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Abstract 
 
This thesis investigated the navigational precision of an autonomous ground 
vehicle by fusing different sensors as a means of localization and navigation. 
Different GPS (Global Positioning System) modules (regular, RTK (Real Time 
Kinematic) and differential GPS) in conjunction with a digital compass and optical 
encoders were used as sensors for capturing data regarding the robot’s position.  
The Arduino Mega 2560 with an 8-bit Atmel microcontroller was used to control 
all robot functions while MATLAB was used to plot all navigational output data. 
 
To implement the localization and navigation, background information had to be 
gained regarding the functioning of the GPS, motor speed control, fusion of 
sensor data and algorithms used by the sensors.  After this was done all the 
hardware required to implement navigation was purchased, compatibility 
between all the components was ensured, housings for the sensors were 
manufactured, the current platform was modified and a power source sufficient to 
power everything was selected.  Next software was implemented to:  control the 
hardware, capture all the data from the sensors, fuse sensor data, map the 
environment, establish localization and navigate between waypoints and finally 
display all the captured data to the user. 
 
Before determining the navigational precision of the robot, it needed to be 
confirmed whether the Piksi RTK GPS could be used as a benchmark for 
precision comparison of the other sensors.  Next case studies tested the 
navigational precision when:  doing multiple runs of the same map, using 
different complimentary filter values, enabling differential GPS, altering the 
robot’s speed, introducing wheel slippage, magnetic interference and GPS drift is 
present and when sensors fail. 
 
The high precision with which the Piksi RTK GPS is able to locate the robot gives 
it the ability to be implemented in various other autonomous and navigation 
scenarios.  Multiple runs of the same map concluded that the consistency of the 
navigational precision was good enough that data between different runs could 
be compared.  The optimal complimentary filter constant was found 
experimentally, it was seen that differential GPS resulted in more precise 
navigation and that the lowest robot speed resulted in the most precise 
navigational results.  Wheel slippage and magnetic interference had a large 
effect on the robot’s position estimation while GPS drift had little effect.  Finally it 
was seen that any single sensor failure resulted in the robot being unable to 
navigate. 
 
Future work that affects the navigational precision can include: use of different 
data fusion algorithms, fusion of Piksi RTK GPS data with odometry data, more 
stable or different robot platform, additional sensor to detect wheel slippage, 
algorithm to detect magnetic interference and the use of stronger Piksi RTK GPS 
direct communication antennas. 
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Opsomming 
 
Hierdie tesis ondersoek die navigasie presisie van ’n outonome voertuig deur die 
integrasie van verskillende sensors as ’n wyse van lokalisering en navigasie.  
Verskillende GPS (globale posisioneringstelsel) modules (gewoon, intyds 
kinematies en differensiële GPS) in samewerking met ’n digitale kompas en 
optiese enkodeerders is gebruik as sensors vir die insameling van data 
aangaande die robot se posisie.  Die Arduino Mega 2560 met ’n 8-bis Atmel 
mikrobeheerder is gebruik om al die robot funksies te beheer terwyl MATLAB 
gebruik is om die navigasie uitset data te vertoon. 
 
Om die lokalisering en navigasie te implementeer het hulle eerstens agtergrond 
kennis aangaande GPS, motor snelheid beheer, integrasie van sensor data en 
algoritmes wat deur sensors gebruik word ingesamel.  Na afloop daarvan is al die 
nodige hardeware om navigasie te implementeer aangekoop, versoenbaarheid 
tussen al die komponente verseker, omhulsels vir die sensors vervaardig, die 
huidige platform aangepas en daar is besluit op ’n voldoende kragbron om alles 
aan te dryf.  Daarna is die sagteware geïmplementeer wat:  al die hardeware 
beheer, al die data van die sensors ontvang, die sensor data saamsmelt, ’n kaart 
van die omgewing skep, tussen koördinate navigeer en uiteindelik al die 
ingesamelde data aan die gebruiker vertoon. 
 
Voor hulle kon kyk na die navigasie presisie van die robot, het hulle eers bepaal 
of die intyds kinematiese GPS gebruik kan word as ’n maatstaf vir die vergelyking 
van presiesheid van die ander sensors.  Volgende is daar deur gevallestudies die 
navigasie presisie getoets wanneer: herhaaldelike lopies van dieselfde kaart 
gedoen is, verskillende komplimentêre filter waardes gebruik is, die differensiële 
GPS aangeskakel is, die robot se snelheid verander is, wielglip ingesluit is, 
magnetiese inmenging en GPS dryf teenwoordig is asook wanneer enige van die 
sensors faal. 
 
Die hoë presisie waarmee die Piksi intyds kinematiese GPS in staat was om die 
robot te lokaliseer gee dit die vermoë om in verskeie ander outonome en 
navigasie verwante situasies geïmplementeer te word.  Verskeie lopies van 
dieselfde kaart het gewys dat die konsekwentheid van die navigasie presisie 
voldoende was om data tussen verskillende lopies met mekaar te vergelyk.  Die 
optimale komplimentêre filter konstante is eksperimenteel gevind, dit is 
waargeneem dat differensiële GPS tot meer presiese navigasie gelei het en dat 
die stadigste robot snelheid die mees presiese navigasie resultate gelewer het.  
Wielglip en magnetiese inmenging het ’n groot invloed op die robot se posisie 
vasstelling gehad, terwyl GPS dryf ’n klein effek gehad het.  Uiteindelik is 
waargeneem dat ’n enkel sensor faling veroorsaak het dat die robot nie kan 
navigeer nie. 
 
Toekomstige werk wat die navigasie presisie affekteer kan die volgende insluit:  
die gebruik van verskillende data integrasie algoritmes, die integrasie van die 
Piksi RTK GPS data met verplasingsmeter data, meer stabiele of ander platform, 
addisionele sensor om wielglip waar te neem, algoritme om magnetiese 
inmenging waar te neem en sterker Piksi RTK GPS kommunikasie antennas. 
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1 Introduction 
This section will provide background information regarding autonomous 
navigation, ways of robot localization, the original aim of the research and the 
current systems in use.  The objectives – which include a literature study that 
must be completed, hardware and software design and implementation, and 
obtaining experimental results – will be listed.  Lastly the motivation for 
conducting this research will be discussed. 
 

1.1 Background 

Extensive research has been done in the field of autonomous navigation for both 
indoor and outdoor situations using different platforms (aerial, ground and 
underwater).  Let’s first give a more definitive description for the term 
“autonomous navigation”.  This includes condition monitoring, continuous sensing 
of the environment, navigation by processing sensor data and / or previously 
known data of the environment and finally task execution.  Condition monitoring 
in the scope of this research topic only includes the robot being able to sense 
when operating power is low and being able to navigate to the base station for 
recharging.  Sensing the environment will be done using various sensors, 
including optical encoders, a compass and different GPS modules.  Using this 
sensor data the robot can navigate to a goal state.  Task execution entails the 
robot being able to autonomously navigate between waypoints and return to its 
base station.  
 
When looking at robot localization there are two methods that can be applied, 
these are the absolute and relative approaches.  The absolute approach requires 
prior knowledge of the environment and some way for the robot to take 
measurements with regard to known parameters present in the environment.  
Using GPS is a way of applying the absolute approach.  The relative approach 
only uses sensors on the robot to determine its position with regard to its starting 
point.  Two popular ways to get relative data is by using odometry and / or a 
compass as a way of dead reckoning as discussed in (Borenstein and Liqiang 
Feng, 1996).  By combining these two methods one can fuse the data received 
from the various sensors to obtain a more accurate position estimate of the robot 
as discussed in (Goel et al., 2015). 
 
This reseach was started with the aim of ultimately being implemented on an 
autonomous ground vehicle in a CSP (concentrating solar power) plant.  The 
STERG (Solar Thermal Energy Research Group) at Stellenbosch University 
currently investigates solar energy as a way of generating electricity on a large 
scale.  A common way of generating electricity using this approach is by 
implementing a CSP system, where a typical 11!MW power plant (for example 
the PS10 Solar Power Plant) has in excess of 600 individual heliostats (Power 
Technology, 2015).  Each heliostat consists of a collection of mirrors with 
adjustable orientation, reflecting the sun to the central solar power tower.  These 
mirrors need to be cleaned and inspected on a regular basis (daily), to ensure 
optimal functioning and efficiency. 
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Current systems comprise of personnel operating the machinery responsible for 
cleaning the mirrors, but can possibly be replaced by an autonomous ground 
vehicle.  Such an autonomous vehicle will therefore consist of a motorized robot 
platform, a navigation module and the cleaning component. This part of the 
research will be limited to the navigation module and specifically the fusion of 
different sensors as a means of localization and navigation.  The navigation 
module will consist of different sensors, a control module driven by software and 
a control interface to the motorized robot platform. With all this done the robot 
must be able to navigate between waypoints, travel to a specific waypoint and 
return to the base station if necessary, all of this being done autonomously while 
in a dynamic environment.  The dynamic environment entails that there will be 
stationary objects such as the heliostats that all have known positions prior to the 
robot starting navigation. 
 

1.2 Objectives 

Because of the sheer size of a project such as developing an autonomous 
system, only the navigation of such a system will be investigated in this research.  
This will be done on scale since an existing robot platform is available and 
access to a full scale CSP plant is not possible.  The objectives can be broken 
into a literature study that must be completed to gain an understanding of the 
mathematics driving the sensors, the hardware that must be purchased to 
localize the robot, the software that must be implemented to execute this and 
finally capturing the results after completion of all the integration. 
 

1.2.1 Literature study 

Before any hardware purchases can be made a study must be conducted to 
determine the following: 
 
1. An understanding of the different GPS techniques used. 
2. Ways in which accurate motor speed control over a varying speed range 

can be accomplished. 
3. Ways to accomplish accurate motor acceleration and deceleration to avoid 

wheel slippage and to accomplish steering actions. 
4. Different ways of fusing sensor data, for direct implementation in fusing 

sensor data and towards gaining an understanding behind the algorithms 
used in individual sensors. 

5. The type of compass to be used in conjunction with encoders to obtain 
distance and attitude measurements for localization. 

6. The theoretical accuracy of all sensors. 
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1.2.2 Hardware 

The following list of objectives must be completed before any software can be 
implemented: 

1. Define hardware that is currently present on the robot. 
2. Purchase all additional sensors. 
3. Purchase microcontroller and ensure compatibility between microcontroller 

and all sensors present. 
4. Design and manufacture housings for sensors. 
5. Analyse current platform to determine what modifications must be made to 

house the additional sensors. 
6. Determine battery specification, battery life, robot power budget and battery 

discharge rate. 
 

1.2.3 Software 

To obtain experimental data the following software must be defined, developed 
and implemented: 

1. Determine which software platforms will be used to navigate the robot, 
gather experimental data and show the final results. 

2. Software for robot platform propulsion and steering. 
3. Software to retrieve data from all attached sensors while simultaneously 

navigating the robot. 
4. Software to fuse all sensor measurements. 
5. Software to create a map of the environment containing known heliostat 

locations while having the ability to add known static obstacles. 
6. Software that uses the fused data to determine the current robot position. 
7. Software to successfully navigate from one waypoint to the next. 
8. Software to capture and display all positional output data. 
 

1.2.4 Experimental data 

Once the robot platform and coding has been completed the following 
experiments will be conducted: 

1. The viability of using the RTK GPS as a means of measuring precision of 
other sensors. 

2. A comparison in relative navigational accuracy by navigating the same map 
multiple times. 

3. A comparison of relative navigational accuracy when the complimentary 
filter values are altered. 

4. A comparison of relative navigational accuracy when differential GPS 
(EGNOS (European Geostationary Navigation Overlay Service)) is enabled 
and disabled on the Adafruit GPS module. 
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5. A comparison of relative navigational accuracy when the ground speed of 
the robot is increased. 

6. Relative navigational accuracy when wheel slippage is introduced. 
7. Relative navigational accuracy when magnetic interference and GPS drift is 

present. 
8. Relative navigational accuracy when one or multiple sensors fail. 

1.3 Motivation 

CSP systems generate electricity by converting the energy of the sun into heat, 
and then using this heat to generate electricity.  A central tower power plant is a 
type of CSP system where electricity is generated by focusing sunlight from 
heliostats on a central tower receiver where a heat transfer medium (liquid or air) 
is used to generate steam which drives turbines, which in turn generates 
electricity.  Thus the cleanliness of the mirrors on the heliostats has a direct 
impact on the efficiency of the power plant as a whole.  A case study was 
conducted in Morocco where a drop of 45!% in reflectivity was recorded for 
mirrors mounted horizontally over a three month period (Merrouni et al., 2015).  
Therefore it is of critical importance to keep the mirrors clean to ensure the plant 
can maintain an optimum output level.   
 
In central tower power plants the mirrors on individual heliostats are cleaned by 
machinery, operated by people.  An AGV is an autonomous ground vehicle that 
can navigate through the power plant and execute tasks given to it while avoiding 
obstacles (permanent fixtures as well as temporary obstructions).  Currently 
autonomous robots, which have no prior information about their environment, 
implement SLAM (Simultaneous Localization and Mapping) techniques as a way 
of navigation by building a map of the environment while localizing itself on the 
created map (Leonard et al., 1991).  Because the heliostats’ positions are known, 
a prior map of their coordinates can be created, thus the focus shifts towards the 
robot being able to localize itself rather than trying to navigate with no prior 
knowledge of its environment.  
 
By implementing an AGV the operator(s) and the current machinery can be 
declared redundant, thus minimizing the risk of mirror breakage due to human 
error during operation of the machinery.  A further advantage is the fact that in 
the overall operation of the power plant, less unnecessary human interaction, 
where repetitive tasks are present, is required, thus minimizing the operating 
effort placed on people.  When using an AGV, the cleaning process can possibly 
be completed during night-time, thus not interrupting the power plant during 
daytime by obstructing the reflection of the mirrors while cleaning them.  This 
allows the power plant to operate at full efficiency during daytime.  People are 
also kept safe from a potential hazardous working environment, which includes 
heavy machinery, high ambient temperature and the reflection of the sun from 
the mirrors.   
 
It must be realized that machines are more reliable than people in cases such as 
these where repetitive tasks are present.  By implementing such a cleaning 
system, the efficiency of the whole power plant will be improved, which at the end 
of the day is the ultimate goal of any successful power plant. 
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2 Literature study 

This section will give an explanation of how satellite navigation works, specific 
types of GPS technologies, PID controllers, the fusion of sensors using the 
complimentary and Kalman filters and finally the tilt compensated compass. 
 

2.1 Satellite navigation 

First an overview of how general satellite navigation works is given, followed by 
the more accurate differential GPS and finally proceeding to the highly accurate 
RTK GPS. 
 

2.1.1 General satellite navigation 

Satellite navigation gives an electronic receiver the ability to determine its time 
and location in terms of longitude, latitude and altitude using signals transmitted 
by satellites orbiting the earth.  The receiver has to be in clear sight of at least 
four satellites, with more satellites resulting in a higher precision reading.  When 
a satellite navigation system can give global coverage, it can be coined as a 
global navigation satellite system (GNSS).  The GPS is the American GNSS and 
consists of up to 32 satellites orbiting earth at an altitude of 20!000!km. 
 
