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Abstract 

The pronounced effect of the caustic cyanide (NaOH-NaCN) pre-treatment step of the 

Anglo American Research Laboratory (AARL) gold (Au) elution process has been 

widely investigated. However, research into the reaction kinetics of this step is lacking 

and a set industry standard is yet to be determined, i.e., pre-treatment temperature, 

contact time and reactor conditions (reactor design and agitation). Among these reactor 

conditions, the effect of agitation that significantly improves mass transfer processes 

has not been investigated in the presence of NaOH-NaCN on Au elution recovery. This 

present study investigates the role of cyanide ( CN ) during pre-treatment as well as the 

effect of temperature, contact time and agitation speed on the Au elution recovery. A 

suitable elution mechanism was proposed from the results obtained.  

Experiments were statistically designed using a Box Behnken experimental design. The 

agitation (stirring speed) was correlated by Power number and Reynolds number. 

It was shown that Au elution recovery increased by approximately 15% after 6 Bed 

volumes (BVs) as the pre-treatment temperature increased from 25°C to 80°C which is 

in agreement with findings by previous researchers. The effect of contact time on Au 

elution recovery was found to be statistically insignificant between 15 and 45 min. At 

25oC, an increase in the recovery of Au of about 4% was seen from 15 to 45 min. 

Based on the trends of the experimental result and the validity of the statistically 

determined model to predict the effect of pre-treatment parameters on Au elution 

recovery, the effect at < 15 min or > 45 min can also be estimated from the result. An 

increase in the pre-treatment time had an insignificant effect on the subsequent elution 

recovery at 53oC and 80oC. It was suggested that an increase in the temperature 

minimises the effect of contact time on the overall Au elution recovery. The effect of 

agitation showed a decrease of about 10% in Au elution recovery when the agitation 

speed was increased from 0 to 1200 rev/min. The effect of agitation speed was more 

significant at 80oC. Further evaluation of solid-liquid mass transfer coefficient  SLk  of 

CN  in the pre-treatment medium showed no significant change in the value of SLk  

from 0 to 1200 rev/min. The results obtained confirmed that the elution process was not 

limited by diffusion. 
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Several researchers have proposed different elution mechanisms with regards to the 

functional role of CN . These mechanisms were evaluated based on the results of the 

current study. It was found that the mechanism where the CN  is involved in a specific 

chemical reaction at the carbon surface which increases the negative charge density 

and renders the surface less receptive for adsorption, was suggested to be more 

plausible than the oxidation and hydrolysis of CN . Further investigation on loaded 

activated carbon that was thermally regenerated showed that CN  is required to 

convert solid Au particle to soluble  

2CNAu  which will require longer pre-treatment 

times and higher concentrations of CN . Finally, the relevance of this study was shown 

to be applicable in gold processing plants where a significant amount of Au remains on 

carbon after elution, particularly where CN  free elution is being practised in order to 

minimise Au loss with the tailings dam.  
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Opsomming 

Die beduidende effek van die bytende sianiedvoorbehandeling stap vir die Anglo 

Amerikaanse Navorsing Laboratorium (AARL) goud eluering proses is al deeglik 

bestudeer. Nietemin is navorsing oor die reaksie kinetika gebrekkig en ŉ 

industriestandaard moet nog bepaal word m.b.t. voorbehandelingstemperatuur, tyd en 

reaktor toestande (reaktorontwerp en menging). Die effek van menging op Au 

herwinning in die teenwoordigheid van NaOH-NaCN is nog nie ondersoek nie. Die 

huidige werk bestudeer die rol van CN gedurende die voorbehandelingstap sowel as 

die effek van temperatuur, kontaktydperk en roerderspoed op die herwinning van goud 

deur eluering. ŉ Gepaste eluerings-meganisme is voorgestel gebaseer op die resultate 

wat verkry is.  

Eksperimente is statisties ontwerp deur gebruik te maak van ŉ Box Behnken 

eksperimentele ontwerp met drie faktore en drie vlakke. Veranderlikes soos 

reaktorontwerp, stuwerdeursnee asook die vorm van die stuwer is saamgegooi met 

roerderspoed en is gekorreleer deur ŉ mag-nommer en ŉ Reynolds getal.  

Daar is gesien dat verhoging in voorbehandelingtemperatuur vanaf 25°C tot 80°C die 

herwinning van goud deur eluering verhoog het met nagenoeg 15% na afloop van 6 

bedvolumes. Hierdie waarneming het ooreengestem met bevindings van ander 

navorsers. Daar is bevind dat die effek van kontaktydperk statisties onbeduidend was 

tussen 15 tot 45 min. ŉ Verlenging van voorbehandelingtydperk het ŉ onbeduidende 

uitwerking op herwinning deur eluering by 53°C en 80°C gehad. Dit is voorgestel dat die 

verhoging in temperatuur die effek van kontaktydperk minimeer op algehele goud 

herwinning deur eluering. ŉ Verhoging in roerderspoed vanaf 0 tot 1200 rpm het ŉ 

afname van nagenoeg 10% goud herwinning van eluering tot gevolg gehad. Die effek 

van roerderspoed was meer beduidend by 80°C.  ŉ Ondersoek van die vloeistof-

vastestof massa-oordrag koëffisiënt (kSL) van CN  in die voorbehandelingmedium het 

geen beduidende verandering getoon met verhoging in roerderspoed vanaf 0 tot 1200 

rpm nie. Resultate het daarop gedui dat die elueringsproses nie beperk was deur 

diffusie nie.  

Verskeie navorsers het verskillende eluerings-meganismes voorgestel m.b.t. die 

funksionele rol van CN . Die voorgestelde meganismes is ondersoek deur vergelyking 

met resultate wat verkry was tydens eksperimentele ondersoek van voorbehandelings 
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veranderlikes. Die meganisme waar CN  betrokke is by ŉ spesifieke chemiese reaksie 

op die koolstof oppervlak wat die negatiewe ladingsdigtheid verhoog en sodoende die 

oppervlak minder vatbaar maak vir adsorpsie, is voorgestel as meer waarskynlik as die 

oksidasie en hidrolise van CN . Ondersoek van termiesgeregenereerde 

geaktiveerdekoolstof het gewys dat CN- nodig is om soliede Au te omskep na oplosbare 

 

2CNAu  wat ‘n langer voorbehandelingstydperk en hoër CN- konsentrasies benodig. 

Ten slotte, die toepaslikheid van hierdie studie is beduidend waar goud in 

goudverfyningsaanlegte agterbly op koolstof na eluering en veral waar sianied-eluering 

toegepas word met die oog op vermindering van goudverliese op geëlueerde koolstof. 
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Nomenclature 

Symbol Description Unit 

A Loading capacity mg/g 

C Concentration of CN- in the bulk solution at time t g/L 

C* Concentration of CN- at the carbon surface g/L 

CCA Concentration of calcium g/L 

Cf Final concentration of CN- g/L 

Ci Initial concentration of CN- g/L 

CK Concentration of Potassium g/L 

Co Concentration at time zero g/L 

Cw Concentration of solids by weight in slurry % 

D Impeller Diameter m 

ɛ  Experimental error  

N Rotational speed of impeller rev/min 

Np Power number  

P Power consumption Watts 

R Reynolds number  

Vf Final volume of water mL 

Vi Initial volume of water mL 

Y Percentage Recovery % 

μL Viscosity of Liquid N.s/m2 

μm Viscosity of mixture N.s/m2 

ρL Density of Liquid kg/m3 

ρm Density of mixture kg/m3 

ρs Density of solid kg/m3 

as Interfacial area m2/m3 

ɸ Volume fraction  
 

Activated carbon loading in solution g/L 

ρ
c
 Density of the activated carbon kg/m3 

dc Diameter of the activated carbon m 

kSL Solid-liquid mass transfer coefficient cm min-1 

x1 Temperature  oC 
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x2 Contact Time  minutes 

x3 Agitation speed  rev/min  

Abbreviations 

Abbreviation Description 

AARL Anglo American Research Laboratory 

AC Activated carbon 

AC-Au Activated carbon loaded with gold 

ANOVA Analysis of Variance 

AV Average value 

BB Box Behnken 

BV Bed volumes 

CIL Carbon in leach 

CIP Carbon-in-pulp 

CV Coefficient of variation 

FTIR Fourier transform infrared spectroscopy 

ICP_MS Inductively Coupled Plasma-Mass Spectrometry 

L Linear 

Min Minutes 

PGM Platinum group metals 

Q Quadratic 

SD Standard Deviation 

SEM Scanning Electron Microscopy 

TPD Temperature programmed desorption 

UAC Unloaded activated carbon 

XANES X-ray Absorption Near Edge Structure 

XPS X-ray Photoelectron spectroscopy 
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Subscript 

CA Calcium 

C Carbon 

F Final 

I Initial 

K Potassium 

L Liquid 

M Mixture 

O Zero 

P Power 

S Solid 

sL Solid-Liquid 

W Weight 

  

Superscript 

* Carbon surface 
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1 Introduction 

1.1 Background 

Two major elution techniques have been widely used for gold (Au) elution recovery from 

activated carbon using caustic cyanide (NaOH-NaCN) solution (Davidson and Bailey, 

1991). These are the Anglo American Research Laboratory (AARL) elution and the 

Zadra elution techniques. The AARL involves pre-treatment of the granular activated 

carbon adsorbed with gold-cyanide [1 

2Au(CN) ] in NaOH-NaCN solution, followed by 

elution with hot (110oC–130oC) deionised water (Davidson and Schmidt, 1986). Zadra 

elution involves recirculation of hot (≈95°C) eluant containing NaOH-NaCN solution 

through electrowinning cells connected in series (Zadra et al., 1950). Of these two 

elution techniques, the AARL is the most widely used due to its numerous advantages; 

the major one being its short elution time and improved Au elution recovery with high 

“barrenness” of eluted carbon (Marsden and House, 2006).  

Pre-treatment of Au loaded activated carbon with NaOH-NaCN solution and high elution 

temperature have been investigated to have a significant effect on Au elution recovery 

in AARL technique (Davidson, 1993). However, no set standard regarding the pre-

treatment conditions i.e., pre-treatment temperature (which is the measured 

temperature of NaOH-NaCN solution in a vessel containing Au loaded carbon before 

the introduction of eluant) and contact time exists in the industry. According to Van 

Deventer and Van Der Merwe (1994), high pre-treatment temperature yields improved 

Au elution recovery than low temperature. The researchers suggested that this was 

attributed to improved decomposition of cyanide ( CN ), but the conclusion was not 

proven.  

Van Deventer and Van der Merwe (1995) observed an improved decomposition of CN  

by increasing the agitation speed after 70 hours. However, the subsequent effect of 

agitation speed on elution recovery of Au was not investigated. In this vein, little is 

                                            

 

1
 



2Au(CN)  is a specie of Au formed after leaching that is adsorbed onto activated carbon. 
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known about the combined effect of temperature and agitation speed for a set time, on 

the behaviour and decomposition of CN  during pre-treatment and the elution process 

that follows. 

Clear understanding of the role and behaviour of NaOH-NaCN during pre-treatment in 

the presence and absence of activated carbon will provide insight into the possible 

elution mechanisms involved. Following this, the effects of time, temperature, agitation 

and their interactions were investigated in order to determine how it affects the 

subsequent elution process. Results obtained on laboratory scale were therefore, 

related to plant conditions. 

1.2 Problem statement 

Over the years in gold industries, variability exists among the pre-treatment factors, 

particularly the pre-treatment temperature and contact time (Davidson and Bailey, 

1991). Au elution recovery, with regards to these factors has not received much 

attention. The effect of pre-treatment temperature on CN  decomposition that 

consequently improves Au elution recovery has been suggested (Van Deventer and 

Van der Merwe, 1993). Similarly, the effect of agitation speed on the decomposition of 

CN  for a set contact time has been investigated (Van Deventer and Van der Merwe, 

1995). However, the effect of agitation speed on Au elution recovery and its effect on 

the mass transfer of CN  during pre-treatment have not been reported. Due to lack of 

understanding of the effect of temperature, contact time and agitation speed on the Au 

elution recovery and the associated CN  mass transfer, it is difficult to carry out 

optimisation of gold elution process. It was thus the primary objective of this study to 

investigate the effect of these pre-treatment process parameters on Au elution 

recovery. 

1.3 Research questions 

 What are the roles and behaviour of NaOH-NaCN on Au loaded activated carbon 

during pre-treatment? 

 Is there any significant effect of pre-treatment temperature, contact time and 

agitation speed on Au elution recovery? 
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 What are all the various proposed elution mechanisms available? 

 Which elution mechanism will suitably explain the elution mechanism based on 

the outcome of the second research question? 

 What is the significance of this research to the gold industry? 

1.4 Research objectives 

In order to gain better understanding of the pre-treatment parameters affecting Au 

elution recovery, the following were the objectives of this project: 

 To investigate the effects of pre-treatment temperature, contact time, agitation 

speed and their combined effect on Au elution recovery. 

 To review the existing theories on elution mechanisms and explain the fitting 

elution mechanism based on the results obtained. 

1.5 Project scope 

This work focused on the AARL elution process with the pre-treatment operation 

conducted at a fixed concentration of NaOH-NaCN. The effects of time, temperature, 

agitation speed and their interactions on Au elution recovery were investigated. The 

behaviour of CN  under these parameters was monitored on activated carbon and in 

solution, to provide insight into the rate controlling process. 

1.6 Significance of the project 

This work will provide an understanding of the effects of pre-treatment temperature, 

contact time and agitation speed on Au elution recovery. Based on this insight and the 

outcome from the effect of these parameters on Au elution recovery, a better 

explanation on the appropriate elution mechanism from the already proposed 

mechanisms by other researchers will be provided. Furthermore, this study will also 

provide recommendations for South African gold industries on possible ways of 

improving Au elution recovery. 
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1.7 Structure of thesis 

This study is presented as follows:  

Chapter 1 

This chapter gives a broad view of what this research is about. It also states the 

problem statement, objectives and scope of the project. 

Chapter 2 

This chapter is a review chapter which starts with the broad view of gold processing. It 

comprises a review of the application and properties of activated carbon in gold 

processing. The previous findings of Au adsorption and the factors that affect 

adsorption and elution of Au from activated carbon were also reported in this chapter. 

Furthermore, the behaviour of CN  was reviewed. The various pre-treatment 

operations of Au with NaOH-NaCN solution and the adopted parameters during pre-

treatment by different industries were reported. 

Chapter 3 

The chapter describes the materials used, the methods and analytical techniques 

adopted in the experimental work. The approach to the design of experiments, choice of 

factor levels and analytical techniques were also discussed. 

Chapter 4 

The mechanisms of CN  loss from pre-treatment solution were discussed and the 

recovery due to elution at different combinations of pre-treatment parameters were 

presented and discussed. A result of the investigated parameters applied to Au loaded 

carbon that has been eluted and regenerated from gold plant was also reported. Based 

on the results, a possible elution mechanism was suggested. 

Chapter 5 

Results obtained were statistically analysed. Possible errors that might be associated 

with the experiment were estimated and discussed. 

Chapter 6 

The main conclusions drawn from the elution results at different pre-treatment 

parameters as well as the possible mechanism of pre-treatment were presented in this 

chapter. Recommendations on the practical implication were also presented and future 

works to further improve on it.  
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2 Literature review: Gold process, activated carbon, adsorption 

and elution  

2.1 Overview of gold process 

A simplified flow diagram of a typical gold processing operation plant from the ore to the 

final smelting stage is shown in Figure 2.1. The processes involved are divided into six 

major steps for this overview study (Table 2.1). These steps include crushing and 

milling, thickening and oxidation of the ore, leaching, adsorption, elution and electro-

winning. The table also shows a brief description of each stage, equipment used as well 

as the typical operating conditions. 

From Figure 2.1, after comminution, the ore is transferred to the leaching tanks. The 

process of Au leaching with cyanide solution, also known as cyanidation, involves 

dissolution of finely crushed Au ore in a cyanide solution to form Au complex ][Au(CN)2

  

(La Brooy et al., 1994). The process of cyanidation is represented by the Elsner’s 

equation given by Equation 2.1 (Gavin and Monhemius, 2006). 

    4OHCN4AuO2HO8CN4Au 222                                                2.1 

From Equation 2.1, sufficient oxygen and CN  is required to favour the reaction to the 

right (Prasad et al., 1991). However, the CN  concentration is controlled so as to favour 

the forwad reaction while preventing environmental pollution by evolution of HCN gas. 

This also reduces the costs that are associated with excessive usage (Metalliferous 

mining  processing, 2010 a).  

The Au in the pregnant leach solution (PLS) from the leaching tanks is adsorbed onto 

activated carbon in a carbon-in-pulp (CIP) plant (Barnes et al., 2000). The CIP plant is 

further discussed in Section 2.3.1. The adsorbed 

2Au(CN)  is concentrated by elution 

using water as an eluant in an elution column. Au elution is further discussed in Section 

2.8. The barren carbon that has been stripped of Au is reactivated in a kiln at a 

temperature range of about 200 – 700oC to burn off the volatile and non-volatile 

adsorbates (Baily, 1987). These adsorbates exist either as organic (machinery oil from 

mining equipment, decomposed products of vegetation accompanied during mining) 

and inorganic substances (calcium from lime in the leaching stage, sodium salts, as 
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well as fine ore minerals which includes aluminate, complex silicates, silica and base 

metal precipitates) (Marsden and House, 2006; Fleming, 1992). Volatile adsorbate are 

vaporised and decomposed between the temperature range of 200 – 500oC while non-

volatile adsorbate are pyrolysed at higher temperature of about 500 – 700oC (Baily, 

1987). The concentrated Au solution by elution is passed through the electrowinning 

cell to produce loaded cathodes (Marsden and House, 2006). The ‘electrowon’ products 

are smelted into Au bars and transported to a gold refinery for further refining. 

Ore

Crusher

Ball mill

Pre-Leach 

thickner

Pre-areation 

tanks

Leach 

tanks

Adsorption 

tanks

Tailings 

disposal

Carbon 

Regeneration

Elution

Electrowinning
Smelting

Pure 

gold

 

Figure 2.1: Simplified flow-sheet of a gold processing plant. Modified from Mt 

Todd (2013) 
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Table 2.1: Description of gold process 

STEPS OPERATION PURPOSE(S) EQUIPMENT/REAGENTS OPERATING 
CONDITION(S) 

REFERENCES 

STEP1 Crushing and 
Milling 

Size reduction (<75 µm) 
for liberation of valuable 
metals from host rocks 
Finer grinding (<38 µm) 
is suitable for refractory 
ore 

Crushers and Ball mills Depends on the nature 
of the ore 

La Brooy et al., 1994; 
Fleming, 1992. 

STEP2(a) Thickening 
(auxiliary 
operation) 

To achieve high pulp 
density 

Pre-leached thickener Small solid density and 
high slurry fluid could 
reduce residence time of 
leaching and adsorption 

Yannopoulous, 1991; 
Fleming, 2011 

STEP2(b) Oxidation of ore 
(auxiliary 
operation) 

For refractory ore to 
passivate sulphide 
minerals that would 
consume cyanide 

Pre-aeration tanks 48 to 72 hours of 
retention time for 
complete oxidation 

Marsden and 
House, 2006; Fleming, 
1992 

STEP3 Leaching with 
cyanide, other 
reagents include; 
halides, thiourea, 
thiosulphate, 
thiocyanate, 
ammonia 

Dissolution Agitation tanks, heaps 24 hours for free milling 
ores 
48 hours for refractory 
ores 

Marsden and 
House, 2006; Aylmore, 
2005; Fleming, 1992; 
Groudev et al., 1996 

STEP4 Adsorption Selective adsorption of 
precious metals 

Carbon-in-pulp plant, Carbon-
in-leach, Resin-in-pulp, 
activated carbon, resins 
(adsorption tanks) 

Room temperature, 
presence of cations  

Goyal, 2010, Stanley, 
1987 
 

STEP5 Elution Removal of adsorbed 
gold (stripping) 

Elution columns High temperature (110–
130

o
C), pressure of 

230 kPa, low ionic 
strength, high cyanide 
concentration 

Jeffery et al., 2010 

STEP 6 Electrowinning Purification Electro-winning cells Applied voltage > 
reversible electrode 
potential 

Marsden and House, 
2006; Conradie et al., 
1995; Filmer, 1982 
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2.2 Properties and application of activated carbon  

The application of activated carbon either in powdered or granulated form in gold 

processing has been widely used since the 1880s (Habashi and Fathi, 2005; Bailey 

1987). The unique feature that made it gain acceptance in Au process is its large 

internal surface area (>400m2/g) and preferential selectivity for precious metals [Au 

and silver (Ag)] at low metal concentration (0.2 mg/L or less) in pulp (Yalcin and Arol, 

2002; McDougal and Hancock, 1981). Although the powdered form of the activated 

carbon possesses a larger internal surface area of about 1500 m2/g (Basal and 

Goyal, 2010), it is less preferable to granulated carbon due to Au loss that is 

associated with carbon fines (Stanley, 1987). 

Spent activated carbon can be reused after reactivation (Marsden and House, 2006). 

Reactivation below 600oC burns off the volatile materials while higher temperature 

(700–1000oC) burns the carbon skeleton thus increasing the pores of carbon (Marsh 

and Reinoso, 2006; Bailey, 1987). These pores have been further classified into 

macro pores (60–10000 nm), meso-pores (3–60 nm), micro pores (less than 

3 nm) (Mahapatra, 2009). A typical activated carbon is shown in Figure 2.2. Some 

examples of activated carbons that have been investigated apart from coconut shell 

are peach stones, apricot stones, hazelnut shells (Yalcin and Arol, 2002), 

charcoal (McDougall and Hancock, 1981) and macadamia nut shells (Poinern et al., 

2011). 

 

Figure 2.2: Activated carbon derived from coconut shell 
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Several researchers (Ibrado and Fuerstenau, 1995; 1992; Klauber, 1991; Cho et al., 

1979) have reported a likely mechanism of Au adsorption onto activated carbon on 

the basis of functional group characterisation. A mechanism of Au elution from 

carbon surface was also proposed to be as a result of modification of functional 

group of activated carbon (Adams and Fleming, 1989). Hence the study of the 

functional group of activated carbon provided a plausible elution mechanism from the 

result of the effect of pre-treatment parameters investigated in this study. The review 

of the structure, properties and functional groups in activated carbon is discussed in 

the next section. 

2.2.1 Structure and functional groups in activated carbon 

Fullerene, carbyne, diamond and graphite are the widely known crystalline forms of 

carbon (Jia, 2000). According to McDougall and Hancock (1981), it was reported that 

the arrangement of carbon atoms is similar to that of a graphite structure through X-

ray analysis (Figure 2.3). 

 

 Figure 2.3: Graphitic structure of activated carbon. Redrawn from McDougall 

(1981). 

The activation process in the presence of oxygen results in formation of oxygen 

contacting functional groups (Bansal and Goyal, 2010). Other elements that can be 

present during carbonisation apart from carbon and oxygen are sulphur and 
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hydrogen (Bansal and Goyal, 2010). Jia (2000) reviewed various attempts that have 

been used to categorise the oxygen functional groups on carbon. These are 

selective neutralisation, temperature programmed desorption (TPD), Fourier 

transform infrared spectroscopy (FTIR), specific chemical reaction, potentiometric, 

polarography, X-ray photoelectron spectroscopy and X-ray absorption near edge 

structure (XANES). Some of the suggested functional groups due to these 

investigations are carboxyl, lactones, phenols, anhydrides, ketones, quinones, 

hydroquinones, aldehydes and ethereal structures (Jia, 2000; McDougal and 

Hancock, 1981). Jia et al. (1998) suggested that nitrogen functional groups are of 

less importance to 

2Au(CN)  adsorption in comparison to oxygen functional groups. 

Some examples of oxygen functional groups are shown in Figure 2.4. However, 

regarding the significance of oxygen for adsorption, Ibrado and Fuerstenau (1992; 

1995) proposed that oxygen functional group was less significant for the adsorption 

of 

2Au(CN)  after increasing the quantity of oxygen. The authors suggested that the 

degree of adsorption is strongly dependent on the graphite planes of the activated 

carbon 

c

o

OH

O

H

O

Carboxyl group
Phenolic 

Hydroxyl group

Quinone type carbonyl 

group

 

Figure 2.4: Examples of Oxygen functional group. Redrawn from Jia (2000) 

2.3 Adsorption  

According to Adams and Nicol (1984) and Adams (1983), 

2Au(CN)  adsorption is 

thermodynamically reversible. Therefore, Au elution recovery is a function of the 

adsorption stage taking into consideration the factors that influence adsorption (Van 

der Merwe, 1991). This justifies the need for a detailed discussions on Au adsorption 
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process. Two major adsorption techniques are typically used. These are CIP and 

carbon in leach (CIL) technique. These are described in the following sections. 

