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Abstract 

Economic and environmental concerns together with increasing fossil fuel prices are giving rise to the 

incorporation of increased amounts of renewable energy sources into the power grid. Furthermore, 

international policies such as the Kyoto Protocol and government endorsed financial support 

mechanisms aid significantly in making headway in this direction. 

 

Amongst the numerous renewable energy technologies available, solar power is attracting a great deal 

of attention as it is a non-depletable and non-polluting source of energy. However, solar power has the 

drawbacks of being site dependant and intermittent in nature. For this reason, energy service providers 

and independent energy producers require accurate systems to forecast the power output of solar 

plants. Furthermore, time of use based energy generation statistics and forecasting models, i.e. with 

respect to the time when energy is being generated or consumed, are important in the context of small 

solar plants operating in conjunction with a local load. Generated energy forecasts and statistics are 

particularly useful in determining the return on investment of solar plants and conducting a financial 

analysis on feed-in tariffs and time of use tariff structures. 

 

This project focusses on the development and software implementation of a long term forecasting 

methodology for the energy output of a solar plant. Forecasting models are derived using a statistical 

approach based on measured historical generation data and takes place in the time of use context. The 

project aims at determining whether it is possible to model the energy output of a solar plant, in the 

time of use context, with probability distributions commonly used to model solar radiation.  

 

The implementation of the forecasting methodology includes the development of a relational database 

structure together with a forecasting software application. The relational database provides persistent 

storage for both historical generation data and time of use structure data, while the software 

application implements statistical theory to derive long term forecasting models. 

 

Finally, a case study is conducted for an operational solar plant to test and evaluate the implemented 

forecasting methodology and software application. The case study is conducted with respect to time of 

use structures for seasonal and monthly datasets. It is found that the energy output of the solar plant 

can be successfully modelled and forecasted in the time of use context using monthly datasets. 

Furthermore, generation statistics are used to conduct a financial analysis on renewable energy feed-in 

tariffs and to determine the annual monetary savings from generated energy for the solar plant. 
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Opsomming 

Ekonomiese en omgewingskwessies, tesame met toenemende fossiel brandstof pryse gee aanleiding 

tot die inlywing van verhoogde bedrae van hernubare energie bronne in die kragnetwerk. 

Internasionale beleide soos die Kyoto Protokol en regering onderskryfde finansiële steun meganismes 

bied aansienlik hulp in die vordering van hierdie rigting. 

 

Onder die talle hernubare energie tegnologie tot ons biskikking, lok sonkrag 'n groot deel van die 

aandag, want dit is 'n onuitputbaar en nie- besoedelende bron van energie. Sonkrag het egter die 

nadele van gebieds afhanklikheid en hortend in natuur te wees. Om hierdie rede, benodig energie 

diensverskaffers en onafhanklike energie produsente akkurate stelsels om die kraglewering van 

sonkrag aanlegte te voorspel. Tyd van gebruik gebaseerde kragopwekking statistieke en voorspelling 

modelle, dws met betrekking tot die tyd wanneer energie gegenereer of verbruik word, is belangrik in 

die konteks van 'n klein sonkragte aanleg in samewerking met plaaslike laste. Gegenereerde energie 

voorspellings en statistieke is veral nuttig in die bepaling van die opbrengs op belegging van sonkrag 

aanlegte en die uitvoer van 'n finansiële ontleding op in - voer tariewe en tyd van gebruik tarief 

strukture. 

 

Hierdie projek fokus op die ontwikkeling en sagteware implementering van 'n lang termyn 

vooruitskatting metode vir die energie-uitset van 'n sonkrag aanleg. Voorspellingsmodelle is afgelei 

deur 'n statistiese benadering wat gebaseer is op historiese data en vind plaas in die tyd van gebruik 

konteks. Die doel van die projek is om te bepaal of dit moontlik is om die energie-uitset van 'n 

sonkrag stasie te modelleer in die tyd van gebruik konteks , met waarskynlikheidsverdelings wat 

gebruik word om sonstraling te modelleer. 

 

Die implementering van die vooruitskatting metode sluit in die ontwikkeling van 'n relasionele 

databasis struktuur tesame met 'n vooruitskatting sagteware program. Die relasionele databasis bied 

aanhoudende stoorplek vir beide historiese data en tyd van gebruik struktuur data, terwyl die 

sagteware program statistiese teorie implementer om langtermyn voorspelling modelle af te lei. 

 

Laastens word 'n gevallestudie gedoen vir 'n operasionele sonkrag aanleg om die vooruitskatting 

metode en sagteware program te toets en evalueer. Die gevallestudie is uitgevoer met betrekking tot 

tyd van gebruik strukture vir seisoenale en maandelikse datastelle. Dit is bevind dat die energie-uitset 

van sonkrag aanlegte kan suksesvol gemodelleer en voorspel word in die tyd van gebruik konteks met 

bettrekking tot maandelikse datastelle. Verder word gegenereerde energie statistieke gebruik om 'n 

finansiële ontleding van hernubare energie in-voer tariewe uit te voer en om die jaarlikse monetêre 

besparing van gegenereerde energie vir die sonkrag aanleg te bepaal.  
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1 Project Overview 

1.1 Introduction 

Economic and environmental concerns [1] together with increasing fossil fuel prices [2] are giving 

rise to the incorporation of increased amounts of renewable energy sources into the power grid [3]. 

Amongst the numerous renewable energy technologies available, solar power is attracting a great deal 

of attention due to its potential of contributing to sustainable future energy supplies [4] [5].  

 

The development of solar power is strongly connected to government endorsed financial support 

mechanisms such as capital subsidies and feed in tariffs [4]. In some countries solar power has 

expanded exponentially as a result of these financial support mechanisms, especially due to high feed 

in tariffs [6]. Furthermore, international policies such as the Kyoto Protocol aid significantly in the 

incorporation and development of renewable energy sources [1].  

 

Solar power has the advantage of being a non-depletable and non-polluting source of energy [7]. 

However, solar power is site dependant and intermittent in nature [7] as it depends significantly on 

factors such as solar radiation, ambient temperature, pollution and cloud cover [8]. The intermittent 

nature of solar power poses a significant challenge to large scale grid integration [5] [9]. Unexpected 

variations in the power output of a solar plant may incur increased operational costs and jeopardise 

the reliability of energy supply [10].  

 

Distributed generation [11] using solar power spread across different locations is becoming 

increasingly significant and is regarded as vital towards achieving carbon reduction goals [1]. The use 

of distributed generation reduces the need for expensive transmission systems and significantly 

reduces transmission losses [12]. However, finding a balance between energy generated and 

consumed across different locations is essential to maintaining grid stability.  

 

The effective utilisation of solar power, while maintaining grid stability, requires the intelligent 

optimization and scheduling of energy generation and demand [1] [13]. For this reason, Energy 

Service Providers (ESPs) and Independent Energy Producers (IEPs) require accurate systems to 

forecast the power output of their solar plants [10]. As a result, solar power forecasting has become an 

active field in recent years [14] and is reputed to be very valuable [15]. 
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1.2 Project Motivation 

Modern prediction systems generally use numerical prediction with a forecast horizon of one to two 

days [5]. However, ESPs and IEPs are interested in a range of prediction horizons to manage power 

plants and forecast their energy production [14].  

 

Solar power forecasting methodologies are classified into either a numerical prediction approach or a 

statistical approach [14]. The numerical approach incorporates predicted weather variables, such as 

solar radiation and temperature, together with PV power output models. The statistical approach of 

forecasting energy output is based on measured historical generation data and requires less input data 

and computational efforts [14]. 

 

Interconnecting geographically distant renewable energy sources such as solar power to a common 

power grid significantly stabilises the supply of energy [16]. However, finding an optimal balance and 

mix of geographically distant renewable energy sources requires accurate long term energy forecasts.  

 

In June 2007 the National Energy Regulator of South Africa (NERSA) commissioned the study of 

Renewable Energy Feed-In Tariffs (REFITs), which culminated in the approval of REFIT guidelines 

in March 2009 [17]. Feed-in tariffs are the price paid by an ESP to a energy producer per kWh of 

renewable energy exported to the grid [4]. REFITs were set at fixed rates of South African Rand 

(ZAR) per kWh for each respective renewable energy technology [17].  

 

Time Of Use (TOU) based forecasting models, i.e. forecasting models with respect to the time the 

energy is being consumed or generated, are particularly important in the context of an industrial 

consumer which also has onsite solar generation. These forecasting models are useful for applications 

such as the following: 

 Conducting a financial analysis on REFITs and TOU tariff structures. 

 Calculating the solar plant’s future savings, payback period and Return On Investment (ROI) 

for different TOU tariffs. 

 

REFIT rates and TOU tariffs are subject to change and therefore affect the financial profitability of an 

industrial consumer which also has onsite solar generation. Increasing the REFIT rates results in an 

increase in financial profitability as the generated energy is sold to the ESP at a higher monetary value 

per kWh produced. Similarly, a decrease in TOU tariffs also results in and increase in financial 

profitability as the industrial consumer is using energy at a lower monetary value per kWh consumed.  

As the incorporation of solar power reaches economic feasibility, REFIT rates paid to renewable 

energy producers are in fact being lowered [6]. This gives rise to the situation where it may be more 
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financially profitable for an industrial consumer with onsite solar generation to consume generated 

solar energy during expensive TOU tariffs rather than selling the energy to the ESP at lower REFIT 

rates. Therefore, TOU based energy generation forecasts enable an industrial consumer to determine 

the most financially profitable approach to using onsite generated renewable energy. This represents a 

major focus point for this project. 

 

Calculating the payback period and ROI for a solar plant depends on an accurate estimate of future 

monetary savings from generated renewable energy. The future savings of an industrial consumer, 

which uses onsite solar generation to displace energy drawn from the supply grid, depends on the 

tariffs paid for energy by the consumer. TOU based forecasting models are therefore useful in 

calculating the pay-back period and ROI of a solar plant against different TOU tariffs.  

 

1.3 Project Description 

1.3.1 Overview 

In view of the above considerations, this project aims to design and implement a long term forecasting 

methodology for the energy output of a solar plant. This methodology must consider the following: 

 Be based on measured historical generation data. 

 Utilise statistical theory and methods to derive long term forecasting models.  

 Incorporate TOU structures such as the following:  

 TOU tariff structures. 

 Seasons and months of the year.  

 Hours of the day. 

 Be supported by the development of a software package with database capabilities. 

 

The implementation of the forecasting methodology includes the development of a relational database 

together with a forecasting software application. The relational database provides persistent storage 

for both historical generation data and TOU structures, while the software application implements 

statistical calculations to derive long term forecasting models. 

 

This project aims to create long term forecasting models for a solar plant by analysing and processing 

historical generation data. The methodology will attempt to fit historical generation data to proposed 

probability distributions, commonly used to model solar radiation, by using goodness of fit tests. 

Therefore, the expected outputs of the forecasting methodology are probability distributions, within 

the TOU context, that describe the energy output of the solar plant. 
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1.3.2 Key Research Questions 

The following key questions concerning the long term forecasting methodology are identified: 

 Is it possible to create long term statistical forecasting models for the energy output of a solar 

plant by analysing historical generation data? 

 Is it possible to statistically forecast the energy output of a PV system in the context of TOU 

structures? 

 Is it possible to model the energy output of a PV system using probability distributions which 

are commonly used to model solar radiation? 

 Is it possible to develop a database structure which can store historical generation data 

together with TOU structures? 

 Can the database structure incorporate changing TOU tariffs and structures? 

 Can the long term forecasting methodology and database be implemented in a software 

application? 

 

1.3.3 Research Objectives 

The project involves the development of a database driven software application aimed at forecasting 

long term energy generation in the TOU context. The following research objectives have been 

formulated: 

 Investigate long term energy output forecasting based on historical generation data sets. 

 Develop a forecasting methodology that utilises statistical theory and methods. 

 Research statistical theory and methods: 

 Hypothesis testing. 

 Parameter estimation.  

 Frequency distributions. 

 Goodness of fit testing. 

 Investigate TOU tariff structures with focus on those available in South Africa. 

 Investigate probability distributions commonly used to model solar radiation. 

 Research database concepts: 

 Database models, design, packages and languages. 

 Research the development of software applications: 

 Suitable software development environment. 

 Software design framework and software modelling language. 

 Conducting a case study for an operational solar plant to achieve the following: 

 To test and evaluate implemented forecasting methodology and software application. 

Stellenbosch University  https://scholar.sun.ac.za



5 

 

1.3.4 Research Tasks 

The project consists of a number of components as shown in figure 1.1. These components involve 

the following tasks: 

 Develop a relational database to store historical generation data together with TOU structures. 

 Develop an analysis software application with database connectivity. 

 Perform case study for an operational solar plant. 

 Analyse results and derive conclusions and future recommendations. 

 

 

Figure 1.1: Main components of project. 

 

The development of the software application involves the integration of all analytical components 

required to derive statistical models from historical generation data stored on a database. These 

analytical components include the following: 

 Parameter estimation from historical generation data.  

 Determining observed and expected frequency distributions from historical generation data 

and probability distributions. 

 Goodness of fit testing to determine whether various probability distributions fit historical 

generation data.  

 

The analysis software application incorporates six different probability distributions commonly used 

to model solar radiation which include the following [18] [19] [20] [21]: 

 Normal distribution. 

 Weibull distribution. 

 Gamma distribution. 

 Beta distribution.  

 Logistic distribution. 

 Exponential distribution. 

Relational 
database

Analysis 
Application

Case study

Results, 
conclusions and 

recommendations

Design and Implementation Analysis
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A case study is conducted for an operational solar plant located in the Western Cape province of 

South Africa. The solar plant is implemented by an IEP as a supplementary energy source to mitigate 

energy consumed from the power grid. The case study involves the following tasks: 

 Metering and logging of energy generation at half-hourly intervals. 

 Importing and storing historical generation data in a database. 

 Deriving statistical parameters and models from historical generation data with respect to the 

following TOU structures and datasets: 

 Seasonal datasets: 

- Half-hourly generation profile. 

- HomeFlex tariff structure. 

- MegaFlex tariff structure. 

 Monthly datasets: 

- Half-hourly generation profile. 

- HomeFlex tariff structure. 

 Using the derived models and statistical parameters to forecast the generation of energy with 

respect to TOU structures.  

 Testing and evaluating the forecasted energy against historical generation data. 

 

1.4 Thesis Structure 

This thesis document is structured into six chapters and three appendices. This structure can be 

summarised as follows: 

 Chapter 1 presents the project overview, project motivation and project description. 

 Chapter 2 presents a literature review focusing on the following: 

 Database concepts and platforms. 

 Software development platforms. 

 Software design and modelling framework. 

 Statistical inference, hypothesis testing and goodness of fit testing. 

 South African TOU tariff structures. 

 Solar power systems and models. 

 Chapter 3 describes the design and implementation of a relational database. 

 Chapter 4 describes the software application design and implementation along with the 

relevant use case models and activity diagrams. 

 Chapter 5 presents the results of the case study. 

 Chapter 6 presents the conclusions and recommendations for future work.  
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2 Literature Review 

2.1 Overview 

This literature review focuses on the development and software implementation of a methodology to 

forecast and model the long term energy output of a solar plant. The following aspects are 

investigated and discussed: 

 Database concepts and platforms: 

 Relational database model. 

 Database management systems and languages. 

 Database applications. 

 Software development platforms. 

 Software design and modelling framework. 

 Statistical inference and modelling methodologies: 

 Parameter estimation. 

 Frequency distributions. 

 Hypothesis testing and goodness of fit testing. 

 Probability distributions used to model solar radiation. 

 South African time of use tariff structures. 

 Solar power systems and models: 

 Solar radiation models. 

 PV system configurations. 

 

2.2 Database System Concepts 

2.2.1 Overview 

Databases are designed and populated for specific purposes, with an intended group of users 

interested in some specific application [22]. This section briefly deals with the relational data model, 

database management systems and database applications. 

 

2.2.2 Relational Data Models 

A data model is defined as a collection of concepts used to describe the structure of a given database. 

Three of the most widely used higher-level data models are the relational data model, network data 

model and the hierarchal data model [22]. The network and hierarchal data models precede the 
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relational data model and are therefore referred to as legacy database systems [22].The relational data 

model represents data as a collection of relations where each relation is a table of values. Each row in 

the relation is again a collection of related values which typically represents a real-world entity or 

relationship [22]. Relations (tables) consist of tuples and attributes [22] [23] where a tuple is defined 

as a row (record) and an attribute is defined as a column header (field). Figure 2.1 illustrates the 

relationship between tuples, attributes and relations. 

 

 

Figure 2.1: Relationship between tuples, attributes and relations. 

 

All tuples in a relation must be distinct, meaning no tuples may have the same combination of values 

for all their attributes. A superkey is defined as a set of attributes which specifies a unique constraint 

for which no two tuples may have the same value. Every relation has a minimum of at least one 

superkey. It is common to designate one of the keys of a relation as the Primary Key (PK). A PK is 

used to identify tuples in a relation and may not be null or duplicated [22] [23].  

 

Attributes of tuples in one relation may refer to tuples in another relation, thus linking the two 

relations in some way. The attribute of a relation that refers to a tuple in another relation is called a 

Foreign Key (FK), i.e. a FK in one relation refers to a PK in another relation. This allows for three 

categories of relationships to exist namely one-to-one, one-to-many and many-to-many [23]. Note that 

the FK in a relation must refer to the PK of a tuple that exists in another relation to maintain 

referential integrity [22] [23].   

 

Below follows a brief summary of key concepts concerning a relational database [22]: 

 A table or relation contains the actual data. 

 A row, record or tuple presents a distinct entry in a table. 

 A field or attribute presents a column in a table. 

 A value represents the data in a field of a district row. 

 A primary key is used to identify rows in a table. 

 A foreign key establishes relationships between relations 

Tuple 4

Tuple 3

Tuple 2

Tuple 1
Attribute 3Attribute 2Attribute 1

Relation
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There are several categories of constraints on the values in a database such as implicit constraints, 

schema based constraints, application-based constraints and data dependencies. Data dependencies are 

mainly used to test the goodness of the database design in a process called normalization. The 

normalisation process is aimed at preserving information and minimising redundancy.  

 

2.2.3 Database Management Systems 

Databases may be created, managed and maintained manually or by a group of applications 

specifically designed for that purpose [22]. A Database Management System (DBMS) is a set of 

applications tasked with constructing, defining and manipulating databases [22]. A DBMS has the 

following advantages [22] [23]: 

 Enables the sharing and viewing of data between multiple users. 

 Redundancy control. 

 Restriction of unauthorised access. 

 Persistent storage for program objects. 

 Search techniques for efficient querying of data. 

 

A transaction on a database by an executing program includes database operations such as inserting 

records, deleting records, reading records and applying updates. Transactions on a database are done 

by sending queries or requests to the DBMS [22].  

 

There are several popular Relational DMBS (RDBMS) available such as Oracle, SQLServer, 

PostgreSQL and MySQL [22] [23]. Below follows a description of each RDBMS [24]: 

 Oracle: Is the leading RDBMS in the commercial sector. It is scalable, reliable and runs on 

numerous operating systems. However, it requires a well-trained database administrator. 

 MySQL: Is a very popular open source RDMS. It is well known for its performance and runs 

on numerous operating systems. Furthermore, it has a slimmer feature set for improved 

performance. 

 SQL Server: Is a popular RDBMS that runs only in Windows. It delivers high performance at 

a low cost to the user. 

 PostgreSQL: Is one of the most feature rich open source RDMSs which runs on numerous 

operating systems. 
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MySQL is chosen as a RDBMS for this project as it is open source and delivers the following [25]: 

 A fast, scalable and reliable database server.  

 A fast multithreaded Structured Query Language (SQL) database server developed for heavy-

load production systems.  

 The storing of data in separate tables as files which are optimised for speed. 

 

The standard language for the relational database is the Structured Query Language (SQL) language, 

which provides a higher level declarative interface [22]. SQL has become standard language used by 

commercial DBMSs and all SQL standards from 1999 onward have a core specification that all SQL 

compliant RDBMS vendors are required to implement [22].  

 

2.2.4 Database Applications 

A server side implementation of a RDBMS is required in order to host a relational database on a 

computer. WAMPServer (Windows, Apache, MySQL and Php) is a server package which hosts 

MySQL locally on the computer it runs on. WAMPServer is selected for this project for the following 

reasons [26]: 

 It runs in the Microsoft Windows environment. 

 It is available for free. 

 Incorporates MySQL. 

 All server configuration settings are already set up. 

 

To develop and test the relational database in this project, an established third party software 

application is required. Workbench is selected as a third party software application for the following 

reasons [27]: 

 It has a graphical user interface for working with MySQL servers and databases. 

 Creates and manages user defined connections. 

 Has a built in SQL editor to execute queries on the database. 

 Has a built in table editor to manage database tables. 

 Allows the backup and recovery of databases. 

 Supports database migration. 

 It is available for free. 
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2.3 Software Development Platform 

The Integrated Development Environment (IDE) considered for the development of the forecasting 

software application has the following requirements: 

 Develop software applications for the Microsoft Windows environment. 

 Support database connectivity. 

 Support the development of Graphical User Interfaces (GUIs). 

 Support modular and extensible software development. 

 

The Embarcadero® Delphi™ IDE is chosen to develop the software application as it meets all these 

requirements. Delphi™ is a component based development platform which delivers fast development 

of GUI applications and database-driven multi-tier applications. Delphi™ is built on an excellent IDE 

framework with an integrated debugger and implements the Object Pascal language [28]. 

Furthermore, it generates standalone Windows executables which significantly simplifies application 

distribution and testing. 

 

Delphi™ has built in support for several database implementations such as the Borland Database 

Engine, dbExpress and dbGo [28]. The dbExpress data driver architecture is employed as it provides 

high performance database connectivity to the following databases [29]: 

 Oracle.  

 SQL Server.  

 MySQL. 

 PostgreSQL.  

 

The Delphi™ IDE has integrated support for creating Dynamic Linked Libraries (DLLs) [28] which 

are required for modular and extensible software development. DLLs are program modules that 

contain code which could be shared between Windows applications. DLLs are used to modularise and 

reuse code and to simplify the development and updating of software applications [30]. Furthermore, 

Delphi™ supports the use of the Common Object Model (COM) and Object Linking and Embedding 

(OLE) technology [30]. COM forms the basis of OLE and defines an application programming 

interface for communication between objects [30].  
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2.4 Software Modelling and Design 

2.4.1 Unified Modelling Language 

This project includes the design and implementation of a software application. Therefore, a 

standardised modelling language is required to visualise and document the software development. The 

Unified Modelling Language (UML) currently represents the “de facto” standard in software 

engineering [31] [32].  

 

UML was formed through the unification of three object orientated methods namely the Booch 

Method, the Objectory Method and the Object Modelling Technique [31]. UML is described as a 

number of models that collectively describe a whole system, where each model comprises of a 

number of diagrams and documentation. Therefore each model is a complete description of the system 

from a certain perspective [32]. UML offers a framework for the integration of several types of 

diagrams including the following [32] [33]: 

 Use case diagrams: Illustrate the interactions between any type of user and the system, 

thereby highlighting the primary functionality of a system. 

 Activity diagrams: Illustrate the flow of tasks or activities within operations. 

 

It is important to note that UML is purely a notation for visualizing, describing and documenting a 

software system and is not a design method.  

 

2.4.2 Unified Process 

The Unified Process is a framework used for design, which guides all the constituents of the design 

process. The Unified Process provides the inputs and outputs of each individual activity without 

constricting the way in which the activity should perform. The primary aim of the Unified Process is 

to define who does what, when do they do it and how to reach a specific goal [32]. The four key 

elements of the Unified Process are listed below [32]: 

 It is iterative and incremental. 

 It is use case driven. 

 It is architecture centric. 

 It acknowledges risk. 
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The Unified Process does not attempt to complete an entire design in the first attempt. It rather 

focuses on iterations which address different design aspects to move the design forward. This leads to 

a system being designed incrementally and identifying possible risks early on. The iterative approach 

can be divided into four basic steps [32]:  

1. The first step is to plan. 

2. Specify, design and then implement. 

3. Integrate, test and run. 

4. Finally feedback is obtained and used in the following iteration. 

 

Use case diagrams present the interactions between the user and the system, i.e. highlighting the 

primary functionality of a system. Therefore, use case diagrams assist in identifying the main 

requirements of a system and act as a consistent thread throughout the entire development process. 

The roles of use case diagrams are given below [32]: 

 Identify users of a system and their requirements. 

 Assist in the creation and validation of system architecture. 

 Direct the deployment of the system and the planning of the iterations. 

 Leads to creating user documentation. 

 Synchronises the content of the different models and drives traceability throughout the 

models. 

 

The challenge of an iterative system development approach is that the situation could arise where a 

group of developers may be working on part of the implementation while another is working on part 

of the design. Therefore, a system architecture is required to ensure that all the components fit 

together seamlessly. An architecture can be thought of as a skeleton of the system and should be 

resistant to change and the evolving system design [32]. 

 

The Unified Process acknowledges risk in software design and development by highlighting the 

unknown aspects of the system being designed. This approach tries to implement and design the 

riskiest aspects of the system early on as it is usually the aspects which are not understood that have 

the biggest impact on the architecture of the final system [32]. 

 

The Unified Process is only a framework and there exists no universal process which is always 

applicable in a real-world project [32]. The Unified Process is flexible and extensible and it defines 

when activities should be performed and by which worker. Elements that do not fit the current project 

can be omitted and in turn additional elements can also be added to expand on some other aspect of 

the design [32]. 
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2.4.2.1 Life Cycle Phases 

The Unified Process consists of four phases namely Inception, Elaboration, Construction and 

Transition. The main roles and milestones of each individual phase is summarised below [32] [34]: 

 Inception: The scope of the project is defined in the inception phase. The feasibility of the 

system is also established. The final output for this phase is the vision for the system 

including a very simplified use case model, the significant risks and a provisional 

architecture. 

 Elaboration: Functional and non-functional requirements of the system are captured in this 

phase, as well as the creation of the final architecture to be used. The main output is the 

architecture, a detailed use case model and plans for the construction stage. 

 Construction: The majority of the system is designed and implemented in this phase, as well 

as the final analysis of the system. Essentially, this is the phase where the system is built. The 

output of this phase is the implemented system along with its software, design and models. In 

this phase the product may not be without flaws. 

 Transition: During this phase the system is moved to the user’s environment. This includes 

deploying and maintaining the system. This is the final phase of a cycle therefore the output is 

the final release of the system. 

 

 

2.4.2.2 Disciplines 

One way to view disciplines in the Unified Process, is that they are the steps actually followed in the 

phases.  Multiple disciplines can be active simultaneously in a life cycle phase. However, the 

emphasis at that time will be on the aim and milestones of the phase. There are five disciplines in the 

Unified Process as summarised below [34]: 

 Requirements: This discipline focuses on activities allowing all functional and non- functional 

requirements of a system to be identified. It produces the use-case model and prototype user 

interface. 

 Analysis: This discipline focuses on the restructuring of all requirements in terms of software 

to be created. It includes analysis of architecture and use cases. 

 Design: This discipline focuses on the detailed design to be implemented. It includes 

architectural designs and design packages. 

 Implementation: This discipline focusses on the actual coding and construction of the 

designed system as well as the compilation and deployment of the software. It includes testing 

and system integration. 
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 Test: This discipline focuses on activities that test the implemented software ensuring it meets 

the set requirements. It includes the designing, implementation and evaluation of tests. 

 

The Unified Process is iterative and incremental and therefore all five disciplines are involved in each 

of the four life cycle phases. [32].  

 

2.5 Statistical Inference 

2.5.1 Overview 

Statistical inference consists of methods used to draw conclusions about a population of values, based 

on samples or observations taken from the population [35]. It is possible to hypothesise the underlying 

probability distribution of an observed population of values and then to test whether the hypothesis 

should be rejected or accepted [35]. This section briefly deals with the following statistical theory and 

methods: 

 Hypothesis testing. 

 Parameter estimation. 

 Frequency distribution and bin width estimators: 

 Sturges’ rule. 

 Scott’s rule. 

 Goodness of fit tests: 

 Root Mean Square Error. 

 Chi-squared test. 

 Probability distributions and approximations. 

 

2.5.2 Hypothesis Testing 

A statistical hypothesis is a statement about some parameter or probability distribution of a population 

of values [35]. The statement about the parameter or probability distribution is called the null 

hypothesis and is denoted by Ho. Hypothesis testing relies on using sample data from a random 

variable to compute a test statistic and then using the test statistic to evaluate the null hypothesis [35]. 

Sample data can take on any value and it is therefore necessary to define boundaries where a 

hypothesis about the sample data is accepted or rejected.  

 

 

Stellenbosch University  https://scholar.sun.ac.za



16 

 

All values within the defined boundaries constitute the acceptance region and all values outside the 

defined boundaries constitute the critical region [35].  Values that define the boundaries are called 

critical values. The result of a hypothesis test is said to be significant if the calculated test statistic 

value falls within the critical region [35]. Therefore, the null hypothesis about a population will be 

rejected for an alternate hypothesis if the test statistic falls within the critical region [35]. 

 

This procedure allows for two types of erroneous conclusions to be drawn. The first type of error is 

rejecting the null hypothesis when it is true and the second type of error is failing to reject the null 

hypothesis when it is false [35]. The probability of rejecting the null hypothesis when it is true is 

denoted by α and is called the level of significance. The probability of failing to rejecting a hypothesis 

when it is false is denoted by β, and is called the β-error [35].   

 

2.5.3 Parameter Estimation 

A sample is defined as any subset of the elements of a population of measurements [35]. The sample 

and population mean (average) �̅� of a set of measurements Y1,…, YN is given by the following 

relationship [36]: 

 

�̅�  =  
1

 𝑁
∑ 𝑌𝑖

𝑁
𝑖=1          (2.1) 

 

where Yi denotes the ith measurement and N denotes the number of measurements. The sample 

variance 𝑠2 and population variance 𝜎2 of a set of measurements Y1,…, YN are given by the 

following relationships [36]: 

 

𝑠2 =  
1

𝑁−1
∑ (𝑌𝑖 − �̅�)2𝑁

𝑖=1        (2.2) 

 

 

𝜎2 =  
1

𝑁
∑ (𝑌𝑖 − �̅�)2𝑁

𝑖=1         (2.3) 

 

where Yi denotes the ith measurement and N denotes the number of measurements. 
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2.5.4 Frequency Distribution 

The frequency distribution of a population of values is defined as an arrangement of the frequencies 

of observations in the population according to the values the observations take on [35]. The frequency 

distribution is obtained by dividing the observed data into mutually exclusive class intervals called 

bins [35] and counting the number of observations or occurrences that fall in each of the respective 

bins. The chosen bin width therefore has a significant impact on the resulting frequency distribution 

as small bin widths lead to under smoothing and large bin widths lead to over smoothing [37].  

 

It is important to determine the optimal bin width which presents the essential structure of the 

observed data [37]. There are numerous ways of bin width selection [37] and is at the disposal of the 

investigator [38]. Two bin width estimators are considered in this study namely Sturges’ rule and 

Scott’s rule. 

 

Sturges’ rule is one of the earliest published rules [37] which is commonly used in practice [20] and in 

statistical packages [37]. Sturges’ rule for the bin width h is given by the following relationship [37]: 

 

ℎ =  
𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑣𝑎𝑙𝑢𝑒𝑠

1+𝐿𝑜𝑔2 𝑁
        (2.4) 

 

where N denotes the number of observed data points. Sturges rule may lead to over-smoothed 

histograms especially for large data samples [37]. This could lead to a histogram lacking in important 

features of the data set.  

 

Scott’s rule asymptotically minimizes the integrated mean squared error [39] and is based on the 

optimal rate of decay of the bin width [37]. Scott’s rule, which uses the Gaussian density as reference 

standard, represents a data based choice of bin width h and is given by the following relationship [37] 

[39]: 

 

ℎ = 3.49𝜎𝑁−1 3⁄         (2.5) 

 

where σ denotes an estimate of the standard deviation and N denotes the sample size. The number of 

bins, i.e. mutually exclusive class intervals, of the frequency distribution is determined by dividing the 

range of the observed data (maximum observed value – minimum observed value) by the determined 

bin width h and rounding the result up to the nearest integer. Once the number of bins is determined, 

the frequency distribution bin intervals are determined by dividing the range of the observed data 

points by the number of bins.  
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2.5.5 Goodness of Fit Testing 

In order to determine how well a hypothesised probability distribution fits observed data, a judgment 

criterion is required. Two goodness of fit tests, namely the Root Mean Squared Error (RMSE) test and 

the Chi-squared test are considered as judgement criterion.  

 

2.5.5.1 Root Mean Squared Error  

The RMSE test is regularly employed in studies evaluating the performance of models [40]. The 

RMSE is given by the following relationship [19]: 

 

𝑅𝑀𝑆𝐸 =  [
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖𝑐)2𝑁

𝑖=1 ]

1

2
       (2.6) 

 

where yi denotes the ith observed value, yic denotes the ith computed (expected) value from proposed 

models and N denotes the sample size. Comparing the RMSE of different probability distribution on 

the same dataset indicates which one best fits the observed data. 

 

2.5.5.2 Chi-Squared Test 

In most statistical problems the distribution from which the samples are drawn is unknown. To test 

whether the samples were drawn from an underlying probability distribution, the Chi-squared test is 

commonly employed [41]. The Chi-squared test is used to determine the measure of the probability of 

a complex system of N errors occurring at least as frequently as the observed system [42].  

 

In standard applications of the Chi-squared test the observations from a population are grouped into k 

mutually exclusive classes [38] and the number of observed occurrences in each class is obtained, i.e. 

the observed frequency distribution is determined. There is some null hypothesis that determines the 

probability of an observation falling in each respective class [38], i.e. the expected frequency 

distribution. The observed frequency distribution is then compared to expected frequency distribution 

and evaluated using the Chi-squared test. The Chi-squared goodness of fit test criterion is defined by 

the following relationship [38]:  

 

𝑋2 =  ∑
(𝑥𝑖−𝑚𝑖)2

𝑚𝑖
        (2.7) 

 

where xi denotes the ith observed class frequency and mi denotes the ith expected class frequency.  
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The expected frequency mi of a given bin or class is given by the following relationship [38]: 

 

𝑚𝑖 = 𝑁𝑝𝑖         (2.8) 

 

where N denotes the number of observations and pi denotes the ith expected class probability 

computed from the null hypothesis. If the magnitudes of the expected frequencies are too small, the 

test will not reflect the departure of the observed from the expected [35]. Some writers suggest that 

values of 1 and 2 can be regarded as the minimal value of the expected frequency in a class on the 

condition that most values exceed 5 [35]. Should the expected frequency of a class be too low, a class 

could be joined with an adjacent class [35] or the number of bins can simply be reduced until all 

expected frequencies are at least 1 or 2. 

 

If the observed data follows the hypothesised probability distribution the X2 statistic has 

approximately a Chi-square distribution with k-p-1 Degrees Of Freedom (DOF), where k denotes the 

number of exclusive classes and p denotes the number of estimated parameters of the hypothesised 

distribution [35] [38]. Therefore, the DOF for two parameter probability distributions such as the 

Normal, Weibull, Gamma and Beta are determined by subtracting 3 from the number of bins. 

Likewise, the DOF for single parameter probability distributions such as the Exponential and Logistic 

are determined by subtracting 2 from the number of bins. Note that the resulting DOF, from the 

number of bins and probability distribution is required to be one or more to be valid. If the resulting 

DOF is less than one, the result is inconclusive and could not be used to draw any statistical inference 

about the observed data. 

