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SUMMARY 

Remote sensing and vegetation indices were evaluated for its usefulness to monitor the success of 

the rehabilitation programme of the decommissioned tailings storage facility (TSF1) of the 

Navachab Gold Mine, Karibib, Namibia. The study aimed to objectively illustrate the 

rehabilitation progression from tailings (baseline) to soil (capping) and vegetation (planted as well 

as natural). Baseline data sets of 2004 and 2005 were compared with imagery of 2009, 2010 and 

2011. All the images were subjected to panchromatic sharpening using the subtractive resolution 

merge (SRM) method before georegistration. As no recent accurate topographical maps were 

available of the study area, the May 2010 image was used as a reference image. All other images 

were georegistered to this image. A number of vegetation indices (VIs) were evaluated.  

The results showed that the normalised difference vegetation index (NDVI) and the transformed 

vegetation index (TVI) provided the most promising results. Although the difference vegetation 

index (DVI) and enhanced vegetation index (EVI) distinguished the vegetation, rock, and soil 

classes, it was not as successful as the other VIs in classifying the rain water pond.  

TVI and NDVI were further evaluated for their efficacy in detecting changes. This was done by 

generating a series of change images and by qualitatively comparing them to false colour images 

of the same period. Both the NDVI and TVI delivered good results, but it was found that the TVI 

is more successful when water is present in the images. The research concludes that change 

analyses based on the TVI is an effective method for monitoring mine rehabilitation programmes. 

KEYWORDS 

Remote sensing, mining, rehabilitation, pansharpening, monitoring, change detection, vegetation 

indices  
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OPSOMMING 

Afstandswaarneming en plantegroei-indekse is ge-evalueer vir die gebruikswaarde daarvan om 

sukses van die rehabilitasieprogram vir die geslote slykdam of tailings storage facility (TSF1) van 

die Navachab Goudmyn, Karibib, Namibië vas te stel. Die studie se doelwit was om die progressie 

in die rehabilitasie van slyk (basislyn) na grond (dekmateriaal) en plantegroei (aangeplant en 

natuurlik) te illustreer. Basislyndatastelle 2004 en 2005 is vergelyk met 2009, 2010, en 2011 

beelde. Al die beelde is panchromaties verskerp deur die subtractive resolution merge (RSM) 

metode voor georegistrasie uit te voer. Aangesien geen onlangse, akkurate topografiese kaarte van 

die studiegebied beskikbaar was nie, is die beeld vir Mei 2010 as ‘n verwysingsbeeld gebruik. Al 

die ander beelde is op die laasgenoemde beeld gegeoregistreer. 

Die resultate het gewys dat die normalised difference vegetation index (NDVI) en die transformed 

vegetation index (TVI) die mees belowende resultate lewer. Al het die difference vegetation index 

(DVI) en enhanced vegetation index (EVI) goed onderskei tussen plantegroeiklasse en grond- en 

gesteentesklasse was dit nie so suksesvol met die klassifikasie van die reënwaterpoel nie.  

TVI en NDVI is verder geëvalueer vir effektiwiteit om verandering waar te neem. Dit is gedoen 

deur ‘n reeks van veranderingsbeelde te skep en dit dan kwalitatief met die valskleur-beelde vir 

dieselfde tydperk te vergelyk. Beide die NDVI en TVI het goeie resultate gelewer, maar die TVI 

was meer suksesvol om beelde met water te klassifiseer. Die navorsing lei tot die gevolgtrekking 

dat veranderingsanalises met die TVI ‘n effektiewe metode vir die monitoring van rehabilitasie 

programme is. 

TREFWOORDE 

Afstandswaarneming, rehabilitasie, panchromatiese verskerping, monitering, 

veranderingswaarneming, plantegroei-indekse 
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CHAPTER 1   INTRODUCTION 

Environmental legislation is becoming stricter and more comprehensive by the year and, 

concomitantly, the need for mining companies to prove compliance with government regulations 

and requirements. One of these requirements from governments around the world is that of mine 

closure. In the Namibian environmental impact assessment regulations, under the Environmental 

Management Act 7 of 2007 (Namibia 2012: 12), it is stated that already in the scoping phase an 

Environmental Impact Assessment (EIA) should include “information on any proposed 

management, mitigation, protection or remedial measures to be undertaken to address the effects 

on the environment that have been identified including objectives in respect of the rehabilitation 

of the environment and closure.”  

Because detailed Namibian guidelines for rehabilitation are not available, the AngloGold Ashanti 

(2009: 7) closure and rehabilitation standard document calls for the development of a rehabilitation 

programme to “assess the extent of impacts on land and to develop, implement, monitor, assess 

and refine rehabilitation methodologies in line with agreed closure objectives and/or 

environmental permit conditions.”  This standard refers to one of the leading documents on mine 

closure and rehabilitation by the Australian Government Department of Resources, Energy and 

Tourism (Australia 2006: 1-2) where rehabilitation is described as “the process used to repair the 

impacts of mining on the environment” and one of the objectives of rehabilitation as “establishing 

appropriate sustainable ecosystems.”  

Recent improvements in remote sensing sensors and software offer new possibilities for ecosystem 

change monitoring in mining areas. Instead of relying on ground-level studies of flora, satellite 

imagery combined with vegetation classification, vegetation indices and change detection can be 

used to assess the success of rehabilitation programmes.  

The various remote sensing assessment and rehabilitation monitoring tools available are 

overviewed in the next section.  

1.1 REMOTE SENSING TOOLS FOR MINE REHABILITATION ASSESSMENT 

A basic understanding of mine rehabilitation is needed before monitoring options are discussed. 

The aims of monitoring mine rehabilitation progress are similar to other types of ecosystem change 

or succession monitoring. 
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The following sections describe mine rehabilitation procedures and remote sensing techniques that 

can be used to monitor progress.  

1.1.1 Mine rehabilitation 

Rehabilitation resembles a form of primary succession (Glenn-Lewin, Peet & Veblen 1992) where 

a disturbed and barren area like a waste rock dump (WRD) or tailings storage facility (TSF) is 

covered in soil and vegetated over time to a point where a stable ecosystem is established (Wiegleb 

& Felinks 2001). Succession is the orderly development of plant communities through a series of 

seral stages where a seral stage refers to an intermediate stage in ecosystem development 

(Clements, Weaver & Hanson 1929; Gibbons & Freudenberger 2006). 

Walker & Del Moral (2003) describe primary succession as the process of ecosystem development 

of surfaces stripped of biological activity and includes the development of complex ecological 

systems from simple biotic and abiotic (non-biological) components that is initiated when plants, 

animals and microbes colonize the disturbed surfaces. Thompson & Thompson (2004) reported 

that even in Western Australia there were no mandated standards for assessing rehabilitation 

success for the mining industry. They argue that the primary objective for rehabilitation 

programmes should focus on the creation of near-natural, self-sustaining, functional ecosystems 

that can be assessed by monitoring flora and fauna. None of the existing mines used the same 

monitoring strategy and across the board the monitoring was outsourced. 

Ecological function analysis (EFA) (Tongway & Hindley 2003; Randall 2004) is an effective but 

labour-intensive and time-consuming method to assess rehabilitation success by incorporating 

landscape organisation indices and soil surface indices. The core component of EFA is landscape 

function analysis (LFA), vegetation and structure composition and habitat complexity. Tongway 

& Hindley (2005:11) describes the LFA process as a “monitoring procedure that uses rapidly 

acquired field-assessed indicators to assess the biogeochemical functioning of landscapes at the 

hillslope scale.” This method is useful to standardise rehabilitation monitoring methods but it 

remains labour-intensive and needs to be done on the site. Gibbons & Freudenberger (2006) state 

that there are numerous other approaches also employed for rapid, in-situ assessments of 

vegetation condition. These methods only look at vegetation factors and not the associated changes 

in soil conditions. Remote sensing offers a distinct advantage in this regard as soil can be 

distinguished from tailings due to their spectral differences.  
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The question therefore arises on how to prove that a sustainable ecosystem has been established 

in an industry such as mining that is not focussed on employing full time ecologists?  

In the next section some existing studies are overviewed.  

1.1.2 Rehabilitation monitoring options using remote sensing 

Various processing tools are available to convert remotely sensed images to thematic maps. Straker 

et al. (2004) demonstrated the potential of supervised classification of Quickbird images combined 

with an existing ground-based vegetation sampling programme for use in rehabilitation assessment 

and as documented proof of fulfilment of regulatory objectives. In a very recent study Al-Ruzouq 

& Al Rawashdeh (2014) used remote sensing and supervised classification to highlight landscape 

characterization needed for mine rehabilitation. 

Change detection using remotely sensed images is a way to quantify the success of rehabilitation 

efforts. Several studies have monitored changes in vegetation status using various broadband 

multispectral satellite images. For example, Li et al. (2004) investigated change from barren land 

to grassland and cropland in the Yulin prefecture of China using Landsat Thematic Mapper (TM) 

data, whereas Röder et al. (2008) analysed a time series of remote sensing data spanning 1984 to 

2000 for a retrospective assessment of rangeland processes1 in a test area of northern Greece using 

Landsat-5 TM and Landsat-7 enhanced thematic mapper plus (ETM+) imagery. They then 

interpreted the data in the light of land-use practices and previous management interventions. 

Another example is Zhang & Guo (2008) who used SPOT-4 high-resolution visible and infrared 

(HRVIR) and Landsat-5 TM imagery to evaluate vegetation health.  

Mehner et al. (2004) examined the improvement of vegetation classification from low-resolution 

imagery (Landsat TM and SPOT HRV) to high-resolution imagery (Ikonos) by applying 

traditional remote sensing classification techniques. Basic radiometric corrections were carried out 

and the data was geometrically corrected and referenced to the British National Grid by using 

ground control points (GCPs). They needed a ground resolution of 10m or better and multispectral 

imagery with coverage in the near-infrared (NIR) wavelengths to maximise spectral discrimination 

between vegetation types and this was obtained through Ikonos data with 4m spatial resolution 

                                                 

 

1 Rangeland processes here refers to the local grazing regime and the factors driving it. 
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and a NIR band (Band 4). Unfortunately, the short-wave infrared (SWIR) information, which 

would have been provided by Landsat TM Band 5, was not available from the Ikonos data. They 

also found that winter and summer images maximised the discrimination between vegetation types 

as some plants are spectrally more distinct in winter. The normalised difference vegetation index 

(NDVI) was calculated to enhance discrimination between different vegetation types and to aid 

vegetation classification. Shadows were mainly a result of the steep relief of the study area. 

Switching from a hard or rigid to a soft classification approach improved the identification of 

mixed vegetation types. Problems related to snow and shaded areas on the winter image were 

experienced. 

Turner et al. (2003) and Walsh et al. (2008) concluded that imagery with high spatial resolutions, 

such as those provided by Ikonos and Quickbird, show great potential for the identification of 

vegetation types up to species level. Species differences in phenology (onset of greenness, fruiting 

and senescence) allow accurate identification of species type but require sensors with high 

temporal resolution. However, costs escalate when an area has to be scanned repeatedly (Gross, 

Goetz & Cihlar 2009). Therefore, instead of having to perform actual species-level flora 

identification, vegetation indices offer a measure to evaluate the state of vegetation. Data 

continuity can also be ensured by a multisensor detection procedure (Wulder, Butson & White 

2007). 

Vegetation indices are dimensionless, radiometric measures that indicate relative abundance and 

activity of green vegetation (Jensen 2007). Various indices have been developed for vegetation 

monitoring, NDVI being the most commonly used example. Leblon (1997) maintains that an ideal 

vegetation index should be sensitive to the vegetation and not the underlying soil. This author 

further explains that most ratio-based vegetation indices use the red and near-infrared (NIR) bands 

which contain the most information on vegetation characteristics and where the contrast between 

vegetation and soil is maximal. Shank (2008) showed that revegetation of mine sites can be 

successfully evaluated using NDVI and high-resolution Quickbird MS imagery while Zhang & 

Guo (2008) compared 13 different vegetation indices calculated from SPOT-4 and Landsat-5 TM 

imagery for evaluating the prairie ecosystem characterised by an abundance of dead material along 

with soil and green vegetation classes.  

NDVI’s limitations relate to saturation effects for dense vegetation canopies and a negative 

influence on soil background, especially for bright soils and sparse vegetation canopies. In their 
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study, Röder et al. (2008) introduced laboratory measurements of weathered gneiss rock and 

developed cambisol soil to represent potential background materials and minimise the effect of the 

soil. Considering the problems encountered with the NDVI, they opted for linear spectral mixture 

analysis to infer quantitative estimates of proportional green vegetation on a per-pixel basis. They 

used Landsat imagery but introduced a digital elevation model (DEM) to register a master image 

onto the Greek universal transverse Mercator (UTM)-based regency system. All other images were 

subsequently referenced to the master image with vast numbers of GCPs identified in cross-

correlation search windows. 

These cited studies were done over relatively large areas, but given that satellite sensor technology 

is becoming more advanced and higher-resolution imagery from Ikonos (Menher et al. 2004) and 

Quickbird (Shank 2008; Wulder et al. 2008; Hester et al. 2011) show promising results, more 

accurate change detection over smaller areas like mine sites has become feasible. Furthermore, 

image fusion or pansharpening can be implemented to increase the spatial resolution of MS data 

but care needs to be taken to employ the methods that preserve spectral fidelity (Švab & Oštir 

2006). 

Short-term assessment of change detection was done by Jarlan et al. (2007), Antwi, Krawczynski 

& Wiegleb (2008) and Koruyan et al. (2012) whereas Wulder et al. (2008) studied multitemporal 

cross-sensor change detection with medium-resolution images from Landsat, ASTER and SPOT 

and also highlighted the importance of data continuity for long-term monitoring programmes.  

A long-term reclamation assessment of mine rehabilitation using NDVI derived from red and NIR 

bands of multitemporal airborne MS imagery has been done for the period 2001 to 2011 for the 

Highland Valley Copper Mine reclamation project (Richards, Martínez & Borstad 2003; Richards, 

Borstad & Martínez 2004; Brown et al. 2006; Borstad et al. 2009; Martínez et al. 2012). This 

assessment was one of the first published, long-term remote monitoring programmes of mine 

rehabilitation. 

Repeatability of image scans is crucial to ensure continuous monitoring. Pre-ordered collections 

of higher-resolution images is possible but sensor characteristics still need to correspond to 

historical collections regarding spectral band response function, solar zenith angle as well as sun-

object sensor orientation to ensure accurate assessments. The timing of the imagery acquisition is 

very important to eliminate any effects caused by changes in soil moisture changes (Shank 2008) 

and precipitation patterns must be studied before placing orders.  
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Validation of classes can be done either by comparing the spectral classes to an extensive available 

database of spectral reflectance measurements of typical soils, rocks and plant types (Röder et al. 

2008) or by visually identifying features from the images and obtaining their spectral curves 

(Zhang & Guo 2008). Object-based image analysis is often the preferred and more accurate method 

for classification of medium to high spatial resolution images in land-use and land cover studies 

(Walsh et al. 2008; Castillejo-González et al. 2009; Myint et al. 2011; Whiteside, Boggs & Maier 

2011; Agarwal et al. 2013).  

Imaging spectroscopy and hyperspectral data also play important roles in accurately describing 

mine rehabilitation regarding the unique, pH levels related to acid mine drainage1 (AMD) as well 

as land-use and land cover changes (Paniagua et al. 2009). 

In summary, several areas of investigation relevant to the study of a small-scale rehabilitation 

project have been highlighted, namely the characteristics of satellite imagery, the availability of 

satellite imagery, vegetation characteristics, the calculation of vegetation indices and methods of 

change detection. These areas of investigation will be pursued in a study of rehabilitation 

monitoring at the Navachab Gold Mine in Namibia. The rest of the chapter is devoted to describing 

the research problem, aim and objectives, the study site, the research methodology followed and 

methods applied, as well as the design of the research. 

1.2 NAVACHAB GOLD MINE AS A MODEL FOR STUDY 

The Navachab Gold Mine is situated about 150km north-north-west from the Namibian capital of 

Windhoek. The mine is located on Navachab Farm 10km west of Karibib. The farm is roughly 

6000ha in size of which about 500ha is now under some form of mining activity. Figure 1.1 shows 

the location of the Navachab mine in Namibia as indicated by the AngloGold Ashanti Namibia 

Country Report (AngloGold Ashanti 2008). During the initial study period, Navachab was the only 

gold mine in Namibia and belonged to AngloGold Ashanti. The mine was sold to QKR Namibia 

during 2014. 

                                                 

 

1 Acid mine drainage, or also called acid rock drainage, is the term used in the mining industry when sulphide-containing rock is 

exposed to air through the mining process. The natural oxidation process can acidify water which in turn has increased capacity to 

leach elements from the rock. 
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Exploration work on the farm started in 1984 and mining activities commenced in 1989. By 1990 

the opencast gold mine was in full production. The processing plant uses a cyanide process to 

remove the gold from the ores and because a fraction of the cyanide remains in the waste product 

or tailings, all tailings have to be covered under capping material. The first tailings storage facility, 

TSF1, was commissioned in 1998 for the disposal of tailings. Waste rock is deposited on various 

waste rock dumps (WRDs) while ore-containing rock is stored in stockpiles until processed. TSF1 

was decommissioned in 2003 and TSF2 was commissioned in 2004. 

 

       
                           Source: Adapted from AngloGold Ashanti (2008: 7) 

Figure 1.1   Location of the Navachab Gold Mine in Namibia  

Mining activities at Grid A commenced in 2005 with the bulldozing of roads for exploration 

drilling. Excavation work started on the eastern pushback (EPB) of the main pit to widen the pit 

before it could be deepened. To cope with the additional volume of waste rock generated by the 

EPB, dumping of waste rock material also began at the East WRD in 2006 (Badenhorst 2009, Pers 

com).  

Rehabilitation mainly comprises three phases: a sloping phase during which areas are shaped by 

bulldozing; a capping phase during which a suitable growth medium (soil) is first dumped on the 
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area to be rehabilitated and then levelled by bulldozing; and a planting phase. The sloping and 

capping activities at TSF1 were completed in 2007 to finalise decommissioning while 

rehabilitation planting activities commenced soon thereafter. Rehabilitation is a process of 

stabilising disturbed areas and is considered successful when sufficient vegetation cover is 

established. 

In 2010, mining at Grid A ceased and rehabilitation bulldozing was done on the Grid A WRD in 

May 2010. Sloping and capping activities were completed in 2010 and rehabilitation planting was 

done in the rainy seasons of 2010, 2011 and 2012. The various mining areas are illustrated in 

Figure 1.2 below. 

 

Figure 1.2   Main mining areas at Navachab Gold Mine 

The research problem is outlined in the next section. 
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1.3 RESEARCH PROBLEM 

According to the Navachab Gold Mine’s procedure for rehabilitation and closure, all 

decommissioned WRDs and TSFs are sloped down by bulldozing to a maximum gradient of 18° 

and then covered with a suitable capping material. During the following rainy season, the 

Navachab Environmental Department starts with rehabilitation planting activities which involve 

the planting of indigenous trees and shrubs grown at the mine’s own nursery. 