2.3.1 Carbon in pulp process  

The CIP circuit is a well-known technology in gold processing. It consists of the 

adsorption, elution and carbon regeneration stage as shown in Figure 2.5 (La Brooy 

et al., 1994; Laxen, 1979). 

New activated 

carbon

Recycled 

carbon

Regeneration 

stage

Elution 

stage

Activated carbon 

flow

Pulp flow

Activeted 

carbon

Ore

Adsorption stage

 

Figure 2.5: CIP circuit modified from Lima (2007) 

The leached pulp in the adsorption stage ( Figure 2.5) is allowed to flow in a counter-

current direction with the activated carbon by means of an airlift in each tank (Laxen, 

1979). The average retention time ranges between 20–60 min (Laxen, 1979). 

However, with the introduction of newer technology such as pump cells, Buson et al. 

(1999) reported that 15–20 min/stage residence times were obtained and the plant 

size was reduced thrice compared with a conventional CIP plant. Pump cell offers an 

advantage of agitation, screening and pumping within the adsorption tank 

(Dippenaar and Proudfoot, 2005). The agitation provided by the pump cell aids the 
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mass transport of Au onto activated carbon (Fleming, 2011). The resulting outcome 

of the counter-current flow is the depletion of Au in the pulp and enrichment of Au on 

the activated carbon (Davidson et al., 1982; Fleming, 1981). The activated carbon 

loaded with Au is then transferred to the elution stage. 

True equilibrium is rarely achieved during adsorption even after several weeks of 

adsorption (Fleming and Nicol, 1984). As such, several investigations have been 

conducted to improve adsorption efficiency. Staunton (2005) summarised a number 

of factors that are critical in a CIP plant for optimum carbon management and design 

consideration that can improve adsorption efficiency. These are: agitation with the 

use of pump cell (discussed above), the number of adsorption tanks, soluble Au loss, 

carbon residence time, carbon concentration, and target Au loading among other 

factors. These factors are amplified in the next section. 

2.3.1.1 Adsorption tanks and gold loss 

According to Stange (1991), increasing the number of adsorption tanks with low 

amount of carbon in each tank offer the advantages of improving adsorption of Au; 

reducing Au loss associated with fine carbon particle due to reduced abrasion, 

shortens retention time and lessens Au lock up. The number of adsorption tanks 

usually ranges from 4 to 10 but up to 7 adsorption tanks could be beneficial. 

Insignificant effect in Au adsorption is noticed with further increase in the number of 

adsorption tanks and loss might be recorded in terms of cost incurred on the tanks 

(Adams, 2005). 

2.3.1.2 Carbon concentration, residence time and target gold loading 

Previous reports have shown that most CIP plants operate at carbon concentrations 

of about 20–25 g/L and retention time of about an hour per stage (Bailey, 1991; 

Laxen, 1984). These conditions were believed to improve adsorption rate and 

satisfactory Au adsorption (Laxen et al., 1979). However, plant operation and 

performance under these conditions have been underutilised (Fleming et al., 2011). 

Furthermore, through a modelling approach, Fleming et al. (2011) showed that a 

number of factors can be varied in order to optimise the adsorption process. These 

are: the number of adsorption tanks, amount of carbon in the adsorption tanks, rate 

of carbon transfer through the CIP plant, target concentration of Au in solution at the 
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last adsorption tank and the amount of Au remaining on carbon after elution (Fleming 

et al., 2011). A high activity for eluted carbon is important to adsorb the trace metals 

in the last adsorption tank and minimise Au loss into the tailing solution (Snyders et 

al., 2013; Fleming et al., 2011). 

2.3.2 Carbon in leach 

Carbon in leach (CIL) is a modification of CIP involving simultaneous leaching and 

adsorption by the addition of activated carbon in the leaching vessel (Stange, 1999). 

A major advantage associated with this is cost reduction in terms of replacement of a 

series of tanks used in CIP plant with a single large vessel (Fleming, 1992). Other 

advantages of CIL over CIP are in the adsorption of low grade ores that require 

longer leaching time. Another advantage is the preferential adsorption of 

2Au(CN)

complex onto activated carbon instead of the carbonaceous material (Stange, 1999). 

2.4 Adsorption mechanism 

Various mechanisms of adsorption of 

2Au(CN)  have been proposed by numerous 

researchers (Ibrado and Fuerstenau, 1992; Adams and Fleming 1989; Cho et al., 

1979) in which the exact mechanism for 

2Au(CN)  adsorption is yet to be established 

(Free, 2013). Possible reasons for the different proposed mechanisms was 

suggested to be due to different experimental conditions (high temperature, 

presence of acid or high alkalinity), types of carbon used and uncertainty of the 

adsorbed Au species (Van Deventer, 1993). A summary of the proposed 

mechanisms by various researchers is presented in Table 2.2 
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Table 2.2: Proposed adsorption mechanisms 

Theory Suggested adsorption mechanisms Supporting authors 

A reduction mechanism of 

2Au(CN)   

 

Green (1913), Feldtman 

(1914) Edmands (1917),  

B electrostatic attraction of Au(CN)
2

-
 on the 

positively charged surface of the carbon 

Garten and Weiss (1957), 

Cho et al. (1979), 

Kuzminykh and Tjurin 

(1968) 

C ion pair mechanism with cation in the form 

of M
n+

[Au(CN)
2

-
]
n
 

Davidson (1974), McDougall 

et al.(1980), Gross and 

Scott (1927), Adams and 

Fleming (1989), Tsuchida et 

al. (1984), Cho and Pitt 

(1979) 

D non- ion pair mechanism on graphite 

plane in the form of Au(CN)
2

-
 

Jones et al., (1989); Ibrado 

and Fuerstenau (1992; 

1995); Klauber (1991) 

Theory A is reduction mechanism, B is electrostatic attraction mechanism, C is ion-pair mechanism 
and D is non-ion pair mechanism. 

2.4.1 Theory A: Reduction mechanism  

The reduction mechanism was based on the explanation that the leached 

2Au(CN) is 

reduced to AuCN that was formed as precipitate on the carbon surface (Gross and 

Scott, 1927 reported by Bailey, 1987). This precipitation was suggested to take place 

by decomposition reaction given by Equation 2.2.  

Au(CN)
2

-
+ H

+
↔ AuCN(s)+HCN        2.2 

2.4.2 Theory B: Electrostatic attraction mechanism 

According to this theory, anions [ 

2Au(CN) ] are electrostatically adsorbed to the 

positive carbonium sites of activated carbon given by Equation 2.3 (Garten et al., 

1957): 
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o
c

R

H
+

+ 
1

2
O

2
 + K[Au(CN)2]+ CO2→ 

o
c

R

Au(CN)2

+ KHCO3   2.3 

Further investigation by Kuzminykh and Tyurin (1968) suggested that the nature of 

the adsorbed 

2Au(CN)  is not the same in both acidic and alkaline medium. In acidic 

medium, it exists as HAu(CN)
2
 on the surface of the carbon through capillary 

condensation mechanism and in alkaline medium, through electrostatic attraction 

mechanism, shown by Equation 2.3. 

2.4.3 Theory C: Ion pair mechanism 

Davidson (1974) supported by McDougall et al. (1980), concluded that 

2Au(CN) does 

not get adsorbed without the presence of stabilising cations in alkaline condition. It 

was further shown that the degree of adsorption depends on the nature of the 

cations. Divalent alkaline metals such as Ca2+ and Mg2+ are more strongly adsorbed 

than monovalent alkaline metals like Na+ and K+ .(Davidson, 1974) This is generally 

represented by Equation 2.4 (Adams and Fleming, 1989): 

M
n+

+ nAu(CN)
2

-
 ↔ M

n+
[Au(CN)

2

-
]
n
        2.4 

where M
n+

 is either of Ca2+, Mg2+, H+, Li+, Na+, K+ 

2.4.4 Theory D: Non ion pair mechanism 

This theory proposed that Au is adsorbed as Au(CN)
2

-
 and does not change without 

undergoing any further chemical reaction after adsorption in alkaline solutions 

(Klauber, 1991). Ibrado and Fuerstenau (1994) suggested that this is due to 

fractional contribution of π-electron present on the carbon surface to Au. Jones et al. 

(1989), proposed that the interaction of the π-electron between 

2Au(CN) and carbon 

takes place on the basal planes (parallel to the planes of the graphite structure) of 

the activated carbon shown in Figure 2.6. 
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N C Au C N

π

 

Figure 2.6: Proposed interaction between activated carbon and 

2Au(CN)  

Redrawn from Ibrado and Fuerstenau (1994). 

2.5 Adsorbed gold species 

Understanding the nature of adsorbed Au gives insight into the requirement for 

reagents needed for the subsequent elution stage. It has been widely suggested that 

the main probable forms in which Au exists on activated carbon are: Au(s), AuCN, 

Au(CN)
2

-
 or M

n+
[Au(CN)

2

-
]
n
 (Davidson and Bailey, 1991; Adams, 1989; Gross and 

Scott, 1927). This forms the main disagreement of the adsorption mechanisms 

proposed by previous authors as discussed in section 2.4. The change in the nature 

of these species depends on temperature, pH, aging (degradation) and addition of 

CN  (McGrath et al., 2002; Van Deventer and Van der Merwe, 1993; Cook et al., 

1989). These findings were confirmed by FTIR scans and XPS analysis (Van 

Deventer and Van der Merwe, 1993). At pH less than 9.3 which is the case in acid 

washing, reaction shown in Equation 2.5 takes place on the adsorbed 

2Au(CN)  to 

form AuCN (Adams, 1990c) 

Au(CN)
2

-
+ H

+
 →AuCN+HCN        2.5 

2.6 Adsorption factors 

2.6.1 Ionic strength 

Ionic strength is usually referred to as the concentration of dissolved chemical 

constituents in solution. Ionic strength is calculated as half the product of the 

concentration of the chemical constituent and the oxidation number or charge of the 

chemical constituent (Green, 1996) .This suggest that ionic strength is dependent on 

the concentration and the charge number of the ion. According to the ion pair 
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mechanism of adsorption (Theory C), Davidson (1974) investigated the degree of 

enhanced adsorption of 

2Au(CN) with different cations. The degree of adsorption 

decreases as shown in the trend below from calcium ions (Ca2+) to potassium ion 

(K+) (Marsden and House, 2006; McDougal et al., 1980; Davidson, 1974): 

Ca2+>Mg2+>H+>Li+>Na+>K+ . 

It was concluded that strong adsorption was more favoured by the presence of 

divalent ions (Ca2+ and Mg2+) than by monovalent ions (Na+, K+). An illustration with 

Mg2+ and Na+ is shown in Figure 2.7. where the ionic strength can be suggested to 

be higher for Mg2+ due to higher oxidation number. The higher magnitude of ionic 

strength of Mg2+ suggest that it will cause better interaction with the of 

2Au(CN)  than 

Na+ as shown in Figure 2.7 

- - - - - -

+ 

Mg 

+

+ 

Mg 

+

+ 

Mg 

+

 

- -

+ 

Na 

+ 

Na 
+ 

Na 

- ---

 

Figure 2.7: Effect of cations: Redrawn from Menńe (1991) 

2.6.2 pH 

A decrease in pH of the adsorbing medium from 7 to 1 was shown to increase both 

the loading capacity and adsorption efficiency of 

2Au(CN) . (Marsden and House, 

2006). According to Adams (1989), it was suggested that Au is probably loaded as 

HAu(CN)2. This suggests that the mechanism of ion pair was not supported at this 

pH range. The presence of high concentration (100 times higher than H+) of cations 

used, causes initial adsorption of the ion pair complex at low pH (<7) which later 

reduced due to the displacement of K+ and Ca+ by H+ (acidic medium) (Adams and 

Fleming, 1989). This clearly suggests the dominance of pH in equilibrium loading 

(Fleming and Nicol, 1984). Practically, CIP plants operate at pH above 10. However, 

the adsorption rate is slower when compared to adsorption at pH below 9 (Marsden 

and House, 2006). At pH above 10, loss of CN  through hydrolysis reaction is 

reduced (Marsden and House, 2006). Further discussions on chemical behaviour of 

CN  are discussed in chapter 2.12. 
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2.6.3 Presence of oxygen  

According to Hughes et al. (1984), improved loading of 

2Au(CN)  is as a result of 

oxygen supply. Van der Merwe (1988) reported that an insignificant amount of 

oxygen was adsorbed by activated carbon present in water while substantial amount 

of oxygen was consumed during adsorption of 

2Au(CN) . The benefical effect of 

oxygen for the adsorption of 

2Au(CN)  was reported to be pronounced under the 

condition of low ionic strength (Marsden and House, 2006; Adams, 1991). At high 

ionic strength condition, which is the typical condition in most CIP plant, adsorption in 

form of ion-pair dominates (Adams, 1991)  

2.6.4 Free cyanides 

According to Marsden and House (2006), the rate of Au loading and the capacity of 

activated carbon to adsorbed Au in solution decreases with an increase in 

concentration of CN . These CN  were suggested to compete with 

2Au(CN)  for 

adsorption sites. On the other hand, Adams (1990) and Muir et al. (1988) suggested 

that oxygen aids in the catalytic oxidation of CN  to form CO3
2-

 and NH3. These 

oxidised products (CO3
2-

 and NH3) thereby hinders carbon surface from adsorption of 



2Au(CN)  through competitive adsorption (Van der Merwe, 1991). This suggest that a 

condition of low CN  concentration is recommended for Au adsorption.  

2.6.5 Temperature 

The effect of an increase in temperature on the adsorption of Au has been reported 

to have a significant effect on the equilibrium loading as well as the loading rate of 

Au (Adams and Nicol, 1984). This is because Au adsorption is an exothermic 

process (McDougal, 1980). Fleming and Nicol (1984) investigated the effect of 

different temperatures (20, 44 and 62oC) on the rate of adsorption and Au loading 

capacity on activated carbon. It was found that the rate of Au adsorption increased 

from 3400, 4190 and 4900 h-1 while Au loading capacity decreased from 73000, 

48000 and 35000 mg/L at these temperatures (20, 44 and 62oC) respectively. 

Similarly, McDougall et al. (1980) found out that an initial Au concentration of 
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180 mg/L decreased to about 140 mg/L at 80oC and approximately 70 mg/L at 30oC 

after 24 hours of adsorption time. It was suggested that the Au metal complex 

[KAu(CN)2] was highly soluble (14 times) in hot water than in cold water. 

2.7 Preliminary summary on adsorption  

Gold process was broadly reviewed with more specific discussions on the CIP plant. 

Furthermore, discussions were made about the application and properties of 

activated carbon in CIP plant. These are: the structure of the carbon atom 

arrangement and the functional groups. A detailed literature about the adsorption 

process was reviewed because 

2Au(CN)  is thermodynamically reversible (Adams, 

1983). Therefore, reversing the adsorption conditions for Au loaded activated carbon 

enhances elution. The factors that were reported to favour adsorption are: high ionic 

strength, oxygen supply under low ionic strength, low pH, low CN  concentration, 

and low temperature. This further led to the reports of various mechanisms proposed 

by different authors and the adsorption factors. Based on the understood properties 

of activated carbon, the adsorption mechanism of 

2Au(CN)  and its factors provided 

a background knowledge to propose a suitable elution mechanism after the 

investigation of pre-treatment parameters on Au elution recovery. The next sections 

focus on the elution stage, factors and its mechanisms. 

2.8 Elution 

The two major types of elution techniques that were earlier introduced in Chapter 1 

are Zadra elution and AARL elution techniques. The elution process of either Zadra 

or AARL elution process takes place in an elution column with a typical industrial 

elution column shown in Figure 2.8. 

The elution columns are made from mild steel with height of about 10 m and a 

diameter of 1.2 m which also holds pressure of about 350 kPa and accommodates 

approximately 6 tonnes of activated carbon with a lagged wall to prevent heat loss. 

These specifications vary for different companies.  
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Figure 2.8 Typical Elution columns. Sourced from Ur energy (2013) 

2.8.1 AARL elution process 

The flow sheet of the AARL elution process that is of more interest to this work is 

shown in Figure 2.9 
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NaCN
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Storage
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water 

Loaded 

Carbon

Elution

Column

Eluted 
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Heat 

Exchanger
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· Acid wash and water-wash

· Pre-treatment in 3% NaCN and 

1-2%NaoH

· Elution with deionised water at 

110
o
C -120

o
C

· Flow rate of 2bV/hr

 

Figure 2.9: Simplified flow sheet of AARL. Modified from Stange (1991). 

The AARL elution technique was developed to ensure improved Au elution recovery 

and reduced operating time to the Zadra elution technique. In the Zadra elution 

technique, the eluant is recirculated with electrowinning cells connected in series 

(Zadra et al., 1950). It was believed that some of the desorbed Au gets reabsorbed 

during the recirculation process. This resulted in high elution time which led to the 

investigation of AARL with short elution time involving pre-treatment in NaOH-NaCN 

solution (Davidson and Duncanson, 1977). The elution time is within the range of 32 

to 72 hours and 8 to 14 hours for Zadra and AARL elution respectively (Marsden and 
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house, 2006). AARL elution process typically involves pre-treatment of the Au loaded 

carbon which has been described in Section 1.1(Davidson, 1986). 

The AARL elution process shown in Figure 2.9 is described according to Stanley and 

Bailey (1987). Carbon loaded with Au is fed into the column through the hopper. This 

is followed by hot acid washing with 1 bed volume of hydrochloric acid (3%v/v) to 

remove entrapped contaminants (calcium and foulants), followed by passage of 1 to 

2 bed volume of water. Hot acid washing also helps in the removal of calcium that 

can inhibit adsorption after regeneration (Davidson, 1986). A plug flow of eluant is 

desirable during elution which can either be upward or downward flow (Davidson and 

Bailey, 1991). The essence of the plug flow is to ensure desorption of Au at each 

cross section of the elution column. The upward flow is often used in most industries 

especially when acid washing occurs prior to elution. In this case, the upward plug 

flow helps to minimise trapped carbon-dioxide gas produced as a result of the 

reaction of the carbonate (Davidson and Bailey, 1991). However, in the presence of 

small wood chips or fibres, neutralisation of the acid washed carbon is carried out 

prior to elution, in which case downward flow of eluant is preferred (Davidson and 

Bailey, 1991). According to these authors, there is a tendency of the eluate collector 

being choked with the wood fibres if upward flow is adopted. 

Hereafter, pre-treatment of the acid wash carbon is carried out in about 0.6 bed 

volumes of NaOH-NaCN solution to soak for about 30 min. Finally, Au is then eluted 

by pumping de-ionised water through the column at a temperature of 120oC and flow 

rate of 2 bed volumes per hour for about 8 hours. These values are not fixed and 

vary for different industries. The inconsistency of the pre-treatment forms part of the 

objective of this research. The factors that affect the elution process are discussed in 

the next section. 

2.9 Factors affecting elution 

2.9.1 Effect of temperature 

Elution temperature (measured temperature of the eluant used for washing the Au 

from loaded carbon after pre-treatment). has been suggested to be the most 

important factor that influences Au elution recovery (Free, 2013; Adams and Nicol, 
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1986; Davidson and Duncanson, 1977). An Increase in the elution temperature 

results in change in equilibrium which favours desorption because adsorption is an 

exothermic process (Section 2.6.5). According to Adams (1991), adsorbing power of 

activated carbon to adsorb Au reduces with an increase in temperature which 

determines the rate of elution. Practically, elution can occur either under atmospheric 

or pressurised condition in order to control the elution rate (Marsden and House, 

2006). Under the atmospheric conditions, elution process takes place in temperature 

close to the boiling point of water (≈90–95oC) while a pressurised elution process 

which results in a faster elution rate takes place above 100oC and pressure above 

200 kPa depending on the temperature aimed to be achieved (Metalliferous mining 

processing, 2010 b; Marsden and House, 2006). 

Van der Merwe (1991) investigated the effect of temperature in relation to the 

reaction of CN  during pre-treatment. The decomposition of CN  takes place via 

oxidation at low temperature and hydrolysis at high temperature (Jeffery et al., 2010; 

Van der Merwe and Van Deventer, 1993, Ver der Merwe, 1991). It was suggested 

that the decomposed product formed by CN  inhibits adsorption of Au thereby 

favouring desorption. The hydrolysis and oxidation reactions that were considered to 

be relevant in this regards are given by Equations 2.6–2.10 (Nicol, 1986; Van 

Deventer and Van der Merwe, 1993). 

Hydrolysis 

CN
-
+ 3H2O→[HCOONH4]+ OH

-
        2.6 

[HCOONH4]+0.5O2→ HCO3
-
+ NH4

+
        2.7 

HCO3
-
+NH4

-
+2OH

- pH 10.5
→     NH3+CO3

2-
+2H2O      2.8 

Oxidation 

CN
-
+ 0.5O2 →[CNO

-
]         2.9 

[CNO
-
]+2H2O→ CO3

2-
+ NH4

+
                2.10 
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2.9.2 Effect of cyanide and hydroxide concentration. 

The use of hydroxide ( OH ) alone to achieve an almost complete elution of Au has 

been reported (Boshoff, 1994; Adams and Fleming, 1989). However, this proceeds 

at a slower rate when compared with when CN  is utilised. Adams (1991) reported 

that the combination of CN  and OH  yielded a more effective result than either of 

OH  or CN . Some theories on the role of CN  exist. According to Marsden and 

House (2006), the presence of CN  during elution causes competition of adsorption 

site with 

2Au(CN) which in turn favours elution. Contrary to this, Van Deventer and 

Van der Merwe, (1992), reported the absence of Au in solution after pre-treatment 

with NaOH-NaCN. CN  was therefore, suggested to undergo decomposition 

reaction that passivated the carbon surface (Van Deventer and Van der Merwe, 

1992). According to Adam (1991) and McDougall and Fleming (1987), an increase in 

concentration of CN  and OH  increased Au elution recovery when pre-treated with 

NaOH-NaCN. However, excessive amounts of NaOH-NaCN resulted in a decrease 

in elution rate. Optimum concentration of Au elution recovery was suggested to be 

attained when pre-treated with about 3% concentration of NaOH-NaCN (Davidson 

and Schmidt, 1986). Elution rate was observed to drop above this suggested 

concentration of NaOH-NaCN. This opposing effect was suggested to be due to an 

increase in the ionic strength of the cations (Adams, 1991).  

2.9.3 Effect of cations 

Accroding to Section 2.6.1 on the level of cations in adsorption, desorption is 

favoured by the removal of cations. From the trend of the ionic strength presented 

Section 2.6.1, desorption proceeds easily upon removal of monovalent ions (Na+, K+) 

than the removal of divalent ions (Mg2+, Ca2+) from Au loaded carbon (Van Deventer 

and Van der Merwe, 1994). 

Furthermore, Van Deventer and Van der Merwe (1994), Van der Merwe (1991), 

showed the influence of cations on Au loading capacity through a model. The model 

was based on study of previous authors (Van Deventer, 1984; Cho and Pitt, 1979) 

and adopted a modified Freudlinch isotherm by reducing the number of parameters 

to Equation 2.11. 
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Qi=ACi
bA+D

,                   2.11 

where Qi and Ci are the Au loading on activated carbon and in solution respectively, 

b and D are constants that were measured in a specific carbon in the isotherm 

equation. A (loading capacity constant) is the only parameter to be determined (Van 

Deventer and Van der Merwe, 1994). The model showed that there is a strong 

dependence of loading capacity constant of divalent ions (Ca2+) than monovalent 

(K+). This suggests that elution proceeded easily in K+ than Ca2+. A least square 

regression model showed that In(A) is a linear function of In(cation concentration) 

given by Equations 2.12–2.13 at room temperature (Van Deventer and Van der 

Merwe, 1994) This model indicated that desorption can be explained on this same 

principle recalling that Au adsorption is thermodynamically reversible.  

A= 24 (CK+1)0.069                  2.12 

A= 26 (CCa+1)0.127                  2.13 

CK = concentration of potassium 

CCa = concentration of calcium 

2.9.4 Flow rate 

The rate of elution has been suggested to be independent on eluant flow rate under 

strong pre-treatment conditions and high elution temperature (Marsden and House, 

2006; Van der Merwe and Van Deventer, 1994; Adams, 1991). Davidson (1974) 

investigated the effect of elution flow rate on activated carbon loaded with Au and 

then pre-treated in 3% potassium carbonate (K2CO3) and 1% potassium hydroxide 

(KOH). It was shown that the maximum concentration of Au in the elution profile (Au 

elution peak on the elution curve shown in Figure 2.10) reduced with an increase in 

flow rate from about 0.5–1.5 BV/h. Under these conditions, it was suggested that 

elution is diffusion controlled (Davidson, 1974). Further investigation with pre-

treatment concentrations of 2% NaCN and 2% NaOH showed that elution was not 

affected by flow rate within 1–5 BV/hr (Davidson and Schmidt, 1986). Under this 

condition, it was suggested that elution was not controlled by diffusion. Van der 

Merwe and Van Deventer (1994) investigated the effect of different elution flow rates 

at 2.9, 5.9, and 37 BV/h on Au loaded carbon pre-treated in 2% KCN. The result 
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showed a similar elution profile with insignificant differences as shown in Figure 2.10. 

