
Forecasting Methods for Cloud Hosted

Resources, a comparison

by

Manrich van Greunen

Thesis presented in partial ful�lment of the requirements for

the degree of Master of Science in Electric and Electronic

Engineering in the Faculty of Engineering at Stellenbosch

University

Department of Electric and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Supervisor: Dr. H.A. Engelbrecht

December 2015



Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the sole author thereof
(save to the extent explicitly otherwise stated), that reproduction and pub-
lication thereof by Stellenbosch University will not infringe any third party
rights and that I have not previously in its entirety or in part submitted it for
obtaining any quali�cation.

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . .
M. van Greunen

24/11/2015
Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright© 2015 Stellenbosch University
All rights reserved.

i

Stellenbosch University  https://scholar.sun.ac.za



Abstract

Forecasting Methods for Cloud Hosted Resources, a

comparison

M. van Greunen

Department of Electric and Electronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (E&E)

December 2015

Cloud computing has revolutionised the modern day IT industry and con-
tinues to foster the development of new products and services. Amid the dy-
namically changing workloads presented to cloud computing lies the challenge
of ensuring su�cient resources are available when needed. Recently, proactive
provisioning and auto-scaling schemes have emerged as solutions to this. Fore-
casting methods are inherent to these provisioning schemes and to the author's
knowledge, no formal investigation has been performed in comparing di�erent
forecasting methods. The purpose of this research was to investigate various
forecasting methods presented in recent research, adapt evaluation metrics
from literature and compare these methods on prediction performance using
two real-life cloud resource datasets.

It was found that less complex methods, such as moving average and auto-
regression outperformed other more complex methods that were investigated,
on the majority of used evaluation metrics. We also found that our 30th
order auto-regression model achieved statistically signi�cantly better results
compared to the other forecasting methods. Furthermore, there was no single
evaluation metric that gave concise comparative results between forecasting
methods, but overload likelihood ratio as metric showed great promise to this
end. It was argued that focus should be put on developing evaluation met-
rics that speci�cally relate to the cloud environment and further investigation
should be performed on a closed-loop system or real-life cloud platform.

Cloud computing has become ubiquitous with the Internet as we know it
today. We believe that e�ective provisioning of cloud computing resources
should be at the core of modern cloud management systems and the primary
objective of cloud platform providers.

ii

Stellenbosch University  https://scholar.sun.ac.za



Uittreksel

M. van Greunen

Departement Elektriese en Elektroniese Ingenieurswese,

Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (E&E)

Desember 2015

Die wolk-verwerking revolusie in hedendaagse IT industrieë ontwikkel voort-
durend nuwe produkte en dienste. Te midde van die dinamiese gedrag van wolk
verwerking, as gevolg van veranderende werkslandings op wolke, is dit `n uit-
daging om te verseker dat genoeg verwerker-hulpbronne beskikbaar is voordat
dit benodig word. Ontwikkelinge in pro-aktiewe voorsiening en outomatiese
skallerings skemas was onlangs gemaak ter oplossing vir hierdie uitdaging. In-
herent aan hierdie skemas is die gebruik van vooruitskattingsmetodes en sover
die outeur se kennis strek, is daar tans geen resultate van formele ondersoeke in
die vergelyking van verskeie vooruitskattingsmetodes, beskikbaar nie. Die doel
van hierdie navorsing was om ondersoek in te stel aangaande verskeie voor-
uitskattingsmetodes en die aanpas van evalueringsmaatstawwe soos genoem
in literatuur. Met behulp van werklike wolk hulpbron datastelle was hierdie
metodes met mekaar vergelyk.

Daar is gevind dat eenvoudige metodes, soos gly-gemiddeld en outo-regressie,
uitgeblink het wanneer dit gemeet was met die meerderheid van die maat-
stawwe. Ons 30ste orde outo-regressie model verkry die hoogste akkuraatheid.
Verder, is daar gevind dat geen een evaluasie maatstaf `n duidelike verskil tus-
sen metodes uitwys nie, maar dat die oorbelas waarskynlikheidsverhouding vir
hierdie doel belowend lyk. Daar is aangevoer dat fokus geplaas moet word op
die ontwikkeling van evalueringsmaatstawwe wat spesi�ek verwant is aan die
wolk omgewing en verdere ondersoek op `n geslote-lus stelsel of werklike wolk
platform, gedoen moet word.

Wolk-verwerking is alomteenwoordig met die Internet soos ons dit vandag
ken. E�ektiewe voorsiening van wolk hulpbronne en die gebruik van vooruit-
skattingsmetodes is die kern van moderne wolk bestuurstelsels. Wolk platform
verska�ers behoort dit as hul primêre doel tot sukses te beskou.

iii

Stellenbosch University  https://scholar.sun.ac.za



Acknowledgements

I would like to express my sincere gratitude to the following people:

� my supervisor, Dr Herman Engelbrecht, for his continued guidance and
support throughout my research;

� my family and friends their encouragement and moral support;

� my best friend, Daniël Schoonwikel, for standing (and sitting) next to
me, and taking on the great challenge which is MEng;

� to Holy Father, for keeping me and blessing me with opportunities,
knowledge and abilities.

iv

Stellenbosch University  https://scholar.sun.ac.za



Dedications

To my wife, Carla, for your unconditional love, support and understanding.
Thank you.

v

Stellenbosch University  https://scholar.sun.ac.za



Contents

Declaration i

Abstract ii

Uittreksel iii

Acknowledgements iv

Dedications v

Contents vi

List of Figures xi

List of Tables xiv

Nomenclature xv
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

Forecasting Methods . . . . . . . . . . . . . . . . . . . . . . . . xvi
Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Cloud computing . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Cloud service levels . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Actors in the cloud environment . . . . . . . . . . . . . . 3
1.2.4 Cloud workloads . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Auto-scaling techniques for elastic applications in cloud

environments . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Resource management in clouds: survey and research

challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 5

vi

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS vii

1.4 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Literature and theory of forecasting methods . . . . . . . 7
1.6.2 Implementation of forecasting methods . . . . . . . . . . 8
1.6.3 Results: Comparison of forecasting methods . . . . . . . 8

2 Literature Study 9
2.1 Cloud Resource Provision . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Resource prediction using Exponential Smoothing . . . . 9
2.1.2 Resource prediction using Auto-regression . . . . . . . . 10
2.1.3 Resource prediction using Markov chains . . . . . . . . . 11
2.1.4 Resource prediction using Neural Networks . . . . . . . . 14

2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methods for Forecasting 18
3.1 De�ning Time-series and Forecasting . . . . . . . . . . . . . . . 18
3.2 Moving Average (MA) . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 MA model parameter estimation . . . . . . . . . . . . . 20
3.2.2 Forecasting using MA . . . . . . . . . . . . . . . . . . . 21

3.3 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Exponential Smoothing model parameter estimation . . . 22
3.3.2 Forecasting using Brown's Exponential Smoothing . . . . 23

3.4 Holt's Linear Exponential Smoothing . . . . . . . . . . . . . . . 24
3.4.1 Holt's model parameter estimation . . . . . . . . . . . . 25
3.4.2 Forecasting using Holt's Exponential Smoothing . . . . . 26

3.5 Holt-Winters' Additive Exponential Smoothing . . . . . . . . . 26
3.5.1 Holt-Winters' model parameter estimation . . . . . . . . 27
3.5.2 Forecasting with Holt-Winters' method . . . . . . . . . . 28

3.6 Auto Regression (AR) . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 Simple Linear Regression . . . . . . . . . . . . . . . . . . 29
3.6.2 Linear regression parameter estimation . . . . . . . . . . 29
3.6.3 Forecasting with linear regression . . . . . . . . . . . . . 31
3.6.4 Autocorrelation Function . . . . . . . . . . . . . . . . . . 31
3.6.5 Auto-regression de�nition . . . . . . . . . . . . . . . . . 32
3.6.6 Auto-regression parameters estimation . . . . . . . . . . 34
3.6.7 Forecasting with an AR model . . . . . . . . . . . . . . . 36

3.7 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.1 First-order Markov chain model . . . . . . . . . . . . . . 37
3.7.2 First-order Markov chain parameter estimation . . . . . 39
3.7.3 Forecasting using a �rst-order Markov model . . . . . . . 39
3.7.4 Second-order Markov chain model . . . . . . . . . . . . . 40

3.8 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8.1 Neural Network structure . . . . . . . . . . . . . . . . . 42

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS viii

3.8.2 Sigmoid Neuron . . . . . . . . . . . . . . . . . . . . . . . 43
3.8.3 Learning Neural Networks . . . . . . . . . . . . . . . . . 44
3.8.4 Forecasting using Neural Networks . . . . . . . . . . . . 47
3.8.5 Recurrent neural networks . . . . . . . . . . . . . . . . . 47
3.8.6 Elman recurrent neural networks . . . . . . . . . . . . . 47

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Implementation of Forecasting Methods 51
4.1 Holt-Winters Implementation . . . . . . . . . . . . . . . . . . . 51
4.2 Auto-regression Implementation . . . . . . . . . . . . . . . . . . 52
4.3 Markov Chain Implementation . . . . . . . . . . . . . . . . . . . 53
4.4 PRESS Implementation . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Agile Implementation . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Neural Network Implementation . . . . . . . . . . . . . . . . . . 55
4.7 Resource Forecasting Pipeline . . . . . . . . . . . . . . . . . . . 55
4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Experimental Investigation 59
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Evaluation parameters . . . . . . . . . . . . . . . . . . . 61
5.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1.3 Statistical signi�cance test . . . . . . . . . . . . . . . . . 63

5.2 Investigate PRESS And Agile's Results . . . . . . . . . . . . . . 64
5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Evaluation Using Root Mean Squared Error . . . . . . . . . . . 68
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Evaluation Using Correct Estimation Rate . . . . . . . . . . . . 70
5.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Evaluation Using Estimation Score . . . . . . . . . . . . . . . . 72
5.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Evaluation Using Overload Likelihood Ratio . . . . . . . . . . . 75
5.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS ix

5.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Evaluation Using Overloaded State Likelihood Ratio . . . . . . 78
5.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.7.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Ensemble Model Evaluation . . . . . . . . . . . . . . . . . . . . 81
5.8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.8.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Investigate Shorter Forecasting Window . . . . . . . . . . . . . 85
5.9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.9.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 86

5.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusions 89
6.1 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Cloud workloads and forecasting methods . . . . . . . . 89
6.1.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . 89
6.1.3 Experimental investigations . . . . . . . . . . . . . . . . 90

6.2 Concluding Perspective . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Appendices 93

A Derivations 94
A.1 Yule-Walker Equations . . . . . . . . . . . . . . . . . . . . . . . 94

A.1.1 For lag of 1 . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.1.2 For lag of 2 . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1.3 For lag of k . . . . . . . . . . . . . . . . . . . . . . . . . 96

B Datasets 97
B.1 2011 Google Cluster Dataset . . . . . . . . . . . . . . . . . . . . 97
B.2 Wikipedia Pageview Dataset . . . . . . . . . . . . . . . . . . . . 98

C Additional Results 99
C.1 Statistical Signi�cance Test Results . . . . . . . . . . . . . . . . 99
C.2 Ensemble models: Statistical Signi�cance Test Results . . . . . 100
C.3 Investigate Shorter Forecasting Window . . . . . . . . . . . . . 102

Stellenbosch University  https://scholar.sun.ac.za



CONTENTS x

Bibliography 109

Stellenbosch University  https://scholar.sun.ac.za



List of Figures

1.1 Cloud computing service levels. . . . . . . . . . . . . . . . . . . . . 3

2.1 Illustration of PRESS. . . . . . . . . . . . . . . . . . . . . . . . . . 13
(a) Extract dominant frequency. . . . . . . . . . . . . . . . . . . 13
(b) Calculate average-pattern and forecast the next window. . . 13

2.2 Example of a Wavelet-transform and Agile's method. . . . . . . . . 15

3.1 Moving Average applied to example data. . . . . . . . . . . . . . . . 20
3.2 Forecasting with Moving Average. . . . . . . . . . . . . . . . . . . . 21
3.3 Brown's Exponential Smoothing applied to example data. . . . . . 23
3.4 Forecasting with Brown's method. . . . . . . . . . . . . . . . . . . . 24
3.5 Holt's Exponential Smoothing method applied to example data. . . 25
3.6 Forecasting with Holt's linear method. . . . . . . . . . . . . . . . . 27
3.7 Forecasting with Holt-Winters' method. . . . . . . . . . . . . . . . 29
3.8 Simple linear regression. . . . . . . . . . . . . . . . . . . . . . . . . 30
3.9 An Autocorrelation Function (ACF) plot of example data. . . . . . 33
3.10 Auto-regression model as an IIR �lter. . . . . . . . . . . . . . . . . 34
3.11 Comparing auto-regression models of increasing order. . . . . . . . 35
3.12 Forecasting with an Auto-regression model. . . . . . . . . . . . . . 36
3.13 An example of digitising data into Markov states. . . . . . . . . . . 37
3.14 Forecasting with a �rst-order Markov chain. . . . . . . . . . . . . . 40
3.15 Neural Networks: The Perceptron. . . . . . . . . . . . . . . . . . . 42
3.16 The unit step function. . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.17 A simple Feed-Forward Neural Network. . . . . . . . . . . . . . . . 43
3.18 The Sigmoid Function. . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.19 Learning a Neuron Network. . . . . . . . . . . . . . . . . . . . . . . 45
3.20 Forecasting using a Feed-forward Neural Network. . . . . . . . . . . 48
3.21 An example of a Recurrent Neural Network. . . . . . . . . . . . . . 49
3.22 Elman Recurrent Neural Network. . . . . . . . . . . . . . . . . . . . 50

4.1 Power density spectrum of our data. . . . . . . . . . . . . . . . . . 52
4.2 Selection of Auto-regression model order. . . . . . . . . . . . . . . . 53

(a) Z-plane of AR(8). . . . . . . . . . . . . . . . . . . . . . . . . 53
(b) PSD of AR(8). . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xii

(c) Z-plane of AR(16). . . . . . . . . . . . . . . . . . . . . . . . 53
(d) PSD of AR(16). . . . . . . . . . . . . . . . . . . . . . . . . . 53
(e) Z-plane of AR(30). . . . . . . . . . . . . . . . . . . . . . . . 53
(f) PSD of AR(30). . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Issue: Inspect RNN transient behaviour when forecasting. . . . . . 56
4.4 Resource Forecasting Pipeline. . . . . . . . . . . . . . . . . . . . . . 58

5.1 PRESS results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 66
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 66
(c) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 66
(d) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 66

5.2 Agile's results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 67
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 67
(c) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 67
(d) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Root Mean Squared Error evaluation results. . . . . . . . . . . . . . 70
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 70
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 70
(c) Pageview data. . . . . . . . . . . . . . . . . . . . . . . . . . 70
(d) Network data. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Correct Estimation Rates for CPU, Memory, Pageview and Net-
work data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 72
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 72
(c) Pageview data. . . . . . . . . . . . . . . . . . . . . . . . . . 72
(d) Network data. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Estimation score results . . . . . . . . . . . . . . . . . . . . . . . . 74
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 74
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 74
(c) Pageview data. . . . . . . . . . . . . . . . . . . . . . . . . . 74
(d) Network data. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Overload Likelihood Ratio results. . . . . . . . . . . . . . . . . . . . 77
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 77
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 77
(c) Pageview data. . . . . . . . . . . . . . . . . . . . . . . . . . 77
(d) Network data. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 De�nition of an overloaded state. . . . . . . . . . . . . . . . . . . . 78
5.8 Overloaded State Likelihood Ratio results . . . . . . . . . . . . . . 80

(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 80
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 80
(c) Pageview data. . . . . . . . . . . . . . . . . . . . . . . . . . 80
(d) Network data. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Stellenbosch University  https://scholar.sun.ac.za



LIST OF FIGURES xiii

5.9 Ensemble models: Root Mean Squared Error results. . . . . . . . . 82
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 82
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 82

5.10 Ensemble models: Correct Estimation Rate results. . . . . . . . . . 83
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 83
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 83

5.11 Ensemble models: Estimation Score results. . . . . . . . . . . . . . 83
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 83
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 83

5.12 Ensemble models: Overload Likelihood Ratio results. . . . . . . . . 84
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 84
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 84

5.13 Ensemble models: Overloaded State Likelihood Ratio results. . . . 84
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 84
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 84

C.1 Comparison forecasting window lengths on RMSE . . . . . . . . . . 102
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 102
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 102

C.2 Comparison forecasting window lengths on Correct Est. Rate . . . 103
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 103
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 103

C.3 Comparison forecasting window lengths on Estimation score . . . . 106
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 106
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 106

C.4 Comparison forecasting window lengths on Overload Likelihood Ratio107
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 107
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 107

C.5 Comparison forecasting window lengths on Overloaded State Like-
lihood Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
(a) CPU usage data. . . . . . . . . . . . . . . . . . . . . . . . . 108
(b) Memory usage data. . . . . . . . . . . . . . . . . . . . . . . 108

Stellenbosch University  https://scholar.sun.ac.za



List of Tables

5.1 Evaluation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Comparison forecasting window lengths results. . . . . . . . . . . . 86

C.1 Statistical signi�cance test results for the evaluations performed on
the 2011 Google Cluster and Wikipedia datasets. . . . . . . . . . . 99

C.2 Ensemble models: Statistical Signi�cance Test Results. . . . . . . . 100
C.3 Investigate forecasting window lengthe results. . . . . . . . . . . . . 103

xiv

Stellenbosch University  https://scholar.sun.ac.za



Nomenclature

Acronyms

ACF The Autocorrelation Function used to determine stationarity of
a time series and estimate the Auto-regression coe�cients.

ANN Arti�cial Neural Network.

AR Auto-regression.

BFGS The Broyden-Fletcher-Goldfarb-Shanno optimisation algorithm,
together with the MSE are used to estimate the parameters of
exponential smoothing models.

CER Correct Estimation Rate.

ES Estimation Score, a linear combination of the OER and UER.

FFNN Feed-Forward Neural Network.

FPR The False Positive Rate.

HW Holt-Winter exponential smoothing.

IIR In�nite Impulse Response.

LP Linear Predictor.

LPA Linear Prediction Analysis, a feature extraction technique pop-
ular in signal and speech processing.

LR+ Positive Likelihood Ratio.

LSE Least Squares Estimation.

MA Moving Average.

MLP Multi-Layer Perceptron.

MSE Mean Squared Error.

NN Shorthand for Arti�cial Neural Network.

OER Over-Estimation Rate.

OLR Overload Likelihood Ratio, the positive likelihood ratio associ-
ated with correctly predicting overloaded samples.

OSLR Overloaded State Likelihood Ratio, the positive likelihood ratio
associated with correctly predicting overloaded states.

PGM Probabilistic Graphical Model.

xv

Stellenbosch University  https://scholar.sun.ac.za



NOMENCLATURE xvi

RFP Resource Forecasting Pipeline.

RNN Recurrent Neural Network.

SSE Summary of Squared Error.

TPR The True Positive Rate.

UER Under-Estimation Rate.

WA Weighted Average, used as method of combining forecasting meth-
ods.

WMA Weighted Moving Average.

Symbols

Forecasting Methods

ai The model parameters of a Linear Predictor (LP).

ŷt+1 The predicted value for a time series at time t+ 1.

ŝ(t) Approximated signal of a Linear Predictor.

m The number of past values used in Moving Average model.

α Level smoothing factor for exponential smoothing.

β Trend smoothing factor for Holt's linear smoothing method.

γ Seasonal smoothing factor for Holt-Winters' additive smoothing
method.

st The estimate of the level for a time series at time t.

bt The estimate of the trend for a time series at time t.

It The estimate of the seasonal component of a time at time t.

L The number of observations per season when modelling a time-
series using Holt-Winters' method.

AI The the average of at time-series for the jth season in that time-
series.

φ0 Intercept parameter for a linear regression model.

φi Model parameters for a linear regression or auto-regressive model
with i = 1, 2, ....

E The Mean Squared Error function.

E The Expected Value operator.

ε Modelling error.

δ A constant in the Auto-regression model.

ρm The value of the Autocorrelation function at delay m.

S The set of distinct states used when �tting a Markov chain
model.

Stellenbosch University  https://scholar.sun.ac.za



NOMENCLATURE xvii

xi A discrete Markov chain state, used to indicate the current state.

xj A discrete Markov chain state, used to indicate the next or new
state.

pij The transition probability for transitioning from a current state
xi to a new state xj.

P Transition matrix (of size k × k) for a Markov chain model, de-
scribing the probabilities of transitioning for any one state to
any other state.

πt The probability distribution, at time t, across all states of a
Markov chain model.

Neural Networks

x Input vector to a neuron with components xi.

w The weight-vector which is multiplied with the input vector x
and passed to the activation function.

b The bias value or threshold at which a perceptron neuron acti-
vates.

T Training set of inputs and desired or target output pairs.

dj Target or desired output for input vector xj

∆w Small changes to the weights in the neural network.

∆ŷ Small changes to the network's output.

Evaluation Metrics

Sp Scaling parameter used in statistical signi�cance test.

Q The duration, in samples, de�ning a overloaded state.

Tp The true positive count.

Fp The false positive count.

Tn The true negative count.

Fn The false negative count.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 1

Introduction

1.1 Motivation

The emergence of cloud computing and the adoption of elastic cloud services
have enabled developers to host applications and services on cloud hosted
resources. These resources can also be dynamically provisioned and scaled
on demand. E�ective provisioning of cloud resources, i.e. ensuring that suf-
�cient resources are available when needed, has proven to be a challenging
task for cloud users [61]. This is because applications hosted in the cloud
typically face large amounts of tra�c and unpredictable workloads due to end
user behaviours [62]. Under-provisioning of resources hurts performance and
may violate Service Level Agreements (SLAs) with end users, whereby over-
provisioning of resources may incur unnecessary costs [43].

As a solution to this challenge, recent research has presented promising
provisioning and auto-scaling schemes. Proactive provisioning aims to map
performance requirements to the underlying cloud resources, employ forecast-
ing methods to accurately estimate the resource requirement (or quantitative
load) ahead of time and scale resources accordingly.

Forecasting methods adapted from the �elds of statistics and machine
learning has been applied to cloud resource provisioning. Much e�ort has been
spent in improving the modelling and forecasting accuracy of these methods.

According to Lorido-Botrán et al. [42], there is a lack of formal investigation
and comparison of these forecasting methods and their performance. Further-
more, Kupferman et al. [38] state that �representative metrics will have to
emerge in order to realistically evaluate di�erent scaling approaches.�

The purpose of this thesis is to perform a formal investigation in comparing
forecasting methods used in provisioning of cloud hosted resources. Performing
evaluations using representative performance metrics and real-world datasets.

1

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 2

1.2 Background

1.2.1 Cloud computing

The idea of publicly available computing resources was �rst envisioned by John
McCarthy in early 1960. The term `cloud' was �rst used in 2006 by Google's
CEO Eric Schmidt to describe the business model of providing computing re-
sources and services over the Internet [69]. The National Institute of Standards
and Technology (NIST) [44] de�nes cloud computing as: �a model for enabling
convenient, on-demand network access to a shared pool of con�gurable com-
puting resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management e�ort
or service provider interaction.�

Cloud computing has become synonymous with the Internet as we know
it today. A principle analyst at Rackspace, Roy Illsley, stated in his 2014 re-
port [33] that 42% of small to medium enterprises globally use cloud comput-
ing. He predicts this number to reach 75% by the year 2016. Cloud computing
is continuing to foster the development of new and emerging technologies. De-
velopers of cloud based services and applications no longer need to make a large
upfront investment in hardware or operation costs and are able to scale their
cloud infrastructure according to the popularity of their product or service [5].

1.2.2 Cloud service levels

In general, the cloud computing environment can be categorised into three
distinct service levels, namely:

� Infrastructure as a Service (IaaS): providing of virtual resources, referring
to the simulation of computer hardware on physical computers within a
datacenter. These include Virtual Machines (VMs), large scale storage,
�rewalls, load balancers, Virtual Local Area Networks (VLANs) and
management software [3]. Examples of IaaS clouds include Amazon's
Elastic Compute Cloud (EC2) and Google Compute Engine (GCE).

� Platform as a Service (PaaS): providing a platform and services to sup-
port application development and design. These include operating sys-
tem support and software development environments [69]. Examples of
PaaS clouds include Google Cloud Platform and Elastic Beanstalk.

� Software as a Service (SaaS): providing software applications to users
over the Internet, typically only accessed online [27]. Examples of SaaS
include Google's Gmail [25], Dropbox [16] and Online games.

Figure 1.1 illustrates these service levels and lists examples of the types of
applications or resources provided at each level. For the purpose of this work

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

we will focus on IaaS type cloud resources, because of the availability of VM
resource metrics at this level.

SaaS

PaaS

IaaS

Email,wVirtualwdesktop,wTeleconference,w
Onlinewgamesw

VirtualwMachines,wServer,wStorage,wLoadw
balancers,wVirtualwnetwork

Executionwruntime,wDatabase,wWebwserver
Developmentwtoolsw

A
pp

lic
at

io
n

P
la

tfo
rm

In
fr

as
tr

uc
tu

re

Figure 1.1: The service levels provided by cloud computing and examples of the
types of applications and resources provided at each level.

1.2.3 Actors in the cloud environment

Following the terminology used by Jennings and Stadler [34], three separate
parties are involved in the cloud environment and these are outlined as the
following:

� The cloud provider manages a set of physical datacenter hardware
and system software resources to provide cloud resources to cloud users,
available on-demand and pay-for-use. The cloud provider is responsible
for allocating cloud resources meeting Service Level Agreements (SLAs)
with cloud users. Cloud providers such as Google and Amazon provide
elastic cloud solutions, i.e. the ability to dynamically acquire and release
cloud hosted resources, namely Google Compute Engine (GCE) [26] and
Amazon EC2 [2].