The shortcoming of the rehabilitation and closure programme is that no documented method exists 

to objectively monitor and quantify the programme’s success or failure. Gauged by the year-on-

year improvement in vegetation cover, visually the programme appears to be successful, but a 

quantitative method that delivers a measured spatial output of the success or failure of the 

rehabilitation programme is absent.  This constitutes the real world problem.  

It has been shown that very high resolution (VHR) remotely sensed imagery holds much potential 

for vegetation monitoring. However, very little research has been done on using VHR imagery for 

monitoring mine rehabilitation progress. The techniques that have been applied are complex and 

require advanced remote sensing skills. There is consequently a need for a simple change detection 

method can be routinely applied by environmental managers with limited or no remote sensing 

background to quantify the effectiveness of the rehabilitation programmes. 

The hypothesis is that remotely sensed vegetation indices and simple techniques such as image-

to-image change detection can effectively be used for monitoring mine rehabilitation success. 

1.4 AIM AND OBJECTIVES 

The aim of this research is to determine whether synthesised high-resolution change detection 

maps will qualitatively illustrate the success or failure of the rehabilitation programme for TSF1 

of the Navachab Gold Mine in Namibia. The following five objectives were set: 

1. Review the literature on the available satellite sensors and image characteristics, and the 

various image-processing methods related to vegetation indices and change detection. 

2. Collect information on Navachab Gold Mine’s operational history and acquire climatic data 

and satellite imagery for the study period (2004 to 2011). 

3. Preprocess the satellite imagery to improve image comparability. 
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4. Evaluate the most suitable method(s) of vegetation indexing and change detection for 

rehabilitation monitoring as evidenced by the experiments conducted. 

5. Produce change detection maps and evaluate whether the procedure is suitable for 

quantifying the success of the rehabilitation programme.  

The study requires the identification of an area that has been decommissioned and rehabilitated 

over an extensive period. Such areas are discussed in the next section. 

1.5 STUDY SITE 

The most suitable study area within the Navachab mine for evaluating the tools offered by remotely 

sensed images (satellite images) and remote sensing software is one that allows for study over a 

few consecutive years during which no modification occurs apart from rehabilitation plantings. 

Only two areas, namely TSF1 and the South WRD (Figure 1.2) have been fully decommissioned 

and rehabilitated to date but the possibility exists that the latter will be re-opened under a new 

mining plan. The most appropriate area for this investigation is consequently the decommissioned 

TSF1, which is 16ha in size. Since decommissioning in 2003, TSF1 has been capped with soil and 

some areas, where the slopes were very steep and eroding, were re-covered with waste rock (Figure 

1.3).  

 

Figure 1.3   Picture taken of TSF1 during capping process 

Tailings and capping material (soil) are clearly distinguishable in Figure 1.3. These features will 

be discussed in the later reporting on the georeferencing process.  
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Figure 1.4 illustrates the change in the top or upper surface area of TSF1 directly after capping (a), 

and after completion of several rehabilitation planting sessions (b). Rehabilitation started with 

sloping and capping in 2004 and the last rehabilitation planting was done in 2011. This time frame 

will be the period of this study. 

 

Figure 1.4   Comparison of the top of  the first tailings storage facility (TSF1) (a) directly after capping in January 

2005 and (b) in March 2009 following a few years of rehabilitation. Source: author 

The research methodology on how to reach the aim and objectives is described in Section 1.6. 

1.6 RESEARCH METHODOLOGY AND RESEARCH DESIGN 

According to Mouton (2001:158) implementation (process) evaluation aims “…to answer the 

question of whether an intervention (programme…) has been properly implemented…, whether 

the target group has been adequately covered and whether the intervention was implemented as 

designed.”  

This study was empirical in nature and used a hybrid data approach involving analysis of primary 

data (images) and secondary data. Data collection involved acquisition of satellite images for 

historical baseline information, while other images were ordered for new collection. The data is 

both numeric and textual and a medium degree of control was exercised in the research design 

(Figure 1.5). 
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Methods 

 

 

Vegetation indices & change detection 

 Discuss unique spectral properties of 

Navachab land cover classes. 

 Compare vegetation index literature 

study and results from computer 

processing. Recommend best 

vegetation index options. 

 Apply selected change detection 

algorithm and analyse output maps. 

 (Chapter 4) 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

   

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5   Research design for evaluating remote sensing in monitoring the success of the rehabilitation 

programme at Navachab Gold Mine 

Real-world problem 

Need for quantitative assessment of success of 

the rehabilitation of waste rock dumps (WRDs) 

and/or tailings storage facilities (TSFs). 

Research aim 

Determine whether synthesised high-resolution 

change detection maps will qualitatively illustrate 

the success or failure of the rehabilitation 

programme for TSF1 of the Navachab Gold Mine 

in Namibia. 

Objectives 

1 Review literature on available satellite 

sensor and image characteristics, and the 

various image-processing methods for 

vegetation indexing and change detection.  

2 Collect operational history, climatic data 

and satellite imagery for the study period. 

3 Preprocess data to ensure that all images are 

comparable. 

4 Evaluate the most suitable method(s) of 

vegetation indexing and change detection 

for rehabilitation monitoring as evidenced 

by the trials. 

5 Produce change detection maps and evaluate 

whether the procedure is suitable to 

illustrate the success of the rehabilitation 

programme. 

 

Literature review 

 Review of resolution types 

 Review of spectral characteristics of land 

covers in general 

 Review of satellite sensors and - sensor 

characteristics 

 Review of satellite image processing 

including image classification, - 

rectification and resolution merge 

methods, as well as accuracy assessment 

 Review of true and false colour images 

 Review of various vegetation indices 

 Review of change detection options  

(Chapter 2) 

OBJECTIVE 1 

OBJECTIVE 4 & 5 

Conclusion & recommendations 

 Revisit study aims and state findings. 

 Draw conclusions on the effectiveness of 

remote sensing for monitoring rehabilitation 

success. 

 State problems encountered and make 

recommendations for further study. 

 Discuss value and contribution of study.  

(Chapter 7) 

 

Data collection & manipulation 

 Obtain Navachab operational 

timeline and weather station data.  

 Draw up data matching time-frame to 

select and acquire suitable data. 

 Determine moisture conditions at 

time images were scanned and do 

seasonal classification of images. 

 Compare information from literature 

study and results from pansharpening 

processing. Recommend best 

pansharpening method. 

 Georegister all images to reference 

image and make subsets of exact 

study area only. 

 (Chapter 3) 

OBJECTIVE 2 & 3 
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To assist interpretation of the images, a history of the mining process at Navachab was acquired 

for the mine which has been operational for more than 20 years. The life-of-mine (LOM) at 

commencement of this study was 2027 but this prediction changed many times during the research 

period. The research period started with the decommissioning of a specific area (baseline) and 

followed the progress in rehabilitation. 

This chapter has outlined the background and purpose of the study. Chapter 2 focuses on the 

resolution and spectral characteristics of land covers as well as various earth observation sensors 

and the fundamentals of remote sensing and its applications. In Chapter 3 data collection and - 

manipulation procedures are detailed while the results of the various pansharpening and 

geometrical correction processing options are presented and discussed. It also contains a review 

of the spectral properties of the land cover classes in the study area. Vegetation index selection is 

discussed in Chapter 4 and change detection results are also presented and discussed. The thesis 

concludes with Chapter 5 in which the effectiveness of remotely sensed vegetation indices and 

change detection methods to monitor the success of rehabilitation programmes are evaluated. 

The next chapter gives an account of types of resolution, properties of various satellite sensors and 

their images characteristics as well as the influence of vegetation factors on the appearance of 

satellite images. 
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CHAPTER 2   LITERATURE REVIEW 

It is important to understand the technical details and options offered by remote sensing scanners 

and software to enable one to determine the implications of the choices one makes concerning the 

processing of remotely sensed data.  This chapter focuses on fundamental remote sensing concepts. 

The review can guide rehabilitation managers in choosing the correct processing options for the 

tasks at hand or assist them to communicate with the remote sensing consultants.  

A major factor in using satellite imagery is the cost of acquiring and processing the data. Although 

MODIS and Landsat images are free and consequently cheaper to obtain than Quickbird, Ikonos 

and GeoEye-1 images, the resolution of MODIS and Landsat images are not necessarily suitable 

for small areas. Moreover, processing software is expensive. Turner et al. (2003) noted that even 

more challenging than cost related to software and imagery, is the technical expertise required for 

processing imagery. The learning of these skills is not always part of the training of the personnel 

responsible for doing rehabilitation work at mines. 

The literature review is initiated with a discussion of various sensor resolutions namely spectral 

resolution, spatial resolution, radiometric resolution and temporal resolution (Section 2.1). These 

resolutions describe how much data is captured in which bandwidths and how regularly. This is 

followed with a description of the spectral characteristics of land cover types relevant to the study 

area (Section 2.2). Details of satellites and sensor characteristics are given (Section 2.3), followed 

by considerations on the processing of satellite images (Section 2.4) and true and false colour 

images (Section 2.5). Lastly, the chapter is concluded with pertinent discussions on various 

vegetation indices (Chapter 2.6) and methods of change detection (Chapter 2.7). 

2.1 RESOLUTION 

To better understand what is meant by resolution and how it affects the data needs and research 

outcomes of this study, a short overview of spectral, radiometric, spatial and temporal resolution 

follows.  

2.1.1 Spectral resolution 

According to Mather (2006) the spectral resolution of an image relates to the width, number and 

position (in the electromagnetic spectrum) of the spectral bands. These factors determine the 

degree to which individual targets can be discriminated on the multispectral imagery.  Two types 
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of images, namely panchromatic images and multispectral images, are relevant for this 

investigation. These images can be likened to black-and-white and colour photos respectively. For 

instance, the GeoEye-1 multispectral sensor records four bands namely blue (0.450–0.800μm), 

green (0.510–0.580μm), red (0.655–0.690μm) and near-infrared (NIR) (0.780–0.920μm), while its 

panchromatic scanner captures reflectance over a much wider range of wavelengths (0.450–

0.900μm) (see Figure 2.1). Multispectral imagery has a higher degree of discriminating power than 

panchromatic images. The underlying issues relating to spectral resolution are examined next. 

2.1.1.1 Electromagnetic radiation and its properties 

Bands are selected specifically for the type of features to be investigated. The electromagnetic 

(EM) spectrum, as illustrated by Figure 2.1, consists of various ranges of EM energy. All these 

ranges differ only by the wavelengths. 

 

 

Figure 2.1   The electromagnetic spectrum  

The most well-known range of EM waves is that of visible light which consists of the portion of 

the EM spectrum that can be detected by the human eye. The colours range from violet (shortest 

visible wavelength) to red (longest visible wavelength). Visible light is divided into the three 

primary colours namely blue (0.4–0.5μm), green (0.5–0.6μm) and red (0.6– 0.7μm). Just shorter 

than the blue wavelength, is ultraviolet (UV). Progressively shorter, there are X-rays, γ-rays and 

cosmic rays (Lillesand, Kiefer & Chipman 2008).                 

Source: NASA (2015)   

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

16 

At the end of the visible spectrum, just longer than visible red waves, are infrared (IR) waves, 

microwaves and radio waves. X-rays, γ-rays, cosmic rays, microwaves and radio waves are of little 

importance for multispectral remote sensing purposes. However, the IR region plays a major role 

and warrants more detailed examination. IR waves are divided into three categories, namely near-

infrared (NIR), mid-infrared (mid-IR) and thermal infrared. The wavelengths of NIR ranges 

between 0.7μm and 1.3μm, mid infrared between 1.3μm and 3.0μm, and thermal infrared from 

3.0μm to 14.0μm. The IR bandwidths of waves have important applications in remote sensing of 

vegetation due to their unique and specific bandwidths of absorption or reflection by green plants 

(Ustin et al. 2004). 

2.1.1.2 Choice of band width 

The spectral resolution of an image sensor is partly defined by the width of the bands, measured 

in micrometres or nanometres, in which it records. Some sensors are designed to measure specific 

bandwidths. For example some sensors scan a single bandwidth or all visible bands (panchromatic) 

while others capture several bands (multispectral), hundreds of bands (hyperspectral) or many 

hundreds of bands (ultraspectral). A multispectral scanner produces sets of monochrome images 

in a small number of wide bands (Fonseca et al. 2011) with only one measurement being made in 

each band. The closer these bands are to the spectral reflective curve of the target, the better the 

target can be identified from the remotely sensed image (Jensen 2005) and consequently 

multispectral scanners are said to under sample the spectral characteristics of many land cover 

features.  

In short, good contrast between the object of interest and its background provides the best 

discrimination. Careful selection of the bandwidth will give the best spectral contrast because the 

smaller the bandwidth, the better features such as rock type or vegetation species will be 

differentiated.  

Hyperspectral and ultraspectral sensors scan at close intervals over a great number of spectral 

bands, often recording data in hundreds of narrow bands, whereas ultraspectral sensors record in 

many hundreds and even thousands of bands. To be able to use the information, special processing 

software is required to reduce the dimensionality (number of bands) to a manageable degree. 

Figure 2.2 shows the spectra for two different types of cotton and a road surface using an imaging 

spectrometer. 
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Figure 2.2   Spectra for Prima cotton, Royal cotton and road surface area using an imaging spectrometer             

Jensen (2007: 240) points out that “ …it is usually necessary to use algorithms that 1) analyse 

spectra to determine its constituent materials, and 2) compare the spectra with a library of spectra 

obtained using handheld spectra-radiometers… .” The purpose of a sensor therefore determines 

the type of optical imaging system. To determine the state of vegetation, bandwidths are selected 

within the blue, red, green and NIR spectral ranges. Red, green and blue wavelengths are mostly 

absorbed by photosynthesising vegetation whereas green light is reflected in a narrow band 

between 0.5μm and 0.6μm (Figure 2.3).  

 

Figure 2.3   Reflection spectrum of a deciduous leaf 

Source: Seager et al. (2005: 373) 

reproduced from Clarke et al. 1993 

 

Source: Jensen (2005: 91) 
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Thus, non-photosynthetic (stressed) vegetation will lack the so-called ‘green peak’ or chlorophyll 

bump. Chlorophyll has a very specific absorption in the 0.64 – 0.69μm range but healthy vegetation 

reflects about 50% of NIR waves and as a result appears bright above 0.7μm. The steep increase 

in reflection from 0.75μm is called the ‘red edge point’ (Horler, Dockray & Barber 1982; Seager 

et al. 2005) and this information is used extensively in vegetation change detection. 

Blue bands distinguish water bodies from vegetation and green reflectance indicates the difference 

between aquatic plants and sediment (Mather 2006). The spectral characteristics of various land 

cover type features are discussed in greater detail in Section 2.2.  

Unfortunately, bandwidths cannot be narrowed down indiscriminately. Determination of band 

width is a function of the signal-to-noise ratio (SNR) which is a measure of the purity of a signal. 

The higher the spectral resolution (narrower the bandwidth), the more noise it will contain. SNR 

can be influenced by the type of sensor. A pushbroom sensor with a linear array of sensors has a 

better SNR than a mechanical scanner with one detector. A pushbroom sensor gives more accurate 

measurements as there is no moving mirror and the linear array detectors will ‘look’ longer at a 

specific portion of the terrain (Fricker & Rohrbach 2005; Mather 2006). The next section explains 

how the signals that are captured by the detectors are converted to digital numbers.  

2.1.2 Radiometric resolution 

Radiometric resolution refers to the sensitivity of a sensor to incoming reflectance. The magnitude 

of electromagnetic energy is related to the number of divisions of bit-depth. A digital image can 

consist of two levels where 0 = black and 1 = white for a 1-bit quantization, 256 levels of grey for 

an 8-bit quantization (Liew 2001), or it can consist of up to 65 566 levels for 16-bit data (Khorram 

2012). 

An older form of remote sensing is aerial photography with analogue cameras. These analogue 

images must be digitized to be processed by computer. Analogue images are scanned and the 

scanner divides the photograph into many small sections and assigns a number to each small 

section (pixel) related to the level of light reflected from that section (Mather 2006).  As this 

number directly determines the amount of storage memory needed, the quantization level required 

should be based on the actual improvement in detail when higher levels are used. Tucker (1979), 

as cited by Mather (2006), found only a 2-3% improvement in classification accuracy was achieved 

when grey levels were increased from 64 to 256. 
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2.1.3 Spatial resolution 

Spatial resolution relates to the amount of detail represented by an image and is expressed as the 

area on the ground captured by one pixel (Amro et al. 2011). Images consist of a matrix of pixels 

and the area covered by a pixel is a function of the spatial resolution of the sensor. Panchromatic 

images usually have a better spatial resolution than their corresponding multispectral images. For 

instance, GeoEye-1 panchromatic images have a resolution of 0.5m x 0.5m, that is each pixel 

represents an area of 0.5m x 0.5m (0.25m²) on the ground while the multispectral images have a 

spatial resolution of only 1.65m x 1.65m (2.72 m²) (GeoEye 2008).  

Multispectral images often cover a wide range of wavelengths (spectral resolution) but usually at 

a lower spatial resolution, while panchromatic images normally have higher spatial resolution but 

with limited spectral resolution (Fonseca et al. 2011). Spatial resolution is influenced by a number 

of factors inherent to the sensor, namely the instantaneous field of view, point spread function, 

effective resolution element, nominal spatial resolution and look angle. 

Instantaneous field of view (IFOV) is the measurement most often used in remote sensing to 

describe the spatial resolution of a sensor (Figure 2.4). IFOV can be measured as an angle (ά) or 

as a circular area on the ground with the distance between two points being the diameter of the 

circle. The real IFOV is calculated by taking factors like a satellite’s actual height above the surface 

of the earth into account. A smaller IFOV will deliver more detail and will produce an image with 

a higher spatial resolution (Amro et al. 2011). 

 Source: Mather (2006: 28) 

Figure 2.4   Angular instantaneous field of view (IFOV), α, showing the projection X-Y on the ground where X-Y is 

the diameter of a circle. 
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Highly reflective point sources do not produce a single sharp image but rather resembles that of a 

three-dimensional bell curve and is  called the point spread function. The shape of this curve is 

determined by the design of the optical system. The distribution of this curve is called the point 

spread function (PSF) and can be used as an alternate measure of spatial resolution. The presence 

of bright or dark objects within the IFOV of the sensor will increase or decrease the amplitude of 

the PSV curve which in turn with make the observed radiance either higher or lower than that of 

the surrounding areas. The difference between IFOV and PSF is shown in Figure 4. 

 Source: Mather (2006: 29) 

Figure 2.5   Instantaneous field of view (IFOV) defined by the amplitude of the point spread function (PSF). 

The better the contrast of the imagery, the sharper the image will be. Rivers and canals are often 

clearly visible in Landsat ETM+ images even though their width is less than the 30m spatial 

resolution of the sensor. However, some targets with dimensions larger than the 30m spatial 

resolution are blurry and not discernible in the same type of images. Atmospheric scattering and 

absorption may also cause a loss in contrast and further contribute to loss of clarity in the image 

(Otterman & Fraser 1979). 