Every satellite has an atomic clock that is synchronized to each other and to 
stations on the ground.  Each satellite continually transmits a signal containing 
the exact time the signal is sent from this satellite, and when the signal reaches 
the receiver the time it arrived is recorded.  Thus the receiver knows how far it is 
from the satellite, based on the time the signal travelled.  The exact position of 
the satellite in orbit is also known at the exact moment the signal is sent.  Thus by 
using trilateration (the intersection of three spheres from three satellites) the 
position of the receiver can be calculated.  The fourth satellite is necessary since 
the receiver does not have an accurate atomic clock.  This is shown in equation 
2.1 where the receivers’ position [!! , !! , !!] is in the coordinate system shown in 
Figure 2-1.  The true time the message was received is simply the difference 
between when the receiver says the message was received (!!) and the 
difference between the receiver and satellite clocks (!!), !! = !! − !!.  Thus !! is 
the same for all received signals if the assumption is made that the satellites 
clocks are in sync.  The distance the message travelled from the satellite to the 
receiver is denoted by !! − !! − !! !!.  Thus the following equation can be solved 
for the four unknowns [!! , !! , !! , !!] by using data from at least four satellites (!).  
 

(!! − !!)! + (!! − !!)! + (!! − !!)! = ( !! − !! − !! !!)!!!, ! =
1,2,… , !  

(2.1) 

 
This solution can be solved using either algebraic or numerical methods.  
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Figure 2-1:  GPS coordinate system1 

 

2.1.2 Differential GPS 

Regular GPS will give a pseudo range accuracy of 7,8!m at a confidence level of 
95!% (Gps.gov, 2015).  For the purpose of AGV navigation this accuracy is not 
sufficient, therefore other GPS techniques will be investigated to improve GPS 
accuracy.  Differential GPS works on the concept of having a base station at a 
highly accurate known location, that measures errors in signals from satellites 
and transmitting corrections to receivers (known as rovers) in close vicinity.  
These base stations also transmit the corrections to SBAS (satellite-based 
augmentation systems) that then in turn again broadcast the corrections to 
receivers.  The EGNOS has four monitor stations in southern Africa, thus 
enabling corrections in this region (Merry, 2007).  The measurements from the 
base station and rover are subtracted to get a differential measurement that is 
used to get a differential position.  There are three sources of error when looking 
at GPS measurements.  These are:  ones originating on the satellite, ones on the 
path from the satellite to the receiver and ones where the signal is received.  
These errors, which can be removed by differential GPS, will be discussed. 
 
Before the year 2000 the dominant error originating on the satellite was SA  
(Selective Availability).  It is a technique that was implemented to provide a 
degraded signal on the L1 frequency (1!575,42!MHz) for non-military users, which 
created a random offset in the clock signal equivalent to 100!m of navigation 
accuracy (1996 Federal Radionavigation Plan, 1997).  This has now been turned 

                                                

1 Adapted from U.S. Department of Transportation Federal Aviation Administration - Airway 
Facilities Division, 2013, https://en.wikipedia.org/wiki/Earth-centered_inertialAccessed  
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off but was the main reason differential GPS was implemented.  Furthermore the 
orbit of the satellite and the difference between satellite clocks also have an 
effect on the error originating on the satellite.  Because of uncertainties in the 
precise path of the satellite’s orbit, the accuracy is 8!m on a 95!% interval (Varner, 
2000).  The satellite clock can be out by as much as 11!ns (Parkinson, 1996) 
resulting in an error of 3!m.  
 
The error generated while the signal travels from the satellite to the receiver can 
be separated into ionospheric, tropospheric and stratospheric delays.  The 
ionosphere is a layer of the atmosphere between 70 and 1!000!km with varying 
thickness that is dependent on the time of the day and solar activity.  The angle 
at which the signal travels through the ionosphere has an effect on accuracy, 
between 10 − 30!m (Oc.nps.edu, 2015).  The troposphere is from the earth’s 
surface to 10!km above it and the stratosphere extends to a height of 50!km.  
These spheres have different refractive indexes because of changes in the 
dryness of the atmosphere.  This causes the GPS signal to travel at different 
speeds through the different layers resulting in inaccuracies in location 
measurements.  A tropospheric model can be used to predict the effect of the dry 
atmospheric part which forms 90!% of the combined error between the 
trophoshere and stratosphere.  If such a model is applied the remaining delay 
through the wet atmosphere is less than 300!mm (Li et al., 2014).  
 
Errors generated at the receiver have been greatly reduced with new 
technologies.  For example receivers with the ability to get L1 (1!575,42!MHz) and 
L2 (1!227,60!MHz) messages can eliminate ionospheric errors.  Furthermore 
multipath errors – where the receiver sees reflected signals of surfaces as direct 
signals from the satellite – can cause errors of up to 15!m (Edu-observatory.org, 
2015).  By using an antenna that is less sensitive to low level signals this error 
can be minimized.  Various algorithms can also be implemented to reduce this 
error and can be reduced to 1 to 2!m as shown by (Edu-observatory.org, 2015). 
 
Table 2-1 gives a summary of the different error types common to all new 
receivers and their effect: 

Table 2-1:  Different error types 

Description Error with confidence 
level of 95!%!(m) 

Selective Availability 100 
Satellite orbit 8 
Satellite clock 3 
Ionospheric 10 − 30 
Troposphere and stratosphere modelled 0,3 
Multipath 1 − 2 

 

2.1.3 RTK GPS 

RTK GPS is a differential global navigation satellite system that consists of a 
base station and one or more rovers with a direct line of communication between 
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the base station and rovers in addition to their individual communication 
capabilities with the overhead satellites.  RTK GPS can be used to a distance of 
10 to 20!km  (Rietdorf et al., 2006) with an accuracy of up to 30!mm horizontally 
(Roze et al., 2015).  Because this is a differential technique it has all the benefits 
of a differential system, which include removal of satellite orbit errors, satellite 
clock errors, ionospheric delays, tropospheric delays and stratospheric delays.  
All these errors are varying as the rover moves around with the exception of the 
satellite clock error.  There are three main errors that still need to be corrected; 
these are multipath, interference and thermal noise at the receiver.   
 
As stated earlier there are two frequencies on which navigation messages are 
sent from the satellite to the receiver, these are L1 (1!575,42!MHz with a 
wavelength of 190!mm) and L2 (1!227,60!MHz with a wavelength of 244!mm).  
These navigation messages consists of two groups, coarse / acquisition (C/A) 
code and precision (P) code.  The C/A code is available to everyone while the P 
code is encrypted and used for military purposes mainly, this encrypted signal is 
known as P(Y) code.  The C/A code is at a frequency of 1,023!MHz (with a 
wavelength of 293,1!m) over the L1 frequency, while the P(Y) code is sent at a 
frequency of 10,23!MHz (with a wavelength of 29,31!m) over both the L1 and L2 
frequencies.  As discussed in Section 2.1.2 the ability to receive messages on 
both frequencies remove the ionospheric error.   
 
Regular satellite navigation works on the principle that both the C/A and P codes 
are modulated onto the L band waves as a binary sequence being generated by 
a complicated algorithm.  This is done on both the satellite and the receiver.  
Since the signal takes time to reach the receiver, the received message is 
delayed until the sequences match up, meaning that the required delay can be 
used to calculate the distance to the satellite.  The difference with RTK is that the 
signal’s wavelength is used as a signal instead of the signal itself as shown in 
Figure 2-2.  This means that the C/A code at 1,023!MHz with a wavelength of 
293,1!m can be disregarded and the L1 wave at a frequency of 1!575,42!MHz and 
wavelength of 190!mm used instead as the source of distance calculation 
between the satellite and the receiver.  The only problem is that the number of 
whole wavelengths on the L1 frequency is unknown, but this integer ambiguity 
can be resolved by comparing measurements from C/A codes that will lead to a 
consistent position solution as time passes and the satellites change position.  
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Figure 2-2:  RTK GPS signal2 

 
Because the RTK base station and rover are relatively close to one another the 
ionospheric error can also be reduced by assuming that the ionospheric delay will 
be common for both the base station and rover.  Hence the difference (shown in 
Figure 2-3) can be calculated.  When one has this difference value for four or 
more satellites one can calculate an ionospheric error free distance between the 
base station and rover.   
 
 

 

Figure 2-3:  Ionospheric error3 

                                                

2 Adapted from Swiftnav, 2015, https://www.kickstarter.com/projects/swiftnav/piksi-the-rtk-gps-
receiver/description 

 

3 Adapted from Swiftnav, 2015, https://www.kickstarter.com/projects/swiftnav/piksi-the-rtk-gps-
receiver/description 
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A simplified version of the RTK algorithm will be shown to explain how the integer 
ambiguity problem is solved.  The carrier phase measurement (!) is a 
combination of the distance between the receiver and the satellite (!), 
ionospheric distance error (!), tropospheric distance error (!), receiver offset 
distance error (! ∙ !!"), satellite offset distance error (! ∙ !!"), the integer ambiguity 
(!) and noise (!) and can be equated as follows: 
 

! = ! − ! + ! + !!(!!" − !!") + !!! + !  (2.2) 
 
Where ! = (!! − !!)! + (!! − !!)! + (!! − !!)!  
 
Getting the difference in the carrier phase measurement between two satellites 
(1) and (2) and between the base station (b) and receiver (r) results in equation 
2.3.  Because the base station and receiver has a common clock and uses the 
same set of satellites the receiver and satellite clock errors can be eliminated.  
This difference can be written as: 
 

!!!" − !!!" = !!!" − !!!" − !!!" + !!!" + !!!" − !!!" + !!(!!!" − !!!") +
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" − !!!"  

(2.3) 

 
Since the non-integer terms – the receiver and satellite clock error – have been 
eliminated, the integer ambiguity (!!!" − !!!") is an integer value and can now be 
used to calculate the whole number of wavelengths as mentioned earlier if data 
from sufficient satellites is available. 
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2.2 PID controllers 

A PID (proportional-integral-derivative) controller attempts to minimize the 
difference between the plant output and a desired setpoint.  A PID controller 
(Figure 2-4) has three parts; they are proportional (!!), integral (!!) and 
derivative (!!).  Each one of these elements is controlled by the feedback signal 
from the plant or system that is being controlled.  These elements are then added 
in a weighted manner as shown in equation 2.4.  With the updated coefficients 
the plant is run again and the new output compared to the setpoint again, this 
process keeps on repeating to reduce the error to a value as small as possible.   
 

!(!) = !!!!(!) + !! ! !(!)!!"!
! + !! !!"!"  (2.4) 

 

 

Figure 2-4:  PID loop 

 
The proportional part is simply the system error (!) multiplied by some constant 
and fed back into the system.  Generally an increase in the proportional part will 
make the response of the system faster, and by increasing it too much the 
system output will start oscillating.  The proportional part should contribute the 
most to a change in the system output (Kiran et al., 2014). 
 
The integral part takes the effect of the error over the whole time the plant has 
been active into account.  Thus this term keeps on increasing over time unless 
the system error is zero, so to minimize this part one must decrease the error and 
the time over which the error is accumulated.  The integral part has an 
accelerating effect on the system, trying to get the system to the setpoint as fast 
as possible, but because it accumulates the error it has a tendency to overshoot 
the setpoint if the integral gain coefficient is too high (Åström et al., 2008).   
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The derivative part tries to decrease the settling time as well as stability for the 
system as discussed in (Wescott, 2000) by looking at the rate of change of the 
error.  This part also decreases the overshoot introduced by the integral part but 
the trade-off here is that the system becomes more sensitive to noise. 
 
For the system to give the desired response one must optimally tune the 
proportional, integral and derivative coefficients.  The system must be stable, not 
oscillate and achieve this state in the shortest amount of time possible, and 
adjust accordingly if the setpoint is changed.  To tune the loop there are various 
techniques that can be used, including the manual tuning method and the Ziegler 
Nichols method.   
 
The manual tuning method is a trial and error method where the integral and 
differential terms are first set to zero.  Next the proportional term is increased until 
the system output starts to oscillate.  The larger the proportional term the faster 
the system starts responding but this also makes the system less prone to being 
stable.  Now the integral term can be increased to stop the system output from 
oscillating.  Because this term accumulates the system error the amount of 
overshoot will increase but this is necessary to help the system respond to 
changes without much delay.  The term is adjusted to make the difference 
between the system output and the setpoint a minimum.  Finally the derivative 
term is increased until the settling time of the system is within an acceptable 
range.  Table 2-2 shows a summary for what effect increasing each of the tuning 
terms has on various aspects of the system output. 

Table 2-2:  Effect of tuning PID parameters 

Response Rise Time Overshoot Settling Time Steady-state Error 
!! Decrease Increase No trend Decrease 
!! Decrease Increase Increase Eliminate 
!! No trend Decrease Decrease No trend 

 
The Ziegler Nichols method is quite similar to the manual tuning method in that 
the integral and differential parts are first set to zero and the proportional part 
increased until the system output starts to oscillate.  Whenever this state is 
achieved the period of the oscillations (!!) and gain at this critical point (!!) is 
taken and the proportional, integral and differential terms are then adjusted 
according to optimum settings suggested in (Ziegler et al., 1993), shown in Table 
2-3. 

Table 2-3:  Ziegler-Nichols optimal tuning parameters 

Control type !! !! !! 
P 0.50!!! - - 

PI 0.45!!! 
1.2
!!

 - 

PID 0.60!!! 
2.0
!!

 
!!
8  
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2.3 Sensor fusion 

When receiving data from multiple sensors regarding the same attribute (for the 
example the position of the robot) one can fuse the data using algorithms to 
achieve a result that is more accurate than when the sensors are used 
individually.  Different sensors have different attributes, meaning they are either 
more reliable on the long run or on the short run.  This is where the filters are 
supposed to extract the most trustworthy information from the individual sensors 
and fuse this new information.  Two main filters will be discussed; they are the 
complimentary filter and the Kalman filter.   
 

2.3.1 Complimentary filter 

 

Figure 2-5:  Complimentary filter4 

 
The complimentary filter (Figure 2-5) is a simple filter that has a digital high-pass 
and a digital low-pass filter.  The low-pass filter only lets through changes that 
have an effect on the long-term while short-term changes are filtered out.  The 
high-pass filter does the exact opposite of the low-pass filter, reducing long term 
drift in the output.  For this application the GPS data is more reliable on the long 
run than the odometry data, since the odometry data introduces drift.  Thus the 
GPS data is fed through the low-pass filter while the odometry data is fed through 
the high-pass filter, resulting in the output highly relying on the odometry data 
while being corrected over the long run using the GPS data. 
 