 

X2
α,k-p-1 is defined as the percentage point of the chi-square random variable with k-p-1 DOF, such that 

the probability that the X2 statistic exceeds said value is the level of significance α [35]. Once the test 

statistic X2 is calculated, it could be compared to the percentage point X2
α,k-p-1 to determine whether 

the null hypothesis should be accepted or rejected [35]. The hypothesised distribution (null 

hypothesis) is rejected when the following relationship is true [35]: 

 

X2  >  Xα,k−p−1
2          (2.9) 

 

X2
α,k-p-1 is obtained from a percentage points table of the Chi-squared distribution for a chosen level of 

significance and determined DOF [35]. The percentage points for several DOF and levels of 

significance of the Chi-squared distribution are provided in appendix A. 
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2.5.6 Probability Distributions 

The Weibull, Gamma, Normal, Logistic, Exponential and Beta [18] [19] [20] [21] probability 

distributions are considered to model the energy output of solar plants, as these are the most common 

distributions used to model solar radiation. It is assumed that the underlying probability distributions 

of the power output of a solar plant might follow that of solar radiation. In this section the Probability 

Density Function (PDF) and Cumulative Distribution Function (CDF) of each distribution is given 

along with their respective parameters and numerical implementation. 

2.5.6.1 Weibull Probability Distribution 

The Weibull PDF  𝑓(𝑘, 𝑐, 𝑥) and CDF  𝐹(𝑘, 𝑐, 𝑥) are given by the following relationships [19] [43]: 

 

𝑓(𝑘, 𝑐, 𝑥) =  
𝑘

𝑐
(

𝑥

𝑐
)

𝑘−1
𝑒

−(
𝑥

𝑐
)

𝑘

       (2.10) 

 

𝐹(𝑘, 𝑐, 𝑥) =  ∫ 𝑓(𝑥)𝑑𝑥
∞

0
= 1 − 𝑒

−(
𝑥

𝑐
)

𝑘

      (2.11) 

 

where k denotes the shape parameter and c denotes the scale parameter. Parameters c and k are given 

by the following relationships [43] [44] [45]: 

 

𝑐 =  
�̅�

𝛤(1+
1

𝑘
)
         (2.12) 

  

𝑘 =  (
𝜎

�̅�
)

−1.086
         (2.13) 

 

where �̅� denotes the mean, σ denotes the standard deviation and Γ denotes the Gamma function given 

by the following relationship [46]: 

 

𝛤(𝑥) =  ∫ 𝜁𝑥−1∞

0
𝑒−𝜁𝑑𝜁        (2.14) 

 

There are several methods used to calculate the Gamma function numerically with the Lanczos 

approximation being the simplest [47]. The Lanczos approximation for certain choices of integer N, 

rational γ and coefficients C1, C2….CN is given by the following relationship [47]: 

 

𝛤(𝑧 + 1) =  (𝑧 + 𝛾 +
1

2
)

(𝑧+
1

2
)

𝑒
−(𝑧+𝛾+

1

2
)
√2𝜋 [𝐶0 +

𝐶1

𝑧+1
+

𝐶2

𝑧+2
+ ⋯ +

𝐶𝑁

𝑧+𝑁
] (2.15) 
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Using an N of 2 and a γ of 1.5 the Lanczos approximation has a relative error of 2.4·10-4 everywhere 

in the right half of the complex plane and is given by the following relationship [48]:  

 

𝛤(𝑧 + 1) =  (𝑧 + 2)(𝑧+
1

2
)
𝑒−(𝑧+2)√2𝜋 [0.999779 +

1.084635

𝑧+1
]   (2.16) 

 

The Lanczos approximation given in equation 2.16 is very accurate and simple to implement 

numerically. Figures 2.2 and 2.3 illustrate the Weibull PDF and CDF. Figure 2.4 illustrates the 

Gamma function in the right half of the complex plane. 

 

 

 

Figure 2.2: Weibull probability density function. 

 

 

 

Figure 2.3: Weibull cumulative distribution function. 
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Figure 2.4: Gamma function. 

 

2.5.6.2 Gamma Probability Distribution 

The Gamma PDF  𝑓(𝛼, 𝛽, 𝑥) and CDF  𝐹(𝛼, 𝛽, 𝑥) are given by the following relationships [46]: 

 

𝑓(𝛼, 𝛽, 𝑥) =  
𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥

𝛤(𝛽)
       (2.17) 

 

𝐹(𝛼, 𝛽, 𝑥) = 𝐼 (
𝛼𝑥

√𝛽
, 𝛽 − 1) =  

1

𝛤(𝛽)
∫ 𝜁𝛽−1𝑒−𝜁𝑑𝜁

𝛼𝑥

0
     (2.18) 

 

where Γ denotes the Gamma function and I  denotes Pearson’s form of incomplete Gamma function  

given by the following relationship [46]: 

 

𝐼(𝑢, 𝑝) =  
1

𝛤(𝑝+1)
∫ 𝜁𝑝𝑒−𝜁𝑢√𝑝+1

0
 𝑑𝜁      (2.19) 

 

Parameters α and β are given by the following relationships [46]: 

 

𝛼 =  
𝑥

𝜎2          (2.20) 

 

𝛽 =  
𝑥

2

𝜎2          (2.21) 

 

where �̅� denotes the mean and 𝜎 denotes the standard deviation. The Gamma CDF could be 

implemented numerically by using the incomplete Gamma function [46] [47], which in turn can be 

implemented by using a combination of its series representation and continued fraction methods [47].  
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The incomplete Gamma function given by the following relationship [46] [47]: 

 

𝑃(𝑢, 𝑝) =  
1

𝛤(𝑢)
∫ 𝜁𝑢−1𝑒−𝜁𝑑𝜁

𝑝

0
        (2.22) 

 

where Γ denotes the Gamma function. Therefore, the Gamma CDF can be implemented by using the 

following relationship: 

 

𝐹(𝛼, 𝛽, 𝑥) =  𝑃(𝛽, 𝛼𝑥)        (2.23) 

 

Figures 2.5 and 2.6 illustrate the Gamma PDF and CDF. Figure 2.7 illustrates the incomplete Gamma 

function. 

 

 

Figure 2.5: Gamma probability density function. 

 

 

Figure 2.6: Gamma cumulative distribution function. 
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Figure 2.7: Incomplete Gama function 

 

2.5.6.3 Normal Probability Distribution 

The normal PDF  𝑓(�̅�, 𝜎, 𝑥) [15] [49] and CDF  𝐹(�̅�, 𝜎, 𝑥) [19] are given by the following 

relationships:  

 

𝑓(�̅�, 𝜎, 𝑥) =  
1

𝜎√2𝜋
 𝑒

−(𝑥− �̅�)2

2𝜎2        (2.24) 

 

𝐹(�̅�, 𝜎, 𝑥) =  
1

2
+  

1

2
𝐸𝑟𝑓 (

𝑥−�̅�

𝜎√2
)       (2.25) 

 

where �̅� denotes the mean, 𝜎 denotes the standard deviation and Erf is the error function given by the 

following relationship [19] [47]: 

 

Erf(𝑥) =  
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
        (2.26) 

 

The error function is a special case of the incomplete Gamma function [47]. Therefore, it can be 

determined numerically using following relationship [47]: 

 

Erf(𝑥) =  𝑃 (
1

2
, 𝑥2)        (2.27) 

 

Figures 2.8 and 2.9 illustrate the Normal PDF and CDF. Figure 2.10 illustrates the error function. 
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Figure 2.8: Normal probability density function. 

 

 

Figure 2.9: Normal cumulative distribution function. 

 

 

Figure 2.10: Error function. 
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2.5.6.4 Logistic Probability Distribution 

The Logistic PDF  𝑓(�̅�, 𝛼, 𝑥) and CDF  𝐹(𝑥,̅ 𝑥) are given by the following relationships [19]: 

 

𝑓(�̅�, 𝛼, 𝑥) =  
𝑒

−(𝑥−𝑥)
𝛼

𝛼(1+𝑒
−(𝑥−𝑥)

𝛼 )

2       (2.28) 

 

𝐹(𝑥,̅ 𝑥) =  
1

1+𝑒
−(𝑥−𝑥)

𝛼

        (2.29) 

 

where �̅� denotes the mean and α denotes the scale parameter given by the following relationship [19]: 

 

𝛼 =  
√3𝜎

𝜋
         (2.30) 

 

where 𝜎 denotes the standard deviation. Figures 2.11 and 2.12 illustrate the logistic PDF and CDF. 

 

 

Figure 2.11: Logistic probability density function. 
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Figure 2.12: Logistic cumulative distribution function. 

 

2.5.6.5 Exponential Probability Distribution 

The Exponential PDF  𝑓(𝛼, 𝑥) and CDF  𝐹(𝛼, 𝑥) are given by the following relationships [46]: 

 

𝑓(𝛼, 𝑥) = 𝛼𝑒−𝛼𝑥          (2.31) 

  

𝐹(𝛼, 𝑥) = 1 − 𝑒−𝛼𝑥        (2.32) 

 

where α denotes the rate parameter given by the following relationship [46]: 

 

𝛼 =  
1

�̅�
=  

1

𝜎
         (2.33) 

  

Figures 2.13 and 2.14 illustrate the Exponential PDF and CDF respectively. 

 

 

Figure 2.13: Exponential probability density function. 
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Figure 2.14: Exponential cumulative distribution function. 

 

2.5.6.6 Beta Probability Distribution 

The Beta PDF  𝑓(𝛼, 𝛽, 𝑥) [46] [18] and CDF  𝐹(𝛼, 𝛽, 𝑥) [46] [50] are given by the following 

relationships: 

 

𝑓(𝛼, 𝛽, 𝑥) =  
𝛤(𝛼+ 𝛽)

𝛤(𝛼)𝛤(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1      (2.34) 

  

𝐹(𝛼, 𝛽, 𝑥) = {
𝐼𝑥(𝛼, 𝛽)    𝑥 < 1

1                 𝑥 ≥ 1  
       (2.35) 

 

where Ix ( ) denotes the incomplete Beta function given by the following relationship [46] [50]: 

 

 Ix(α, β ) =  
𝛤(𝛼+ 𝛽)

𝛤(𝛼)𝛤(𝛽)
∫ 𝜁𝛼−1(1 − 𝜁)𝛽−1𝑑𝜁

𝑥

0
      (2.36) 

 

The parameters α and β are given by the following relationships respectively [18]:  

 

𝛼 =  (
�̅�2−�̅�3

𝜎2 ) − �̅�        (2.37) 

  

𝛽 =  (
�̅�3−2�̅�2+�̅�

𝜎2 ) + �̅� − 1       (2.38) 

 

Implementing the incomplete Beta function numerically can be achieved by evaluating its continued 

fraction using the modified Lentz’s method [47]. Figures 2.15 and 2.16 illustrate the Beta PDF and 

CDF respectively. Figure 2.17 illustrates the incomplete Beta function. 
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Figure 2.15: Beta probability density function. 

 

 

Figure 2.16: Beta cumulative distribution function. 

 

 

Figure 2.17: Incomplete Beta function. 
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2.6 Time of Use Tariff Structures 

2.6.1 Introduction 

In Time Of Use (TOU) tariff structures a set of different electricity tariffs are defined for different 

times of the day and seasons of the year [51]. In the 1980’s the South African utility (Eskom) started 

to gradually introduce TOU tariff structures to South African consumers [52]. Currently, Eskom 

provides TOU tariff structures aimed at numerous types of consumers [53].This study however only 

considers the HomeFlex and MegaFlex TOU tariff structures.  

 

Both these TOU tariff structures consist of two tariff seasons, namely the High Demand and Low 

Demand season. The calendar months of the year are grouped together according to the level of 

energy demand. The High Demand season consists of winter months June to August when the energy 

demand is at its highest, while the Low Demand consists of the remainder of the year when energy 

demand is lower [53]. These seasons are chosen by the Eskom and the TOU tariff rates are set 

accordingly, i.e. the tariff rates of the same tariff period differ between these two seasons. The High 

Demand season tariffs are significantly higher than the Low Demand season tariffs. Therefore, the 

financial profitability of an industrial consumer will be greatly affected by these two seasons.  

 

2.6.2 MegaFlex Tariff 

MegaFlex represents the main TOU tariff structure used by large industrial consumers, local 

authorities and municipalities. The MegaFlex tariff structure consists of three different tariff periods 

that vary with respect to hours of the day and days of the week. Table 2.1 summarises the MegaFlex 

tariff periods [53]. 

Table 2.1: MegaFlex tariff period hours. 

Day of Week Tariff Period Period hours 

Weekday Evening Off-peak 22:00 - 06:00 

Morning Standard 06:00 - 07:00  

Morning Peak 07:00 - 10:00 

Afternoon Standard 10:00 - 18:00 

Evening Peak 18:00 - 20:00 

Evening Standard 20:00 - 22:00 

Saturday Evening Off-peak 20:00 - 07:00 

Morning Standard 07:00 - 12:00 

Afternoon Off-peak 12:00 - 18:00 

Evening Standard 18:00 - 20:00 

Sunday Off-peak 00:00 - 24:00 
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2.6.3 HomeFlex Tariff 

The HomeFlex tariff is initially implemented on a voluntary basis to residential customers [54]. The 

HomeFlex tariff structure consists of two different tariff periods that vary only with respect to hours 

of the day. Table 2.2 summarises the HomeFlex tariff periods [54]. 

 

Table 2.2: HomeFlex tariff period hours. 

Day of Week Tariff Period Period hours 

Everyday Evening Off-peak 20:00 - 07:00 

Morning Peak 07:00 - 10:00 

Afternoon Off-peak 10:00 - 18:00 

Evening Peak 18:00 - 20:00 

 

 

2.7 Solar Power 

2.7.1 Introduction 

This section gives a brief overview the main aspects of solar power as an energy source. These 

aspects include the following: 

 The fluctuating and intermittent nature of solar radiation. 

 The modelling of solar radiation. 

 Photovoltaic (PV) systems configurations and efficiency. 

 

As solar radiation passes through the atmosphere it is scattered and absorbed by particles. Therefore, 

the radiation that reaches the surface depends significantly on the length of the path taken through the 

atmosphere [55]. Atmospheric parameters that attenuate the radiation include ozone, aerosol, dry air 

and water vapour [56]. However, the main factor that affects the difference in solar radiation between 

the outside of the atmosphere and the earth’s surface is cloud cover [7].  

 

The solar radiation on a collector on the earth’s surface will be the sum of direct-beam radiation, 

diffuse radiation and reflected radiation [55]. Direct-beam radiation passes straight through the 

atmosphere to the collector and diffuse radiation is reflected off particles in the atmosphere. 

Furthermore, reflected radiation is bounced off the ground and other surfaces near the collector [55].  

 

 

Stellenbosch University  https://scholar.sun.ac.za



32 

 

2.7.2 Solar Radiation 

The extra-terrestrial solar radiation just outside the earth’s atmosphere is the starting point to 

modelling the clear sky solar radiation. The extra-terrestrial solar radiation I0 depends on the distance 

between the earth and the sun and is given by the following relationship [57] [58]: 

 

𝐼0 = 𝐼𝑆𝐶 [1 + 0.033𝑐𝑜𝑠 (
360𝑛

365.25
)]      (2.39) 

 

where I0 is in Watts per square meter, ISC is the solar constant and n is the day number starting from 

the first of January. The solar constant is the estimated average annual extra-terrestrial solar radiation 

which varies from 1.367 kW/ m2 [58] to 1.377 kW/ m2 [55].  

 

Models discussed in this study deal with the radiation on horizontal planes. However, horizontal plane 

radiation can be transposed to any other plane [59]. 

 

2.7.2.1 Clear Sky Direct Beam Radiation 

A simple model used to characterise the transmittance of beam radiation through a clear atmosphere is 

that of Hottel [57] [58] [60]. Hottel’s model for the atmospheric transmittance of beam radiation τB 

takes into account the zenith angle and altitude and is given by the following relationship [58] [60]: 

 

𝜏𝐵 =  𝑎0 +  𝑎1𝑒−𝑘 cos 𝜃𝑧⁄        (2.40) 

 

where ϴZ is the zenith angle and constants a0, a1, k are for the standard atmosphere with 23 km 

visibility and an altitude below 2.5 km. Constants a0, a1 and k are determine from the relationships a0
*, 

a1
* and k* [57] [60] given by the following relationships respectively [58] [60]: 

 

𝑎0
∗ = 0.4237 − 0.00821(6 − 𝐴)2       (2.41) 

 

𝑎1
∗ = 0.5055 − 0.00595(6.5 − 𝐴)2       (2.42) 

 

𝑘∗ = 0.2711 − 0.01858(2.5 − 𝐴)2       (2.43) 

 

where A is the altitude of the observer in kilometres. [58]. 
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Correction factors r0, r1 and rk are applied to these constants to allow for different climates and are 

given by the following relationships [58] [60]: 

 

𝑟0 =  
𝑎0

𝑎0
∗           (2.44) 

 

𝑟1 =  
𝑎1

𝑎1
∗           (2.45) 

 

𝑟𝑘 =  
𝑎𝑘

𝑎𝑘
∗           (2.46) 

 

Table 2.3 summarises different correction factors for Hottel’s model for different climates [58]. 

Table 2.3: Correction factors for different climates for Hottel’s model. 

Climate Type r0 r1 rk 

Tropical 0.95 0.98 1.02 

Midlatitude Summer 0.97 0.99 1.02 

Subarctic Summer 0.99 0.99 1.01 

Midlatitude Winter 1.03 1.01 1 

 

 

The clear sky horizontal beam radiation IB is given by the following relationship [58]: 

 

𝐼𝐵 =  𝐼0𝜏𝐵𝑐𝑜𝑠𝜃𝑍        (2.47) 

 

where I0 is the extra-terrestrial solar radiation and τB is atmospheric transmittance for beam radiation 

[57].  

 

2.7.2.2 Diffuse Radiation 

There are several models available to estimate the diffuse radiation on a surface [55]. One of the 

models used to estimate the clear sky diffuse radiation on a horizontal surface is that of Liu and 

Jordan [58] [61]. Liu and Jordan developed an empirical relationship between the beam and diffuse 

radiation for clear days given by the relationship [58] [61]:  

 

𝜏𝑑 = 0.271 − 0.294𝜏𝐵        (2.48) 

 

where τd is the ratio of diffuse radiation to the beam radiation on the horizontal plane.  
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The clear sky diffuse radiation ID is given by the following relationship [58]: 

 

𝐼𝐷 =  𝐼0𝜏𝑑𝑐𝑜𝑠𝜃𝑍        (2.49) 

 

2.7.2.3 Reflected Radiation 

Reflected radiation is the component of solar radiation that is reflected by the surfaces in front of a 

collector [55]. Ineichen et al define albedo as the ratio between the ground reflected radiation and the 

global radiation incident on the ground [62]. Ineichen et al concluded that accurate results could be 

acquired under the assumption that the ground-reflected radiation is isotropic and using a constant 

averaged measured albedo for the site [62]. 

 

2.7.3 Photovoltaic System Configurations 

There are several configurations of Photovoltaic (PV) systems that consist of a range of components 

such as inverters, maximum power point trackers, batteries and charge controllers [55]. For most 

applications the power of one individual panel is not enough, therefore the panels are grouped 

together into arrays to achieve the desired voltage and current output [63]. Typical PV Panels are 

comprised of 30 to 36 series connected solar cells with open-circuit voltages of about 20 Volts and 

short circuit currents of about 3 to 4 Amperes [63]. The three most common PV systems are grid 

connected systems, stand- alone systems and directly connected load systems [55]. 

 

2.7.3.1 Grid Connected Photovoltaic Systems 

Grid connected PV systems feed power directly into the power grid through a power conditioning unit 

[55]. The power conditioning unit converts the DC power from the PV panels into AC power to be fed 

into the power grid or to supply a load. If a load draws more power at any instant than what can be 

supplied by the PV panels, the power conditioning unit draws the required power from the power grid 

to satisfy the demand [55]. When the PV panels provide more power than that being used by the load, 

the excess power is sent to the power grid. Furthermore, the power conditioning unit also has the 

function of keeping the PV panels operating at their highest efficiency by utilising a Maximum Power 

Point Tracker (MPPT) [55]. Tracking the maximum power point of a PV panel array is essential and 

many methods have therefore been developed and implemented [64].  
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Grid connected PV systems have many advantages such as simplicity, reliability and high operating 

efficiencies. Initial grid connected systems consisted of many series and parallel PV panels connected 

to a large central inverter. However, grid connected system configurations have since then progressed 

towards the implementing of string technology [63]. With string technology all the PV panels are 

arranged and configured into a number of groups. Each group consists of a number of series 

connected PV panels and an inverter [63]. This allows a PV system to be extended and scaled by 

simply adding and removing groups of PV panels and inverters. 

 

2.7.3.2 Stand-alone PV Systems 

Stand-alone PV systems generally consist of a PV array, energy storage such as batteries, a power 

processor and a maximum power point tracker [64]. These PV systems may also include an optional 

generator as a backup supply of power [55]. Stand-alone PV systems are well suited for remote 

locations. However, they have the drawbacks of significant battery losses [55] and the fact that battery 

storage is generally very expensive. 

 

2.7.3.3 Directly Connected Load PV System 

Directly connected load PV systems are very simple, reliable and cost effective. They have no power 

conditioning units or batteries to store energy. Examples of such systems are PV water pumps that 

pump water when the sun is shining [55]. These type of PV systems need to be carefully designed to 

be efficient [55]. 

 

2.7.4 PV System Efficiency 

The efficiency of a PV system depends on the PV panels and the inverters. Many factors affect the 

power output of PV panels, with cell temperature [55] and the tilt angle [65] being the most 

significant. An increase in PV panel temperature is accompanied by a significant decrease in power 

output [55] [65]. Inverter efficiencies may vary depending on the load connected to it, with 

efficiencies of above 90% at high loads [55]. Inverter and panel efficiencies can add up to a 

significant decrease in the efficiency of a PV system. Losses of up to 25% have been reported by 

University of Tokyo [66]. 

 

The rated DC power output of PV panels under Standard Test Conditions (STC) can be used to 

estimate the performance of PV systems [55]. Standard test conditions as defined by standard (IEC 

60904-3) are 1000 W/m2 irradiance, 25°C cell temperature and an air mass of 1.5 [55].  
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Note that the DC power of a PV panel array is determined by simply adding the individual panel 

ratings under STC together [55]. The estimated AC power output PAC can then be determined using 

the following relationship [55]: 

 

𝑃𝐴𝐶 =  𝑃𝐷𝐶,   𝑆𝑇𝐶  × (𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)      (2.50) 

 

where PDC, STC is the DC power of the PV panels under standard test conditions and the conversion 

efficiency accounts for the inverter efficiency, dirt on the collectors and ambient temperature [55].  

 

In practice the temperature of a PV panel is likely to vary from the STC 25°C and therefore better test 

conditions are required. The PVUSA is a monitoring program that developed a rating system based on 

conducted field tests. The PVUSA Test Conditions (PTC) are defined as 1000 W/m2 irradiance, 20°C 

cell temperature and a wind speed of 1 m/s [55] [67].  
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3 Database Design and Implementation 

3.1 Overview 

This chapter presents the design and implementation of a relational database structure used for storing 

all historical generation data together with all Time of Use (TOU) structure information. The database 

is hosted using WAMPServer as discussed in section 2.2.  

 

A custom relational database topology is developed to store historical generation data from several 

meters and projects on the same database. This requires a generic approach to organising and 

referencing the data stored on the database. Therefore, the concept of profiles and profile sets is 

developed to relate the time-stamped values in the database.  

 

As mentioned in section 2.4.2, the Unified Process acknowledges risk in design and development by 

highlighting the unknown aspects of the system being designed. The most significant risk identified 

for the database structure is a structure that restricts future changes. A non-generic database structure 

which does not allow for the changing and rearranging of data and TOU structures may lead to a 

situation where the software application must be altered in the future in order to accommodate a 

certain TOU structure.  

 

TOU tariffs and structures are subject to change depending on the requirements of the analysis. Utility 

providers such as Eskom can change TOU tariffs as the cost of producing electricity changes. 

Furthermore, the defined time intervals of tariff structures are also subject to change depending on the 

utility provider. Therefore, the data contained in the database may nee to be rearranged or changed in 

the future. The database must therefore accommodate the changes and incorporate a generic approach 

to storing and accessing TOU structures. 

 

3.1.1 Database Topology 

A profile is defined as the historical time-stamped values of a measured parameter, while a profile set 

is defined as a set of profiles that are related in some way. Therefore, a metering device that measures 

multiple parameters has multiple profiles associated with it and is regarded as a profile set. The 

measuring of parameters is usually done as part of a project using a number of meters. All profile sets 

(meters) that are used to measure parameters in a project are related and therefore linked together. 
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Managing and accessing all stored profile data, i.e. historical generation data, and TOU structure data 

requires a fixed referencing system which is applicable across the entire database. Therefore, a set of 

main fields are required which allows the software application to navigate the data on the database. 

There are five main fields used in the majority of the database tables namely: 

 ID is an integer field and is by default the Primary Key (PK) of all tables. 

 Designation contains the unique name of a record (row). 

 Description contains a brief description of a record. 

 Comments contains additional notes on a record. 

 Some Foreign Key (FK) or keys that reference a field in another table. 

 

Note all primary keys and foreign keys are integer fields and are required to adhere to foreign key 

constraints. The ID and Designation fields together form a superkey as discussed in section 2.2. 

 

3.1.2 Case Study 

This project involves the measuring and logging of a solar plant’s energy output using a number of 

power meters to measure the active power output. The active power output measurements are used to 

determine the historical generated energy data. All time-stamped historical generation data is stored 

on a relational database and linked to the power meters and the project.  

 

Figure 3.1 illustrates the case study database structure were each profile set represents one of the N 

number of power meters used in the project. Each profile represents the generated energy measured 

by its respective meter. The time-stamped measured values are represented by each individual 

profile’s generation data. The profile data of all profiles is stored together in a single table as indicated 

in figure 3.1. Likewise, all profiles are stored in a single table and all profile sets are stored in a single 

table.  

 

Figure 3.1: Case study database structure. 
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Note figure 3.1 only presents the main topology of the database and excludes several supplementary 

lookup-tables. A full and detailed description of all tables is given in the following section.  

 

3.2 Database Tables  

The data contained in the database consists of the historical generation data together with the TOU 

structure data. The generation data is stored separately from the TOU structure data as these tables 

have different structures and relations. However, the table structure for both the historical generation 

data and the TOU structure data are designed to be generic to allow for possible changes in the future. 

The database tables are divided into two different sets of tables namely: 

 Profile Tables: These tables relate to the categories, units and relationships of the measured 

historical generation data as well as the projects they belong to. 

 Time Of Use Tables-These tables relate to the relevant information for TOU structures.  

 

3.2.1 Profile Tables 

3.2.1.1 Overview 

Figure 3.2 presents all the profile tables in the database and the relationships between them. Arrows 

indicate that a foreign key in the table refers to a primary key in the table that the arrow points to.  

 

 

Figure 3.2: Profile tables in the database and the relationship between them. 

 

As can be seen from figure 3.2 the profile data is stored in a set of tables. This is necessary to ensure 

that the database structure is generic and accommodates future changes. Using the table relation 

presented in figure 3.2 it is possible to define profiles and profile sets of any kind by allowing the user 

to set and alter the profile and profile set categories. Furthermore, the units can also be defined by the 

user in the Profile Unit table. This structure therefore allows for any type of profile to be saved with 

Project Table
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any type of unit and linked to any type of profile set. For example, a project that measures the 

temperatures and power output of a number of gas turbines can easily be set up using this structure. 

The profile sets will be defined as the names of each individual gas turbine. The temperature and 

power output measurements of each respective gas turbine will be linked as profiles to the name of 

said gas turbine. The units of degrees Celsius and Watts will be added to the units table and each unit 

will be linked to the temperature and power output profiles of the gas turbines respectively.  

3.2.1.2 Project Table 

As mentioned, the collecting and storing of measured data is usually conducted as part of a project 

and it may involve multiple meters. The measurement data from multiple projects may need to be 

stored on the same database and therefore a top level table is required.  The Project table contains the 

names of all projects on a database and has no Foreign Key (FK). Figure 3.3 presents the design of the 

Project table fields with the ID field as the Primary Key (PK). 

 

 

Figure 3.3: Design of Project table. 

 

The Project table is chosen as the top level table in order to distinguish between meters of different 

projects and different sites. Furthermore, this allows the user to group and link certain meters 

together. The Registration Date field is for administrative purposes and allows the user to set the date 

at which a project commenced. 

3.2.1.3 Profile Set and Profile Set Category Tables 

Profile sets are used to relate different profiles. In the case of this project they represent the individual 

power meters. Profile sets could describe different types of profile combinations and therefore a 

category look up table is required. Figure 3.4 presents the design of the Profile Set and Profile Set 

Category table fields with the ID fields as the PKs. 
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Figure 3.4: Design of Profile Set and Profile Set Category tables. 

 

ProjectID is a FK which references the ID field in the Project table. CategoryID is a FK which 

references the ID field in the Profile Set Category table. 

 

The Profile Set Category table allows the user to easily link profile sets on the database to any defined 

category or type of profile set. A new category can be defined and added to the Profile Set Category 

table by the user. The link between profile sets on the database and profile set categories can also be 

changed if necessary. Therefore, the category of a profile set can be changed to a newly defined and 

added category in the Profile Set Category table if required. This allows the database to be altered and 

rearranged in the future if necessary. 

3.2.1.4 Profile, Profile Category and Profile Unit Table 

Profiles represent the different types of parameters being measured and therefore can have different 

units. Therefore, a Profile Category and Profile Unit look-up table is required. Figure 3.5 presents the 

design of the Profile, Profile Category and Profile Unit table fields with the ID fields as the PKs. 

 

 

Figure 3.5: Design of Profile, Profile Category and Profile Unit tables. 

 

ProfileSetID references the ID filed in the Profile Set table. CategoryID is a FK which references the 

ID field of the Profile Category table. UnitID is a FK which references the ID field in the Profile Unit 

table.   
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The Profile Category table allows the user to easily link profiles on the database to any defined profile 

category or type. A new category can be defined and added to the Profile Category table by the user. 

The link between profiles on the database and profile categories can also be changed if necessary. 

Therefore, the category of a profile can be changed to a newly defined and added category in the 

Profile Category table. This allows the database to be altered and rearranged in the future if necessary. 

 

Furthermore, the Profile Unit table allows the user to easily link profiles on the database to any 

defined unit. A new unit can be defined and added to the Profile Unit table by the user. The profiles 

on the database and profile unit can then be linked. For example, if the profile consists of power 

measurements the unit of Watts will be added to the Profile Unit table and the respective profile will 

be linked to that unit. Therefore, any unit can be added to the database and therefore a profile can 

consist of any type of measurements. This allows the database to be generic in the type of data 

measurements stored and allows for the database to be used on a variety of applications. 

 

3.2.1.5 Profile Data and Profile Timestamp Table 

The Profile Data and Profile Timestamp tables contain the actual measured time-stamped values, i.e. 

the historical generation data. The measured values are stored separate from their respective 

timestamps. The values are stored in the Profile Data table and the timestamps are stored in the Profile 

Timestamp table. Figure 3.6 presents the design of the Profile Data and Profile Timestamp table fields 

with the ID fields as the PKs. 

 

 

Figure 3.6: Design of Profile Data and Profile Timestamp tables. 

 

TimestampID is a FK which references the ID field in the Profile Timestamp table and ProfileID is a 

FK which references the ID field in the Profile table. 

 

The structure of the Profile Data and Profile Timestamp also allows for future changes made to the 

database as it allows the link between the data and the timestamps to be altered if necessary.  
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3.2.2 Time Of Use Tables  

3.2.2.1 Overview 

TOU structures differ from one another with respect to seasons of the year, days of the week and 

hours of the day. Therefore, a generic database structure is required which accommodates the storing 

of different TOU structures efficiently. Figure 3.7 presents all the TOU tables and the relationships 

between them. Again arrows indicate that a foreign key in the table refers to a primary key in the table 

that the arrow points to. 

 

 

Figure 3.7: TOU tables and the relationships between them. 

 

It is essential to split the TOU structures into seasons of the year, days of week and hours of the day 

as it enables the use of any type of TOU period. This way the user could manipulate the TOU 

structure to produce any number of periods over any number of seasons, days and hours. This 

database structure also allows for alterations to the TOU structures and tariffs.  

 

The TOU seasons can be defined as any number or range of calendar months. This is particularly 

useful for defined TOU tariff structures provide by utilities such as Eskom. The TOU tariffs depend 

and change with regard to certain calendar months of the year as indicated in section 2.6. The 

database structure accommodates for these defined seasons by providing the user with a generic way 

to define seasons using the calendar months of the year. The Season Limits Table stores the range of 

calendar months defined for each season. Each user defined TOU season is stored in the TOU Season 

Table and is then linked to a range of defined months in the Season Limits Table. 

 

TOU structures are generally defined on a day of the week basis. The TOU tariffs depend and change 

with regard to certain days of the week as indicated in section 2.6. The database structure 

accommodates for this by providing the user with a generic way to define tariff days using the days, 

or a range of days, of the week. The Day Limits Table stores the range of days of the week defined for 
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each tariff day. For example, a tariff day may be defined by the utility as all the weekdays Monday to 

Friday. The weekday tariff day is added to the Day Table and the range of days Monday to Friday is 

added to the Day Limits table.  

 

The tariff period can be defined as any range of time during a day. The TOU tariffs depend and 

change with regard to certain times of the day as indicated in section 2.6. The database structure 

accommodates for these defined time intervals by providing the user with a generic way to define 

tariff periods using user defined time intervals. The Period Limits Table stores the range of times 

defined for each tariff period. Each user defined TOU tariff period is stored in the TOU Tariff Period 

Table and is then linked to a range of defined time intervals in the Period Limits Table. 

 

This approach of connecting tariff periods to days and tariff days to seasons provides a generic way of 

defining any type of TOU tariff structure for any time of day, any day of the week and any month of 

the year. 

3.2.2.2 TOU Structure Table 

The TOU Structure table contains all the different TOU structure names. Figure 3.8 presents the 

design of the TOU Structure table fields with the ID field as the PK. 

 

 

Figure 3.8: Design of TOU Structure table. 

 

Note that due to the fact that this is a top level table it has no foreign keys. The TOU structure table is 

chosen as the top level table in order to distinguish between different TOU structures. The user can 

add any TOU structure name to this table. The tariff seasons are then linked to the user added TOU 

structure. 

 

3.2.2.3 TOU Season and Season Limits Tables 

Figure 3.9 presents the design of the TOU Season and Season Limits table fields with the ID fields as 

the PKs. 
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Figure 3.9: Design of TOU Season and Season Limits. 

 

TouStructureID is a FK which references the ID field in the TOU Structure table. TouSeasonID is a 

FK which references the ID field in the TOU Season table. The Start and End fields in the Season 

Limits table represent the start and end of a TOU season in months of the year. 

 

The TOU Seasons table contains the user defined TOU season names, while their limits (range of 

calendar months) are stored in the Season Limits table. The Start and End fields in the Season Limits 

table refer to the starting and ending calendar months of a user defined season.  

 

3.2.2.4 TOU Day and Day Limits Tables 

Figure 3.10 presents the design of the TOU Day and Day Limits table fields with the ID fields as the 

PKs. 

 

 

 

Figure 3.10: Design of TOU Day and Day Limits tables. 

 

TouSeasonID is a FK which references the ID field in the TOU Season table. TouDayID is FK which 

references the ID field in the TOU Day table. The Start and End fields in the Day Limits table 

represent the start and end of a TOU day in days of the week with Sunday being the first day.  
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The TOU Day table contains the user defined TOU day names, while their limits (range of days of the 

week) are stored in the Day Limits table. The Start and End fields in the Day Limits table refer to the 

starting and ending days of the week of a user defined tariff day.  

