# The development of a DNA vaccine against *Mycoplasma nasistruthionis* sp. nov. for use in ostriches

by

Martha Wium

Dissertation presented for the degree of Doctor of Philosophy (Biochemistry) in the Faculty of Science at Stellenbosch University



Supervisor: Dr. Annelise Botes Co-supervisor: Prof. Dirk U. Bellstedt

December 2015

## Declaration

By submitting this thesis/dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

This dissertation includes one original paper published in peer-reviewed journals or books and two unpublished publications. The development and writing of the papers (published and unpublished) were the principal responsibility of myself and, for each of the cases where this is not the case, a declaration is included in the dissertation indicating the nature and extent of the contributions of co-authors.

Martha Wium

December 2015

Copyright © 2015 Stellenbosch University

All rights reserved

## Summary

*Mycoplasma nasistruthionis* sp. nov. str. Ms03 (Ms03) is one of three *Mycoplasma* species that were identified from ostriches. Mycoplasmas infections have been implicated in ostrich chick mortalities, growth retardation and downgrading of ostrich carcasses. Currently there is no vaccine available for the treatment of mycoplasmosis in ostriches. This study investigated the development of DNA vaccines against Ms03 infections in ostriches. To this end, the Ms03 genome was sequenced and annotated. The vaccine candidate gene, *oppA*, was identified within the genome sequence and characterized before DNA vaccines containing the *oppA* were developed and tested.

The genome of Ms03 was sequenced and the resulting 172 contigs were annotated. This dissertation presents the first Ms03 draft genome and annotation which contributed to the understanding of Ms03 as a miniature genetically independent organism. In Ms03, genome replication, cell division, RNA transcription, protein translation and glycolysis resemble that of the closely related *Mycoplasma synoviae* 53. Purine and pyrimidine metabolism was incomplete and *de novo* synthesis thereof was not possible. Amino acid synthesis in Ms03 was mostly absent and only the genes that convert aspartate to asparagine and glycine to serine were found. More importers than exporters were annotated owing to the lack of synthesis pathways in Ms03, which is typical for mycoplasmas that have parasitic life styles. Two oligopeptide permease (*opp*) operons were annotated within the Ms03 genome.

The potential of the *oppA* as a vaccine candidate gene was evaluated by investigating the need for a substrate-binding domain (OppA) as part of the OppBCDF transporter within *Mycoplasma* species. An *oppA* homologue could be identified for each *oppBCDF* operon in all species and therefore must play an essential role in oligopeptide transport. All mycoplasmas (except for hemoplasma) had one, two or three *opp* operons that could be divided into three types (Type A, B and C). Each type had unique InterPro and MEME domains and motifs which together with the phylogenetic analysis suggest unique roles in their survival under different conditions. Ms03 had a Type A and a Type B *opp* operon, the Type A *oppA* was used as vaccine candidate gene.

The Type A *oppA* was cloned and site-directed mutagenesis was used for codon correction before the mutated gene was sub-cloned into three DNA vaccine vectors. The three DNA vaccines (pCI-neo\_*oppA*, VR1012\_*oppA* and VR1020\_*oppA*) were used to vaccinate ostriches and the OppA-antibody response was analysed by ELISA. The VR1020\_*oppA* and pCI-neo\_*oppA* constructs elicited a primary immune response in ostriches, indicating that the OppA protein was expressed *in vivo* and was immunogenic. This can therefore be viewed as the first step in the development of a DNA vaccine for the control of mycoplasma infections in ostriches.

III

## Opsomming

*Mycoplasma nasistruthionis* sp. nov. str. Ms03 (Ms03) is een van drie mikoplasma spesies wat volstruise infekteer. Mikoplasma-infeksies in volstruise veroorsaak kuiken vrektes, vertraagde groei en afgradering van volstruis karkasse. Daar is tans geen geregistreerde mikoplasma entstof beskikbaar vir gebruik in volstruise nie. Hierdie studie het die ontwikkeling van DNS-entstowwe teen Ms03-infeksies in volstruise ondersoek. Vir hierdie doel was die Ms03-genoomvolgorde bepaal en geannoteer. Die entstofkandidaat-geen, *oppA*, was geïdentifiseer in die genoomvolgorde en gekarakteriseer voordat DNS-entstowwe (wat die *oppA*-geen bevat) ontwikkel en getoets is.

Die Ms03-genoomvolgorde was bepaal en die gegenereerde 172 aaneenlopende volgordes was geannoteer. Hierdie proefskrif bied die eerste voorlopige volgorde en annotering van die Ms03-genoom wat bygedra het tot die kennis van Ms03 as 'n miniatuur geneties onafhanklike organisme. Genoom-replikasie, seldeling, RNS-transkripsie, proteïen-translasie en glikolise in Ms03 stem ooreen met dié prosesse in die naverwante *Mycoplasma synoviae* 53. Die purien en pirimidien metabolisme was onvolledig en *de novo* sintese daarvan was nie moontlik in Ms03 nie. Aminosuursintese in Ms03 was meestal afwesig en net die gene wat aspartaat omskep na asparagien en glisien na serien was gevind in die annoteerde genoom. Meer invoerders as uitvoerders was geannoteer, wat dui op die gebrek aan sintesepadweë in Ms03. Dit is tipies van mikoplasmas wat 'n parasitiese lewensstyle het. Twee oligopeptied-permeases (*opp*) operons was gevind in die Ms03-genoom.

Die potensiaal van die *oppA*-geen as 'n entstofkandidaat-geen was geëvalueer deur die behoefte van 'n substraatbindingsdomein (OppA) as deel van die OppBCDF-vervoerder binne mikoplasma spesies te ondersoek. 'n Homoloog van die *oppA*-geen kon geïdentifiseer word vir elke *oppBCDF*-operon in al die spesies en behoort daarom 'n noodsaaklike rol te speel in die vervoer van oligopeptiede. Alle mikoplasmas (behalwe vir hemoplasmas) het een, twee of drie *opp*-operons, wat verdeel kan word in drie tipes (Tipe A, B en C). Elke tipe het unieke InterPro en MEME domeine en motiewe wat saam met die filogenetiese ontleding daarop dui dat hulle unieke rolle in oorlewing onder verskillende omstandighede speel. Ms03 het 'n Tipe A en Tipe B *opp*-operon, die Tipe A *oppA* is gebruik as entstofkandidaat-geen.

Die Tipe A *oppA*-geen was gekloneer en teikengerigte-mutagenese was gebruik vir kodonregstellings voordat die gemuteerde geen in drie DNS-entstof vektore gesubkloneer was. Die drie DNS-entstowwe (pCI-neo\_*oppA*, VR1012\_*oppA* en VR1020\_*oppA*) was gebruik om volstruise in te ent en die OppA-teenliggaamsreaksie was geanaliseer deur ELISA. Inenting met die VR1020\_*oppA* en pCI-neo\_*oppA* entstowwe het tot 'n primêre immuniteitsreaksie in volstruise gelei. Dit dui daarop dat die OppA proteïen *in vivo* uitgedruk en immunogenies was. Dit kan beskou word as die eerste stap in die ontwikkeling van 'n DNS-entstof vir die beheer van mikoplasma-infeksies in volstruise.

## Acknowledgements

I would like to express my gratitude for the contributions the following people and institutes had made to this study:

- Dr. Annelise Botes, my supervisor for the continuous support and leadership.
- Prof. Dirk U. Bellstedt, my co-supervisor for advice and support.
- All the past and present members of the Bellstedt and Botes laboratories (2011-2015) for advice, support and friendship.
- Department of Biochemistry at the University of Stellenbosch.
- Ostrich Business Chamber for financial support.
- Technology and Human Resources for Industry Programme (THRIP) for financial support.

Last but not the least, I would like to thank my parents Manie and Cornelia Wium and my siblings Nel-mari, Howie, Eduard and Anneli as well as Stefan Opperman and all my friends for supporting me throughout writing this dissertation and my life in general.

## Abbreviations

| А         | Adenine                                                                    |
|-----------|----------------------------------------------------------------------------|
| A+T       | Adenine and thymine                                                        |
| A-tailing | Adenylation of PCR products                                                |
| Ab        | Antibody                                                                   |
| ABC       | ATP-binding cassette                                                       |
| ABTS      | 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)                     |
| ADP       | Adenosine diphosphate                                                      |
| Ag        | Antigen                                                                    |
| AI        | Avian influenza                                                            |
| AmiD      | Amino acid transport and metabolism/Inorganic ion transport and metabolism |
| AMP       | Adenosine monophosphate                                                    |
| ANOVA     | Analysis of variance                                                       |
| APCs      | Antigen presenting cells                                                   |
| arcA      | Arginine deiminase                                                         |
| arcB      | Ornithine carbamoyltransferase                                             |
| arcC      | Carbamate kinase                                                           |
| ATP       | Adenosine triphosphate                                                     |
| ATPase    | Adenosine triphosphatase                                                   |
| BER       | Blast Extend Repraze                                                       |
| BGH       | Bovine growth hormone                                                      |
| BLAST     | Basic local alignment search tool                                          |
| BLOSUM62  | Blocks substitution matrix 62                                              |
| bp        | Base pairs                                                                 |
| BSA       | Bovine serum albumin                                                       |
| С         | Cytosine                                                                   |
| CAF       | Central Analytical Facility                                                |
| CARDS     | Community-acquired respiratory distress syndrome                           |
| CATH      | Class architecture topology homology                                       |
| CDP       | Cytidine diphosphate                                                       |
| CMP       | Cytidine monophosphate                                                     |
| CMV       | Cytomegalovirus                                                            |
| CoA       | Coenzyme A                                                                 |
| COGs      | Categorization of orthologs                                                |
| Contigs   | Contiguous sequences                                                       |
| CTP       | Cytidine triphosphate                                                      |
| dADP      | Deoxyadenosine diphosphate                                                 |
| DAFF      | Department of Agriculture, Forestry and Fisheries                          |
| dAMP      | Deoxyadenosine monophosphate                                               |
| dATP      | Deoxyadenosine triphosphate                                                |
| DC        | Dendritic cells                                                            |
| dCDP      | Deoxycytidine diphosphate                                                  |
| dCMP      | Deoxycytidine monophosphate                                                |
|           |                                                                            |

| dCTP        | Deoxycytidine triphosphate                                |
|-------------|-----------------------------------------------------------|
| dGDP        | Deoxyguanosine diphosphate                                |
| dGMP        | Deoxyguanosine monophosphate                              |
| dGTP        | Deoxyguanosine triphosphate                               |
| DHAP        | Dihydroxyacetone phosphate                                |
| DIVA        | Differentiate infected from vaccinated animals            |
| DNA         | Deoxyribonucleic acid                                     |
| dNTP        | Deoxynucleotide triphosphate                              |
| Dpp         | Dipeptide permease                                        |
| dTDP        | Deoxythymidine diphosphate                                |
| dTMP        | Deoxythymidine monophosphate                              |
| dTTP        | Deoxythymidine triphosphate                               |
| EC          | Enzyme commission                                         |
| ECF         | Energy-coupling factor                                    |
| ecto-ATPase | Ecto-adenosine triphosphatase                             |
| EDTA        | Ethylenediaminetetraacetic acid                           |
| EI          | Enzyme I                                                  |
| EII         | Enzyme II                                                 |
| ELISA       | Enzyme-linked immunosorbent assay                         |
| emPCR       | Emulsion-based clonal amplification                       |
| Fab         | Fragment antigen-binding                                  |
| Fc          | Fragment crystallizable region                            |
| FIGfam      | Fellowship for Interpretation of Genomes protein families |
| G           | Guanine                                                   |
| G+C         | Guanine and cytosine                                      |
| G3P         | Glycerol-3-phosphate                                      |
| gDNA        | Genomic DNA                                               |
| GDP         | Guanosine diphosphate                                     |
| GMP         | Guanosine monophosphate                                   |
| GO          | Gene ontology                                             |
| GS FLX      | Genome Sequencer FLX                                      |
| GST         | Glutathione S-transferase                                 |
| GTP         | Guanosine triphosphate                                    |
| GUU         | Mycoplasma iowae 695                                      |
| $H_2O_2$    | Hydrogen peroxide                                         |
| HAMAP       | High-quality automated and manual annotation of proteins  |
| HGT         | Horizontal gene transfer                                  |
| HMM         | Hidden Markov Model                                       |
| HPr         | Histidine-containing phospho-carrier protein              |
| HPR         | Streptavidin horseradish peroxidase                       |
| ICE         | Integrated conjugative elements                           |
| id          | Intradermal                                               |
| IDT         | Integrated DNA technologies                               |
|             |                                                           |

| IE       | Immediate-early                                             |
|----------|-------------------------------------------------------------|
| IgA      | Immunoglobulin A                                            |
| lgG      | Immunoglobulin G                                            |
| IGS      | Institute for Genome Sciences                               |
| Im       | Intramuscular                                               |
| IMP      | Inosine monophosphate                                       |
| InterPro | Integrated resource of protein domains and functional sites |
| IPTG     | Isopropyl β-D-1-thiogalactopyranoside                       |
| IS       | Insertion sequences                                         |
| К        | Keto nucleotides                                            |
| kbp      | Kilobase pairs                                              |
| kDa      | Kilodalton                                                  |
| KEGG     | Kyoto Encyclopedia of Genes and Genomes                     |
| LB       | Luria-Bertani                                               |
| LDS      | Least significant differences                               |
| Μ        | Amino nucleotides                                           |
| mA       | Milliampere                                                 |
| MAG      | Mycoplasma agalactiae PG2                                   |
| MAGa     | Mycoplasma agalactiae                                       |
| MALL     | Mycoplasma alligatoris A21JP2                               |
| MARTH    | Mycoplasma arthritidis 158L3-1                              |
| Mb       | Megabases                                                   |
| MBOVPG45 | Mycoplasma bovis PG45                                       |
| MCAP     | Mycoplasma capricolum subsp. capricolum ATCC27343           |
| MCJ      | Mycoplasma conjunctivae HRC/581                             |
| MCRO     | Mycoplasma crocodyli MP145                                  |
| MDR      | Multidrug resistance                                        |
| MEME     | Multiple expectation maximization for motif elicitation     |
| MFE      | Mycoplasma fermentans JER                                   |
| MfeM64YM | Mycoplasma fermentans M64                                   |
| MG       | Mycoplasma genitalium G37                                   |
| MGA      | Mycoplasma gallisepticum str. R(low)                        |
| MGAH     | Mycoplasma gallisepticum str. R(high)                       |
| MGF      | <i>Mycoplasma gallisepticum</i> str. F                      |
| MHC I    | Major histocompatibility complex class I                    |
| MHC II   | Major histocompatibility complex class II                   |
| MHJ      | Mycoplasma hyopneumoniae J                                  |
| Mho      | Mycoplasma hominis ATCC 23114                               |
| mhp      | Mycoplasma hyopneumoniae 232                                |
| MHP7448  | Mycoplasma hyopneumoniae 7448                               |
| MHR      | Mycoplasma hyorhinis HUB-1                                  |
| MLC      | Mycoplasma mycoides subsp. capri LC str. 95010              |
| MMB      | <i>Mycoplasma bovis</i> Hubei-1                             |
|          |                                                             |

| MMOB               | Mycoplasma mobile 163K                                         |
|--------------------|----------------------------------------------------------------|
| MPN                | Mycoplasma pneumoniae M129                                     |
| MPNA               | Mycoplasma pneumoniae 309                                      |
| MPUT               | Mycoplasma putrefaciens KS1                                    |
| Ms01               | Mycoplasma struthionis sp. nov. str. Ms01                      |
| Ms02               | <i>Mycoplasma</i> sp. Ms02                                     |
| Ms03               | Mycoplasma nasistruthionis sp. nov. str. Ms03                  |
| MS53               | Mycoplasma synoviae 53                                         |
| MSB                | Mycoplasma leachii PG50                                        |
| MSC                | Mycoplasma mycoides subsp. mycoides SC str. PG1                |
| MYPE               | Mycoplasma penetrans HF-2                                      |
| MYPU               | Mycoplasma pulmonis UAB CTIP                                   |
| NADPH              | Nicotinamide adenine dinucleotide phosphate                    |
| NCBI               | National Center for Biotechnology Information                  |
| NGS                | Next-generation sequencing                                     |
| nptll              | Neomycin phosphotransferase II                                 |
| nt                 | Nucleotides                                                    |
| OD                 | Optical density                                                |
| Орр                | Oligopeptide permease                                          |
| ОррА               | Oligopeptide ABC transporter substrate-binding domain          |
| ОррВ               | Oligopeptide ABC transporter subunit, membrane component, B    |
| ОррС               | Oligopeptide ABC transporter subunit, membrane component, C    |
| ОррD               | Oligopeptide ABC transporter subunit, ATP-binding component, D |
| OppF               | Oligopeptide ABC transporter subunit, ATP-binding component, F |
| ORF                | Open reading frame                                             |
| ori                | Origin of replication                                          |
| PANTHER            | Protein analysis through evolutionary relationships            |
| PAUP*              | Phylogenetic analysis using parsimony (* and other methods)    |
| PBS                | Phosphate-buffered saline                                      |
| PCR                | Polymerase chain reactions                                     |
| pDNA               | Plasmid DNA                                                    |
| PEP                | Phosphoenolpyruvate                                            |
| Pfam               | Protein families                                               |
| PfamB              | Protein families (automatically generated)                     |
| pFunc              | Prokaryotic protein functional prediction                      |
| pgk                | Phoshoglycerate kinase                                         |
| рН                 | Decimal cologarithm of hydrogen ions                           |
| PIRSF              | Protein information resource superfamily                       |
| PRED-LIPO          | Prediction of lipoprotein signal peptides                      |
| ProDom             | Protein domains                                                |
| PROKAR_LIPOPROTEIN | Prokaryotic lipoprotein                                        |
| PSI-BLAST          | Position-specific iterative BLAST                              |
| PSORTb             | Protein subcellular localization prediction of bacteria        |
|                    |                                                                |

| PTS            | Phosphoenolpyruvate-dependent sugar phosphotransferase transport system              |
|----------------|--------------------------------------------------------------------------------------|
| R              | Purine                                                                               |
| RAST           | Rapid Annotations using Subsystem Technology                                         |
| RAxML-HPC2     | Randomized axelerated maximum likelihood for high performance computing 2            |
| ROS            | Reactive oxygen species                                                              |
| rRNA           | Ribosomal RNA                                                                        |
| SAP            | Shrimp alkaline phosphatase                                                          |
| SCOP           | Structural classification of protein                                                 |
| SDM            | Site-directed mutagenesis                                                            |
| SDS-PAGE       | Sodium dodecyl sulfate polyacrylamide gel electrophoresis                            |
| SignalP        | Signal peptide                                                                       |
| SMART          | Simple modular architecture research tool                                            |
| smc            | Structural maintenance of chromosome proteins                                        |
| sp. nov.       | Species nova                                                                         |
| SSRs           | Simple sequence repeats                                                              |
| str.           | Strain                                                                               |
| SV40           | Simian virus 40                                                                      |
| subsp.         | Subspecies                                                                           |
| TAIL           | Thermal asymmetric interlaced                                                        |
| tBLASTn        | BLAST search in a translated nucleotide database using a protein<br>query            |
| tBLASTx        | BLAST search in a translated nucleotide database using a translated nucleotide query |
| TBR            | Tree bisection/reconnection                                                          |
| T-Coffee       | Tree-based consistency objective function for alignment evaluation                   |
| T <sub>m</sub> | Melting temperature                                                                  |
| ТМНММ          | Transmembrane Protein Topology with a Hidden Markov Model                            |
| TRIS-HCI       | 2-Amino-2-hydroxymethyl-propane-1,3-diol hydrochloride                               |
| tRNA           | Transfer ribonucleic acid                                                            |
| TPA            | Tissue plasminogen activator                                                         |
| U              | Uracil                                                                               |
| UDP            | Uridine diphosphate                                                                  |
| UMP            | Uridine monophosphate                                                                |
| UTP            | Uridine triphosphate                                                                 |
| X-Gal          | 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside                                     |
| XSEDE          | Extreme science and engineering discovery environment                                |
| Y              | Pyrimidine                                                                           |

# Table of Contents

| Chapter 1 | Introduction                                                                                                                                                                                                  | 1  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Chapter 2 | The mycoplasma genome: Implication of DNA vaccine design                                                                                                                                                      | 4  |
| 2.1       | Introduction: Mycoplasmas in the genomic era                                                                                                                                                                  | 4  |
| 2.2       | Organization of mycoplasma genomes                                                                                                                                                                            | 6  |
| 2.3       | Essential pathways in mycoplasma                                                                                                                                                                              | 10 |
| 2.3.1     | Genome replication and cell division                                                                                                                                                                          | 11 |
| 2.3.2     | RNA transcription and protein translation                                                                                                                                                                     | 12 |
| 2.3.3     | Energy metabolism                                                                                                                                                                                             | 13 |
| 2.3.4     | Acquiring the necessary building blocks to maintain life                                                                                                                                                      | 13 |
| 2.4       | Adaption towards living as a parasite                                                                                                                                                                         | 14 |
| 2.4.1     | Colonization                                                                                                                                                                                                  | 15 |
| 2.4.2     | Avoiding the host's immune system: Antigenic, size and phase variation                                                                                                                                        | 15 |
| 2.4.3     | Pathogenesis                                                                                                                                                                                                  | 16 |
| 2.5       | Mycoplasma infections in ostriches                                                                                                                                                                            | 19 |
| 2.6       | Controlling mycoplasma infections                                                                                                                                                                             | 19 |
| 2.7       | Live attenuated, inactivated whole organism and protein subunit vaccines                                                                                                                                      | 20 |
| 2.8       | DNA vaccines                                                                                                                                                                                                  | 24 |
| 2.8.1     | Routes of immunization                                                                                                                                                                                        | 26 |
| 2.8.2     | The journey into the cell nucleus                                                                                                                                                                             | 27 |
| 2.8.3     | How does the DNA vaccine result in immunity?                                                                                                                                                                  | 29 |
| 2.8.4     | DNA vaccines and safety                                                                                                                                                                                       | 31 |
| 2.8.5     | The choice of DNA vaccine candidate gene                                                                                                                                                                      | 31 |
| 2.9       | DNA vaccine strategies for ostrich-infecting mycoplamas                                                                                                                                                       | 32 |
| 2.9.1     | Codon usage in <i>Mycoplasma</i> species                                                                                                                                                                      | 32 |
| 2.9.2     | DNA vaccine vectors for use in ostrich                                                                                                                                                                        | 33 |
| 2.9.3     | DNA vaccine candidate gene, oppA                                                                                                                                                                              | 34 |
| Chapter 3 | The sequencing and annotation of the <i>Mycoplasma</i><br><i>nasistruthionis</i> sp. nov. str. Ms03 genome and the identification and<br>characterization of the proposed vaccine candidate gene, <i>oppA</i> | 36 |
| 3.1       | Introduction                                                                                                                                                                                                  |    |
| 3.2       | Material and methods                                                                                                                                                                                          |    |
| 3.2.1     | DNA isolation and confirming the identity of Ms03 genomic DNA                                                                                                                                                 |    |
| 3.2.2     | Ms03 genome sequencing and assembly                                                                                                                                                                           |    |
| 3.2.2     | IGS and RAST annotations and comparison of the annotations for                                                                                                                                                | 42 |
| 5.2.5     | the Ms03 genome                                                                                                                                                                                               |    |
| 3.2.4     | Identification of the Ms03 origin of replication                                                                                                                                                              |    |
| 3.2.5     | Identification and bioinformatic characterization of the Ms03 opp operon                                                                                                                                      |    |
| 3.3       | Results and discussion                                                                                                                                                                                        |    |
| 3.3.1     | DNA isolation and confirming the identity of Ms03 genomic DNA                                                                                                                                                 | 44 |

| 3.3.2                                                                                        | Ms03 genome sequencing and assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                 |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 3.3.3                                                                                        | IGS and RAST annotations of the Ms03 draft genome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                                                                 |
| 3.3.4                                                                                        | Comparison of IGS and RAST annotation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                                                                 |
| 3.3.4.1                                                                                      | Genes annotated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 49                                                                 |
| 3.3.4.2                                                                                      | Functional categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50                                                                 |
| 3.3.5                                                                                        | Metabolic overview of Ms03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52                                                                 |
| 3.3.5.1                                                                                      | Genome replication and cell division in Ms03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52                                                                 |
| 3.3.5.2                                                                                      | RNA transcription and protein translation in Ms03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61                                                                 |
| 3.3.5.3                                                                                      | Energy metabolism in Ms03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67                                                                 |
| 3.3.5.4                                                                                      | Acquiring the necessary building blocks to maintain life: Transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72                                                                 |
| 3.3.6                                                                                        | Identification and bioinformatic characterization of the Ms03 opp operon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77                                                                 |
| 3.4                                                                                          | Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83                                                                 |
| Chapter 4                                                                                    | The identification of <i>oppA</i> gene homologues as part of the oligopeptide transport system in mycoplasmas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85                                                                 |
| 4.1                                                                                          | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85                                                                 |
| 4.2                                                                                          | Phylogenetic analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86                                                                 |
| 4.3                                                                                          | Bioinformatic analysis of annotated and newly postulated <i>oppA</i> homologues genes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88                                                                 |
| 4.4                                                                                          | The identification of <i>oppA</i> gene homologues as part of the oligopeptide transport system in mycoplasmas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89                                                                 |
| 4.4.1                                                                                        | Contributions of co-authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89                                                                 |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                    |
| Chapter 5                                                                                    | Evaluation of the <i>Mycoplasma nasistruthionis</i> sp. nov. str. Ms03<br>oligopeptide permease substrate-binding domain (OppA) as a DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100                                                                |
|                                                                                              | oligopeptide permease substrate-binding domain (OppA) as a DNA vaccine candidate in ostriches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |
| 5.1                                                                                          | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches<br>Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                |
| 5.1<br>5.2                                                                                   | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches<br>Introduction<br>Primer design                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100<br>101                                                         |
| 5.1                                                                                          | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches<br>Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100<br>101<br>101                                                  |
| 5.1<br>5.2<br>5.3                                                                            | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches<br>Introduction<br>Primer design<br>Aspects of the vaccine trial<br>Evaluation of the <i>Mycoplasma nasistruthionis</i> sp. nov. str. Ms03<br>oligopeptide permease substrate-binding domain (OppA) as a DNA                                                                                                                                                                                                                                                                                                   | 100<br>101<br>101<br>103                                           |
| 5.1<br>5.2<br>5.3<br>5.4                                                                     | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches<br>Introduction<br>Primer design<br>Aspects of the vaccine trial<br>Evaluation of the <i>Mycoplasma nasistruthionis</i> sp. nov. str. Ms03<br>oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches                                                                                                                                                                                                                                                                 | 100<br>101<br>101<br>103<br>103                                    |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.4.1<br><b>Chapter 6</b>                                        | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostrichesIntroductionPrimer designAspects of the vaccine trialEvaluation of the Mycoplasma nasistruthionis sp. nov. str. Ms03<br>oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostrichesContributions of co-authors                                                                                                                                                                                                                                                             | 100<br>101<br>101<br>103<br>103<br><b>139</b>                      |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.4.1<br><b>Chapter 6</b>                                        | oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches.<br>Introduction<br>Primer design.<br>Aspects of the vaccine trial<br>Evaluation of the <i>Mycoplasma nasistruthionis</i> sp. nov. str. Ms03<br>oligopeptide permease substrate-binding domain (OppA) as a DNA<br>vaccine candidate in ostriches<br>Contributions of co-authors                                                                                                                                                                                                                                | 100<br>101<br>101<br>103<br>103<br>139<br>126                      |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.4.1<br><b>Chapter 6</b><br><b>Reference list</b>               | oligopeptide permease substrate-binding domain (OppA) as a DNA vaccine candidate in ostriches         Introduction         Primer design         Aspects of the vaccine trial         Evaluation of the Mycoplasma nasistruthionis sp. nov. str. Ms03         oligopeptide permease substrate-binding domain (OppA) as a DNA         vaccine candidate in ostriches         Contributions of co-authors         Conclusion                                                                                                                                                                                      | 100<br>101<br>101<br>103<br>103<br>139<br>126                      |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.4.1<br>Chapter 6<br>Reference list<br>Appendix 1               | oligopeptide permease substrate-binding domain (OppA) as a DNA vaccine candidate in ostriches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100<br>101<br>101<br>103<br>103<br>139<br>126<br>139<br>142        |
| 5.1<br>5.2<br>5.3<br>5.4<br>5.4.1<br>Chapter 6<br>Reference list<br>Appendix 1<br>Appendix 2 | oligopeptide permease substrate-binding domain (OppA) as a DNA         vaccine candidate in ostriches         Introduction         Primer design         Aspects of the vaccine trial         Evaluation of the Mycoplasma nasistruthionis sp. nov. str. Ms03         oligopeptide permease substrate-binding domain (OppA) as a DNA         vaccine candidate in ostriches         Contributions of co-authors         Conclusion         A inventory of Mollicutes species with an available complete genome sequence and their genome characteristics         Supplementary tables and figures for Chapter 3 | 100<br>101<br>101<br>103<br>103<br>139<br>126<br>139<br>142<br>142 |

Chapter 1 Introduction

## Chapter 1 Introduction

*Struthio camelus,* commonly known as the ostrich, is the largest living flightless bird in the world. Although endemic to Africa and Saudi Arabia, ostriches are farmed around the world for their meat, leather and feathers. South Africa is the world's largest producer of ostrich products and contributes to about 75% of the global ostrich market. In South Africa, ostrich farms contribute significantly to the economy, with the average gross value amounting to approximately R1.5 billion annually and provide about 20 000 jobs in rural areas. Ostrich farming requires a dry climate making the arid Klein Karoo region in the Western Cape Province of South Africa ideal. Approximately 75% of the South African ostrich industry is largely dependent on the export of ostrich products. This makes it particularly vulnerable to internationally notifiable diseases such as avian influenza (AI). The industry has therefore invested in research into ostrich diseases that could lead to a reduction in international embargoes and production losses.

An increased demand for ostrich meat has resulted in ostriches being reared under intensive farming conditions. Under these conditions ostriches are more exposed to diseases. In commercial ostrich farming, livestock is frequently moved since the eggs are hatched on a breeding farm or hatchery and day-old chicks (less than 72 hours) are moved to a second location where the chicks are reared for about three months (Figure 1.1). The three-month-old ostriches are moved to adult rearing farms with larger enclosures to accommodate the increase in bird size. At nine to 12 months of age, ostriches are moved again to a quarantine area for a minimum of 14 days before slaughtering. This quarantine period is required by South African regulations and was implemented in response to the repeated outbreak of AI to ensure that ostrich meat is disease free.

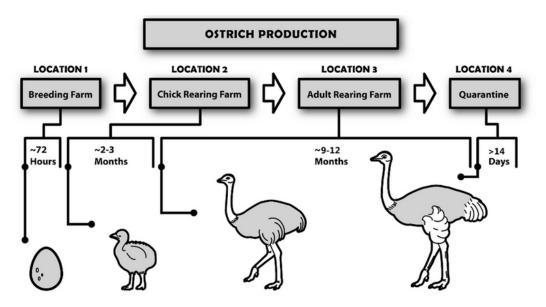



Figure 1.1 Ostrich production in South Africa (Moore et al. 2014).

Chapter 1 Introduction

In South Africa, AI is a notifiable disease and ostrich flocks are monitored bi-annually as well as before movement and slaughter as part of an official serological surveillance programme (Abolnik et al. 2013). When ostriches test positive for antibodies against AI, a stamping-out approach is followed and all ostriches on the farm are slaughtered, while all farms in a 10 km radius from the outbreak are quarantined. Export of fresh ostrich meat is immediately halted and the quarantine is only lifted once the farms in the quarantine area test negative in two rounds of testing, 28 days apart (Van Helden et al. 2012). South Africa implemented these measurements in 2013 in response to the repeated outbreaks of AI stating in 2004. The 2011 outbreak of AI had a major impact on the industry and meat production decreased from 9 000 tons in the 2009/2010 financial year to 3 000 tons in the 2012/2013 financial year (DAFF 2014) mainly as a result of the international embargo on ostrich meat.

Although AI has had a very negative short term effect on the ostrich industry, an almost more serious long term problem in the intensive rearing of ostriches has been the incidence of mycoplasma infections. Mycoplasma infections have been implicated in ostrich chick mortalities, growth retardation and downgrading of carcasses (Botes 2004). Mycoplasmas are known to be host-specific and in 2005, three unique *Mycoplasma* species were identified in South African ostriches (Botes et al. 2005a). These were provisionally named Ms01, Ms02 and Ms03. Ms01 and Ms03 have since been isolated from Namibian ostriches as well and have been described as *Mycoplasma struthionis* sp. nov. and *Mycoplasma nasistruthionis* sp. nov., respectively, but have not been formally published (Langer 2009).

Mycoplasmas infect the mucosal membranes of the ostrich respiratory tract causing eye, nose and air sac infections (Botes et al. 2005b). These infections can be treated with antibiotics, but this is not always successful, since carrier conditions exist (infected ostriches without symptoms). Currently a combination of biosecurity practice and antibiotic treatment is used to control mycoplasma infections. As yet, there are no commercial vaccines available for the prevention of mycoplasma infections in ostrich. Chicken mycoplasma vaccines have proved to be ineffective (Pretorius 2009). The development of whole organism vaccines is hampered by the fact that these mycoplasmas are slow growing and require complex media for growth (Langer 2009), making such vaccine strategies ineffective and expensive. DNA vaccines present an attractive alternative to vaccine development for numerous reasons such as, economic large scale production and that the antigen is produced within the host's own cells (Mahoney et al. 2000; Liu 2011). Recent developments in genome sequencing techniques provide a unique opportunity to characterize the genes of bacteria and *inter alia* mycoplasmas. This aids in the development of DNA vaccines by providing a repertoire of genes that can be used to select vaccine candidate genes.

The overall objective of this study was to investigate the development of DNA vaccines against *M. nasistruthionis* sp. nov. infections in South African ostriches. The genome of

*M. nasistruthionis* sp. nov. str. Ms03 was sequenced and annotated to allow for a better understanding of its metabolic capacity as well as for the identification of the vaccine candidate gene, *oppA*. After cloning of the gene into appropriate DNA vaccine vectors, the ability of these DNA vaccines to elicit an immune response was evaluated.

In Chapter 2 a literature overview of the genomic characteristics and essential processes in mycoplasmas is given. The second part of the literature overview focuses on the prevention of mycoplasma infections with the main focus on DNA vaccines.

The first aim of this study was to expand the knowledge of *M. nasistruthionis* sp. nov. str. Ms03 by determining the genome sequence, annotating the genes and evaluating the metabolic pathways of essential processes. The second aim was to identify and characterize the *oppA* gene as potential vaccine candidate gene. The results from these analyses are presented in Chapter 3.

The third aim was to investigate the prevalence of the *oppA* gene within all *Mycoplasma* species in order to assess its potential as a vaccine candidate gene. The results are presented in Chapter 4 as a published manuscript (Gene, 2015, Volume 558, Issue 1, pages 31-40) and are preceded by background information on certain aspects of the experimental design.

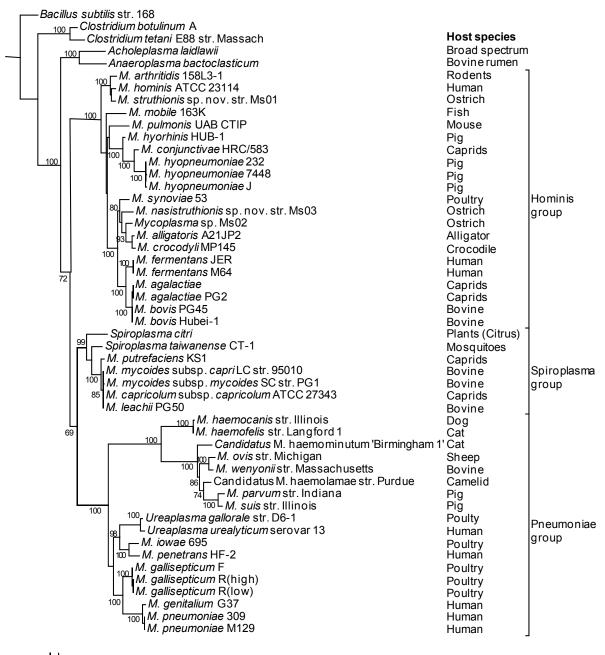
The fourth aim was to develop three DNA vaccines containing the *M. nasistruthionis* sp. nov. str. Ms03 *oppA* gene and to evaluate their potential to elicit an immune response in ostriches. The results from the DNA vaccine trial are presented as an independent manuscript in Chapter 5. This is once again preceded by background information on certain aspects of the experimental design and the negative influence an outbreak of AI had on it.

The objectives of the different parts of this study are described in the introduction of the respective chapters. The dissertation ends with an overall conclusion in Chapter 6. The references for all the chapters are given at the end of Chapter 6 and relevant supplementary data are presented in Appendix 1 to 5.

## Chapter 2 The mycoplasma genome: Implication of DNA vaccine design

## 2.1 Introduction: Mycoplasmas in the genomic era

With genome sequencing becoming an everyday technique, the question of what we have learnt from the increasing amount of available sequencing data has become more and more important. Being the self-replicating organisms with the smallest genomes, mycoplasmas have being given considerable attention in this genomic era and a total of 91 genomes from 47 species in the class *Mollicutes* have been completely sequenced and annotated up to June 2015 (Appendix 1). The first bacterial genome, *Mycoplasma genitalium*, was sequenced in 1995 (Fraser et al. 1995) and is the smallest genome of all self-replicating organisms. Additionally, a mycoplasma genome has also served as the blueprint for the first synthetic organization and composition of the mycoplasma cell. If we were to understand the smallest and "simplest" genome, it may aid in understanding more complex cell systems as well as aiding in the treatment and prevention of mycoplasma bacterial infections.


Mycoplasmas are parasitic or commensal bacteria that are of medical and agricultural importance since they are associated with a number of diseases in humans and animals. Mycoplasmas belong to the phylum *Firmicutes* and the class *Mollicutes*, 'mollis' meaning soft and 'cutes' meaning skin, reflecting the lack of cell walls in this class (Razin et al. 1998) (Table 2.1). They therefore stain negative in the Gram stain test, although they have evolved from low guanine and cytosine (G+C) containing Gram-positive bacteria through a reductive evolutionary process with their closest relatives being *Lactobacillus*, *Bacillus* and *Clostridium* (Woese et al. 1980; Weisburg et al. 1989; Wolf et al. 2004). All of the members in the order *Mycoplasmatales* require exogenous sterol for maintenance of the bacterial cell membrane

| Phylum     | Firmicutes        |                    |                        |
|------------|-------------------|--------------------|------------------------|
| Class      | Bacilli           |                    |                        |
|            | Clostridia        |                    |                        |
|            | Mollicutes        |                    |                        |
| Class      | Order             | Family             | Genus                  |
| Mollicutes | Mycoplasmatales   | Mycoplasmataceae   | Mycoplasma             |
|            |                   |                    | Ureaplasma             |
|            | Acholeplasmatales | Acholeplasmataceae | Acholeplasma           |
|            |                   | Incertae sedis     | Phytoplasma Candidatus |
|            | Anaeroplasmatales | Anaeroplasmataceae | Anaeroplasma           |
|            |                   |                    | Asteroleplasma         |
|            | Entomoplasmatales | Spiroplasmataceae  | Spiroplasma            |
|            |                   | Entomoplasmataceae | Entomoplasma           |
|            |                   |                    | Mesoplasma             |

Table 2.1 Classification of the class Mollicutes

Reference: Razin et al. (1998); Wolf et al. (2004); Brown (2010).

which is reflected by the absence of these molecular pathways within their genomes (Brown 2010). The genus *Mycoplasma* is divided into three phylogenetic groups based on the typical bacterial 16S ribosomal RNA (rRNA) phylogeny: the hominis, pneumoniae and spiroplasma groups as described by Wolf et al. (2004) (Figure 2.1). In general, members of the genus *Mycoplasma* are known for their low G+C content and small genome size.



H 0.05

Figure 2.1 Maximum likelihood phylogeny the class *Mollicutes* based on *16S rRNA* sequences. Bootstrap values ( $\geq$ 70%) are indicated above or below nodes. The columns on the right-hand side indicate the hosts for each *Mycoplasma* species as well as the phylogenetic group (hominis, pneumoniae and spiroplasma).

Genome size appears to be an indication of an organism's life strategy, with small genomes associated with a parasitic life style (Moran 2002), allowing them to acquire complex metabolic building blocks from their host rather than synthesizing them. This is reflected in mycoplasma culturing studies in which a wide spectrum of substrates and factors is required for *in vitro* growth, with some species requiring undefined media components such as serum while other species are characterized as unculturable (Waites and Talkington 2004; Guimaraes et al. 2011; Flores-Medina et al. 2012; Citti and Blanchard 2013; Bueno et al. 2014).

The trivial name mycoplasma was previously used as a group term for all members in the class *Mollicutes*, however, "Bergey's Manual<sup>®</sup> of Systematic Bacteriology" reports that the more appropriate term should be mollicute(s) so that the trivial name mycoplasma can be devoted to species within the genus *Mycoplasma* (Brown 2010). In this dissertation, the trivial name mycoplasma will be used to refer to species belonging to the genus *Mycoplasma*.