� The cloud user uses cloud infrastructures to host applications or ser-
vices and o�ers it to end users. Cloud user are typically concerned with
minimising their running costs whilst maximising income from End users.

� End users use applications or services hosted on cloud resources and
generates the workload processed by cloud resources.

1.2.4 Cloud workloads

According to Mao and Humphrey [43], the workloads presented to clouds can
contain long-term variations such as time-of-day e�ects as well as short-term
�uctuations. They characterise cloud workloads into four types: stable, trend-
ing, seasonal/cyclic and bursty.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 4

� A stable workload is characterised by resources having a constant load
for a long period. Example scenarios that present stable workloads in-
clude: cloud monitoring and logging services as well as research clusters
running a series of batch jobs.

� A trending workload is observed when the load on a cloud is increasing
over time, typically causing overload. Example scenarios of trending
workloads include: a particular website or web service becoming more
popular over time and the increasing number of users generating more
load.

� Seasonal/cyclic workloads are characterised by having periodic ele-
ments. Example scenarios that present cyclic workloads include: online
retailers where higher workloads are observed by day as opposed to lower
workloads by night.

� A bursty workload is characterised by a sudden increase in load. An
example scenario that presents a bursty workload includes: the increase
in the number of views to a news site reporting on a breaking story.

1.3 Related Work

The work presented in this thesis is an investigation in comparing forecasting
methods for cloud hosted resources. In this section we discuss recent compari-
sons of auto-scaling and provisioning methods for cloud hosted resources. This
will give the necessary context for our work.

1.3.1 Auto-scaling techniques for elastic applications in

cloud environments

In their recently published technical report, Lorido-Botrán, Miguel-Alonso and
Lozano [42] investigate auto-scaling in the cloud environment by identifying the
role-players in the cloud environment and the types of auto-scaling techniques
being used in elastic clouds.

They contribute by listing di�erent workloads (both synthetic and real
world traces), possible application benchmarks and auto-scaling techniques
that can be used for research.

Similar to the work presented in this thesis, Lorido-Botrán et al. classify
auto-scaling techniques into six categories namely, static, threshold-based, re-
inforcement learning, queuing theory, control theory and time-series analysis.

For each class of auto-scaling method, Lorido-Botrán et al. review recent
work that investigated the use of that method in the cloud domain and list
the metrics, workloads and experimental platform used.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 5

They conclude that for e�cient scaling (and provisioning) of cloud re-
sources, a predictive auto-scaling technique needs to be developed that could
model and forecast on time-series data. They also highlight that the accu-
racy of auto-scaling techniques investigated greatly depend on the modelling
parameters. Finally, the authors state that there is a lack of a formal test-
ing and comparison framework for auto-scaling in the cloud. It is this
last statement that serves as the basis for the work performed and presented
in this thesis.

1.3.2 Resource management in clouds: survey and

research challenges

Work similar to Lorido-Botrán et al. and inspiration for the work in this thesis
is: �Resource Management in Clouds: Survey and Research Challenges� work
by Jennings and Stadler [34] published in 2014.

The authors survey recent literature on cloud resource management, scaling
and provisioning and compile a list of state-of-the-art methods for each of these
topics. They identify �ve research challenges in cloud computing resources and
systems that need to addressed, namely: providing predictable performance for
cloud hosted applications, achieving global manageability for cloud systems,
engineering scalable resource management systems, gaining an understanding
of cloud pricing and economic behaviours and lastly developing solutions for
the mobile cloud paradigm.

The work by Jennings and Stadler is a broader study into cloud resource
management than the work done in this thesis. The sections in their paper on
Resource Demand Pro�ling, Resource Utilisation Estimation and Application
Scaling and Provisioning have the closest similarities to our work and will be
discussed here.

Under Resource Demand Pro�ling, Jennings and Stadler investigate proac-
tive, model-driven and model-free forecasting methods and identify similar
types of methods, as presented in this thesis (see Chapter 2). These methods
include time-series analysis approaches like auto-regression and PRESS as well
as energy aware applications.

In the section entitled Resource Utilisation Estimation, Jennings and Stadler
highlight that the majority of cloud resource management research depend on
historical measurements which may be noisy and inaccurate. They thus sug-
gest that better pro�ling of cloud application workloads would be bene�cial
for more accurate provisioning.

From their discussion on Application Scaling and Provisioning we see sim-
ilarities to the cloud workloads described above. Jennings and Stadler present
scaling and provisioning techniques that include approaches that use fuzzy
logic, decentralised algorithms and probabilistic models.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 6

In conclusion, Jennings and Stadler identify the following research chal-
lenges that need to be addressed: (1) More e�ciency in resource placement
(on physical datacenter hardware), (2) performance prediction of mutli-tiered
applications, with speci�c focus on use cases and system constraints asso-
ciated with these types of applications. (3) The use of Control theory as
resource allocation technique, because these techniques have seen success in
other applications outside of the cloud domain. (4) Emphasis should be
put on increasing the accuracy of forecasting methods. This criti-
cally a�ects the performance of proactive provisioning. Load/demand
should be classi�ed and characterised in di�erent scopes and di�erent time-
scales whereby this information can be fed into the models being used.

In a broad sense, the work presented in this thesis investigates and aims to
address challenge (4) by evaluating and comparing di�erent types of forecasting
methods and investigating the metrics used to evaluate forecasting accuracy.

1.4 Research Objectives

The objectives of this work is to:

1. Survey the �eld of cloud resource provisioning and scaling to identify
prominent forecasting methods used to model and estimate the load pre-
sented to resources in the cloud.

2. Identify key performance measures from this survey that are used to
evaluate and compare provisioning methods.

3. Compare the prominent forecasting methods identi�ed through experi-
mental evaluation, i.e. using datasets, evaluation parameters and perfor-
mance metrics.

4. Investigate the increase in forecasting accuracy when combining methods
that each address a characteristic of cloud workloads into an ensemble
model.

5. Investigate the e�ects on performance when using a shorter forecasting
window length.

1.5 Contributions

� Present a formal experimental investigation framework for evaluating
and comparing forecasting methods towards more e�ective cloud resource
provisioning.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 7

� Conclude that there is no single forecasting method that is signi�cantly
better than the rest in terms of accurately forecasting load presented to
cloud hosted resources.

� Show that there is no one performance metric that gives a concise result
when evaluating and comparing forecasting methods on cloud usage data.

� The work presented in the thesis has been accepted for publication and
will be presented at the 11th International Conference on Network and
Service Management 2015 (CNSM '15).

1.6 Overview

This chapter gave an overview of the research done in this thesis. Section 1.1
states the motivation and basis for this work.Section 1.2 covers the necessary
background of cloud computing and how provisioning of cloud resources, es-
pecially when using elastic cloud services, is a challenging task. A synopsis is
given in Section 1.3 of work that relates to this research, and is followed by
Section 1.4 which describes the objectives of this research. A summary of the
contributions is given in Section 1.5.

The rest of the chapters in this thesis can be summarised into the following
subsections:

1.6.1 Literature and theory of forecasting methods

In Chapter 2, a study is performed to identify prominent forecasting meth-
ods used in recent literature on provisioning and auto-scaling of cloud hosted
resources. Eight forecasting methods are identi�ed: (1) Moving Average, (2)
Exponential Smoothing, (3) Auto-regression, (4) Markov Chains, (5) PRESS,
(6) Agile, (7) Feed-Forward Neural Networks and (8) Elman-Recurrent Neural
Networks. The chapter concludes that the squared error is a generic metric
used when evaluating forecasting methods, and more importantly, that there
exists no formal investigation or agreement on modelling of forecasting meth-
ods or what evaluation setup or datasets to use when comparing forecasting
methods.

Background and theory required for developing and implementing the fore-
casting methods are described in Chapter 3. The chapter builds basic intuition
by �rst describing simpler methods such as Moving Average (MA) and smooth-
ing functions such as Exponential Smoothing, whilst highlighting similarities
to Linear Prediction Analysis (LPA) throughout. The complexity of methods
described increase from the Holt-Winters Exponential Smoothing method, to
Auto-regression (AR) that employs the Autocorrelation function (ACF), to
Markov Chains that model transitions across distinct values and �nally to
Neural Networks that learn functional relationships between past values and

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 8

future loads. Two types of Neural Networks (NNs) are important for the work
in this thesis. They are Feed-Forward Neural Networks (FFNN) and Elman-
Recurrent Neural Networks (RNNs).

1.6.2 Implementation of forecasting methods

Chapter 4 covers the implementation details of the forecasting methods in-
vestigated in this thesis, highlights the issues encountered and discusses how
these were resolved. The chapter starts by mentioning that Python 2.7 is
used for developing the forecasting methods and continues to describe method
speci�c implementations and issue resolutions. Next, the chapter lists the dif-
ferences between and assumptions used with development of PRESS [24] and
Agile [47]. The chapter concludes by describing the development of a Resource
Forecasting Pipeline (RFP). A formal investigation framework that facilitates
data pre-processing, forecasting method modelling and evaluation metrics cal-
culation. This pipeline allows for repeatable experiments to be performed.

1.6.3 Results: Comparison of forecasting methods

The �nal chapters of this thesis report on the experimental investigation per-
formed on comparing forecasting methods as well as additional evaluations
done. Chapter 5 starts of by discussing the experimental setup and evalu-
ation parameters used throughout the investigation. The datasets used and
statistical signi�cance tests employed are also covered.

Firstly, the chapter compares PRESS and Agile's results reported by their
respective authors to three AR models, each of increasing order. The 7 hour
Google cluster dataset [28] is used to investigate PRESS's results and the 29
day dataset used for Agile's comparative evaluation.

The chapter continues to report on the evaluations executed using the �ve
evaluation metrics, namely RMSE, Correct Estimation rate, Estimation score,
Overload Likelihood Ratio and Overloaded State Likelihood Ratio. Additional
evaluations were performed to investigate the use of combinations of methods
in ensemble models. The investigation yields unexpected and inconclusive
results. Finally, investigation into using a shorter forecasting window is per-
formed and it con�rms the comparative metric evaluations.

The thesis concludes in Chapter 6 by summarising the work done, empha-
sising the important results and �ndings, noting the limitations and recom-
mending the future directions for the work.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2

Literature Study

2.1 Cloud Resource Provision

In this chapter we identify prominent approaches to proactive provisioning in
the cloud environment published in recent years. Each section in this chapter
gives a summary of the work presented in a particular literature paper and
comments on the limitation of the work, assumptions that where made by the
authors or highlights details which were left unclear.

Proactive provisioning is de�ned as resource provisioning that forecasts
server load ahead of time and reserves resources accordingly. As mentioned in
Section 1.3.1, Lorido-Botrán et al. [42] classify provisioning and auto-scaling
techniques into �ve categories: static, threshold-base, reinforcement learning,
queuing theory, control theory and time-series analysis.

In this thesis we choose to focus on two classes of forecasting methods
predominately used in the provisioning of cloud resources, namely machine
learning and time-series analysis. These �elds looks most promising above
others.

2.1.1 Resource prediction using Exponential Smoothing

We identify Exponential Smoothing from the work done by Huang, Li and
Yu in their paper entitled; �Resource Prediction Based on Double Exponen-
tial Smoothing in Cloud Computing� [29] from 2012. Huang et al. propose a
time-series analysis prediction model based on Exponential Smoothing. They
speci�cally investigated a Double Exponential Smoothing model, referred in
this thesis as Holt's method. Double Exponential Smoothing employs two
smoothing equations (one to estimate the level and another to estimate the
trend of a time-series) and uses a linear combination of these to predict a value
into the future.

Huang et al. aimed to improve accuracy of resource estimation in proac-
tive provisioning by considering current and recorded data. They describe the
mathematical development of Exponential Smoothing up to the formulation

9

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 10

of the prediction equation for forecasting m values into the future. In this
thesis, these are described in Section 3.4. Huang et al. use two resource data
types namely, CPU and Memory and propose the Summary of Squared Error
(SSE) as evaluation metric. They evaluate their Double Exponential Smooth-
ing method using a cloud simulator, CloudSim and compare their method to a
simple mean- and Weighted Moving Average (WMA) method. They show that
their method can better follow resource utilisation and predict future values
with more accuracy compared to the mean and WMA.

Comments: From the work by Huang et al. the following was unclear:

� Modelling and evaluation parameters � these include the look-back win-
dow length, (i.e. the number of historical samples used to estimate the
smoothing coe�cients).

� The simulation time used and the forecasting window length � the num-
ber of values predicted into the future.

� Setup and implementation of the two comparison methods � simple
Mean and WMA are not discussed. The absence of this makes it di�cult
for future veri�cation of their results.

2.1.2 Resource prediction using Auto-regression

We identify Auto-regression (AR) as a forecasting method from work done by
Chandra, Gong and Shenoy [13] and Kupferman et al. [38].

Chandra et al. propose a time-series analysis method that dynamically
provisions cloud resources in shared datacenters by using online measurements.
By developing a time-domain queuing model they aim to capture and model
transient behaviours from cloud applications. They propose an AR model of
order 1 � denoted as AR(1). They use this model as prediction algorithm for
forecasting short-term application workload requirements.

Using their queuing model, Chandra et al. estimate the speci�c workload
from an application's service requests and relate this to resource utilisation
of that application. An online monitoring module captures these resource
measurements and stores the most recent historical observations, which is used
to �t the AR(1) model.

Chandra et al. evaluate their resource prediction method under simulated
conditions (using a Poisson distribution as workload generator) and perform
a trace driven investigation using the 1998 World Cup Soccer server logs [4].
They compare their method to static resource allocation and show that their
AR(1) model better provisions resources and lowers over-utilisation.

In 2009, Kupferman et al. also proposed the use of a �rst-order AR model to
predict system load in their paper entitled; �Scaling into the Cloud� [38]. They
design a repeatable evaluation environment in the form of a cloud simulator

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 11

platform that maps incoming requests to CPU utilisation and simulates net-
work tra�c for various workload patterns. Kupferman et al. follow the same
AR formulation as Chandra et al. and this is also covered in Section 3.6 of
this work. They compare their AR(1) method to a static provisioning scheme
(where the minimum number of Virtual Machines (VMs) are determined to
achieve 100% of the peak utilisation) to a simple linear regression approach
and RightScale [54]. RightScale is a provisioning platform that uses a voting
scheme among VMs to determine if more resources need to be provisioned or
not.

In terms of evaluation metrics, Kupferman et al. propose the use of a
scoring algorithm, which considers the number of service requests dropped
compared to the total number of requests received. This calculates the running
cost (in USD) for each VM in operation. Using these metrics, Kupferman et
al. show that static provisioning is most wasteful in terms of resources and
that RightScale performs similar to linear regression. They also show that
their AR(1) model achieves the best score and cost result.

Comments: Both Chandra et al. and Kupferman et al. choose to employ
an AR(1) model to perform short-term forecasts and have proven it to be an
e�cient model. The paper by Chandra et al. is unclear on the speci�cs of their
AR(1) parameters as well as the ranges of the performance metrics. One might
question the relevance of using the 1998 World Cup Soccer server logs [4] for
a data trace as representation of modern day cloud workloads. The evaluation
metrics used by Kupferman et al. (score and running cost) are both metrics
that are relevant in terms of the cloud domain, but requires a cloud platform
to be measurable. In this thesis we choose to use time-series based accuracy
metrics that relate to both time-series and cloud resources. This is discussed
as part of the Experimental Investigation in Chapter 5.

2.1.3 Resource prediction using Markov chains

The use of Markov chains to predict time-series data has been investigated in
other �elds than cloud provisioning, but in recent years it has also been applied
to provisioning of cloud resources. We identi�ed three literature papers that
propose Markov chains as forecasting method, namely work done by Lili et
al. [39], PRESS by Gong, Gu and Wilkes [24] and Agile by Nguyen et al. [47].
In this thesis we reference both PRESS and Agile extensively and thus we
discuss each in Section 2.1.3.1 and Section 2.1.3.2 respectively.

Lili et al. present their work in a paper entitled; �A Markov Chain Based Re-
source Prediction in Computational Grid� and propose the use of a �rst-order
Markov chain for modelling and predicting cloud resources. They de�ne �ve
Markov states namely, (1) CPU over-utilisation, (2) CPU normal utilisation,
(3) Network overload, (4) Network normal load and (5) Resource failure, 
They
aim to model the transitions between these states. Their model's Transition
matrix P is estimated from historical observations using the frequency of state

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 12

transitions (similar to the description given in Section 3.7). They describe an
accuracy metric based on the probability of the model predicting the correct
state at each time interval and calculate the average over the entire evaluation
time. Using a grid simulator platform, GridSim [9], they evaluate and compare
their method to a simple mean and median based approach. They are able
to show that their Markov chain model achieves higher prediction accuracies
across various data-traces.

Comments: It is important to note that Lili et al. focussed their work on
Grid computing, which is a subtype of cloud computing and is typically used
for research jobs and batch processing. These traces may present di�erent
types of workloads compared to those presented to commercial clouds, the
focus of this thesis. The use of �ve Markov states that relate to overload
and under-load is an interesting design decision. This enables their Markov
chain model to learn cloud speci�c features and be less impacted by time-series
values. This approach still requires the cloud user to de�ne her application
speci�c over- and under-load thresholds, which again could be a di�cult task
to perform.

2.1.3.1 PRESS

Gong, Gu and Wilkes present �PRESS: PRedictive Elastic reSource Scaling for
cloud systems� [24], a two fold provisioning scheme that uses both a time-series
analysis and a machine learning approach to accurately predict short-term
load changes. Using the Fast Fourier Transform (FFT), PRESS calculates the
dominant frequency present in historical resource demand data and calculates
a window containing a signature-pattern. Figure 2.1 on page 13 illustrates how
PRESS uses the signature-patterns as reference, calculates an average-pattern
and, using Dynamic Time Warping, �nds the o�set in order to forecast these
values for the next window.

In cases where the past observations do not contain a signi�cant repeat-
ing pattern, they employ a discrete �rst-order Markov chain. For this, Gong
et al. de�ne M -distinct Markov states by dividing the data into equal-sized
discrete bins. Using the frequency count of state transitions, they construct
a transition matrix P . We follow this approach for our Markov chain as de-
scribed in Section 3.7.

They evaluate PRESS in simulation using the 1998 World Cup Soccer
server logs [4] and Google's 7-hour workload cluster dataset [28] as real-world
data. Gong et al. propose using under- and over-estimation rates as evaluation
metrics and shows that PRESS outperforms comparative methods such as
mean-max, auto-correlation and auto-regression.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 13

2
0
0
0

0
5
0
0

1
0
0
0

1
5
0
0

S
am

p
le

s
0
.2

0

0
.2

2

0
.2

4

0
.2

6

0
.2

8

0
.3

0

Example data

E
xa

m
p
le

 d
at

a 
co

n
ta

in
in

g
 

se
as

on
al

 c
om

p
on

en
ts

0
5

1
0

1
5

2
0

Fr
eq

u
en

cy
0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

Amplitude

FF
T
 s

p
ec

tr
u
m

 o
f 
th

e 
ex

am
p
le

 d
at

a

0
5

1
0

1
5

2
0

Fr
eq

u
en

cy
0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

D
om

in
an

t 
Fr

eq
u
en

cy

Amplitude

FF
T
 s

p
ec

tr
u
m

 o
f 
th

e 
ex

am
p
le

 d
at

a

(a
)
E
x
tr
a
ct

d
o
m
in
a
n
t
fr
eq
u
en
cy
.

0
5
0
0

1
0
0
0

1
5
0
0

S
am

p
le

s
0
.2

0

0
.2

2

0
.2

4

0
.2

6

0
.2

8

0
.3

0

Example data

E
xa

m
p
le

 d
at

a 
d
iv

id
ed

 
in

to
 d

om
in

an
t 

p
er

io
d
 s

ig
m

en
ts

C
al

cu
la

te
 

p
at

te
rn

A
ve

ra
g
e-

p
at

te
rn

0
5
0
0

1
0
0
0

1
5
0
0

S
am

p
le

s
0
.2

0

0
.2

2

0
.2

4

0
.2

6

0
.2

8

0
.3

0

Example data

O
ri
g
in

al
 d

at
a 

w
it
h
 f

or
ec

as
te

d
 

va
lu

es
 f

or
 t

h
e 

n
ex

t 
w

in
d
ow

Fo
re

ca
st

(b
)
C
a
lc
u
la
te

av
er
a
g
e-
p
a
tt
er
n
a
n
d
fo
re
ca
st

th
e
n
ex
t
w
in
d
ow

.

F
ig
u
r
e
2
.1
:
Il
lu
st
ra
ti
on

of
h
ow

P
R
E
S
S
fo
re
ca
st
s
u
si
n
g
a
si
gn
at
u
re
-p
at
te
rn

sc
h
em

e.
T
h
e
d
om

in
an
t
fr
eq
u
en
cy

an
d
p
er
io
d
is
d
et
er
m
in
ed

u
si
n
g
th
e
F
F
T

an
d
u
se
d
to

se
gm

en
t
th
e
or
ig
in
al

ti
m
e-
se
ri
es

in
to

si
gn
at
u
re
-p
at
te
rn
s.

A
n
av
er
ag
e-
p
at
te
rn

is
ca
lc
u
la
te
d
u
si
n
g
th
e

in
fo
rm

at
io
n
fr
om

ea
ch

w
in
d
ow

,
an
d
u
si
n
g
D
y
n
am

ic
T
im

e
W
ar
p
in
g
th
e
o�
se
t
of
th
e
cu
rr
en
t
p
at
te
rn

to
th
e
av
er
ag
e-
p
at
te
rn

is
d
et
er
m
in
ed
.

V
al
u
es

fo
r
th
e
n
ex
t
fo
re
ca
st
in
g
w
in
d
ow

is
p
re
d
ic
te
d
as

th
is
(s
h
if
te
d
)
av
er
ag
e-
p
at
te
rn
.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 14

Comments: The 1998 World Cup Soccer server logs, may not be a rep-
resentative dataset workloads presented to modern day cloud resources. The
speci�c implementation of PRESS is still unclear as well as the three com-
parative methods used, making it di�cult to fully investigate their proposed
method. We identify under- and over-estimation rates as performance metrics
that relates to both time-series and cloud provisioning accuracy.

2.1.3.2 Agile

Nguyen et al. [47] extend PRESS and propose Agile � a time-series analysis
method which uses Wavelet-transforms to perform medium-term resource de-
mand predictions. Wavelet-transforms decompose a time-series into a set of
detail-signals at di�erent scales, with each detail-signal representing the orig-
inal time-series at a coarser granularity. Figure 2.2 on page 15 (taken from
Nguyen's paper) illustrates an original time-series decomposed into four scaled
detail-signals.

After subtracting the detail-signals from the original signal we obtain an
approximation signal. As illustrated, forecasting is performed on each of these
detail- and approximation-signals independently and using the inverse-wavelet
transform, a prediction is synthesised on the original signal. Nguyen et al. em-
ploy a Markov chain model similar to PRESS for modelling and forecasting on
each of the detail- and approximation-signals.

Nguyen et al. propose using overload prediction rates and overloaded state
accuracy as evaluation metrics (also used in this thesis and described in detail
in the Experimental Investigation in Chapter 5). They evaluate Agile on the 29
day Google cluster dataset [67] and compare it to PRESS and auto-regression,
showing that Agile consistently outperforms these two methods when evaluated
on CPU and Memory resource demand.

Comments: In order to perform a Wavelet-Transform, one chooses the
type of wavelet and the number of scales to use. Nguyen et al. chose the number
of scales according to the forecasting window, but omitted information about
the speci�c set of wavelet functions they used in Agile. The order of the Auto-
regression model used by Nguyen et al. as comparison model is unknown. The
performance metrics Nguyen et al. proposed are measures that relate to time-
series and cloud domain resources and thus are closer to realistic metrics for
evaluating cloud provisioning methods. We choose to use both these metrics
in this thesis.

2.1.4 Resource prediction using Neural Networks

We identify Neural Networks, a machine learning approach to resource predic-
tion, through the work done by Caglar and Gokhale [11] and Nae, Iosup and
Prodan [45].

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 15

Figure 2.2: An example of how a time-series signal is transformed into detail signals
of di�erent scales using Wavelet-Transforms. This illustrates how Agile [47] forecasts
CPU demand.

Caglar and Gokhale present iOverbook, an intelligent resource management
tool that uses an Arti�cial Neural Network to predict overbooking rates in dat-
acenters. They identify `features' associated with resource allocations which
include CPU requests and usage, Memory requests and usage, VM count,
Memory capacity and CPU and Memory overload rates. These features are
input into a Feed-Forward Neural Network (FFNN). Using the Levenberg-
Marquardt backwards-propagation algorithm, the FFNN is trained and learns
the functional requirements of each of the features and how they relate to re-
source allocation/provisioning. They use the 29 day Google cluster dataset [67]
and the Mean Squared Error (MSE) as evaluation metric to evaluate their
method's ability to forecast the mean hourly CPU and Memory usage. Caglar
and Gokhale show that their method can accurately predict the next interval
with a statistical R-value of 0.67.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 16

Nae et al. propose a prediction algorithm that uses a Recurrent Neural
Network (RNN) to predict load on a cloud hosted Massively Multiplayer Online
Game (MMOG). Each VM is hosting a partition of the in-game state and
the load on that VM is modelled as the number of entities in that region. In
terms of workload types, Nae et al. de�ne four player-behaviour-patterns, each
presenting a di�erent workload to the cloud resources. They employ an Elman
network (which is a type of RNN) to estimate the load ahead of time and
dynamically provision and scale the cloud resources used by their MMOG.

They develop a cloud based MMOG simulator, use real-world data traces of
player-behaviours and the Mean Absolute Error (MAE) as performance metric
to evaluate their estimator. Nae et al. show that their NN-based method
accurately predicts various loads including �ash-crowd behaviours.

