generating electricity using this approach is by
implementing a CSP system, where a typical 11!MW power plant (for example
the PS10 Solar Power Plant) has in excess of 600 individual heliostats (Power
Technology, 2015). Each heliostat consists of a collection of mirrors with
adjustable orientation, reflecting the sun to the central solar power tower. These
mirrors need to be cleaned and inspected on a regular basis (daily), to ensure
optimal functioning and efficiency.

Stellenbosch University https://scholar.sun.ac.za

2

Current systems comprise of personnel operating the machinery responsible for
cleaning the mirrors, but can possibly be replaced by an autonomous ground
vehicle. Such an autonomous vehicle will therefore consist of a motorized robot
platform, a navigation module and the cleaning component. This part of the
research will be limited to the navigation module and specifically the fusion of
different sensors as a means of localization and navigation. The navigation
module will consist of different sensors, a control module driven by software and
a control interface to the motorized robot platform. With all this done the robot
must be able to navigate between waypoints, travel to a specific waypoint and
return to the base station if necessary, all of this being done autonomously while
in a dynamic environment. The dynamic environment entails that there will be
stationary objects such as the heliostats that all have known positions prior to the
robot starting navigation.

1.2 Objectives

Because of the sheer size of a project such as developing an autonomous
system, only the navigation of such a system will be investigated in this research.
This will be done on scale since an existing robot platform is available and
access to a full scale CSP plant is not possible. The objectives can be broken
into a literature study that must be completed to gain an understanding of the
mathematics driving the sensors, the hardware that must be purchased to
localize the robot, the software that must be implemented to execute this and
finally capturing the results after completion of all the integration.

1.2.1 Literature study

Before any hardware purchases can be made a study must be conducted to
determine the following:

1. An understanding of the different GPS techniques used.
2. Ways in which accurate motor speed control over a varying speed range

can be accomplished.
3. Ways to accomplish accurate motor acceleration and deceleration to avoid

wheel slippage and to accomplish steering actions.
4. Different ways of fusing sensor data, for direct implementation in fusing

sensor data and towards gaining an understanding behind the algorithms
used in individual sensors.

5. The type of compass to be used in conjunction with encoders to obtain
distance and attitude measurements for localization.

6. The theoretical accuracy of all sensors.

Stellenbosch University https://scholar.sun.ac.za

3

1.2.2 Hardware

The following list of objectives must be completed before any software can be
implemented:

1. Define hardware that is currently present on the robot.
2. Purchase all additional sensors.
3. Purchase microcontroller and ensure compatibility between microcontroller

and all sensors present.
4. Design and manufacture housings for sensors.
5. Analyse current platform to determine what modifications must be made to

house the additional sensors.
6. Determine battery specification, battery life, robot power budget and battery

discharge rate.

1.2.3 Software

To obtain experimental data the following software must be defined, developed
and implemented:

1. Determine which software platforms will be used to navigate the robot,
gather experimental data and show the final results.

2. Software for robot platform propulsion and steering.
3. Software to retrieve data from all attached sensors while simultaneously

navigating the robot.
4. Software to fuse all sensor measurements.
5. Software to create a map of the environment containing known heliostat

locations while having the ability to add known static obstacles.
6. Software that uses the fused data to determine the current robot position.
7. Software to successfully navigate from one waypoint to the next.
8. Software to capture and display all positional output data.

1.2.4 Experimental data

Once the robot platform and coding has been completed the following
experiments will be conducted:

1. The viability of using the RTK GPS as a means of measuring precision of
other sensors.

2. A comparison in relative navigational accuracy by navigating the same map
multiple times.

3. A comparison of relative navigational accuracy when the complimentary
filter values are altered.

4. A comparison of relative navigational accuracy when differential GPS
(EGNOS (European Geostationary Navigation Overlay Service)) is enabled
and disabled on the Adafruit GPS module.

Stellenbosch University https://scholar.sun.ac.za

4

5. A comparison of relative navigational accuracy when the ground speed of
the robot is increased.

6. Relative navigational accuracy when wheel slippage is introduced.
7. Relative navigational accuracy when magnetic interference and GPS drift is

present.
8. Relative navigational accuracy when one or multiple sensors fail.

1.3 Motivation

CSP systems generate electricity by converting the energy of the sun into heat,
and then using this heat to generate electricity. A central tower power plant is a
type of CSP system where electricity is generated by focusing sunlight from
heliostats on a central tower receiver where a heat transfer medium (liquid or air)
is used to generate steam which drives turbines, which in turn generates
electricity. Thus the cleanliness of the mirrors on the heliostats has a direct
impact on the efficiency of the power plant as a whole. A case study was
conducted in Morocco where a drop of 45!% in reflectivity was recorded for
mirrors mounted horizontally over a three month period (Merrouni et al., 2015).
Therefore it is of critical importance to keep the mirrors clean to ensure the plant
can maintain an optimum output level.

In central tower power plants the mirrors on individual heliostats are cleaned by
machinery, operated by people. An AGV is an autonomous ground vehicle that
can navigate through the power plant and execute tasks given to it while avoiding
obstacles (permanent fixtures as well as temporary obstructions). Currently
autonomous robots, which have no prior information about their environment,
implement SLAM (Simultaneous Localization and Mapping) techniques as a way
of navigation by building a map of the environment while localizing itself on the
created map (Leonard et al., 1991). Because the heliostats’ positions are known,
a prior map of their coordinates can be created, thus the focus shifts towards the
robot being able to localize itself rather than trying to navigate with no prior
knowledge of its environment.

By implementing an AGV the operator(s) and the current machinery can be
declared redundant, thus minimizing the risk of mirror breakage due to human
error during operation of the machinery. A further advantage is the fact that in
the overall operation of the power plant, less unnecessary human interaction,
where repetitive tasks are present, is required, thus minimizing the operating
effort placed on people. When using an AGV, the cleaning process can possibly
be completed during night-time, thus not interrupting the power plant during
daytime by obstructing the reflection of the mirrors while cleaning them. This
allows the power plant to operate at full efficiency during daytime. People are
also kept safe from a potential hazardous working environment, which includes
heavy machinery, high ambient temperature and the reflection of the sun from
the mirrors.

It must be realized that machines are more reliable than people in cases such as
these where repetitive tasks are present. By implementing such a cleaning
system, the efficiency of the whole power plant will be improved, which at the end
of the day is the ultimate goal of any successful power plant.

Stellenbosch University https://scholar.sun.ac.za

5

2 Literature study

This section will give an explanation of how satellite navigation works, specific
types of GPS technologies, PID controllers, the fusion of sensors using the
complimentary and Kalman filters and finally the tilt compensated compass.

2.1 Satellite navigation

First an overview of how general satellite navigation works is given, followed by
the more accurate differential GPS and finally proceeding to the highly accurate
RTK GPS.

2.1.1 General satellite navigation

Satellite navigation gives an electronic receiver the ability to determine its time
and location in terms of longitude, latitude and altitude using signals transmitted
by satellites orbiting the earth. The receiver has to be in clear sight of at least
four satellites, with more satellites resulting in a higher precision reading. When
a satellite navigation system can give global coverage, it can be coined as a
global navigation satellite system (GNSS). The GPS is the American GNSS and
consists of up to 32 satellites orbiting earth at an altitude of 20!000!km.

Every satellite has an atomic clock that is synchronized to each other and to
stations on the ground. Each satellite continually transmits a signal containing
the exact time the signal is sent from this satellite, and when the signal reaches
the receiver the time it arrived is recorded. Thus the receiver knows how far it is
from the satellite, based on the time the signal travelled. The exact position of
the satellite in orbit is also known at the exact moment the signal is sent. Thus by
using trilateration (the intersection of three spheres from three satellites) the
position of the receiver can be calculated. The fourth satellite is necessary since
the receiver does not have an accurate atomic clock. This is shown in equation
2.1 where the receivers’ position [!! , !! , !!] is in the coordinate system shown in
Figure 2-1. The true time the message was received is simply the difference
between when the receiver says the message was received (!!) and the
difference between the receiver and satellite clocks (!!), !! = !! − !!. Thus !! is
the same for all received signals if the assumption is made that the satellites
clocks are in sync. The distance the message travelled from the satellite to the
receiver is denoted by !! − !! − !! !!. Thus the following equation can be solved
for the four unknowns [!! , !! , !! , !!] by using data from at least four satellites (!).

(!! − !!)! + (!! − !!)! + (!! − !!)! = (!! − !! − !! !!)!!!, ! =
1,2,… , !

(2.1)

This solution can be solved using either algebraic or numerical methods.

Stellenbosch University https://scholar.sun.ac.za

6

Figure 2-1: GPS coordinate system1

2.1.2 Differential GPS

Regular GPS will give a pseudo range accuracy of 7,8!m at a confidence level of
95!% (Gps.gov, 2015). For the purpose of AGV navigation this accuracy is not
sufficient, therefore other GPS techniques will be investigated to improve GPS
accuracy. Differential GPS works on the concept of having a base station at a
highly accurate known location, that measures errors in signals from satellites
and transmitting corrections to receivers (known as rovers) in close vicinity.
These base stations also transmit the corrections to SBAS (satellite-based
augmentation systems) that then in turn again broadcast the corrections to
receivers. The EGNOS has four monitor stations in southern Africa, thus
enabling corrections in this region (Merry, 2007). The measurements from the
base station and rover are subtracted to get a differential measurement that is
used to get a differential position. There are three sources of error when looking
at GPS measurements. These are: ones originating on the satellite, ones on the
path from the satellite to the receiver and ones where the signal is received.
These errors, which can be removed by differential GPS, will be discussed.

Before the year 2000 the dominant error originating on the satellite was SA
(Selective Availability). It is a technique that was implemented to provide a
degraded signal on the L1 frequency (1!575,42!MHz) for non-military users, which
created a random offset in the clock signal equivalent to 100!m of navigation
accuracy (1996 Federal Radionavigation Plan, 1997). This has now been turned

1 Adapted from U.S. Department of Transportation Federal Aviation Administration - Airway
Facilities Division, 2013, https://en.wikipedia.org/wiki/Earth-centered_inertialAccessed

Stellenbosch University https://scholar.sun.ac.za

7

off but was the main reason differential GPS was implemented. Furthermore the
orbit of the satellite and the difference between satellite clocks also have an
effect on the error originating on the satellite. Because of uncertainties in the
precise path of the satellite’s orbit, the accuracy is 8!m on a 95!% interval (Varner,
2000). The satellite clock can be out by as much as 11!ns (Parkinson, 1996)
resulting in an error of 3!m.

The error generated while the signal travels from the satellite to the receiver can
be separated into ionospheric, tropospheric and stratospheric delays. The
ionosphere is a layer of the atmosphere between 70 and 1!000!km with varying
thickness that is dependent on the time of the day and solar activity. The angle
at which the signal travels through the ionosphere has an effect on accuracy,
between 10 − 30!m (Oc.nps.edu, 2015). The troposphere is from the earth’s
surface to 10!km above it and the stratosphere extends to a height of 50!km.
These spheres have different refractive indexes because of changes in the
dryness of the atmosphere. This causes the GPS signal to travel at different
speeds through the different layers resulting in inaccuracies in location
measurements. A tropospheric model can be used to predict the effect of the dry
atmospheric part which forms 90!% of the combined error between the
trophoshere and stratosphere. If such a model is applied the remaining delay
through the wet atmosphere is less than 300!mm (Li et al., 2014).

Errors generated at the receiver have been greatly reduced with new
technologies. For example receivers with the ability to get L1 (1!575,42!MHz) and
L2 (1!227,60!MHz) messages can eliminate ionospheric errors. Furthermore
multipath errors – where the receiver sees reflected signals of surfaces as direct
signals from the satellite – can cause errors of up to 15!m (Edu-observatory.org,
2015). By using an antenna that is less sensitive to low level signals this error
can be minimized. Various algorithms can also be implemented to reduce this
error and can be reduced to 1 to 2!m as shown by (Edu-observatory.org, 2015).

Table 2-1 gives a summary of the different error types common to all new
receivers and their effect:

Table 2-1: Different error types

Description Error with confidence
level of 95!%!(m)

Selective Availability 100
Satellite orbit 8
Satellite clock 3
Ionospheric 10 − 30
Troposphere and stratosphere modelled 0,3
Multipath 1 − 2

2.1.3 RTK GPS

RTK GPS is a differential global navigation satellite system that consists of a
base station and one or more rovers with a direct line of communication between

Stellenbosch University https://scholar.sun.ac.za

8

the base station and rovers in addition to their individual communication
capabilities with the overhead satellites. RTK GPS can be used to a distance of
10 to 20!km (Rietdorf et al., 2006) with an accuracy of up to 30!mm horizontally
(Roze et al., 2015). Because this is a differential technique it has all the benefits
of a differential system, which include removal of satellite orbit errors, satellite
clock errors, ionospheric delays, tropospheric delays and stratospheric delays.
All these errors are varying as the rover moves around with the exception of the
satellite clock error. There are three main errors that still need to be corrected;
these are multipath, interference and thermal noise at the receiver.

As stated earlier there are two frequencies on which navigation messages are
sent from the satellite to the receiver, these are L1 (1!575,42!MHz with a
wavelength of 190!mm) and L2 (1!227,60!MHz with a wavelength of 244!mm).
These navigation messages consists of two groups, coarse / acquisition (C/A)
code and precision (P) code. The C/A code is available to everyone while the P
code is encrypted and used for military purposes mainly, this encrypted signal is
known as P(Y) code. The C/A code is at a frequency of 1,023!MHz (with a
wavelength of 293,1!m) over the L1 frequency, while the P(Y) code is sent at a
frequency of 10,23!MHz (with a wavelength of 29,31!m) over both the L1 and L2
frequencies. As discussed in Section 2.1.2 the ability to receive messages on
both frequencies remove the ionospheric error.

Regular satellite navigation works on the principle that both the C/A and P codes
are modulated onto the L band waves as a binary sequence being generated by
a complicated algorithm. This is done on both the satellite and the receiver.
Since the signal takes time to reach the receiver, the received message is
delayed until the sequences match up, meaning that the required delay can be
used to calculate the distance to the satellite. The difference with RTK is that the
signal’s wavelength is used as a signal instead of the signal itself as shown in
Figure 2-2. This means that the C/A code at 1,023!MHz with a wavelength of
293,1!m can be disregarded and the L1 wave at a frequency of 1!575,42!MHz and
wavelength of 190!mm used instead as the source of distance calculation
between the satellite and the receiver. The only problem is that the number of
whole wavelengths on the L1 frequency is unknown, but this integer ambiguity
can be resolved by comparing measurements from C/A codes that will lead to a
consistent position solution as time passes and the satellites change position.