The first part of this literature review investigates the genomes of mycoplasma with regard to genome characteristics, essential cellular pathways as well as pathogenicity. The second part focuses on vaccine design, in particular DNA vaccines.

## 2.2 Organization of mycoplasma genomes

Mycoplasmas have typical bacterial single, small circular chromosomes that range in sizes from 564 kilobase pairs (kbp) to 1 359 kbp with a G+C content between 24% and 40% (Table 2.2). Information in mycoplasma genomes is condensed with 92.54% to 99.10% (gene density) of the genome being transcribed to RNA (Table 2.2). As in other bacteria, genes in mycoplasmas frequently overlap (Fukuda et al. 1999; Fonseca et al. 2014). Most gene overlaps are short (less than 60 nucleotides), terminal unidirectional overlaps and the result of deletions resulting in the elongation of the 3' end of the genes. These overlaps are not associated with the reduction in mycoplasma genomes size (Fukuda et al. 1999; Fukuda et al. 2003).

Within bacteria, genes are organised into groups that are arranged in tandem in the genome (Mao et al. 2009; Yin et al. 2010). These groups are typically called operons and share common promoter and terminator sequences that imply that they are co-transcribed into single RNA molecules (Simons et al. 1987; Siqueira et al. 2011). Perhaps the best known example of operon gene organization in bacteria is the rRNA cluster i.e. *16S, 23S* and *5S rRNA* genes including their intergenic spacers. The largest polycistronic operon in *Mycoplasma pneumoniae* contains 20 genes but most operons only encode two or three genes (Guell et al. 2009). It is estimated that as little as 5% of all the genes in *Mycoplasma* 

| Genus *                   | Number of<br>Species | Number of Genome <sup>#</sup> | Genome<br>Size (kbp) | Gene<br>Count | G+C<br>fraction | Gene<br>density (%) | rRNA<br>Count | tRNA<br>Count |
|---------------------------|----------------------|-------------------------------|----------------------|---------------|-----------------|---------------------|---------------|---------------|
| Acholeplasma              | 1                    | 1                             | 1 497                | 1 422         | 0.32            | 97.05               | 6             | 36            |
| Asteroleplasma            | No complete          | genome seq                    | uence availat        | le            |                 |                     |               |               |
| Phytoplasma<br>Candidatus | 5                    | 6                             | 570-960              | 518-1 155     | 0.21-0.28       | 92.47-96.45         | 6             | 27-35         |
| Mesoplasma                | 1                    | 2                             | 793-825              | 721-768       | 0.27            | 94.59-95.44         | 6             | 29            |
| Entomoplasma              | No complete          | genome seq                    | uence availab        | le            |                 |                     |               |               |
| Spiroplasma               | 8                    | 8                             | 945-1 175            | 890-1 422     | 0.24-0.30       | 96.28-97.47         | 3-6           | 29-33         |
| Mycoplasma                | 30                   | 71                            | 564-1 359            | 523-1 580     | 0.24-0.40       | 92.54-99.10         | 3-8           | 28-37         |
| Ureaplasma                | 2                    | 3                             | 752-874              | 642-679       | 0.25-0.26       | 94.05-95.14         | 6             | 27-30         |
| Class: Mollicutes         | 47                   | 91                            | 564-1 497            | 518-1 580     | 0.21-0.40       | 92.47-99.10         | 3-8           | 27-37         |

Table 2.2 A summary of the complete genome sequences within the class *Mollicutes* and their features

\* For the complete list of species within the class *Mollicutes* for which a complete genome sequence is available see Appendix 1. Data was downloaded from Integrated Microbial Genomes (IMG) system (http://www.jgi.doe.gov/) on 25 June 2015.

<sup>#</sup> In many cases more than one strain of the same species had a complete genome sequence available.

*hyopneumoniae* are transcribed in monocistronic units (Siqueira et al. 2011), illustrating the abundance and importance of the operon gene organization in mycoplasma genomes.

Genes organised into an operon are usually associated with a single metabolic pathway (Yin et al. 2010). When genes of an essential metabolic pathway are organised into more than one operon, these operons will normally cluster together in the genome (Guell et al. 2009; Yin et al. 2010). In bacteria (including mycoplasma), operons may, however, also contain genes of multiple pathways, which result in related operons being found further apart (Yin et al. 2010). The operons of more frequently activated pathways are closer together than less active pathways. This arrangement was proposed to reduce effort associated with finding, transcribing and translating all of the genes of a particular pathway (Yin et al. 2010). This genomic organizational level i.e. the operons, contributes to the regulation of protein expression, resulting in similar stoichiometry among proteins of the same pathway (Rocha 2008). Depending on particular environmental conditions, a gene may be transcribed as part of more than one or different operons which is called alternative transcription. Alternative transcription is possible due to the presence of internal promoters and/or termination sequences within the transcribed sequence (Guell et al. 2009) and plays an important role in the adaption to a changing environment.

Since replication and transcription, two fundamental processes, take place on the chromosome, the organization of genes and operons will have an effect on these processes. Studies in bacteria have shown that when transcription interrupts or stalls replication, it can contribute negatively towards survival and reproduction (Srivatsan et al. 2010; Lin and Pasero 2012). Genes therefore tend to be transcribed in the same direction as the leading strand, preventing "head-on" collisions of replication and transcription processes (Price et al. 2005). Additionally frequently activated pathways and essential genes tend to be located on

the leading strand near the origin of replication to prevent the transcription of these genes to disrupt or stall replication. This allows for transcription during replication. In mycoplasmas, gene organization shows a strong bias towards the leading strand (Sirand-Pugnet et al. 2007a). About 80% of all genes in *M. genitalium* are located on the leading strand (Rocha and Blanchard 2002; Lin and Zhang 2011).

On an evolutionary time scale, mycoplasmas are located on some of the longest branches of the bacterial tree of life implying that as a group they evolve at a faster rate (Woese et al. 1984; Ciccarelli et al. 2006; Sirand-Pugnet et al. 2007a). Genome "changes" are attributed to point mutations, genome rearrangement, gene deletions and horizontal gene transfer (HGT). Mycoplasmas have some of the highest rates of base substitution mutations of all unicellular organisms (Delaney et al. 2012; Sung et al. 2012). It has also been suggested that genome rearrangements in mycoplasmas occur more frequently than previously thought (Marenda 2014). Large genome rearrangements have been observed within species by comparing the genomes of *M. hyopneumoniae* str. 232 to the J and 7448 strains (Vasconcelos et al. 2005) and also between species by comparing the genomes of *Mycoplasma bovis* Hubei-1 with *Mycoplasma agalactiae* PG2 (Li et al. 2011). Genome rearrangements contribute to the lack of gene order conservation among mycoplasmas (Sirand-Pugnet et al. 2007a).

Mycoplasma genomes are subjected to significant gene decay (deletions) and the remnants of genes (pseudogenes) are often found in mycoplasma genomes. As much as 12.99% of the *M. pneumoniae* FH genome consists of pseudogenes while 5.91% of the *M. bovis* PG45 genome consists of pseudogenes (Marenda 2014). This is in agreement with the hypothesis that mycoplasmas have evolved through a reductive evolutionary process from *Lactobacillus*, *Bacillus* and *Clostridium*. These events of gene deletions have played a significant role in the reduction of the genome size.

HGT is a mechanism whereby genes or DNA regions are transferred from one bacterium to the next (Pereyre et al. 2009; Marenda 2014). A shared environment between co-infecting species can lead to the acquisition of new genes from one another. This is viewed to be a strategy to increase the gene pool for better adaption to environmental changes. In mycoplasmas, HGT has been postulated within human (Pereyre et al. 2009), ruminant (Sirand-Pugnet et al. 2007b) and chicken (Vasconcelos et al. 2005) mycoplasmas. Furthermore, a recent study has proved the concept under laboratory conditions (Dordet Frisoni et al. 2013).

Both genome rearrangement and HGT are ascribed to the activity of mobile genetic elements. Mobile genetic elements are segments of DNA that encode for proteins that mediate the translocation of DNA regions. Mobile genetic elements in mycoplasmas include plasmids, bacteriophages, conjugative transposons and insertion sequences (IS) (Marenda 2014).

Plasmids are rarely found in mycoplasmas and have only been reported in some species, such as *Mycoplasma capricolum* subsp. *capricolum*, *Mycoplasma cottewii*, *Mycoplasma leachii*, *Mycoplasma mycoides* subsp. *capri* and *Mycoplasma yeatsii* (Thiaucourt et al. 2011; Breton et al. 2012; Kent et al. 2012; Marenda 2014). These circular DNA molecules range from 1 kbp to 2 kbp in size and belong to the rolling circle replication plasmid family pMV158 (Breton et al. 2012). They have similar organizations: two unidirectional open reading frames (ORFs) with the proteins of the one functioning in the replication of the plasmid and the other controlling the copy number of the plasmid in the cell (Thiaucourt et al. 2011; Breton et al. 2012). The only exception (in the genus *Mycoplasma*) reported thus far is the 3.4 kbp *M. yeatsii* plasmid, pMyBK1, that belongs to a novel rolling circle replication plasmid family (Kent et al. 2012). The pMyBK1 plasmid has two unidirectional ORFs, one may function in the replication of the plasmid but the exact functions of the two proteins are speculative (Kent et al. 2012). The retention of these plasmids within mycoplasma cells, organisms with such drastically reduced genome sizes, implies a significant role in adaptation and survival. The role of retaining plasmids remains to be identified (Breton et al. 2012).

As with plasmids, bacteriophages (prokaryotic viruses) are rarely found in mycoplasmas but have been reported in *Mycoplasma pulmonis* str. UAB 6510, *Mycoplasma arthritidis*, *Mycoplasma fermentans* and *Mycoplasma hyorhinis* (Tu et al. 2001; Röske et al. 2004; Marenda 2014). These bacteriophages have the ability to integrate into the mycoplasma genome and can contribute to genome rearrangements. The insertion of the bacteriophage into the genome may disrupt some gene functions. Interestingly in *M. arthritidis*, bacteriophages have been reported to convey virulence (Voelker et al. 1995; Marenda 2014) which is the same as in other bacteria (Penadés et al. 2015).

Conjugative transposons, or integrated conjugative elements (ICEs), are clusters of genes that can translocate within and between genomes (Dordet Frisoni et al. 2013; Marenda 2014). ICEs encode genes that assist in their excision, conjugative transfer and integration into the recipient genome (Dordet Frisoni et al. 2013). Mycoplasma ICEs are about 20 kbp to 30 kbp long, encode for about 20 genes, occur in multiple copies within genomes and have been implicated in horizontal gene transfer (Dordet Frisoni et al. 2013; Marenda 2014).

IS are short DNA elements that code for proteins with transposition activities such as transposases (Loreto et al. 2007; Lysnyansky et al. 2009; Marenda 2014). The activities of these proteins allow the insertion sequence to move within and between genomes. IS are widely found in bacteria (including mycoplasmas) and influence the genome by contributing to horizontal gene transfer and genome rearrangement that can result in acquiring new genes, deletions, insertions or gene amplification (Loreto et al. 2007; Lysnyansky et al. 2009). In the genome of *Mycoplasma mycoides* subsp. *mycoides* SC, the insertion sequence IS1634, which is 1 872 base pairs (bp) long, is found 60 times, illustrating the

occurrence of this element within mycoplasma genomes (Vilei et al. 1999; Westberg et al. 2004).

In addition to the above, simple sequence repeats (SSRs) are also found within mycoplasma genomes. SSRs or microsatellites are mono- to hexanucleotide tandem repeats (Trivedi 2010) and can play a role in antigenic variation (Citti et al. 2010).

Even in these small genomes, the contribution of repetitive sequences cannot be ignored since they lead to genome rearrangement and horizontal gene transfer as well as contributing to the genome size (Marenda 2014). Repetitive regions account for 21% of the *M. fermentans* M64 genome (Shu et al. 2011) and 29% of the *M. mycoides* subsp. *mycoides* SC genome (Westberg et al. 2004). The contribution of mobile and repetitive elements to the fluency of mycoplasma genomes might explain the ability of mycoplasmas to adapt to environmental changes and to new hosts.

## 2.3 Essential pathways in mycoplasma

The reduction in the mycoplasma genome size has lead to the loss of several metabolic pathways while preserving others, leaving these organisms with the barely essential genes to support life. Within these small genomes, the number of predicted genes ranges from 523 to 1 580 genes (Table 2.2). Through transposon mutagenesis studies, it was determined that 387 of the 482 protein-encoding genes and all 43 of the structural RNA genes in *M. genitalium* are essential (Hutchison et al. 1999; Glass et al. 2006). In similar studies, 271 of the 782 protein-encoding genes were identified as essential in *M. pulmonis* (French et al. 2008; Dybvig et al. 2010) while in *M. arthritidis*, 417 of the 635 protein-encoding genes were found to be essential (Dybvig et al. 2008). Whether or not a gene is essential will depend on its environmental or growth conditions, implying that under a particular condition, a gene may be essential whereas under another, it may be non-essential.

Some genes should be essential under all circumstances (fundamental for life) leading some authors to search for what are referred to as core-essential genes. Core-essential gene studies in mycoplasma have lead to the identification of between 153 to 196 genes that are conserved across *Mycoplasma* species' genomes (Lin and Zhang 2011; Liu et al. 2012). These genes are generally involved in critical cellular processes such as genome replication, transcription and translation (Lin and Zhang 2011). Mycoplasmas are self sustaining thus they have the ability to replicate the genome, duplicate the cell, transcribe RNA and translate protein independently of their hosts. Energy metabolism pathways are used to produce the energy necessary for cell maintenance and growth, while transporters acquire the necessary building blocks for these processes from the environment. These fundamental processes will be reviewed in the next sections.

## 2.3.1 Genome replication and cell division

During genome replication the circular DNA chromosome of mycoplasmas is duplicated. The process of DNA replication is complex and includes a number of steps starting with site specific initiation at the origin of replication (*ori*), followed by the unwinding of the supercoiled double stranded genomic DNA and the assembly of the replication machinery before the DNA is replicated bidirectionally and finally terminated at the termination site or when the two replication forks reach each other.

The *ori* is a well defined site where the replication forks open the parent DNA double helix. Bacterial genes in the vicinity of the *ori* tend to be conserved with regard to gene order as well as orientation. In most mycoplasmas, the ori is located in the vicinity of the dnaA and dnaN genes. In genome annotation, the ori is numbered as the first base of the circular chromosome and the ORFs would be numbered from the *dnaA* gene onwards. The ori has been determined experimentally for several mycoplasmas (M. mycoides subsp. mycoides LC str. Y-goat, M. mycoides subsp. mycoides SC str. PG1, M. capricolum subsp. capricolum str. California kid and *M. pulmonis* UAB CTIP and *M. hyopneumoniae*) (Cordova et al. 2002; Lartigue et al. 2003; Maglennon et al. 2013). DnaA proteins initiate replication by binding to the DnaA box sequences at the ori, which then causes the supercoiled DNA to unwind locally. DnaA boxes are 9 bp regions that are rich in adenine and thymine (A+T). The consensus sequence of mycoplasma DnaA boxes is more relaxed than in Escherichia coli (Cordova et al. 2002). Up to 10 putative DnaA boxes were identified in Mycoplasma species, however, for some mycoplasmas bioinformatic analysis could not identify any DnaA boxes (Cordova et al. 2002; Sasaki et al. 2002; Lartigue et al. 2003; Lee et al. 2008; Pereyre et al. 2009).

The replication machinery of mycoplasmas is similar to that of *Bacillus subtilis*. The leading strand is synthesized continuously while the second strand, the lagging strand, is synthesized semidiscontinuously. The leading strand requires 11 proteins to replicate while the lagging strand requires the same 11 proteins as well as DnaE and primase (Sanders et al. 2010). These different replication modes of the leading and lagging strands result in different mutation rates (Engelen et al. 2012) and as a consequence, the leading strand is rich in guanine (G) and thymine (T) while the lagging strand is rich in adenine (A) and cytosine (C) (Marín and Xia 2008). A shift from a G+T rich region to a C+A rich region is frequently observed at the *ori* in bacteria species and a GC plot can therefore be used to predict the *ori* in bacteria. This technique has been used to identify the *ori* in mycoplasma genomes with mixed success (Sirand-Pugnet et al. 2007a) most probably because mycoplasma genomes are generally A+T rich and genome rearrangement occurs frequently.

In bacteria, replication is terminated when the replication forks progressing in opposite directions meet each other or when the replication forks reach a termination site (Kono et al.

2012). Specific termination sites or the involvement of termination proteins such as Tur protein in *E. coli* and RTP protein in *B. subtilis* have not been reported in all *Firmicutes* (Kono et al. 2012). In most bacteria, replication is symmetrical implying that the termination and *ori* is 180° from each other on the circular chromosome, but it has been reported that for slow growing bacteria such as mycoplasma, replication may be asymmetrical. As with the *ori*, the termination site can be predicted with a GC plot (Zheng and Liu 2008).

Mycoplasma cells divide by binary fission and have a low number of conserved genes involved in cell division (Alarcon et al. 2007; Fisunov et al. 2011). Compared to *B. subtilis* that has 17 genes in the "cell division and cell wall synthesis" gene cluster, mycoplasma genomes only have *mraZ*, *mraW*, *ftsZ* and one gene encoding a hypothetical protein (Alarcon et al. 2007; Lluch-Senar et al. 2010). These four genes are usually but not always found (Alarcon et al. 2007; Lluch-Senar et al. 2010). The *ftsZ* gene is believed to play a central role in cell division by binary fission but has recently been shown to be non-essential in mycoplasma (Lluch-Senar et al. 2010). In the *Mycoplasma mobile* genome the *ftsZ* gene was not found (Jaffe et al. 2004) and in *M. genitalium a ftsZ* null mutation was viable (Lluch-Senar et al. 2007), which implies that an alternative mechanism of cell division can occur without the FtsZ protein. Subsequently genes involved in movement have been implicated in cell division (Hatchel and Balish 2008; Erickson and Osawa 2010; Lluch-Senar et al. 2010). It was proposed that this alternative mechanism can function on its own but Erickson and Osawa (2010) suggested that the two mechanisms work together for more effective cell division.

### 2.3.2 RNA transcription and protein translation

Transcription is initiated by the binding of the RNA polymerase to the promoter region. The mycoplasma promoter regions resemble those of the standard  $\sigma$ 70 promoter region with the transcription start within 100 bp upstream of the translational start site in transcribed regions (Guell et al. 2009; Weber et al. 2012; Siqueira et al. 2014). In *M. hyopneumoniae*, promoters consist of a  $\sigma$ 70 -10 promoter element and a -16 element, also found in the low G+C Grampositive bacteria (Weber et al. 2012). The -35 promoter element was not identified which is typical for low G+C bacteria. Intergenic regions have also been found to transcribe and are the result of improper transcription termination as well as the initiation of transcription within these regions (Gardner and Minion 2010). The functions of these intergenic regions remain to be elucidated. Transcription is either terminated by the formation of a termination hairpin that tightly regulates the process (Guell et al. 2009) or by the gradual release of RNA polymerase from the DNA after the last gene is transcribed (Gardner and Minion 2010).

Transcription and translation in bacteria may occur simultaneously since these two processes are not compartmentalised in bacteria. Translation relies on the complex interaction of multiple proteins and RNA molecules as described by Grosjean et al. (2014).

The total number of genes involved in translation for *Mycoplasma* species ranges from 116 to 167 of which 104 are conserved in all mycoplasmas (Grosjean et al. 2014). These include genes encoding for ribosomal proteins (49), rRNA modification (4), ribosome assembly and protein maturation (8), RNA processing (4), tRNA modification (6), tRNA aminoacylation (20) and translation factors (13).

## 2.3.3 Energy metabolism

Glycolytic mycoplasmas use glycolysis as their main energy producing pathway while nonglycolytic mycoplasmas utilise arginine as energy source. In glycolytic mycoplasmas, the complete glycolysis pathway (Embden-Meyerhoff-Parnas pathway) that converts glucose to pyruvate is present (Halbedel et al. 2007; Shu et al. 2012). Transporters and enzymes for connecting reactions to utilize alternative substrates are also present. Mycoplasmas can use D-glucose, fructose, glycerol, mannitol and glycerol-3-phosphate that lead into this pathway as energy sources (Halbedel et al. 2007; Shu et al. 2012). Both the citric acid cycle and pentose phosphate pathways are however partly or completely absent in mycoplasmas. Pyruvate is therefore degraded further into acetate, acetyl-coenzyme A or lactate (Halbedel et al. 2007; Guimaraes et al. 2011; Shu et al. 2012).

In non-glycolytic mycoplasmas, ATP is provided by the arginine deiminase pathway encoded by the *arcA* (arginine deiminase), *arcB* (ornithine carbamoyltransferase) and *arcC* (carbamate kinase) genes as well the arginine transporter genes (Rechnitzer et al. 2011). Examples of mycoplasmas that use arginine as their major energy source are *Mycoplasma hominis* (Pereyre et al. 2009) and *M. arthritidis* (Dybvig et al. 2008). In non-glycolytic mycoplasmas some of the enzymes of glycolysis can be absent as is the case in *M. arthritidis* where hexokinase and phosphofructokinase are absent (Dybvig et al. 2008).

All mycoplasmas have a typical  $F_1F_0$  ATP synthase that consists of eight conserved genes found within an operon (Beven et al. 2012). Unlike mitochondrial ATP synthase of which the main function is the generation of ATP, the mycoplasma ATP synthase is thought to be involved in ATP hydrolysis and maintenance of the electrochemical gradient since mycoplasma lack a cytochrome-containing electron transport chain (Rechnitzer et al. 2011). In the absence of a cell wall, mycoplasmas depend on mechanisms such as this to maintain and regulate the osmotic balance between the external environment and intracellular space.

## 2.3.4 Acquiring the necessary building blocks to maintain life

Mycoplasmas have limited metabolic capabilities since the massive reduction in genome size has lead to the loss of many pathways, therefore nutritional building blocks need to be imported into the cell. Pathways evicted include *de novo* synthesis of purine and pyrimidines, some amino acids, Coenzyme A, cholesterol, lipids and cell wall synthesis (Razin et al. 1998; Arraes et al. 2007; Bizarro and Schuck 2007). In addition to the above,

energy sources such as glucose, fructose, glycerol and arginine are commonly required for maintenance and growth. Mycoplasmas need to scavenge these nutrients from the environment and therefore require a number of transporters to transport these molecules into the cell. About 10% of the genes within mycoplasma genomes code for transport proteins and of these ATP-binding cassette systems (ABC) are the most prominent (Nicolás et al. 2007).

ABC transporters or traffic ATPases are conserved active membrane transport proteins that consist of four domains: two transmembrane domains that form a pore through which the substrate is transported and two cytosolic ATP-binding domains that hydrolyse ATP to provide the energy for the translocation (Berntsson et al. 2010). Additionally, ABC importers that are unique to plants, bacteria and archaea, have an extracellular substrate-binding domain (Berntsson et al. 2010; Rice et al. 2014). ABC transporters include the glycerol importer (*gtsABC*), putative glycerol-3-phosphate (*ugpACE*) importer, polyamine (putrescine/spermidine) importer (*potABCD*) and the oligopeptide permease importer (*oppABCDF*) (Vilei and Frey 2001; Pilo et al. 2005; Nicolás et al. 2007; Großhennig et al. 2013; Szczepanek et al. 2014).

Transporters other than ABC transporters include the glycerol uptake facilitator, glucose permease and the phosphoenolpyruvate-dependent sugar phosphotransferase transport system (PTS) that is responsible for import of glucose, fructose and mannitol (Halbedel et al. 2007).

## 2.4 Adaption towards living as a parasite

A successful pathogen possesses the ability to enter its host, reach the target tissue and adhere to it, while evading the host's immune system in order to grow, multiply and be transmitted to new hosts (Bradbury 2005; Pilo et al. 2007). With the reduced coding capacity of their small genome, mycoplasmas are remarkably well adapted to their hosts. *Mycoplasma* species have evolved to successfully live and multiply within numerous hosts. They have evolved the ability to adhere to their hosts through numerous surface proteins and are able to avoid the host's immune system through surface antigen variation and phase switching. These pathogens are transmitted through inhalation, direct and indirect contact (Frey 2002; Batista et al. 2004; Faustino et al. 2004; Fox et al. 2005). In birds, mycoplasmas can also spread from one generation to the next through eggs (vertical transmission) (Bradbury 2005) while some mammal mycoplasmas be transmitted through the milk (Fox et al. 2005). Factors such as environmental stresses (e.g. weather conditions and extreme temperatures), commercial farming practices (high stocking densities) as well as genetic factors (susceptibility of animals to infections), all contribute to the intensity and transmission rate of these infections.

## 2.4.1 Colonization

Mycoplasmas generally infect the mucosal membranes of the eyes, nose, respiratory- and urogenital tract as well as causing joint inflammation. Some species can, however, enter the host's cells (Fürnkranz et al. 2013; Hegde et al. 2014) and others are blood born parasites (hemoplasma) (Messick 2004; do Nascimento et al. 2012). Adhesion of a bacterium to the host cell is the first step towards colonization. Adhesion ensures close contact between the mycoplasma and the host cell for effective import of nutrients (Fürnkranz et al. 2013). A number of surface proteins have been implicated in adhesion in mycoplasmas but these are only conserved in closely related strains and species (Browning et al. 2011).

## 2.4.2 Avoiding the host's immune system: Antigenic, size and phase variation

Mycoplasmas face the constant challenge of recognition by the host's immune system. To effectively avoid detection, bacteria can create hypervariable surface molecules through phase and antigenic variation. The variation events cause a highly dynamic repertoire of the major immunodominant surface proteins. This creates a flexible membrane surface that allows the mycoplasma to effectively escape the attacks of the host immune system's antibodies. Mycoplasmas have a number of sophisticated systems that are associated with phase and antigenic surface variation that have been reviewed by Citti et al. (2010) and Zimmerman (2014). Mechanisms of antigenic variation include phase variation through ON/OFF expression switches, domain variation, epitope masking and locus duplication.

Phase variation is usually the result of DNA slippage or rearrangements. The expression of a gene or gene set can be turned ON/OFF when DNA slippage occurs in the promoter region due to the presence of simple sequence repeats (SSRs) (Citti et al. 2010). In mycoplasmas, SSRs in the promoter regions of the *M. hyorhinis vlp* gene and the *Mycoplasma gallisepticum vlhA* gene cause DNA slippage that results in phase variation (Yogev et al. 1991; Liu et al. 2002). DNA rearrangements can also switch expression ON/OFF. Site specific recombination (cut and paste mechanism) can result in gene and/or promoter inversion that can alter expression. Expression of the *hsd* gene in *M. pulmonis* is regulated by the inversion of the gene (Dybvig et al. 1998) while the expression of the *vpma* gene in *M. agalactiae* is regulated by the inversion of the gene and the promoter (Chopra-Dewasthaly et al. 2008). Phase variations occur at a high rate in mycoplasmas, for example, in *M. hyorhinis* phase variation occurs at  $10^{-2}$  to  $10^{-5}$  events/cell/generation (Rosengarten and Wise 1990). These events are reversible and inheritable which create a highly variable surface repertoire.

In domain variation, a part of the protein sequence is altered by shuffling of the domains or altering the size. Gene recombination events can structurally change the domains within genes as is the case in the *vlhA* gene of *Mycoplasma synoviae* (Noormohammadi et al.

2000). DNA slippage associated with tandems of SSRs at the C-terminal of the protein can also cause size variation in the protein (Citti et al. 2010) as is the case in the *vsa* gene of *M. pulmonis* (Simmons et al. 1996).

When constantly expressed protein is concealed by either a second protein blocking its exposure to the immune surveillance of the host or by variation of the protein size, it is called epitope masking. In *M. hominis,* the rapidly changing non-essential P120 protein conceals the constantly expressed surface protein, P56, from the host immune system by acting as a decoy (Zhang and Wise 2001).

Additionally gene or locus duplication also contributes to variation in mycoplasmas. In the genome of the field strain *M. agalactiae* str. 5632, 23 copies of the *vpma* gene were found. In these copies both gene and locus duplication contributed to the variation (Nouvel et al. 2009).

Another interesting discovery is the presence of cysteine protease in *M. gallisepticum* and *M. synoviae*. Cysteine protease is a surface exposed protease and can digest chicken IgG into Fc and Fab fragments. This digestion may disable the chicken IgG to function properly and may play a role in host invasion (Cizelj et al. 2010). Recently an antibody-binding protein, protein M, has been discovered in *M. genitalium* that can bind IgG thereby neutralising the antibody (Grover et al. 2014). These approaches may also aid in avoiding detection. All the above mechanisms contribute to the success of *Mycoplasma* species as pathogens.

## 2.4.3 Pathogenesis

Not all mycoplasmas are pathogenic to the host, some live in the host without causing disease symptoms. A number of diseases in human and animals are, however, caused by pathogenic or opportunistic mycoplasmas. Symptoms associated with mycoplasmosis are rarely due to toxin production and rather a result of the host response to the infection or the depletion of nutrients (Pilo et al. 2005; Browning et al. 2014).

In a few cases, toxins are however reported. Community-acquired respiratory distress syndrome (CARDS) toxin is an ADP-ribosylating and vacuolating toxin produced by *M. pneumoniae*. The CARDS toxin was linked to increased mucus production (mucus metaplasia), eosinophilia, vacuolation of the bronchial and bronchiolar epithelium which is suggestive of allergic airway hyperresponsiveness. Homologues of the toxin gene, *mpn372*, were also found in *Mycoplasma penetrans* and *Mycoplasma iowae* (Medina et al. 2012; Browning et al. 2014).

The production of hydrogen peroxide  $(H_2O_2)$  in glycerol metabolism has been implicated in the virulence of *M. mycoides* subsp. *mycoides* SC, *M. gallisepticum* and *M. pneumoniae* (Figure 2.2) (Pilo et al. 2005; Großhennig et al. 2013; Szczepanek et al. 2014). The

particular enzyme implicated in this is glycerol-3-phosphate oxidase. Additionally transporters that lead to high import of glycerol, glycerol-3-phosphate and glycerolphosphochlorine also contribute to virulence of these mycoplasmas. Glycerol-3-phosphate oxidase catalyses the oxidation reaction that converts glycerol-3-phosphate and  $H_2O$  to dihydroxyacetone phosphate (DHAP) and  $H_2O_2$ . After attachment of *M. gallisepticum and M. mycoides* subsp. *mycoides* to the host cells, this enzyme acts as a transmembrane protein which releases the  $H_2O_2$  during the conversion into the host cell.  $H_2O_2$  and other reactive oxygen species (ROS) cause damage and inflammation in host tissue while DHAP enters the energy producing glycolytic pathway (Pilo et al. 2005). Even though the glycerol-3-phosphate oxidase is a cytosolic protein in *M. pneumoniae*,  $H_2O_2$  production was still implicated in virulence (Schmidl et al. 2011).

OppA, the substrate-binding domain of the oligopeptide permease transporter may also play a role in pathogenicity of *M. hominis*. In addition to its role in oligopeptide transport, the OppA protein is also involved in cytoadhesion and is the major ecto-ATPase in *M. hominis* (Hopfe and Henrich 2008). The binding of OppA to the host cell induces the release of ATP from the host cell. Extracellular ATP is then hydrolysed by OppA (ecto-ATPase activity) to ADP and a phosphate group. This reduces proliferation and leads to apoptosis of the infected host cell (Hopfe and Henrich 2014).

Mycoplasmas are host-specific, therefore it is possible that the genes involved in pathogenesis are species-specific and that this may be the reason for the lack of a general mechanism of pathogenesis in the *Mycoplasma* genus. The lesions produced in different hosts by different *Mycoplasma* species are, however, similar (Browning et al. 2014). This suggests that the underlining mechanisms may be similar.

## Stellenbosch University https://scholar.sun.ac.za

|                         |                            |                | Chapter 2 Literature review                                       |
|-------------------------|----------------------------|----------------|-------------------------------------------------------------------|
| Glycerol                | Glycerol Gl                | ycerol-3-phosp | ohate Glycerolphosphochlorine                                     |
|                         |                            |                |                                                                   |
|                         |                            |                |                                                                   |
| Glycerol                | $\backslash$               |                | ↓<br>Glycerolphosphochlorine                                      |
| A                       | TP                         |                |                                                                   |
| 5                       |                            |                | Chlorine 6                                                        |
|                         |                            |                |                                                                   |
|                         |                            |                |                                                                   |
| Phosph                  |                            | vcerol-3-phosp | phate                                                             |
| synthe                  |                            |                | - H <sub>2</sub> O                                                |
|                         |                            | 7*             | H <sub>2</sub> O <sub>2</sub>                                     |
|                         |                            | *              |                                                                   |
| Glycolys                | sis <b>4</b> ====== Dihydr | oxyacetone ph  | nosphate                                                          |
| # Enzyme                |                            | Gene           | Species                                                           |
| 1 Glycerol uptake facil | litator                    | glpF           | M. gallisepticum<br>M. mycoides subsp. mycoides                   |
| 2 ABC glycerol transpo  | orter                      | gtsABC         | <i>M. pneumoniae</i><br><i>M. mycoides</i> subsp. <i>mycoides</i> |
|                         |                            | -              |                                                                   |
| 3 Putative glycerol-3-p | bhosphate ABC transporter  | ugpACE         | M. gallisepticum<br>M. pneumoniae                                 |
| 1 Chucaranhaanhadiaa    | tor transportar            | alal l         |                                                                   |
| 4 Glycerophosphodies    |                            | glpU           | M. gallisepticum<br>M. pneumoniae                                 |
| 5 Glycerol kinase       |                            | glpK           | M. gallisepticum                                                  |
| ,                       |                            | 3.1.1          | M. pneumoniae                                                     |
| 6 Glycerophosphodies    | sterase                    | glpQ           | M. pneumoniae                                                     |
|                         |                            |                |                                                                   |
| 7 Glycerol-3-phosphat   | te oxidase                 | glyD<br>alvO   | M. pneumoniae* cytosolicM. gallisepticum* membran                 |
|                         |                            | glyO           | M. gallisepticum* membranM. mycoides subsp. mycoides* membran     |
|                         |                            |                |                                                                   |

Figure 2.2 Schematic representation of  $H_2O_2$  production of the glycerol pathway in *M. pneumoniae*, *M. mycoides* subsp. *mycoides* and *M. gallisepticum*. The production of  $H_2O_2$  causes damage to host cells. Compiled from Vilei and Frey (2001); Pilo et al. (2005); Großhennig et al. (2013) and Szczepanek et al. (2014).

## 2.5 Mycoplasma infections in ostriches

*Mycoplasma* species infect mucosal membranes of the respiratory tract in ostriches and cause sinusitis, rhinitis, foaming conjunctivitis, tracheitis, coughing, laryngitis and air sac infections (Botes et al. 2005a; Botes et al. 2005b). Ostriches in intensive rearing systems are particular vulnerable to mycoplasma infections during extreme weather conditions and stress due to handling, transport or change in housing conditions. Mycoplasma infections lead to retardation of growth, downgrading of carcasses and even death in young chicks which has a major economical impact on the ostrich industry. Mycoplasma infections in ostriches are normally associated with secondary infections of other bacteria that occur in ostriches such as *E. coli, Pseudomonas aeruginosa, Pasteurella* species and *Bordetella avium* which elevate disease symptoms (Verwoerd 2000; Botes et al. 2005a).

From a phylogenetic or evolutionary perspective, the three *Mycoplasma* species that infect ostriches (*Mycoplasma struthionis* sp. nov. str. Ms01, *Mycoplasma* sp. Ms02 and *Mycoplasma nasistruthionis* sp. nov. str. Ms03) belong to the hominis group within the genus *Mycoplasma* (Figure 2.1). *M. struthionis* sp. nov. str. Ms01 is closely related to *M. hominis* ATCC 23114 and *M. arthritidis* 158L3-1 while *Mycoplasma* sp. Ms02 and *M. nasistruthionis* sp. nov. Ms03, are closely related to *M. synoviae* 53, *Mycoplasma alligatoris* A21JP2 and *Mycoplasma crocodyli* MP145.

*M. nasistruthionis* sp. nov. str.  $2FIA^{T}$  was recently isolated from ostriches in Namibia and was characterized as a non-motile mycoplasma that ferments glucose, but cannot hydrolyse arginine or metabolise urea (Langer 2009). Serum is required for *in vitro* growth, and this mycoplasma can be cultured between 28 to  $37^{\circ}C$  (Langer 2009). The experimental part of this dissertation will focus on *M. nasistruthionis* sp. nov. str. Ms03.

## 2.6 Controlling mycoplasma infections

*Mycoplasma* species can be controlled by: 1) prevention 2) treatment and 3) vaccination. Mycoplasma infections can be prevented by biosecurity practices. Biosecurity practices are used to prevent the spread of diseases. This includes quarantine of infected animals and all-in-all-out approaches where a group of animals will be kept together throughout their life preventing close contact with other animals (same and/or other species) on the farm (Evans et al. 2005; Punyapornwithaya et al. 2012).

South Africa is the world's leader in the production of ostrich products (meat, leather and feathers) and biosecurity is of the upmost importance in order to ensure export of safe meat that meets international export standards. It is therefore enforced by law that all ostrich farms in South Africa must be registered and adhere to biosecurity regulation requirements (VPN/04/2012-01(Revision\_6.0) 2012). South Africa implemented these regulations after the first outbreak avian influenza in 2004. These requirements include that poultry (excluding

ostriches) and pigs (specifically due to influenza viruses) may not be kept on registered ostrich farms, access for unauthorised persons, animals and vehicles should be restricted and contact between ostriches and wild birds should be limited by fencing off open water and constructing water troughs so that this will discourage wild water birds from perching on the sides or swimming inside them.

Mycoplasmosis can be treated with antibiotics such as tetracyclines and macrolides (targeting protein synthesis). Treatment with antibiotics that target the cell wall (penicillin) or folic acid synthesis (sulfonamides and trimethoprim) fail since the cell wall and folic acid synthesis are absent in mycoplasmas (McCormack 1993). Antibiotic treatment is, however, believed to be mostly ineffective (Frey 2002). This is also the case in ostriches where antibiotic treatment is not always successful because ostriches carrying the disease can remain asymptomatic and are therefore not treated which aids in the spread of mycoplasmas. Additionally in many countries, including South Africa, antibiotic resistance has been reported in *Mycoplasma* species (excluding ostrich-infecting mycoplasma) and are of concern (Kibeida 2011; Zhao et al. 2012; Waites et al. 2014).

Biosecurity practices and antibiotic treatment aid in limiting losses, but they do not provide optimum solutions to control mycoplasma infections. Vaccination provides the animal with the necessary defence to prevent the progression of infections and to fend off pathogens against which it has been vaccinated. This prevents or reduces the symptoms and severity of the disease. Ensuring healthy animals which can grow optimally thus increases commercial production. Vaccines not only protect the animal from the pathogen but also the human consumer from encountering the pathogen. It also decreases the associated risks of long term antibiotic use such as acquiring antibiotic resistance and of consuming pharmacological contaminants in food products (Nisha 2008; Darwish et al. 2013).

Although there are registered vaccines against a few *Mycoplasma* species there are currently no means of preventing mycoplasma infections in ostriches. The sections that follow will explore the literature on vaccines in general in order to evaluate the approaches that can be followed specifically to develop a vaccine for the treatment of mycoplasmosis in ostriches.

## 2.7 Live attenuated, inactivated whole organism and protein subunit vaccines

Vaccines rely on the ability of the host to gain memory of the particular antigen after exposure. This equips the host with the necessary defences to combat future exposure to the pathogenic organism. The **ideal vaccine** should be highly efficient in activating both B-cells and T-cells that lead to memory. It should be administered in a single dose and cause long term immunity. It should have no side effects in the immunized individuals, even in complicated cases such as immune-compromised, young or old individuals. The

manufacture of the ideal vaccine should also be inexpensive and quality control uncomplicated. It should be temperature stable for transport without a cold chain and have a long shelf-life. Additionally it should also be possible to <u>differentiate infected from vaccinated</u> <u>a</u>nimals, the so-called DIVA principle (Levine and Sztein 2004; Hoelzle et al. 2009; Uttenthal et al. 2010). Current vaccine approaches include live attenuated vaccines, inactivated whole organism vaccines, protein subunit vaccines and DNA vaccines. Most current vaccines only meet a few of the requirements for the ideal vaccine (Table 2.3).