Comments: Typical resource provisioning uses the time-series data as
training data but the approach taken by Caglar and Gokhale is di�erent.
They de�ne `features' that are associated with resources rather than using
the historical values as time-series data. Nae et al. understand that overload
is a state-based condition and thus opts to use a RNN that is capable of `re-
membering' state. In our work we implement both FFNNs and RNNs and
investigate the capabilities of both these neural network approaches.

2.2 Summary

In this chapter we identi�ed the prominent forecasting methods used in recent
literature and discussed the work in which these where presented. The meth-
ods identi�ed were Exponential Smoothing, Auto-regression, Markov Chains,
PRESS, Agile and two types of Neural Networks (Feed-Forward Neural Net-
works and Elman-Recurrent Neural Networks).

We conclude with the following remarks:

� The squared error (or variants of it) is a popular evaluation metric used
when measuring the performance of forecasting methods.

� There is no agreement on training- or prediction window-lengths when
modelling or forecasting resource demand.

� The forecasting methods are primarily compared with naive models and
not against other prominent approaches (with the exception of Agile
being compared against PRESS). This supports the motivation of this
thesis, to perform a formal investigation into comparing prominent fore-
casting methods in the same evaluation environment and dataset(s).

� The literature study showed that popular datasets used in evaluations
include the 1998 World Cup Soccer server logs [4], the 7 Hour Google
cluster dataset [28] of 2010 and the 2011 Google cluster dataset [67]

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE STUDY 17

covering 29 days. For the purpose of the work performed in this the-
sis, we opt to use the most recent datasets: The 29 day Google cluster
dataset [67] of 2011 and the Wikipedia Pageview dataset [65] of 2014.

The next chapter covers the formulation of theory and background know-
ledge required to model each of these forecasting methods identi�ed. We also
present the forecasting equations for predicting multiple values in to the future.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3

Methods for Forecasting

The previous chapter identi�ed prominent forecasting methods used in provi-
sioning and auto-scaling schemes applied to cloud hosted resources. This chap-
ter covers the background theory needed to better understand each forecasting
method and highlights the strengths and weaknesses of these methods. First,
we give the de�nition of a time-series, describe modelling of a time-series and
discuss the procedure of forecasting. The chapter continues to discuss simpler
forecasting methods like Moving Average and various Exponential Smoothing
methods as well as cover methods of higher complexity such as Auto-regression,
Markov Chains and �nally Neural Networks.

The purpose of this chapter is to give an indication of the complexity of
each forecasting method, describe how the method parameters are estimated
from training data and formulate the equations used to forecast multiple values
into the future. The formulations and theory presented in this chapter, was
collected from the following resources: Croarkin and Tobias [15], Hyndman
and Athanasopoulos [30], Robert Nau [46] and Kalekar [36].

3.1 De�ning Time-series and Forecasting

A Time-series is de�ned as a set of sequential data points or measurements
collected at regular time intervals. Time-series data is typically observed when
monitoring industrial processes, business- or economic metrics [15]. For the
purpose of this thesis, time series data is obtained when monitoring cloud
resource utilisation. Quantitative forecasting involves the analysis and mod-
elling of time-series data, using mathematical methods. A model, as de�ned
in [22, p.15], is a mathematical description of a process that generates a given
time-series, whereby forecasting is de�ned as a procedure where historical
data is fed into a model as input and the output produced by the model is the
prediction or estimate.

Provisioning of cloud resources can been viewed as a time-series forecasting
problem with past observations (or measurements) of usages being modelled

18

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 19

and future estimation of load being forecasted.

3.2 Moving Average (MA)

Measurement data and speci�cally time-series data generated by processes,
have inherent random variations that can be contributed to sensor noise or to
the stochastic nature of the process being monitored. The e�ects causing these
random variations can be reduced by using Smoothing Functions. Two promi-
nent smoothing methods used in time-series and signal processing research are
averaging methods (e.g. Moving Average) and Exponential Smoothing (dis-
cussed in Section 3.3). These methods are both simple and �exible, making
them e�ective at revealing the underlying trends, seasonal and cyclic compo-
nents in time-series.

The simplest way to smooth noisy data is to take the average of all past
data values, using the equation of the weighted average:

ȳ =

∑N−1
t=0 yt
N

(3.2.1)

where the weight N is the total number of past values.

The objective of smoothing is to reduce short-term �uctuations and high-
light long-term trends or cycles. It is more bene�cial to calculate the average
of consecutive sets of observations within a smoothing window n (with n being
smaller than the total number of values N). This method is termed Moving
Average (MA), because the sample window is moved after each calculation of
the average.

MA's expression is given by:

st =

∑n
i=1 yt−i

n
(3.2.2)

where st is the smoothed value at time t and s the new time-series containing
the smoothed values. The strength of smoothing, also referred to as the weight
of smoothing, is controlled by the size of n. Larger n will highlight more of
the long-term trends and seasonality, whereby smaller values of n will conserve
short-term �uctuations.

Figure 3.1 illustrates two MA models applied to example data. We notice
that no smoothing is applied to the �rst n observations, as these values are
used to smooth the observation at sample t = n. To align the smoothed
values with the variations of the data, one could calculate the Centred Moving
Average using an equal number of values on either side of the current value
yt. This approach assumes we have full knowledge of values in the past and
into the future, which for forecasting on time-series is not the case. For the
purpose of this thesis we will use MA as formulated in equation 3.2.2.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 20

0 5 10 15 20 25 30
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

E
x
a
m

p
le

 d
a
ta

Moving Average models

True values
MA of 5 values
MA of 10 values

Figure 3.1: Moving Average applied to a noisy time-series with smoothing window
sizes n, set to 5 and 10 data points respectively. We notice that no smoothing is
applied to the �rst n observations, because these values are used to smooth the value
at t = n.

3.2.1 MA model parameter estimation

Di�erent to the other forecasting methods discussed in this chapter, Moving
Average does not require modelling or estimation of model parameters. But
when reviewing equation 3.2.2, we see similarities to Linear Prediction Analysis
(LPA), a feature extraction technique from the �eld of signal processing (and
especially speech processing).

The basic assumption of LPA is that future values can be represented by a
linear combination of past values. A signal, s(t) can be approximated to ŝ(t)
using the following:

ŝ(t) =
m∑
i=1

ais(t− i) (3.2.3)

where ai are the model parameters and m the order of the Linear Predictor
(LP).

When de�ning an MA model, we observe that the model parameters ai are
similar to the weight of smoothing and thus we set ai = 1

m
∀ i. The majority

of techniques discussed in this chapter follow the LPA modelling form.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 21

3.2.2 Forecasting using MA

To forecast a new value at t + 1, denoted by ŷt+1, we employ the smoothing
from expression 3.2.2 and apply it to the last m observations:

ŷt+1 =
yt + yt−1 + ....+ yt−(m−1)

m
(3.2.4)

This type of forecasting is referred to as one-ahead forecasting, because the
expression only predicts one value into the future at time t+ 1.

To predict values further into the future, say t + 2, t + 3, ..., t + k, we use
the predicted value at the previous step (ŷt+k−1) as a `true observation' and
re-apply equation 3.2.4.

ŷt+2 =
ŷt+1 + yt + ....+ yt+1−(m−1)

m
(3.2.5)

Applying equations 3.2.4 and 3.2.5 to example data, Figure 3.2 illustrates
an MA model (with m = 5) predicting values for t+ 1 up to t+ 10.

0 5 10 15 20 25 30 35 40
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

E
x
a
m

p
le

 d
a
ta

Forecasting using a MA of 5 values

True values
Smoothed
Forecasted

Figure 3.2: Forecasting 10 samples into the future using a Moving Average model
with m = 5. The predicted values are on the right side of the vertical line.

In terms of cloud provisioning, Lorido-Botrán et al. [42] state that MA has
poor long-term prediction results on noisy data and suggest that MA may be
better suited for stable workloads.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 22

3.3 Exponential Smoothing

In Section 3.2, we discussed Moving Average and showed (in equation 3.2.2)
that past observations are weighted equally with a factor of 1

m
, where m is the

number of observations used. Exponential Smoothing in comparison, assigns
exponentially decreasing weights to each of the past data points and puts more
emphasis on the most recent observations.

In 1956 Robert G. Brown [8] proposed the �rst Exponential Smoothing
approach called `Brown's Simple Exponential Smoothing'. Brown's method
aims to improve short-term forecasting compared to MA by better estimating
the level of a time-series.

Brown's method is calculated using the following equation:

st = αyt−1 + (1− α)st−1, 0 ≤ α ≤ 1

s1 = y1, t ≥ 3
(3.3.1)

where st is the smoothed value at t, α the level smoothing factor (a value
between [0, 1]) and y1 the observation at t = 1.

When substituting st−1 into equation 3.3.1, the exponential decreasing
weights applied to older values become more visible:

st = αyt−1 + (1− α)[αyt−2 + (1− α)st−2]

= αyt−1 + α(1− α)yt−2 + (1− α)2st−2

(3.3.2)

Larger values for α have less of a smoothing e�ect. The most recent obser-
vations are weighted more in comparison with α values closer to zero, which
have greater smoothing e�ect. This is illustrated in Figure 3.3 where smooth-
ing is applied using di�erent values for α.

3.3.1 Exponential Smoothing model parameter

estimation

When �tting a Simple Exponential Smoothing model, we minimise the Mean
Squared Error (MSE) between the true values and the smoothed values given
by:

MSE =
1

n

n∑
i=1

(si − yi)2

=
1

n

n∑
i=1

[αyi−1 + (1− α)si−1 − yi]2
(3.3.3)

where si is the smoothed value at t = i, also referred to as the estimate, yi the
true value of the series at t = i and n the total number of samples used.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 23

0 5 10 15 20 25 30
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

E
x
a
m

p
le

 d
a
ta

Brown's method with alpha=[0.1, 0.5, 0.8]

True values
alpha=0.8
alpha=0.5
alpha=0.1

Figure 3.3: Brown's Simple Exponential Smoothing with di�erent α's, illustrating
that α values closer to zero have a greater smoothing e�ect.

In comparison to LPA, no closed-form solution exists for determining the
optimum α parameter that will minimise the error. Thus we employ a numer-
ical optimisation algorithm to �nd the optimum α. In this work we use the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, an iterative non-linear
optimiser provided by our scienti�c computing package SciPy [60]. The BFGS
algorithm is one of many possible optimisation algorithms that could be used.
Others include the Levenberg-Marquardt algorithm. The formulation of the
BFGS algorithm is presented in [10].

3.3.2 Forecasting using Brown's Exponential Smoothing

We use equation 3.3.3, the optimum α and the last observation yt to perform
a one-ahead forecast using Brown's Exponential Smoothing:

st+1 = αyt + (1− α)st, t > 0 (3.3.4)

To forecast values for t+ 2, ..., t+k, we assume that the previous predicted
value was a `true value' and re-apply the forecast equation. Figure 3.4 illus-
trates the forecasts for t+1 up to t+20 on example data. We observe that for
long-term predictions the values become a straight line. We remember that
each forecast is an estimated mean of a future value and thus with no new
information the forecasts reach a constant. This also indicates that Brown's
Simple Exponential Smoothing is not suited for long-term forecasting on data
that may contain a trend or seasonal components.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 24

0 5 10 15 20 25 30 35 40
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

E
x
a
m

p
le

 d
a
ta

Brown's method forecasted with alpha=0.570

True values
Smoothed
Forecast

Figure 3.4: Forecast of 10 values using Brown's Simple Exponential Smoothing
method and an optimum α=0.570.

In terms of cloud provisioning, Brown's method marginally improves on
MA's forecasting on stable workloads. It is able to better estimate the level
of a series using both the current and past observations [42]. More complex
workloads, like cyclic or bursty workloads, require more complex Exponential
Smoothing. We investigate two of these methods (Holt's method and Holt-
Winters' method) in the next sections.

3.4 Holt's Linear Exponential Smoothing

In 1957, Charles C. Holt extended Brown's Simple Exponential Smoothing
method to forecast on data that contains a trend and proposed Holt's method,
(also referred to as Double Exponential Smoothing). This method uses the
following two smoothing equations and initial values:

st = αyt + (1− α)(st−1 + bt−1), 0 ≤ α ≤ 1

bt = β(st − st−1) + (1− β)bt−1, 0 ≤ β ≤ 1

s1 = y1,

b1 = y2 − y1

(3.4.1)

where α is referred to as the level smoothing factor and β the trend smoothing
factor. The initial value for b1 listed above, can be initialised using a variety of
schemes according to [15]. In their online book entitled �Forecasting: Principles
and Practice� [30, sec. 7.2], Hyndman and Athanasopoulos describe that the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 25

value st denotes an estimate of the level of the series at time t and bt denotes
an estimate of the trend of the series.

Holt's method performs similar to Brown's method, with small values of α
having a greater smoothing e�ect [31]. Figure 3.5 illustrates Holt's smoothing
method applied to data, using di�erent α values.

0 5 10 15 20 25 30
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

E
x
a
m

p
le

 d
a
ta

Holt's linear smoothing with alpha=[0.1, 0.5, 0.8]

True values
alpha=0.8
alpha=0.5
alpha=0.1

Figure 3.5: Holt's Linear Exponential Smoothing applied to example data using
di�erent α's and a constant β. Similar to Brown's method, values of α closer to zero
have a greater smoothing e�ect.

3.4.1 Holt's model parameter estimation

Considering equation 3.4.1, we see that for Holt's method the smoothed value
st is a combination of the scaled true value yt and the sum of the previous level
and trend estimates (st − 1 and bt − 1). From the initial value of the trend
estimate b1 we observe that the trend estimate performs a similar function to
a �rst-order di�erencing of the data.

Similar to Brown's method in Section 3.3, we estimate the parameters α
and β by minimising the MSE between the true values and the smoothed values
using the BFGS non-linear optimisation algorithm.

The MSE in terms of α and β is given as:

MSE =
1

n

n∑
i=1

[αyi + (1− α)(si−1 + bi−1)− yi]2 (3.4.2)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 26

According to Hyndman [31], Holt's method will have a better in-sample
MSE compared to Brown's Exponential Smoothing, because it is optimised
over one additional parameter. In terms of cloud provisioning, there is no
single preferred optimisation algorithm. We choose to use the BFGS algorithm
because of it being available in SciPy.

3.4.2 Forecasting using Holt's Exponential Smoothing

The equations for forecasting one-value ahead and k-values ahead, are obtained
by adding the estimates st and bt from equation 3.4.1:

yt+1 = st + bt

yt+k = st + kbt
(3.4.3)

where each value further into the future, is a combination of the level estimate
st and a `gradient' k of the trend estimate. These equations have a similar
form to that of a straight line (y = c+mx) and may suggest Holt's reasoning
behind formulating the forecasting method in this way.

Figure 3.6 illustrates forecasting using Holt's Linear Exponential Smooth-
ing on the example data we have been using thus far. We notice that long-term
forecasts are no longer a �at line but rather follow the last trend estimation.
Holt's Linear Exponential Smoothing is an improvement over the Simple Ex-
ponential Smoothing but still struggles to forecast data that contains seasonal
components.

3.5 Holt-Winters' Additive Exponential

Smoothing

The Holt-Winters' method, also called `Triple Exponential Smoothing' was
suggested in 1960 by Peter R. Winters [68], a student of Holt. This method
extends Holt's method and is capable of predicting on time series data that
contain trends and/or seasonal components.

The Holt-Winters seasonal method contains three smoothing equations:
one to smooth the level of the series, one to smooth the trend and one to smooth
the seasonal components. Let the length of a single season be L samples. For
example in quarterly data L is set to L = 4 and in monthly data L = 12.

The smoothing equations are not derived in this thesis but where formu-
lated and presented by Winters in [68]:

1. Level smoothing:

st = α
yt
It−L

+ (1− α)(st−1 + bt−1) (3.5.1)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 27

0 5 10 15 20 25 30 35 40
Samples

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
x
a
m

p
le

 d
a
ta

Holt`s linear method forecast 
(alpha=0.570, beta= 0.393)

True values
Smoothed
Forecast

Figure 3.6: Holt's linear method, with optimum α and β used to forecast 10 values.
Values forecasted further into the future follow the last trend estimate of the data,
which in this case, is the slanted line downward.

where 0 ≤ α ≤ 1 is the level smoothing factor. By dividing yt by the
seasonal component It−L, deseasonalises the data and only the trend
factor and the initial value b1 remain in the updating process of st.

2. Trend smoothing:

bt = β(st − st−1) + (1− β)bt−1 (3.5.2)

where 0 ≤ β ≤ 1 is the trend smoothing factor. The trend estimate
is the smoothed di�dence between two successive level estimates of the
deseasonalised data.

3. Seasonal smoothing:

It = γ
yt
st

+ (1− γ)It−L (3.5.3)

where 0 ≤ γ ≤ 1 is the seasonal smoothing factor. The seasonal estimate
is a combination of the most recent observation of the data yt divided by
the deseasonalised level estimate st and the previous seasonal estimate
L samples backward.

3.5.1 Holt-Winters' model parameter estimation

We will now describe the estimation of the smoothing factors and the setting
of the initial values used to model a Holt-Winters' model. Again we use a

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 28

non-linear optimisation algorithm (e.g. BFGS) to minimise the MSE of the
smoothed and the true values, obtaining α, β and γ.

In order to initialise the trend estimate bt and seasonal estimate component
It we need at least one complete season's data (i.e. L samples) .According to
Croarkin and Tobias [15] �it is advisable to use two complete seasons (ie. 2L
samples).�

1. The initial value for the level estimate s1 is set to:

s1 = y1 (3.5.4)

2. The initial value for the trend estimate b1 is set to:

b1 =
L∑
i=1

[
yL+i − yi

L

]
(3.5.5)

3. The initial value for the seasonal components Ii is estimated as:

Ii =
1

N

N∑
j=1

yL(j−1)+1

Aj

∀i = 1, 2, ..., L (3.5.6)

where Aj is the average of y for the season corresponding to j index
and i is the position within the season. The above equation produces
N seasonal estimates where N is the number of complete seasons in the
data.

3.5.2 Forecasting with Holt-Winters' method

After �tting the Holt-Winters' Additive Exponential Smoothing model, we
obtain values for α, γ and β, initialised the estimate equations and forecast
one-value and k-values ahead in time using the following formulas:

yt+1 = (st + bt)It−L+1

yt+k = (st + kbt)It−L+k

(3.5.7)

where k is the number of values ahead in time to be estimated.

Figure 3.7 shows the Holt-Winters' Additive method applied and forecasted
on example data. From the �gure we see that Holt-Winters' method is capable
of forecasting the seasonal behaviour in the data.

In terms of cloud provisioning, the Holt-Winters' method appears to be
the most promising smoothing method as it is able to model and predict three
of the four workload types namely: stable, trending and cyclic/seasonal work-
loads. For the purpose of this thesis, we will only be implementing and evalu-
ating the Holt-Winters' method (denoted as HW).

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 29

0 5 10 15 20 25 30 35 40
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

E
x
a
m

p
le

 d
a
ta

Holt-Winters` additive method forecast 
 (alpha=.4153, beta= .03245, gamma=.3138)

True values
Smoothed
Forecast

Figure 3.7: Holt-Winters' Additive method, with optimum α, β, γ used to forecast
10 values ahead. Values forecasted follow the last seasonal and trend estimate.

3.6 Auto Regression (AR)

In this section we introduce Auto Regression (AR), but �rst we discuss simple
linear regression, the autocorrelation function and how its coe�cients are used
to compute the AR model parameters.

3.6.1 Simple Linear Regression

Simple Linear Regression is a statistical method used to determine a polyno-
mial function that closely represents a set of data points and aims to �t a
�rst-order polynomial of the form:

ŷt = φ0 + φ1t+ ε (3.6.1)

where ŷt is the approximated value, φ0 and φ1 are the value of the intercept
and the slope respectively, t the time dependant variable and ε the error or
deviation [30, ch. 4.1].

Figure 3.8 illustrates a �rst-order simple linear regression model, �t to
example data.

3.6.2 Linear regression parameter estimation

It is important to note, that there exists other linear regression models that
considers both historical values and values into the future when estimating

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 30

0 5 10 15 20 25 30
t

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

y

Simple Linear Regression model

Figure 3.8: A simple linear regression model �t to data that contains a trend. The
dashed line is the estimate value at every t. The error at time t, εt is the di�erence
between the actual value yt and the value estimated from the model yt

model parameters. In this discussion we focus on the simple linear regression
approach.

Reviewing equation 3.6.1, we observe that the simple linear regression
model is a special case of a Linear Predictor (LP). We follow a parameter
estimation approach similar to LPA, referenced in Section 3.2.1 by minimising
the MSE.

The error of prediction, et is de�ned as the di�erence between the approx-
imated value ŷt and the true value yt:

et = yt − ŷt (3.6.2)

Let E be de�ned as the error function:

E =
N∑
i=1

e2i =
N∑
i=1

[yi − (φ0 + φ1ti)]
2 (3.6.3)

where N is the number of observations considered and ε set to ε = 0.
The error function is quadratic in the regression parameters. Therefore is

has one unique global minimum. This can be determined by setting the partial
derivative with respect to the parameters equal to zero.

∂E

∂φi

= 0, i = 0, 1 (3.6.4)

Performing the partial derivative we get:

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 31

∂E

∂φ0

= −2
N∑
i=1

[yi − (φ0 + φ1ti)] = 0

∂E

∂φ1

= −2
N∑
i=1

ti [yi − (φ0 + φ1ti)] = 0

(3.6.5)

Two simultaneous equations:

Nφ0 + φ1

N∑
i=1

ti =
N∑
i=1

yi

φ0

N∑
i=1

ti + φ1

N∑
i=1

(ti)
2 =

N∑
i=1

yiti

(3.6.6)

Represented in matrix form:[
N

∑N
i=1 ti∑N

i=1 ti
∑N

i=1(ti)
2

] [
φ0

φ1

]
=

[ ∑N
i=1 yi∑N
i=1 yiti

]
(3.6.7)

Let ȳ and t̄ be:

ȳ =
1

N

N∑
i=1

yi and t̄ =
1

N

N∑
i=1

ti (3.6.8)

When solving it we get estimates for φ0 and φ1:

φ̂1 =
N
∑N

i=1 yiti −
∑N

i=1 yi
∑N

i=1 ti

n
∑N

i=1(ti)
2 − (

∑N
i=1 ti)

2

φ̂0 = ȳ − φ̂1t̄

(3.6.9)

3.6.3 Forecasting with linear regression

In order to perform a one-ahead forecast, the linear regression parameters are
used in the following equation:

ŷt+1 = φ̂0 + φ̂1(t+ 1) (3.6.10)

The resulting value of ŷt+1 is called the `�tted-value' or regressed value at time
t+ 1.

3.6.4 Autocorrelation Function

When performing analysis on time-series in the time domain, one requires a
way to describe the properties of stationarity of the stochastic process. The
Autocorrelation Function (ACF) is an important tool in the investigation into

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 32

the stationarity of a stochastic time-series [23]. More importantly for the work
presented in this thesis, the ACF is used to estimate the AR coe�cients as
discussed in Section 3.6.5.

Let Y be a process which generates a time-series y and let us de�ne yt,
as time t since the start of the process. At any time t, the series has a mean
µt and variance σ2

t and assuming the series is stationary, both the mean and
variance is time independent, µ and σ2.

The ACF describes the correlation of the series at di�erent times separated
by k samples. For example, the correlation between the series yt at time t and
a shifted version yt−k. The equation for the ACF for this case is de�ned as:

ρ(k) = R(yt, yt−k) =
E [(yt − µ)(yt−k − µ)]

σ2
(3.6.11)

where E[·] is the expected value operator, µ and σ2 the mean and variance
respectively.

The ACF has the following properties:

1. ρ(0) = 1

2. ρ(k) = ρ(−k), ∀k = 0, 1, 2, ...

3. |ρ(k)| < 1, ∀k = 0, 1, 2, ...

Figure 3.9 illustrates the ACF plot of example data.

3.6.5 Auto-regression de�nition

As discussed above, simple linear regression uses a linear combination of pa-
rameters (φ0 and φ1) to forecast a value at t+1. In this section we will discuss
AR which also uses a linear combination of past values. The weights used to
combine these past values are estimated using the correlation of the series onto
itself, i.e using the ACF.

The general equation for an AR model of order p, AR(p) is de�ned by:

yt = δ + φ1yt−1 + φ2yt−2 + ...+ φpyt−p + ε (3.6.12)

where ε is the modelling error and δ a constant calculated as:

δ = (1−
p∑

i=1

φi)ȳ (3.6.13)

where ȳ is the mean of the time-series up to time t.
The order of an AR model p indicates the number of past values to include

into the model as well as dictates the number of parameters of the model [30].

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 33

0 5 10 15 20 25 30
0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17
Original Series

0 5 10 15 20 25 30

0.5

0.0

0.5

1.0

A
C

F

ACF plot with k=0,1,2,...,30

Figure 3.9: An Autocorrelation Function (ACF) plot of example data with k =
0, 1, 2, ..., 30. The �rst value, ρ(0) = 1 agrees with the �rst property of the ACF.
From the decreasing values of ρ(k) we can deduce that the time-series does not have
a strong autocorrelation.

When �tting higher order AR models, care should be taken because the pre-
diction performance is very sensitive to the model parameters [18]. Possible
e�ects include `ringing' and instability when �tting.

Various approaches exist for selecting the order for an AR model. These
approaches include using Box-Jenkins's method, using digital �lter design prin-
ciples, or using information criteria (such as Akaike's information criterion,
Parzen's criterion of autoregressive transfer function or Rissanen's minimum
description length [7]).