IFOV is a geometrical definition which considers the spectral properties of the target. Effective 

resolution element (ERE) not only records radiation but considers the way the radiation is 

generated. Mather (2006: 29) quotes the definition of ERE by Colvocoresses (cited by Simonett 

1983) as “the size of an area for which a single radiance value can be assigned with reasonable 

assurance that the response is within 5 per cent of the value representing the actual relative 

radiance.” 

Nominal spatial resolution (NSR) is the dimensions of the ground-projected IFOV in metres. 

Jensen (2005) advises that a greater spatial resolving power will be attained by a smaller the 
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nominal spatial resolution. For the collection of urban data, a high NSR of around 1m x 1m is 

needed. Imagery with an NSR lower than 10m x 10m is not of much use for urban analysis. For 

continental-scale analysis a lower NSR (e.g. 79m x 79m of the historical Landsat multispectral 

data) is appropriate for the analysis at global scale, and even resolutions of 700m x 700m (e.g. 

GOES) or 1100m x 1100m (e.g. AVHRR) are often suitable (Jensen 2005).  

Images can be scanned at right angles to the earth’s surface (vertical viewing or nadir) or at an 

angle (oblique viewing or off-nadir). Off-nadir images scanned from opposite, but equal, angles 

can be combined to enable stereoscopic imaging.  A sensor that can scan off-nadir images is called 

‘pointable’. For analysis of change detection, the influence of sun-angle on the imaged surface 

needs to be minimised and scans should be taken as close to nadir as possible. Images acquired 

off-nadir will record reflection from the side of plants and other objects. The main advantage of 

off-nadir viewing capabilities is its ability to increase the temporal resolution of a sensor.  

2.1.4 Temporal resolution 

The revisit time or temporal resolution of a satellite is the time between subsequent passes over a 

certain area or object (Kerr & Ostrovsky 2003). Revisiting times range from 16 days for Landsat 

down to three to four days for GeoEye-1 (Jensen 2007; GeoEye 2008). Revisiting times of the 

various satellites will be discussed in more detail in Section 2.3. Temporal resolution is especially 

important in situations where a certain area or object has to be scanned very regularly or in areas 

where a high incidence of cloud cover prevents a full scan of the area on a specific day. Temporal 

resolution is also influenced by the sun-angle. Scans should ideally be repeated at approximately 

the same time of the day and preferably on the same day of the year in order to minimise the 

influence of seasonal sun-angle variations (Mather 2006) although corrections can be done to 

multi-seasonal images to eliminate these differences (Qi et al. 1995; Lillesand, Kiefer & Chipman 

2008). Related to sun-angle are the phenological differences in plants due to variation in seasonal 

cycles and precipitation (Jenerette, Scott & Huete 2010). Because plants in different growth phases 

impact negatively on change detection studies, vegetation characteristics are treated in detail in the 

next section. 

2.2 SPECTRAL CHARACTERISTICS OF LAND COVERS 

Spectral signatures (Kiefer & Chipman 2008) are spectral measurements taken of pure samples of 

substances with a spectrometer in laboratory conditions (Clark et al. 1993; Clark et al. 2007; 
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Lillesand; Matiwane 2009a; Matiwane 2009b). These spectral signatures contain unique patterns 

of absorption and reflection at specific wavelengths which can be used to identify certain land 

covers and to distinguish land cover types from each other (Singh 1989). Spectral measurements 

obtained from satellite images or similar platforms are less exact as the pixels often contain more 

than one land cover type and are therefore called spectral response patterns instead (DiBiase 2014). 

The characteristics of land cover classes water, bare (rock and soil), and vegetation (shrubs and 

trees) are important in this study. These land cover types are discussed in the following 

subsections. 

2.2.1 Water  

Clear water moderately reflects the blue, green and red wavelengths but the unique and identifying 

feature is the strong absorption in the near-infrared (NIR) and longer wavelengths. These 

wavelengths are absorbed by any type of moisture whether it is a lake or dam, or moisture 

contained within plants or even in wet soil (Hunt & Rock 1989; Sims & Gamon 2003). 

The spectral reflectance of water is affected by the depth (Lyzenga 1978) and clarity (Li & Li 

2004) of the water body. Deep, clear water will have virtually no reflectance in the NIR region 

(Mather 2006). Figure 2.6 shows the reflective properties of vegetation, soil and water in the 

visible, NIR and intermediate IR regions (SEOS Project website 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6   Spectral signature for water, soil and vegetation in the visible, NIR and intermediate IR regions 

Source: SEOS Project 

website (2014) 
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On the other hand an increase in chlorophyll due to aquatic plants will increase absorption and 

therefore decrease the reflectance in blue wavelengths and increase reflectance in the green and 

NIR wavelengths (Lillesand, Kiefer & Chipman 2008). 

2.2.2 Vegetation characteristics 

A good understanding of the interactions between energy and plants helps one to interpret remotely 

sensed data. McCoy (2005) lists some important interactions of energy with leaf pigments, leaf 

cell structure and plant moisture content. A short account follows. 

2.2.2.1 Leaf pigments 

Pigments in leaves consist mainly of chlorophyll (green), carotene (yellows), xanthophyll 

(browns) and anthocyanin (reds). In actively photosynthesising green leaves, reflection in the 

green wavelengths dominates with a strong absorption in the blue and red wavelengths (Buschman, 

Langsdorf & Lichtenthaler 2000; Nishio 2000). However, as leaf colour changes, either through 

dehydration or senescence, less reflection is observable in the green wavelengths and increased 

reflection in the blue and red wavelengths. Reduced moisture generally results in an overall 

increase in reflectance over all visible bands (Figure 2.7).  

  

Figure 2.7   Change in spectral curves with different vegetation moisture levels  

2.2.2.2 Leaf cell structure 

The overall reflectance from plant leaves quadruples between wavelengths of 0.7μm and 1.2μm 

and absorption decreases to a minimum while a very strong reflectance is observed in certain NIR 

Source: Hoffer & Johannsen 

(1968) as cited by McCoy 

(2005: 73) 
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wavelength regions (Thenkabail, Smith & De Pauw 2000). These increases in the NIR wavelengths 

are unique to plants and are caused by the cell structure rather than by pigments. A specific narrow 

band 0.9-0.94μm called the ‘red-edge point’ provides an accurate distinction from other surface 

materials, especially soil and water (Leblon 1997). Variation in reflectance among plant species is 

also greater in the NIR wavelengths due to differences in the internal structures, mainly mesophilic 

tissues, and allows discrimination between various species (Prithvish & Kudrat 1998). Notably, 

some plants may be indistinguishable in the visible spectrum but show clear differences in the 

infrared wavelengths. Moreover, spectral responses also change with cover density. As plant cover 

decreases and more soil is detected through the vegetation, the spectral curve changes to a typical 

soil spectral curve. This provides the basis for estimations of cover density from image data (Huete, 

Jackson & Post 1985). 

2.2.2.3 Energy transmission through leaves 

In the NIR wavelengths, more incident energy reaches leaves that are not exposed to an overhead 

view. Lower-level leaves also reflect some of the incident energy so that there is an increase of 

reflected energy at the top of a plant – more than what the outer leaves reflect on their own – 

thereby presenting a useful method to determine the mass of a plant instead of just the crown 

diameter (Ollinger 2010). 

2.2.2.4 Plant moisture content 

Three major water absorption bands exist at 1.4μm, 1.9μm and 2.7μm respectively. The values in 

these bands are directly related to the amount of moisture in a plant. A plant that is losing moisture 

shows an increased overall reflectance but the reflectance in the water-absorption bands decreases 

concomitantly. This information is used extensively in plant stress investigations using satellite 

imagery (Lillesand, Kiefer & Chipman 2008). 

2.2.3 Rock and soil  

Areas absent of water, vegetation or built-up objects are considered bare and are characterised by 

the spectral properties of soils and exposed rock. The spectral properties of most soil and rock 

types were documented by Baldridge et al. (2009) and can be used as a reference to identify various 

substrate. Soil and rock reflectance curves are related in that each soil will show reflectance 

characteristics that are similar to that of the parent rock material (Leblon 1997). 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

25 

In the visible bands absorption is affected by the presence of organic matter, the presence of 

moisture and the presence of ferric iron (Stoner & Baumgardner 1981). In general dry rock and 

soil classes show a consistent rise in reflectivity as wavelength increases in the visible and NIR 

portions of the spectrum (Jensen 2007). Soil reflectance patterns are compared with those of water 

and vegetation in Figure 2.6. Organic material increases absorption and therefore reduces the 

reflectance of the soil in the visible wavelengths. Above levels higher than 2% organic matter 

content will dominate the soil colour but below this percentage other soil constituents will 

determine the colour of the soil (The presence of photosynthetically active plant material will result 

in a very sharp increase in the NIR region (Section 2.2.2). 

Increasing soil moisture will show a strong reduction in reflectance in all wavelengths (Streck, 

Rundquist & Connot 2003), also the NIR region (Jensen 2007). This is due to the layer of water in 

the soil surface absorbing much of the incident radiation and therefore lowering the overall 

reflectivity (Section 2.2.1). Wet soils and rocks often appear visibly darker than dry soils and rocks 

(Jensen 2007). Texture also influences the reflectivity of soils. Finer soils are usually clayish in 

nature with poorer drainage and are consequently associated with higher soil moisture compared 

to soils with larger grains and better drainage (Baumgardner et al. 1985).  

The presence of iron oxide significantly reddens the soil and therefore increases absorption of 

wavelengths shorter and longer than those in the red spectrum (Mather 2006).  

How satellite images capture the spectral properties of soils and other land cover types is 

determined by their spectral, radiometric and spatial resolution as discussed in Section 2.1. For 

this study medium or lower spatial resolution imagery was not considered as it would not be 

suitable for monitoring rehabilitation progress in the study area The next section provides an 

overview of the various very high spatial resolution imagery that are available. 

2.3 SENSORS AND SENSOR CHARACTERISTICS 

IKONOS, OrbView-3 and Quickbird scanners have the same bandwidths (Table 2.1) and all three 

satellites are sun-synchronous with an equatorial crossing between 10:00 and 11:00. The spatial 

resolutions are 1m x 1m panchromatic resolution and 4m x 4m multispectral resolution for 

IKONOS and OrbView (Kohm 2004). Improved 0.61m x 0.61m panchromatic and 2.44m x 2.44m 

multispectral resolutions for Quickbird have been introduced. GeoEye-1 collects data at 0.41m 

panchromatic and 1.65m multispectral resolution. 
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GeoEye-1, launched in September 2008, is also a sun-synchronous, polar-orbiting satellite, which 

orbits the earth 15 times per day at an altitude of 681km and its pass time at the equator is about 

10:30 each day. The spatial accuracy is predicted to be within 3 metres. In accordance with USA 

legislation, any sub half-meter imagery is resampled to 0.5m before it is supplied to commercial 

customers (GeoEye 2008; DigitalGlobe 2013).  The GeoEye-1 sensor can turn and swivel very 

quickly in orbit and the sensor can point directly below (nadir) or off-nadir. Off-nadir viewing can 

be up to 60° side-to-side or front-to-back giving the satellite exceptional temporal resolution and 

revisiting period (GeoEye 2008). 

In Table 2.1 the properties of  five very high spatial resolution sensors are compared. 

Table 2.1   Comparison of various high-resolution (<5m) sensors 

Source: Adapted from Jensen (2005: 88), GeoEye-1 fact sheet (2008) and RapidEye satellite sensor (2013) 

Description 

Space Imaging 
Inc. 

IKONOS 

Orbimage Inc. 

OrbView-3 

DigitalGlobe Inc. 

Quickbird 

GeoEye 

GeoEye-1 
RapidEye 

Blue band (μm) 0.45 – 0.52 0.45 – 0.52 0.45 – 0.52 0.450 – 0.800 0.440 – 0.510 

Green band (μm) 0.52 – 0.60 0.52 – 0.60 0.52 – 0.60 0.510 – 0.580 0.520 – 0.590 

Red band (μm) 0.63 – 0.69 0.63 – 0.69 0.63 – 0.69 0.655 – 0.690 0.630 – 0.685 

Red edge band 
(μm) 

N/A N/A N/A N/A 0.690 – 0.730 

Near Infrared band 
(μm) 

0.76 – 0.90 0.76 – 0.90 0.76 – 0.90 0.780 – 0.920 0.760 – 0.850 

Panchromatic 
band (μm) 

0.45 – 0.90 0.45 – 0.90 0.45 – 0.90 0.450 – 0.900 N/A 

Sensor type 

Linear array 
pushbroom, 

Along and cross-
track viewing 

Off-nadir up to 26º 

Linear array 
pushbroom, 

Off-nadir up to 45º 

Linear array 
pushbroom 

Along and cross-
track viewing 

Off-nadir up to 25º 

Linear array 
pushbroom 

Along and cross-
track viewing 

Off-nadir up to 60 º 
in any direction 

Linear array 
pushbroom 

 

Spatial resolution 

1m x 1m (pan) 

4m x 4m 
(multispectral) 

1m x 1m (pan) 

4m x 4m 
(multispectral) 

0.61m x 0.61m 
(pan) 

2.44m x 2.44m 
(multispectral) 

0.41m x 0.41m 
(pan) 

1.65m x 1.65m 

(multispectral) 

6.5m x 6.5m 
(multispectral) 

Swath width 11km 8km 20km –  40 km 15.2km 77km 

Radiometric 
resolution 

11 bits 

 
11 bits 11 bits 11 bits Up to 12 bit 

Revisit time < 3 days < 3 days 1 to 5 days 3 days or less 
Daily (off-nadir) & 
5.5 days (at nadir) 

Orbit 

681km, 98.1º 

Sun-synchronous 

Equatorial 
crossing 10:00 – 

11:00 

470km 

Sun-synchronous 

Equatorial 
crossing 10:30 

600km, 66º  

Not sun-
synchronous 

Equatorial 
crossing varies 

681km 

Sun-synchronous 

Equatorial 
crossing 10:30 

630km  

Sun-synchronous 
Equatorial 
crossing 

11:00 

Launch date 
24 September 

1999 
26 June 2003 18 October 2001 6 September 2008 29 August 2008 
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The RapidEye constellation consists of five satellites with identical sensors that are also located in 

the same orbital plane. Revisit time is unsurpassed as each of the four actively scanning satellites 

does 15 orbits per day (Figure 2.8). The fifth satellite in the constellation is kept on standby (Lӧsel 

2009). This rapid orbiting by the various RapidEye satellites allows for full coverage in five days.        

  

Figure 2.8   Complete coverage of Germany in five days by RapidEye satellites 

The processing of satellite image is discussed in the next section. 

2.4 PROCESSING OF SATELLITE IMAGES 

This section briefly introduces various classification methods and points out the decisions that 

need to be made when executing such processing. Attention is also given to the rectification of 

images and the nature of true and false colour images. 

2.4.1 Image classification 

Classification of remotely sensed images is the process of analysing an image to obtain thematic 

information. As explained in Section 2.2, materials respond to electromagnetic energy in specific 

ways and may reflect and/or absorb and/or transmit the energy. The pattern of interaction also 

differs between the different wavelengths so that a distinctive spectral response pattern (SRP) can 

be identified for each material. Each pixel of spectral data needs to be evaluated and assigned to 

the class of spatial data it belongs to. During this process data is changed into useful information. 

The process consists of two basic steps: The first is the recognition of categories or real-world 

objects, and the second is the labelling of the entities (often pixels) to be classified (Mather 2006). 

Various methods, and combinations of methods, exist to do multispectral classification. Among 

these are (Jensen 2005; Mather 2006): 

 

Source: Lӧsel 

(2009) 
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 Parametric and nonparametric statistics, and non-metric methods; 

 Supervised or unsupervised classification logic; 

 Hard or soft (fuzzy) classification logic; 

 Per-pixel or object-based classification logic; and 

 Hybrid approaches. 

A short description of each of these methods follows. 

2.4.1.1 Parametric, non-parametric and non-metric methods 

The terms parametric and non-parametric are classifications of statistical procedures. Parametric 

methods make certain assumptions about the data or parameters involved while non-parametric 

data is regarded as ‘assumption free’ (Hoskin n.d.). An exact understanding of the meaning of the 

terms is not necessary but the following distinction given by Sheskin (2004: 97) will suffice: 

“As a general rule, inferential statistical tests which evaluated categorical/nominal data 

and ordinal/rank-order data are categorized as nonparametric tests, while those tests 

that evaluated interval data or ratio data are categorized as parametric tests.” 

Amongst the parametric methods are maximum likelihood classification and unsupervised 

clustering. Both assume normally distributed remotely sensed data and knowledge about the forms 

of the underlying class-density functions. Non-parametric methods such as nearest neighbour 

classifiers, fuzzy classifiers and neural networks are applicable to remotely sensed data that is not 

normally distributed and without the assumption that the forms of the underlying densities are 

known. Non-metric methods such as rule-based decision tree classifiers can operate on nominal, 

ordinal, interval or ratio data (Jensen 2005).  

2.4.1.2 Supervised and unsupervised classifications 

During supervised classification, a priori knowledge of the land cover types is used to identify 

specific sites that represent homogeneous examples of land cover types. Information about the area 

may be obtained from fieldwork, air photo analysis or appropriate maps (Mather 2006). These 

sites are referred to as training sites. Subsequently, the spectral characteristics of the training sites 

are used to train the classification algorithm for land cover mapping of the rest of the data. Every 

pixel within and outside the training site is evaluated and assigned to the class of which it has the 
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highest likelihood of belonging or being a member. Additional non-remotely-sensed data is more 

easily incorporated into a supervised classification using non-parametric methods (Mather 2006). 

On the other hand, in unsupervised classification the identities of the land cover type are generally 

not known a priori because either there is a lack of ground-reference information or the surface 

features are not well defined. Hence, the software groups pixels with similar spectral 

characteristics into clusters or spectral classes while the analyst relabels and combines the spectral 

clusters into information classes (Lillesand, Kiefer & Chipman 2008), hence Mather (2006) 

suggests that the term ‘exploratory’ might better describe this process.   

Change detection is a form of unsupervised classification of multitemporal data sets and the 

process is based on the principle of comparing the spectral qualities of pixels at different points in 

time. The spectral values of images sensed in different years or seasons are compared (Kennedy 

et al. 2009).  

2.4.1.3 Hard and soft classification logic 

Supervised and unsupervised classification algorithms that make use of hard classification logic, 

produce maps that consist of hard, discrete (unequivocal) categories and, consequently each pixel 

can only belong to one class (Straker et al. 2004). Conversely, soft (fuzzy) classification logic 

takes the heterogeneous and imprecise nature of the real world into account as pixels do not always 

just contain one class of object (Mehner et al. 2004; Jensen 2005; Nichol & Wong 2007).  

Fuzzy classification is based on the sensors’ recording of reflected or emitted radiant flux from a 

mixture of materials and each pixel being described more extensively in terms of the various land 

cover types. Pixels are graded by membership to the classes they resemble and therefore can, and 

most probably will, belong to more than one class (Mather 2006; Musande et al. 2012).  