                                                

4 Adapted from Socialledge, 2013, http://www.socialledge.com/sjsu/index.php?title=F13:_Quad-
copter 
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2.3.2 Kalman filter 

The Kalman filter (Kalman, 1960) is a mathematical algorithm that makes a 
prediction of a value at some time by taking measurements over a time interval 
and then receiving feedback from the system as noisy measurements. There are 
thus two stages, a prediction and a measurement stage.  The prediction stage 
predicts the state of the system in the future while the measurement step 
improves the prediction once data for that specific epoch is available.  The state 
vector (!!) storing the model system parameters is a combination of the state 
vector from the previous epoch (!!!!), inputs to the system (!!) and process 
noise (!!!!).  This is shown in the following equation: 
 

!! = !!!!!! + !!!! + !!!! (2.5) 
 
The sensor measurement vector (!!) can be modelled by the state vector (!!) 
that is converted into the measurement domain by a transformation matrix (!) 
with added measurement noise (!!). 
 

!! = !!!! + !! (2.6) 
 
Once one has fitted the model into the Kalman filter one can start to estimate the 
parameters iteratively using equations 2.7 to 2.11.  Assuming no noise a 
prediction of the state vector can be made: 
 

!!! = !!!!!! + !!!! (2.7) 
 
The error covariance matrix that will be used in the measurement update can be 
predicted to be: 
 

!!! = !!!!!!!!! + ! (2.8) 
 
The Kalman gain can be computed as: 
 

!! =
!!!!!!

!!!!!!!! + !! (2.9) 

 
Now the prediction made in equation 2.7 is updated: 
 

!! = !!! + !! !(!! − !!!!!) (2.10) 
 
And also the error covariance matrix of 2.8: 
 

!! = (! − !! !!)!!!! (2.11) 
 
Equations 2.7 and 2.8 show the prediction stage, while equations 2.9 to 2.11 
show the measurement stage.  These two stages keep on repeating by first 
predicting the current state ahead of time and then adjusting this prediction 
through the measurement stage after which the cycle repeats itself.  The big 
advantage of this approach is that only data from the current and previous epoch 

Stellenbosch University  https://scholar.sun.ac.za



 
15 

needs to be kept and the filter is recursive in a way that doesn’t add complexity to 
the problem. 
 
A simple one-dimensional example will be considered to show how the Kalman 
filter can be derived.  Consider a point moving along a straight line where some 
input is given to move the point and the distance from the starting location to the 
current point position can be measured.  The system parameters that are of 
interest are the point position and point velocity.  Since the system parameters 
will have a measure of uncertainty it can be assumed that they will be Gaussian 
distributed.  Initially the state of the system is known with a high certainty as 
shown in Figure 2-6.   
 
 

 

Figure 2-6:  Initial system state 

 
After a certain time interval the system state distribution will have a new mean (!) 
and variance (!!) as shown in Figure 2-7.  Because the input that caused the 
system to move to the current position is known, an estimate can be made 
regarding the current position of the point.  But because this is only a prediction 
the system parameters will have a new mean and variance as shown in Figure 
2-7.  Equation 2.5 shows mathematically what happens between Figure 2-6 and 
Figure 2-7, and the variance is represented by equation 2.6.  The change in 
variance is due to the process noise introduced by equation 2.5. 
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Figure 2-7:  System state after time interval 

 
At the exact same time the prediction regarding the current position of the system 
is made, a measurement can also be taken as seen in Figure 2-7.  The best 
estimate of the current position of the point can be made by combining the two 
Gaussian distributions in Figure 2-7 to form a new estimate shown by the yellow 
part.  This new estimate is a multiplication between the two Gaussian 
distributions described above.   It is known that the multiplication of two Gaussian 
functions yields another Gaussian function, as shown in (Bromiley, 2014).  This is 
why the Kalman filter can be applied continually without increasing the complexity 
of the function, and will be illustrated by multiplying equations 2.12 and 2.13.  The 
blue pdf (probability density function) can be given by equation 2.12: 
 

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!!  (2.12) 

 
The green measurement Gaussian function can be given by equation 2.13: 
 

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!!  (2.13) 

 
Multiplying equations 2.12 & 2.13 results in: 
 

!!(!) = !!(!)!!!(!)!

= 1
!!! 2!!

!!
!!(!!!!)!
!!!!! ! 1

!!! 2!!
!!
!!(!!!!)!
!!!!! !

= 1
2!!!!!!!!!

!!!
!(!!!!)!
!!!!! !(!!!!)

!
!!!!!  

(2.14) 

 
It is known that the combined standard deviation of the two Gaussian pdf’s is as 
shown by (Bromiley, 2014) in equation 2.15: 
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!! =
!!!!!!!
!!! + !!!

!

∴ !!! =
!!!!(!!! + !!!) − !!!

!!! + !!!
!

= !!! −
!!!

!!! + !!!
 

(2.15) 

 
And the combined mean of the two Gaussian pdf’s is as shown by (Bromiley, 
2014) in equation 2.16: 
 

!! =
!!!!!! + !!!!!!
!!! + !!!

!

= !!!! !! − !! + !!!!!! + !!!!!!
!!! + !!!

!

= !! +
!!!! !! − !!
!!! + !!!

 

(2.16) 

  
Equation 2.14 shows that the multiplication of two pdf’s is just another pdf, thus 
the new Gaussian pdf can be described by equation 2.17 with a standard 
deviation and mean as shown by equations 2.15 & 2.16. 
 

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!!  (2.17) 

 
Equation 2.17 assumes that both the prediction and measurement stages are 
conducted within the same coordinate type.  In the example used here the 
prediction stage occurs in the distance domain while the measurement stage 
occurs in the time domain.  To get the correct fused Gaussian pdf one should 
convert one of these domains to the other, the standard way of accomplishing 
this is to convert the prediction domain into that of the measurement domain.  
This is the reason for the transformation matrix ! as shown in equation 2.6.  
Thus converting equations 2.12 and 2.13 into the time domain results in: 
 

!!(!) =
1

!!
! ! 2!!

!!
!!(!!!!! )

!

!! !!!
!

 

(2.18) 

 
And: 
 

!!(!) =
1

!!! 2!!
!!
!!(!!!!)!
!!!!!  

(2.19) 

 
 
Using these new functions as input for the new mean equation one obtains: 
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!!
! = !!

! +
!!
!

!
! !! − !!!

!!
!

!
+ !!!

!

∴ !! = !! +
!!!
!

!!
!

!
+ !!!

! !! −
!!
!  

(2.20) 

 

And by substituting ! = !
! and !! =

!!!
!

!!
!

!
!!!!

 one can obtain: 

 
!! = !! + !! ! !! − !!!!  (2.21) 

 
In a similar fashion for the standard deviation one obtains: 
 

!!!
!! = !!

!
!
−

!!
!

!

!!
!

!
+ !!!

!

∴ !!! = !!! −
!!!
!!

!!
!

!
+ !!!

!

= !!! −
!!!
! !

!!!
!

!!
!

!
+ !!!

 

(2.22) 

 

Again substituting for ! = !
! and !! =

!!!
!

!!
!

!
!!!!

 one obtains: 

 
!!! = !!! − !!!! !!!! (2.23) 

 
One can now compare the standard form of the Kalman filter as shown in 
equations 2.7 to 2.11 with the terms in equations 2.21 and 2.23 to see the 
following correlations: 
 
!! !!→ !!!!! 
!! !!→ !!!!!! 
!! !!→ !!! !! 
!!! → !!!!! 
!!! → !!!!!! 
!!! → !!!! 
! !!!→ !!!! 
!! !→ !!!!! 
 
All variable descriptions are as described in the nomenclature.  Placing these 
new values into equations 2.21 and 2.23 one can easily see how it relates to the 
standard Kalman filter equations 2.10 and 2.11 as an example: 
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!! = !! +
!!!!!

!!!!!! + !!!
!! !! − !!!!  (2.24) 

 
!! = !!! + !! !(!! − !!!!!) (2.25) 

 

!!! = !!! − ! !
!!!!!

!!!!!! + !!!
!!!! (2.26) 

 
!! = (! − !! !!)!!!! (2.27) 

 
By understanding the core mathematical principles behind the Kalman filter one 
can easily derive it as was done here. 
 

2.3.3 Filter comparison 

From literature (Higgins, 1975) it has been shown through two examples that the 
filter equations for both the complementary and Kalman filters are identical.  
Because the complementary filter does not calculate gains and measurement 
and time updates as the Kalman filter, it is less computationally expensive and 
thus ideal for the Arduino 8-bit microcontroller.  Real world tests have been done 
to show a comparison between these two filters and according to 
(Letsmakerobots.com, 2016) it was concluded that the Kalman filter can be 
replaced by the simpler and faster complementary filter while obtaining the same 
results. 
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2.4 Tilt compensated compass 

This section will discuss the method used to calculate the current heading of the 
tilt compensated compass.  Details regarding accelerometer and magnetometer 
calibration are also given.  Calibration is the process in which sensor outputs are 
compared to known reliable reference information and then the output is adjusted 
by coefficients to let it agree with the reference information (Artese et al., 2008). 
 

2.4.1 Current heading 

A 3-axis magnetometer (fixed in the !"# coordinate frame) can be used to 
measure the earth’s magnetic field and in doing so determine a magnetic field 
vector that points towards the magnetic north pole.  When one is near the 
equator this vector is parallel to the surface of the earth but changes as one’s 
latitude changes.  Shown in Figure 2-8 is this magnetic field vector (!) with an 
inclination angle (!) between the XY-plane and this vector. 
 
 

 

Figure 2-8:  Magnetic field vector5 

                                                
5 Adapted from Coordinates, 2015, http://mycoordinates.org/operation-and-implementation-of-
heading-reference-system/all/1/ 
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To determine the current heading one can measure the two XY-plane 
components of the magnetic field vector, !! and !!, and then determine the 
angle ! (current heading) as shown in equation 2.28.   
 

! = tan!! !!
!!

 (2.28) 

 
This equation is however only true as long as the magnetometer is held level, 
when the sensor is tilted the XY-plane components of the vector change, 
resulting in an erroneous heading. This effect can be countered by incorporating 
a 2-axis accelerometer that measures the angles between the tilted orientation of 
the magnetometer (!!!!!! frame in Figure 2-9) and the gravity vector that is 
located in the !"# coordinate frame.  The measured !!, !! and !! components 
are then converted from the !!!!!! frame to the !"# frame and the heading 
calculated using equation 2.28. 
 
 

  

Figure 2-9:  Conversion between coordinate frames6 

 
The rotation of the coordinate frame will be described using Euler angles where 
roll (!-rotation around the X-axis) and pitch (!-rotation around the Y-axis) are 

                                                
6 Adapted from ST Microelectronics, 2015, http://www.st.com/st-web-ui/static/active/cn/resource/ 
technical/document/application_note/DM00119044.pdf 
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present (as shown in Figure 2-9).  Yaw (rotation about the Z-axis) is omitted 
because it’s the heading and does not have an effect on the XY-plane tilt.  
Rotations around the axes follow the right-hand rule, and are always performed 
around the X-axis first and then around the Y-axis.  From (Greenwood, 2003) it 
can be seen that the roll rotation matrix from the !"# frame to the !!!!!! frame is 
given by: 
 

!! =
1 0 0
0 cos! sin!
0 − sin! cos!

 (2.29) 

 
And the pitch rotation matrix is given by: 
 

!! =
cos ! 0 − sin !
0 1 0

sin ! 0 cos !
 (2.30) 

 
Thus the overall transformation of the magnetic field vector from the !"# frame to 
the !!!!!! frame can be given by: 
 

!!
!

!!
!

!!
!

= !! !!! !
!!
!!
!!

!

=
1 0 0
0 cos! sin!
0 − sin! cos!

!
cos ! 0 − sin !
0 1 0

sin ! 0 cos !
!
!!
!!
!!

!!

=
cos ! 0 − sin !

sin! !sin ! cos! sin! !cos !
cos! !sin ! − sin! cos! !cos !

!
!!
!!
!!

!! 

(2.31) 

 
To get the heading one must invert the matrix in equation 2.31 to obtain the 
inverses !!!! and !!!!: 
 

!!!! =
1 0 0
0 cos! − sin!
0 sin! cos!

 (2.32) 

 

!!!! =
cos ! 0 sin !
0 1 0

− sin ! 0 cos !
 (2.33) 

 
Then one can get the inverted matrix: 
 

!!
!!
!!

= !!!!!!!!! !
!!

!

!!
!

!!
!
! (2.34) 
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=
cos ! 0 sin !
0 1 0

− sin ! 0 cos !
!
1 0 0
0 cos! − sin!
0 sin! cos!

!
!!

!

!!
!

!!
!
!!

=
cos ! sin! !sin ! cos! !sin !
0 cos! − sin!

− sin ! sin! !cos ! cos! !cos !
!
!!

!

!!
!

!!
!
!!! 

 
From equation 2.34 one can get: 
 

!! = !!
! !cos ! +!!

! !sin! !sin ! +!!
! !cos! !sin ! (2.35) 

 
!! = !!

! !cos! −!!
! !sin! (2.36) 

 
These two values from equations 2.35 and 2.36 represent the tilt-compensated 
values.  But to get these one must first get the roll (!) and pitch (!) angles by 
using the accelerometer. 
 
The accelerometer outputs are correlated to the gravitational vector shown in 
Figure 2-9 as !! and !!.  To get the normalized accelerometer outputs !!! and 
!!! one can use equation 2.31 with gravitational acceleration only in the z-
direction to obtain the following: 
 

!!!
!!!
!!!

=
cos ! 0 − sin !

sin! !sin ! cos! sin! !cos !
cos! !sin ! − sin! cos! !cos !

!
0
0
1
! (2.37) 

 
Thus: 
 

!!! = − sin ! (2.38) 
 

!!! = sin! !cos ! (2.39) 
 
Using basic trigonometry identities one can say the following: 
 
From equation 2.38: 
 

sin ! = −!!! (2.40) 
 
And: 
 

sin! ! + cos! ! = 1!
∴ cos ! = 1 − sin! !!

= 1 − !!!! 
(2.41) 

 
From equation 2.39: 
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sin! = !!!
cos !!!

= !!!

1 − !!!!
! (2.42) 

 
And: 
 

sin! ! + cos! ! = 1!
∴ cos! = 1 − sin! !!

!!!!!!!!!!!!!!!= 1 − !!!!

1 − !!!!
!

= 1 − !!!! − !!!!

1 − !!!!
 

(2.43) 

 
When looking at equation 2.28 one can see that to find the heading the only 
interest is the ratio between the two magnetic field vectors, thus equations 2.35 
and 2.36 can be multiplied by the same value without having an effect on the 
heading.  Multiply equations 2.35 and 2.36 by cos ! to remove division since most 
microcontrollers do not have a native instruction for it.  As an example it takes six 
times longer to do type long division than it takes to do type long addition on an 
Arduino 8-bit microcontroller (Learn.sparkfun.com, 2015).  Thus the tilt 
compensation equations can be given as: 
 

!! = !!
! !cos! ! +!!

! !sin! !sin ! !cos ! +!!
! !cos! !sin ! !cos !!

= !!
!!(1 − !!!!) −!!

! ! !!!

1 − !!!!
!!!! ! 1 − !!!!

− !!!
!! 1 − !!!! − !!!!