Currently, most licensed vaccines are live attenuated and inactivated whole organism vaccines while only a few protein subunit vaccines and DNA vaccines are registered (Kutzler and Weiner 2008; Unnikrishnan et al. 2012). Live attenuated vaccines are non-pathogenic or non-virulent strains of the organism that have the ability to stimulate the immune system without causing disease symptoms. Immunity is long-lived and the vaccine can be administrated in a single dose. This approach mimics the natural route of entry of the infective organism and stimulates local immunity (Table 2.5). Immunization with live attenuated vaccines often results in both cellular and humoral immunity (Detmer and Glenting 2006). Live attenuated vaccines have, however, the potential to become reactogenic to the host, especially to immune-compromised, young and old individuals and are transmissible from one individual to the next. However, in future, a better understanding of bacterial genetics and availability of improved molecular techniques may aid in the development of safer live attenuated vaccines that may present fewer side effects (Detmer and Glenting 2006). Live attenuated vaccines are temperature sensitive and therefore require a cold chain transport and storage. Additionally they have a relative short shelf-life. Since the immunized individual is exposed to the whole pathogen it is difficult to differentiate infected from vaccinated animals (DIVA principle). Approved and commercially available live

| Vaccine approaches                                  |                                |                                           |                                |                 |  |
|-----------------------------------------------------|--------------------------------|-------------------------------------------|--------------------------------|-----------------|--|
| Characteristics of the ideal vaccine                | Live<br>attenuated<br>vaccines | Inactivated whole<br>organism<br>vaccines | Protein<br>subunit<br>vaccines | DNA<br>vaccines |  |
| Humoral response (B-cell)                           | $\checkmark$                   | $\checkmark$                              | $\checkmark$                   | $\checkmark$    |  |
| Cellular response (T-cell)                          | $\checkmark$                   | Х                                         | X                              | $\checkmark$    |  |
| Single dose                                         | $\checkmark$                   | Х                                         | X                              | Х               |  |
| No negative side effects                            | Х                              | Х                                         | X                              | $\checkmark$    |  |
| Inexpensive to manufacture                          | $\checkmark$                   | Х                                         | X                              | $\checkmark$    |  |
| Uncomplicated quality controls                      | Х                              | Х                                         | X                              | Х               |  |
| Temperature stable for transport without cold chain | Х                              | Х                                         | Х                              | $\checkmark$    |  |
| Long shelf-life                                     | Х                              | Х                                         | X                              | $\checkmark$    |  |
| DIVA principle                                      | Х                              | Х                                         |                                |                 |  |

Table 2.3 The characteristics of the ideal vaccine in comparison with current vaccine approaches

Compiled from Levine and Sztein (2004); Hoelzle et al. (2009); Uttenthal et al. (2010).

attenuated vaccines for mycoplasma control include *M. gallisepticum* str. F (FVAX-MG, Schering-Plough Animal Health), *M. gallisepticum* str. 6/85 (Mycovac-L, Intervet Inc.) and *M. gallisepticum* str. ts-11 (MG vaccine, Merial Select) for vaccination in chickens (Evans et al. 2005; Jacob et al. 2014).

Inactivated whole organism vaccines are heat or chemically inactivated pathogens. These vaccines elicit a potent humoral immune response but do not elicit a cellular response. Booster injections are almost always required. Inactivated whole organism vaccines against bacteria are composed of the entire cell content and therefore may contain toxins that can lead to local inflammation at the injection site as well as other side effects (Table 2.5). It is

Table 2.4 The advantages and disadvantages of current vaccine approaches

| Live attenuated vaccines                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                   |                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Advantages                                                                                                                                                                                                                                                                                                                                                                                | Disadvantages                                                                                                                                                                                                                                                                                     |                |  |
| <ol> <li>Highly effective in eliciting both cellular and<br/>humoral immune response</li> <li>Long term memory</li> <li>Low cost</li> <li>Can be administered orally</li> <li>Single dose</li> </ol>                                                                                                                                                                                      | <ol> <li>Potential safety risk for immune-compromised<br/>individuals</li> <li>Temperature sensitive, requires cold chain for<br/>transport and storage</li> <li>May convert into virulent forms</li> <li>Manufacturing is challenging, working with<br/>potential dangerous organisms</li> </ol> |                |  |
| Example of commercial license live attenuated v                                                                                                                                                                                                                                                                                                                                           | accines:                                                                                                                                                                                                                                                                                          |                |  |
| Product name (Supplier, attenuated strain)                                                                                                                                                                                                                                                                                                                                                | Vaccine target                                                                                                                                                                                                                                                                                    | Animal         |  |
| FVAX-MG (Schering-Plough Animal Health, strain F                                                                                                                                                                                                                                                                                                                                          | ) M. gallisepticum                                                                                                                                                                                                                                                                                | Chicken        |  |
| Mycovac-L (Intervet Inc., strain 6/85)                                                                                                                                                                                                                                                                                                                                                    | M. gallisepticum                                                                                                                                                                                                                                                                                  | Chicken        |  |
| MG vaccine (Merial Select, strain ts-11)                                                                                                                                                                                                                                                                                                                                                  | M. gallisepticum                                                                                                                                                                                                                                                                                  | Chicken        |  |
| Inactivated whole organism vaccines                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                 |                |  |
| Advantages                                                                                                                                                                                                                                                                                                                                                                                | Disadvantages                                                                                                                                                                                                                                                                                     |                |  |
| <ol> <li>Potent antibody response</li> <li>Safety: Cannot revert to virulent form</li> <li>No cellular immune response</li> <li>Potential risk of toxins and inflammation at th<br/>immunization site</li> <li>Temperature sensitive, requires cold chain fo<br/>transport and storage</li> <li>Manufacturing is challenging, working with<br/>potentially dangerous organisms</li> </ol> |                                                                                                                                                                                                                                                                                                   |                |  |
| Example of commercial licence inactivated whole                                                                                                                                                                                                                                                                                                                                           | e organism vaccines:                                                                                                                                                                                                                                                                              |                |  |
| Product name (Supplier)                                                                                                                                                                                                                                                                                                                                                                   | Vaccine target                                                                                                                                                                                                                                                                                    | Animal         |  |
| Stellamune One (Pfizer Animal Health)                                                                                                                                                                                                                                                                                                                                                     | M. hyopneumoniae                                                                                                                                                                                                                                                                                  | Swine          |  |
| Suvaxyn <sup>®</sup> MH One (Pfizer Animal Health)                                                                                                                                                                                                                                                                                                                                        | M. hyopneumoniae                                                                                                                                                                                                                                                                                  | Swine          |  |
| MG-Bac (Fort Dodge Animal Health)                                                                                                                                                                                                                                                                                                                                                         | M. gallisepticum                                                                                                                                                                                                                                                                                  | Chicken        |  |
| Protein subunit vaccines                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                 |                |  |
| Advantages                                                                                                                                                                                                                                                                                                                                                                                | Disadvantages                                                                                                                                                                                                                                                                                     |                |  |
| <ol> <li>Potent antibody response</li> <li>Manufacture with well established techniques</li> <li>Safety: Eliminate working with pathogens and<br/>exposing patients or animals to live pathogens<br/>and toxins within these organisms</li> </ol>                                                                                                                                         | <ol> <li>No cellular immune response</li> <li>Folding problems, protein antige<br/>the non-native form</li> <li>Temperature sensitive, requires<br/>transport and storage</li> <li>Potential risk of inflammation at<br/>immunization site</li> </ol>                                             | cold chain for |  |

Table 2.5 (Continued).

| DNA vaccines                                |                                                                                                                                             |                                                                                               |        |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------|
| Advantages                                  |                                                                                                                                             | Disadvantages                                                                                 |        |
| 1.<br>2.<br>3.                              | Elicit cellular and humoral immune responses<br>Endogenous antigen production<br>Economic, large scale production                           | <ol> <li>Potential problems with potency</li> <li>Would require more than one dose</li> </ol> |        |
| 4.                                          | More temperature stable than conventional vaccines, long shelf-life and require no cold chain for transport.                                |                                                                                               |        |
| 5.                                          | Produce antibodies in neonates even in the presences of maternal antibodies                                                                 |                                                                                               |        |
| 6.                                          | Animal acts as a bioreactor- thus eliminating<br>problems with protein folding and post-<br>translational modifications of protein antigens |                                                                                               |        |
| Example of commercial licence DNA vaccines: |                                                                                                                                             |                                                                                               |        |
| Product name (year, country)                |                                                                                                                                             | Vaccine target                                                                                | Animal |
| West Nile Innovator (2005, USA)             |                                                                                                                                             | West Nile virus                                                                               | Horse  |
| Apex <sup>®</sup> -IHN (2005, Canada)       |                                                                                                                                             | Infectious haematopoietic<br>necrosis virus                                                   | Salmon |
| Canine melanoma vaccine (2007, USA)         |                                                                                                                                             | Melanoma                                                                                      | Dogs   |
| LifeTide-SW5 (2007, Australia)              |                                                                                                                                             | Growth hormone release<br>hormone for foetal loss                                             | Swine  |

Compiled from: Babiuk et al. (2003); Evans et al. (2005); Detmer and Glenting (2006); Kutzler and Weiner (2008); Villarreal et al. (2011); Marchioro et al. (2013); Bueno et al. (2014); Jacob et al. (2014).

difficult to apply the DIVA principle to these vaccines since the immunized individual is exposed to the whole cell content. Production relies on the ability to culture bacteria in large quantities. Mycoplasmas are notorious for infecting cell cultures (Uphoff and Drexler 2014) creating the false impression that they are easy to culture. However for most species, the small genome size brings with it complex substrate requirements (Citti and Blanchard 2013). The implication is that some species are especially difficult to culture (Citti and Blanchard 2013; Bueno et al. 2014) and renders inactivated whole organism vaccines expensive. Examples of inactivated whole organism vaccines are Suvaxyn<sup>®</sup> MH One (Pfizer Animal Health) and Stellamune One (Pfizer Animal Health) for the prevention of *M. hyopneumoniae* infections in pigs (Villarreal et al. 2011; Marchioro et al. 2013) and MG-Bac (Fort Dodge Animal Health) for the prevention of *M. gallisepticum* infections in chicken (Bueno et al. 2014).

Protein subunit vaccines consist of a specific protein/antigen that are isolated from the bacterial cell culture or produced recombinantly. As with whole organism vaccines, protein subunit vaccines can also elicit a strong humoral response but cannot elicit a cellular response and booster injections are required (Table 2.5). Protein subunit vaccines eliminate the presence of toxins within the vaccine and therefore are less likely to elicit inflammation at the injection site as well as other side effects associated with inactivated whole organism vaccines. Recombinant proteins are commonly produced in *E. coli* after which the protein is

isolated using chemical or chromatographical methods. Isolation methods may, however, lead to the incorrect folding of the antigenic protein. Expression of mycoplasma proteins within *E. coli* is also hampered because of codon usage differences in particularly the TGA codon that encodes for tryptophan in *Mycoplasma* species but for a universal stop codon in *E. coli*. This terminates translation of mycoplasma proteins in *E. coli* prematurely and warrants the need for an additional step before the expression to change the codon to TGG. Although there are no commercial licensed protein subunit vaccines available for mycoplasmosis, their potential use, development and efficacy has been extensively studied (Galli et al. 2012; Simionatto et al. 2012; Prysliak et al. 2013).

Ostrich-infecting *Mycoplasma* species are slow growing bacteria that require serum for growth (Langer 2009). This makes traditional approaches such as inactivated whole organism vaccines for use in ostriches impractical and economically unfeasible for the relatively small vaccine market if compared to that of poultry. As an alternative DNA vaccines do not require large scale culturing and have also been reported to be cost effective (Mahoney et al. 2000).

DNA vaccines have attracted considerable attention as an alternative vaccine strategy to eliminate some of the disadvantages of other vaccine strategies (Table 2.5). This approach to vaccination was recognized in the early 1990's by Wolff et al. (1990) and will be reviewed in the following section.

## 2.8 DNA vaccines

A DNA vaccine is an antigen encoding double stranded circular deoxyribonucleic acid (DNA) molecule also referred to as a DNA plasmid or DNA vector. The molecules, encoding an antigenic pathogen protein, are delivered to the eukaryotic host cells. This leads to expression of the antigenic pathogen protein, which in turn is capable of eliciting a specific immune response within the immunized animal and leads to protection against the pathogen. DNA vaccines provided researches with the unique opportunity to utilize the cell's own mechanisms to produce transgenic protein (Lewis and Babiuk 1999; Findik and Çiftci 2012).

The antigen is produced *in situ* and therefore can stimulate both humoral and cellular immune responses (Kutzler and Weiner 2008) (Table 2.5). DNA vaccines circumvent the need to work with dangerous pathogens in vaccine production laboratories as is the case in the production of live attenuated or inactivated whole organism vaccines. Production also has no protein isolation step that can lead to incorrect protein folding as is the case with the production of protein subunit vaccines. Additionally DNA vaccines are relatively stable in dry form or dissolved in buffer (Quaak et al. 2010), thus they do not require traditional cold transport and storage. As with protein subunit vaccines, the DIVA principle can be applied

after vaccination since the plasmid encodes for one or a small number of pathogen proteins. Thus it would be possible to distinguish between infected and vaccinated animals by testing the immune response towards other pathogen proteins.

DNA vaccines can be produced and isolated from *E. coli* bacteria which is a relatively easy and cost effective way of producing a vaccine (Cai et al. 2009). DNA vaccines are also considered safe (Section 2.8.4). In general there are problems with the potency of DNA vaccines in large animals (Babiuk et al. 2003), but this has also been overcome in the commercial DNA vaccines available for pigs and horses.

The design of DNA vaccines is based on a two part strategy: firstly, the production of the DNA vaccine within E. coli and secondly, the expression of the antigen within the eukaryotic host. The two parts are interlinked and changes in one part of the plasmid may influence both processes (Hartikka et al. 1996; Williams 2013). For prokaryotic production, the plasmid contains a high copy number origin of replication and a prokaryotic marker (Figure 2.3). The prokaryotic origin of replication influences the copy number of the plasmid within the bacterial cells and therefore has a direct effect on the amount of DNA vaccine produced per unit culture. Prokaryotic markers ensure selection during the cloning process as well as stable inheritance of the plasmid DNA during bacterial growth (Oliveira and Mairhofer 2013). In general this conveys resistance to a drug, typically an antibiotic. The most used resistant marker is the neomycin phosphotransferase II (nptII) gene because it is tolerated by regulatory authorities (FDA 1996). The nptll gene encodes the enzyme aminoglycoside-3'phosphotransferase that phosphorylates aminoglycoside antibiotics such as kanamycin and G418 thereby inactivating them. Kanamycin is not commonly use to treat human infections because of side effects (Vandermeulen et al. 2011) and it is therefore safe to use these resistance genes from the vaccine production perspective.

When DNA vaccines were first discovered all plasmids used antibiotic markers since it provided an easy way to select for bacteria containing DNA vaccines. However due to public concern about the possible horizontal transfer of these markers to other bacteria and integration into the host genome, the general perspective is to move away from using antibiotics for selection. New generations of DNA vaccine plasmids are partially or totally devoid of prokaryotic elements (Vandermeulen et al. 2011; Oliveira and Mairhofer 2013). Selection of these vectors is based either on the complementation of auxotrophic strains, toxin–antitoxin systems, operator–repressor titration, RNA markers, or on the overexpression of a growth essential gene (Vandermeulen et al. 2011; Oliveira and Mairhofer 2013). Progress had been made to remove the prokaryotic elements from DNA vaccines although there are still problems with cost effective isolation for some of the alternatives (Faurez et al. 2010).

For eukaryotic protein expression, the DNA vaccine contains a strong eukaryotic promoter, enhancer, intron and transcription terminator/polyadenylation signal in addition to the antigenic gene (Figure 2.3). The plasmid is engineered to contain has a strong and ubiquitous viral promoter that confers optimal expression of the vaccine candidate gene in eukaryotic cells (Faurez et al. 2010; Okuda et al. 2014). Additionally transcriptional transactivators, introns and other enhancer elements are included to increase transcription activity and expression (Flingai et al. 2013; Williams 2013). The polyadenylation signals ensure proper termination of transcription and RNA maturation.




Figure 2.3 A diagram of the typical DNA vaccine vector showing the origin of replication and the selective marker which are needed for prokaryotic production, as well as the promoter, intron and polyadenylation signal, in addition to the vaccine candidate gene that is required for eukaryotic expression

#### 2.8.1 Routes of immunization

DNA vaccines can be formulated as an aqueous solution (naked DNA vaccine), in complex with cationic liposomes and polymers, or packed within virus and bacteria vectors (Faurez et al. 2010). Naked DNA vaccines can by administrated by intramuscular or intradermal injection. Physical methods such as gene gun, electroporation and a CO<sub>2</sub>-powered Biojector can also be used for administration of the vaccine (Escoffre et al. 2013; Manjila et al. 2013). Each method proved to have certain advantages and disadvantages, providing a range of approaches that can be applied keeping the outcome in mind (Table 2.5). For example, with bacterial carriers it is possible to administer the vaccine orally. This elicits mucosal immunity, which can be of value if the pathogen attacks/gains entrance via the airways such as in the case of mycoplasmas. These techniques are to overcome the problems associated with the low transfection rate of DNA vaccines. It is, however, important to note that because of the

effectiveness of the immune system, protein expression in the nanogram range is sufficient to elicit an effective immune response (Chastain et al. 2001).

| Delivery method            | Advantages                                                                                | Disadvantages                           |
|----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|
| Bacterial or viral carrier | Easy to administer                                                                        | Possible risk due to live               |
|                            | <ul> <li>Secretory IgA production</li> </ul>                                              | bacteria                                |
| Biojector injection (id)   | Induces cellular immune response                                                          | <ul> <li>Induce weak humoral</li> </ul> |
|                            | Easy to administer                                                                        | immune response                         |
| DNA with adjuvants         | <ul> <li>Can manipulate to get desired cellular or<br/>humoral immune response</li> </ul> | Unknown side effects                    |
| Electroporation (id, im)   | High level of immune response                                                             | Possible risk due to                    |
|                            | <ul> <li>Long duration of immune response</li> </ul>                                      | high voltage                            |
| Gene Gun (id)              | <ul> <li>Small amount of DNA injected</li> </ul>                                          | Induce weak cellular                    |
|                            | Dominance of humoral immune response                                                      | immune response                         |
| Intranasal immunization    | Easy to administer                                                                        | Weak overall                            |
|                            | <ul> <li>Secretory IgA production</li> </ul>                                              | immunogenicity                          |
|                            | Effective for lung immunity                                                               |                                         |
| Needle injection (im)      | Activate cellular immune response                                                         | Muscle pain                             |
|                            | <ul> <li>pDNA spreads widely</li> </ul>                                                   |                                         |
|                            | Most commonly studied                                                                     |                                         |
|                            | Large amount of DNA can be injected                                                       |                                         |

| Table 2.5 Advantages and | disadvantages of DNA  | A vaccine administration methods |
|--------------------------|-----------------------|----------------------------------|
| Table 2.5 Advantages and | uisauvantages of Driv |                                  |

Abbreviations: id intradermal, im intramuscular.

Table from Bermúdez-Humarán et al. (2011); Okuda et al. (2014).

## 2.8.2 The journey into the cell nucleus

Understanding the mechanism of transfection into the nucleus as well as the mechanism of inducing an immune response is critical for the rational design of DNA vaccines. The proportion of DNA vaccine plasmid molecules that reach the nucleus is affected by numerous factors such as the route of administration, size and conformation of the plasmid. The tissue distribution of DNA vaccines as well as the cell type transfected will depend on the route of immunization. After intramuscular immunization, the DNA vaccine molecules will be positioned within the extracellular spaces and be transfected mainly into mycocytes. Intradermal or subcutaneous administration, on the other hand, will predominately lead to transfection of keratinocytes. Additionally a small portion will also be directly transfected into professional antigen presenting cells (APCs), dendritic cells (DC) in the muscle and the epidermal Langerhans cells or dermal dendritic cells in the skin (Kutzler and Weiner 2008; Palumbo et al. 2012).

Studies evaluating the anatomical distribution of DNA vaccines within a body have shown that after immunization most DNA vaccines either remain at the injection site, where they are taken up by cells or degraded by nuclease enzymes, or they are distributed through the blood and lymph system to various tissues (Tadokoro et al. 2001). In the blood and lymph, the plasmid will also either be degraded or taken up by APCs. Transfection occurs at a very

low frequency because the extracellular space, blood, lymph and cytoplasm are equipped with enzymes that degrade DNA.

The half-life of DNA vaccines within the blood of rats after intravenous injections ranges from 0.15 to 21 minutes depending on the topoform (linear, open circle or supercoiled) of the DNA vaccines (Houk et al. 2001). In addition to nuclease enzymes, the liver nonparenchymal cells such as Kupffer (liver resident macrophage) and liver sinusoidal endothelial cells contribute to the degradation of DNA vaccines. These cells use scavenger receptors to internalize and degraded large anionic molecules. Trace amounts of plasmids could still be detected after 28 days in rats (Tuomela et al. 2005) and pigs (Kanellos et al. 1999), 54 days in sheep (Mena et al. 2001), 70 days in goldfish (Kanellos et al. 1999) and turkeys (Kanellos et al. 1999) and 90 days in rainbow trout (Garver et al. 2005).

In order for the antigen to be expressed, the vaccine plasmid should be transfected into the nucleus. To enter the nucleus, the vaccine plasmid needs to overcome three obstacles, crossing the cell plasma membrane, travelling to the nucleus and crossing the nuclear membrane, as illustrated in Figure 2.4.

The cell membrane as well as the DNA vaccine plasmid have an overall negative charge implying that the two do not associate with each other. Despite this, DNA vaccines do cross the cell membrane and it has been proposed that it happens via endocytosis although the precise mechanism is not known (Tonheim et al. 2008). Once inside the cell, DNA vaccines

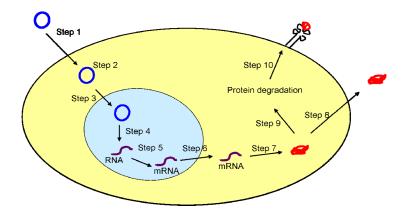



Figure 2.4 Path of a DNA vaccine into the cell nucleus and the expression of the antigenic protein. The vector is imported into the cell through endocytosis (Step 1). The DNA vector travels through the dense cytoplasm to the nucleus (Step 2) where it crosses the nucleus membrane to enter the nucleus (Step 3). Within the nucleus the antigenic gene is transcribed to RNA (Step 4) which is processed to mRNA (Step 5) and exported to the cytoplasma (Step 6) for translation of the antigen protein (Step 7). The antigenic protein can either be exported (Step 8) or it can be tagged for protein degradation (Step 9), which leads to the presentation of antigenic peptides by the major histocompatibility complex I (MHC I) on the cell membrane (Step 10).

are hardly stable, it is estimated that the half-life for DNA vaccines within the cytoplasma of HeLa and COS cells is 50 to 90 minutes (Lechardeur et al. 1999). The eukaryotic cytosol has dense and viscose characteristics with proteins, organelles and the cytoskeleton making diffusion of large molecules such as DNA vaccines slow (Lukacs et al. 2000). DNA vaccines use the microtubule network of the cytoskeleton and the molecular motor, dynein, to move to the nucleus (Vaughan and Dean 2006). A multiprotein complex is involved in this transport since the DNA vaccine does not directly bind to the dynein.

The DNA vaccine cross the nuclear membrane through a nuclear pore complex (Lechardeur and Lukacs 2006). About 0.1% of the plasmid DNA microinjected into the cytoplasma of COS-7 cells reached the nucleus and resulted in expression (Pollard et al. 1998).

#### 2.8.3 How does the DNA vaccine result in immunity?

The antigen gene of the DNA vaccine is transcribed to RNA within the nucleus. Sequentially, the RNA is processed to remove introns (if present) and a 5' cap and 3' polyadenylate tail is added. The mature messenger RNA (mRNA) is then exported to the cytoplasma where it is translated to the antigenic protein (Figure 2.4).

Our understanding of how DNA vaccines lead to immunity is far from complete. The mechanism, as outlined in Figure 2.5 is based on the current understanding (Kutzler and Weiner 2008; Moss 2009; Liu 2011; Li et al. 2012; Pereira et al. 2014; Xu et al. 2014). After immunization, the DNA vaccine is internalized by somatic cells (myocytes or keratinocytes), as well as APC cells, leading to the expression of the protein antigen (Ag). The host-synthesized Ag molecules are subjected to immune surveillance and will be tagged by ubiquitylation for proteolysis that will degrade the antigenic protein into small fragments. The fragments enter the endoplasmic reticulum where they are loaded onto major histocompatibility complex class I (MHC I) molecules. The Ag-MHC I complex is transported via the Golgi complex to the cell surface where it facilitates binding with CD8<sup>+</sup> T-cells (Vyas et al. 2008; Wang et al. 2011). CD8<sup>+</sup> T-cells recognize the Ag-MHC I complex as non-self and elicit a cellular immune response that results in the formation of memory T-cells as well as cell death of the infected cell.

APC can either be directly transfected and produce the Ag or the Ag can be internalised by sample part of the extracellular milieu by a process called phagocytosis. This results in the display of the antigenic peptides on major histocompatibility complex class II (MHC II) molecules. This activates CD4<sup>+</sup> T-cells leading to the activation and maturation of B-cells which will produce antibodies, as well as memory B-cells, and thereby elicits humoral immunity.

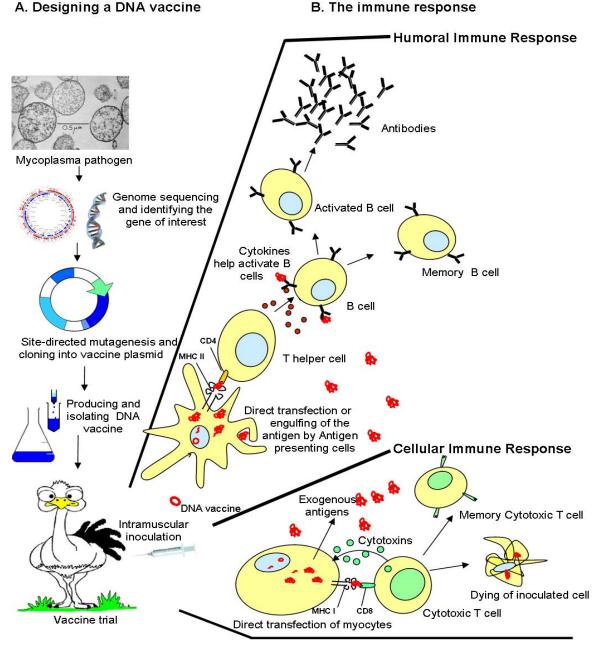



Figure 2.5 A) Design of a DNA vaccine against mycoplasmas and the immune responses elicited by it. Genomic DNA of the mycoplasma is isolated and sequenced with a next-generation sequencing platform. The vaccine candidate gene is identified from the genomic data. Site-directed mutagenesis is performed to correct for codon differences between the mycoplasma and its host, thereafter the gene is inserted into a vaccine vector for subsequent immunization trials. B) The immune response. Cellular immune response: The DNA vaccine enters myocytes or APC leading to the expression of the antigen (Ag). If a signal peptide is present the Ag may also be exported. Fragments of the antigen produced within cells are displayed by the MHC I on the cell surface for self-recognition. CD8<sup>+</sup> T-cells recognize the Ag-MHC I complex as non-self and elicits a cellular immune response that results in the formation of memory T-cells as well as cell death of the infected cell. Humoral immune response: APC cells engulf or produce Ag that leads to the presentation of Ag on MHC II molecules. This activates CD4<sup>+</sup> T-cells leading to the maturation of B-cell which will produce antibodies as well as memory B-cells. Figure complied from Kutzler and Weiner (2008); Moss (2009); Liu (2011); Li et al. (2012); Pereira et al. (2014); and Xu et al. (2014).

#### 2.8.4 DNA vaccines and safety

Safety is an important concern with any vaccine and as such should be considered in full. It is important to understand that DNA vaccines cannot replicate within eukaryotic cells and that the transfection percentage of the cells is extremely low. This coupled with the low half-life of the vaccine within blood and tissue implies that most of the DNA vaccine degrades within the body within minutes to hours. Additionally, DNA vaccines are non-living thus cannot revert to a disease state or cause secondary infection and inflammatory responses (Ferraro et al. 2011; Xu et al. 2014). For these reasons, DNA vaccines are considered to be safe and environmentally friendly (Ferraro et al. 2011; Williams 2013; Xu et al. 2014).

Safety concerns about the use of DNA vaccines are integration into the host genome, vertical transmission, the production of anti-DNA antibodies (autoimmunity), the possible spread of selective markers leading to antibiotic resistance and the effect of consuming vaccinated food animals. Integration into the host genome may result in suppression or activation of genes, which may have devastating effects such as cancer. Preclinical and clinical studies have, however, proven the rate of integration of plasmid DNA into the genome is lower than that of spontaneous mutations (Wang et al. 2004; Sheets et al. 2006). Vertical transmission of the DNA vaccines from one generation to the next is of concern, but has not been reported yet (Langer et al. 2013; Williams 2013; Xu et al. 2014). Animal studies showed no increase in anti-DNA antibodies after DNA vaccination and there was no evidence that DNA vaccination resulted in autoimmunity (MacGregor et al. 1998; Tavel et al. 2007; Kutzler and Weiner 2008; Fioretti et al. 2014). In the production of DNA vaccines an antibiotic selective marker is generally used and concerns exist about the spread of antibiotic resistance through horizontal gene transfer. The use of antibiotic resistance genes should therefore be restricted to exclude antibiotics generally used in treatment of human disease such as kanamycin (FDA 1996) or alternatively an antibiotic free production system should be used. Humans consume DNA of plant, animal and bacterial origin daily as a part of their food. The risk of consuming plasmid DNA from vaccines should pose no greater risk than natural DNA (Schalk et al. 2006).

## 2.8.5 The choice of DNA vaccine candidate gene

Choosing a vaccine candidate gene for a DNA vaccine is critical as it determines the success of the vaccine. The gene candidates should conform to the following requirements:

- 1. It should be a unique gene with no homologous or paralogous genes within the pathogen's genome or within the host's genome (Galperin and Koonin 1999).
- 2. The protein product must have an essential function in the pathogen thus life without the protein should be impossible (Allan and Wren 2003). Essential functions in pathogens include nutrient uptake, DNA replication, cell division, RNA transcription,

protein translation, virulence and pathogenicity. Proteins that are involved in more than one pathway can make more potent targets since more than one pathway will be affected.

- 3. The protein product must not be hypermutable or involved in antigen variation thus serving as decoys in preventing an effective immune response (Liu 2011).
- 4. The protein product must be accessible. Critical epitopes must not be masked thereby preventing an effective immune response (Liu 2011). Surface proteins generically have good accessibility since these proteins are exposed to the immune system of the host. An added advantage is that some have the essential role of host attachment, the first step in pathogenicity. Surface proteins are also involved in transport of essential nutrients, which in the case of mycoplasma, makes life possible.

In addition to the above, *in silico* prediction programs also use the availability of 3D structures and protein size as parameters to select suitable vaccine candidate genes (Agüero et al. 2008; Caffrey et al. 2009). This however does not mean that larger proteins without resolved 3D structures cannot make good and effective vaccines, it simply means that the experimental procedure may be more complicated.

## 2.9 DNA vaccine strategies for ostrich-infecting mycoplamas

The process of designing and developing a DNA vaccine for mycoplasmas is outlined in Figure 2.5 A. The steps include the identification of a vaccine candidate gene from a sequenced and annotated genome of the pathogen, the cloning of the vaccine candidate gene into a vaccine vector and the production of the DNA vaccine in *E. coli* before the DNA vaccine can be evaluated. Additionally for mycoplasmas, codon optimization is also required.

## 2.9.1 Codon usage in *Mycoplasma* species

Tryptophan is coded as UGG in the universal genetic code whilst UGA is one of the three universal stop codons. In the class *Mollicutes*, however, the universal stop codon UGA, encodes for the amino acid tryptophan (Inamine et al. 1990). The use of UGA as an additional tryptophan codon is attributed to the reduced guanine and cytosine (G+C) content in mycoplasma genomes (Halbedel and Stulke 2007). Consequently the expression of mycoplasma genes in *E. coli*, avian or mammalian cells is jeopardized by the occurrence of the TGA codon within genes (UGA in RNA sequences) that result in premature termination of protein expression (Halbedel and Stulke 2007). To circumvent this problem a number of approaches can be used. Firstly, an expression system that employs the same codon can be used. The expression of mycoplasma proteins in *Spiroplasma citri* has been reported but

this bacterium is difficult to cultivate (Stamburski et al. 1991). Secondly, an *E. coli* suppressor strain that expresses UGA suppressor tRNA codons can be used to express mycoplasma proteins but they fail if the gene contains multiple UGA codons (Smiley and Minion 1993). Thirdly, genes can be synthesized *in vitro* with appropriate codons but this is expensive for long genes. Lastly, the codons can be changed by site-directed mutagenesis (SDM). SDM is a polymerase chain reaction (PCR) based technique in which primers that contain the mutated sites, are used to amplify the gene as well as the vector. After PCR amplification, the original template is removed with DpnI endonuclease enzyme digestion. DpnI endonuclease digests methylated and hemimethylated DNA i.e. the DNA of bacterial origin. The product is then transformed into *E. coli* and the mutation sites confirmed by sequencing (Ishii et al. 1998).

The influence of a low G+C content can further be observed in codon preferences in mycoplasma. The occurrence of rare codons may influence the expression of recombinant protein in *E. coli* as well as in the ostrich (targeted host) after DNA vaccination. Each animal and bacterium has its own codon preferences that result in optimal expression within the organism (Babiuk et al. 2003). No codon preference table is, however, currently available for the optimization of expression in ostrich. Although codon optimization can lead to increased protein expression, synonymous codon changes may also affect the protein conformation and stability, change sites of post-translational modifications and even alter protein function (Tsai et al. 2008; Zhang et al. 2010; Spencer et al. 2012; Zhou et al. 2013; Mauro and Chappell 2014). The immune system is, however, very effective and protein expression in the nanogram range can elicit an effective immune response (Chastain et al. 2001).

For the above reasons the only codon optimization done in the current study was the mutation of TGA codons to TGG by using SDM within the vaccine candidate gene.

#### 2.9.2 DNA vaccine vectors for use in ostrich

The three vaccine vectors chosen for this study were pCI-neo, VR1012 and VR1020 (Figure 2.6). These were selected based on DNA vaccine studies in other birds (Lee et al. 2003; McCutchan et al. 2004; Klotz et al. 2007) and on special characteristics such as a tissue plasminogen activator (TPA) signal peptide in VR1020. The TPA signal should result in the export of the translated protein from the cell in which it is produced and thus better activation of the immune system. The prokaryotic elements in these vectors include an origin of replication and a prokaryotic selection marker. These elements are required for the production of the DNA vaccines within *E. coli*. The prokaryotic selection marker in pCI-neo is ampicillin resistance while in both VR1012 and VR1020 the prokaryotic selection marker is kanamycin resistance. The use of kanamycin resistance is preferable because kanamycin not commonly use to treat human infections due to side effects (Vandermeulen et al. 2011).

#### Stellenbosch University https://scholar.sun.ac.za

Chapter 2 Literature review

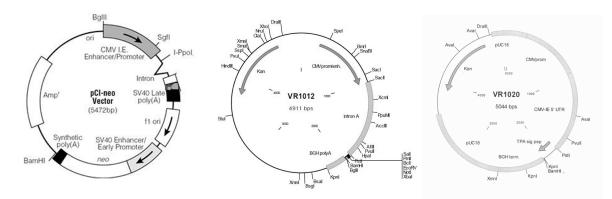



Figure 2.6 The DNA vaccine vector map of pCI-neo, VR1012 and VR1020.

The eukaryotic elements in all of these vectors include a promoter region, intron and polyadenylation signal. These regions are required for optimal expression in eukaryotic cells. All three of these vectors use a cytomegalovirus (CMV) immediate-early (IE) enhancer/promoter region. The CMV promoter is a virally-derived promoter that leads to a high-level of transgenic expression in a wide range of eukaryotic cells making it an ideal choice for DNA vaccines (Garmory et al. 2003; Kutzler and Weiner 2008). Furthermore pCI-neo has a chimeric intron and a simian virus 40 (SV40) late polyadenylation signal while both VR1012 and VR1020 have the intron A from CMV and the bovine growth hormone (BGH) terminator site. Introns have been reported to increase expression (Sridhar et al. 2008) while the polyadenylation signal or terminator site is required for proper termination of transcription and export of the mRNA from the nucleus (Kutzler and Weiner 2008). Polyadenylation sequences such as BGH or SV40 also increase the stability of mRNA transcripts (Garmory et al. 2003).

#### 2.9.3 DNA vaccine candidate gene, oppA

Numerous potential target genes for DNA vaccines are described in the literature and amongst these are the ABC transporters. ABC importers are involved in the active import of nutrients and are located on the surface of the cell membrane of mycoplasma.

One such importer is the oligopeptide permease (Opp) transporter that is responsible for the active import of oligopeptides due to the absence of *de novo* amino acid synthesis. The Opp transporter contains a substrate-binding domain referred to as OppA. The OppA proteins of *Brachyspira pilosicoli* (Movahedi and Hampson 2010), *Moraxella catarrhalis* (Yang et al. 2011) and *Yersinia pestis* (Tanabe et al. 2006) have been evaluated as candidate vaccine antigens and could similarly be a potential vaccine antigen in Ms03.

The *oppA* gene and its corresponding protein product have several characteristics that make it a suitable vaccine candidate gene:

- The substrate-binding domain is unique to plants, bacteria and archaea (Berntsson et al. 2010; Rice et al. 2014) which implies that the *oppA* gene should have no homologous genes in the ostrich genome.
- Oligopeptide transport is an essential function in mycoplasmas and the substratebinding domain is a prominent part of the transporter. Furthermore, transposon mutagenesis studies in *M. genitalium* and *M. pulmonis* found the *oppA* gene to be essential for survival (Glass et al. 2006; French et al. 2008).
- The OppA is not involved in antigen variation due to its essential function in oligopeptide binding.
- The substrate-binding domain OppA is surface located and therefore exposed to the immune system of the host.

Additionally the OppA of *M. hominis* has been reported to function in cytoadhesion (Henrich et al. 1999; Hopfe and Henrich 2004). If this is also the case in *M. nasistruthionis* sp. nov. str. Ms03, then antibodies against the OppA would not only limit or prevent oligopeptide transport but also cytoadhesion and therefore infections. In order to identify an *oppA* gene in *M. nasistruthionis* sp. nov. str. Ms03, the genome was sequenced and annotated. The sequencing and annotation results are presented in the following chapter together with the identification and characterization of the *opp* operon.

## Chapter 3 The sequencing and annotation of the *Mycoplasma nasistruthionis* sp. nov. str. Ms03 genome and the identification and characterization of the proposed vaccine candidate gene, *oppA*

### 3.1 Introduction

Recent developments in genome sequencing techniques provide a unique opportunity to characterize individual genes of bacteria and thereby obtain an overview of their metabolic capacities. Knowledge of the genome also allows for a reverse vaccinology approach to be taken where bioinformatic tools are used to identify genes that conform to the requirements for a vaccine candidate gene. Having an annotated genome further enables the quick and effective identification of a vaccine candidate gene.

The first aim of this study was therefore to expand the knowledge of *Mycoplasma nasistruthionis* sp. nov. str. Ms03 (Ms03, this abbreviation is used in this chapter for brevity) by determining the Ms03 genome sequence, annotating the genes and evaluating the metabolic pathways of essential processes. This would also allow future identification of vaccine candidate genes. The objectives were therefore set as follows:

- To sequence and assemble the Ms03 genome.
- To annotate the Ms03 genome using two annotation programs.
- To generate a metabolic overview of Ms03.

A number of next-generation sequencing (NGS) platforms are available for genome sequencing. These include the Roche 454 GS FLX Titanium, Illumina Solexa GAII, Life APG SOLiD 3 and Pacific Biosciences PacBio RS; these are compared in Table 3.1. Pyrosequencing (such as the Roche 454 platform) is a sequence-by-synthesis technique that relies on the detection of pyrophosphate release during nucleotide incorporation. The released inorganic pyrophosphate initiates a chain of enzyme reactions that ultimately produces light. The sequential nucleotide specific light signals are then used to determine the nucleotide sequence (Harrington et al. 2013). The Roche 454 GS FLX Titanium platform was used in this study because the longer read length is beneficial for *de novo* sequencing of genomes in which repeats frequently occur as in the case of mycoplasmas. *De novo* sequencing was used to determine the Ms03 genome sequence since no reference genome was available for Ms03. Pyrosequencing produces reads that can be assembled into contiguous sequences (contigs) and these contigs can then be used as a draft genome.

| Platform                            | Library<br>(Template<br>preparation)    | NGS chemistry<br>(Read length)                                                  | Advantages and disadvantages                                                                                                                                                                 |
|-------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Roche 454<br>GS FLX<br>Titanium     | Fragment,<br>paired-end<br>(emPCR)      | Pyrosequencing<br>(400 bases)                                                   | Advantage: Longer reads improve<br>mapping in repetitive regions; fast run<br>times<br>Disadvantage: High reagent cost; high<br>error rates in homopolymer repeats                           |
| Illumina<br>Solexa GA <sub>ll</sub> | Fragment,<br>mate-pair<br>(emPCR)       | Sequencing by<br>synthesis with reversible<br>terminators<br>(75 or 100 bases)  | Advantage: Low cost per Mb of data<br>generated<br>Disadvantage: Low multiplexing<br>capability of samples                                                                                   |
| Life APG<br>SOLiD 3                 | Fragment,<br>mate-pair<br>(solid-phase) | Cleavable probe<br>sequencing by ligation<br>(50 bases)                         | Advantage: Two-base encoding<br>provides inherent error correction<br>Disadvantage: Long run times                                                                                           |
| Pacific<br>Biosciences<br>PacBio RS | Fragment<br>(single<br>molecule)        | Single DNA polymerase<br>detection<br>(mean 2246 bases,<br>maximum 23000 bases) | Advantage: Longer reads improve<br>mapping in repetitive regions and <i>de</i><br><i>novo</i> sequencing<br><b>Disadvantage</b> : Highest error rates<br>compared with other NGS chemistries |

| Table 3.1 Com | parison of next-a | eneration sequer | ncing techniques |
|---------------|-------------------|------------------|------------------|
|               |                   |                  |                  |

Abbreviation emPCR: emulsion-based clonal amplification.