An alternative method to deal with mixed pixels is to compare the spectral value of the pixel to 

reference values obtained by measuring a known object in a laboratory or even on a satellite image 

(Nichol & Wong 2007; Lillesand, Kiefer & Chipman 2008; Paniagua et al. 2009). 

2.4.1.4 Per-pixel and object-based classifications 

Per-pixel classification refers to processing the entire image pixel by pixel, while object- based 

classification allows the analyst to group the image into homogeneous patches or segments using 
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a multi-resolution image segmentation process (Jensen 2005). Consequently, the classes of interest 

dictate whether to use hard or fuzzy classification and whether per-pixel or object-orientated 

classification logic should be used. Walsh et al. (2008) found that the object-orientated 

classification performed better than the per-pixel method in their data analysis of invasive plant 

species.  

2.4.1.5 Typical land-use and land cover classifications 

Spectral signatures of topographical features provide a convenient method for identifying different 

substances or classes of substances into land-use and/or land cover classes without having to 

physically visit an area. Once a substance or class has been identified, all areas showing similar 

characteristics will be recognised similarly. An example of such a land cover map from Lillesand, 

Kiefer & Chipman (2008) is given as Figure 2.9. 

 

Figure 2.9   New York and New Jersey land cover derived from Landsat TM data                                       

Source: Lillesand, Kiefer & 

Chipman (2008) 
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Pure spectral signatures can only be obtained from laboratory tests where the spectral sensor is 

placed very close to the target object. When the sensor is very high above the target, the ‘pureness’ 

of the signature will depend on the spatial resolution of the sensor. Therefore, the greater the spatial 

resolution of a specific sensor is, the purer the spectral signature and the better the resulting 

classification.  

When the spatial resolution of the spectral sensor is low, the sensor will cover a fairly large area 

at one time and a large number of classes of objects may be all detected at the same time. This 

gives rise to mixed pixels which in turn are subjected to hard or soft classification (Mather 2006).   

Before any processing can be done on satellite images certain rectification or correction procedures 

have to be done (Van Niekerk 2009, Pers com). The various rectifications needed are described in 

the next section. 

2.4.2 Image pre-processing 

Digital satellite images play important roles in mapping and in the acquisition and visualization of 

data in a geographic information system (GIS). Such images help put some spatial concepts into 

perspective and are very useful for gathering spatial information. Errors from various sources are 

introduced during the remote sensing process. These include data acquisition errors, data 

processing errors and final product presentation errors (Lunetta et al. 1991).  

To use images for accurately measuring distances, angles, positions and areas one must first 

remove distortions from the images through a process of correction (Ford & Zanelli 1985). The 

various correction or rectification activities include the following: Atmospheric and radiometric 

correction, geometric correction and topographic correction. A short description of each event is 

provided next.    

2.4.2.1 Atmospheric and radiometric correction 

Atmospheric and radiometric correction compensates for effects of scattering and absorption of 

EM waves by the atmosphere and the conversion of digital numbers (DN) (values stored in the 

images) to reflectance. Such corrections are particularly important whenever estimates of the 

ground-leaving radiances or reflectance are required (rather than relative values), for change-over-

time studies or when the part of the signal that is of interest is smaller in magnitude than the 

atmospheric component.  
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DN can be transformed into percentage reflectance in a two-step mathematical calculation. First 

the spectral radiance (Lλ) is calculated (Equation 2.1) and then this radiance value is used in a 

successive formula (Equation 2.2) to calculate the reflectance (ρ
p
) (Podger, Colwell & Taylor 

2011).  

Lλ= Gainλ x DNλ+ Offsetλ Equation 2.1 

where λ 
refers to the specific spectral band of the image (blue, green, red or 

NIR); 

 Lλ 
is the spectral radiance for band λ at the sensor’s aperture in 

mW/cm²/µm/str; 

 Gainλ is the radiometric calibration gain in mW/cm²/µm/str for band λ; 

 DNλ is the digital number value of band λ; and 

 Offsetλ 
is the radiometric calibration offset (mW/cm²/µm/str) for band λ 

from image metadata. 

The gain
λ
 and offsetλ values are supplied in the metadata text files received from the suppliers 

along with the earth-sun distance. The mean solar exo-atmospheric spectral irradiance 

(ESunλ) values in mW/cm²/µm/str are obtainable from an online solar position calculator 

(University of Oregon Solar Radiation Monitoring Laboratory 2013) for the respective image scan 

dates. 

ρ
p
= 

π x Lλx d
2

ESunλ
x cosθs

 x 100 Equation 2.2 

Where ρ
p

 is unitless planetary reflectance; 

 π is the value 3.14159; 

 Lλ 
is the calculated spectral radiance for band λ at the sensor’s aperture 

in mW/cm²/µm/str; 

 d is the Earth-Sun distance in astronomical units;  

 ESunλ
 

is the mean solar exo-atmospheric spectral irradiance in 

mW/cm²/µm/str at one astronomical unit Earth-Sun distance; and 

 cosθs is the solar zenith angle. 

The solar zenith angle is calculated from the solar elevation angle by Equation 2.3 (Podger, 

Colwell & Taylor 2011). The solar elevation angle is usually supplied in the image metadata files. 
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θs=90°- Solar Elevation Angle Equation 2.3 

When radiometric and atmospheric correction is done for the purpose of change detection, the 

same algorithm should be applied to all the images in the set (Jensen 2005).  

2.4.2.2 Geometric correction 

Lillesand, Kiefer & Chipman (2008) explains that raw digital images usually contain geometric 

distortions which have to be rectified before the image can be used as a map. These distortions 

originate from factors such as altitude, attitude and velocity of sensor platform as well as 

panoramic distortions, distortions due to earth curvature and relief displacement. The processing 

of data to conform to map coordinates is called geometric correction.  

Georeferencing, is the transformation of a remotely-sensed image to have the scale and projection 

properties of a given map. Georegistration is a similar technique where an image is fitted to the 

coordinate system of a second image of the same area. Very accurate registration is needed when 

images will be used for changed detection (Mather 2006). The goal is to keep each pixel in exactly 

the same location on the ground in consecutive images.  

Jensen (2005) describes two types of geometric correction: The first type is image-to-map 

rectification where an image is processed to conform to map coordinates by selecting ground 

control point image pixel coordinates and aligning these with the map coordinates. The second 

form of geometric correction involves image-to-image registration where images are aligned with 

a reference image. This correction is done where temporal changes between two images need to 

be identified without a need for points to be assigned unique x and y coordinates in a map 

projection. This process is referred to as georegistration in this study. The transform should be 

over-defined, meaning that more than the minimum number of tie points are required to reduce the 

RMSE to the sub-pixel level needed for the required accuracy. Evaluation of the X- and Y-residual 

values along with the RMSE values will indicate the accuracy levels. More tie-points and a refined 

placing of tie-points might be required before an acceptable accuracy is obtained.   

Orthorectification is an advanced method of terrain correction (Dial et al. 2003; Satellite Imaging 

Corporation 2013) that involves fitting a satellite image to a digital elevation model (DEM). By 

using a DEM the effects of relief displacement can be reduced (Dorfling 2013, Pers com). 
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Orthorectified images are planimetrically true images that represent ground objects as close as 

possible to their real world position. 

2.4.2.3 Topographic correction 

Topographic slope and aspect may introduce radiometric distortion of the recorded signal. 

Removing  topographic effects, especially in mountainous regions, can enhance the usefulness of 

satellite images, for example when an area of interest is in complete shadow. Shadows and 

differences in radiation are removed, or at least reduced, in order to make the data more useful. 

Most of the research in this field is specifically directed at Landsat and SPOT digital multispectral 

data (Jensen 2005).  

2.4.3 Pansharpening 

Pansharpening combines the high spatial resolution of one image with the lower spatial resolution 

of another image. The process is also called resolution merge or image fusion. There are various 

pansharpening methods from which to choose. Švab & Oštir (2006) divide these methods into two 

broad groups. The first class consists of the colour related techniques including tri-stimulus colour 

composition in red green and blue (RGB) colour space and intensity hue and saturation (IHS) 

transformation. The second class consists of statistical and numerical techniques. Statistical 

methods include principle components analysis (PCA), regression and filters while the numerical 

methods follow arithmetic operations such as image addition, division, multiplication and 

subtraction. Wavelet pansharpening is a sophisticated and highly successful numerical approach. 

Before pansharpening can be done, both images must be exactly the same size and precisely 

coregistered (Van Niekerk 2010, Pers com). If coregistration is not inherent in the data set, the two 

images have to be coregistered before the merge is attempted. The transform should be over-

defined, meaning that more than the minimum number of tie points are required to reduce the 

RMSE to the sub-pixel level needed for the required accuracy. Evaluation of the X- and Y-residual 

values along with the RMSE values will indicate the accuracy levels. More tie-points and a refined 

placing of tie-points might be required before an acceptable accuracy is obtained.   

Remote sensing software offer many different pansharpening techniques. Some of the most 

prominent techniques are subtractive pansharpening (SRM), high pass filter (HPF) pansharpening, 

modified IHS pansharpening, wavelet pansharpening, Ehlers fusion and three algorithm 
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pansharpening options, namely multiplicative, principle components analysis (PCA) and the 

Brovey transform. A short discussion of each of the pansharpening methods follows. 

2.4.3.1 Modified intensity hue saturation pansharpening 

Human colour perception is associated with the cone-shaped photoreceptors in the retina of the 

eye. The cones enable photopic vision that makes a distinction between colours (or hues) and 

degrees of saturation and levels of intensity. Three kinds of cones exist, each responding to one of 

the three primary colours of light (red, green or blue). Each colour of light is therefore made up of 

varying combinations of the primary colours and this is known as the tristimulus theory of colour 

vision (Mather 2006). 

The IHS model explains colour perception in terms of hues (colours), saturation and intensity. Hue 

is the dominant wavelength of perceived colour while saturation refers to the purity of the colour 

and intensity to the brightness of the colour (Lillesand, Kiefer & Chipman 2008). IHS processing 

is usually limited to processing only three bands at a time. The transformation separates spatial 

(intensity) and spectral (hue and saturation) information from an RGB image. During the fusion 

phase the RGB image is converted into IHS components with the intensity component being 

substituted with a high spatial resolution panchromatic image. In a last step the process is reversed 

and the IHS is converted into RGB colours of the synthetic multispectral bands (Švab & Oštir 

2006; Fonseca et al. 2011).  

The modified IHS method allows for more than three bands to be merged by running multiple 

passes of the algorithm and merging the resulting layers. The method can be used for different 

layers and/or different sensors. The better the overlap of the wavelengths, the better the outcome 

will be but colour distortion can be significant. To overcome the problem of colour distortion the 

panchromatic image is matched to the intensity component before the reverse transform is applied 

(Jensen 2005; Fonseca et al. 2011). The IHS technique aims to increase processing speed and is 

therefore expensive due to large output files as well as the temporary files created during 

processing.  

As the panchromatic values are changed through the histogram stretching, Chavez, Sites & 

Anderson (1991) warns that IHS methods distorts the spectral characteristics and should be used 

with caution where radiometric analysis will be performed on the resultant images. IHS methods 

are therefore not the best method to use on images intended for quantitative analysis but they are 
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very useful in visual image interpretation as the colour composite is improved (Lillesand, Kiefer 

& Chipman 2008). 

2.4.3.2 High pass filter pansharpening 

High pass filter (HPF) pansharpening starts by calculating the ratio between the panchromatic and 

the multispectral images. A high pass convolution filter kernel is created and passed over the high-

resolution image. This process involves adding an HPF image, weighted relative to global standard 

deviation, to each of the multispectral bands (Klonus & Ehlers 2009). The low-resolution 

multispectral image is then resampled to the pixel size of the high-resolution image using bilinear 

interpolation. In the last step of the procedure a linear stretch is performed which rescales the mean 

and standard deviation of the output to match the mean and standard deviation of the input 

multispectral image (ERDAS Imagine 2013a). The final output image therefore has the same 

radiometric resolution, usually unsigned 8-bit or unsigned 16-bit, as the input image. The output 

image contains the detail and pixel size of the panchromatic image and a realistic representation 

of original multispectral data but some spectral distortion is expected (Amro et al. 2011). 

2.4.3.3 Ehlers fusion 

The Ehlers fusion method is based on the IHS transform combined with Fourier domain filtering 

(Klonus & Ehlers 2009). This technique can cope with more than three bands by running 

successive IHS transforms until all the bands chosen have been processed. A fast Fourier transform 

(FFT) of the panchromatic image and the intensity component is performed after which a low pass 

filter (LPF) is used to filter the intensity spectrum while an inverse HPF is used to filter the 

panchromatic spectrum. Once the filtering process is completed, the images are transformed back 

into spatial domain with an inverse FFT and added together to form a fused intensity component 

with the low-frequency information from the low resolution multispectral image and the high-

frequency information from the high resolution panchromatic image. This new intensity 

component is then combined with the original hue and saturation components of the multispectral 

image to form the new IHS image. The final step involves an inverse IHS transformation to 

produce a fused RGB image. This process is repeated with successive 3-band combinations until 

all bands are fused with the panchromatic image.  

Ehlers fusion shows excellent spectral preservation but has very high computation times. To retain 

data integrity no additional filtering is applied and Ehlers, Klonus & Åstrand (2008) reported that 
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Ehlers fusion delivers pansharpened images with almost no spectral change even when multi-date 

and multi-sensor data are fused. The Ehlers fusion technique is consequently highly suitable for 

quantitative image analyses. 

2.4.3.4 Wavelet pansharpening 

Wavelet pansharpening can also be used to merge two grayscale images and is suitable for merging 

other types of imagery. Images that are to be merged should be spectrally identical. Corresponding 

bands, like SPOT panchromatic, can therefore be merged with Landsat TM Bands 1 to 4 but not 

with TM Band 6 (thermal).  

Vijayaraj (2004) found that the spectral quality of wavelet-sharpened images are very good but 

that the spatial quality varies. The reason is that in the wavelet based sharpening method, spatial 

information is derived from the panchromatic image while spectral information is derived from 

the multispectral image. The spatial accuracy is therefore dependent on firstly, a high accuracy of 

co-registration between the multispectral and panchromatic image and secondly, on the resampling 

technique used to produce these images.  It is therefore not always a good method for quantitative 

analysis. 

2.4.3.5 Multiplicative 

This is the simplest and fastest of the pansharpening methods and has with the least system-

resource requirements. Any number of input bands can be used and the method is less sensitive to 

discrepancies between spectral bands than other methods (Švab & Oštir 2006). The cost of the fast 

computation is that the radiometric fidelity of the input multispectral image is not retained and 

special attention must be paid to colour preservation. Intensity is increased which makes it a good 

technique for highlighting urban features. 

2.4.3.6 Principal components analysis 

Jensen (2005: 296) describes PCA as “a technique that transforms the original remotely sensed 

dataset into a substantially smaller and easier to interpret set of uncorrelated variables that 

represents most of the information present in the original dataset.” The details of this statistical 

method is complex and beyond the scope of this thesis but in short, PCA generates uncorrelated 

images (PC1, PC2, …, PCn, where n is number of input multispectral bands) and the first principle 

component (PC1) is then replaced with the panchromatic image. The method is useful because a 
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large data set of strongly correlated data can be transformed into a smaller data set of uncorrelated 

variables that are easier to interpret (Fonseca et al. 2011).  

When the colour components of a digital image are represented in a scattergram, a strong positive 

correlation can be seen between the various visible bands. This means that if a pixel has a high 

value in one band, there is a strong possibility that the pixel will also have a high value in the other 

bands. The implication is that the various bands add little information to the image and therefore 

the image could be effectively interpreted using only the information provided by a single band 

(Mather 2006).  

The most useful feature of PCA is that spatial information common to all bands is concentrated in 

the first component (Amro et al. 2011). PCA is therefore especially valuable for examining 

multispectral and hyperspectral remotely sensed data. Pansharpening by PCA is best used in 

applications that require retention of the radiometric fidelity or colour balance of the input 

multispectral image. The drawback is that the method has a high computational overhead and the 

fusion quality depends highly on the spectral overlap between the multispectral and panchromatic 

bands (Zang 2012).   

2.4.3.7 Subtractive resolution merge 

Zhang (2004) explains that traditional fusion techniques like IHS, PCA and wavelet pansharpening 

work very well with lower resolution images, for instance those from SPOT and Landsat, but rarely 

deliver adequate results with the high-resolution imagery. Subtractive resolution merge (SRM) is 

a fairly new method that uses a subtractive algorithm to pansharpen multi-spectral images. It was 

designed for high resolution images like Quickbird, Ikonos and Formosat which have the following 

common properties: 

 both images must have the same radiometric resolution (8-bit or 16-bit unsigned);  

 pixel values should be unaltered;  

 images must overlap fully;  

 panchromatic and multispectral images must have been scanned simultaneously;  

 multispectral images should have four bands and the panchromatic image only a single 

band;  

 a maximum pixel-size ratio of 4:1 exist between panchromatic and multispectral images; 

and  
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 both images must be georeferenced to a map coordinate system. 

 

SRM produces a low resolution synthetic panchromatic image from the weighted sums of the 

multispectral bands which is then resampled to the same pixel size of the high resolution 

panchromatic image and then subtracted from the high resolution panchromatic image. A 

combination of high- and low pass filters are applied. Choosing the most suitable weights is crucial 

to retain both spectral - and spatial accuracy. Due to the spectral distortion introduced in the 

process, SRM is not ideal for quantitative analyses (Witharana & Civco 2012; Zhang & Mishra 

2012). 

2.4.3.8 Brovey transform 

The Brovey transform is a relatively simple arithmetical method (Fonseca et al. 2011) that employs 

division and multiplication to fuse multispectral and panchromatic images. Švab & Oštir (2006) 

explain that the Brovey transform normalises multispectral bands used for RGB display by 

dividing each multispectral band by the panchromatic image. The resultant image is multiplied by 

the original panchromatic image to add a brightness component to the image. As it was developed 

to produce RGB images, only three bands at a time can be processed. The Brovey transform was 

developed to highlight the contrast in the low and high ends of the image’s histogram and this so-

called histogram stretching makes the Brovey transform an outstanding method for providing 

contrast between shadows, water and urban areas, all of which usually have a high reflectance. 

Brovey-transformed images are visually appealing but the method should not be used when it is 

necessary to retain radiometric and spectral fidelity (Vijayaraj 2004; Jensen 2005; Klonus & Ehlers 

2009). 

2.4.4 Accuracy assessment 

Coppin et al. (2004:1589) states: “Precise registration of multi-date imagery is a critical 

prerequisite of accurate change detection”. They use the term ‘temporal trajectory analysis’ to 

describe the monitoring change of a certain area over a long period of time. To ensure that the 

images were registered very accurately, accuracy assessment was undertaken. Below is a short 

discussion on the theory behind positional accuracy and root means square error (RMSE) analysis.  
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2.4.4.1 Positional accuracy 

ERDAS Imagine (2013a:285) describes RMSE as “…the distance between the input (source) 

location of a GCP and the retransformed location for the same GCP.” In other words, it is the 

difference between the desired output coordinate for a GCP and the actual output coordinate for 

the same point, when the point is transformed with the geometric transformation. 