This suggests that a greater volume of water will be used at 37 BV/h with no 

significant difference in comparison to elution at ≈3 BV/h for the same elution time 

and the solution becomes less concentrated. Davidson and Schmidt (1986) stated 

that the choice of elution flow rate depends on the elution time. It was suggested that 

2 to 3 BV/h flow rate achieved complete elution for 8 hour of elution time (Davidson 

and Schmidt, 1986). 

 

 

Figure 2.10. Illustration of effect of elution flow rate on the Au elution profile 

also showing the elution peak of each elution curve. Modified from Van 

Deventer and Van der Merwe (1994) 

2.10 Elution mechanism 

Different understanding of the role and requirements for CN  during pre-treatment 

and elution has led to different proposed elution mechanisms. These proposed 

mechanisms by various authors as well as the conditions under which they were 

proposed are reviewed as follows: 
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2.10.1 Mechanism based on the nature of the adsorbed gold 

According to this mechanism, the nature of the adsorbed Au determines the need for 

CN  in the subsequent elution step (Section 2.5). In a typical CIP condition the 

nature of the adsorbed Au can exist either as AuCN when acid pre-treatment is 

carried out prior to elution or as (AuCN)
2

-
 in the absence of acid washing. It was 

believed that AuCN is strongly adsorbed on carbon while (AuCN)
2

-
 was more soluble 

in water and easily desorbed from the carbon surface (Davidson and Bailey, 1991). 

Therefore, the addition of CN  will result in the change of the nature of the adsorbed 

Au according to Equation 2.14 (Adams, 1991). 

AuCN+ CN
-
→ Au(CN)

2

-
                  2.14 

Another form of Au is its existence in the solid state [Au]s which has been suggested 

to occur in residual Au on carbon after elution at the regeneration temperature 

(Vorobev-desyatovskii et al., 2010). In this case, [Au]s can be suggested to form 

Au(CN)
2

-
 through the Elsner’s equation (Equation 2.1) 

2.10.2 Mechanism based on competitive adsorption of CN
-
  

According to this theory, the presence of CN causes competitive adsorption with 

Au(CN)
2

-
 for adsorption site. This results in displacement of Au(CN)

2

-
 from carbon 

surface, thereby resulting into elution (Adams and Nicol, 1986). Tsuchida (1984) 

reported by Van Deventer and Van der Merwe (1994) proposed the following 

Equations: 

[AuCN]
carbon

+ CN
-
↔ [Au(CN)

2

-
]
carbon

                2.15 

[Au(CN)
2

-
]
carbon

+ CN
-
 ↔ [CN

-
]
carbon

+ [Au(CN)
2

-
]
solution

              2.16 

As it appears from Equations 2.15–2.16, the role of CN was only seen from the 

elution point of view even though CN  from NaOH-NaCN solution was introduced 

during pre-treatment. This theory was, however, criticised not to be probable due to 

absence of Au in solution after pre-treatment with NaOH-NaCN (Van Deventer and 

Van der Merwe, 1994; 1992). 
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2.10.3 Mechanism based on passivation of the carbon surface 

In a quest to gain more insight to the functional role of CN  after establishing that it 

is a necessity for the improved elution of Au, Van Deventer and Van der Merwe 

(1992) showed that CN  carried over from the pre-treatment step to the elution step 

had no effect on Au elution. According to these above mentioned authors, it was 

shown in an experiment that the ability of fresh activated carbon to adsorb Au from 

an initial concentration of 24.5 mg /L Au is higher than activated carbon pre-treated 

in 20 g/L KCN and rinsed before being used for adsorption. This lower absorptivity of 

treated carbon led to the suggestion that CN  degrades to form a passivating 

product which becomes deposited on carbon surface during pre-treatment. This 

renders it less receptive towards adsorption thereby enhancing elution of Au (Van 

Deventer and Van der Merwe, 1994; 1992). The degree of passivation was further 

reported to increase with increase in pre-treatment temperature as more elution was 

obtained at higher pre-treatment temperature of 100oC when compared to 20oC. 

(Van Deventer and Van der Merwe, 1994). 

2.10.4 Mechanism based on the modification of functional group of 

activated carbon  

This theory was based on the fundamental chemistry study of nucleophilic-

electrophilic reaction. Adams and Fleming (1989) suggested that the presence of 

OH  or CN  causes a specific chemical reaction at the carbon surface. The 

adsorption of 

2Au(CN)  and Na was investigated on three different types of resins (S-

761, S-862 and XAD-8) in both sodium chloride (NaCl) and NaOH solution (Adams 

and Fleming, 1989). The result of Na extraction analysed when G210 activated 

carbon was contacted with NaOH solution was shown to be a similar mechanism as 

S-761 resin which consists of phenol group. This reaction is shown in Equation 2.17 

(Adams and Fleming, 1989). 

OH

+ NaOH

O
-
Na

+

+  H2O

             2.17 
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It was also suggested that CN  was involved in a specific reaction on the surface of 

carbon. With CN  being a strong nucleophile, the appropriate functional group which 

this nucleophile will react with, to have β acid-base reaction, will be carbonyl group. 

Equations 2.18 and 2.19 were suggested to be the possible reaction mechanisms 

(Adams and Fleming, 1989).  

              2.18 

                    2.19 

2.11 Nucleophilic-electrophilic reaction mechanism 

The relevance of nucleophilic-electrophilic reaction mechanism is seen when dealing 

with the reaction of negatively charged ions with positively charged surface 

functional groups of organic compound such as activated carbon. This will also 

provide possible insight to a possible reaction mechanism for Au elution mechanism. 

A brief review of this theory is summarised in this section. 

One of the major concepts through which chemical reaction mechanisms are well 

understood is through the concept of nucleophilic-electrophilic reaction mechanism. 

According to this theory, a positively polarised site gets attacked by a negatively 

polarised charge. According to McMurry (1998), carbonyl functional group is one of 

the main functional groups present in organic compounds. Carbonyl carbon is 

positively polarised (Cδ+) (electrophile) and therefore, shows more tendencies to 

react with nucleophile and base. A carbonyl oxygen (Oδ–) that is negatively polarised 

readily reacts with electrophiles and acids. Dissolution of NaOH-NaCN on the other 

hand will ionise to Na+, OH and CN  in solution. It can be deduced that CN and 

OH  will react with Cδ+. 
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2.12 Behaviour of cyanide and pre-treatment operation. 

2.12.1 Chemical behaviour of cyanide 

The reaction of cyanide salt in water takes place through dissociation into ions of the 

metal cation (M+) and free cyanide ( CN ). An illustration with NaCN is shown in 

Equation 3.1. 

NaCN → Na
+
+ CN

-
                   2.20 

The main reaction of CN  with water or oxygen (Equations 2.6–2.10 ) that has been 

identified in Au processing plant is decomposition reaction which takes place via 

oxidation or hydrolysis (Adams 1990b). Some of the factors that influnces the loss of 

CN  from solution are a presence of oxygen, a presence of catalyst (activated 

carbon catalysis reaction by oxidation), constituents of the solution, temperature, pH, 

agitation speed, presence of metals and ionic strength (Skodra et al., 2015; Moreno-

Castilla, 2004; Van Deventer, 1995; Adams, 1994; Adams, 1990b). 

Figure 2.11 shows the behaviour of CN  under the influence of pH at standard 

temperature and pressure. When CN  is present in water and the pH is below 9.3, 

the predominant specie is hydrogen cyanide (HCN) as shown in Figure 2.11. The 

reaction through which this takes place is a hydrolysis reaction given by 

Equation 2.21 (Adams, 1990). At pH range between 9.3–9.5, HCN stays in 

equilibrium with CN  with HCN (José et al. 2013). CN  becomes a predominant 

specie above a pH of 9.5. 

CN
-
+ H2O→HCN+ OH

-
                  2.21 
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Figure 2.11: Formation of HCN and CN- with change in pH. Redrawn from José 

et al. (2013) 

In CIP plant, CN  is utilised during adsorption, elution and electrowinning (Adams 

1990a). It was stated that during pre-treatment in AARL elution process, significant 

amount (about 80–90%) of CN  is lost via thermal decomposition at temperature 

above 130oC. The CN  loss became evident after 30 min of pretreatment especially 

at higher temperatures of more than 130oC (Adams, 1990a; b) Equation 2.22 was 

suggested as a possible reaction (Mudder et al., 2001; Huiati et al., 1983 cited by 

Adams 1990) 

CN
-
+ H2O → NH3+HCO3

2-
                  2.22 

2.12.1.1 Eh-ph of cyanide-water system 

Figure 2.12 shows the Eh-pH diagram for CN-H2O system at 25oC and the various 

equilibrium species formed by cyanide in water. It can be seen that HCN is formed 

from CN  in water as the pH reduces below 9.3 (Equation 2.21). The formation of 

HCNO is rarely encountered in Au operation as most processes that involves CN  

use are carried out in alkaline medium. CN  is oxidized to cyanate CNO at pH above 

9.5 given by Equation 2.23 (Adams 1990a; b; Bard, 1973) 
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2(OH)
-
+CN

-
 ↔ CNO

-
+H2O+ 2e

-
       2.23 

 

 

Figure 2.12: Eh-pH diagram of CN-H2O system at 25oC. Drawn with HSC 

chemistry 7.31. 

2.12.1.2 Cyanide decomposition  

Decomposition of CN  in the presence of activated carbon has been suggested to 

take place via oxidation with oxygen groups of activated carbon (Adams 1990b). 

However, there has been no clear distinction between oxidation of CN  by activated 

carbon and adsorption on activated carbon. As such, the determination of the 

amount of CN  that gets decomposed has been quite difficult to quantify in order to 

establish a firm mechanism during Au elution. 

Van Deventer and Van der Merwe (1995) attempted to formulate a kinetic model for 

the decomposition of CN  during elution in a batch stirred vessel under the influence 

of different parameters. These parameters include different mixing speed (700, 1350 

and 1500 rev/min), carbon particle sizes [powdered and granular (mean particle 
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diameter of about 1.42mm )], constant temperature and initial concentration of CN . 

These authors reported that CN  decomposition is independent of the particle size, 

but increased with an increase in agitation speed. Based on these results, it was 

suggested that the rate limiting process is the mass transfer between the solution 

and the activated carbon but has nothing to do with pore diffusion (intraparticle 

diffusion) (Van Deventer and Van der Merwe, 1995). 

2.13 Mass transfer theory 

One of the main aims of including agitation in chemical and metallurgical processes 

is to improve rate of mass transfer between the solid and liquid phase (Paul et al., 

2004; Cooper et al., 1973). In a solid-liquid system that is mechanically agitated, rate 

controlling process could either be by (Paul et al., 2004; Forgler, 1999; Doraiswamy 

and Sharma, 1984): 

· External diffusion of specie (film diffusion) of interest ( CN ) from the bulk fluid 

through the boundary film to the surface of the activated carbon. In this case, 

agitation and particle size have significant effect. 

· Internal or intra-particle diffusion which is influenced by particle size and 

temperature. 

· Surface reaction. This is independent on agitation and particle size but 

dependent on changes in temperature (Fogler, 1999).  

Investigation of any of the above processes will give insight to the rate controlling 

process and its connection to elution process. Several authors have reported the use 

of boundary model (rate of mass diffusional transfer) to estimate solid-liquid mass 

transfer coefficient (kSL) assuming a spherical particle (Atiemo-Obeng et al., 2004; 

Sağ and Aktay, 2000; Findon et al., 1993; McKay and Poots, 1980; Weber and 

Mathews, 1976). This model is given by Equation 2.24 was also adopted in this 

study to estimate the effect of agitation speed on kSL.
 

dC

dt
= -kSLas(C-C

*
)                   2.24 

Where: C* = is the concentration of CN- at the carbon surface 

   C = concentration of CN- in the bulk solution at time t 

   as = specific surface area per unit volume 
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 as=
6θ

ρcdc
                   2.25 

Where: θ = activated carbon concentration in solution 

 ρ
c
 = density of the activated carbon 

 dc = diameter of the activated carbon 

In the boundary model, the following assumptions were made: 

· Intraparticle diffusion is insignificant and therefore, assumed to be negligible.  

· Concentration of CN- at the carbon surface at time zero (t=0) is negligible. 

· At t=0, C becomes Co. 

Based on these assumptions, Equation 2.24 was simplified to Equation 2.26 (Sağ 

and Aktay, 2000) 

[
d(

C

Co
)

dt 
]= - kSLas                   2.26 

Therefore, the gradient of a plot of 
C

Co
 vs t gives - kSLas from which kSL can be 

calculated. 

2.14 Pre-treatment operation 

Several pre-treatment options with regards to the pre-treatment reagents have been 

tested over the years. These include; a mixture of potassium carbonate ( 32COK ) 

and potassium hydroxide (KOH), KOH, NaOH, lithium hydroxide(LiOH), and a 

mixture of NaOH and NaCN (Davidson and Duncanson, 1977). Among these 

reagents, a mixture of 32COK and KOH and a mixture of NaOH and NaCN were 

reported to yield more than 99% of Au elution recovery. 

NaOH-NaCN solution was suggested as the most suitable reagent because it 

efficiently eluted both Au and other metals such as silver (Ag), copper (Cu) and 

nickel (Ni) compared to other pre-treatment reagents (Davidson and Duncanson, 

1977). While CN  helps in the stability of metal cyanide complexes, the hydroxide 

maintains the alkalinity condition for the stability of CN  to prevent evolution of HCN 

gas during pre-treatment (Davidson and Schmidt, 1986)  

Stellenbosch University  https://scholar.sun.ac.za



 Page 35 
 

Two types of pre-treatment techniques are used in industry according to the AARL 

elution plant design (Riley, 1991). These are batch AARL and continuous AARL 

elution, which are being used in some plants like Genmin’s Grootvlei gold mine 

(Riley, 1991). In terms of pre-treatment operation, batch AARL uses the same elution 

column for pre-treatment while the continuous process uses a separated pre-

treatment column (Riley, 1991). The adsorbed AC is soaked (usually 30 min) in 

approximately 1 bed volume of NaOH-NaCN solution (Davidson, 1986). Although it 

has been suggested that a long pre-treatment time will be necessary for a low 

(<110oC) pre-treatment temperature (Davidson and Bailey, 1991), many Gold plants 

operate at different pre-treatment times with no record of a justifiable reason. Results 

compiled by Davidson and Baily (1991) showing the effect of different pre-treatment 

time and temperature on elution efficiency is shown in Table 2.3. The average 

NaOH-NaCN adopted was around 5% NaCN and about 3% NaOH. It could possibly 

be that the operators of these Gold plants were satisfied with the elution result 

obtained at these pre-treatment conditions because it has been yielding an 

acceptable Au elution recovery right from its usage. However, this has led to limited 

attention given to the optimisation of the pre-treatment parameters. 

Table 2.3: Reported AARL conditions at different Gold plants (Davidson and 

Bailey, 1991) 

Gold plant Pre-treatement 

condition 

Elution               

condition 

Efficiency        

( %) 
 

Temp. 

(oC) 

Time 

(min) 

Flow rate 

(BV/h) 

Temp. 

(oC) 

  

Ergo 120 60 1.8 120 84.3 

Daggafontein 120-140 60 0.8 120-140 95.9 

Simmergo 80 <10 1.8 120 90.1 

New Brand 120 30 2 120 96.5 

Western Deep No 1 125 60 1.8 120 96.8 

Western Deep No 3 90 30 2-3 120 97 

Afr Lease 70 45 1.6 110 94.2 

City Deep 115-110 120 2.7 110 93.6 

Crown sands 110-100 120 2.7 110 94.4 

Western Areas 110 90 1.8 110 99.6 

Doornkop 95 30 1.1 110 96 
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It can be seen from Table 2.3 that variability exists in the pre-treatment parameters 

adopted at different Gold plant and no set standard can be suggested to be existing 

in the industry. 

2.15 Summary on literature review 

Chapter 2 considered the literature review of gold processing, more specifically the 

adsorption and elution of Au in CIP plant. This chapter started with a broad view of 

gold processing operation followed by the review of the application and properties of 

activated carbon for Au adsorption in CIP plant. Furthermore, the various 

components of the CIP plant was described. The factors suggested by different 

authors for optimum performance of the plant.and improved Au adsorption was also 

reported. According to Adams (1983), 

2Au(CN)  adsorption is thermodynamically 

reversible. This justified the elaborate discussions on adsorption mechanism and its 

factors. The suggested mechanisms are reduction mechanism, electrostatic 

attraction mechanism, ion pair mechanism and non-ion pair mechanism. The factors 

that were reviewed to enhance Au adsorption are: high ionic strength, oxygen supply 

under low ionic strength, low pH, low CN  concentration, and low temperature. This 

implies that reversing these factors will enhance elution. This led to a discussion of 

the elution process with more emphasis on AARL elution process that is of more 

interest to this work. The role of CN  during pre-treatment in the AARL elution 

process for improved elution of Au demonstrated by different authors was also 

reported. However, there still seems to be less agreement on the exact mechanism 

of how CN  aids in this efficient elution. This resulted into the review of previously 

proposed elution mechanisms and elution factors. The theories on which the elution 

mechanisms were based are: nature of the adsorbed Au, competition of adsorption 

site by CN  with 

2Au(CN) , passivation mechanism by the formation of decomposed 

product formed from the reaction CN  with carbon surface and the modification of 

functional group. Furthermore, an overview of the theory of nucleophilic-electrophilic 

reaction which was considered an important aspect for suggesting a reaction 

mechanism for organic compounds such as activated carbon was presented.  
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More emphasis was placed on the various possible reactions of CN  in CIP plant 

and pre-treatment stage in AARL elution which will form a sound framework for this 

study. The inconsistency of the pre-treatment variables i.e., pre-treatment 

temperature and contact time adopted in different industries which forms one of the 

main objectives of this work was also reported in this chapter. Agitation speed on the 

other hand has not been reported as a pre-treatment parameter. However, in relation 

to decomposition mechanism, improved decomposition of CN  with an increase in 

agiation speed for a set time has been suggested but the effect on Au elution 

recovery has not been investigated. 

Significant understanding of the literature about Au process, role of CN under the 

influence of different factors, uncertainity of the exact elution mechanism and the 

variabilities that exist in the industry with regards to pre-treatment parameter helped 

to provide reasonable explanations of the effect of pre-treatment parameters. The 

result obtained further helped to suggest the most suitable elution mechanism with 

relevant recommendations made to the industry.  

The next chapter focuses on the materials and methods used to investigate the 

effect of the pre-treatment parameters. This gives an understanding of the role of 

CN  on Au loaded on activated carbon and noting the effect on elution 

.  
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3 Materials and methodology 

3.1 Materials 

The following are some of the materials that were used in this study: 

· Granular activated carbon. 

· Alkaline buffer solution  

· Synthetic Au solution  

· Water dispensing bottles 

· Electrical powered mechanical roller 

· Temperature controlled water-bath, beaker, stirrer and impeller 

· NaOH, NaCN and sulphuric acid (H2SO4) 

· Water jakected glass column, peristaltic pump, sample tubes 

· Reverse osmosis (RO) water  

· 100% Oxygen  

3.1.1 Preparation of activated carbon 

The activated carbon used was obtained from Marlyn chemicals in South Africa. This 

is commercially available and used on Gold plants. The properties of activated 

carbon used for this study are summarised in Table 3.1 below. 

 Table 3.1: Properties of the activated carbon used in the study 

Property Specification 

BET surface area 1200 m2/g 

Iodine number 1075 mg/g 

Particle density 0.82 g/cm3  

Bulk density 0.43 g/cm3 

Pore volume 0.62 cm3/cm3 

Ash content 1.77% 
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A 900 g of fresh activated carbon was weighed, screened. Thereafter, a geometric 

mean size of 2537 µm was determined. This was followed by rinsing in RO water for 

30 min to remove any contaminants and then oven dried at 90oC for 48 hours. From 

the prepared 900 g, 840 g was taken and divided into two equal parts (420 g each). 

Each 420 g of the oven-dried fresh activated carbon was poured into a 10 L bucket 

each containing de-ionised water and agitated for 30 min to restore the activity of the 

activated carbon (Lorenzen et al., 1995) after which adsorption of Au was carried 

out. 

3.1.2 Preparation of alkaline buffer solution  

Buffer solution was prepared according to the description by Mpinga (2012). Alkaline 

buffer solution was used to stabilise the pH of the adsorbing medium (sodium salt 

and weak base). Sodium bicarbonate (NaHCO3) and sodium carbonate (Na2CO3) 

weighed at 8.4g and 1.91g respectively were poured into a 1000mL beaker followed 

by the addition of water to two-third of the beaker. This mixture was allowed to 

dissolved and then acid (H2SO4) and base (NaOH) was added to monitor the pH to 

around 10. Additional water was added to volume of 35 litres. 

3.1.3 Preparation of synthetic gold solution 

Potassium gold-cyanide KAu(CN)2 salt was mixed in the 9.5 pH prepared buffer 

solution and diluted to a volume of 30 litres to produce a 200 mg/L Au solution. The 

pH of the solution was adjusted by adding NaOH and H2SO4 to control and maintain 

a pH of 10. The alkaline medium served to prevent the formation of HCN gas that 

could evolve at pH below 9.3 (Marsden and House, 2006). The aim of this work was 

not to obtain an optimum Au adsorption; therefore, a low Au concentration of about 

11 mg/L was used. After preparation, a 5 mL solution was taken for ICP_OES 

analysis for confirmation of the Au uptake by activated carbon. 
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3.2 Methodology 

3.2.1 Phase 1: Adsorption stage 

The procedure for the loading of activated carbon is similar to the work of Mpinga 

(2012). The prepared 420 g activated carbon described in Section 3.1.1 was 

transferred into an 18.9 litres of water dispensing bottles, which contained 15 litres of 

the synthetic Au solution. This procedure was carried out for an additional bottle. 

These two bottles were transferred onto a mechanical roller powered by electricity 

rotated at a constant speed of 450 rev/min measured with a MT952 tachometer for 

72 hours as shown in Figure 3.1. Almost a complete equilibrium would have been 

achieved at 72 hours of adsorption time which have been demonstrated in a similar 

adsorption process (Mpinga, 2012; Van Deventer, 1984). The mechanical roller has 

been demonstrated to give an analogous loading rate in comparison to the 

conventional CIP plant (Fleming, 2011). A sample of the solution was taken after 72 

hours for ICP_MS analysis to determine the Au uptake by the activated carbon. The 

loaded carbon was filtered with a 800 µm screen, oven dried at 80oCfor 48 hours and 

divided into 12 g each using a rotary divider. Each of the 12 g loaded carbon was 

placed inside a zip-lock and stored in a dry, cool place for the next phase of the 

experiment. Details of the experimental steps, risk analysis as well as precautions 

taken during this stage are provided in Appendix A. 
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Figure 3.1: Schematic diagram of adsorption setup. 

3.2.2 .Phase 2: Pre-treatment stage 

The demonstration of the pre-treatment stage by various researchers on a laboratory 

scale was conducted in a separate reactor (cylindrical beaker) from the elution 

column (Snyders et al., 2013; Van Deventer and Liebenberg, 2003; Van Deventer, 

1994). The pre-treatment operation adopted in this work was also performed in a 

beaker batch wise, separate from the elution column.The beaker contained NaOH-

NaCN solution and the Au loaded activated carbon. The NaOH-NaCN solution was 

maintained at the required temperature for a set time, after which the pre-treated 

carbon was passed into a glass column for elution. The concentration of NaOH-

NaCN adopted by various researchers vary from one study to another.  

3.2.2.1 Reactor design for pre-treatment 

This work eliminates the use of baffles (Figure 3.2) in the set up in order to avoid the 

Au loss that might be associated with carbon breakage during intense agitation. 

Carbon breakage during adsorption in the gold plant results in Au loss (Staunton, 

2005). This setup conveniently fitted a 250 mL beaker and a polytetrafloroethylene 

(PTFE) lid was fabricated and used. 
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Figure 3.2: Unbaffled reactor used in the study. 

3.2.2.2 Pre-treatment procedure 

Pre-treatment of the loaded Au on activated carbon was carried out in a fume-hood. 