Stellenbosch University https://scholar.sun.ac.za

9

Figure 2-2: RTK GPS signal2

Because the RTK base station and rover are relatively close to one another the
ionospheric error can also be reduced by assuming that the ionospheric delay will
be common for both the base station and rover. Hence the difference (shown in
Figure 2-3) can be calculated. When one has this difference value for four or
more satellites one can calculate an ionospheric error free distance between the
base station and rover.

Figure 2-3: Ionospheric error3

2 Adapted from Swiftnav, 2015, https://www.kickstarter.com/projects/swiftnav/piksi-the-rtk-gps-
receiver/description

3 Adapted from Swiftnav, 2015, https://www.kickstarter.com/projects/swiftnav/piksi-the-rtk-gps-
receiver/description

Stellenbosch University https://scholar.sun.ac.za

10

A simplified version of the RTK algorithm will be shown to explain how the integer
ambiguity problem is solved. The carrier phase measurement (!) is a
combination of the distance between the receiver and the satellite (!),
ionospheric distance error (!), tropospheric distance error (!), receiver offset
distance error (! ∙ !!"), satellite offset distance error (! ∙ !!"), the integer ambiguity
(!) and noise (!) and can be equated as follows:

! = ! − ! + ! + !!(!!" − !!") + !!! + ! (2.2)

Where ! = (!! − !!)! + (!! − !!)! + (!! − !!)!

Getting the difference in the carrier phase measurement between two satellites
(1) and (2) and between the base station (b) and receiver (r) results in equation
2.3. Because the base station and receiver has a common clock and uses the
same set of satellites the receiver and satellite clock errors can be eliminated.
This difference can be written as:

!!!" − !!!" = !!!" − !!!" − !!!" + !!!" + !!!" − !!!" + !!(!!!" − !!!") +
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" − !!!"

(2.3)

Since the non-integer terms – the receiver and satellite clock error – have been
eliminated, the integer ambiguity (!!!" − !!!") is an integer value and can now be
used to calculate the whole number of wavelengths as mentioned earlier if data
from sufficient satellites is available.

Stellenbosch University https://scholar.sun.ac.za

11

2.2 PID controllers

A PID (proportional-integral-derivative) controller attempts to minimize the
difference between the plant output and a desired setpoint. A PID controller
(Figure 2-4) has three parts; they are proportional (!!), integral (!!) and
derivative (!!). Each one of these elements is controlled by the feedback signal
from the plant or system that is being controlled. These elements are then added
in a weighted manner as shown in equation 2.4. With the updated coefficients
the plant is run again and the new output compared to the setpoint again, this
process keeps on repeating to reduce the error to a value as small as possible.

!(!) = !!!!(!) + !! ! !(!)!!"!
! + !! !!"!" (2.4)

Figure 2-4: PID loop

The proportional part is simply the system error (!) multiplied by some constant
and fed back into the system. Generally an increase in the proportional part will
make the response of the system faster, and by increasing it too much the
system output will start oscillating. The proportional part should contribute the
most to a change in the system output (Kiran et al., 2014).

The integral part takes the effect of the error over the whole time the plant has
been active into account. Thus this term keeps on increasing over time unless
the system error is zero, so to minimize this part one must decrease the error and
the time over which the error is accumulated. The integral part has an
accelerating effect on the system, trying to get the system to the setpoint as fast
as possible, but because it accumulates the error it has a tendency to overshoot
the setpoint if the integral gain coefficient is too high (Åström et al., 2008).

Stellenbosch University https://scholar.sun.ac.za

12

The derivative part tries to decrease the settling time as well as stability for the
system as discussed in (Wescott, 2000) by looking at the rate of change of the
error. This part also decreases the overshoot introduced by the integral part but
the trade-off here is that the system becomes more sensitive to noise.

For the system to give the desired response one must optimally tune the
proportional, integral and derivative coefficients. The system must be stable, not
oscillate and achieve this state in the shortest amount of time possible, and
adjust accordingly if the setpoint is changed. To tune the loop there are various
techniques that can be used, including the manual tuning method and the Ziegler
Nichols method.

The manual tuning method is a trial and error method where the integral and
differential terms are first set to zero. Next the proportional term is increased until
the system output starts to oscillate. The larger the proportional term the faster
the system starts responding but this also makes the system less prone to being
stable. Now the integral term can be increased to stop the system output from
oscillating. Because this term accumulates the system error the amount of
overshoot will increase but this is necessary to help the system respond to
changes without much delay. The term is adjusted to make the difference
between the system output and the setpoint a minimum. Finally the derivative
term is increased until the settling time of the system is within an acceptable
range. Table 2-2 shows a summary for what effect increasing each of the tuning
terms has on various aspects of the system output.

Table 2-2: Effect of tuning PID parameters

Response Rise Time Overshoot Settling Time Steady-state Error
!! Decrease Increase No trend Decrease
!! Decrease Increase Increase Eliminate
!! No trend Decrease Decrease No trend

The Ziegler Nichols method is quite similar to the manual tuning method in that
the integral and differential parts are first set to zero and the proportional part
increased until the system output starts to oscillate. Whenever this state is
achieved the period of the oscillations (!!) and gain at this critical point (!!) is
taken and the proportional, integral and differential terms are then adjusted
according to optimum settings suggested in (Ziegler et al., 1993), shown in Table
2-3.

Table 2-3: Ziegler-Nichols optimal tuning parameters

Control type !! !! !!
P 0.50!!! - -

PI 0.45!!!
1.2
!!

 -

PID 0.60!!!
2.0
!!

!!
8

Stellenbosch University https://scholar.sun.ac.za

13

2.3 Sensor fusion

When receiving data from multiple sensors regarding the same attribute (for the
example the position of the robot) one can fuse the data using algorithms to
achieve a result that is more accurate than when the sensors are used
individually. Different sensors have different attributes, meaning they are either
more reliable on the long run or on the short run. This is where the filters are
supposed to extract the most trustworthy information from the individual sensors
and fuse this new information. Two main filters will be discussed; they are the
complimentary filter and the Kalman filter.

2.3.1 Complimentary filter

Figure 2-5: Complimentary filter4

The complimentary filter (Figure 2-5) is a simple filter that has a digital high-pass
and a digital low-pass filter. The low-pass filter only lets through changes that
have an effect on the long-term while short-term changes are filtered out. The
high-pass filter does the exact opposite of the low-pass filter, reducing long term
drift in the output. For this application the GPS data is more reliable on the long
run than the odometry data, since the odometry data introduces drift. Thus the
GPS data is fed through the low-pass filter while the odometry data is fed through
the high-pass filter, resulting in the output highly relying on the odometry data
while being corrected over the long run using the GPS data.

4 Adapted from Socialledge, 2013, http://www.socialledge.com/sjsu/index.php?title=F13:_Quad-
copter

Stellenbosch University https://scholar.sun.ac.za

14

2.3.2 Kalman filter

The Kalman filter (Kalman, 1960) is a mathematical algorithm that makes a
prediction of a value at some time by taking measurements over a time interval
and then receiving feedback from the system as noisy measurements. There are
thus two stages, a prediction and a measurement stage. The prediction stage
predicts the state of the system in the future while the measurement step
improves the prediction once data for that specific epoch is available. The state
vector (!!) storing the model system parameters is a combination of the state
vector from the previous epoch (!!!!), inputs to the system (!!) and process
noise (!!!!). This is shown in the following equation:

!! = !!!!!! + !!!! + !!!! (2.5)

The sensor measurement vector (!!) can be modelled by the state vector (!!)
that is converted into the measurement domain by a transformation matrix (!)
with added measurement noise (!!).

!! = !!!! + !! (2.6)

Once one has fitted the model into the Kalman filter one can start to estimate the
parameters iteratively using equations 2.7 to 2.11. Assuming no noise a
prediction of the state vector can be made:

!!! = !!!!!! + !!!! (2.7)

The error covariance matrix that will be used in the measurement update can be
predicted to be:

!!! = !!!!!!!!! + ! (2.8)

The Kalman gain can be computed as:

!! =
!!!!!!

!!!!!!!! + !! (2.9)

Now the prediction made in equation 2.7 is updated:

!! = !!! + !! !(!! − !!!!!) (2.10)

And also the error covariance matrix of 2.8:

!! = (! − !! !!)!!!! (2.11)

Equations 2.7 and 2.8 show the prediction stage, while equations 2.9 to 2.11
show the measurement stage. These two stages keep on repeating by first
predicting the current state ahead of time and then adjusting this prediction
through the measurement stage after which the cycle repeats itself. The big
advantage of this approach is that only data from the current and previous epoch

Stellenbosch University https://scholar.sun.ac.za

15

needs to be kept and the filter is recursive in a way that doesn’t add complexity to
the problem.

A simple one-dimensional example will be considered to show how the Kalman
filter can be derived. Consider a point moving along a straight line where some
input is given to move the point and the distance from the starting location to the
current point position can be measured. The system parameters that are of
interest are the point position and point velocity. Since the system parameters
will have a measure of uncertainty it can be assumed that they will be Gaussian
distributed. Initially the state of the system is known with a high certainty as
shown in Figure 2-6.

Figure 2-6: Initial system state

After a certain time interval the system state distribution will have a new mean (!)
and variance (!!) as shown in Figure 2-7. Because the input that caused the
system to move to the current position is known, an estimate can be made
regarding the current position of the point. But because this is only a prediction
the system parameters will have a new mean and variance as shown in Figure
2-7. Equation 2.5 shows mathematically what happens between Figure 2-6 and
Figure 2-7, and the variance is represented by equation 2.6. The change in
variance is due to the process noise introduced by equation 2.5.

Stellenbosch University https://scholar.sun.ac.za

16

Figure 2-7: System state after time interval

At the exact same time the prediction regarding the current position of the system
is made, a measurement can also be taken as seen in Figure 2-7. The best
estimate of the current position of the point can be made by combining the two
Gaussian distributions in Figure 2-7 to form a new estimate shown by the yellow
part. This new estimate is a multiplication between the two Gaussian
distributions described above. It is known that the multiplication of two Gaussian
functions yields another Gaussian function, as shown in (Bromiley, 2014). This is
why the Kalman filter can be applied continually without increasing the complexity
of the function, and will be illustrated by multiplying equations 2.12 and 2.13. The
blue pdf (probability density function) can be given by equation 2.12:

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!! (2.12)

The green measurement Gaussian function can be given by equation 2.13:

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!! (2.13)

Multiplying equations 2.12 & 2.13 results in:

!!(!) = !!(!)!!!(!)!

= 1
!!! 2!!

!!
!!(!!!!)!
!!!!! ! 1

!!! 2!!
!!
!!(!!!!)!
!!!!! !

= 1
2!!!!!!!!!

!!!
!(!!!!)!
!!!!! !(!!!!)

!
!!!!!

(2.14)

It is known that the combined standard deviation of the two Gaussian pdf’s is as
shown by (Bromiley, 2014) in equation 2.15:

Stellenbosch University https://scholar.sun.ac.za

17

!! =
!!!!!!!
!!! + !!!

!

∴ !!! =
!!!!(!!! + !!!) − !!!

!!! + !!!
!

= !!! −
!!!

!!! + !!!

(2.15)

And the combined mean of the two Gaussian pdf’s is as shown by (Bromiley,
2014) in equation 2.16:

!! =
!!!!!! + !!!!!!
!!! + !!!

!

= !!!! !! − !! + !!!!!! + !!!!!!
!!! + !!!

!

= !! +
!!!! !! − !!
!!! + !!!

(2.16)

Equation 2.14 shows that the multiplication of two pdf’s is just another pdf, thus
the new Gaussian pdf can be described by equation 2.17 with a standard
deviation and mean as shown by equations 2.15 & 2.16.

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!! (2.17)

Equation 2.17 assumes that both the prediction and measurement stages are
conducted within the same coordinate type. In the example used here the
prediction stage occurs in the distance domain while the measurement stage
occurs in the time domain. To get the correct fused Gaussian pdf one should
convert one of these domains to the other, the standard way of accomplishing
this is to convert the prediction domain into that of the measurement domain.
This is the reason for the transformation matrix ! as shown in equation 2.6.
Thus converting equations 2.12 and 2.13 into the time domain results in:

!!(!) =
1

!!
! ! 2!!

!!
!!(!!!!!)

!

!! !!!
!

(2.18)

And:

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!!

(2.19)

Using these new functions as input for the new mean equation one obtains:

Stellenbosch University https://scholar.sun.ac.za

18

!!
! = !!

! +
!!
!

!
! !! − !!!

!!
!

!
+ !!!

!

∴ !! = !! +
!!!
!

!!
!

!
+ !!!

! !! −
!!
!

(2.20)

And by substituting ! = !
! and !! =

!!!
!

!!
!

!
!!!!

 one can obtain:

!! = !! + !! ! !! − !!!! (2.21)

In a similar fashion for the standard deviation one obtains:

!!!
!! = !!

!
!
−

!!
!

!

!!
!

!
+ !!!

!

∴ !!! = !!! −
!!!
!!

!!
!

!
+ !!!

!

= !!! −
!!!
! !

!!!
!

!!
!

!
+ !!!

(2.22)

Again substituting for ! = !
! and !! =

!!!
!

!!
!

!
!!!!

 one obtains:

!!! = !!! − !!!! !!!! (2.23)

One can now compare the standard form of the Kalman filter as shown in
equations 2.7 to 2.11 with the terms in equations 2.21 and 2.23 to see the
following correlations:

!! !!→ !!!!!
!! !!→ !!!!!!
!! !!→ !!! !!
!!! → !!!!!
!!! → !!!!!!
!!! → !!!!
! !!!→ !!!!
!! !→ !!!!!

All variable descriptions are as described in the nomenclature. Placing these
new values into equations 2.21 and 2.23 one can easily see how it relates to the
standard Kalman filter equations 2.10 and 2.11 as an example:

Stellenbosch University https://scholar.sun.ac.za

19

!! = !! +
!!!!!

!!!!!! + !!!
!! !! − !!!! (2.24)

!! = !!! + !! !(!! − !!!!!) (2.25)

!!! = !!! − ! !
!!!!!