Figure 2.10 below illustrates the relationship between the two GCPs and the RMSE. 

  Source: ERDAS Imagine (2013a: 285)  

Figure 2.10   Residuals and root mean square error per point  

RMSE is calculated with a distance equation (Equation 2.14) by measuring the differences in the 

source coordinate system and is expressed in pixel widths. 

RMSE =√(𝑥𝑟 − 𝑥𝑖)² + (𝑦 𝑟 − 𝑦𝑖)2 

Equation 2.4 

where and  are input source coordinates; and 

 and  are retransformed coordinates. 

An RMSE of 2 implies that the reference pixel is 2 pixels away, in any direction, from the 

retransformed pixel (Figure 2.11).  The acceptable RMSE value for an accurate registration is 0.5 

(Congalton & Green 2009).  

 

Figure 2.11   Tolerance of root mean square error   

ix iy

rx ry

Source: ERDAS Field Guide (2013a:363) 
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RMSE is calculated and displayed in two ways. An evaluation is given for each GCP as well as an 

average RMSE calculation for all points involved. This allows single GCPs to be evaluated and 

corrected.  

2.4.4.2 Thematic accuracy assessment 

Thematic accuracy is a measure of how accurately a mapped land cover category compares with 

the actual land cover on the ground at the time of the survey. One way of representing classification 

accuracy of site-specific accuracy assessments is in the form of an error matrix. The matrix 

columns usually contain the reference data while matrix rows contain the classification data 

(Congalton 2005). 

 

In this study false colour images will be used to assess the accuracy of the change detection maps 

in Section 5.4. The value of false colour images in comparison to the true images are discussed 

next. 

2.5 TRUE AND FALSE COLOUR IMAGES 

The bands of a satellite image can be combined in various ways to deliver very different portrayals. 

True colour images combine the blue, green and red bands (e.g. GeoEye-1 bands 1, 2 and 3 

respectively), to deliver images similar in appearance to a colour photograph of an area under 

investigation (ERDAS Imagine 2013a). Other combinations of bands produce so-called ‘false 

colour’ images (Mather 2006). These images appear strange to the untrained eye but provide 

invaluable information that sometimes cannot be obtained from true colour images. By combining 

the bands in different ways, features can be represented in different colours of the visible spectrum 

and represented in a useful and informative format.  

Images can also be altered mathematically to deliver specific outcomes. A vegetation index is one 

such type of reworking that delivers maps that shows change in vegetation. A number of vegetation 

indices are discussed in the next section. 

2.6  VEGETATION INDICES 

Jensen (2005:312) describes vegetation indices as “…dimensionless, radiometric measures that 

indicate relative abundance and activity of green vegetation, including leaf-area-index (LAI), 
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percent green cover, chlorophyll content, green biomass, and absorbed photosynthetically active 

radiation (APAR).” 

Various indices are available to measure the differences between two or more radiometric bands 

of satellite imagery. A common application of indices is to highlight the difference between 

vegetation and other materials. Vegetation indices are also useful for monitoring and 

understanding environmental and climatic phenomena such as deforestation, desertification and 

drought (Gibbons & Freudenberger 2006). They are also helpful in classifying different types of 

vegetation (Nichol & Wong 2007).  

Chlorophyll strongly absorbs visible light (0.35μm–0.7μm) for photosynthesis but the cell 

structure of the leaves strongly reflects near-infrared light (0.7μm–1.2μm) (Jensen 2007). 

Consequently, the more leaves the plant has, the greater the extent of absorption or reflection of 

these wavelengths. If there is more reflected radiation in NIR wavelengths than in visible 

wavelengths, the vegetation in a specific pixel is likely to be dense and indicative of some type of 

forest. The less the difference in the intensity of visible and NIR wavelengths reflected, the sparser 

the vegetation and greater the indication of grassland, tundra or desert (NASA 2008). Refer to 

Section 2.3 for details about the bandwidths of satellite sensors such as GeoEye-1. 

Silleos et al. (2006) reviewed the nature and usefulness of various vegetation indices which they 

group into three categories: (1) slope-based, (2) distance-based or perpendicular, and (3) 

orthogonal transformation vegetation indices. Six sloped-based indices were considered namely 

the simple ratio index, normalised difference vegetation index, transformed vegetation index, 

squared simple ratio index and enhanced vegetation index. In addition, five distance-based indices 

are examined, namely the difference vegetation index, the soil-adjusted vegetation index, the 

transformed soil adjusted vegetation index, the atmospherically resistant vegetation index and 

transformed soil-adjusted vegetation index. Orthogonal transformation vegetation indices make 

use of statistical measures (e.g. PCA) and are as such sensitive to the spectral variation of the 

images being analysed. They are consequently not suitable for change analyses and were not 

considered in this study. The advantages and disadvantages of each of the ten vegetation indices 

considered are summarised in following subsections.  
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2.6.1 Simple ratio index  

The simple ratio index (RATIO) described by Birth & McVey (Jensen 2007) is easy to use and 

effective for a wide range of conditions. The index expresses the contrast between the red and NIR 

bands for vegetated pixels (Silleos et al. 2006) and minimises problems introduced by topography. 

The RATIO index gives high values (>20) for dense vegetation and values close to 1 for soil, ice 

and water. This index is therefore very valuable to provide information about biomass or LAI 

(Stenberg et al. 2004; Jensen 2007).  

The formula for RATIO is given in Equation 2.5. 

RATIO = 
NIR

RED
 Equation 2.5 

where NIR is the reflectance value of the IR band; and 

 RED is the reflectance value of the red band. 

Due to the simplicity of the formula, errors such as division by zero may occur and therefore the 

resulting measurement scale is not linear.  

2.6.2 Difference vegetation index 

The difference vegetation index (DVI) is a very simple vegetation index as shown in Equation 2.6. 

It calculates the difference between the NIR and red bands and is a direct estimation of the amount 

of green vegetation present in the image. 

DVI = NIR-RED Equation 2.6 

where NIR is the value of the NIR band; and 

 RED is the value of the red band. 

2.6.3 Normalised difference vegetation index  

The normalised difference vegetation index (NDVI) was developed by Rouse et al. (1974) as 

quoted by Jensen (2007). NDVI is a widely used and is calculated from the difference between the 

reflection in NIR and red bands normalised by die sum of the same values (Silleos et al. 2006). 

NDVI was also the preferred VI used by Koruyan et al. (2012) in their paper on the use of remote 

sensing in monitoring mine rehabilitation.  

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

44 

The mathematical formula is shown in Equation 2.7. 

NDVI = 
NIR - RED

NIR + RED
 

Equation 2.7 

 

where NIR is the value of the NIR band; and 

 RED is the value of the red band. 

NDVI values range between −1 (clouds and snow) and +1 (vegetation). The RATIO and NDVI 

are quite similar to each other but RATIO performs better than NDVI in areas with dense 

vegetation when the LAI is high (Stenberg et al. 2004) opposed to NDVI which gives better results 

at low values for LAI.  

2.6.4 Transformed vegetation index 

Deering et al. (1975), as quoted by Silleos et al. (2006), developed the transformed vegetation 

index (TVI) as a more complex form of NDVI. The TVI formula was created by adding a constant 

of 0.5 to the NDVI before taking the square root of the sum. This stabilises variance and reduces 

problems related to negative numbers (Silleos et al. 2006).  

The TVI formula is shown in Equation 2.8. 

TVI = √
NIR - RED

NIR + RED
+ 0.5 Equation 2.8 

where NIR is the value of the IR band; and 

 RED is the value of the red band. 

Deering et al. (1975) found that the TVI (called TNDVI in their report) has a better signal-to-noise 

ratio in drylands than the NDVI and is therefore expected to perform better than NDVI with the 

satellite images of Navachab mine.  

2.6.5 Square root simple ratio index 

An additional index offered by some remote sensing software packages is the square simple ratio 

index (SSRI). The formulation improves RATIO by calculating the square root of RATIO 

(Equation 2.9).  
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SSRI = √
NIR

RED
 Equation 2.9 

where NIR is the value of the IR band; and 

 RED is the value of the red band. 

This index is not expected to perform better than RATIO for this study as there is no change to the 

mathematical separation of the values. 

2.6.6 Enhanced vegetation index 

The enhanced vegetation index (EVI) shown as Equation 2.10, was developed by the MODIS Land 

Discipline Group (Jensen 2007).  

EVI = G (
NIR-RED

(NIR+(C1*RED)-(C2*BLUE)+L)
) 

Equation 2.10 

 

Where NIR is the value of the IR band; 

 RED is the value of the red band; 

 BLUE is the value of the blue band; 

 G is a soil-adjustment factor with a value of 2.5; 

 C1 is an empirically determined coefficient with a value of 6.0;  

 C2 is an empirically determined coefficient with a value of 7.5; and 

 L is an empirically determined coefficient with a value of 1.0. 

The purpose of the development of EVI was to address some of the limitations of NDVI by 

incorporating the blue band (Band 1) to correct for soil background signals and to reduce 

atmospheric influences (Silleos et al. 2006). NDVI and EVI performs equally well in Mesic1 

grassland sites (Huete et al. 2002).  EVI is more useful than NDVI in high-biomass regions with 

high levels of aerosols from burning and other sources of pollution. On the other hand NDVI gives 

a wider range of values in semi-arid regions (Jensen 2005).  

                                                 

 

1 Mesic refers to habitats containing a moderate amount of moisture. 
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2.6.7 Soil-adjusted vegetation index 

Huete (1988) developed the soil-adjusted vegetation index (SAVI) as a hybrid of a ratio-based 

index and a perpendicular index. It introduces an adjustment factor L for different levels of 

vegetation cover (Equation 2.11). 

SAVI = (
NIR - RED

NIR + RED + L
)  x (1+L) 

Equation 2.11 

where NIR is the value of the IR band; 

 RED is the value of the red band; and 

 L is an adjustment factor. 

The value of L will vary according to the level of vegetation cover with L = 0.25 for high vegetation 

cover, L = 0.5 for intermediate cover and L = 1.0 for low cover. Where L = 0, SAVI results are 

equal to those of NDVI (Silleos et al. 2006).  

2.6.8 Atmospherically resistant vegetation index  

Equation 2.12 below expresses the atmospherically resistant vegetation index (ARVI) which is an 

improvement of NDVI and SAVI. ARVI includes reflectance values in the blue band to correct 

atmospheric scattering of the red band. It is useful in areas with high atmospheric aerosol content 

and allows for prior correction for molecular scattering and ozone absorption of the blue, red and 

infrared data (Jensen 2007). 

ARVI = 
NIR - (2 RED - BLUE)

NIR + (2 RED - BLUE)
 

Equation 2.12 

where NIR is the value of the NIR band; 

 RED is the value of the red band; and 

 BLUE is the value of the blue band. 

Huete & Liu (1994) tested the NDVI against the various improved variants, including ARVI, and 

came to the following conclusions: 

 all variants of NDVI outperformed the original NDVI; 

 the atmospherically resistant variants minimised atmospheric noise but increased soil 

noise; 
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 the soil-adjusted variants (e.g. SAVI) minimised soil noise but were sensitive to 

atmospheric influences; and  

 where no atmospheric corrections are included, the NDVI and ARVI performed the worst 

with highest noise. 

2.6.9 Transformed soil-adjusted vegetation index 

Baret, Guyot & Major (1989) described the transformed soil-adjusted vegetation index (TSAVI) 

to improve high sensitivity to soil brightness suffered by other VIs like SAVI which are based on 

combinations of red and NIR bands (Baret & Guyot 1991). TSAVI was specifically developed for 

semi-arid regions which corresponds well to the Karibib region where the Navachab Gold Mine is 

located. 

The formula for TSAVI is expressed in Equation 2.13 below. 

TSAVI = 
a(NIR - a) (RED - b)

RED + (a*NIR) - (a*b)
 

Equation 2.13 

where NIR is the value of the NIR band; 

 RED is the value of the red band;  

 a is the slope of the soil line; and 

 b is the soil line intercept. 

Vegetation indices need to be put through change detection analysis to determine the amount of 

change that occurred in the time-frame. Some of the change detection methodologies are discussed 

in the next section. 

2.7 CHANGE DETECTION  

Change detection requires information regarding land-use and land cover changes at local, regional 

and global scale to be extracted from remotely sensed images. Multitemporal images are run 

through algorithms that determine the amount of change in each pixel from one image to the next. 

Change detection algorithms can be broadly divided into two main categories namely 

transformational techniques and change classification techniques (Coppin & Bauer 1996). These 

techniques are described in the subsections to follow. 
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2.7.1 Transformational techniques 

Transformational techniques require the analyst to establish a change threshold below which 

change is regarded to be due to natural causes and above which change is reported as real change 

(Green, Kempka & Lackey 1994; Lu, Mausel & Brondizio 2004; Radke et al. 2005; ERDAS 

Imagine 2013b). Several variations of transformation techniques are discussed here. 

2.7.1.1 Relative difference 

The simplest form of transformational change detection involves subtracting each image pixel 

from the later image (T2) from the corresponding pixel in the earlier image (T1). In this instance 

the pixels that increased in brightness will have negative values and the pixels for which brightness 

decreased will have positive values. The percentage change is then calculated by subtracting T1 

from T2 and dividing by the pixels’ value at T1 and T2 respectively. The two values are then added 

together and multiplied by 100 to deliver the percentage change (Equation 2.13).  

Relative difference = (
T2-T1

|T1|
+

T2-T1

|T2|
) ×100 Equation 2.13 

where T1 is the brightness value of the earlier image; and 

 T2 is the brightness value of the later image. 

All changes identified in this manner are not necessarily the result of actual change in the scene 

but could also be the result of natural spectral variability of objects in the image. A change 

threshold therefore needs to be established and this is done by selecting a percentage change below 

which change is regarded as due to natural factors and above which change is regarded as actual 

change and which is then displayed in the change detection map.  

2.7.1.2 Magnitude difference 

Magnitude difference involves calculating the brightness magnitude for each pixel across all bands 

in the image. Each pixels’ magnitude at T1 is then subtracted from its value at T2 (Jensen 2005) 

and transformed to a positive value.  

For 8 bit data the resultant values from the differencing process can vary between -255 and 255 

and the constant (c) is a value which needs to be added to all the values in order to make the 

resulting pixel values positive.  
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The magnitude difference is computed by the following formula (Equation 2.14): 

∆BVijk = BVijk (1)- BVijk (2)+ c Equation 2.14 

where ∆BVijk  is the change in pixel value; 

 BVijk(1) is the brightness value on date 1; 

 BVijk (2) is the brightness value on date 2; 

 c is a constant (to make all values positive); 

 i is the line number; 

 j is the column number; and 

 k is the band number. 

This method works best for phenomena that leads to a change in pixel value across all the bands 

in the image including situations where an object is present in one image but absent in the next 

image (Vakalopoulou & Argialas 2012; ERDAS Imagine 2013b). 

2.7.1.3 Tasseled Cap differences 

The Tasseled Cap transformation is very useful for vegetation studies. It involves weighting bands 

of suitable multispectral imagery using transformation coefficients specific to the sensor. Linear 

transformation equations are applied to the original data sets to deliver a new transformed image 

that corresponds to soil brightness and greenness respectively. These components are then 

differenced to deliver a change image that shows positive or negative changes in soil brightness 

and greenness (Kauth & Thomas 1976; Crist & Cicone 1984; Collins & Woodcock 1996; Lobser 

& Cohen 2007; Sheng, Huang & Tang 2011). 

2.7.2 Change classification techniques 

In the change classification technique all changed pixels are detected directly and mapped as 

change. 

2.7.2.1 Primary colour differences 

The primary colour difference algorithm highlights changes in objects based on one primary 

colour. Pixels are allocated a threshold value in T1 and T2 based on how blue, green or red they 
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appear. Elaborate calculations are then carried out to determine if there is significant colour 

change. The limitation of this method is that the entire pixel needs to be of one colour and therefore 

it is not very suitable for medium resolution imagery where a pixel can cover an area of 30 x 30m 

and larger (Vakalopoulou & Argialas 2012). 

2.7.2.2 Single-band differences 

The single-band difference method is useful when most change occurs in one band or where there 

is only one band of imagery available. The process is simple but can also lead to excessive 

reporting of changes that are insignificant. This method is best suited for panchromatic imagery 

(Ehlers et al. 2012). 

2.7.2.3 Band-slope difference 

Band-slope difference values are calculated by computing pixel values for T1 and T2 for each of 

the bands in the band-slope algorithm. The difference values are then calculated by the relative 

difference formula (Equation 2.13). The band-slope value is specified for the lower band therefore 

slope 1 refers to the band slope between Bands 1 and 2 (Vakalopoulou & Argialas 2012). 

As discussed above, most of the change detection techniques can be applied on single or multiple 

image bands of two images. Another approach is to apply the change detection technique on a 

transformation of the two images. For instance T1 and T2 in Equation 2.13 can represent the NDVI 

values of each image.  

The output of change detection techniques are often illustrated in a change detection map. 

Individual pixels are often assigned to one of three classes, namely no-change, reduced and 

increased. The three classes in the resulting change detection map are normally symbolised using 

black, red and green respectively. Consequently, a black coloured pixel on the change detection 

map indicates that the land cover remained the same, while green or red coloured pixels indicate 

that there was either a positive or negative change in the land cover respectively (ERDAS Imagine 

2013a). 

2.8 SUMMARY 

Absorption and reflection characteristics differ between various plants and also between plants in 

various growth stages, therefore an understanding of the vegetation characteristics is essential to 
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interpret the results of change detection. Leaf pigment, moisture content and reflection by leaf cell 

structure all contribute to unique reflective patterns used in image interpretation. 

Spectral resolution describes the colour detail contained in an image while spatial resolution 

indicates the area covered by one pixel of the image. The smaller the surface area contained in one 

pixel, the higher the spatial resolution. Multispectral scanners are designed to capture more detail 

in their smaller bandwidths and preserve the image SNR in a high spectral resolution image. On 

the other hand, panchromatic scanners capture less detail but in a wider range of bandwidths and 

therefore panchromatic images often have higher spatial resolutions compared to multispectral 

images. Radiometric resolution describes the amount of digital detail (bits) contained in the images 

and temporal resolution is the revisit time of the scanner. Revisit frequency can be increased by 

sensors that are pointable but such off-nadir images are not ideal for change detection purposes.  

The sensor characteristics of various satellites also determine their usefulness for specific 

purposes. Ikonos, Quickbird, Orbview-3, GeoEye-1 and RapidEye are all sun-synchronous, polar-

orbiting satellites suitable for regular monitoring of relative small areas. The RapidEye 

constellation has the best temporal resolution but GeoEye-1 is superior in spatial resolution. 

Although the GeoEye-1 sensor is highly pointable, the best manifestations of change detection will 

be obtained from images taken at nadir or as close to nadir as possible.  