The experimental set-up for the pre-treatment step consists of a water-bath with a 

temperature controlled heating system. The opening of the water bath was designed 

to accommodate a 250 mL beaker. The PTFE lid used for the beaker was perforated 

to accommodate the stirrer, temperature probe, Eh probe and pH probe shown in 

Figure 3.3. For each run, 3% NaCN and 1% NaOH per volume of water was used. It 

is suggested that the effect of CN  is evident at this concentration for rapid elution 

while the concentration of NaOH will maintain an alkaline medium. This corresponds 

to 2.4 g NaCN and 0.8 g NaOH in 80 mL of water. Before the addition of the NaOH-

NaCN reagent, 80 mL of water poured into the beaker was heated to the required 

temperature according to the experimental design. The temperature, pH and 

potentials were measured using its respective probes. After attaining the set 

temperature, the NaOH-NaCN reagent was poured into the solution while the 

impeller was gently lowered into the solution through the PTFE lid. The pH and 

potentials were measured and recorded before pouring the activated carbon. The 

stirrer, set at the required speed was switched on immediately the activated carbon 
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was poured into the solution. The pH and potentials at 5 min intervals was measured 

and recorded.  

Water-bath 

Heater

Overhead 

stirrer
Temperature 

probe

pH probe

Eh probe

Water bath

 

Figure 3.3: Experimental set-up of pre-treatment process. 

3.2.2.3 Rinsing of pre-treatment reagent 

Some additional experiments were devised to investigate the effect of rinsing the 

pre-treatment reagent (NaOH-NaCN solution) on the elution process. Rinsing was 

conducted on the pre-treated activated carbon after decanting the pre-treated 

solution. RO water with a volume of 5 mL was poured into the pre-treated activated 

carbon and gently shaken for about 2 min. This procedure was repeated 5 times, 

which resulted in 300 mL of rinsed solution corresponding to 6 bed volumes of the 

present elution study. The Au in the pre-treatment solution was analysed. During the 

rinsing process, the HCN gas detector was placed close to the beaker lid and the 

observed HCN gas read on the Dragger cyanide detector was recorded. 

3.2.3 Phase 3: Elution stage 

A simplified flow sheet of the elution set-up is presented in Figure 3.4. This is similar 

to the experimental set-up adopted by Snyders et al. (2014). Before the start of the 

elution, RO water was heated to 90oC with water bath pump and the water jacketed 
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elution column connected to the water bath pump was also maintained at 90oC. The 

column was filled with RO water up to half bed with the aid of 0.8 mm diameter 

marprene continuous tube connected to the water-bath through a peristaltic pump. 

(1 bed volume here is 25 mL which accommodated 12 g of activated carbon). The 

pre-treated activated carbon loaded with Au was carefully transferred with a spatula 

into the column from the top of the glass column and RO water was allowed to flow 

at a flow rate maintained between 2 to 3 bed volumes per hour. The exit of the eluate 

at the bottom of the column was manually controlled to maintain water level above 

the carbon bed at that flow-rate. 5 mL of eluate samples were taken at the bed 

volumes shown in Table 3.2 for each elution process. The aim of this work is to 

investigate the pre-treatment parameters and not the elution factors therefore, the 

elution parameters were kept constant throughout the whole elution process. These 

parameters are shown in Table 3.3. 

Eluant (de-ionized 

water) from 

peristaltic pump

Circulating hot 

water to 

maintain the 

temperature

Circulating hot 

water to 

maintain the 

temperature

Eluate

Water 

jacketed 

glass column

 

Figure 3.4: Schematic diagram of the step-up for elution process. (Ratio of 

column length to column diameter (L/d) = 5.2, porosity ≈ 0.4) 
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Table 3.2: Elution sampling points 

Bed volumes 

0.20 0.60 1.0 1.4 2.0 2.4 3.0 3.6 4.0 4.6 6.0 9.0 11 15 20 

 

Table 3.3: Conditions used during the elution process. 

Temperature 90oC 

Flow rate 3BV/h 

Eluant Reverse osmosis water (0 mg Na/L) 

3.2.4 Chosen point of analysis  

The plots and comparisons of recovery curves for all pre-treated carbon showed a 

common trend from 0 to around 4 bed volumes after which it curves and gradually 

flattens. This is schematically shown in Figure 3.5 below. For the majority of the 

plots, trends a and b were observed while trend c was observed in a few cases, but 

with the same endpoint as a or b. Analysing the results of Au elution curve at 20 BVs 

(end point of the recovery curve) or the first 4 BVs will provided limited information 

about what happens in-between the curves.Due to this, common point was chosen 

where a discrepancy in recovery could be noticed. This corresponds to 

approximately 6 bed volumes. In this study, 6 bed volumes is a significant point 

which corresponds to point just after the elution peak in the elution profile where the 

bulk of Au has been recovered was chosen unless otherwise stated.  
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Figure 3.5: Illustration of the different recovery curves detected from the 

experimental work also showing the point of analysis at 6 bed volumes. 

3.3 Experimental design 

Based on the three levels and three factors that was investigated, experiments were 

statistically designed adopting a Box-Behnken design (BB) using Statistical 12 

software. BB design offers advantages of fewer runs than three-level full factorial 

design than the Central composite design (CCD) and it is also suitable for 

optimisation through the response surface plot (Montgomery, 2013). If a three level 

full factorial with three replicates were to be adopted, eighty-one runs would have 

been required. However, with BB design, forty-five efficient runs are required with 

replications included. The experimental design without replicating is presented in 

Table 3.4 and the random design with the replicated is shown in Table 3.5. 

Experiments were replicated three times to minimise errors and improve accuracy of 

the regression model used for the predictions of points that were not included in the 

Stellenbosch University  https://scholar.sun.ac.za



 Page 47 
 

experiment. Another advantage of BB is that it is rotatable or very nearly rotatable 

providing equal variances (Montgomery, 2013). This will also reduce the cost and 

time by approximately 50% when compared with a three level full factorial design. 

Table 3.4: Box-Behnken Experimental design in standard order 

Run Temperature 

(oC) 

Time 

(min) 

Speed 

(rev/min) 

1 25 15 600 

2 80 15 600 

3 25 45 600 

4 80 45 600 

5 25 30 0 

6 80 30 0 

7 25 30 1200 

8 80 30 1200 

9 53 15 0 

10 53 45 0 

11 53 15 1200 

12 53 45 1200 

13 53 30 600 

14 53 30 600 

15 53 30 600 

 

Table 3.5: Box-Behnken Experimental design in random order 

Run nr Replicate Temperature 
(oC) 

Time  
(min) 

Speed 
(rev/min) 

18 2 25 45 600 

29 2 53 30 600 

45 3 53 30 600 

4 1 80 45 600 

16 2 25 15 600 

17 2 80 15 600 
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23 2 80 30 1200 

33 3 25 45 600 

28 2 53 30 600 

19 2 80 45 600 

1 1 25 15 600 

9 1 53 15 0 

8 1 80 30 1200 

26 2 53 15 1200 

42 3 53 45 1200 

31 3 25 15 600 

24 2 53 15 0 

22 2 25 30 1200 

38 3 80 30 1200 

43 3 53 30 600 

2 1 80 14 600 

40 3 53 45 0 

35 3 25 30 0 

15 1 53 30 600 

5 1 25 30 0 

11 1 53 14 1200 

3 1 25 45 600 

25 2 53 45 0 

37 3 25 30 1200 

44 3 53 30 600 

36 3 80 30 0 

12 1 53 45 1200 

21 2 80 30 0 
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14 1 53 30 600 

41 3 53 15 1200 

39 3 53 15 0 

6 1 80 30 0 

32 3 80 15 600 

27 2 53 45 1200 

20 2 25 30 0 

10 1 53 45 0 

30 2 53 30 600 

7 1 25 30 1200 

34 3 80 45 600 

13 1 53 30 600 

 

3.3.1 Choice of levels 

The variables that were investigated during the pre-treatment stage and the three 

levels chosen are: 

· Pre-treatment temperature (25, 53, 80) oC 

· Pre-treatment time (15, 30, 45) min 

· Stirring during the pre-treatment operation.(0, 600, 1200) rev/min 

Three levels of each variable investigated were chosen according to the Box-

Behnken experimental design for suitable optimisation (Montgomery, 2013). Incase 

optimisation will be required. 

3.3.2 Pre-treatment temperature 

Temperature has been discussed as one of the main factors that favours desorption 

(Section 2.9.1). Van der Merwe and Van Deventer (1993) investigated the effect of 

pre-treatment temperature at 20oC and 100oC. Likewise Jeffery et al. (2010) adopted 
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a pre-treatment temperature of 130oC. In these cases, it was concluded that more 

elution occurs during pre-treatment at high temperature. 80oC was chosen for the 

high level pre-treatment temperature in this research. At this temperature, it was a 

convenient temperature at atmospheric pressure and the aim was to investigate the 

effect rather than finding an optimum solution. Low level pre-treatment temperature 

of 25oC was chosen and the mid-point corresponding to approximately 53oC was 

used as the mid-point level. 

3.3.3 Pre-treatment time 

According to Laxen et al. (1982), reduction in pre-treatment time from 8 hours to 

about 2 hours does not have a detrimental effect on elution efficiency. Pre-treatment 

time of 30 min is commonly used by various researchers on a laboratory scale and 

variabilities of pre-treatment time exist in the industry (Marsden and House, 2006; 

Van Deventer and Van der Merwe, 1993; Davidson and Bailey, 1991; Davidson and 

Schmidt, 1986). 30 min was chosen as the reference and midpoint to investigate the 

effect above and below the reference point. As such, 15 min and 45 min were 

chosen for the low and high level respectively.  

3.3.4 Agitation speed 

Several researchers have shown that no stirring for 30 min was adopted in the pre-

treatment condition (Jeffery et al., 2009, Van Deventer 1993; Van Deventer 1992; 

Davidson 1986; Davidson and Veronese, 1979; Davidson 1977). However, in the 

investigation of the feasibility of using activated carbon for PGM [Platinum (Pt), 

Palladium (Pd) and Au] recovery from low grade ore, Snyders (2014) adopted a 

stirring time of 30 min at a constant speed. Van Deventer and Van der Merwe (1995) 

investigated the effect of different stirring speeds on the decomposition of CN  for 

about 70 hours. The result showed that more CN  decomposes with increasing 

agitation speed, however, the effect on elution was also not provided. 

This work adopted a low level of no agitation (0 rev/min) which can be seen as a 

region of laminar regime and a high level of intense turbulent condition 

(1200 rev/min) which corresponds to speed of just the suspension (Njs) of carbon 

particles. The Njs was determined based on visual inspection of the carbon particles 
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at 1200 rev/min (Paul et el., 2004; Gray, 1999). Njs is suggested to increase 

maximum exposure of the particles for uniform mixing (Paul et al., 2004). The 

midpoint of 600 rev/min was calculated from the range of chosen speeds. 

The appropriate dimensionless parameters (Power numbers and Reynolds numbers) 

used to quantify the agitation speeds were calculated according to Equations 3.1 and 

3.2 respectively (Wong et al., 2014; Hemrajani and Tatterson, 2004). 

Np= 
P

ρmN
3
D

5              3.1 

R= 
D

2
Nρm

μm

             3.2 

Where: Np = Power number 

 P = Power consumption of slurry (W) 

 N = Rotational speed of the impeller (rps) 

 D = Impeller Diameter (m) 

 R = Reynolds number 

 ρ
m

 = Density of mixture (kg/m3) 

 μ
m

 = Viscosity of the mixture (N.s/m2) 

2The density of the mixture and viscosity of the mixture was calculated using 

Equations 3.3 and 3.4 respectively (Menon, 2004) 

ρ
m

= 
100

[
Cw
ρs

+
[100-Cw]

ρL
]
            3.3 

μ
m

= μ
L
*[1+2.5*ɸ+10.5*ɸ

2
+0.00237*exp (16.6*ɸ)]     3.4 

Where: 𝐶𝑤 = concentration of solids by weight in slurry (%) 

 ρ
s
 = density of solids (kg/m3) 

 ρ
L
 = density of liquid (kg/m3) 

                                            

 

2
 Mixture is a combination of solids (carbon + NaOH-NaCN) and liquids(RO water) 
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 μ
L
 = viscosity of liquid 

 ɸ = volume fraction   

3.4 Method of analysis 

3.4.1 ICP_OS  

Au and Na concentrations in solution were analysed using an i-cap 6000 series ICP 

spectrometer. A standard stock of Au and Na solution was prepared in which the 

intensities of the wavelength were known. This corresponds to the concentration of 

the standard solution. The concentration of the wavelengths and intensity of the 

aqueous samples to be determined are converted to aerosols through a nebulizer at 

high temperatures between 8000oC to 10000oC. The comparisons of these 

wavelengths against the standard solution were finally used to correlate the actual 

concentration. 

3.4.2 Silver nitrate titration 

Free cyanide ( CN ) was measured by titrating 1 mL volume of solution containing 

CN
 against a 0.1 M concentration of silver nitrate (AgNO3) with an automatic 

titrating machine (TIM856 titration manager), using a silver electrode as the indicator. 

Mille-Q water was added to the 1 mL solution containing CN  to have contact with 

the indicator. The potentiometric end-points were detected from the derivated plot 

(indicated on the screen of the titrating machine) of the potential of the solution 

against the volume of AgNO3 used. This was signified by the maximum peak in the 

plot while the corresponding volume was used to calculate the concentration of CN . 

See Appendix B for supporting calculation. 

3.4.3 Scanning electron microscopic analysis 

The Image of Au loaded activated carbon was investigated using a Zeiss EVO® 

MA15 Scanning Electron Microscope at the Geology department of Stellenbosch 

University. Firstly, before the imaging was carried out, the samples were mounted on 

a stub carbon tape with double side in order to make the sample surface electrically 
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conducting. The Scanning electron (SE) images show the surface structure of the 

material. The spot size of the beam was 550 and the conditions of the surface were 

20 kV. 

3.4.4 Measurement of natural or dissolved oxygen 

Dissolved oxygen (DO) in solution was measured using a cyber-scan 300 dissolved 

oxygen meter connected to a dissolved oxygen probe. 

3.5 Chapter summary 

The materials and methodology used in the conduction of this research were 

outlined and described in this chapter. These materials and approaches include the 

synthetic Au solution, properties of activated carbon, how the loading of Au on 

activated carbon was performed, pre-treatment and the elution process. In addition, 

choice of experimental design and the selection of pre-treatment parameters were 

also discussed. The last section of this chapter discussed the various analytical 

techniques adopted. These include ICP_OES analysis, titration technique for the 

measurement of CN , SEM and the dissolved oxygen measurement. 

The results of these experiments that investigated the role of NaOH-NaCN and effect 

of temperature, contact time and agiation speed on Au elution are discussed in the 

next chapter.  
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4  Results and discussion 

The results obtained from the experiments and its interpretations are presented in 

this charpter in order to answer the research questions. These include a brief 

summary of the loading on activated carbon and results obtained in the pre-

treatment stage where the role of NaOH-NaCN and the effect of pre-treatment 

parameters on Au elutions were investigated. Adequate understanding of these 

effects significantly assisted in the explanation of the most suitable elution 

mechanism. Furthermore, the industrial application on Au loaded activated carbon 

supplied from Au processing plant was presented.  

4.1 Adsorption result 

The adsorption experiment was conducted at atmospheric conditions in an electrical 

powered mechanical roller rotating at a speed of 450 rev/min. ICP analysis of the 

barren solution after adsorption revealed a concentration of 0.03 mg/L from an initial 

concentration of 10.6 mg/L of the prepared synthetic Au solution. This showed that 

more than 99% of the Au was adsorbed. The concentration of carbon used in 

comparison to the amount of Au adsorbed resulted in large amount of surface area 

for sufficient adsorption (Van Nguyen et al., 2010). It was assumed that the loading 

was uniform through the thorough mixing that was carried out using a rotary divider. 

As such, each 12 g of AC that were subsequently used during pre-treatment and 

elution were assumed to have 0.38 mg/g of Au. The remaining adsorbed Au on 

carbon after elution was not estimated. Therefore, It was assumed that the maximum 

(100%) recovery of Au elution recovery was obtained at the optimum pre-treatment 

condition at 20 BV 

4.2  Elution results 

Table 4.1 shows an overview of the Au elution results after pre-treatment and at 

6 bed volumes (just after the elution peak). The elution results presented are the 

average values after three replicates of each run. Using the mean after three 

replicates minimises the error that might be associated with the experiment, it also 

improves the accuracy of the regression model used to predict other data points that 
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are not conducted experimentally. Statistical analysis of results and the errors 

associated with the experiment are further discussed in chapter 6 

Table 4.1: Overview of experimental result of Au elution at different pre-

treatment conditions. 

Run Temperature 

(oC) 

Time  

(min) 

Speed 

(rev/min) 

Au (mg/L) 

after pre-

treatment 

%Recovery 

after pre-

treatment 

%Recovery 

at 6BV 

Na (mg/L)    

after pre-

treatment 

1 25 15 600 0.06 0.03 54.6 17156 

2 80 15 600 0.61 0.27 61.2 18415 

3 25 45 600 0.04 0.02 59.5 17641 

4 80 45 600 0.47 0.21 61.7 18942 

5 25 30 0 0.06 0.03 59.9 16658 

6 80 30 0 0.97 0.44 70.9 18132 

7 25 30 1200 0.10 0.04 58.3 16593 

8 80 30 1200 0.13 0.06 56.5 18448 

9 53 15 0 0.11 0.05 59.9 18283 

10 53 45 0 0.17 0.08 60.3 17276 

11 53 15 1200 0.06 0.03 56.7 17540 

12 53 45 1200 0.04 0.02 56.8 18706 

13 53 30 600 0.08 0.04 55.5 18050 

14 53 30 600 0.11 0.05 57.3 16958 

15 53 30 600 0.05 0.02 55.1 16001 

 

4.2.1 Gold elution after pre-treatment 

It can also be seen from Table 4.1 that the percentage of Au eluted after pre-

treatment did not exceed 0.44% even at high levels of any of the pre-treatment 

parameter (80oC or 45 min or 1200 rev/min). This suggested that insignificant 

amount of Au was eluted during pre-treatment when compared with Au eluted at 

6BVs. Therefore, it was assumed that amount of Au eluted after pre-treatment will 

not influence results found at 6 BVs. The results of elution performed at pre-

treatment condition of 80oC, 30 min and no agitation is shown in Figure 4.1. This 

curve was used as an example for all the elution curves obtained and is used to 

explain the elution behaviour of Au.  
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1 2 3

 

Figure 4.1: Description of Au elution curve. (Pre-treatment with 1% NaOH and 

3% NaCN, 80oC, 30 min and no agitation , elution at 90°C) 

For clarity, the elution profile was divided into 3 sections. The description for each of 

this section is shown in Table 4.2 which is similar to the description by Snyders et al. 

(2015).  

Table 4.2: Description of the divided sections of elution curve 

Section Observation and description  Suggestion or possible reason 

1 The amount of Na eluted increases 

while Au is yet to be eluting. 

Excessive amount of Na carried 

over from pre-treatment supressed 

Au elution. 

2 The concentration of Na drops while 

the concentration of Au increases to 

a maximum point in solution 

Removal of Na favours Au elution 

recovery 

3 The amount of Au eluted from the 

column decreases while Na remains 

depleted at low concentration 

throughout this stage. 

Depletion of Au on carbon surface 

resulting in decrease in 

concentration of Au in solution 
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From this description, it can be suggested that the presence of Na in the pre-

treatment solution supresses the elution of Au. According to the ion pair mechanism 

and the effect of cations on adsorption and elution as discussed in Sections 2.6.1 

and 2.9.3, the presence of such a high concentration of Na in the pre-treatment 

solution favours the formation of ])[Au(CN)(Na 2

  ion pair on the carbon surface 

thereby inhibiting desorption (Adams and Fleming,1989; McDougall et al.,1980; 

Davidson,1974; Gross and Scott, 1927). With regards to the role of CN during 

elution, insufficient information is available at this point to prove the exact 

mechanism through which it aids elution.  

In view of this, the effect of Au eluted during pre-treatment are regarded to be 

negligible for further analysis during elution in subsequent sections and are assumed 

not to have an effect on the elution analysis.  

4.3 Effect and role of caustic-cyanide during pre-treatment. 

The behaviour of NaOH-NaCN during pre-treatment can be summarised to take 

place in two stages. These stages are: 

· Dissociation of chemical compounds into its ionic state. NaOH and NaCN will 

dissociate to Na+, OH- and CN  

· It is proposed that there could be some interactions of these dissociated ions 

from solution either by adsorption onto the activated carbon (occlusion of any of 

these ions in carbon pores or just sitting on the carbon surface), or formation of the 

Au metal complex ])[Au(CN)(Na 2

  as an ion pair as discussed in Section 4.2.1 for 

Na+. This interaction could also either be as a result of catalytic oxidation in the 

presence of activated carbon or via hydrolysis in the case of CN  as earlier 

discussed in Section 2.12.1. Another possible interaction of these ions in the solution 

could be as a result of specific reaction with functional groups of activated carbon 

(Adams and Fleming, 1989). At this juncture, the exact form of interaction during pre-

treatment was not firmly established especially for CN . Na+ is proposed to form Au 

metal complex ])[Au(CN)(Na 2

  through the interaction with adsorbed 

2Au(CN)  on 

carbon surface according to the ion pair mechanism (Section 4.2.1). Understanding 

these interactions will enhance the suggestion of a suitable elution mechanism.  
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In addition, from the first case (dissociation of chemical compounds), depending on 

the pH of the medium, CN  can either form HCN or exist as CN  (Figure 2.11). The 

presence of OH and the stability of CN  were confirmed with the measured pH of 

the solution within the range of 11 and 12.9 throughout the whole experiment. CN

becomes more stable when pH > pKa of HCN. This is in agreement with the work of 

Van der Merwe (1992) where it was stated that the OH  ion stabilises the CN  to 

prevent evolution of HCN. Although all experiments were conducted in alkaline 

medium (pH≥11). However, it was observed that HCN gas was evolved at 25oC 

which fluctuated between 0.1 and 0.6 mg/L as seen in the Drägger HCN gas 

detector for about a minute. The set of combinations of parameters where this 

observation occurred were repeated to confirm the evolution of HCN gas. However, 

observations of the exact concentration of the HCN gas evolved were inconsistent 

after three repetitions and the HCN gas was considered to be insignificant. 

The high amount of Na+ (>16000 mg/L) present after pre-treatment can be attributed 

to the contributions from NaOH and NaCN. Further investigation of the effect of Na+ 

on the adsorption with carbon surface and 

2Au(CN)  showed that the majority of Na+ 

that adsorbed on the carbon surface loaded with 

2Au(CN)  were strongly bonded 

through ion-pair mechanism (Section 2.4.4). This was confirmed with two sets of pre-

treatment experiments. In the first set, the pre-treated Au loaded AC at 80oC, 30 min 

and 0 rev/min was rinsed with 300 mL of RO water at 25oC to wash off the excess 

Na+ on the carbon surface before elution while the other set was eluted immediately 

after pre-treatment. The result of the two cases, as shown in Figure 4.2, suggested 

that the Au elution peak was attained after the elution of the majority of Na+. 
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Figure 4.2: Effect of rinsing of excessive Na from the surface of pre-treated 

carbon. The pre-treatment condition for both rinsed and unrinsed conditions 

are 80oC, 30mins and 0 rev/min. Point u represent the amount of Au eluted at  

0.6 BV at unrinsed pre-treatment condition in the presence of excessive Na 

carried over from the pre-treatment stage (x-y). Points v and w respectively 

corresponds to the amount of Au and Na eluted at rinsed conditions at 0.6 BV.  

Comparison of Au eluted during this exercise with Au eluted at 6 bed volume 

equivalent of 300 mL that was used to rinse off the excessive Na+ is reported as 

follows; 
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In the rinsed solution (6 bed volume), the amount of Au present in the solution was 

about 0.1%. At 6 bed volumes of the rinsed and unrinsed elution recovery, amount of 

Au was about 50 and 70% respectively as shown in Figure 4.3. These results 

correspond to the observed depletion of Na+ in both cases as shown in Figure 4.2. 

 

Figure 4.3: Effect of rinsing of excessive free cyanide from the surface of 

pretreated carbon Pre-treatment condition for both rinsed and unrinsed 

conditions are 80oC, 30mins and 0rev/min. 

This explanation can be supported by the work of Van der Merwe (1994) stating that 

Au elution is strongly dependent on cation removal. From Figure 4.2 , the effect of 

excessive sodium carried over from the pre-treatment stage to elution stage was 

seen to suppress Au elution recovery. This is seen with about 10000 mg/L Na at 

point y and eluted Au of about 1.6 mg/L (point u) at unrinsed pre-treatment condition. 

When this is compared with the rinsed condition of excessive Na at the same point of 

evaluation, It was seen that Au eluted (point w) was high (approximately 7 mg/L) at 

an approximate concentration of 800 mg/L Na (point v). 