Adapted from Metzker (2009); Glenn (2011); van Dijk et al. (2014).

For genome annotation, two automatic prokaryotic servers were used, namely the Institute for Genome Sciences (IGS) prokaryotic annotation pipeline and the Rapid Annotations using Subsystem Technology (RAST) annotation pipeline. IGS and RAST annotation servers are both web-base analyses for the annotation of bacterial and archaeal genomes that allow the user to manually curate data (Table 3.2). The two servers use different approaches to annotation as outlined in Table 3.3 and Table 3.4. Automated annotation results from different servers are often reported to provide different and sometimes conflicting predictions (Ederveen et al. 2013). The two annotation of the Ms03 genome. Additionally RAST allows for a metabolic reconstruction of the annotated data using KEGG pathways. An overview of the metabolic capacity of Ms03 could therefore be generated using the gene annotation of both annotation servers as basis.

Traditional whole organism vaccine development against ostrich-infecting mycoplasmas is impractical and expensive because Ms03 is a slow growing bacterium that requires undefined medium components such as serum for *in* vivo growth. Knowledge of the Ms03 genome makes a DNA vaccine approach against Ms03 infections in ostriches possible. DNA vaccine development requires knowledge of the mycoplasma genome in order to identify a vaccine candidate gene that can be used in the DNA vaccine.

The oppA gene (substrate-binding domain of the oligopeptide permease (Opp) transporter) was chosen as vaccine candidate gene in previous *Mycoplasma struthionis sp.* nov. str. Ms01 and *Mycoplasma* sp. Ms02 studies within our research group (Pretorius 2009; Steenmans 2010).

The second aim of this study was therefore to identify an *oppA* gene within the Ms03 genome for use as a DNA vaccine candidate gene. The objectives were therefore:

- To identify an *opp* operon and its associated *oppA* gene within the Ms03 draft genome sequence.
- To confirm the identity of the *opp* operon and therefore the *oppA* gene by using bioinformatic analysis.

The *opp* operon in Ms03 was identified using tBLASTn and Glimmer searches. Furthermore, the identity of the *opp* genes was confirmed by identifying the functional protein motifs within their respective protein products.

|                                                        | IGS annotation server                                                    | RAST annotation server                                                                                                                  |
|--------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Developed by                                           | Institute for Genome Sciences, University of Maryland School of Medicine | The National Microbial Pathogen Data Resource                                                                                           |
| Website                                                | http://ae.igs.umaryland.edu/cgi/index                                    | http://rast.nmpdr.org/                                                                                                                  |
| Annotation of                                          | Bacteria and archaea                                                     | Bacteria and archaea                                                                                                                    |
| Prediction of non-<br>coding RNA and<br>coding protein | Search for non-coding RNA and protein coding genes simultaneously        | Search for non-coding RNA first then<br>protein-encoding genes<br>Do not allow protein-encoding genes<br>to overlap with non-coding RNA |
| Programs used for<br>rRNA prediction                   | RNAmmer                                                                  | search-for-rrna<br>BLASTn against RNA database for<br>endpoint adjustments                                                              |
| Programs used for tRNA prediction                      | tRNAscanSE                                                               | tRNAscanSE                                                                                                                              |
| Prediction of protein-<br>encoding genes               | Self-training method with Glimmer3*                                      | Self-training method with Glimmer3*                                                                                                     |
| Metabolic reconstruction                               | No                                                                       | Yes                                                                                                                                     |

Table 3.2 Comparison of the IGS and RAST annotation servers

\* Note the self-training methods are different between the two programs, see Table 3.3 and Table 3.4. Compiled from Aziz et al. (2008); Galens et al. (2011); Overbeek et al. (2013).

#### Table 3.3 The IGS annotation pipeline

The IGS annotation pipeline can be used to annotate both draft and finished genomes. The pipeline includes a number of steps for gene finding, protein searching and functional assignment (Galens et al. 2011). These steps are:

- 1. Parallel prediction of non-coding RNA and protein-encoding genes:
  - Non-coding RNA genes are identified by using tRNAscanSE for transfer RNA (tRNA) gene identification and RNAmmer for ribosomal RNA (rRNA) gene identification.
  - Protein-encoding genes are predicted with an *ab initio* Glimmer3 search. A set of long nonoverlapping genes are generated. From this set the relative frequencies of start sites are calculated and an upstream position weight matrix is created to aid in the identification ribosomal binding sites. These along with the set of long non-overlapping genes are used as input for the second Glimmer3 iteration. The predicted genes from this second round of Glimmer3 are used for downstream annotation.
- 2. Similarity searches (Round 1) using the predicted genes (Round 2 of Glimmer3) as queries:
  - An initial BLASTx search is performed against the UniRef100 database.
  - The resulting pairwise alignments are used as input into BER (Blast Extend Repraze). BER translates the extended nucleotide query (300 nucleotides (nt) up- and downstream from the predicted gene) to protein and aligns it to each protein match found in the BLASTx search. This may result in up to 150 alignments for each predicted gene. By aligning the extended nucleotide, it is possible to adjust for frameshifts or in-frame stop codons due to sequencing errors. The BER tool aligns the sequence through the error and allows for better curation. One round of extension is performed; further manual curation is needed if the predicted gene needs to be extended more than 300 nt.
  - HMMER package is used to search the predicted polypeptide sequences against the TIGRFAM and Pfam databases.
- 3. Refinement of the gene predictions based on automated evidence-directed structural curation:
  - The start and stop codons are adjusted based on the BER analysis and the presence of a ribosomal binding site upstream of the start codon.
  - All overlapping genes (non-coding RNA and protein-encoding) are identified. The BER analysis
    is evaluated for overlaps larger than 60 nt. If no evidence from a BER or HMM (Hidden Markov
    Model) search are found for one of the overlapping genes, it suggests a false positive and the
    gene is removed from the gene set. The same principle is applied to RNA genes overlapping
    protein-encoding genes. All other overlaps greater than 60 nt are flagged for manual reviewing.
  - Regions between genes are explored with BLASTx searches against the UniRef100 database to identify possible false negatives.
- 4. Similarity searches (Round 2) using the newly identified or curated genes as queries:
  - Similarity searches include an initial BLASTx search as well as BER and HMM searches (against the TIGRFAM and Pfam databases). In the second round of similarity searches the genes are not extended with 300 nt as is the case within the first round of similarity searches.
- 5. Motif searches on each predicted polypeptide:
  - Protein motif searches include SignalP (for prediction of signal peptide cleavage sites), LipoP (for prediction of lipoprotein signal peptides), TMHMM (for prediction of transmembrane helices), PROSITE using ScanProsite (for prediction of binding sites, active sites etc.), NCBI COGs (for assessment of orthologous groups) and Priam (to assign enzyme commission (EC) numbers) analyses are performed on each predicted polypeptide.
- 6. Assignment of a common name, gene symbol, Gene Ontology (GO) terms, EC number and TIGRFAM roles to each polypeptide is based on the results of the similarity and motif searches using the program pFunc (prokaryotic protein functional prediction).
- 7. All evidences are presented for online manual curation in Manatee.

The RAST annotation pipeline can be used to annotate both draft and finished prokaryotic genomes. The pipeline uses the FIGFam and subsystem approach to annotation (Aziz et al. 2008; Overbeek et al. 2013). The steps within the RAST annotation are as follows:

- 1. Special case genes (such as the genes for selenoproteins and pyrrolysoproteins) are identified first. These genes require domain-specific knowledge for identification.
- 2. Non-coding RNAs are identified using tRNAscanSE for tRNA gene identification and "search-forrrna" for rRNA gene identification. BLASTn searches against an rRNA database are used for endpoint adjustments of the rRNA genes.
- 3. An *ab initio* Glimmer3 search is used to identify gene-candidates. The resulting gene-candidates are compared to a set of universal, plus up to 200 "unduplicated", proteins in order to determine the 30 closest phylogenetic neighbours.
- 4. All gene-candidates are searched against proteins in the subsystems of the 30 closest phylogenetic neighbours. Subsystems are based on the FIGfam database. Genes are retained if they are similar to proteins in a subsystem and do not overlap significantly with a gene previously called. These genes are assigned a functional role base on these similarities.
- 5. Glimmer is retrained based on the retained genes. The gene-candidates from this iteration are searched against proteins in the subsystems as in step 4. This is repeated until no new gene-candidates are found to be similar to subsystem proteins.
- 6. The remaining gene-candidates that do not match subsystem proteins and do not overlap with existing called genes are retained if they are similar to any protein in the 30 closest phylogenetic neighbours.
- 7. The rest of the gene-candidates are now retained if they do not overlap with the genes called in step 4 to 6. This reduces the false negative gene calling.
- 8. Gene fragments that may contain frameshifts due to low quality sequencing are detected by comparing it to the genes from the 30 closest phylogenetic neighbours. Upon user request, the fragments are joined to a single gene.
- 9. Stretches of DNA longer than 1 500 base pairs (bp) that do not contain any genes are compared to the proteins of the 30 closest phylogenetic neighbours using BLASTx in order to identify missing genes.
- 10. Functions for the genes that did not have subsystem matches are assigned base on BLASTp similarities.
- 11. If a gene-candidate lacks subsystem assignment but the genes flanking it have subsystem assignments, then it is compared to the 30 closest phylogenetic neighbours. The gene may then be assigned into a subsystem provided that the three genes have bidirectional-best-hits in a neighbouring genome.
- 12. Additionally gaps are re-examined if they are flanked by genes with bidirectional-best-hits to genes that are in a subsystem in one of the neighbouring genomes. This aids in the identification of missing genes.
- 13. Gene-candidates are removed from the annotation if 1) they do not have subsystem or BLAST support, 2) are embedded in another gene, 3) significantly overlap with another gene or 4) are extremely short (>90 nt).
- 14. Subsystem analysis and initial metabolic reconstruction (using the KEGG pathways) are performed.
- 15. Pairs of close bidirectional-best-hits are computed against the genomes in PubSEED to support estimates of functional coupling based on conserved contiguity.
- 16. Results are presented online in SEED Viewer that provides the opportunity for viewing and manual curation of the annotated genome.

### 3.2 Material and methods

## 3.2.1 DNA isolation and confirming the identity of Ms03 genomic DNA

Cultures of Ms03 were obtained from Mr J.J. Gouws (Faculty of Veterinary Science, Onderstepoort, University of Pretoria). Genomic DNA (gDNA) was isolated from these cultures using a method described by Hempstead (1990) with the following modifications: The cells were collected from 25 ml of culture by centrifugation and directly resuspended in 1 ml concentrated TE buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA). Following the sodium acetate/ethanol precipitation step, samples were incubated overnight at -20°C before collecting the gDNA by centrifugation at 16 000 × g for 1 h at 4°C. The pellet was washed twice by adding 1.5 ml 70% ethanol and incubation for 20 min at room temperature before centrifugation at 16 000 × g for 10 min at 4°C. The pellet was air dried at room temperature and dissolved in 50 µl Milli-Q<sup>®</sup> water. The gDNA concentration was determined spectrophotometrically (NanoDrop spectrophotometer, ND-1000), while the integrity of the gDNA samples was assessed on a 1% (w/v) agarose gel (Lonza, Switzerland). Electrophoresis was performed in 1 × TAE buffer (40 mM Tris-acetate, 1 mM EDTA, pH 8, 20 mM glacial acetic acid) at 100 V for 5 min followed by 12 h at 12 V. After electrophoresis the agarose gel was stained for 10 min in 0.5 µg/ml ethidium bromide solution and visualised under UV light.

Polymerase chain reactions (PCR) were performed to confirm the identity of Ms03 gDNA and the absence of possible contamination from the other ostrich mycoplasmas, M. struthionis sp. nov. str. Ms01 and Mycoplasma sp. Ms02. The primer sets used to identify the specific ostrich mycoplasmas was based on 16S rRNA gene sequences (Botes et al. 2005a) (Table 3.5). Each PCR reaction contained 1 × reaction buffer, 0.2 mM of each deoxynucleotide (dATP, dCTP, dGTP and dTTP, Kapa Biosystems, South Africa) 2 mM MgCl<sub>2</sub>, 1 pmol/ml of each primer (Table 3.5), 0.2 units of Super-Therm Tag DNA polymerase (JMR Holdings, USA) and 2 µl gDNA (diluted 1:100) in a total volume of 10 µl. Positive controls containing *M. struthionis* sp. nov. str. Ms01, *Mycoplasma* sp. Ms02 and Ms03 gDNA as well as a negative control without template were included. PCR fragments were amplified with 25 cycles of denaturation at 94°C for 30 sec, annealing at 57°C for 15 sec and elongation at 72°C for 1 min followed by a final extension step at 72°C for 6 min in a Veriti 96 well Thermal Cycler (Applied Biosystems, USA). PCR products were separated using 2% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide. Electrophoresis was carried out at 100 V for 40 min in 1 × TAE buffer and products were visualised under UV light. The 100 bp DNA ladder (Promega, USA) was used for size determination.

|                                | Primer    | Sequence                        | Fragment size (bp) |  |
|--------------------------------|-----------|---------------------------------|--------------------|--|
| <i>M. struthionis</i> sp. nov. | MS012 (F) | 5'-AACATTAGTTAATGCCGGATACGC-3'  | 499                |  |
| str. Ms01 specific<br>primers  | MS01D (R) | 5'-GCCAGTATCCAAAGCGAGCC-3'      | 499                |  |
| Mycoplasma sp. Ms02            | MS02H (F) | 5'-AATATAAAAGGAGCGTTTGC-3'      | 247                |  |
| specific primers               | MS02A(R)  | 5'-AAGGCAATAGCATTTCCTCTACT-3'   | 241                |  |
| Ms03 specific primers          | MS03A(F)  | 5'-AGTGCTAATGCCGGATACTTATAC-3'  | 521                |  |
| msus specific primers          | MS03C (R) | 5'-CGTTAACCTCTATACAATTCTAGCG-3' | 521                |  |

Table 3.5 Primer sequences, based on *16S rRNA* sequences, for the identification of ostrich *Mycoplasma* species

Reference: Botes et al. (2005a).

#### 3.2.2 Ms03 genome sequencing and assembly

The gDNA was sequenced using the Roche 454 GS FLX Titanium system by inqaba biotec (South Africa). Due to low gDNA concentrations, whole genome amplification was performed using the GenomiPhi kit (GE Healthcare, UK). In attempt to obtain a complete assembly, a second run, using the same library, as well as a third and a fourth run with newly isolated gDNA were done. Reads were assembled into contigs using the GS *de novo* assembler in Newbler (Roche) with default parameters. The genome parameters were also calculated with this program to assess the quality of the assembly. The quality parameters of the Ms03 draft genome were compared to that of *M. struthionis* sp. nov. str. Ms01 (Pretorius 2009) and *Mycoplasma* sp. Ms02 (Steenmans 2010).

# 3.2.3 IGS and RAST annotations and comparison of the annotations for the Ms03 genome

The IGS annotation engine was used for structural and functional annotation of the sequences (<u>http://ae.igs.umaryland.edu/cgi/index.cgi</u>, Galens et al. (2011)) and Manatee was used to view annotations (<u>http://manatee.sourceforge.net/</u>). Upon submission of the contigs to the IGS annotation engine, contigs were arranged from longest to shortest and assembled together into a pseudomolecule. The contigs were separated by a spacer (NNNNNCACACACTTAATTAATTAAGTGTGTGNNNNN) that introduces stop and start codons in all six reading frames. All the contigs ( $\geq$  100 bp) in the final assembly was used to generated the pseudomolecule.

Annotation was also performed with a second automatic annotation platform: RAST prokaryotic genome annotation server (<u>http://rast.nmpdr.org</u>, Aziz et al. (2008)). For comparison purposes, the same pseudomolecule generated by assembling all contigs was used as input for the RAST annotation.

Both the IGS and RAST are online annotation servers which allow easy access to an annotation pipeline. All analyses and results are provided online which means that extensive

computer capacity is not required by the user. In the case of IGS, annotation results can be viewed online in Manatee that has a results page for each gene showing the evidence from the BER-searches and the protein bioinformatic analyses (SignalP, LipoP, TMHMM, PROSITE, NCBI COGs and Priam) on which the annotation was based. This information is presented in a clear systematic manner with links to the BER-alignments or to websites with the necessary motif information. The alignments are also provided for manual curation of the start and stop codons (Galens et al. 2011). Annotation results from RAST can be viewed online in The SEED Viewer. The viewer has options to browse the genome, to compare the genome based on function, sequence or KEGG pathways as well as the option for manual curation. The evidence that the annotation was based on, is provided on the gene's feature page (Aziz et al. 2008; Overbeek et al. 2013).

A metabolic pathway reconstruction (using KEGG reference pathways) was automatically done within the Seed Viewer of RAST using the RAST-annotated genes. The IGS-annotated genes were added to the constructed metabolic pathways in order to use as basis for comparing the IGS and RAST annotation servers. The reconstructed pathways based on the gene annotations were further compared to the KEGG pathways of the closes related species, *Mycoplasma synoviae* 53 (NC\_007294), to determine the extent of missing genes due to incomplete sequencing or annotation of the Ms03 genome.

### 3.2.4 Identification of the Ms03 origin of replication

The origin of replication (*ori*) as well as the DnaA boxes were predicted using the web-based tool, Ori-Finder (Gao and Zhang 2008). DnaA boxes were identified using the consensus sequence TT(A/T/C)TCCACA and allowing 1 or 2 mismatches.

#### 3.2.5 Identification and bioinformatic characterization of the Ms03 opp operon

Genes within the oligopeptide permease (*opp*) transporter operon (*oppABCDF*) were identified by using the operon of *Mycoplasma hominis* (YP\_003302688.1) as query sequence in tBLASTn searches against the initial assembly of the Ms03 draft genome within CLC-bio. Glimmer v3.02 (Delcher et al. 1999; Delcher et al. 2007) was used to identify open reading frames (ORFs) in the contigs that contained the *opp* genes. Results were compared to that obtained after annotation of the draft Ms03 genome. The detailed analysis of functional motifs in the Opp proteins of *M. hominis* (Henrich et al. 1999) was used together with InterPro (Hunter et al. 2012) to identity the functional motifs in the Ms03 *oppABCDF* genes. Additionally, the similarity and identity between the Opp proteins of Ms03 and *M. hominis* was calculated using the EMBOSS WATER pairwise alignment algorithm (http://www.ebi.ac.uk/Tools/psa/emboss\_water/). The program was set to use the BLOSUM62 matrix with a gap penalty of 10 and an extension penalty of 0.5.

### 3.3 Results and discussion

## 3.3.1 DNA isolation and confirming the identity of Ms03 genomic DNA

gDNA was isolated from Ms03 cultures to use as template in genome sequencing. Nanodrop analysis indicated adequate purity, but low concentration while the agarose gel electrophoresis confirmed the presence and integrity of the gDNA. No contamination with *M. struthionis* sp. nov. str. Ms01 and *Mycoplasma* sp. Ms02 gDNA was detected within the Ms03 gDNA samples by PCR. Multiple isolations were needed due to low yields. The purity and concentration of the gDNA was also assessed by inqaba biotec before genome sequencing. Due to low yield, whole genome amplification (GenomiPhi kit) was performed by inqaba biotec prior to genome sequencing.

## 3.3.2 Ms03 genome sequencing and assembly

The genome of Ms03 was sequenced with the GS FLX Titanium system by inqaba biotec. The first three Titanium runs produced 21.6 Mb of data that consist of 104 488 reads (Table 3.6). Using the GS *de novo* assembler, the reads could be assembled into 427 contigs larger or equal to 100 bp of which 212 contigs were equal or larger than 500 bp. In an attempt to decrease the number of large contigs, a fourth Titanium run was performed which produced 3.6 Mb of data that consist of 13 117 reads. In total, 25.2 Mb of data that consisted of 117 605 reads was generated (Table 3.6). This was assembled together with the initial data into 314 contigs larger or equal to 100 bp. The larger contigs ( $\geq$  500 bp) were only reduced from 212 to 172 contigs. All contigs from the final assembly are listed in Appendix 2 Supplementary Table 2.1.

| 454 Titanium sequencing run                           | Data per run (Mb) | Reads       |                        |
|-------------------------------------------------------|-------------------|-------------|------------------------|
| 1 <sup>st</sup> Run                                   | 15.4              | 71 383      |                        |
| 2 <sup>nd</sup> Run                                   | 5.1               | 28 994      |                        |
| 3 <sup>rd</sup> Run                                   | 1.1               | 4 111       |                        |
| 4 <sup>th</sup> Run                                   | 3.6               | 13 117      |                        |
| Newbler Assembly                                      | Total Mb Data     | Total reads | Number of contigs ≥500 |
| Data from 1 <sup>st</sup> run                         | 15.4              | 71 383      | 221                    |
| 1 <sup>st</sup> and 2 <sup>nd</sup>                   | 20.5              | 100 377     | 220                    |
| 1 <sup>st</sup> , 2 <sup>nd</sup> and 3 <sup>rd</sup> | 21.6              | 104 488     | 212                    |
| All data                                              | 25.2              | 117 605     | 172                    |

Table 3.6 The 454 sequencing data of the four 454 Titanium sequencing runs and the *de novo* assembly of Ms03 genome

The 172 large contigs ( $\geq$  500 bp) had a total length of 845 856 bp with an average size of 4 917 bp (Table 3.7). The longest contig was 39 354 bp in length. The N50 contig size was 9 874 bp. This implies that more than half of the assembled sequence length (845 856 bp / 2 = 422 928 bp) is in contigs longer or equal to 9 874 bp. Q40 plus indicated that 99.3% (839 779 bp) of the bases had Phred-like consensus quality scores higher than 40. Therefore the probability of these bases being incorrect was less than 1 in 10 000. The Q39 minus was 0.72% indicating that 6 077 bp of the 845 856 bp had Phred-like consensus quality scores less than 40 thus had a higher probability of being incorrect (>1 in 10 000).

During *in vitro* culture, the Ms03 mycoplasma grows slowly and does not reach a high cell density. As a result it was difficult to isolate intact gDNA at high concentrations. This may have contributed to the quantity and quality of the reads generated. Whole genome amplification using the GenomiPhi kit was required to obtain an adequate concentration of gDNA for sequencing. This amplification step may have introduced a small amount of bias into the data (Pinard et al. 2006), that may have caused areas of the genome not to be sequenced. Problems with the generation of the sequencing library cannot be excluded since coverage of the individual contigs was irregular (uneven) as visualized in Newbler.

|                                                      | Ostrich-infecting mycoplasma genome assembles |                               |                                             |  |  |  |
|------------------------------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------|--|--|--|
| <i>De novo</i> genome assemble parameters            | Ms03                                          | <i>Mycoplasma</i> sp.<br>Ms02 | <i>M. struthionis</i> sp.<br>nov. str. Ms01 |  |  |  |
| 454 instrument used to sequence genome (read length) | GS FLX Titanium<br>(400 bases)                | GS FLX<br>(200 bases)         | GS20<br>(100 bases)                         |  |  |  |
| Amount sequencing data generated                     | 25.2 Mb                                       | 15.8 Mb                       | 30 Mb                                       |  |  |  |
| Number of reads                                      | 117 605 reads                                 | 70 115 reads                  | 345 863 reads                               |  |  |  |
| Number of contigs ≥500 bp                            | 172 contigs                                   | 28 contigs                    | 65 contigs                                  |  |  |  |
| Number of bases (≥500 bp)                            | 845 856 bp                                    | 895 119 bp                    | 693 513 bp                                  |  |  |  |
| Average contig size                                  | 4 917 bp                                      | 31 968 bp                     | 10 669 bp                                   |  |  |  |
| N50 contig size                                      | 9 874 bp                                      | 71 894 bp                     | 44 778 bp                                   |  |  |  |
| Largest contig size                                  | 39 354 bp                                     | 127 294 bp                    | 86 684 bp                                   |  |  |  |
| Q40 plus bases                                       | 839 779 bp, 99.3%                             | 893 151 bp, 99.8%             | 691 611 bp, 99.7%                           |  |  |  |
| Q39 minus bases                                      | 6 077 bp, 0.72%                               | 1 968 bp, 0.22%               | 1 902 bp, 0.3%                              |  |  |  |
| Number of contigs ≥100 bp                            | 314 contigs                                   | -                             | -                                           |  |  |  |
| Number of bases (≥100 bp)                            | 881 370 bp                                    | -                             | -                                           |  |  |  |
| Reference                                            | This study                                    | Steenmans (2010)              | Pretorius (2009)                            |  |  |  |

| Table 3.7   | Comparison            | of the   | de | novo | assemble | genomes | of | Ms03, | Mycoplasma | sp. | Ms02 | and |
|-------------|-----------------------|----------|----|------|----------|---------|----|-------|------------|-----|------|-----|
| M. struthic | <i>nis</i> sp. nov. s | tr. Ms0′ | 1  |      |          |         |    |       |            |     |      |     |

The genomes of ostrich-infecting mycoplasmas, *M. struthionis* sp. nov. str. Ms01 and *Mycoplasma* sp. Ms02 were previously sequenced by Pretorius (2009) and Steenmans (2010), respectively. In spite of the improvements in 454 sequencing chemistry (read length increased from 100 bases to 400 bases), the Ms03 genome assembly had more contigs and a lower N50 contig length compared to the assembly of *M. struthionis* sp. nov. str. Ms01 or *Mycoplasma* sp. Ms02 (Table 3.7). Results were also not significantly improved by generating more data. This may indicate that the full assembly of the Ms03 genome was not only influenced by the read length and chemistry (454 short gun) used, but also the sequence characteristics of the genome.

A+T rich genomes with numerous runs and repeats (as found in mycoplasmas) cause anomalies that result in incomplete genome drafts. A limitation of 454 sequencing technology is the inability to accurately detect runs of identical bases (mononucleotide repeats or homopolymer runs). During 454 sequencing, nucleotide bases that are incorporated into the newly synthesised DNA, release inorganic pyrophosphate. This release initiates a chain of enzymatic reactions leading to the production of a light signal. There is however no termination that would prevent multiple consecutive incorporation of the same base; therefore the technology relies on the intensity of the light signal to detect multiple incorporations of the same base (Shendure and Ji 2008; Kircher and Kelso 2010). Multiple incorporation of long homopolymer runs (>10 nt) are prone to error and may have contributed to the state of the A+T rich Ms03 genome assembly.

Additionally, repeats longer than the read length creates gaps since they are erroneously collapsed on top of one another during the assembly of reads into contigs (Treangen and Salzberg 2011). Attempts to complete the *Mycoplasma* sp. Ms02 genome by using thermal asymmetric interlaced (TAIL) PCR failed due to numerous long repeats within the contigs (Strydom 2013). If the incomplete assembly of the Ms03 draft genome was the result of repetitive regions, generating paired-end or longer (>1 000 bases) reads may solve the genome assembly problems. Paired-end reads are generated from a single DNA fragment of a fixed size, from which both ends are sequenced. An assembler can then use the expected distance and the orientation of the reads to reconstruct the genome (Treangen and Salzberg 2011). Additionally, sequencing data from platforms such as PacBio that generate longer read lengths (up to 23 000 bp) can be combined with the 454 reads. Combining data from PacBio with 454 data have been reported to overcome the assembly problems due to repeats and sequence bias (Koren et al. 2012).

The absence of a reference genome, that would make a comparative approach to the Ms03 genome assembly possible, further contributes to the incomplete state of the assembly. A number of complete mycoplasma genome sequences (Appendix 1) are available, but the lack of gene order conservation amongst *Mycoplasma* species, due to genome

rearrangements (Sirand-Pugnet et al. 2007a), implies that closely related species cannot serve as suitable reference genomes for the assembly of the Ms03 genome.

## 3.3.3 IGS and RAST annotations of the Ms03 draft genome

For annotation, a pseudomolecule was generated by joining all the contigs larger or equal to 100 bp together with spacers between them. The spacers introduced stop and start codons, in all six reading frames, between each contig. This aids in identifying possible gene fragments on the ends of contigs. The generated pseudomolecule was 852 084 bp in length and had a G+C content of 28.7% with base frequencies of 35.8% adenine (A), 14.4% cytosine (C), 14.3% guanine (G) and 35.5% thymine (T) (Table 3.8). This is similar to other members of the genus *Mycoplasma* which typically have genome sizes ranging from 564 kb to 1 359 kb and a G+C content of 24% to 40% (Chapter 2, Table 2.2).

Table 3.8 A summary of the Ms03 draft genome annotation as provided by the IGS and RAST annotation servers\*

| Pseudomolecule generated by the IGS anno                                  | otation server                                                                         |  |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Pseudomolecule length                                                     | 852 084 bp                                                                             |  |  |
| G+C content                                                               | 28.7%                                                                                  |  |  |
| Base frequencies                                                          | <ul> <li>(A) 35.8%</li> <li>(C) 14.4%</li> <li>(G) 14.3%</li> <li>(T) 35.5%</li> </ul> |  |  |
| IGS annotation server                                                     |                                                                                        |  |  |
| Protein-encoding sequences                                                | 763 genes                                                                              |  |  |
| Conserved hypothetical genes                                              | 46 genes (5.9%)                                                                        |  |  |
| Hypothetical genes                                                        | 227 genes (29.0%)                                                                      |  |  |
| Total hypothetical genes                                                  | 273 genes (34.8%)                                                                      |  |  |
| tRNA                                                                      | 19                                                                                     |  |  |
| rRNA                                                                      | 3                                                                                      |  |  |
| Average gene length                                                       | 998 nt                                                                                 |  |  |
| Percent coding                                                            | 91.9%                                                                                  |  |  |
| Percent coding, tRNA, rRNA, or repeat                                     | 92.9%                                                                                  |  |  |
| Frequency of the translational start sites (excluding hypothetical genes) | ATG: 79.3%<br>GTG: 18.5%<br>TTG: 2.2%                                                  |  |  |
| RAST annotation server                                                    |                                                                                        |  |  |
| Protein-encoding sequences                                                | 635 genes                                                                              |  |  |
| Total RNAs                                                                | 24 (5 rRNAs and 19 tRNAs)                                                              |  |  |
| Number of subsystems                                                      | 115                                                                                    |  |  |
| Hypothetical genes                                                        | 244 genes (38.4%)                                                                      |  |  |

<sup>t</sup> The parameters for each annotations server differ, however, this is an output of the summary provided by the annotation server itself.

The IGS server annotated 763 genes in the Ms03 draft genome of which 273 were annotated as hypothetical genes (Table 3.8). The RAST server annotated 635 genes in the Ms03 draft genome of which 244 genes were annotated as hypothetical genes (Table 3.8). The number of predicted genes in the complete mycoplasma genomes ranges from 525 to 1 580 annotated genes, which is similar to what was annotated by IGS and RAST.

The most common start codon within the IGS annotation was ATG, the average gene length was 998 nt and 92.9% of the genome was predicted to be transcribed to RNA (Table 3.8). This information was not provided in the summary generated by the RAST analysis.

All the genes annotated with the IGS and RAST annotation pipeline are listed in a comparative manner (based on the location on the pseudomolecule) in Appendix 2 Supplementary Table 2.2. Annotated protein-encoding and non-coding RNA genes were named mnas (abbreviation for Ms03 chosen by the IGS server) followed by a number in the IGS annotation. In the RAST annotation protein-encoding and non-coding RNA genes were named peg (abbreviation for protein-encoding gene) and rna, respectively, followed by a number. Genes in IGS were numbered according to the position of the ORF on the pseudomolecule (i.e. the first gene was mnas\_1, the second mnas\_2, the third mnas\_3), while in RAST this was not the case.

#### 3.3.4 Comparison of IGS and RAST annotation

The IGS platform provided more information regarding the overall characteristics of the Ms03 draft genome than RAST (Table 3.8). The information was also easily available and included the number of conserved hypothetical genes, gene density (percent coding) and the frequency of the translational starting sites that were not provided by RAST. The only genome characteristics provided by RAST were number of protein-encoding sequences, number of RNAs, number of subsystems and total number of hypothetical genes (Table 3.8). It is possible to calculate all the additional parameters for the RAST annotation, except for number of conserved hypothetical genes (conserved hypothetical genes are defined as genes found in several phylogenetic lineages but have not been assigned function).

The actual Ms03 annotation results of the IGS and RAST servers differ with regards to:

- Number of protein-encoding and rRNA genes predicted
- Start and stop positions of some genes
- Names assigned to an annotated genes
- IGS assigns gene abbreviations to the annotated genes, where possible.

#### 3.3.4.1 Genes annotated

The IGS annotation found 128 genes more than the RAST annotation while the hypothetical genes were 273 in the IGS annotation compared to 244 in the RAST annotation (Table 3.8). This implies that many of the genes annotated in IGS were discarded in the RAST annotation. Both IGS and RAST use the self-training method, Glimmer3, to identify genes. The results of the initial Glimmer3 searches were, however, implemented in a different manner as shown in Table 3.3 and Table 3.4. In the IGS pipeline, an initial Glimmer3 ORF search was performed to identify 1) non-overlapping long ORFs, 2) the frequency of the translational start sites and 3) an upstream position weight matrix for ribosomal binding sites. These results were used as input for the second Glimmer3 iteration. All ORFs predicted in the second run were used for downstream analysis (Galens et al. 2011). In the RAST pipeline, the ORF results from the initial Glimmer3 search were used to identify the 30 closest phylogenetic neighbours. All gene-candidates were then vetted to identify genes that were similar to proteins in the subsystems of the 30 closest phylogenetic neighbours. In RAST, a subsystem is a set of related functional roles to which genes were assigned. These functional roles frequently make up a metabolic pathway, a complex (like a ribosome) or a class of proteins. The ORFs with subsystem matches were retained and used to retrain Glimmer3. This process was repeated until no new gene-candidates were found to belong to a subsystem. At this point new gene-candidates were retained if they matched genes called in the 30 closest phylogenetic neighbours, but did not overlap significantly with previously called genes (Overbeek et al. 2013). Although both methods (IGS and RAST) had additional steps to limit false positive and negative gene calling, most genes were called from these Glimmer3 iterations. RAST retained most genes based on matches with subsystem genes (provided that they do not overlap) whereas IGS predicted a gene irrespective of functional assignment or overlap with each other which leads to a larger number of genes identified within IGS.

The IGS annotation found all three rRNAs (*5S rRNA, 16S rRNA* and *23S rRNA*). Within the RAST annotation, however, five rRNAs were found, three (rna.5, rna.8 and rna.12) corresponding to the *5S rRNA, 16S rRNA* and *23S rRNA* (Appendix 2 Supplementary Table 2.3) while the additional two were annotated as "Large subunit ribosomal RNA" genes. IGS predicted rRNA genes with the program RNAmmer that uses HMM datasets to locate rRNA genes. RAST, on the other hand, uses "search-for-rrna" followed by endpoint adjustments using a BLASTn search against a RNA database. The number of predicted rRNA genes was also similar to that annotated in complete mycoplasma genomes where the rRNA genes range from 3 to 8 (Chapter 2, Table 2.2).

Both annotation servers use the same program to identify tRNA and both annotated 19 tRNAs in the Ms03 draft genome (Appendix 2 Supplementary Table 2.4) which was lower

than in complete mycoplasma genomes where the tRNA genes range from 28 to 37 (Chapter 2, Table 2.2). This was probably a result of the incomplete Ms03 genome sequence.

#### 3.3.4.2 Functional categories

Of the 763 genes predicted in the IGS annotation, 54% were assigned to functional categories (Figure 3.1). Of the genes not assigned to functional categories (46%), most (273 genes, 35%) were annotated as hypothetical genes while the remainder had a functional annotation but was not assigned to a functional category.

Of the 635 genes predicted in the RAST annotation, 42% (265 genes) were assigned to functional categories (Figure 3.2), this included five genes annotated as hypothetical. The remaining 58% (370 genes) was not assigned into a functional category. Of these, most (238 genes, 37%) were annotated as hypothetical while 132 genes (21%) had a functional annotation even though they were not assigned into functional categories.

IGS uses a more elaborate system to confirm and therefore assign function to a predicted gene. In IGS, functional categories are based on TIGRFAM roles and genes are assigned to a category using the program pFunc (uses BER and HMMER searches against TIGRFAM and Pfam databases as well as SignalP, LipoP, TMHMM and PROSITE searches), while in RAST functional categories are based on subsystems as defined by the FIGfam database and genes are assigned based on similarity searches. As a result more genes were assigned to functional categories using the IGS analysis.

The IGS category for protein synthesis (95 genes, 12.1%) and the category transport and binding proteins (86 genes, 11.0%) account for 23% of all genes within the Ms03 draft genome (Figure 3.1). Other major categories were cellular processes (46 genes, 5.9%), DNA metabolism (44 genes, 5.6%), cell envelope (39 genes, 5.0%), protein fate (36 genes, 4.6%) and energy metabolism (29 genes, 3.7%). The main categories in the RAST annotation were protein metabolism (125 genes, 19.7%), DNA metabolism (58 genes, 9.1%), RNA metabolism (40 genes, 6.3%) and carbohydrate metabolism (21 genes, 3.3%) (Figure 3.2). In spite of the absence of a cell wall in mycoplasmas, two genes were present in the subcategory cell wall and capsule within the RAST annotation. These genes, *tsaB* (peg.484) and *tsaE* (peg.483), are found in many mycoplasmas. According to the RAST annotation website, placement of these genes into another category is being considered. In IGS these genes were annotated as "tRNA threonylcarbamoyl adenosine modification protein YjeE" and placed into the category "Transport and binding proteins" and "Unknown: conserved", respectively.

Chapter 3 Genome sequencing and annotation

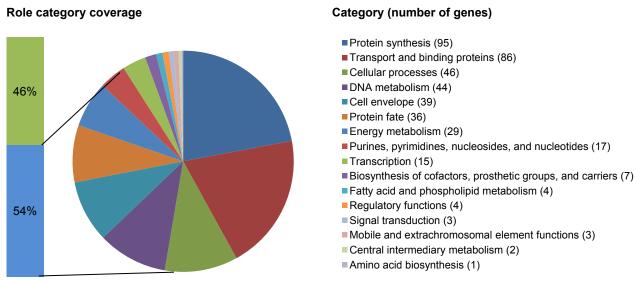



Figure 3.1 The IGS annotation role category breakdown of the Ms03 draft genome. The role categories are defined by TIGRfam. The bar-graph indicates the percentage genes assigned into a functional category in blue and the percentage genes not assigned into a functional category in green. The pie-chart displays the portions of each category. The categories are indicated on the right hand side with the number of genes in the category in brackets. The chart was generated in Microsoft Excel from the IGS data. Genes can be assigned into more than one functional category.

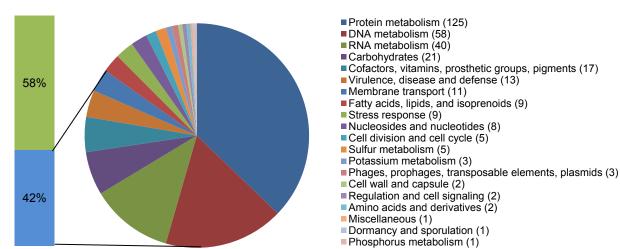



Figure 3.2 The RAST annotation role category breakdown of the Ms03 draft genome. The bar-graph indicates the percentage genes assigned into a functional subsystem category in blue and the percentage genes not assigned into a functional category in green. The pie-chart displays the portions of each category. The categories are indicated on the right hand side with the number of genes in the category in brackets. The chart was generated in Microsoft Excel from the RAST data. Genes can be assigned to more than one subsystem category.

#### Role category coverage

#### Category (number of genes)

It should be noted that role categories in the two annotation programs differ and that this complicates direct comparisons. For example the largest category in the IGS annotation was "protein synthesis" (95 genes) while the largest category for the RAST annotation was "protein metabolism" (125 genes). But the RAST category "protein metabolism" contained most of the genes within the IGS categories "protein synthesis" as well as "protein fate" (36 genes). For this reason the results from the two annotations were further compared using metabolic pathways.

#### 3.3.5 Metabolic overview of Ms03

RAST allowed the construction of metabolic pathways for the annotated Ms03 draft genome using KEGG reference pathways. Construction of the metabolic pathways not only gave an overview of the metabolic capacity of Ms03 but also allowed a comparison of the annotation ability of IGS and RAST servers. The IGS annotation data was therefore added to each of the metabolic pathway reconstructions. The pathways of essential processes namely genome replication, cell division, RNA transcription, protein translation, energy metabolism and transport were used as basis for the comparison of the two annotation servers.