1 − !!!!
!!!!!! 1 − !!!!!

= !!
!!(1 − !!!!) −!!

!!!!!!!!! −!!
!! 1 − !!!! − !!!!!!!! 

(2.44) 

 
!! = !!

! !cos! !cos ! −!!
! !sin! !cos !!

= !!
!! 1 − !!!! − !!!!

1 − !!!!
! 1 − !!!! −!!

! ! !!!

1 − !!!!
!! 1 − !!!!!

= !!
!! 1 − !!!! − !!!! −!!

!!!!! 

(2.45) 

 
By then placing equations 2.44 and 2.45 back into equation 2.28 one can get the 
current heading.  To get the true heading as a clockwise angle between magnetic 
north and the X-axis as shown in Figure 2-8 one can apply the following to adjust 
for different signs of ! and !. 
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!"#$!ℎ!"#$%& =

180 − tan!!!!
!!

!! < 0

− tan!!!!
!!

!! > 0,!! < 0

360 − tan!!!!
!!

!! > 0,!! > 0
90 !! = 0,!! < 0
270 !! = 0,!! > 0

 

 

(2.46) 

 

2.4.2 Accelerometer calibration 

The gravitational vector that is given by the accelerometer has three main 
sources of error that has an effect on the accuracy of the roll and pitch values 
obtained, these are:  offset, scale factor and misalignment.  Offset refers to the 
sensor measurement when no gravity or motion is acting on it.  Scale factor is the 
ratio between the electrical output of the accelerometer and the acceleration 
input.  The misalignment error shows the difference between axes on which the 
accelerometer is mounted and the axes of the body on which the accelerometer 
is mounted.  To transform the raw accelerometer data (!!,!"# ,!!,!"# ,!!,!"#)!to 
normalized data (!!!, !!!, !!!)  on the !!!!!! frame (same axis system as in 
Figure 2-9) one can use the misalignment matrix (!!), scale factor (!!) and offset 
(!!) as used in (Parameters and calibration of a low-g 3-axis accelerometer, 
2014). 
 

!!!
!!!
!!!

=
!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!

!

1
!!"

0 0

0 1
!!"

0

0 0 1
!!"

!
!!,!"# − !!"
!!,!"# − !!"
!!,!"# − !!"

 (2.47) 

 
Equation 2.47 can be multiplied out to obtain the following where !! is just the 
combination of the matrices used in equation 2.47: 
 

!!!
!!!
!!!

=
!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!

!
!!,!"#
!!,!"#
!!,!"#

+
!!!"
!!!"
!!!"

 (2.48) 

 
To solve equation 2.48 one can take six stationary positions (with coordinate 
frame as in Figure 2-9) as shown inTable 2-4. 
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Table 2-4:  Accelerometer orientation 

Stationary position !!! !!! !!! 
! down +1! 0 0 
! up −1! 0 0 
! down 0 +1! 0 
! up 0 −1! 0 
! down 0 0 +1! 
! up 0 0 −1! 

 
Before equation 2.48 is solved a simplification is made as shown in equation 
2.49.  This is done to allow the use of the least squared approach that will be 
used later. 
 

!!! !!! !!!

= !!,!"# !!,!"# !!,!"! 1 !

!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!
!!!" !!!" !!!"

 
(2.49) 

 
When one solves equation 2.49 six times with the orientations shown inTable 2-4 
and raw accelerometer data (!!,!"# ,!!,!"# ,!!,!"#) the following is obtained: 
 

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

=

!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1

!

!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!
!!!" !!!" !!!"

 

(2.50) 

 
Now by using a least square approach one can estimate the parameters as 
being: 
 

!! = !!!"# !!!"# !!!!!!"# !!!! (2.51) 
 
With: 
 

!! is 

!!!! !!!" !!!"
!!!" !!!! !!!"
!!!" !!!" !!!!
!!!" !!!" !!!"
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!!"# is 

!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1
!!,!"#! !!,!"#! !!,!"#! 1

 

 

!! is 

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

 

 

2.4.3 Magnetometer calibration 

A magnetometer measures the strength and attitude of the magnetic field (!) 
around it and outputs a vector containing this data.  While capturing this data, 
four main sources of error are present, these are:  hard-iron interference, soft-iron 
interference, scale factor and misalignment.  When no distortions are present the 
magnetic measurements are a sphere as shown in the top left of Figure 2-10.  
Hard-iron magnetic fields refer to any permanently fixed magnet within the vicinity 
of the magnetometer that do not vary with time, these are shown in the top right 
of Figure 2-10 where the centre of the sphere in the top left of Figure 2-10 is 
shifted.  Soft-iron magnetic fields are generated by any material that has the 
ability to be magnetized temporarily around the magnetometer and vary with 
time, these are shown in bottom left of Figure 2-10 where the sphere is deformed 
and rotated.  The bottom right of Figure 2-10 shows the combination of hard and 
soft-iron distortions.  The scale factor is the difference in sensitivity between the 
three axes of the magnetometer within the same magnetic field.  And finally 
misalignment is the same as for the accelerometer, it is a misalignment between 
the magnetometer and the body axes.   
 

Stellenbosch University  https://scholar.sun.ac.za



 
28 

 

Figure 2-10:  Top left:  no distortion, top right:  hard-iron deviation,  bottom left:  soft-iron 
deviation,  bottom right:  hard and soft-iron deviation 

 
Looking back at Figure 2-8 the magnetometer is orientated towards magnetic 
north resulting in the following magnetic field vector (!!): 
 
 

!! = !!
cos!
0

sin!
 (2.52) 

 
During the calibration process the magnetometer will be rotated around all three 
axes in a roll (!!), pitch (!!) and yaw (!!) motion as shown in Figure 2-9.  After 
this rotation process the new rotated magnetometer values (!!) can be given as: 
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!! = !! !!!!!!!!! (2.53) 
 
The yaw rotation matrix is given by: 
 

!! =
cos! sin! 0
− sin! cos! 0
0 0 1

 (2.54) 

 
Equation 2.53 ignores the effect of all four sources of disturbance described 
above.  The hard-iron interference can be countered by adding a vector (!!!"#) 
since this disturbance only causes an offset to the sphere.  The soft-iron 
interference is assumed to be related linearly to the rotated magnetometer values 
by a 3x3 matrix !!"#$.  The scale factor is accounted for by a diagonal matrix 
!!"#$%, and the misalignment can be adjusted for by a 3x3 matrix !!"#$%.  
Because these last three matrices are of the same size they can be combined to 
form: 
 

!!"#$ = !!"#$!!!"#$% !!!"#$% (2.55) 
 
Now the hard-iron vector !!!"# and !!"#$ can be added to equation 2.53 to get 
the magnetometer reading after an arbitrary amount of rotations. 
 

!! = !!"#$!!! !!!!!!!!!
cos!
0

sin!
+ !!!"# (2.56) 

 
To get the de-rotated magnetometer values one can take equation 2.56 and 

arrange it in such a way that the magnetic field vector (!! = !!
cos!
0

sin!
) is rotated 

around the Z-axis (!!) in Figure 2-9.  The inverse of a rotation matrix is simply 
the negative angles of all terms as stated in (McCarthy et al., 2011, p.190).  Thus: 
 

!!!!!
cos!
0

sin!
= !!!!!!!!!!!!"#$!!!(!! − !!!"#)!

∴
cos! sin! 0
− sin! cos! 0
0 0 1

!
!! cos!

0
!! sin!

= !!!!!!!!!!!!"#$!!!(!! !− !!!"#)!

!!∴
cos! !!! cos!
− sin! !!! cos!

!! sin!
= !!!!!!!!!!!!"#$!!!(!! − !!!"#) 

(2.57) 

 
Let: 
 

!!
!!
!!

= !!!!!!!!!!!!"#$!!!(!! − !!!"#) (2.58) 
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Where: 
 
!!
!!
!!

 represents the magnetometer readings that have been corrected for all 

four disturbances to the XY-plane as shown in Figure 2-9. 
 
Thus from equations 2.57 and 2.58 the following can be said: 
 

cos! !!! cos! = !! (2.59) 
 

− sin! !!! cos! = !! (2.60) 
 
This can then be substituted back into equation 2.28 to find the current compass 
heading.  Thus all the disturbances can be removed if one knows the hard-iron 
vector and the inverse of the soft-iron combined matrix in the !!"#$!!!(!! −
!!!"#) term in equation 2.57.  The locus that describes the magnetometer 
measurements on the sphere as shown in Figure 2-10 will be used to determine 
the unknown vector and matrix.  Looking at equation 2.56 and realizing the 
magnetometer measurements lie on a surface the following can be deducted. 
 

!!"#$!!!(!! − !!!"#) = !! !!!!!!!!!
cos!
0

sin!
 (2.61) 

 
Now the following transpose multiplication will be made using equation 2.61 as 
base to extract the magnetometer measurements and in the process creating a 
relationship to the unknown vector and matrix. 
 

!! !!!!!!!!!
cos!
0

sin!

!

!!! !!!!!!!!!
cos!
0

sin!
!

=
cos!
0

sin!

!

!! !!!! !!!! !!!! !!! !!!!!!!!!
cos!
0

sin!
!

= !!! cos! 0 sin! !
cos!
0

sin!
!

= !!! cos! ! + sin! ! !
= !! 

(2.62) 

 
Looking at the first line of equation 2.62 and using this in conjunction with 
equation 2.61 one can get the following: 
 

!!"#$!!!(!! − !!!"#)
!
!!!"#$!!!(!! − !!!"#) = !! (2.63) 
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If one has a symmetrical matrix !! and an orthogonal matrix !!" that has the 
eigenvectors of !! as column entries, the following can be said according to 
(Meyer, 2000): 
 

!!"! !!!!!!" = !"#$%&#% (2.64) 
 
The centre of the ellipsoid containing all the measurements can have coordinates 
!!.  Now the expression that defines the locus of points on the ellipsoid can be 
given as: 
 

(!!" − !!)! !!!!(!!" − !!) = !"#$%&#% (2.65) 
 
It still needs to be proofed that !! (which will be related to the soft-iron distortion 
part) is symmetrical: 
 

!! = !!"#$!!
!
!!!"#$!!!

∴ !!! = !!"#$!!
!
!!!"#$!!

!
!

= !!"#$!!
!
! !!"#$!!

! !
!

= !!"#$!!
!
!!!"#$!!!

= !! 

(2.66) 

 
Thus !! is symmetrical.  Now it can be seen that the magnetometer 
measurements form part of the ellipsoid surface that is defined by equations 
2.62, 2.63 and 2.65.  The centre of the ellipsoid is at !! = !!!"#, capturing the 
hard-iron distortions, the shape of the ellipsoid is defined by matrix !!, that 
captures the transpose of the inverse of the squared soft-iron distortions, and 
finally the size of the ellipsoid is captured by !, the magnetic field strength.   
 
The hard-iron distortion can now be directly captured.  But to calibrate the 
magnetic field measurements successfully the soft-iron distortion term !!"#$!! in 
!!"#$!!!(!! − !!!"#) is still needed.  It is easy to calculate !! given !!"#$!!, but 
the reverse is not true.  To get around the problem of having to use !!"#$!! to 
solve the problem another approach to the problem can be taken.  The soft-iron 
distortion, !!"#$, is the product of three independent 3x3 matrices with 9 
independent variables as shown in equation 2.55, but in equation 2.66 it was 
shown that the soft-iron distortion matrix is in fact symmetrical, meaning it only 
has 6 independent variables.  The assumption is made that the inverse of the 
soft-iron distortion matrix, !!"#$!!, is also symmetrical with 6 degrees of 
freedom.  This assumption will later be confirmed.  If the magnetometer values, 
!!, are corrected by an estimate of the hard-iron distortion, !!!"#,!"#, and an 
estimate of the soft-iron distortion, !!"#$,!"#, the corrected magnetometer values, 
!!,!"##$!%$&, can be obtained, which can be given by the following equation using 
equation 2.61 as basis for it: 
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!!,!"##$!%$& = !!"#$,!"!!!!(!! − !!!"#,!"#)!

= !!"#$,!"#!!!(!!"#$!!! !!!!!!!!!
cos!
0

sin!
+ (!!!"#

− !!!"#,!"#))!
 

(2.67) 

If this correctly estimates the hard and soft-iron distortions then 
!!"#$,!"#!!!!!"#$,!"# = ! and !!!"#,!"# = !!!"#, meaning equation 2.67 reduces 
to: 
 

!!,!"##$!%$&
! !!!,!"##$!%$&

= !! !!!!!!!!!
cos!
0

sin!

!

! !! !!!!!!!!!
cos!
0

sin!
!

 

(2.68) 

 
And from equation 2.62: 
 

!! !!!!!!!!!
cos!
0

sin!

!

! !! !!!!!!!!!
cos!
0

sin!
= !! (2.69) 

 
It was previously stated that the inverse of a rotation is the same as the inverse of 
the angle in question.  Such a rotation is introduced, ! = !!"#$,!"#!!!!!"#$, to 
equation 2.68 to obtain: 
 

!!,!"##$!%$&
! !!!,!"#!"#$"%

= !!!! !!!!!!!!!
cos!
0

sin!

!

! !!!! !!!!!!!!!
cos!
0

sin!
= !!!

 

(2.70) 

When the assumption that !!"#$!! is symmetrical is enforced it is impossible that 
an error in compass heading can be introduced to equation 2.70 because for a 
rotation to be present the rotation matrix must be anti-symmetric.  Because 
!!"#$!! is symmetric now, the soft-iron distortion can be related to the ellipsoid 
of equations 2.62, 2.63 and 2.65 by: 
 

!! = !!"#$!!
!
!!!"#$!!!

= !!"#$!!!!!"#$!!!!
∴ !!"#$!! = !!

!
! 

(2.71) 

 
Now there are terms for the hard-iron interference, soft-iron interference, scale 
factor and misalignment, and the calibrated compass heading can be calculated. 
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3 Design 

The design of the autonomous navigation system can be split into hardware and 
software sections.  On the hardware side the robotic platform was constructed by 
an undergraduate student but had to be reinforced to support the weight of the 
battery and mounting points had to be added for the sensors as shown in Figure 
3-1.  The two DC motors, four wheels, four bearing housing and bearings, two 
timing pulleys and belts, shafts, dual motor driver and robot frame were present 
when the platform was received.  The following was still required:  a power 
source, a microcontroller to control all robotic functions and sensors to capture 
the required data. 
 

 

Figure 3-1:  Robotic platform 

3.1 Hardware 

First a summary of all the hardware presently on the robot is given to ensure a 
complete system picture when system integration and power source selection is 
done.  Next all the individual additional sensors added to capture the 
experimental data is discussed, then a microcontroller capable of capturing all the 
sensor data is considered and finally a power source able to power all the 
hardware is chosen. 
 

3.1.1 DC motors 

The motors present are the Bircraft EC100.120 permanent magnet motors.  They 
are 140!W, 12!V DC motors with 2 inside brushes, drawing a maximum of 16,8!A 
and weighs 2,7!kg each.  The DC motors are mounted such that differential 
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steering of the robot is possible by connecting the front and rear wheels of each 
side with timing pulleys and belts.  