3.2.2.5 TOU Period and Period Limits Tables 

Figure 3.11 presents the design of the TOU Period and Period Limits table fields with the ID fields as 

the PKs. 

 

Figure 3.11: Design of TOU Period and Period Limits tables. 

 

TouDayID is a FK which references the ID field in the TOU Day table. TouPeriodID is a FK which 

references the ID field in the TOU Period table. The Start and End fields in the Period Limits table 

represent the start and end of a TOU periods in hours of the day.  

 

The TOU Period table contains the user defined TOU period names, while their limits (user defined 

time of day intervals) are stored in the Period Limits table. The Start and End fields in the Period 

Limits table refer to the starting and ending times of the interval of a user defined tariff period.  

 

3.2.3 Testing of Database Structure 

This project aimed at developing a database structure that could store historical generation data 

together with TOU structures. The database structure is required to be generic by design and consider 

that changes may need to be made to it in the future.  

 

The database was tested by adding test profile sets, profiles and profile data, i.e. historical generation 

data. The database successfully stores historical generation data in a generic way which allows for 

future changes to be made.  

 

Furthermore, the database structure is required to incorporate TOU structures and allow for future 

change. This was tested by adding a range of TOU structure and tariff structures to the database. 
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These added TOU structures and tariffs were then altered and rearranged. The database structure 

successfully stores and incorporates TOU structures and allows for future changes to be made. 
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4  Software Application Design and Implementation 

4.1 Overview 

This chapter provides an overview of the design and implementation of the forecasting software 

application. The software application is developed using disciplines and design strategies of the 

Unified Process outlined in section 2.4. The design and implementation of the software application is 

discussed with respect to the four phases of the Unified Process namely: 

 Inception 

 Elaboration  

 Construction 

 Transition  

 

This section presents the use case and activity diagrams of the system design. Use case diagrams 

illustrate the interactions between the user and the system, while activity diagrams illustrate the flow 

of tasks or activities within operations. 

 

4.2 Inception Phase 

This phase defines the scope and feasibility of the project. The final output is the vision for the 

system, a very simplified use case model, the significant risks and a provisional system architecture.  

 

4.2.1 Scope and Vision  

The envisioned goal of this project is a software application that is capable of forecasting and 

modelling the long term energy output of a solar plant. The software application is required to 

incorporate historical generation data and the relational database structure presented in Chapter 3. The 

following is required from the envisioned software application: 

 Connect to user selected relational database. 

 Import historical data into selected database and check data integrity. 

 Access and manipulate generation data stored on a database. 

 Implement statistical methods to derive models from data stored on a database. 

 Incorporate Time Of Use (TOU) structures. 

 Implement an intuitive Graphical User Interface (GUI). 

 Implement a modular and extensible software system design.  
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In view of the above requirements, the use case model of the forecasting software application is 

defined and presented in figure 4.1. 

 

 

Figure 4.1: Use case diagram of software application. 

 

4.2.2 Significant Risks 

The most significant risk identified during this phase is the system design and architecture. A non-

modular and non-extensible design may lead to code duplication and having to restructure the system 

design repeatedly. Designing the system as one unit could lead to the situation where earlier stages of 

the software implementation have to be altered to accommodate design limitations in later stages of 

the software implementation. 

 

4.2.3 Provisional Architecture and Feasibility 

Two system architectures are considered for the development of the software application. The first 

architecture is based on a modular design with a central hub, while the second architecture is based on 

a single unit which contains all the required functionality. The modular architecture is more complex 

to develop as it requires the system to communicate and transfer data between individual modules. 
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However, modular system architecture has the advantage of being extensible, i.e. functional modules 

can be added as required.  Furthermore, a modular design allows for the reuse of code and allows for 

the implementing, debugging, testing and updating of each software module individually. 

 

The system architecture based on a single unit containing all functionality is less complex to develop. 

However, this architecture is very limited in terms of adding functionality at a later stage. 

Furthermore, singular unit system architecture has the disadvantage of having to recompile and 

distribute the entire application when a certain function is altered or updated.  

 

The modular system architecture with a central hub is chosen as provisional architecture for its 

advantage of extensibility, reuse of code and modular updating and debugging. The central hub links 

and manages all the different software components (modules) connected to it. This central hub is 

responsible for calling each software component as needed and providing it with all required 

parameters. Due to the fact that the software application is database driven, a database connection 

plays an essential role in the software system. The central hub is responsible for creating a single 

database connection and passing it to each of the software components as required. Figure 4.2 

presents the provisional system architecture for the software application with N number of software 

modules. 

 

 

Figure 4.2: Provisional system architecture of software application. 
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software components to be added to the system. This system design has the advantage of requiring 

only one database connection to be created and passed between the central hub and all software 

components. Therefore, this architecture is both a feasible and a practical approach to system design. 

Central Hub
Database

Connection

Software Application 

Software 
Module 

1

Software 
Module 

2

Software 
Module 

N

P
aram

eters

Stellenbosch University  https://scholar.sun.ac.za



51 

 

4.3 Elaboration Phase 

Functional requirements of the system are captured in this phase as well as the creation of the final 

system architecture to be used. The main output is the architecture, a detailed use case model and 

plans for the construction stage. 

 

4.3.1 Functional Requirements  

The main functional requirements of the software application are as follows: 

 A unique GUI for each software component. 

 A MySQL database connection capable of connecting to databases on local or remote servers. 

 A software component capable of importing time-stamped generation data from Comma 

Separated Value (CSV) files. 

 A timeline integrity analysis component to check for duplicated, extra or missing generation 

data on a database. 

 A Profile Administration System (PAS) which allows for the adding, removing and editing of 

profiles and profile sets on the database. 

 A Profile Analysis Engine (PAE) which analyses and processes data on the database. 

 The functionality to export results to Excel worksheets for further processing if required. 

 

Furthermore the software application is required to have a GUI based multi-select filter which allows 

the user to select any combination of profiles from various profile sets and use them collectively. The 

multi-select filter software component has the following functional requirements: 

 Connect to the database and provide the user with all the available projects, profiles and 

profile sets on the database.  

 Create a list of all user selected profiles which is passed to other software components as a 

parameter. 

 

4.3.2 Architecture 

The final architecture used for the software application is based on the provisional architecture and 

functional requirements of the system. All software components are required to be grouped together 

according to functionality and developed as separate Dynamic Linked Libraries (DLLs). DLLs are 

used to modularise and reuse code which could be shared between Windows applications [30]. 
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All software components are grouped into subsystems and then further divided into different 

categories. Each category of software components is developed as a separate DLL. The software 

application consists of four main subsystems namely: 

 Main Application: The central hub of the system which manages all components and passes 

parameters such as the database connection and the multi-select list of profiles. 

 Database Connection: The actual database connection which facilitates all database access. 

 Profile Administration System: This subsystem consists of all software components aimed at 

managing and maintaining the profile sets, profiles and profile data on a database. 

 Profile Analysis Engine: This subsystem consists of all software components aimed at the 

analysis or processing of generation data to derive forecasting models. 

 

Each software component requires its own custom GUI which allows the user to select and specify 

settings unique to its functionality. Due to the fact that all software components are contained in 

DLLs, it is the responsibility of the Main Application to call the desired software component GUIs 

when required. Figure 4.3 presents the final architecture of the software application. 

 

 

Figure 4.3: Final software application architecture. 
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In order to share a database connection and a list of profiles between the Main Application (MA) and 

the software components, the use of the Common Object Model (COM) and Object Linking and 

Embedding (OLE) is implemented. COM forms the basis of OLE and defines an Application 

Programming Interface (API) for communication between objects. COM objects consist of one or 

more interfaces used to call their methods [30]. These interfaces are used to instantiate objects and use 

methods inside the separate DLLs. 

 

4.3.2.1 Profile Administration System 

The Profile Administration System (PAS) is responsible for managing and maintaining of profile sets, 

profiles and profile data on the database. The PAS therefore requires the following software 

components: 

 Profile Manager: Used for adding, editing and removing profiles from the connected 

database. Also used to remove profile data from database. 

 Profile Set Manager: Used for adding, editing and removing profiles sets from the database 

 Profile data Importer: Used for importing profile data into database from CSV files and link 

imported data to profiles. 

 

4.3.2.2 Profile Analysis Engine 

The Profile analysis Engine (PAE) is responsible for all analysis and processing of profile data and 

requires the following software Components: 

 Statistical TOU Analysis: Used to derive TOU statistical parameters and models from 

historical generation data. 

 Timeline Integrity Analysis: Used for investigating the timeline integrity of profile data to 

determine whether data is missing, extra or duplicated. 

 

4.3.3 Detailed Use Case Model 

This section presents the use case model of the software application. Figures 4.4 to 4.11 present the 

use case diagrams of all software components and subsystems that make up the software application. 
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Figure 4.4: Use case diagram of main application. 

 

 

 

Figure 4.5: Use case diagram of database connection. 
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Figure 4.6: Use case diagram of multi-select filter software component. 

 

 

 

Figure 4.7: Use case diagram of profile manager software component. 
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Figure 4.8: Use case diagram of profile set manager software component. 

 

 

 

Figure 4.9: Use case diagram of profile data importer software component. 
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Figure 4.10: Use case diagram of timeline integrity analyser software component. 

 

 

 

Figure 4.11: Use case diagram of statistical TOU analysis module software component. 
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4.4 Construction Phase 

The majority of the system is designed and implemented in this phase as well as the final analysis of 

the system. Essentially this is the phase where the system is implemented. The output of this phase is 

the implemented system software, design and models.  

 

4.4.1 Design and Implementation 

All software components are implemented in Embarcadero’s Delphi™ Integrated Development 

Environment (IDE) for the Microsoft Windows environment as discussed in section 2.3. The system 

architecture is designed to be modular and extensible with all software components implemented in 

DLLs. This section deals with the implementation of each software module and its GUI. 

 

4.4.1.1 Main Application  

The Main Application (MA) is designed and implemented to be the central hub of the software 

application and to meet the following requirements: 

 Allow the user to establish a persistent database connection. 

 Allow the user to create a list of profiles to be used with the multi-select filter.  

 Pass the established database connection and user selected list of profiles to PAE modules. 

 Pass the established database connection to PAS modules. 

 Allow the user to select and use any of the components contained in either the PAE or PAS. 

 

In order for the MA to pass an active database connection between the different software components 

in different DLLs, a COM interface was designed in implemented in the MA. This interface includes 

the class definitions and methods of the database connection which allows the MA to instantiate a 

database connection as an object even when it is not defined in the MA.  

 

To establish a database connection the MA first calls a create method from the database connection 

interface which instantiates a database connection object in memory.  However the connection is not 

connected to any database until the connection parameters are set. To set the connection parameters 

the MA calls a method to display the GUI of the database connection. The user then uses the database 

connection GUI to set the connection parameters and establish a connection to a database. This 

connection persists as long as the MA is running and could be changed to connect to a different 

database if desired. This way only one instance of the database connection exists at all times. 
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When a user wants to perform an analysis on generation data stored on the database, it is required to 

first select the data to use. The multi-select filter is designed and implemented to provide the user with 

an interactive GUI to select any combination of the profiles available on the database. The MA first 

instantiates and calls the multi-select filter GUI from its respective DLL. Once a user has selected the 

desired profiles, the multi-select filter creates a list containing the selected profiles and passes it back 

to the MA as a parameter. 

 

Software components from the PAE and PAS are all database driven and therefore could only be 

called and used if a database connection is established. Therefore, the MA checks whether an active 

database connection is defined and exists with each call to a software component.  Figure 4.12 

presents the activity diagram of a call made to a software component in either the PAS or PAE.  

 

Note that the solid black circle denotes the start of an activity and the encircled black circle denotes 

the end of an activity. Furthermore, a diamond shape denotes a decision and a rounded rectangle 

denotes an action. 

 

 

Figure 4.12: Activity diagram of a call made to a software module in the PAS or PAE. 
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4.4.1.2 Database Connection  

The database connection is designed and implemented to meet the following requirements: 

 User defined connections could be stored for reconnection at a later time. 

 Stored connections could be edited or deleted. 

 Establish a connection to a database using login credentials from user defined connections. 

 Execute database queries and commands using a structured query language. 

 

To save the user defined connections and make them available every time the application runs, the 

connections are saved on the hard drive of the computer running the application. The database 

connection GUI was designed and implemented to store all user connection information in an INI file 

format in the directory of the software application EXE. This allows the database connection to read 

and edit all the previously stored connection information every time the application runs. The 

database connection GUI also provides the user with the ability to select any of the previously stored 

connection in the INI file and establish a connection to a database.  

 

A database connection is only established if the server address and database exists and the username 

and password is correct.  The connection parameters include the server IP address, database name, 

username and user password. Figure 4.13 presents the activity diagram of connecting to the database. 

 

 

Figure 4.13: Activity diagram of connecting to a database. 
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and actual implementation of all the software components, using the connection, revealed factors that 

were not considered, i.e. as the software modules were developed and tested, new functionalities were 

required from the database connection and therefore added. The final database connection provides 

the software components with the following available database operations: 

 Execute database queries and commands. 

 Return field values for given field names. 

 Return date and time values for given field names. 

 Step through records in a resultant dataset. 

 Set record number in a resultant dataset. 

 Edit records in resultant dataset. 

 Add records to resultant dataset. 

 Delete records from resultant dataset. 

 Apply updates of resultant dataset to database. 

 Check connection status. 

 Return number of records in a resultant dataset. 

 

Using these database operations all software components are able to achieve their required 

functionality. The database connection is implemented in the Delphi™ IDE using four dbExpress 

components namely: 

 SQL Connection. 

 SQL Dataset. 

 Dataset Provider. 

 Client Dataset. 

 

The SQL Connection component establishes the actual connection to a database through a database 

managing system [30].  All queries and commands on a database are executed using the SQL 

Connection component and all data sent to or received from the database passes through it. The SQL 

Dataset component is a unidirectional dataset that simply captures the data received from the SQL 

Connection component in response to a query on the database [30]. The Dataset Provider component 

simply copies the data contained in the SQL Dataset component to the internal dataset of the Client 

Dataset component. Therefore, it provides the queried dataset to the Client Dataset component to be 

used by the software application. The Client Dataset component is a dataset with bidirectional 

navigation and has the ability to edit data [30]. This is the dataset used by the software application for 

all access to the database. Therefore, when the software application queries data from the database 

using the SQL Connection component, the resultant data set is copied to the SQL Dataset and then 

copied to the Client Dataset via the dataset provider.  
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4.4.1.3 Multi-select Filter 

The multi-select filter is responsible for creating a list of user selected profiles from a database to be 

used by the PAE. Therefore, the multi-select filter requires a database connection to query and display 

all available profiles and profile sets on the database. The multi-select filter GUI is designed to meet 

the following requirements: 

 Select desired project from database. 

 Select desired profile sets from database. 

 Select desired combination of profiles from database. 

 

When the user has finished selecting all the profiles for an analysis, the multi-select filter compiles a 

list containing the selected profiles and passes it to the MA as a parameter. The multi-select filter GUI 

allows the user to select any number and combination of profiles from the database by dynamically 

creating a custom SQL query according to the filter settings.  

 

There are five fields of the multi-select filter GUI that together allows the user to select any 

combination of profiles. These fields include the following: 

 Project field: Projects in the Project table on the database. 

 Profile Set Category: Profile set categories in the Profile Set Category table on the database. 

 Multi-selection of Profile Sets: User selected profile sets which results from the Project and 

Profile Set Category fields of the filter. 

 Profile Category: Profiles in the Profile table on the database. 

 Multi-selection of Profiles: User selected profiles which results from all the filter fields. 

 

The project field and profile set selection is mandatory, while profile set category and profile category 

are optional fields. If the optional profile set category is not selected, the profile sets of all categories 

are returned. Similarly if the profile category is not selected, profiles of all categories are returned. 

Figure 4.14 presents the activity diagram of a user using the multi-select filter. Note that the diamond 

shapes represent the different decisions a user can make using the GUI of the considered software 

module.  
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Figure 4.14: Activity diagram of the use of the multi-select filter. 
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When a profile set is selected to be edited or when a new profile set is to be added, a simple GUI is 

displayed which allows the user to enter all profile set data. These changes are then saved on the 

database using the database connection. Figure 4.15 presents the activity diagram of the use of the 

profile set manager. 

 

 

Figure 4.15: Activity diagram of the use of the profile set manager. 
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When a profile is removed from the database the user can select whether the profile data associated 

with the profile should be removed as well. When a profile is selected to be edited or when a new 

profile is to be added, a simple GUI is displayed which allows the user to enter all the profile data. 

These changes are then saved on the database using the database connection. Figure 4.16 presents the 

activity diagram of the use of the profile manager. 

 

 

Figure 4.16: Activity diagram of the use of the profile manager. 
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4.4.1.6 Profile Data Importer  

The profile data importer is developed as a DLL on its own with a database connection interface. The 

Profile Data Importer is designed to meet the following requirements: 

 Select a profile from a database to which imported data should be linked. 

 Select a CSV file from the computer running the software application. 

 Import data and link it to selected profile. 

 

The Profile Data Importer GUI is designed and implemented to allow the user to select any CSV file 

to be imported. The GUI allows the user to select the profile to which the data should be linked and to 

choose which delimiter is used in the CSV file. The format of the CSV files to be imported is very 

simple and consists of only two columns. The first column represents the timestamps and the second 

column the respective values. 

 

4.4.1.7 Timeline Integrity Analyser 

Profile data in CSV files may have some extra, missing or duplicated timestamps as a result of faults 

in the logging system. This gives rise to a broken timeline in the generation data which affects the 

results of any analysis performed on such data. Therefore, it is required to assess the timeline integrity 

of data to be used in an analysis and determine whether data is usable and intact. The timeline 

integrity analyser is a component of the PAE subsystem and is developed as a DLL on its own with a 

database connection interface. The timeline integrity analyser GUI is designed to meet the following 

requirements: 

 Set the timeline of the analysis. 

 Set time increment between successive timestamps. 

 Analyse profile data timeline. 

 

To analyse a timeline’s integrity, a reference timeline must first be created which is then compared to 

the generation data on the database. To create a reference timeline the user must select a timeline on 

which the analysis is conducted, as well as the incremental time step between each successive 

timestamp. The timeline integrity analyser GUI allows the user to select the start date and time, end 

date and time and the time increments between each successive timestamp. The software component 

then creates a reference timeline for the timeline selected by the user. Once a reference timeline is 

created the software module compares it to the generation data on the database that falls in the 

analysis timeline. The software component then reports back the timestamps which are missing, extra 

or duplicated.  
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4.4.1.8 Statistical TOU Analyser  

The statistical TOU analysis GUI is designed to meet the following requirements: 

 Allow the user to set the timeline of the analysis.  

 Allow the user to set the probability distribution used in the analysis. 

 Allow the user to set the bin width estimator. 

 Allow the user to set the TOU structure. 

 Allow the user to set whether profiles should be merged or not. 

 

The statistical TOU analyser GUI allows the user to select one of the following probability 

distributions: 

 Normal distribution. 

 Weibull distribution. 

 Beta distribution. 

 Gamma distribution. 

 Exponential distribution. 

 Logistic distribution. 

 

The Probability Density Function (PDF) and Cumulative Distribution Function (CDF) of each of the 

probability distributions are implemented numerically as described in section 2.5.6. Generation data 

from all the selected profiles and the selected timeline is queried and analysed with the selected 

probability distribution. The analysis determines the following statistical parameters and goodness of 

fit test results of each TOU period: 

 Cumulative value of generation data values. 

 Maximum and minimum of generation data values. 

 Mean of generation data values. 

 Standard deviation and variance of generation data values. 

 Timestamp count. 

 Root mean square error of generation data values and selected probability distribution. 

 Chi-squared test value of generation data values and selected probability distribution. 

 

The Root Mean Square Error (RMSE) and Chi-squared test values are implemented according to 

theory presented in section 2.5.5.  
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The first step in the statistical TOU analysis process is to determine the total, minimum, maximum, 

mean, standard deviation, variance and timestamp count of the selected generation data values for the 

selected timeline. 

 

To perform the goodness of fit tests, the profile data is first divided into a number of mutually 

exclusive classes called bins. The number of bins and bin widths are determined using either Scott’s 

or Sturges rule as bin width estimators as discussed in section 2.5.4. Once the number of bins is 

determined, the bin intervals are determined by dividing the range of the selected generation data 

(maximum value – minimum value) into the number of bins.  

 

Using these bin intervals the expected frequency (count) of each bin, i.e. the expected frequency 

distribution, is calculated using the CDF of the user selected probability distribution. To calculate the 

bin counts the bin probabilities must first be determined.  This is achieved by using the standard 

deviation and mean of the selected generation data values as parameters in the selected probability 

distribution’s CDF. If the selected distribution CDF uses parameters other than the standard deviation 

and mean they are calculated according to theory discussed in section 2.5.6. The bin probability is 

simply determined by subtracting the value obtained from the CDF for the bin start value from the 

value obtained from the CDF for the bin end value.  

 

Once the bin probabilities have been determined, the bin counts of each class could be determined by 

multiplying the bin probability by the timestamp count of the generation data selected for the analysis. 

This produces the expected frequency distribution (bin count) of each bin. It is imperative that all bin 

counts be above two as discussed in section 2.5.5.2.  

 

After the expected bin frequencies are calculated, a test is done to check whether any of the bins have 

an expected frequency (count) lower than two. If one of the bins has an expected bin count lower than 

two, the number of bins is decreased by one and the expected bin frequencies are recalculated and 

retested. This is repeated until all bin counts are at least two.  

 

To compare the expected frequency counts against the user selected generation data, the observed 

count is determined, i.e. the observed frequency distribution. The observed count is simply the 

number of timestamps that fall in each of the bin intervals determined for the expected frequency. 

Using the observed and expected frequency distributions the RMSE and Chi-squared test values could 

be determined as described in section 2.5.5. The process is executed for each TOU period and all user 

selected profiles. Figure 4.17 presents the activity diagram of the statistical TOU analysis process for 

one TOU period and one profile. 
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Figure 4.17: Activity diagram of statistical TOU analysis process. 

 

4.4.1.9 Excel Functionality  

All PAE software modules were implemented with Excel functionality to export results for further 

processing. The software modules create new Excel workbooks and populate them with analysis 

results. The Excel exporting component is implemented using the built in Excel support of Delphi™ 

IDE. 

 

 

ad Statistical TOU analysis process

User starts analysis

Calculate total, min, max, mean,
 standard deviation, variance and timestamp count

of TOU period

Determine estimated frequency
bin counts of TOU period

Calculate number of bins
of TOU period

Decrement number 
of bins

Determine observed
 frequency bin counts 

of TOU period

Calculate goodness of fit 
Results of  TOU period

[Bin counts all 
at least 2]

[Bin counts not 
all at least 2]

Report back calculated parameters 
and goodness of fit test results

Stellenbosch University  https://scholar.sun.ac.za



70 

 

4.4.2 System Analysis and Testing 

Testing implemented software is important to ensure that the software application is reliable. The 

testing discipline of the Unified Process involves the designing, implementing and the evaluation of 

tests on implemented software. The implementation and testing of each module was an iterative 

process which continued until the software components met their requirements.  

 

4.4.2.1 Test Setup 

In order to test the implemented software a test database was created according to the database 

structure presented in Chapter 3 and implemented in WAMPServer. A test TOU structure was created 

and implemented in the database. To test database queries and commands a third party MySQL Query 

Browser application is used which provides a graphical presentation of queried data. This application 

is used to query datasets from the test database and manually check whether results obtained from the 

application is correct. 

 

4.4.2.2 Main Application and Database connection 

The first two functions of the Main Application (MA) to be tested is its ability to call methods from an 

external DLL and pass parameters to an external DLL. A simple test DLL which only displays a 

string of text which was passed to it as a parameter from an external application is developed. The 

MA is then used to call the method and pass a string of text to be displayed.  

 

To test the MA’s ability to create and pass a database connection, the database connection DLL is first 

designed and implemented. The MA is then used to call and create a database connection from its 

DLL. The created database connection is passed back to the MA and used to execute a simple query 

on the test database. 

 

The MA is responsible for calling the Multi-select Filter module in order to select the profile data to 

be analysed. The MA’s ability to call the Multi-select Filter module was tested by adding test profile 

sets, profiles and profile data to the database and calling the Multi-select filter using the MA. The test 

data is then selected using the Multi-select filter and passed back to the MA. 

 

Furthermore, the MA is responsible for calling all PAE and PAS modules and pass on the required 

parameters. The MA’s ability to call these modules was tested as the modules were developed by 

calling the GUIs of modules from the MA.  
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4.4.2.3 Profile Set and Profile Manager 

The profile set manager and profile manager are required to allow the user to select or add profile sets 

and profiles from a database. Furthermore these software modules are required to allow the user to 

edit or remove the profile sets and profiles stored on the database.  

 

To test whether the profile set and profile manager met the set requirements, an established database 

connection is passed to the two modules and then used to populate the test database with profiles and 

profile sets. The software modules were then used to edit and remove the profile sets and profiles 

added to the test database. Results are checked using the third party MySQL query browser 

application.  

 

4.4.2.4 Profile Data Importer 

The profile data importer is required to allow the user to select a profile from the database and a CSV 

file from a computer. The profile data importer is the required to import all data in the selected CSV 

file into the selected profile stored on the database. 

 

To test the profile data importer a test CSV file is created which is populated with known time-

stamped values. The profile data importer is then used to select a profile from the database and import 

the test CSV file into the database and link it to one of the test profiles. Results are checked using the 

third party MySQL query browser application.  

 

4.4.2.5 Timeline Integrity Analyser 

The timeline integrity analyser is required to allow the user to select a time window in which the 

analysis should take place as well as a time increment between successive time stamps. The software 

module is then required to analyse the integrity of all profile data from all profiles passed to it from 

the multi-select filter. 

 

To test the timeline integrity analyser, a number of test CSV files are created. The CSV files are 

populated with certain timelines. The timelines are altered in different ways in each separate CSV file 

to have intact, missing, duplicated and extra timestamps. These CSV files are then imported to the test 

database and connected to different profiles. The timeline integrity analyser is then used set a time 

window and increment and to test each different set of timestamps to determine whether correct 

results are obtained. 
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4.4.2.6 Multi-select Filter 

The multi-select filter is required to allow the user to select a project stored on the database. All 

profile sets linked to the selected project is then provided to the user. The multi-select filter is then 

required to allow the user to select any number and combination of profile sets and provide the user 

with all profiles connected to the selected profile sets. The multi-select filter is then required to allow 

the user to select any number and combination of profiles and pass the selection on to the next 

software module. 

 

To test the multi-select filter, it is simply passed an established database connection. All available 

profiles and profile sets on the multi-select filter are compared to the profiles and profile sets that 

were previously added to the test database. The list of profiles returned by the multi-select filter is 

then compared to the profiles selected by the user. 

 

4.4.2.7 Statistical TOU Analyser 

The statistical TOU analyser is required to allow the user to select the time window, TOU structure, 

bin width estimator and probability distribution to use in the analysis. The profile data from the 

selected profile sets(received from multi-select filter) are then analysed according to the user selected 

parameters. 

 

To test the statistical TOU analyser, a CSV file with test data is imported into the test database. The 

statistical TOU analyser is then used to select the desired time window, TOU structure, bin width 

estimator and probability distribution to use in the analysis. All selections are checked against the 

database and software application. The third party MySQL query browser application is used to query 

all relevant generation data and the statistical indicators are calculated using Excel. These results are 

then compared to the statistical TOU analyser results. 

 

4.4.3 System Analysis 

The implemented system proves to be successful and meets all requirements. The implemented 

system architecture is well suited for developing and testing functional modules. Furthermore, the 

extensible and modular nature of the software application proves to be a code and time efficient 

development approach.  
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4.5 Transition Phase 

During this phase the system is moved to the user’s environment. This includes deploying and 

maintaining the system. This is the final phase of a cycle therefore the output is the final release of the 

system.  

 

The final stage of the development process is deploying the software application and using it on the 

case study. The software application and all required DLLs are deployed on a Microsoft Windows 

computer running WAMPServer.  

 

A new database is created for the case study according to the structure discussed in Chapter 3. The 

case study project name, profiles and profile sets are added to the case study database along with all 

relevant TOU structures. The historical generation data is compiled and imported into the case study 

database. All imported generation data is analysed using the timeline integrity analyser to ensure data 

integrity. 

  

Stellenbosch University  https://scholar.sun.ac.za



74 

 

5 Solar Plant Case Study Results 

5.1 Overview 

A case study is conducted to test and evaluate the implemented forecasting methodology and software 

application. The main objective is to determine whether it is possible to fit historical generation data 

to the proposed probability distributions commonly used to model solar irradiation. Furthermore, the 

case study aims to illustrate how the analysis results are also useful in assessing the performance of a 

solar plant for varying TOU structures. The historical generation data available at the time of this 

project is very limited. Therefore, this case study does not focus on the statistical analysis of the 

available data, but rather to test whether the forecasting methodology is successful in the TOU 

context. The case study is conducted for an operational solar plant which provides supplementary 

energy to a cold storage facility in the Western Cape province of South Africa. The energy supplied 

by the solar plant is used to mitigate the cold storage’s energy usage from the utility provider (Eskom) 

in order to reduce electricity expenses.  

 

5.2 Solar Plant System Configuration 

5.2.1 Panel and Inverter Configuration 

The cold storage facility consists of two separate buildings each with a subsystem of PV panels, 

meters and inverters. Both buildings have dual pitched roofs which are painted white to reflect 

incoming solar radiation. All PV panels are mounted flush against the roofs of the buildings at fixed 

positions and orientations. The buildings are several stories high and provide unobstructed and un-

shaded solar radiation to the PV panels.  

 

The solar plant is comprised of a grid connected Photovoltaic (PV) system which implements string 

technology, as discussed in section 2.7.3.1. The solar plant supplies only a fraction of the cold storage 

facility’s total energy demand while the remainder is satisfied by the utility provider. The two 

subsystems of the solar plant are summarised in in table 5.1 while figure 5.1 presents the PV system 

configuration. 

Table 5.1: Solar plant subsystems summary. 

 Subsystem 1 Subsystem 2 Total 

Number of PV panels 1387 730 2117 

Number of inverters 19 10 29 
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Figure 5.1: PV system configuration. 

 

The inverters convert DC power from the PV panels into AC power to be used by the facility. 

Maximum Power Point Trackers (MPPTs) incorporated into the inverters keep the PV panels at an 

efficient operation point.  All PV panels are connected in a number of series configurations to obtain 

the optimal voltage supply for the MPPTs. The inverter model used is SMA’s STP-17000TL model 

with technical specifications given in table 5.2 [68]. 

 

Table 5.2: Inverter technical specifications. 

DC Input 

Maximum DC Power at cos φ =1 17 410 W 

Rated Input Voltage 600 V 

AC Output 

Rated AC Power at 230V and 50 Hz 17 000 W 

Maximum Apparent AC Power 17 000 VA 

Maximum Output Current 24.6 A 

Maximum Efficiency 98.2 % 

 

5.2.2 PV Panel Array Rated Energy Output 

The solar plant’s PV panel array consists of 2117 PV panels rated at 240 Watt (W) peak under 

standard test conditions. The rated power output of the solar plant is 508.08 kW. Therefore, the rated 

energy output of the PV panel array during any given half-hour interval is 254.04 kWh. 

 

Solar Plant

Subsystem 1 Subsystem 2

73 PV 
Panels

Inverter 1 Inverter 2 Inverter 19

73 PV 
Panels

73 PV 
Panels

73 PV 
Panels

Inverter 1 Inverter 2 Inverter 10

73 PV 
Panels

73 PV 
Panels
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5.3 Analysis Methodology 

5.3.1 Data Acquisition 

The software application developed in this project was done in conjunction with historical generation 

data which was made available by an industrial consumer with onsite solar generation. The industrial 

consumer measured and logged the power output of the PV system at half-hourly intervals with a 

number of power meters. The historical power output data provided in kW was used to determine the 

energy output in kWh for each timestamp over the analysis timeline.  

 

A relational database is implemented according to the structure presented in Chapter 3 and populated 

with all profiles, profile sets and historical energy output data provided by the industrial consumer. 

The serial numbers of the power meters are added to the database as the different profile sets. The 

historical energy generation data of each individual meter is added as separate profiles and linked to 

their respective profile sets. The timeline integrity of historical generation data of each meter is 

checked as it is added to the database. 

 

5.3.2 Data Analysis 

Due to the fact that this research project has to be completed within a designated timeframe, only 

historical generation data from the start of February 2013 to the end of June 2014 is considered for the 

case study analysis. All individual profile sets (meters) are merged together to represent the solar 

plant as one complete system. The historical generation data is analysed on a tariff seasonal and 

monthly basis as depicted in figure 5.2.  

 

The main objective of the seasonal analysis is to determine whether it is indeed possible to create long 

term energy output models within TOU tariff structure seasons. Energy output models within TOU 

structure seasons are particularly useful in determining the profitability of a solar plant during the 

utility defined seasons as the tariffs, i.e. the price paid per kWh for energy consumed, differ for these 

seasons. The seasonal analysis is conducted with respect to two Eskom tariff seasons, namely the 

High Demand and Low Demand season. The High Demand season consists of the calendar months of 

June to August, while the Low Demand season consists of the remaining calendar months of the year. 

The historical generation data for the entire analysis timeline is divided into two datasets, with a 

dataset for each seasonal interval. Each dataset is analysed with respect to a half-hourly generation 

profile, the MegaFlex and the HomeFlex TOU tariff structures.  
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The monthly analysis is conducted to determine whether it is possible to create long term energy 

output models of a solar plant with respect to the calendar months of a year. This is done due to the 

fact that the weather patterns differ for each month. The monthly analysis is conducted with respect to 

the calendar months of February and June to. The historical generation data of these two months for 

the entire analysis timeline is divided into two datasets, with a dataset for each monthly interval. Each 

dataset is analysed with respect to a half-hourly generation profile and the HomeFlex TOU structure.  

 

 

Figure 5.2: Case study analysis hierarchy. 

 

Each individual analysis is divided into two sections. The first section presents the statistical 

parameters of the relative analysis datasets, while the second section aims at deriving statistical 

models.  

 

The Chi-squared and Root Mean Square Error (RMSE) goodness of fit tests are employed to 

determine whether a hypothesised probability distribution fits the historical generation data for a 

given TOU period. The Chi-squared test with a 1% level of significance is regarded as the primary 

test criterion for this case study. The RMSE test acts as a supplementary indication of model 

performance, i.e. how well a probability distribution fits historical generation data. The goodness of 

fit tests are implemented according to theory discussed in section 2.5.5. 

 

5.4 Analysis Results 

It is decided to normalise all analysis results in order to evaluate and compare the solar plant’s 

performance between different seasons and months of the year. Analysis results are provided in per 

unit [p.u.] values and are normalised to the rated energy output of the entire solar plant.  

Analysis
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 Periods

MegaFlex
TOU 

Periods

HomeFlex
TOU 

Periods

Half-hourly
Periods

February June
Eskom 
High 

Demand

Eskom Low 
Demand

Eskom 
High 

Demand

Eskom Low 
Demand

Eskom 
High 

Demand

Eskom Low 
Demand

HomeFlex
TOU 

Periods

February June
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5.4.1 Seasonal Analysis 

This analysis is conducted with respect to the High and Low Demand seasons from the start of 

February 2013 to end of June 2014. During the analysis timeline a total of 122 days fall in the High 

Demand season and a total of 393 days fall in the Low Demand season. 

5.4.1.1 Daily Half-hourly Generation Profile 

This analysis is conducted for the daily half-hourly generated energy profile during the High and Low 

Demand seasons. All night time half-hourly intervals are excluded from the presented results. 