Another noticeable observation that can be seen in Figure 4.2 is the discrepancy in 

the Au elution curves of the rinsed and unrinsed conditions. This discrepancy of the 

amount of Au eluted in mg was done by calculating the difference in the amount of 

Au eluted for the two elution recovery curves.  
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Calculated difference of about 77 mg of Au implies that it remained uneluted on the 

activated carbon. Possible reasons for this retained Au on carbon can be suggested 

to be confined into two factors which are the deficit of Na and reduction to AuCN 

according to Equation 4.1 (Section 2.5) 

Au(CN)
2

-
+ H

+
 → AuCN + HCN        4.1 

From these two suggestions, reduction process (Equation 4.1) seems to be a more 

reasonable explanation due to the drop in pH from 12 to around 8.5 during the 

rinsing process. In addition the measured HCN gas with the HCN gas detector that 

remained stable between 0.6-0.8 mg/L suggested that Equation 4.1 occurred. Under 

severe acidic condition of about 4, greater occurrence of Equation 4.1 would be 

expected (Adams, 1990c). This implies that some Au may remain strongly adsorbed 

as AuCN (Van Deventer and Van der Merwe, 1993; Davidson and Schmidt, 1986) 

which accounts for the residual Au remained on activated carbon in a rinsed pre-

treatment condition. 

4.4 Cyanide loss during pre-treatment condition 

Little is known about the loss of CN  during pre-treatment of Au. This study will help 

to better understand the mechanism of CN  depletion from solution. In this study, 

similar approach adopted by Nafaâ and Lotfi (2002) and Adams (1990) in the kinetic 

and equilibrium study of CIL and water containing cyanide was adopted. The 

concentration of CN  in solution was measured at 15 min interval for a pre-treatment 

time of 60 min. This was carried out for NaOH-NaCN solution in the absence of 

activated carbon, in the presence of unloaded activated carbon (UAC) and carbon 

loaded with Au (AC-Au). For cases involving activated carbon, 12 g of activated 

carbon was used and 3% NaCN and 1% NaOH by volume of 80 mL of water as 

earlier adopted for the elution experiment were used in all cases. 

A comparison plot of CN  concentration against four consecutive contact times at 

25oC, 53oC and 80oC in the absence, presence of UAC and AC-Au is shown in 

Figures 4.4–4.6.  
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Figure 4.4: Cyanide behaviour in solution at 25oC, 0 rev/min, and 60 min. 

 

Figure 4.5: Cyanide behaviour in solution at 53oC, 0 rev/min, and 60 min. 
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Figure 4.6: Cyanide behaviour in solution at 80oC, 0 rev/min, 60 min  

Before the discussion on specific behaviour of CN , it is important to consider the 

behaviour of the overall compound (NaCN). From Figures 4.4 and 4.5, it is seen that 

there is no significant change in the concentration of CN  throughout the pre-

treatment period at both 25oC and 53oC when compared to Figure 4.6 where the pre-

treatment temperature is 80oC. However, at 80oC, the concentration of the measured 

species in solution was found to increase with contact time. It was found that about 

17 mL of water was lost as water vapour at 80oC while around 3.5 mL and 0.4 mL 

were lost as water vapour at 53oC and 25oC respectively. This accounted for 

increased concentration of CN  and Na+ observed in Figure 4.6. Further 

investigation after elimination of the evaporation at 80oC showed no significant 

change in concentration of CN  occured during this period as shown in Table 4.3. 

This suggests that there is a low probability of CN  loss either by adsorption of 

decomposition occurring during pre-treatment of Au 

Table 4.3: Concentration (M) of CN  at 15-min interval after elimination of 

vapourisation 

Temperature 

(°C) 

Speed 

(rev/min) 

t
0
 t

15 t
30 t

45 t
60 

80 0 0.48 0.56 0.56 0.55 0.56 
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Eh-ph of the system  

In a quest to further gain more insight into the behaviour of cyanide during the pre-

treatment process, the phase stability (Eh–pH) of CN–H2O system was investigated. 

This is a useful tool for predicting dominant specie (stable or meta-stable) in a region 

at equilibrium (Free, 2013). Figure 4.7 shows the Eh–pH diagram of CN–H2O 

combined for temperatures at 25oC, 53oC and 80oC for ease of comparison with the 

aid of HSC chemistry 7.31 software. From Figure 4.7, there is no significant change 

in the equilibrium lines between species at HCNO/HCN, HCN/OCN, HCNO/OCN and 

CN/OCN species except between CN  and HCN species at the selected 

temperatures (25oC, 53oC and 80oC). The equilibrium lines between CN  and HCN 

for all temperatures varied between pH of 8 and 9.5. However, the measured pH in 

the present study prepared at 3% NaOH-NaCN solution was around 12.5. The range 

of pH maintained, suggests that CN  present in this pH region can either exist in the 

form of OCN- or CN depending on the potential of the solution. Bard et al. (1985) 

reported that CN  in alkaline medium moderately oxidises to cyanate (OCN- or 

CNO ) and cyanogen gas given by Equations 4.2 and 4.3 respectively. 

2OH
-
+ CN

-
 ⇌ CNO

-
+H2O+ 2e

-
                            E

o
 =-0.97v    4.2 

2CN
-
 ⇌ (CN)

2(g)
+ 2e

-
                                          E

o
= -0.182v     4.3 

An increase in the concentration of CN  with decreasing volume as earlier discussed 

and Eh-pH diagram suggested that there is a lower chance of oxidation of CN  to 

CNO  or probably insignificant if there is any. The measured Eh with an ORP 

electrode dropped from about 0.03 v to around -0.2 v for the pre-treatment time. This 

drop was observed to continue after the pre-treatment time which did not remain 

stable at -0.2 v. This suggest that the stable values of the potential has not been 

reached during this pre-treatment time and more drop in the potiential would be 

expected to confirm a predominate phase of CN  as shown in Figure 4.7 .These 

evidences were used to suggest the possible reactions of cyanide in solution. Similar 

trend was also noticed with the behaviour of sodium, which suggested dissociation of 

NaCN to Na+ and CN  significantly occurred and that little or no CN  is being 

oxidised to CNO . 
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Figure 4.7: Combined Eh-pH diagram of CN-H2O at 25oC, 53oC and 80oC 
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4.5 Effect of selected parameters on the elution of gold. 

The effect of temperature, contact time and agitation speed is discussed in the following 

section. The trend of each pre-treatment parameter was defined with at least three data 

points rather than two. This ensures minimisation of random error that might be 

associated in the adoption of two data points (ISU, 2014). In addition, the choice of 

experimental design (Box-behken design) that requires three factors and three levels 

justified the three chosen points than four or more points. The error bars in the plots 

indicate the standard deviation. Elaborate discussions with regards to error and the 

confidence level at ± 95% interval are further discussed in the statistical analysis of 

results.  

4.5.1 Effect of temperature  

According to Adams (1991), elution temperature, among other elution factors such as 

concentration of NaOH-NaCN, ionic strength and organic solvent, significantly affects 

elution rates. Usually in industry, the same pre-treatment temperature as the elution 

temperature (110–120oC) is deployed (Davidson et al., 1990). The effect of pre-

treatment temperature at 25oC, 53oC and 80oC on Au elution recovery is shown in 

Figure 4.8. while the surface response plot showing the interaction of pre-treatment 

temperature with contact time is shown in Figure 4.9. It can be seen that an increase in 

pre-treatment temperature from 25oC to 53oC resulted in an increase of less than 5% in 

Au recovery (Figure 4.8). Further increase in temperature from 53oC to 80oC resulted in 

about 12% increase in Au recovery. The positive effect of pre-treatment temperature on 

Au elution recovery can also be seen in Figure 4.9. These are in agreement with the 

study by Van Deventer and Van der Merwe (1994) where it was shown that significant 

elution recovery was obtained at pre-treatment temperature of 100oC than at 25oC.  

According to Figure 4.6, an increase in concentration of CN  observed at 80oC due to 

vapourisation suggest that more CN  is available for interaction with carbon surface, 

thereby promoting Au elution recovery than at 25oC and 53oC.(Figures 4.4 and 4.5). 

However in the industry, the vessels are pressurised and it is expected that the 
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evaporation will remain minimal and the CN  concentration will remain constant that 

still results in increased elution results. It should be noted that the exact interaction of 

CN  with carbon surface is not yet fully ascertained. The most likely form of interaction 

is discussed under the reaction mechanism in Section 4.6.3. 

 

Figure 4.8 The effect of pre-treatment temperature on the elution recovery of Au. 

(Pre-treatment with 1% NaOH and 3% NaCN and no agitation, elution at 90°C) 

 

Figure 4.9: Surface response plot of interaction of effect of contact time and 

temperature at 0 rev/min. 
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4.5.2 Effect of contact time 

The effect of contact time during pre-treatment was investigated at 15, 30 and 45 min. 

Figures 4.10–4.12 show the plot of the effect of contact time at 25oC, 53oC and 80oC, 

respectively.Figures 4.13–4.15 present the trends of contact time during the interaction 

of pre-treatment temperature with agitation speed on Au recovery. At a temperature of 

25oC, an increase in recovery of about 4% is seen from 15  to 45 min (Figure 4.10). At 

temperatures of 53oC and 80oC, increase in the pre-treatment time is statistically 

insignificant on the subsequent elution recovery (Figures 4.11 and 4.12), indicating that 

pre-treating for only 15 min will result in similar elution recoveries for other contact 

times. The insignificant effect of contact time on Au elution recovery is further shown in 

Figures 4.13–4.15 where there is no significant change in the trends and shapes of the 

surface response plot. Davidson and Baily (1991) reported the interaction of contact 

time with pre-treatment temperature. It was stated a long pre-treatment time will be 

required at lower pre-treatment temperature (<110oC). However, insignificant effect of 

this can only be seen at 25oC which is an attribute of a chemical reaction controlled 

process. According to Bruce and Patricia (2007), virtually all rates of chemical reaction 

increases with an increase in temperature and vice-versa. It is therefore, suggested that 

increase in temperature minimises the effect of contact time on the overall recovery. 

This is clearly seen in Figures 4.10–4.12 where recovery line tilts with increase in 

temperature until an almost horizontal position is reached.  
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Figure 4.10: The effect of pre-treatment time on the elution recovery of Au for 

different agitation speeds. (Pre-treatment with 1% NaOH and 3% at 25oC, elution 

at 90°C).  

 

Figure 4.11: The effect of pre-treatment time on the elution recovery of Au for 

different agitation speeds. (Pre-treatment with 1% NaOH and 3% at 53oC, elution 

at 90°C).  
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Figure 4.12: The effect of pre-treatment time on the elution recovery of Au for 

different agitation speeds. (Pre-treatment with 1% NaOH and 3% at 80oC, elution 

at 90°C). 

 

 

Figure 4.13: Surface response plot of interaction of effect of agitation speed and 

temperature at 15 min 
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Figure 4.14: Surface response plot of interaction of effect of agitation speed and 

temperature at 30 min 

 

Figure 4.15: Surface response plot of interaction of effect of agitation speed and 

temperature at 45 min. 
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4.5.3 Effect of agitation speed 

The effects of agitation speed at 0, 600 and 1200 rev/min on Au recovery at different 

temperatures are shown in Figures 4.16 –4.18. Increasing the agitation speed from 0 to 

1200 rev/min at 25oC of pre-treatment temperature did not result in any significant 

change in Au elution recovery as seen in Figure 4.16. At 53oC, the effect of agitation 

speed becomes more visible towards a negative side with a decrease in Au elution 

recovery (Figure 4.17). This is seen with about 6% decrease in elution recovery from 0 

to 1200 rev/min. This effect becomes more severe at a higher temperature (80oC) with 

approximately 10% decrease from 0 to 600 rev/min and additional 7% decrease in Au 

elution recovery from 600  to 1200 rev/min as shown in Figure 4.18. Likewise the 

opposing effect of increasing agitation speed on Au elution recovery is also seen with 

lowering the surface plot especially around the region of high temperature as shown in 

Figures 4.19–4.21 

 

Figure 4.16: The effect of pre-treatment agitation on the elution recovery of Au. 

(Pre-treatment with 1% NaOH and 3% NaCN at 25°C, elution at 90°C) 
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Figure 4.17: The effect of pre-treatment agitation on the elution recovery of Au. 

(Pre-treatment with 1% NaOH and 3% NaCN at 53°C, elution at 90°C) 

 

Figure 4.18: The effect of pre-treatment agitation on the elution recovery of Au. 

(Pre-treatment with 1% NaOH and 3% NaCN at 80°C, elution at 90°C) 
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Figure 4.19: Surface response plot of interaction of effect of agitation speed and 

contact time at 25oC 

 

Figure 4.20: Surface response plot of interaction of effect of agitation speed and 

contact time at 53oC 
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Figure 4.21: Surface response plot of interaction of effect of agitation speed and 

contact time at 80oC. 

Van Deventer and Van der Merwe (1994) reported an improved Au elution recovery at 

high pre-treatment temperature (100oC). Furthermore Van Deventer and Van der 

Merwe (1995) reported a higher decomposition of CN  at higher agitation speed. It is 

expected that these two factors (temperature and agitation) will contribute to Au elution 

recovery significantly, based on the mechanism that decomposition of CN  causes a 

passivating product to be formed on the carbon surface (Section 2.10). However, the 

opposite effect seems to be the case. This opposing effect was suggested to be due to 

two possible reasons that were further investigated: 

1) It may be that less CN  is available for reactions with the carbon surface groups 

which ultimately results in lower Au elution recoveries.  

2) It could possibly be the breakage of carbon granules in fine particles by the 

impeller which resulted to increase in surface area and a higher loss of Au through the 

carbon fines. The indication of this effect after separating the fine particles from the 
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granules are shown in Figures 4.22 and 4.23 at the agitation speeds of 600  and 

1200 rev/min respectively. 

 

Figure 4.22: The effect of agitation speed on carbon loaded with Au. Dark 

portions indicate the amount of carbon fines obtained from carbon granules at 

the agitation speed of 600rev/min (Pre-treatment conditions: 600 rev/min, 80oC 

and 30 min)  

 

Figure 4.23: The effect of agitation speed on carbon loaded with Au. Dark 

portions indicate the amount of carbon fines obtained from carbon granules at 

the agitation speed of 1200rev/min (Pre-treatment conditions: 1200 rev/min, 80oC 

and 30 min)  
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As shown in these two Figures, more carbon fines are obtained at 1200 rev/min than at 

600 rev/min. The weights of these carbon fines and the Au loss that are possibly 

associated with the carbon fines at different temperatures and agitation speed are 

shown in Table 4.4. This is based on the assumption that the loading on each 12 g of 

activated carbon pre-treated is uniformly loaded with of 0.38 mg/g. An upgrade ratio of 

about 8 was estimated at 6BV. Upgrade ratio is ratio of the mass of Au in solution to the 

mass of Au on activated carbon (Rogans and McArthur, 2002). The mass of Au 

estimated with this upgrade ratio and the estimated gold loss after elution are shown in 

Table 4.4.  

Table 4.4: Effect of agitation speed at different temperatures on carbon fines 

Temperature 

oC 

Agitation 

speed 

(rev/min) 

carbon 

fines (g) 

Au (mg) on 

AC 

Au (mg) in 

solution 

Estimated loss 

during elution 

(%) 

25 600 0.05 0.02 0.16 0.5 

25 1200 0.16 0.06 0.48 1.4 

80 600 0.03 0.01 0.08 0.2 

80 1200 0.12 0.05 0.4 1.2 

It is seen from Table 4.4 that the estimated percentage loss with carbon fines after 

elution is insignificant when compared to the loss that was obtained during high 

agitation speed as earlier discussed in section 4.5.3. This implies that a separate 

mechanism is responsible for Au loss during agitation which is not well understood at 

the moment. 

A similar indication of carbon fines was also obtained at 600 and 1200 rev/min at 25oC. 

However, no significant change in the Au elution recovery was seen with increase in 

agitation speed (Figure 4.16). The exact reason for this behaviour is not fully known, but 

it is suggested that at this operating temperature (25oC), less CN  will be available for 

interaction with the carbon surface than at 80oC (Figure 4.4 andFigure 4.6) while 

agitation still play its “counter intuitive” role to increase surface area. 
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Further proof to the opposing effect of agitation was further investigated by measuring 

the concentration of CN  during different pre-treatment conditions at 15 min interval. 

These results are presented in Table 4.5. From these results, the evaporation was 

eliminated and it can be seen that there is no significant change in concentration of 

CN . The results obtained in Table 4.5 were further used to calculate the solid-liquid 

mass transfer coefficient (kSL) of CN  using the pre-treatment medium at different 

agitation speeds using Equation 2.26. 60 min contact time was used to allow sufficient 

data points.  

[
d(

C

Co
)

dt 
]= - kSLas           2.26 

Table 4.5: Results of CN- (M) measured at different pre-treatment conditions at 15 

min time intervals  

Conditions Concentration (M) of CN- at 15 min time 

interval 

Temperature 

(oC) 

Speed 

(rev/min) 

t0 t15 t30 t45 t60 

25 0 0.52 0.52 0.56 0.56 0.56 

25 600 0.56 0.56 0.56 0.56 0.56 

25 1200 0.56 0.56 0.56 0.52 0.56 

53 0 0.55 0.55 0.56 0.56 0.56 

53 600 0.52 0.56 0.52 0.55 0.56 

53 1200 0.56 0.56 0.56 0.55 0.56 

80 0 0.48 0.56 0.56 0.55 0.56 

80 600 0.56 0.56 0.56 0.56 0.56 

80 1200 0.60 0.56 0.52 0.56 0.56 

 

The plot of the effects of increasing agitation speed on kSL is shown in Figure 4.24. It is 

seen that there is no significant change in kSL from 0 to 1200 rev/min at different 

temperatures. This result suggests that pre-treatment in the presence or absence of 

agitation is less likely to be controlled by diffusion process than reaction mechanism. 
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This rules out the suggestion on the less availability of CN  for reaction with surface 

group. It is therefore, concluded that agitating the Au loaded activated carbon in pre-

treatment solution of NaOH-NaCN does not improve Au elution recovery. 

 

Figure 4.24: Effect of increasing agitation speed from 0 to 1200rev/min on SLk at 

25oC, 53oC and 80oC. (Solution condition: 1% NaOH and 3% NaCN) 

4.6 Proposed mechanism  

4.6.1 Evaluating the previous mechanisms 

Various elution mechanisms proposed by different researchers have been reviewed 

(Section 2.10). A suitable explanation to one of the proposed mechanisms can be 

suggested based on the results found from the role of NaOH-NaCN and the effect of 

pre-treatment parameters on Au elution that were investigated .The explanation for this 

linkage is discussed as follows: 

Going by elimination of the previous mechanisms and correlating it with present 

findings, mechanism of CN
 reacting with AuCN to form a soluble species as given by 
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Equation 2.14 can be ignored due to no acid washing. As such, the gold is assumed to 

remain chemically adsorbed as an ion pair (M
n+

[Au(CN)2
-
]). 

AuCN+ CN
-
→ Au(CN)

2

-
          2.14 

As discussed in Section 4.2.1, an insignificant amount of Au measured just after pre-

treatment resulted in the rejection of proposed competitive adsorption of CN  with 

adsorbed Au to favour elution. This agrees with previous studies, where no Au was 

reported to be present after pre-treatment (Van Deventer and Van der Merwe, 1994). 

According to decomposition mechanism proposed by Van Deventer and Van der Merwe 

(1994; 1992), it was suggested that adsorbed CN  decomposes to form a passivating 

product to make the surface of carbon less receptive for Au. This also seems unlikely to 

be the case. It has been reported that an increase in pre-treatment temperature and 

agitation results in increased decomposition of cyanide (Van Deventer and Van der 

Merwe, 1995; Van Deventer et al., 1992). This is expected to increase the Au elution 

recovery which was not the case as shown in Section 4.5.3. 

However, the reaction mechanism of CN  with surface functional groups suggested by 

Adams and Fleming (1989) seems to be a possible mechanism given by Equations 

2.18 and 2.19. Discussions on the role of CN  in Section 4.3 reasonably support the 

suggestion that CN  reacts with the carbon surface to improve Au elution recovery as 

shown in Figure 4.3. 

4.6.2 Possible site(s) of reaction mechansim 

There have been some controversies on the adsorption mechanisms of Au, which has 

led to different proposed theories to describe the mechanism (Section 2.4). Among 

these theories, the ion-pair mechanism seems to have received significant scientific 

evidence to be the most plausible mechanism. Despite this, the exact functional group 

or planes on the activated carbon where this mechanism occurs has not been firmly 

identified. From the main functional groups identified (Nitrogen and oxygen functional 

groups), Jia et al. (1998) showed that nitrogen functional groups are of insignificant 

importance in Au adsorption while oxygen functional groups participate in Au adsorption 
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(Adams, 1989). From the list of oxygen functional group in Section 2.2.1, Adams (1991) 

and Adams and Fleming (1989) suggested the possibility of CN  reacting with ketones 

and aldehyde functional groups given by Equations 2.18 and 2.19, respectively. CN  

has been identified to be a strong nucleophile (Solomon, 1992). Aldehydes and ketone 

readily go through nucleophilic attack due to the presence of the highly polar carbonyl 

group (carbon-oxygen bond: Cδ+=Oδ–) (Brown, 2000-2014). According to McMurry 

(1998), carbonyl groups which are one of important groups in organic chemistry are 

broadly classified into aldehydes, ketones group, carboxylic acid and their derivative 

group. It is not unlikely that carboxylic acid groups also undergo reaction with CN or 

OH or both. However, the degree and hierarchy of these nucleophilic reactions was not 

substantiated. These reaction mechanisms with regards to the carbonyl groups are 

described in the next section.  

4.6.3 Reaction mechanisms 

In order to suggest a suitable elution mechanism regarding reaction with or modification 

of the functional group by CN , it is important to understand the properties and 

behaviour of the carbonyl functional group and the composition of the solvent. Going by 

this theory and adopting the concept of nucleophilic reaction earlier described in 

Section 2.11, the mechanism (Equations 2.18 and 2.19) suggested by Adams (1991) 

are satisfied. In addition, by the adoption of the principle of the steps involved in 

nucleophilic reaction, the suggested reaction steps for this mechanism as shown in 

Equations 4.4–4.9 for both NaCN and NaOH are: 

1) the nucleophiles (CN- and OH ) attacks the substrate at Cδ+= Oδ- 

2) the substrate gives out one of the double bonds  

Additional reactions with carboxylic acid that are being suggested as the elution 

mechanisms are further elaborated and shown as follows:  
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For aldehydes 

With NaCN 

CR H

O
δ–

 

δ+

+ Na
+
 + CN CR R

O
-

CN 
1

2

- Na
+
 

 

                     4.4 
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CR H

O
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δ+

+ Na
+
 + OH CR R

O
-

OH
1

2

- Na
+
 

            4.5 

For Ketones 

With NaCN 

CR R

O
δ–

 

δ+

+ Na
+
 + CN CR R

O
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CN 
1

2

- Na
+
 

          4.6 

 

With NaOH 
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O
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+ Na
+
 + OH CR R
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-

OH
1

2

- Na
+
 

           4.7 
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For Carboxylic acid 

With NaCN 

CR

O
δ–

 

δ+

+ Na
+
 + CN

O-H
-
 

CR

O
δ–

 

δ+
+ HCN

O
-

Na
+
 -

    4.8 

With NaOH 

CR

O
δ–

 

δ+

+ Na
+
 + OH 

O-H
-
 

CR

O
δ–

 

δ+
+ H2O

O
-

Na
+
 -

    4.9 

Na+ only acts as a spectator and does not participate in a specific reaction with the 

surface group (functional group modification) but exist as Na+{ 

2Au(CN) }. However, in 

the case of carboxylic acid, it undergoes neutralisation reaction to form HCN gas and 

water upon reaction with CN  and OH  respectively. According to Francis (2000), CN

and OH- are both good and strong nucleophiles, however, CN  and OH  are weak and 

strong bases respectively. Equation 4.8 could be the possible reason for the 

insignificant (fluctuation between 0.1 and 0.6 mg/L) amount HCN gas that was 

observed as earlier discussed in Section 4.3 but was suppressed by the pH of the 

medium. 

If this concept of nucleophilic reaction with CN  and OH  are the elution mechanism, a 

question of why CN  results in better Au elution recovery than OH  as shown by 

previous authors (Van Deventer and Van der Merwe, 1994; Adams and Nicol, 1986; 

Davidson and Duncanson, 1977) also needs to be answered based on this mechanism. 

On a basis of molecular orbital theory, a molecule is formed by the bonding of the 

frontal orbital to form a new bond which is made up of elections of individual elements  

(Locke, 1996–1997) A simple case with hydrogen molecule is shown in Figure 4.25. 

The bonding orbital where the molecule is formed is the highest occupied molecular 
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orbital (HOMO) while the orbital where no bond is formed is the lowest unoccupied 

molecular orbital (LUMO). The formation of the new bond results in reduction of the 

energy level as shown in Figure 4.25. 