!!!!!! + !!!
!!!! (2.26)

!! = (! − !! !!)!!!! (2.27)

By understanding the core mathematical principles behind the Kalman filter one
can easily derive it as was done here.

2.3.3 Filter comparison

From literature (Higgins, 1975) it has been shown through two examples that the
filter equations for both the complementary and Kalman filters are identical.
Because the complementary filter does not calculate gains and measurement
and time updates as the Kalman filter, it is less computationally expensive and
thus ideal for the Arduino 8-bit microcontroller. Real world tests have been done
to show a comparison between these two filters and according to
(Letsmakerobots.com, 2016) it was concluded that the Kalman filter can be
replaced by the simpler and faster complementary filter while obtaining the same
results.

Stellenbosch University https://scholar.sun.ac.za

20

2.4 Tilt compensated compass

This section will discuss the method used to calculate the current heading of the
tilt compensated compass. Details regarding accelerometer and magnetometer
calibration are also given. Calibration is the process in which sensor outputs are
compared to known reliable reference information and then the output is adjusted
by coefficients to let it agree with the reference information (Artese et al., 2008).

2.4.1 Current heading

A 3-axis magnetometer (fixed in the !"# coordinate frame) can be used to
measure the earth’s magnetic field and in doing so determine a magnetic field
vector that points towards the magnetic north pole. When one is near the
equator this vector is parallel to the surface of the earth but changes as one’s
latitude changes. Shown in Figure 2-8 is this magnetic field vector (!) with an
inclination angle (!) between the XY-plane and this vector.

Figure 2-8: Magnetic field vector5

5 Adapted from Coordinates, 2015, http://mycoordinates.org/operation-and-implementation-of-
heading-reference-system/all/1/

Stellenbosch University https://scholar.sun.ac.za

21

To determine the current heading one can measure the two XY-plane
components of the magnetic field vector, !! and !!, and then determine the
angle ! (current heading) as shown in equation 2.28.

! = tan!! !!
!!

 (2.28)

This equation is however only true as long as the magnetometer is held level,
when the sensor is tilted the XY-plane components of the vector change,
resulting in an erroneous heading. This effect can be countered by incorporating
a 2-axis accelerometer that measures the angles between the tilted orientation of
the magnetometer (!!!!!! frame in Figure 2-9) and the gravity vector that is
located in the !"# coordinate frame. The measured !!, !! and !! components
are then converted from the !!!!!! frame to the !"# frame and the heading
calculated using equation 2.28.

Figure 2-9: Conversion between coordinate frames6

The rotation of the coordinate frame will be described using Euler angles where
roll (!-rotation around the X-axis) and pitch (!-rotation around the Y-axis) are

6 Adapted from ST Microelectronics, 2015, http://www.st.com/st-web-ui/static/active/cn/resource/
technical/document/application_note/DM00119044.pdf

Stellenbosch University https://scholar.sun.ac.za

22

present (as shown in Figure 2-9). Yaw (rotation about the Z-axis) is omitted
because it’s the heading and does not have an effect on the XY-plane tilt.
Rotations around the axes follow the right-hand rule, and are always performed
around the X-axis first and then around the Y-axis. From (Greenwood, 2003) it
can be seen that the roll rotation matrix from the !"# frame to the !!!!!! frame is
given by:

!! =
1 0 0
0 cos! sin!
0 − sin! cos!

 (2.29)

And the pitch rotation matrix is given by:

!! =
cos ! 0 − sin !
0 1 0

sin ! 0 cos !
 (2.30)

Thus the overall transformation of the magnetic field vector from the !"# frame to
the !!!!!! frame can be given by:

!!
!

!!
!

!!
!

= !! !!! !
!!
!!
!!

!

=
1 0 0
0 cos! sin!
0 − sin! cos!

!
cos ! 0 − sin !
0 1 0

sin ! 0 cos !
!
!!
!!
!!

!!

=
cos ! 0 − sin !

sin! !sin ! cos! sin! !cos !
cos! !sin ! − sin! cos! !cos !

!
!!
!!
!!

!!

(2.31)

To get the heading one must invert the matrix in equation 2.31 to obtain the
inverses !!!! and !!!!:

!!!! =
1 0 0
0 cos! − sin!
0 sin! cos!

 (2.32)

!!!! =
cos ! 0 sin !
0 1 0

− sin ! 0 cos !
 (2.33)

Then one can get the inverted matrix:

!!
!!
!!

= !!!!!!!!! !
!!

!

!!
!

!!
!
! (2.34)

Stellenbosch University https://scholar.sun.ac.za

23

=
cos ! 0 sin !
0 1 0

− sin ! 0 cos !
!
1 0 0
0 cos! − sin!
0 sin! cos!

!
!!

!

!!
!

!!
!
!!

=
cos ! sin! !sin ! cos! !sin !
0 cos! − sin!

− sin ! sin! !cos ! cos! !cos !
!
!!

!

!!
!

!!
!
!!!

From equation 2.34 one can get:

!! = !!
! !cos ! +!!

! !sin! !sin ! +!!
! !cos! !sin ! (2.35)

!! = !!

! !cos! −!!
! !sin! (2.36)

These two values from equations 2.35 and 2.36 represent the tilt-compensated
values. But to get these one must first get the roll (!) and pitch (!) angles by
using the accelerometer.

The accelerometer outputs are correlated to the gravitational vector shown in
Figure 2-9 as !! and !!. To get the normalized accelerometer outputs !!! and
!!! one can use equation 2.31 with gravitational acceleration only in the z-
direction to obtain the following:

!!!
!!!
!!!

=
cos ! 0 − sin !

sin! !sin ! cos! sin! !cos !
cos! !sin ! − sin! cos! !cos !

!
0
0
1
! (2.37)

Thus:

!!! = − sin ! (2.38)

!!! = sin! !cos ! (2.39)

Using basic trigonometry identities one can say the following:

From equation 2.38:

sin ! = −!!! (2.40)

And:

sin! ! + cos! ! = 1!
∴ cos ! = 1 − sin! !!

= 1 − !!!!
(2.41)

From equation 2.39:

Stellenbosch University https://scholar.sun.ac.za

24

sin! = !!!
cos !!!

= !!!

1 − !!!!
! (2.42)

And:

sin! ! + cos! ! = 1!
∴ cos! = 1 − sin! !!

!!!!!!!!!!!!!!!= 1 − !!!!

1 − !!!!
!

= 1 − !!!! − !!!!

1 − !!!!

(2.43)

When looking at equation 2.28 one can see that to find the heading the only
interest is the ratio between the two magnetic field vectors, thus equations 2.35
and 2.36 can be multiplied by the same value without having an effect on the
heading. Multiply equations 2.35 and 2.36 by cos ! to remove division since most
microcontrollers do not have a native instruction for it. As an example it takes six
times longer to do type long division than it takes to do type long addition on an
Arduino 8-bit microcontroller (Learn.sparkfun.com, 2015). Thus the tilt
compensation equations can be given as:

!! = !!
! !cos! ! +!!

! !sin! !sin ! !cos ! +!!
! !cos! !sin ! !cos !!

= !!
!!(1 − !!!!) −!!

! ! !!!

1 − !!!!
!!!! ! 1 − !!!!

− !!!
!! 1 − !!!! − !!!!

1 − !!!!
!!!!!! 1 − !!!!!

= !!
!!(1 − !!!!) −!!

!!!!!!!!! −!!
!! 1 − !!!! − !!!!!!!!

(2.44)

!! = !!

! !cos! !cos ! −!!
! !sin! !cos !!

= !!
!! 1 − !!!! − !!!!

1 − !!!!
! 1 − !!!! −!!

! ! !!!

1 − !!!!
!! 1 − !!!!!

= !!
!! 1 − !!!! − !!!! −!!

!!!!!

(2.45)

By then placing equations 2.44 and 2.45 back into equation 2.28 one can get the
current heading. To get the true heading as a clockwise angle between magnetic
north and the X-axis as shown in Figure 2-8 one can apply the following to adjust
for different signs of ! and !.

Stellenbosch University https://scholar.sun.ac.za

25

!"#$!ℎ!"#$%& =

180 − tan!!!!
!!

!! < 0

− tan!!!!
!!

!! > 0,!! < 0

360 − tan!!!!
!!

!! > 0,!! > 0
90 !! = 0,!! < 0
270 !! = 0,!! > 0

(2.46)

2.4.2 Accelerometer calibration

The gravitational vector that is given by the accelerometer has three main
sources of error that has an effect on the accuracy of the roll and pitch values
obtained, these are: offset, scale factor and misalignment. Offset refers to the
sensor measurement when no gravity or motion is acting on it. Scale factor is the
ratio between the electrical output of the accelerometer and the acceleration
input. The misalignment error shows the difference between axes on which the
accelerometer is mounted and the axes of the body on which the accelerometer
is mounted. To transform the raw accelerometer data (!!,!"# ,!!,!"# ,!!,!"#)!to
normalized data (!!!, !!!, !!!) on the !!!!!! frame (same axis system as in
Figure 2-9) one can use the misalignment matrix (!!), scale factor (!!) and offset
(!!) as used in (Parameters and calibration of a low-g 3-axis accelerometer,
2014).

!!!
!!!
!!!

=
!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!

!

1
!!"

0 0

0 1
!!"

0

0 0 1
!!"

!
!!,!"# − !!"
!!,!"# − !!"
!!,!"# − !!"

 (2.47)

Equation 2.47 can be multiplied out to obtain the following where !! is just the
combination of the matrices used in equation 2.47:

!!!
!!!
!!!

=
!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!

!
!!,!"#
!!,!"#
!!,!"#

+
!!!"
!!!"
!!!"

 (2.48)

To solve equation 2.48 one can take six stationary positions (with coordinate
frame as in Figure 2-9) as shown inTable 2-4.

Stellenbosch University https://scholar.sun.ac.za

26

Table 2-4: Accelerometer orientation

Stationary position !!! !!! !!!
! down +1! 0 0
! up −1! 0 0
! down 0 +1! 0
! up 0 −1! 0
! down 0 0 +1!
! up 0 0 −1!

Before equation 2.48 is solved a simplification is made as shown in equation
2.49. This is done to allow the use of the least squared approach that will be
used later.

!!! !!! !!!

= !!,!"# !!,!"# !!,!"! 1 !

!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!
!!!" !!!" !!!"

(2.49)

When one solves equation 2.49 six times with the orientations shown inTable 2-4
and raw accelerometer data (!!,!"# ,!!,!"# ,!!,!"#) the following is obtained:

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

=

!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1

!

!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!
!!!" !!!" !!!"

(2.50)

Now by using a least square approach one can estimate the parameters as
being:

!! = !!!"# !!!"# !!!!!!"# !!!! (2.51)

With:

!! is

!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!
!!!" !!!" !!!"

Stellenbosch University https://scholar.sun.ac.za

27

!!"# is

!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1

!! is

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

2.4.3 Magnetometer calibration

A magnetometer measures the strength and attitude of the magnetic field (!)
around it and outputs a vector containing this data. While capturing this data,
four main sources of error are present, these are: hard-iron interference, soft-iron
interference, scale factor and misalignment. When no distortions are present the
magnetic measurements are a sphere as shown in the top left of Figure 2-10.
Hard-iron magnetic fields refer to any permanently fixed magnet within the vicinity
of the magnetometer that do not vary with time, these are shown in the top right
of Figure 2-10 where the centre of the sphere in the top left of Figure 2-10 is
shifted. Soft-iron magnetic fields are generated by any material that has the
ability to be magnetized temporarily around the magnetometer and vary with
time, these are shown in bottom left of Figure 2-10 where the sphere is deformed
and rotated. The bottom right of Figure 2-10 shows the combination of hard and
soft-iron distortions. The scale factor is the difference in sensitivity between the
three axes of the magnetometer within the same magnetic field. And finally
misalignment is the same as for the accelerometer, it is a misalignment between
the magnetometer and the body axes.

Stellenbosch University https://scholar.sun.ac.za

28

Figure 2-10: Top left: no distortion, top right: hard-iron deviation, bottom left: soft-iron
deviation, bottom right: hard and soft-iron deviation

Looking back at Figure 2-8 the magnetometer is orientated towards magnetic
north resulting in the following magnetic field vector (!!):

!! = !!
cos!
0

sin!
 (2.52)

During the calibration process the magnetometer will be rotated around all three
axes in a roll (!!), pitch (!!) and yaw (!!) motion as shown in Figure 2-9. After
this rotation process the new rotated magnetometer values (!!) can be given as:

Stellenbosch University https://scholar.sun.ac.za

29

!! = !! !!!!!!!!! (2.53)

The yaw rotation matrix is given by:

!! =
cos! sin! 0
− sin! cos! 0
0 0 1

 (2.54)

Equation 2.53 ignores the effect of all four sources of disturbance described
above. The hard-iron interference can be countered by adding a vector (!!!"#)
since this disturbance only causes an offset to the sphere. The soft-iron
interference is assumed to be related linearly to the rotated magnetometer values
by a 3x3 matrix !!"#$. The scale factor is accounted for by a diagonal matrix
!!"#$%, and the misalignment can be adjusted for by a 3x3 matrix !!"#$%.
Because these last three matrices are of the same size they can be combined to
form:

!!"#$ = !!"#$!!!"#$% !!!"#$% (2.55)

Now the hard-iron vector !!!"# and !!"#$ can be added to equation 2.53 to get
the magnetometer reading after an arbitrary amount of rotations.

!! = !!"#$!!! !!!!!!!!!
cos!
0

sin!
+ !!!"# (2.56)

To get the de-rotated magnetometer values one can take equation 2.56 and

arrange it in such a way that the magnetic field vector (!! = !!
cos!
0

sin!
) is rotated

around the Z-axis (!!) in Figure 2-9. The inverse of a rotation matrix is simply
the negative angles of all terms as stated in (McCarthy et al., 2011, p.190). Thus:

!!!!!
cos!
0

sin!
= !!!!!!!!!!!!"#$!!!(!! − !!!"#)!

∴
cos! sin! 0
− sin! cos! 0
0 0 1

!
!! cos!

0
!! sin!

= !!!!!!!!!!!!"#$!!!(!! !− !!!"#)!

!!∴
cos! !!! cos!
− sin! !!! cos!

!! sin!
= !!!!!!!!!!!!"#$!!!(!! − !!!"#)

(2.57)

Let:

!!
!!
!!

= !!!!!!!!!!!!"#$!!!(!! − !!!"#) (2.58)

Stellenbosch University https://scholar.sun.ac.za

30

Where:

!!
!!
!!

 represents the magnetometer readings that have been corrected for all

four disturbances to the XY-plane as shown in Figure 2-9.