Box-Jenkins's method uses the ACF discussed above and selects the order
based on the number of lags before the ACF decays to zero [15]. Selecting the
order using information criteria entails �tting multiple models to the data, each
with an increasing order. After each �tting, the speci�c information criterion
value is calculated, thereafter the optimum order is selected as the one that
gives the lowest variance in the prediction error [12].

Order selection using digital �lter design requires us to describe AR as a
linear time-invariant �lter with a transfer function that is presented as the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 34

following:

H(z) =
1

1−
∑p

i=1 φiz−1
(3.6.14)

This transfer function describes an In�nite Impulse Response (IIR) �lter.
This is shown in Figure 3.10, with the input e[n] zero-mean white noise [7]. A

Figure 3.10: Auto-regression model as an In�nite Impulse Response (IIR) �lter,
where e[n] is zero-mean white noise.

suitable AR order is identi�ed by matching the power spectrum of the data
to AR �lters of increasing order. Work done by Boardman et. al [7] compared
AR models with increasing order. The z-plane and power spectrum plots of
these models are shown in Figure 3.11.

To perform order selection of an AR model it is required to estimate the
parameters φi from the data.

3.6.6 Auto-regression parameters estimation

Similar to LPA, the coe�cients of the AR model φi (with i = 1, 2, ..., p) are
calculated by minimising the MSE and using Yule-Walker equations (�rst pre-
sented by Yule and Walker [63] in 1931).

The derivation of the Yule-Walker equations are presented in Appendix A,
and de�ned as:

ρm =

p∑
i=1

φiρm−i, m = 0, 1, 2, ..., p (3.6.15)

where ρm are the values of the ACF at delay m and p the order.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 35

-1 0 1
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

-1 0 1
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

(a) (b)

(c) (d)

-1 0 1
-1

-0.5

0

0.5

1

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2(e) (f)

Figure 3.11: Comparison of AR models of increasing order, showing the poles
on the z-plane (left) together with the corresponding power spectrum (right). An
AR(10) is shown in (a) and (b); an AR(16) in (c) and (d), and in (e) and (f) an
AR(32) model is shown. Figure taken from [7].

Expanding equation 3.6.15 explicitly for possible values of m, results in p
equations that can be arranged in the following matrix formulation:

rt = Rt · Φt
ρ1
ρ2
ρ3
...
ρp

 =


ρ0 ρ−1 ρ−2 · · · ρ1−p

ρ1 ρ0 ρ−1 · · · ρ2−p

ρ2 ρ1 ρ0 · · · ρ3−p
...

...
...

. . .
...

ρp−1 ρp−2 ρp−3 · · · ρ0




φ1

φ2

φ3
...
φp


(3.6.16)

with ρ0 = 1 and ρm = ρ−m taken from the properties of the ACF given in 3.6.4.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 36

3.6.7 Forecasting with an AR model

After �tting a p-order AR model and calculating the model parameters φi with
i = 1, 2, ..., p, we apply equation 3.6.12 to forecast one step-ahead (ŷt+1). For
two-steps ahead prediction, we re-apply equation 3.6.12 for yt+2, using ŷt+1

as a `true-value'. This approach limits the number of predictions to p-ahead
predictions, because the accuracy degrades as we use less of the true values
and more estimates contain an estimate error.

Figure 3.12 illustrates an AR(10) model �t to example data and used to
forecast 10 values ahead. We observe the ability of the AR model to regress
short term trends as well as note the cumulative error of re-using forecasted
values as `true-values'.

0 5 10 15 20 25 30 35 40
Samples

0.10

0.12

0.14

0.16

0.18

0.20

E
x
a
m

p
le

 d
a
ta

Auto-Regression model forecasts 
 AR(p) with p=10

True values
Smoothed
Forecast

Figure 3.12: Fitting of a 10th order Auto-regression model, order AR(p = 10) and
forecasting 10 values ahead of time. We observe that the AR model regresses the last
trend and here we also note the e�ect of re-using forecasted values as `true-values',
i.e. the forecasts steadily increasing.

In terms of cloud provisioning, AR is able to model cyclic patterns and
regress short-to-medium-term trends [38]. More complex AR models can be
obtained by combining AR and MA, creating what is referred to as an ARMA:
Auto-Regressive Moving Average (or ARIMA when di�erencing is applied).
ARIMA models are able to model stochastic process time-series data using a
combination of lower order MA and AR models. These models have several
limitations, one being the pre-assumption that there exists a linear form of the
time-series model. For long-term forecasts, this is not the case [1]. We will

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 37

not investigate ARIMA further, since it is not suited for long-term predictions
which are required for the work in this thesis.

3.7 Markov Chains

In this section, we introduce Markov Chains, a machine learning approach
to �tting and predicting stochastic sequential data. Dublin et. al [17] de�nes
a Markov chain model as one that has a set of states and a set of transition
probabilities associated with those states. The transition probabilities describe
the probability of `moving' from any given state to any possible next state.

3.7.1 First-order Markov chain model

Following PRESS [24], we use a discrete Markov chain de�ned by having k
discrete states (denoted as S = {x1, x2, x3, ..., xk}) obtained as k levels after
digitising data into equally spaced bins. Figure 3.13 illustrates example data
digitised into 10 discrete Markov states.

0 5 10 15 20 25 30
Samples

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

E
x
a
m

p
le

 d
a
ta

Data digitised into Markov states

True values
Digitised values

Figure 3.13: Example data digitised into 10 equally spaced Markov states (repre-
sented by the dashed lines).

Formally a Markov chain is de�ned as follows: Let X be a sequence of

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 38

random variables X1, ..., Xt ∈ S, from the chain rule of probability we get:

P (Xt+1) = P (Xt, Xt−1, ..., X1)

= P (Xt|Xt−1, ..., X1)×
P (Xt−1|Xt−2, ..., X1)× ...P (X1)

(3.7.1)

A property of a �rst-order Markov chain is that each state Xi depends only
on the previous state Xi−1. Thus equation 3.7.1 can be written as:

P (Xt+1) = P (Xt|Xt−1)P (Xt−1|Xt−2)...P (X2|X1)P (X1)

= P (X1)
t∏

i=2

P (Xi|Xi−1)
(3.7.2)

We now de�ne the Markov transition probability denoted as pij:

pij = P (xj|xi)

px1

t∏
i=2

pij = P (x1)
t∏

i=2

P (xj|xi), j = i− 1
(3.7.3)

where px1 is the transition probability from the �rst state.

The one-step ahead transition probabilities form a probability matrix:

P = (pij)k×k =


p11 p12 · · · p1k
p21 p22 · · · p2k
...

...
. . .

...
pk1 pk2 · · · pkk

 (3.7.4)

and P has the property that every row sums to 1.

For a �rst-order Markov model the probability distribution π over all states
for t can be calculated using the discrete form of the Chapman-Kolmogoro�
equations [49]:

πt = πt−1P = πt−2P
2

...

πt = π0P
t

(3.7.5)

where π0 is the initial probability distribution over all the states.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 39

3.7.2 First-order Markov chain parameter estimation

The purpose of this section is to estimate the parameters of the transition
matrix P of a �rst-order discrete Markov chain. A common approach to esti-
mating the values of the initial probability distribution and transition proba-
bilities, is to count the number of transitions from any state i to any other j
(∀i, j S) and divide by the total number of transitions [17].

To estimate the initial probability distribution π0 for each state we count
the number of occurrences of that state in the time-sequence and divide by
the total number of states. This produces a maximum likelihood estimation
of the initial distribution over all states.

Let us look at the series produced after digitising the example data we have
been using thus far. Written out in its corresponding states the series is as
follows:

y = 5, 2, 5, 6, 3, 5, 4, 3, 3, 4, 7, 5, 4, 4, 2, 4, 4, 3, 3, 3, 1, 7, 3, 4, 9, 5, 5, 3, 1, 0

From this we estimate the transition probabilities p(ij) for all states in
S with the initial probability distribution π0, producing a P10×10 transition
matrix. For example: the probability of transitioning from state 4 to state 3
is calculated as:

p43 =
P (xj = 3|xi = 4)

P (xi = 4)

=
2
29
7
29

=
2

7

(3.7.6)

The initial probability of state 4, for example, is calculated as:

π0,4 = P (xi = 4) =
7

29
(3.7.7)

After the �tting of the Markov chain model is done, a new value as forecast
into the future can be calculated.

3.7.3 Forecasting using a �rst-order Markov model

A �rst-order Markov chain produces a probability distribution for the possible
next state when forecasting rather than a single value. A popular approach
in forecasting the next state is to select the state with the highest transition
probability and output the value associated with this state as a one-ahead
forecast [24].

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 40

Given that the current state xc is known at time t, one can construct a
probability distribution πt with 1 at position c, thus [0, 0, ..., 1, ..., 0, 0]. Apply-
ing equation 3.7.5 using the newly constructed πt and the transition matrix P
we get the following forecasting formulas:

x̂t+1 = max(πtP)

x̂t+m = max(πtP
m)

(3.7.8)

where x̂t+1 is the state predicted at time t + 1 and x̂t+m the forecast for m
values into the future.

Figure 3.14 illustrates a �rst-order Markov model with 10 states �tted on
example data and used to predict 10 values into the future. As mentioned
above, a �rst-order Markov chain model's next state only depends on the
previous state. This a�ects the accuracy of the long-term predictions as seen
in the �gure, causing the model to `state-lock' in one state.

0 5 10 15 20 25 30 35 40
0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18
Forecast using a 1st-order Markov chain

True values
Smoothed
Forecast

Samples

E
xa

m
p
le

 d
a
ta

Figure 3.14: Forecasting 10 values using a �rst-order Markov model with 10-states.
It is important to note that after the initial forecasts, the predictions tend to move
into a straight line, indicating the limitation of a �rst-order Markov chain to not be
able to perform long-term forecasts.

3.7.4 Second-order Markov chain model

Higher order Markov chains (with a second-order being the simplest) model
the transitions of consecutive states rather than single transitions. For the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 41

purpose of this thesis we will only investigate the use of second-order Markov
chains for forecasting on cloud resources. We chose to do so because the size
and computational cost of �tting P increases exponentially with the number
of transition probabilities to estimate (e.g. from 102 to 103 for 10 states using
the example above).

Estimating the transitions probability matrix P for a second-order Markov
chain from a time series, requires the estimation of a sequence of transitions
matrices Pi. Each probability depends on the state of two lags back [40].
Each transition sequence can be written as transitions across three state. For
example, the transition probability p431 describes the probability of moving
from state 4 to 3 and then from state 3 to 1.

In this thesis, we consecutively apply the method for estimating a �rst-order
Markov chain transition matrix as discussed in Section 3.7.2. The forecasting
procedure is similar to the �rst-order model.

3.8 Neural Networks

The machine learning community have developed a statistical learning ap-
proach that is inspired by the theory of how cognitive functionality operates
in the brain. Arti�cial Neural Networks (NNs for short) perform computations
using a vast number of networked computational components, termed neurons.
These neurons are stimulated by an input. Through applying the necessary
learning, NN can compute complex functions or recognise intricate patterns
within data.

NNs are considered as classic machine learning models and can be consid-
ered a special case of a Bayes Network, which is part of the larger research
�eld of Probabilistic Graphical Models (PGMs).

One of the most basic neurons was �rst proposed by Frank Rosenblatt
in 1957 [55] and is called a perceptron, after its biological counterpart. Fig-
ure 3.15 illustrates a simple perceptron that takes binary values as input xi
and produces a single binary output y according to the following [48]:

y =

{
0 if

∑
iwixi ≤ threshold

1 if
∑

iwixi > threshold
(3.8.1)

where wi are the weights that regulate the importance of each input and are
typically real numbered values.

The threshold value, also referred to as the bias (typically labelled b),
speci�es where the neuron's output activates. Using vector algebra notation,∑

iwixi can be written as a dot product of two vectors, x · w, with equa-
tion 3.8.1 written as:

y =

{
0 if x ·w + b ≤ 0
1 if x ·w + b > 0

(3.8.2)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 42

x1

x2

x3

∑
y

w1

w2

w3

Figure 3.15: An example of a perceptron neuron with three inputs, weighted con-
nections and a binary value output.

Formally, for perceptron: x·w+b > 0 is called the activation condition and
these conditions constrain a unit step function, as illustrated in Figure 3.16.

3 2 1 0 1 2 3
z

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f(
z)

Step function

Figure 3.16: The unit step function used as activation function for a perceptron
neuron.

This step function is what is referred to as the activation function, denoted
as σ(z), where:

z = x ·w + b

y = σ(x ·w + b)
(3.8.3)

The step function is one of various activation functions used in NNs. In
Section 3.8.2 we discuss the sigmoid function � a popular activation function
used in neural networks.

3.8.1 Neural Network structure

NNs consist of layers of neurons with each layer typically fully connected to
the next through weighted connections. Figure 3.17 illustrates an example
network. The leftmost layer is called the input layer, the middle layers are
termed hidden layers (because the state of these neurons are `hidden') and the
rightmost layer is called the output layer. A neural network may have multiple

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 43

hidden layers or none at all.

Figure 3.17: Illustration of a feed-forward neural network consisting of four layers
� one input, one output and two hidden layers. (This is also an example of a
Multi-Layer Perceptron (MLP).)

The NN illustrated in Figure 3.17 is also an example of a Feed-forward
Neural Network (FFNN) characterised by having distinct and independent
layers (input, output and hidden layers). Each neuron in a layer only has di-
rected connections to neurons in the next layer (closer to the output layer) [37].
FFNNs are good at learning functions that map inputs to a desired output.
We will discuss the speci�cs of what `learning' refers to in Section 3.8.3.

3.8.2 Sigmoid Neuron

We have already described the step function as an activation function used in
perceptrons. We will now describe another popular activation function used
in neural networks, namely the Sigmoid or logistic function. This activation
function is given by:

σ(z) =
1

1 + e−z
(3.8.4)

By varying z, we get a plot of the sigmoid function that can been seen in
Figure 3.18. For large positive values of z the sigmoid function outputs a
value close to one and for large negative values, a value close to zero. This is
similar behaviour to a perceptron's step function as discussed above.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 44

3 2 1 0 1 2 3
z

0.0

0.2

0.4

0.6

0.8

1.0

f(
z)

Sigmoid function

Figure 3.18: The sigmoid function. The output of a sigmoid neuron is a real
number between zero and one.

When comparing the step function and the sigmoid function, we note that
the sigmoid function has smooth transitions (i.e. no discontinuities) across
all possible input values of z. This property is crucial for learning a neural
network.

3.8.3 Learning Neural Networks

A neuron, the simplest component of a neural network, takes input values
(denoted as xi) and multiplies each with an associated weight (wi). Using the
activation function σ(z) the neuron maps the weighted sum of the input values
to an output value yi. By combining multiple neurons into a network, each
computing a single value, NNs are able to learn complex functions that map
input values to output values.

Assuming we have a FFNN that has an input layer, an output layer and
one hidden layer with all weights and biases initialised, we de�ne a training set
T as one that contains training examples, i.e. inputs-to-target pairs (xj, dj)
with each input vector xj having a corresponding desired output value dj.

According to Rumelhart, Hinton and Williams [57], the aim of learning
is to �nd weights and biases by making small changes to each neuron in the
network to ensure that for each input vector xj the output yj is the equal or
close to the desired value dj. Figure 3.19 illustrates this schematically. (Note
that it is common practice to model the bias term b as a weight and thus it is
omitted in Figure 3.19).

The sigmoid function's smooth transitions makes it a prime activation func-
tion for learning. Because of its smoothness any small change ∆wj in the
weights (and ∆b in the biases) will cause a small change ∆ŷ in the output.

This can be approximated to:

∆y ≈
∑
i

∂y

∂wi

∆wi +
∂y

∂b
∆b (3.8.5)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 45

w + ∆w
causes small changes to the output

y + ∆y

Figure 3.19: A simple illustration of how a Neural Network learns. Small changes
to the weights and biases causes small changes to the output. The objective of
learning is to bring the output of the Neural Network closer to the desired output
for each training example.

where the sum is taken over all neurons i and thus all weights wi. In short,
∆y is a linear function of the changes ∆w and ∆b in the weights and biases.

To move forward, we de�ne an error function (also referred to as an objec-
tive function) that will aid us in �nding weights and biases so that the output
of the network y approximates the desired output dj for each training example
xj in T. The Quadratic cost function is a popular error function to use when
learning NNs and it is de�ned as follows:

E =
1

2

∑
j

(yj − dj)2 (3.8.6)

where E denotes the error function, equal to the sum of the squared di�erences
calculated over all training examples in T.

The objective is to minimise E and bring the network output yj closer
to the desired output dj. Formally, the quadratic cost function is a smooth
function with only one global minima. The objective is to �nd a set of weights
that will minimise it to this global minima. Gradient decent is the approach
used to minimise this error function and it is given by:

∆w = −η∇E (3.8.7)

where η is a positive value known as the learning rate which dictates the speed
of learning. Smaller values of η cause the NN to learn slowly and larger values
more quickly. Larger learning rates also increase the chance of the network
missing (or overshooting) the desired value.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 46

3.8.3.1 Backward-propagation

Backward-propagation is a major improvement in learning NNs that was �rst
proposed in 1986 by David Rumelhart, Geo�rey Hinton, and RonaldWilliams [57]
in their paper entitled: �Learning representations by back-propagating errors.�
Instead of taking partial derivatives of the output with respect to the weights
(as done in equation 3.8.5). Rumelhart et al. suggested computing the partial
derivatives of the Error-function ∂E

∂w
with respect to the weights. For each

weight wi, we compute:

∂E

∂wi

=
1

2

∑
j

∂yj
∂wi

dE

dyj

=
∑
j

xi(yj − dj)
(3.8.8)

where j is a training example in T. Using this equation Rumelhart et al. de-
�ned the Delta rule, used to calculate the change in each weight δwi as follows:

∆wi = η
∂E

∂wi

= η
∑
j

xi(yj − dj)
(3.8.9)

where η again is the learning rate.

The Backward-propagation algorithm steps for a single training pair can
be summarised as follows:

� Input: Each neuron in the input layer calculates its output using the
inputs xi and the sigmoid activation function.

� Feed-forward: All hidden layers and the output layer compute their
associated z = x ·w + b and activations σ(z).

� Output error: Compute the output error E = 1
2

∑
j(yj − dj)2 for each

j output neuron in the output layer.

� Back-propagate the error: Starting from the output layer working
back, compute ∂E

∂yj
= (yj − dj).

� Update weights: Calculate the weight updates ∆wi using equation 3.8.9.

In summary, the Backward-propagation algorithm is a fast learning al-
gorithm for learning neural networks and gives a detailed insight into how
changing the weights changes the overall network [48].

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 47

3.8.4 Forecasting using Neural Networks

The inputs of NNs are typically values that relate to features of the data being
modelled and predicted. When forecasting on time-series data, observations
within a pre-de�ned look-back window (with a length of m observations) are
input into the NN. A functional relationship between these input values and
desired output values are learnt through training. This forecasting approach
is similar to the approach presented in [51].

Figure 3.20 illustrates how forecasting is applied using a FFNN on example
data.

Each time-series observation yt (with 0 ≤ t ≤ m) is fed into corresponding
neurons in the input-layer, each calculating their activation and feeding this
information forward throughout the network. The result produced by the
output layer (typically consisting of only one neuron) is the one-step ahead
forecast of the NN.

Similar to how multiple values are forecasted, the one-step ahead forecast
can be used as a `true value' when moving the look-back window one step in
time.

3.8.5 Recurrent neural networks

In the previous section, we discussed a Feed-Forward Neural Network (FFNN),
where information is input and processed serially throughout the network.
FFNNs are limited and struggle to perform forecasts on time-series data that
contain ordering or state-dependence [20]. As discussed in Section 1.2.4, cloud
computing is presented with di�erent types of workloads. Trending and sea-
sonal/cyclic workloads can be viewed as state-dependent processes and thus
we investigate a type of NN able to model these.

The purpose of this section is to brie�y introduce Recurrent Neural Net-
works, denoted RNNs. Kriesel [37] de�nes recurrence in neural networks as
�the process of a neuron in�uencing itself through any connection� and states
that NNs typically do not have speci�ed input and output layers. Depend-
ing on the type of RNN, a network may have the ability to compute complex
sequential patterns or as stated by Elman [20] �be able to remember state
through recurrent connections.�

Figure 3.21 illustrates an example of a RNN with connections feeding in-
formation back into the network. At every time step a RNN can be viewed
as a FFNN. Thus all the properties of FFNNs holds including the Backward-
propagation algorithm.

3.8.6 Elman recurrent neural networks

Following Nae, Iosup and Prodan [45], we investigate the use of a type of RNN
referred to as an Elman network for forecasting on cloud resources. Je�rey

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 48

Hidden
Layer

Input
Layer

Forecasting using a Feed-Forward Neural Network

E
xa

m
p
le

 d
at

a

Figure 3.20: An example of how a Feed-Forward Neural Network is used to predict
on a time-series. Each observation in the training window can be viewed as a `feature'
of the time-series. The network aims to �nd a functional mapping of these past values
to the future value being predicted.

L. Elman �rst presented his work in 1990, in a paper entitled �Finding structure
in Time� [20]. He based his work on a Jordan network [35], keeping the feed-
forward structure of FFNNs but augmenting the network with an additional
recurrent layer.

This layer contains neurons termed context neurons and is used to remem-
ber the `context' of the task being computed by storing the hidden state of
each hidden neuron at every time step. The context neurons are connected
with trainable weights to the hidden layer and can be trained using backward-
propagation as described previously.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 49

Recurrent connections

Figure 3.21: An example of a Recurrent Neural Network with recurrent connections
in the rightmost layer and connections `feeding' information back to the layer on the
left, which could also be viewed as the `input' layer.

Elman is able to show that this type of neural network structure performs
better than traditional feed-forward neural networks, especially predicting on
sequential data and data that is time delayed.

Figure 3.22 illustrates a typical Elman-RNN, its context neurons and the
trainable recurrent connections from the hidden layer output to the input of
that layer.

3.9 Summary

This chapter described the background and theory required for the develop-
ment and implementation of the forecasting methods used in this thesis. The
chapter started with simpler models, such as Moving Average (MA) which
uses a linear combination of equally weighted past observations to predict a
smoothed value as an estimate.

Next, the development of three Exponential Smoothing approaches were
discussed and the formulation of the equations used in Holt-Winters (HW)
method were covered. The HW method employs three smoothing equations
to forecast on data that contain trends and seasonal components. The Auto-
regression (AR) model and the estimation of its model parameters using the
Autocorrelation Function (ACF) were discussed and similarities to Linear Pre-
diction Analysis highlighted.

A machine learning method, the Markov Chain model, was discussed in the
context of time-series prediction. The estimation of the �rst- and second-order
Markov chains' transition matrices and processes used to perform forecasts

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. METHODS FOR FORECASTING 50

Figure 3.22: An example of an Elman-Recurrent Neural Network (RNN) with
context neurons capturing and `remembering' the state of the output. These context
neurons allow the network to remember the last state. Elman RNNs are able to
predict on state-dependant workloads.

were described. It was decided to not investigate higher order Markov chain
models because of the size of the transition matrix increasing exponentially.

Finally, the necessary theory and intuition for understanding Neural Net-
works (NNs) were discussed. This includes the basics on neurons, weights,
the sigmoid activation function and the Backward-propagation algorithm used
for learning NNs. Two types of Neural Networks (NNs) are important for the
work in this thesis. They are Feed-Forward Neural Networks (FFNN) and
Elman-Recurrent Neural Networks (RNNs).

The next chapter describes the details of implementing these forecasts
methods in Python. Discusses the reasoning behind design decisions, out-
lines a research pipeline and highlights issues encountered and describes how
these were handled.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 4

Implementation of Forecasting

Methods

In previous chapters, we identi�ed prominent forecasting methods from liter-
ature (Chapter 2) and covered the theoretical development and formulation
required to forecast on time series data (Chapter 3).

In this chapter we describe the implementation of these methods in Python 2.7,
outline the Resource Forecasting Pipeline we built and highlight the imple-
mentation issues encountered. We used the literature as reference as far as
possible and followed the descriptions of PRESS and Agile as presented in
their respective papers. The design and implementation decisions made with
implementing each forecasting method are discussed where relevant.

4.1 Holt-Winters Implementation

In 2013 André Queiroz [52] implemented all three types of Exponential Smooth-
ing algorithms in Python 2.7, namely linear, additive and multiplicative. We
based our Holt-Winters implementation on his work and added functional-
ity for re�tting a model. Improvements were made to the speed of re-�tting
by choosing the previous time step's parameters as starting condition for the
BFGS optimisation.

Issues: The Holt-Winters method requires a parameter L, the length of a
complete season, in order to perform seasonal estimations. But this parameter
is unknown in the resource usage data used. It was decided to use the dominant
period (inverse of the dominant frequency) as the length of the season, assum-
ing that this will have the largest contribution to the seasonal estimate. The
dominant frequency was extracted by taking the FFT of the total trace using
a function provided by the Numpy package. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm from SciPy was used as numerical solver.

51

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 52

4.2 Auto-regression Implementation

According to Kupferman et al. [38], the order of an Auto-regression model,
denoted by AR(p), determines how far the model extends into the future and
how accurate the model can perform long-term predictions.

Three order selection techniques were discussed in Section 3.6.5 and it was
decided to investigate the digital �lter design approach. Calculating the power
spectrum density (PSD) of our data reveals that the majority of data traces
exhibit a spectrum illustrated in Figure 4.1.

0.0 0.2 0.4 0.6 0.8 1.0

Frequency

0.00

0.05

0.10

0.15

0.20

A
m

p
lit

u
d
e

Power spectral density plot of a specific data trace

Figure 4.1: The power density spectrum of a CPU usage data trace.

Issues: Performing order selection per data trace would be costly and time
consuming. It was decided to rather �t three di�erent AR models, each with
a higher order to all data used in evaluation.