3.1.2 Motor driver 

The motor driver present is the Sabertooth 2x25 V2 model.  This driver can 
deliver 25!A continuous current for each motor at a nominal input voltage of 
6!– !30!V, has thermal and overcurrent protection, allows analog, R/C, simplified 
serial and packetized serial input modes.  The datasheet suggests that when 
requiring a steady voltage at currents larger than 20!A the user should consider 
using a high capacity lead-acid battery.   
 
Figure 3-2 shows the connections between the microcontroller, the two DC 
motors and the battery. M1A and M1B connect to one motor and M2A and M2B 
to the other, reversing the wires simply reverses the motor direction.  B- connects 
to the negative battery pole and B+ to the positive pole.  GND connects to the 
ground of the microcontroller and the serial transmit line from the microcontroller 
connects to S1. 
 

 

Figure 3-2:  Motor driver 

 
To control the speed and direction of the two DC motors the packetized serial 
mode is chosen that uses TTL level multi-byte serial commands to control the 
motors.  This mode works in one direction only, data is only received, no 
feedback is given to the microcontroller.  The data packet that is sent has the 
following format:  an address byte, a command byte, a data byte and a 7-bit 
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checksum.  The address byte has a value greater than 127, while the command  
and data bytes have values less than 128.  Table 3-1 shows the packet that must 
be sent to move the motor backwards at 75!%.  The Checksum can be calculated 
as follows, where 0b01111111 is the mask of decimal 127 in the 8-bit system. 
 

!ℎ!"#$%! = (!""#$%%!!"#$ + !"##$%&!!"#$
+ !"#"!!"#$)!&!0!01111111!

= (128 + 1 + 96)!&!0!01111111!
= 0!11100001!&!0!01111111!
= 0!01100001!
= 97 

(3.1) 

Table 3-1:  Data packet 

Address 128 
Command 1 
Data 96 
Checksum 97 

 
The dip switches shown in Figure 3-2 are used to set the mode (switch 1 & 2 
down for packetized serial), select the lithium cut-off (but not present here, thus 
switch 3 is up) and the address chosen as 128 (switch 4, 5 & 6 in up position). 
 

3.1.3 Piksi GPS 

The Piksi GPS is a carrier phase RTK GPS with centimetre level relative 
positioning accuracy, consisting of two modules:  one known as the rover that will 
be mounted on the moving robot and the other is the base station and will be 
kept stationary as a point of reference.  These GPS modules will mainly be used 
to verify the accuracy of the data captured by the other sensors.  Table 3-2 
shows the important electrical characteristics of a module: 

Table 3-2:  Piksi GPS electrical properties 

Supply Voltage 3,5 − 5,5!V!
Power Consumption 500!mW (max) 
Position / velocity / time update rate 50!Hz 

 
Figure 3-3 shows one of the modules and all the connections used.  Each 
module has a 433!Mhz 3DR radio (transmit power of up to 100!mW) connected to 
its UART (universal asynchronous receiver / transmitter) A port to enable two-
way communication between the two modules.  The base station module is 
powered through the micro-USB with a USB power bank and an external antenna 
is attached.  The external antenna is used to allow easier positioning of the 
antenna.  The rover module is connected to the microcontroller via UART B and 
also has an external antenna.  This module is also powered from the 
microcontroller.  The status LEDs show whether an RTK fix is present and how 
many satellites are used in the solution. 
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Figure 3-3:  Piksi GPS7 

3.1.4 Optical encoders 

Optical encoders use a source of light that is projected at a disc with opaque and 
transparent areas mounted on a rotating shaft to measure the angular position of 
the disc.  The enclosure, disk and optical switch are shown in Figure 3-4.   
 

 

Figure 3-4:  Optical encoder 

                                                

7 Adapted from Swiftnav, 2013, http://docs.swiftnav.com/pdfs/piksi_datasheet_v2.3.1.pdf 
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The optical switch used here is the OPTEK OPB980L55Z, which houses an 
OP240 LED to emit light and an OPL560 detector to retrieve light, with the 
electrical characteristics shown in Table 3-3: 

Table 3-3:  Optical encoder electrical properties 

OP240 LED 
Forward Voltage 1,70!V (@ 20!mA & 298,15!K) 
OPL560 Detector 
Supply Voltage 4,5 − 16!V 
Supply Current 12!mA (@ 4,5 − 16!V) 
 
Figure 3-5 shows a block diagram of the sensor package, where A & K denote 
the anode and cathode of the LED, !!! is the +5!V supply voltage to the detector, 
OUT is the detector output (where 0!V denotes no light observed and 5!V the 
opposite) and GND grounds the sensor. 
  

 

Figure 3-5:  Totem-pole output buffer8 

 
On the LED side the current must be limited according to the datasheet.  Since 
the forward voltage over the LED is 1,70!V and the LED is powered by 5!V, a 
resistor is needed between the anode and cathode to drop 3,30!V over it.  The 
1,70!V of the LED was measured at 20!mA (half of the absolute maximum forward 
current) and if this is taken as the current through the resistor as well, the resistor 
value must be: 
  

                                                

8 Adapted from OPTEK Technology, 2013, http://optekinc.com/datasheets/opb960-990_series.pdf  
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! = !!!!
∴ ! = !

! !

= 3,30
0,020!

= 165!Ω 

(3.2) 

 
Thus choose the closest standard resistor, a 160!Ω resistor. 
 
The disc has a total of 106 slots, meaning that over one rotation of the wheel the 
slotted optical switch will tick 106 times.  The wheels have a diameter of 200!mm. 
This means that every time the switch ticks, the robot has travelled the following 
distance: 
 

!"#$%&'(!!"#$%&&%' = !ℎ!!"!!"!"#$%&!&'"&
106 !

= !!!
106!

= ! ∗ 200
106 !

= 5,9275!mm 

(3.3) 
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3.1.5 Digital compass 

The Compass Click unit used as tilt compensated compass houses a 
LSM303DLHC module.  This module consists of a 3-axis accelerometer and 3-
axis magnetometer.  The module communicates with the microcontroller using an 
I2C serial bus interface.  The module has the electrical characteristics shown in 
Table 3-4: 

Table 3-4:  Tilt compensated compass electrical properties 

Supply voltage 2,16 − 3,6!V 
Current consumption (magnetic sensor 
@ 7,5 Hz and accelerometer @ 50 Hz) 110!!A 

SCL clock frequency 100!kHz 
 
Figure 3-6 shows the SDA (Serial Data Line) and SCL (Serial Clock Line) 
channels of the serial interface, and where the module is supplied with power and 
grounded. 
 

Figure 3-6:  LSM303DLHC module 

 
Since the power supplied to all other sensors will be +5!V, a way will have to be 
found to step this voltage down to 3,3!V.  This can be done using a bi-directional 
logic level converter.  Shown in Figure 3-7 is such a device that has four level-
shifting channels.  The circuit for each channel consists of a single N-channel 
MOSFET with two pull-up resistors.  For the first channel HV1 indicates the high 
voltage data channel (+5!V), LV1 the low voltage data channel (+3,3!V), HV the 
high voltage input, LV the low voltage input and GND on both sites the respective 
grounds. 
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Figure 3-7:  Bi-directional logic level converter 

 

3.1.6 Adafruit GPS 

The Adafruit GPS is manufactured by Adafruit, which houses a MTK3339 chipset 
that is capable of tracking up to 22 satellites on 66 channels, with a high-
sensitivity receiver and an integrated antenna.  The GPS can be battery powered 
to keep the RTC (real time clock) running to reduce the time it takes to get a fix 
when the GPS is powered on.  The module has DGPS support and features 
serial communication and has the electrical characteristics shown in Table 3-5: 

Table 3-5:  Adafruit GPS electrical properties 

Supply Voltage 3,0!– !5,5!V 

Operating Current 25!mA tracking 
20!mA navigating 

Position / velocity / time update rate 10!Hz 
 
Figure 3-8 shows an overview of the module.  The TX and RX pins are connected 
to the RX and TX pins of the microcontroller, the module is grounded with GND, 
and the +5!V from the microcontroller is supplied to VIN.  The FIX LED blinks at 
1!Hz until a fix is found, and thereafter once every 15!s.  Because the other pins 
are not used, they will not be discussed. 
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Figure 3-8:  Adafruit GPS 

 

3.1.7 Microcontroller 

The microcontroller used to control all robotic movement and capture sensor data 
will have to comply to the following requirements: 

1. Support at least two external interrupts on digital pins to capture encoders 
data. 

2. Be able to read interrupts fast enough. 
3. Have at least four serial ports for RX and TX TTL serial data transmission 

between microcontroller and Piksi GPS, motor driver, Adafruit GPS and 
communication to computer. 

4. Support I2C serial bus interface for digital compass. 
5. Supply +5!V to all sensors and meet current requirements. 

The Arduino platform will be considered as the microcontroller to control the 
robot, specifically the Arduino Mega 2560.  First it will be confirmed whether all 
the requirements are met: 
 
The Arduino Mega supports six external interrupts, has four serial ports and has 
an I2C serial bus interface, thus requirements 1, 3 and 4 are met. 
 
To determine whether the interrupts can be read fast enough an example where 
the robot moves at a maximum speed of 2!m ∙ s!! will be considered.  At this 
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speed the slotted optical switch will tick every 5!927,5!!m as shown in equation 
3.4 at an interval of: 
 

!"#$%&'( = 2000!mm/s
5.9275!mm !!!

= 0.00296375!s!
= 2963750!ns 

(3.4) 

 
The external interrupts are tied to the I/O (input / output) Clock that in turn is the 
same as the CPU Clock, it is 16!MHz.  Thus an external interrupt can be triggered 
every 62,5!ns, thus requirement 2 is met. 
 
To determine the current required one can take the sum total of all the sensors 
connected to the +5!V line as shown in Table 3-6: 

Table 3-6:  Current requirements of sensors 

Piksi GPS 100!mA (500!mW / 5!V) 
Optical Encoders 64!mA (2!(20!mA + 12!mA)) 
Digital compass 110!!A 
Adafruit GPS 25!mA 
TOTAL 189,11!mA 

 
Because the Arduino Mega is powered from the laptop via USB there is a 500!mA 
thermofuse that limits the available current on the +5!V line, thus the total current 
drawn by the sensors is well within the current limit and requirement 5 is met. 
 

3.1.8 Battery 

It was decided to use a 12!V deep cycle marine lead-acid battery because of the 
motor driver suggestion as well as the discharge characteristics of the deep cycle 
battery mentioned earlier.  It is known that the laptop with attached Arduino Mega 
can be powered for one hour before the laptop battery is flat.  Thus the lead-acid 
battery will also only have to last for one hour.  The DC motors draw a maximum 
of 16,8!A each, meaning that one can run the two motors from the battery for one 
hour at 33,6!A ∙ h.  The smallest available deep cycle marine lead-acid battery of 
50!A · h was chosen as power source for the DC motors. 
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3.1.9 Complete system 

Now that all the components have been chosen the complete breadboard layout 
and wiring of the system is given in Figure 3-9. 
 
 

 

Figure 3-9:  Complete breadboard layout 
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Figure 3-10 shows the individual components discussed in this chapter to give 
the reader an idea as to the size of each component. 
 

 

Figure 3-10:  Individual components 
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3.1.10 Cost 

The cost of the complete robot is shown in Table 3-7, excluding the parts already 
present when the robot was received. 

Table 3-7:  System cost 

Item Cost (R) 
Arduino Mega 495,00 
Compass 426,80 
Logic level converter 44,95 
Adafruit GPS 690,00 
Piksi GPS 14 165,77 
Encoders 210,00 
12V battery 1 319,09 
Wiring 100,00 
Breadboard 43,00 
3D printing Free 
TOTAL 17 494,61 

 

3.2 Arduino code 

This section will look at the Arduino code that was developed from scratch to 
enable the Arduino IDE (integrated development environment) to localize and 
navigate the robot between waypoints.  The code controls the robot hardware, 
captures data from the sensors, fuses this sensor data and maps the 
environment.  The Arduino IDE gives the user the ability to write Arduino 
programs in C or C++.  The bulk of the time spent on this study went into the 
development of the software.  The software program consists of various parts 
and can be broken down into the following: 

1. Libraries:  All the libraries used to communicate with sensors and complete 
calculations are included here. 

2. Variables:  All the global variables used are defined here. 
3. Objects:  After adding the libraries various parameters of the individual 

sensors must be set here. 
4. Void setup():  This code is run once during the start-up process of the 

Arduino. 
5. Void loop():  This code is run repeatedly until power to the Arduino is 

removed. 
6. Functions:  To simplify the void loop() various functions are written and only 

referenced in the void loop(). 

The void loop() section is where all the navigational procedures are present and 
can be described by Figure 3-11 and is continued in Figure 3-12. 
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Figure 3-11:  Navigational procedure coding part 1 
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Figure 3-12:  Navigational procedure coding part 2 

 
The void setup(), void loop() and functions written to enable autonomous robot 
navigation took up a total of 1119 lines, this excludes the libraries written to 
gather the sensor information.  Furthermore the code written to gather the Piksi 
GPS data had to be altered constantly.  This had to be done because when the 
product was received the SBP (Swift Navigation Binary Protocol) was not set and 
alterations were still made to it with new firmware iterations.  The firmware had to 
be updated to improve the ability of the Piksi GPS to find an RTK fix.  
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The basic procedure followed in Figure 3-11 and Figure 3-12 will be described by 
giving detail to each of the blocks that is not self-explanatory. 
 
 

 
 
Keeps count of the amount of times the void loop() is repeated for each time 
serial data is written to the laptop via the USB connection. 
 
 

 
 
////////////////////////////////////////////////////////////////////////////////// 
 
void measure_left_motor_rpm() 
{ 
  // Check if standing still 
  if (output_left == 0) 
  { 
    left_motor_rpm = 0; 
  } 
  // Otherwise 
  // RPM updated every 2 ticks, it is 11.8mm 
  if (pulses_left >= 2) 
  { 
    // Detach interrupt while calculating RPM 
    detachInterrupt(1); 
    left_motor_rpm = (double(pulses_left) * 60000000 / 
double(pulses_per_rotation)) / (double(micros() - left_previous_time_rpm)); 
    left_previous_time_rpm = micros(); 
    pulses_left = 0; 
    attachInterrupt(1, count_pulses_left, CHANGE); 
  } 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
 
To measure the rpm of a motor the first check is to see whether the motor is 
standing still by looking at the output of the PID loop (output_left), if this is zero it 
means that the motor has been commanded to stop moving or the user has 
specified the motor speed to be 0!rpm.  If the motor is not standing still the motor 
rpm is updated every second time the encoder ISR (Interrupt Service Routine) is 
called.  It is only updated every second time because it was found that when the 
motor rpm is calculated every time the encoder ISR is called the rpm calculation 
is inaccurate.  This is due to the resolution limitation on the printed disc.  Because 
a jump to the ISR during the rpm calculation is not desirable the interrupt is 
disabled for the time being, this interrupt is however still buffered by the 
hardware.  The motor rpm is calculated by first getting the ratio between the 
number of times the encoder ticked and the total number of encoder pulses per 
rotation of the wheel.  This is then divided by the time that passed since the 
previous time this calculation was completed and multiplied by 6!000!000 to get 
from microseconds to minutes.  Finally the interrupt is enabled again. 
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////////////////////////////////////////////////////////////////////////////////// 
 
void PID_calc() 
{ 
  input_left = left_motor_rpm; 
  left_PID.Compute(); 
  input_right = right_motor_rpm; 
  right_PID.Compute(); 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
 
Here the input for the PID loop is set and the output computed.  The setpoint 
value can be declared anywhere in the code and the PID calculation is made 
every 121!ms, using one of the Arduino timers to ensure a periodic interrupt.  The 
PID calculation is made on the exact same time interval that the speed of the 
motors is adjusted. 
 