 

5.4.1.1.1 Statistical Parameters 

Tables 5.3 and 5.4 summarise the statistical parameters of the daily half-hourly generated energy 

during the High and Low Demand seasons for the entire analysis timeline.  The maximum, average 

and standard deviation of the daily generated energy is normalised to the rated energy output of 

254.04 kWh per half-hour interval. 

 

Table 5.3: Statistical parameters of daily generated energy for half-hourly profile during the High Demand season. 

Period start Maximum energy[p.u.] Average energy [p.u.] Standard deviation of energy[p.u.] 

07:00:00 0.013 0.001 0.003 

07:30:00 0.105 0.012 0.016 

08:00:00 0.228 0.045 0.036 

08:30:00 0.250 0.095 0.057 

09:00:00 0.352 0.152 0.079 

09:30:00 0.443 0.218 0.102 

10:00:00 0.517 0.281 0.119 

10:30:00 0.572 0.328 0.141 

11:00:00 0.616 0.376 0.142 

11:30:00 0.658 0.405 0.146 

12:00:00 0.662 0.413 0.147 

12:30:00 0.670 0.411 0.154 

13:00:00 0.756 0.399 0.159 

13:30:00 0.642 0.384 0.151 

14:00:00 0.646 0.353 0.151 

14:30:00 0.621 0.318 0.142 

15:00:00 0.551 0.277 0.126 

15:30:00 0.437 0.206 0.107 

16:00:00 0.346 0.142 0.082 

16:30:00 0.261 0.078 0.057 

17:00:00 0.139 0.027 0.032 

17:30:00 0.026 0.004 0.006 
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Table 5.4: Statistical parameters of daily generated energy for half-hourly profile during the Low Demand season. 

Period start Maximum energy[p.u.] Average energy [p.u.] Standard deviation of energy[p.u.] 

05:30:00 0.047 0.003 0.007 

06:00:00 0.123 0.014 0.023 

06:30:00 0.189 0.040 0.052 

07:00:00 0.294 0.089 0.086 

07:30:00 0.402 0.160 0.116 

08:00:00 0.511 0.241 0.139 

08:30:00 0.601 0.322 0.154 

09:00:00 0.684 0.400 0.164 

09:30:00 0.770 0.469 0.171 

10:00:00 0.804 0.528 0.178 

10:30:00 0.852 0.573 0.181 

11:00:00 0.880 0.610 0.184 

11:30:00 0.909 0.627 0.191 

12:00:00 0.907 0.635 0.196 

12:30:00 0.904 0.638 0.201 

13:00:00 0.919 0.629 0.202 

13:30:00 0.889 0.623 0.198 

14:00:00 0.865 0.589 0.200 

14:30:00 0.816 0.544 0.199 

15:00:00 0.785 0.497 0.194 

15:30:00 0.750 0.437 0.186 

16:00:00 0.651 0.366 0.177 

16:30:00 0.602 0.288 0.163 

17:00:00 0.499 0.206 0.143 

17:30:00 0.399 0.127 0.113 

18:00:00 0.239 0.064 0.075 

18:30:00 0.126 0.022 0.033 

19:00:00 0.041 0.003 0.006 

 

 

Figures 5.3 and 5.4 present the maximum and average daily generated energy from tables 5.3 and 5.4 

in graphic format. The results indicate a greater availability of solar power during the Low demand 

season than that of the High Demand season. This is to be expected, as the Low Demand season 

consists of summer months while the High Demand season consists of winter months.  

 

The results show the effect of different sunrise and sunset times for winter and summer months. 

Figures 5.3 and 5.4 indicate a one and a half hour shift in the solar profile between the High and Low 

Demand seasons. This lack of energy availability for morning and evening hours during winter 

months is one of the drawbacks of solar power, as these hours coincide with times of peak energy 

demand. 
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The results shown in figures 5.3 and 5.4 indicate a considerable difference in the solar plant’s 

performance during the High and Low Demand seasons. The solar plant performs significantly better 

during the Low Demand season than during the High Demand season. This significant difference 

between the High and Low demand seasons is attributed to the path taken by the earth around the sun, 

weather conditions and the fact that the solar panels have fixed orientations and tilts. Fixed 

orientations and tilts of solar panels are inefficient and lead to decrease generation of energy during 

certain times of the year.  

 

The average daily generated energy during the Low Demand season is about the same as the 

maximum daily generated energy of the High Demand Season. Furthermore, the peak average 

generated energy reaches a per unit value of about 64% during the Low Demand season, while 

reaching a per unit value of about only 41% during the High Demand Season.  

 

 

Figure 5.3: Daily average and maximum half-hourly generated energy for the High Demand season. 

 

 

Figure 5.4: Daily average and maximum half-hourly generated energy for the Low Demand season. 
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Figure 5.5 presents the Coefficients Of Variation (COV) of the generated energy for each half-hour 

interval during the High and Low Demand seasons. The COV is a normalised measure of variation 

and is determined by dividing each half-hour interval’s standard deviation by the average daily 

generated energy. 

 

Figure 5.5 indicates that the daily generated energy varies more during the High Demand season than 

during the Low demand season. The results also show that the generated energy varies significantly 

for morning and evening hours with COV well over a 100%, and evens out towards mid-day hours 

with COV between 30% and 40%.   

 

 

 

Figure 5.5: Coefficients of variation of daily half-hourly generated energy for High and Low Demand seasons. 

 

5.4.1.1.2 Statistical Model 

The Chi-squared and RMSE goodness of fit tests are employed to determine whether a hypothesised 

probability distribution could model a given half-hour interval. The Chi-squared test is regarded as the 

primary goodness of fit test criterion. The RMSE test is used as a supplementary indication of model 

performance. The Chi-squared test and RMSE values for the daily half-hourly analysis are provided in 

appendix B. 

 

Tables B.1 and B.2 in appendix B summarise the results of the Chi-squared test for the daily half-

hourly analysis during the High and Low Demand seasons. The Chi-squared test results for each 

distinct half-hour interval are given with respect to all the considered probability distributions. Each 

probability distribution’s Chi-squared results are given as a value and a number of bins, with the 
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number of bins denoted by NB. The Chi-squared goodness of fit test involves determining the 

Degrees Of Freedom (DOF) from the number of bins as discussed in section 2.5.5.2. 

 

Each distinct half-hour interval is best described by the probability distribution with the lowest Chi-

squared test value. However, the resulting DOF calculated from the number of bins NB are required 

to be at least one in order for the result to be useful and conclusive. If the probability distribution with 

the lowest Chi-squared test value has resultant DOF of less than one, the probability distribution with 

the second lowest Chi-squared value is considered and so on.  

 

To determine whether a hypothesised probability distribution should be accepted or rejected, the 

percentage points table for the Chi-squared distribution provided in Appendix A is used. The resultant 

DOF from the analysis and a level of significance of 1 % are used to read off the corresponding 

percentage point value of the Chi-squared distribution. If the analysis Chi-squared test value is lower 

than the corresponding percentage point value, the hypothesised probability distribution is accepted. If 

Chi-squared test value is larger the than the corresponding percentage point value, the probability 

distribution is rejected.  

 

The probability distribution with the lowest Chi-squared test value and resultant DOF of at least one is 

chosen as the best performing conclusive result for this analysis. If all probability distributions result 

in DOF of less than one for a specific result, the result is regarded as inconclusive. Note that the best 

performing conclusive probability distribution, i.e. the probability distribution with the lowest Chi-

squared test value and DOF of at least one, does not necessarily represent the best fitting probability 

distribution.  

 

Tables 5.5 and 5.6 summarise the best performing conclusive models for the half-hourly analysis 

during the High and Low Demand seasons together with the model conclusions, i.e. whether the 

hypothesised probability distribution fits the observed historical generation data (accepted) or not 

(rejected). Chi-squared values for the best performing conclusive models (probability distribution) are 

provided together with the determined degrees of freedom denoted by DOF.  

 

The results presented in table 5.5 show that a large portion of the half-hourly models for the High 

Demand season are rejected. The Chi-squared test and RMSE results given in tables B.1 and B.3 

indicate that the Beta probability distribution performs the best of all considered probability 

distributions for the majority of the half-hourly intervals from 08:30:00 to 15:30:00. The Chi-squared 

test results given in table B.1 indicate that all the considered probability distributions have high 

resultant DOF and high Chi-squared test values for these half-hour intervals and are therefore 

conclusively rejected. 
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Table 5.5 indicates that only four intervals are successfully modelled for the daily half-hourly 

generated energy during the High Demand season. Furthermore, the Chi-squared test is inconclusive 

for two of the half-hour intervals, i.e. none of the considered probability distributions resulted in DOF 

of more than one.  

 

Table 5.5: Best performing conclusive models for daily half-hourly profile during the High Demand season. 

Period 

Start 

Chi-squared 

value 

DOF 

 

Probability 

distribution 

Average 

energy[p.u.] 

Standard deviation 

of energy [p.u.] 

Model 

conclusion 

07:00:00 1.160 3 Beta 0.001 0.003 Accept 

07:30:00 0 < 1 Inconclusive 0.012 0.016 Inconclusive 

08:00:00 0 < 1 Inconclusive 0.045 0.036 Inconclusive 

08:30:00 16.816 4 Weibull 0.095 0.057 Reject 

09:00:00 22.311 4 Beta 0.152 0.079 Reject 

09:30:00 32.113 4 Beta 0.218 0.102 Reject 

10:00:00 35.534 3 Beta 0.281 0.119 Reject 

10:30:00 37.256 3 Beta 0.328 0.141 Reject 

11:00:00 29.511 4 Beta 0.376 0.142 Reject 

11:30:00 22.566 4 Beta 0.405 0.146 Reject 

12:00:00 26.389 4 Beta 0.413 0.147 Reject 

12:30:00 31.019 4 Beta 0.411 0.154 Reject 

13:00:00 46.616 4 Normal 0.399 0.159 Reject 

13:30:00 31.762 4 Beta 0.384 0.151 Reject 

14:00:00 13.196 3 Beta 0.353 0.151 Reject 

14:30:00 47.782 4 Beta 0.318 0.142 Reject 

15:00:00 22.810 4 Beta 0.277 0.126 Reject 

15:30:00 19.243 3 Beta 0.206 0.107 Reject 

16:00:00 10.620 3 Beta 0.142 0.082 Accept 

16:30:00 9.627 5 Exponential 0.078 0.057 Accept 

17:00:00 7.466 1 Exponential 0.027 0.032 Reject 

17:30:00 5.570 4 Beta 0.004 0.006 Accept 

 

 

The results presented in table 5.6 show that a large portion of the half-hourly models for the Low 

Demand season are rejected. The Chi-squared test and RMSE results given in tables B.2 and B.4 

indicate that the Beta probability distribution performs the best, i.e. has the lowest Chi-squared test 

values, of all considered probability distributions for the majority of the half-hourly intervals from 

09:30:00 to 18:00:00. The Chi-squared test results given in table B.2 indicate that all the probability 

distributions have high resultant DOF and high Chi-squared test values for these half-hour intervals 

and are therefore conclusively rejected. Furthermore, table 5.6 indicates that only seven half-hour 

intervals are successfully modelled for the daily half-hourly generated energy during the Low 

Demand season.  
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Table 5.6: Best performing conclusive models for daily half-hourly profile during the Low Demand season. 

Period 

Start 

Chi-squared 

value  

DOF 

 

Probability 

distribution 

Average 

energy[p.u.] 

Standard deviation 

of energy [p.u.] 

Model 

conclusion 

05:30:00 25.700 1 Beta 0.003 0.007 Reject 

06:00:00 27.192 4 Beta 0.014 0.023 Reject 

06:30:00 11.674 5 Beta 0.040 0.052 Accept 

07:00:00 3.679 5 Beta 0.089 0.086 Accept 

07:30:00 5.184 5 Beta 0.160 0.116 Accept 

08:00:00 11.476 5 Beta 0.241 0.139 Accept 

08:30:00 2.459 6 Beta 0.322 0.154 Accept 

09:00:00 12.205 6 Beta 0.400 0.164 Accept 

09:30:00 42.590 7 Beta 0.469 0.171 Reject 

10:00:00 56.123 7 Beta 0.528 0.178 Reject 

10:30:00 58.626 5 Beta 0.573 0.181 Reject 

11:00:00 72.423 5 Beta 0.610 0.184 Reject 

11:30:00 68.621 5 Beta 0.627 0.191 Reject 

12:00:00 39.772 5 Beta 0.635 0.196 Reject 

12:30:00 45.641 6 Beta 0.638 0.201 Reject 

13:00:00 67.064 6 Beta 0.629 0.202 Reject 

13:30:00 68.869 7 Beta 0.623 0.198 Reject 

14:00:00 56.673 7 Beta 0.589 0.200 Reject 

14:30:00 46.177 6 Beta 0.544 0.199 Reject 

15:00:00 35.640 6 Beta 0.497 0.194 Reject 

15:30:00 55.578 6 Beta 0.437 0.186 Reject 

16:00:00 22.008 5 Beta 0.366 0.177 Reject 

16:30:00 42.200 5 Beta 0.288 0.163 Reject 

17:00:00 33.404 5 Beta 0.206 0.143 Reject 

17:30:00 33.912 5 Beta 0.127 0.113 Reject 

18:00:00 21.406 4 Beta 0.064 0.075 Reject 

18:30:00 10.370 5 Beta 0.022 0.033 Accept 

19:00:00 29.990 1 Weibull 0.003 0.006 Reject 

 

5.4.1.2 MegaFlex Tariff Structure 

This analysis uses the historical generation data of the entire analysis timeline for each respective 

tariff day of the MegaFlex tariff structure, i.e. the historical generation data of every day of the week 

is analysed with respect to the tariff periods of each distinct tariff day of the MegaFlex tariff structure. 

The MegaFlex tariff structure is discussed in section 2.6.  

 

5.4.1.2.1 Statistical Parameters 

Tables 5.7 and 5.8 summarise the statistical parameters of the daily generated energy for the 

MegaFlex tariff structure during the High and Low Demand season. The maximum, average and 

standard deviation of the daily generated energy is normalised to the rated energy output of each tariff 

period. 
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Table 5.7: Statistical parameters of daily generated energy for MegaFlex during the High Demand season. 

Tariff day 

 

Tariff period 

 

Maximum energy 

[p.u.] 

Average energy 

[p.u.] 

Standard deviation 

of energy [p.u.] 

Weekdays Evening Off-peak 0 0 0 

Morning Standard 0 0 0 

Morning Peak 0.210 0.087 0.045 

Afternoon Standard 0.489 0.275 0.099 

Evening Peak 4.960E-04 2.703E-05 8.922E-05 

Evening Standard 0 0 0 

Saturday Evening Off-peak 0 0 0 

Morning Standard 0.358 0.191 0.075 

Afternoon Off-peak 0.457 0.251 0.097 

Evening Standard 0 2.703E-05 8.922E-05 

Sunday Off-peak 0.188 0.103 0.038 

 

 

Table 5.8: Statistical parameters of daily generated energy for MegaFlex during the Low Demand season. 

Tariff day 

 

Tariff period 

 

Maximum energy 

[p.u.] 

Average energy 

[p.u.] 

Standard deviation 

of energy [p.u.] 

Weekdays Evening Off-peak 0 0 0 

Morning Standard 0.156 0.027 0.037 

Morning Peak 0.534 0.280 0.131 

Afternoon Standard 0.752 0.495 0.161 

Evening Peak 0.095 0.022 0.028 

Evening Standard 0 0 0 

Saturday Evening Off-peak 0.016 0.003 0.004 

Morning Standard 0.662 0.402 0.142 

Afternoon Off-peak 0.724 0.465 0.162 

Evening Standard 0.095 0.022 0.028 

Sunday Off-peak 0.319 0.203 0.070 

 

Figures 5.6 and 5.7 present the maximum and average daily generated energy from tables 5.7 and 5.8 

in graphic format. Figure 5.6 clearly shows the effect of the late sunrise and early sunset times of the 

winter months during the High Demand season. The results indicate that no energy is generated 

during the weekday evening off-peak, morning standard or evening peak tariff periods. Furthermore, 

the results show that no energy is generated during the Saturday evening off-peak and standard tariff 

periods. This is not optimal as peak and standard tariff period charges are the most expensive and 

therefore offer the greatest opportunity for monetary savings. 

 

The results shown in figure 5.7 indicate that energy is generated in the majority of the tariff periods 

during the Low Demand season. A large amount of energy is generated during the morning peak, 

morning standard and afternoon standard tariff periods. Therefore, the MegaFlex tariff structure offers 

a great opportunity for monetary savings during the Low Demand season.  
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Figures 5.6 and 5.7 indicate that the greatest amount of energy is generated in the morning peak and 

afternoon standard tariff periods for weekdays. The average daily generated energy in these tariff 

periods vary between about 9% and 28% of the rated tariff period energy for the High demand season, 

while varying between about 28% and 50% for the Low Demand season. Furthermore, the results 

show that the greatest amount of energy is generated in the morning standard and afternoon off-peak 

tariff periods for Saturdays. The average daily generated energy in these tariff periods vary between 

about 19% and 25% of the rated tariff period energy for the High demand season, while varying 

between about 40% and 47% for the Low Demand season. 

 

 

Figure 5.6: Daily average and maximum generated energy for MegaFlex during the High Demand season. 

 

 

 

Figure 5.7: Daily average and maximum generated energy for MegaFlex during Low Demand season. 
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Note that Sundays consist of only off-peak tariff periods, therefore the generated energy is normalised 

to the entire 48 half-hour intervals of the day. This gives rise to a significantly smaller per unit value 

for this tariff period as it is normalised to several half-hour intervals where no energy is being 

generated. Figures 5.6 and 5.7 indicate that the average daily generated energy for Sundays is about 

10% of the rated tariff period energy for the High Demand season, while being about 20% for the 

Low Demand season. 

 

Figure 5.8 presents the COV of the generated energy for each MegaFlex tariff period during the High 

and Low Demand seasons. The COV is determined by dividing each tariff period’s standard deviation 

by the average daily generated energy. The results show that the variation in generated energy is at its 

largest during early morning and late afternoon hours and at its lowest during mid-day hours.  The 

generated energy varies significantly for morning and evening tariff periods during the Low Demand 

season with COV well over a 100% and evens out towards mid-day tariff periods with COV between 

30% and 40%.  

 

 

Figure 5.8: Coefficients of variation of generated energy for MegaFlex during High and Low Demand seasons. 
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Tables 5.9 and 5.10 summarise the best performing conclusive models, i.e. the probability 

distributions with the lowest Chi-squared test value and resultant DOF of at least one, for each tariff 

period during the High and Low Demand seasons together with the model conclusions.  

 

From the results presented in table 5.9 it can be seen that only one of the weekday tariff periods is 

successfully modelled for MegaFlex during the High Demand season. Likewise, only one of the 

Saturday tariff periods is successfully modelled for MegaFlex during the High Demand season. These 

tariff periods represent times where little energy is generated during the High Demand season. The 

Chi-squared test and RMSE results given in tables B.5 and B.7 indicate that the best performing 

probability distributions, i.e. probability distributions with the lowest Chi-squared test results, are 

rejected for the remainder of tariff periods. Therefore, all considered probability distributions are 

conclusively rejected, i.e. do not fit historical generation data, for these tariff periods. 

 

Table 5.9: Best performing conclusive models for MegaFlex during High Demand season. 

Tariff 

day 

 

Tariff period Chi-

squared 

value 

 

DOF 

 

 

 

Probability 

distribution 

 

 

Average 

energy 

[p.u.] 

 

Standard 

deviation 

of energy 

[p.u.] 

Model 

conclusion 

 

 

Weekday Evening Off-peak 0 < 1 Inconclusive 0 0  No Energy 

Morning Standard 0 < 1 Inconclusive 0 0  No Energy 

Morning Peak 16.105 3 Normal 0.087 0.045 Reject 

Afternoon Standard 28.477 3 Gamma 0.275 0.099 Reject 

Evening Peak 0.146 1 Beta 2.70E-05 8.922E-05 Accept 

Evening Standard 0 < 1 Inconclusive 0 0  No Energy 

Saturday Evening Off-peak 0 < 1 Inconclusive 0 0  No Energy 

Morning Standard 37.644 4 Normal 0.191 0.075 Reject 

Afternoon Off-

peak 28.812 4 Beta 0.251 0.097 Reject 

Evening Standard 0.146 1 Beta 2.70E-05 8.922E-05 Accept 

Sunday Off-peak 32.935 4 Normal 0.103 0.038 Reject 

 

 

The results in table 5.10 show that about half of the tariff periods are successfully modelled for 

MegaFlex during the Low Demand season. The weekday morning and evening peak tariff periods are 

successfully modelled for the High demand season. However, the weekday afternoon standard tariff 

period is rejected while it represents the time period with the greatest amount of generated energy. 

The results also indicate that all Saturday tariff periods are successfully modelled with the exception 

of the evening off-peak. However, little energy is generated in this tariff period. Furthermore, the 

Sunday off-peak tariff period cannot be modelled for the Low demand season which is undesirable as 

this tariff period represents the entire day.  
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Table 5.10: Best performing conclusive models for MegaFlex during Low Demand season. 

Tariff 

day 

 

Tariff period Chi-

squared 

value 

 

DOF 

 

 

 

Probability 

distribution 

 

 

Average 

energy 

[p.u.] 

 

Standard 

deviation 

of energy 

[p.u.] 

Model 

conclusion 

 

 

Weekday Evening Off-peak 26.546 1 Beta 1.99E-04 4.440E-04 Reject 

Morning Standard 20.802 6 Beta 0.027 0.037 Reject 

Morning Peak 4.573 6 Beta 0.280 0.131 Accept 

Afternoon Standard 31.460 6 Beta 0.495 0.161 Reject 

Evening Peak 14.757 5 Beta 0.022 0.028 Accept 

Evening Standard 0 < 1 Inconclusive 0 0 No Energy 

Saturday Evening Off-peak 20.831 7 Beta 0.003 0.004 Reject 

Morning Standard 10.449 7 Beta 0.402 0.142 Accept 

Afternoon Off-

peak 17.753 7 Beta 0.465 0.162 Accept 

Evening Standard 14.757 5 Beta 0.022 0.028 Accept 

Sunday Off-peak 22.693 7 Beta 0.203 0.070 Reject 

 

 

5.4.1.3 HomeFlex Tariff Structure 

5.4.1.3.1 Statistical Parameters 

Tables 5.11 and 5.12 summarise the statistical parameters of the daily generated energy for the 

HomeFlex tariff during High and Low Demand. The maximum, average and standard deviation of the 

daily generated energy is normalised to the rated energy output of each tariff period.  

 

Table 5.11: Statistical parameters of generated energy for HomeFlex during High Demand season. 

Tariff period 

 

Maximum energy 

[p.u.] 

Average energy 

[p.u.] 

Standard Deviation of 

energy[p.u.] 

Evening Off-peak 0 0 0 

Morning Peak 0.210 0.087 0.045 

Afternoon Off-peak  0.489 0.275 0.099 

Evening Peak 4.960E-04 2.703E-05 8.922E-05 

 

Table 5.12: Statistical parameters of generated energy for HomeFlex during Low Demand season. 

Tariff period 

 

Maximum energy 

[p.u.] 

Average energy 

[p.u.] 

Standard Deviation of 

energy[p.u.] 

Evening Off-peak 0.016 0.003 0.004 

Morning Peak 0.534 0.280 0.131 

Afternoon Off-peak  0.752 0.495 0.161 

Evening Peak 0.095 0.022 0.028 
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Figures 5.9 and 5.10 present the maximum and average daily generated energy from tables 5.11 and 

5.12 in graphic format.  

 

The results indicate that the greatest amount of energy is generated in the morning peak and afternoon 

off-peak tariff periods. The average daily generated energy in these tariff periods vary between about 

9% and 28% of the rated tariff period energy for the High demand season ,while varying between 

about 28% and 50% for the Low Demand season 

 

 

 

Figure 5.9: Daily average and maximum generated energy for HomeFlex during High Demand season. 

 

 

 

Figure 5.10: Daily average and maximum generated energy for HomeFlex during Low Demand season. 
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Figure 5.11 presents the COV of the generated energy for each HomeFlex tariff period during the 

High and Low Demand seasons. The COV is a normalised measure of variation and is determined by 

dividing each tariff period’s standard deviation by the average daily generated energy. 

 

The results show that the variation in generated energy is at its largest during early morning and late 

afternoon hours and at its lowest during mid-day hours.  The generated energy varies significantly for 

morning and evening tariff periods during the Low Demand season with COV well over a 100% and 

evens out towards mid-day tariff periods with COV between 30% and 40%.  

 

 

Figure 5.11: Coefficients of variation of generated energy for HomeFlex during High and Low Demand seasons. 

 

5.4.1.3.2 Statistical Model 

Tables B.9 and B.10 in appendix B summarise the results of the Chi-squared test for the HomeFlex 

tariff during the High and Low Demand seasons. The Chi-squared test results for each distinct tariff 

period are given with respect to all hypothesised probability distributions. Each probability 

distribution’s chi-squared results are given as a value and a number of bins, with the number of bins 

denoted by NB.  

 

Tables 5.13 and 5.14 summarise the best performing conclusive models, i.e. the probability 

distributions with the lowest Chi-squared test value and resultant DOF of at least one,  for each tariff 

period during the High and Low Demand seasons. Chi-squared values for each probability 

distribution are provided together with the degrees of freedom denoted by DOF. 
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From results presented in table 5.13 it can be seen that none of the tariff periods can be modelled for 

HomeFlex during the High Demand season. The Chi-squared test and RMSE results given in tables 

B.9 and B.11 indicate that the best performing probability distributions are rejected for both tariff 

periods. Therefore, all considered probability distributions are conclusively rejected, i.e. do not fit 

historical generation data, for these two tariff periods. 

 

Table 5.13: Best performing conclusive models for HomeFlex during High Demand season 

Tariff period 

 

Chi-squared 

value 

DOF 

 

Probability 

distribution 

Average 

[p.u.] 

Standard 

Deviation [p.u.] 

Model 

conclusion 

Evening Off-peak  0 < 1 Inconclusive 0 0 No Energy 

Morning Peak 16.105 3 Normal 0.087 0.045 Reject 

Afternoon Off-peak 28.477 4 Beta 0.275 0.099 Reject 

Evening Peak 0 < 1 Inconclusive 0 0 No Energy 

 

 

Table 5.14 shows that only the morning and evening peak tariff periods are successfully modelled for 

HomeFlex during the Low Demand season. Furthermore, the afternoon off-peak tariff period is 

rejected while it represents a time period with the greatest amount of daily generated energy. The Chi-

squared test and RMSE results given in tables B.10 and B.12 indicate that the Beta probability 

distribution performs the best of all the considered distributions during the Low Demand season. 

However, the Beta distribution is rejected and therefore all considered probability distributions are 

rejected as models for the evening off-peak and afternoon off-peak tariff periods.  

 

Table 5.14: Best performing conclusive models for HomeFlex during Low Demand season. 

Tariff period 

Chi-squared 

value DOF 

Probability 

distribution 

Average 

[p.u.] 

Standard 

Deviation [p.u.] 

Model 

conclusion 

Evening Off-peak  20.831 7 Beta 0.003 0.004 Reject 

Morning Peak 4.573 6 Beta 0.280 0.131 Accept 

Afternoon Off-peak 31.460 6 Beta 0.495 0.161 Reject 

Evening Peak 14.757 5 Beta 0.022 0.028 Accept 

 

 

5.4.2 Monthly Analysis 

This analysis is conducted with respect to the monthly intervals of a year from the start of February 

2013 to end of June 2014. The results of the summer month February and the winter month June are 

presented. The statistical parameters, Chi-squared test values and RMSEs for all calendar months of 

the year are provided in Appendix C.  
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5.4.2.1 Daily Half-hourly Generation Profile  

During the analysis timeline a total of 56 days fall in the February month interval and a total of 60 

days fall in the June month interval. All night time half-hourly intervals are excluded from the 

presented results. 

 

5.4.2.1.1 Statistical Parameters 

Tables 5.15 and 5.16 summarise the statistical parameters of the daily half-hourly generated energy 

during the calendar months February and June. The maximum, average and standard deviation of the 

daily generated energy is normalised to the rated energy output of 254.04 kWh per half-hour interval. 

 

Table 5.15: Statistical parameters of daily generated energy for half-hourly profile during February. 

Period start Maximum energy [p.u.] Average energy [p.u.] Standard Deviation of energy[p.u.] 

06:00:00 0.017 0.005 0.005 

06:30:00 0.076 0.032 0.016 

07:00:00 0.159 0.093 0.032 

07:30:00 0.266 0.185 0.051 

08:00:00 0.388 0.284 0.076 

08:30:00 0.484 0.380 0.087 

09:00:00 0.571 0.464 0.104 

09:30:00 0.648 0.533 0.118 

10:00:00 0.736 0.608 0.114 

10:30:00 0.771 0.656 0.128 

11:00:00 0.816 0.707 0.105 

11:30:00 0.909 0.735 0.098 

12:00:00 0.862 0.744 0.123 

12:30:00 0.882 0.755 0.135 

13:00:00 0.906 0.754 0.142 

13:30:00 0.882 0.756 0.122 

14:00:00 0.844 0.732 0.133 

14:30:00 0.813 0.690 0.132 

15:00:00 0.760 0.660 0.113 

15:30:00 0.750 0.605 0.114 

16:00:00 0.627 0.536 0.089 

16:30:00 0.589 0.454 0.097 

17:00:00 0.477 0.359 0.085 

17:30:00 0.370 0.253 0.074 

18:00:00 0.230 0.153 0.051 

18:30:00 0.124 0.049 0.030 

19:00:00 0.041 0.007 0.006 
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Table 5.16: Statistical parameters of daily generated energy for half-hourly profile during June. 

Period start Maximum [p.u.] Average [p.u.] Standard Deviation [p.u.] 

07:30:00 0.022 0.006 0.005 

08:00:00 0.152 0.035 0.022 

08:30:00 0.194 0.079 0.040 

09:00:00 0.246 0.132 0.063 

09:30:00 0.336 0.194 0.092 

10:00:00 0.419 0.251 0.115 

10:30:00 0.468 0.292 0.138 

11:00:00 0.574 0.335 0.141 

11:30:00 0.546 0.375 0.144 

12:00:00 0.569 0.383 0.147 

12:30:00 0.576 0.386 0.151 

13:00:00 0.565 0.368 0.156 

13:30:00 0.495 0.351 0.148 

14:00:00 0.514 0.326 0.137 

14:30:00 0.422 0.285 0.121 

15:00:00 0.359 0.243 0.102 

15:30:00 0.270 0.169 0.082 

16:00:00 0.190 0.110 0.058 

16:30:00 0.104 0.049 0.030 

17:00:00 0.018 0.007 0.004 

 

Figures 5.12 and 5.13 present the maximum and average daily generated energy from tables 5.15 and 

5.16 in graphic format. The results indicate a greater availability of solar power during the calendar 

month of February than that of June. This is to be expected, as February is a summer month and June 

is a winter month.  

 

Figures 5.12 and 5.13 clearly show the effect of different sunrise and sunset times for winter and 

summer months. The results indicate a one and a half hour shift in the solar for mornings and a two 

hour shift for evenings. This lack of energy availability for morning and evening hours during the 

calendar month June is a drawback of solar power, as these hours coincide with times of peak energy 

demand. 

 

The average generated energy shown in figures 5.12 and 5.13 indicate a considerable difference in the 

solar plant’s performance during the calendar months February and June. This significant difference 

between February and June is attributed to the path taken by the earth around the sun, weather 

conditions and the fact that the solar panels have fixed orientations and tilts. As mentioned before, 

fixed orientations and tilts of solar panels are inefficient and lead to decrease generation of energy 

during certain times of the year. 
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The solar plant performs significantly better during February than during June. The results indicated 

that the average generated energy during February is greater than the maximum generated energy 

during June. Furthermore, the peak average daily generated energy reaches a per unit value of about 

76% during February, while reaching a per unit value of only about 39% during June. 

 

 

Figure 5.12: Daily average and maximum generated energy for half-hourly profile during February. 

 

 

Figure 5.13: Daily average and maximum generated energy for half-hourly profile during June. 

 

Figure 5.14 presents the Coefficients Of Variation (COV) of the generated energy for each half-hour 

interval during the calendar months February and June. The COV is a normalised measure of 

variation and is determined by dividing each half-hour interval’s standard deviation by the average 

daily generated energy. 
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Figure 5.14 indicates that the generated energy varies more during June than during February. The 

results also show that the variation in generated energy is at its largest during early morning and late 

afternoon hours and at its lowest during mid-day hours. The COV for mid-day half-hour intervals are 

about 19% during February and about 40% during June.  

 

From figures 5.5 and 5.14 it can be seen that the COV for mid-day half-hour intervals during the 

calendar month February are significantly lower than that of the Low Demand season. It can also be 

seen that the COV for mid-day half-hour intervals are roughly the same for the calendar month June 

and the High Demand season. The difference in the COV during February and the Low Demand 

season is attributed to the difference in the time intervals associated with each. The Low Demand 

season consists of nine different calendar months while February only represents one calendar month. 

Similarly, the results of the June month and the High demand season are roughly the same as the Low 

Demand season consists of only three winter months.  

 

 

Figure 5.14: Coefficients of variation of half-hourly generated energy during February and June. 

 

5.4.2.1.2 Statistical Model 

Tables C.14 and C.18 in appendix C summarise the results of the Chi-squared test for the half-hourly 

profile during the calendar months of February and June. The Chi-squared test results for each distinct 

half-hour interval are given with respect to all hypothesised probability distributions. Each probability 

distribution’s chi-squared results are given as a value and a number of bins, with the number of bins 

denoted by NB.  
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hour interval during the calendar months of February and June. The model conclusions, i.e. whether 

the hypothesised probability distribution fits the observed historical generation data (accepted) or not 

(rejected), are also provided. Chi-squared values for the best performing conclusive models are 

provided together with the determined degrees of freedom denoted by DOF.  

 

The results presented in table 5.17 show that a large portion of the half-hourly models for the calendar 

month February are rejected. The Chi-squared test and RMSE results given in tables C.14 and C.26 

indicate that the Beta and Logistic probability distributions performs the best in the half-hourly 

intervals from 08:30:00 to 17:00:00. However, these probability distributions results in DOF of less 

than one and are therefore inconclusive. Similarly, all the other probability distributions except the 

Exponential distribution have DOF less than one. Therefore, the Exponential distribution is chosen as 

the best performing conclusive model. Conducting the analysis on more historical generation data as it 

becomes available will result in higher numbers of bins and therefore DOF.  With sufficient DOF the 

Beta and Logistic distributions can be conclusively accepted or rejected for these half-hour intervals. 

Table 5.17 Best performing conclusive models for daily half-hourly profile during February. 

Period 

start 

Chi-squared 

value 

DOF 

 

Probability 

distribution 

Average 

[p.u.] 

Standard Deviation 

[p.u.] 