Figure 4.2 shows the z-plane pole plots and PSD plots of the three AR
models used in this thesis. These AR models are of order 8, 16 and 30. We
observe that the highest order model, AR(30)'s envelope matches closely with
the data's PSD.

Statsmodels [50], a Python package that provides statistical functional-
ity for working with di�erent data types (including time-series data) was
used when �tting our AR model. The auto-correlation function method from
Statsmodels produced the ACF coe�cients. Using a linear solver from Numpy
we calculated the model's auto-correlation coe�cients needed for �tting a
model.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 53

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

(a) Z-plane of AR(8).

0.0 0.2 0.4 0.6 0.8 1.0

Frequency

0.00

0.05

0.10

0.15

0.20

A
m

p
lit

u
d
e

Original

AR(8)

(b) PSD of AR(8).

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

(c) Z-plane of AR(16).

0.0 0.2 0.4 0.6 0.8 1.0

Frequency

0.00

0.05

0.10

0.15

0.20

0.25

A
m

p
lit

u
d
e

Original

AR(16)

(d) PSD of AR(16).

1.0 0.5 0.5 1.0

1.0

0.5

0.5

1.0

(e) Z-plane of AR(30).

0.0 0.2 0.4 0.6 0.8 1.0

Frequency

0.00

0.05

0.10

0.15

0.20

0.25

A
m

p
lit

u
d
e

Original

AR(30)

(f) PSD of AR(30).

Figure 4.2: Comparison of the power spectrum density (PSD) of our data and
Auto-regressive models of increasing order. Using this we can perform order selection
based on which AR model's PSD �t best to the data's PSD.

4.3 Markov Chain Implementation

We followed PRESS's approach for our Markov chain models using 40 states
and digitising the data into equal-sized bins. We implemented a �rst-order
and a second-order Markov model. Because of the dimension of the transition
matrix P increases exponentially with the order p, it was decided not to con-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 54

sider higher order chains than second order. For constructing the transition
matrix P we used the frequency of state transitions (also referred to as the Fre-
quentive approach), because it is unclear which method PRESS used. Another
approach for constructing a transition matrix is using a Bayesian method, also
referred to as Laplace estimates [14]), but it was found that the Frequentive
approach better captures the state-transitions of our data.

Issues: It was found that data with small variations causes the Markov
Chain to `state lock'. We tried di�erent methods for initialising the transition
matrix P, but this issue was still exhibited in the minority of data traces used.

4.4 PRESS Implementation

As described in their paper, PRESS employs dynamic time warping in their
signature driven model when the average-pattern does not match the window.
The signal processing tool `warps' one signal onto another so that their lengths
agree. For our implementation we used DTW 1.0, a python module created
by Pierre Rouanet [56] that performs dynamic time warping using the absolute
distance between signals.

Issues: We had di�culty identifying every detail of PRESS's design, but
implemented our PRESS model as closely to what is described in the author
of PRESS's paper. The following issues were found:

1. As mentioned in Section 4.3, our Markov chain model uses the frequency
of state transitions to construct the transition matrix P, because it is
unclear which method PRESS uses.

2. When evaluating our method, we used Google's 29 day dataset compared
to the 7 hour dataset used by PRESS, which has more noise and longer
trace lengths. Thus we used a mean-ratio constraint of 0.1 instead of
0.05 for similar signature patterns.

3. We performed medium-to-long term forecasts compared to one-ahead
forecasts performed by PRESS.

4. The speci�c order of the AR model used by PRESS as a comparative
forecasting method is unknown.

4.5 Agile Implementation

Using Agile's paper as reference, we implemented our own version of Agile as
close to their description as possible. We also set our wavelet transform scales
to 5 and corresponding forecast window lengths to [1, 2, 4, 8, 16].

Issues: The speci�c wavelet functions employed in Agile's wavelet trans-
forms are unknown. We therefore decided to use the wavelet functions provided

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 55

by the PyWavelet [64] python library. Also, identical to PRESS, the details of
the Auto-regression model used to compare Agile's performance is unclear.

4.6 Neural Network Implementation

ANeural Network's accuracy depends greatly on the choice of hyper-parameters
when training on data. Grid search is a common approach used to �nd suit-
able values for these parameters. Bergstra and Bengio [6] suggests rather using
random search to �nd `good' parameters, as it �nds good hyper-parameters
faster and does not require a grid to be set up beforehand. We follow their
suggestion and use the �rst 1000 samples of each machine to search for hyper-
parameters. The best Root-Mean-Squared-Error (RMSE) on a validation set
(10% of the 1000 samples) is used to con�rm that these hyper-parameters are
a good set. This approach �nds a `good' neural network for each machine.

These networks are then trained on the rest of the Training window (2000
samples from the corresponding machine's trace). After each forecasting step
the network is updated with the new data.

The python library, PyBrain [58], was used to construct, train and activate
the FFNNs and RNNs in this thesis. For constructing FFNNs, the library's
buildNetwork() function was used. The Elman RNNs where constructed us-
ing the NN components and the weighted connections provided by the library.

Issues: It was found that our RNNs presented transient behaviours when
re�tting and forecasting. It was investigated but the root cause could not be
determined and thus it was decided to use the last forecasted value from the
previous prediction step as the �rst forecasted value of the next step. Figure 4.3
illustrates an example plot showing the transient e�ects and the work-around.

4.7 Resource Forecasting Pipeline

On the basis of the statement made by Lorido-Botrán et al. [42], the motivation
of this thesis is to perform a formal investigation in comparing prominent
forecasting methods for provisioning and auto-scaling of cloud resources, a
Resource Forecasting Pipeline (RFP) was developed and is discussed here.

The motivations for developing the RFP are:

1. Standardise the input of data from pre-processed datasets.

2. Provide an environment for performing repeatable experiments and eval-
uations.

3. Facilitate the development of forecasting methods through standardised
class prototypes.

4. Provide a way to develop and tweak performance and evaluation metrics.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 56

5660 5680 5700 5720 5740 5760
Samples

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
xa

m
p
le

 d
a
ta

Plot showing RNN transient behaviour

Replace value with last value from
previous forecasting window

Figure 4.3: Inspecting the RNN transient behaviour when forecasting. The root
cause for this behaviour could not be determined, but it was decided to use a work-
around: replace the anomaly value with the last value of the previous forecasting
window.

The pipeline contains three distinct stages with interfaces between these to
facilitate modular design. The three stages are discussed here and outlined in
Figure 4.4 on page 58:

� Data Input: This stage is used to pre-process cloud resource data
which is then processed by the next stages. In this thesis, two evalu-
ation datasets were used. The Data Input stage processed the data into
individual �les for each data source and data type (e.g. CPU or Memory).
Each �le then contains the resource usage of a single source spanning the
entire length of the trace.

� Modelling and Forecast: This stage contains the implementations of
the forecasting methods investigated. Separate python classes were used,
with each class following the signature as illustrated in Figure 4.4. The
signature has the following methods:

� An init() constructor, which takes model speci�c con�gurations
as arguments.

� A fit(y) method that takes the initial training data as input
and estimates the model parameters using the relevant method de-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 57

scribed in Chapter 3.

� An update(y) method used to re�t the model on new data and
update the model parameters accordingly.

� A predict(n) method that produces n forecasted values using the
�tted model and relevant forecasting equation.

� Evaluation: Finally, this stage calculates the evaluation metrics, ag-
gregates the results and produces whisker-box-plots for each metric and
each experiment performed.

4.8 Summary

This chapter covers the implementation details of the forecasting methods
investigated in this thesis, the issues encountered and how these were handled.

Prior work done by André Queiroz [52] was used as basis for our Holt-
Winters implementation. The dominant period of the data was used as sub-
stitute of the L parameter required in modelling seasonal data. This was done
under the assumption that this period will have the largest contribution to the
seasonality.

PRESS's description on implementing a Markov chain model was followed
and it was decided to use a Frequentive approach to estimating the transi-
tion matrix in our implementation. Both PRESS and Agile were implemented
as closely as possible, but there still exists speci�cs that are unknown. Py-
Brain [58], a Python library for building and using Neural Networks (NN),
was used for the FFNNs used in this thesis. Functionality for building custom
NNs, provided by the library, was used to construct the Elman-RNNs.

Finally, the development of a Resource Forecasting Pipeline (RFP) was dis-
cussed. The RFP facilitates data pre-processing, forecasting method modelling
and ensures repeatable experiments with custom de�ned evaluation metrics.
An overview of the pipeline was shown in Figure 4.4.

The formal investigation and comparison of the forecasting methods are
performed in the next chapter.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. IMPLEMENTATION OF FORECASTING METHODS 58

F
ig
u
r
e
4
.4
:
T
h
e
R
es
ou
rc
e
F
or
ec
as
ti
n
g
P
ip
el
in
e:

th
e
th
re
e
st
ag
es

u
se
d
to

p
re
-p
ro
ce
ss
,
m
o
d
el

an
d
fo
re
ca
st

an
d
�
n
al
ly

ev
al
u
at
e
th
e

fo
re
ca
st
in
g
m
o
d
el
s
d
is
cu
ss
ed

an
d
im

p
le
m
en
te
d
in

th
is
w
or
k
.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 5

Experimental Investigation

In previous chapters, prominent forecasting methods were identi�ed from lit-
erature, the theory and formulation of forecasting equations described and the
detail of implementation of these methods discussed. The forecasting methods
evaluated in this chapter are listed from least complex to most complex as
following:

1. MA(1): A naive forecasting method that predicts the current observation
as the future forecast. This method serves as the baseline method.

2. MA(30): A window-average forecasting method that predicts a future
value by taking an average of past observations (30 samples in this case).

3. Holt-Winters: Proposed in [68], a forecasting method that models the
level, trend and periodicity of past values.

4. AR(8), AR(16) and AR(30): Three Auto-regressive models of increasing
order, forecasting a value using a weighted sum of historical values. These
weights are estimated using the auto-correlation function and using Yule-
Walker equations.

5. Two Markov chains (�rst and second order): Probabilistic models that
estimate the likelihood of transitioning from one level to another.

6. PRESS: An advance forecasting method that uses signature patterns and
Markov chains to forecast a future value.

7. Agile: Another advance forecasting method that uses wavelet transforms
to deconstruct historical workloads and forecasts future values using
Markov chains.

8. Feed-forward Neural Network (FFNN): A method that learns a func-
tional mapping from historical values to future values.

59

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 60

9. Recurrent Neural Network (RNN): A Elman-type NN that learns state-
based functional mappings from sequential observations to future fore-
casts.

The purpose of this experimental investigation is to evaluate the forecast-
ing methods using �ve di�erent performance measures collected and adapted
from literature. These evaluation metrics aim to measure generic prediction
accuracy and forecasting performance that speci�cally relate to provisioning
of cloud resources. We use two evaluation datasets, namely the 2011 Google
cluster dataset [67] and Wikipedia's Pageview dataset [66]. Each dataset con-
tains the resource requirements of a real-life cloud environment. The usages
recorded include CPU utilisation, Memory usage, number of Page requests and
Network load.

Our �rst investigation aims to reproduce the results obtained by PRESS [24]
and Agile [47] in their respective papers. This investigation also aims to iden-
tify the order of the Auto-regression model used by both PRESS and Agile.

Next, we investigate di�erent performance metrics used to compare fore-
casting methods. The �rst metric used is Root Mean Squared Error (RMSE)
which measures a method's forecasting accuracy, by calculating the (square
root) distance between the predicted values and the true values. The second
metric used in this investigation is the Correct Estimation Rate (CER) which
measures the ability of a method to forecast a value within an acceptable dis-
tance of the true value. Estimation Score (ES) measures how often a method
over- or under-estimates when performing a forecast. The last two metrics
used are Overload Likelihood Ratio (OLR) and Overloaded State Likelihood
Ratio (OSLR). These measure a method's likelihood of correctly predicting
an overloaded observation as well as the likelihood of correctly predicting an
overloaded state.

Furthermore, we combine four di�erent forecasting methods using three
ensemble model approaches. Each forecasting method addresses a speci�c
characteristic of cloud workloads. The �rst approach, calculates the average
forecast of the four methods. The second approach calculates a weighted aver-
age of the forecasts produced by the four methods. Finally, we investigate an
ensemble model that combines forecasts using a Feed-Forward Neural Network
(FFNN).

In our concluding investigation we investigate the e�ects on prediction
performance when using a shorter forecasting window length.

5.1 Experimental Setup

The purpose of this section is to cover the detail on the evaluation parame-
ters and datasets used across all experiments performed in the chapter. Each
experiment reported follows the structure of Motivation, Setup, Results and

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 61

Table 5.1: The Evaluation Parameters used across all experiments for �tting a
forecasting model, predict using that model and post-process the forecasts.

Parameter Value

Training window 3000 samples
Forecasting window 30 samples
Negative replacement value 5th percentile

Interpretation. The speci�cs of the evaluation metric used in the experiment,
is given in the Setup section.

All experiments are executed using 5-fold cross-validation similar to the
approach used by Agile. A 100 data sources (i.e. machines in the Google
cluster dataset and languages in the Wikipedia Pageview dataset) are selected
at random from the corresponding datasets. Each data-trace is split into
training and testing parts, and the training data used to estimate the model.
Forecasts are produced and tested against the testing data. This operation is
performed �ve times and produces 500 distinct data traces.

The evaluation results are post-processed to reject outliers that fall outside
two standard deviations of the median value. These �ltered results are plot
using whisker-box-plots with the top and bottom of the box representing the
25th and 75th percentile values. The whisker ends represent the 90th and
10th percentile values respectively. The centre line represents the median and
the mean value is indicated with a red square. In each plot we highlight the
best performing method using a green solid-line and worst performing method
using red dashed ellipse.

5.1.1 Evaluation parameters

To ensure a fair comparison between forecasting methods we use the same
modelling and evaluation parameters across all experiments. Table 5.1 sum-
marises these evaluation parameters.

Training window: The training window speci�es the number of samples
(or past observations) used when modelling a forecasting method. Similar
to Agile, we use a training window of length equal to 3000 samples (which
is about a third of a data trace for both the Google cluster and Wikipedia
datasets). We believe that this window length is su�cient for a method to
capture the behaviour and characteristics of the workload. Initial investiga-
tion has shown that this training window length contain su�cient complete
seasons for estimating the Exponential Smoothing model parameters. It also
contains a su�cient number of state transitions for estimating the Markov
Chain transition matrices.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 62

Forecasting window: Similar to Agile, the forecasting window (i.e. the
number of values to forecast) is set to 30 samples which is 1% of the training
window size. This produces medium-to-long term forecasts and in terms of
cloud provision leads to resources being made available before overload occurs.

Negative replacement value: Forecasting methods may predict negative
values when resource usages suddenly drops and this change regressed, thus we
follow PRESS's suggestion to replace negative values with the 5th percentile
value of the total trace.

5.1.2 Datasets

The 2011 Google cluster dataset

The 2011 Google cluster usage trace dataset [67] contains the resource re-
quirements corresponding to tasks scheduled onto each machine in Google's
production cluster cell (containing over 12 000 machines). Data was recorded
every 5 minutes (300 seconds) over a period of 29 days. According to Liu
and Cho [41] the dataset has been sanitised to obfuscate con�dential infor-
mation, but still gives useful and accurate information on cluster usage and
load. This is important for the evaluations performed in this thesis. Refer to
Appendix B.1 for the full listing of the resources data captured.

For evaluation purposes we pre-process the dataset by aggregating the re-
source usages for all tasks running on a given machine within every 5 minute
period. This gives the total usage (speci�cally CPU and Memory usages) for
that machine and produces 8352 data points per machine over the 29 days.

The Wikipedia Pageview dataset

The second evaluation dataset was made available by Wikimedia Statistics [66]
and published at [65]. This dataset contains the raw page-view count and net-
work tra�c for every Wikimedia project. These projects include: Wikipedia,
Wikinews, Wiktionary, Wikiquotes, etc. Records were captured hourly and
cover the time period from 2007 up to present day.

We make the following assumptions regarding the use of this dataset:

� Data in the Wikipedia pageview dataset is captured hourly, compared
to every 5 minutes in the Google cluster dataset. For the purpose of this
thesis, the dataset will be used a comparative dataset in which the cloud
application is known (or at least the type of application is known). We
assume that using the same evaluation parameters will ensure compara-
ble results between datasets.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 63

� The cloud application which produced the Wikipedia dataset, is a wiki-
structured website (or series of websites) with static content. Each visit
amounts to a measurable load, both on the VM resources hosting the
application and the network infrastructure resources. Di�erent to the
Google cluster dataset we do not have the load presented to individual
VMs and thus assume that each language speci�c Wikipedia, can be
regarded as a datacenter. The total page-views thus corresponds to the
load presented to the cloud resources within that datacenter.

For the purpose of this thesis, we limit the evaluation dataset to records
from Wikipedia pages per language (approximately 1500 languages) for the
year of 2014. The two statistics captured in these records are the number of
page views (non-unique views) to each of the Wikipedia's per language and the
total network data transferred corresponding to these views. This produces a
total of 8714 observations per language, for 2014.

5.1.3 Statistical signi�cance test

When comparing two test results, the Student's T-test is used in statistical
signi�cance testing, to determine if the means of the two test results di�ers
in a statistically signi�cant way. The purpose of this testing is to ensure that
our results are not in�uenced by the test sample size, but that we may have
con�dence that the results re�ect the true population. An assumption for
using the Student's T-test is that the data comes from a t-distribution (with
2(N − 1) degrees of freedom). In the case for 5-fold cross-validation where
each data source (machine or language) is independent and random sampling
is performed, this assumption holds.

Let S1 and S2 be two result sets to be compared, produced by two di�erent
forecasting methods. Let µ1 and µ2 be the means and σ1 and σ2 the standard
deviation of S1 and S2 respectively. The results show that on average fore-
casting method producing S1 performs better than the method producing S2.
We would like to test this by setting the Null hypothesis H0 and Alternative
hypothesis Ha as following:

H0 : µ1 ≤ µ2

Ha : µ1 > µ2

(5.1.1)

and to reject the null hypothesis with a 95% con�dence, we require a p-value
less than statistical signi�cance level of α = 0.05.

We calculate the p-value by �rst calculating the t-score using both result
sets and the following equation:

tscore =
µ1 − µ2

Sp

√
2
N

(5.1.2)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 64

where N is the number of samples in a results set and Sp is the scaling param-
eter calculated using:

Sp =

√
σ2
1(N1 − 1) + σ2

2(N2 − 1)

N1 +N2 − 2
(5.1.3)

where N1 = N2 = N .
Using the tscore, we calculate the probability of P (T ≤ −tscore), where T

follows a Student's t-distribution. If this one-sided p-value is less than 0.05 we
can reject the null hypothesis with 95% con�dence.

Throughout the experiments presented in this chapter we will use the sta-
tistical signi�cance test when comparing the best and worst performing fore-
casting method as well as in situations where results may look similar. Please
refer to Appendix C for additional tables containing all statistical signi�cance
results relevant to this chapter.

5.2 Investigate PRESS And Agile's Results

5.2.1 Motivation

In their the respective papers, the authors of PRESS [24] and Agile [47], report
that their method is able to outperform AR as comparative forecasting method.
As stated in Chapter 4, the speci�c order of the AR model used by both PRESS
and Agile is unknown.

The purpose of this evaluation is to investigate which one of the three
AR models (namely 8th, 16th or 30th order model) best represent the model
used by PRESS and Agile respectively. We conduct two experiments in this
evaluation. The �rst is performed using the 7 hour Google cluster dataset [28]
and using the two evaluation metrics (over- and underestimation rates) used
by PRESS. The second is performed using the 29 day Google cluster dataset
and using the two evaluation metrics namely, true positive rate (TPR) and
false positive rate (FPR) proposed by Agile.

5.2.2 Setup

PRESS: It was found that when following PRESS's experimental setup,
some issues were revealed. We highlight these here and describe how they
were handled:

1. A training window of size 512 samples was used by PRESS. The 7 hour
Google cluster dataset follows the same structure as the 29 day dataset,
speci�cally that samples were captured every 5 minutes, this produces
84 samples over the 7 hour period. It is unclear how PRESS uses a large
training window of 512 samples. Furthermore, the authors of PRESS

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 65

also used a shorter training window of size 32 sample for their compar-
ative methods. We decided to use this as training window size in our
experiment.

2. PRESS only used three data traces (out of thousands) for their results on
the Google cluster dataset. We believe this to be insu�cient representing
statistical signi�cant results. It was decided to instead use 100 data
traces in this experiment.

In their evaluation, the authors of PRESS performed one-ahead prediction
and we do the same in this experiment.

Agile: For the experiment of comparing Agile to our three AR models we
follow the experimental setup and evaluation parameters as discussed in Sec-
tion 5.1. It is important to note that the authors of Agile also compared their
method to PRESS. In this experiment will do the same and aim to con�rm
the relative performance between Agile and PRESS.

5.2.3 Results

PRESS

The results of comparing PRESS to our AR models on CPU and Memory
usage data are shown in Figure 5.1.

Agile

The results for comparing Agile to the three AR models and PRESS are shown
in Figure 5.2.

5.2.4 Interpretation

PRESS: The results presented by the authors of PRESS show that the AR
model achieved an over-estimation rate (OER) of less than 1% and that PRESS
achieved an OER of 5% on CPU data. Similarly on Memory usage data, the
AR model should have an OER of 5% and PRESS an OER of 10%. Both these
results do not agree with the results shown in Figures 5.1(a) and 5.1(b). In our
results PRESS achieves a better OER on CPU usage and a statistically similar
OER to all AR models on Memory usage data. This may be contributed to
the added variance when evaluating on more traces compared to the authors
of PRESS.

For the results on under-estimation rates (UER) it is reported that the AR
model should under-estimate more than 80% of the time compared to PRESS's
5% on CPU usage. AR also under-estimates more than 60% compared to
PRESS's 30% on Memory usage data. In our results we see that all three

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 66

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
O

v
e
r-

e
st

im
a
ti

o
n
 r

a
te

 (
>

1
0
%

)

Over-estimation rate on CPU usage data 
(7 hour data)

(a) CPU usage data.

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

0.0

0.1

0.2

0.3

0.4

0.5

O
v
e
r-

e
st

im
a
ti

o
n
 r

a
te

 (
>

1
0
%

)

Over-estimation rate on Memory usage data 
(7 hour data)

(b) Memory usage data.

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
n
d
e
r-

e
st

im
a
ti

o
n
 r

a
te

 (
<

1
0
%

)

Under-estimation rate on CPU usage data 
(7 hour data)

(c) CPU usage data.

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

U
n
d
e
r-

e
st

im
a
ti

o
n
 r

a
te

 (
<

1
0
%

)
Under-estimation rate on Memory usage data 

(7 hour data)

(d) Memory usage data.

Figure 5.1: Comparison of PRESS and three Auto-regression models of order 8, 16
and 30. The experiment was performed on the 7 hour Google cluster dataset [28].

AR model achieves an UER of above 30% and PRESS performing worse with
an UER close to 40% on CPU usage data. From our Memory usage data we
observe that all AR model have an UER of 10% on average. Again these results
do not agree with those presented by PRESS. This may again be contributed
to the larger sample of data traces (100 traces) used or to the discrepancies of
the training window size used.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 67

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

A
g
ile

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
T
ru

e
 P

o
si

ti
v
e
 R

a
te

TPR for Overloaded Observations
 on CPU usage data

(a) CPU usage data.

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

A
g
ile

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ru

e
 P

o
si

ti
v
e
 R

a
te

TPR for Overloaded Observations
 on Memory usage data

(b) Memory usage data.

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

A
g
ile

0.00

0.05

0.10

0.15

0.20

0.25

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

FPR for Overloaded Observations
 on CPU usage data

(c) CPU usage data.

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

PR
E
S
S

A
g
ile

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

FPR for Overloaded Observations
 on Memory usage data

(d) Memory usage data.

Figure 5.2: Comparison of Agile, PRESS and three Auto-regression models (orders
5, 16, 30). The results show that the authors of Agile may have used an AR model
of order between 16 and 30.

Agile: In their paper the authors of Agile [47] reported that Agile achieved a
TPR of around 90% on CPU usage data and 80% on Memory usage data when
evaluated using a 100 data traces from the 29 day Google cluster dataset. It
is also reported that PRESS achieved a TPR of 60% and 65% on CPU and
Memory respectively, The AR model used by Agile, achieved a TPR of 45%
and 40% on the usages respectively.

In our results (see Figure 5.2), we observe that Agile achieves a TPR of
60% on both CPU and Memory usage data and PRESS 55% and 60% on the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 68

two usages. These rates are lower but do still follow a similar trend compared
to the results given in [47]. Our results also suggest that the order of the AR
model used by the authors of Agile was of order between AR(16) and AR(30).

Interpreting the FPR results from [47], it is reported that Agile achieved
FPRs of 20% on CPU and 15% on Memory, PRESS FPRs of 35% and 40% and
the AR model achieved FPRs of 25% and 20% on the two usage respectively.
In our results all methods achieve lower FPRs (with lower is better) as well as
Agile and PRESS achieving similarly relative results. The results produced by
the AR models do not completely agree, but AR(30) has the closest resembling
to the results reported.

Concluding remarks

The 7 hour results suggest that our implementation of PRESS may not agree
with the one presented in [24]. The limiting factors include the details of the
Markov Chain implementation and the pre-processing of the dataset itself. It
is also interesting to note that higher order AR models do not improve the
one-ahead prediction performance.

For Agile, we could not completely con�rm the results reported by Agile's
authors, but the relative performance of PRESS and Agile do agree. We could
also identify that an AR model closely resembling AR(16) and to a lesser
extend AR(30) was used.

Throughout the investigations presented in this chapter we will focus specif-
ically on comparing Agile and PRESS to AR(16), but also highlight AR(30)'s
results.