From the gene annotation it could be seen that genes were missing in both annotations. To determine the extent to which genes were possibly missing and therefore the extent to which the genome sequence was incomplete, genes annotated within the *M. synoviae* 53 genome were added to each metabolic pathway. The *M. synoviae* 53 genome is a closely related species to Ms03 (Chapter 2, Figure 2.1) for which the complete genome sequence as well as its annotation is available.

#### 3.3.5.1 Genome replication and cell division in Ms03

Genome replication is initiated by the binding of DnaA proteins to conserved regions (called DnaA boxes) at the *ori* (Brown 2002). The *ori* is a well defined site at which the replication forks open and is usually located in the vicinity of the *dnaA* and *dnaN* genes. In Ms03, the *dnaA* gene (mnas\_99 or peg.9), encoding for the chromosomal replication initiator protein, was located from 142 051 to 143 460 nt on the DNA pseudomolecule as annotated by both IGS and RAST (Appendix 2 Supplementary Table 2.5). The *dnaN* gene (mnas\_100 or peg.10) that encodes for the beta subunit of DNA polymerase III (EC 2.7.7.7) was located adjacent to the *dnaA* gene. This arrangement is conserved across *Mycoplasma* species (Figure 3.3). The Ms03 *ori* was predicted with Ori-Finder to be located between 141 769 and 142 049 nt (length 281 nt) (Figure 3.4, Table 3.9). This region was between the mnas\_98 (peg.8, RecD-like DNA helicase YrrC) and *dnaA* gene (indicated with an orange arrow in Figure 3.3) and had an A+T content of 85.05%. A high A+T content for the *ori* is typical since it reduces the energy associated with opening the double stranded DNA molecule for replication. This confirms the position of the predicted *ori*.

DnaA boxes are A+T rich 9 bp regions that are usually found in the *ori*. Ori-Finder identified two DnaA boxes in this region when allowing one mismatch to the consensus sequence (TT(A/T/C)TCCACA), however when relaxing the conditions to allow two mismatches, nine DnaA boxes could be identified (Figure 3.4, Table 3.9). This was in range with other *Mycoplasma* species in which up to 10 DnaA boxes were identified (Cordova et al. 2002; Lartigue et al. 2003; Lee et al. 2008; Pereyre et al. 2009).

A change in gene direction in the Ms03 draft genome annotations (both the IGS and RAST annotations) was observed at the ori (Figure 3.3). This is typically observed at the ori since it would prevent the head-on collision of replication and translation. Head-on collisions could stall replication and lead to a decrease in fitness (Price et al. 2005; Srivatsan et al. 2010; Lin and Pasero 2012). In the annotation of complete genomes, genes are numbered from the dnaA gene. The Ms03 annotation was, however, only a draft and the contig order was unknown therefore the gene numbers were not re-assigned based on the dnaA gene's position. The linear genome sequences of Mycoplasma agalatiae PG2, Mycoplasma pulmonis UAB CTIP, Mycoplasma arthritidis 158L3-1, Mycoplasma hyopneumoniae 232 and *M. synoviae* 53 were used to generate Figure 3.3 therefore the *dnaA* gene was the first gene in the genome sequence. As such the figure shows no genes upstream of the *dnaA* gene for these genomes, but bacterial genomes are obviously circular and there will be genes upstream. It should be mentioned that the *dnaA*, *dnaN* genes, the predicted *ori* as well as all the genes shown for Ms03 in Figure 3.3 were located on one contig (contig00350) therefore the arrangement and orientation of genes in this regions is not due to the linking of contigs into the pseudomolecule.

| Ms03                                                         |  |
|--------------------------------------------------------------|--|
| <i>M. agalatiae</i> PG2                                      |  |
| <i>M. pulmonis</i> UAB CTIP<br><i>M. arthritidis</i> 158L3-1 |  |
| M. hyopneumoniae 232                                         |  |
| M. synoviae 53                                               |  |

Figure 3.3 The annotated genes at the *ori*. The coloured genes indicate the same function with the red genes being *dnaA* and the green genes being *dnaN*. The grey boxes around the genes indicate similar function to the *dnaA* gene. The orange arrow indicates the *ori* as predicted with Ori-Finder. The linear genome sequences with the first gene being the *dnaA* gene of *M. agalatiae* PG2, *M. pulmonis* UAB CTIP, *M. arthritidis* 158L3-1, *M. hyopneumoniae* 232 and *M. synoviae* 53 were used to generate the figure. The figure was generated within RAST, results for the IGS annotation are not shown but the gene order, orientation and strand for all genes in both analyses are listed in Appendix 2, Supplementary Table 2.2.

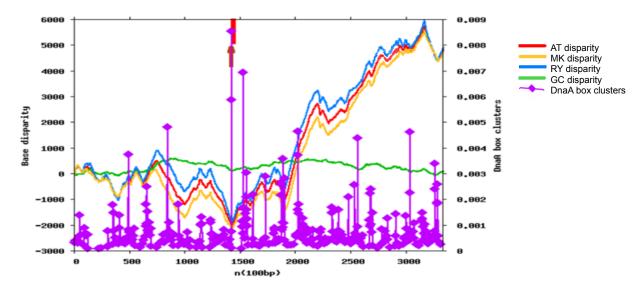



Figure 3.4 The Ms03 *ori* as predicted with Ori-Finder. The graph shows the Z-curves (AT, MK, RY and GC disparity curves) for the first 330000 nt of the Ms03 pseudomolecule sequence. The short vertical red line indicates the location of the indicator genes (*dnaA, dnaN*) and the short vertical dark orange arrow indicates the location of the predicted *ori*. The purple peaks with the diamonds indicate DnaA box clusters (allowing 1 mismatch from the consensus). The extremes for the AT disparity was 142 029 nt (minimum) and 316 379 nt (maximum), for MK disparity 142 053 nt (minimum) and 316 382 nt (maximum), for RY disparity 142 029 nt (minimum) and 316 379 nt (maximum). Abbreviations of nucleotides: A, adenine; T, thymine; G, guanine; C, cytosine; M, amino (A and C); K, keto (G and T); R, purine (A and G) and Y, pyrimidine (C and T).

| Ori-Finder parameter                              |                     |
|---------------------------------------------------|---------------------|
| <i>Ori</i> length                                 | 281 nt              |
| A+T content of ori                                | 85.05%              |
| The location of <i>ori</i> region                 | 141 769142 049 nt   |
| The location of dnaA gene                         | 142 051143 460 nt   |
| The number of DnaA boxes allowing one mismatch*   | 2                   |
| Location of DnaA boxes (sequence)                 | 141 841 (TTATTCACA) |
|                                                   | 141 911 (TTATTCACA) |
| The number of DnaA boxes allowing two mismatches* | 9                   |
| Location of DnaA boxes (sequence)                 | 141 828 (TTTTGCACC) |
|                                                   | 141 841 (TTATTCACA) |
|                                                   | 141 853 (TTATTAACA) |
|                                                   | 141 888 (TTATTAACA) |
|                                                   | 141 911 (TTATTCACA) |
|                                                   | 141 922 (TTATTAACA) |
|                                                   | 141 964 (TAATTCACA) |
|                                                   | 142 033 (TTATACACT) |
|                                                   | 142 035 (TTTTATACA) |

Table 3.9 Characteristics of the Ms03 ori as predicted in Ori-Finder

\* Consensus sequence TT(A/T/C)TCCACA

Following site specific initiation of genome replication at the ori, the supercoiled DNA unwinds and the replication machinery is assembled. This proposed process in Ms03 is outlined in Figure 3.5. In total 14 DNA replication proteins were annotated in the Ms03 draft genome with both the IGS and RAST annotations (Figure 3.5 and Appendix 2 Supplementary Table 2.5). These include, DnaA, two helicase (DnaB), DNA primase (DnaG), single-stranded DNA-binding protein (SSB), ribonuclease HII (RNase HII), DNA ligase (LigA), DNA polymerase I (Dpol) and six genes for the DNA polymerase III holoenzyme. The six DNA polymerase III holoenzyme subunits annotated were beta (dnaN gene), delta (holA gene), delta' (holB gene), gamma/tau (dnaX gene) and two alpha (dnaE and polC genes) subunits (Figure 3.5). Binding of DnaA proteins to the ori initiates replication by causing melting or opening of the double stranded DNA chromosome. Helicase separates the double stranded DNA and the binding of the SSB proteins stabilize the single stranded parental DNA. Subsequently, the DNA polymerase holoenzyme synthesizes the new strand complementary to the single strand parent DNA. The two DNA polymerase III alpha subunits, PoIC and DnaE are responsible for the synthesis of the leading and lagging strand, respectively. This would likely represent all the genes for replication within the Ms03 genome since the same DNA replication proteins were annotated in the *M. synoviae* 53 genome (Figure 3.5) as well as *Mycoplasma bovis str.* Hubei-1 (Li et al. 2011).

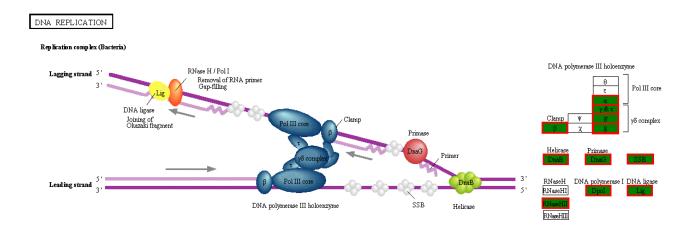



Figure 3.5 Proposed DNA replication in Ms03. The proteins (rectangular blocks on the right hand side) coloured in green were found in both the IGS and RAST annotations while proteins coloured in white were not found in the Ms03 draft genome annotations. For comparison, the annotated proteins of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy03030). This schematic represents the KEGG reference pathway 03030.

During replication the circular chromosome of the mycoplasma is duplicated through DNA synthesis for which purine and pyrimidine bases are required. These bases can either be generated by *de novo* synthesis or recovered by the salvage pathways. Purine and pyrimidine metabolism in Ms03 is shown in Figure 3.6 and Figure 3.7 respectively using the KEGG reference pathways as basis with the purine and pyrimidine *de novo* synthesis pathways indicated with pink arrows.

In the *de novo* synthesis of purine bases, inosine monophosphate (IMP) is synthesised from glycine, aspartate, glutamine, formate,  $HCO_3^-$  and ribose-5-phosphate. AMP and GMP are subsequently synthesised from IMP. In the *de novo* synthesis of pyrimidine bases, UTP and CTP are synthesised from glutamine,  $HCO_3^-$  and aspartate. Like most mycoplasmas (Bizarro and Schuck 2007), Ms03 is unable to synthesised purine (Figure 3.6, Appendix 2 Supplementary Table 2.6) and pyrimidine bases (Figure 3.7, Appendix 2 Supplementary Table 2.7) *de novo* and have to rely on the respective salvage pathways.

For purine and pyrimidine metabolism in Ms03, the IGS and RAST analysis annotated the same genes (Figure 3.6, Figure 3.7, Appendix 2 Supplementary Table 2.6 and Supplementary Table 2.7). These genes encode for enzymes that form part of the purine and pyrimidine salvage pathways. The enzyme, EC 3.1.3.5, that catalyses several reversible reactions was annotated by RAST (peg.299) as a "5'-nucleotidase". In IGS, however, this gene (mnas\_205) was only annotated as a "calcineurin-like phosphoesterase family protein". The nucleotidase enzyme belongs to the "calcineurin-like phosphoesterase family protein" and therefore was indicated as annotated in both the IGS and RAST analysis. This enzyme, 5'-nucleotidase, was however not annotated in the *M. synoviae* 53 genome although it is found within all other members of the hominis group (Vasconcelos et al. 2005).

The purine metabolic pathway (Figure 3.6) of *M. synoviae* 53 had two enzymes that were not annotated in the Ms03 draft genome, ribonucleoside-diphosphate reductase (EC 1.17.4.1) and purine-nucleoside phosphorylase (EC 2.4.2.1). In addition to these two enzymes, the pyrimidine metabolic pathway in *M. synoviae* 53 also had the enzymes thymidylate synthase (EC 2.1.1.45) and dCMP deaminase (EC 3.5.4.12) annotated that were absent in the Ms03 draft genome annotations (Figure 3.7). The ribonucleoside-diphosphate reductase enzyme and thymidylate synthase were also absent in *M. hominis* (KEGG pathways mho00230 and mho00240). Given the absence of the ribonucleoside-diphosphate reductase enzyme and thymidylate synthase in *M. hominis*, it is possible that only the absence of purine-nucleoside phosphorylase and dCMP deaminase in the Ms03 draft genome was due to incomplete genome sequence or the incomplete annotation (genes annotated as hypothetical).

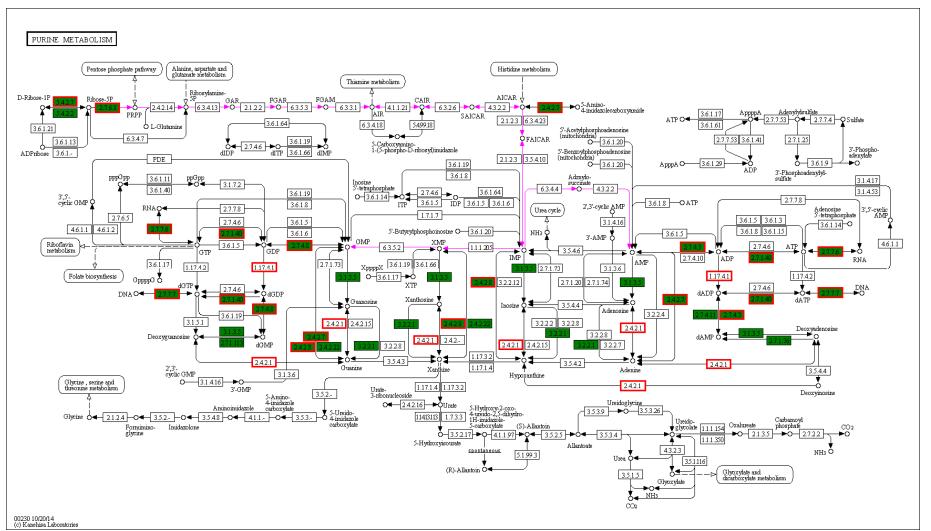



Figure 3.6 Proposed purine metabolism in Ms03. The enzymes coloured in green were found in both the IGS and RAST annotations while the enzymes in white were not found in the Ms03 draft genome annotations. For comparison, annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The purine *de novo* synthesis pathway is indicated with pink arrows. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy00230). This schematic represents the KEGG reference pathway 00230.

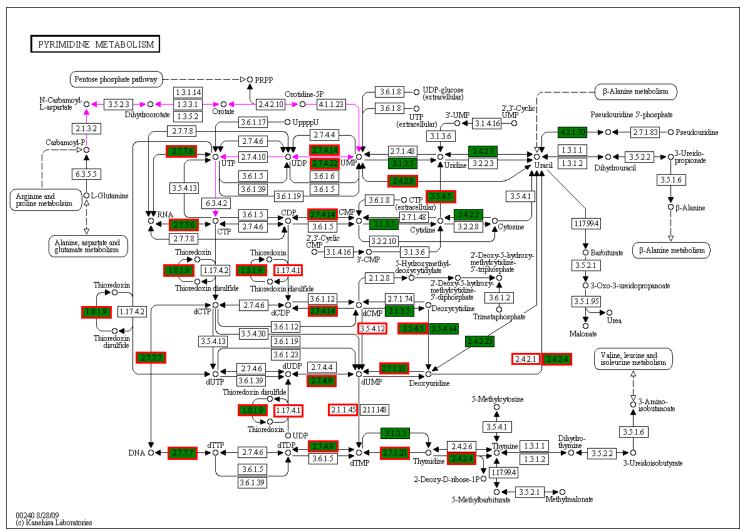



Figure 3.7 Proposed pyrimidine metabolism in Ms03. The enzymes coloured in green were found in both the IGS and RAST annotations while the enzymes in white were not found in the Ms03 draft genome annotations. For comparison, annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The pyrimidine *de novo* synthesis pathway is indicated with pink arrows. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy00240). This schematic represents the KEGG reference pathway 00240.

The purine salvage pathways in Ms03 include the stepwise conversion of deoxyadenosine to dAMP, to dADP, to dATP as well as the stepwise conversion of deoxyguanosine to dGMP, to dGDP, to dGTP (Figure 3.6). The pyrimidine salvage pathways in Ms03 include the stepwise conversion of thymine to thymidine, to dTMP, to dTDP as well as the stepwise conversion of uracil to deoxyuridine, to deoxycytidine, to dCMP, to dCDP (Figure 3.7). The enzyme nucleoside diphosphate kinase (EC 2.7.4.6) that is needed to convert dTDP to dTTP and dCDP to dCTP was, however, not annotated. This enzyme is also absent in the *M. synoviae* 53 genome annotation as is the case in all *Mollicutes* (Bizarro and Schuck 2007). It has been reported that this function can be replaced by the glycolytic kinases, 6-phosphofructokinase (EC 2.7.1.11), phosphoglycerate kinase (EC 2.7.2.3) and pyruvate kinase (EC 2.7.1.40) although these enzymes have a lower substrate-specificity for nucleosides other than ATP (Pollack et al. 2002; Bizarro and Schuck 2007; Pachkov et al. 2007). The bases dATP, dGTP, dCTP and dTTP are incorporated into the newly synthesised DNA by the DNA polymerase III holoenzyme (EC 2.7.7.7).

The limited purine and pyrimidine metabolic capacity suggests that Ms03 would be dependent on environment-derived nucleotides and precursors. It also implies the need to import these bases for DNA synthesis.

Mycoplasmas have a low level of conservation of proteins related to cell division (Alarcon et al. 2007; Fisunov et al. 2011). Seven genes were annotated that encode for proteins involved in cell division with both the IGS and RAST annotations (Table 3.10). The genes are *ftsH*, *era*, *scpA*, *scpB* and *ftsY* that were annotated in both the IGS and RAST annotations. The FtsH protein plays a role in the quality control of integral membrane proteins and also influences cell division (Ito and Akiyama 2005), the GTP-binding protein, Era, may contribute to cell cycle regulation (Gollop and March 1991), the segregation and condensation protein A (ScpA) and B (ScpB) play a role in chromosomal segregation during cell division (Soppa et al. 2002), while the signal recognition particle-docking protein, FtsY, plays a role in protein targeting and also influences the cell cycle (Macao et al. 1997; Alarcon et al. 2007).

In addition to these five genes, the IGS annotation had two additional genes (mnas\_318 and mnas\_803) that were both annotated as "recF/RecN/SMC N-terminal domain proteins" (Table 3.10). The mnas\_318 protein was annotated as "chromosome partition protein smc" (peg.446) in the RAST annotation (Table 3.10) while the ORF for the mnas\_803 gene was not predicted in RAST. An additional protein, peg.192, was also annotated as "chromosome partition protein smc" in the RAST annotation, but was only annotated as a conserved hypothetical protein in the IGS annotation. The *ftsH* and *smc* genes are found in all mycoplasma genomes (Alarcon et al. 2007).

| IGS      |                                                              |                |        | RAST    |                                                                                        |
|----------|--------------------------------------------------------------|----------------|--------|---------|----------------------------------------------------------------------------------------|
| Gene_id  | Gene name                                                    | Gene<br>symbol | EC     | Gene_id | Gene name                                                                              |
| mnas_95  | ATP-dependent zinc<br>metalloprotease FtsH<br>domain protein | ftsH           | 3.4.24 | peg.5   | Cell division protein FtsH                                                             |
| mnas_167 | Conserved hypothetical protein                               |                |        | peg.192 | Chromosome partition<br>protein smc                                                    |
| mnas_291 | GTP-binding protein Era                                      | era            |        | peg.404 | GTP-binding protein Era                                                                |
| mnas_318 | RecF/RecN/SMC N terminal domain protein                      |                |        | peg.446 | Chromosome partition protein smc                                                       |
| mnas_329 | Segregation and condensation protein B                       | scpB           |        | peg.455 | Segregation and condensation protein B                                                 |
| mnas_330 | Segregation and condensation protein A                       | scpA           |        | peg.456 | Segregation and condensation protein A                                                 |
| mnas_803 | RecF/RecN/SMC N terminal domain protein                      |                |        |         |                                                                                        |
| mnas_606 | Signal recognition<br>particle-docking protein<br>FtsY       | ftsY           |        | peg.115 | Signal recognition particle<br>receptor protein FtsY (alpha<br>subunit) (TC 3.A.5.1.1) |

Table 3.10 Cell division genes annotated with the Ms03 draft genome

Mycoplasmas divide by binary fission and the cell division protein. FtsZ is believed to play a central role in cell division by binary fission (Lluch-Senar et al. 2010). In Ms03, the *ftsZ* gene was, however, not found in either the IGS or RAST annotations. The *ftsZ* gene was also not found in the genome of *Mycoplasma mobile* (Jaffe et al. 2004) and in *Mycoplasma genitalium* a *ftsZ* null mutation was viable (Lluch-Senar et al. 2007). The *ftsZ* gene is, however, found in almost all mycoplasmas, including the close related species, *M. synoviae* 53. In the absences of the *fstZ* gene, proteins involved in cell movement were found to be implicated in cell division (Hatchel and Balish 2008; Erickson and Osawa 2010; Lluch-Senar et al. 2010). However, Ms03 has been characterised as a non-motile *Mycoplasma* species (Langer 2009) which questions the absence of the *ftsZ* gene. Furthermore, the cell division genes *mraZ* and *mraW* were also not annotated in the Ms03 draft genome. The *mraZ* and *mraW* genes are conserved in *Mycoplasma* species (Alarcon et al. 2007). The absence of these genes (*fstZ, mraZ* and *mraW*) may be a result of the incomplete genome sequence or these genes may be annotated as hypothetical genes. The possibility that one or more of these gene are not found in Ms03 can however not be excluded.

# 3.3.5.2 RNA transcription and protein translation in Ms03

RNA polymerase is essential for life and is found in all organisms including bacteria. This enzyme is responsible for the DNA-directed synthesis of RNA, i.e. transcription. In mycoplasma, the core subunits of RNA polymerase resemble that of other bacteria and are encoded by the *rpoA*, *rpoB* and *rpoC* genes. Genes for the alpha (*rpoA*), beta (*rpoB*) and beta' (*rpoC*) subunits of RNA polymerase, were annotated within both the IGS and RAST annotations of Ms03 (Figure 3.8, Appendix 2 Supplementary Table 2.8). In addition, the transcription initiation sigma factor (*rpoD* gene) that assists binding of the RNA polymerase to the promoter sequence was also annotated (Appendix 2 Supplementary Table 2.8). Only one sigma factor is common in mycoplasmas (Dorman 2011). The annotated genes correspond to that annotated in *M. synoviae* 53 (Figure 3.8). The omega ( $\omega$ ) subunit of RNA polymerase is absent in mycoplasmas while the delta ( $\delta$ ) is found in some but not all mycoplasma genomes (Madeira and Gabriel 2007). The delta subunit that is required for the expression of several stress-responses is found in *M. pneumoniae*, *M. genitalium*, *Mycoplasma gallisepticum* and *Ureaplasma urealyticum* (Fraser et al. 1995; Himmelreich et al. 1996; Madeira and Gabriel 2007).

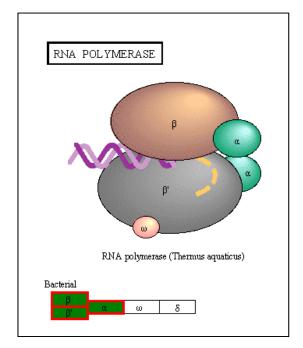



Figure 3.8 Proposed RNA polymerase in Ms03. The proteins coloured in green were found in both IGS and RAST annotations while the enzymes in white were not found in the Ms03 draft genome annotations. For comparison, annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy03020). This schematic represents the KEGG reference pathway 03020.

Transcription relies on the availability of nucleotides to be incorporated into the newly synthesised RNA molecule. As with DNA synthesis these nucleotides need to be salvaged from the environment because *de novo* synthesis of purines and pyrimidines is absent (Figure 3.6 and Figure 3.7). The purine salvage pathways for RNA bases in Ms03 include the stepwise conversion of adenine to adenosine, to AMP, to ADP, to ATP as well as the stepwise conversion of guanine to guanosine, to GMP, to GDP, to GTP (Figure 3.6). The pyrimidine salvage pathways for RNA bases in Ms03 include the stepwise conversion of guanine to CDP as well as the stepwise conversion of uracil to uridine, to cytidine, to CMP, to CDP as well as the stepwise conversion of uridine to UMP, to UDP (Figure 3.7). The enzyme nucleoside diphosphate kinase (EC 2.7.4.6) that converts CDP to CTP and UDP to UTP was not annotated in the Ms03 draft genome and was also not present in the *M. synoviae* 53 genome annotation, although the function may be performed by other enzymes (Section 3.3.5.1). The bases ATP, GTP, CTP and UTP can be incorporated into the newly synthesised RNA by the RNA polymerase (EC 2.7.7.6). This limited metabolic capacity of Ms03 suggests that it depends on the import of ribonucleotide bases for RNA synthesis.

Ribosomes are responsible for the RNA-directed synthesis of proteins, i.e. translation. A ribosome is a RNA-protein complex that uses tRNA molecules as adaptors to translate RNA to protein. The IGS annotation as well as the RAST annotation had 50 ribosomal proteins annotated (Figure 3.9, Appendix 2 Supplementary Table 2.9). This is equivalent to the ribosomal proteins annotated in the *M. synoviae* 53 genome (Figure 3.9). Additionally the rRNA genes *5S rRNA*, *16S rRNA* and *23S rRNA* were annotated (Figure 3.9, Appendix 2 Supplementary Table 2.3) as described above (Section 3.3.4.1).

The two annotation programs, IGS and RAST both use the same tRNA prediction tool, tRNAscan-SE (Aziz et al. 2008; Galens et al. 2011) and annotated the same tRNA genes in the Ms03 draft genome. In Ms03, 19 tRNA genes were found that cover 14 of the 20 standard amino acids as well as tRNA-SeC for the translation of the amino acid selenocysteine (Figure 3.10, Appendix 2 Supplementary Table 2.4). Selenocysteine is the 21st amino acid and is incorporated into selenoproteins (Commans and Böck 1999). The tRNA for selenocysteine is reported in *Mycoplasma alligatoris, Mycoplasma capricolum, Mycoplasma crocodyli, M. gallisepticum, M. genitalium, Mycoplasma hyorhinis, Mycoplasma suis* and *M. synoviae* 53 as well as many other bacteria (Commans and Böck 1999; Guimaraes et al. 2011).

The tRNA genes for alanine, aspartate, isoleucine, methionine, phenylalanine and proline were not annotated (Figure 3.10, Appendix 2 Supplementary Table 2.4). In *M. synoviae* 53, however, tRNA genes for all 20 amino acids as well as the tRNA-Sec are found (Figure 3.10).

In Ms03 aminoacyl-tRNA synthetase genes were annotated for 19 of the 20 amino acids (Figure 3.10, Appendix 2 Supplementary Table 2.10). Only 18 aminoacyl-tRNA synthetase genes were, however, annotated in the RAST annotation. The enzyme for serine tRNA synthesis (EC 6.1.1.11) was annotated in IGS however the ORF was not found in the RAST analysis. The RAST enzyme for glutamine tRNA synthesis (EC 6.1.1.24) was annotated in IGS as "tRNA synthetases class I (E and Q), catalytic domain protein" and was therefore added to the IGS pathway in Figure 3.10. The enzyme for asparagine tRNA synthesis (EC 6.1.1.22) was not annotated in either annotation. In the aminoacyl-tRNA biosynthesis pathway of *M. synoviae* 53 (msy00970) the enzyme EC 6.1.1.22 was however annotated.

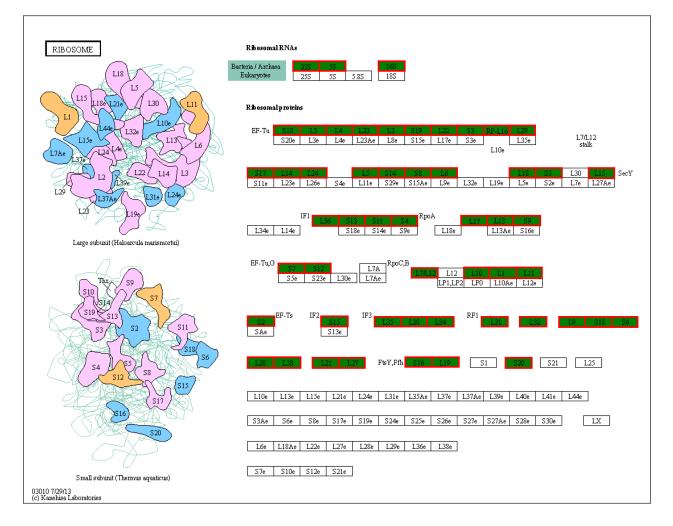



Figure 3.9 The proposed ribosomal genes in Ms03. The proteins coloured in green were found in both IGS and RAST annotations while the proteins in white were not found in the Ms03 draft genome annotations. For comparison, annotated proteins of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy03010). This schematic represents the KEGG reference pathway 03010.

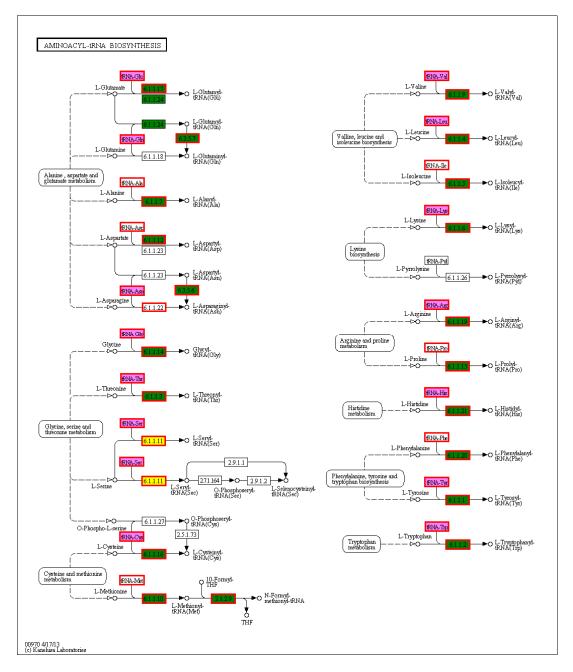



Figure 3.10 The proposed aminoacyl-tRNA biosynthesis in Ms03. The tRNA genes found with both IGS and RAST annotations are coloured in pink. The aminoacyl-tRNA synthetase enzymes coloured in yellow were only found within the IGS annotation, the enzymes coloured in green were annotated in both IGS and RAST annotations while the enzymes coloured in white were not found in the Ms03 draft genome annotations. For comparison, annotated tRNAs and enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy00970). This schematic represents the KEGG reference pathway 00970.

The aminoacyl-tRNA biosynthesis of all standard 20 amino acids are essential to most organisms (Sheppard et al. 2008). The tRNA genes and aminoacyl tRNA synthetase enzymes that were not found in the Ms03 draft annotation do not overlap with each other (Figure 3.10). This indicates that it is likely that all the tRNA and synthetase enzymes for all 20 amino acids will be present in a completely assembled and annotated genome of Ms03. In general, tRNA genes range from 71 to 91 nt in size. The absences of these small genes are likely an effect of the incomplete assembly of the genome. Additionally, detailed manual curation of the hypothetical and annotated genes may lead to the assignment or reassignment of function to some genes which could include some of the "missing" functions.

Translation, the synthesis of protein, relies on the availability of amino acids to incorporate/ build into the protein molecule. Annotated Ms03 genes for *de novo* amino acid synthesis paint a rather incomplete picture. Table 3.11 provides an overview of the amino acid metabolism pathways, with only six genes annotated in the Ms03 draft genome.

| KEGG pathway maps for amino acid metabolism (Reference pathway number) | Number of genes annotated in the genome |                |  |  |
|------------------------------------------------------------------------|-----------------------------------------|----------------|--|--|
|                                                                        | Ms03                                    | M. synoviae 53 |  |  |
| Alanine, aspartate and glutamate metabolism (00250)                    | 1                                       | 0              |  |  |
| Glycine, serine and threonine metabolism (00260)                       | 2                                       | 3              |  |  |
| Cysteine and methionine metabolism (00270)                             | 2                                       | 2              |  |  |
| Valine, leucine and isoleucine degradation (00280)                     | 0                                       | 1              |  |  |
| Valine, leucine and isoleucine biosynthesis (00290)                    | 0                                       | 0              |  |  |
| Lysine biosynthesis (00300)                                            | 0                                       | 0              |  |  |
| Lysine degradation (00310)                                             | 0                                       | 0              |  |  |
| Arginine and proline metabolism (00330)                                | 1                                       | 0              |  |  |
| Histidine metabolism (00340)                                           | 0                                       | 0              |  |  |
| Tyrosine metabolism (00350)                                            | 0                                       | 0              |  |  |
| Phenylalanine metabolism (00360)                                       | 0                                       | 0              |  |  |
| Tryptophan metabolism (00380)                                          | 0                                       | 0              |  |  |
| Phenylalanine, tyrosine and tryptophan biosynthesis (00400)            | 0                                       | 0              |  |  |
| Total number of genes                                                  | 6                                       | 6              |  |  |

Table 3.11 Overview of the number of genes annotated in amino acid metabolic pathways in the Ms03 draft genome

The enzyme L-aspartate:ammonia ligase (EC 6.3.1.1) that catalyses the conversion of aspartate to asparagines was the only enzyme annotated in the alanine, aspartate and glutamate metabolic pathway in both the IGS and RAST annotations of Ms03 (Table 3.12, Appendix 2 Supplementary Figure 2.1). In the genomes of *M. synoviae* 53 (Appendix 2 Supplementary Figure 2.1) and *M. hominis* no enzymes were annotated for this pathway.

The enzyme serine hydroxymethyltransferase (EC 2.1.2.1) was annotated in IGS but not in the RAST annotation (Table 3.12, Appendix 2 Supplementary Figure 2.2). In RAST the ORF for this gene was not predicted. This enzyme forms part of the glycine, serine and threonine metabolic pathway and catalyses the conversion of glycine to serine. In addition, phosphoglyceromutase (EC 5.4.2.12) was annotated within both the IGS and RAST annotations. Phosphoglyceromutase also takes part in glycolysis (Section 3.3.5.3). Both these enzymes were present in the genome of *M. synoviae* 53 (Appendix 2 Supplementary Figure 2.2).

| Reaction                                                                                                  | IGS         |                                                        |                | RAST     |                                                                 |  |
|-----------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------|----------------|----------|-----------------------------------------------------------------|--|
| (KEGG reaction number)                                                                                    | Gene_id     | Description<br>(EC number)                             | Gene<br>symbol | Gene_id  | Description<br>(EC number)                                      |  |
| Alanine, aspartate and gl                                                                                 | utamate me  | tabolism (KEGG referenc                                | e pathwa       | y 00250) |                                                                 |  |
| ATP + NH3 + L-Aspartate<br><=> PPi + AMP + L-<br>Asparagine<br>(R00483)                                   | mnas_499    | Aspartate-ammonia<br>ligase<br>(EC 6.3.1.1)            | asnA           | peg.628  | L-Aspartate:<br>ammonia ligase<br>(AMP-forming)<br>(EC 6.3.1.1) |  |
| Glycine, serine and three                                                                                 | onine metab | olism (KEGG reference p                                | athway 00      | 0260)    |                                                                 |  |
| 5,10-<br>Methylenetetrahydrofolat<br>e + Glycine + H2O <=><br>Tetrahydrofolate + L-<br>Serine<br>(R00945) | mnas_278    | Serine<br>hydroxymethyltransferas<br>e<br>(EC 2.1.2.1) | glyA           |          |                                                                 |  |
| Cysteine and methionine                                                                                   | metabolisr  | n (KEGG reference pathw                                | ay 00270)      |          |                                                                 |  |
| H2O + ATP + L-<br>Methionine <=><br>Phosphate + PPi + S-<br>Adenosyl-L-methionine<br>(R00177)             | mnas_482    | Methionine<br>adenosyltransferase<br>(EC 2.5.1.6)      | metK           | peg.617  | ATP:L-methione<br>S-<br>adenosyltransferas<br>e<br>(EC 2.5.1.6) |  |
| S-Adenosyl-L-methionine<br>+ DNA <=> S-Adenosyl-<br>L-homocysteine + DNA 5-<br>methylcytosine<br>(R00380) | mnas_497    | Modification methylase<br>Banl<br>(EC 2.1.1.37)        | banIM          | peg.626  | DNA-cytosine<br>methyltransferase<br>(EC 2.1.1.37)              |  |
| Arginine and proline metabolism (KEGG reference pathway 00330)                                            |             |                                                        |                |          |                                                                 |  |
| Peptide with N-terminal<br>proline + H2O <=> L-<br>Proline + Peptide<br>(R00135)                          | mnas_42     | prolyl aminopeptidase<br>(EC 3.4.11.5)                 | pip            | peg.422  | Proline<br>iminopeptidase<br>(EC 3.4.11.5)                      |  |

Table 3.12 Genes annotated in the amino acid metabolic pathways of the Ms03 draft genome

The enzyme methionine adenosyltransferase (EC 2.5.1.6) that catalyses the conversion of methionine to adenosyl-L-methionine and the enzyme DNA-cytosine methyltransferase (EC 2.1.1.37) that catalyses the methylation of the cytosine base in DNA were the only two enzymes annotated in the cysteine and methionine metabolism pathway of the Ms03 draft genome (Table 3.12, Appendix 2 Supplementary Figure 2.3). These two enzymes were also found in the *M. synoviae* 53 genome (Appendix 2 Supplementary Figure 2.3).

In the arginine and proline metabolism pathway, the enzyme prolyl aminopeptidase (EC 3.4.11.5) was the only enzyme annotated in the Ms03 draft genome (Table 3.12, Appendix 2 Supplementary Figure 2.4). This enzyme catalyses the release of an N-terminal proline from a peptide and is also found in the *M. synoviae* 53 genome (Appendix 2 Supplementary Figure 2.4).

To conclude this section, annotation of the genes in the amino acid metabolism pathways indicated that Ms03 can convert aspartate to asparagine and glycine to serine and imply that most amino acids must be imported for protein synthesis. Ms03, like other mycoplasmas, is unable to synthesise *de novo* amino acids.

# 3.3.5.3 Energy metabolism in Ms03

From experimental evidence it is known that Ms03 uses glucose as its main energy source (Langer 2009). Ten glycolysis enzymes were annotated in the IGS annotation and nine in the RAST annotation (Figure 3.11, Appendix 2 Supplementary Table 2.11). The enzyme phosphoglycerate kinase (EC 2.7.2.3) was annotated in the IGS annotation, however in the RAST analysis, the ORF of this gene was not predicted. Two glucose-6-phosphate isomerase (EC 5.3.1.9) genes were annotated in both analyses although in IGS one of these was only annotated as a "phosphoglucose isomerase family protein". Enzyme II of the phosphoenolpyruvate-dependent sugar phosphotransferase transport system (PTS) (EC 2.7.1.69) was included in the glycolysis pathway. The PTS system phosphorylates extracellular glucose and other sugars upon transport into the cell. This circumvents the need for glucokinase (EC 2.7.1.2) that was not annotated in Ms03 as is the case in *M. synoviae* 53 (Figure 3.11).