Model 

conclusion  

06:00:00 1.909 2 Beta 0.005 0.005 Accept 

06:30:00 0.750 2 Weibull 0.032 0.016 Accept 

07:00:00 2.361 2 Normal 0.093 0.032 Accept 

07:30:00 2.812 1 Logistic 0.185 0.051 Accept 

08:00:00 4.001 1 Beta 0.284 0.076 Accept 

08:30:00 265.291 4 Exponential 0.380 0.087 Reject 

09:00:00 312.278 4 Exponential 0.464 0.104 Reject 

09:30:00 406.985 4 Exponential 0.533 0.118 Reject 

10:00:00 339.354 5 Exponential 0.608 0.114 Reject 

10:30:00 495.013 5 Exponential 0.656 0.128 Reject 

11:00:00 488.954 6 Exponential 0.707 0.105 Reject 

11:30:00 20.122 1 Weibull 0.735 0.098 Reject 

12:00:00 479.603 4 Exponential 0.744 0.123 Reject 

12:30:00 472.446 4 Exponential 0.755 0.135 Reject 

13:00:00 346.619 4 Exponential 0.754 0.142 Reject 

13:30:00 407.383 4 Exponential 0.756 0.122 Reject 

14:00:00 535.681 4 Exponential 0.732 0.133 Reject 

14:30:00 458.463 4 Exponential 0.690 0.132 Reject 

15:00:00 587.226 4 Exponential 0.660 0.113 Reject 

15:30:00 304.592 4 Exponential 0.605 0.114 Reject 

16:00:00 401.531 4 Exponential 0.536 0.089 Reject 

16:30:00 265.403 4 Exponential 0.454 0.097 Reject 

17:00:00 6.859 1 Beta 0.359 0.085 Reject 

17:30:00 7.309 2 Beta 0.253 0.074 Accept 

18:00:00 2.082 2 Beta 0.153 0.051 Accept 

18:30:00 0.919 2 Weibull 0.049 0.030 Accept 

19:00:00 0 < 1 Inconclusive 0.007 0.006 Inconclusive 
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Table 5.18 indicates that that a large portion of the half-hourly models for the calendar month June are 

successfully modelled and accepted. The results show that the 11:30:00 half-hour interval is rejected 

for the calendar month June. However, the resultant Chi-squared value of this half-hour interval is 

very near to the limit of 9.21 as can be seen in the percentage points table provided in appendix A. 

Conducting the analysis on more historical generation data as it becomes available may result in 

improved Chi-squared test results and the acceptance of the Beta probability distribution for the 

11:30:00 half-hour interval. 

 

Table 5.18: Best performing conclusive models for daily half-hourly profile during June. 

Period 

start 

Chi-squared 

value 

DOF 

 

Probability 

distribution 

Average 

[p.u.] 

Standard Deviation 

[p.u.] 

Model 

conclusion  

07:30:00 1.101 1 Logistic 0.006 0.005 Accept 

08:00:00 4.801 1 Exponential 0.035 0.022 Accept 

08:30:00 0.738 1 Beta 0.079 0.040 Accept 

09:00:00 6.086 2 Beta 0.132 0.063 Accept 

09:30:00 7.814 2 Beta 0.194 0.092 Accept 

10:00:00 5.347 1 Beta 0.251 0.115 Accept 

10:30:00 3.845 1 Beta 0.292 0.138 Accept 

11:00:00 8.212 2 Beta 0.335 0.141 Accept 

11:30:00 9.459 2 Beta 0.375 0.144 Reject 

12:00:00 3.780 2 Beta 0.383 0.147 Accept 

12:30:00 4.78 2 Beta 0.386 0.151 Accept 

13:00:00 4.430 2 Beta 0.368 0.156 Accept 

13:30:00 4.0756 1 Beta 0.351 0.148 Accept 

14:00:00 5.946 1 Beta 0.326 0.137 Accept 

14:30:00 6.454 1 Beta 0.285 0.121 Accept 

15:00:00 4.399 1 Beta 0.243 0.102 Accept 

15:30:00 1.707 1 Beta 0.169 0.082 Accept 

16:00:00 0.107 1 Beta 0.110 0.058 Accept 

16:30:00 0.959 1 Beta 0.049 0.030 Accept 

17:00:00 0.171 2 Logistic 0.007 0.004 Accept 

 

 

5.4.2.2 HomeFlex Tariff Structure 

5.4.2.2.1 Statistical Parameters 

Tables 5.19 and 5.20 summarise the statistical parameters of the daily generated energy for the 

HomeFlex tariff during the calendar months of February and June. The maximum, average and 

standard deviation of the daily generated energy is normalised to the rated energy output of each tariff 

period. 
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Table 5.19: Statistical parameters of daily generated energy for HomeFlex during February. 

Tariff period 

 

Maximum energy 

[p.u.] 

Average energy 

[p.u.] 

Standard Deviation of energy 

[p.u.] 

Evening off-peak 0.004 0.002 0.001 

Morning peak 0.414 0.323 0.071 

Afternoon off-peak 0.710 0.625 0.091 

Evening peak 0.090 0.053 0.020 

 

Table 5.20: Statistical parameters of daily generated energy for HomeFlex during June. 

Tariff period 

 

Maximum energy 

[p.u.] 

Average energy 

[p.u.] 

Standard Deviation of energy 

[p.u.] 

Evening off-peak 0 0 0 

Morning peak 0.145 0.074 0.034 

Afternoon off-peak 0.347 0.246 0.092 

Evening peak 0 0 0 

 

Figures 5.15 and 5.16 present the maximum and average daily generated energy from tables 5.19 and 

5.20 in graphic format.  

 

Figures 5.15 and 5.10 show that average daily generated energy for the morning peak and afternoon 

off-peak tariff periods is more during the calendar month of February than for the Low Demand 

season. Furthermore, figures 5.16 and 5.9 indicate that average daily generated energy for the 

morning peak and afternoon off peak tariff periods is roughly the same for the calendar month of June 

and the High Demand season.  

 

 

Figure 5.15: Daily average and maximum generated energy for HomeFlex during February. 
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Figure 5.16: Daily average and maximum generated energy for HomeFlex during June. 

 

Figure 5.17 presents the COV of the half-hourly generated energy for the calendar months February 

and June. From figures 5.17 and 5.11 it can be seen that the COV is significantly lower during June 

than during the High Demand season. It can also be seen that the COV is significantly lower during 

February than during the Low Demand season. The difference in the COV for the monthly and 

seasonal analysis is attributed to the difference in the time intervals associated with each. The seasons 

consist of several different calendar months with varying weather patterns, while the monthly 

intervals consist of a single month. 

 

 

 

Figure 5.17: Coefficients of variation of generated energy for HomeFlex February and June. 
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5.4.2.2.2 Statistical Model 

Table C.38 in appendix C summarise the results of the Chi-squared test for the HomeFlex tariff during 

the calendar months of February and June.  Tables 5.21 and 5.22 summarise the best performing 

conclusive models, i.e. the probability distributions with the lowest Chi-squared test value and 

resultant DOF of at least one, for each tariff period during the calendar months of February and June.  

 

From results presented in table 5.21 it can be seen that only the evening off-peak and evening peak 

tariff periods are successfully modelled for the HomeFlex tariff during February. The Chi-squared test 

results given in table C.38 indicate that the Logistic probability distribution performs the best in the 

morning peak and afternoon off-peak tariff periods. However, the Logistic probability distribution 

results in DOF of less than one for these tariff periods and is therefore inconclusive. Similarly, all the 

other probability distributions except the Exponential distribution have DOF less than one. Therefore, 

the Exponential distribution is chosen as the best performing conclusive model for the morning peak 

and afternoon off-peak tariff periods. 

 

Table 5.21: Best performing conclusive models for HomeFlex during February. 

Period Start 

 

 

 

Chi-

squared 

value 

 

DOF 

 

 

 

Probability 

distribution 

 

 

Average energy 

[p.u.] 

 

 

Standard 

Deviation of 

energy 

[p.u.] 

Model 

conclusion  

 

 

Evening off-peak 1.529 2 Weibull 0.002 0.001 Accept 

Morning peak 270.358 4 Exponential 0.323 0.071 Reject 

Afternoon off-peak 543.093 4 Exponential 0.625 0.091 Reject 

Evening peak 0.992 2 Beta 0.053 0.020 Accept 

 

 

Table 5.22 indicates that only the afternoon off-peak tariff period is successfully modelled for the 

HomeFlex tariff during June. The Chi-squared test results given in table C.38 indicate that the Beta 

distribution performs the best for the morning peak tariff period. However, the Beta distribution is 

rejected and therefore all probability distributions are rejected for the morning peak tariff period. 

 

Table 5.22: Best performing conclusive models for HomeFlex during June. 

Period Start 

 

 

 

Chi-

squared 

value 

 

DOF 

 

 

 

Probability 

distribution 

 

 

Average energy 

[p.u.] 

 

 

Standard 

Deviation of 

energy 

[p.u.] 

Model 

conclusion 

 

 

Evening off-peak 0 < 1 Inconclusive 0 0  No energy 

Morning peak 14.009 2 Beta 0.074 0.034 Reject 

Afternoon off-peak 2.017 1 Beta 0.246 0.092 Accept 

Evening peak 0 < 1 Inconclusive 0 0  No Energy 
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5.4.3 Daily Energy Generation Forecast 

5.4.3.1 Overview 

This section deals with the forecasted daily generated energy for the half-hourly generation profile 

and the HomeFlex tariff structure during the calendar month June. The forecasted energy generation 

values are compared to the historical generation data for the analysis timeline to evaluate the 

forecasting models’ performance. 

 

The daily generated energy is forecasted by using the accepted statistical models, i.e. probability 

distributions that fit the historical generation data together with statistical parameters, derived from 

the historical generation data. The statistical models are used to predict the energy generated, in each 

half-hour interval and tariff period, with a specified exceedance probability.  

 

The Exceedance Probability (EP) is the likelihood that a designated value will be exceeded [69]. The 

90% EP value for a solar plant’s energy output is the specific energy output value that will be 

exceeded 90% of the time, i.e. there is a 90% likelihood that the solar plant’s output will be greater 

than the 90% EP value.  

 

The EP values are determined from the Cumulative Distribution Functions (CDFs) of the accepted 

statistical models. The CDF of a probability distribution is used with derived statistical parameters to 

determine the value that results in a specified EP. For example, the 90% EP value occurs when the 

probability distribution’s CDF is equal to 10% (0.1) [69].  

 

5.4.3.2 Daily Half-hourly Generation Profile 

Table 5.23 summarises the daily generated energy forecast models and EP values for the half-hourly 

profile during the calendar month of June. The 90 %, 80 % and 70 % EP values of the solar plant’s 

energy output are provided and are normalised to the rated energy output of 254.04 kWh per half-hour 

interval. The historical generation data for June consists of 60 measurements for the analysis time-

line. 
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Table 5.23: Daily generated energy forecast for half-hourly profile during June. 

Period 

Start 

Forecasting models Forecasted total daily energy [p.u.] 

Probability 

distribution 

Average  energy 

[p.u.] 

Standard Deviation 

of energy[p.u.] 

90% EP 

value 

80% EP 

value 

70% EP 

value 

07:30:00 Logistic 0.006 0.005 0.001 0.003 0.004 

08:00:00 Exponential 0.035 0.022 0.004 0.008 0.013 

08:30:00 Beta 0.079 0.040 0.027 0.041 0.054 

09:00:00 Beta 0.132 0.063 0.044 0.070 0.093 

09:30:00 Beta 0.194 0.092 0.060 0.102 0.138 

10:00:00 Beta 0.251 0.115 0.080 0.135 0.183 

10:30:00 Beta 0.292 0.138 0.080 0.149 0.211 

11:00:00 Beta 0.335 0.141 0.133 0.199 0.254 

11:30:00 Beta 0.375 0.144 Rejected Rejected Rejected 

12:00:00 Beta 0.383 0.147 0.157 0.241 0.309 

12:30:00 Beta 0.386 0.151 0.155 0.241 0.309 

13:00:00 Beta 0.368 0.156 0.128 0.213 0.284 

13:30:00 Beta 0.351 0.148 0.104 0.203 0.287 

14:00:00 Beta 0.326 0.137 0.120 0.191 0.251 

14:30:00 Beta 0.285 0.121 0.092 0.163 0.223 

15:00:00 Beta 0.243 0.102 0.082 0.142 0.192 

15:30:00 Beta 0.169 0.082 0.041 0.081 0.120 

16:00:00 Beta 0.110 0.058 0.024 0.049 0.073 

16:30:00 Beta 0.049 0.030 0.009 0.018 0.028 

17:00:00 Logistic 0.007 0.004 0.002 0.004 0.005 

 

To evaluate the performance of the statistical models, the predicted EP values are compared to the 

historical generation data for the analysis timeline. The percentage of the total historical half-hour 

intervals that have a measured amount of generated energy above the forecasted EP value is 

determined for each interval, i.e. the proportion of the historical measurements above the predicted EP 

values. An accurate model for a given half-hour interval and EP value will result in a percentage of 

historical half-hour intervals above the forecasted EP value of at least the EP, i.e. a 90 % EP value 

must be exceeded by 90% of the historical half-hour intervals to be accurate.  

 

Table 5.24 summarises the results for the percentage of the total historical half-hour intervals that 

have a measured amount of generated energy above the forecasted EP value while figure 5.18 

presents the results in graphic format.  

 

The results indicate that a large portion of historical half-hourly generated energy is slightly below the 

forecasted EP values. However, the historical generation data is limited to only two years. As more 

generation data becomes available the results will improve and provide a more precise indication of 

forecasting accuracy.  
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Table 5.24: Model performance for half-hourly forecasted energy generation for the calendar month of June. 

Period 

start 

Probability 

distribution 

Percentage of historical half-hour intervals with measured generated 

energy above EP value [%] 

90% EP value 80% EP value 70% EP value 

07:30:00 Logistic 91.67 80 55 

08:00:00 Exponential 93.33 90 85 

08:30:00 Beta 85 76.67 68.33 

09:00:00 Beta 86.67 80 66.67 

09:30:00 Beta 86.67 80 70 

10:00:00 Beta 85 76.67 70 

10:30:00 Beta 88.33 78.33 71.67 

11:00:00 Beta 86.67 80 73.33 

11:30:00 Beta Rejected Rejected Rejected 

12:00:00 Beta 88.33 78.33 68.33 

12:30:00 Beta 88.33 78.33 70 

13:00:00 Beta 85 80 70 

13:30:00 Beta 88.33 76.67 70 

14:00:00 Beta 88.33 78.33 68.33 

14:30:00 Beta 86.67 76.67 70 

15:00:00 Beta 91.67 76.67 68.33 

15:30:00 Beta 91.67 80 65 

16:00:00 Beta 91.67 80 65 

16:30:00 Beta 90 85 68.33 

17:00:00 Logistic 85 80 68.33 

 

 

 

Figure 5.18: Model performance for half-hourly forecasted energy generation for the calendar month of June. 

 

5.4.3.3 Home Flex Tariff Structure 

Table 5.25 summarises the daily generated energy forecast models and EP values for the HomeFlex 

tariff structure during the calendar month of June. The 90 %, 80 % and 70 % EP values of the solar 

plant’s energy output are provided and are normalised to the rated energy output of each tariff period.  
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From table 5.25 it can be seen that only the afternoon off-peak tariff period can be predicted. This 

tariff period presents the time period with the greatest amount of daily generated energy during the 

calendar month June.   

 

Table 5.25: Daily generated energy forecast during for HomeFlex during June. 

Tariff Period Forecasting models Forecasted daily energy [p.u.] 

Probability 

distribution 

Average 

energy [p.u.] 

Standard Deviation 

of energy [p.u.] 

90% EP 

values 

80% EP 

values 

70% EP 

values 

Evening off-peak Inconclusive 0 0 0 0 0 

Morning peak Beta 0.074 0.034 Reject Reject Reject 

Afternoon off-peak Beta 0.246 0.092 0.100 0.159 0.205 

Evening peak Inconclusive 0 0 0   0 

 

To evaluate the performance of the statistical models, the predicted EP values are compared to the 

historical generation data for the analysis timeline. The percentage of the total historical tariff periods 

that have a measured amount of generated energy above the forecasted EP value is determined for 

each period.  

 

Table 5.26 summarises the results for the percentage of the total historical tariff periods that have a 

measured amount of generated energy above the forecasted EP value. The results indicate that a large 

portion of historical half-hourly generated energy is slightly below the forecasted EP values.  

 

Table 5.26: Model validation for forecasted energy generation for HomeFlex during the calendar month of June 

Tariff Period Probability 

distribution 

Percentage of historical measurements above forecasted 

energy [%] 

90% Certainty 80% Certainty 70% Certainty 

Evening off-peak Inconclusive 0 0 0 

Morning peak Beta Reject Reject Reject 

Afternoon off-peak Beta 90 76.67 68.33 

Evening peak Inconclusive 0 0 0 

 

5.4.4 Financial Analysis 

The case study results show that not all the TOU structure intervals and periods could be successfully 

modelled with the limited historical generation data available. Therefore, complete models and 

forecasts for an entire year could not be derived using the available data. However, the historical 

generation data can be used to calculate the average monetary and annual savings. The generation 

data stored on the database could be analysed against the TOU tariff structures stored on the database 
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to yield the total generated energy in each respective TOU period. This could be used to calculate the 

total monetary savings for an analysis timeline using the respective tariff rates of each TOU period. 

 

5.4.4.1 Average Monetary Savings for Generated Energy 

The solar plant’s average monetary savings from generated energy is calculated using TOU based 

generation statistics and tariff period charges. The average savings from generated energy can be 

compared to REFIT rates to determine whether it is more profitable to consume or sell generated 

energy. Table 5.27 summarises the total generated energy and monetary savings for the entire analysis 

timeline. Note that this analysis distinguishes between the days that energy was generated historically, 

i.e. only energy generated on weekdays is used for weekday calculations and so on. From the total 

generated energy and monetary savings given in table 5.27 it can be calculated that the average 

savings for the generated energy is 66.04 cents/kWh. Therefore, selling generated energy back to the utility 

is only profitable at REFIT rates greater than 66.04 cents/kWh.  

 

Table 5.27: Analysis timeline generated energy and monetary savings. 

Tariff season Tariff day Tariff period Tariff period charge 

[cents/kWh] 

Generated 

energy [kWh] 

Monetary 

savings [ZAR] 

High Demand Weekdays Evening Off-peak 54.72 0 0 

Morning Standard 82.08 0 0 

Morning Peak 298.68 10810.552 32288.96 

Afternoon Standard 82.08 95695.412 78546.79 

Evening Peak 298.68 2.109 6.30 

Evening Standard 82.08 0 0 

Saturday Evening Off-peak 54.72 0 0 

Morning Standard 82.08 8839.604 7255.55 

Afternoon Off-peak 54.72 13059.859 7146.35 

Evening Standard 82.08 0.56 0.46 

Sunday Off-peak 54.72 24246.007 13267.42 

Low Demand Weekdays Evening Off-peak 49.02 233.256 114.34 

Morning Standard 59.28 3878.972 2299.45 

Morning Peak 99.18 120503.741 119515.61 

Afternoon Standard 59.28 566842.345 336024.14 

Evening Peak 99.18 6202.788 6151.93 

Evening Standard 59.28 0 0 

Saturday Evening Off-peak 49.02 789.917 387.22 

Morning Standard 59.28 55864.729 33116.61 

Afternoon Off-peak 49.02 79369.429 38906.89 

Evening Standard 59.28 1296.882 768.79 

Sunday Off-peak 49.02 138174.438 67733.11 

 

Total  

1125810.600 743529.92 
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5.4.4.2 Average Annual Savings 

The solar plant’s average annual savings from generated energy is calculated using TOU based 

generation statistics and tariff period charges. The average annual savings from generated energy can 

be used to calculate the payback period of the initial investment on a solar plant.  

 

Table 5.28 summarises the estimated average generated energy and the monetary savings for the year 

2014. The average generated energy per half-hour interval is determined for each tariff period from 

the analysis timeline and used to estimate the generated energy for the year 2014. The generated 

energy is estimated by multiplying the average generated energy per half-hour interval by the total 

amount of half-hour intervals in each tariff period for the year 2014. The payback period of the 

investment is determined by dividing the monetary value of the initial investment by the annual 

monetary savings. 

 

Table 5.28: Average annual savings from generated energy. 

Season Day Period Average half-

hourly 

energy 

[kWh] 

Tariff period 

charge 

[cents/kWh] 

Generated 

energy 

[kWh] 

Monetary 

savings 

[ZAR] 

High Demand Weekdays Evening Off-peak 0 54.72 0 0 

Morning Standard 0 82.08 0 0 

Morning Peak 22.115 298.68 8624.804 25760.56 

Afternoon Standard 69.909 82.08 72705.515 59676.69 

Evening Peak 0.007 298.68 1.785 5.33 

Evening Standard 0 82.08 0 0 

Saturday Evening Off-peak 0 54.72 0 0 

Morning Standard 48.577 82.08 6314.976 5183.33 

Afternoon Off-peak 63.789 54.72 9951.088 5445.24 

Evening Standard 0.007 82.08 0.357 0.29 

Sunday Off-peak 26.068 54.72 17517.684 9585.68 

Low Demand Weekdays Evening Off-peak 0.051 49.02 158.889 77.89 

Morning Standard 6.854 59.28 2686.790 1592.73 

Morning Peak 71.244 99.18 83783.454 83096.43 

Afternoon Standard 125.728 59.28 394282.124 233730.44 

Evening Peak 5.649 99.18 4428.879 4392.56 

Evening Standard 0 59.28 0 0 

Saturday Evening Off-peak 0.660 49.02 566.232 277.57 

Morning Standard 102.133 59.28 39831.962 23612.39 

Afternoon Off-peak 118.148 49.02 55293.332 27104.79 

Evening Standard 5.649 59.28 881.257 522.41 

Sunday Off-peak 51.588 49.02 94096.557 46126.13 

     
Total 

     

791125.684 526190.46 
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6 Conclusions and Recommendations 

6.1 Overview 

Solar power is attracting considerable attention due to its potential of contributing to sustainable 

future energy supplies [4] [5]. However, solar power has the drawbacks of being site dependant and 

intermittent in nature. For this reason, energy producers require accurate forecasting systems for the 

energy output of their solar plants [10]. Modern prediction systems generally have a forecast horizon 

of one to two days [5]. However, energy producers are interested in a range of prediction horizons, 

including long term horizons, to manage power plants and forecast their energy production [14].  

 

Solar power forecasting methodologies are classified into either a numerical prediction approach or a 

statistical approach [14]. The numerical approach incorporates predicted weather variables, such as 

solar radiation and temperature, together with PV power output models. The statistical approach of 

forecasting energy output is based on measured historical generation data and requires less input data 

and computational efforts [14]. 

 

Time Of Use (TOU) based energy generation statistics and forecasting models, i.e. with respect to the 

time when energy is being generated or consumed, are important in the context of small solar plants 

operating in conjunction with a local load. Generated energy forecasts and statistics are particularly 

useful in determining the return on investment of solar plants and conducting a financial analysis on 

renewable energy feed-in tariffs and TOU tariff structures. 

 

This project aims to develop a long term energy generation forecasting methodology based on 

measured historical datasets. The methodology is implemented in a software application and a case 

study is conducted to answer the following key questions: 

 Is it possible to forecast the energy output of a PV system in the TOU context using a 

statistical approach? 

 Is it possible to forecast the energy output with respect to TOU tariff structures, tariff 

seasons, months of the year, days of the week and hours of the day? 

 Is it possible to model the energy output of a PV system using probability distributions which 

are commonly used to model solar radiation? 

 Which of the probability distributions are suitable and which perform the best? 
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The literature review focuses on the development and software implementation of a methodology to 

forecast and model the long term energy output of a solar plant. This includes software design and 

modelling processes together with database concepts. Furthermore, the review includes statistical 

inference methods such as hypothesis testing and goodness of fit testing. The mathematical 

representation and numerical implementation of six different probability distributions are considered 

and investigated in depth. The literature review concludes in a brief overview of solar radiation 

modelling together with PV system configuration and efficiency. 

 

The project consisted of the development and software implementation of a long term forecasting 

methodology and the main components presented in figure 1.1. This is achieved by accomplishing the 

following objectives: 

 Investigate the feasibility of a long term TOU based forecasting methodology based on 

historical generation data: It is found that the forecasting methodology can successfully model 

the energy output of a solar plant within the TOU context.  

 Design and implement a relational database: A relational database structure is developed 

which successfully incorporates all generation data and TOU structure data.  

 Design and implement a software application: A long term forecasting software application 

with database connectivity is successfully designed and implemented.  

 Investigate South African TOU tariff structures: Two TOU tariff structures are investigated 

and implemented in this project. 

 Utilize statistical theory and methods in the long term forecasting methodology: Statistical 

methods such as parameter estimation, frequency distributions and goodness of fit tests are 

successfully investigated and implemented in the software application. 

 Investigate probability distributions commonly used to model solar radiation: Six probability 

distributions are investigated and successfully implemented in the forecasting software 

application. 

 Conduct a case study for an operational solar plant to achieve the following: 

 Investigate and substantiate the energy output in the TOU context: The generated 

energy of an operational solar plant is metered and logged from the start of February 

2013 to the end of June 2014. Generation data is imported into the developed 

database and analysed using the forecasting software application. 

 To test and evaluate implemented forecasting methodology and software application: 

Results show that the implemented forecasting methodology and software application 

can successfully model the energy output of a solar plant when using monthly 

generation datasets. However, limited generation data results in a large number of 

inconclusive models. 
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6.2 Results and Conclusions 

6.2.1 Design and Development 

6.2.1.1 Relational Database 

A custom relational database topology is developed to store historical generation data along with all 

relevant TOU structures. Managing and accessing all stored generation and TOU structure data with a 

software application requires a fixed referencing system across the entire database, i.e. storing 

historical generation data as profiles and profile sets.  

 

The developed relational database structure successfully incorporates historical generation data and 

TOU structures. The database structure enables the software application to seamlessly create custom 

queries and access all user specified generation data as needed.  

 

6.2.1.2 Profile Analysis Application 

The developed software application is required to implement the long term forecasting methodology. 

This is achieved by satisfying the following requirements: 

 Connect to a user selected relational database: A robust database connection is implemented 

which successfully accesses and manipulates historical generation data on a user selected 

database. 

 Implement statistical methods to derive models from historical generation data stored on a 

user selected database: Statistical methods of deriving models from historical generation data 

are successfully implemented and utilised in the developed software application. 

 Incorporate TOU structures: TOU structures are implemented in the relational database and 

are successfully utilised by the software application to analyse the generation data in the TOU 

context. 

 Implement an intuitive graphical user interface: The implemented graphical user interface 

allows the user to create database connections, select the desired historical generation data 

from a selected database and utilise any of the analysis modules presented in section 4.3. 

 Implement a modular and extensible system design: The implemented software architecture 

presented in figure 4.3 proves to be a time and code efficient approach to a modular and 

extensible system design.  
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6.2.2 Long Term Forecasting Methodology 

The long term forecasting methodology investigated in this project is based on drawing statistical 

inferences from historical generation data. The methodology involves using parameter estimation, 

hypothesis testing and goodness of fit tests to determine whether proposed probability distributions fit 

historical generation data. Two goodness of fit tests are implemented, namely the Chi-squared test and 

Root Mean Square Error test (RMSE). The Chi-squared test is regarded as the primary goodness of fit 

test criterion. The RMSE test is used as a supplementary indication of model performance. Statistical 

inference takes place in the TOU context, i.e. the specific time of day as well as months and seasons 

of the year during which the energy is generated. This includes TOU tariff structures and half-hourly 

generation profiles. 

 

The implemented long term forecasting methodology proves to be successful and feasible. Historical 

generation data is successfully modelled and used to forecast the energy output of the considered solar 

plant within the TOU context. However, a considerable number of models are inconclusive, i.e. 

degrees of freedom less than one in the Chi-squared test, due to the limited timespan of the historical 

data. Furthermore, TOU based historical generation statistics are successfully used to conduct a 

financial analysis on the monetary savings from generated energy of the solar plant.  

 

6.3 Case Study and Analysis  

The overall objective of the case study is to investigate and substantiate the energy output of a solar 

plant in the TOU context and to test the software implemented forecasting methodology. The case 

study is conducted as a seasonal and monthly analysis for an operational solar plant from the start of 

February 2013 to the end of June 2014. 

 

The seasonal analysis is conducted for a half-hourly generation profile, the MegaFlex tariff and the 

HomeFlex tariff structure with respect to the High Demand and Low Demand seasons.  The seasonal 

analysis results indicate that the variation in daily generated energy is at its smallest during early 

morning and late afternoon hours and at its largest during mid-day hours. A large portion of the 

seasonal forecasting models do not fit the historical generation data, i.e. have high Chi-squared values 

together with degrees of freedom above one, and are therefore conclusively rejected. Furthermore, the 

Beta probability distribution performs the best of all considered distributions for the largest portion of 

the seasonal models. 
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The monthly assessment is conducted for a half-hourly generation profile and the HomeFlex tariff 

structure with respect to the summer month February and the winter month June. The largest portion 

of the half-hourly models for the calendar month of June is accepted using the Beta probability 

distribution. Only one half-hour interval is rejected, however the resultant Chi-squared value is very 

close to the acceptable percentage point value.  

 

The monthly analysis results also indicate that the Beta and Logistic probability distributions perform 

the best of all considered probability distributions during the calendar month February. However, the 

Chi-squared test results for these probability distributions are inconclusive, i.e. have DOF less than 

one, for a large portion of the models. Therefore, the Exponential distribution is chosen as the best 

performing conclusive model, i.e. the model with the lowest Chi-squared test value and DOF of one 

and above. However, the Exponential probability distribution does not fit the generation data and is 

therefore rejected.  

 

From the case study it is concluded that it is possible to forecast the energy output of a PV system in 

the TOU context. Results indicate that forecasting the generated energy using seasonal data sets leads 

to the rejection of a large portion of models. However, the generated energy can be successfully 

forecasted in the TOU context using monthly datasets. The case study results also indicate that it is 

possible to model the energy output of a solar plant with probability distributions commonly used to 

model solar radiation.  

 

6.4 Recommendations 

Recommendations for the future development of the long term forecasting methodology are made 

with respect to the following areas: 

 Storing data on a relational database. 

 Software application. 

 Historical generation data analysis timespan. 

 Alternative approach to deriving models from historical generation data. 

 

In the case study the energy output of the solar plant was measured and logged for every single half-

hour interval of the day.  Therefore, a substantial number of measurements are taken during night-

time hours when no solar power is available, i.e. measurements with a measured energy output of 

zero. This takes up unnecessary space in the relation database and increases the computational time of 

an analysis. It is therefore recommended to incorporate the functionality of ignoring measurements 

with a measured energy outputs of zero when importing data into the database.  
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The implemented software application is capable of analysing historical generation data against only 

one probability distribution at a time. This means that the user is required run the same analysis for 

each different probability distribution, which is a time consuming process. It is therefore 

recommended to incorporate the functionality of allowing the user to run an analysis against all 

selected probability distributions simultaneously.   

 

For the case study, only two years’ worth of historical data is available for the calendar months of 

February to June. The half-hourly analysis results for the calendar month of February indicate that the 

Beta and Logistic distributions perform the best of all the considered probability distributions, but are 

inconclusive due to the limited timespan of historical generation data. It is therefore recommended to 

conduct the analysis on more historical generation data as it becomes available. This will result in 

higher numbers of bins and therefore DOF. With sufficient DOF the Beta and Logistic distributions 

can be conclusively accepted or rejected as a model for the calendar month February. 

 

It is recommended to implement an empirical approach to creating cumulative distribution functions 

from historical generation data. The empirical cumulative distribution functions can be used to 

calculate the exceedance probability values without the generation data fitting a specific probability 

distribution. This is useful for the cases when the historical generation data cannot be modelled using 

a known probability distribution.  
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Appendix A.  

A.1 Chi-squared Distribution Percentage Points Table 

The percentage points of the Chi-squared distribution are summarised in the table below [35]. 

 

Table A.1: Percentage points of Chi-squared distribution. 

Degree of 

Freedom 

Percentage Points  Chi-squared Distribution 

10 % 5 % 2.5 % 1% 

1 2.71 3.84 5.02 6.63 

2 4.61 5.99 7.38 9.21 

3 6.25 7.81 9.35 11.34 

4 7.78 9.49 11.14 13.28 

5 9.24 11.07 12.83 15.09 

6 10.65 12.59 14.45 16.81 

7 12.02 14.07 16.01 18.48 

8 13.36 15.51 17.53 20.09 

9 14.68 16.92 19.02 21.67 

10 15.99 18.31 20.48 23.21 

11 17.28 19.68 21.92 24.72 

12 18.55 21.03 23.34 26.22 

13 19.81 22.36 24.74 27.69 

14 21.06 23.68 26.12 29.14 

15 22.31 25 27.49 30.58 

16 23.54 26.30 28.85 32.00 

17 24.77 27.59 30.19 33.41 

18 25.99 28.87 31.53 34.81 

19 27.20 30.14 32.58 36.19 

20 28.41 31.41 34.17 37.57 

21 29.62 32.67 35.48 38.93 

22 30.81 33.92 36.78 40.29 

23 32.01 35.17 38.08 41.64 

24 33.20 36.42 39.36 42.98 

25 34.28 37.65 40.65 44.31 
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Appendix B.  

This appendix presents tables containing the goodness of fit test values for the conducted case study. 

The Chi-squared test values and Root Mean Square Errors (RMSE) are presented for the High 

Demand and Low Demand seasons with respect to the following time of use structures: 

 Half-hourly generation profile. 

 MegaFlex tariff structure. 

 HomeFlex tariff Structure. 

 

B.1 Half-hourly Generation Profile 

B.1.1 Chi-squared Test Values 

Tables B.1 to B.2 summarise the Chi-squared test values for the half-hourly generation profile. The 

Chi-squared test values are denoted by Value, and the numbers of bins are denoted by NB. 

 

Table B.1: Chi-squared test values for half-hourly generation profile during High Demand. 

Period Start Probability Distribution 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

07:00:00 28.490 2 13.787 2 24.789 2 5.411 2 0 1 1.159 6 

07:30:00 8.461 1 1.618 2 6.696 1 1.625 2 0 1 0.569 2 

08:00:00 5.498 2 0.190 2 4.219 2 0.152 2 4.587 3 0.061 2 

08:30:00 30.722 6 16.816 7 32.815 6 18.389 7 38.538 7 21.768 7 

09:00:00 22.953 7 25.931 7 28.440 7 42.803 7 82.527 7 22.311 7 

09:30:00 34.736 7 47.379 7 42.005 7 98.159 7 133.210 7 32.113 7 

10:00:00 42.550 6 46.818 6 49.953 6 90.509 6 144.155 6 35.534 6 

10:30:00 49.684 6 63.241 6 56.894 6 96.758 5 214.936 6 37.256 6 

11:00:00 46.236 7 60.130 6 51.351 7 35.545 4 228.372 7 29.511 7 

11:30:00 53.916 6 48.657 5 52.741 6 59.400 4 215.865 7 22.566 7 

12:00:00 42.940 6 36.574 5 44.677 6 52.386 4 251.503 7 26.389 7 

12:30:00 51.468 7 34.454 5 44.581 6 41.883 4 238.706 7 31.019 7 

13:00:00 46.616 7 58.242 7 47.952 7 64.332 5 231.394 7 47.980 7 

13:30:00 46.654 7 72.281 6 54.366 7 34.821 4 234.515 7 31.762 7 

14:00:00 20.192 6 23.346 6 27.969 6 51.774 6 111.911 6 13.196 6 

14:30:00 52.963 7 58.887 7 61.191 7 93.260 7 177.428 7 47.782 7 

15:00:00 23.473 7 27.352 7 28.555 7 47.911 7 130.591 7 22.810 7 

15:30:00 21.175 6 25.353 6 27.835 6 40.347 6 88.538 6 19.243 6 

16:00:00 20.556 6 16.755 6 29.826 6 25.963 6 43.111 6 10.620 6 

16:30:00 22.003 4 11.647 6 21.276 4 11.484 6 9.627 7 10.537 5 

17:00:00 37.750 3 9.110 4 27.109 3 9.134 4 7.466 3 9.393 6 

17:30:00 11.885 2 3.436 3 9.833 2 8.430 4 10.933 2 5.572 7 
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Table B.2: Chi-squared test values for half-hourly generation profile during Low Demand. 