5.3 Evaluation Using Root Mean Squared

Error

5.3.1 Motivation

In research �elds such as statistical modelling and forecasting, Root Mean
Squared Error (RMSE) is a popular metric used for comparing forecasting
methods. The RMSE gives an indication of the forecasting error made by a
speci�c method [32], and for the purpose of this experiment the RMSE is used
as generic evaluation metric and serve as a baseline performance metric.

5.3.2 Setup

Scikit-learn [59] de�nes RMSE as the error measure corresponding to the ex-
pected value of the quadratic error loss. It is calculated as the square distance

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 69

between the predicted values and the true values using the following de�nition:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (5.3.1)

where n is the number of observations used, ŷi the ith forecasted value and yi
the corresponding true value (or desired value when used in training a model).
In terms of provisioning, a method that achieves a low RMSE is an indication
of accurate forecasts.

5.3.3 Results

The RMSE results on CPU and Memory usage data are shown in Figures 5.3(a)
and 5.3(b) and the Pageview and Network data results are shown in Fig-
ures 5.3(c) and 5.3(d).

5.3.4 Interpretation

The RMSE results obtained when comparing the forecasting methods on re-
source data, show that the AR(30) model performs statistically better than
all other methods on CPU and Pageview data. On the Memory and Network
usage data MA(30) achieves similar results to the AR(30) and with a p-value
of 0.1888 we cannot reject the null hypothesis. This means we do not have
su�cient evidence that AR(30) is the best forecasting method when evaluated
on these usages.

The AR(8) method under-performs in comparison with the other methods,
on CPU, Memory and Network usage data and also RNN achieves poor results
on Pageview data. A possible explanation for RNN's result is that RNNs rely
on seasonality in the data and thus the performance on RMSE may suggest
that the pageview data do not contain prominent seasonal components or may
have measurement noise which could in�uence the result.

The RMSE results show that the less complex methods, namely MA(30)
and AR(30), outperform the more complex forecasting methods. This suggests
that RMSE might not be a su�cient metric to use when comparing more
complex forecasting methods. Supporting this, the complex methods achieve
statistically similar RMSE results on CPU and Memory usage data.

Interpreting PRESS and Agile's results we see that both methods perform
better than AR(16), but it is also important to note that AR(30) achieves a
better RMSE across all usages. This may support the theory that a higher
order AR model would outperform these PRESS and Agile.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 70

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
R

o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

RMSE on CPU usage data

(a) CPU usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.00

0.05

0.10

0.15

0.20

0.25

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

RMSE on Memory usage data

(b) Memory usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

RMSE on Pageview data

(c) Pageview data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

RMSE on Network data

(d) Network data.

Figure 5.3: The Root Mean Squared Error results of the forecasting methods
evaluated on CPU and Memory usage data from the 2011 Google cluster dataset
and on Pageview and Network data from the Wikipedia Pageview dataset.

5.4 Evaluation Using Correct Estimation Rate

5.4.1 Motivation

The RMSE evaluation metric used in Section 5.3 calculated the error distance
between the forecasted values ŷ and the true values y. In terms of cloud
provisioning, being able to forecast values close to the true values are bene�cial
but not required. Following PRESS [24], we now de�ne an acceptable error

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 71

distance between the forecasted values the corresponding true values. We
classify a forecast as a correct estimation of the load at that moment in time
when it is predicted within the acceptable error distance.

5.4.2 Setup

Similar to PRESS we use an acceptable error distance equal to 10% of the true
value. Using this we calculate the Correct Estimation Rate (CER) as the
ratio of correctly estimated values over the total number forecasts:

CER =
#correct estimations

total forecasts
(5.4.1)

A higher CER indicates the model produces accurate forecasts.

5.4.3 Results

Figures 5.4(a) and 5.4(b) show the CERs for all methods on CPU and Mem-
ory usage data. Figures 5.4(c) and 5.4(d) show the CERs for Pageview and
Network usage data.

5.4.4 Interpretation

We observe that di�erent to the RMSE results, the MA(30) model performs
statistically better than other methods on CPU usage data and with a p-value
of 0.3456, performs statistically similar to AR(30) on the Memory usage data.
This result may suggest that the AR(30) model forecasts values closer to the
true values and thus achieves lower RMSE results. AR(30) may forecast values
within the 10% band less frequently compared to both MA models.

In our option, these results may also suggest characteristics of the 2011
Google cluster dataset. MA(30) uses the average of past values to forecast
and its result on CPU usage data may suggest that the majority of the CPU
data are within 10% of the average utilisation.

On the Pageview and Network data, the AR(30) model outperforms the
other forecasting methods with a p-value less than 0.05. Also both PRESS and
Agile have a higher CER than AR(16), supporting the results from Section 5.2.

Apart from Holt-Winters, AR(8) and AR(16) which under performs on
CPU and Memory usage data, there is no statistically signi�cant evidence
which method achieves the lowest CER on these two usages. On Pageview and
Network usage data, we see that FFNN is highlighted a second best performing
method, but other more complex methods achieve similar results.

The use of correct estimation rate, as evaluation metric for provision of
cloud resources may be insu�cient for comparing the performance of more
complex forecasting methods.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 72

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.05

0.10

0.15

0.20

0.25

0.30

0.35
C

o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Correct Estimation Rate on CPU usage data

(a) CPU usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Correct Estimation Rate on Memory usage data

(b) Memory usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Correct Estimation Rate on Pageview data

(c) Pageview data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Correct Estimation Rate on Network data

(d) Network data.

Figure 5.4: The results of the Correct estimation rates for CPU, Memory, Pageview
and Network data. A forecast is a correct estimate of the load, when it is within
10% of the true value and the correct estimation rate is calculated using the ratio of
correct estimations over the total forecasts.

5.5 Evaluation Using Estimation Score

5.5.1 Motivation

In cloud resource provisioning, it is less detrimental for cloud providers to
over-provision resources compared to under-provisioning [5]. Over-provisioning
incurs more costs, but still adhere to SLAs between providers and users.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 73

In previous evaluations, the RMSE calculated the error distance between
the forecasted values and the true values, whereby the CER speci�ed an accept-
able error distance of 10% of the true values. The purpose of this evaluation
is to compare forecasting methods using the Estimation Score (ES), a metric
that evaluates performance based on values being over- or under-estimated.

5.5.2 Setup

We de�ne an Estimation score (ES) as linear combination of two estimation
rates, namely over-estimation rate (OER) and under-estimation rate (UER).
We follow PRESS's [24] over- and under-estimation metric, classifying an over-
estimation as a value more than 10% of the true value and under-estimation
a value less than 10%. The OER is then calculated using the ratio of over-
estimated values to total forecasts, whereby the UER calculated using the ratio
of under-estimated value to total forecasts.

The following is used to combine the two estimation rates, calculating the
ES:

ES = 0.3(OER) + 0.7(UER) (5.5.1)

A series of operation points exist (i.e. weight combinations for OER and
UER) which could be used. These could be selected based on the application
or based on the importance of either overload- or underload. In this thesis, we
choose an operation point where over-estimation is weighted less than under-
estimation and we assume that (0.3, 0.7) will be su�cient weights to this end.

5.5.3 Results

Figures 5.5(a) and 5.5(b) show the Estimation score results for CPU and Mem-
ory usage data. Figures 5.5(c) and 5.5(d) show the Pageview and Network data
results.

5.5.3.1 Interpretation

From the ES results in Figure 5.5, we observe that on CPU usage data, MA(30)
performs statistically better than other methods and FFNN achieving the sec-
ond best ES. On Memory usage, MA(30) achieves an ES similar to AR(30)
(with a p-value of 0.2826) and thus we fail to reject the null hypothesis and can
not concisely say that either AR(30) or MA(30) is better. On Pageview and
Network data, AR(30) statistically achieves the best performance and AR(8)
and AR(16) are highlighted as the methods that perform the worst. Again we
observe that both PRESS and Agile outperform AR(16), but compared to the
AE(30) method they are both outperformed.

The majority of workloads captured in the Wikipedia dataset are stable
and seasonal workloads. An initial explanation of Agile's ES result include,

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 74

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65
E
st

im
a
ti

o
n
 s

co
re

Estimation Score on CPU usage data

(a) CPU usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.1

0.2

0.3

0.4

0.5

0.6

E
st

im
a
ti

o
n
 s

co
re

Estimation Score on Memory usage data

(b) Memory usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
st

im
a
ti

o
n
 s

co
re

Estimation score on Pageview data

(c) Pageview data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

E
st

im
a
ti

o
n
 s

co
re

Estimation score on Network data

(d) Network data.

Figure 5.5: The Estimation Score (ES) results for all methods evaluated on CPU,
Memory, Pageview and Network data. The ES is calculated by combining the over-
and under-estimation rates using a weighting skewed to under-estimation. Lower
Estimation scores indicate less frequent under- and over-estimations and is thus an
indication of a more accurate prediction.

the inherent Markov Chain model used in Agile is unable to learn signi�cant
transitions probabilities at di�erent scales, causing the poor ES performance.

Interpreting all results as a whole, we see dissimilarity between methods'
Estimation scores on CPU, Pageview and Network data. On Memory usage
data the ES is statistically inconclusive on measuring the di�erence between
the more complex methods. All three evaluation metrics used in evaluation

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 75

thus far have not shown a signi�cant dissimilarity between the more complex
forecasting methods, which may suggest this is attributed to the Memory data
itself. We hope to see supporting evidence for this in the next two evaluations.

Finally, the operation point (0.3, 0.7) that was chosen and used in calcu-
lating the ES may be a limiting factor. Future investigation should be done
using various operation points.

5.6 Evaluation Using Overload Likelihood

Ratio

5.6.1 Motivation

When evaluating forecasting performance, the Estimation score (ES) gives us
a weighted measure of how often a method under- and over-estimates. Follow-
ing Agile's proposal, let us now de�ne a speci�cation based on a forecasting
method's ability to predict overloaded observations.

We de�ne an overloaded observation as one being above a prede�ned over-
load threshold. Note an overloaded observation is di�erent to an overloaded
state de�ned and evaluated in 5.7.2. This speci�cation is similar to classi�ca-
tion in the �eld of machine learning.

Similar to the argument given in Section 5.5.1, we assume that forecasting
overload incorrectly (i.e. over-estimating) is less detrimental than predicting
not-overloaded incorrectly, possibly breaking SLAs and causing End users to
have a poor experience.

The purpose of this experiment is to de�ne an evaluation metric that pri-
oritises predicting overloaded observations correctly.

5.6.2 Setup

Following Agile's approach, the overloaded threshold in this experiment is set
to the 70th percentile of the total trace. Liu and Cho reported in their paper
�Characterizing machines and workloads on a Google cluster� [41] that the
majority (93%) of the machines monitored in the Google cluster dataset have
a capacity set to 0.5, which supports AGILE's argument for setting overload
at a capacity of 0.7 and higher.

Next, we calculate the True Positive Rate (TPR) and False Positive Rate
(FPR) using four standard classi�cation conditions namely, true positive (Tp),
false positive (Fp), true negative (Tn) and false negative (Fn). A predicted
value is deemed a true positive when it is forecasted as overloaded and its
corresponding true value is also overloaded. Similar to the true negative, where
a forecasted value is less than the overload threshold and its corresponding
true value is also less than the overload threshold. For false positive and false
negative, the forecasted value is di�erent to its true value.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 76

TPR is calculated using the number of overloaded forecasts that agree with
the true overloaded values, divided by the total number of true overloaded
observations. FPR is calculated using the number of true non-overloaded
values, falsely predicted as overloaded, divided by the total number of true
non-overloaded observations:

TPR =
Tp

Tp + Fn

FPR =
Fp

Fp + Tn

(5.6.1)

where a high TPR and low FPR indicates a high accuracy.

With these conditions we calculate the Positive Likelihood Ratio (LR+),
denoted as Overload Likelihood Ratio (OLR) in this thesis. The OLR
assesses the likelihood of a model to correctly forecasting overloaded observa-
tions compared to falsely predicting an overloaded observation. The OLR is
calculated using the following:

OLR =
TPR

FPR
(5.6.2)

where an OLR greater than 1 indicates that the model is more likely to cor-
rectly predict overloaded samples and OLR less than 1 indicates the model
struggled to predict overloaded samples.

5.6.3 Results

The OLR results for CPU and Memory usage data is shown in Figures 5.6(a)
and 5.6(b) and for Pageview and Network shown in Figures 5.6(c) and 5.6(d).

5.6.4 Interpretation

The OLR results suggests that the AR models have the highest likelihood
to correctly predicting an overloaded observation. This result agrees with the
majority of evaluations already discussed in this chapter. The large di�erences
in performances between methods, may suggest that OLR is a representative
evaluation metric that can be used to compare forecast methods. Interesting
to note, both neural networks and Holt-Winters achieved signi�cant OLRs,
which may suggest that these methods are also viable forecasting methods
for predicting overloaded observations. According to [19], OLR values higher
than 1 are preferred with values higher than 5 indicating high likelihood for
accurately predicting overloaded observations.

The more complex methods achieve an OLR of 3 or 4, indicating that
these methods are all moderately likely to correctly forecast the majority of
overloaded true observations on these resources.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 77

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

1

2

3

4

5

6

7

8

9

10

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Overload Likelihood Ratio on CPU data

(a) CPU usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0

2

4

6

8

10

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Overload Likelihood Ratio on Memory data

(b) Memory usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

1

2

3

4

5

6

7

8

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

OLR on Pageview data

(c) Pageview data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

1

2

3

4

5

6

7

8

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

OLR on Network data

(d) Network data.

Figure 5.6: Combining the True Positive- and False Positive Rates for correct
overload predictions, produces the Overload Likelihood Ratio (OLR) results for CPU,
Memory, Pageview and Network data. Values higher than 1 are preferred, with OLR
values higher than 5 indicating high likelihood for accurately predicting overloaded
observations.

On the Pageview and Network data, AR(30) is highlighted as best perform-
ing method Apart from the other two AR models, the two NNs are highlighted
as promising forecasting methods on the Wikipedia data. Agile and PRESS
are again outperformed by AR(30), but Agile is highlighted as good candidate
on CPU and possibly Memory usage data.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 78

5.7 Evaluation Using Overloaded State

Likelihood Ratio

5.7.1 Motivation

In cloud provisioning, the occurrence of observations being above a prede-
�ned threshold may be very sporadic or stochastic, causing the provisioning or
auto-scaling algorithms to rapidly switch between overload and non-overload.
Because of this, the authors of Agile [47] de�ned the concept of an Overloaded
state.

We will follow their de�nition, whereby Q consecutive observations are
above an overload threshold (above the 70th percentile of the data). When
evaluating an overloaded state, Agile de�nes a grace period or tolerance in
which the forecasted state will still be considered a true positive. Figure 5.7
illustrates the overloaded state graphically.

Valid
overload state

grace period grace period

Overload
Threshold

Q = 5 observations

Figure 5.7: An illustration of an overload state. A valid overloaded state is one
where Q consecutive observations are above the overload threshold.

The purpose of this evaluation is to compare the forecasting methods using
a likelihood of accurately predicting overloaded states and comparing these
results to the OLR results in Section 5.6.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 79

5.7.2 Setup

In this evaluation we follow Agile's de�nition of an overloaded state, Q is set
to 5 consecutive overloaded samples. We deem a true positive prediction as
one that is predicted within the grace period (set to 3 samples) of the starting
and the ending of such a state. A true negative prediction is one where the
end of an overloaded state is predicted within a grace period of 3 samples of
the true end of the overloaded state.

We calculate and combine the TPR and FPR to produce a Positive Like-
lihood Ratio (LR+) for overloaded states, denoted as Overloaded State
Likelihood Ratio (OSLR) using:

OSLR =
TPR

FPR
(5.7.1)

where an OSLR greater than 1 is preferred and values greater than 5 indicating
a high likelihood of correctly estimating an overloaded state [19].

5.7.3 Results

The OSLR results on the Google cluster data are shown in Figures 5.8(a)
and 5.8(b) and on the Wikipedia data shown in Figures 5.8(c) and 5.8(d).

5.7.4 Interpretation

From the OSLR results we observe that AR(8) and AR(16) have very low
false positive rates which cause these two methods to achieve unexpectedly
high OSLRs. We also observe that the RNN achieves a high OSLR which
agrees with the characteristic of RNNs, namely the ability to `remember' state.
Our FFNN statistically outperforms the RNN on forecasting accuracy on the
Memory data, which is surprising because a FFNN does not have a way to
remember state, which we thought would be required for accurate overload
state predictions. A possible explanation for this result is that the FFNN
model is able to learn a functional mapping of observations representing an
overloaded state, instead of `remembering' the context of that state.

The MA(30) model performs the worst across all usages and this result
may be attributed to the MA(30) model being unable to `remember' state.

The most surprising result is that all forecasting methods perform poorly
(with OSLR values less than 0.15) when predicting overloaded states. Ac-
cording to [19] this is a conclusive indication that the methods are unable
to accurately predict true overloaded states. These results disagree with the
results obtained in the evaluation using OLR (in Section 5.7.3) as evaluation
metric. We are unsure on the reason for this, but our initial theory is that
granularity of samples captured in the datasets (5 minute or hour intervals) to-
gether with measurement noise may be the primary reason why all forecasting
methods struggle to accurately forecast 5 consecutive overloaded observations.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 80

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.00

0.05

0.10

0.15

0.20

0.25
P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o
Overload State Likelihood Ratio on CPU data

(a) CPU usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.00

0.05

0.10

0.15

0.20

0.25

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Overload State Likelihood Ratio on Memory

(b) Memory usage data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

OSLR on Pageview data

(c) Pageview data.

M
A

(1
)

M
A

(3
0
)

H
oltW

in
ters

A
R

(8
)

A
R

(1
6
)

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

OSLR on Network data

(d) Network data.

Figure 5.8: Overloaded state likelihood ratio (OSLR) results for CPU, Memory,
Pageview and Network data. OSLR values greater than 1 are preferred with values
greater than 5 indicating a high likelihood of correctly estimating an overloaded
state.

Further investigation will need to be performed in order to con�rm (or
reject) this theory.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 81

5.8 Ensemble Model Evaluation

5.8.1 Motivation

The purpose of this experiment is to investigate the possible performance gain
when combining forecasting methods into ensemble models. Four forecast-
ing methods were selected, each addressing a characteristic of the workloads
typically presented to cloud hosted resources:

1. Moving Average (MA(30)) which should be able to accurately model
stable workloads where the deviation is close to the mean of past values.

2. Feed-forward Neural Network (FFNN) learns a functional mapping of
past values to future values. We believe that FFNNs will be able to
model cyclic patterns present in seasonal workloads.

3. Auto-regression (AR(30)) should be able to model trending workloads
best.

4. Agile, a Markov chain based model which considers the probability of
transitioning from one lower state to another higher state at di�erent
scales, and we believe should be able to model bursty workloads best.

5.8.2 Setup

We investigate three approaches to combine the four methods into an ensemble
model:

� Average Model: Using the simple average of the forecasts produced by
each methods and combining these using equal weights.

� WA Model: A Weighted Average (WA) model that uses past forecasts
to determine di�erent weight values for combining future forecasts.

� Combo Model: A 3-layer FFNN (4 input neurons, 2 hidden neurons
and 1 output neuron) that determines a functional mapping between
forecasts produced by each method and the future true value.

The speci�cs on these combining approaches are given next. The `dataset'
used in this investigation is the forecasts produced by MA(30), AR(30), Agile
and FFNN on both CPU and Memory usage data.

Average Model: For each forecasting window (with length equal to 30 sam-
ples) we combine the corresponding forecasts produced by the four methods
using an equal weighted average and output a new set of 30 forecasted values.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 82

WAModel: A 2-layer FFNN, with four input neurons and one linear output
neuron is trained on the �rst forecasting window of 30 samples. It learns
weights associated with each of the forecasting methods. It then produces new
predictions using the four methods' latest forecasts.

Combo Model: The initial 3-layer FFNN parameters are found using ran-
dom search and then trained on the �rst forecasting window of 30 samples.
For every forecasting step, the network is activated with the forecasted values
corresponding to that step and 30 new forecasts are produced. The network is
then updated using the forecasts of the four methods and the corresponding
true values.

5.8.3 Results

The results for the ensemble model investigation are shown in Figures 5.9
to 5.13 and the statistical signi�cance test results are shown in Table C.2.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.06

0.07

0.08

0.09

0.10

0.11

0.12

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Ensemble: RMSE on CPU usage data

(a) CPU usage data.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Ensemble: RMSE on Memory usage data

(b) Memory usage data.

Figure 5.9: Ensemble models: Root Mean Squared Error results.

5.8.4 Interpretation

The most important conclusion that can be made from the results presented
is that all ensemble models perform statistically worst (or similar) compared
to the best performing forecasting method used in the ensemble. This goes
against the well known property of ensemble models. In general, combining
two or more analytical models will improve the predictive accuracy.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 83

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34
C

o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Ensemble: Correct Estimation Rate 
 on CPU usage data

(a) CPU usage data.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Ensemble: Correct Estimation Rate 
 on Memory usage data

(b) Memory usage data.

Figure 5.10: Ensemble models: Correct Estimation Rate results.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.32

0.34

0.36

0.38

0.40

0.42

0.44

E
st

im
a
ti

o
n
 S

co
re

Ensemble: Estimation score 
 on CPU usage data

(a) CPU usage data.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.10

0.15

0.20

0.25

0.30

0.35

0.40

E
st

im
a
ti

o
n
 S

co
re

Ensemble: Estimation score 
 on Memory usage data

(b) Memory usage data.

Figure 5.11: Ensemble models: Estimation Score results.

There exist several possible explanations for the unexpected results. The
�rst of these involves the assumption that only combining the previous win-
dow's forecasts output by the four forecasting methods, will produce a good
ensemble model. This might be a limiting factor, because the previous window
may not contain signi�cantly new information about the cloud resource being
estimated. Future investigation into this may include using a longer look-back
window which and which may possibly lead to better �tting of the ensemble

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 84

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

2

3

4

5

6

7

8

9

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Ensemble: OLR on CPU usage data

(a) CPU usage data.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

1

2

3

4

5

6

7

8

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Ensemble: OLR on Memory usage data

(b) Memory usage data.

Figure 5.12: Ensemble models: Overload Likelihood Ratio results.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.02

0.04

0.06

0.08

0.10

0.12

0.14

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Ensemble: OSLR on CPU usage data

(a) CPU usage data.

M
A

(3
0
)

A
R

(3
0
)

A
g
ile

FFN
N

A
verag

e M
od

el
W

A
 M

od
el

C
om

b
o M

od
el

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

P
o
si

ti
v
e
 L

ik
e
lih

o
o
d
 R

a
ti

o

Ensemble: OSLR on Memory usage data

(b) Memory usage data.

Figure 5.13: Ensemble models: Overloaded State Likelihood Ratio results.

models.
Secondly, it may be possible that there exists an implementation error

within the source code of our ensemble models or that the neural network
Python package used in this thesis (PyBrain [58]) is not designed to be used
in this manner. Further investigation and re-implementation may aid in de-
termining the existence of an error within the implementation source code or
limitations of the Python package usage.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 85

Thirdly, the assumption that just combining the forecasts of four individual
forecasts methods will improve accuracy may be �awed. The types of work-
loads presented to cloud resources may change over time and this may not be
as prominent in the forecasts produced by the individual methods. It might
be bene�cial to design an ensemble model that implements all four types of
forecasting methods and based on the workload type and employs the relevant
modelling and forecasting procedure.

5.9 Investigate Shorter Forecasting Window

5.9.1 Motivation

The forecasting window length used in the main evaluations performed in this
chapter, is set to 30 samples following the authors of Agile [47].

The purpose of this evaluation is to investigate the e�ects of using a shorter
forecasting window length and also verify the best and worst performing meth-
ods. Our hypothesis is that we will see an improvement in forecasting perfor-
mance. This is because the forecasting methods are updated and re�t more
often and the cumulative error of using forecasted value as `true values' will
be less.

5.9.2 Setup

To investigate the e�ects of using a shorter forecasting window length, we
re-run all forecasting methods on CPU and Memory usage data using a Fore-
casting window length of 15 samples. Evaluations are performed using
the �ve evaluation metrics and these results are compared to the 30-sample
forecasting window evaluations.

For this investigation we use data from the 2011 Google cluster dataset
and only select a 100 randomly machines/traces, thus implicating that no
cross-validation is performed. The average performance change is calculated
by comparing the mean values of the 30-sample window results and the 15-
sample window results per metric. The average change across all methods are
reported. Statistical signi�cance tests (with N = 100 and con�dence level of
95%) are used to determine if these performance changes are signi�cant or not.

5.9.3 Results

The summarised results for investigating a shorter forecasting window length
are shown in Table 5.2. For more detail results please refer to the Appendix C.3.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 86

Table 5.2: Comparing two forecasting window lengths: a 30 sample window and 15
sample window (denoted by *). The best method for each window length is listed
and the average increase in forecasting performance shown.

Metric & Data type 30-Samples:
Best Method

15-Samples:
Best Method

Average
gain

RMSE on CPU data AR(30) AR(30)* 5.65%
RMSE on Memory data AR(30) AR(30)* 5.60%
Correct Est. Rate on CPU
data

MA(30) FFNN* 7.50%

Correct Est. Rate on
Memory data

AR(30) AR(30)* 5.72%

Estimation score on CPU
data

MA(30) MA(30)* 2.66%

Estimation score on
Memory data

AR(30) AR(30)* 5.54%

OLR on CPU data AR(30) AR(30)* 11.40%
OLR on Memory data AR(30) AR(30)* 12.77%
OSLR on CPU data RNN Agile* 47.09%
OSLR on Memory data RNN FFNN* 58.46%

5.9.4 Interpretation

The results shown in Table 5.2 reveal that the majority of forecasting methods
achieve statistically better performance on all evaluation metrics when evalu-
ated on CPU and Memory usage data. The Average performance gain varies
from 2.66% (Estimation score on CPU data) to a surprising 58.46% (OSLR on
Memory data). When comparing the best performing method for each evalua-
tion metric, we observe that the majority of results highlight the same method
except for CER and OSLR on CPU data and OSLR on Memory data.