Thus from equations 2.57 and 2.58 the following can be said:

cos! !!! cos! = !! (2.59)

− sin! !!! cos! = !! (2.60)

This can then be substituted back into equation 2.28 to find the current compass
heading. Thus all the disturbances can be removed if one knows the hard-iron
vector and the inverse of the soft-iron combined matrix in the !!"#$!!!(!! −
!!!"#) term in equation 2.57. The locus that describes the magnetometer
measurements on the sphere as shown in Figure 2-10 will be used to determine
the unknown vector and matrix. Looking at equation 2.56 and realizing the
magnetometer measurements lie on a surface the following can be deducted.

!!"#$!!!(!! − !!!"#) = !! !!!!!!!!!
cos!
0

sin!
 (2.61)

Now the following transpose multiplication will be made using equation 2.61 as
base to extract the magnetometer measurements and in the process creating a
relationship to the unknown vector and matrix.

!! !!!!!!!!!
cos!
0

sin!

!

!!! !!!!!!!!!
cos!
0

sin!
!

=
cos!
0

sin!

!

!! !!!! !!!! !!!! !!! !!!!!!!!!
cos!
0

sin!
!

= !!! cos! 0 sin! !
cos!
0

sin!
!

= !!! cos! ! + sin! ! !
= !!

(2.62)

Looking at the first line of equation 2.62 and using this in conjunction with
equation 2.61 one can get the following:

!!"#$!!!(!! − !!!"#)
!
!!!"#$!!!(!! − !!!"#) = !! (2.63)

Stellenbosch University https://scholar.sun.ac.za

31

If one has a symmetrical matrix !! and an orthogonal matrix !!" that has the
eigenvectors of !! as column entries, the following can be said according to
(Meyer, 2000):

!!"! !!!!!!" = !"#$%&#% (2.64)

The centre of the ellipsoid containing all the measurements can have coordinates
!!. Now the expression that defines the locus of points on the ellipsoid can be
given as:

(!!" − !!)! !!!!(!!" − !!) = !"#$%&#% (2.65)

It still needs to be proofed that !! (which will be related to the soft-iron distortion
part) is symmetrical:

!! = !!"#$!!
!
!!!"#$!!!

∴ !!! = !!"#$!!
!
!!!"#$!!

!
!

= !!"#$!!
!
! !!"#$!!

! !
!

= !!"#$!!
!
!!!"#$!!!

= !!

(2.66)

Thus !! is symmetrical. Now it can be seen that the magnetometer
measurements form part of the ellipsoid surface that is defined by equations
2.62, 2.63 and 2.65. The centre of the ellipsoid is at !! = !!!"#, capturing the
hard-iron distortions, the shape of the ellipsoid is defined by matrix !!, that
captures the transpose of the inverse of the squared soft-iron distortions, and
finally the size of the ellipsoid is captured by !, the magnetic field strength.

The hard-iron distortion can now be directly captured. But to calibrate the
magnetic field measurements successfully the soft-iron distortion term !!"#$!! in
!!"#$!!!(!! − !!!"#) is still needed. It is easy to calculate !! given !!"#$!!, but
the reverse is not true. To get around the problem of having to use !!"#$!! to
solve the problem another approach to the problem can be taken. The soft-iron
distortion, !!"#$, is the product of three independent 3x3 matrices with 9
independent variables as shown in equation 2.55, but in equation 2.66 it was
shown that the soft-iron distortion matrix is in fact symmetrical, meaning it only
has 6 independent variables. The assumption is made that the inverse of the
soft-iron distortion matrix, !!"#$!!, is also symmetrical with 6 degrees of
freedom. This assumption will later be confirmed. If the magnetometer values,
!!, are corrected by an estimate of the hard-iron distortion, !!!"#,!"#, and an
estimate of the soft-iron distortion, !!"#$,!"#, the corrected magnetometer values,
!!,!"##$!%$&, can be obtained, which can be given by the following equation using
equation 2.61 as basis for it:

Stellenbosch University https://scholar.sun.ac.za

32

!!,!"##$!%$& = !!"#$,!"!!!!(!! − !!!"#,!"#)!

= !!"#$,!"#!!!(!!"#$!!! !!!!!!!!!
cos!
0

sin!
+ (!!!"#

− !!!"#,!"#))!

(2.67)

If this correctly estimates the hard and soft-iron distortions then
!!"#$,!"#!!!!!"#$,!"# = ! and !!!"#,!"# = !!!"#, meaning equation 2.67 reduces
to:

!!,!"##$!%$&
! !!!,!"##$!%$&

= !! !!!!!!!!!
cos!
0

sin!

!

! !! !!!!!!!!!
cos!
0

sin!
!

(2.68)

And from equation 2.62:

!! !!!!!!!!!
cos!
0

sin!

!

! !! !!!!!!!!!
cos!
0

sin!
= !! (2.69)

It was previously stated that the inverse of a rotation is the same as the inverse of
the angle in question. Such a rotation is introduced, ! = !!"#$,!"#!!!!!"#$, to
equation 2.68 to obtain:

!!,!"##$!%$&
! !!!,!"#!"#$"%

= !!!! !!!!!!!!!
cos!
0

sin!

!

! !!!! !!!!!!!!!
cos!
0

sin!
= !!!

(2.70)

When the assumption that !!"#$!! is symmetrical is enforced it is impossible that
an error in compass heading can be introduced to equation 2.70 because for a
rotation to be present the rotation matrix must be anti-symmetric. Because
!!"#$!! is symmetric now, the soft-iron distortion can be related to the ellipsoid
of equations 2.62, 2.63 and 2.65 by:

!! = !!"#$!!
!
!!!"#$!!!

= !!"#$!!!!!"#$!!!!
∴ !!"#$!! = !!

!
!

(2.71)

Now there are terms for the hard-iron interference, soft-iron interference, scale
factor and misalignment, and the calibrated compass heading can be calculated.

Stellenbosch University https://scholar.sun.ac.za

33

3 Design

The design of the autonomous navigation system can be split into hardware and
software sections. On the hardware side the robotic platform was constructed by
an undergraduate student but had to be reinforced to support the weight of the
battery and mounting points had to be added for the sensors as shown in Figure
3-1. The two DC motors, four wheels, four bearing housing and bearings, two
timing pulleys and belts, shafts, dual motor driver and robot frame were present
when the platform was received. The following was still required: a power
source, a microcontroller to control all robotic functions and sensors to capture
the required data.

Figure 3-1: Robotic platform

3.1 Hardware

First a summary of all the hardware presently on the robot is given to ensure a
complete system picture when system integration and power source selection is
done. Next all the individual additional sensors added to capture the
experimental data is discussed, then a microcontroller capable of capturing all the
sensor data is considered and finally a power source able to power all the
hardware is chosen.

3.1.1 DC motors

The motors present are the Bircraft EC100.120 permanent magnet motors. They
are 140!W, 12!V DC motors with 2 inside brushes, drawing a maximum of 16,8!A
and weighs 2,7!kg each. The DC motors are mounted such that differential

Stellenbosch University https://scholar.sun.ac.za

34

steering of the robot is possible by connecting the front and rear wheels of each
side with timing pulleys and belts.

3.1.2 Motor driver

The motor driver present is the Sabertooth 2x25 V2 model. This driver can
deliver 25!A continuous current for each motor at a nominal input voltage of
6!– !30!V, has thermal and overcurrent protection, allows analog, R/C, simplified
serial and packetized serial input modes. The datasheet suggests that when
requiring a steady voltage at currents larger than 20!A the user should consider
using a high capacity lead-acid battery.

Figure 3-2 shows the connections between the microcontroller, the two DC
motors and the battery. M1A and M1B connect to one motor and M2A and M2B
to the other, reversing the wires simply reverses the motor direction. B- connects
to the negative battery pole and B+ to the positive pole. GND connects to the
ground of the microcontroller and the serial transmit line from the microcontroller
connects to S1.

Figure 3-2: Motor driver

To control the speed and direction of the two DC motors the packetized serial
mode is chosen that uses TTL level multi-byte serial commands to control the
motors. This mode works in one direction only, data is only received, no
feedback is given to the microcontroller. The data packet that is sent has the
following format: an address byte, a command byte, a data byte and a 7-bit

Stellenbosch University https://scholar.sun.ac.za

35

checksum. The address byte has a value greater than 127, while the command
and data bytes have values less than 128. Table 3-1 shows the packet that must
be sent to move the motor backwards at 75!%. The Checksum can be calculated
as follows, where 0b01111111 is the mask of decimal 127 in the 8-bit system.

!ℎ!"#$%! = (!""#$%%!!"#$ + !"##$%&!!"#$
+ !"#"!!"#$)!&!0!01111111!

= (128 + 1 + 96)!&!0!01111111!
= 0!11100001!&!0!01111111!
= 0!01100001!
= 97

(3.1)

Table 3-1: Data packet

Address 128
Command 1
Data 96
Checksum 97

The dip switches shown in Figure 3-2 are used to set the mode (switch 1 & 2
down for packetized serial), select the lithium cut-off (but not present here, thus
switch 3 is up) and the address chosen as 128 (switch 4, 5 & 6 in up position).

3.1.3 Piksi GPS

The Piksi GPS is a carrier phase RTK GPS with centimetre level relative
positioning accuracy, consisting of two modules: one known as the rover that will
be mounted on the moving robot and the other is the base station and will be
kept stationary as a point of reference. These GPS modules will mainly be used
to verify the accuracy of the data captured by the other sensors. Table 3-2
shows the important electrical characteristics of a module:

Table 3-2: Piksi GPS electrical properties

Supply Voltage 3,5 − 5,5!V!
Power Consumption 500!mW (max)
Position / velocity / time update rate 50!Hz

Figure 3-3 shows one of the modules and all the connections used. Each
module has a 433!Mhz 3DR radio (transmit power of up to 100!mW) connected to
its UART (universal asynchronous receiver / transmitter) A port to enable two-
way communication between the two modules. The base station module is
powered through the micro-USB with a USB power bank and an external antenna
is attached. The external antenna is used to allow easier positioning of the
antenna. The rover module is connected to the microcontroller via UART B and
also has an external antenna. This module is also powered from the
microcontroller. The status LEDs show whether an RTK fix is present and how
many satellites are used in the solution.

Stellenbosch University https://scholar.sun.ac.za

36

Figure 3-3: Piksi GPS7

3.1.4 Optical encoders

Optical encoders use a source of light that is projected at a disc with opaque and
transparent areas mounted on a rotating shaft to measure the angular position of
the disc. The enclosure, disk and optical switch are shown in Figure 3-4.

Figure 3-4: Optical encoder

7 Adapted from Swiftnav, 2013, http://docs.swiftnav.com/pdfs/piksi_datasheet_v2.3.1.pdf

Stellenbosch University https://scholar.sun.ac.za

37

The optical switch used here is the OPTEK OPB980L55Z, which houses an
OP240 LED to emit light and an OPL560 detector to retrieve light, with the
electrical characteristics shown in Table 3-3:

Table 3-3: Optical encoder electrical properties

OP240 LED
Forward Voltage 1,70!V (@ 20!mA & 298,15!K)
OPL560 Detector
Supply Voltage 4,5 − 16!V
Supply Current 12!mA (@ 4,5 − 16!V)

Figure 3-5 shows a block diagram of the sensor package, where A & K denote
the anode and cathode of the LED, !!! is the +5!V supply voltage to the detector,
OUT is the detector output (where 0!V denotes no light observed and 5!V the
opposite) and GND grounds the sensor.

Figure 3-5: Totem-pole output buffer8

On the LED side the current must be limited according to the datasheet. Since
the forward voltage over the LED is 1,70!V and the LED is powered by 5!V, a
resistor is needed between the anode and cathode to drop 3,30!V over it. The
1,70!V of the LED was measured at 20!mA (half of the absolute maximum forward
current) and if this is taken as the current through the resistor as well, the resistor
value must be:

8 Adapted from OPTEK Technology, 2013, http://optekinc.com/datasheets/opb960-990_series.pdf

Stellenbosch University https://scholar.sun.ac.za

38

! = !!!!
∴ ! = !

! !

= 3,30
0,020!

= 165!Ω

(3.2)

Thus choose the closest standard resistor, a 160!Ω resistor.

The disc has a total of 106 slots, meaning that over one rotation of the wheel the
slotted optical switch will tick 106 times. The wheels have a diameter of 200!mm.
This means that every time the switch ticks, the robot has travelled the following
distance:

!"#$%&'(!!"#$%&&%' = !ℎ!!"!!"!"#$%&!&'"&
106 !

= !!!
106!

= ! ∗ 200
106 !

= 5,9275!mm

(3.3)

Stellenbosch University https://scholar.sun.ac.za

39

3.1.5 Digital compass

The Compass Click unit used as tilt compensated compass houses a
LSM303DLHC module. This module consists of a 3-axis accelerometer and 3-
axis magnetometer. The module communicates with the microcontroller using an
I2C serial bus interface. The module has the electrical characteristics shown in
Table 3-4:

Table 3-4: Tilt compensated compass electrical properties

Supply voltage 2,16 − 3,6!V
Current consumption (magnetic sensor
@ 7,5 Hz and accelerometer @ 50 Hz) 110!!A

SCL clock frequency 100!kHz

Figure 3-6 shows the SDA (Serial Data Line) and SCL (Serial Clock Line)
channels of the serial interface, and where the module is supplied with power and
grounded.

Figure 3-6: LSM303DLHC module

Since the power supplied to all other sensors will be +5!V, a way will have to be
found to step this voltage down to 3,3!V. This can be done using a bi-directional
logic level converter. Shown in Figure 3-7 is such a device that has four level-
shifting channels. The circuit for each channel consists of a single N-channel
MOSFET with two pull-up resistors. For the first channel HV1 indicates the high
voltage data channel (+5!V), LV1 the low voltage data channel (+3,3!V), HV the
high voltage input, LV the low voltage input and GND on both sites the respective
grounds.