The spatial resolution of multispectral images can be improved by making use of pansharpening 

(resolution merge) techniques. Zhou, Civco & Silander (2010) found that, compared to IHS, PCA 

and Brovey transform, the wavelet transform delivered simultaneous best spectral and spatial 

quality and therefore outperformed these methods. Ashraf, Brabyn & Hicks (2012) tested the 

performance of SRM against the Brovey transform, PCA and HPF on Quickbird imagery and 

concluded that SRM outperformed the other methods qualitatively and quantitatively. Quickbird, 

Ikonos and Formosat images work well with this algorithm as will images from any other sensor 

(like GeoEye-1) with the same spectral qualities.  

Accuracy assessments are needed to determine how well images have been georegistered. For this 

purpose the RMSE and SD values should be calculated. The SAVI and TSAVI vegetation indices 

usually perform better in semi-arid regions. SAVI can be corrected for semi-arid regions with low 

vegetation cover, while the formula for ARVI also incorporates the blue band to correct for 

atmospheric scattering. 
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Spectral signatures and false-colour images give an indication of the correctness of a classification 

or change detection result. Spectral signatures can also be used to determine the likelihood of a 

specific vegetation index giving a superior or less accurate assessment of vegetation change. False 

colour images are useful to assess the accuracy of the change detection process. By combining 

Bands 4, 3 and 2 (NIR, red, green) healthy vegetation will manifest as bright red.  

The data collection and steps taken to prepare the images for change detection at the Navachab 

mine is discussed in the next chapter. 
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CHAPTER 3   DATA COLLECTION AND MANIPULATION 

Change detection is based on comparing the spectral values of a given pixel over time. Kennedy 

et al. (2009) defines the stages in a remote sensing change detection study as: 1) data acquisition, 

2) preprocessing and/or enhancement, 3) analysis and 4) evaluation. The process followed in this 

study is shown in Figure 3.1. This chapter reports on the data acquisition and preprocessing steps 

which includes pansharpening and georegistration. The vegetation index generation and change 

detection steps are covered in Chapter 4. 

 

Figure 3.1   Satellite image processing flow diagram 

The main challenges relating to data acquisition was to decide on suitable imagery and to 

determine the appropriate timing of the image scans (Section 3.1). This was followed by data 

manipulation procedures to ensure that all images had exactly the same coordinate system and 

band sequence (Section 3.2). Once completed, an initial evaluation of the georegistration process 
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was done to assess accuracy of the georegistration process with the unsharpened images. These 

steps are explained in more detail in the following sub-sections. 

3.1 DATA ACQUISITION 

Given the remoteness of the study area, very few historical high spatial resolution satellite images 

were available of the Navachab mine on the databases of satellite image suppliers. The selection 

of baseline images was consequently dependent on the availability of recorded (archived) images. 

An image on which the tailings are visible was needed as a baseline for the change analyses, which 

meant that the acquisition date of this image had to have been prior to the onset of rehabilitation. 

The period of interest consequently starts in 2004 when TSF1 was decommissioned and ends in 

2011. Images for monitoring the rehabilitation progress were also needed. The process of obtaining 

suitable images is referred to here as the data matching time-frame. 

3.1.1 Data matching time-frame 

The inventory of all available satellite data with very high resolution included Ikonos, Quickbird 

and GeoEye-1 images (Table 3.1). Quickbird and SPOT5 were the only satellites that provided 

historical images suitable to be used as a baseline. Quickbird images were available from 

DigitalGlobe for the years 2004, 2005 and 2008, while SPOT 5 images were available for 2006 

and 2008. New Ikonos, Quickbird and GeoEye-1 acquisitions could also be ordered (Carr-Hyde 

2009, Pers com) but only from 2009 when the study was initialized.  

Table 3.1   High-resolution satellite images inventory for Navachab Gold Mine 

                    Source: (Carr-Hyde 2009, Pers com) 

Quickbird images were considered more suitable than SPOT 5 images due to their superior spatial 

resolution. The Quickbird images of July 2004 and January 2005 were consequently ideal for 

 

Sensor 

 

Resolution 

 

Bands 

 

Minimum order size 

 

Archived image dates 

 

New  

collect 

Ikonos 80cm multispectral 
3 multispectral 

+ 1 panchromatic 
100km² - Yes 

Quickbird Archive 

60cm 
panchromatic; 

2.4m multispectral 

3 multispectral 

+ 1 panchromatic 
25km² 2004;  2005;  2008 Yes 

SPOT 5 
2.5m panchromatic 

10m multispectral 

3 multispectral 

+ 1 panchromatic 

Per scene 60km 
scene or 

 ¼ scene (15km) 

2006; 2008 Yes 

GeoEye-1 

50cm 
panchromatic; 

1.65m multispectral 

3 multispectral 

+ 1 panchromatic 
100km² - Yes 
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providing prerehabilitation baselines. New orders of Quickbird, Ikonos and GeoEye-1 images 

were considered for the duration of the study period.  

Tailings, soil and natural rock may appear differently under wet and dry conditions (Section 2.2.3) 

and this can have a significant effect on change analyses. To accommodate these changes a 

distinction was made between images acquired under wet and dry conditions. The appearance of 

vegetation also changes considerably from being brown and non-photosynthetic in the dry season, 

to growing vigorously during the rainy season. It is consequently important to compare images 

scanned during the same season to get an accurate estimation of the true improvement in vegetation 

from one year to the next. The moisture conditions and seasonal classifications of the available 

images are discussed next. 

3.1.2 Moisture condition and seasonal classification of images 

Imagery of the study area is not scanned regularly by imaging companies and only two Quickbird 

images, one from 2004 and one from 2005, covering the TSF1 were available from DigitalGlobe. 

In addition, scan dates of newly collected images depended on whether local conditions (cloud 

cover) were conducive to a successful image scan. Moisture conditions at the time the images were 

scanned was therefore researched in retrospect, after confirmation of image scan date. Image 

acquisition dates are listed in Table 3.2.  

Table 3.2   Classification of images according to season 

Image 
number 

Satellite Scan date Tailing conditions Season 

1 Quickbird 28 January 2004 Wet Wet (baseline) 

2 Quickbird 29 July 2005 Dry Dry (baseline) 

3 GeoEye-1 12 March 2009 Dry Wet 

4 GeoEye-1 12 October 2009 Dry Dry 

5 GeoEye-1 22 May 2010 Dry Wet 

6 GeoEye-1 1 October 2010 Dry Dry 

7 GeoEye-1 22 April 2011 Wet Wet 

8 GeoEye-1 31 October 2011 Dry Dry 

Because the Karibib area usually receives rain between October and May, with peak rainfall 

between January and March, the images acquired before the onset of the rainy season were 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

56 

classified as dry season images and those images scanned during the rainy season as wet season 

images.  

The 2003-4 rainy season was relatively dry with a total rainfall of only 124mm. Most of the rain 

in 2004 was recorded in January. Unfortunately, daily rainfall figures for Navachab were not 

available for this period so that precise comparison of the rainfall with the timing of the available 

images was not possible. Even so, TSF1 was operational at the time and the tailings on the top of 

the TSF were still wet, regardless of the rainfall. A Quickbird image of 28 January 2004 (Image 

1) was considered suitable as a baseline for wet tailing conditions. 

A similar trend is seen for the 2005-6 rainy season. During June 2005, when Image 2 was scanned, 

no rain fell and the two preceding months had minimal rain. TSF1 had already been 

decommissioned and the tailings had dried out sufficiently for capping activities to commence. 

Image 2 is thus suitable for use as a dry baseline image. The January 2004 and July 2005 images 

were consequently selected as wet and dry baseline images for change detection respectively. 

Owing to their higher spatial resolution, GeoEye-1 was chosen in favour of Ikonos for the 

rehabilitation monitoring. Although the study area is relatively small (16ha), high-resolution 

imagery such as GeoEye-1 can only be ordered in units of 100km² or larger, which makes the cost 

of acquiring a large number of images very high. The acquisition of images was consequently 

restricted to one image per season. Nadir images were preferred but were not always available due 

to cloud cover. Cloud cover was especially problematic during the rainy season. In such cases 

consecutive passes of the satellite were required for off-nadir scanning.  

Image 3 (GeoEye-1 image) was scanned on 12 March 2009. The preceding month had an 

exceptionally high rainfall of 232mm and another 61mm fell in March to give a total rainfall of 

430mm for the 2008-9 rainy season. Most of the precipitation occurred during the first five days 

of March 2009 followed by a hot, dry week before the image was scanned.  This image was 

selected as a suitable dry (wet-season) image. 

A GeoEye-1 image for October 2009 (Image 4) was scanned on 12 October 2009. Virtually no 

rain had fallen from the beginning of the 2009-10 rainy season up to the scan date so the tailing 

conditions were dry. The rest of the 2009-10 rainy season remained very dry with rainfall totalling 

only 115mm for the period between October 2009 and March 2010. Yet the rain was well 

distributed over the entire period and despite the total rainfall being low, an improvement in 
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vegetation growth was expected to be visible on the GeoEye-1 image scanned on 22 May 2010 

(Image 5). Three dry weeks preceded the scan date so the tailing conditions were dry. 

The scan dates of the imagery were related, where possible, to the rainfall figures of Navachab 

(Figure 3.2) below. 

   

   

   

  

    

Figure 3.2   Navachab rainfall over the 10 years preceding the end of the study period 

It was dry throughout October 2010 but early rains fell in November and December 2010. The 

scan date (1 October 2010) of the Image 6 coincides with the end of a five-month dry period and 

was therefore ideal for use as a dry season image with dry tailing conditions. Image 7 was acquired 
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during the wet season and followed two rain events on 20 April 2010 (39mm) and 21 April 2011 

(10mm). The image was consequently classified as a wet season image with wet tailing conditions.  

The rest of the 2010-11 rainy season was exceptionally wet with consistent monthly rainfall from 

November 2010 until late June 2011. The total rainfall for the season was 440mm. Image 8 was 

scanned on 31 October 2011, with the preceding four months being relatively dry apart from 

0.76mm falling in September 2011. The image is therefore also considered to be a suitable dry 

season image with dry tailing conditions.  

The eight high resolution Quickbird and GeoEye-1 images listed in  were acquired and processed. 

Image preprocessing is explained in the next section.  

3.2 IMAGE PREPROCESSING 

Much of the image preprocessing was carried out by the supplier of the imagery (GeoData Design). 

This included radiometric correction, atmospheric correction and basic geometric correction. As 

explained in Section 2.4.2.1, radiometric correction is done to compensate for known 

characteristics of the sensor that affect the radiometric values of the pixels in the image. The 

radiometric corrections were performed to ensure that the relationships between the image bands 

are correct. Only basic atmospheric corrections were performed as, due to the remote location and 

arid conditions of the study area, atmospheric effects were assumed to be minimal and relatively 

stable.  

Change detection relies on the selection of minimum and maximum thresholds that signify 

significant changes. The minimum threshold disregards small-magnitude changes including those 

that are the result of sensor noise or atmospheric differences. The maximum threshold removes 

changes registered due to very large differences such as the presence of clouds or cloud shadows 

(ERDAS 2013c). Sophisticated atmospheric corrections and cloud masking procedures were 

consequently not required in this study. 

Basic geometric corrections were carried out by the supplier of the imagery. This involved the 

large scale orthorectification of the images to a map coordinate system based on the satellites’ 

position and viewing angle at the time of acquisition (Dorfling 2012d, Pers com). All images were 

supplied in the UTM Zone 33 map projection and WGS84 datum with the band sequences: blue 

(Band 1), green (Band 2), red (Band 3) and NIR (Band 4). Some of the images were received in 
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different projections and had incorrect band sequences, but these errors were corrected using the 

appropriate software tools.  

The resolution of the multispectral images acquired was considered inadequate for monitoring 

growth of small shrubs and trees. The value of improving the spatial resolution of multispectral 

images using pansharpening techniques was discussed in Section 2.4.3.  

This section investigates suitable pansharpening and geometric correction methods to ensure that 

the resulting change detection maps are accurate. 

3.2.1 Pansharpening 

Eight pansharpening methods offered by ERDAS Imagine software were evaluated in this study. 

Refer to Section 2.4.3 for an overview of these techniques. Quantitative assessment methods were 

not considered in the evaluation as other studies (e.g. Alparone et al. 2004 and Zhang 2008) 

showed that there is no reliable measurement for quantifying the quality of pansharpened images. 

Instead the qualitative approach described by Wei, Yuan & Cai (1999) was adopted. This approach 

makes use of subjective scoring such as the mean opinion score (MOS).  

MOS relies on the interpreter’s own experiences and motivations. The authors compared the MOS 

to a more elaborate approach called the perceptual mean square error (PMSE) and found that the 

two methods correlated very well. The much simpler MOS was consequently used here. The 

purpose of the MOS is to identify the pansharpening method that produces the most accurate 

alignment of GCP’s while still retaining spatial and spectral fidelity. Table 3.3 shows the MOS as 

described by Shi et al. (2005).  

Table 3.3   Mean opinion score grades 

Grade Absolute measure Relative measure 

1 Excellent The best in the group 

2 Good Better than the average level in a group 

3 Fair Average level in a group 

4 Poor Lower than the average level 

5 Very poor The lowest in a group 

  

The results of testing the various pansharpening methods were compared with the unsharpened 

multispectral (Figure 3.3a) and the panchromatic (Figure 3.3b) images.  

Source: Shi et al. (2005: 247) 
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Figure 3.3   Comparison of (a) unsharpened multispectral image, (b) panchromatic image and (c) Ehlers fusion, (d) 

high pass filter, (e) modified intensity hue saturation, (f) Brovey transform, (g) multiplicative, (h) principle 

components analysis, (i) SRM and (h) wavelet pansharpening methods. 
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The images produced by Ehlers fusion (Figure 3.3c), Brovey transform (Figure 3.3f) and 

multiplicative pansharpening methods (Figure 3.3g) all show severe blurring so that individual 

pixels cannot be easily identified. Better results were obtained from HPF (Figure 3.3d), modified 

IHS (Figure 3.3e), PCA (Figure 3.3f), subtractive (Figure 3.3g) and wavelet (Figure 3.3h) 

pansharpening. The best pansharpened images were delivered by the SRM method, followed by 

HPF and modified IHS. The results of MOS process are shown in Table 3.4.  

Table 3.4   Mean opinion score for eight pansharpening methods tested 

 

 

 

 

 

 

Based on the qualitative assessment of the various pansharpening methods it was concluded that 

SRM is the most suitable pansharpening method for this study. This finding is supported by Ashraf, 

Brabyn & Hicks (2012) who found that this method was superior for use with very high resolution 

images. Hence all the acquired images were pansharpened using this method. The georegistration 

process is recounted in the next section. 

3.2.2 Georegistration of the images 

The next preprocessing step involved georegistration of the various images. Because the study area 

is highly localised, no suitable DEM of the study area was available and fine-scale 

orthorectification was not an option (refer to Section 2.4.2.2 for a background on geometric 

corrections). Instead a simple image-to-map georegistration was attempted. Official topographic 

maps of Namibia were obtained in digital and hard copy format to be used as spatial reference. 

The maps covering the study area are 2115DC Usakos North, 2115DD Karibib, 2215BA Usakos 

South and 2215BB Marmorkuppen. It was clear that the maps were produced long before the 

Navachab mine existed as none of the pits, WRDs or TSFs appear on the maps.  

Pansharpening method used 
Relative measure 

scored 
Grading 

Subtractive resolution merge (SRM) Excellent 1 

High pass filter (HPF) Good 2 

Modified hue saturation intensity (HIS) Good 2 

Wavelet Fair 3 

Brovey Poor 4 

Ehlers fusion Poor 4 

Principal component analysis (PCA) Poor 4 

Multiplicative Very poor 5 
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The georegistration of the images using global positioning system (GPS) points was also 

considered. Seven GPS points (see ) on TSF1 were surveyed by the Navachab Survey team using 

a Trimble R8 GNSS GPS rover and R7 GNSS base station. The seven points were allocated 

identification numbers MB1 to MB7. 

Plotting the surveyed GPS points on the satellite images revealed large discrepancies between the 

GPS coordinates and the satellite image coordinates. The matter was referred to specialist 

surveyors Coetzer & Symons (2012, Pers com) as well as Dorfling (2012c, Pers com) who both 

concluded that the Karibib beacon, from where local surveying data is referenced, should be 

remeasured. The initial measuring of this beacon was done a long time ago and preliminary 

readings done by Coetzer indicated that the beacon coordinates were out by several metres in x, y 

and z coordinate directions.  

This finding is of great consequence because the Karibib beacon coordinates are used as reference 

point for all surveying done in the area and the incorrect reference coordinates would result in all 

related surveyed points being incorrect as well. However, the survey team at Navachab mine has 

been using a unique Navachab grid and the inconsistencies with the coordinate system were never 

detected (or relevant) prior to this study. 

For assessing whether the rehabilitation efforts at Navachab mine have been successful, relative 

spatial accuracy was considered more important than absolute accuracy. The decision was taken 

not to use the GPS coordinates based on the old Karibib beacon and to rather perform a relative 

image-to-image co-registration (see Section 2.4.2.2). Image 5 was selected as the reference image 

and all the other GeoEye-1 and Quickbird pansharpened images were georegistered to it by using 

the ERDAS AutoSync Workstation software. Autosync uses an automatic point matching 

algorithm to generate thousands of tie points, and produces a mathematical model to tie the images 

together. The resulting workflows significantly reduce or sometimes completely eliminate manual 

GCP collection (ERDAS Imagine 2013b). 

The intended number of GCPs per image was set at 200 and the output geometric model chosen 

as polynomial. Other settings included ‘avoid shadows’ and ‘exclude background area’. The best 

results were obtained when the ‘use manual tie points for initial connection between images’ 

option was selected. Image projection was chosen as ‘same as reference image’ and ‘maximum 

polynomial order’ was set to 3 with tolerance of 0.1 pixels. Thereafter ‘continue approximation’ 
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was implemented. Images were resampled at a nearest neighbour interpolation with a cell size of 

0.5m by 0.5m. The options to ‘ignore statistics’, ‘clip to reference image boundary’ and ‘force 

square pixels on reprojection’ were also chosen. 

The accuracy of the georegistration process was tested with the ERDAS AutoSync Swipe View 

function at three different locations on the output images at intervals of roughly one quarter of the 

image width. The steep, irregular slopes of TSF1 made georegistration difficult. The best results 

were obtained by first creating some manual GCPs and then running the automatic tie process. 

Furthermore, to eliminate the problem of AutoSync trying to match irrelevant areas outside the 

study’s scope, close-cut subsets were made of the area under investigation. The entire process was 

then rerun with all the image combinations. 

The RSME and the SD remained very high, 9.46 and 5.31 pixels respectively, in spite of the 

visibly-correct overlapping of the images as viewed with the AutoSync Swipe function. The 

RSME of individual GCPs were checked to reduce possible errors, but error contribution of 

individual point was minimal. Where GCPs were adjusted to favour a smaller RMSE and SD, the 

visually alignment of images suffered. Preference was given to visual accuracy and overlap of 

points as indicated by the software swipe function as the relatively high RMSE was attributed to 

relief displacements, especially toward the edges of the images. These displacements were not 

significant in the main focus area (tailings) and consequently had a minimal effect on the change 

analysis results. 