The results verify our hypothesis that using a shorter forecasting window
does improve the forecasting accuracy. This can be contributed to the fact that
the forecasting methods are updated more frequently and less of a cumulative
error is made when performing medium-to-long-term forecasts.

In terms of the objective of this thesis, to compare forecasting methods in
the same evaluation environment, we see consistency between the 30-sample
and 15-sample forecasting window results. The most important result is the
large performance gain observed on OSLR. Agile is highlighted as the best
forecasting method on CPU usage data, which agrees with the results reported
by its authors.

Only evaluating on CPU and Memory usage data and using a speci�c
forecasting window length of 15 samples, may be limiting factors in this eval-
uation. Future investigation will need to be performed to possibly �nd the op-
timum forecasting window length and re-evaluate on data from the Wikipedia

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 87

dataset. Investigation on the performance change for the ensemble models
using a shorter forecasting window length should also be performed.

5.10 Summary

This chapter described and reported on the formal investigation performed as
the main contribution of this thesis. The global objective and evaluation pa-
rameters were outlined and information on the two datasets used in evaluation
was discussed. Statistical signi�cance tests (using the one tailed Student's T-
test) were performed throughout the investigations. We will now summarise
each investigation performed:

� Two experiments were executed aiming to con�rm the results reported
by the authors of PRESS [24] and Agile [47] respectively. These two
methods were compared to three Auto-regression models of order 8, 16
and 30. The results reported by PRESS could not be con�rmed, but
the Agile results agrees in the general trend. From the Agile results we
identi�ed that the AR model used was of order between 16th and 30th.
Further investigation should be done in order to ensure the versions
of implementations match with what was presented by the authors of
PRESS and Agile.

� Evaluation done using RMSE as generic and baseline accuracy metric
showed that the AR(30) model performed the best and AR(8) the worst,
but failed to give a statistically signi�cant di�erence between more com-
plex forecasting methods.

� The Correct Estimation Rate (CER) results highlighted MA(30) as best
method on CPU and Memory usage data. AR(30) was the best method
on Pageview and Network data. It was found that CER is also not
well suited to di�erentiating between more complex forecasting methods,
especially on Memory usage.

� Evaluations done using Estimation Score (ES) (a weighted combina-
tion of over-and under-estimation rates) showed AR(30) to be the best
method. Apart from the two lower order AR models, Agile performed
the worst on Pageview data which was surprising. A possible limitation
of this evaluation was the speci�c operation point used. Future investi-
gation should be done in �nding the optimum ES operation point.

� The evaluation performed using Overload Likelihood Ratio (OLR), a
measure of the likelihood that a method will correctly forecast an over-
loaded observation, has highlighted AR(30) as the best performed method.
All methods achieved high OLR values, indicating a moderate likelihood

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. EXPERIMENTAL INVESTIGATION 88

that they will correctly forecast overload. The OLR as evaluation met-
ric gave a realistic measure of forecasting performance and highlights
di�erences when comparing multiple methods.

� Overloaded State Likelihood Ratio (OSLR) measured a forecasting meth-
ods ability to correctly forecast an overloaded state. From the evaluation,
RNNs, Holt-Winters and FFNN were highlighted as the best performing
methods. All OSLR values were very low which may be suggest that
predicting 5 consecutive values is a very di�cult task. Also, these low
values may have us question the validity of the results.

� The possible increase in performance of combining four forecasting meth-
ods was investigated using three ensemble model approaches. The four
forecasting methods used were MA(30), AR(30), Agile and FFNN. The
three combining approaches were a simple average, a weighted average
and a FFNN-based approach. These results showed unexpectedly that
all ensemble models performed statistically worse than the single best
forecasting method used in the ensemble. A possible explanation for this
includes that only combining the forecasts produced by each forecasts
method may not be su�cient. A suggestion for future work is to inves-
tigate an ensemble model which contains multiple methods and selects
an appropriate method for the speci�c workload presented.

� The e�ects of using a shorter forecasting window length (of size 15-
samples) were investigated. Our hypothesis was that we would see an
increase in prediction accuracy and this was con�rmed. In terms of
comparing forecasting methods, the majority of best performing methods
agreed with the results obtained using 30-sample window length. All
metrics showed an increase in performance, with notably OLR and OSLR
showing the highest increase and also Agile being highlighted as the best
method by OSLR on CPU data.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6

Conclusions

The objective of the work presented in this thesis was to identify, implement
and compare prominent forecasting methods for e�ective provisioning of cloud
hosted resources. After implementing a collection of diverse forecasting meth-
ods, we evaluated and compared these methods. Evaluations were performed
using the same evaluation parameters, performance metrics and two real-life
datasets. The two datasets are the 2011 Google Cluster dataset [67] and
Wikipedia Pageview dataset [65].

6.1 Summary of Work

6.1.1 Cloud workloads and forecasting methods

In order to identify, evaluate and compare forecasting methods, we investi-
gated the types of workloads presented to cloud resources. It was found that
cloud resources are typically presented with four types of workloads, namely:
(1) Stable, (2) Trending, (3) Seasonal/Cyclic and (4) Bursty/Stochastic, each
of these associated with a type of web-application or service.

Using these workload types and recent research on the topic of cloud pro-
visioning and scaling, we identi�ed the following prominent forecasting meth-
ods: Moving Average, Exponential Smoothing (speci�cally the Holt-Winters'
method), Auto-Regression, Markov Chains, Neural Networks (which includes
Feed-Forward Neural Networks and Recurrent Neural Networks) as well as
PRESS and Agile.

6.1.2 Evaluation metrics

Formal evaluation metrics were adapted from literature for the purpose of this
thesis. These metrics include a generic time-series metric, Root Mean Squared
Error (RMSE) as well as four provision speci�c metrics: Correct Estimation
Rate, Estimation score (a weighted combination of over- and under-estimation
rates), Overload Likelihood Ratio and Overloaded State Likelihood Ratio. The

89

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSIONS 90

two likelihood ratios use accuracy measures similar to those proposed by the
authors of Agile [47]. These evaluation metrics allow for a more concise mea-
surement of the performance of athe forecasting method being evaluated.

A Resource Forecasting Pipeline was developed in this work and could serve
as basis for a formal testing and comparison framework. It facilitates the use
of new cloud resource datasets (pre-processed) as input data. New forecasting
methods can be implemented using the class signature illustrated in Section 4.7
and new evaluation metrics added to the �nal stage of the pipeline.

6.1.3 Experimental investigations

Each forecasting method was evaluated on two datasets namely, the 2011
Google Cluster dataset [67] (containing CPU and Memory usage data) and
the Wikipedia Pageview dataset [65] (containing Pageview and Network usage
data) and we used the evaluation metrics discussed.

In their respective papers, PRESS and Agile describe their approaches as
improvements over other forecasting methods such as Auto-regression (AR)
and Weighted Moving Average (WMA). We investigated this by evaluating
PRESS on Google's 7 hour cluster dataset and comparing it to our three AR
models. We conclude that we could not reproduce PRESS's results and that
there is no signi�cant di�erence between the di�erent order AR models used
for one-ahead predictions.

We performed a similar experiment for Agile and found that our Agile
results agree relative to what was reported in [47]. We also concluded that the
AR model order used by Agile is between AR(16) and AR(30). It is important
to note that both PRESS and Agile are still outperformed by AR(30) model.
E�orts were made to contact the authors of PRESS and Agile, in regards to
accessing their implementations, but no response was received.

Investigations were performed on combining four forecasting methods, each
addressing a characteristic of cloud workloads using three ensemble approaches.

Finally, an investigation into using a shorter forecasting window was per-
formed in order to verify the validity of the evaluation results obtained in the
�rst �ve evaluations. The results showed that the 15-sample forecasting win-
dow length achieved better performance but more importantly it agrees with
the 30-sample forecasting window results.

6.2 Concluding Perspective

The purpose of this section is to emphasise the most important results and
�ndings of the research done in this thesis.

It was found that there is no single forecasting method that outperforms
all other methods, but our 30th order Auto-regressions did achieve high per-
formance results on the majority of metrics and across both datasets. The sec-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSIONS 91

ond and third best performing models were Moving Average and Feed-Forward
Neural Networks, with the Moving Average method result surprising because
of the simplicity of the method. This suggests that less complex forecasting
methods are su�cient for accurately forecasting on cloud resources. We be-
lieve more e�ort needs to be put into developing better evaluation metrics of
workload modelling schemes.

Assessing the evaluation metrics used in this thesis, we found that there is
no single metric that gives a concise performance measure of evaluating provi-
sion accuracy. From the metrics used, we believe that the Overload Likelihood
Ratio (OLR), a measure of the likelihood that a method will correctly pre-
dict overloaded observations, delivers the best comparative di�erence between
the forecasting methods investigated. The method showed a large increase in
performance when used to evaluate on the shorter forecasting window.

The poor performance of the ensemble models investigated were unexpected
and at present there does not exist a clear explanation of the root cause of
these results. We hope that future investigations will reveal more information
on this.

The limitations of the research presented in this thesis include, (1) the in-
vestigations were only performed using historical datasets of cloud resources
and not on a real-life cloud. (2) The data sources used were only pre-processed
to facilitate modelling and forecasting and no additional pre-processing meth-
ods considered or used, which may have improved the results. (3) The inves-
tigation of ensemble models is incomplete and inconclusive, evident from the
unexpected results and poor performance.

6.3 Recommendations

� The use of pre-processing methods on the input data, such as smoothing,
zero-padding or under-sampling, could present more accurate modelling
and forecasting by reducing measurement noise or e�ects of bursty work-
loads and should be investigated.

� Investigate the optimum forecasting window length, still considering how
this length relates to real-life cloud environments and the limitations on
Virtual Machine spin-up or spin-down time.

� Greater e�ort should to be put into developing evaluation metrics that
are speci�cally tailored to the cloud environment and that are able to
measure forecasting accuracy within context of cloud resource manage-
ment. Possible features to take into account include; Service Level Agree-
ment (SLA) violations and the energy usage of Virtual Machines (VMs)
or datacenters.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. CONCLUSIONS 92

� Further investigation should be done on the speci�cs of PRESS and Ag-
ile's implementations, as it is still unclear if the results found in this
thesis can be contributed to the di�erences in our implementations or
not.

� Investigate model penalising schemes which could increase the forecast-
ing method's Estimation scores by lowering SLA violations.

6.4 Future Work

� In terms of provisioning of cloud hosted resources, we believe the next
step is to implement and evaluate the forecasting methods investigated
into a closed-loop cloud environment. This involves using a commercial
cloud platform, presenting it with live workloads or stimulate it using
real world data traces. Have a resource management system provisioning
and allocating resources as needed and have an evaluation module record
performance metrics (possibly with a focus on energy usage).

� Further research needs to be done on improving the pro�ling of work-
loads presented to cloud resources, possibly in real-time. A better under-
standing of the e�ects di�erent workloads have on the physical hardware
together with additional objectives speci�ed by the cloud user, may lead
to improvements to provision. The scheme may learn and adapt faster
to changes in the workload.

� With better workload pro�ling, e�ort should be put into the develop-
ment of an adaptive ensemble model that implements various (simpler)
forecasting methods and adapts to the type of workload presented at
that moment in time.

� The use of deep-learning (such as Convolution nets and Boltzmann ma-
chines) or Probabilistic Graphical Models (PGMs) should be investigated
and compared to the methods investigated in this thesis. These may be
able to learn more complex functions or behaviours inherent to cloud
workloads and better map load requirements to resource provisioning
and auto-scaling.

Stellenbosch University  https://scholar.sun.ac.za



Appendices

93

Stellenbosch University  https://scholar.sun.ac.za



Appendix A

Derivations

A.1 Yule-Walker Equations

The following derivation taken from literature [21].
The Yule-Walker equations are used to estimate the Auto-regression, AR(p)

of order p, model parameters φi.
The general equation of an AR(p) is given by:

yt+1 = φ1yt + φ2yt−1 + ...+ φpyt−p+1 + ε (A.1.1)

where φi is the model parameters and ε the model �tting error and the
series length is equal to N .

A.1.1 For lag of 1

We will derive the equations using mathematical induction.

1. We start by multiplying both sides of the model by yt,

ytyt+1 =

p∑
i=1

(φiytyt−i+1) + ytε (A.1.2)

2. then take the expectation E[·],

E[ytyt+1] =

p∑
i=1

(φiE[ytyt−i+1]) + E[ytε] (A.1.3)

3. note that E[ytε] = 0 because the error is uncorrelated with previous
values of the series,

E[ytyt+1] =

p∑
i=1

(φiE[ytyt−i+1]) (A.1.4)

94

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. DERIVATIONS 95

4. divide through by (N − 1) and use the auto-covariance property that
C−t = Ct we get,

C1 =

p∑
i=1

φiCi−1 (A.1.5)

5. and the auto-covariance Ct for a stationary time-series has the property,

Ct = σ2ρt (A.1.6)

ρt the auto-correlation of the time-series at t

6. divide equation A.1.5 through by σ2,

ρ1 =

p∑
i=1

φiρi−1 (A.1.7)

A.1.2 For lag of 2

1. Multiplying both sides of the model by yt−1,

yt−1yt+1 =

p∑
i=1

(φiyt−1yt−i+1) + yt−1ε (A.1.8)

2. then take the expectation E[·],

E[yt−1yt+1] =

p∑
i=1

(φiE[yt−1yt−i+1]) + E[yt−1ε] (A.1.9)

3. E[yt−1ε] = 0,

E[yt−1yt+1] =

p∑
i=1

(φiE[yt−1yt−i+1]) (A.1.10)

4. divide through by (N − 1) and use the auto-covariance property that
C−t = Ct we get,

C2 =

p∑
i=1

φiCi−2 (A.1.11)

5. divide equation A.1.11 through by σ2,

ρ2 =

p∑
i=1

φiρi−2 (A.1.12)

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX A. DERIVATIONS 96

A.1.3 For lag of k

1. Multiplying both sides of the model by yt−k,

yt−kyt+1 =

p∑
i=1

(φiyt−kyt−i+1) + yt−kε (A.1.13)

2. then take the expectation E[·],

E[yt−kyt+1] =

p∑
i=1

(φiE[yt−kyt−i+1]) + E[yt−kε] (A.1.14)

3. E[yt−kε] = 0,

E[yt−kyt+1] =

p∑
i=1

(φiE[yt−kyt−i+1]) (A.1.15)

4. divide through by (N − 1) and use the auto-covariance property that
C−t = Ct we get,

Ck =

p∑
i=1

φiCi−k (A.1.16)

5. divide equation A.1.16 through by σ2,

ρk =

p∑
i=1

φiρi−k (A.1.17)

The same holds for lag of p,

ρp =

p∑
i=1

φiρi−p (A.1.18)

Rewriting the equations in matrix form we get:

r = R · Φ
ρ1
ρ2
ρ3
...
ρp

 =


ρ0 ρ−1 ρ−2 · · · ρ1−p

ρ1 ρ0 ρ−1 · · · ρ2−p

ρ2 ρ1 ρ0 · · · ρ3−p
...

...
...

. . .
...

ρp−1 ρp−2 ρp−3 · · · ρ0




φ1

φ2

φ3
...
φp


(A.1.19)

where ρ0 = 1 and ρp−i = ρi−p.

Note that R is full-rank and symmetric thus it is invertible, giving a system
of equations for the Auto-regression parameters Φ,

Φ = R−1r (A.1.20)

Stellenbosch University  https://scholar.sun.ac.za



Appendix B

Datasets

B.1 2011 Google Cluster Dataset

In the document `Google cluster-usage traces: format & schema' [53] the au-
thors describe how resource usage data was captured. Measurements are taken
at 1 second intervals and then aggregated the values per task, reported every
300 seconds (or 5 minutes). The following resources was captured:

1. Mean CPU usage

2. Maximum CPU usage

3. Memory usage

4. Assigned memory

5. Unmapped page cache memory usage

6. Page cache memory usage

7. Maximum memory usage

8. Mean disk I/O

9. Maximum disk I/O

10. Mean local disk space used

11. Cycles per instruction (CPI)

12. Memory accessed per instruction (MAI)

In this work we only use the Mean CPU and Mean Memory usage rates.
The Mean CPU usage is measured in CPU-core seconds per second, whereas
the Mean Memory usage is measured as the total canonical memory, user
accessible pages and page cache excluding stale pages.

97

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. DATASETS 98

B.2 Wikipedia Pageview Dataset

The o�cial description given by the Wikipedia Analytics team, authors of the
info-page �Page view statistics for Wikimedia projects� [65] for the Wikipedia
Pageview and Network dataset as follows:

Each page request to a Wikipedia project page, whether it be for
editing, reading or for �special pages� is captured and logged by
Wikipedia's squid caching hosts, with internal and non-general
page views being �ltered out.

The Wikimedia projects are abbreviated as follow:

� wikibooks: �.b�

� wiktionary: �.d�

� wikimedia: �.m�

� wikipedia mobile: �.mw�

� wikinews: �.n�

� wikiquote: �.q�

� wikisource: �.s�

� wikiversity: �.v�

� mediawiki: �.w�

The dataset is currently (2015) being maintained by the Wikipedia Ana-
lytics team.

Stellenbosch University  https://scholar.sun.ac.za



Appendix C

Additional Results

C.1 Statistical Signi�cance Test Results

In the Experiment Investigation Chapter, the statistical signi�cance One-
Tailed Test was used to determine if two forecasting method results a sta-
tistically di�erent with a con�dence value of 95% (thus a p-value less than
0.05). The test results for the �ve evaluations performed using the di�erent
evaluations metrics, are shown in Table C.1.

Table C.1: Statistical signi�cance test results for the evaluations performed on the
2011 Google Cluster and Wikipedia datasets.

Metric Resource Hypothesis P-value Signi�cant?
RMSE CPU AR(30) <

MA(30)
0.0252 Yes

Memory AR(30) <
MA(30)

0.1888 No

Pageview AR(30) <
MA(30)

4.20E-280 Yes

Network AR(30) <
MA(30)

4.43E-16 Yes

Correct Esti-
mation Rate

CPU MA(30) >
FFNN

0.0014 Yes

Memory MA(30) >
AR(30)

0.3426 No

Pageview AR(30) >
FFNN

7.14E-13 Yes

Network AR(30) >
FFNN

3.68E-20 Yes

Estimation
Score

CPU MA(30) <
FFNN

1.35E-04 Yes

99

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 100

Memory AR(30) <
MA(30)

0.2826 No

Pageview AR(30) <
Markov1

7.19E-42 Yes

Network AR(30) <
Markov1

1.84E-34 Yes

Overload
Likelihood
Ratio

CPU AR(30) >
MA(30)

1.20E-08 Yes

Memory AR(30) >
MA(30)

0.0386 Yes

Pageview AR(30) >
FFNN

1.25E-10 Yes

Network AR(30) >
FFNN

6.25E-05 Yes

Overloaded
State Likeli-
hood Ratio

CPU RNN > HW 3.85E-17 Yes

Memory FFNN > HW 0.0018 Yes
Pageview AR(30) > HW 7.01E-12 Yes
Network AR(30) > HW 2.08E-09 Yes

C.2 Ensemble models: Statistical Signi�cance

Test Results

In Section 5.8 we investigated the possible accuracy gain when combining
four forecasting methods, each addressing an aspect of workloads typically
presented to cloud hosted resources. In Table C.2, we present the statistical
signi�cance test results, when comparing each ensemble model with the best
performing forecasting method on the speci�c evaluation metric and data type
(either CPU or Memory usage data).

Table C.2: The statistical signi�cance test results for comparing the ensemble
models.

Metric &
Data type

Best
Method

Hypothesis P-value Signi�cant?

RMSE on CPU
data

AR(30) < Average Model 0.0045 Yes

< WA Model 1.75E-23 Yes
< Combo Model 1.32E-35 Yes

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 101

RMSE on
Memory

AR(30) < Average Model 1.13E-06 Yes

< WA Model 0.0909 No
< Combo Model 4.45E-04 Yes

Correct
Estimation Rate
on CPU data

MA(30) > Average Model 1.73E-06 Yes

> WA Model 3.25E-30 Yes
> Combo Model 8.84E-40 Yes

Correct
Estimation Rate
on Memory data

Agile > Average Model 1.47E-19 Yes

> WA Model 5.95E-05 Yes
> Combo Model 0.0213305 Yes

Estimation
Score on CPU
data

MA(30) < Average Model 4.31E-13 Yes

< WA Model 2.97E-32 Yes
< Combo Model 6.52E-59 Yes

Estimation
Score on
Memory data

AR(30) < Average Model 2.54E-06 Yes

< WA Model 3.90E-23 Yes
< Combo Model 2.25E-29 Yes

OLR on CPU
data

AR(30) > Average Model 2.12E-15 Yes

> WA Model 8.76E-31 Yes
> Combo Model 1.22E-33 Yes

OLR on
Memory data

AR(30) > Average Model 5.61E-15 Yes

> WA Model 4.03E-44 Yes
> Combo Model 8.62E-50 Yes

OSLR on CPU
data

FFNN > Average Model 5.29E-36 Yes

> WA Model 5.66E-06 Yes
> Combo Model 0.0061 Yes

OSLR on
Memory

FFNN > Average Model 2.48E-22 Yes

> WA Model 0.0040 Yes
> Combo Model 0.0055 Yes

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 102

C.3 Investigate Shorter Forecasting Window

The results for the investigation in to using a shorter forecasting window of
15 samples (denoted by *), are shown in Figures C.1, C.2, C.4 and C.5. The
statistical signi�cance test results are shown in Table C.3.

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.06

0.08

0.10

0.12

0.14

0.16

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

RMSE: Comparing forecasting window lengths on CPU usage data

(a) CPU usage data.

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

RMSE: Comparing forecasting window lengths on Memory usage data

(b) Memory usage data.

Figure C.1: Comparing forecasting window length of 30 samples to a window length
of 15 samples (denoted by *) on Root Mean Squared Error.

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 103

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Correct Estimation Rate: Comparing forecasting window lengths on CPU usage data

(a) CPU usage data.

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o
rr

e
ct

 E
st

im
a
ti

o
n
 R

a
te

Correct Estimation Rate: Comparing forecasting window lengths on Memory usage data

(b) Memory usage data.

Figure C.2: Comparing forecasting window length of 30 samples to a window length
of 15 samples (denoted by *) on Correct Estimation Rate.

Table C.3: The statistical signi�cance test results for the investigation into using
a shorter forecasting window length.

Metric & Data
type

Hypothesis P-value Signi�cant?

RMSE on CPU data MA(30)* < MA(30) 1.85E-03 Yes
HW* < HW 4.09E-02 Yes

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 104

AR(30)* < AR(30) 3.79E-05 Yes
Markov* < Markov 1.95E-04 Yes
PRESS* < PRESS 5.48E-04 Yes
Agile* < Agile 1.47E-08 Yes
FFNN* < FFNN 1.51E-03 Yes
RNN* < RNN 2.11E-02 Yes

RMSE on Memory
data

MA(30)* < MA(30) 0.208263 No

HW* < HW 0.479556 No
AR(30)* < AR(30) 0.196025 No
Markov* < Markov 0.173971 No
PRESS* < PRESS 0.025158 Yes
Agile* < Agile 0.049637 Yes
FFNN* < FFNN 0.00743 Yes
RNN* < RNN 0.322387 No

Correct Est Rate on
CPU data

MA(30)* > MA(30) 3.84E-02 Yes

HW* > HW 8.66E-02 No
AR(30)* > AR(30) 5.21E-05 Yes
Markov* > Markov 2.83E-05 Yes
PRESS* > PRESS 8.09E-07 Yes
Agile* > Agile 4.86E-06 Yes
FFNN* > FFNN 9.73E-04 Yes
RNN* > RNN 3.21E-02 Yes

Correct Est Rate on
Memory data

MA(30)* > MA(30) 1.82E-01 No

HW* > HW 2.60E-01 No
AR(30)* > AR(30) 9.24E-02 No
Markov* > Markov 4.02E-03 Yes
PRESS* > PRESS 7.80E-02 No
Agile* > Agile 2.83E-02 Yes
FFNN* > FFNN 1.22E-01 No
RNN* > RNN 1.19E-01 No

Estimation score on
CPU data

MA(30)* < MA(30) 6.44E-04 Yes

HW* < HW 2.72E-01 No
AR(30)* < AR(30) 3.73E-08 Yes
Markov* < Markov 1.56E-03 Yes
PRESS* < PRESS 4.00E-04 Yes
Agile* < Agile 2.86E-08 Yes
FFNN* < FFNN 3.12E-03 Yes
RNN* < RNN 6.43E-03 Yes

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 105

Estimation score on
Memory data

MA(30)* < MA(30) 1.47E-01 No

HW* < HW 2.26E-01 No
AR(30)* < AR(30) 7.36E-02 No
Markov* < Markov 2.09E-01 No
PRESS* < PRESS 1.84E-01 No
Agile* < Agile 2.48E-02 Yes
FFNN* < FFNN 9.07E-02 No
RNN* < RNN 1.02E-01 No

OLR on CPU data MA(30)* > MA(30) 1.05E-04 Yes
HW* > HW 4.54E-03 Yes
AR(30)* > AR(30) 1.77E-03 Yes
Markov* > Markov 2.26E-07 Yes
PRESS* > PRESS 6.01E-03 Yes
Agile* > Agile 1.32E-05 Yes
FFNN* > FFNN 1.40E-05 Yes
RNN* > RNN 1.77E-03 Yes

OLR on Memory data MA(30)* > MA(30) 2.35E-02 Yes
HW* > HW 1.25E-02 Yes
AR(30)* > AR(30) 1.34E-03 Yes
Markov* > Markov 1.87E-04 Yes
PRESS* > PRESS 2.65E-03 Yes
Agile* > Agile 2.63E-03 Yes
FFNN* > FFNN 2.04E-02 Yes
RNN* > RNN 1.53E-02 Yes

OSLR on CPU data MA(30)* > MA(30) 2.65E-01 No
HW* > HW 6.69E-06 Yes
AR(30)* > AR(30) 2.08E-08 Yes
Markov* > Markov 2.36E-30 Yes
PRESS* > PRESS 3.19E-20 Yes
Agile* > Agile 5.02E-31 Yes
FFNN* > FFNN 3.66E-13 Yes
RNN* > RNN 5.47E-02 No

OSLR on Memory
data

MA(30)* > MA(30) 3.17E-02 Yes

HW* > HW 5.68E-07 Yes
AR(30)* > AR(30) 7.19E-14 Yes
Markov* > Markov 8.30E-32 Yes
PRESS* > PRESS 6.85E-26 Yes
Agile* > Agile 2.18E-26 Yes
FFNN* > FFNN 1.88E-09 Yes
RNN* > RNN 8.65E-09 Yes

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 106

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.30

0.35

0.40

0.45

0.50

E
st

im
a
ti

o
n
 s

co
re

Estimation Score: Comparing forecasting window lengths on CPU usage data

(a) CPU usage data.