Molecular Orbital

Atomic Orbital

Energy

1s1s

Atomic Orbital

LUMO

HOMO

σ*

σ

 

Figure 4.25: Molecular orbital diagram of hydrogen molecule. Redrawn from 

Locke (1996–1997) 

For ions or molecules formed from different atoms such as carbon monoxide, cyanide, 

hydroxide, the energy level of the new bond varies depending on the number or 

electrons in the outermost orbital that participate in the bonding (Locke, 1996–1997). In 

case of OH  and CN , the energy level of OH  is lower than CN . CN  and OH  are 

typical examples of species with HOMO, while the carbonyl groups which is an 

electrophile represents LUMO species. Furthermore, according to Koopmans’s theory 

(NIST, 2013a; Brown, 2000-2004), the ionisation energy of a molecule or atom can be 

regarded as the HOMO energy. The ionisation energy of OH  and CN  is given as 

13.017eV and ≈13.6 eV respectively (NIST, 2013b) This indicate that CN  and OH  

have different HOMO energy levels against a fixed LUMO energy level of the carbonyl 

functional group. The difference in the ionisation energy (≈0.6) of these ions seems 

insignificant compared to the significant Au elution recovery obtained in the presence of 

CN  than OH . The level of significance of this difference (≈0.6) that could have 

considerably supported this suggestion was not reported in the publication (NIST, 

2013b). However, it is suggested that higher ionisation energy of CN  compared to 

OH  possibly accounts for the improved Au elution recovery. This illustration shown in 
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Figure 4.26 suggests CN  will react faster than OH  due to this high HOMO energy 

level in order to attain stability. Furthermore, Adams (1989) observed that when CN  is 

added to a NaOH solution, the uptake of Na ions by carbon increases. 

CN
-

OH
-

HOMO Energy 

level
13.6eV

13eV

Carbonyl 

group (LUMO)

 

Figure 4.26: Illustration of LUMO-HOMO interaction of carbonyl vs CN  and OH  

4.7 Industrial application 

Further experimentation were conducted on Au loaded carbon supplied from Goldplat 

Recovery (PTY) Limited in South Africa. This Au loaded activated carbon has gone 

through an elution and regeneration step, but significant amounts of Au still remained 

loaded on it.  

Regeneration after elution aims to burn off organics and restore the activity of activated 

carbon carried out in a steam atmosphere at a temperature below 750oC (Grimsley, 

1991). Effect of such a high temperature on adsorbed Au suggests decomposition of 

cyanide associated with Au. As a result of this, the Au present on the surface of the 

carbon surface could be suggested to be present as solid gold [Au]s. According to 

Vorobev-desyatovskii et al. (2010), at typical regeneration temperatures, thermal 

decomposition to solid Au occurs on the carbon surface according to Equation 4.10.  

 2 Na[Au(CN)2]→2Aus+(CN)
2
+2NaCN       4.10 

This was confirmed by the SEM analysis of the loaded carbon as shown in Figure 4.27 

with the detection spectra shown in Figure 4.28. With this confirmed state of adsorbed 

Au present on carbon surface, the reaction of CN  together with the mechanism 
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proposed by Adams (1991) and the ones suggested in this present study, becomes 

more important for effective elution to take place. This is being suggested to likely take 

place according to Equation 2.8.  

AuCN+ CN
-
→ Au(CN)

2

-
          2.8 

 

Figure 4.27: SEM analysis of Goldplat loaded carbon after regeneration in kiln. 

 

Figure 4.28: Visual Spectra of Au detection on carbon surface 
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It would also be expected that cyanidation of Au will take place as with the case of 

leaching of solid Au as given by Equation 2.1 

4Au+ 8CN
-
+O2+ 2H2O ⇌ 4Au(CN)

2

-
+ 4OH

-
       2.1 

The result of changes in dissolved (natural) oxygen of the pre-treatment solution 

measured at different time interval during the pre-treatment with the aid of cyber-scan 

300 dissolved oxygen meter is shown in Table 4.6. This suggests that Equation 2.1 is 

occurring. 

Table 4.6. Dissolved (natural) oxygen (mg/L) measured at different time intervals 

during pre-treatment with loaded activated carbon sourced from Goldplat 

Recovery (PTY) at different temperature without stirring. (3%NaCN, 1% NaOH) 

Temperature 

(oC) 

Time (min) 

 0 5 10 20 30 

25 5 3.8 2.9 2.54 2.1 

80 3.2 2.3 1.11 1.1 1.02 

4.7.1 Effect of oxygen supply during pre-treatment 

A number of authors have reported the the effect of oxygen on the improved adsorption 

of metal cyanide complex. According to Petersen and Van Deventer (1991), equilibrium 

loading of metal cyanide complex increased with an increase in oxygen supply 

however, the kinetics of the adsorption was unchanged. When the ionic strength of the 

solution is low, Adams (1990d) Woollacott and Nino de Guzman (1993) reported a more 

improved effect of oxygen than a solution with high ionic strength. In addition, 

Woollacott and Nino de Guzman (1993) reported an improved effect of oxygen at a 

CN  concentration above 100 mg/L 

Further experimentation on the effect of oxygen supply during pre-treatment on 

regenerated Goldplat activated carbon was carried out at no-oxygen supply (0 mL/min), 

mild oxygen supply (10 mL/min) and an high oxygen supply of 100 mL/min at both 25oC 
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and 80oC. The effect of this oxygen supply was observed on Au elution recovery as 

shown in Table 4.7. 

Table 4.7: Effect of oxygen supply during pre-treatment on elution at 6 BV. 

Conditions 3% NaCN, 1% NaOH, no agitation, 30 min 

Temperature (oC) Oxygen supply 

(mL/min) 

% Recovery 

at 6bv 

25 0 63.80 

25 10 60.13 

25 100 61.37 

80 0 78.80 

80 10 60.61 

80 100 63.91 

 

From the result shown in Table 4.7 it can be seen that oxygen supply into the pre-

treatment system does not improve the Au elution recovery at both 25oC and 80oC. This 

is seen when comparing recovery at no-oxygen (0 mL/min) (≈64 and 80% at 25 and 

80oC respectively) with about 60% and 62% at 10 mL/min and 100 mL/min oxygen 

supply respectively. Reduced recovery with oxygen supply obtained in Table 4.7 

suggest that it supports adsorption of some of metal-cyanide complex on carbon 

surface as earlier discussed.  

4.7.2 Effect of pre-treatment parameters on goldplat regenerated carbon 

Table 4.8 shows the result of recovery of Au at 20 bed volumes of elution at the 

selected conditions. The result agrees with findings in Section 4.5.3 regarding decrease 

in recovery with increasing agitation speed at high temperature as previously shown in 

Figure 4.18. However, contrary to the previous findings in Section 4.5.2, time also now 

becomes a factor and when the pre-treatment time is increased from 15 to 45 min, a 

significant improvement in recovery was obtained especially at the lower cyanide 

concentration of 2% with about 15% increase in Au recovery both in the presence and 

absence of agitation. 
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Table 4.8: Elution recovery at 20 bed volumes, 80oC, different concentration of 

cyanide, agitation speed and contact time. 

 Conditions at 80oC 

NaCN conc. 0 rev/min, 

15 mins 

0 rev/min, 

45 mins 

1200 rev/min, 

15 mins 

1200 rev/min, 

45 mins 

2% 83 97.6 84.9 97.1 

4% 92.5 93.1 84.1 95.9 

6% 97.8 100 95.9 85.2 

 

The results shown in Table 4.8 becomes increasingly important for industrial plants 

where inefficient elution occurs on a regular basis with some plants struggling to elute 

their carbon to less than 100 g/t (Fleming et al., 2011). The Au not eluted from the 

activated carbon will decompose to solid Au in the regeneration kiln and a longer and 

more intense cyanidation pre-treatment step will be required to prevent further build-up 

of the Au on the carbon. This will be specifically applicable to industrial plants where 

cyanide free elution is practised. In addition to the Au build-up on the carbon, the 

reduced carbon activity will also directly lead to lower adsorption and Au losses to the 

tailings dam. Fleming et al (2011) stresses this point and showed through modelling 

that by increasing the amount of Au on the eluted carbon that is recycled to the last 

adsorption tank from 0 to 50 g/t, soluble Au losses increased from 0.003 mg/L to 

0.011 mg/L. 

4.8 Chapter summary 

The ICP result of barren KAu(CN)2 solution after adsorption onto activated carbon from 

an initial concentration of 10.6 mg/L showed that more than 99% of Au was adsorbed. 

Elution results of the Au loaded activated carbon after pre-treatment in NaOH-NaCN 

solution at different pre-treatment conditions was found to show similar elution profiles. 

It was shown from the profiles that removal of Na favoured the elution of Au. 

Furthermore, the effect of the pre-treatment parameters i.e., pre-treatment temperature, 

contact time and agitation speed were discussed. Pre-treatment temperature from 25oC 

to 80oC was found to increase Au elution recovery by approximately 12 % which is in 
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agreement with previous studies (Van Deventer and Van der Merwe,1994). Contact 

time from 15 to 45 min showed insignificant changes in Au elution recovery while an 

increase in agitation speed from 0 to 1200 rev/min decreased Au elution recovery by 

approximately 15% at 80oC. 

The most suitable elution mechanism was suggested from the proposed mechanisms of 

previous authors. The mechanism where the CN  is involved in a specific chemical 

reaction at the carbon surface to increase the negative charge density and rendering 

the surface less receptive for adsorption (Adams and Fleming, 1989), is more plausible 

than the oxidation and hydrolysis of CN  to form a decomposed product that improves 

elution.  

In addition the application of the results found was extended to Goldplat activated 

carbon that has gone through regeneration, but with a significant amount of Au on it. 

Effect of oxygen supply during pre-treatment on regenerated carbon was found not to 

show any significant effect on Au elution recovery at both 10 mL/min and 100 mL/min. It 

was also shown that with loaded activated carbon that was thermally regenerated, CN

is required to convert solid Au particle to soluble Au for effective elution which will 

require longer pre-treatment times and higher concentrations of CN . 

The next chapter presents further discussion on the statistical analysis of the results 

and the analysis of possible errors associated with the experiments.  
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5 Statistical analysis of results 

Analysing results statistically is one of the modern methods through which 

interpretations are easily made together with the performance of optimisation. This is 

however based on sound understanding of the process and the functions of the 

operating variables. Table 5.1 shows the analysis of variance (ANOVA) table after 

statistically analysing the three-level Box-Behnken experimental design chosen for 

experimental design.  

Table 5.1: ANOVA table showing the effect of factors in terms of Au elution 

recovery at 6BV; R-square = 0.92413; Adjusted R-square = 0.78757; Derived from 

Statistical  

Factors Effect P-Value 

Mean/Intercept  59.68 0 

(1)Temperature(oC)(L) 4.49 0.02 

Temperature(oC)(Q) -3.21 0.02 

(2)Time (min)(L) 1.50 0.30 

Time (min)(Q) -0.21 0.83 

(3)Speed (rev/min)(L) -5.58 0.01 

Speed (rev/min)(Q) -2.33 0.06 

1L by 2L -2.27 0.27 

1L by 3L -6.32 0.02 

2L by 3L -0.13 0.95 

 where L = Linear effect; Q = Quadratic effect 

Table 5.1 shows the effect estimates, the P-values of each factor and interaction at 

95% confidence interval were ascertained through ANOVA. The P-values of 

temperature (0.02), agitation (0.01) for both linear and quadratic effects, and its 

interaction (1L by 3L= 0.02) shows that they are statistically significant (P-values <0.05) 

on the recovery at 6 bed volumes. The quadratic effect shows the curvilinear nature or 

the square of the effect of pre-treatment parameters on Au elution recovery within the 

extremes of the chosen experimental conditions in the plot. An illustration is shown in 

Figure 5.1 
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Figure 5.1: Illustration of quadratic effect and linear effect on a response 

The positive effect of temperature on the recovery can be seen with the positive value 

of 4.49 in the linear effect, which shows that temperature plays a synergistic role during 

pre-treatment as earlier explained in Section 4.5.1 on Au recovery. Conversely, the 

opposing effect of agitation speed during pre-treatment on Au recovery with a value of   

-5.58 can be seen from Table 5.1. This agrees with the discussion in Section 4.5.3, 

where it was shown that Au elution recovery decreases with an increase in agitation 

speed. Interaction effect of agitation speed and temperature with a value of -6.32 

suggests the dominant effect of agitation speed over temperature during pre-treatment 

on Au recovery. This resulted in decrease in Au elution recovery (Section 4.5.3). 

Likewise the effect of contact time with a low positive value of 1.5 compared to the 

effect temperature (4.6) also suggests that it has a beneficial effect on Au recovery. 

However, P-value of 0.3 suggests that it is not statistically significant on the process. 

This concurs with the discussion in Section 4.5.2, where it was shown that Au recovery 

increases with about 2% from 15 min to 30 min and further 5% increase at 45 min at 

both 0  and 600 rev/min agitation speed at 25oC. At 80oC, recovery stays fairly constant 

at all contact time (Figure 4.12). 
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5.1  Pareto chart 

Pareto chart is often used to show the frequency of occurrence of a variable on a 

response at a certain confidence level and standardised reference point (Alessandro, 

2014). The Pareto chart showing the recovery at 6 BV from the effect of temperature, 

contact time, agitation and their interaction at 95% confidence level is shown in Figure 

5.2. The values that were used to plot the Pareto chart were statistically derived from 

the ANOVA analysis previously shown in Table 5.1 using Staistica 12.0 software.The 

relative magnitude of each parameter against standardised reference line indicates the 

confidence level (Montgomery, 2013). All effects to the right of the standardised effect 

(red-line) as shown in Figure 5.2 are statistically significant and should therefore, be 

included in the regression model. These effects are temperature, agitation and its 

interactions. Effects that are below the P-value are statistically insignificant and might 

not be included in the model. 
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Figure 5.2:Pareto plot for standardised effect of pre-treatment temperature, speed 

contact time and its intrraction on Au elution recovery 
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5.2 Regression model 

Statistical experimental designs are carried out to enhance the development of a 

predictive model that will assist in predicting other points of interest and optimisation if 

required. Second order interaction linear model was derived to predict Au elution 

recovery at 6 bed volumes as a function of temperature, agitation speed and contact 

time by fitting the experimental data shown in Table 4.1. The effect of statistically 

insignificant parameters were ignored to further simplify the model (Equation 5.1) and 

reduce noise.   

The model given by Equation 5.1 below satisfies data points at 6 bed volumes. A similar 

approach can be used to formulate the model for a desired point estimate for other 

points of interest. 

Y = 62.42 – 0.247x1+ 0.004x1
2 – 0.002x3 + 0.00001x3

2 – 0.0002x1x3 + ɛ  5.1 

Where: Y = % Recovery 

   x1 = Temperature (oC) 

   x3 = Agitation speed (rev/min) 

   ɛ = Experimental error 

5.3 Model adequacy test 

The adequacy of the regression model to predict observed value was assessed through 

the scatter plot of predicted vs observed response. This is shown in Figure 5.3. Other 

options that can also be used are predicted vs residual, observed vs residual, residual 

vs deleted residual and residual vs case numbers. According to Manual (2004), these 

terms are defined as follows: 

· Residual = 
Observed-predicted

√residual mean square
 

· Deleted residual are outliers that significantly affects the residual 

· Case number are the run numbers 
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Figure 5.3: Plot of Observed vs predicted values of Au elution recovery at 6 

bedvolumes 

From Figure 5.3, it can be observed that the scatter plots lie close to the straight line 

indicating minor deviation from the standardised line, therefore, the model is acceptable 

according to Pavan et al (2007). 

5.4 Model validation 

Apart from the correlation coefficient R2 (0.924) that determines how fit a model is with 

the experimental data of Au elution recovery at 6 bed volumes. An adjusted R2 value of 

0.788 also suggest a goodness of fit of the model. Validity of the model for predicting 

experimental data can also be confirmed with the normal probability plot versus the 

residual plot (Sheridan et al., 2002) as shown in Figure 5.4. According to Pavan et al. 

(2007), data points on the plot should close to the straight line in order to justify the 

validity of the model. 
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Figure 5.4: Probability plot vs Residuals of Au recovery at 6 bed volumes.   

5.5 Pre-treatment parameters within the confidence interval 

Further analysis were carried out to show the variation of the pre-treatment parameters 

within ±95% confidence interval at each condition plotted in Section 4.5. Each condition 

at which the pre-treatment parameters was evaluated was plotted separately to ensure 

clarity. The effect of pre-treatment temperature, contact time and agitation speed 

analysed at each condition are within the ±95% confidence interval. This suggest that 

the experimental and predicted points are valid. These are shown in Figures 5.4–5.6. 

5.5.1 Pre-treatment temperature within ±95% confidence level  

The effect of pre-treatment temperature within ±95% confidence level at 0 rev/min 

different contact time (15, 30 and 45 min) are shown in Figure 5.5 a, b and c 

respectively. It can be seen that non of the trend lines exceed the ±95% confidence 
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level indicated with the dotted red lines. This suggest that the adopted Box Behnken 

model is valid within this confidence limit 
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Figure 5.5: Effect of temperature within ±95% confidence level. (a= condition at 

15min and 0 rev/min; b= condition at 30 min and 0 rev/min; c= condition at 45 min 

and 0 rev/min). Dotted red lines represent ±95%; red thin lines represents trend 

line and the black line represents data point of pre-treatment temperature. 

5.5.2 Contact time within ±95% confidence level  

Similarly, the effect of contact time at different conditions are shown in Figures 5.6 a–i. 

None of these effect exceeds the ±95% confidence level (red dotted lines). This 

suggests the validity of the model to predict the effect of contact time at 15, 30 and 45 

min unders these experimental conditions within the ±95% confidence level. 
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Figure 5.6: Effect of contact time within ±95% confidence level. (a= condition at 

0 rev/min and 25oC; b= condition at 600 rev/min and 25oC; c= condition at 

1200 rev/min and 25oC; d = condition at 0 rev/min and 53oC; e = condition at 

600 rev/min and 53oC; f= condition at 1200 rev/min and 53oC;g = condition at 

0 rev/min and 80oC; h = condition at 600 rev/min and 80oC and i= condition at 

1200 rev/min and 80oC) Dotted red lines represent ±95%; red thin line represents 

trend line and the black line represents data point of contact time.  
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5.5.3 Agitation speed within ±95% confidence level  

In the same vein, Figures 5.7 a–i show the effect of agitation plotted at the selected 

experimental conditions within the ±95% confidence interval. None of these effects 

exceeds the ±95% confidence interval also suggesting the validity of the Box Behnken 

model at the ±95% confidence level.  
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Figure 5.7: Effect of agitation speed within ±95% confidence level. (a= condition 

at 15 min and 25oC; b= condition at 30 min and 25oC; c= condition at 45 min and 

25oC; d = condition at 15 min and 53oC; e = condition at 30 min and 53oC; f= 

condition at 45 min and 53oC;g = condition at 15 min and 80oC; h = condition at 

30 min and 80oC and i= condition at 45 min and 80oC). Dotted red lines represent 

±95%; red thin line represents trend line and the black line represents data point 

of agitation speed 
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5.6 Optimum condition 

A unique advantage of response surface plot is in the determination of the optimum 

conditions of within the points of the experimental condition (Montgomery, 2013). The 

optimum condition of the effect of pre-treatment temperature, contact time and agitation 

speed within the experimental condition from all the surface response plot is shown by 

point x in Figure 5.8. Point x corresponds to a pre-treatment conditions of 80oC, 30 min 

and 0 rev/min and the Au elution recovery is approximately 70%. Contact time has been 

investigated and discussed to be statistically insignificant on Au elution recovery 

(Section 4.5.2). Au elution recovery that were statiscally determined at this temperature 

and agitation speed (80oC and 0 rev/min) but at different contact times showed 

insignificant changes on the surface response plot. It can be further suggested that 

recovery will improve beyond this optimum condition if the temperature is further 

increased above 80oC as seen from the trend. The validation of the statistically 

determined optimum point (point x) with the experimental data conducted at pre-

treatment condition of 80oC, 30 min and 0 rev/min showed Au elution recovery of about 

71% as shown in Figure 5.9 

 

Figure 5.8: Surface response plot showing the optimum recovery at point x. Point 

x represents the optimum pre-treatment condition (80oC, 30 min, 0 rev/min) 
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Figure 5.9: Optimum condition for validation of statistically determined optimum 

condition. pre-treatment condition (80oC, 30 min, 0 rev/min) 

5.7 Experimental error and reproducibility  

A unique advantage of Box-Behnken experimental design is the efficiency in the 

number of runs required compared to a full factorial and composite design 

(Montgomery, 2013). This allows the formation of appropriate regression model to 

estimate the combined effects of the parameters that are not experimentally conducted 

(Section 5.2). In order to minimise the error and ensure reproducibility of the 

experiments, each run of the experiments was replicated three times, giving a total of 

45 runs for the elution experiment. The reproducibility is expressed as percentage 

coefficient of variation (CR) given by Equation 5.2. The significance of the error with 

respect to the mean value was further statistically analysed using Descriptive Duncan 

analysis, Statistical 12 software. The error bar for each run indicates the standard error.  

CR= 
SD

AV
*100%          5.2 

Where: CR = Coefficient of variation 

   SD = Standard deviation 

   AV= Average value of concentration of three trials  
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According to Chowdhury et al (2012), and as a general rule, an experiment can be 

regarded to be reproducible, if the CR is less than 10 percent. The experimental error, 

statistical significance and reproducibility were carried out for both CN- study and 

elution experiments.  

5.7.1 Cyanide loss study 

Figures 5.10–5.12 show the column plot of the CN  study of average concentration of 

CN  and Na+ at each sampling time both in the presence and absence of activated 

carbon. The value of the percentage of CR at each sampling point is shown on each 

bar after three trials which are less than 10% confirms the behaviour at 25oC and 80oC 

previously discussed in Section 4.4 where no significant changes occurred at 25oC 

when compared to 80oC. The calculated CR according to Equation 5.2 after three trials 

are shown in Tables 5.2–5.5 for studies in the absence of activated carbon. 