Stellenbosch University https://scholar.sun.ac.za

40

Figure 3-7: Bi-directional logic level converter

3.1.6 Adafruit GPS

The Adafruit GPS is manufactured by Adafruit, which houses a MTK3339 chipset
that is capable of tracking up to 22 satellites on 66 channels, with a high-
sensitivity receiver and an integrated antenna. The GPS can be battery powered
to keep the RTC (real time clock) running to reduce the time it takes to get a fix
when the GPS is powered on. The module has DGPS support and features
serial communication and has the electrical characteristics shown in Table 3-5:

Table 3-5: Adafruit GPS electrical properties

Supply Voltage 3,0!– !5,5!V

Operating Current 25!mA tracking
20!mA navigating

Position / velocity / time update rate 10!Hz

Figure 3-8 shows an overview of the module. The TX and RX pins are connected
to the RX and TX pins of the microcontroller, the module is grounded with GND,
and the +5!V from the microcontroller is supplied to VIN. The FIX LED blinks at
1!Hz until a fix is found, and thereafter once every 15!s. Because the other pins
are not used, they will not be discussed.

Stellenbosch University https://scholar.sun.ac.za

41

Figure 3-8: Adafruit GPS

3.1.7 Microcontroller

The microcontroller used to control all robotic movement and capture sensor data
will have to comply to the following requirements:

1. Support at least two external interrupts on digital pins to capture encoders
data.

2. Be able to read interrupts fast enough.
3. Have at least four serial ports for RX and TX TTL serial data transmission

between microcontroller and Piksi GPS, motor driver, Adafruit GPS and
communication to computer.

4. Support I2C serial bus interface for digital compass.
5. Supply +5!V to all sensors and meet current requirements.

The Arduino platform will be considered as the microcontroller to control the
robot, specifically the Arduino Mega 2560. First it will be confirmed whether all
the requirements are met:

The Arduino Mega supports six external interrupts, has four serial ports and has
an I2C serial bus interface, thus requirements 1, 3 and 4 are met.

To determine whether the interrupts can be read fast enough an example where
the robot moves at a maximum speed of 2!m ∙ s!! will be considered. At this

Stellenbosch University https://scholar.sun.ac.za

42

speed the slotted optical switch will tick every 5!927,5!!m as shown in equation
3.4 at an interval of:

!"#$%&'(= 2000!mm/s
5.9275!mm !!!

= 0.00296375!s!
= 2963750!ns

(3.4)

The external interrupts are tied to the I/O (input / output) Clock that in turn is the
same as the CPU Clock, it is 16!MHz. Thus an external interrupt can be triggered
every 62,5!ns, thus requirement 2 is met.

To determine the current required one can take the sum total of all the sensors
connected to the +5!V line as shown in Table 3-6:

Table 3-6: Current requirements of sensors

Piksi GPS 100!mA (500!mW / 5!V)
Optical Encoders 64!mA (2!(20!mA + 12!mA))
Digital compass 110!!A
Adafruit GPS 25!mA
TOTAL 189,11!mA

Because the Arduino Mega is powered from the laptop via USB there is a 500!mA
thermofuse that limits the available current on the +5!V line, thus the total current
drawn by the sensors is well within the current limit and requirement 5 is met.

3.1.8 Battery

It was decided to use a 12!V deep cycle marine lead-acid battery because of the
motor driver suggestion as well as the discharge characteristics of the deep cycle
battery mentioned earlier. It is known that the laptop with attached Arduino Mega
can be powered for one hour before the laptop battery is flat. Thus the lead-acid
battery will also only have to last for one hour. The DC motors draw a maximum
of 16,8!A each, meaning that one can run the two motors from the battery for one
hour at 33,6!A ∙ h. The smallest available deep cycle marine lead-acid battery of
50!A · h was chosen as power source for the DC motors.

Stellenbosch University https://scholar.sun.ac.za

43

3.1.9 Complete system

Now that all the components have been chosen the complete breadboard layout
and wiring of the system is given in Figure 3-9.

Figure 3-9: Complete breadboard layout

Stellenbosch University https://scholar.sun.ac.za

44

Figure 3-10 shows the individual components discussed in this chapter to give
the reader an idea as to the size of each component.

Figure 3-10: Individual components

Stellenbosch University https://scholar.sun.ac.za

45

3.1.10 Cost

The cost of the complete robot is shown in Table 3-7, excluding the parts already
present when the robot was received.

Table 3-7: System cost

Item Cost (R)
Arduino Mega 495,00
Compass 426,80
Logic level converter 44,95
Adafruit GPS 690,00
Piksi GPS 14 165,77
Encoders 210,00
12V battery 1 319,09
Wiring 100,00
Breadboard 43,00
3D printing Free
TOTAL 17 494,61

3.2 Arduino code

This section will look at the Arduino code that was developed from scratch to
enable the Arduino IDE (integrated development environment) to localize and
navigate the robot between waypoints. The code controls the robot hardware,
captures data from the sensors, fuses this sensor data and maps the
environment. The Arduino IDE gives the user the ability to write Arduino
programs in C or C++. The bulk of the time spent on this study went into the
development of the software. The software program consists of various parts
and can be broken down into the following:

1. Libraries: All the libraries used to communicate with sensors and complete
calculations are included here.

2. Variables: All the global variables used are defined here.
3. Objects: After adding the libraries various parameters of the individual

sensors must be set here.
4. Void setup(): This code is run once during the start-up process of the

Arduino.
5. Void loop(): This code is run repeatedly until power to the Arduino is

removed.
6. Functions: To simplify the void loop() various functions are written and only

referenced in the void loop().

The void loop() section is where all the navigational procedures are present and
can be described by Figure 3-11 and is continued in Figure 3-12.

Stellenbosch University https://scholar.sun.ac.za

46

Figure 3-11: Navigational procedure coding part 1

Stellenbosch University https://scholar.sun.ac.za

47

Figure 3-12: Navigational procedure coding part 2

The void setup(), void loop() and functions written to enable autonomous robot
navigation took up a total of 1119 lines, this excludes the libraries written to
gather the sensor information. Furthermore the code written to gather the Piksi
GPS data had to be altered constantly. This had to be done because when the
product was received the SBP (Swift Navigation Binary Protocol) was not set and
alterations were still made to it with new firmware iterations. The firmware had to
be updated to improve the ability of the Piksi GPS to find an RTK fix.

Stellenbosch University https://scholar.sun.ac.za

48

The basic procedure followed in Figure 3-11 and Figure 3-12 will be described by
giving detail to each of the blocks that is not self-explanatory.

Keeps count of the amount of times the void loop() is repeated for each time
serial data is written to the laptop via the USB connection.

//

void measure_left_motor_rpm()
{
 // Check if standing still
 if (output_left == 0)
 {
 left_motor_rpm = 0;
 }
 // Otherwise
 // RPM updated every 2 ticks, it is 11.8mm
 if (pulses_left >= 2)
 {
 // Detach interrupt while calculating RPM
 detachInterrupt(1);
 left_motor_rpm = (double(pulses_left) * 60000000 /
double(pulses_per_rotation)) / (double(micros() - left_previous_time_rpm));
 left_previous_time_rpm = micros();
 pulses_left = 0;
 attachInterrupt(1, count_pulses_left, CHANGE);
 }
}

//

To measure the rpm of a motor the first check is to see whether the motor is
standing still by looking at the output of the PID loop (output_left), if this is zero it
means that the motor has been commanded to stop moving or the user has
specified the motor speed to be 0!rpm. If the motor is not standing still the motor
rpm is updated every second time the encoder ISR (Interrupt Service Routine) is
called. It is only updated every second time because it was found that when the
motor rpm is calculated every time the encoder ISR is called the rpm calculation
is inaccurate. This is due to the resolution limitation on the printed disc. Because
a jump to the ISR during the rpm calculation is not desirable the interrupt is
disabled for the time being, this interrupt is however still buffered by the
hardware. The motor rpm is calculated by first getting the ratio between the
number of times the encoder ticked and the total number of encoder pulses per
rotation of the wheel. This is then divided by the time that passed since the
previous time this calculation was completed and multiplied by 6!000!000 to get
from microseconds to minutes. Finally the interrupt is enabled again.

Stellenbosch University https://scholar.sun.ac.za

49

//

void PID_calc()
{
 input_left = left_motor_rpm;
 left_PID.Compute();
 input_right = right_motor_rpm;
 right_PID.Compute();
}

//

Here the input for the PID loop is set and the output computed. The setpoint
value can be declared anywhere in the code and the PID calculation is made
every 121!ms, using one of the Arduino timers to ensure a periodic interrupt. The
PID calculation is made on the exact same time interval that the speed of the
motors is adjusted.

//

void adjust_moving_robot_heading ()
{
 previous_heading = current_heading;
 read_compass();
 // Flag to call encoders_compass_robot_position ()
 encoders_compass_position_flag = 1;

// Flag to call adafruit_gps_position (), called every second time, it is every
6 ticks

 adafruit_gps_position_flag++;
 int heading_difference = current_heading - required_heading;
 // Adjust for negative degrees
 if (heading_difference < 0)
 {
 heading_difference = heading_difference + 360;
 }
 // Buffer of 10 degrees where robot just keep moving straight
 if (heading_difference <= 180 && heading_difference >= 5)
 {
 setpoint_left - 0.5;
 }
 else if (heading_difference > 180 && heading_difference <= 355)
 {
 setpoint_left + 0.5;
 }
 else
 {
 }
 // Reset counter for pulses_right_distance
 pulses_right_distance = 0;
}

//

Here the robot heading is altered by adjusting the PID setpoint value for the left
motor. First the current compass value is read, then the difference between the
previous heading and the current heading is calculated and used to determine

Stellenbosch University https://scholar.sun.ac.za

50

whether the robot should turn more to the left or more to the right by altering
setpoint_left. A 10!° buffer is left within which the robot simply keeps heading
in the direction it has been heading. The value of 10!° was experimentally found
to be the optimal value to accommodate variances in the compass heading.

//

void encoders_compass_robot_position ()
{

// Encoders delta distance assuming that for the delta distance both wheels
travelled the same distance, this is micro metres (m * 10^-6)

 int encoders_distance = 3 * 5906;
 // Adjust heading for trigonometry calculations
 previous_heading = previous_heading - 90;
 if (previous_heading >= 180)
 {
 previous_heading = previous_heading - 360;
 }
 previous_heading = previous_heading * -1;

 // Robot position in micrometres with conversion from degrees to radians
 robot_x_position_encoders = robot_x_position + encoders_distance *
cos((previous_heading * 71) / 4068);
 robot_y_position_encoders = robot_y_position + encoders_distance *
sin((previous_heading * 71) / 4068);

 // Reset flag for intermediate encoders compass position update
 encoders_compass_position_flag = 0;
}

///

The robot’s position according to odometry measurements is updated every third
time the encoder ticks, meaning it is updated every 3!(5,906) = 17,718!mm the
robot travels. To determine the [x,y] coordinates of the robot the compass
measurements must be adjusted from the axis system where north is zero
degrees and clockwise positive (shown on the left in Figure 3-13) to an axis
system where east is zero degrees and anti-clockwise is positive (shown on the
right in Figure 3-13).

Stellenbosch University https://scholar.sun.ac.za

51

Figure 3-13: Axis system conversion

Simple sin() and cos() angles are used to determine the [x,y] coordinates of the
robot. The built-in Arduino trigonomic functions work in radians while the
compass output is in degrees, thus the (!"#$%&'(_ℎ!"#$%&!(71)/4!068)
conversion is used to get to radians.

//

void adafruit_gps_position ()
{
 // Get new GPS position
 read_adafruit_GPS();

 // Next the distance and heading from base to current gps position is calculated
 double distance_to_destination = TinyGPSPlus::distanceBetween(
base_station_latitude, base_station_longitude, -1 *
convertDegMinToDecDeg(GPS.latitude), convertDegMinToDecDeg(GPS.longitude));
 double course_to_destination = TinyGPSPlus::courseTo(base_station_latitude,
base_station_longitude, -1 * convertDegMinToDecDeg(GPS.latitude),
convertDegMinToDecDeg(GPS.longitude));
 // Convert distance to destination from m to micrometres
 unsigned long adafruit_gps_distance = distance_to_destination * 1000000;

// Total x and y distance from base to current adafruit gps location in
micrometres
robot_x_position_adafruit_gps = waypoint_0_x + adafruit_gps_distance *
cos((course_to_destination * 71) / 4068);
robot_y_position_adafruit_gps = waypoint_0_y + adafruit_gps_distance *
sin((course_to_destination * 71) / 4068);

 // Reset flag for intermediate adafruit gps position update
 adafruit_gps_position_flag = 0;
 // Set flag that will enable complimentary filter
 comp_filter_flag = 1;
}

//

Stellenbosch University https://scholar.sun.ac.za

52

The robot’s position according to the Adafruit GPS is calculated by using the two
functions distanceBetween and courseTo from the TinyGPSPlus library. These
two functions take the latitude (!) and longitude (∆!) of the origin and latitude and
longitude of the goal as inputs and give the distance (!) and heading (∆!)
between these points back. The inputs must be signed decimal-degree values.
The formula used calculates the great-circle distance, which is the shortest
distance between two points when one moves on the surface of a sphere. The
Vincenty formula (Vincenty, 1975) can be used to calculate this distance as
shown in equation 3.5:

∆! = tan!! (cos !! sin ∆!)! + (cos !! sin !! − sin !! cos !! cos∆!)!
sin !! sin !! − cos !! cos !! cos∆!

 (3.5)

Then:

! = !!∆! (3.6)

The formula used by courseTo to determine the heading from one set of
coordinates to another is given by:

∆! = tan!! sin ∆! !cos !!
cos !! !sin !! − sin !! cos !! cos∆!

 (3.7)

Now the [x,y] coordinates of the robot according to the Adafruit GPS can be
determined using simple sin() and cos() angles.

//

void complimentary_filter ()
{
 double odometry_const = 99.999;
 double gps_const = 100 - odometry_const;
 // Split division for more accurate results
 robot_x_position = (robot_x_position_encoders * odometry_const) / 100 +
(robot_x_position_adafruit_gps * gps_const) / 100;
 robot_y_position = (robot_y_position_encoders * odometry_const) / 100 +
(robot_y_position_adafruit_gps * gps_const) / 100;
 // Reset flag
 comp_filter_flag = 0;
 // Flag to get new distance and required heading to waypoint
 dist_head_to_wayp_flag = 1;
}

//

The complimentary filter is implemented here, with a percentage defined by the
user that determines how much each of the odometry and Adafruit GPS robot
position estimations will be trusted.