 

 
 
////////////////////////////////////////////////////////////////////////////////// 
 
void adjust_moving_robot_heading () 
{ 
  previous_heading = current_heading; 
  read_compass(); 
  // Flag to call encoders_compass_robot_position () 
  encoders_compass_position_flag = 1; 

// Flag to call adafruit_gps_position (), called every second time, it is every 
6 ticks 

  adafruit_gps_position_flag++; 
  int heading_difference = current_heading - required_heading; 
  // Adjust for negative degrees 
  if (heading_difference < 0) 
  { 
    heading_difference = heading_difference + 360; 
  } 
  // Buffer of 10 degrees where robot just keep moving straight 
  if (heading_difference <= 180 && heading_difference >= 5) 
  { 
    setpoint_left - 0.5; 
  } 
  else if (heading_difference > 180 && heading_difference <= 355) 
  { 
    setpoint_left + 0.5; 
  } 
  else 
  { 
  } 
  // Reset counter for pulses_right_distance 
  pulses_right_distance = 0; 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
 
Here the robot heading is altered by adjusting the PID setpoint value for the left 
motor.  First the current compass value is read, then the difference between the 
previous heading and the current heading is calculated and used to determine 
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whether the robot should turn more to the left or more to the right by altering 
setpoint_left.  A 10!° buffer is left within which the robot simply keeps heading 
in the direction it has been heading.  The value of 10!° was experimentally found 
to be the optimal value to accommodate variances in the compass heading. 
 
 

 
 
////////////////////////////////////////////////////////////////////////////////// 
 
void encoders_compass_robot_position () 
{ 

// Encoders delta distance assuming that for the delta distance both wheels     
travelled the same distance, this is micro metres (m * 10^-6) 

  int encoders_distance = 3 * 5906; 
  // Adjust heading for trigonometry calculations 
  previous_heading = previous_heading - 90; 
  if (previous_heading >= 180) 
  { 
    previous_heading = previous_heading - 360; 
  } 
  previous_heading = previous_heading * -1; 
   
  // Robot position in micrometres with conversion from degrees to radians 
  robot_x_position_encoders = robot_x_position + encoders_distance * 
cos((previous_heading * 71) / 4068); 
  robot_y_position_encoders = robot_y_position + encoders_distance * 
sin((previous_heading * 71) / 4068); 
   
  // Reset flag for intermediate encoders compass position update 
  encoders_compass_position_flag = 0; 
} 
 
///////////////////////////////////////////////////////////////////////////////// 
 
The robot’s position according to odometry measurements is updated every third 
time the encoder ticks, meaning it is updated every 3!(5,906) = 17,718!mm the 
robot travels.  To determine the [x,y] coordinates of the robot the compass 
measurements must be adjusted from the axis system where north is zero 
degrees and clockwise positive (shown on the left in Figure 3-13) to an axis 
system where east is zero degrees and anti-clockwise is positive (shown on the 
right in Figure 3-13). 
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Figure 3-13:  Axis system conversion 

 
Simple sin() and cos() angles are used to determine the [x,y] coordinates of the 
robot.  The built-in Arduino trigonomic functions work in radians while the 
compass output is in degrees, thus the (!"#$%&'(_ℎ!"#$%&!(71)/4!068) 
conversion is used to get to radians.   
 
   

  
 
////////////////////////////////////////////////////////////////////////////////// 
 
void adafruit_gps_position () 
{ 
  // Get new GPS position 
  read_adafruit_GPS(); 
   
  // Next the distance and heading from base to current gps position is calculated 
  double distance_to_destination = TinyGPSPlus::distanceBetween( 
base_station_latitude, base_station_longitude, -1 * 
convertDegMinToDecDeg(GPS.latitude), convertDegMinToDecDeg(GPS.longitude)); 
  double course_to_destination = TinyGPSPlus::courseTo(base_station_latitude, 
base_station_longitude, -1 * convertDegMinToDecDeg(GPS.latitude), 
convertDegMinToDecDeg(GPS.longitude)); 
  // Convert distance to destination from m to micrometres 
  unsigned long adafruit_gps_distance = distance_to_destination * 1000000; 

// Total x and y distance from base to current adafruit gps location in    
micrometres 
robot_x_position_adafruit_gps = waypoint_0_x + adafruit_gps_distance * 
cos((course_to_destination * 71) / 4068); 
robot_y_position_adafruit_gps = waypoint_0_y + adafruit_gps_distance * 
sin((course_to_destination * 71) / 4068);  

  // Reset flag for intermediate adafruit gps position update 
  adafruit_gps_position_flag = 0; 
  // Set flag that will enable complimentary filter 
  comp_filter_flag = 1; 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
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The robot’s position according to the Adafruit GPS is calculated by using the two 
functions distanceBetween and courseTo from the TinyGPSPlus library.  These 
two functions take the latitude (!) and longitude (∆!) of the origin and latitude and 
longitude of the goal as inputs and give the distance (!) and heading (∆!) 
between these points back.  The inputs must be signed decimal-degree values.  
The formula used calculates the great-circle distance, which is the shortest 
distance between two points when one moves on the surface of a sphere.  The 
Vincenty formula (Vincenty, 1975) can be used to calculate this distance as 
shown in equation 3.5: 
 

∆! = tan!! (cos !! sin ∆!)! + (cos !! sin !! − sin !! cos !! cos∆!)!
sin !! sin !! − cos !! cos !! cos∆!

 (3.5) 

 
Then: 
 

! = !!∆! (3.6) 
 
The formula used by courseTo to determine the heading from one set of 
coordinates to another is given by: 
 

∆! = tan!! sin ∆! !cos !!
cos !! !sin !! − sin !! cos !! cos∆!

 (3.7) 

 
Now the [x,y] coordinates of the robot according to the Adafruit GPS can be 
determined using simple sin() and cos() angles. 
 
 

 
 
////////////////////////////////////////////////////////////////////////////////// 
 
void complimentary_filter () 
{ 
  double odometry_const = 99.999; 
  double gps_const = 100 - odometry_const; 
  // Split division for more accurate results 
  robot_x_position = (robot_x_position_encoders * odometry_const) / 100 + 
(robot_x_position_adafruit_gps * gps_const) / 100; 
  robot_y_position = (robot_y_position_encoders * odometry_const) / 100 + 
(robot_y_position_adafruit_gps * gps_const) / 100; 
  // Reset flag 
  comp_filter_flag = 0; 
  // Flag to get new distance and required heading to waypoint 
  dist_head_to_wayp_flag = 1; 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
 
The complimentary filter is implemented here, with a percentage defined by the 
user that determines how much each of the odometry and Adafruit GPS robot 
position estimations will be trusted. 
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////////////////////////////////////////////////////////////////////////////////// 
 
void distance_heading_to_waypoint () 
{ 
  double delta_y = (double) waypoint_y - (double) robot_y_position; 
  double delta_x = (double) waypoint_x - (double) robot_x_position; 
  required_heading = atan2(delta_y, delta_x); 
  // Use sin or cos depending on which is more accurate 
  if ((required_heading >= -1 * PI / 4 && required_heading <= PI / 4) || 
(required_heading >= 3 * PI / 4 && required_heading <= -3 * PI / 4)) 
  { 
    distance_to_waypoint = delta_x / cos(required_heading); 
  } 
  else 
  { 
    distance_to_waypoint = delta_y / sin(required_heading); 
  } 
  // Convert to degrees 
  required_heading = (required_heading * 4068) / 71; 
  // Convert to coordinate system where North denotes zero degrees 
  required_heading = required_heading - 90; 
  if (required_heading >= 180) 
  { 
    required_heading = required_heading - 360; 
  } 
  required_heading = required_heading * -1; 
  // Adjust for a range of 0 - 360 degrees 
  if (required_heading < 0) 
  { 
    required_heading = required_heading + 360; 
  } 
  dist_head_to_wayp_flag = 0; 
  // Flag to save piksi coordinates 
  piksi_gps_flag = 1; 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
 
This function calculates the distance and heading from the current robot position 
to the next waypoint.  Through tests it was seen that when only one trigonometric 
function was used to calculate the distance to the waypoint, there were times 
when one of the axes values became so small that it resulted in large variations 
in the distance_to_waypoint value.  Therefore both sin() and cos() functions were 
used depending on whether the angle was smaller or greater than 45!°.   
 
 

 
 
////////////////////////////////////////////////////////////////////////////////// 
 
// This function reads each byte and is analysed according to the supplied SPB 
message system 
void read_piksi_GPS () 
{ 
  piksi_message_flag = 0; 
  // While data is being sent from Piksi 
  while (Serial3.available () > 0 && piksi_message_flag == 0) 
  { 
    // Read incoming byte 
    if (piksi_message_flag == 1) 
    { 
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      piksi_gps_flag = 0; 
      break; 
    } 
    piksi_message_flag = processIncomingByte (Serial3.read ()); 
  } 
} 
 
// This function reads each byte and is analysed according to the supplied SPB 
message system 
boolean processIncomingByte (const byte inByte) 
{ 
  // Input message 
  static byte input_msg [MAX_INPUT]; 
  // Hold position in message 
  static unsigned int input_pos = 0; 
  // Correct message received flag 
  boolean piksi_message_flag = 0; 
   
  // 0x55 shows the start of a message 
  if (inByte == 0x55) 
  { 
    // When last byte of redundancy check has been reached 
    if (input_pos == 29) 
    { 
      // This is the hex code for a MSG_BASELINE_NED message 
      if ((input_msg[0] == 0x03) && (input_msg[1] == 0x02)) 
      { 
        // Another function to extract data from the MSG_BASELINE_NED message 
        msg_analyse(input_msg); 
        piksi_message_flag = 1; 
      } 
    } 
    // Reset the message position holder 
    input_pos = 0; 
  } 
   
  // The else captures the other 29 bytes excluding the start byte of 0x55 
  else 
  { 
    // Simple check to ensure a start byte has not been skipped 
    if (input_pos < (MAX_INPUT - 1)) 
    { 
      input_msg[input_pos] = inByte; 
      input_pos = input_pos + 1; 
    } 
  } 
  return piksi_message_flag; 
} 
 
// Function to analyse the received message 
void msg_analyse (byte byte_msg[29]) 
{ 
  // Check for fix type, 0x00 = float RTK, 0x01 = fixed RTK 
  fix_mode_type = byte_msg[26]; 
  // Shows nr of satellites 
  byte nr_satellites = byte_msg[25]; 
  double angle = 0; 
  double distance = 0; 
  // Vertical deviation from base with conversion from bytes to integer 
  robot_y_position_piksi_gps = bytesToInt(byte_msg[12], byte_msg[11], 
byte_msg[10], byte_msg[9]) * 1000; 
  // Horizontal deviation from base with conversion from bytes to integer 
  robot_x_position_piksi_gps = bytesToInt(byte_msg[16], byte_msg[15], 
byte_msg[14], byte_msg[13]) * 1000; 
} 
 
// Function to convert from bytes to integer 
long bytesToInt (int b4, int b3, int b2, int b1) 
{ 
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  long result = 0; 
  result = (long)b4 << 24; 
  result += (long)b3 << 16; 
  result += (long)b2 << 8; 
  result += (long)b1; 
  return result; 
} 
 
////////////////////////////////////////////////////////////////////////////////// 
 
To communicate with the Piksi GPS, code had to be written to implement the 
SBP.  All data transmitted by the Piksi GPS consists of a message structure that 
has the format shown in Table 3-8: 

Table 3-8:  SBP (Swift Navigation Binary Protocol) message structure 

Size (bytes) Name Description 
1 Preamble States start of message with 0!55 
2 Message type Shows payload contents 
2 Type Sender ID of device sending message 
1 Length Define amount of bytes in payload 
! Payload Binary content 
2 CRC Cyclic Redundancy Check 

 
Only messages of type 0!0203 are of interest, these messages include data 
about the GPS time, the north, east and down coordinates from the base station 
to the rover receiver, the number of satellites used to obtain the result and the 
type of fix achieved.  A message of type 0!0203 has 22 bytes, thus the total 
number of bytes received up to this point is 27!(22 + 1 + 2 + 2).  When the 29th 
byte is received the code knows the last byte of the cyclic redundancy check has 
been received and the message can be processed.  The fix type and number of 
satellites used in the solution are both binary numbers and can be directly 
captured, while the north and east deviation values each consists of 4 bytes that 
must first be converted to integer values as shown in the code above. 
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4 Experimental Setup 
First measurement uncertainty will be discussed.  Next the two setups with 
different maps will be detailed.  The first setup was used to capture only the RTK 
GPS data.  The second setup was used to capture positional data for all sensors 
on the robot. 
 

4.1 Measurement uncertainty 

Before proceeding to the experimental setup the topic of measurement 
uncertainty will be discussed to get an idea of how reliable real world 
measurements are. 
 

4.1.1 Overview 

For the experimental setup various measurements (distance, time, heading) will 
be taken, and wherever measurements are taken there is an uncertainty as to the 
trueness of the measurement.  This uncertainty can be expressed by two values, 
the interval or margin within which repeated measurements of the same object 
fall and the confidence level of the measurements falling in this interval.   
 
If there is a change in repeated readings one can use an average as an estimate 
of the actual value.  The more measurements one is able to take the better this 
estimate will be.  To get an idea of the spread of the measurements one can get 
the standard deviation for all the measurements.  To get the standard deviation 
for a set of measurements one takes the sum of the square of the difference 
between the average (!!"#) and each measurement (!!) and divides this by the 
total number of measurements (!!) −1.  The standard deviation (!) is then given 
by: 
 

! =
(!! − !!"#)!!!

!!!
!! − 1  (4.1) 

 

4.1.2  Origin 

For this thesis one particular measurement will be investigated to determine its 
uncertainty.  A class 1 2,5!! tape measure is used to measure the length of a 
steel guide wire over a maximum distance of 120!!.  The errors and 
uncertainties present in this measurement can be broken into the following as 
given in (Bell, 1999): 
 
1. The measurement instrument itself - a tape measure will be used to 

measure distances.  From (Thetapestore.co.uk, 2016) a 2,5!! class 1 
measurement tape can only be accurate to ∓!0,35!!!.   
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2. The item measured - a steel guide wire will be measured, but since it is 
lying on a grass surface that is not flat the measurement cannot be 
completely true. 