 

Figure 5.10: Reproducibility of CN- and Na+ in the absence of AC. Values shows 

coefficient of variation  
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Table 5.2:  Average concentration, SD and CR. Condition (25oC, 0 rev/min, No-AC) 

Time 

(minutes) 

Trial 1 

CN- (g/L) 

Trial 2 

CN- (g/L) 

Trial 3 

CN- (g/L) 

Average  

Conc (g/L) 

SD CR 

0 15.17 14.93 15.01 15.04 0.12 0.81 

15 15.52 15.24 14.85 15.21 0.34 2.22 

30 15.36 14.71 15.12 15.06 0.33 2.17 

45 15.20 14.81 15.04 15.01 0.20 1.31 

60 15.36 14.95 15.17 15.16 0.21 1.36 

 

Table 5.3: Average concentration, SD and CR. Condition (80oC, 0 rev/min, No-AC) 

Time  

(minutes) 

Trial 1 

CN- (g/L) 

Trial 2 

CN- (g/L) 

Trial 3 

CN- (g/L) 

Average  

Conc (g/L) 

SD CR 

0 16.12 15.33 16.11 15.85 0.45 2.87 

15 17.69 16.58 17.10 17.12 0.56 3.25 

30 18.53 17.84 19.08 18.48 0.62 3.36 

45 20.08 19.53 20.85 20.15 0.66 3.28 

60 22.19 21.30 22.60 22.03 0.67 3.02 

 

Table 5.4: Average concentration, SD and CR. Condition (25oC, 0 rev/min, No-AC) 

Time  

(minutes) 

Trial 1 

Na+ (g/L) 

Trial 2 

Na+ (g/L) 

Trial 3 

Na+ (g/L) 

Average  

Conc (g/L) 

SD CR 

0 17.65 17.50 17.55 17.57 0.06 0.34 

15 17.66 17.45 17.39 17.50 0.11 0.65 

30 17.44 17.71 17.49 17.55 0.11 0.65 

45 17.78 17.54 17.51 17.61 0.12 0.69 

60 17.73 17.61 17.53 17.63 0.08 0.47 
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Table 5.5:  Average concentration, SD and CR. Condition (80oC, 0 rev/min, No-AC) 

Time  

(minutes) 

Trial 1 

Na+ (g/L) 

Trial 2 

Na+ (g/L) 

Trial 3 

Na+ (g/L) 

Average  

Conc (g/L) 

SD CR 

0 18.48 18.21 18.03 18.24 0.19 1.03 

15 19.64 18.56 18.61 18.94 0.50 2.62 

30 20.92 20.07 21.36 20.78 0.54 2.58 

45 21.82 21.38 22.14 21.78 0.31 1.43 

60 23.60 24.34 23.78 23.91 0.32 1.32 

 

Similary, Figure 5.11 shows the column plot of CN  study of average concentration of 

CN  and Na+ at each sampling time in the presence of activated carbon. As indicated 

on the columns in Figure 5.11 and as it has been calculated from Tables 5.6–5.9. The 

value of the percentage of CR at each sampling point shown on each bar after three 

trials that are less than 10% confirms the behaviour at 25oC and 80oC 

 

Figure 5.11: Reproducibility of CN- and Na+ in the presence of AC Values shows 

coefficient of variation  
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Table 5.6: Average concentration, SD and CR. Condition (25oC, 0rpm, AC) 

Time 

(minutes) 

Trial 1 

CN- (g/L) 

Trial 2 

CN- (g/L) 

Trial 3 

CN- (g/L) 

Average  

Conc (g/L) 

SD CR 

0 15.65 14.30 14.36 14.77 0.76 5.17 

15 15.12 14.82 14.69 14.88 0.22 1.51 

30 15.18 14.36 14.70 14.74 0.41 2.81 

45 15.18 14.48 14.99 14.88 0.36 2.44 

60 14.67 14.56 14.38 14.54 0.15 1.01 

 

Table 5.7: Average concentration, SD and CR. Condition (80oC, 0rpm, AC) 

Time 

(minutes) 

Trial 1 

CN- (g/L) 

Trial 2 

CN- (g/L) 

Trial 3 

CN- (g/L) 

Average  

Conc (g/L) 

SD CR 

0 15.90 15.10 14.90 15.30 0.53 3.45 

15 16.30 14.96 15.20 15.49 0.71 4.59 

30 16.12 15.43 16.50 16.02 0.54 3.37 

45 16.60 15.77 17.21 16.53 0.73 4.39 

60 17.07 16.25 18.30 17.21 1.03 6.00 

 

Table 5.8: Average concentration, SD and CR . Condition (25oC, 0rpm, AC) 

Time  

(minutes) 

Trial 1 

Na+ (g/L) 

Trial 2 

Na+ (g/L) 

Trial 3 

Na+ (g/L) 

Average  

Conc (g/L) 

SD CR 

0 17.59 16.20 16.45 16.75 0.74 4.41 

15 16.53 16.54 16.78 16.62 0.14 0.84 

30 17.49 17.10 16.52 17.04 0.49 2.87 

45 16.81 16.00 16.42 16.41 0.40 2.46 

60 17.10 16.30 16.23 16.54 0.48 2.93 
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Table 5.9: Average concentration, SD and CR . Condition (80oC, 0rpm, AC) 

Time  

(minutes) 

Trial 1 

Na+ (g/L) 

Trial 2 

Na+ (g/L) 

Trial 3 

Na+ (g/L) 

Average  

Conc (g/L) 

SD CR 

0 17.96 16.91 16.91 17.26 0.61 3.51 

15 16.85 17.23 17.23 17.10 0.22 1.28 

30 17.76 18.00 18.10 17.95 0.17 0.97 

45 18.74 18.90 18.50 18.71 0.20 1.08 

60 19.59 19.90 19.30 19.60 0.30 1.53 

 

5.7.2 Elution 

In the same vein, the estimated CR for elution process which are less than 10 percent 

for each run are shown in the column plot in Figure 5.12. Duncan analysis of the error 

that might be associated with elution shown in Figure 5.13 with the error bar indicating 

the standard error. The data used for the estimation of these values for each run are 

shown in Table 5.10 

 

 

Figure 5.12: Reproducibility plot of elution experiment. Value on each column 

indicate coefficient of variation. 
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Figure 5.13: Descriptive Duncan analysis of the elution experiment. Error bars 

indicate standard error 

Table 5.10: Average concentration, SD and CR for elution results 

Run Temperature Time  Mean SD CR 

Run_1 25 15 600 54.6 3.96 7.24 

Run_2 80 15 600 61.2 1.87 3.06 

Run_3 25 45 600 59.5 5.96 10.0 

Run_4 80 45 600 61.7 3.67 5.93 

Run_5 25 30 0 59.9 2.82 4.71 

Run_6 80 30 0 70.9 6.21 8.75 

Run_7 25 30 1200 58.3 1.36 2.33 

Run_8 80 30 1200 56.5 3.67 6.49 

Run_9 53 15 0 59.9 2.84 4.73 

Run_10 53 45 0 60.3 1.18 1.96 

Run_11 53 15 1200 56.7 2.14 3.76 

Run_12 53 45 1200 56.8 3.79 6.67 

Run_13 53 30 600 55.5 3.22 5.80 

Run_14 53 30 600 57.3 4.53 7.91 

Run_15 53 30 600 55.1 2.41 4.37 
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5.8 Chapter Summary 

The P-values of 0.02, 0.01,and 0.02 for temperature, agitation speed and their 

combined effect in the ANOVA result showed these factors are statistically significant 

on Au elution recovery. The positive and negative effects of temperature and agitation 

speed was seen with values of 4.49 and -5.58 respectively. Regression model was 

formulated to enable prediction of points that are not conducted experimentally. The 

regression model was validated using probability plot vs residuals plot. 

Surface response plot of the pre-treatment parameters and its interactions concurred 

with the metallurgical explanations given in chapter 5.  

Reproducibility of CN
 study and elution experiment with CR less than 10% indicate 

that the experiment is reproducible. The insignificance of the standard error also 

showed that the error is minimal.  

The overvall thesis summary and conclusion is given in the next chapter.  
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6 Conclusions and Recommendations 

6.1 Conclusions 

The variabilities and non-standard guidelines of pre-treatment parameters i.e., pre-

treatment temperature and contact time that exist in Au elution process has been 

reported. Several elution mechanisms have been studied. One of such is the 

decomposition of CN  on carbon surface which passivates carbon surface and 

ultimately improved Au elution recovery. Furthermore decomposition of CN  as a result 

of agitation at different speeds have been reported. However, the effect on Au elution 

recovery has not been investigated. Due to this variabily of the pre-treatment 

paramenets and the lack of understanding of the effect of agitation on elution process, 

this study investigated the effects of temperature, contact time and agitation speed 

during pre-treatment on the elution of Au from activated carbon. Furthermore, the study 

on the role of NaOH-NaCN during the pre-treatment step assisted in the suggestion of 

suitable pre-treatment mechanism. The results of this investigation is as follows: 

· Elution results showed that Au elution recovery increased by approximately 15% 

after 6 BVs as the pre-treatment temperature increased from 25°C to 80°C. This 

is in agreement with the work of previous researchers  

· At 25oC, an increase in Au elution recovery of about 4% was seen from 15 min to 

45 min, while at the 53oC and 80oC increase in the pre-treatment time had 

insignificant effect on the Au elution recovery. It was suggested that an increase 

in temperature minimises the effect of contact time on the overall recovery, which 

agrees with the findings of Bailey (1991).  

· Agitation of the pre-treatment solution on the other hand showed no significant 

change from 0–1200 rev/min at 25oC, 6% decrease at 53oC and about 10% 

decrease in Au elution recovery was noticed at 80°C indicating an antagonistic 

effect of agitation. Evaluations of kSL at 0 , 600  and 1200 rev/min showed 

insignificant change in kSL  

· Proposed elution mechanisms were reviewed from several authors and related 

to the findings from this study. The mechanism where the CN  is involved in a 
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specific chemical reaction at the carbon surface to increase the negative charge 

density and rendering the surface less receptive for adsorption (Adams and 

Fleming, 1989) best explained the possible elution mechanism.  

· In the case where loaded activated carbon was thermally regenerated as in the 

case of Au loaded carbon supplied from Goldplat Recovery (PTY), CN  is 

required to convert solid Au particle to soluble Au(CN)
2

-
 which will require longer 

pre-treatment times and higher concentrations of CN .  

· Finally, the relevance of this research was shown to be applicable to Au plants 

where a significant amount of Au still remains on carbon after elution, especially 

where cyanide-free elution is being practised. in order to minimise Au loss with 

the tailings.  

From this study, it is suggested that gold plant continue to operate at high pre-treatment 

temperature and not adopt agitation into the pre-treatment process. A longer contact 

time is suggested when Au adsorbed on activated carbon remained adsorbed as solid 

Au. 

6.2 Recommendations 

· To use a pilot plant experiment to further investigate regenerated Au loaded 

activated carbon in order to determine optimum cyanide consumption under the 

effect of the pre-treatment parameters.  

· This present study will provide a solid framework to investigate the possible 

elution mechanisms of PGMs, following the recent feasibility study by Snyders et 

al. (2013) on using activated carbon in the adsorption and elution of platinum 

group metals (PGMs) in a similar approach to Au. 
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Appendix A: Experimental steps, risks and precautions  

Adsorption 

S/N Step Risk Precaution(s)  

1 Prepare the fresh activated carbon for use: 

· Weigh 840g of fresh AC  

· Pour in 10liter bucket and rinse with 
deionised water for 20min 

· Pour the water off through sieve and 
oven dry at 80oC for 24 hours 

Stain, Burn, Use rubber 
gloves, safety 
glass. 

2 Measure 34 litres of buffer solution mixed 
with 1.5 litres of 200ppm gold solution to 
dilute to approximate concentration of 9ppm 
and maintained at pH of 9.5 

Spillage which might 
lead to slipping,  

Careful pouring 
of the buffer 
solution, Clean 
immediately in 
any event of 
spillage, use 
rubber gloves 

3 Pour 420g of the already oven dried AC into 
the bottle containing 15 litres of the solution 
prepared in (2) and with the appropriate lid. 
ensure that there is no leakage 

------------- ---------------- 

4 Repeat step 2-3 for another water 
dispensing bottle 

Same as above(2 
and 3) 

Same as above 
(2 and 3) 

5 Place the bottle in the electrical powered 
roller and switch on the roller for 48hours to 
achieve pseudo-equilibrium  

Electric shock, 
improper adsorption 
through  mis-
alignment on the 
roller 

Avoid naked 
cables; ensure 
bottles are well 
placed on the 
roller, regular 
checking of the 
roller. 

6 After 48 hours, switch off the roller and take 
sample of the liquid with filter-syringe for 
ICP-MS analysis 

electric shock Avoid naked 
cables and use 
rubber gloves 

7 Decant close to 5 litres of the liquid in a 
container to rinse the wetted carbon stocked 
inside the bottle. Pour the AC through  a 
filter paper and use the liquid for rinsing 

 

Stain Use rubber 
gloves 

8 Place the AC in the oven set at 80oC for 
24hours to dry off the moisture 

Burn Use rubber 
glove, eye 
goggle. 
 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 Page 126 
 

 

 

9 Use rotary divider (splitter) to thoroughly mix 
the AC and divide i. Keep each 12g in a 
small zip-lock for the pre-treatment and 
elution process. 

  

 

Pre-treatment 

S/N Step Risk Precaution 

1 Prepare NaOH-NaCN solution (3% 

NaCN and 1%NaOH) at correct 

temperature 

Contamination 

through splash, 

inhalation, spillage 

and  death 

Put on PPE and 

cyanide detector. call 

for emergency in 

case of excessive 

spillage, work in the 

fume cupboard 

2 Keep the unused NaOH-NaCN 

solution in a locked cupboard and 

the quantity to be used in the fume-

hood 

Contamination and 

inhalation  

Put on PPE, 

Respirator, work in 

the fume cupboard 

4 Place the beaker in the water bath 

and insert the temperature, pH and 

Eh probes 

 

 

Contamination  

Burn (90oC) 

Careful insertion, 

PPE 

5 Carefully pour 12g of the adsorbed 

activated into the beaker and gently 

lower the stirrer into the beaker. 

Ensure the stirrer is not sitting on 

any carbon particle to warrant free-

stirring 

Splash, burn Safety goggle and 

rubber gloves in use. 

7 Set the over-head stirrer to the 

required speed as defined by the 

Reynolds number and switch it on 

for the required time as per 

experimental plan. Monitor the 

temperature, pH and Eh probes. 

Take values of pH and Eh every 3 

minutes to check for any changes. 

Dis-organisation  of 

the set up and 

breakage of beaker 

possibly leading to 

splash, spillage and 

contamination 

Ensure that the over-

head stirrer is well 

fastened to the retort 

stand, avoid contact 

of the stirring blade 

with the wall of the 

beaker. Use safety 

googles and gloves 
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8 After the time is reached, switch off 

the stirrer, remove the probes and 

clean them with paper tissue, return 

the pH and Eh probes into its 

respective buffers. 

Contamination of the 

buffer 

Wash and Clean 

probes after use 

9 Carefully remove lid and the stirrer 

and then take samples of the 

solution with filter- syringe. 

Burn and 

contamination 

Use rubber gloves, 

safety goggle, and 

manual single 

channel  volume 

pipette   

 

10 Carefully pour the pretreated 

solution into the liquid waste 

container while the remaining wet 

carbon is poured in a paper towel to 

drain the remaining liquid 

Burn, contamination, 

spillage, 

Maintaining focus, 

clean with paper 

tower, safety goggle 

and gloves. 

 

Elution 

S/N Steps Risk Precaution  

1 Clean the glass column with 

acetone and blow air through. Also 

wash the water bath thoroughly with 

water to prevent contamination of 

the eluant 

Spillage in the eye. 

Contamination of the 

column with acetone 

Use safety goggle. 

Rinse the column 

thoroughly with 

water after washing 

with acetone 

2 Set up the temperature controlled 

water-bath together with glass 

column connected to pipes and 

peristaltic pump 

Breakage of column 

and possibly piercing 

and injury. spillage 

Careful handling of 

the column while 

connecting and 

disconnecting the 

pipes. Paper towel in 

place 

3 Ensure the water is flowing in and 

out of the jacket of the glass column 

till 90oC temperature is reached 

Burn  Use rubber gloves 
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4 Pour the pre-treated carbon into the 

column using spatula to gently 

assist in the transfer process 

-------- ------------ 

5 Introduce hot water (90oC) into the 

column through the pipe connected 

to the peristaltic pump supplying the 

water at 2bv/h (0.8mL/min). 1 bed 

volume = 25mL 

 

Burn, splash Use goggle, rubber 

gloves and safety 

shoe. 

6 Ensure that the water level 

maintained at least slightly above 

the carbon in the column throughout 

the run 

--------------------- ------------------- 

7 Pick samples at 5mL interval. Pick 

total of 100 samples. 15 of the 

samples would be analysed based 

on elution strategy  

-------------- Use rubber glove 

and goggle 

8 Switch off the water bath and 

peristaltic pump while the glass 

column is carefully disconnected. 

Burn  Allow to cool 
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Appendix B: Sample preparation and supporting calculations 

 

1) Carbon Loading Calculation 

Total mass set to be prepared for the experiment = 840g (420g for each 

18.9litres bottle) 

GL= 
w

 v)C(C fi 
 

GL = Gold loading on carbon (mg/g) 

Ci = Initial concentration of gold solution = 10.6 mg/L 

Cf = Concentration of barren solution after adsorption = 0.03 mg/L 

v= volume of gold solution = 30 Litres 

w = weight of carbon = 840 g 

By substituting these values into the equation above, GL = 0.38 mg/g 

2) CN- analysis by titrating with Silver nitrate (AgNO3) 

Equation of reaction:  Ag+ 2CN
-
 → Ag(CN)

2
 

Mole ratio of Ag:CN is expressed as 
Ag

CN
=

1

2
 

Required volume and concentration after calculation can be calculated as: 

2* CAg* VAg= CCN* VCN  

Where: CAg = prepared AgNO3 solution (0.0964 M) 

   VAg = Volume of AgNO3  used (determined from reading) 

   VCN  = Volume of CN- used for each titration (0.5 mL) 

   CCN = Concentration of CN- (calculated) 

3) Recovery calculation (elution efficiency) 

Elution efficiency is usually reported in the form shown in Equations B0.1 or B0.2 

(Boshoff, 1993; Laxen et al., 1982). 

Gold eluted from carbon

Gold loaded from carbon
 X 100%        B0.1 

Total gold eluted

Total gold eluted+residual gold on carbon
 X 100%     B0.2 
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It is being suggested that these equations will be easily applicable when the history 

(amount) of loading of gold on AC is known while an unkown parameter can be 

calculated through gold mass balance. In a case where the amount of gold remained on 

carbon is not fully acertain as in Section 5.7, the elution efficieny was calculated based 

on the maximum gold assay eluted of different elution results of the same set of carbon 

originating from the same loading conditions. For instance if carbon A originating from 

the same loading condition is pre-treated and eluted at different conditions resulting in 

different elution results, the elution efficiency was calculated using B0.3. 

Cummlative gold eluted from carbon

Maximum cummlative gold eluted
 X 100%     B0.3 

This study adopts Equation 4.7 for the calculation of elution efficiency.  

The steps taken to calculate the cumulative gold eluted are shown below.  A simple 

illustration of these steps are shown at pre-treatment conditions of 25oC, 45 mins and 

600 rev/min. Maximum cumulative gold eluted was found at 80oC, 0 rev/min and 30 

mins with total mass of 178.51 mg.  

Step1 

Gold and sodium analysis received from ICP analysis were tabulated on excel sheet as 

shown below. 

 

Figure B 1: Step 1. Excel tabulation of ICP analysis of Au and Na 
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Step 2 

Mass of gold eluted at each bed volume was calculated by finding the area under curve. 

This was done by calculating the average concentration and multiplying it by the volume 

(BV). For instance, the mass of gold eluted at 0.2 and 0.6 bed volume were calculated 

as follows: 

At 0.2 BV, mass eluted (mg) = (B6+B5)/2*(A6-A5) 

At 0.6 BV, mass eluted (mg) = (B7+B6)/2*(A7-A6)  

This is done up to 20 BVs. Results obtained are shown in the figure below. 

 

Figure B 2: Step 2. Calcualtion of mass of Au in mg 

Step 3 

The cummulatve mass was calculated and the percentage of gold elution recovery at 

each bed volume was calculated using Equation B0.3. The results generated are shown 

below  
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Figure B 3: Step 3. Au recovery calculation  
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Appendix C: Results of experimental anaysis 

Results presented here are the raw data from ICP_MS analysis of Au and Sodium 

concentration for the elution result. The replicate of each condition are presented 

together in the same table as shown below.  Concentration of free cyanide used for the 

kinetic study that was generated through titration is also presented.  

Table C. 1. ICP result for pre-treatment condition at 25oC, 600rpm, 45 minutes

  

Bed volumes Run 33 
  

Run 18 
  

Run3 
  

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.501 6393 1.241   1.380 6904 

0.60 1.710 8332 1.637   1.830 9843 

1.0 5.142 2765 6.413   5.931 3204 

1.4 10.72 1159 12.73   14.21 1112 

2.0 17.61 640.1 19.71   23.08 547.2 

2.4 20.84 491.1 22.34   26.65 382.6 

3.0 24.37 395.4 25.90   30.34 295.7 

3.6 27.26 285.0 22.79   30.47 235.2 

4.0 26.64 262.1 20.65   28.50 211.1 

4.6 25.37 234.2 17.38   25.21 190.1 

6.0 16.10 159.2 10.45   16.89 136.2 

9. 7.140 109.0 3.902   12.15 107.1 

11 4.590 88.08 2.083   6.380 97.44 

15 1.890 66.34 1.288   2.030 55.13 

20 0.7200 51.50 0.2955   0.7200 57.25 
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Table C. 2. ICP result for pre-treatment condition at 80oC, 600rpm, 15, minutes

  

Bed volumes Run 17   Run 2   Run 32   

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 2.050 8325 1.850 7398 2.110 6034 

0.60 2.100 10090 2.070 7543 1.980 8835 

1.0 4.830 4294 5.690 2621 3.420 6018 

1.4 11.03 1198 11.42 1061 8.270 1385 

2.0 20.08 590.2 19.06 595.1 16.82 681.7 

2.4 25.10 431.3 22.35 429.9 20.64 457.2 

3.0 26.30 333.7 26.63 326.6 26.64 301.8 

3.6 26.98 256.1 27.04 251.7 28.39 261.0 

4.0 25.67 214.8 27.2 244.2 27.80 231.6 

4.6 21.42 194.4 26.59 189.6 26.22 187.3 

6.0 16.21 151.8 18.83 150.8 18.12 150.5 

9.0 4.690 76.68 7.370 99.11 7.200 95.68 

11 2.810 65.29 4.010 80.17 3.690 80.00 

15 1.510 56.12 1.530 76.22 1.210 68.40 

20 0.3700 34.92 0.4800 43.05 0.4900 44.73 

 

Table C. 3. ICP result for pre-treatment condition at 80oC, 1200rpm, 30 minutes

  

Bed volumes Run 23   Run 8   Run 38   

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.450 10390 1.870 6207 1.350 4430 

0.60 2.390 9008 1.760 7314 1.600 7922 

1.0 7.660 2281 4.870 2316 2.740 5565 

1.4 14.47 1002 10.20 994.2 7.300 1581 

2.0 23.42 589.1 17.16 536.7 14.74 641.8 

2.4 26.08 460.4 20.40 402.4 17.60 517.4 

3.0 26.70 376.7 23.40 293.4 20.99 386.4 

3.6 26.53 302.3 24.03 242.1 24.61 301.8 

4.0 24.28 254.0 23.50 232.7 24.72 243.1 

4.6 20.65 240.2 21.35 172.4 24.65 200.4 

6.0 14.15 167.1 17.05 125.0 17.61 128.1 

9.0 5.290 109.6 8.460 97.85 6.810 110.1 

11 3.050 92.00 5.960 87.34 4.230 89.69 

15 1.150 67.57 2.370 56.19 1.520 55.70 

20 0.4700 51.48 0.3800 32.95 0.5800 67.87 
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Table C. 4. ICP result for pre-treatment condition at 80oC, 600 rpm, 45 minutes 

Bed volumes Run 19   Run 4   Run 34   

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.530 7835 1.920 9851 2.020 6223.23 

0.60 1.880 8898 2.150 10560 1.840 7957.13 

1.0 5.350 2607 6.120 3017 4.950 2809.72 

1.4 10.75 1047 11.39 1343 19.01 488.02 

2.0 17.55 592.6 18.91 734.9 21.10 443.77 

2.4 23.68 383.2 24.98 494.8 24.94 342.80 

3.0 27.01 298.2 27.18 3900 27.56 253.75 

3.6 25.26 240.2 28.22 305.2 27.55 201.02 

4.0 23.46 218.8 26.26 315.2 26.01 200.72 

4.6 22.39 171.2 25.12 195.8 23.02 163.60 

6.0 14.58 142.5 19.61 1501.0 16.46 96.50 

9.0 7.130 113.3 5.400 112.7 7.020 93.24 

11 4.420 102.7 2.600 84.78 3.740 72.19 

15 1.390 71.82 0.8900 57.14 1.280 45.72 

20 0.5500 53.36 0.3200 38.68 0.3900 36.05 

 

Table C. 5. ICP result for pre-treatment condition at 25oC, 600 rpm, 15 minutes 

Bed volumes Run 16   Run 1   Run 25   

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.240 7647 1.070 6977 1.220 6517 

0.60 2.260 6289 1.380 7405 1.250 7742 

1.0 7.870 1436 5.590 1655 3.970 2668 

1.4 13.18 786.6 10.36 749.1 10.09 834.7 

2.0 18.06 529.9 15.43 454.5 15.73 466.7 

2.4 24.26 370.4 19.11 346.4 19.46 369.4 

3.0 26.97 288.6 22.54 249.3 23.63 277.8 

3.6 25.61 241.9 22.55 214.4 25.20 190.4 

4.0 23.91 338.8 21.44 182.8 23.87 201.6 

4.6 21.53 218.9 19.29 152.9 22.13 181.4 

6.0 14.42 131.1 14.67 139.7 16.14 109.3 

9.0 5.680 95.20 7.070 94.02 7.610 63.61 

11 3.350 79.19 4.910 80.29 4.720 65.84 

15 1.790 65.20 2.120 43.68 2.210 50.89 

20 0.4900 41.34 0.9600 51.32 0.9700 33.81 
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Table C. 6. ICP result for pre-treatment condition at 53oC, 0rpm, 15 minutes 

Bed volumes Run 9 Run 24 Run 39 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.750 6394 1.510 6389 1.320 7368 

0.60 1.620 8526 1.510 9003 1.690 8398 

1.0 6.670 1793 3.940 3822 7.720 1536 

1.4 12.72 862.2 10.15 1152 13.30 744.4 

2.0 18.89 470.3 16.44 546.1 19.15 465.2 

2.4 22.57 383.3 21.28 386.3 23.42 389.9 

3.0 27.01 263.7 26.45 303.1 25.89 304.1 

3.6 27.69 250.1 26.47 231.6 26.37 235.0 

4.0 27.25 205.2 24.72 195.6 24.96 191.3 

4.6 24.45 180.2 21.34 181.3 23.23 190.1 

6.0 17.02 143.0 16.94 139.3 17.07 169.3 

9.0 8.280 93.35 7.980 92.14 7.940 118.4 

11 5.590 89.94 4.640 66.52 4.510 51.01 

15 1.640 50.17 1.750 61.28 1.420 62.38 

20 0.6600 43.98 0.5000 30.74 0.4700 33.14 

 