Period Start Probability Distribution 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

05:30:00 61.092 1 63.661 4 52.268 1 33.606 4 0 1 25.7 4 

06:00:00 104.381 2 72.060 6 79.081 2 53.896 6 166.642 2 27.192 7 

06:30:00 552.028 8 90.957 8 535.878 8 80.167 8 156.925 8 11.674 8 

07:00:00 294.970 8 69.826 8 333.126 8 71.499 8 64.800 8 3.679 8 

07:30:00 139.913 8 75.169 8 200.263 8 100.00 8 73.072 8 5.184 8 

08:00:00 65.988 8 55.987 8 112.423 8 96.645 8 145.990 8 11.476 8 

08:30:00 32.663 9 49.829 9 66.163 9 180.82 9 248.551 9 2.459 9 

09:00:00 39.594 9 75.927 9 64.358 9 221.15 6 386.976 9 12.205 9 

09:30:00 64.307 10 96.317 8 74.302 10 220.31 5 547.777 10 42.59 10 

10:00:00 93.695 9 70.041 6 113.068 10 293.53 4 756.626 10 56.123 10 

10:30:00 83.222 7 69.114 6 102.729 8 134.88 3 897.520 10 58.626 8 

11:00:00 93.417 6 97.500 5 110.219 7 178.82 3 1038.04 11 72.423 8 

11:30:00 75.872 6 95.153 5 86.192 7 144.55 3 1000.79 10 68.621 8 

12:00:00 103.203 6 103.45 5 111.414 8 171.36 3 1002.39 10 39.772 8 

12:30:00 119.050 6 132.02 5 124.153 8 147.41 3 1003.37 10 45.641 9 

13:00:00 88.354 7 103.71 6 154.089 9 352.3 4 966.456 10 67.064 9 

13:30:00 110.836 7 137.11 5 118.294 8 137.67 3 1027.76 10 68.869 10 

14:00:00 141.695 9 137.07 6 155.473 10 358.37 4 896.998 10 56.673 10 

14:30:00 136.031 9 151.17 7 157.741 9 284.91 4 784.688 9 46.177 9 

15:00:00 103.392 9 151.15 9 132.387 9 261.38 5 618.460 9 35.64 9 

15:30:00 103.668 9 148.96 9 135.718 9 357.23 7 527.223 9 55.578 9 

16:00:00 99.705 8 131.57 8 150.919 8 300.81 8 369.496 8 22.008 8 

16:30:00 111.919 8 132.54 8 168.850 8 223.26 8 248.166 8 42.20 8 

17:00:00 171.449 8 135.30 8 242.923 8 180.9 8 148.041 8 33.404 8 

17:30:00 290.796 8 128.58 8 353.024 8 138.30 8 118.081 8 33.912 8 

18:00:00 528.911 7 148.75 7 548.363 7 137.51 7 182.231 7 21.406 7 

18:30:00 508.760 6 86.091 8 548.982 7 69.691 8 166.642 5 10.37 8 

19:00:00 46.497 1 29.990 4 38.584 1 0.062 3 0 1 1.007 3 
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B.1.2 Root Mean Square Errors 

Tables B.3 to B.4 summarise the RMSE for the half-hourly generation profile.  

 

Table B.3: Root mean square errors for half-hourly generation profile during High Demand. 

Period start Probability Distribution 

Gaussian Weibull Logistic Gamma Exponential Beta 

07:00:00 27.908 4.870 26.673 3.728 0.000 0.662 

07:30:00 28.175 2.177 25.430 2.263 0.016 1.561 

08:00:00 7.164 0.751 6.319 0.702 7.492 1.092 

08:30:00 9.088 5.213 8.775 5.977 9.232 6.108 

09:00:00 6.919 8.414 7.270 10.231 13.061 7.730 

09:30:00 8.973 10.414 9.395 12.286 14.967 9.355 

10:00:00 10.953 12.195 10.786 14.571 17.079 11.179 

10:30:00 13.736 14.644 14.627 19.208 19.951 12.458 

11:00:00 10.630 13.433 11.208 11.980 17.585 9.186 

11:30:00 13.208 13.911 13.303 14.355 17.400 7.758 

12:00:00 14.107 13.907 14.640 13.489 18.452 9.514 

12:30:00 12.212 13.392 14.297 11.837 17.785 9.979 

13:00:00 12.571 13.258 12.852 17.089 19.241 12.540 

13:30:00 11.923 15.409 12.767 12.140 17.933 10.185 

14:00:00 8.071 9.048 8.947 11.666 14.776 6.970 

14:30:00 12.246 13.003 12.738 14.794 16.112 12.036 

15:00:00 8.537 9.342 9.121 11.152 15.426 8.487 

15:30:00 9.165 10.352 10.041 12.244 14.959 8.920 

16:00:00 6.724 8.062 7.611 10.190 11.407 6.287 

16:30:00 11.116 2.627 11.730 2.844 5.875 6.211 

17:00:00 21.333 2.927 17.796 3.255 3.243 4.640 

17:30:00 21.437 2.295 19.180 3.356 6.222 1.779 
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Table B.4: Root mean square errors for half-hourly generation profile during Low Demand. 

Period start Probability Distribution 

Gaussian Weibull Logistic Gamma Exponential Beta 

05:30:00 127.385 20.387 119.551 16.892 0.000 14.068 

06:00:00 61.969 12.569 56.746 10.582 26.657 7.706 

06:30:00 60.997 14.474 60.978 14.058 27.587 5.152 

07:00:00 39.396 15.319 41.002 15.569 13.643 5.070 

07:30:00 25.040 17.974 28.639 20.998 13.796 5.560 

08:00:00 17.613 15.655 21.998 19.567 25.525 8.519 

08:30:00 10.736 12.788 14.876 18.219 29.023 3.498 

09:00:00 11.651 13.051 15.124 26.604 35.028 6.229 

09:30:00 13.864 17.971 15.887 30.714 36.366 10.481 

10:00:00 19.202 23.168 19.491 50.000 40.558 14.824 

10:30:00 27.166 23.849 27.101 68.184 43.584 20.286 

11:00:00 25.669 32.109 29.243 69.439 41.776 23.239 

11:30:00 23.839 32.519 26.811 64.392 45.156 23.007 

12:00:00 29.594 37.284 27.953 66.223 44.768 18.124 

12:30:00 30.998 43.324 26.872 66.718 44.435 17.032 

13:00:00 26.079 26.169 29.386 61.726 44.101 21.627 

13:30:00 26.742 43.975 27.355 62.571 44.857 19.337 

14:00:00 25.436 30.197 24.882 63.319 42.183 17.811 

14:30:00 25.608 29.108 27.766 64.349 43.778 18.235 

15:00:00 22.571 23.568 25.294 42.355 39.975 15.203 

15:30:00 21.871 23.619 24.552 33.955 37.768 17.697 

16:00:00 23.108 25.003 27.416 30.133 34.918 12.502 

16:30:00 23.352 25.635 27.753 30.452 28.878 15.449 

17:00:00 27.623 26.863 31.539 30.744 21.349 12.978 

17:30:00 40.265 26.727 42.982 27.823 22.023 11.767 

18:00:00 64.737 25.448 65.845 24.880 34.447 9.424 

18:30:00 80.937 13.481 75.524 13.696 27.311 4.568 

19:00:00 113.915 15.310 105.350 0.613 0.001 3.820 

 

 

B.2 MegaFlex Tariff Structure 

B.2.1 Chi-squared Test Values 

Tables B.5 to B.6 summarise the Chi-squared test values for the MegaFlex tariff structure. The Chi-

squared test values are denoted by Value, and the numbers of bins are denoted by NB. 
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Table B.5: Chi-squared test results for MegaFlex during High Demand. 

Day of Week Tariff Period Chi-squared test results 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

Weekdays Evening Off-peak 0 1 0 0 0 0 0 0 0 0 0 0 

Morning Standard 0 0 0 0 0 0 0 0 0 0 0 0 

Morning Peak 16.105 6 23.839 7 17.949 6 30.32223 7 79.141 7 28.321 7 

Afternoon Standard 28.800 7 31.441 7 29.301 7 28.4772 6 209.360 7 28.716 7 

Evening Peak 28.601 1 0.012 1 25.785 1 4.835 2 1.408E-14 1 0.146 4 

Evening Standard 0 0 0 0 0 0 0 0 0 0 0 0 

Saturday Evening Off-peak 0 0 0 0 0 0 0 0 0 0 0 0 

Morning Standard 37.644 7 45.959 7 37.957 7 56.22632 6 213.069 7 39.295 7 

Afternoon Off-peak 35.416 7 36.923 7 42.116 7 68.73606 7 171.035 7 28.812 7 

Evening Standard 28.601 1 0.012 1 25.785 1 4.835 2 1.408E-14 1 0.146 4 

Sunday Off-peak 32.935 7 36.204 7 33.717 7 41.70055 6 223.087 7 33.126 7 

 

Table B.6: Chi-squared test results for MegaFlex during Low Demand. 

Day of Week Tariff Period Chi-squared test results 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

Weekdays Evening Off-peak 62.276 1 66.187 4 53.401 1 20.22027 3 5.447E-12 1 26.546 4 

Morning Standard 184.342 4 84.285 9 266.876 5 72.16775 9 135.772 5 20.802 9 

Morning Peak 25.317 9 29.892 9 55.022 9 123.0391 9 226.854 9 4.573 9 

Afternoon Standard 63.755 8 49.790 6 105.962 9 176.9818 4 716.862 10 31.460 9 

Evening Peak 625.434 8 123.370 8 622.810 8 110.5304 8 185.673 8 14.757 8 

Evening Standard 0 0 0 0 0 0 0 0 0 0 0 0 

Saturday Evening Off-peak 103.552 3 93.040 9 147.215 4 79.73743 9 94.389 4 20.831 10 

Morning Standard 27.797 10 23.006 8 47.376 10 135.4237 5 479.777 10 10.449 10 

Afternoon Off-peak 63.981 10 59.986 7 92.221 10 145.4412 4 594.539 10 17.753 10 

Evening Standard 625.434 8 123.370 8 622.810 8 110.5304 8 185.673 8 14.757 8 

Sunday Off-peak 58.946 10 47.414 7 86.358 10 136.1726 4 602.025 10 22.693 10 
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B.2.2 Root Mean Square Errors 

Tables B.7 to B.8 summarise the RMSE for the MegaFlex tariff structure.  

 

Table B.7: Root mean square errors for MegaFlex during High Demand. 

Day of week Tariff period Root Mean Square Error 

Normal Weibull Logistic Gamma Exponential Beta 

Weekdays Evening Off-peak 0 0 0 0 0 0 

Morning Standard 0 0 0 0 0 0 

Morning Peak 6.209 7.588 5.912 9.107 12.289 7.692 

Afternoon Standard 9.818 10.191 9.777 9.459 17.028 9.986 

Evening Peak 46.477 1.221 44.657 3.030 1.310E-06 0.336 

Evening Standard 0 0 0 0 0 0 

Saturday Evening Off-peak 0 0 0 0 0 0 

Morning Standard 10.735 11.489 10.668 12.485 18.101 11.190 

Afternoon Off-peak 9.962 10.290 10.587 12.296 14.625 9.372 

Evening Standard 46.477 1.221 44.657 3.030 1.310E-06 0.336 

Sunday Off-peak 10.484 10.891 10.582 11.564 17.672 10.607 

 

Table B.8: Root mean square errors for MegaFlex during Low Demand. 

Day of week Tariff period Root Mean Square Error 

Normal Weibull Logistic Gamma Exponential Beta 

Weekdays Evening Off-peak 128.374 20.100 120.607 12.704 4.627E-05 13.984 

Morning Standard 75.084 12.920 71.562 12.637 22.194 5.201 

Morning Peak 9.929 9.548 14.201 14.005 29.950 4.756 

Afternoon Standard 21.398 23.373 25.436 51.920 39.878 14.754 

Evening Peak 63.892 21.558 64.411 20.935 34.033 6.825 

Evening Standard 0 0 0 0 0 0.000 

Saturday Evening Off-peak 59.415 12.003 66.683 11.898 20.801 5.079 

Morning Standard 10.519 11.886 13.999 25.297 35.597 5.623 

Afternoon Off-peak 16.955 19.986 20.083 48.415 36.764 9.375 

Evening Standard 63.892 21.558 64.411 20.935 34.033 6.825 

Sunday Off-peak 16.781 20.852 20.133 48.996 37.612 10.398 

 

B.3 HomeFlex Tariff Structure 

B.3.1 Chi-squared Test Values 

Tables B.9 to B.10 summarise the Chi-squared test values for the HomeFlex tariff structure. The Chi-

squared test values are denoted by Value, and the numbers of bins are denoted by NB. 
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Table B.9: Chi-squared test values for HomeFlex during High Demand. 

Tariff period  Chi-squared Test Results 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

Evening Off-peak  0 1 0 0 0 0 0 0 0 0 0 0 

Morning Peak 16.105 6 23.839 7 17.949 6 30.322 7 79.141 7 28.321 7 

Afternoon Off-peak 28.800 7 31.441 7 29.301 7 28.477 6 209.360 7 28.716 7 

Evening Peak 28.601 1 0.012 1 25.785 1 4.835 2 0 1 0.146 4 

 

 

Table B.10: Chi-squared test values for HomeFlex during Low Demand. 

Tariff period  Chi-squared test results Low Demand 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

Evening Off-peak  103.552 3 93.040 9 147.215 4 79.737 9 94.389 4 20.831 10 

Morning Peak 25.317 9 29.892 9 55.022 9 123.039 9 226.854 9 4.573 9 

Afternoon Off-peak 63.755 8 49.790 6 105.962 9 176.982 4 716.862 10 31.460 9 

Evening Peak 625.434 8 123.370 8 622.810 8 110.530 8 185.673 8 14.757 8 
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B.3.2 Root Mean Square Errors 

Tables B.11 to B.12 summarise the RMSE for the HomeFlex tariff structure.  

 

Table B.11: Root mean square errors for HomeFlex during High Demand. 

Tariff period Root Mean Square Error  

Normal Weibull Logistic Gamma Exponential Beta 

Evening Off-peak  0 0 0 0 0 0 

Morning Peak 6.209 7.588 5.912 9.107 12.289 7.692 

Afternoon Off-peak 9.818 10.191 9.777 9.459 17.028 9.986 

Evening Peak 46.477 1.221 44.657 3.030 0.000 0.336 

 

 

Table B.12: Root mean square errors for HomeFlex during Low Demand. 

Period Root Mean Square Error 

Normal Weibull Logistic Gamma Exponential Beta 

Evening Off-peak  59.415 12.003 66.683 11.898 20.801 5.079 

Morning Peak 9.929 9.548 14.201 14.005 29.950 4.756 

Afternoon Off-peak 21.398 23.373 25.436 51.920 39.878 14.754 

Evening Peak 63.892 21.558 64.411 20.935 34.033 6.825 
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Appendix C.  

This appendix presents tables containing the goodness of fit test values for the conducted case study. 

The Chi-squared test values and Root Mean Square Errors (RMSE) are presented for the calendar 

months of a year.  

 

C.1 Half-hourly Generation Profile 

C.1.1 Statistical Parameters 

Tables C.1 to C.12 summarise the half-hourly generation profile statistical parameters for the months 

of January to December. All night-time and null half-hourly intervals are excluded. 

 

Table C.1: Statistical parameters for half-hourly generation profile during January. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
05:00:00 0.032 0.021 0.001 0.004 

05:30:00 34.564 3.484 1.115 0.921 

06:00:00 232.986 17.963 7.516 3.143 

06:30:00 660.542 31.553 21.308 6.389 

07:00:00 1316.69 56.019 42.474 10.640 

07:30:00 2197.992 89.686 70.903 12.651 

08:00:00 2913.595 114.684 93.987 17.413 

08:30:00 3600.815 139.78 116.155 18.238 

09:00:00 4098.906 165.849 132.223 29.828 

09:30:00 4521.14 175.111 145.843 29.540 

10:00:00 5188.579 189.671 167.374 24.366 

10:30:00 5488.319 211.663 177.043 29.223 

11:00:00 5525.552 222.767 178.244 39.474 

11:30:00 5615.129 227.743 181.133 45.889 

12:00:00 5623.333 230.538 181.398 44.546 

12:30:00 5756.89 229.766 185.706 42.609 

13:00:00 5930.566 226.853 191.309 35.721 

13:30:00 5857.345 223.368 188.947 35.507 

14:00:00 5554.778 215.611 179.186 43.029 

14:30:00 5135.526 205.85 165.662 43.654 

15:00:00 4743.197 199.332 153.006 47.440 

15:30:00 4359.11 179.651 140.616 45.827 

16:00:00 3882.688 161.75 125.248 41.966 

16:30:00 3243.117 139.17 104.617 37.314 

17:00:00 2719.059 115.389 87.712 29.560 

17:30:00 2087.74 101.302 67.346 23.482 

18:00:00 1386.616 60.841 44.730 15.946 

18:30:00 649.441 32.066 20.950 7.958 

19:00:00 104.979 7.534 3.386 1.704 

19:30:00 9.626 1.069 0.311 0.223 
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Table C.2: Statistical parameters for half-hourly generation profile during February. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
06:00:00 69.019 4.424 1.232 1.205 

06:30:00 461.27 19.375 8.237 3.990 

07:00:00 1328.672 40.429 23.726 8.126 

07:30:00 2633.159 67.617 47.021 13.065 

08:00:00 4034.06 98.537 72.037 19.310 

08:30:00 5404.671 122.849 96.512 22.173 

09:00:00 6597.232 145.137 117.808 26.327 

09:30:00 7585.176 164.718 135.450 30.097 

10:00:00 8648.65 187.097 154.440 29.050 

10:30:00 9335.242 195.99 166.701 32.507 

11:00:00 10062.59 207.379 179.689 26.575 

11:30:00 10459.54 231.033 186.778 24.828 

12:00:00 10583.84 218.911 188.997 31.293 

12:30:00 10744.23 224.023 191.861 34.205 

13:00:00 10727.05 230.134 191.555 36.069 

13:30:00 10753.59 224.001 192.028 31.093 

14:00:00 10415.87 214.319 185.998 33.694 

14:30:00 9812.465 206.416 175.223 33.512 

15:00:00 9386.831 193.115 167.622 28.822 

15:30:00 8600.168 190.41 153.574 28.922 

16:00:00 7627.057 159.265 136.197 22.553 

16:30:00 6452.275 149.755 115.219 24.569 

17:00:00 5107.331 121.105 91.202 21.618 

17:30:00 3595.768 93.899 64.210 18.706 

18:00:00 2179.132 58.392 38.913 12.872 

18:30:00 700.733 31.386 12.513 7.713 

19:00:00 104.42 10.405 1.865 1.609 

 

 

Table C.3: Statistical parameters for half-hourly generation profile during March. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
06:00:00 1.227 0.297 0.020 0.057 

06:30:00 133.253 5.811 2.149 1.568 

07:00:00 699.708 20.432 11.286 4.829 

07:30:00 1765.256 45.441 28.472 10.811 

08:00:00 3286.336 79.101 53.005 18.100 

08:30:00 4705.531 101.534 75.896 24.055 

09:00:00 6106.171 125.981 98.487 27.435 

09:30:00 7291.35 150.59 117.602 31.962 

10:00:00 8084.32 165.076 130.392 39.497 

10:30:00 8950.065 184.309 144.356 42.594 

11:00:00 9614.202 190.758 155.068 46.417 

11:30:00 9958.566 199.142 160.622 48.230 

12:00:00 10335.14 205.348 166.696 48.398 

12:30:00 10477.87 208.135 168.998 47.187 

13:00:00 10481.9 206.777 169.063 44.779 

13:30:00 10260.23 203.393 165.488 45.053 

14:00:00 9700.382 193.086 156.458 44.045 
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14:30:00 9184.652 207.312 148.140 43.780 

15:00:00 8514.979 194.591 137.338 43.634 

15:30:00 7390.51 165.652 119.202 41.696 

16:00:00 6207.638 144.073 100.123 37.792 

16:30:00 4890.325 138.869 78.876 32.894 

17:00:00 3560.089 107.777 57.421 24.848 

17:30:00 2055.671 71.235 33.156 17.730 

18:00:00 684.408 38.291 11.039 9.496 

18:30:00 85.683 6.862 1.382 1.574 

19:00:00 3.514 0.665 0.057 0.141 

 

 

Table C.4: Statistical parameters for half-hourly generation profile during April. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 06:30:00 9.605 1.365 0.160 0.287 

07:00:00 241.793 11.299 4.030 2.510 

07:30:00 934.822 29.391 15.580 6.028 

08:00:00 2032.463 63.156 33.874 11.845 

08:30:00 3397.576 81.484 56.626 17.140 

09:00:00 4785.973 107.492 79.766 22.077 

09:30:00 5933.603 130.353 98.893 25.547 

10:00:00 6843.374 146.735 114.056 28.978 

10:30:00 7636.144 160.822 127.269 27.860 

11:00:00 8363.932 172.812 139.399 28.292 

11:30:00 8479.337 180.418 141.322 33.006 

12:00:00 8700.114 194.102 145.002 33.827 

12:30:00 8749.546 190.822 145.826 34.127 

13:00:00 8478.868 186.587 141.314 35.877 

13:30:00 8351.656 178.851 139.194 32.100 

14:00:00 7984.154 174.491 133.069 32.185 

14:30:00 7013.922 166.701 116.899 34.092 

15:00:00 6194.851 146.609 103.248 29.150 

15:30:00 5220.793 132.435 87.013 29.590 

16:00:00 3915.968 108.662 65.266 25.593 

16:30:00 2705.339 81.676 45.089 20.041 

17:00:00 1469.233 54.553 24.487 12.947 

17:30:00 384.286 25.145 6.405 5.784 

18:00:00 36.483 4.404 0.608 0.946 

18:30:00 0.292 0.128 0.005 0.020 
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Table C.5: Statistical parameters for half-hourly generation profile during May. 

Period 

Start 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
07:00:00 36.882 2.845 0.595 0.776 

07:30:00 403.844 17.539 6.514 4.028 

08:00:00 1129.292 41.465 18.214 9.329 

08:30:00 1981.812 55.512 31.965 15.519 

09:00:00 3025.851 80.192 48.804 22.268 

09:30:00 4096.444 103.695 66.072 27.880 

10:00:00 5017.583 117.659 80.929 28.867 

10:30:00 5848.092 130.221 94.324 30.503 

11:00:00 6388.89 144.438 103.047 34.261 

11:30:00 6812.036 155.447 109.872 34.540 

12:00:00 7056.458 160.301 113.814 36.276 

12:30:00 7064.231 164.713 113.939 38.185 

13:00:00 6775.27 174.18 109.279 37.506 

13:30:00 6630.662 159.437 106.946 35.474 

14:00:00 6192.4 170.907 99.877 35.591 

14:30:00 5293.74 149.158 85.383 34.371 

15:00:00 4409.057 130.507 71.114 29.847 

15:30:00 3509.327 105.001 56.602 23.610 

16:00:00 2394.123 67.631 38.615 16.181 

16:30:00 1239.763 43.805 19.996 11.217 

17:00:00 362.787 21.899 5.851 4.568 

17:30:00 28.438 3.728 0.459 0.673 

18:00:00 0.008 0.008 0.000 0.001 

 

Table C.6: Statistical parameters for half-hourly generation profile during June. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
07:30:00 96.195 5.695 1.603 1.207 

08:00:00 537.241 38.528 8.954 5.604 

08:30:00 1209.843 49.217 20.164 10.222 

09:00:00 2007.521 62.614 33.459 15.913 

09:30:00 2953.949 85.383 49.232 23.276 

10:00:00 3824.609 106.509 63.743 29.285 

10:30:00 4448.867 118.791 74.148 34.991 

11:00:00 5113.274 145.873 85.221 35.865 

11:30:00 5711.417 138.707 95.190 36.496 

12:00:00 5833.128 144.637 97.219 37.436 

12:30:00 5876.79 146.453 97.947 38.250 

13:00:00 5603.316 143.442 93.389 39.542 

13:30:00 5357.16 125.68 89.286 37.668 

14:00:00 4975.346 130.678 82.922 34.847 

14:30:00 4341.123 107.319 72.352 30.801 

15:00:00 3702.292 91.128 61.705 25.849 

15:30:00 2570.505 68.7 42.842 20.946 

16:00:00 1684.146 48.192 28.069 14.670 

16:30:00 744.425 26.304 12.407 7.546 

17:00:00 109.436 4.665 1.824 1.043 
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Table C.7: Statistical parameters for half-hourly generation profile during July. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
07:00:00 0.002 0.002 0.000 0.000 

07:30:00 38.975 4.273 1.257 1.076 

08:00:00 268.455 16.586 8.660 4.293 

08:30:00 664.339 36.383 21.430 9.072 

09:00:00 1184.601 61.003 38.213 15.299 

09:30:00 1769.677 84.401 57.086 21.275 

10:00:00 2338.316 103.7 75.430 22.287 

10:30:00 2803.777 120.54 90.444 25.653 

11:00:00 3128.561 131.811 100.921 26.622 

11:30:00 3247.517 144.238 104.759 32.029 

12:00:00 3356.806 150.255 108.284 34.553 

12:30:00 3429.784 166.991 110.638 35.084 

13:00:00 3259.345 140.368 105.140 34.522 

13:30:00 3257.932 137.279 105.095 31.748 

14:00:00 2877.967 129.063 92.838 35.451 

14:30:00 2573.52 120.761 83.017 33.659 

15:00:00 2135.556 105.063 68.889 31.133 

15:30:00 1757.03 85.895 56.678 25.285 

16:00:00 1256.511 66.033 40.533 17.600 

16:30:00 715.36 41.315 23.076 10.987 

17:00:00 226.534 16.922 7.308 4.130 

17:30:00 20.577 1.779 0.664 0.447 

18:00:00 0.009 0.004 0.000 0.001 

 

Table C.8: Statistical parameters for half-hourly generation profile during August. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
07:00:00 30.3 3.262 0.977 1.116 

07:30:00 228.692 26.592 7.377 5.892 

08:00:00 598.241 57.936 19.298 12.741 

08:30:00 1062.975 63.424 34.290 20.028 

09:00:00 1506.212 89.401 48.587 26.592 

09:30:00 2030.688 112.657 65.506 31.366 

10:00:00 2546.381 131.302 82.141 34.480 

10:30:00 2918.778 145.273 94.154 40.768 

11:00:00 3412.734 156.575 110.088 38.495 

11:30:00 3581.298 167.285 115.526 39.049 

12:00:00 3622.573 168.115 116.857 36.404 

12:30:00 3446.89 170.139 111.190 42.436 

13:00:00 3497.952 191.978 112.837 44.291 

13:30:00 3287.889 163.213 106.061 42.214 

14:00:00 3085.648 164.123 99.537 44.849 

14:30:00 2929.581 157.817 94.503 42.463 

15:00:00 2749.371 139.92 88.689 35.729 

15:30:00 2068.042 111.127 66.711 32.029 

16:00:00 1471.493 87.82 47.468 26.724 

16:30:00 969.44 66.287 31.272 18.693 

17:00:00 495.67 35.226 15.989 10.268 

17:30:00 95 6.723 3.065 1.806 

18:00:00 3.342 0.504 0.108 0.154 

Stellenbosch University  https://scholar.sun.ac.za



133 

 

Table C.9: Statistical parameters for half-hourly generation profile during September. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
06:00:00 4.349 1.022 0.145 0.267 

06:30:00 113.403 15.387 3.780 3.997 

07:00:00 503.675 35.788 16.789 9.928 

07:30:00 1074.92 68.012 35.831 16.525 

08:00:00 1598.927 106.692 53.298 23.028 

08:30:00 2160.69 129.11 72.023 30.504 

09:00:00 2792.649 138.072 93.088 35.887 

09:30:00 3344.415 184.624 111.481 42.430 

10:00:00 3853.28 187.964 128.443 41.158 

10:30:00 4165.61 198.557 138.854 42.512 

11:00:00 4434.418 195.33 147.814 45.351 

11:30:00 4472.954 199.699 149.098 46.003 

12:00:00 4199.599 202.19 139.987 56.495 

12:30:00 4272.456 219.403 142.415 58.093 

13:00:00 4079.541 197.989 135.985 57.975 

13:30:00 4228.024 209.608 140.934 52.740 

14:00:00 3786.964 185.08 126.232 50.927 

14:30:00 3569.765 178.13 118.992 49.108 

15:00:00 3296.12 170.431 109.871 45.163 

15:30:00 2919.66 139.666 97.322 36.107 

16:00:00 2325.921 116.436 77.531 32.493 

16:30:00 1753.97 89.499 58.466 25.969 

17:00:00 985.048 59.833 32.835 16.565 

17:30:00 366.967 28.461 12.232 7.052 

18:00:00 43.056 2.555 1.435 0.648 

18:30:00 0.493 0.139 0.016 0.034 

 

 

Table C.10: Statistical parameters for half-hourly generation profile during October. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
05:30:00 11.578 2.057 0.373 0.533 

06:00:00 152.482 14.092 4.919 3.002 

06:30:00 536.3 30.045 17.300 6.838 

07:00:00 1191.851 54.977 38.447 11.874 

07:30:00 1971.939 86.869 63.611 17.205 

08:00:00 2759.466 129.704 89.015 25.255 

08:30:00 3353.759 133.811 108.186 28.161 

09:00:00 3941.5 154.517 127.145 29.945 

09:30:00 4546.462 195.687 146.660 33.115 

10:00:00 5004.392 185.412 161.432 37.831 

10:30:00 5343.259 200.315 172.363 31.449 

11:00:00 5579.973 207.957 179.999 33.310 

11:30:00 5555.184 220.519 179.199 42.080 

12:00:00 5483.673 216.399 176.893 39.130 

12:30:00 5452.322 216.657 175.881 44.804 

13:00:00 5389.049 214.135 173.840 40.621 

13:30:00 5167.091 207.95 166.680 54.650 

14:00:00 4810.457 208.827 155.176 56.441 
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14:30:00 4563.97 190.115 147.225 47.774 

15:00:00 4200.038 175.204 135.485 42.364 

15:30:00 3765.404 178.235 121.465 40.303 

16:00:00 3092.992 131.076 99.774 34.920 

16:30:00 2382.093 103.178 76.842 27.542 

17:00:00 1660.844 76.898 53.576 20.927 

17:30:00 912.968 48.518 29.451 12.497 

18:00:00 200.089 12.375 6.454 3.063 

18:30:00 23.438 2.125 0.756 0.538 

19:00:00 0.01 0.007 0.000 0.001 

 

 

Table C.11: Statistical parameters for half-hourly generation profile during November. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
05:00:00 3.884 0.419 0.129 0.145 

05:30:00 113.65 6.397 3.788 1.458 

06:00:00 414.362 19.347 13.812 4.763 

06:30:00 992.738 43.994 33.091 9.549 

07:00:00 1709.202 73.073 56.973 16.436 

07:30:00 2513.953 102.211 83.798 23.051 

08:00:00 3149.574 129.297 104.986 31.406 

08:30:00 3793.1 152.69 126.437 35.695 

09:00:00 4296.639 173.68 143.221 38.168 

09:30:00 4801.349 195.315 160.045 34.905 

10:00:00 5037.359 204.363 167.912 38.871 

10:30:00 5111.293 216.118 170.376 49.713 

11:00:00 5411.776 220.158 180.393 47.009 

11:30:00 5575.893 222.82 185.863 47.489 

12:00:00 5746.571 225.316 191.552 47.427 

12:30:00 5598.35 222.989 186.612 48.174 

13:00:00 5531.692 233.569 184.390 47.682 

13:30:00 5666.301 225.816 188.877 42.425 

14:00:00 5172.468 219.63 172.416 47.039 

14:30:00 4964.37 197.636 165.479 41.820 

15:00:00 4422.105 178.583 147.404 42.697 

15:30:00 3925.396 161.722 130.847 38.137 

16:00:00 3473.614 147.175 115.787 34.000 

16:30:00 2847.211 122.775 94.907 30.581 

17:00:00 2127.97 97.236 70.932 26.146 

17:30:00 1359.479 67.933 45.316 17.114 

18:00:00 664.882 39.922 22.163 10.553 

18:30:00 142.59 12.573 4.753 3.161 

19:00:00 15.748 2.334 0.525 0.619 

19:30:00 0.3 0.287 0.010 0.051 
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Table C.12: Statistical parameters for half-hourly generation profile during December. 

Period 

Start 

 

Total generated 

energy [kWh] 

 

Maximum generated 

energy [kWh] 

 

Average generated 

energy [kWh] 

 

Standard deviation of 

generated energy [kWh] 

 
05:00:00 9.325 1.084 0.301 0.260 

05:30:00 145.289 11.85 4.687 2.001 

06:00:00 487.667 31.19 15.731 4.492 

06:30:00 1118.085 47.94 36.067 5.772 

07:00:00 1833.219 74.565 59.136 12.769 

07:30:00 2523.119 101.929 81.391 14.334 

08:00:00 3205.736 127.946 103.411 25.451 

08:30:00 3793.713 151.465 122.378 29.771 

09:00:00 4305.125 171.319 138.875 34.263 

09:30:00 4742.578 187.153 152.986 37.912 

10:00:00 5009.322 201.57 161.591 43.856 

10:30:00 5281.949 216.318 170.385 46.350 

11:00:00 5519.452 223.636 178.047 46.293 

11:30:00 5712.985 228.313 184.290 48.583 

12:00:00 5717.219 229.86 184.426 48.731 

12:30:00 5591.77 229.348 180.380 54.347 

13:00:00 5361.883 227.438 172.964 55.959 

13:30:00 5319.617 219.223 171.601 50.763 

14:00:00 5206.769 212.327 167.960 49.360 

14:30:00 4745.881 198.632 153.093 48.735 

15:00:00 4500.049 183.194 145.163 44.465 

15:30:00 3983.15 166.329 128.489 42.782 

16:00:00 3646.906 165.308 117.642 40.065 

16:30:00 3229.449 152.904 104.176 26.543 

17:00:00 2619.92 126.852 84.514 22.198 

17:30:00 1879.385 81.978 60.625 16.006 

18:00:00 1189.715 51.454 38.378 11.771 

18:30:00 564.651 25.396 18.215 5.834 

19:00:00 80.028 4.589 2.582 0.808 

19:30:00 4.904 0.434 0.158 0.132 

 

C.1.2 Chi-squared Test Results 

Tables C.13 to C.24 summarise the results of the Chi-squared test on the half-hourly generation 

profile for the months of January to December. The Chi-squared test results for each distinct half-hour 

interval are given with respect to all hypothesised distribution functions. All night-time and null half-

hourly intervals are excluded. 
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Table C.13: Chi-squared test values for half-hourly generation profile during January. 