Stellenbosch University https://scholar.sun.ac.za

53

//

void distance_heading_to_waypoint ()
{
 double delta_y = (double) waypoint_y - (double) robot_y_position;
 double delta_x = (double) waypoint_x - (double) robot_x_position;
 required_heading = atan2(delta_y, delta_x);
 // Use sin or cos depending on which is more accurate
 if ((required_heading >= -1 * PI / 4 && required_heading <= PI / 4) ||
(required_heading >= 3 * PI / 4 && required_heading <= -3 * PI / 4))
 {
 distance_to_waypoint = delta_x / cos(required_heading);
 }
 else
 {
 distance_to_waypoint = delta_y / sin(required_heading);
 }
 // Convert to degrees
 required_heading = (required_heading * 4068) / 71;
 // Convert to coordinate system where North denotes zero degrees
 required_heading = required_heading - 90;
 if (required_heading >= 180)
 {
 required_heading = required_heading - 360;
 }
 required_heading = required_heading * -1;
 // Adjust for a range of 0 - 360 degrees
 if (required_heading < 0)
 {
 required_heading = required_heading + 360;
 }
 dist_head_to_wayp_flag = 0;
 // Flag to save piksi coordinates
 piksi_gps_flag = 1;
}

//

This function calculates the distance and heading from the current robot position
to the next waypoint. Through tests it was seen that when only one trigonometric
function was used to calculate the distance to the waypoint, there were times
when one of the axes values became so small that it resulted in large variations
in the distance_to_waypoint value. Therefore both sin() and cos() functions were
used depending on whether the angle was smaller or greater than 45!°.

//

// This function reads each byte and is analysed according to the supplied SPB
message system
void read_piksi_GPS ()
{
 piksi_message_flag = 0;
 // While data is being sent from Piksi
 while (Serial3.available () > 0 && piksi_message_flag == 0)
 {
 // Read incoming byte
 if (piksi_message_flag == 1)
 {

Stellenbosch University https://scholar.sun.ac.za

54

 piksi_gps_flag = 0;
 break;
 }
 piksi_message_flag = processIncomingByte (Serial3.read ());
 }
}

// This function reads each byte and is analysed according to the supplied SPB
message system
boolean processIncomingByte (const byte inByte)
{
 // Input message
 static byte input_msg [MAX_INPUT];
 // Hold position in message
 static unsigned int input_pos = 0;
 // Correct message received flag
 boolean piksi_message_flag = 0;

 // 0x55 shows the start of a message
 if (inByte == 0x55)
 {
 // When last byte of redundancy check has been reached
 if (input_pos == 29)
 {
 // This is the hex code for a MSG_BASELINE_NED message
 if ((input_msg[0] == 0x03) && (input_msg[1] == 0x02))
 {
 // Another function to extract data from the MSG_BASELINE_NED message
 msg_analyse(input_msg);
 piksi_message_flag = 1;
 }
 }
 // Reset the message position holder
 input_pos = 0;
 }

 // The else captures the other 29 bytes excluding the start byte of 0x55
 else
 {
 // Simple check to ensure a start byte has not been skipped
 if (input_pos < (MAX_INPUT - 1))
 {
 input_msg[input_pos] = inByte;
 input_pos = input_pos + 1;
 }
 }
 return piksi_message_flag;
}

// Function to analyse the received message
void msg_analyse (byte byte_msg[29])
{
 // Check for fix type, 0x00 = float RTK, 0x01 = fixed RTK
 fix_mode_type = byte_msg[26];
 // Shows nr of satellites
 byte nr_satellites = byte_msg[25];
 double angle = 0;
 double distance = 0;
 // Vertical deviation from base with conversion from bytes to integer
 robot_y_position_piksi_gps = bytesToInt(byte_msg[12], byte_msg[11],
byte_msg[10], byte_msg[9]) * 1000;
 // Horizontal deviation from base with conversion from bytes to integer
 robot_x_position_piksi_gps = bytesToInt(byte_msg[16], byte_msg[15],
byte_msg[14], byte_msg[13]) * 1000;
}

// Function to convert from bytes to integer
long bytesToInt (int b4, int b3, int b2, int b1)
{

Stellenbosch University https://scholar.sun.ac.za

55

 long result = 0;
 result = (long)b4 << 24;
 result += (long)b3 << 16;
 result += (long)b2 << 8;
 result += (long)b1;
 return result;
}

//

To communicate with the Piksi GPS, code had to be written to implement the
SBP. All data transmitted by the Piksi GPS consists of a message structure that
has the format shown in Table 3-8:

Table 3-8: SBP (Swift Navigation Binary Protocol) message structure

Size (bytes) Name Description
1 Preamble States start of message with 0!55
2 Message type Shows payload contents
2 Type Sender ID of device sending message
1 Length Define amount of bytes in payload
! Payload Binary content
2 CRC Cyclic Redundancy Check

Only messages of type 0!0203 are of interest, these messages include data
about the GPS time, the north, east and down coordinates from the base station
to the rover receiver, the number of satellites used to obtain the result and the
type of fix achieved. A message of type 0!0203 has 22 bytes, thus the total
number of bytes received up to this point is 27!(22 + 1 + 2 + 2). When the 29th
byte is received the code knows the last byte of the cyclic redundancy check has
been received and the message can be processed. The fix type and number of
satellites used in the solution are both binary numbers and can be directly
captured, while the north and east deviation values each consists of 4 bytes that
must first be converted to integer values as shown in the code above.

Stellenbosch University https://scholar.sun.ac.za

56

4 Experimental Setup
First measurement uncertainty will be discussed. Next the two setups with
different maps will be detailed. The first setup was used to capture only the RTK
GPS data. The second setup was used to capture positional data for all sensors
on the robot.

4.1 Measurement uncertainty

Before proceeding to the experimental setup the topic of measurement
uncertainty will be discussed to get an idea of how reliable real world
measurements are.

4.1.1 Overview

For the experimental setup various measurements (distance, time, heading) will
be taken, and wherever measurements are taken there is an uncertainty as to the
trueness of the measurement. This uncertainty can be expressed by two values,
the interval or margin within which repeated measurements of the same object
fall and the confidence level of the measurements falling in this interval.

If there is a change in repeated readings one can use an average as an estimate
of the actual value. The more measurements one is able to take the better this
estimate will be. To get an idea of the spread of the measurements one can get
the standard deviation for all the measurements. To get the standard deviation
for a set of measurements one takes the sum of the square of the difference
between the average (!!"#) and each measurement (!!) and divides this by the
total number of measurements (!!) −1. The standard deviation (!) is then given
by:

! =
(!! − !!"#)!!!

!!!
!! − 1 (4.1)

4.1.2 Origin

For this thesis one particular measurement will be investigated to determine its
uncertainty. A class 1 2,5!! tape measure is used to measure the length of a
steel guide wire over a maximum distance of 120!!. The errors and
uncertainties present in this measurement can be broken into the following as
given in (Bell, 1999):

1. The measurement instrument itself - a tape measure will be used to

measure distances. From (Thetapestore.co.uk, 2016) a 2,5!! class 1
measurement tape can only be accurate to ∓!0,35!!!.

Stellenbosch University https://scholar.sun.ac.za

57

2. The item measured - a steel guide wire will be measured, but since it is
lying on a grass surface that is not flat the measurement cannot be
completely true.

3. The measurement process - the wire is in excess of 100!!, thus the 2,5!!
measurement tape will build up an error with consecutive measurements.

4. The operator skill - because the measurements must be taken using visual
confirmation a parallex error can be introduced.

5. The environment - since measurements will be taken outside in the sun and
wind, with varying temperatures, this can have an effect on the operator
and measurement tape.

4.1.3 Measuring uncertainty

Before calculating measurement uncertainty one must identify all the sources of
uncertainty, then estimate the contribution of each of these sources and finally
combine these to get an overall uncertainty. The process of measuring
uncertainty can be broken into the following eight steps as described in (JCGM
100:2008, 2008):

1. Make a decision regarding the exact information that is required from the

measurements to get a result. This will include data regarding errors in the
measurement device, errors in the object being measured and errors
introduced in the process of measuring.

2. Next take the measurements while taking note of when it was done, under

what conditions it was done and the exact measurement device used.
Calculate the mean and standard deviation for all the measurements taken.

3. Make an estimate of the uncertainty of each parameter that will have an

affect on the final measurement estimate. To be able to combine these
uncertainties later, one has to convert each uncertainty to a value around
the standard deviation, also called a standard uncertainty. A coverage
factor is used to do this conversion. A coverage factor of 2 will give a
confidence level of 95!% (Physics.nist.gov, 2016) assuming the combined
standard uncertainty has a normal distribution. The errors and
uncertainties present were identified earlier and can be assigned values
here:

• The 2,5!! class 1 measurement tape can only be accurate to

∓!0,35!!! as stated above. Thus over 2,5!! with a coverage factor
of 2 the standard uncertainty is 0,175!!!.

• The smallest measurement possible on the tape is in millimeter.
Thus the reading can fall anywhere within this 1!!! interval, or
∓!0,5!!!. The distribution of these measurements is uniform and
from (Bell, 1999) the standard uncertainty is the half-width (0,5!!!)
divided by 3, giving 0,28!!!.

Stellenbosch University https://scholar.sun.ac.za

58

• Since the wire does not lie straight it is assumed that the length is
underestimated by 0,1!%. Over a 2,5!! distance this is 2,5!!!.
Again the uncertainty is assumed to be uniform, with the half-width
being 2,5!!! and dividing this by 3 the standard uncertainty is
1,44!!!.

4. Decide whether each of the parameters listed in point 3 is independent of

one another, if this is not the case this dependency needs to be calculated
and added as another parameter. In this case all parameters are
independent.

5. Determine the result of the measurement by taking the mean measurement

value and adding all known corrections. In this case the corrections only
include the wire that is not completely straight. Thus the wire measured
length over 2,5!! should be 2500!!!! + !2,5!!!! = !2502,5!!!.

6. Now the combined standard uncertainty can be determined by taking the

square root of the squared individual uncertainties.

!"#$%&'(!!"#$%#&%!!"#$%&'("&)! = 0,175! + 0,28! + 1,44!!
= 1,48!!!

(4.2)

7. Now this uncertainty can be given in terms of a coverage factor of 2,

meaning the uncertainty is 2!(1,48!!!) = 2,95!!! with a confidence level
of 95!%.

8. Finally the measurement uncertainty can be written down. Up to step 7 all

calculations worked over a length of 2,5!!, multiply this by 48 to get to
120!! resulting in a new uncertainty of 141,6!!!. Thus it can be said that
the length of the wire is 120!!! ∓ !0,142!! for a coverage factor of 2,
resulting in a confidence level of 95!%.

4.2 RTK GPS positional data

For this setup the base station was fixed to a stationary point as shown in Figure
4-1, which is also known as waypoint_0 as shown in Figure 4-3. To prevent
interference and to get the best possible GPS readings the base station antenna
was mounted at a height of 2,5!m above ground level. This is an active antenna
meaning it has an LNA (Low-Noise Amplifier) that lowers the noise picked up by
the receiver. The 3DR telemetry radio enables a direct line of communication
between the base station and rover modules. The robot with the rover RTK GPS
as shown in Figure 4-2 was then moved at a constant velocity of 0,313!m · s!! (or
30!rpm maintained within 1!rpm) between the waypoints while capturing its
location.

Stellenbosch University https://scholar.sun.ac.za

59

Figure 4-1: Base station Piksi RTK GPS with external power source and active antenna

Stellenbosch University https://scholar.sun.ac.za

60

Figure 4-2: Robot with rover Piksi RTK GPS, active antenna, laptop and battery

Figure 4-3 shows the four waypoints between which the navigation was
conducted. These waypoints were conveniently chosen as poles of four goal
posts present on a sports field. The base station was fixed at waypoint_0 and
the rover then moved from this waypoint to the next in a straight line (by guiding
the robot platform on a fish line connected between all the waypoints) until it
returned to the base station.

Stellenbosch University https://scholar.sun.ac.za

61

Figure 4-3: Waypoints for navigation9

To determine the coordinates of the waypoints a wire (that is used to guide the
watering machine on the field) was used to measure the distance between
waypoints to obtain the values in Table 4-1:

Table 4-1: Distances between waypoints

Waypoints Distance (m) Measurement uncertainty (m)
Waypoint 0 to 1 99,47 0,117
Waypoint 0 to 2 117,78 0,138
Waypoint 1 to 2 63,07 0,075
Waypoint 0 to 3 62,84 0,075
Waypoint 2 to 3 99,62 0,118

As discussed in Section 4.1 the distance measurements in Table 4-1 is given at a
confidence level of 95!% and calculated by using the result of Section 4.1. Using
this data triangulation was used to determine the relative position of each
waypoint from waypoint_0.

9 Adapted from Google Earth, 2015, https://www.google.com/earth/explore/products/plugin.html

Stellenbosch University https://scholar.sun.ac.za

62

4.3 All sensors positional data

A new map as shown in Figure 4-4 was navigated next because of the distance
limitations of the 3DR telemetry radios that will be discussed in Section 5.1.
These waypoints were measured out using the Piksi RTK GPS after the
navigational precision of this GPS was confirmed. The map was navigated at a
velocity of 0,313!m · s!! with the robot starting at waypoint_0 and the base station
mounted on the pole at the origin of the coordinate system.

Figure 4-4: Map to be navigated

Figure 4-5 shows the robot, base station and starting waypoint on the field. The
robot was then navigated from waypoint to waypoint, using the code described in
Section 3.2, until it returned to waypoint_0 multiple times for all the case studies
conducted.

Stellenbosch University https://scholar.sun.ac.za

63

Figure 4-5: Complete experimental setup

Stellenbosch University https://scholar.sun.ac.za

64

5 Results
The results section will be split into two main parts. Firstly the RTK GPS test
results are summarized, this is done first to confirm the accuracy of the RTK GPS
since it will be used as a way of verifying the position of the robot. Secondly, the
positional data of the robot using the encoders, tilt-compensated compass and
Adafruit GPS will be shown. Seven case studies will be made, and the relative
accuracy of this positional data will be determined by comparing it to the RTK
position data.

5.1 RTK GPS positional data

The Piksi RTK GPS datasheet (Piksi Datasheet, 2013) claims that “centimetre
accurate relative positioning” is possible. This is the only claim that can be found
regarding the accuracy of the GPS. A study will be conducted to confirm this
claim and determine the real world relative accuracy of the GPS. Before
continuing it is important to have a clear understanding of the terms accuracy,
relative accuracy and precision. In terms of position a measurement can be
called accurate when it is close to the real position. Relative accuracy and
precision are the same and mean that with repeated measurements the position
will stay constant if the rover and base station are kept stationary.