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
st

im
a
ti

o
n
 s

co
re

Estimation Score: Comparing forecasting window lengths on Memory usage data

(b) Memory usage data.

Figure C.3: Comparing forecasting window length of 30 samples to a window length
of 15 samples (denoted by *) on Estimation score.

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 107

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

1

2

3

4

5

6

7

8

9

O
v
e
rl

o
a
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

OLR: Comparing forecasting window lengths on CPU usage data

(a) CPU usage data.

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0

1

2

3

4

5

6

7

8

O
v
e
rl

o
a
d
 L

ik
e
lih

o
o
d
 R

a
ti

o

OLR: Comparing forecasting window lengths on Memorr usage data

(b) Memory usage data.

Figure C.4: Comparing forecasting window length of 30 samples to a window length
of 15 samples (denoted by *) on Overload Likelihood Ratio.

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX C. ADDITIONAL RESULTS 108

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.00

0.05

0.10

0.15

0.20

O
v
e
rl

o
a
d
e
d
 S

ta
te

 L
ik

e
lih

o
o
d
 R

a
ti

o

OSLR: Comparing forecasting window lenghts on CPU usage data

(a) CPU usage data.

M
A

M
A

*

H
W

H
W

*

A
R

(3
0
)

A
R

(3
0
)*

M
arkov

M
arkov*

PR
E
S
S

PR
E
S
S
*

A
g
ile

A
g
ile*

FFN
N

FFN
N

*

R
N

N
R

N
N

*

0.00

0.05

0.10

0.15

0.20

0.25

O
v
e
rl

o
a
d
e
d
 S

ta
te

 L
ik

e
lih

o
o
d
 R

a
ti

o

OSLR: Comparing forecasting window lenghts on Memory usage data

(b) Memory usage data.

Figure C.5: Comparing forecasting window length of 30 samples to a window length
of 15 samples (denoted by *) on Overload State Likelihood Ratio.

Stellenbosch University  https://scholar.sun.ac.za



Bibliography

[1] R. K. Agrawal and R. Adhikari, �An Introductory Study on Time Series
Modeling and Forecasting,� CoRR, 2013.

[2] Amazon, �Amazon Elastic Compute Cloud (EC2) - Scalable Cloud
Hosting.� [Online]. Available: http://aws.amazon.com/ec2/

[3] A. Amies, G. N. Liu, H. Sluiman, and Q. G. Tong, Developing and Hosting
Applications on the Cloud. IBM Press, 2012. [Online]. Available: http:
//www.ibmpressbooks.com/bookstore/product.asp?isbn=9780133066845

[4] M. Arlitt and T. Jin, �A workload characterization study of the 1998
World Cup Web site,� IEEE Network, vol. 14, no. 3, 2000.

[5] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Gri�th, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson, and A. Rabkin, �A view
of cloud computing,� Communications of the ACM, vol. 53, no. 4, p. 50,
2010.

[6] J. Bergstra and Y. Bengio, �Random Search for Hyper-Parameter Opti-
mization,� Journal of Machine Learning Research, vol. 13, pp. 281�305,
2012.

[7] A. Boardman, F. S. Schlindwein, A. P. Rocha, and A. Leite, �A study
on the optimum order of autoregressive models for heart rate variability.�
Physiological measurement, vol. 23, pp. 325�336, 2002.

[8] R. G. Brown, Smoothing, Forecasting and Predicition of Discrete Time
Series, ser. Dover Phoenix Editions. Dover Publications, 1963. [Online].
Available: https://books.google.co.za/books?id=XXFNW_QaJYgC

[9] R. Buyya and M. Murshed, �Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,� Concurrency and computation: practice . . . , pp. 1�37, 2002.

[10] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, �A limited memory algorithm
for vound constrained optimization,� Society of Industrial and Applied
Mathematics, vol. 16, no. 5, pp. 1190�1208, 1995.

109

Stellenbosch University  https://scholar.sun.ac.za

http://aws.amazon.com/ec2/
http://www.ibmpressbooks.com/bookstore/product.asp?isbn=9780133066845
http://www.ibmpressbooks.com/bookstore/product.asp?isbn=9780133066845
https://books.google.co.za/books?id=XXFNW_QaJYgC


BIBLIOGRAPHY 110

[11] F. Caglar and A. Gokhale, �iOverbook: Intelligent Resource-
Overbooking to Support Soft Real-time Applications in the Cloud,� in
Cloud Computing (CLOUD), 2014 IEEE 7th International Conference
on, 2014. [Online]. Available: http://www.dre.vanderbilt.edu/~gokhale/
WWW/papers/CLOUD-2014.pdf

[12] J. L. H. Carvalho, A. F. Rocha, I. dos Santos, C. Itiki, L. F. Junqueira, and
F. A. O. Nascimento, �Study on the optimal order for the auto-regressive
time-frequency analysis of heart rate variability,� Proceedings of the 25th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (IEEE Cat. No.03CH37439), pp. 2621�2624, 2003.

[13] A. Chandra, W. Gong, and P. Shenoy, �Dynamic resource allocation
for shared data centers using online measurements,� Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems - SIGMETRICS '03, p. 300, 2003. [Online].
Available: http://portal.acm.org/citation.cfm?doid=781027.781067

[14] M. Craven, �Markov Chain Models (Part 1),� p. 8, 2011. [Online]. Avail-
able: https://www.biostat.wisc.edu/bmi576/lectures/markov-chains-1.
pdf

[15] C. Croarkin and P. Tobias, NIST/SEMATECH e-handbook of statistical
methods, 2014, vol. 1. [Online]. Available: http://www.itl.nist.gov/
div898/handbook/

[16] Dropbox, �Dropbox.� [Online]. Available: https://www.dropbox.com/?

[17] R. Durbin, S. Eddy, and A. S. Krogh, Biological sequence analysis: Proba-
bilistic models of proteins and nucleic acids. Cambridge University Press,
1998.

[18] T. Dutoit and F. Marqués, Applied Signal Processing. Boston, MA:
Springer US, 2009. [Online]. Available: http://link.springer.com/10.
1007/978-0-387-74535-0

[19] M. Ebell and H. Barry, �Likelihood Ratios Part 1: Introduction,� 2008.
[Online]. Available: http://omerad.msu.edu/ebm/Diagnosis/Diagnosis6.
html

[20] J. L. Elman, �Finidng structure in time,� Cognitive Sci-
ence, vol. 14, no. 2, pp. 179�211, 1990. [Online]. Avail-
able: http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1/
abstracthttp://doi.wiley.com/10.1207/s15516709cog1402_1

[21] G. Eshel, �The yule walker equations for the AR coe�cients,� Internet
resource, pp. 1�8, 2003. [Online]. Available: http://www.stat.sc.edu/
~vesselin/STAT520_YW.pdf

Stellenbosch University  https://scholar.sun.ac.za

http://www.dre.vanderbilt.edu/~gokhale/WWW/papers/CLOUD-2014.pdf
http://www.dre.vanderbilt.edu/~gokhale/WWW/papers/CLOUD-2014.pdf
http://portal.acm.org/citation.cfm?doid=781027.781067
https://www.biostat.wisc.edu/bmi576/lectures/markov-chains-1.pdf
https://www.biostat.wisc.edu/bmi576/lectures/markov-chains-1.pdf
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
https://www.dropbox.com/?
http://link.springer.com/10.1007/978-0-387-74535-0
http://link.springer.com/10.1007/978-0-387-74535-0
http://omerad.msu.edu/ebm/Diagnosis/Diagnosis6.html
http://omerad.msu.edu/ebm/Diagnosis/Diagnosis6.html
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1/abstract http://doi.wiley.com/10.1207/s15516709cog1402_1
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402_1/abstract http://doi.wiley.com/10.1207/s15516709cog1402_1
http://www.stat.sc.edu/~vesselin/STAT520_YW.pdf
http://www.stat.sc.edu/~vesselin/STAT520_YW.pdf


BIBLIOGRAPHY 111

[22] N. R. Farnum and L. W. Stanton, Quantitative Forecasting Methods, ser.
Duxbury series in statistics and decision sciences. PWS-Kent Pub. Co.,
1990, vol. 41. [Online]. Available: http://books.google.co.za/books?id=
9AWYmbMLYmUC

[23] M. Gerolimetto, �Autocorrelation function analysis: Theorethical auto-
correlation function,� 2010.

[24] Z. Gong, X. Gu, and J. Wilkes, �PRESS: PRedictive Elastic
reSource Scaling for cloud systems,� in Proceedings of the 2010
International Conference on Network and Service Management, CNSM
2010. Ieee, Oct. 2010, pp. 9�16. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5691343

[25] Google, �Gmail.� [Online]. Available: mail.google.com

[26] ��, �Google App Engine.� [Online]. Available: https://developers.
google.com/appengine/

[27] M. Hamdaqa, T. Livogiannis, and L. Tahvildari, �A Reference
Model for Developing Cloud Applications,� CLOSER, 2011. [Online].
Available: http://stargroup.uwaterloo.ca/~mhamdaqa/publications/
AREFERENCEMODELFORDEVELOPINGCLOUDAPPLICATIONS.
pdf

[28] J. L. Hellerstein, �Google cluster data,� Google research blog, Jan.
2010. [Online]. Available: http://googleresearch.blogspot.com/2010/01/
google-cluster-data.html

[29] J. Huang, C. Li, and J. Yu, �Resource prediction based on double
exponential smoothing in cloud computing,� 2012 2nd International
Conference on Consumer Electronics, Communications and Networks
(CECNet), pp. 2056�2060, 2012. [Online]. Available: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6201461

[30] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice, 2013. [Online]. Available: http://otexts.com/fpp/

[31] R. J. Hyndman, �Forecasting using Exponential smoothing methods,�
2013. [Online]. Available: http://robjhyndman.com/talks/RevolutionR/
5-ExponentialSmoothing.pdf

[32] R. J. Hyndman and A. B. Koehler, �Another look at measures of forecast
accuracy,� International Journal of Forecasting, vol. 22, no. 4, pp. 679�
688, 2006.

Stellenbosch University  https://scholar.sun.ac.za

http://books.google.co.za/books?id=9AWYmbMLYmUC
http://books.google.co.za/books?id=9AWYmbMLYmUC
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5691343
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5691343
mail.google.com
https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://stargroup.uwaterloo.ca/~mhamdaqa/publications/A REFERENCEMODELFORDEVELOPINGCLOUD APPLICATIONS.pdf
http://stargroup.uwaterloo.ca/~mhamdaqa/publications/A REFERENCEMODELFORDEVELOPINGCLOUD APPLICATIONS.pdf
http://stargroup.uwaterloo.ca/~mhamdaqa/publications/A REFERENCEMODELFORDEVELOPINGCLOUD APPLICATIONS.pdf
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6201461
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6201461
http://otexts.com/fpp/
http://robjhyndman.com/talks/RevolutionR/5-ExponentialSmoothing.pdf
http://robjhyndman.com/talks/RevolutionR/5-ExponentialSmoothing.pdf


BIBLIOGRAPHY 112

[33] R. Illsley and Rackspace, �The Role of IT Principles in IT Governance,�
2014. [Online]. Available: http://www.rackspace.co.uk/sites/default/
�les/UnlockedNov2014_TheRoleOfCloudInITModernisation_Ovum.pdf

[34] B. Jennings and R. Stadler, �Resource Management in Clouds:
Survey and Research Challenges,� Journal of Network and Systems
Management, Mar. 2014. [Online]. Available: http://link.springer.com/
10.1007/s10922-014-9307-7

[35] M. I. Jordan, �Serial Order: A Parallel, Distributed Processing Ap-
proach,� Advances in psychology, vol. 121, no. 8604, pp. 471�495, 1986.

[36] P. Kalekar, �Time series forecasting using Holt-Winters exponential
smoothing,� Kanwal Rekhi School of Information Technology, no.
04329008, pp. 1�13, 2004. [Online]. Available: http://www.it.iitb.ac.in/
~praj/acads/seminar/04329008_ExponentialSmoothing.pdf

[37] D. Kriesel, �A Brief Introduction to Neural Networks,�
2005. [Online]. Available: http://www.dkriesel.com/en/
science/neural_networkshttp://www.dkriesel.com/_media/science/
neuronalenetze-en-zeta2-2col-dkrieselcom.pdf

[38] J. Kupferman, J. Silverman, P. Jara, and J. Browne, �Scaling into
the cloud,� CS270-Advanced Operating Systems, pp. 1�8, 2009. [Online].
Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=
intitle:Scaling+Into+The+Cloud#0

[39] S. L. S. Lili, Y. S. Y. Shoubao, G. L. G. Liangmin, and W. B. W. Bin,
�A Markov Chain Based Resource Prediction in Computational Grid,�
2009 Fourth International Conference on Frontier of Computer Science
and Technology, no. 60673172, pp. 0�5, 2009.

[40] T. Liu, �Application of Markov chains to analyze and predict the time
series,� Modern Applied Science, pp. 508�511, 2010. [Online]. Available:
http://www.ccsenet.org/journal/index.php/mas/article/view/6040

[41] Z. Liu and S. Cho, �Characterizing machines and workloads on a Google
cluster,� Proceedings of the International Conference on Parallel Process-
ing Workshops, pp. 397�403, 2012.

[42] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, �Auto-scaling
Techniques for Elastic Applications in Cloud Environments,� Technical
Report: University of the Basque Country, pp. 11 � 14, 2012.

[43] M. Mao and M. Humphrey, �Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud work�ows,� 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
pp. 1�12, 2011.

Stellenbosch University  https://scholar.sun.ac.za

http://www.rackspace.co.uk/sites/default/files/UnlockedNov2014_TheRoleOfCloudInITModernisation_Ovum.pdf
http://www.rackspace.co.uk/sites/default/files/UnlockedNov2014_TheRoleOfCloudInITModernisation_Ovum.pdf
http://link.springer.com/10.1007/s10922-014-9307-7
http://link.springer.com/10.1007/s10922-014-9307-7
http://www.it.iitb.ac.in/~praj/acads/seminar/04329008_ExponentialSmoothing.pdf
http://www.it.iitb.ac.in/~praj/acads/seminar/04329008_ExponentialSmoothing.pdf
http://www.dkriesel.com/en/science/neural_networks http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf
http://www.dkriesel.com/en/science/neural_networks http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf
http://www.dkriesel.com/en/science/neural_networks http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scaling+Into+The+Cloud#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Scaling+Into+The+Cloud#0
http://www.ccsenet.org/journal/index.php/mas/article/view/6040


BIBLIOGRAPHY 113

[44] P. Mell and T. Grance, �The NIST De�nition of Cloud Computing,�
NIST, Tech. Rep., 2009. [Online]. Available: http://www.nist.gov/itl/
cloud/upload/cloud-def-v15.pdf

[45] V. Nae, A. Iosup, and R. Prodan, �Dynamic Resource Provisioning in
Massively Multiplayer Online Games,� IEEE Transactions on Parallel
and Distributed Systems, vol. 22, no. 3, pp. 380�395, Mar. 2011.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5444882

[46] R. Nau, �Moving average and exponential smoothing models.� [Online].
Available: http://people.duke.edu/~rnau/411avg.htm#SMA

[47] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, �AGILE:
elastic distributed resource scaling for Infrastructure-as-a-Service,� 10th
International Conference on Autonomic Computing (ICAC '13), p. 14,
2013. [Online]. Available: http://dance.csc.ncsu.edu/papers/icac2013.
pdfhttp://cairo.csc.ncsu.edu/icac13/main_20130306120721_v2.pdf

[48] M. A. Nielsen, Neural Networks and Deep Learning. Determination
Press, 2015. [Online]. Available: http://neuralnetworksanddeeplearning.
com/index.html

[49] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic
processes. Tata McGraw-Hill Education, 1991.

[50] J. Perktold, �StatsModels: Statistics in Python.� [Online]. Available:
http://statsmodels.sourceforge.net/

[51] R. Prodan and V. Nae, �Prediction-based real-time resource provisioning
for massively multiplayer online games,� Future Generation Computer
Systems, vol. 25, no. 7, pp. 785�793, Jul. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167739X08001933

[52] A. Queiroz, �Implementation of Holt-Winters algorithms.� [Online].
Available: https://gist.github.com/andrequeiroz/5888967

[53] C. Reiss, J. Wilkes, and J. Hellerstein, �Google cluster-
usage traces: format+ schema,� Google Inc., . . . , pp. 1�14,
2011. [Online]. Available: http://googleclusterdata.googlecode.com/�les/
Googlecluster-usagetraces-format+schema(2011.10.27external).pdf

[54] RightScale, �RightScale,� 2015. [Online]. Avail-
able: http://www.rightscale.com/home-v1?utm_expid=99127306-75.
HRZOZscaQUmmbp3-FlBRkg.1

[55] F. Rosenblatt, The perceptron, a perceiving and recognizing automaton
Project Para. Cornell Aeronautical Laboratory, 1957.

Stellenbosch University  https://scholar.sun.ac.za

http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5444882
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5444882
http://people.duke.edu/~rnau/411avg.htm#SMA
http://dance.csc.ncsu.edu/papers/icac2013.pdf http://cairo.csc.ncsu.edu/icac13/main_20130306120721_v2.pdf
http://dance.csc.ncsu.edu/papers/icac2013.pdf http://cairo.csc.ncsu.edu/icac13/main_20130306120721_v2.pdf
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html
http://statsmodels.sourceforge.net/
http://linkinghub.elsevier.com/retrieve/pii/S0167739X08001933
https://gist.github.com/andrequeiroz/5888967
http://googleclusterdata.googlecode.com/files/Google cluster-usage traces - format + schema (2011.10.27 external).pdf
http://googleclusterdata.googlecode.com/files/Google cluster-usage traces - format + schema (2011.10.27 external).pdf
http://www.rightscale.com/home-v1?utm_expid=99127306-75.HRZOZscaQUmmbp3-FlBRkg.1
http://www.rightscale.com/home-v1?utm_expid=99127306-75.HRZOZscaQUmmbp3-FlBRkg.1


BIBLIOGRAPHY 114

[56] P. Rouanet, �dtw 1.0 : Dynamic Time Warping Python Module.�
[Online]. Available: https://github.com/pierre-rouanet/dtw

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, �Learning representa-
tions by back-propagating errors,� Nature, vol. 323, no. 6088, pp. 533�536,
1986.

[58] T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rück-
stieÿ, and J. Schmidhuber, �PyBrain,� Journal of Machine Learning Re-
search, 2010.

[59] Scikit-learn, �3.3. Model evaluation: quantifying the quality of
predictions.� [Online]. Available: http://scikit-learn.org/stable/modules/
model_evaluation.html#regression-metrics

[60] SciPy.org, �SciPy.org.� [Online]. Available: http://www.scipy.org/

[61] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, �CloudScale: elastic
resource scaling for multi-tenant cloud systems,� Proceedings of the
2nd Symposium on Cloud Computing, pp. 5:1�-5:14, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2038921

[62] B. Urgaonkar and P. Shenoy, �Dynamic provisioning of multi-tier internet
applications,� . . . Computing, 2005. ICAC . . . , 2005. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1498066

[63] G. Walker, �On periodicity in series of related terms,� Proceedings of the
Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, pp. 518�532, 1931.

[64] F. Wasilewski, �PyWavelets - Discrete Wavelet Transform in Python.�
[Online]. Available: http://www.pybytes.com/pywavelets/#

[65] Wikimedia Analytics, �Page view statistics for Wikimedia projects.�
[Online]. Available: http://dumps.wikimedia.org/other/pagecounts-raw/

[66] ��, �Wikistats: Wikimedia Statistics.� [Online]. Available: http:
//stats.wikimedia.org/

[67] J. Wilkes, �More Google cluster data,� Google research blog, Nov.
2011. [Online]. Available: http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html

[68] P. R. Winters, �Forecasting Sales by Exponentially Weighted Moving
Averages,� Management Science, vol. 6, no. 3, pp. 324�342, 1960.
[Online]. Available: http://dx.doi.org/10.1287/mnsc.6.3.324

Stellenbosch University  https://scholar.sun.ac.za

https://github.com/pierre-rouanet/dtw
http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#regression-metrics
http://www.scipy.org/
http://dl.acm.org/citation.cfm?id=2038921
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1498066
http://www.pybytes.com/pywavelets/#
http://dumps.wikimedia.org/other/pagecounts-raw/
http://stats.wikimedia.org/
http://stats.wikimedia.org/
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://dx.doi.org/10.1287/mnsc.6.3.324


BIBLIOGRAPHY 115

[69] Q. Zhang, L. Cheng, and R. Boutaba, �Cloud computing: state-
of-the-art and research challenges,� Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7�18, Apr. 2010. [Online]. Available:
http://www.springerlink.com/index/10.1007/s13174-010-0007-6

Stellenbosch University  https://scholar.sun.ac.za

http://www.springerlink.com/index/10.1007/s13174-010-0007-6

	Declaration
	Abstract
	Uittreksel
	Acknowledgements
	Dedications
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Symbols
	Forecasting Methods
	Neural Networks
	Evaluation Metrics


	Introduction
	Motivation
	Background
	Cloud computing
	Cloud service levels
	Actors in the cloud environment
	Cloud workloads

	Related Work
	Auto-scaling techniques for elastic applications in cloud environments
	Resource management in clouds: survey and research challenges

	Research Objectives
	Contributions
	Overview
	Literature and theory of forecasting methods
	Implementation of forecasting methods
	Results: Comparison of forecasting methods


	Literature Study
	Cloud Resource Provision
	Resource prediction using Exponential Smoothing
	Resource prediction using Auto-regression
	Resource prediction using Markov chains
	Resource prediction using Neural Networks

	Summary

	Methods for Forecasting
	Defining Time-series and Forecasting
	Moving Average (MA)
	MA model parameter estimation
	Forecasting using MA

	Exponential Smoothing
	Exponential Smoothing model parameter estimation
	Forecasting using Brown's Exponential Smoothing

	Holt's Linear Exponential Smoothing
	Holt's model parameter estimation
	Forecasting using Holt's Exponential Smoothing

	Holt-Winters' Additive Exponential Smoothing
	Holt-Winters' model parameter estimation
	Forecasting with Holt-Winters' method

	Auto Regression (AR)
	Simple Linear Regression
	Linear regression parameter estimation
	Forecasting with linear regression
	Autocorrelation Function
	Auto-regression definition
	Auto-regression parameters estimation
	Forecasting with an AR model

	Markov Chains
	First-order Markov chain model
	First-order Markov chain parameter estimation
	Forecasting using a first-order Markov model
	Second-order Markov chain model

	Neural Networks
	Neural Network structure
	Sigmoid Neuron
	Learning Neural Networks
	Forecasting using Neural Networks
	Recurrent neural networks
	Elman recurrent neural networks

	Summary

	Implementation of Forecasting Methods
	Holt-Winters Implementation
	Auto-regression Implementation
	Markov Chain Implementation
	PRESS Implementation
	Agile Implementation
	Neural Network Implementation
	Resource Forecasting Pipeline
	Summary

	Experimental Investigation
	Experimental Setup
	Evaluation parameters
	Datasets
	Statistical significance test

	Investigate PRESS And Agile's Results
	Motivation
	Setup
	Results
	Interpretation

	Evaluation Using Root Mean Squared Error
	Motivation
	Setup
	Results
	Interpretation

	Evaluation Using Correct Estimation Rate
	Motivation
	Setup
	Results
	Interpretation

	Evaluation Using Estimation Score
	Motivation
	Setup
	Results

	Evaluation Using Overload Likelihood Ratio
	Motivation
	Setup
	Results
	Interpretation

	Evaluation Using Overloaded State Likelihood Ratio
	Motivation
	Setup
	Results
	Interpretation

	Ensemble Model Evaluation
	Motivation
	Setup
	Results
	Interpretation

	Investigate Shorter Forecasting Window
	Motivation
	Setup
	Results
	Interpretation

	Summary

	Conclusions
	Summary of Work
	Cloud workloads and forecasting methods
	Evaluation metrics
	Experimental investigations

	Concluding Perspective
	Recommendations
	Future Work

	Appendices
	Derivations
	Yule-Walker Equations
	For lag of 1
	For lag of 2
	For lag of k


	Datasets
	2011 Google Cluster Dataset
	Wikipedia Pageview Dataset

	Additional Results
	Statistical Significance Test Results
	Ensemble models: Statistical Significance Test Results
	Investigate Shorter Forecasting Window

	Bibliography