Both the IGS and RAST annotations lack the gene for phosphofructokinase (EC 2.7.1.11) that converts  $\beta$ -D-fructose-6-phosphate to  $\beta$ -D-fructose-1,6-bisphosphate (Figure 3.11). In the *M. synoviae* 53 genome, this enzyme was annotated, however in the genome of *M. hominis* phosphofructokinase is also absent (KEGG mho0010) (Pereyre et al. 2009). *M. hominis* is a non-glycolytic mycoplasma that uses arginine as its main energy source but can also utilize glucose. In *M. hominis*, the steps to circumvent the need for phosphofructokinase form part of the pentose phosphate pathway (KEGG mho00030). The

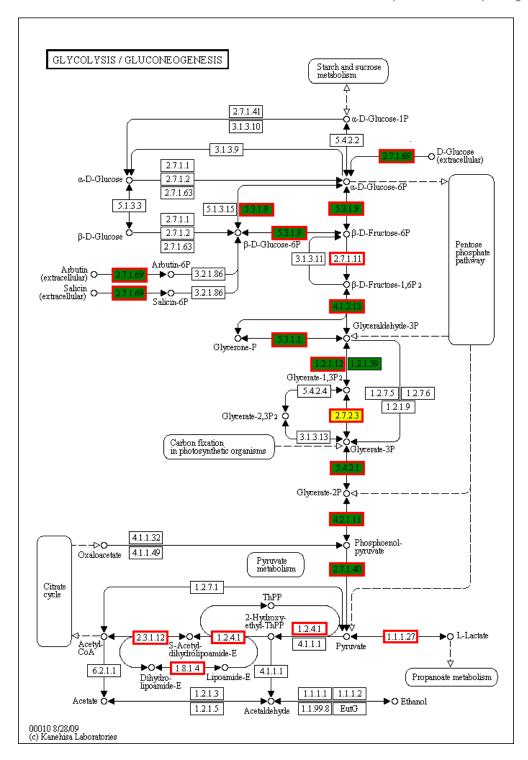



Figure 3.11 Glycolysis / gluconeogenesis pathway in Ms03. The enzymes coloured in yellow were only found within the IGS annotation, enzymes coloured in green were found in both IGS and RAST annotations while the enzymes in white were not found in the Ms03 draft genome annotations. For comparison, annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy00010). This schematic represents the KEGG reference pathway 00010.

pentose phosphate pathway for MS03 is presented in Figure 3.12 (Appendix 2 Supplementary Table 2.12). In this pathway, β-D-fructose-6-phosphate from glycolysis is converted to xylulose-5-phosphate (transketolase EC 2.2.1.1). Xylulose-5-phosphate can follow one of two paths to continue with glycolysis. Firstly xylulose-5-phosphate can be converted directly to glyceraldehyde-3-phosphate by phosphoketolase (EC 4.1.2.9). Secondly xylulose-5-phosphate can be converted to ribulose-5-phosphate by ribulose-5phosphate 3-epimerase (EC 5.1.3.1), ribulose-5-phosphate to ribose-5-phosphate by ribose-5-phosphate isomerase B (EC 5.3.1.6) and ribose-5-phosphate to glyceraldehyde-3phosphate by transketolase (EC 2.2.1.1). Glyceraldehyde-3-phosphate can then enter glycolysis. Although most of the enzymes to circumvent the need for phosphofructokinase were annotated in Ms03, transketolase (EC 2.2.1.1) was not annotated. In order to catalyse the degradation of glucose to pyruvate, either phosphofructokinase or transketolase would be needed. Although these "missing" genes could likely be due to the incomplete assembly that complicates accurate ORF calling or the incomplete annotation with genes annotated as hypothetical, the possibility that one of these genes is absent in the Ms03 genome cannot be excluded.

Pyruvate is further metabolised to D-lactate (Figure 3.13, Appendix 2 Supplementary Table 2.13). In contrast to *M. synoviae* 53, enzymes to convert pyruvate to acetyl-CoA were not annotated in Ms03 (Figure 3.11 and Figure 3.13). These enzymes were however also not annotated in *M. hominis* (KEGG mho0010). Additionally no genes were annotated with roles in the citric acid cycle pathway, which suggest that the citric acid cycle is absent in Ms03. This is expected as the citric acid cycle is absent in most mycoplasmas (Razin et al. 1998; Jaffe et al. 2004; Chen et al. 2012).

The pentose phosphate pathway that regenerates NADPH from NADP<sup>+</sup> was incomplete (Figure 3.12). The enzymes glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) that produce NADPH were not annotated in the Ms03 genome as in the case of *M. synoviae* 53. The pentose phosphate pathway is, however, also incomplete in many other mycoplasmas (Himmelreich et al. 1996; Razin et al. 1998; Halbedel et al. 2007; Pereyre et al. 2009). The absence of these genes is therefore not necessarily related to the incomplete genome sequence of Ms03.

As in the *M. synoviae* 53 genome, no genes were annotated within the Ms03 draft genome for the arginine deiminase pathway and the urea cycle. This was consistent with the finding that Ms03 is unable to utilize arginine and urea as energy source during *in vitro* culture (Langer 2009).

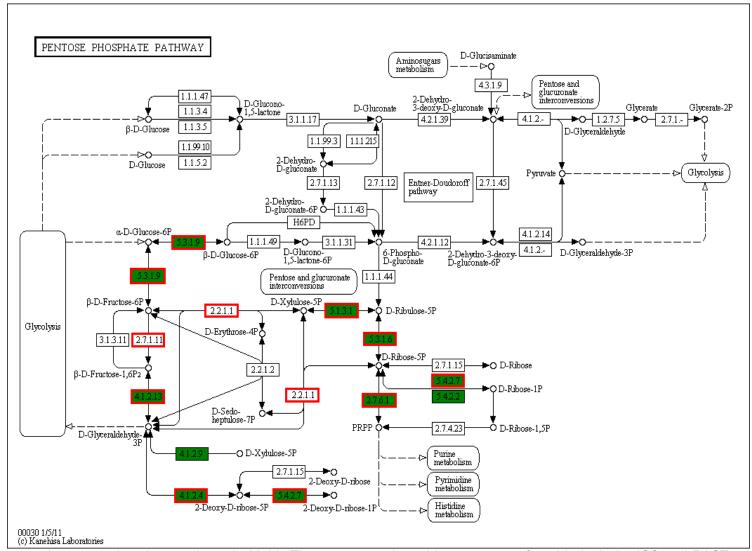



Figure 3.12 The proposed pentose phosphate pathway in Ms03. The enzymes coloured in green were found in both the IGS and RAST annotations while the enzymes in white were not found in the Ms03 draft genome annotations. For comparison, annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy00030). This schematic represents the KEGG reference pathway 00030.

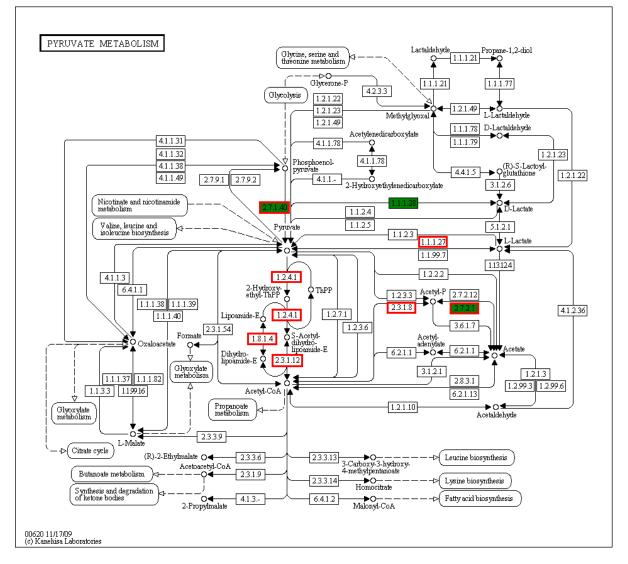



Figure 3.13 The proposed pyruvate metabolism in Ms03. The enzymes coloured in green were found in both IGS and RAST annotations while the enzymes in white were not found in the Ms03 draft genome annotations. For comparison, annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from the Ms03 metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 genome (msy00620). This schematic represents the KEGG reference pathway 00620.

In mycoplasma, ATP synthase is thought to be involved in ATP hydrolysis and the maintenance of the electrochemical gradient (Rechnitzer et al. 2011). IGS annotated 15 genes that encode for ATP synthase subunits, while RAST annotated 10 genes (Figure 3.14 and Table 3.13). All mycoplasmas have a typical  $F_1F_0$  ATP synthase that consists of eight conserved genes found within an operon (Beven et al. 2012). In the IGS annotation, six of the ATP synthase subunit genes were found adjacent to each other (*atpB, atpE, atpF, atpH, atpA* and *atpG*; mnas\_84 to mnas\_89). The *atpD* and *atpC* (mnas\_767 and mnas\_766) were found next to each other but in a separate location (Table 3.13). The first six genes are located on contig00408 while the *atpD* and *atpC* genes were on contig00433. In a complete assembly of the Ms03 genome, these genes would likely be located next to each other in an

operon system as in other *Mycoplasma* species. The ORFs for the IGS genes, *atpG* (mnas\_89), *atpD* (mnas\_765), *atpD* (mnas\_767), mnas\_630 and mnas\_643 were not predicted in the RAST annotation. Extra copies of the ATP synthase subunits (*atpA* and *atpD*) have been reported in many mycoplasmas although it is not the case in most bacteria (Beven et al. 2012).

# 3.3.5.4 Acquiring the necessary building blocks to maintain life: Transport

The transporters annotated in the Ms03 draft genome are illustrated in Figure 3.14 and the proteins involved are listed in Appendix 2 Supplementary Table 2.14. The  $F_1F_0$  ATP synthase (Section 3.3.5.3, Table 3.13) is a transmembrane protein complex (Figure 3.14 A) and has been reported to play a role in ATP hydrolysis and maintaining the electrochemical gradient (Rechnitzer et al. 2011).

Putative potassium, magnesium and cation (possibly for copper, lead, cadmium, zinc and mercury ions) importers were annotated in both the Ms03 IGS and RAST annotations (Figure 3.14 B-D, Appendix 2 Supplementary Table 2.14). These ions play an important role as cofactors in enzymatic reactions as well as in maintaining an electrochemical gradient for osmotic balance.

| IGS annotation |                                                                         | RAST annotation |         |                                              |
|----------------|-------------------------------------------------------------------------|-----------------|---------|----------------------------------------------|
| Gene_id        | Gene name                                                               | Gene<br>symbol  | Gene_id | Gene name                                    |
| mnas_84        | ATP synthase A chain                                                    | atpB            | peg.590 | ATP synthase F <sub>0</sub> sector subunit a |
| mnas_85        | ATP synthase F <sub>0</sub> , C subunit                                 | atpE            | peg.591 | ATP synthase F <sub>0</sub> sector subunit c |
| mnas_86        | ATP synthase F <sub>0</sub> , B subunit                                 | atpF            | peg.592 | ATP synthase F <sub>0</sub> sector subunit b |
| mnas_87        | ATP synthase F <sub>1</sub> , delta subunit                             | atpH            | peg.593 | ATP synthase delta chain                     |
| mnas_88        | ATP synthase F <sub>1</sub> , alpha subunit                             | atpA            | peg.594 | ATP synthase alpha chain                     |
| mnas_89        | ATP synthase family protein                                             | atpG            |         |                                              |
| mnas_293       | ATP synthase alpha/beta<br>family, nucleotide-binding<br>domain protein |                 | peg.405 | ATP synthase alpha chain                     |
| mnas_294       | ATP synthase F <sub>1</sub> , beta subunit                              | atpD            | peg.406 | ATP synthase beta chain                      |
| mnas_614       | ATP synthase alpha/beta<br>family, nucleotide-binding<br>domain protein | atpA            | peg.141 | ATP synthase alpha chain                     |
| mnas_615       | ATP synthase F <sub>1</sub> , beta subunit                              | atpD            | peg.142 | ATP synthase beta chain                      |
| mnas_765       | ATP synthase F <sub>1</sub> , beta subunit                              | atpD            |         |                                              |
| mnas_766       | ATP synthase F <sub>1</sub> , epsilon subunit                           | atpC            | peg.347 | ATP synthase epsilon chain                   |
| mnas_767       | ATP synthase, subunit beta                                              | atpD            |         |                                              |
| mnas_630       | Putative ATP synthase alpha<br>chain domain protein                     |                 |         |                                              |
| mnas_643       | Putative ATP synthase alpha chain domain protein                        |                 |         |                                              |

Table 3.13 The annotated genes for ATP synthase (EC 3.6.3.14) in the Ms03 draft genome

The phosphoenolpyruvate-dependent sugar phosphotransferase transport system (PTS) imports and phoshorylates sugars (Clore and Venditti 2013). This transport involves a series of phosphorylation events of enzyme I (EI), histidine-containing phospho-carrier protein (HPr) and enzyme II (EII). EII consists out of three components, IIA, IIB and IIC. A highenergy phosphate moiety from phosphoenolpyruvate (PEP) is transferred to EI in the cytoplasma, subsequently to HPr and to IIA (cytoplasma) then to IIB which is associated with the membrane embedded IIC component. Finally the transmembrane domain IIC catalyzes the coupled translocation and phosphorylation (phosphate group from IIB) of the incoming sugar (Clore and Venditti 2013). In both the IGS and RAST annotations of the Ms03 draft genome, two HPr, glucose/glucosamine/beta-glucoside-specific IIA, IIB and IIC components (EC 2.7.1.69) and an additional putative PTS system glucose-specific enzyme IIB component were annotated (Figure 3.14 E, Appendix 2 Supplementary Table 2.14). Furthermore, an enzyme was annotated as "HPr(Ser) kinase/phosphatise" (EC 2.7.1.-) which could possibly be the Ms03 El. The glycolytic mycoplasma M. genitalium had two complete glucose and fructose PTS systems while in the non-glycolytic mycoplasmas, M. hominis and Ureaplasma parvum, El is absent (Glass et al. 2000; Pereyre et al. 2009). In vitro culturing has shown that Ms03 mainly uses glucose as energy source (Langer 2009) and with the absence of glucokinase (EC 2.7.1.2) in glycolysis (Figure 3.11), the phosphorylation of extracellular glucose could be required by Ms03.

ATP-binding cassette (ABC) transporters are present in all organisms and play an important role in the active transport of substrate across the cell membrane (Rice et al. 2014). All ABC transporters have two transmembrane domains that form a pore and two intracellular domains that bind and hydrolyze ATP thereby supplying energy for substrate transport. Additionally, ABC importers in bacteria have an extracellular substrate-binding domain (Rice et al. 2014).

Energy-coupling factor (ECF) transporters are a type of ABC transporter that mediate the uptake of micronutrients. ECF transporters are present in approximately 50% of prokaryotic species but are particularly abundant in the phylum *Firmicutes* of Gram-positive bacteria (Slotboom 2014). The transporter consists of an integral membrane protein, EcfT (the T component) and integral membrane substrate-binding domain (the S component) as well as two similar or identical cytosolic ATP synthases, EcfA and EcfA' (the A components). A substrate-binding domain for different substrates can interact with the same T and A components. In the Ms03 draft genome, an ECF transporter was annotated (Figure 3.14 F). Two EcfA proteins were found in both the IGS and RAST annotations. An EcfT protein was annotated within IGS, however in the RAST annotation, this ORF was not predicted. Only one S component was annotated with both programs. The annotated S component was

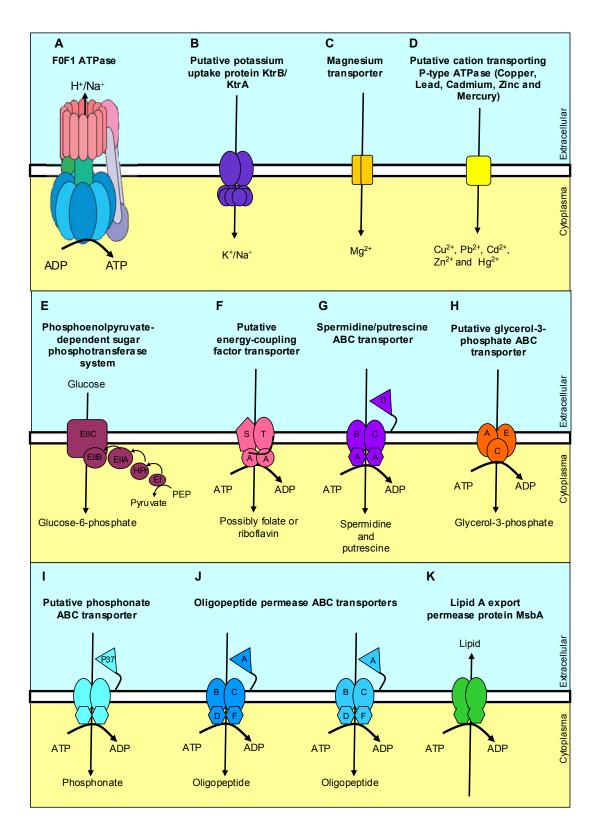



Figure 3.14 Transporters annotated in the Ms03 draft genome. A) The F<sub>1</sub>F<sub>0</sub> ATP synthase, B) Putative potassium uptake protein (KtrB/KtrA), C) Magnesium transporter, D) Putative cation transporting P-type ATP synthase (copper, lead, cadmium, zinc and mercury), E) Phosphoenolpyruvate-dependent sugar phosphotransferase system, F) Putative energy-coupling factor transporter, G) Putative spermidine/putrescine ABC transporter, H) Putative glycerol-3-phosphate ABC transporter, I) Putative

phosphonate ABC transporter, J) Oligopeptide permease ABC transporters and K) Lipid A export permease protein MsbA. Abbreviation: PEP phosphoenolpyruvate.

predicted to have the substrate specificity for riboflavin with the IGS server but folate with the RAST server. In general, the S components share low sequence similarity (10 to 20% identity) (Slotboom 2014) which may explain the difference in the annotations.

Within the Ms03 draft genome, ABC importers for spermidine/putrescine, glycerol-3-phosphate, phosphonate and two Opp transporters were annotated (Figure 3.14 G-J, Appendix 2 Supplementary Table 2.14). A complete spermidine/putrescine (Pot) transporter consists of two transmembrane domains (PotB and PotC), two homodimeric intracellular nucleotide binding domains (PotA) as well as the substrate-binding domain (PotD) (Figure 3.14 G). In the IGS annotation, eight genes were denoted as components of a spermidine/putrescine (PotABCD) transporter while the RAST annotation had only three genes (Appendix 2 Supplementary Table 2.14). The ORFs for the additional genes annotated in IGS were not predicted in the RAST annotation. In the IGS annotation, a complete gene set, *potABCD* was annotated with two additional *potA* genes, one *potC* and *potD* gene.

In both the IGS and RAST annotations, the putative glycerol-3-phosphate ABC transporter consisted of UgpA, UgpC and UgpE (Figure 3.14 H). The IGS annotation had annotated an additional *ugpC* gene. The substrate-binding domain, UgpB was not annotated. In *M. gallisepticum* and *M. pneumoniae*, the UgpACE transporter has been implicated in virulence (Szczepanek et al. 2014).

P37 is an extracytoplasmic thiamine-binding lipoprotein that forms part of the ABC transport system and has been proposed to be the putative phosphonate substrate-binding protein (Sippel et al. 2009; Sippel et al. 2011). It was found to be part of the operon that included a transmembrane domain and an intracellular ATPase domain. In both the IGS and RAST annotations all three of the components were annotated (Figure 3.14 I, Appendix 2 Supplementary Table 2.14).

In the absences of *de novo* synthesis of amino acids (Section 3.3.5.2), import of oligopeptides will be required. The oligopeptide permease (Opp) transport system consists of a substrate-binding domain (OppA), two transmembrane domains (OppB and OppC) and two ATP-binding domains (OppD and OppF). Two complete Opp transporters were annotated with the IGS annotation server (Figure 3.14 J, Appendix 2 Supplementary Table 2.14). The RAST annotation, however, did not predict an ORF for the second *oppB* gene. Additionally, the RAST annotation had a gene annotated as "Oligopeptide ABC transporter ATP-binding protein" (peg.424) but the IGS annotated the same region as a hypothetical protein (mnas\_50). The IGS annotation also had a "putative oligopeptide ABC transporter, ATP binding protein OppF C-terminal" (mnas\_806) protein annotated; this region did not

have an ORF prediction in RAST. Both these proteins (mnas\_806 and mnas\_50) were truncated and were located on different contigs.

In the RAST annotation two proteins were annotated as "lipid A export ATPbinding/permease protein MsbA" Figure 3.14 K, Appendix 2 Supplementary Table 2.14) These were only annotated as "ABC transporter family protein" in the IGS annotation. In *E. coli,* MsbA is a homodimer ABC exporter that plays a role in translocation of lipopolysaccharide and had also been characterized as a multidrug resistance (MDR) efflux system. Putative ABC MDR genes were also identified in the genomes of *M. genitalium*, *M. pneumoniae* and *M. hominis* (Van Veen and Konings 1998; Paulsen et al. 2000; Raherison et al. 2002; Raherison et al. 2005).

Both IGS and RAST annotations include four membrane proteins predicted to have  $\beta$ -galactosidase activity (EC 3.2.1.23) (Appendix 2 Supplementary Table 2.14). In mycoplasmas, a very small minority of species have  $\beta$ -galactosidase activity and annotated genes are only found in *M. alligatoris* (Brown et al. 2011; May and Brown 2014) a close related species to Ms03.  $\beta$ -Galactosidase is a large membrane bound protein that hydrolysis terminal  $\beta$ -D-galactosides attached to glycoproteins and glycosaminoglycans. It also hydrolyses free lactose to galactose and glucose (May and Brown 2014; Singh et al. 2014). In *Streptococcus pneumoniae*  $\beta$ -galactosidase is postulated to play a role in adhesion (Singh et al. 2014).

As illustrated in Figure 3.14, a larger number of importers were annotated compared to exporters. Mycoplasmas, with such a reduced genome, have limited biosynthetic capacity and therefore rely on the import of nutrients, cofactors and other building blocks.

In addition to the above annotated transporters, both annotation analyses identified a number of substrate-binding, transmembrane and ATP-binding domains of putative ABC transporters (Appendix 2, Supplementary Table 2.14). These were components of transporters and/or the functions were unknown and as such are not discussed.

Furthermore, no transporter for nucleoside or nucleotide bases (Section 3.3.5.1) was found in both the IGS and RAST annotations. This may be an effect of the incomplete assembly of the Ms03 genome or the genes involved may be annotated as hypothetical in the current annotation. Transporters for these bases were, however, also not found in the genomes of *M. genitalium* and *M. pneumoniae* although they are essential components of mycoplasma growth medium (Himmelreich et al. 1996; Mushegian and Koonin 1996; Castellanos et al. 2004). Additionally, the loss of specificity and broadened substrate selectivity so that a single carrier can transport several metabolites across the cell membrane could explain the lack of some transport systems in mycoplasmas (Saurin and Dassa 1996).

# 3.3.6 Identification and bioinformatic characterization of the Ms03 opp operon

The Ms03 *opp* operon of which the *oppA* gene forms part was identified. Contigs that contain *opp* genes were identified by using the *opp* operon of *M. hominis* as query in a tBLASTn search with the initial assembly of Ms03 draft genome as database. Two contigs were identified to contain *opp* genes and the ORFs within these two contigs were predicted. The identities of the genes were confirmed with BLAST searches in NCBI. Two *opp* operons were subsequently identified (Figure 3.15) and submitted to NCBI with the following accession numbers, KM410300.1 and KM410301.1. Genes within the *opp1* operon were only named *oppA*, *oppB*, *oppC*, *oppD* and *oppF*.

The first draft assembly (15.4 Mb, Table 3.6) of the Ms03 genome was used to identify the *opp* genes, however for the annotation, the pseudomolecule was generated from the contigs in the final assembly (25.2 Mb, Table 3.6). In the first draft assembly each set of *opp* genes (*oppA*, *oppB*, *oppC*, *oppD*, *oppF*) was located adjacent to each other within an operon. This was not the case in the automated annotation of the final assembly. The parameters in the assembly program, Newbler, that was used to assemble the 454 reads into contigs, are conserved. If the program is unsure whether or not two regions are adjacent to each other, it would rather split the regions than link them erroneously. In an attempt to decrease the number of contigs, more data was generated using the 454 platform. This did decrease the total number of contigs, however in the region of one of the two *opp* operons (*opp1* operon) more data may have introduced uncertainty which led to the genes of this *opp* operon to be distributed over more than one contig.

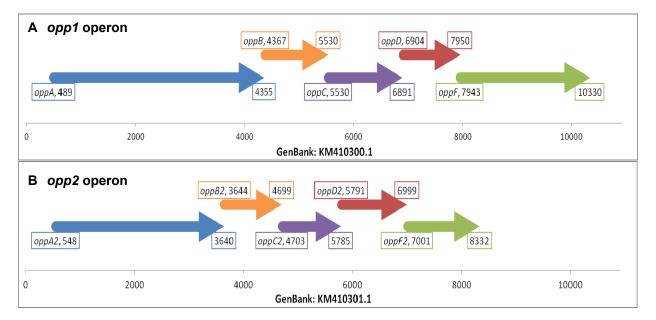



Figure 3.15 The *opp* operons in Ms03. A) The organization of the *opp1* operon (KM410300.1) B) The organization of the *opp2* operon (KM410301.1).

Table 3.14 A sequence comparison of the Ms03 *opp1* and *opp2* operon proteins with that of *M. hominis* 

| Gene                      | Ms03_OppA           |        | Ms03_OppA2          |          |
|---------------------------|---------------------|--------|---------------------|----------|
| (Gene size, Protein size) |                     | 07.40/ |                     | 10.00/   |
| Mho_OppA                  | Protein identity:   | 27.1%  | Protein identity:   | 19.0%    |
| (2 886 bp, 961 aa)        | Protein similarity: | 45.7%  | Protein similarity: | 32.6%    |
|                           | Gaps:               | 14.5%  | Gaps:               | 34.6%    |
| Ms03_OppA                 |                     |        | Protein identity:   | 19.7%    |
| (3 867 bp, 1 288 aa)      |                     |        | Protein similarity: | 33.1%    |
|                           |                     |        | Gaps:               | 35.0%    |
| Ms03_OppA2                |                     |        |                     |          |
| (3 093 bp, 1 030 aa)      |                     |        |                     |          |
|                           | Ms03_OppB           |        | Ms03_OppB2          |          |
| Mho_OppB                  | Protein identity:   | 47.4%  | Protein identity:   | 28.1%    |
| (1 146 bp, 381 aa)        | Protein similarity: | 64.7%  | Protein similarity: | 50.9%    |
| (                         | Gaps:               | 12.0%  | Gaps:               | 14.6%    |
| Ms03_OppB                 |                     |        | Protein identity:   | 26.3%    |
| (1 164 bp, 387 aa)        |                     |        | Protein similarity: | 42.2%    |
| (1.101.00,001.00)         |                     |        | Gaps:               | 18.2%    |
| Ms03_OppB2                |                     |        |                     | 10.2 /   |
| (1 056 bp, 351 aa)        |                     |        |                     |          |
|                           | Ms03_OppC           |        | Ms03_OppC2          |          |
| Mho_OppC                  | Protein identity:   | 38.1%  | Protein identity:   | 26.1%    |
| (1 275 bp,424 aa)         | Protein similarity: | 57.9%  | Protein similarity: | 46.6%    |
| ( )                       | Gaps:               | 16.5%  | Gaps:               | 5.0%     |
| Ms03_OppC                 |                     |        | Protein identity:   | 25.3%    |
| (1 362 bp, 453 aa)        |                     |        | Protein similarity: | 44.8%    |
| (1002 bp, 100 dd)         |                     |        | Gaps:               | 12.5%    |
| Ms03_OppC2                |                     |        |                     | 1210 /0  |
| (1 083 bp, 360 aa)        |                     |        |                     |          |
|                           | Ms03_OppD           |        | Ms03_OppD2          |          |
| Mho_OppD                  | Protein identity:   | 71.2%  | Protein identity:   | 36.4%    |
| (1 167 bp, 388 aa)        | Protein similarity: | 84.3%  | Protein similarity: | 60.2%    |
| (                         | Gaps:               | 0.0%   | Gaps:               | 7.8%     |
| Ms03_OppD                 |                     | 0.070  | Protein identity:   | 42.6%    |
| (1 047 bp, 348 aa)        |                     |        | Protein similarity: | 63.6%    |
| (1 0 TI bp, 0 TO dd)      |                     |        | Gaps:               | 8.0%     |
| Ms03_OppD2                |                     |        |                     | 0.070    |
| (1 209 bp, 402 aa)        |                     |        |                     |          |
| (1200 00), 102 00)        | Ms03_OppF           |        | Ms03_OppF2          |          |
| Mho_OppF                  | Protein identity:   | 45.5%  | Protein identity:   | 19.4%    |
| (2 529 bp, 842 aa)        | Protein similarity: | 62.5%  | Protein similarity: | 30.8%    |
| (                         | Gaps:               | 8.6%   | Gaps:               | 53.8%    |
| Ms03_OppF                 |                     | 0.070  | Protein identity:   | 19.8%    |
| (2 388 bp, 795 aa)        |                     |        | Protein similarity: | 31.5%    |
| (2 000 pp, 190 aa)        |                     |        | Gaps:               | 52.1%    |
| Mc03 OppE2                |                     |        | Gaps.               | JZ. 1 /0 |
| Ms03_OppF2                |                     |        |                     |          |
| (1 332 bp, 443 aa)        |                     |        |                     |          |

Similarity and Identity calculated with EMBOSS WATER Pairwise alignment

(<u>http://www.ebi.ac.uk/Tools/psa/emboss\_water/</u>) using the BLOSUM62 matrix with a gap penalty of 10 and extension penalty of 0.5

Compared to *M. hominis*, the gene organization of the two Ms03 *opp* operons was found to be the same (ABCDF) and the sizes of the genes and their protein products similar, except for the Ms03 *oppA* that was 981 bp larger than the *M. hominis oppA* and the Ms03 *oppF2* that was 1 217 bp smaller than the *M. hominis oppF* gene (Figure 3.15 and Table 3.14). The percentage protein identity and similarity between the *M. hominis* Opp proteins and that of the Ms03 Opp1 were higher than that between *M. hominis* and Ms03 Opp2 proteins or between Ms03 Opp1 and Ms03 Opp2 proteins (Table 3.14).

Vaccine candidate genes should be unique to the pathogen, with no homologous or paralogous genes within the genome of the host. The genome of the ostrich was sequenced and published recently and it was confirmed with tBLASTx searches that the two *opp* operons of Ms03 had no protein homologues or paralogues within the ostrich genome.

To confirm the identity of the predicted *opp* genes, functional motifs and domains were identified within the protein products using the online program, InterPro. InterPro combines protein signatures from 11 databases into one resource (McDowall and Hunter 2011). A summary of the InterPro analyses of the Opp proteins are provided in Table 3.15 while a detailed report of the individual motifs and their locations is provided in Appendix 2 Supplementary Table 2.15. Additionally the Opp proteins were manually examined for the same protein motifs as found in the Opp proteins of *M. hominis*.

|                              | Ms03 opp1 operon                                                         | Ms03 opp2 operon                                                                                                   |
|------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                              | OppA (1 288 aa)                                                          | OppA2 (1 030 aa)                                                                                                   |
| Protein family<br>membership | None predicted                                                           | ABC-type oligopeptide transport<br>system, solute-binding component,<br>Mycoplasmataceae, predicted<br>(IPR016880) |
| InterPro domains             | None predicted                                                           | Solute-binding protein family 5 domain (IPR000914)                                                                 |
| GO term prediction           | None predicted                                                           | None predicted                                                                                                     |
|                              | OppB (387 aa)                                                            | OppB2 (351 aa)                                                                                                     |
| Protein family<br>membership | None predicted                                                           | None predicted                                                                                                     |
| InterPro domains             | ABC transporter type 1,<br>transmembrane domain MetI-like<br>(IPR000515) | ABC transporter type 1,<br>transmembrane domain MetI-like<br>(IPR000515)                                           |
| GO term                      |                                                                          |                                                                                                                    |
| Biological process           | GO:0006810 transport                                                     | GO:0006810 transport                                                                                               |
| Molecular function           | GO:0005215 transporter activity                                          | None predicted                                                                                                     |
| Cellular component           | GO:0016020 membrane                                                      | GO:0016020 membrane                                                                                                |

| Table 3.15 Bioinformation | analyses of the | Opp proteins |
|---------------------------|-----------------|--------------|
|---------------------------|-----------------|--------------|

Table 3.15 (Continued).

|                               | Ms03 opp1 operon                                                                                                                                                                                                                                                                                                                                                     | Ms03 opp2 operon                                                                                                                                                                                                                                                                                                   |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | OppC (453 aa)                                                                                                                                                                                                                                                                                                                                                        | OppC2 (360 aa)                                                                                                                                                                                                                                                                                                     |
| Protein family<br>membership  | None predicted                                                                                                                                                                                                                                                                                                                                                       | None predicted                                                                                                                                                                                                                                                                                                     |
| InterPro domains              | Oligopeptide transport permease C-<br>like, N- terminal domain<br>(IPR025966)<br>ABC transporter type 1,<br>transmembrane domain MetI-like<br>(IPR000515)                                                                                                                                                                                                            | Oligopeptide transport permease C-<br>like, N- terminal domain<br>(IPR025966)<br>ABC transporter type 1,<br>transmembrane domain MetI-like<br>(IPR000515)                                                                                                                                                          |
| GO term prediction            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |
| Biological process            | GO:0006810 transport                                                                                                                                                                                                                                                                                                                                                 | GO:0006810 transport                                                                                                                                                                                                                                                                                               |
| Molecular function            | None predicted                                                                                                                                                                                                                                                                                                                                                       | None predicted                                                                                                                                                                                                                                                                                                     |
| Cellular component            | GO:0016020 membrane                                                                                                                                                                                                                                                                                                                                                  | GO:0016020 membrane                                                                                                                                                                                                                                                                                                |
|                               | OppD (348 aa)                                                                                                                                                                                                                                                                                                                                                        | OppD2 (402 aa)                                                                                                                                                                                                                                                                                                     |
| Protein family<br>membership: | None predicted.                                                                                                                                                                                                                                                                                                                                                      | None predicted.                                                                                                                                                                                                                                                                                                    |
| InterPro domains              | <ul> <li>P-loop containing nucleoside<br/>triphosphate hydrolase<br/>(IPR027417)</li> <li>AAA+ ATPase domain (IPR003593)</li> <li>ABC transporter-like (IPR003439)</li> <li>Oligopeptide/dipeptide ABC<br/>transporter, C- terminal<br/>(IPR013563)</li> <li>Oligopeptide/dipeptide ABC<br/>transporter, ATP-binding protein, C-<br/>terminal (IPR010066)</li> </ul> | P-loop containing nucleoside<br>triphosphate hydrolase<br>(IPR027417)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC<br>transporter, C- terminal<br>(IPR013563)<br>Oligopeptide/dipeptide ABC<br>transporter, ATP-binding protein, C-<br>terminal (IPR010066) |
| GO term prediction            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |
| Biological process            | GO:0015833 peptide transport                                                                                                                                                                                                                                                                                                                                         | GO:0015833 peptide transport                                                                                                                                                                                                                                                                                       |
| Molecular function            | GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter<br>activity<br>GO:0016887 ATPase activity                                                                                                                                                                                                                                  | GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter<br>activity<br>GO:0016887 ATPase activity                                                                                                                                                                                |
| Cellular component            | GO:0016020 membrane                                                                                                                                                                                                                                                                                                                                                  | GO:0016020 membrane                                                                                                                                                                                                                                                                                                |
|                               | OppF (795 aa)                                                                                                                                                                                                                                                                                                                                                        | OppF2 (443 aa)                                                                                                                                                                                                                                                                                                     |
| Protein family<br>membership  | None predicted                                                                                                                                                                                                                                                                                                                                                       | None predicted                                                                                                                                                                                                                                                                                                     |
| InterPro domains              | <ul> <li>P-loop containing nucleoside<br/>triphosphate hydrolase<br/>(IPR027417)</li> <li>AAA+ ATPase domain (IPR003593)</li> <li>ABC transporter-like (IPR003439)</li> <li>Oligopeptide/dipeptide ABC<br/>transporter, C- terminal<br/>(IPR013563)</li> </ul>                                                                                                       | P-loop containing nucleoside<br>triphosphate hydrolase<br>(IPR027417)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC<br>transporter, C- terminal<br>(IPR013563)                                                                                               |
| GO term prediction            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |
| Biological process            | GO:0015833 peptide transport                                                                                                                                                                                                                                                                                                                                         | GO:0015833 peptide transport                                                                                                                                                                                                                                                                                       |
| Molecular function            | GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0016887 ATPase activity<br>GO:0017111 nucleoside-<br>triphosphatase activity                                                                                                                                                                                                                           | GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0016887 ATPase activity                                                                                                                                                                                                                              |
| Cellular component            | None predicted                                                                                                                                                                                                                                                                                                                                                       | None predicted                                                                                                                                                                                                                                                                                                     |

# ОррА

No protein family, domains or GO terms were predicted with InterPro for the OppA protein of the *opp1* operon. InterPro predicted the OppA2 protein of the *opp2* operon to belong to the protein family: ABC-type oligopeptide transport system, solute-binding component of *Mycoplasmataceae* (IPR016880), pertaining to the solute-binding protein family 5 domain (IPR000914) (Table 3.15). GO terms were however not predicted for the OppA2 protein. For both OppA proteins the PROSITE prokaryotic lipoprotein (PS51257) and the PHOBIUS signal peptide motifs were found within the first 23 (OppA) or 27 (OppA2) amino acids (Appendix 2 Supplementary Table 2.15).

In the OppA protein of *M. hominis* four functional sites were identified: a signal peptide, an oligopeptide binding site and Walker B and A motifs (Henrich et al. 1999). Through manual alignment of the Ms03 OppA proteins with that of *M. hominis*, a putative signal peptide could be identified in both OppA (first 23 aa) and OppA2 (first 27 aa). The liposignal peptide motif with a conserved cysteine residue at position 23 of OppA and 27 of OppA2 should result in the proteins being anchored to the cell via a lipo anchor. These signal peptides were also predicted with InterPro (Appendix 2 Supplementary Table 2.15). Manual alignment also allowed the identification of a putative oligopeptide binding site (552-FRVRPGHFW-560) as well as putative Walker B (1 074-YWTGTSPFSLAGWGYD-1 089) and putative Walker A (1 094-GSGIDGYS-1 101) motifs in the Ms03 OppA (*opp1* operon). These motifs could not be found in the OppA2 protein.

In bacterial OppA proteins, the oligopeptide-binding site determines substrate specificity (Doeven et al. 2005) and is in general less conserved which may explain the wide range of oligopeptides that can be transported. The Walker B and A motifs are responsible for the ecto-ATPase activity of *M. hominis* OppA. The consensus sequence for the Walker A motif is -GXXXXG**K**[S/T]- where Lys (K) is essential for nucleotide-binding. A mutation of the Lys to an Arg (both large and positively charged) resulted in a loss of ATPase activity (Hopfe and Henrich 2004). In Ms03 OppA the amino acid at this position is Tyr (large and possessing polar hydroxyl group) therefore although the motif is present in the Ms03 OppA sequence, it is likely not functional.

Based on the identified functional motifs and domains, the identity of the OppA (*opp1* operon) and the OppA2 (*opp2* operon) proteins could be confirmed as the proposed substrate-binding domains of the Opp transporters in Ms03.

# **OppB and OppC**

InterPro could not predict the protein family for either Ms03 OppB or OppB2 however the InterPro domain "ABC transporter type 1, transmembrane domain MetI-like" (IPR000515) was found in both proteins (Table 3.15). The GO terms predicted for these two proteins were transport (GO:0006810) for biological process and membrane (GO:0016020) for cellular

component. Additionally the GO term transporter activity (GO:0005215) for molecular function was only predicted for the Ms03 OppB protein.

In Ms03 OppC and OppC2, InterPro detected two domains: oligopeptide transport permease C-like, N- terminal domain (IPR025966) and ABC transporter type 1, transmembrane domain MetI-like (IPR000515) (Table 3.15) The GO term for biological process was transport (GO:0006810) and for cellular component was membrane (GO:0016020).

In the Opp transporter, OppB and OppC domains form the pore through which the substrate is imported into the cell. Six transmembrane-spanning segments were predicted with InterPro in OppB, OppB2, OppC and OppC2 of Ms03 (Appendix 2 Supplementary Table 2.15) which should result in a membrane pore with 12 membrane spanning segments (six from the OppB domain and six from OppC domain) which is typical for ABC transporters (Rees et al. 2009).

In addition manual alignment revealed the OppB conserved motif (RTAK-KGLXXXXI/VZXXHZLR, with Z representing a hydrophobic residue and X any residue) in OppB (256-IAKSKGLSRKEIFFKYVLR-274) and OppB2 (250-FAYLKGVSKNRFVWKHALK-268) and the OppC conserved motif (XAAXXZGAXXXRXIFXHILP) in the OppC (346-TASKSVGASKARLIYKHALP-365) and OppC2 (257-VSASKILGTPTWKILKNYVP-276). These motifs were found between the fourth and fifth membrane-spanning segments as predicted in the OppB and OppC proteins and correspond to the proposed interaction sites with OppD and OppF domains on the cytoplasmic side of the membrane (Mourez et al. 1997; Henrich et al. 1999). These motifs and domains confirmed the identity of OppB and OppC as well as the OppB2 and OppC2 proteins as the proposed transmembrane pores of the Opp transporters in Ms03.

# **OppD and OppF**

In each of the OppD, OppD2, OppF and OppF2 proteins, the following InterPro domains were identified: P-loop containing nucleoside triphosphate hydrolase (IPR027417); AAA+ ATPase domain (IPR003593); ABC transporter-like (IPR003439) and oligopeptide/dipeptide ABC transporter, C-terminal (IPR013563). Additionally the oligopeptide/dipeptide ABC transporter and ATP-binding protein, C-terminal (IPR010066) domain was also found in the OppD and OppD2 (Table 3.15). For these four proteins the GO term for biological process was peptide transport (GO:0015833) and for molecular function was nucleotide binding (GO:0000166), ATP binding (GO:0005524), and ATPase activity (GO:0016887). Additionally for molecular function, the GO term, nucleoside-triphosphatase activity (GO:0017111) was only found in OppF and the GO term, peptide transporter activity (GO:0015197) was only predicted for OppD and OppD2. The GO term membrane (GO:0016020) for cellular component was found in OppD and OppD2 but not in OppF and OppF2.