3. The measurement process - the wire is in excess of 100!!, thus the 2,5!! 
measurement tape will build up an error with consecutive measurements. 

4. The operator skill - because the measurements must be taken using visual 
confirmation a parallex error can be introduced. 

5. The environment - since measurements will be taken outside in the sun and 
wind, with varying temperatures, this can have an effect on the operator 
and measurement tape. 

 

4.1.3 Measuring uncertainty 

Before calculating measurement uncertainty one must identify all the sources of 
uncertainty, then estimate the contribution of each of these sources and finally 
combine these to get an overall uncertainty.  The process of measuring 
uncertainty can be broken into the following eight steps as described in (JCGM 
100:2008, 2008): 
 
1. Make a decision regarding the exact information that is required from the 

measurements to get a result.  This will include data regarding errors in the 
measurement device, errors in the object being measured and errors 
introduced in the process of measuring. 

 
2. Next take the measurements while taking note of when it was done, under 

what conditions it was done and the exact measurement device used.  
Calculate the mean and standard deviation for all the measurements taken. 

 
3. Make an estimate of the uncertainty of each parameter that will have an 

affect on the final measurement estimate.  To be able to combine these 
uncertainties later, one has to convert each uncertainty to a value around 
the standard deviation, also called a standard uncertainty.  A coverage 
factor is used to do this conversion.  A coverage factor of 2 will give a 
confidence level of 95!% (Physics.nist.gov, 2016) assuming the combined 
standard uncertainty has a normal distribution.  The errors and 
uncertainties present were identified earlier and can be assigned values 
here: 

 
• The 2,5!! class 1 measurement tape can only be accurate to 

∓!0,35!!! as stated above.  Thus over 2,5!! with a coverage factor 
of 2 the standard uncertainty is 0,175!!!. 

• The smallest measurement possible on the tape is in millimeter.  
Thus the reading can fall anywhere within this 1!!! interval, or 
∓!0,5!!!.  The distribution of these measurements is uniform and 
from (Bell, 1999) the standard uncertainty is the half-width (0,5!!!) 
divided by 3, giving 0,28!!!. 

Stellenbosch University  https://scholar.sun.ac.za



 
58 

• Since the wire does not lie straight it is assumed that the length is 
underestimated by 0,1!%.  Over a 2,5!! distance this is 2,5!!!.  
Again the uncertainty is assumed to be uniform, with the half-width 
being 2,5!!! and dividing this by 3 the standard uncertainty is 
1,44!!!. 

 
4. Decide whether each of the parameters listed in point 3 is independent of 

one another, if this is not the case this dependency needs to be calculated 
and added as another parameter.  In this case all parameters are 
independent.  

 
5. Determine the result of the measurement by taking the mean measurement 

value and adding all known corrections.  In this case the corrections only 
include the wire that is not completely straight.  Thus the wire measured 
length over 2,5!! should be 2500!!!! + !2,5!!!! = !2502,5!!!.   

 
6. Now the combined standard uncertainty can be determined by taking the 

square root of the squared individual uncertainties.   
 

!"#$%&'(!!"#$%#&%!!"#$%&'("&)! = 0,175! + 0,28! + 1,44!!
= 1,48!!! 

(4.2) 

  
7. Now this uncertainty can be given in terms of a coverage factor of 2, 

meaning the uncertainty is 2!(1,48!!!) = 2,95!!! with a confidence level 
of 95!%. 

 
8. Finally the measurement uncertainty can be written down.  Up to step 7 all 

calculations worked over a length of 2,5!!, multiply this by 48 to get to 
120!! resulting in a new uncertainty of 141,6!!!.  Thus it can be said that 
the length of the wire is 120!!! ∓ !0,142!! for a coverage factor of 2, 
resulting in a confidence level of 95!%.    

 

4.2 RTK GPS positional data  

For this setup the base station was fixed to a stationary point as shown in Figure 
4-1, which is also known as waypoint_0 as shown in Figure 4-3.  To prevent 
interference and to get the best possible GPS readings the base station antenna 
was mounted at a height of 2,5!m above ground level.  This is an active antenna 
meaning it has an LNA (Low-Noise Amplifier) that lowers the noise picked up by 
the receiver.  The 3DR telemetry radio enables a direct line of communication 
between the base station and rover modules.  The robot with the rover RTK GPS 
as shown in Figure 4-2 was then moved at a constant velocity of 0,313!m · s!! (or 
30!rpm maintained within 1!rpm) between the waypoints while capturing its 
location. 
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Figure 4-1:  Base station Piksi RTK GPS with external power source and active antenna 
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Figure 4-2:  Robot with rover Piksi RTK GPS, active antenna, laptop and battery 

 
Figure 4-3 shows the four waypoints between which the navigation was 
conducted.  These waypoints were conveniently chosen as poles of four goal 
posts present on a sports field.  The base station was fixed at waypoint_0 and 
the rover then moved from this waypoint to the next in a straight line (by guiding 
the robot platform on a fish line connected between all the waypoints) until it 
returned to the base station. 
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Figure 4-3:  Waypoints for navigation9 

 
To determine the coordinates of the waypoints a wire (that is used to guide the 
watering machine on the field) was used to measure the distance between 
waypoints to obtain the values in Table 4-1: 

Table 4-1:  Distances between waypoints 

Waypoints Distance (m) Measurement uncertainty (m)  
Waypoint 0 to 1 99,47 0,117 
Waypoint 0 to 2 117,78 0,138 
Waypoint 1 to 2 63,07 0,075 
Waypoint 0 to 3 62,84 0,075 
Waypoint 2 to 3 99,62 0,118 

 
As discussed in Section 4.1 the distance measurements in Table 4-1 is given at a 
confidence level of 95!% and calculated by using the result of Section 4.1.  Using 
this data triangulation was used to determine the relative position of each 
waypoint from waypoint_0.   
  

                                                

9 Adapted from Google Earth, 2015, https://www.google.com/earth/explore/products/plugin.html 
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4.3 All sensors positional data 

A new map as shown in Figure 4-4 was navigated next because of the distance 
limitations of the 3DR telemetry radios that will be discussed in Section 5.1.  
These waypoints were measured out using the Piksi RTK GPS after the 
navigational precision of this GPS was confirmed.  The map was navigated at a 
velocity of 0,313!m · s!! with the robot starting at waypoint_0 and the base station 
mounted on the pole at the origin of the coordinate system.  
 

 

Figure 4-4:  Map to be navigated 

 
Figure 4-5 shows the robot, base station and starting waypoint on the field.  The 
robot was then navigated from waypoint to waypoint, using the code described in 
Section 3.2, until it returned to waypoint_0 multiple times for all the case studies 
conducted. 
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Figure 4-5:  Complete experimental setup 
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5 Results 
The results section will be split into two main parts.  Firstly the RTK GPS test 
results are summarized, this is done first to confirm the accuracy of the RTK GPS 
since it will be used as a way of verifying the position of the robot.  Secondly, the 
positional data of the robot using the encoders, tilt-compensated compass and 
Adafruit GPS will be shown. Seven case studies will be made, and the relative 
accuracy of this positional data will be determined by comparing it to the RTK 
position data. 
 

5.1 RTK GPS positional data 

The Piksi RTK GPS datasheet (Piksi Datasheet, 2013) claims that “centimetre 
accurate relative positioning” is possible.  This is the only claim that can be found 
regarding the accuracy of the GPS.  A study will be conducted to confirm this 
claim and determine the real world relative accuracy of the GPS.  Before 
continuing it is important to have a clear understanding of the terms accuracy, 
relative accuracy and precision.  In terms of position a measurement can be 
called accurate when it is close to the real position.  Relative accuracy and 
precision are the same and mean that with repeated measurements the position 
will stay constant if the rover and base station are kept stationary. 
 
The robot is moved as described in Section 4.2 through the map of Figure 4-3 
and the result of the first run of five is shown in Figure 5-1, the plots of the other 
runs can be seen in Appendix A.  The output of the RTK GPS is in units of m 
north and east of the base station.  During each of the runs at least eight 
satellites were visible.  The gaps show the positions where the RTK GPS fix was 
lost and the robot kept on moving in a straight line with constant velocity until the 
signal was re-established. 
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Figure 5-1:  Run 1 RTK GPS positional data 

 
Since the main concern is the two-dimensional GPS accuracy the DRMS 
(Distance Root Mean Square) will be calculated, which is the square root of the 
average of the squared horizontal deviations.  The values have a probability of 
65!% of falling in the probability circle.  The DRMS is shown in equation 5.1: 
 

!"#$ = !!! + !!! (5.1) 

 
Since the velocity and exact time of measurements are known, the theoretical 
location of the robot is known and can be compared to the location measured by 
the Piksi GPS.  The distance between each of the measured values and actual 
location values is taken and averaged for the complete path travelled.  This is 
done for all five runs to get the following average deviations: 

Table 5-1:  Average deviations from actual path 

 DRMS error (mm) 
Run 1 180,90 
Run 2 222,40 
Run 3 295,50 
Run 4 269,20 
Run 5 484,00 
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Thus the average DRMS value for the Piksi RTK GPS is as in equation 5.1: 
 

!"#$ = !!! + !!!!

= !!!!
= 290,4!mm 

(5.2) 

  
It must be noticed that this DRMS value of 290.4!!! is subject to the 
measurement uncertainty discussed in Section 4.1.  A further note that must be 
made is that because of the terrain on which the robot moves there is roll and 
pitch movement present that has an effect on the position of the RTK GPS.  This 
effect is further increased by the fact that the rover Piksi GPS module is 
positioned at a higher level than the robot platform as shown in Figure 4-2. 
 
After testing the accuracy of the RTK GPS, information regarding this accuracy 
was also published by another source (Hirt, 2015). The standard deviation was 
found to be between 94 to 129!!! when walking in a circle of 20 to 30!!.  This 
error is smaller because their test setup ensured more accurate measurements.  
Thus from this point forward the RTK GPS will be used as a basis for the 
precision measurements of the other sensors. 
 
An interesting phenomenon that is noticed in Figure 5-1 is that the RTK fix is lost 
at positions only far from the starting waypoint.  This is caused by a break in 
communication between the two station radios.  While the RTK fix is still present, 
the stations are not able to exchange information at that moment.  When the 
robot is moving from waypoint_0 to waypoint_1 and from waypoint_1 to 
waypoint_2 the radio on the rover is positioned in a way that a direct line of sight 
is not present to the base station.  This is the cause of the missing 
measurements on all five runs between those waypoints.   
 

5.2 All sensors positional data 

The seven case studies that will be examined can be divided into the following: 

1. A comparison in relative navigational accuracy by navigating the same map 
multiple times. 

2. A comparison of relative navigational accuracy when the complimentary 
filter values are altered. 

3. A comparison of relative navigational accuracy when differential GPS 
(EGNOS) is enabled and disabled on the Adafruit GPS module. 

4. A comparison of relative navigational accuracy when the ground speed of 
the robot is increased. 

5. The relative navigational accuracy when wheel slippage is introduced. 
6. The relative navigational accuracy when magnetic interference and GPS 

drift is present. 
7. The relative navigational accuracy when one or multiple sensors fail. 
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From the results of Section 5.1 it was decided to use the Piksi RTK GPS as a 
way of verifying the robot position.  For all the above case studies the Piksi RTK 
GPS will be used as the sole sensor for navigating the robot between waypoints, 
with the other sensors capturing data under the different scenarios.  All values 
will be displayed in millimeter although the measurement uncertainty as 
discussed in Section 4.1 will make these results less accurate.  
 

5.2.1 Case study 1:  Multiple runs 

To determine whether measurements are consistant over multiple runs the same 
map will be navigated five times and the Adafruit GPS data, odometry data and 
Piksi RTK GPS data will be compared to determine whether data captured in 
consequent tests can be compared to one another.  Figure 5-2 shows a plot of 
the positional data where the distance north corresponds to the Y-axis and the 
distance east to X-axis in Figure 4-4. 
 
 

 

Figure 5-2:  Case study 1 navigated map 

 

Adafruit GPS 
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Figure 5-3:  Case study 1 cumulative DRMS error 

From Figure 5-2 it is clear that the odometry readings (which is the combination 
of encoder and compass measurements to get heading and distance for each 
increment) start drifting from the Piksi RTK GPS readings as the robot 
progresses through the map.  The Adafruit GPS readings show less relative 
accuracy than the odometry readings but are on the long run more precise.  To 
visualize the drifting effect one can plot the cumulative DRMS error value against 
the measurements taken, this is shown in Figure 5-3. 
 
From Figure 5-3 it is clear that as the robot progresses the odometer error gets 
larger, confirming the drift, while the Adafruit GPS error does not follow the same 
linear trend, thus confirming it is more precise.  To get a comparative idea of the 
DRMS errors, the mean of the cumulative DRMS error can be calculated for each 
of the five runs.  This is shown in Table 5-2 with the plots of the other four runs 
documented in Appendix B. 

Table 5-2:  Case study 1 DRMS errors 

Run DRMS error (mm) 
Odometry  Adafruit GPS 

1 3!491 2!006 
2 935 2!822 
3 1!156 2!487 
4 2!828 1!756 
5 1!612 3!326 

Mean 2!004 2!479 
 

Adafruit GPS 
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From Table 5-2 one can see the odometry errors vary by 2!556!mm.  It can 
visually be confirmed that runs 1 and 4 show the largest error due to incorrect 
heading readings in the odometry calculation.  Over all the runs the Adafruit GPS 
DRMS error varies by 1!570!mm with run 5 showing the largest error because of 
erroneous readings between waypoints 3 and 4.  Since regular GPS has a 
pseudo range accuracy of 7,8!m as stated earlier, the largest error of 3!326!mm is 
acceptable.  The mean odometry error is also less than that of the stated GPS 
error, thus in the further case studies data will be compared from different runs to 
one another with a higher certainty than the stated accuracy of the most 
inaccurate single sensor (Adafruit GPS with a stated position accuracy of less 
than 3!m) on the robot. 
 

5.2.2 Case study 2:  Altering complimentary filter constant  

The complimentary filter constant defines the percentage that the odometer and 
Adafruit GPS readings are trusted.  A value of 0,99 means that 99!% of the 
Adafruit GPS coordinates are used, and 1!% of the odometry coordinates.  To 
determine the best constant the cumulative DRMS error will be calculated for 
different constant values.  By plotting this data for three different runs it was seen 
that the optimal constant value lies between 0 and 0,02.  This interval will be 
evaluated to find the optimal complimentary filter constant.  The data for the runs 
was only captured between waypoint_0 and waypoint_1 because when a change 
in robot heading is introduced there is a possibility that some of the odometry 
error can be cancelled out.  This is not ideal in determining the filter constant that 
will also be used in cases when the odometry error is not cancelled out.  All three 
cases showed odometry drift and Adafruit GPS readings within the stated 
position accuracy, thus an ideal scenario for implementing the complimentary 
filter. 
 