Table C. 7. ICP result for pre-treatment condition at 25oC, 0rpm, 30 minutes  

Bed volumes Run 35 Run 5 Run 20 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.440 5907 1.360 6436 1.210 7389 

0.60 1.570 7802 1.630 8174 1.470 8615 

1.0 4.260 2996 5.290 2639 5.170 2654 

1.4 10.11 1006 8.550 802.7 12.21 913.7 

2.0 15.81 455.9 19.35 493.4 19.52 413.6 

2.4 21.10 394.0 23.12 376.6 21.20 333.2 

3.0 25.72 278.0 27.60 307.1 23.12 288.8 

3.6 26.89 244.7 29.45 240.1 24.33 215.5 

4.0 25.66 222.1 28.10 203.1 24.67 258.8 

4.6 23.98 175.6 26.07 165.0 23.06 141.7 

6.0 18.67 152.3 17.80 107.7 17.24 122.9 

9.0 8.000 101.6 5.600 50.94 7.620 108.6 

11 4.040 86.49 3.980 66.97 4.750 61.03 

15 1.610 43.89 1.250 32.46 2.300 59.06 

20 0.5700 62.56 0.4900 22.29 1.010 58.63 
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Table C. 8. ICP result for pre-treatment condition at 80oC, 0rpm, 30 minutes 

Bed volumes Run 36 Run 21 Run 6 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 2.520 7129 3.190 9099 2.310 5089 

0.60 2.400 8448 2.500 11110 2.430 8449 

1.0 3.940 5415 3.750 11570 3.880 7115 

1.4 11.96 1280 10.90 2446 11.85 1499 

2.0 21.74 625.8 24.42 862.4 18.71 632.7 

2.4 27.29 460.8 33.75 565.9 24.46 450.8 

3.0 32.84 333.9 41.71 412.4 31.34 306.2 

3.6 33.10 247.2 39.27 342.2 31.37 222.9 

4.0 31.74 223.2 33.43 207.7 28.58 197.6 

4.6 25.00 272.1 29.49 188.9 23.47 224.0 

6.0 17.70 154.0 19.23 156.8 15.43 132.9 

9.0 5.050 87.93 6.270 80.95 5.150 63.25 

11 2.410 88.32 3.110 96.22 2.360 60.06 

15 0.660 54.08 0.8800 69.90 0.8500 60.86 

20 0.3200 56.94 0.2600 48.77 0.2300 43.41 

 

Table C. 9. ICP result for pre-treatment condition at 25oC, 1200rpm, 30 minutes 

Bed volumes Run 22 Run 37 Run 7 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.310 7831 1.170 7064 0.9900 5773 

0.60 1.790 9776 1.430 9704 1.340 8067 

1.0 5.750 2214 2.820 6027 4.490 2560 

1.4 13.02 795.2 8.640 1625 9.490 867.4 

2.0 20.90 470.3 15.83 604.5 15.18 473.2 

2.4 25.52 349.0 20.70 459.0 19.87 311.1 

3.0 25.88 244.4 26.96 316.8 24.76 239.6 

3.6 24.16 228.9 26.78 234.5 25.53 208.8 

4.0 24.10 198.9 27.06 246.5 25.63 158.6 

4.6 21.39 169.3 24.79 177.3 23.37 145.6 

6.0 16.21 138.0 18.36 164.3 17.89 134.3 

9.0 7.450 94.28 8.230 127.2 8.090 73.97 

11 4.090 75.32 4.070 75.47 4.010 91.44 

15 1.720 63.76 1.690 72.63 1.990 51.42 

20 0.5000 24.09 0.9500 30.00 0.7400 36.36 
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Table C. 10. ICP result for pre-treatment condition at 53oC, 0rpm, 45 minutes 

Bed volumes Run 40 Run 31 Run 10 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.480 3913 1.830 5846 2.020 5446 

0.60 1.950 7971 1.770 7757 1.910 9045 

1.0 2.710 5887 3.020 5036 5.060 3371 

1.4 8.740 1406 9.640 1262 10.62 1217 

2.0 16.89 6230 16.38 646.6 17.71 572.3 

2.4 20.38 422.8 21.36 442.0 22.10 451.2 

3.0 26.13 338.1 26.21 349.1 26.59 301.5 

3.6 27.37 287.3 27.94 267.8 27.98 250.5 

4.0 25.64 252.5 27.58 244.9 26.62 196.8 

4.6 24.87 198.4 26.20 187.9 24.48 179.3 

6.0 18.34 157.2 18.53 158.2 17.92 141.7 

9.0 7.930 123.9 6.510 100.2 5.460 78.94 

11 4.830 104.1 4.040 75.64 3.300 75.19 

15 1.502 53.92 1.000 32.04 1.310 73.20 

20 0.4400 62.80 0.8000 34.01 0.6600 40.77 

 

Table C. 11. ICP result for pre-treatment condition at 53oC, 1200rpm, 15 minutes 

Bed volumes Run 26 Run 11 Run 41 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.380 6884 1.370 3987 1.090 7640 

0.60 1.470 9430 1.550 7732 1.300 9779 

1.0 2.970 5094 3.350 3830 4.660 2817 

1.4 8.530 1317 8.570 1158 10.12 937.6 

2.0 16.63 527.5 15.33 562.5 17.32 511.3 

2.4 21.25 443.9 24.64 344.0 21.33 380.2 

3.0 23.42 286.1 25.52 290.2 25.49 299.4 

3.6 24.57 258.8 28.52 209.3 26.60 227.9 

4.0 24.57 193.8 26.75 176.4 26.53 207.0 

4.6 22.07 163.7 24.02 160.1 24.75 179.5 

6.0 16.41 125.0 14.83 104.7 15.22 113.2 

9.0 7.120 87.20 8.930 87.51 7.770 75.75 

11 4.490 62.13 5.040 68.66 4.570 79.86 

15 1.770 39.84 2.030 61.74 1.570 70.87 

20 0.7200 28.62 0.700 32.70 0.7000 40.84 
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Table C. 12.  ICP result for pre-treatment condition at 53oC, 1200rpm, 45minutes 

Bed volumes Run 42 Run 12 Run 27 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.470 5944 1.350 6551 1.400 6095 

0.60 1.610 9948 1.360 10240 1.730 9837 

1.0 3.280 6321 2.820 6457 2.800 7854 

1.4 8.080 1322 8.780 1575 10.85 1538 

2.0 15.96 633.7 16.01 639.0 17.18 598.4 

2.4 18.28 411.1 21.17 874.9 23.25 512.6 

3.0 23.28 297.4 23.99 382.8 25.36 274.8 

3.6 23.81 225.8 28.84 323.4 26.14 230.7 

4.0 23.72 194.4 32.94 290.3 25.44 214.3 

4.6 23.32 178.3 25.78 202.9 23.73 207.5 

6.0 17.90 133.5 20.51 130.1 18.84 129.7 

9.0 9.010 87.86 9.200 78.78 8.590 106.5 

11 5.780 74.70 5.580 65.37 4.900 75.90 

15 2.230 43.43 2.130 59.01 1.600 51.58 

20 0.9100 36.38 0.6800 28.85 0.6300 46.46 

 

Table C. 13. ICP result for pre-treatment condition at 53oC, 600rpm, 30minutes 

 Run 29 Run 45 Run 28 

Bed volumes Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.560 5543 1.720 6719 1.350 7194 

0.60 1.930 9539 1.820 8427 1.330 9726 

1.0 6.710 2432 7.200 1708 3.910 2982 

1.4 10.49 916.2 12.86 911.9 8.710 1147 

2.0 17.57 511.4 18.60 490.1 16.22 546.8 

2.4 23.15 380.2 23.74 395.0 20.18 415.8 

3.0 24.45 306.5 27.30 342.4 22.99 322.0 

3.6 24.38 209.9 26.46 289.2 23.75 260.0 

4.0 23.68 204.0 24.71 252.3 22.48 243.4 

4.6 20.01 185.5 20.85 218.0 21.18 219.8 

6.0 13.57 125.4 15.55 177.3 15.77 143.0 

9.0 5.380 77.55 5.506 103.2 7.660 94.75 

11 3.570 74.61 3.120 83.32 4.550 87.19 

15 1.610 55.70 1.440 69.55 2.040 65.80 

20 0.6700 46.43 0.3700 47.88 0.8000 54.26 
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Table C. 14. . ICP result for pre-treatment condition at 53oC, 600rpm, 30minutes 

 Run 43 Run 15 Run 44 

Bed volumes Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.230 4509 1.720 5240 1.360 7026 

0.60 1.410 7964 1.950 8383 1.470 9758 

1.0 2.870 4106 2.450 7512 3.920 3999 

1.4 7.950 1115 7.960 1476 9.850 1057 

2.0 14.03 602.4 16.33 808.6 17.41 497.9 

2.4 19.16 369.0 20.33 595.2 21.59 420.4 

3.0 19.29 389.9 24.88 339.1 25.99 295.9 

3.6 23.38 271.5 28.84 258.4 27.75 255.2 

4.0 24.41 203.1 28.40 237.1 26.46 195.8 

4.6 22.60 182.6 26.09 228.6 24.34 165.9 

6.0 17.63 159.2 19.60 150.8 17.08 122.7 

9.0 9.270 115.1 10.35 121.2 6.800 110.4 

11 5.380 90.79 5.370 67.29 3.560 62.54 

15 2.050 61.71 1.810 46.72 1.550 55.38 

20 0.6900 62.17 0.5400 60.86 0.5900 47.54 

 

Table C. 15. . ICP result for pre-treatment condition at 53oC, 600rpm, 30minutes 

 Run 30 Run 13 Run 14 

Bed volumes Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 1.050 5182 1.200 8019 1.230 3659 

0.60 1.220 7587 1.470 8130 1.320 8185 

1.0 1.660 6706 5.380 1817 3.430 4393 

1.4 7.180 1424 9.880 816.4 8.270 1195 

2.0 15.11 526.0 16.88 435.1 14.71 565.1 

2.4 20.11 390.2 22.33 367.6 18.30 417.1 

3.0 21.37 349.9 23.42 246.7 22.73 303.2 

3.6 24.84 226.5 23.53 233.6 25.67 232.7 

4.0 24.05 193.4 23.84 186.1 24.54 217.7 

4.6 21.88 171.7 23.88 182.2 25.03 191.3 

6.0 16.88 134.8 18.10 118.7 18.65 151.4 

9.0 8.400 87.11 8.000 70.51 8.600 76.17 

11 4.660 47.76 4.400 61.16 5.080 34.36 

15 2.709 38.14 2.010 37.89 2.280 72.44 

20 1.000 34.10 0.7600 45.89 0.8900 47.15 
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Table C. 16. ICP result of oxygen supply experiment. Pre-treatment condition: 

3%NaCN, 1%NaOH, 25oC,0 rpm and 30minutes 

Bed volumes 0mL/min 10mL/min 100mL/min 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

                     0.20 20.29 8396 17.09 9305 18.08 9201 

0.60 29.87 7225 28.90 6327 30.68 5623 

1.0 89.76 1628 62.51 2199 56.49 2441 

1.4 129.9 691.1 108.1 782.7 97.74 952.2 

2.0 113.2 382.2 107.3 408.7 107.9 461.8 

2.4 94.53 300.8 90.77 310.7 95.34 341.4 

3.0 68.26 216.5 71.00 261.1 74.46 235.4 

3.6 50.97 177.5 53.65 211.3 55.60 177.9 

4.0 41.62 150.7 46.78 238.8 47.95 146.8 

4.6 33.62 122.8 36.17 148.7 39.37 134.5 

6.0 21.59 80.98 20.53 79.89 26.43 90.05 

9.0 11.92 47.72 10.69 46.37 14.05 40.13 

11 9.661 27.58 9.965 28.65 10.46 25.14 

15 4.654 15.99 5.964 14.68 5.962 13.88 

20 2.365 6.549 1.965 7.747 2.669 7.697 

 

Table C. 17. ICP result of oxygen supply experiment at different flow rates. Pre-

treatment condition: 3%NaCN, 1%NaOH, 80oC,0 rpm and 30minutes 

Bed volumes 0mL/min 10/mL/min 100mL/min 

Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) Au (mg/L) Na (mg/L) 

0.20 25.31 11587 19.46 12310 17.46 28980 

0.60 50.76 5109 28.21 8212 27.05 17560 

1.0 104.5 1734 57.66 2930 83.23 2789 

1.4 138.1 932.7 106.5 1019 130.9 1127 

2.0 136.9 522.4 117.9 498.3 126.1 620.1 

2.4 122.0 409.5 99.27 370.6 110.0 518.7 

3.0 90.32 289.3 74.12 281.9 67.72 286.1 

3.6 67.19 223.8 54.52 224.5 48.09 213.7 

4.0 55.22 192.0 43.57 198.6 39.59 197.8 

4.6 42.25 155.7 32.68 169.2 30.24 184.9 

6.0 24.74 121.7 17.94 114.8 16.94 128.8 

9.0 11.44 50.66 8.058 62.26 6.987 70.08 

11 8.239 28.48 5.814 48.62 5.172 59.29 

15 5.452 16.32 3.894 29.00 3.452 33.49 

20 1.698 8.562 1.862 14.37 2.014 20.15 
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Table C. 18. ICP result of both no-pre-treated and pre-treated and rinsed at 80oC,0 

rpm and 30minutes 

 

 

 

 

 

 

 

 

  

 

 

 

Table C. 19: ICP result for validation of statistical model. 

Run 48: 53oC, 0rpm and 30mins   Run49: 25oC, 600rpm, 30mins  Run 50: 80oC, 600rpm and 30mins 

Bed volumes Au(mg/L) Na(mg/L)  Bed volumes Au(mg/L) Na(mg/L)  Bed volumes Au(mg/L) Na(mg/L) 

0.20 4.660 64.17  0.20 0.990 6057  0.20 2.530 7120 

0.60 4.150 6494  0.60 1.230 7646  0.60 1.950 8618 

1.0 1.630 8967  1.0 4.740 2162  1.0 4.000 3974 

1.4 3.160 4601  1.4 10.23 858.8  1.4 10.23 1343 

2.0 8.770 1399  2.0 17.11 474.5  2.0 18.04 670.7 

2.4 16.39 631.9  2.4 19.50 377.5  2.4 22.18 515.9 

3.0 20.32 498.8  3.0 21.72 298.9  3.0 25.50 383.4 

3.6 26.45 286.8  3.6 22.96 247.7  3.6 27.10 310.7 

4.0 25.97 250.7  4.0 23.20 219.5  4.0 26.05 264.8 

4.6 23.00 196.3  4.6 21.51 183.1  4.6 22.66 227.5 

6.0 18.66 160.1  6.0 15.92 123.0  6.0 16.52 157.1 

 

 

Run 47: No Pre-treatment 

Bed volumes Au(mg/L) Na(mg/L) 

0.20 0.0526 111.9 

0.60 0.0385 160.6 

1.0 0.0494 87.21 

1.4 0.0674 53.57 

2.0 0.1091 31.04 

2.4 0.1323 23.92 

3.0 0.1587 19.90 

3.6 0.1847 17.29 

4.0 0.2195 15.18 

4.6 0.2356 13.10 

6.0 0.2938 10.63 

9.0 0.3940 10.65 

11 0.4371 7.068 

15 0.4896 6.519 

20 0.5223 5.607 

Run 51:Pre-treated and rinsed 

Bed volumes Au(mg/L) Na(mg/L) 

0.20 5.310 1135 

0.60 6.810 776.5 

1.0 7.320 836.3 

1.4 10.14 541.6 

2.0 13.94 385.1 

2.4 16.48 323.3 

3.0 18.32 273.2 

3.6 18.90 226.7 

4.0 18.81 197.0 

4.6 17.74 170.9 

6.0 14.56 131.4 

9.0 7.370 97.67 

11 3.700 70.51 

15 1.790 52.95 

20 0.9600 43.84 
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Titration analysis for CN- 

Table C. 20. Titration result at 25oC, 0rpm, No-AC 

R1 (25oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 8.752 0.5830 

15mins S2 8.956 0.5970 

30mins S3 8.860 0.5910 

45mins S4 8.766 0.5840 

60mins S5 8.862 0.5910 

 

Table C. 21. Titration result 25oC,600 rpm, No-AC 

R2 (25oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 8.788 0.5860 

15mins S2 8.838 0.5890 

30mins S3 8.647 0.5760 

45mins S4 8.550 0.5700 

60mins S5 8.599 0.5730 

 

Table C. 22. Titration result at 25oC, 1200 rpm, No-AC 

R3 (25oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 8.576 0.5720 

15mins S2 8.550 0.5700 

30mins S3 8.555 0.5700 

45mins S4 8.589 0.5730 

60mins S5 8.550 0.5700 

 

Table C. 23. Titration result at 53oC, 0 rpm, No-AC 

R4 (53oC, 0rpm) Vol (AgNO3)(ml) CN-(Molar) 

Initial conc S1 8.742 0.5830 

15mins S2 8.838 0.5890 

30mins S3 8.862 0.5910 

45mins S4 8.935 0.5960 

60mins S5 8.742 0.5830 
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Table C. 24. Titration result at 53oC, 600 rpm, No-AC 

R5 (53oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 8.732 0.5820 

15mins S2 8.951 0.5970 

30mins S3 8.550 0.5700 

45mins S4 9.170 0.6110 

60mins S5 9.201 0.6130 

 

Table C. 25. Titration result at 53oC, 1200 rpm, No-AC 

R6 (53oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.000 0.5840 

15mins S2 3.093 0.6020 

30mins S3 3.079 0.5990 

45mins S4 3.197 0.6220 

60mins S5 3.181 0.6190 

 

Table C. 26. Titration result at 80oC, 0 rpm, No-AC 

R7 (80oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.186 0.6200 

15mins S2 3.496 0.6800 

30mins S3 3.662 0.7130 

45mins S4 3.969 0.7720 

60mins S5 4.385 0.85300 

 

Table C. 27. Titration result at 80oC, 600 rpm, No-AC 

R8 (80oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.183 0.6190 

15mins S2 3.380 0.6580 

30mins S3 3.770 0.7340 

45mins S4 4.274 0.8320 

60mins S5 4.981 0.9690 
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Table C. 28. Titration result at 80oC, 1200 rpm, No-AC 

R9 (80oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.093 0.6020 

15mins S2 3.187 0.6200 

30mins S3 3.592 0.6990 

45mins S4 3.881 0.7550 

60mins S5 4.097 0.7970 

 

Table C. 29. Titration result at 25oC, 0 rpm, in the presence of AC 

R1 (25oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.093 0.6020 

15mins S2 2.989 0.5820 

30mins S3 3.000 0.5840 

45mins S4 3.000 0.5840 

60mins S5 2.899 0.5640 

 

Table C. 30. Titration result at 25oC,600 rpm, in the presence of AC 

R2 (25oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.989 0.5820 

15mins S2 3.000 0.5840 

30mins S3 3.000 0.5840 

45mins S4 2.885 0.5610 

60mins S5 2.899 0.5640 

 

Table C. 31. Titration result at 25oC,1200 rpm, in the presence of AC 

R3 (25oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.971 0.5780 

15mins S2 2.885 0.5610 

30mins S3 2.788 0.5430 

45mins S4 2.881 0.5610 

60mins S5 2.897 0.5640 
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Table C. 32. Titration result at 53oC, 0 rpm, in the presence of AC 

R4 (53oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.999 0.5840 

15mins S2 2.881 0.5610 

30mins S3 2.899 0.5640 

45mins S4 2.977 0.5790 

60mins S5 2.892 0.5630 

 

Table C. 33. Titration result at 53oC, 600 rpm, in the presence of AC 

R5 (53oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.979 0.5790 

15mins S2 2.895 0.5630 

30mins S3 2.999 0.5840 

45mins S4 2.993 0.5820 

60mins S5 2.989 0.5820 

 

Table C. 34. Titration result at 53oC, 1200 rpm, in the presence of AC  

R6 (53oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.979 0.5790 

15mins S2 2.881 0.5600 

30mins S3 2.979 0.5790 

45mins S4 2.977 0.5790 

60mins S5 2.898 0.5640 

 

Table C. 35. Titration result at 80oC, 0 rpm, in the presence of AC 

R7 (80oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.093 0.6020 

15mins S2 3.075 0.5980 

30mins S3 3.186 0.6200 

45mins S4 3.281 0.6380 

60mins S5 3.374 0.6570 
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Table C. 36. Titration result at 80oC, 600 rpm, in the presence of AC 

R8 (80oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.186 0.6200 

15mins S2 3.289 0.6400 

30mins S3 3.594 0.6990 

45mins S4 3.972 0.7730 

60mins S5 4.669 0.9090 

 

Table C. 37. Titration result at 80oC, 1200 rpm, in the presence of AC 

R9 (80oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3 0.5840 

15mins S2 3.083 0.6000 

30mins S3 3.382 0.6580 

45mins S4 3.584 0.6970 

60mins S5 3.771 0.7340 

 

Table C. 38. Titration result at 25oC, 0 rpm, in the presence of AC-Au 

R1 (25oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.972 0.5780 

15mins S2 2.993 0.5820 

30mins S3 2.995 0.5830 

45mins S4 2.999 0.5840 

60mins S5 2.977 0.5790 

 

Table C. 39. Titration result at 25oC, 600 rpm, in the presence of AC-Au 

R2 (25oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.977 0.5790 

15mins S2 2.999 0.5840 

30mins S3 3.075 0.5980 

45mins S4 2.978 0.5800 

60mins S5 3.000 0.5840 
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Table C. 40. Titration result at 25oC, 1200 rpm, in the presence of AC-Au 

R3 (25oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.000 0.5840 

15mins S2 2.989 0.5820 

30mins S3 2.977 0.5790 

45mins S4 2.881 0.5610 

60mins S5 2.978 0.5800 

 

Table C. 41.  Titration result at 53oC, 0 rpm, in the presence of AC-Au 

R4 (53oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.075 0.598 

15mins S2 3.000 0.584 

30mins S3 3.000 0.584 

45mins S4 3.075 0.598 

60mins S5 3.000 0.584 

 

Table C. 42. Titration result at 53oC, 600 rpm, in the presence of AC-Au. 

R5 (53oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.075 0.5980 

15mins S2 3.000 0.5840 

30mins S3 3.000 0.5840 

45mins S4 3.000 0.5840 

60mins S5 3.090 0.6010 

 

Table C. 43. Titration result at 53oC, 1200 rpm, in the presence of AC-Au 

R6 (53oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 3.075 0.5980 

15mins S2 2.998 0.5830 

30mins S3 2.899 0.5640 

45mins S4 2.987 0.5810 

60mins S5 3.000 0.5840 
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Table C. 44. Titration result at 80oC, 0 rpm, in the presence of AC-Au 

R7 (80oC, 0rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.978 0.5800 

15mins S2 3.093 0.6020 

30mins S3 3.198 0.6220 

45mins S4 3.354 0.6530 

60mins S5 3.584 0.6970 

 

Table C. 45. Titration result at 80oC, 600 rpm, in the presence of AC-Au 

R8 (80oC, 600rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.977 0.5790 

15mins S2 3.079 0.5990 

30mins S3 3.487 0.6790 

45mins S4 3.686 0.7170 

60mins S5 4.089 0.7960 

 

Table C. 46. Titration result at 80oC, 1200 rpm, in the presence of AC-Au 

R9 (80oC, 1200rpm) Vol (AgNO3)(mL) CN-(Molar) 

Initial conc S1 2.989 0.5820 

15mins S2 3.176 0.6180 

30mins S3 3.374 0.6570 

45mins S4 3.778 0.7350 

60mins S5 3.969 0.7720 
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Appendix D: Pictures of experimental setup 

 

 

Adsorption 

 

Pre-treatment 
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Elution set-up 
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Dissolved oxygen meter and probe 

 

Automatic titrating machime 
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Pre-treatment setup connected to oxygen supply 
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Appendix E: Publication based on this thesis 

Non-refereed paper presented at international conference. 

· Oladele, T.P., Snyders, C.A., Bradshaw, S.M., 2015. Effect of temperature, 

contact time and agitation speed during pre-treatment on elution. Precious 

Metals’15, Falmouth, UK, 11-12 May 2015. 

Refereed full length paper presented at world gold conference and accepted for 

publication SAIMM World gold conference proceedings. 

· Oladele, T.P., Snyders, C.A., Bradshaw, S.M., 2015. Effect of temperature, 

contact time and agitation speed during pre-treatment on gold elution. World 

Gold conference 2015, Johanesburg, South Africa, 28th September-1 

October 2015. 
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