The robot is moved as described in Section 4.2 through the map of Figure 4-3
and the result of the first run of five is shown in Figure 5-1, the plots of the other
runs can be seen in Appendix A. The output of the RTK GPS is in units of m
north and east of the base station. During each of the runs at least eight
satellites were visible. The gaps show the positions where the RTK GPS fix was
lost and the robot kept on moving in a straight line with constant velocity until the
signal was re-established.

Stellenbosch University https://scholar.sun.ac.za

65

Figure 5-1: Run 1 RTK GPS positional data

Since the main concern is the two-dimensional GPS accuracy the DRMS
(Distance Root Mean Square) will be calculated, which is the square root of the
average of the squared horizontal deviations. The values have a probability of
65!% of falling in the probability circle. The DRMS is shown in equation 5.1:

!"#$ = !!! + !!! (5.1)

Since the velocity and exact time of measurements are known, the theoretical
location of the robot is known and can be compared to the location measured by
the Piksi GPS. The distance between each of the measured values and actual
location values is taken and averaged for the complete path travelled. This is
done for all five runs to get the following average deviations:

Table 5-1: Average deviations from actual path

 DRMS error (mm)
Run 1 180,90
Run 2 222,40
Run 3 295,50
Run 4 269,20
Run 5 484,00

Stellenbosch University https://scholar.sun.ac.za

66

Thus the average DRMS value for the Piksi RTK GPS is as in equation 5.1:

!"#$ = !!! + !!!!

= !!!!
= 290,4!mm

(5.2)

It must be noticed that this DRMS value of 290.4!!! is subject to the
measurement uncertainty discussed in Section 4.1. A further note that must be
made is that because of the terrain on which the robot moves there is roll and
pitch movement present that has an effect on the position of the RTK GPS. This
effect is further increased by the fact that the rover Piksi GPS module is
positioned at a higher level than the robot platform as shown in Figure 4-2.

After testing the accuracy of the RTK GPS, information regarding this accuracy
was also published by another source (Hirt, 2015). The standard deviation was
found to be between 94 to 129!!! when walking in a circle of 20 to 30!!. This
error is smaller because their test setup ensured more accurate measurements.
Thus from this point forward the RTK GPS will be used as a basis for the
precision measurements of the other sensors.

An interesting phenomenon that is noticed in Figure 5-1 is that the RTK fix is lost
at positions only far from the starting waypoint. This is caused by a break in
communication between the two station radios. While the RTK fix is still present,
the stations are not able to exchange information at that moment. When the
robot is moving from waypoint_0 to waypoint_1 and from waypoint_1 to
waypoint_2 the radio on the rover is positioned in a way that a direct line of sight
is not present to the base station. This is the cause of the missing
measurements on all five runs between those waypoints.

5.2 All sensors positional data

The seven case studies that will be examined can be divided into the following:

1. A comparison in relative navigational accuracy by navigating the same map
multiple times.

2. A comparison of relative navigational accuracy when the complimentary
filter values are altered.

3. A comparison of relative navigational accuracy when differential GPS
(EGNOS) is enabled and disabled on the Adafruit GPS module.

4. A comparison of relative navigational accuracy when the ground speed of
the robot is increased.

5. The relative navigational accuracy when wheel slippage is introduced.
6. The relative navigational accuracy when magnetic interference and GPS

drift is present.
7. The relative navigational accuracy when one or multiple sensors fail.

Stellenbosch University https://scholar.sun.ac.za

67

From the results of Section 5.1 it was decided to use the Piksi RTK GPS as a
way of verifying the robot position. For all the above case studies the Piksi RTK
GPS will be used as the sole sensor for navigating the robot between waypoints,
with the other sensors capturing data under the different scenarios. All values
will be displayed in millimeter although the measurement uncertainty as
discussed in Section 4.1 will make these results less accurate.

5.2.1 Case study 1: Multiple runs

To determine whether measurements are consistant over multiple runs the same
map will be navigated five times and the Adafruit GPS data, odometry data and
Piksi RTK GPS data will be compared to determine whether data captured in
consequent tests can be compared to one another. Figure 5-2 shows a plot of
the positional data where the distance north corresponds to the Y-axis and the
distance east to X-axis in Figure 4-4.

Figure 5-2: Case study 1 navigated map

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

68

Figure 5-3: Case study 1 cumulative DRMS error

From Figure 5-2 it is clear that the odometry readings (which is the combination
of encoder and compass measurements to get heading and distance for each
increment) start drifting from the Piksi RTK GPS readings as the robot
progresses through the map. The Adafruit GPS readings show less relative
accuracy than the odometry readings but are on the long run more precise. To
visualize the drifting effect one can plot the cumulative DRMS error value against
the measurements taken, this is shown in Figure 5-3.

From Figure 5-3 it is clear that as the robot progresses the odometer error gets
larger, confirming the drift, while the Adafruit GPS error does not follow the same
linear trend, thus confirming it is more precise. To get a comparative idea of the
DRMS errors, the mean of the cumulative DRMS error can be calculated for each
of the five runs. This is shown in Table 5-2 with the plots of the other four runs
documented in Appendix B.

Table 5-2: Case study 1 DRMS errors

Run DRMS error (mm)
Odometry Adafruit GPS

1 3!491 2!006
2 935 2!822
3 1!156 2!487
4 2!828 1!756
5 1!612 3!326

Mean 2!004 2!479

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

69

From Table 5-2 one can see the odometry errors vary by 2!556!mm. It can
visually be confirmed that runs 1 and 4 show the largest error due to incorrect
heading readings in the odometry calculation. Over all the runs the Adafruit GPS
DRMS error varies by 1!570!mm with run 5 showing the largest error because of
erroneous readings between waypoints 3 and 4. Since regular GPS has a
pseudo range accuracy of 7,8!m as stated earlier, the largest error of 3!326!mm is
acceptable. The mean odometry error is also less than that of the stated GPS
error, thus in the further case studies data will be compared from different runs to
one another with a higher certainty than the stated accuracy of the most
inaccurate single sensor (Adafruit GPS with a stated position accuracy of less
than 3!m) on the robot.

5.2.2 Case study 2: Altering complimentary filter constant

The complimentary filter constant defines the percentage that the odometer and
Adafruit GPS readings are trusted. A value of 0,99 means that 99!% of the
Adafruit GPS coordinates are used, and 1!% of the odometry coordinates. To
determine the best constant the cumulative DRMS error will be calculated for
different constant values. By plotting this data for three different runs it was seen
that the optimal constant value lies between 0 and 0,02. This interval will be
evaluated to find the optimal complimentary filter constant. The data for the runs
was only captured between waypoint_0 and waypoint_1 because when a change
in robot heading is introduced there is a possibility that some of the odometry
error can be cancelled out. This is not ideal in determining the filter constant that
will also be used in cases when the odometry error is not cancelled out. All three
cases showed odometry drift and Adafruit GPS readings within the stated
position accuracy, thus an ideal scenario for implementing the complimentary
filter.

Figure 5-4 shows the cumulative DRMS error for complimentary filter constants in
the 0 to 0,02 interval for the first of the three runs.

Stellenbosch University https://scholar.sun.ac.za

70

Figure 5-4: Cumulative DRMS error for different complimentary filter constants

From Figure 5-4 it can be seen that a constant of 0,001 gives a minimum
cumulative DRMS error. Figure 5-5 shows the navigated map for a constant of
0,001 between waypoint_0 and waypoint_1, and Figure 5-6 the cumulative
DRMS error.

Figure 5-5: Case study 2 navigated map

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

0,000 0,005 0,010 0,015 0,020

C
um

ul
at

iv
e

D
R

M
S

 e
rr

or
 [m

]

Complimentary filter constant

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

71

Figure 5-6: Case study 2 cumulative DRMS error

Appendix C contains the cumulative DRMS error for complimentary filter
constants in the 0 to 0,02 interval for the other two runs. For these runs the
optimal complimentary filter constant was also found to be around 0,001. The
navigated maps and cumulated DRMS errors for these runs at the optimal
complimentary filter constants are also included in Appendix C. Table 5-3 shows
a summary of the mean accumulated DRMS errors for the three runs with a
complimentary filter constant of 0,001. All further case studies will use a
complimentary filter constant of 0,001.

Table 5-3: Case study 2 DRMS errors

 DRMS error (mm)
Odometry Adafruit GPS Complimentary filter

Run 1 426 925 330
Run 2 1!694 1!789 1!626
Run 3 1!325 1!274 1!297

5.2.3 Case study 3: Adafruit GPS DGPS

Here the effect on the DRMS error will be investigated when the DGPS capability
of the Adafruit GPS is switched on. It must be noted it took between 12 − 15!min
for the Adafruit GPS to find an EGNOS fix. The navigated map result is shown in
Figure 5-7 and cumulative DRMS error plot in Figure 5-8.

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

72

Figure 5-7: Case study 3 navigated map

Figure 5-8: Case study 3 cumulative DRMS error

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

73

With the DGPS on, the mean accumulated DRMS errors as shown in Table 5-4
were calculated:

Table 5-4: Case study 3 DRMS errors

DRMS error (mm)
Odometry Adafruit GPS Complimentary filter
2!429 1!833 1!743

In the first case study it was seen that the mean deviation for the Adafruit GPS
without DGPS enabled was 2!479!mm. This deviation has now dropped to
1!833!mm, meaning the complimentary filter output will also be more accurate.

5.2.4 Case study 4: Robot ground velocity

Here the effect on the DRMS error will be investigated when the wheel velocity is
increased from the default 30!rpm (robot velocity of 0,313!m · s!!), in increments
of 10!rpm until 60!rpm is reached. Tests at higher velocities could not be
conducted because the robot platform began moving too much to provide a
stable platform for the laptop. With the robot moving at different velocities the
following mean accumulated DRMS errors were calculated:

Table 5-5: Case study 4 DRMS errors

Run speed DRMS error (mm)
Odometry Adafruit GPS Complimentary filter

30!rpm 2!854 1!756 1!631
40!rpm 2!442 2!134 2!824
50!rpm 5!515 1!697 3!007
60!rpm 7!006 2!286 4!153

From Table 5-5 it can be seen that only at 30!rpm the complimentary filter is
effective, by yielding a result that is less erroneous than the other individual
sensors. At 40!rpm there were long periods during which the Adafruit GPS gave
the same positional data, resulting in the complimentary filter being more
inaccurate than both the individual sensors. At 50 and 60!rpm the odometry
information becomes very unreliable, this is because there is too much pitch and
roll present and the compass is unable to compensate for this resulting in
heading readings that vary even though the robot is moving in a straight line.
The pitch and roll effect is even greater at the level of the compass since it is
mounted higher than the robot platform. It is concluded that 30!rpm is the
maximum speed at which experimental data can be gathered. The navigated
maps and cumulated DRMS errors for these runs are included in Appendix D.

Stellenbosch University https://scholar.sun.ac.za

74

5.2.5 Case study 5: Wheel slippage

To get wheel slippage the robot was lifted from the ground for 10!s at the halfway
point between each of the waypoints. Figure 5-9 shows the result of the
individual measurements, and Figure 5-10 shows the cumulative error.

Figure 5-9: Case study 5 navigated map

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

75

Figure 5-10: Case study 5 cumulative DRMS error

With the wheel slippage present the DRMS errors shown in Table 5-6 were
calculated:

Table 5-6: Case study 5 DRMS errors

DRMS error (mm)
Odometry Adafruit GPS Complimentary filter
3!328 1!801 1!981

The complimentary filter shows a larger error than the Adafruit GPS, this is
because of the large amount the complimentary filter trusts the odometry
readings. And in this case the odometry readings have a large error because it
seems that the robot has travelled further than it actually has because of the
slippage error that is introduced to the encoders.

5.2.6 Case study 6: Magnetic interference and GPS drift

For this study the measurement data of the fourth run of the first case study was
taken and a virtual magnetic interference as well as GPS drift introduced
separately. The interference and drift was implemented by post processing the
odometry and GPS data to include these sources of error. The virtual magnetic
interference point is shown in Figure 5-11. This point will simulate a new
magnetic north and the compass will trust this simulated north between 20 to
30!% while trusting the real north the rest.

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

76

Figure 5-11: Map to be navigated

Figure 5-12 shows the result of the individual measurements when the magnetic
interference is introduced. It is clear that the compass heading is greatly affected
by the artificial magnetic north, resulting in the odometer measurements being of
no use. The complimentary filter shows the robot being at waypoint 0 when
navigation is complete, this is pure coincidence and a result of the odometry
readings cancelling themselves out.

Figure 5-13 shows the cumulative error. Because of the amount the
complimentary filter trusts the odometry readings the complimentary error is
larger than that of the Adafruit GPS.

For the study of GPS drift the measurement data was taken and a virtual GPS
drift of 3 − 4!m introduced. Since regular GPS has a pseudo range accuracy of
7,8!m as stated earlier, this is a drift of 38 to 50!% in GPS accuracy. Figure 5-14
shows the result of the individual measurements when GPS drift is present and
Figure 5-15 shows the cumulative error.

Stellenbosch University https://scholar.sun.ac.za

77

Figure 5-12: Case study 6 with magnetic interference navigated map

Figure 5-13: Case study 6 with magnetic interference cumulative DRMS error

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

78

Figure 5-14: Case study 6 with GPS drift navigated map

Figure 5-15: Case study 6 with GPS drift cumulative DRMS error

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

79

With the robot moving under the different scenarios, the following mean
accumulated DRMS errors were calculated:

Table 5-7: Case study 6 DRMS errors

Scenario DRMS error (mm)
Odometry Adafruit GPS Complimentary filter

Magnetic interference 10!844 1!756 5!761
GPS drift 2!828 3!958 2!784

From Table 5-7 it is clear that the magnetic interference has the largest effect on
the precision with which the robot can navigate, showing an odometry DRMS
error of over 10!m, while the GPS drift has almost no effect because the
complimentary output error is still less than that of the individual sensors.

5.2.7 Case study 7: One or multiple sensors fail

In this final case study the relative navigational accuracy will be compared when
the Adafruit GPS, encoders and compass are individually powered off during a
navigational run. To get consistency in the results data from the same run will be
taken to compare the effect of sensor malfunction. For this study the data from
the third run of the first case study will be taken and the results are shown in
Table 5-8.