Figure 5-4 shows the cumulative DRMS error for complimentary filter constants in 
the 0 to 0,02 interval for the first of the three runs. 
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Figure 5-4:  Cumulative DRMS error for different complimentary filter constants 

 
From Figure 5-4 it can be seen that a constant of 0,001 gives a minimum 
cumulative DRMS error.  Figure 5-5 shows the navigated map for a constant of 
0,001 between waypoint_0 and waypoint_1, and Figure 5-6 the cumulative 
DRMS error. 
 

 

Figure 5-5:  Case study 2 navigated map 
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Figure 5-6:  Case study 2 cumulative DRMS error 

Appendix C contains the cumulative DRMS error for complimentary filter 
constants in the 0 to 0,02 interval for the other two runs.  For these runs the 
optimal complimentary filter constant was also found to be around 0,001.  The 
navigated maps and cumulated DRMS errors for these runs at the optimal 
complimentary filter constants are also included in Appendix C.  Table 5-3 shows 
a summary of the mean accumulated DRMS errors for the three runs with a 
complimentary filter constant of 0,001.  All further case studies will use a 
complimentary filter constant of 0,001. 

Table 5-3:  Case study 2 DRMS errors 

 DRMS error (mm) 
Odometry Adafruit GPS Complimentary filter 

Run 1 426 925 330 
Run 2 1!694 1!789 1!626 
Run 3 1!325 1!274 1!297 

 

5.2.3 Case study 3:  Adafruit GPS DGPS 

Here the effect on the DRMS error will be investigated when the DGPS capability 
of the Adafruit GPS is switched on.  It must be noted it took between 12 − 15!min 
for the Adafruit GPS to find an EGNOS fix.  The navigated map result is shown in 
Figure 5-7 and cumulative DRMS error plot in Figure 5-8. 

Adafruit GPS 
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Figure 5-7:  Case study 3 navigated map 

 

 

Figure 5-8:  Case study 3 cumulative DRMS error 
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With the DGPS on, the mean accumulated DRMS errors as shown in Table 5-4 
were calculated: 

Table 5-4:  Case study 3 DRMS errors 

DRMS error (mm) 
Odometry Adafruit GPS Complimentary filter 
2!429 1!833 1!743 

 
In the first case study it was seen that the mean deviation for the Adafruit GPS 
without DGPS enabled was 2!479!mm.  This deviation has now dropped to 
1!833!mm, meaning the complimentary filter output will also be more accurate. 
 

5.2.4 Case study 4:  Robot ground velocity 

Here the effect on the DRMS error will be investigated when the wheel velocity is 
increased from the default 30!rpm (robot velocity of 0,313!m · s!!), in increments 
of 10!rpm until 60!rpm is reached.  Tests at higher velocities could not be 
conducted because the robot platform began moving too much to provide a 
stable platform for the laptop.  With the robot moving at different velocities the 
following mean accumulated DRMS errors were calculated: 

Table 5-5:  Case study 4 DRMS errors 

Run speed DRMS error (mm) 
Odometry Adafruit GPS Complimentary filter 

30!rpm 2!854 1!756 1!631 
40!rpm 2!442 2!134 2!824 
50!rpm 5!515 1!697 3!007 
60!rpm 7!006 2!286 4!153 

 
From Table 5-5 it can be seen that only at 30!rpm the complimentary filter is 
effective, by yielding a result that is less erroneous than the other individual 
sensors.  At 40!rpm there were long periods during which the Adafruit GPS gave 
the same positional data, resulting in the complimentary filter being more 
inaccurate than both the individual sensors.  At 50 and 60!rpm the odometry 
information becomes very unreliable, this is because there is too much pitch and 
roll present and the compass is unable to compensate for this resulting in 
heading readings that vary even though the robot is moving in a straight line.  
The pitch and roll effect is even greater at the level of the compass since it is 
mounted higher than the robot platform.  It is concluded that 30!rpm is the 
maximum speed at which experimental data can be gathered.  The navigated 
maps and cumulated DRMS errors for these runs are included in Appendix D. 
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5.2.5 Case study 5:  Wheel slippage 

To get wheel slippage the robot was lifted from the ground for 10!s at the halfway 
point between each of the waypoints.  Figure 5-9 shows the result of the 
individual measurements, and Figure 5-10 shows the cumulative error. 
 
 

 

Figure 5-9:  Case study 5 navigated map 

Adafruit GPS 
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Figure 5-10:  Case study 5 cumulative DRMS error 

With the wheel slippage present the DRMS errors shown in Table 5-6 were 
calculated: 

Table 5-6:  Case study 5 DRMS errors 

DRMS error (mm) 
Odometry Adafruit GPS Complimentary filter 
3!328 1!801 1!981 

 
The complimentary filter shows a larger error than the Adafruit GPS, this is 
because of the large amount the complimentary filter trusts the odometry 
readings.  And in this case the odometry readings have a large error because it 
seems that the robot has travelled further than it actually has because of the 
slippage error that is introduced to the encoders.  
 

5.2.6 Case study 6:  Magnetic interference and GPS drift 

For this study the measurement data of the fourth run of the first case study was 
taken and a virtual magnetic interference as well as GPS drift introduced 
separately.  The interference and drift was implemented by post processing the 
odometry and GPS data to include these sources of error.  The virtual magnetic 
interference point is shown in Figure 5-11.  This point will simulate a new 
magnetic north and the compass will trust this simulated north between 20 to 
30!% while trusting the real north the rest. 
 

Adafruit GPS 
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Figure 5-11:  Map to be navigated 

 
Figure 5-12 shows the result of the individual measurements when the magnetic 
interference is introduced.  It is clear that the compass heading is greatly affected 
by the artificial magnetic north, resulting in the odometer measurements being of 
no use.  The complimentary filter shows the robot being at waypoint 0 when 
navigation is complete, this is pure coincidence and a result of the odometry 
readings cancelling themselves out. 
 
Figure 5-13 shows the cumulative error.  Because of the amount the 
complimentary filter trusts the odometry readings the complimentary error is 
larger than that of the Adafruit GPS. 
 
For the study of GPS drift the measurement data was taken and a virtual GPS 
drift of 3 − 4!m introduced.  Since regular GPS has a pseudo range accuracy of 
7,8!m as stated earlier, this is a drift of 38 to 50!% in GPS accuracy.  Figure 5-14 
shows the result of the individual measurements when GPS drift is present and 
Figure 5-15 shows the cumulative error. 
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Figure 5-12:  Case study 6 with magnetic interference navigated map 

 

 

Figure 5-13:  Case study 6 with magnetic interference cumulative DRMS error 

Adafruit GPS 
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Figure 5-14:  Case study 6 with GPS drift navigated map 

 

Figure 5-15:  Case study 6 with GPS drift cumulative DRMS error 
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With the robot moving under the different scenarios, the following mean 
accumulated DRMS errors were calculated: 

Table 5-7:  Case study 6 DRMS errors 

Scenario DRMS error (mm) 
Odometry Adafruit GPS Complimentary filter 

Magnetic interference 10!844 1!756 5!761 
GPS drift 2!828 3!958 2!784 

 
From Table 5-7 it is clear that the magnetic interference has the largest effect on 
the precision with which the robot can navigate, showing an odometry DRMS 
error of over 10!m, while the GPS drift has almost no effect because the 
complimentary output error is still less than that of the individual sensors.   
 

5.2.7 Case study 7:  One or multiple sensors fail 

In this final case study the relative navigational accuracy will be compared when 
the Adafruit GPS, encoders and compass are individually powered off during a 
navigational run.  To get consistency in the results data from the same run will be 
taken to compare the effect of sensor malfunction.  For this study the data from 
the third run of the first case study will be taken and the results are shown in 
Table 5-8. 

Table 5-8:  Case study 7 DRMS errors 

Scenario DRMS error (mm) 
Odometry Adafruit GPS Complimentary filter 

All sensors functioning 1!156 2!487 2!117 
No Adafruit GPS 1!156 26!263 20!689 
No encoders 26!263 2!487 14!438 
No compass !"# 2!487 !"# 

  
When no GPS is present the complimentary filter is skewed towards waypoint 0 
because this point is reported by the Adafruit GPS as its location as shown in 
Appendix E.  When no encoders are present the odometry information tells the 
complimentary filter that the robot is standing still, but because the Adafruit GPS 
is still sending valid data the robot position is known, but only with a precision of 
over 14!m.  When the compass is disabled the robot thinks it is heading directly 
north and the cumulated DRMS error quickly grows to a value that is too large to 
plot.  It can be concluded that if any of the sensors fail the robot is unable to 
navigate successfully between the waypoints.  The navigated maps and 
cumulated DRMS errors for these runs are included in Appendix E. 
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6 Conclusions 
This thesis investigated the navigational precision of an autonomous ground 
vehicle by fusing different sensors as a means of localization and navigation. 
Different GPS modules (regular, RTK and differential GPS) in conjunction with a 
digital compass and optical encoders were used as sensors for capturing data 
regarding the robot’s position.  The Arduino Mega 2560 with an 8-bit Atmel 
microcontroller was used to control all robot functions while MATLAB was used to 
plot all navigational output data. 
 
To implement the localization and navigation, background information had to be 
gained regarding the functioning of the GPS, motor speed control, fusion of 
sensor data and algorithms used by sensors.  After this was done all the 
hardware required to implement navigation was purchased, compatibility 
between all the components was ensured, housings for the sensors were 
manufactured, the current platform was modified and a power source sufficient to 
power everything was selected.  Next software was implemented to:  control the 
hardware, capture all the data from the sensors, fuse sensor data, map the 
environment, establish localization and navigate between waypoints and finally 
display all the captured data to the user. 
 
Once the robot platform was able to navigate using the software implemented 
experimental data was captured.  First a way of measuring the precision of the 
data captured by the sensors as the robot navigated around the map was 
needed.  To do this the precision with which the Piksi RTK GPS is able to keep 
the robot on track was tested.  It was found that the Piksi RTK GPS is able to 
represent the position of the robot within a DRMS error of 290!mm (subject to 
measurement uncertainty).  All the other tests were measured against the Piksi 
RTK GPS data to get a measure of their precision.   
 
Seven case studies were completed, starting with the robot navigating the same 
map five times to determine consistency between runs.  The mean DRMS errors 
for both the odometry and Adafruit GPS were less than the error of the most 
inaccurate sensor (Adafruit GPS), thus it was concluded that the consistency is 
sufficient for comparing data between runs.  The complimentary filter constant 
needed to be determined and over three runs it was seen that a value of 0,001 
gives the best position estimate of the robot.  It was also seen that enabling the 
DGPS capability of the Adafruit GPS showed a DRMS error decrease of 645!mm 
over the regular Adafruit GPS readings, meaning it is advantageous towards the 
complimentary filter to keep the DGPS capabilities enabled during navigation.  It 
was experimentally found that the lowest ground speed of 0,313!m · s!! showed 
the smallest DRMS error, which makes logical sense.  But by increasing the robot 
speed by a factor of two, the odometry error alone increased by 2,5 times with an 
odometry DRMS error of 7!m.  When introducing wheel slippage the odometry 
error clearly increased and had a big effect on the result of the complimentary 
filter because of the filters large dependence on the odometry measurements.  
When magnetic interference was introduced the robot was completely unable to 
navigate, while GPS drift had little effect on navigational precision.  Finally it was 
seen that whenever one of the sensors (Adafruit GPS, optical encoders and 
digital compass) fail the robot is also completely unable to navigate.   
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The high precision with which the Piksi RTK GPS is able to locate the robot gives 
it the ability to be implemented in various other autonomous and navigational 
scenarios.  From all the results obtained it can be concluded that fusing sensor 
data does make the robot localization more precise and helps when one of the 
sensors collects erroneous data for a short duration during navigation.   
 
Future work that affects the navigational precision can include the following: 

1. The use of different data fusion algorithms. 
2. The fusion of Piksi RTK GPS with odometry data. 
3. Changes in the robot platform structure to keep it level and get more 

accurate compass measurements at higher ground speeds. 
4. Sensor implementation that can detect wheel slippage and account for it. 
5. Algorithms to detect magnetic interference and counter it. 
6. Changing the ground vehicle to an aerial one. 
7. Upgrading Piksi RTK GPS direct communication antennas and testing it 

over a greater distance. 
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7 Appendix A:  RTK GPS 

 

Figure 7-1:  Run 2 RTK GPS positional data 

 

Figure 7-2:  Run 3 RTK GPS positional data 
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Figure 7-3:  Run 4 RTK GPS positional data 

 

Figure 7-4:  Run 5 RTK GPS positional data 
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8 Appendix B:  Case study 1 

 

Figure 8-1:  Case study 1 navigated map run 2 

 

Figure 8-2:  Case study 1 cumulative DRMS error run 2 

Adafruit GPS 

Adafruit GPS 
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Figure 8-3:  Case study 1 navigated map run 3 

 

Figure 8-4:  Case study 1 cumulative DRMS error run 3 

Adafruit GPS 

Adafruit GPS 
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Figure 8-5:  Case study 1 navigated map run 4 

 

Figure 8-6:  Case study 1 cumulative DRMS error run 4 
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Figure 8-7:   Case study 1 navigated map run 5 

 

Figure 8-8:  Case study 1 cumulative DRMS error run 5 

Adafruit GPS 
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9 Appendix C:  Case study 2 

 

Figure 9-1:  Cumulative DRMS error for different complimentary filter constants run 2 

 
 

 

Figure 9-2:  Case study 2 navigated map run 2 
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Figure 9-3:  Case study 2 cumulative DRMS error run 2 

 

 

Figure 9-4:  Cumulative DRMS error for different complimentary filter constants run 3 
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Figure 9-5:  Case study 2 navigated map run 3 

 

Figure 9-6:  Case study 2 cumulative DRMS error run 3 
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10 Appendix D:  Case study 4 

 

Figure 10-1:  Case study 4 navigated map 30 rpm 

30 rpm 

 

Figure 10-2:  Case study 4 cumulative DRMS error 30 rpm 
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Figure 10-3:  Case study 4 navigated map 40 rpm 

 

Figure 10-4:  Case study 4 cumulative DRMS error 40 rpm 
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Figure 10-5:  Case study 4 navigated map 50 rpm 

 

Figure 10-6:  Case study 4 cumulative DRMS error 50 rpm 
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Figure 10-7:  Case study 4 navigated map 60 rpm 

 

Figure 10-8:  Case study 4 cumulative DRMS error 60 rpm 
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11 Appendix E:  Case study 7 

 

Figure 11-1:  Case study 7 navigated map no Adafruit GPS 

 

Figure 11-2:  Case study 7 cumulative DRMS error no Adafruit GPS 
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Figure 11-3:  Case study 7 navigated map no encoders 

 

Figure 11-4:  Case study 7 cumulative DRMS error no encoders 

Adafruit GPS 

Adafruit GPS 

Stellenbosch University  https://scholar.sun.ac.za



 
97 

 

Figure 11-5:  Case study 7 navigated map no compass 

 

 

Figure 11-6:  Case study 7 cumulative DRMS error no compass 
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