In the Opp transporter, the OppD and OppF domains hydrolyse ATP to provide the energy needed for the translocation of the oligopeptide across the membrane. This activity is attributed to the presence of protein motifs such as the Walker A and Walker B motifs. The Walker A motif (GXXGXGK[T/S]) was present in OppD (43-GESGSGKS-50), OppD2 (95-GESGSGKS-102), OppF (42-GESGSGKT-49) and OppF2 (79-GESGSGKS-86). The Walker B motif (RXXXGXXXLZZZD) was also found in OppD (180-LIIADEPTTALD-191), OppD2 (234-ILVMDEPTTALD-243), OppF (303-VIVADEPIASLD-336) and OppF2 (305-LLIADEPISALD-316). Furthermore, the ABC signature motif (LSGGQ) was also present in OppD (160-LSGGM-164), OppD2 (212-MSGGM-216), OppF (632-FSGGQ-636) and OppF2 (285-FSGGQ-289). The presence of these motifs was reflected in the InterPro motifs identified, that correspond to ATPase activity and family domains for ABC transporters. These motifs and domains confirmed the identity of the OppD and OppF as well as the OppD2 and OppF2 proteins as the proposed cytosolic ATP-binding domains of the Opp transporters in Ms03.

# 3.4 Conclusion

The genome of Ms03 was sequenced and assembled into 172 large contigs. It was however not possible to generate the complete genome sequence of Ms03. Two annotation servers, IGS and RAST, were used to annotate the Ms03 draft genome and predicted 763 and 635 protein-encoding genes, respectively. In spite of the differences, the two annotations augment to each other to generate a more complete annotation of the Ms03 draft genome. The IGS annotation yielded more annotated genes which resulted in a more complete representation of the Ms03 metabolic pathways. The RAST annotation provided the option for metabolic analysis which benefits the interpretation of the annotation result. Each annotation pipeline (IGS and RAST) has strengths and weaknesses. The combinational approach described here not only provided the opportunity to compare the pipelines, but also increased the confidence in the gene annotation of Ms03 and resulted in a more complete overview of the Ms03 metabolic capacity.

Although some of the genes within the Ms03 pathways analysed are potentially "missing", most annotated genes within the Ms03 draft genome correspond with the gene functions annotated in the complete genome of *M. synoviae* 53. This indicates that the annotation of the Ms03 genome is mostly complete. The generation of a complete genome sequence may however be advantageous when considering the number of genes that are potentially truncated because the Ms03 draft genome consists of 172 contigs.

Genome replication, cell division, RNA transcription and protein translation in Ms03 is similar to that of *M. synoviae* 53. From the annotations it is likely that Ms03 is a glycolytic mycoplasma that cannot utilize arginine and urea which is in agreement with the experimental results of Langer (2009). Like other mycoplasmas, Ms03 cannot synthesise

purines and pyrimidines or amino acids using *de novo* pathways. Most of the annotated transporters were importers which is a reflection of the reduced metabolic capacity of the mycoplasma and the need to obtain nutrients from the environment.

The current annotation of the Ms03 genes together with the metabolic analysis can assist in the identification of future vaccine gene targets. Two Opp transporters were found in the Ms03 genome. The genes for each transporter are located in an operon that consists of five adjacent genes with the order ABCDF. Protein motifs within the respective genes confirmed the functional annotations of the respective genes as *oppA*, *oppB*, *oppC*, *oppD* and *oppF*. These proteins were characterized in an attempt to confirm the identity of the *opp* operon and also the chosen vaccine candidate gene, *oppA*. Two *opp* operons (two *oppA* genes) were however identified within the Ms03 genome. Additionally, *oppA* genes in mycoplasma genomes are not always annotated, which questions the need for the substrate-binding domain in Opp transporter (Staats et al. 2007). The above warranted a more detailed analysis of the *opp* operons with special reference to the *oppA* gene within *Mycoplasma* species.

# Acknowledgements:

We would like to thank the Institute for Genome Sciences Annotation Engine service at the University of Maryland, School of Medicine for providing structural and functional annotation of the sequences.

# Chapter 4 The identification of *oppA* gene homologues as part of the oligopeptide transport system in mycoplasmas

# 4.1 Introduction

The oppA gene was chosen as a vaccine candidate gene in this dissertation, however it would only be a suitable target if it plays a prominent part in oligopeptide transport in mycoplasma. The oligopeptide permease (Opp) transport system is responsible for the import of oligopeptides into the bacterial cell. This transporter belongs to the ATP-binding cassette (ABC) family and consists of five components; a substrate-binding domain, OppA, two transmembrane domains, OppB and OppC that form a pore for transport and two cytoplasmic domains, OppD and OppF that hydrolyse ATP to provide the energy necessary for the translocation of the oligopeptide. In Gram-positive bacteria, OppA is anchored to the membrane through a lipid anchor, while in Gram-negative bacteria it is located in the periplasmic space. The oligopeptide-binding site (and therefore OppA) determines the specificity of the transporter. This site is in general less conserved and has a wide size range of peptides that are transported in different bacteria. The OppA of Escherichia coli has a preference for oligopeptides that contain positively charged amino acids and are 3 to 4 residues in length (Klepsch et al. 2011) while the OppA of Lactoccocus lactis can transport oligopeptides between 4 and 35 residues in size and has a preference for proline-rich peptides containing at least one isoleucine (Berntsson et al. 2009). This illustrates the diversity in substrates that can be transported by bacterial OppA proteins. As a result low sequence similarity is, in general, reported between oppA genes and their protein products (Doeven et al. 2005).

In *Mycoplasma* species, the need for an OppA in oligopeptide transport was, however, questioned because of the absence of an annotated *oppA* gene as part of some *oppBCDF* operons in mycoplasma genomes (Staats et al. 2007). The progress in genome sequencing has led significantly increase in the number of available and annotated mycoplasma genomes. Within these genomes, *oppA* genes are not always found as part of the *oppBCDF* operons.

In order to assess whether the *oppA* gene of Ms03 has the potential to serve as a vaccine candidate gene the oligopeptide transporter systems in *Mycoplasma* species was assessed. The aim was therefore to investigate the prevalence of the *oppA* gene as part of the *oppBCDF* operon in *Mycoplasma* species. To this end, the following objectives were set:

- To identify opp genes in the annotated genomes of Mycoplasma species available on NCBI.
- To identify an *oppA* gene for each *oppBCDF* operon.

- To determine the phylogenetic relationships amongst the *Mycoplasma* species as well as their respective OppABCDF operons.
- To identify conserved and functional motifs in the annotated and newly postulated OppA proteins, in order to confirm that the postulated *oppA* genes annotated as "hypothetical protein" are indeed *oppA* genes.

The results obtained are presented in an independent manuscript following this introduction with the supplementary data presented in Appendix 3 at the end of this dissertation. The following sections will highlight certain aspects of the experimental design.

# 4.2 Phylogenetic analysis

Phylogenies are used to address various questions such as the relationships among genes or species, epidemiological dynamics of pathogens and the evolutionary histories of populations (Hartfield et al. 2014). The relationships of species can be determined by using a marker gene or protein. The selection of this gene is critical; it should be present in all the species in the assessment, have the same function within the species and be under the same selective pressure.

The 16S rRNA gene is highly conserved and universally distributed in the different species of bacteria and archaea (Brocchieri 2001). Ribosomes are present in all self-replicating cells and function in protein synthesis (Schuwirth et al. 2005; Kitahara et al. 2012). The 16S rRNA genes have the same structural role in the ribosomes irrespective of species and are under approximately the same selective evolutionary pressure. Although other phylogenetic markers such as the RNA polymerase subunit B (*rpoB*) gene, 16S–23S intergenic transcribed spacers and phosphoglycerate kinase amino acid sequence have been evaluated, the 16S rRNA gene sequences are currently recommended for description of *Mollicutes* species (Wolf et al. 2004; Brown 2010; Volokhov et al. 2012). For the above reasons, the 16S rRNA gene is an ideal marker to analyse the relationships among *Mycoplasma* species and was used in the current study.

A phylogeny was also constructed from the OppABCDF proteins to analyse the functional relationship amongst different copies of the *oppABCDF* operon within and between species. These genes are not necessarily under the same selective pressure but are subjected to the selection constraints of protein function and protein structure. The amino acid sequences rather than the nucleotide sequences were aligned because at nucleotide level the sequences were heterogeneous and could not by aligned with confidence.

The *16S rRNA* gene and the OppABCDF protein sequences were first aligned with the online alignment program T-Coffee (tree-based consistency objective function for alignment evaluation, Notredame et al. (2000)) followed by further manual refinement. T-Coffee is a multiple sequence alignment program that uses a progressive approach to combine local

## Chapter 4 Identification of oppA homologues

and global pair-wise alignments creating a reliable alignment of the sequences (Notredame et al. 2000). This allows for the alignment of genes or proteins that differ in length as was the case with the OppA and OppF proteins in the current study.

The construction of phylogenies is either distance or tree-searching based. In distance based methods, such as neighbour-joining, distances are calculated between pairs of sequences (within the larger alignment) resulting in a distance matrix. The distance matrix is then used to construct the phylogenetic tree. Although distance analyses are computer efficient, they perform poorly for very divergent sequences and are sensitive to gaps in the alignment (Yang and Rannala 2012). Tree-searching methods consider all characters of the entire alignment one site (column) at a time and calculate a score for each possible tree. The tree with the best score is retained. Examples of tree-searching methods are parsimony, maximum likelihood and Bayesian inference. In parsimony "tree-scores" are minimum number of changes, in maximum likelihood, log-likelihood values and in Bayesian inference, posterior probability (Wiley and Lieberman 2011b; Wiley and Lieberman 2011a). Each of these analyses uses their own formulas, algorithms and models that contribute to the outcome.

The major weakness of a parsimony analysis such as the software package PAUP\* (Phylogenetic Analysis Using Parsimony\* and other methods, Swofford (2002)) is its lack of explicit assumptions which makes it nearly impossible to incorporate any knowledge of sequence evolution into the tree reconstruction (Yang and Rannala 2012). Maximum likelihood is an exhaustive analysis that searches for the best tree. Maximum likelihood is a powerful framework for estimating parameters and testing hypotheses and can accommodate variable amino acid substitution rates among sites and other evolutionary models. Exhaustive searches require a large amount of computational power, however online platforms such as the Cipres Web portal (Miller et al. 2010) are available for these analyses. RAxML (Randomized Axelerated Maximum Likelihood) is a program for maximum likelihood phylogenetic analysis of large datasets (Stamatakis 2014) that is available from the Cipres Web portal.

OppA proteins in mycoplasma have low sequence identity and gaps were introduced to allow alignment. Since distance based methods perform poor with very divergent sequences and gaps, the phylogenies were generated using both RAxML (maximum likelihood analysis) and PAUP (parsimony analysis). The generated phylogenies had the same topology and only the RAxML phylogenies are shown.

Chapter 4 Identification of oppA homologues

# 4.3 Bioinformatic analysis of annotated and newly postulated *oppA* homologues genes

In order to confirm that newly postulated *oppA* genes annotated as "hypothetical protein" were indeed *oppA* genes, a number of bioinformatic programs were used to evaluate the annotated and newly postulated OppA protein sequences. OppA is located on the surface of the mycoplasma cell and the location of the postulated and annotated OppA proteins were predicted with PSORTb version 3.0.2 (Yu et al. 2010). This program is specific for bacterial proteins and has five subcellular categories, namely cytoplasmic, cytoplasmic membrane, cell wall, extracellular or unknown. Additionally the presences of signal peptides were predicted using SignalP (Petersen et al. 2011) and PRED-LIPO (Bagos et al. 2008). SignalP predicts whether or not a protein has a signal peptide while PRED-LIPO specifically predicts signal peptidase I (secretory protein) and signal peptidase II (lipoproteins). A signal peptidase II was found in the OppA of *M. hominis* (the best described OppA in the *Mycoplasma* genus).

InterPro (Hunter et al. 2012) was used to predict the functional domains of the postulated and annotated OppA proteins. The InterPro consortium includes the following databases: PROSITE, HAMAP (high-quality automated and manual annotation of proteins), Pfam (protein families), PRINTS, ProDom (protein domain families), SMART (simple modular architecture research tool), TIGRFAMs, PIRSF (protein information resource superfamily), SUPERFAMILY, CATH-Gene3D (class architecture topology homology) and PANTHER (protein analysis through evolutionary relationships). Using InterPro the information of these databases can be searched simultaneously to predict the function, domains and important sites within postulated and annotated OppA proteins.

It was however not always possible to predicted function, domains or important sites within the postulated and annotated OppA proteins. Therefore the motif discovery program, MEME (Multiple expectation maximization for motif elicitation) (Bailey et al. 2009) was used to locate conserved motifs within the protein sequences. MEME locates repeated patterns within a group of related proteins and does not require functional or database information to identify these motifs.

# 4.4 The identification of *oppA* gene homologues as part of the oligopeptide transport system in mycoplasmas

# 4.4.1 Contributions of co-authors

The following manuscript contains the original work of the author of this dissertation. The contributions of each of the co-authors were as follows:

**Dr. Annelise Botes** is a lecturer of Biochemistry at the University of Stellenbosch and the supervisor of this dissertation. In this capacity, she was involved in the conceptual development and execution of all aspects of this study.

**Prof. Dirk U. Bellstedt** is a professor of Biochemistry at the University of Stellenbosch and the co-supervisor of this dissertation. In this capacity, he was involved in the conceptual development and execution of this study.

Gene 558 (2015) 31-40



Contents lists available at ScienceDirect

Gene

journal homepage: www.elsevier.com/locate/gene

# The identification of *oppA* gene homologues as part of the oligopeptide transport system in mycoplasmas

ABSTRACT



CrossMark

GENE

# Martha Wium, Annelise Botes \*, Dirk U. Bellstedt

Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

## ARTICLE INFO

Article history: Received 31 October 2014 Received in revised form 3 December 2014 Accepted 16 December 2014 Available online 17 December 2014

Keywords: Oligopeptide permease transport Mycoplasma OppA opp operon ABC transporters

### 1. Introduction

Mycoplasmas are the smallest self-replicating prokaryotes that have evolved through a degenerative process from low G + C content Grampositive bacteria (Razin et al., 1998; Brown, 2010). The evolution of mycoplasmas was accompanied by a substantial loss of their genomes resulting in the loss of the cell wall as well as many of their biosynthetic pathways (Yus et al., 2009). Mycoplasmas lack the capacity to synthesize molecules such as cholesterol, fatty acids, some amino acids, purines and pyrimidines, and therefore need to acquire these and other nutrients from their host (Razin et al., 1998). Acquisition of these molecules is mediated through membrane transport proteins of which the ATP-binding cassette (ABC) transporters are the most prominent (Nicolás et al., 2007). The role of ABC transporters in the growth and survival of bacteria makes them an attractive target for the development of vaccines and antibacterial therapies (Garmory and Titball, 2004; Nicolás et al., 2007). To this end, the OppA proteins of Brachyspira pilosicoli (Movahedi and Hampson, 2010), Moraxella catarrhalis (Yang

\* Corresponding author.

E-mail address: annelise@sun.ac.za (A. Botes).

The lack of an annotated *oppA* gene as part of many oligopeptide permease (*opp*) operons has questioned the necessity of the oligopeptide-binding domain (OppA) as a part of the Opp transport system in mycoplasmas. This study investigated the occurrence of an *oppA* gene as part of the *oppBCDF* operon in 42 mycoplasma, all mycoplasmas were found to possess one or more copies of the *oppBCDF* operon and with the help of similarity searches their *oppA* genes could be identified. Phylogenetic analysis of the combined OppABCDF amino acid sequences allowed them to be grouped into three types. Each type has a unique set of conserved motifs, which are likely to reflect substrate preference and adaption strategies. Our approach

method for re-evaluating the current annotation of oppA genes in mycoplasma genomes

allowed the identification of oppA gene homologues for all mycoplasma opp operons and thereby provides a

© 2014 Elsevier B.V. All rights reserved.

et al., 2011) and *Yersinia pestis* (Tanabe et al., 2006) have been evaluated as candidate vaccine antigens and could similarly be a potential vaccine antigen in mycoplasmas.

OppA is a lipoprotein that forms part of a bacterial oligopeptide permease (Opp) transport system that is responsible for the import of oligopeptides into the cell. The Opp transport system has five structural domains; OppA, the extracellular substrate-binding domain, OppB and OppC, the two transmembrane domains and OppD and OppF, the two intracellular domains that bind and hydrolyze ATP thereby supplying energy for peptide transport. A separate gene encodes for each domain and the five genes are located within a polycistronic operon in most instances. The Opp system is well characterized in bacteria and the function of OppA as substrate-binding protein is established (Levdikov et al., 2005; Berntsson et al., 2009; Klepsch et al., 2011). In Gramnegative bacteria the OppA is found within the periplasmic space, while in Gram-positive bacteria OppA is anchored to the membrane as is the case in mycoplasmas. The necessity of this protein in the Opp transport system in mycoplasmas was, however, questioned due to the fact that only one out of eleven genomes available at the time contained an annotated oppA gene as part of the opp operon (Staats et al., 2007).

Within the 39 mycoplasma genomes chosen to be included in this study, there were 55 annotated *oppBCDF* operons, but only 16 of these had an annotated *oppA* gene as part of the *opp* operon. In addition to this, some genomes had two copies of the *oppBCDF* operon, but only one contained an annotated *oppA* gene. The need for an *opp* operon, and specifically the *oppA* gene, for the survival of mycoplasmas was studied using transposon mutagenesis. In both *Mycoplasma genitalium* and *Mycoplasma pulmonis* the *opp* operons and specifically the *oppA* gene.

Abbreviations: ABC, ATP-binding cassette; BLAST, basic local alignment search tool; CATH, class architecture topology homologous superfamily; Dpp, dipeptide permease; GO, gene ontology; InterPro, protein sequence analysis and classification; MEME, multiple em for motif elicitation; NCBI, national center for biotechnology information; Opp, oligopeptide permease; ORF, open reading frame; Pfam, protein families; PSORTb, subcellular localization prediction tool; PRED-LIPO, prediction of lipoprotein signal peptides; PSI-BLAST, position specific iterated blast; rRNA, ribosomal RNA; SCOP, structural classification of proteins; sp. nov, novel species; str, strain; tBLASTx, translated nucleotide databases using a translated nucleotide query.

http://dx.doi.org/10.1016/j.gene.2014.12.036 0378-1119/© 2014 Elsevier B.V. All rights reserved.

## 32

gene were found to be essential for survival (Glass et al., 2006; French et al., 2008). Detailed studies done on the *opp* operon within *Mycoplasma hominis* found that the OppA protein not only acts as a substrate-binding protein but also possesses a cytoadherence function and has ecto-ATPase activity (Henrich et al., 1993; Hopfe and Henrich, 2004). It is therefore possible that OppA proteins are essential for the survival of all mycoplasmas and that the apparent lack of an *oppA* gene within an operon may not be because of its absence, but rather incorrect/incomplete annotation. Annotation of genome data generated through next generation sequencing projects is usually achieved through automatic servers that rely on sequence similarity. Compared to the OppBCDF protein, there is a low sequence similarity between the OppA proteins of different mycoplasmas. Genes or proteins that show low sequence similarity are often "missed" by these automated analyses and as such lack either an appropriate annotation or functional assignment.

The purpose of this study was to determine the number of opp operons in mycoplasma genomes and the extent to which oppA genes form part of these operons. Due to our interest in OppA as a possible vaccine antigen, genomes of ostrich-infecting mycoplasmas were included in the current study. Three unique Mycoplasma species were found to infect ostriches and were provisionally named Ms01, Ms02, and Ms03 (Botes et al., 2005). Ms01 has since been described as Mycoplasma struthionis sp. nov. and Ms03 as Mycoplasma nasistruthionis sp. nov., but have not been formally published (Langer, 2009). The phylogenetic relationships of all the mycoplasmas included in this study were determined using 16S rRNA sequences. In this study an approach was developed to identify oppA genes in mycoplasma genomes. Annotation of oppA genes was reevaluated using a combination of bioinformatic analyses including sequence similarity, prediction of cellular location and identification of protein sequence motifs unique to OppA proteins. The relationships of the opp operons were determined using phylogenetic analysis of an amino acid alignment of the OppABCDF proteins.

## 2. Materials and methods

### 2.1. Multiple sequence alignment and phylogenetic analysis of 16S rRNA gene sequences

The *16S rRNA* gene sequences (available from NCBI) of the 42 *Mycoplasma* species listed in Supplementary Table 1 used in this study were aligned with the objective of identifying the evolutionary relationships between them. The *16S rRNA* sequences of related *Mollicutes* were included namely: *Anaeroplasma bactoclasticum* (NR\_044675.1), *Acholeplasma laidlawii* (M23932.1), *Spiroplasma citri* (M23942.1), *Spiroplasma taiwanense* CT-1 (HM037992.1), *Ureaplasma urealyticum* serovar 13 (AF073455.1) and *Ureaplasma gallorale* str. D6-1 (NR\_026027.1). The *16S rRNA* sequence of *Clostridium botulinum* A (NR\_074124.1) was used as outgroup.

Initial alignments were done with T-Coffee (Notredame et al., 2000; Di Tommaso et al., 2011) and further refined through manual editing in BioEdit v7.0.5.2 (Hall, 1999). Maximum likelihood trees were constructed using RAxML-HPC2 on XSEDE (8.024) (Stamatakis, 2014) using the Cipres Web portal (Miller et al., 2010). Clade support was evaluated using Bootstrap analysis with an automatic stop when the majority rule criterion was reached, as recommended by the program. Bootstrap values  $\geq$  75% were considered well supported while values below 75% considered moderately or weakly supported. As a result only values above 75% are indicated on the phylogenetic tree.

## 2.2. Identification of opp operons in published mycoplasma genomes

Thirty-nine mycoplasma genomes available on NCBI were selected to include representative strains of all species as well as members of the evolutionary groups (pneumoniae, hominis and spiroplasma) listed in Supplementary Table 1. In some genomes more than one copy of the opp operon was annotated in which case all were used in the analysis. Where an annotated *opp* operon was not found, a genome search was performed using the gene function as criterium namely "oligopeptide" and finally tBLASTx searches were performed to confirm the absence of the operon. In such instances the annotated *oppBCDF* genes of the nearest relative, based on the 16S rRNA phylogeny, were used as query.

### 2.3. Identification of opp operons in mycoplasmas infecting ostriches

The three genomes of the ostrich-infecting mycoplasmas isolated from ostriches in South Africa were sequenced using the Roche 454 system (Pretorius, 2009; Steenmans, 2010; Wium, unpublished results) and reads assembled to contiguous sequence level. Although the full genome sequence of each still needs to be completed, the contiguous sequences were sufficiently complete to allow the identification of their relevant *opp* operons.

The *opp* operons in the three ostrich-infecting mycoplasma genomes, *M. struthionis* sp. nov. str. Ms01, *Mycoplasma* sp. Ms02 and *M. nasistruthionis* sp. nov. str. Ms03, were identified using a local tBLASTx search in CLCbio with the genome assembly data as database and the *opp* operon of *M. hominis* (X99740.1) as query sequence. Open reading frames (ORFs) were identified using Glimmer v3.02 (Delcher et al., 2007) and gene sizes were confirmed by comparison with other mycoplasma *opp* operons. The *oppA* gene sequences were confirmed by PCR amplification from genomic DNA with appropriate primers and proofreading Taq polymerase followed by Sanger sequencing to ensure error free sequences.

## 2.4. Identification of oppA gene homologues in mycoplasma genomes

For the *opp* operons in which the *oppA* gene was not annotated, the four neighboring genes on either side of the *oppBCDF* operon were evaluated in an attempt to identity their *oppA* genes. This was done by comparing the gene size of the neighboring genes with other annotated *oppA* genes, followed by a tBLASTx search to determine sequence similarity with other known *oppA* genes of mycoplasmas. Additionally a PSI-BLAST was conducted if the above approach was not successful. A typical gene size of 2499-3868 nucleotides was chosen and sequence similarity was chosen as 30% amino acid identity over 70% of the sequence length. If an *oppA* gene could not be identified as part of an *opp* operon, the whole genome was searched using the NCBI tBLASTx and PSI-BLAST algorithms. In such instances the annotated *oppA* gene of the nearest relative, based on the 16S rRNA phylogeny, was used as query. Additionally, the position of the *oppA* gene relative to the *oppBCDF* genes was determined.

# 2.5. Amino acid sequence alignment and phylogenetic analysis of OppABCDF

All previously annotated OppA amino acid sequences as well as those identified using the approach outlined above were subsequently combined with their OppBCDF amino acid sequences to investigate the relationships between these transporters. The reason why this was done was because these are the complete functional protein components of each of the OppABCDF oligopeptide transporters. The analysis included the OppABCDF amino acid sequences from the 31 *Mycoplasma* species available on NCBI, the three mycoplasmas isolated from ostriches and *C. botulinum* A (CAL84708.1-CAL84712.1). If a genome contained more than one copy of the *oppABCDF* operon, all were included. One of the opperons of *Mycoplasma penetrans* HF-2 was identified to have five OppA's and therefore the OppBCDF sequence was represented five times in the alignment, each with a different OppA. A total of 65 sequences were therefore included in the final alignment.

Amino acid sequence alignment was done using T-Coffee (Notredame et al., 2000) with further manual refinement in BioEdit v7.0.5.2 (Hall, 1999). Compared to the OppBCDF protein sequences, the OppA proteins had very low sequence similarity and therefore only the areas containing conserved sequence regions for OppA were

retained. The total alignment consisted of 7038 characters (Supplementary File 1) with the alignment of OppA amino acid sequences spanning from 1 to 2851, OppB from 2855 to 3461, OppC from 3465 to 4018, OppD from 4022 to 5343 and OppF from 5347 to 6776. In an attempt to align sequences, gaps were inserted in the alignments of the different gene segments. The lengths of the different alignments therefore do not represent the actual length of the different proteins, but also account of the inserted gaps. The following regions within the total alignment were used for the construction of the phylogeny: OppA regions: 10-71, 91-113, 154-168, 505-524, 550-577, 610-619, 689-698, 749-768, 1039-1073, 1081-1134, 1387-1445, 1499-1509, 1529-1543, 1548-1566, 1572-1577, 1591-1629, 1635-1686, 1706-1725, 1729-1733, 1760-1796, 1894-1916, 2043-2088, 2104-2117, 2158-2168, 2194-2220, 2211-2224, 2229-2258, 2280-2289, 2643-2651, 2677-2686, 2711-2717, 2740-2750, 2761-2768, and 2779-2783 (766 amino acids); OppB regions: 2950-2992, 3002-3018, 3043-3065, and 3097-3353 (340 amino acids); OppC regions: 3528-3602, and 3760-4009 (325 amino acids); OppD regions: 4531-4613, 4838-4890, and 5015-5236 (358 amino acids); and OppF regions: 5395-5476, 5744-5912, 6561-6718 and 6737-6776 (442 amino acids).

Maximum likelihood trees were constructed using RAxML-HPC2 on XSEDE (8.024) (Stamatakis, 2014) using the Cipres Web portal (Miller et al., 2010). For the analysis of the OppABCDF alignment the protein GAMMA model with the protein substitution matrix BLOSUM62 was used. Clade support was evaluated using Bootstrap analysis.

# 2.6. Bioinformatic analysis of annotated and newly postulated oppA gene homologues

In order to confirm that identified gene sequences annotated as "hypothetical proteins" were indeed *oppA* genes, a bioinformatic analysis was conducted on the protein sequences of both annotated and newly identified *oppA* genes. The mycoplasma OppA is an extracellular lipoprotein attached to the outer surface of the plasma membrane (Henrich et al., 1999). The cellular localization of the annotated and newly identified OppA proteins was therefore predicted using PSORTb version 3.0.2 (Yu et al., 2010) with the "Advanced Gram stain options" set to "negative without outer membrane", as is recommended for mycoplasma. The presence of a signal peptide was predicted using SignalP (Petersen et al., 2011) and PRED-LIPO. PRED-LIPO (Bagos et al., 2008) specifically predicts signal peptidase I and signal peptidase II associated with secretory protein and lipoproteins, respectively.

InterPro (Hunter et al., 2012) and MEME (Bailey et al., 2009) were used to identify family relationships, conserved domains and protein motifs in OppA proteins. InterPro uses signatures provided by a combination of several member databases. MEME is a web based motif discovery program that does not rely on existing information in databases to find motifs. MEME identified motifs simply indicate similarities amongst group members and do not necessarily coincide with a specific function. MEME was set to search for motifs between 6 and 100 amino acids in length with a maximum of 6 different motifs per sequence. The identified MEME motifs were compared to functional motifs as described for *M. hominis* OppA (Henrich et al., 1999). Similar motifs to those of *M. hominis* were also identified in *M. struthionis* sp. nov. str. Ms01, *Mycoplasma* sp. Ms02 and *M. nasistruthionis* sp. nov. str. Ms03 (Botes et al., 2010). These were also compared to the identified MEME motifs.

#### 3. Results

# 3.1. Multiple sequence alignment and phylogenetic analysis of 16S rRNA sequences

The phylogeny resulting from the phylogenetic analysis of the *16S rRNA* sequences allows the distinction of three groups of mycoplasmas i.e. hominis, pneumoniae and spiroplasma (Fig. 1). Bootstrap values were high for all three groups retrieved in the analysis. Furthermore,

there were clades within these groups which were retrieved with high bootstrap support. Many of the clades of *Mycoplasma* species shared hosts or infected closely related hosts.

## 3.2. Identification of opp operons in published mycoplasma genomes

A total of 55 opp operons were found in 31 of the NCBI mycoplasma genomes used in this study (Supplementary Table 1), but only 41 of these operons had genes annotated as oppB, oppC, oppD and oppF. Eight of the genomes have a single opp operon, 22 have two opp operons and one, Mycoplasma alligatoris A21JP2, has three opp operons. Of the single operon genomes, three belong to the hominis group, four to the pneumoniae group and one to the spiroplasma group. In eight of the genomes an opp operon could not be identified. These included Candidatus Mycoplasma haemolamae str. Purdue, Candidatus Mycoplasma haemominutum 'Birmingham 1', Mycoplasma haemocanis str. Illinois, Mycoplasma haemofelis str. Langford 1, Mycoplasma ovis str. Michigan, Mycoplasma parvum str. Indiana, Mycoplasma suis str. Illinois and Mycoplasma wenyonii str. Massachusetts, which are all hemotropic mycoplasmas or hemoplasmas.

Except for *Mycoplasma gallisepticum*, where the two operons were found in tandem, operons were found far apart within genomes and the order of genes within operons often differed between operons within the same species and between species. Different copies in a genome were usually distinguished by a different numbering annotation of their *opp* genes. This numbering annotation was inconsistent between genomes.

A completely annotated opp operon consisting of an oppA, oppB, oppC, oppD and oppF gene in a single operon could only be found in 13 of the annotated genomes available on NCBI (Supplementary Table 1). Of these, only Mycoplasma bovis Hubei-1, Mycoplasma mycoides subsp. capri LC str. 95010 and str. PG1 had a complete annotation for both of their opp operons. Seventeen of the species had only the oppBCDF genes annotated for one or both of their opp operons with 10 of the species having one or more of the oppBCDF genes annotated as a hypothetical protein, dpp, pgk or amiD. In most instances the products of the hypothetical proteins were defined as ABC-type proteins or oligopeptide ABC transporter permeases. Dpp and Opp transporters are thought to differ only with regard to their substrate preference, i.e. dipeptides vs. oligopeptides (Dassa and Bouige, 2001). OppC is also annotated as amiD (Staats et al., 2007) which is found in Mycoplasma pneumoniae M129. In Mycoplasma mobile 163 K, pgk (phosphoglycerate kinase) is the annotation given for oppD. This gene contains a N-terminal phosphoglycerate kinase domain and a C-terminal oligopeptide ABC transporter ATPase domain. Both the PGK enzyme and the OppD protein contain a nucleotide-binding site and have an ATPase function.

In addition to the above, three *oppB*, four *oppBC* and five *oppF* genes were found as single genes or incomplete operons (Supplementary Table 2) and were therefore excluded from further analyses.

### 3.3. Identification of opp operons in mycoplasmas infecting ostriches

In the ostrich-infecting mycoplasma genomes, an *opp* operon was previously identified in both *M. struthionis* sp. nov. str. Ms01 and *Mycoplasma* sp. Ms02 (Pretorius, 2009; Steenmans, 2010). A second *opp* operon could be identified in the genome of *Mycoplasma* sp. Ms02 and two *opp* operons in *M. nasistruthionis* sp. nov. str. Ms03. The gene sequences of the five *opp* operons were submitted to NCBI and their accession numbers are listed in Supplementary Table 1.

### 3.4. Identification of oppA gene homologues in mycoplasma genomes

The positions in which the *oppA* gene relative to the rest of the operon were found, are shown in Fig. 2. Of all the NCBI genomes listed in Supplementary Table 1, only 13 species (16 operons) contained an annotated *oppA* gene as part of an *opp* operon. In operons in which an M. Wium et al. / Gene 558 (2015) 31-40

| Clostridium botulinum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Abbr.</b><br>ALC | Types<br>na | <b>Groups</b><br>na | Host species<br>Broad spectru | m           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|---------------------|-------------------------------|-------------|
| Anaeroplasma bactoclasticum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | na          | na                  | Bovine rumen                  |             |
| M. mobile 163K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MMOB                | A           | Х                   | Fish                          | 1           |
| $100 \square M.$ arthritidis 158L3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARTH               | A           | x                   | Rodent                        |             |
| M $M$ $M$ $M$ $M$ $M$ $M$ $M$ $M$ $M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MHO                 | Â           | â                   | Human                         |             |
| M. struthionis str. Ms01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |             | Â                   |                               |             |
| $\Pi = M$ . strutions str. Mison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ms01<br>MYPU        | А<br>АВ     | хү                  | Ostrich<br>Mouse              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MHR                 | AB          | XY                  | Pig                           |             |
| 100 M. hyominis HUB-1<br>100 M. conjunctivae HRC/581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MCJ                 | AB          | ΧΫ́                 | Caprids                       |             |
| 100 M. hyppneumoniae 232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mhp                 | AB          | ŶY                  | Pig                           |             |
| M. hyopneumoniae 7448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MHP7448             | AB          | ΧΥ                  | Pig                           |             |
| M. hyopneumoniae J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |             |                     |                               |             |
| M. synoviae 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MHJ                 | AB          | X Y<br>X Y          | Pig                           | Hominis     |
| M. asistruthionis str. Ms03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MS53<br>Ms03        | A B<br>A B  | XX                  | Poultry                       | group       |
| M. nasistrutionis st. Misos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ms03<br>Ms02        | АВ          | XŶ                  | Ostrich<br>Ostrich            |             |
| m <sup>96</sup> <i>M. alligatoris</i> A21JP2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MALL                | ABB         | XXX                 |                               |             |
| M. crocodyli MP145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MALL                | АВВ         | XX                  | Alligator<br>Crocodile        |             |
| 1 M. fermentans JER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |             | XX                  |                               |             |
| 71 <i>M. fermentaris</i> 3CI <i>M.</i> | MFE<br>MfeM64YM     | A B<br>A B  | X X                 | Human                         |             |
| 100 I M. agalactiae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAGa                | AB          | x x                 | Human                         |             |
| M. agalactiae PG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAG                 | AB          |                     | Caprids<br>Caprids            |             |
| $\frac{100}{M}$ <i>M. bovis</i> Hubei-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAG                 | AB          | X X<br>X X          | Bovine                        |             |
| M. bovis FIGBELT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MBOVPG45            | AB          | x x                 | Bovine                        |             |
| Spiroplasma citri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | na          | na                  | Plants (Citrus)               |             |
| Spiroplasma taiwanense CT-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STAIW               | na          | na                  | Mosquitoes                    |             |
| $\Pi \ \Box \ \Pi \ \Box \ M.$ putrefaciens KS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MPUT                | C           | Y                   | Caprids                       |             |
| M. mycoides subsp. capri LC str. 95010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MLC                 | вс          | ΧY                  | Bovine                        | Spiroplasma |
| 91 M. mycoides subsp. mycoides SC str. PG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MSC                 | BC          | XY                  | Bovine                        | group       |
| M. capricolum subsp. capricolum ATCC 27343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MCAP                | ВČ          | ΧÝ                  | Caprids                       |             |
| M. leachii PG50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSB                 | ВČ          | XY                  | Bovine                        |             |
| 100[ M haemocanis str Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MHC                 | no opp      | ~                   | Dog                           |             |
| <sup>73</sup> <i>M. haemofelis</i> str. Langford 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HF1                 | no opp      |                     | Cat                           |             |
| Candidatus M. haemominutum 'Birmingham 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ' МНМ               | no opp      |                     | Cat                           |             |
| 100 100 M. ovis str. Michigan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OVS                 | no opp      |                     | Sheep                         |             |
| 86 <i>M. wenyonii</i> str. Massachusetts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEN                 | no opp      |                     | Bovine                        |             |
| 76 🔽 Candidatus M. haemolamae str. Purdue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHPL                | no opp      |                     | Camelid                       |             |
| 100 Limer M. parvum str. Indiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRV                 | no opp      |                     | Pig                           |             |
| M. suis str. Illinois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MSU                 | no opp      |                     | Pig                           |             |
| 100₽ Ureaplasma gallorale str. D6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | na          | na                  | Poulty                        | Pneumoniae  |
| 🕮 💆 Ureaplasma urealyticum serovar 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                   | na          | na                  | Human                         | group       |
| M. iowae 695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GUU                 | A           | Х                   | Poultry                       |             |
| M. penetrans HF-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MYPE                | AA          | ХZ                  | Human                         |             |
| 100 M. gallisepticum str. F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MGF                 | AB          | ХХ                  | Poultry                       |             |
| M. gallisepticum str. R(high)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MGAH                | AB          | XX                  | Poultry                       |             |
| M. gallisepticum str. R(low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MGA                 | ΑB          | ХX                  | Poultry                       |             |
| M. genitalium G37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MG                  | A           | Z                   | Human                         |             |
| M. pneumoniae 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MPNA                | A           | Z                   | Human                         |             |
| ' <i>M. pneumoniae</i> M129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MPN                 | A           | Z                   | Human _                       | I           |
| ao a25 a5 a75 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |             |                     |                               |             |

**Fig. 1.** The maximum likelihood phylogeny of 16S *r*RNA sequences. Bootstrap values ( $\geq$ 75%) are indicated above or below the lines. The table indicates the NCBI abbreviation of genes within the respective genomes, the OppABCDF type (A, B, or C) and the gene arrangement group (X, Y, or Z) of the *opp* operons in the genome and host species. Abbreviations: na, not analyzed; no *opp*, no *opp* operons identified within the genome.

*oppA* was not annotated, genes on either side of the *oppBCDF* operon were evaluated using gene size and tBLASTx. Sixteen operons contained a gene directly before the *oppB* or directly after the *oppF* gene that had the coding title description of lipoprotein, oligopeptide ABC-transporter permease or substrate-binding protein. In six instances a gene with such a description could be found downstream of the *oppBCDF* operon separated by either one or two genes. Gene size and sequence similarity analysis identified most of these genes as *oppA*, but for one of the operons of *Mycoplasma gallisepticum* str. R(low) (MGA\_0226) and *Mycoplasma gallisepticum* str. R(high) (MGAH\_0226) a PSI-BLAST was needed to confirm their identity.

Eleven of the operons had genes with the coding title "hypothetical protein" adjacent to the *oppBCDF* genes. Of these, nine could be identified as *oppA* based on gene size and tBLASTx analysis, while two (*M. gallisepticum* str. F (MGF\_2297) and *M. penetrans* HF-2 (MYPE5560)) could only be confirmed using PSI-BLAST analysis. In four of the species (*M. genitalium* G37, *M. penetrans* HF-2 (MYPE7570-MYPE7620), *M. pneumoniae* 309 and M129) an *oppA* gene was identified several thousand base pairs downstream of the *oppBCDF* operon. Except for *M. pneumoniae* M129, they all had a coding title indicating a lipoprotein as gene product, but sequence similarity to other known *oppA* genes could only be confirmed using PSI-BLAST.

In *M. penetrans* HF-2 five copies of the *oppA* gene were identified downstream of the *opp* operon and adjacent to each other (MYPE7570-MYPE7620) (Supplementary Fig. 1). The first gene copy was found to be separated into two open reading frames (MYPE7570 and MYPE7580). The five copies are paralogous and probably evolved by recent duplication events within this species since BLAST analysis revealed them to be more closely related to each other (75–85% amino acid similarity) than to any other mycoplasma OppA protein.

In all three ostrich-infecting mycoplasma genomes, an *oppA* gene was found as part of an *oppBCDF* operon and was situated directly before the *oppB* gene except for one of the *Mycoplasma* sp. Ms02 operons where the *oppA* gene was separated by three genes on the *oppF* side. In all instances the *oppA* gene could be identified based on gene size and sequence similarity.

Additionally, the order of the genes in the different genomes was analyzed and the gene arrangements were grouped into three types i.e. X, Y and Z as indicated in Fig. 2. These groupings relative to the distribution of species within the 16S rRNA and OppABCDF phylogeny are shown in Figs. 1 and 3.