Period Start Chi-squared test values January 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

05:00:00 8.037 1 0.003 1 7.345 1 0.002 1 0.000 1 0 1 

05:30:00 5.056 3 1.001 3 5.256 3 1.181 3 1.079 3 3.192 4 

06:00:00 1.243 2 0.910 3 0.697 2 1.741 3 24.016 4 0.981 3 

06:30:00 2.790 4 2.037 4 5.161 4 4.578 4 37.564 4 0.779 4 

07:00:00 2.179 3 1.432 3 0.375 2 1.061 2 82.019 4 0.186 3 

07:30:00 1.678 2 1.879 3 0.960 2 1.942 2 121.917 4 0.402 3 

08:00:00 0.885 2 0.890 2 0.462 2 0.875 2 149.846 4 0.106 2 

08:30:00 17.438 3 12.609 3 0.767 2 1.766 2 191.178 3 7.191 3 

09:00:00 0.605 2 0.624 2 0.648 2 0.630 2 189.076 4 0.034 2 

09:30:00 16.261 3 13.546 3 15.796 3 19.738 3 174.175 3 4.159 3 

10:00:00 0.826 1 1.435 2 0.606 1 0.794 1 266.252 4 0.106 2 

10:30:00 0.502 2 0.437 2 0.500 2 0.641 2 216.124 4 0.011 2 

11:00:00 0.754 2 0.822 2 0.492 2 0.760 2 167.322 4 1.192 3 

11:30:00 15.829 3 14.322 3 14.736 3 20.692 3 174.031 4 3.120 3 

12:00:00 0.705 2 0.774 2 0.615 2 0.721 2 128.867 4 2.696 3 

12:30:00 0.842 2 0.925 2 0.786 2 0.819 2 191.110 4 1.411 3 

13:00:00 1.787 2 1.897 2 1.011 2 1.726 2 187.200 3 2.536 3 

13:30:00 1.320 2 1.604 2 0.853 2 1.125 2 238.315 4 0.135 2 

14:00:00 1.699 2 2.116 2 1.218 2 1.404 2 169.538 4 0.140 2 

14:30:00 15.991 3 14.719 3 15.386 3 20.763 3 195.466 4 3.289 3 

15:00:00 16.016 3 15.695 3 15.613 3 22.344 3 145.878 4 4.794 4 

15:30:00 19.131 3 19.297 3 1.500 2 2.303 2 147.994 4 8.383 4 

16:00:00 1.665 2 1.977 2 1.171 2 1.368 2 144.805 4 2.744 4 

16:30:00 15.885 3 16.838 3 1.100 2 1.232 2 124.083 4 3.813 4 

17:00:00 10.165 3 11.058 3 0.997 2 1.560 2 115.433 4 1.125 4 

17:30:00 16.064 3 16.362 3 17.472 3 24.268 3 50.262 4 1.017 4 

18:00:00 19.193 3 20.268 3 18.726 3 1.982 2 125.845 4 4.661 4 

18:30:00 6.672 3 7.700 3 7.295 3 12.413 3 38.196 4 2.525 4 

19:00:00 4.355 4 4.021 4 3.153 4 2.637 4 24.111 4 6.953 4 

19:30:00 2.960 2 1.632 2 2.076 2 1.385 2 5.229 3 2.687 2 
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Table C.14: Chi-squared test values for half-hourly generation profile during February. 

Period Start Chi-squared test values February 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

06:00:00 21.680 4 6.619 4 12.843 3 6.693 4 6.475 4 1.909 5 

06:30:00 0.951 4 0.750 5 1.396 4 1.823 5 32.250 6 1.173 5 

07:00:00 2.361 5 2.635 5 2.639 5 3.524 4 62.155 5 3.736 5 

07:30:00 8.073 4 8.184 4 2.812 3 6.156 3 107.054 5 9.266 5 

08:00:00 13.395 3 11.350 3 12.981 3 22.226 3 167.356 5 4.001 4 

08:30:00 1.419 2 1.730 2 0.790 2 1.227 2 265.291 6 7.297 3 

09:00:00 1.910 2 1.571 2 1.904 2 3.635 2 312.278 6 0.005 2 

09:30:00 2.111 2 1.952 2 1.833 2 1.773 1 406.985 6 0.106 2 

10:00:00 0.817 1 2.317 2 0.601 1 0.847 1 339.354 7 0.267 2 

10:30:00 2.318 1 3.386 2 1.788 1 2.200 1 495.013 7 0.068 2 

11:00:00 1.127 1 1.037 1 0.829 1 1.129 1 488.954 8 0.018 1 

11:30:00 24.481 4 20.122 4 21.972 4 12.260 3 482.325 5 21.201 4 

12:00:00 2.127 2 1.994 2 1.974 2 2.752 2 479.603 6 0.001 2 

12:30:00 2.311 2 2.169 2 2.485 2 2.778 2 472.446 6 4.713 3 

13:00:00 1.690 2 2.163 2 1.121 2 1.397 2 346.619 6 4.208 3 

13:30:00 1.748 2 1.478 2 1.691 2 2.410 2 407.383 6 0 2 

14:00:00 2.834 2 3.513 2 2.210 2 2.783 2 535.681 6 8.604 3 

14:30:00 2.254 2 2.869 2 1.646 2 2.027 2 458.463 6 6.282 3 

15:00:00 3.744 2 2.814 2 3.532 2 2.327 1 587.226 6 0.091 2 

15:30:00 1.329 2 1.666 2 0.789 2 1.041 2 304.592 6 8.841 3 

16:00:00 1.571 2 1.844 2 1.206 2 1.624 2 401.531 6 0.248 2 

16:30:00 1.594 2 1.843 2 0.856 2 1.414 2 265.403 6 7.513 3 

17:00:00 16.272 3 11.793 3 15.783 3 3.216 2 180.741 6 6.859 4 

17:30:00 22.414 4 11.858 5 26.545 4 13.292 3 93.199 5 7.309 5 

18:00:00 6.431 5 5.795 5 9.222 5 13.925 5 80.248 5 2.082 5 

18:30:00 4.062 5 0.919 5 6.081 5 1.550 5 11.819 5 2.085 5 

19:00:00 0.970 1 0.074 2 0.746 1 0.085 2 0.507 2 0.157 2 
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Table C.15: Chi-squared test values for half-hourly generation profile during March. 

Period Start Chi-squared test values March 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

06:00:00 13.032 1 0.009 1 11.589 1 0.005 1 5.717E-12 1 0.148 3 

06:30:00 7.699 5 3.704 5 11.524 5 5.133 5 9.244 5 1.356 5 

07:00:00 4.888 5 6.999 5 7.562 5 10.273 4 48.433 5 3.417 5 

07:30:00 15.319 5 10.239 4 10.577 4 11.378 3 85.712 5 8.166 5 

08:00:00 19.710 3 20.286 3 20.991 3 37.100 3 119.664 5 13.031 5 

08:30:00 32.603 3 33.454 3 29.630 3 1.475 2 244.420 5 5.579 4 

09:00:00 1.853 2 2.125 2 1.574 2 2.015 2 311.638 6 7.347 3 

09:30:00 1.964 2 1.836 2 2.291 2 3.056 2 336.446 6 2.503 3 

10:00:00 2.838 2 3.272 2 2.295 2 2.574 2 349.839 5 12.565 4 

10:30:00 2.551 2 3.079 2 1.799 2 2.121 2 355.878 5 9.102 4 

11:00:00 4.044 2 4.664 2 3.156 2 3.469 2 419.295 5 8.047 5 

11:30:00 3.562 2 3.955 2 3.122 2 3.522 2 401.399 5 8.475 5 

12:00:00 4.130 2 4.049 2 4.515 2 5.620 2 418.909 5 12.128 4 

12:30:00 3.673 2 3.629 2 3.845 2 5.237 2 445.890 6 12.027 4 

13:00:00 4.634 2 4.072 2 5.118 2 8.102 2 463.704 6 3.956 3 

13:30:00 3.305 2 3.411 2 3.185 2 4.560 2 469.331 6 12.966 3 

14:00:00 3.220 2 3.544 2 2.863 2 3.671 2 382.967 5 9.167 4 

14:30:00 28.355 3 27.021 3 26.229 3 0.846 2 218.092 6 10.692 3 

15:00:00 31.833 3 31.913 3 30.675 3 2.029 2 212.215 6 10.847 4 

15:30:00 33.832 3 36.296 3 32.320 3 56.733 3 193.833 5 12.743 5 

16:00:00 37.423 4 43.661 4 39.945 4 57.570 3 155.408 5 9.506 5 

16:30:00 23.853 5 29.674 5 25.407 5 30.311 4 105.168 5 21.441 5 

17:00:00 9.098 5 12.802 5 10.586 5 25.589 5 71.448 5 8.842 5 

17:30:00 6.012 5 7.423 5 10.445 5 13.264 5 30.680 5 3.038 5 

18:00:00 9.991 3 4.464 4 9.150 3 4.696 4 2.768 4 0.331 5 

18:30:00 2.798 2 1.493 3 2.284 2 1.368 3 1.129 2 2.909 4 

19:00:00 11.158 1 0.013 1 9.746 1 4.297 2 3.992E-09 1 1.749 4 
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Table C.16: Chi-squared test values for half-hourly generation profile during April. 

Period Start Chi-squared test values April 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

06:30:00 9.257 2 3.260 2 8.102 2 1.952 2 2.355E-06 1 0.720 3 

07:00:00 3.032 4 0.270 4 2.687 3 0.839 4 10.294 6 1.328 5 

07:30:00 4.188 6 3.976 6 6.384 6 8.530 6 50.741 6 3.627 6 

08:00:00 5.609 6 6.230 6 5.904 6 6.399 5 78.495 6 5.638 6 

08:30:00 17.626 4 16.236 4 18.620 4 19.711 3 124.861 5 7.774 5 

09:00:00 1.166 2 1.502 2 0.634 2 1.009 2 217.472 6 8.639 3 

09:30:00 0.899 2 28.267 3 0.679 2 0.892 2 257.349 6 11.825 3 

10:00:00 29.969 3 26.475 3 27.134 3 3.069 2 237.166 5 7.947 4 

10:30:00 22.807 3 17.772 3 21.077 3 2.702 2 228.795 5 5.247 4 

11:00:00 1.429 2 1.792 2 0.862 2 1.168 2 290.276 6 7.518 3 

11:30:00 26.652 4 20.442 4 26.399 3 36.896 3 223.210 5 16.973 5 

12:00:00 15.757 3 11.775 3 15.095 3 0.589 2 205.770 6 1.933 4 

12:30:00 29.364 3 24.159 3 27.825 3 1.602 2 292.016 6 2.866 4 

13:00:00 25.041 3 16.528 4 24.474 3 36.170 3 181.098 5 13.865 5 

13:30:00 16.364 3 13.082 3 14.034 3 1.666 2 233.327 6 1.254 4 

14:00:00 33.108 3 27.817 3 31.938 3 1.319 2 199.470 5 3.642 4 

14:30:00 16.933 4 14.717 4 28.696 3 41.351 3 150.946 5 15.663 5 

15:00:00 9.574 5 7.757 5 7.298 4 13.967 4 124.783 5 3.795 5 

15:30:00 14.857 5 14.330 5 18.609 5 23.845 4 97.633 5 5.580 5 

16:00:00 7.416 5 7.672 5 11.307 5 16.959 5 59.143 5 2.932 5 

16:30:00 8.987 5 8.246 5 14.743 5 15.199 5 37.065 5 3.142 5 

17:00:00 9.796 5 4.522 5 15.685 5 6.575 5 10.869 5 2.173 5 

17:30:00 2.695 2 1.237 3 1.644 2 1.101 3 1.402 3 7.689 4 

18:00:00 5.523 2 0.451 2 4.580 2 0.182 2 0.000 1 1.164 3 

18:30:00 16.519 1 0.003 1 15.213 1 0.002 1 8.572E-22 1 0.002 2 
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Table C.17: Chi-squared test values for half-hourly generation profile during May. 

Period Start Chi-squared test values May 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

07:00:00 19.709 3 2.540 3 15.256 3 1.917 3 4.454 3 2.893 5 

07:30:00 8.176 4 1.296 5 9.498 4 2.170 5 15.935 5 2.199 5 

08:00:00 7.286 6 9.159 6 5.310 5 14.937 6 39.960 6 7.316 6 

08:30:00 11.837 5 14.257 5 19.199 5 28.792 5 43.801 5 0.290 5 

09:00:00 25.465 5 32.387 5 32.804 5 35.367 4 78.405 5 8.763 5 

09:30:00 25.239 5 30.953 5 30.931 5 46.365 4 108.250 5 7.064 5 

10:00:00 16.532 4 19.179 3 18.086 3 33.967 3 127.967 5 1.617 5 

10:30:00 8.972 3 9.547 3 7.691 3 1.992 2 174.184 5 2.263 4 

11:00:00 15.319 3 16.279 3 14.161 3 1.438 2 161.138 5 1.610 5 

11:30:00 13.425 3 13.511 3 12.243 3 0.712 2 162.857 6 3.082 4 

12:00:00 15.107 3 15.673 3 13.250 3 1.151 2 179.245 6 8.337 4 

12:30:00 25.210 3 25.896 3 25.539 3 46.888 3 135.701 5 4.927 5 

13:00:00 10.238 4 11.252 4 12.594 4 36.435 3 192.591 6 4.010 4 

13:30:00 26.095 3 25.960 3 28.012 3 48.518 3 165.358 6 4.205 4 

14:00:00 7.420 4 9.087 4 5.207 4 11.455 3 131.266 6 31.979 5 

14:30:00 21.363 5 26.298 5 22.929 5 22.145 4 103.737 5 18.401 5 

15:00:00 21.380 5 25.411 5 25.227 5 11.963 4 87.984 5 16.793 5 

15:30:00 8.900 5 9.336 5 13.110 5 18.123 5 52.972 5 5.055 5 

16:00:00 4.880 5 5.707 5 8.625 5 15.166 5 49.833 5 1.474 5 

16:30:00 13.623 5 6.929 5 19.451 5 8.601 5 14.751 5 5.247 5 

17:00:00 0.998 2 1.372 3 1.220 2 1.056 3 0.881 4 2.635 3 

17:30:00 5.056 1 0.081 2 4.057 1 0.139 2 0.000 1 0.870 2 

18:00:00 22.693 1 0.000 1 21.735 1 0.001 1 0 1 0 1 
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Table C.18: Chi-squared test values for half-hourly generation profile during June. 

Period Start Chi-squared test values June 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

07:00:00 15.772 1 0.003 1 14.433 1 0.002 1 5.774E-21 1 9.840E-05 2 

07:30:00 1.577 3 1.865 3 1.101 3 2.647 3 2.849 4 0.968 3 

08:00:00 0.129 1 1.381 2 0.107 1 1.558 2 4.801 3 1.582 2 

08:30:00 3.711 4 11.754 5 7.133 4 15.942 5 50.336 6 0.738 4 

09:00:00 13.502 5 16.087 5 19.703 5 30.260 5 46.926 5 6.086 5 

09:30:00 14.796 5 18.800 5 20.020 5 35.874 5 58.516 5 7.814 5 

10:00:00 26.021 4 27.751 4 35.147 4 39.958 4 74.710 4 5.347 4 

10:30:00 32.290 4 38.711 4 40.201 4 58.760 4 98.140 4 3.845 4 

11:00:00 9.873 5 13.428 5 12.043 5 37.464 4 63.460 5 8.212 5 

11:30:00 39.381 4 45.469 4 43.793 4 34.944 3 163.354 5 9.459 5 

12:00:00 32.462 4 36.290 4 36.711 4 32.451 3 149.077 5 3.780 5 

12:30:00 28.749 4 32.887 4 33.332 4 39.094 3 161.454 5 4.708 5 

13:00:00 41.890 5 51.304 5 50.832 5 67.835 4 126.306 5 4.430 5 

13:30:00 51.024 4 60.398 4 53.478 4 37.673 3 182.216 4 4.076 4 

14:00:00 33.749 4 36.617 4 42.351 4 55.549 4 111.948 4 5.946 4 

14:30:00 46.810 4 52.809 4 52.532 4 75.972 4 162.680 4 6.454 4 

15:00:00 39.221 4 46.199 4 43.340 4 33.813 3 153.415 4 4.399 4 

15:30:00 26.144 4 32.658 4 32.304 4 46.850 4 94.219 4 1.707 4 

16:00:00 16.175 4 20.771 4 22.839 4 30.825 4 58.626 4 0.107 4 

16:30:00 10.014 4 8.773 4 16.253 4 12.633 4 19.959 4 0.959 4 

17:00:00 0.549 4 1.136 5 0.171 4 0.477 5 30.275 6 3.724 5 

17:30:00 19.280 3 12.737 3 17.388 3 10.173 3 16.142 3 2.082 4 
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Table C.19: Chi-squared test values for half-hourly generation profile during July. 

Period Start Chi-squared test values July 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

07:00:00 9.900 1 0.001 1 9.307 1 0.002 1 3.664E-26 1 0 1 

07:30:00 8.094 3 0.968 3 0.464 2 0.426 2 0.442 3 0.374 4 

08:00:00 1.131 4 1.301 4 2.810 4 3.003 4 14.716 4 0.289 4 

08:30:00 4.949 4 4.873 4 8.016 4 9.185 4 23.972 4 0.843 4 

09:00:00 7.484 3 8.971 3 8.423 3 13.963 3 32.677 4 0.989 4 

09:30:00 5.516 3 6.576 3 5.336 3 3.221 2 72.628 4 2.753 4 

10:00:00 0.662 2 0.848 2 0.329 2 0.747 2 102.887 4 2.330 3 

10:30:00 0.541 2 0.539 2 0.764 2 0.578 2 142.803 4 2.700 3 

11:00:00 0.543 2 0.563 2 0.646 2 0.604 2 137.972 5 0.006 2 

11:30:00 6.395 3 6.183 3 0.438 2 0.577 2 85.869 4 0.529 3 

12:00:00 6.825 3 6.682 3 6.959 3 11.750 3 100.273 4 2.406 4 

12:30:00 5.830 3 5.557 3 6.518 3 10.475 3 48.925 4 1.546 3 

13:00:00 10.705 3 10.594 3 10.938 3 1.191 2 97.530 4 0.731 4 

13:30:00 13.251 3 12.693 3 13.140 3 18.827 3 150.386 4 5.957 4 

14:00:00 8.471 3 9.495 3 8.668 3 14.687 3 98.904 4 2.484 4 

14:30:00 14.075 3 26.943 4 14.887 3 21.833 3 100.439 4 4.885 4 

15:00:00 14.537 3 16.399 3 16.426 3 21.361 3 55.541 3 2.841 3 

15:30:00 21.729 3 24.128 3 23.631 3 29.659 3 74.508 3 6.990 3 

16:00:00 5.689 4 5.985 4 8.458 4 10.541 4 28.589 4 1.323 4 

16:30:00 0.654 3 0.609 3 1.272 3 1.408 3 16.033 3 1.824 3 

17:00:00 9.394 3 10.148 4 9.819 3 4.035 3 9.678 3 12.364 4 

17:30:00 6.272 3 2.045 3 7.486 3 2.229 3 1.450 3 1.887 4 

18:00:00 7.049 1 0.006 1 6.356 1 0.006 1 3.343E-11 1 0.038 2 
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Table C.20: Chi-squared test values for half-hourly generation profile during August. 

Period Start Chi-squared test values August 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

07:00:00 14.113 3 11.370 3 14.599 3 10.628 3 11.248 3 0.146 3 

07:30:00 0.529 2 0.879 2 0.896 2 1.128 2 0.758 2 1.355 3 

08:00:00 0.453 2 0.883 3 0.186 2 1.038 3 4.615 3 1.331 3 

08:30:00 5.702 3 6.112 3 8.122 3 8.166 3 16.431 3 0.525 3 

09:00:00 1.159 3 1.462 3 2.362 3 2.615 3 13.356 3 1.090 3 

09:30:00 4.859 4 4.882 4 6.861 4 7.620 4 22.464 4 3.949 4 

10:00:00 2.228 4 2.300 4 4.030 4 5.308 4 25.141 4 0.977 4 

10:30:00 7.816 4 8.837 4 10.545 4 15.294 4 38.134 4 0.317 4 

11:00:00 9.020 3 9.266 3 9.745 3 15.473 3 59.167 4 1.794 4 

11:30:00 8.784 4 7.913 4 11.846 4 13.235 4 49.750 4 2.582 4 

12:00:00 4.675 4 3.841 4 6.913 4 6.879 4 43.328 4 3.067 4 

12:30:00 7.837 3 7.463 3 10.462 3 10.939 3 38.214 3 2.545 3 

13:00:00 8.132 4 7.213 4 12.149 4 10.109 4 28.411 4 3.621 4 

13:30:00 9.573 3 8.924 3 12.415 3 11.580 3 37.281 3 5.203 3 

14:00:00 6.031 4 5.759 4 9.060 4 9.610 4 23.772 4 2.214 4 

14:30:00 1.091 3 1.014 3 2.127 3 2.142 3 19.036 3 1.631 3 

15:00:00 4.326 3 4.004 3 6.502 3 6.409 3 27.324 3 1.345 3 

15:30:00 5.560 3 5.866 3 7.735 3 8.348 3 24.550 3 1.505 3 

16:00:00 9.719 3 10.434 3 12.750 3 13.189 3 22.863 3 2.549 3 

16:30:00 8.904 4 6.500 4 13.071 4 8.337 4 9.495 4 1.483 4 

17:00:00 4.291 3 2.947 3 6.109 3 3.953 3 6.485 3 0.807 3 

17:30:00 7.850 4 4.938 4 10.887 4 5.827 4 8.001 4 2.921 4 

18:00:00 2.741 2 4.404 2 2.105 2 3.279 2 4.338 2 0.174 3 
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Table C.21: Chi-squared test values for half-hourly generation profile during September. 

Period Start Chi-squared test values September 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

06:00:00 4.547 2 0.015 1 4.972 2 0.012 1 2.260E-05 1 0.227 3 

06:30:00 1.420 2 4.130 2 2.058 2 3.961 2 4.152 2 0.495 3 

07:00:00 6.373 4 5.659 4 10.048 4 7.634 4 10.576 4 0.618 4 

07:30:00 9.710 4 8.945 4 11.581 4 9.242 4 27.163 4 8.907 4 

08:00:00 1.273 4 0.593 4 2.927 4 1.681 4 12.100 4 0.198 4 

08:30:00 3.260 4 3.641 4 5.266 4 7.250 4 24.343 4 1.240 4 

09:00:00 13.852 4 13.771 4 13.234 3 16.856 3 49.285 4 4.539 4 

09:30:00 3.900 4 3.895 4 5.431 4 7.592 4 31.069 4 2.438 4 

10:00:00 9.571 4 8.756 4 11.716 4 14.613 4 57.093 4 4.841 4 

10:30:00 5.862 4 4.982 4 7.980 4 10.081 4 54.195 4 0.486 4 

11:00:00 16.625 3 16.310 3 16.280 3 22.165 3 110.349 3 3.412 3 

11:30:00 6.328 3 6.169 3 6.143 3 10.147 3 100.778 4 2.778 4 

12:00:00 4.267 3 5.507 3 4.315 3 9.360 3 59.936 4 1.969 4 

12:30:00 5.435 3 6.898 3 5.892 3 11.035 3 55.887 4 0.800 4 

13:00:00 8.039 3 9.956 3 8.357 3 14.598 3 67.670 4 0.417 4 

13:30:00 4.739 3 5.469 3 5.249 3 0.509 2 55.711 4 1.550 4 

14:00:00 6.205 3 7.754 3 6.232 3 12.129 3 69.078 4 2.757 4 

14:30:00 16.738 3 16.845 3 19.493 3 21.018 3 56.283 3 7.381 3 

15:00:00 20.608 3 20.824 3 24.020 3 25.665 3 62.786 3 10.499 3 

15:30:00 11.107 3 11.238 3 12.836 3 15.377 3 58.656 3 3.218 3 

16:00:00 8.960 3 10.177 3 10.311 3 14.229 3 49.122 3 1.051 3 

16:30:00 20.140 3 21.427 3 22.834 3 26.921 3 61.686 3 6.887 3 

17:00:00 2.415 3 1.913 3 3.946 3 3.081 3 12.892 3 1.362 3 

17:30:00 7.884 4 3.809 4 5.091 3 2.920 3 6.263 3 4.652 4 

18:00:00 1.307 4 1.286 4 3.039 4 3.109 4 17.092 4 0.291 4 

18:30:00 4.401 1 0.012 1 3.782 1 0.009 1 1.350E-06 1 0.002 2 
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Table C.22: Chi-squared test values for half-hourly generation profile during October. 

Period Start Chi-squared test values October 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

05:30:00 2.512 2 3.817 2 2.585 2 2.874 2 0.001 1 0.555 3 

06:00:00 0.197 2 0.213 3 0.345 2 0.570 3 4.639 3 0.264 3 

06:30:00 1.610 4 1.380 4 2.457 4 1.573 4 25.242 4 2.316 4 

07:00:00 1.843 2 2.192 2 1.056 2 2.222 2 70.806 5 0.043 3 

07:30:00 1.827 2 2.092 2 1.092 2 1.864 2 90.417 5 0.014 3 

08:00:00 0.719 3 0.385 3 1.105 3 4.127 2 86.973 5 0.206 3 

08:30:00 1.831 2 2.229 2 1.118 2 1.568 2 177.405 4 1.791 3 

09:00:00 1.265 2 1.374 2 1.364 2 1.183 2 182.722 4 0.905 3 

09:30:00 2.320 2 9.595 3 1.450 2 2.811 2 89.528 4 4.472 3 

10:00:00 2.945 2 3.354 2 2.392 1 2.525 1 235.508 4 0.005 2 

10:30:00 22.659 3 19.400 3 21.461 3 26.110 3 234.406 3 7.321 3 

11:00:00 1.966 2 2.331 2 1.306 2 1.733 2 225.487 3 0.022 2 

11:30:00 1.229 2 1.594 2 0.846 2 0.608 1 190.645 5 0.558 2 

12:00:00 15.660 3 13.364 3 0.835 2 1.050 2 177.310 4 3.207 3 

12:30:00 15.301 3 14.050 3 2.196 2 3.713 2 174.800 4 2.347 3 

13:00:00 0.982 2 1.109 2 0.858 2 0.927 2 157.591 4 0.411 3 

13:30:00 2.050 2 2.201 2 1.902 2 1.863 2 139.497 4 2.048 4 

14:00:00 1.281 2 1.561 2 0.933 2 1.166 2 115.303 4 3.764 4 

14:30:00 1.716 2 2.073 2 1.094 2 1.342 2 116.218 4 0.688 3 

15:00:00 1.159 2 1.246 2 1.192 2 1.193 2 115.057 4 0.080 3 

15:30:00 2.105 2 2.565 2 1.257 2 2.615 2 99.970 4 4.062 3 

16:00:00 1.342 2 1.483 2 1.263 2 1.165 2 127.854 4 2.769 4 

16:30:00 1.200 2 1.440 2 0.934 2 1.078 2 115.227 4 2.324 4 

17:00:00 20.117 3 22.006 3 20.978 3 0.810 2 93.335 4 3.681 4 

17:30:00 8.607 4 10.240 4 5.272 3 7.906 3 37.856 4 3.626 4 

18:00:00 6.184 4 5.572 4 8.025 4 6.284 4 22.810 4 5.206 4 

18:30:00 1.938 3 0.450 3 2.476 3 0.757 3 2.620 3 0.339 4 

19:00:00 8.497 1 0.002 1 7.825 1 0.002 1 4.395E-18 1 0 1 
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Table C.23: Chi-squared test values for half-hourly generation profile during November. 

Period Start Chi-squared test values November 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

05:00:00 13.667 3 16.008 3 15.267 3 15.161 3 15.522 3 0.459 3 

05:30:00 4.568 4 4.587 4 6.802 4 8.642 4 30.690 4 1.741 4 

06:00:00 4.925 3 5.498 3 4.484 3 8.986 3 68.975 4 0.255 4 

06:30:00 6.151 3 5.575 3 6.146 3 9.828 3 87.592 4 0.777 4 

07:00:00 1.001 2 1.133 2 0.940 2 0.929 2 130.217 4 2.225 3 

07:30:00 1.795 2 1.889 2 1.896 2 1.831 2 168.848 4 1.004 3 

08:00:00 2.626 2 21.387 3 1.697 2 2.292 2 204.952 4 3.891 3 

08:30:00 3.510 2 4.218 2 2.311 2 2.748 2 176.113 4 3.028 3 

09:00:00 1.770 2 2.044 2 1.527 2 1.532 2 185.163 4 2.071 3 

09:30:00 1.197 2 1.394 2 0.725 2 1.090 2 193.388 4 0.034 2 

10:00:00 1.810 2 2.122 2 1.063 2 1.659 2 176.120 4 4.303 3 

10:30:00 14.767 3 14.382 3 1.027 2 1.625 2 174.966 4 2.056 3 

11:00:00 1.744 2 2.122 2 1.206 2 1.443 2 165.214 4 1.295 3 

11:30:00 1.835 2 2.071 2 1.576 2 1.146 1 172.337 4 0.034 2 

12:00:00 1.655 1 1.883 1 1.284 1 1.423 1 245.516 5 0.004 2 

12:30:00 1.965 2 2.259 2 1.648 2 1.232 1 173.121 4 0.043 2 

13:00:00 1.019 2 1.244 2 0.650 2 0.897 2 159.065 4 4.128 3 

13:30:00 1.369 1 1.607 2 1.066 1 1.273 1 219.574 5 0.017 2 

14:00:00 2.282 2 2.756 2 1.483 2 1.760 2 145.271 4 1.331 2 

14:30:00 1.944 2 2.094 2 1.887 2 2.127 2 206.113 4 0.073 2 

15:00:00 2.163 2 2.478 2 1.791 2 1.866 2 158.906 4 1.487 3 

15:30:00 2.275 2 2.102 2 2.750 2 3.208 2 148.910 4 0.156 3 

16:00:00 1.170 2 1.284 2 1.165 2 1.130 2 159.643 4 3.083 3 

16:30:00 1.689 2 2.073 2 1.045 2 1.529 2 133.689 4 1.852 3 

17:00:00 15.198 3 16.774 3 14.194 3 1.792 2 114.883 4 4.109 4 

17:30:00 9.389 4 9.871 4 3.494 3 6.924 3 52.493 4 0.522 4 

18:00:00 2.231 4 2.691 4 4.405 4 5.417 4 18.471 4 0.053 4 

18:30:00 2.898 3 0.077 3 3.222 3 0.022 3 2.045 3 0.492 4 

19:00:00 1.583 2 1.513 2 1.246 2 1.259 2 1.643 2 0.315 4 

19:30:00 9.303 1 0.001 1 8.711 1 0.002 1 3.538E-24 1 0 1 
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Table C.24: Chi-squared test values for half-hourly generation profile during December. 

Period Start Chi-squared test values December 

Gaussian Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

05:00:00 1.701 2 0.047 2 0.916 2 0.025 2 0.065 2 0.701 3 

05:30:00 0.597 2 0.498 2 0.242 2 0.184 2 26.085 4 0.701 2 

06:00:00 1.274 3 1.303 3 2.368 2 2.419 3 74.834 4 1.633 3 

06:30:00 3.146 2 2.887 2 2.391 2 3.313 2 148.095 4 2.954 2 

07:00:00 2.184 2 2.301 2 1.313 2 2.211 2 117.614 4 2.885 3 

07:30:00 1.639 2 1.514 2 0.973 2 1.708 2 128.444 4 1.004 2 

08:00:00 1.045 1 1.332 2 0.807 1 1.000 1 154.993 5 0.382 2 

08:30:00 1.001 1 1.235 2 0.772 1 0.964 1 163.362 5 0.338 2 

09:00:00 1.106 1 1.401 2 0.855 1 1.050 1 167.043 5 0.383 2 

09:30:00 1.283 1 1.595 2 0.996 1 1.195 1 195.762 5 0.376 2 

10:00:00 1.249 2 1.448 2 1.007 2 1.151 1 194.211 5 0.144 2 

10:30:00 0.996 2 1.195 2 0.752 2 0.976 2 164.517 5 0.201 2 

11:00:00 0.991 2 1.065 2 0.893 2 0.939 1 163.829 5 0.067 2 

11:30:00 1.584 2 1.989 2 1.104 2 1.172 1 178.064 5 0.692 2 

12:00:00 1.527 2 1.924 2 1.048 2 1.088 1 155.195 5 0.731 2 

12:30:00 1.318 2 1.524 2 1.068 2 1.210 2 154.465 4 3.098 3 

13:00:00 1.059 2 1.237 2 0.886 2 0.952 2 127.875 4 0.233 3 

13:30:00 1.151 2 1.317 2 0.980 2 1.134 2 127.765 4 1.891 3 

14:00:00 1.297 2 1.445 2 1.165 2 1.359 2 169.292 4 4.886 3 

14:30:00 1.477 2 1.797 2 0.948 2 1.174 2 155.217 4 3.419 3 

15:00:00 2.128 2 2.561 2 1.376 2 1.538 2 141.824 4 4.340 3 

15:30:00 1.976 2 2.384 2 1.220 2 1.555 2 128.241 4 0.616 3 

16:00:00 20.927 3 21.431 3 21.049 3 28.966 3 101.130 4 6.571 4 

16:30:00 8.987 3 6.874 3 1.090 2 2.419 2 144.514 5 3.921 3 

17:00:00 1.996 3 1.278 3 2.883 3 4.176 3 138.733 5 0.317 3 

17:30:00 7.815 3 6.495 3 8.248 3 11.844 3 85.184 4 3.615 4 

18:00:00 18.171 3 17.613 3 18.546 3 24.000 3 112.034 3 4.669 3 

18:30:00 10.200 3 9.853 3 11.213 3 15.022 3 76.123 3 1.626 3 

19:00:00 0.968 4 1.137 4 1.228 4 0.398 4 32.634 4 0.777 5 

19:30:00 1.821 3 1.553 3 1.597 3 1.791 3 3.823 3 3.393 3 
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C.1.3 Root Mean Square Errors 

Tables C.25 to C.36 summarise the results of RMSE test on the half-hourly generation profile for the 

months of January to December. RMSE test results for each distinct half-hour interval are given with 

respect to all hypothesised distribution functions. All night-time and null half-hourly intervals are 

excluded. 

 

Table C.25: Root mean square errors January. 

Period Start Root Mean Square Errors January 

Gaussian Weibull Logistic Gamma Exponential Beta 

05:00:00 12.269 0.283 11.858 0.266 0.000 0 

05:30:00 4.385 0.957 4.276 1.013 1.187 2.058 

06:00:00 2.868 1.525 2.196 2.426 6.093 1.553 

06:30:00 1.982 1.736 2.599 2.504 4.995 1.002 

07:00:00 2.896 2.462 2.031 3.156 7.342 0.834 

07:30:00 3.507 2.606 2.746 3.793 8.119 0.898 

08:00:00 3.052 3.027 2.339 3.056 8.993 0.717 

08:30:00 7.796 6.554 2.729 3.844 12.008 4.317 

09:00:00 2.437 2.573 1.907 2.386 10.978 0.320 

09:30:00 7.637 6.980 7.334 8.391 11.892 2.821 

10:00:00 4.583 4.076 3.970 4.500 11.626 0.535 

10:30:00 2.264 2.312 1.850 2.164 11.044 0.196 

11:00:00 2.876 2.986 2.178 2.886 9.944 2.164 

11:30:00 7.778 7.450 7.382 8.762 9.970 2.991 

12:00:00 2.676 2.827 2.049 2.722 8.965 2.484 

12:30:00 2.903 3.112 2.286 2.786 10.905 2.248 

13:00:00 4.196 4.309 3.342 4.131 12.919 2.579 

13:30:00 3.834 4.126 3.155 3.590 11.507 0.737 

14:00:00 4.312 4.730 3.634 3.855 10.962 0.732 

14:30:00 7.429 7.203 7.016 8.376 10.530 2.355 

15:00:00 7.486 7.503 7.127 8.685 9.820 2.812 

15:30:00 7.781 7.974 3.912 4.660 10.428 2.806 

16:00:00 4.092 4.418 3.290 3.732 11.023 2.488 

16:30:00 7.257 7.592 2.751 3.411 9.818 2.509 

17:00:00 6.395 6.649 3.069 3.890 9.354 1.461 

17:30:00 8.004 8.099 8.239 9.598 6.736 1.282 

18:00:00 8.265 8.576 7.920 4.227 9.876 2.984 

18:30:00 5.170 5.493 5.375 6.806 6.370 2.478 

19:00:00 3.340 3.119 2.812 2.420 7.405 4.090 

19:30:00 4.355 2.564 3.641 2.342 3.614 3.482 
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Table C.26: Root mean square errors February. 