3.3 SUMMARY 

This chapter overviewed the acquisition of the satellite images and the methods used to prepare it 

for analysis. An assessment of various pansharpening methods was done and the results confirmed 

that the subtractive pansharpening method best retains radiometric fidelity and provides the 

clearest on-screen image. The images were georegistered, but the nature of the data, the large 

difference between images and the very irregular topography, made it difficult to find automatic 

tie-points and to obtain an RMSE of less than 1. The georegistered images were used as inputs to 

the change detection process described in the next chapter. 
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CHAPTER 4   VEGETATION INDICES AND CHANGE DETECTION 

Section 4.1 gives a short overview of some of the spectral properties of land cover classes typical 

to Navachab TSF1. The spectral differences between land cover classes and the differences in 

reflectivity of wet and dry substrates were discussed in Section 2.2. These differences are discussed 

further based on the observations made in the study area. In addition, differences between the wet 

and dry season images are also illustrated. Section 4.2 overviews the available vegetation indices 

and highlights their main advantages and disadvantages and reports on the index values measured 

from the imagery. These values were used to identify the most suitable vegetation index, which 

was then applied to the pansharpened images for producing a series of change detection maps. The 

perspective was that the vegetation indices that best separated land cover classes will be the most 

useful for change monitoring. The change detection results are discussed in Section 4.3. 

4.1 SPECTRAL PROPERTIES OF LAND COVER CLASSES IN TSF1 

Published spectral properties of water, soil and rock, and vegetation were discussed in Section 2.2. 

An understanding of the spectral properties of different land cover classes is important in order to 

interpret why certain vegetation indices perform better than others in different circumstances. 

Environmental monitoring staff are not necessarily trained remote sensing practitioners and the 

importance and relevance of spectral properties of land cover classes need to be discussed. This 

section compares these spectral profiles to spectral response patterns observed in the study area.  

The land cover classes on TSF1 consist of a rain water pond, natural rock occurring around TSF1, 

soil (capping material), trees and shrubs. The rainwater pond area is a small depression on the TSF 

surface where water collects during the rainy season. The trees are mostly Acacia species that were 

planted on the TSF as part of the rehabilitation process, while the shrubs are pioneering species 

that naturally invade disturbed areas. The rock types consist mainly of weathered dolomitic 

marbles while the soils class represents the capping material that was used to cover the surface of 

the TSF. This material is also typically of dolomitic origin and is in abundance in the mining area.  

To assess the radiometric fidelity of the images, spectral readings of each class were needed. Image 

5 was chosen as the reference image for the spectral profiles because of the favourable weather 

conditions preceding the image. This image had water in the rain water pond from which the rain 

water spectral readings could be obtained. In addition the weather conditions were relatively dry 

for about six weeks prior to the image acquisition and therefore the soil and rocks on the TSF were 
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dry and the spectral readings were not influenced by moisture. Spectral readings from each class 

were obtained by using the spectral profile viewer function of the processing software.  

False colour images with band sequence 4 (NIR), 3 (red) and 2 (green) were made of Image 5 (wet 

season) and Image 6 (dry season). These false colour images were then used to identify pixels 

within the respective land cover types. The false colour images provided a good indication of 

vegetated and non-vegetated pixels, as discussed in Section 2.5.  

Ten samples were collected for each of the five land cover classes. The percentage reflectance 

values plotted for the respective bands are discussed in the next section.  

4.1.1 TSF1 rainwater pond 

The rain water pond is a very shallow (< 0.5m) pond where rainwater collects during the rainy 

season. At the time that Image 5 (22 May 2010) was captured, no plants or algae were growing 

in the pond and therefore the spectral signature is expected to be very similar to that of a shallow 

body of clear water. 

Figure 4.1 compares the spectral signatures of water to those of soil and vegetation. Water 

normally show a steady decrease in reflectance from the green region to the NIR region with a 

small zone of higher reflectivity in the blue/green bandwidth. The distinguishing feature is the 

very low reflectance in the NIR region which is typical of the absorption of NIR wavelengths 

and beyond in this type of substrate (Lillesand, Kiefer & Chipman 2008). 

Figure 4.1 and Figure 4.2 are photographs taken of the rain water pond during this period. 

Vegetation can be seen emerging from the areas around the pond, but within the pond itself no 

vegetation is visible. The chemical composition was analysed and found to be uncontaminated. 

The presence of tadpoles in Figure 4.3 also suggest that the water is safe for animal consumption.  

When compared with the spectral response pattern obtained from the imagery (Figure 4.3), the 

rain water pond shows lower reflection in the blue region than in the red region followed by a 

sharp decrease in the NIR bandwidth. The higher reflectance in the red band was attributed to the 

shallow nature of the pond. The spectral variance between samples is likely due to varying depth 

over its extent.  
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Figure 4.1   Rainwater pond on old TSF 

 

Figure 4.2   Close-up of water in pond 
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Figure 4.3   Spectral response pattern from the rain water pond as extracted from Image 5 

The pond has been covered with topsoil during rehabilitation activities in 2005/6 and no tailings 

are visible any longer. Ideally the selected VI should therefore classify the pixels relating to the 

covered pond as soil rather than vegetation or tailings. 

4.1.2 TSF1 soil and rock classes 

The reflectance profiles of rock and soil as measured from Image 5 is shown in Figure 4.4. The 

reflectance of rock and soil is relatively high in the blue band but drops considerably in the green 

band. This is followed by a steep increase in the red band followed by a relatively low reflection 

in the NIR region.  

  

Figure 4.4   Spectral profiles of (a) rock and (b) soil as extracted from Image 5  
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This pattern is different when compared to the published profile of soil (Figure 2.6) which shows 

a steady increase in reflection from blue to NIR. Dolomite is the dominant mineral in Navachab 

soils and rocks. The dolomitic soils are light in colour and are expected to have a high reflectivity 

in the visible region of the electromagnetic spectrum. However, wet rock and soil usually have 

lower reflectance than dry substrates (Lillesand, Kiefer & Chipman 2008) and the decrease in 

reflectivity of wet soils is pronounced in finely textured soils with poor drainage like those on 

TSF1. Organic materials also cause an overall decrease in reflectance but the presence of live, 

photosynthetic plants would lead to an increase in reflectance in the NIR region.  

The spectral response pattern of rock (Figure 4.4a) shows that reflectance is very similar across all 

four the bands with slightly less reflectance in Band 4 (NIR), while the overall reflectance of the 

soil (Figure 4.4b) is generally higher. The shape of the reflectance curves for rock and soil are very 

similar, with the least reflectance in Band 2 (green) followed by Band 4 (NIR). Most of the samples 

in Figure 4.4 were void of any living plants, but were clearly influenced by moisture as evidenced 

by the relatively low NIR reflectance. Two samples in Figure 4.4a (samples 9 and 10) and one 

sample in Figure 4.4b (sample 4) seem to include less moisture as the NIR is slightly higher. 

Another possible explanation for the slight increase in NIR reflection in these samples may be the 

presence of plant material.  

Although all attempts were made to select pure samples, some pioneering shrubs and ground cover 

(Figure 4.5) may have contaminated some of the samples.  

 

Figure 4.5   View of top of TSF during the 2010 rainy season indicating presence of pioneering ground cover 

species 
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The presence of plants in Image 5 made it very difficult to select soil and rock samples (i.e. 0.5 x 

0.5m areas) that were totally void of vegetation. However, Image 5 was ideal for selecting samples 

relating to vegetation as discussed next. 

4.1.3 TSF1 vegetation classes 

Vegetation types in the area are typical of semi-arid savannah and dominated by various Acacia 

thorn trees. Moringa trees inhabit the hills around TSF1 and are also used in the rehabilitation 

process while trumpet thorn is an invader shrub found all over the mine. Various small and large 

pioneering shrub types grow on in the rehabilitated areas. Grasses on TSF1 consist mainly of 

annual species but dense grass stands only occur during the rainy season. 

The spectral profiles of the vegetation samples taken from Image 5 are shown in Figure 4.6. These 

profile of trees is Figure 4.6a are very similar to published spectral signatures of vegetation (e.g. 

Figure 2.6) with a very low reflectivity in the blue band, an increase in the green band, a decrease 

in the red band and a sharp increase in the NIR band.  

  

Figure 4.6   Spectral profiles of vegetation classes (a) trees and (b) shrub.  

During a wet period the trees turn green and are actively photosynthesizing. The high levels of 

chlorophyll leads to a steep increase in the NIR band which makes vegetation appear bright red on 

the false colour images. The profile in Figure 4.6a is typical of vegetation (see Section 2.2.2) 

although the relatively lower green peak and higher reflectance in the red band is likely due to the 

influence of background soil reflectance as most of the trees on TSF1 do not have closed canopies. 
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The influence of background soil is more dramatic in Figure 4.6b due to the smaller and less dense 

canopies of shrubs. 

The selection of a suitable vegetation index to highlight the differences between vegetation and 

soil background is discussed in the following section taking into account the unique properties of 

the TSF tailings, soil and vegetation cover. 

4.2 VEGETATION INDEX SELECTION 

Navachab soils used for the rehabilitation activities are very light in colour due to the very high 

marble content and were expected to have very similar properties to the dry tailings. The vegetation 

is not dense (low LAI) consisting of various grasses, pioneering species of shrub and some young 

Acacia trees. Although the pond has been covered by soil, a depression still remains and 

precipitation often collects there during the rainy season. An ideal index would separate the two 

vegetation classes (shrub and tree) from the bare areas (soil and rock). The vegetation and bare 

classes should also be well separated from the rainwater pond class. The spectral values that were 

extracted from Image 5 (see previous section) for each land cover class were used as basis for 

evaluating the different VI’s. The values were used as input to each of the vegetation index 

formulae discussed in Section 2.6 and the results were then displayed on a graph. The values 

obtained for the various indices were then used to determine which index would most effectively 

differentiate the changes from tailings to soil, water and vegetation. In order to compare the VIs, 

the values were normalised to a common scale between 0 and 1 based on the minimum and 

maximum values for each VI using linear scaling.  

The normalised values are listed in Table 4.1 and graphed in Figure 4.7.  

Table 4.1   Normalised vegetation index values calculated from Image 5 

Land cover 
class  

DVI SRI NDVI TVI SSRI EVI SAVI TSAVI ARVI 

Rain water pond 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Natural rock 0.00 0.11 0.26 0.41 0.18 0.00 0.26 0.28 0.27 

Trees 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Shrub 0.57 0.39 0.63 0.75 0.50 0.37 0.63 0.66 0.61 

Soil 0.05 0.17 0.36 0.51 0.25 0.08 0.35 0.38 0.35 
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Each VI’s ability to separate classes were determined by subtracting the index values of the classes. 

Separability can also be visually assessed by comparing the profiles in Figure 4.7.  

 

Figure 4.7   Normalised vegetation index values calculated from reflectance readings 

None of the indices gave near perfect results, but overall the SRI, NDVI, TVI, SSRI, SAVI, TSAVI 

and ARVI all showed very similar trends with the correct expected sequence of bands where water 

has the lowest values followed by rock and soil and with the vegetation classes having the highest 

values. In contrast, water has higher values than rock and soil in the DVI and in EVI the values for 

water and rock are almost identical.  

All the VI’s grouped soil and rock close together and well separated from the vegetation classes. 

The DVI best separates shrub from soil (0.53 normalised difference) followed by EVI (0.29) and 

TVI, SAVI and TSAVI (0.28). These VIs are consequently expected to best distinguish between 

the vegetation and non-vegetation classes Lower separability values between the shrub and soil 

class indicating that the relevant VI’s are more sensitive to background soil reflectance. 

Furthermore, the shrub and the tree classes are least separated by TVI (0.25) followed by TSAVI 

(0.34) and NDVI and SAVI (0.37 each). The rain water pond is well distinguished from the rock 

class by most of the VI’s but TVI once again shows the best separation (0.41) followed by TSAVI 

(0.28), ARVI (0.27) and NDVI and SAVI again performing similar (0.26 each).  

Based on these findings most of the VI’s showed similar results but the indices that will most likely 

show the best separation between the vegetation and non-vegetated classes are DVI, NDVI, SAVI 

and TSAVI (in that order). TVI was the most effective in separating water from rock classes. NDVI 
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performed very similar to SAVI, TSAVI and ARVI and therefore only NDVI was considered 

further. The DVI and EVI were found to be unsuitable due to the incorrect sequence of the 

reflectance curves. In conclusion, TVI and NDVI were found to have the most potential for 

rehabilitation change detection. To confirm this deduction, these indices are evaluated for change 

detection in the next section. 

4.3 CHANGE DETECTION RESULTS  

Change detection was done using ERDAS DeltaCue specialised change detection software. The 

software incorporates multiple change detection algorithms including magnitude-, Tasseled Cap-, 

primary colour-, single band- and band slope algorithms from which the primary colour algorithm 

was selected for required process work.  

NDVI and TVI were used as input in the change detection process. The VI difference maps were 

generated by setting a minimum of 10% change between a baseline image and a recent image. 

Image 1 and Image 2 were used alternatingly as wet and dry baselines respectively. The resulting 

change maps were visually compared to Band 4, 3 and 2 (NIR, red and green) false colour images. 

The results are presented and discussed the following subsections. 

4.3.1 Changes from wet and dry baselines to Image 3 (2009 wet season image) 

Figure 4.8 compares the change detection results between Image 1 (the wet tailing baseline image 

from January 2004) and Image 3 (March 2009), while Figure 4.11 compares the change detection 

results between Image 2 (the dry tailing baseline image from July 2005) and Image 3 (March 

2009). Image 3 was scanned after a relatively dry spell of seven days in an exceptionally wet rainy 

season.   
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Figure 4.8   Increases and reductions in vegetation cover between Image 1 and Image 3 according to (a) NDVI and 

(b) TVI 

Increase in vegetation 

mostly on the benches 
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The rainfall figures are listed in Table A.1 in Appendix A.  Overall the NDVI logs consistent soil 

coverage (shown in black) very well but registers water in the rain-water pond as an increase in 

vegetation (green). When this result is compared with the false colour images in Figure 4.9, it is 

clear that the increase in NVDI values in the area of the pond is not due to an increase in vegetation 

but rather a failure of this vegetation index to adequately separate the vegetation and water classes.  

In contrast, the change map based on the TVI (Figure 4.8b) compares well with what is seen on 

the false colour images (Figure 4.9). Small patches of vegetation on the top of the TSF and the 

pond are shown in red (reduction of vegetation) but the uncovered tailings around the pond and 

the small hill to the south are shown correctly in black (no change). The vegetation increases 

(green) in Figure 4.8b consists mostly of grasses on the benches.  

Figure 4.9   False colour images of (a) Image 1 (Quickbird January 2004) and (b) Image 3 (GeoEye-1 March 2009). 

When the dry tailings image (Image 2) is used as baseline for the change analysis (Figure 4.10b) 

the results are slightly different. NDVI clearly distinguishes between dry tailings and cover 

material (shown in black) but slightly less vegetation increases (green) are logged. This is because 

the rehabilitation of vegetation on the benches had already started by July of 2005 when Image 2 

was captured.  The tailings on the wall along the north-western rim of the TSF are also logged as 

increase in vegetation (Fig4.11a).  

 

(a) (b) 
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Figure 4.10 Increases and reductions in vegetation cover between Image 2 and Image 3 according to (a) NDVI and 

(b) TVI. 
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Figure 4.11   False colour images of (a) Image 2 (July 2005) and (b) Image 3 (March 2009). 

TVI distinguishes very well between dry tailings and soil cover but shows the dry pond as changing 

to a mixture of soil and vegetation (Fig4.11b). This is accurate as in 2009 there was sparse 

vegetation growing in the pond area. Based on the visual comparisons between the NDVI and TVI 

classification results, TVI was more consistently accurate and therefore the more suitable indexing 

method for this study.  

4.3.2 Changes from baselines to Image 4 (2009 dry season image) 

Image 4 was acquired during a very dry period (October 2009) with only a small amount (1.3mm) 

of rain since the last good rains in March 2009 (Figure 3.2). The overall change seen in Figure 

B.1a&c is therefore that of a wet tailings baseline to a combination of dry soil and dry vegetation. 

From the wet baseline (Image 1), NDVI again incorrectly classifies the change from pond to dry 

soil as vegetation (Figure B.1a) when compared to the false colour images Figure B.2. The tailings 

on the wall along the north-western rim of the TSF are also classified as vegetation and the soil 

cover is not recognised, except for some small patches. TVI (Figure B.1c) better distinguishes 

between water and soil as more bare soil is classified compared to NDVI.  

When Image 2 is used as a baseline, NDVI does not distinguish wet tailings and soil coverage well 

and very bare soil is detected (Figure B.1b). TVI is more sensitive to change from tailings to bare 

soil (shown in red) (Figure B1d) and identifies less change from tailings to vegetation (shown in 

green) when compared with the false colour images (Figure B.3).  
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4.3.3 Changes from baselines to Image 5 (2010 wet season image) 

Even though Image 5 was acquired in the rainy season, the preceding six weeks were dry. From 

Figure B.4a it is clear that NDVI fails to distinguish between water and vegetation, although the 

other vegetated areas are accurately portrayed. The very dry conditions of Image 5 was not 

conducive to an increase in vegetation cover and therefore improvement in vegetation cover is 

marginal and only visible on the north-eastern and south-western benches on the false colour 

images (Figure B.5a&b). TVI results for vegetation (Figure B.4c) are very similar to those of the 

NDVI. The rain water pond is dry in Image 5 and here a significant difference is seen between the 

TVI and NDVI results. TVI indicates change in the rain water pond area as a decrease in vegetation 

(red) which is interpreted as ‘soil’ while the NDVI results show this drying up of the rainwater 

pond incorrectly as an increase in vegetation (green). 

The changes in vegetation from Image 2 (dry baseline) using NDVI seem accurate and the dry 

pond is correctly shown as unchanged (Figure B.4b). The TVI results are very similar to those of 

NDVI, although less vegetation increases are highlighted (Figure B.4d). Actual vegetation can be 

seen in false colour images Figure B.6a&b. 

From these results it is difficult to determine which index performed best, although TVI classified 

the changes in the rain-water pond area more accurately and is therefore more suitable for images 

that contain water bodies. 

4.3.4 Changes from baselines to Image 6 (2010 dry season image) 

October 2010, when Image 6 was acquired, was much dryer than January 2004 (Image 1) and most 

of the changes detected between these images are consequently classified as a reduction in 

vegetation cover (shown in red) when NDVI is used (Figure B.7a). The tailings that were covered 

in June 2010 are incorrectly classified as a reduction of vegetative cover. Only small patches of 

increases in vegetation are noticeable. Changes from water to soil are incorrectly classified as an 

increase in vegetation (compare with false colour images in Figure B.8a&b). TVI (Figure B.7c) 

overestimated increases in vegetation and the covering of the tailings is classified as a reduction 

in vegetation cover.  