Table 5-8: Case study 7 DRMS errors

Scenario DRMS error (mm)
Odometry Adafruit GPS Complimentary filter

All sensors functioning 1!156 2!487 2!117
No Adafruit GPS 1!156 26!263 20!689
No encoders 26!263 2!487 14!438
No compass !"# 2!487 !"#

When no GPS is present the complimentary filter is skewed towards waypoint 0
because this point is reported by the Adafruit GPS as its location as shown in
Appendix E. When no encoders are present the odometry information tells the
complimentary filter that the robot is standing still, but because the Adafruit GPS
is still sending valid data the robot position is known, but only with a precision of
over 14!m. When the compass is disabled the robot thinks it is heading directly
north and the cumulated DRMS error quickly grows to a value that is too large to
plot. It can be concluded that if any of the sensors fail the robot is unable to
navigate successfully between the waypoints. The navigated maps and
cumulated DRMS errors for these runs are included in Appendix E.

Stellenbosch University https://scholar.sun.ac.za

80

6 Conclusions
This thesis investigated the navigational precision of an autonomous ground
vehicle by fusing different sensors as a means of localization and navigation.
Different GPS modules (regular, RTK and differential GPS) in conjunction with a
digital compass and optical encoders were used as sensors for capturing data
regarding the robot’s position. The Arduino Mega 2560 with an 8-bit Atmel
microcontroller was used to control all robot functions while MATLAB was used to
plot all navigational output data.

To implement the localization and navigation, background information had to be
gained regarding the functioning of the GPS, motor speed control, fusion of
sensor data and algorithms used by sensors. After this was done all the
hardware required to implement navigation was purchased, compatibility
between all the components was ensured, housings for the sensors were
manufactured, the current platform was modified and a power source sufficient to
power everything was selected. Next software was implemented to: control the
hardware, capture all the data from the sensors, fuse sensor data, map the
environment, establish localization and navigate between waypoints and finally
display all the captured data to the user.

Once the robot platform was able to navigate using the software implemented
experimental data was captured. First a way of measuring the precision of the
data captured by the sensors as the robot navigated around the map was
needed. To do this the precision with which the Piksi RTK GPS is able to keep
the robot on track was tested. It was found that the Piksi RTK GPS is able to
represent the position of the robot within a DRMS error of 290!mm (subject to
measurement uncertainty). All the other tests were measured against the Piksi
RTK GPS data to get a measure of their precision.

Seven case studies were completed, starting with the robot navigating the same
map five times to determine consistency between runs. The mean DRMS errors
for both the odometry and Adafruit GPS were less than the error of the most
inaccurate sensor (Adafruit GPS), thus it was concluded that the consistency is
sufficient for comparing data between runs. The complimentary filter constant
needed to be determined and over three runs it was seen that a value of 0,001
gives the best position estimate of the robot. It was also seen that enabling the
DGPS capability of the Adafruit GPS showed a DRMS error decrease of 645!mm
over the regular Adafruit GPS readings, meaning it is advantageous towards the
complimentary filter to keep the DGPS capabilities enabled during navigation. It
was experimentally found that the lowest ground speed of 0,313!m · s!! showed
the smallest DRMS error, which makes logical sense. But by increasing the robot
speed by a factor of two, the odometry error alone increased by 2,5 times with an
odometry DRMS error of 7!m. When introducing wheel slippage the odometry
error clearly increased and had a big effect on the result of the complimentary
filter because of the filters large dependence on the odometry measurements.
When magnetic interference was introduced the robot was completely unable to
navigate, while GPS drift had little effect on navigational precision. Finally it was
seen that whenever one of the sensors (Adafruit GPS, optical encoders and
digital compass) fail the robot is also completely unable to navigate.

Stellenbosch University https://scholar.sun.ac.za

81

The high precision with which the Piksi RTK GPS is able to locate the robot gives
it the ability to be implemented in various other autonomous and navigational
scenarios. From all the results obtained it can be concluded that fusing sensor
data does make the robot localization more precise and helps when one of the
sensors collects erroneous data for a short duration during navigation.

Future work that affects the navigational precision can include the following:

1. The use of different data fusion algorithms.
2. The fusion of Piksi RTK GPS with odometry data.
3. Changes in the robot platform structure to keep it level and get more

accurate compass measurements at higher ground speeds.
4. Sensor implementation that can detect wheel slippage and account for it.
5. Algorithms to detect magnetic interference and counter it.
6. Changing the ground vehicle to an aerial one.
7. Upgrading Piksi RTK GPS direct communication antennas and testing it

over a greater distance.

Stellenbosch University https://scholar.sun.ac.za

82

7 Appendix A: RTK GPS

Figure 7-1: Run 2 RTK GPS positional data

Figure 7-2: Run 3 RTK GPS positional data

Stellenbosch University https://scholar.sun.ac.za

83

Figure 7-3: Run 4 RTK GPS positional data

Figure 7-4: Run 5 RTK GPS positional data

Stellenbosch University https://scholar.sun.ac.za

84

8 Appendix B: Case study 1

Figure 8-1: Case study 1 navigated map run 2

Figure 8-2: Case study 1 cumulative DRMS error run 2

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

85

Figure 8-3: Case study 1 navigated map run 3

Figure 8-4: Case study 1 cumulative DRMS error run 3

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

86

Figure 8-5: Case study 1 navigated map run 4

Figure 8-6: Case study 1 cumulative DRMS error run 4

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

87

Figure 8-7: Case study 1 navigated map run 5

Figure 8-8: Case study 1 cumulative DRMS error run 5

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

88

9 Appendix C: Case study 2

Figure 9-1: Cumulative DRMS error for different complimentary filter constants run 2

Figure 9-2: Case study 2 navigated map run 2

1650000

1700000

1750000

1800000

1850000

1900000

1950000

2000000

0,000 0,005 0,010 0,015 0,020

C
um

ul
at

iv
e

D
R

M
S

 e
rr

or
 [m

]

Complimentary filter constant

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

89

Figure 9-3: Case study 2 cumulative DRMS error run 2

Figure 9-4: Cumulative DRMS error for different complimentary filter constants run 3

1390000
1400000
1410000
1420000
1430000
1440000
1450000
1460000
1470000
1480000
1490000

0,000 0,005 0,010 0,015 0,020

C
um

ul
at

iv
e

D
R

M
S

 e
rr

or
 [m

]

Complimentary filter constant

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

90

Figure 9-5: Case study 2 navigated map run 3

Figure 9-6: Case study 2 cumulative DRMS error run 3

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

91

10 Appendix D: Case study 4

Figure 10-1: Case study 4 navigated map 30 rpm

30 rpm

Figure 10-2: Case study 4 cumulative DRMS error 30 rpm

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

92

Figure 10-3: Case study 4 navigated map 40 rpm

Figure 10-4: Case study 4 cumulative DRMS error 40 rpm

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

93

Figure 10-5: Case study 4 navigated map 50 rpm

Figure 10-6: Case study 4 cumulative DRMS error 50 rpm

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

94

Figure 10-7: Case study 4 navigated map 60 rpm

Figure 10-8: Case study 4 cumulative DRMS error 60 rpm

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

95

11 Appendix E: Case study 7

Figure 11-1: Case study 7 navigated map no Adafruit GPS

Figure 11-2: Case study 7 cumulative DRMS error no Adafruit GPS

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

96

Figure 11-3: Case study 7 navigated map no encoders

Figure 11-4: Case study 7 cumulative DRMS error no encoders

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

97

Figure 11-5: Case study 7 navigated map no compass

Figure 11-6: Case study 7 cumulative DRMS error no compass

Adafruit GPS

Adafruit GPS

Stellenbosch University https://scholar.sun.ac.za

98

12 References

1996 Federal Radionavigation Plan. (1997). 9th ed. Department of Transportation
and Department of Defense, p.A-7.

Artese, G. and Trecroci, A. (2008). CALIBRATION OF A LOW COST MEMS INS
SENSOR FOR AN INTEGRATED NAVIGATION SYSTEM. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, XXXVII(Part B5), p.878.

Åström, K. and Murray, R. (2008). Feedback systems. Princeton: Princeton
University Press, p.296.

Bell, S. (1999). A Beginner’s Guide to Uncertainty of Measurement. [ebook]
Available at:
https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/UK_NPL/mgpg1
1.pdf [Accessed 25 Jan. 2016].

Borenstein, J. and Liqiang Feng, (1996). Measurement and correction of
systematic odometry errors in mobile robots. IEEE Trans. Robot. Automat., 12(6),
pp.869-880.

Bromiley, P. (2014). Products and Convolutions of Gaussian Probability Density
Functions. 1st ed. [ebook] Manchester: Imaging Sciences Research Group, pp.2-
7. Available at: http://www.tina-vision.net/docs/memos/2003-003.pdf [Accessed 5
Apr. 2015].

Edu-observatory.org, (2015). Sam Wormley's GPS Errors & Estimating Your
Receiver's Accuracy. [online] Available at: http://www.edu-
observatory.org/gps/gps_accuracy.html [Accessed 11 Feb. 2015].

Goel, P., Roumeliotis, S. and Sukhatme, G. (2015). Robot Localization Using
Relative and Absolute Position Estimates. p.6.

Gps.gov, (2015). GPS.gov: Performance Standards & Specifications. [online]
Available at: http://www.gps.gov/technical/ps/ [Accessed 23 Feb. 2015].

Greenwood, D. (2003). Advanced dynamics. Cambridge, U.K.: Cambridge
University Press, p.144.

Higgins, W. (1975). A Comparison of Complementary and Kalman Filtering. IEEE
Transactions on aerospace and electronic systems, Vol. AES-11 No. 3, p.324.

Hirt, A. (2015). Accuracy of the Swift-Navigation Piksi differential GPS. [online]
Available at: https://groups.google.com/group/swiftnav-
discuss/attach/d3fb5e94b44f3/Validierung.pdf?part=0.1 [Accessed 26 Jan 2016].

JCGM 100:2008. (2008). Evaluation of measurement data - Guide to the
expression of uncertainty in measurement, p.27.

Stellenbosch University https://scholar.sun.ac.za

99

Kiran, N. and Raja, C. (2014). Improved Dynamic Response of Buck Converter
using Fuzzy Controller. Bulletin of Electrical Engineering and Informatics, 3(1),
p.29.

Kalman, R. (1960). A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1), p.35.

Learn.sparkfun.com, (2015). Data Types in Arduino - learn.sparkfun.com. [online]
Available at: https://learn.sparkfun.com/tutorials/data-types-in-arduino [Accessed
12 Feb. 2015].

Leonard, J. and Durrant-Whyte, H. (1991). Mobile robot localization by tracking
geometric beacons. IEEE Trans. Robot. Automat., 7(3), pp.376-382.

Letsmakerobots.com, (2011). Kalman filter vs Complementary filter. [online]
Available at: http://letsmakerobots.com/node/29121 [Accessed 26 Jan 2016].

Li, W., Yuan, Y., Ou, J., Chai, Y., Li, Z., Liou, Y. and Wang, N. (2014). New
versions of the BDS/GNSS zenith tropospheric delay model IGGtrop. J Geod,
89(1), p.78.

McCarthy, J. and Soh, G. (2011). Geometric design of linkages. New York:
Springer, p.190.

Merrouni, A., Wolfertstetter, F., Mezrhab, A., Wilbert, S. and Pitz-Paal, R. (2015).
Investigation of Soiling Effect on Different Solar Mirror Materials under Moroccan
Climate. Energy Procedia, 69, p.1957.

Merry, C. (2007). Augmentation systems for GPS. PositionIT, p.63.

Meyer, C. (2000). Matrix analysis and applied linear algebra. Philadelphia:
Society for Industrial and Applied Mathematics, p.547.

Oc.nps.edu, (2015). Differential GPS:. [online] Available at:
http://www.oc.nps.edu/oc2902w/gps/dgpsnote.html [Accessed 10 Feb. 2015].

Parameters and calibration of a low-g 3-axis accelerometer. (2014). 1st ed.
[ebook] ST, p.8. Available at: http://www.st.com/st-web-
ui/static/active/cn/resource/technical/document/application_note/DM00119044.pd
f [Accessed 7 May 2015].

Parkinson, B. (1996). Global Positioning System: Theory and Applications,
Volume 1. AIAA, p.67.

Physics.nist.gov, (2016). Expanded uncertainty and coverage factor. [online]
Available at: http://physics.nist.gov/cuu/Uncertainty/coverage.html [Accessed 25
Jan. 2016].

Stellenbosch University https://scholar.sun.ac.za

100

Piksi Datasheet. (2013). 2nd ed. [ebook] Swift Navigation, p.1. Available at:
http://docs.swiftnav.com/pdfs/piksi_datasheet_v2.3.1.pdf [Accessed 4 May 2015].

Power Technology, (2015). Solar Tower, Seville. [online] Available at:
http://www.power-technology.com/projects/Seville-Solar-Tower/ [Accessed 16
Jan. 2015].

RIETDORF, A., DAUB, C. and LOEF, P. (2006). Precise Positioning in Real-Time
using Navigation Satellites and Telecommunication. PROCEEDINGS OF THE
3rd WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATION,
06, p.124.

Roze, A., Zufferey, J., Beyeler, A. and McClellan, A. (2015). eBee RTK Accuracy
Assessment. 1st ed. [ebook] Available at:
https://www.sensefly.com/fileadmin/user_upload/sensefly/documents/eBee-RTK-
Accuracy-Assessment.pdf [Accessed 21 Apr. 2015].

Thetapestore.co.uk, (2016). Class 1 Tape Measures - EC Class I. [online]
Available at: http://www.thetapestore.co.uk/tapes-rules/tape-measures/tape-
accuracy/class-1-tape-measures [Accessed 24 Jan. 2016].

Varner, C. (2000). DGPS Carrier Phase Networks and Partial Derivative
Algorithms. Graduate. University of Galgary, p.26.

Vincenty, T. (1975). DIRECT AND INVERSE SOLUTIONS OF GEODESICS ON
THE ELLIPSOID WITH APPLICATION OF NESTED EQUATIONS. Survey
Review, 23(176), p.89.

Wescott, T. (2000). PID Without a PhD. 1st ed. [ebook] Embedded Systems
Programming, p.5. Available at: http://m.eet.com/media/1112634/f-wescot.pdf
[Accessed 10 Apr. 2015].

Ziegler, J. and Nichols, N. (1993). Optimum Settings for Automatic Controllers. J.
Dyn. Sys., Meas., Control, 115(2B), p.765.

Stellenbosch University https://scholar.sun.ac.za