Period Start Root Mean Square Errors February 

Gaussian Weibull Logistic Gamma Exponential Beta 

06:00:00 7.897 2.139 7.759 2.153 2.196 1.442 

06:30:00 1.771 0.702 1.517 1.731 7.793 1.341 

07:00:00 2.367 2.656 1.835 2.786 9.276 3.376 

07:30:00 5.365 5.711 4.458 6.482 10.494 3.907 

08:00:00 10.109 9.438 9.787 12.400 12.613 3.517 

08:30:00 5.312 5.659 4.173 5.082 12.745 6.700 

09:00:00 4.860 5.313 4.109 4.452 13.971 0.157 

09:30:00 5.675 6.243 4.894 9.118 16.019 0.673 

10:00:00 6.306 3.918 5.455 6.415 12.670 0.885 

10:30:00 10.292 6.351 9.152 10.054 14.795 0.474 

11:00:00 7.328 7.052 6.352 7.336 12.391 0.999 

11:30:00 9.037 8.362 7.792 9.584 15.417 8.845 

12:00:00 5.756 6.292 4.882 5.352 14.496 0.093 

12:30:00 5.589 6.075 4.654 5.229 14.275 4.256 

13:00:00 5.984 6.452 5.016 5.539 13.109 4.594 

13:30:00 5.077 5.445 4.277 4.765 13.478 0.066 

14:00:00 7.531 8.390 6.539 6.866 15.790 5.282 

14:30:00 6.896 7.600 5.893 6.290 14.961 4.637 

15:00:00 6.005 6.655 5.196 10.310 16.650 0.562 

15:30:00 4.942 5.135 4.067 4.680 12.721 7.356 

16:00:00 5.791 6.263 4.917 5.381 13.497 1.116 

16:30:00 4.883 4.999 3.864 4.824 12.734 6.925 

17:00:00 9.532 8.459 8.974 6.689 10.387 3.486 

17:30:00 7.205 3.641 7.302 9.073 9.324 3.348 

18:00:00 3.266 3.267 3.572 4.823 8.282 2.092 

18:30:00 2.514 1.026 2.856 1.642 5.548 2.201 

19:00:00 6.900 0.436 6.100 0.480 1.338 0.628 

 

 

Table C.27: Root mean square error March. 

Period Start Root Mean Square Errors March 

Gaussian Weibull Logistic Gamma Exponential Beta 

06:00:00 22.646 0.741 21.630 0.577 0.000 0.567 

06:30:00 3.848 2.662 4.575 3.187 4.442 1.901 

07:00:00 2.470 3.388 2.689 6.855 9.390 2.862 

07:30:00 4.426 5.054 4.434 8.624 11.236 3.899 

08:00:00 12.247 12.545 12.242 15.629 12.802 5.235 

08:30:00 14.572 14.948 13.312 5.408 16.488 4.393 

09:00:00 6.309 6.900 5.142 5.607 15.293 5.458 

09:30:00 5.279 5.761 4.354 4.833 15.788 3.632 

10:00:00 7.652 8.282 6.289 6.707 19.411 5.953 

10:30:00 7.516 8.163 6.145 6.636 19.606 6.052 

11:00:00 9.109 9.780 7.728 7.827 21.133 4.642 

11:30:00 8.238 8.871 6.917 7.119 20.689 4.519 

12:00:00 7.384 7.966 6.283 6.485 21.149 6.524 

12:30:00 7.234 7.855 6.133 6.351 17.993 6.493 

13:00:00 6.724 7.310 5.773 6.040 18.322 3.515 

13:30:00 7.416 8.080 6.290 6.473 18.478 6.451 

14:00:00 7.835 8.507 6.615 6.792 20.253 4.562 

14:30:00 14.129 14.014 13.295 4.432 14.006 8.732 
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15:00:00 15.421 15.582 14.760 6.191 13.761 6.604 

15:30:00 15.806 16.464 14.981 18.854 15.012 4.873 

16:00:00 10.768 11.390 10.868 19.670 13.635 4.546 

16:30:00 7.696 8.466 7.706 11.488 12.412 7.778 

17:00:00 4.653 5.691 4.760 7.134 10.998 4.879 

17:30:00 3.459 4.535 4.285 5.961 7.519 2.838 

18:00:00 8.847 2.960 8.080 2.906 1.776 0.748 

18:30:00 7.647 1.209 6.365 1.110 2.049 2.088 

19:00:00 21.308 0.902 20.187 2.614 0.000 1.229 

 

 

Table C.28: Root mean square errors April. 

Period Start Root Mean Square Errors April 

Gaussian Weibull Logistic Gamma Exponential Beta 

06:30:00 10.382 2.323 9.517 1.990 0.012 1.183 

07:00:00 3.373 0.886 4.593 1.499 4.184 1.590 

07:30:00 3.026 3.089 3.500 4.147 7.198 2.873 

08:00:00 3.006 3.298 2.874 3.728 8.802 3.245 

08:30:00 6.683 6.694 6.429 12.253 11.410 3.802 

09:00:00 5.029 5.497 3.863 4.818 13.228 7.958 

09:30:00 4.520 14.386 3.449 4.381 13.820 8.883 

10:00:00 14.731 14.150 13.658 7.456 14.315 4.633 

10:30:00 12.966 11.729 12.113 6.951 13.072 2.755 

11:00:00 5.614 5.966 4.570 5.264 13.157 6.520 

11:30:00 8.869 8.073 14.085 16.593 12.955 5.593 

12:00:00 11.159 9.885 10.729 3.593 11.372 1.453 

12:30:00 14.957 13.814 14.289 5.535 13.381 2.614 

13:00:00 13.845 7.750 13.386 16.100 12.490 5.610 

13:30:00 11.599 10.605 10.630 5.786 11.778 1.714 

14:00:00 15.484 14.465 14.827 5.183 13.479 2.125 

14:30:00 6.076 5.936 14.016 16.655 12.595 6.265 

15:00:00 4.908 4.562 3.925 5.971 10.599 3.433 

15:30:00 5.644 5.681 5.998 7.641 9.963 3.767 

16:00:00 3.538 3.947 3.993 5.570 8.131 2.545 

16:30:00 3.649 4.003 4.257 5.428 6.648 2.607 

17:00:00 4.528 3.211 5.490 3.764 3.906 2.423 

17:30:00 7.484 3.020 6.024 2.652 3.785 5.684 

18:00:00 10.206 0.830 9.214 0.550 0.043 2.066 

18:30:00 24.289 0.409 23.549 0.361 0.000 0.062 
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Table C.29: Root mean square errors May. 

Period Start Root Mean Square Errors May 

Gaussian Weibull Logistic Gamma Exponential Beta 

07:00:00 12.477 1.789 10.854 1.461 1.986 2.135 

07:30:00 4.575 1.846 4.413 2.554 6.736 2.356 

08:00:00 3.403 4.186 3.036 5.113 7.904 3.915 

08:30:00 4.359 4.810 5.360 6.109 7.555 0.782 

09:00:00 6.488 7.497 6.892 9.807 10.002 4.423 

09:30:00 7.660 8.266 8.168 11.141 11.520 4.164 

10:00:00 7.935 12.057 11.135 14.811 12.600 2.017 

10:30:00 8.312 8.671 7.330 6.405 14.283 2.219 

11:00:00 10.865 11.285 10.074 5.541 13.646 1.877 

11:30:00 10.404 10.535 9.694 3.737 11.586 3.493 

12:00:00 11.565 11.787 10.784 3.325 12.287 6.476 

12:30:00 13.539 13.868 13.149 16.783 12.783 2.862 

13:00:00 4.545 4.806 5.050 16.234 13.329 3.108 

13:30:00 13.544 13.689 13.541 16.882 12.350 3.175 

14:00:00 5.955 6.666 4.528 9.114 11.443 10.122 

14:30:00 7.678 8.267 7.858 9.114 12.320 7.381 

15:00:00 7.814 8.289 8.445 6.562 11.323 7.019 

15:30:00 4.396 4.814 5.114 6.421 8.216 3.493 

16:00:00 3.234 3.669 4.083 5.275 8.345 2.049 

16:30:00 5.235 4.316 5.990 4.880 4.510 3.705 

17:00:00 4.276 2.516 3.391 1.776 2.239 4.839 

17:30:00 15.356 0.691 13.960 0.749 0.018 1.751 

18:00:00 27.842 0.080 27.417 0.231 0 0 

 

 

Table C.30: Root mean square error June. 

Period Start Root Mean Square Errors June 

Gaussian Weibull Logistic Gamma Exponential Beta 

07:00:00 23.871 0.428 23.083 0.330 0.000 0.014 

07:30:00 3.415 3.724 2.612 4.356 2.990 2.522 

08:00:00 2.696 2.061 2.457 2.189 5.924 2.272 

08:30:00 3.981 6.444 5.521 7.658 7.834 1.802 

09:00:00 5.332 6.006 6.173 7.406 8.128 3.971 

09:30:00 5.516 6.349 6.076 7.701 8.869 4.572 

10:00:00 8.668 9.173 9.626 10.736 10.362 4.058 

10:30:00 9.780 10.804 10.482 12.390 12.861 3.451 

11:00:00 4.316 5.057 4.428 9.996 9.727 4.713 

11:30:00 10.581 11.159 10.875 14.439 13.316 3.986 

12:00:00 11.599 11.864 12.401 14.177 12.765 3.509 

12:30:00 10.387 10.743 11.156 15.628 13.155 3.976 

13:00:00 8.902 9.355 9.554 13.203 11.433 3.169 

13:30:00 13.473 14.224 13.651 15.439 17.311 3.720 

14:00:00 10.451 10.858 11.367 12.479 12.784 4.768 

14:30:00 12.883 13.443 13.504 14.913 15.628 5.024 

15:00:00 12.156 12.767 12.721 14.253 15.981 4.345 

15:30:00 9.442 10.149 10.338 11.399 12.542 2.532 

16:00:00 6.822 7.744 7.810 9.113 10.121 0.585 

16:30:00 5.376 5.386 6.571 6.457 6.460 1.897 

17:00:00 1.842 1.895 0.762 0.893 6.745 3.449 

17:30:00 10.873 4.760 9.531 4.278 4.472 2.436 
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Table C.31: Root mean square errors July. 

Period Start Root Mean Square Errors July 

Gaussian Weibull Logistic Gamma Exponential Beta 

07:00:00 13.255 0.144 12.958 0.227 0.000 0 

07:30:00 5.774 1.477 2.189 1.100 0.863 0.991 

08:00:00 1.182 1.439 1.777 2.243 4.221 0.757 

08:30:00 2.591 2.769 3.091 3.734 4.556 1.122 

09:00:00 5.492 5.916 5.811 7.209 6.231 1.569 

09:30:00 4.814 5.207 4.701 4.993 8.303 2.124 

10:00:00 2.644 2.907 1.937 2.794 9.090 2.949 

10:30:00 2.075 2.253 1.702 2.099 10.455 3.032 

11:00:00 2.248 2.437 1.772 2.192 8.170 0.148 

11:30:00 5.141 5.101 1.628 2.434 8.084 1.488 

12:00:00 5.134 5.136 5.015 6.527 8.489 2.365 

12:30:00 5.002 4.879 5.261 6.476 6.640 2.609 

13:00:00 5.893 6.014 5.566 3.382 8.469 1.131 

13:30:00 6.814 6.761 6.520 8.001 9.807 3.325 

14:00:00 5.372 5.786 5.128 6.880 8.803 2.176 

14:30:00 7.020 7.382 7.019 8.671 9.010 3.280 

15:00:00 6.883 7.377 7.198 8.355 8.861 2.737 

15:30:00 8.318 8.638 8.733 9.441 9.656 4.258 

16:00:00 2.781 3.082 3.166 4.001 4.876 1.457 

16:30:00 1.316 1.220 1.767 1.668 5.043 2.419 

17:00:00 5.912 4.618 5.937 3.520 5.507 5.095 

17:30:00 4.857 2.228 5.145 2.016 1.293 1.831 

18:00:00 11.673 0.436 11.214 0.424 0.000 0.597 

 

Table C.32: Root mean square errors August. 

Period Start Root Mean Square Errors August 

Gaussian Weibull Logistic Gamma Exponential Beta 

07:00:00 6.575 3.102 6.431 3.054 3.230 0.510 

07:30:00 1.782 1.610 1.583 1.813 1.280 1.611 

08:00:00 2.122 1.139 1.455 1.426 3.071 1.366 

08:30:00 4.038 4.007 4.829 4.488 4.818 1.256 

09:00:00 1.702 1.850 2.444 2.385 5.028 1.931 

09:30:00 2.686 3.080 2.889 3.859 4.648 2.800 

10:00:00 1.649 1.850 2.100 2.741 4.678 1.481 

10:30:00 3.511 3.757 3.953 4.549 5.555 0.631 

11:00:00 5.624 5.810 5.566 7.177 6.931 1.355 

11:30:00 3.539 3.474 3.881 4.431 5.633 1.602 

12:00:00 2.444 2.308 2.696 3.251 5.325 2.065 

12:30:00 4.953 4.902 5.636 5.864 6.720 2.416 

13:00:00 3.502 3.338 4.119 3.882 4.437 2.398 

13:30:00 5.299 5.152 6.027 5.765 6.584 3.355 

14:00:00 2.766 3.018 3.160 3.882 4.423 1.906 

14:30:00 1.645 1.584 2.297 2.155 5.236 2.268 

15:00:00 3.567 3.502 4.316 4.344 5.816 1.706 

15:30:00 3.999 4.037 4.722 4.638 5.524 1.865 

16:00:00 5.373 5.204 6.184 5.600 5.354 2.710 

16:30:00 3.589 2.884 4.178 3.171 2.488 1.700 

17:00:00 3.648 2.356 4.302 2.523 2.861 1.720 

17:30:00 3.379 2.241 3.726 2.180 2.592 2.350 

18:00:00 4.911 2.879 4.090 2.600 3.154 0.666 

Stellenbosch University  https://scholar.sun.ac.za



153 

 

Table C.33: Root mean square errors September. 

Period Start Root Mean Square Errors September 

Gaussian Weibull Logistic Gamma Exponential Beta 

06:00:00 4.829 0.671 4.336 0.586 0.026 0.435 

06:30:00 2.652 3.290 2.406 3.246 3.346 0.807 

07:00:00 2.855 2.387 3.421 2.716 2.815 1.028 

07:30:00 4.476 4.013 4.724 3.593 6.219 4.354 

08:00:00 1.263 0.891 1.759 1.651 4.108 0.638 

08:30:00 2.278 2.642 2.578 3.650 5.080 1.638 

09:00:00 4.201 4.419 6.362 7.443 6.043 2.250 

09:30:00 2.496 2.724 2.572 3.713 5.328 2.206 

10:00:00 3.802 3.768 3.864 4.796 6.282 2.661 

10:30:00 3.054 2.882 3.420 3.873 5.771 0.702 

11:00:00 7.683 7.610 7.570 8.794 10.905 3.094 

11:30:00 4.842 4.804 4.679 5.988 7.833 2.062 

12:00:00 3.898 4.440 3.691 5.477 7.384 1.520 

12:30:00 4.551 5.064 4.672 6.244 7.176 1.286 

13:00:00 5.219 5.851 5.096 6.873 7.649 0.868 

13:30:00 4.090 4.454 4.069 2.193 7.396 1.357 

14:00:00 4.798 5.342 4.669 6.443 7.853 2.109 

14:30:00 7.030 7.104 7.550 7.888 8.065 3.949 

15:00:00 7.876 7.830 8.556 8.469 8.407 5.198 

15:30:00 5.830 5.879 6.214 6.801 7.974 2.480 

16:00:00 5.345 5.657 5.684 6.575 7.773 1.565 

16:30:00 7.922 8.287 8.319 9.245 9.074 4.194 

17:00:00 2.537 2.075 3.263 2.409 4.169 1.930 

17:30:00 3.459 2.177 3.467 1.759 3.307 2.948 

18:00:00 1.288 1.270 1.890 2.005 4.198 0.751 

18:30:00 9.499 0.591 8.927 0.504 0.006 0.074 

 

 

Table C.34: Root mean square error October. 

Period Start Root Mean Square Errors October 

Gaussian Weibull Logistic Gamma Exponential Beta 

05:30:00 4.323 2.504 3.705 2.293 0.126 1.215 

06:00:00 1.346 0.862 1.144 1.480 3.169 0.820 

06:30:00 1.775 1.486 2.232 1.351 5.940 1.991 

07:00:00 3.749 4.053 2.947 4.124 6.597 0.274 

07:30:00 3.692 3.901 2.956 3.785 7.115 0.240 

08:00:00 1.547 1.202 1.737 5.387 7.074 0.956 

08:30:00 4.331 4.681 3.501 4.062 10.909 2.136 

09:00:00 3.225 3.481 2.633 3.063 10.376 1.401 

09:30:00 4.076 6.497 3.277 4.509 7.886 4.389 

10:00:00 5.134 5.666 7.498 7.675 13.006 0.129 

10:30:00 8.886 8.210 8.413 9.513 13.218 3.588 

11:00:00 4.501 4.836 3.699 4.263 14.143 0.266 

11:30:00 3.769 4.129 3.214 3.978 9.634 1.285 

12:00:00 7.710 7.181 2.418 3.185 9.489 2.896 

12:30:00 7.485 7.258 4.561 5.577 10.077 2.241 

13:00:00 3.149 3.394 2.490 3.000 9.911 1.243 

13:30:00 4.229 4.498 3.545 3.662 10.966 1.640 

14:00:00 3.552 3.900 2.781 3.417 9.962 2.425 

14:30:00 4.235 4.566 3.435 3.806 10.155 1.354 
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15:00:00 3.197 3.474 2.594 2.880 10.065 0.372 

15:30:00 3.959 4.345 3.146 4.422 9.527 4.175 

16:00:00 3.469 3.751 2.798 3.179 10.564 2.358 

16:30:00 3.429 3.762 2.690 3.275 9.997 2.193 

17:00:00 8.227 8.731 8.059 2.775 8.946 2.791 

17:30:00 3.463 3.993 4.064 5.157 6.394 2.512 

18:00:00 3.585 3.070 3.935 2.811 6.154 3.333 

18:30:00 2.708 0.867 2.888 1.174 2.733 0.703 

19:00:00 12.528 0.259 12.146 0.274 0.000 0 

 

 

Table C.35: Root mean square errors November. 

Period Start Root Mean Square Errors November 

Gaussian Weibull Logistic Gamma Exponential Beta 

05:00:00 6.028 3.768 6.018 3.716 3.800 1.059 

05:30:00 2.719 2.903 2.994 3.936 5.171 1.854 

06:00:00 4.420 4.622 4.219 5.753 7.146 0.595 

06:30:00 4.770 4.595 4.623 5.897 7.346 0.882 

07:00:00 2.998 3.262 2.374 2.907 9.407 2.639 

07:30:00 3.659 3.978 3.069 3.275 10.942 1.249 

08:00:00 4.872 8.604 3.992 4.593 11.486 2.730 

08:30:00 5.638 6.045 4.797 5.115 10.994 2.511 

09:00:00 3.982 4.331 3.281 3.626 10.911 2.104 

09:30:00 3.527 3.750 2.786 3.393 10.475 0.461 

10:00:00 4.189 4.467 3.360 4.036 9.999 2.772 

10:30:00 7.244 7.215 3.035 3.871 10.403 2.184 

11:00:00 4.184 4.549 3.429 3.825 10.423 1.541 

11:30:00 4.145 4.541 3.566 5.219 11.562 0.340 

12:00:00 6.149 6.508 5.495 5.751 11.024 0.088 

12:30:00 4.334 4.740 3.739 5.393 11.519 0.388 

13:00:00 3.294 3.575 2.594 3.109 10.454 3.361 

13:30:00 5.760 3.631 5.147 5.575 10.102 0.200 

14:00:00 4.441 4.782 3.728 4.060 10.727 2.199 

14:30:00 3.950 4.334 3.356 3.498 12.060 0.406 

15:00:00 4.481 4.833 3.797 3.903 11.027 1.589 

15:30:00 3.329 3.574 2.871 2.998 11.133 0.655 

16:00:00 3.192 3.477 2.585 2.913 11.004 2.852 

16:30:00 4.032 4.379 3.196 3.856 9.918 2.013 

17:00:00 7.472 7.856 7.107 3.975 9.429 2.719 

17:30:00 4.016 4.112 3.556 4.731 6.124 1.001 

18:00:00 1.713 1.926 2.307 2.711 4.459 0.321 

18:30:00 3.263 0.567 3.507 0.323 2.334 0.956 

19:00:00 3.867 1.748 3.133 1.628 1.936 0.725 

19:30:00 12.690 0.161 12.387 0.225 0.000 0 
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Table C.36: Root mean square errors December. 

Period Start Root Mean Square Errors December 

Gaussian Weibull Logistic Gamma Exponential Beta 

05:00:00 3.911 0.600 3.062 0.501 0.811 1.593 

05:30:00 1.971 1.668 1.352 0.978 6.701 1.989 

06:00:00 2.379 2.404 3.936 3.304 9.898 2.698 

06:30:00 4.012 3.707 3.426 4.197 10.136 3.712 

07:00:00 4.178 4.247 3.370 4.224 8.610 3.024 

07:30:00 3.424 3.198 2.731 3.543 8.520 2.093 

08:00:00 5.194 3.930 4.615 5.090 9.299 1.021 

08:30:00 5.093 3.807 4.522 5.005 9.476 0.950 

09:00:00 5.328 4.024 4.738 5.204 9.616 1.022 

09:30:00 5.697 4.271 5.080 5.519 10.317 1.011 

10:00:00 3.674 4.010 3.083 5.426 10.241 0.684 

10:30:00 3.375 3.688 2.787 2.975 9.504 0.821 

11:00:00 3.142 3.443 2.622 4.945 9.494 0.453 

11:30:00 4.222 4.591 3.627 5.470 9.834 1.458 

12:00:00 4.130 4.490 3.533 5.290 9.308 1.509 

12:30:00 3.702 4.014 3.028 3.258 11.594 2.768 

13:00:00 3.283 3.585 2.599 3.011 10.583 0.761 

13:30:00 3.445 3.750 2.804 3.050 10.600 2.456 

14:00:00 3.560 3.868 2.931 3.128 12.117 3.476 

14:30:00 3.968 4.296 3.195 3.578 11.595 3.164 

15:00:00 4.696 5.040 3.929 4.128 11.147 3.326 

15:30:00 4.480 4.817 3.642 4.058 10.589 1.334 

16:00:00 8.980 9.089 8.957 10.428 8.511 3.110 

16:30:00 5.898 5.264 2.747 4.123 8.888 3.983 

17:00:00 2.899 2.337 3.417 4.038 8.627 1.138 

17:30:00 5.602 5.153 5.677 6.759 7.303 1.968 

18:00:00 8.062 7.927 8.143 9.160 10.899 3.675 

18:30:00 6.027 5.920 6.293 7.150 9.122 2.196 

19:00:00 1.346 1.454 1.421 0.538 6.423 0.802 

19:30:00 2.527 2.293 2.399 2.435 3.395 2.979 
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C.2 HomeFlex Tariff Structure 

C.2.1 Statistical Parameters 

Table C.37 summarises the statistical parameters of generated energy for the calendar months January 

to December.  

 

Table C.37: Statistical parameters of generated energy for HomeFlex during calendar months January to December. 

Month 

 

 

 

Tariff period 

 

 

 

Total 

generated 

energy [kWh] 

 

Maximum 

generated 

energy 

[kWh] 

Average 

generated 

energy 

[kWh] 

Standard deviation of 

generated energy 

[kWh] 

 

January Evening off-peak 928.124 51.833 29.939 9.868 

Morning peak 18649.138 721.622 601.585 98.757 

Afternoon off-peak 76710.928 3057.285 2474.546 490.897 

Evening peak 2150.662 96.683 69.376 23.730 

February Evening off-peak 530.556 22.781 9.474 5.117 

Morning peak 27582.97 631.131 492.553 108.674 

Afternoon off-peak 142312.499 2886.213 2541.295 368.705 

Evening peak 2989.4 91.787 53.382 20.354 

March Evening off-peak 134.48 6.014 2.169 1.608 

Morning peak 23854.352 512.847 384.748 111.673 

Afternoon off-peak 129666.53 2642.864 2091.396 575.381 

Evening peak 773.605 44.913 12.478 10.957 

April Evening off-peak 9.605 1.365 0.160 0.287 

Morning peak 17326.23 419.768 288.771 78.623 

Afternoon off-peak 100491.517 2206.121 1674.859 360.117 

Evening peak 36.775 4.532 0.613 0.961 

May Evening off-peak 0 0 0 0 

Morning peak 10674.125 287.089 172.163 74.071 

Afternoon off-peak 75022.857 1715.226 1210.046 362.590 

Evening peak 0.008 0.008 0.000 0.001 

June Evening off-peak 0 0 0 0 

Morning peak 6804.936 221.033 113.416 52.440 

Afternoon off-peak 59898.826 1409.039 998.314 373.001 

Evening peak 0 0 0 0 

July Evening off-peak 0 0 0 0 

Morning peak 3926.049 202.648 126.647 47.525 

Afternoon off-peak 36385.093 1613.468 1173.713 335.971 

Evening peak 0.009 0.004 0.000 0.001 

August Evening off-peak 0 0 0 0 

Morning peak 5457.108 319.989 176.036 89.844 

Afternoon off-peak 40178.74 1985.81 1296.088 445.171 

Evening peak 3.342 0.504 0.108 0.154 

September Evening off-peak 117.752 15.931 3.925 4.203 

Morning peak 11475.276 646.949 382.509 136.537 

Afternoon off-peak 52710.297 2483.96 1757.010 529.242 

Evening peak 43.549 2.689 1.452 0.672 

October Evening off-peak 700.36 39.801 22.592 9.673 

Morning peak 17764.977 698.719 573.064 125.986 

Afternoon off-peak 68363.709 2663.233 2205.281 480.641 

Evening peak 223.537 14.5 7.211 3.540 
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November Evening off-peak 1524.634 68.347 50.821 15.391 

Morning peak 20263.817 813.77 675.461 170.760 

Afternoon off-peak 71971.848 2895.946 2399.062 572.430 

Evening peak 823.52 52.765 27.451 13.532 

December Evening off-peak 1760.366 92.064 56.786 11.676 

Morning peak 20403.49 811.489 658.177 137.119 

Afternoon off-peak 73325.706 2946.675 2365.345 576.335 

Evening peak 1839.298 78.237 59.332 17.609 

 

 

 

C.2.2 Chi-squared Test Results 

Table C.38 summarises the results of the Chi-squared test for HomeFlex during the calendar months 

of January to December. The Chi-squared test results for each tariff period are given with respect to 

all hypothesised distribution functions. 
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Table C.38: Chi-squared test values for HomeFlex during calendar months January to December 

Month Tariff Period Chi-squared test results 

Normal Weibull Logistic Gamma Exponential Beta 

Value NB Value NB Value NB Value NB Value NB Value NB 

January Evening off-peak 3.030 4 3.118 4 3.522 4 2.349 4 33.076 4 3.955 4 

Morning peak 9.707 4 7.466 4 15.782 3 17.397 3 141.553 2 7.078 4 

Afternoon off-peak 10.741 3 7.942 3 1.049 2 14.251 3 141.523 3 2.145 3 

Evening peak 16.205 3 16.960 3 15.639 3 1.559 2 73.803 4 0.867 4 

February Evening off-peak 5.516 5 1.529 5 4.537 4 1.702 5 13.760 5 2.455 5 

Morning peak 0.671 2 17.903 3 0.613 2 0.717 2 270.358 6 7.236 3 

Afternoon off-peak 2.150 2 2.491 2 1.623 2 2.016 2 543.093 6 6.145 3 

Evening peak 3.389 5 2.729 5 6.871 5 6.906 5 42.501 5 0.992 5 

March Evening off-peak 7.909 5 3.131 5 10.808 5 4.079 5 8.623 5 2.644 5 

Morning peak 1.128 2 1.231 2 1.224 2 1.318 2 222.942 6 9.735 3 

Afternoon off-peak 2.450 2 2.363 2 2.715 2 3.641 2 279.311 6 5.526 3 

Evening peak 11.190 3 4.279 4 10.143 3 4.370 4 2.645 4 0.244 5 

April Evening off-peak 9.257 2 3.260 2 8.102 2 1.952 2 0.000 1 0.720 3 

Morning peak 25.772 4 22.572 4 10.154 3 15.832 3 171.250 6 14.710 5 

Afternoon off-peak 8.736 3 7.535 4 9.343 3 14.417 3 194.247 5 6.464 5 

Evening peak 5.691 2 0.535 2 4.756 2 0.235 2 2.27E-05 1 1.094 3 

May Evening off-peak 0 1 0 0 0 0 0 0 0 0 0 0 

Morning peak 12.561 5 15.749 5 15.999 5 33.655 5 70.590 5 8.103 5 

Afternoon off-peak 14.326 3 11.685 4 14.854 3 26.456 3 130.722 5 2.959 5 

Evening peak 22.693 1 0.000 1 21.735 1 0.001 1 0.000 1 0 1 

June Evening off-peak 0 0 0 0 0.000 0 0 0 0 0 0 0 

Morning peak 17.965 5 20.891 5 22.546 5 30.136 5 71.113 5 14.009 5 

Afternoon off-peak 29.242 4 31.308 4 32.083 4 48.507 4 152.786 4 2.017 4 

Evening peak 0 0 0 0 0 0 0 0 0 0 0 0 

July Evening off-peak 0 0 0 0 0 0 0 0 0 0 0 0 

Morning peak 1.489 4 1.976 4 7.860 3 11.372 3 37.160 4 2.251 4 

Afternoon off-peak 3.430 3 2.896 3 0.777 2 0.369 2 89.304 4 0.017 3 

Evening peak 7.049 1 0.006 1 6.356 1 0.006 1 3.34E-11 1 0.038 2 

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



159 

 

August Evening off-peak 0 0 0 0 0 0 0 0 0 0 0 0 

Morning peak 7.827 4 8.012 4 11.126 4 11.604 4 22.139 4 3.306 4 

Afternoon off-peak 2.409 4 1.756 4 4.661 4 3.642 4 28.650 4 1.328 4 

Evening peak 2.741 2 4.404 2 2.105 2 3.279 2 4.338 2 0.174 3 

September Evening off-peak 1.371 2 4.087 2 1.914 2 3.880 2 4.092 2 3.519 4 

Morning peak 2.943 4 2.940 4 4.413 4 6.194 4 33.857 4 1.275 4 

Afternoon off-peak 12.528 4 11.024 4 16.082 4 17.855 4 70.074 4 2.597 4 

Evening peak 2.620 4 2.303 4 4.536 4 3.600 4 15.987 4 1.403 4 

October Evening off-peak 1.960 4 2.064 4 3.341 4 3.401 4 23.435 4 1.535 4 

Morning peak 2.182 2 2.398 2 1.236 2 2.164 2 141.752 4 2.552 3 

Afternoon off-peak 10.105 3 8.288 3 0.993 2 1.759 2 137.193 3 1.080 3 

Evening peak 1.917 4 1.470 4 3.608 4 2.542 4 13.888 4 0.955 4 

November Evening off-peak 4.822 3 4.739 3 4.328 3 8.190 3 78.866 4 0.340 4 

Morning peak 2.549 2 3.066 2 1.596 2 2.206 2 203.385 4 1.073 3 

Afternoon off-peak 2.057 2 2.615 2 1.398 2 1.514 2 158.843 4 0.693 2 

Evening peak 2.768 4 2.490 4 4.807 4 3.938 4 14.761 4 1.280 4 

December Evening off-peak 2.162 3 2.452 3 1.188 3 1.966 3 70.234 4 2.707 3 

Morning peak 1.032 2 1.341 2 0.662 2 0.777 2 177.993 5 0.640 2 

Afternoon off-peak 1.855 2 2.313 2 1.207 2 1.385 2 147.276 5 1.021 2 

Evening peak 14.209 3 13.429 3 14.693 3 18.999 3 100.056 3 3.190 3 
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C.2.3 Root Mean Square Errors 

Table C.39 summarises the results of the RMSE test for HomeFlex during the calendar months of 

January to December. 

Table C.39: Root mean square errors for HomeFlex during calendar months January to December. 

Month Tariff period Root Mean Square Error 

Normal Weibull Logistic Gamma Exponential Beta 

January Evening off-peak 2.547 2.616 2.450 1.844 5.864 3.090 

Morning peak 3.520 2.902 7.453 7.951 14.898 2.803 

Afternoon off-peak 6.405 5.566 3.183 7.266 11.207 2.416 

Evening peak 7.974 8.185 7.713 3.761 7.805 0.989 

February Evening off-peak 3.353 1.599 2.620 1.442 6.204 2.477 

Morning peak 3.734 11.547 2.829 3.737 12.591 6.918 

Afternoon off-peak 6.636 7.130 5.570 6.245 14.049 4.705 

Evening peak 2.569 2.450 3.514 3.742 6.539 1.401 

March Evening off-peak 3.718 2.099 4.196 2.485 4.543 2.605 

Morning peak 4.721 5.196 3.714 4.452 13.477 7.528 

Afternoon off-peak 5.962 6.504 4.952 5.360 14.628 5.043 

Evening peak 9.094 2.331 8.175 2.238 1.356 0.659 

April Evening off-peak 10.382 2.323 9.517 1.990 0.012 1.183 

Morning peak 7.751 7.742 8.510 10.523 11.208 5.710 

Afternoon off-peak 8.296 4.379 8.314 10.296 12.410 4.575 

Evening peak 10.148 0.908 9.183 0.631 0.037 1.933 

May Evening off-peak 0 0 0 0 0 0 

Morning peak 5.079 5.887 5.324 7.369 9.735 4.783 

Afternoon off-peak 10.521 6.489 10.343 13.423 11.808 1.846 

Evening peak 27.842 0.080 27.417 0.231 0 0 

June Evening off-peak 0 0 0 0 0 0 

Morning peak 6.373 6.972 7.004 8.225 9.154 5.743 

Afternoon off-peak 10.617 10.853 11.116 12.389 14.730 2.739 

Evening peak 0 0 0 0 0 0 

July Evening off-peak 0 0 0 0 0 0 

Morning peak 1.758 2.114 5.453 6.321 6.255 2.346 

Afternoon off-peak 3.700 3.488 1.571 1.708 8.031 0.285 

Evening peak 11.673 0.436 11.214 0.424 0.000 0.597 

August Evening off-peak 0 0 0 0 0 0 

Morning peak 3.468 3.888 3.872 4.679 4.596 2.462 

Afternoon off-peak 1.713 1.513 2.307 2.224 4.521 1.331 

Evening peak 4.911 2.879 4.090 2.600 3.154 0.666 

September Evening off-peak 2.737 3.263 2.430 3.208 3.327 1.966 

Morning peak 2.352 2.466 2.535 3.545 5.520 1.721 

Afternoon off-peak 4.530 4.317 5.001 5.150 6.190 2.102 

Evening peak 2.092 1.738 2.553 1.912 4.259 1.713 

October Evening off-peak 1.848 1.689 2.354 1.973 5.396 1.640 

Morning peak 4.508 4.693 3.604 4.475 8.911 2.774 

Afternoon off-peak 6.078 5.601 3.129 4.080 11.167 1.153 

Evening peak 1.817 1.317 2.228 1.605 4.920 1.476 

November Evening off-peak 4.372 4.330 4.139 5.512 7.138 0.524 

Morning peak 4.886 5.258 4.024 4.596 10.957 1.454 

Afternoon off-peak 4.558 4.976 3.907 4.082 10.617 1.491 

Evening peak 2.152 1.763 2.628 2.014 4.442 1.636 
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December Evening off-peak 2.568 2.774 1.783 2.431 8.050 2.940 

Morning peak 3.331 3.593 2.797 3.066 8.891 1.400 

Afternoon off-peak 4.230 4.581 3.565 3.851 8.451 1.872 

Evening peak 7.056 6.888 7.047 8.144 10.293 2.655 
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