Most of Image 6 is classified as having experienced a reduction in vegetation cover when using 

NDVI and the dry baseline (Image 2) (Figure B.7b). This is attributed to NVDI’s sensitivity to soil 

background (add refs) as much of the area was covered by dry or sparse vegetation during the 
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acquisition of Image 6 (compare Figure B.9a&b). TVI is known to be less sensitive to background 

soil and correctly classified most of the area as having experienced an increase in vegetation cover 

(Figure B.7d).  

Compared to the previous results this set of results seem to be erroneous. The large variation in 

change was attributed to outlier values, highlighting that the pre-processing of imagery is of critical 

importance in change detection applications. The risk of such errors should be taken into 

consideration when applying image-to-image change detection algorithms. 

4.3.5 Changes from baselines to Image 7 (2011 wet season image) 

Image 7 is was taken during a wet period and the change detection results using Image 1 as baseline 

and NDVI (Figure B.10a) shows that the pond water was incorrectly classified as an increase in 

vegetation, although new vegetation growth seems to be reasonably accurate when compared to 

the false colour image pair (Figure B.11a&b). TVI slightly underestimated vegetation increases 

when Image 1 was used as baseline, but the pond water is correctly classified (Figure B.10c).    

Using the Image 2 as a baseline, NDVI correctly classified the pond water as unchanged or reduced 

vegetation (Figure B.10b). Vegetation increases seems slightly overestimated when compared to 

the false-colour images (Figure B.12a&b) and photographic records. The TVI result (FigureB.10d) 

is almost identical to that of NDVI.  

4.3.6 Changes from baselines to Image 8 (2011 dry season image) 

From Image 1 (wet baseline) to the Image 8 the NDVI change detection result is almost completely 

green (Figure B.13a) indicating a 10% or more increase in vegetation throughout the area. 

Compared to the false colour image (Figure B.14a&b) this is an unrealistic increase. By contrast, 

the TVI change detection result (Figure B.13c) is mostly red apart from some specks of vegetation 

increases on the benches. If the changes detected include both soil coverage and dried-out 

vegetation, this signifies a very accurate representation.  

Using Image 2 (dry) as baseline the NDVI change detection results in a decrease in vegetation 

(Figure B.13b). Very limited increases in vegetation are detected, which disagrees with the amount 

of vegetation seen on the false-colour images (Figure B.15a&b). A very similar (even more 

pronounced) reduction in vegetation was detected when TVI was used for the change analysis 

(Figure B13.d).  
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4.4 SUMMARY 

Several VIs were considered for detecting changes at TSF1. Of these, NDVI, TVI and TSAVI 

were expected to perform better than EVI and SRI as the former group of indices were specifically 

developed for semi-arid conditions (refs). SAVI can be calibrated for semi-arid regions with low 

vegetation cover, while ARVI incorporates the blue band to correct for atmospheric scattering. 

The VIs were evaluated by comparing their spectral response curves for five land cover classes 

namely water, natural rock, soil, trees and shrub. DVI and EVI were found to be unsuitable as their 

reflectance curves were inconsistent. Overall, the land cover classes were best separated with TVI. 

NDVI performed very similar to SAVI, TSAVI and ARVI and only NDVI and TVI were 

considered for further evaluation.  

TVI and NDVI were evaluated for change detection between the two baselines (Images 1 and 2) 

and all the successive images (Images 3 to 8). TVI outperformed NDVI when there was water 

present in the scenery, but with dry images the two indices performed very similar. 

In the next chapter the study aims are revisited and the findings of the research are discussed.  
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CHAPTER 5   CONCLUSIONS AND RECOMMENDATIONS 

The aim of this research was to investigate the effectiveness of remotely sensed change detection 

as a method to measure the success of the Navachab Gold Mine rehabilitation programme.  

A literature review (Objective 1) on the suitable satellite sensors, image characteristics, and the 

various image-processing methods for vegetation indexing and change detection was carried out 

(see Chapter 2). 

Information on Navachab Gold Mine’s operational history was collected. Other information such 

as climatic data and satellite imagery was also acquired for the study period (2004 to 2011) 

(Objective 2). The satellite imagery was preprocessed (Objective 3) to ensure that all images were 

comparable. An overview of the data collection process and image preprocessing was provided in 

Chapter 3. 

Several vegetation indices and change detection methods were evaluated in Chapter 4 (Objective 

4). The change detection maps were assessed to identify the most suitable procedure to confirm 

the success of the Navachab Gold Mine’s rehabilitation programme. A number of change detection 

maps were produced and evaluated (Objective 5). The next section evaluates the suitability of 

satellite remote sensing for mine rehabilitation monitoring. 

5.1 EVALUATION OF SATELLITE REMOTE SENSING FOR MINE 

REHABILITATION MONITORING 

The Navachab tailings are unique as it represent very fine milled rock from the ore body and are 

mostly calcisilicate and dolomitic marbles (Bell 2010, Pers com) whereas tailings from most other 

gold mines are predominantly granite based. The spectral properties of water were also important 

in this study because the pond on the TSF was often filled during rainy seasons.  

Due to the low rainfall in the study area, the increases in vegetation cover was not dramatic enough 

to be captured by the year-on-year VIs, but were in most cases detected over five year periods. 

Change analyses based on dry season images provides better results as it mostly captured perennial 

(long-term) vegetation changes whereas much of the vegetation detected using the rainy season 

images were dominated by annual grasses. The results of the change analyses showed that remote 

sensing provides a potential method for assessing the effectiveness of the rehabilitation programme 
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at Navachab Gold Mine, but that care should be taken in the interpretation of the resulting change 

maps. 

The most suitable images were those scanned shortly before the onset of the rainy season. For 

Navachab Gold Mine, this period is early October. Several pansharpening methods were evaluated 

and the best method proved to be SRM as it retains most of the radiometric fidelity and provided 

the most detail for on-screen GCP matching.  

Change detection performed with NDVI and TVI delivered similar results for the images acquired 

during dry conditions, but according to the results NDVI was less successful where there was water 

present in the baseline image. The experimentation showed that both NDVI and TVI are suitable 

for use in rehabilitation monitoring in semi-arid regions (such as Karibib) provided only dry-

season images are utilised for the change analyses. However, TVI generally performed better than 

NDVI. 

The hypothesis that remotely sensed vegetation indices and image-to-image change detection can 

effectively be used for the monitoring of mine rehabilitation success is accepted, provided that the 

process and results are interpreted with proper understanding of the timing of image acquisition 

and the processing techniques followed. It is not advisable to do a single change detection from a 

tailings baseline to a vegetated image. Making use of multiple images improves understanding of 

the rehabilitation process and reduced the risks of applying simple image-to-image change 

analyses. Post-classification change detection carried out by a trained remote sensing practitioner 

with the necessary skills will likely deliver better results, particularly when fewer images are 

available. 

A more detailed discussion follows in Section 5.2 where the problems encountered during the 

study and recommendations for further research are made. 

5.2 PROBLEMS ENCOUNTERED AND SUGGESTIONS FOR FURTHER STUDY 

A number of challenges were encountered in this research. Some of these challenges were very 

specific to monitoring TSF rehabilitation, mainly because the rehabilitation process consists of 

two consecutive changes. The first change takes place during the capping process when the tailings 

is covered with soil. The change detection tool rendered this change in red which indicates a 

‘reduction’ in vegetation cover (i.e. a negative impact in terms of rehabilitation). However, in 

reality the capping process is a positive development and the change detection method evaluated 
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in this study was consequently unable to adequately represent this transition. The second step in 

the TSF rehabilitation process is when the covered TSF is vegetated. The change detection tool 

successfully rendered this transition as green, indicating an increase in vegetation cover. Simple 

VI-based change detection tools, such as the one used in this study, should therefore be used with 

caution as it can lead to incorrect interpretations. 

Sources of error in the change analyses were mainly due to the images not being correctly 

georeferenced. Topographic maps of Namibia are very old and available only as hard copies and 

attempts to join the maps were unsuccessful as the contour lines and topographic features did not 

line up perfectly. Moreover, the appearance of the mining area has changed so much that very few 

features shown on the topographic maps still exist. The Karibib base beacon used as a surveying 

reference at Navachab was also found to be several metres off the target and the use of surveyed 

points as reference was consequently abandoned. Instead one image was used reference and all 

other images were registered to this image. The semi-automated registration process did not deliver 

adequate results and visual alignment to GCPs was subsequently used. However, the absolute 

accuracy of the georegistration process should be improved in future studies. A digital elevation 

model and accurate GPS points should be used to orthorectify the images. The existing GPS points 

taken at the inception of the study should be recalibrated in line with the new, revised coordinates 

for the Karibib beacon. 

Baseline images with the same spatial resolution as the later GeoEye-1 images were not available. 

However, lower resolution Quickbird imagery was found to be adequate for the purposes of this 

study. This suggests that multi-temporal multi-sensor images can successfully be applied in 

monitoring rehabilitation areas as long as the spectral resolution is similar. Satellite sensors are 

continuously improving and higher resolution imagery has become available since the inspection 

of this study and even higher resolution imagery is likely to become available in the future. The 

challenge remains to find suitable historic baseline images and the best practise would be to choose 

the highest resolution sensor available at the time and to acquire images of mining sites on a regular 

basis.  

5.3 RECOMMENDATIONS 

Vegetation monitoring and change detection is not new, but the application thereof in mining 

rehabilitation monitoring is still not well established. Under normal circumstances rehabilitation 

involves mainly vegetating disturbed areas. With TSF rehabilitation the change detection should 
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be addressed in two separate but consecutive steps – first detection of change from tailings to soil 

and secondly the detection of change from soil cover to vegetation.  

Mine rehabilitation areas are usually relatively small in size and non-contiguous. In this study very 

high-resolution imagery worked well and the spectral, spatial and temporal resolutions of GeoEye-

1 imagery fulfilled the needs for vegetation indexing and change detection. It is recommended that 

this imagery be used for similar rehabilitation monitoring studies in the future. Newer sensors such 

as WoldView-2/3 have even higher spatial and spectral resolutions and will consequently also be 

suitable. Where archived GeoEye-1 or WorldView images are not available, Quickbird images can 

also be used as baselines. Although Quickbird imagery has a lower spatial resolution compared to 

more modern sensors, the spatial resolution is still high enough to be used for monitoring purposes.  

The subsetting of the relevant areas before pansharpening and georegistration is recommended as 

it reduces processing times and increases the accuracy of the geo-referencing process as the data 

is not skewed by irrelevant points outside the area of interest.  

The desktop study of the various pansharpening methods concluded that the methods that would 

best retain radiometric fidelity are PCA, Ehlers fusion and/or SRM.  The visual assessment of the 

methods confirmed that HPF, modified HIS, SRM and wavelet pansharpening delivered the 

clearest on-screen results which aids visual matching of objects during georegistration. The SRM 

was chosen as the most suitable method of pansharpening and is recommended for similar studies. 

In this study the pansharpened images were georegistered using ERDAS AutoSync Workstation 

and the accuracy of the georegistration process was evaluated with RMSE and SD values. The 

accuracy of the georegistration process was also visually assessed using the ERDAS Autosync 

Swipe View function at three different locations at intervals of roughly one quarter of the image 

width. The automatic registration process failed to find GCPs over the entire area and usually 

stopped after finding nine. The minimum number of GCP points that delivered accurate 

registration was found to be 100. In similar studies it is recommended to manually identify some 

tie points before running the automatic tie point matching process. The steep, irregular slopes of 

TSF1 complicated georegistration and the RSME and the SD remained high in spite of the visibly-

correct overlapping of the images as viewed with the AutoSync Swipe function. The influence of 

individual GCPs on RSME was checked to reduce errors, but the error contribution of individual 

points was minimal. Attempts to reduce RSME and SD were abandoned in favour of visual 
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alignment of geographical features. In similar studies it is recommended that a suitable digital 

terrain model from the same period is obtained to orthorectify the images.  

Mathematical calculations were carried out using the spectral readings obtained in ERDAS 

Imagine and substituting them into the various vegetation index formulae. The VI separation or 

closeness of classes was calculated by simply subtracting the index values of the classes. This 

approach was sufficient for the purposes of this study, but other more advanced separability 

measures (e.g. Jeffrries-Matusita distance) are recommended for future studies. 

5.4 PRACTICAL IMPLICATIONS FOR NAVACHAB GOLD MINE 

In Chapter 1 the need for mining companies to prove compliance with government regulations and 

requirements in terms of mine closure was stated as the reason for undertaking this study. The 

AngloGold Ashanti (2009:7) closure and rehabilitation standard document prescribes development 

of a rehabilitation programme that will “assess the extent of impacts on land and to develop, 

implement, monitor, assess and refine rehabilitation methodologies in line with agreed closure 

objectives and/or environmental permit conditions” and refers to the description of rehabilitation 

by the Australian Government Department of Resources, Energy and Tourism (Australia 2006: 1-

2) as “the process used to repair the impacts of mining on the environment” and one of the 

objectives of rehabilitation as “establishing appropriate sustainable ecosystems.” 

The results of this study showed that VIs can be employed as a mechanism to monitor 

rehabilitation progress. Sustainable ecosystems will show a year-on-year improvement in the 

vegetation conditions and these improvements were illustrated with the use of false colour images. 

Vegetation indices and change detection maps were not always successful in illustrating the unique 

consecutive changes taking place during the rehabilitation of a TSF and a follow-up investigation 

needs to take this into account.  

This study determined the best change detection method and vegetation index for the detection of 

vegetation changes at Navachab Gold Mine. Many suppliers of satellite imagery provide image 

preprocessing services, which reduces the need for an on-site remote sensing practitioner to 

produce the difference maps. Although a change detection map can never replace an ecological 

study, it reduces the need for employing full-time ecologists or the cost of appointing consultants 

to assess vegetation progress. The study demonstrated that remote sensing with high-resolution 

satellite imagery can successfully be incorporated into Environmental Impact Assessments (EIAs) 

Stellenbosch University  https://scholar.sun.ac.za



 

 

 

85 

and Environmental Management System (EMS) as a mechanism to monitor the success of mine 

rehabilitation.  
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APPENDIX A     NAVACHAB RAINFALL 

Table A.1   Navachab daily rainfall, 2009  

 

 

 

 

 

Day \ Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 11.45 0.00 3.81 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00

2 11.45 0.00 10.16 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.00 0.00

3 8.08 0.00 8.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 7.70 16.26 11.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 9.58 38.86 11.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 10.70 18.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25

7 9.95 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 11.45 32.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 9.58 38.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 11.08 1.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 8.08 14.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 8.83 2.79    0.00  * 0.00 0.00 0.00 0.00 0.00 0.00      0.00  ** 0.00 0.00

13 8.45 5.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 7.70 2.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 9.95 13.72 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 8.08 0.25 16.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 9.95 5.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 14.45 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00

19 11.08 2.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00

20 10.70 2.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 11.08 7.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 17.27 0.00 0.00

22 9.20 10.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51

23 9.20 10.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 9.58 1.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 8.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

26 10.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

27 9.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.00

28 9.95 3.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 10.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 11.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 15.20 0.00 0.00 0.00 0.00 0.00 4.57

* First annual image scan date

** Second annual image scan date
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Table A.2   Navachab daily rainfall, 2010 

 

 

 

 

 

 

 

 

 

 

 

 

Day \ Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 0.51 0.00 4.83 0.00 0.00 0.00 0.00 0.00 0.00      0.00 ** 0.00 0.00

2 0.00 0.00 1.52 0.00 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 6.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 3.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76

12 0.76 5.08 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 22.61 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 1.78 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.27 0.00

15 0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 4.83 0.00

16 6.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 1.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.92 0.00

18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 2.29 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

22 0.00 0.00 0.00 0.00    0.00  * 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

27 0.00 25.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.54

28 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.29

29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 0.00 3.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.48

31 0.00 0.25 0.00 0.00 0.00 0.00 13.21

* First annual image scan date

** Second annual image scan date
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Table A.3   Navachab daily rainfall, 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Day \ Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 0.00 0.00 0.00 1.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.51 0.00 0.00 0.00 6.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 8.13 19.56 0.00 0.00 6.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 25.15 4.32 20.83 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 5.33 17.02 0.25 0.00 3.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 3.30 3.05 0.00 3.30 0.25 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 9.40 0.00 32.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 2.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 27.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 18.80 4.06 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.00 6.60 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 3.56 0.00 11.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 3.81 1.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 0.76 0.00 9.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 19.30 0.00 0.76 10.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

19 24.13 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.25 0.00 0.25 39.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

21 3.30 0.00 8.38 10.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

22 0.00 4.83 1.52   0.51 * 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

23 0.00 1.27 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25 1.02 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00

26 1.78 0.51 12.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

27 0.25 0.00 3.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

29 19.30 8.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 0.00 0.00 2.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00

31 0.00 0.00 0.00 0.00 0.00     0.00 ** 0.00

* First annual image scan date

** Second annual image scan date
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APPENDIX B     CHANGE DETECTION RESULTS 

 

Figure B.1   Change detection results between Quickbird January 2004 and GeoEye-1 October 2009 images (a) 

NDVI and (c) TVI RI versus results between Quickbird July 2005 and GeoEye-1 October 2009 images (b) NDVI, 

and (d) TVI 
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Figure B.2   False colour images of Quickbird January 2004 (a) and GeoEye-1 October 2009 (b) 

 

Figure B.3   False colour images of Quickbird July 2005 (ab) and GeoEye-1 October 2009 (b) 
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Figure B.4   Change detection results between Quickbird January 2004 and GeoEye-1 May 2010 images (a) NDVI 

and (c) TVI versus results between Quickbird July 2005 and GeoEye-1 May 2010 images (b) NDVI and (d) TVI. 
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Figure B.5   False colour images of Quickbird January 2004 (a) and GeoEye-1 May 2010 (b) 

 

Figure B.6   False colour images of Quickbird July 2005 (a) and GeoEye-1 May 2010 (b) 
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Figure B.7   Change detection results between Quickbird January 2004 and GeoEye-1 October 2010 images (a) 

NDVI and (c) TVI versus results between Quickbird July 2005 and GeoEye-1 October 2010 images (b) NDVI and 

(d) TVI. 
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Figure B.8   False colour images of Quickbird January 2004 (a) and GeoEye-1 October 2010 (b) 

 

Figure B.9   False colour images of Quickbird July 2005 (a) and GeoEye-1 October 2010 (b) 
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Figure B.10   Change detection results between Quickbird January 2004 and GeoEye-1 April 2011 images (a) NDVI 

and (c) TVI versus results between Quickbird July 2005 and GeoEye-1 April 2011 images (b) NDVI and (d) TVI. 
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Figure B.11   False colour images of Quickbird January 2004 (a) and GeoEye-1 April 2011 (b) 

 

Figure B.12   False colour images of Quickbird July 2005 (a) and GeoEye-1 April 2011 (b) 
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Figure B.13   Change detection results between Quickbird January 2004 and GeoEye-1 October 2011 images (a) 

NDVI and (c) TVI versus results between Quickbird July 2005 and GeoEye-1 October 2011 images (b) NDVI and 

(d) TVI. 
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Figure B.14   False colour images of Quickbird January 2004 (a) and GeoEye-1 October 2011 (b) 

 

Figure B.15   False colour images of Quickbird July 2005 (a) and GeoEye-1 October 2011 (b) 
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