# 3.5. Amino acid sequence alignment and phylogenetic analysis of OppABCDF

The *OppBCDF* part of the operon was conserved across *Mycoplasma* species but the annotated and newly identified OppA proteins differed in sequence length and had poor sequence similarity. The entire coding

M. Wium et al. / Gene 558 (2015) 31-40



Fig. 2. The gene arrangement within *opp* operons in mycoplasma genomes. The genes in mycoplasma *opp* operons were found to be arranged in the order *oppABCDF*, *oppBCDF* hypothetical gene *oppA*, *oppBCDF* two hypothetical genes *oppA*, *oppBCDF* and *oppA* located several hundreds of base pairs downstream. The gene arrangement were grouped into X, Y and Z as indicated.

region of OppA could not be aligned with confidence and therefore only the conserved regions of the alignment were used (766 amino acids), in combination with the OppBCDF amino acid sequences (OppB 340 amino acids; OppC 325 amino acids; OppD 358 amino acids; OppF 442 amino acids), to construct a resolved and supported phylogenetic tree.

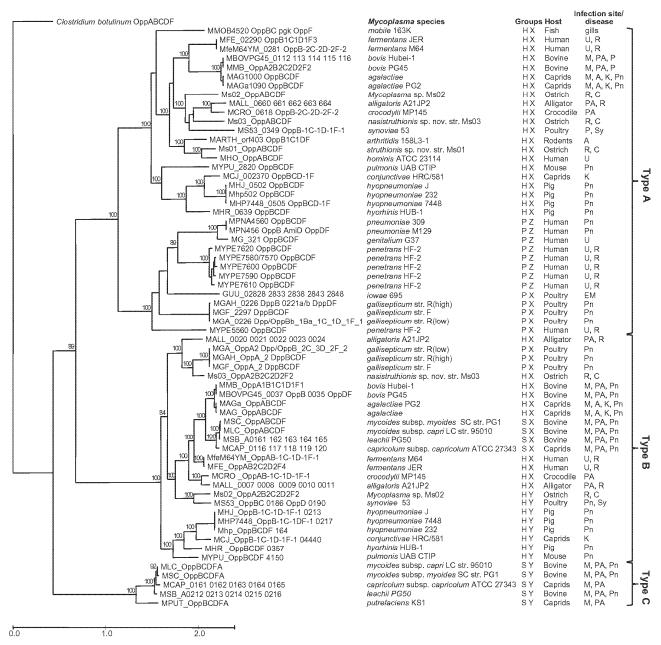
Based on the OppABCDF phylogeny (Fig. 3) the *opp* operons could be divided into three groups: Types A, B and C. The type did not correspond to the position of the operons relative to one another in the genome. When a phylogenetic analysis of each of the individual *opp* genes was performed three groups were also consistently retrieved but with lower bootstrap support and less resolution within the three clades. The function of the different genes in a single operon is therefore closely associated causing them to evolve as a unit despite the *oppA* gene not always being clustered together with the *oppBCDF* genes.

All mycoplasmas with a single *opp* operon clustered in Type A except for *Mycoplasma putrefaciens* KS1 (Type C). With the exception of *M. penetrans* HF-2 and *M. alligatoris* A21JP2, *opp* operon copies within the same species grouped into different types in the phylogeny. In the case of *M. penetrans* HF-2, where both operons were Type A they were distinguished as Types A1 and A2 and in *M. alligatoris* A21JP2 where two operons belong to Type B as Type B1 and B2. *Opp* operons of the hominis and the pneumoniae groups were always Type A or Types A and B while *opp* operons of the spiroplasma group were always Type C or Types B and C (16S rRNA phylogeny, Fig. 1). Most of the *oppA* genes that were not annotated as *oppA* were within the Type A operons and had been annotated as hypothetical proteins or lipoproteins. Half of the *oppA* genes in Types B and C were also not annotated before with most of them annotated as lipoproteins or ABC transporter permeases.

# 3.6. Bioinformatic analysis of annotated and newly postulated oppA gene homologues

PSORTb was only able to predict the cellular localization as being extracellular of the cytoplasmic membrane in 32% of the proteins and this included only 4 of the 16 OppA proteins already annotated (Supplementary Table 3). This was due the inability of the software to detect lipoprotein motifs (Yu et al., 2010). With the exception of three proteins, SignalP was able to find a signal peptide sequence in the N-terminal of all OppA proteins. PRED-LIPO on the other hand was able to identify a signal sequence in all OppA proteins except one (*Mycoplasma conjunctivae* HRC/581 Type A) but was not always able to predict the signal sequence as being that of a lipoprotein. This included proteins that had already been annotated as OppA and might be due to the fact that PRED-LIPO is optimized for Gram-positive bacteria and not mycoplasmas that lack a cell wall. The Prosite motif, PROKAR\_LIPOPROTEIN (PS51257, signal peptide containing the lipoprotein attachment site) was found by InterPro within the first 35 amino acids of most of the OppA proteins.

InterPro could predict the functional classification of the OppA proteins in Type B. These proteins belong to the InterPro family IPR016880, which is dedicated to the solute-binding component of ABC-type oligopeptide transport systems in *Mycoplasmataceae* (Supplementary Table 3). Domains and their relative position found within Type B include the (i) bacterial extracellular solute-binding protein, family 5 (IPR000914, Pfam PF00496) within the region 146–804, (ii) dipeptide-binding protein, domain 3 (CATH superfamily 3.10.105.10) within the region 482–992 and (iii) periplasmic binding protein-like II domain (SCOP superfamily 53850) within the region 144–947. The gene ontology terms predicted for biological process was transport (GO: 0006810) and molecular function was transporter activity (GO: 005215).


InterPro could not predict a family for the OppA proteins in Type C (Supplementary Table 3) although similar domains as for Type B were found and included (i) bacterial extracellular solute-binding protein, family 5 (IPR000914, Pfam PF00496) within the region 85–550, (ii) dipeptide-binding protein, domain 1 (CATH superfamily 3.90.76.10) within the regions 74–161 and 243–287, (iii) periplasmic binding protein-like II domain (CATH superfamily 3.40.190.10) within the region 271–443, (iv) dipeptide-binding protein, domain 3 (CATH superfamily 3.10.105.10) within the region 757–903 and (v) periplasmic binding protein-like II domain (SCOP superfamily 53850) within the regions 42–158 and 236–446. The gene ontology terms predicted were the same as for Type B; transport (GO: 0006810) and transporter activity (GO: 005215). Additionally, a conserved site (IPR023765, PS01040) containing the bacterial extracellular solute-binding protein family 5 signature was predicted for *M. putrefaciens* KS1.

InterPro could not predict a family for most of the Type A OppA proteins, although some were found to belong to a family of uncharacterized conserved lipoproteins (IPR017012, UCP032899). In a few of the Type A OppA proteins, domains similar to those of Types B and C were identified and included the (i) dipeptide-binding protein, domain 1 (CATH superfamily 3.90.76.10) within the region 162–373, (ii) periplasmic binding protein-like II domain (SCOP superfamily 53850) within the region 165–658 and (iii) periplasmic binding protein-like II domain (SCOP superfamily 53850) within the region 165–658 and (iii) periplasmic binding protein-like II domain (ATH superfamily 3.40.190.10) within the region 317–480. In addition to these domains, an unintegrated signature (PD024071) was found within the regions 129–158 and 494–1008 amongst members of the pneumoniae group.

The motif discovery program MEME was used to identify conserved sequence motifs within the OppA proteins of each of the types (A, B and C) (Fig. 4, Supplementary Tables 4 and 5). The MEME suite could identify six conserved motifs within OppA Types A, B and C (motifs 1A–6A, motifs 1B–6B and motifs 1C–6C respectively) and all motifs overlapped with one or more domains or motifs identified using InterPro. Within the OppA proteins of Types B and C the position of each motif was in the same region in each sequence and the same motifs were found in all members of a type.

In OppA Type A, the positions of all motifs varied much more. Only motifs 1A and 2A were found in all group members with the most common motif positions being 620–820 and 160–280, respectively (Fig. 4, Supplementary Table 4). The exceptions were *M. gallisepticum* strains, *M. penetrans* HF-2 (MYPE5560) and *M. nasistruthionis* sp. nov. str. Ms03 in which the position of motifs 1A and 2A differed considerably from the rest of the members. With a few exceptions, motif 3A and motif 5A were only found in species within the pneumoniae group,

M. Wium et al. / Gene 558 (2015) 31-40



**Fig. 3.** The maximum likelihood phylogeny of OppABCDF amino acid sequences. Bootstrap values ( $\geq$ 75%) are indicated above the lines. Each operon is indicated with the species abbreviation followed by the annotation of each gene in the order that they occur within the operon (ABCDF or BCDF A). The table indicates *Mycoplasma* species, the 165 rRNA phylogenetic group (H, P or S) and the gene arrangement group (X, Y or Z), host species and infection site/disease. Abbreviations: A, arthritis; C, conjunctivitis; Em, embryonic mortality; H, hominis 165 rRNA phylogenetic group; K, keratoconjunctivitis; P, maxitis; P, pneumoniae 16S rRNA phylogenetic group; Pn, pneumonia; PA, polyarthritis; R, respiratory infection, S, spiroplasma 165 rRNA phylogenetic group; Sy, synovitis; U, urogenital infection.

motif 4A was only found in species within the hominis group, while motif 6A was found in species of both the pneumoniae and the hominis groups.

The positioning of the known functional motifs, as described for *M. hominis* OppA was compared to the MEME motifs identified in the Type A group. Amongst the Type A members the oligopeptide-binding site and Walker B motifs were consistently identified as MEME motifs and therefore the MEME analysis could guide the identification of these functional regions. MEME motifs 1A and 2A contained the Walker B and oligopeptide-binding motif of *M. hominis* respectively, but the Walker A and signal peptidase II site was not identified as a

MEME motif. Motifs similar to the functional motifs described for *M. hominis* were identified in the three ostrich-infecting mycoplasmas (Supplementary Table 6). Similar to *M. hominis*, the Walker B and oligopeptide-binding motifs of *M. struthionis* sp. nov. str. Ms01, *Mycoplasma* sp. Ms02 and *M. nasistruthionis* sp. nov. str. Ms03 were identified as motifs 1A and 2A. As in *M. hominis*, MEME did not identify the signal peptidase II site, but different to *M. hominis*, all the putative Walker A motifs were also identified as part of MEME motif 1A. The postulated Walker A motif of each of the ostrich-infecting mycoplasmas have a 75% identity to the Walker A consensus sequence and only 37.5% to the Walker A of *M. hominis* (Supplementary Table 6). In

37

M. Wium et al. / Gene 558 (2015) 31-40

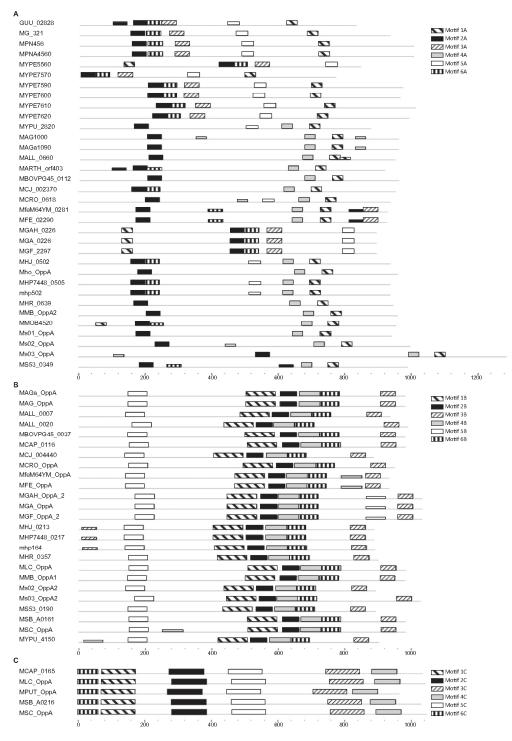



Fig. 4. Locations of the MEME motifs with in Types A, B and C opp operons. Motifs are non-overlapping sites with a p-value better than 0.0001. The height of the motif "block" is proportional to  $-\log(p-value)$  and truncated at the height for a motif with a p-value of 1e-10.

general, Walker A motifs involved in ATPase activity contain a highly conserved lysine residue in position 7 (Ter Beek et al., 2014) as is the case with *M. hominis* (Hopfe and Henrich, 2004). The Walker A motif of *M. struthionis* sp. nov. str. Ms01 contains a leucine and *Mycoplasma* sp. Ms02 and *M. nasistruthionis* sp. nov. str. Ms03 a tyrosine in position 7. They are therefore not likely to have ATPase activity.

#### 4. Discussion

Phylogenetic analysis of *16S rRNA* sequences gave a phylogeny (Fig. 1) which is in agreement with similar analyses of *16S rRNA* sequences of *Mycoplasma* species (Woese et al., 1980; Maniloff et al., 1985; Weisburg et al., 1989) and reflects their phylogenetic

38

relationships including those of the ostrich-infecting mycoplasmas. Similar to Brown (2010), the hemoplasma species grouped within the pneumoniae group.

All hemoplasma genomes were found not to contain any *opp* operon. Hemoplasmas are unique amongst mycoplasmas as they are blood-borne pathogens that infect the erythrocyte and are transmitted through arthropod vectors, such as lice and ticks (Messick, 2004; Guimaraes et al., 2014). The import of additional peptides through an Opp system might therefore not be required in hemoplasmas which therefore appears to be a further step in their degenerative evolution. The remaining mycoplasma genomes were all found to encode at least one *opp* operon with most mycoplasmas having two and one three. Furthermore based on phylogenetic analysis of the combined OppABCDF amino acid sequences the *opp* operons could be grouped into Types A, B and C (Fig. 3).

More than one copy of the *opp* operon is common in Gram-positive bacteria. Most lactic acid bacteria, such as *Lactococcus lactis* have two copies of the *opp* operon (Doeven et al., 2005; Eitinger et al., 2011) while *in silico* analysis of the *Staphylococcus aureus* genome has revealed four *opp* operons (Hiron et al., 2007). The expression of all four *opp* operons was, however, found to vary under different experimental conditions such as nutritional availability and the presence of antibiotics (Hiron et al., 2007; Date et al., 2014). These authors (Hiron et al., 2007; Date et al., 2014) concluded that multiple copies of the same transport systems and their differential expression may be an adaptive strategy towards survival under different conditions.

Studies in *Mycoplasma agalactiae* PG2 and *Mycoplasma hyopneumoniae* 7448 found expression of both of their *opp* operon copies (Pinto et al., 2009; Cacciotto et al., 2010). In *M. gallisepticum*, however, the functionality might be influenced by the presence of a stop codon in the Type A *oppB* gene of strain R(high) and the Type A *oppC* gene of the R(low) strain. Browning et al. (2011) also indicated the Type B *oppF* gene of R(low) to be truncated. We found most of the OppF proteins in Type B to be shorter (381–698 aa) than that of Type A (758–883 aa) without affecting the protein motifs (Walker A, C-motif and Walker B). It is therefore unlikely that the shorter amino acid sequence has an effect on the functionality of the OppF protein.

An oppA gene could be identified as part of all opp operons investigated in this study. The position of the oppA, however, differed between operons within the same species and between species (Fig. 2). Genome rearrangement is a common phenomenon within mycoplasma genomes and may have contributed to the location of these genes. In the Type A2 operon of *M. penetrans* HF-2, five copies of the oppA gene were identified. Oligopeptide transporters with more than one substrate domain have been reported in many bacteria. Borrelia burgdorferi has a single OppBCDF transporter that can interact with five different OppA domains, three of which are located within the same operon as oppBCDF (Wang et al., 2004). These five oppA genes are individually regulated, have different substrate affinities and expression varies with environmental conditions. This, together with a higher level of expression as a result of multiple copies, may contribute to the bacterium's ability to adapt to the environment as well as the host (Medrano et al., 2007; Raju et al., 2011). This may also apply to Mycoplasma species.

Different bioinformatic analyses were performed in an attempt to identify domains or motifs that can be associated with OppA proteins and therefore used to confirm the identity of hypothetical or lipoproteins during annotation. The *M. hominis* genome contains a single *opp* operon (Type A) and its OppA is probably the best characterized amongst *Mycoplasma* species. It is an extracellular protein that was found to contain a signal peptidase II recognition site, an oligopeptidebinding site as well as Walker A and Walker B motifs (Henrich et al., 1999). Using a combination of SignalP, PRED-LIPO and InterPro a signal peptide (containing the lipoprotein attachment site) was found in the first 35 amino acids of the majority of identified OppA proteins as is the case for *M. hominis*. With InterPro an oligopeptide binding domain could be identified in all OppA proteins in the Types B and C group, but only for a few in the Type A group. No Walker A or B motifs were identified in any of the sequences using InterPro not even in OppA of *M. hominis* with experimentally confirmed Walker A and B motifs.

MEME identified a consistent pattern of motifs in the OppA protein within Types B and C, which could assist in the identification of new OppA proteins (Fig. 4). Although not as consistent as in Types B and C, the pattern of motifs in Type A still allowed the identification of a gene as oppA. However the MEME motifs could also be used as a guide to identify functional motifs and thereby provide additional confirmation of the identity of an oppA gene. A comparison of the motifs identified in M. hominis, M. struthionis sp. nov. str. Ms01, Mycoplasma sp. Ms02 and M. nasistruthionis sp. nov. str. Ms03 using MEME found only the oligopeptide-binding site and Walker B. The Walker A motif is postulated to be highly conserved compared to that of the Walker B. One would therefore expect a MEME motif to be found in the region of the M. hominis Walker A given that the less conserved Walker B motif was identified. However, the regions upstream and downstream of the Walker A motif may not be conserved amongst species resulting in an inability of MEME to identify a region containing this motif. According to Matte and Delbaere (2010), a greater variation in Walker A sequences is being recognized as more ATP-binding proteins are characterized.

C. botulinum A was used to root both the 16S rRNA and OppABCDF phylogeny. The retrieval of the Type C operons in a basal position in the OppABCDF phylogeny (Fig. 3) appears to be in conflict with the 16S rRNA phylogeny as the spiroplasma group appears in a proximal position in that phylogeny (Fig. 1). However, when search tools were applied to search for the OppABCDF operons the most similar operons found were the Type C operons. This indicates that the basal position of Type C operons may rather be a product of the search tool than its true position in the phylogeny. More searches for OppABCDF operons in outgroups will have to be performed to discover which bacterial opp operons are most similar to the three types of mycoplasma opp operons identified in this study and which of these are basal in the phylogeny. However the OppABCDF phylogeny does indicate the three types of Opp proteins and their relationships. The phylogeny indicates that the distribution of the different opp operons may reflect the adaptation of a mycoplasma to a particular environment, i.e. host and infection site. The grouping of opp operons of the same species into separate types implies that across multiple species, the evolution of operon types were not the result of recent duplication events. Yu et al. (2014) was able to classify Staphylococcus isolates into different classes based on the arrangement of genes within the different opp operons. Although there are groupings (X, Y and Z) with similar gene order amongst the mycoplasma opp operons, this grouping is not the same as that based on sequence similarity and phylogeny.

Although a rare event, the distribution of species in the OppABCDF phylogeny might also for some species be ascribed to horizontal gene transfer (HGT) where a shared environment between co-infecting species can lead to the acquisition of new genes. This is viewed as a strategy to increase the gene pool for better adaption to environmental changes. In mycoplasma HGT has been postulated within human (Pereyre et al., 2009), ruminant (Sirand-Pugnet et al., 2007) and chicken (Vasconcelos et al., 2005) mycoplasmas. Although the spiroplasma ruminant species (M. putrefaciens KS1, Mycoplasma capricolum subsp. capricolum ATCC27343, Mycoplasma leachii PG50, M. mycoides subsp. capri LC str. 95010, M. mycoides subsp. mycoides SC str. PG1) are not closely related to the hominis ruminant species (M. agalactiae, M. agalactiae PG2, M. bovis Hubei-1 and M. bovis PG45) (see 16S rRNA phylogeny, Fig. 1) their Type B OppABCDF proteins are closely related. This indicates a possible HGT of the Type B operon genes while the Type C operon is orthologous to the spiroplasma and Type A to the hominis groups. Sirand-Pugnet et al. (2007) proposed that *M. agalactiae* acquired a number of genes, including those coding for the opp genes, from members of the M. mycoides cluster. This argument probably also holds for the M. bovis strains. Furthermore Browning et al. (2011) has proposed HGT of the opp operon from M. synoviae to M. gallisepticum. M. gallisepticum strains and M. synoviae 53 are not

closely related to one another, as they are members of the pneumoniae or hominis group respectively yet their Type B OppABCDF proteins are closely related. This may therefore again be the result of HGT of the Type B operon genes while the Type A operon is orthologous for both the pneumoniae and hominis groups.

#### 5. Concluding remarks

All mycoplasmas (except hemoplasmas) were found to possess one or more opp operons in their genomes. Although the size of the oppA gene was fairly consistent across operons and species, low sequence similarity between species and between operons within a single species resulted in tBLASTx not always being able to identify distant homologues. By combining tBLASTx with a consensus sequence search in the form of PSI-BLAST, an oppA could be identified in all mycoplasma opp operons suggesting that it plays an essential role as part of the Opp transporter in Mycoplasma species. The parasitic lifestyle of mycoplasmas had allowed them to reduce their genome size. Therefore the retention of more than one copy of the oppABCDF transporter operon appears to indicate their essential role for mycoplasma survival. A signal peptide as well as a putitive oligopeptide binding site was identified in most of OppA protein sequences, which proves the extracellular nature as well as the substrate binding function of these proteins. Phylogenetic analysis revealed three types of opp operons that together with the unique InterPro and MEME domains and motifs found in each type suggest that each type may have a unique role and may be an adaptive strategy towards survival under different conditions. Our approach allowed the identification of oppA gene homologues for all mycoplasma opp operons and thereby provides a method for re-evaluating the current annotation of oppA genes of mycoplasma genomes.

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.gene.2014.12.036.

#### Acknowledgments

We would like to thank the Ostrich Business Chamber and The Technology and Human Resources for Industry Programme (THRIP) (Project reference TP50090719) for their financial support.

#### References

- Bagos, P.G., Tsirigos, K.D., Liakopoulos, T.D., Hamodrakas, S.J., 2008. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a hidden Markov model. J. Proteome Res. 7 (12), 5082–5093. Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., Noble,
- W.S., 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37 (Web Server issue), W202–W208. Berntsson, R.P., Doeven, M.K., Fusetti, F., Duurkens, R.H., Sengupta, D., Marrink, S.J.,
- Thunnissen, A.M., Poolman, B., Slotboom, D.J., 2009. The structural basis for peptide selection by the transport receptor OppA. EMBO J. 28 (9), 1332–1340. Botes, A., Peyrot, B.M., Olivier, A.J., Burger, W.P., Bellstedt, D.U., 2005. Identification of
- three novel mycoplasma species from ostriches in South Africa. Vet. Microbiol. 111, 159-169.
- Botes, A., Pretorius, B., Steenmans, S., Bellstedt, D.U., 2010. The identification of an oligopeptide permease (Opp) transport system in ostrich mycoplasmas. 18th Meeting
- of the International Organization for Mycoplasmology, Chianciano Terme, Siena, Italy. Brown DR. 2010. Phylum XVI. Tenericutes Murray 1984a, 356<sup>VP</sup> (Effective publication: Murray 1984b, 33.). In Bergey's Manual® of Systematic Bacteriology, (ed. NR Krieg, JT Staley, DR Brown, BP Hedlund, BJ Paster, NL Ward, W Ludwig, WB Whitman), pp. 567-723. Springer New York.
- Browning, G.F., Marenda, M.S., Noormohammadi, A.H., Markham, P.F., 2011. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Vet. Microbiol. 153, 44-50.
- Cacciotto, C., Addis, M.F., Pagnozzi, D., Chessa, B., Coradduzza, E., Carcangiu, L., Uzzau, S., Alberti, A., Pittau, M., 2010. The liposoluble proteome of Mycoplasma agalactiae: an insight into the minimal protein complement of a bacterial membrane. BMC Microbiol. 10, 225-236
- Dassa, E., Bouige, P., 2001. The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res. Microbiol. 152, 211-229.
- Date, S.V., Modrusan, Z., Lawrence, M., Morisaki, J.H., Toy, K., Shah, I.M., Kim, J., Park, S., Xu, M., Basuino, L., et al., 2014. Global gene expression of methicillin-resistant Staphylococcus aureus USA300 during human and mouse infection. J. Infect. Dis. 209 (10), 1542-1550.

- Delcher, A.L., Bratke, K.A., Powers, E.C., Salzberg, S.L., 2007. Identifying bacterial genes and
- endosymbiont DNA with Glimmer. Bioinformatics 23 (6), 673–679. Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.M., Taly, J.F., Notredame, C., 2011. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39 (Web Server issue), W13–W17.
- Doeven, M.K., Kok, J., Poolman, B., 2005. Specificity and selectivity determinants of pep tide transport in Lactococcus lactis and other microorganisms. Mol. Microbiol. 57 (3), 640-649.
- Eitinger, T., Rodionov, D.A., Grote, M., Schneider, E., 2011. Canonical and ECF-type ATPbinding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol. Rev. 35 (1), 3-67.
- French, C.T., Lao, P., Loraine, A.E., Matthews, B.T., Yu, H., Dybvig, K., 2008. Large-scale transposon mutagenesis of *Mycoplasma pulmonis*. Mol. Microbiol. 69 (1), 67–76.
- Garmory, H.S., Titball, R.W., 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72 (12), 6757-6763
- Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, M., Hutchison, CA, Smith, H.O., Venter, J.C., 2006. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. U. S. A. 103 (2), 425–430.
- Guimaraes, A.M.S., Santos, A.P., do Nascimento, N.C., Timenetsky, J., Messick, J.B., 2014. Comparative genomics and phylogenomics of hemotrophic mycoplasmas. PLoS One 9 (3), e91445
- Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
- Henrich, B., Feldmann, R.C., Hadding, U., 1993. Cytoadhesins of Mycoplasma hominis. Infect. Immun. 61 (7), 2945–2951. Henrich, B., Hopfe, M., Kitzerow, A., Hadding, U., 1999. The adherence-associated lipopro-
- tein P100, encoded by an opp operon structure, functions as the oligopeptide-binding domain OppA of a putative oligopeptide transport system in *Mycoplasma hominis*. J. Bacteriol. 181 (16), 4873–4878.
- Hiron, A., Borezée-Durant, E., Piard, J.C., Juillard, V., 2007. Only one of four oligopeptide transport systems mediates nitrogen nutrition in *Staphylococcus aureus*. J. Bacteriol. 189 (14), 5119–5129.
- Hopfe, M., Henrich, B., 2004. OppA, the substrate-binding subunit of the oligopeptide permease, is the major ecto-ATPase of Mycoplasma hominis. J. Bacteriol. 186 (4), 1021-1028.
- Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., et al., 2012. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40 (Database issue), D306-D312.
- Klepsch, M.M., Kovermann, M., Löw, C., Balbach, J., Permentier, H.P., Fusetti, F., de Gier, J.W., Slotboom, D.J., Berntsson, R.P., 2011. *Escherichia coli* peptide binding protein OppA has a preference for positively charged peptides. J. Mol. Biol. 414 (1), 75–85.
- Langer, S., 2009. Proposal for molecular tools for the epidemiology of contagious bovine pleuro pneumonia and classification of unknown *Mycoplasma* sp. isolated from *Struthio camelus*. Vol Mag. rer.nat. Universität Wien, Wien.
- Levdikov, V.M., Blagova, E.V., Brannigan, J.A., Wright, L., Vagin, A.A., Wilkinson, A.J., 2005. The structure of the oligopeptide-binding protein, AppA, from *Bacillus subtilis* in com-plex with a nonapeptide. J. Mol. Biol. 345 (4), 879–892.
- Maniloff, J., Rogers, M.J., Simmons, J., Walker, R.T., Weisburg, W.G., Woese, C.R., 1985. Analysis of *Mycoplasma* 5 s ribosomal-RNA sequences – evolution of the smallest cells. Biophys. J. 47 (2), A315.
- Matte, A., Delbaere, L.T.J., 2010. ATP-binding motifs. Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd, Chichester. Medrano, M.S., Ding, Y., Wang, X.G., Lu, P., Coburn, J., Hu, L.T., 2007. Regulators of expres-
- sion of the oligopeptide permease A proteins of Borrelia burgdorferi. J. Bacteriol. 189 (7), 2653-2659
- Messick, J.B., 2004. Hemotrophic mycoplasmas (hemoplasmas): a review and new insight into pathogenic potential. Vet. Clin. Pathol. 33 (1), 2-13
- Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), pp. 1-8
- Movahedi, A., Hampson, D.J., 2010. Evaluation of recombinant Brachyspira pilosicoli oligopeptide-binding proteins as vaccine candidates in a mouse model of intestinal spirochaetosis. J. Med. Microbiol. 59, 353–359.
- Nicolás, M.F., Barcellos, F.G., Hess, P.N., Hungria, M., 2007. ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity. Genet. Mol. Biol. 30 (1), 202-211
- Ortedame, C., Higgins, D.G., Heringa, J., 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302 (1), 205–217.
- Pereyre, S., Sirand-Pugnet, P., Beven, L., Charron, A., Renaudin, H., Barre, A., Avenaud, P., Jacob, D., Couloux, A., Barbe, V., et al., 2009. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet. 5 (10), e1000677.
- Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H., 2011. SignalP 4.0: discriminating sig-nal peptides from transmembrane regions. Nat. Methods 8 (10), 785–786.Pinto, P.M., Klein, C.S., Zaha, A., Ferreira, H.B., 2009. Comparative proteomic analysis of
- pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae. Proteome Sci. 7, 45.
- Pretorius, B., 2009. The ostrich mycoplasma Ms01: the identification, isolation, and modification of the P100 vaccine candidate gene and immunity elicited by poultry mycoplasma vaccines. Department of Biochemistry, Vol MSc (Biochemistry). University of Stellenbosch, Stellenbosch, South Africa
- Raju, B.V., Esteve-Gassent, M.D., Karna, S.L., Miller, C.L., Van Laar, T.A., Seshu, J., 2011. Oligopeptide permease A5 modulates vertebrate host-specific adaptation of Borrelia burgdorferi. Infect. Immun. 79 (8), 3407-3420.

Razin, S., Yogev, D., Naot, Y., 1998. Molecular biology and pathogenicity of mycoplasmas.

- Razhi, S., Yogev, D., Naol, Y., 1998. Molecular biology and participencity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62 (4), 1094–1156.Sirand-Pugnet, P., Lartigue, C., Marenda, M., Jacob, D., Barre, A., Barbe, V., Schenowitz, C., Mangenot, S., Couloux, A., Segurens, B., et al., 2007. Being pathogenic, plastic, and sex-ual while living with a nearly minimal bacterial genome. PLoS Genet. 3 (5), 744–758.
- Staats, C.C., Boldo, J., Broetto, L., Vainstein, M., Schrank, A., 2007. Comparative genome
- analysis of proteases, oligopeptide uptake and secretion systems in *Mycoplasma* spp. Genet. Mol. Biol. 30 (1), 225–229.
   Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 (9), 1312–1313.
- Steenmans, S., 2010. The identification, contiguous sequence annotation, cloning and sitedirected mutagenesis of the P100 vaccine candidate gene of the ostrich mycoplasma Ms02. Department of Biochemistry, Vol MSc (Biochemistry). University of Stellenbosch, Stellenbosch, South Africa.
- Tanabe, M., Atkins, H.S., Harland, D.N., Elvin, S.J., Stagg, A.J., Mirza, O., Titball, R.W., Byrne, B., Brown, K.A., 2006. The ABC transporter protein OppA provides protection against experimental Yersinia pestis infection. Infect. Immun. 74 (6), 3687–3691.
- Ter Beek, J., Guskov, A., Slotboom, D.J., 2014. Structural diversity of ABC transporters. J. Gen. Physiol. 143 (4), 419–435.Vasconcelos, A.T., Ferreira, H.B., Bizarro, C.V., Bonatto, S.L., Carvalho, M.O., Pinto, P.M.,
- Almeida, D.F., Almeida, L.G., Almeida, R., Alves-Filho, L., et al., 2005. Swine and poultry pathogens: the complete genome sequences of two strains of *Mycoplasma hyopneumoniae* and a strain of *Mycoplasma synoviae*. J. Bacteriol. 187 (16), 5568-5577.

- Wang, X.G., Kidder, J.M., Scagliotti, J.P., Klempner, M.S., Noring, R., Hu, L.T., 2004. Analysis of differences in the functional properties of the substrate binding proteins of the
- Borrelia burgdorferi oligopeptide permease (opp) operon. J. Bacteriol. 186 (1), 51–60. Weisburg, W.G., Tully, J.G., Rose, D.L., Petzel, J.P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T.G., Van Etten, J., et al., 1989. A phylogenetic analysis of the mycoplasmas: basis for their classification. J. Bacteriol. 171 (12), 6455–6467. Wium M. unpublished results. The development of a DNA vaccine against *Mycoplasma*
- nasistruthionis sp. nov. for the use in ostrich In Department of Biochemistry, Vol PhD.
- University of Stellenbosch, Stellenbosch, South Africa.
   Woese, C.R., Maniloff, J., Zablen, I.B., 1980. Phylogenetic analysis of the mycoplasmas. Proc. Natl. Acad. Sci. U. S. A. 77 (1), 494–498.
   Yang, M., Johnson, A., Murphy, T.F., 2011. Characterization and evaluation of the Moraxella and the file alignment of the second seco
- catarrhalis oligopeptide permease A as a mucosal vaccine antigen. Infect. Immun. 79 (2), 846-857
- Yu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., Dao, P., Sahinalp, S.C., Ester, M., Foster, L.J., et al., 2010. PSORTb 3.0: improved protein subcellular localization predic-tion with refined localization subcategories and predictive capabilities for all prokary-
- otes. Bioinformatics 26 (13), 1608–1615. Yu, D., Pi, B., Yu, M., Wang, Y., Ruan, Z., Feng, Y., Yu, Y., 2014. Diversity and evolution of oligopeptide permease systems in staphylococcal species. Genomics 104 (1), 8–13.
- Yus, E., Maier, T., Michalodimitrakis, K., van Noort, V., Yamada, T., Chen, W.H., Wodke, J.A., Guell, M., Martinez, S., Bourgeois, R., et al., 2009. Impact of genome reduction on bac-terial metabolism and its regulation. Science 326 (5957), 1263–1268.

# Chapter 5 Evaluation of the *Mycoplasma nasistruthionis* sp. nov. str. Ms03 oligopeptide permease substrate-binding domain (OppA) as a DNA vaccine candidate in ostriches

## 5.1 Introduction

DNA vaccines provide researchers with the unique opportunity to utilise the cell's own mechanisms to produce transgenic protein antigens. DNA vaccines are DNA vectors that are constructed to have a combination of prokaryotic and eukaryotic elements. This allows for the production of the DNA vaccine in a prokaryotic organism such as *Escherichia coli* as well as the expression of antigenic protein within eukaryotic cells. The expressed antigenic protein, originating from the gene encoding it in the pathogen, can then in turn elicit a specific immune response that can lead to protection against the pathogen.

The aim of this part of the study was to evaluate the potential of using a DNA vaccine containing the *Mycoplasma nasistruthionis* sp. nov. str. Ms03 *oppA* gene to elicit an immune response in ostriches. The objectives were as follows:

- To clone the *oppA* gene of *M. nasistruthionis* sp. nov. str. Ms03 into the pGEM<sup>®</sup>-T Easy vector and to use site-directed mutagenesis (SDM) to change all the mycoplasma tryptophan encoding TGA codons to universal tryptophan encoding TGG codons in the Ms03 *oppA* gene.
- To sub-clone the mutated *oppA* gene into the pCI-neo, VR1012 and VR1020 vectors for use as DNA vaccines.
- To sub-clone the mutated *oppA* gene into pGEX-4T-1 in order to express and isolate the recombinant OppA protein for use as coating antigen in an anti-OppA ELISA.
- To evaluate the potential of the three DNA vaccines (pCI-neo\_*oppA*, VR1012\_*oppA* and VR1020\_*oppA*) to elicit an anti-OppA humoral immune response in ostriches during a vaccination trial.

The results obtained are presented in an independent manuscript in this chapter with the supplementary data in Appendix 4 and 5 at the end of this dissertation. The following sections will give additional background to certain aspects of the experimental design described in the manuscript and the negative influence an outbreak of AI had on it.

## 5.2 Primer design

Primers were designed for SDM, oppA gene amplification and sequencing for the DNA vaccine development described in this chapter. Primers are polynucleotide sequences that are usually 18 to 30 nucleotides (nt) long. They are designed for the specific amplification of a unique region. For optimal amplification, the G+C content of primers should be higher than 40% and the G+C content of the forward and reverse primers should not differ by more than 5%. Binding of the primer to the template may be promoted with a G or C in the 3' end position (GC-clamp). The annealing temperature should be between 60°C and 75°C and the annealing temperature of the forward and reverse primers should be within 5°C of each other. Secondary structures and mononucleotide repeats (runs) within a primer should be avoided. Furthermore, interactions within (self-dimerizing) and between primers should be avoided as they cause primer dimer formation during PCR amplification. The primer sequence should be unique, thus homologue sequences should not be present within the template. This will ensure that the binding of the primer is specific to the region it was designed to bind to. For cloning, restriction enzyme sites can be added to the 5' end of the primers for cloning.

When designing primers for SDM, the mutagenesis site should be more or less in the middle of the primer sequence and the annealing temperature of the portion (18 to 24 nt) on both sides of the mutagenesis site should be similar (within  $5^{\circ}$ C).

## 5.3 Aspects of the vaccine trial

In this study, the ability of DNA vaccines to elicit an immune response in ostriches was assessed in a vaccination trial. In this trial, ostriches were vaccinated at three months of age before they were introduced into feedlot systems where mycoplasma exposure increases. The vaccine trial was conducted on a commercial ostrich farm near Oudtshoorn (the Klein Karoo region, Western Cape, South Africa). This implies that the exposure of the ostriches to pathogens and weather conditions could not be controlled. These are however the conditions under which a commercial vaccine would be used.

The vaccine trial consisted of three experimental groups that were vaccinated with pClneo\_oppA, VR1012\_oppA and VR1012\_oppA constructs respectively, and a control group that did not receive any vaccine. The initial aim was to collect samples every three weeks up to 12 weeks after the first vaccination at day 0 with a second booster immunization at week 6. The objective of the first vaccination was to stimulate a primary immune response against the OppA protein. The objective of the second booster injection was to stimulate a larger and more rapid secondary immune response implying that memory cells were formed due to the first vaccination.

An outbreak of highly pathogenic avian influenza (AI) was reported in the Oudtshoorn region in March 2011 (Van Helden et al. 2012) which coincided with the vaccination trial. Al is a notifiable disease and in ostrich symptoms include conjunctivitis, ocular discharge, nasal discharge, tracheal foam, pharyngitis, coughing and green urine (Toffan et al. 2010). High mortality rates (>80%) are reported in ostrich chicks under one month while the mortality rate in young birds (up to eight months) is between 15% and 60% whilst adults seldom show clinical symptoms of AI (Allwright et al. 1993). Ostriches (non-trial birds) were tested positive for AI on the farm where the vaccine trial was conducted and in accordance with South African legislation all ostriches on the farm were slaughtered. This included all the ostriches that were part of the trial. No further sampling was therefore possible. It was therefore only possible to collect blood and saliva samples at week 0 and week 3. At the start of the trial there were 30 ostriches in each group. Due to deaths amongst the trial birds in all groups, only 25 ostriches within the pCI-neo oppA group, 21 ostriches within the VR1012\_oppA group, 21 ostriches within the VR1020\_oppA group and 23 ostriches within the control group survived which could be sampled. None of the trial birds were confirmed positive for AI and no symptoms were observed, although AI as a cause for the high mortality in the test birds cannot be excluded.

However, mortality of ostriches is affected by many factors such as stress, nutrition, temperature fluctuations and other diseases. Temperature fluctuations may have been a contributing factor since the trial was conducted in autumn (March to April) when there is a sudden drop in temperatures in the region. High mortality is reported in ostrich chicks (up to three months) with the mortality ranging between 10% to 50% while in three- to sixmonth-old ostriches the mortality ranges between 10% to 30% (Black and Glatz 2011; Wang 2012). The mortality within the trial groups of the current study ranged from 16% to 30% which is therefore not higher than normal. It should be noted that although the reasons for the deaths were unknown, the mortality in the control group was also high (23%). It can therefore be concluded that mortalities during the trial cannot be ascribed to the vaccination that the birds received.

For these reasons, the manuscript that follows contains only data from week 0 and week 3 and it was therefore only possible to test whether the DNA vaccine elicited a primary immune response against OppA.

## 5.4 Evaluation of the *Mycoplasma nasistruthionis* sp. nov. str. Ms03 oligopeptide permease substrate-binding domain (OppA) as a DNA vaccine candidate in ostriches

## 5.4.1 Contributions of co-authors

The following manuscript contains the original work of the author of this dissertation. The contributions of each of the co-authors were as follows:

**Dr. Annelise Botes** is a lecturer of Biochemistry at the University of Stellenbosch and the supervisor of this dissertation. In this capacity, she was involved in the conceptual development and execution of all aspects of this study.

**Prof. Dirk U. Bellstedt** is a professor of Biochemistry at the University of Stellenbosch and the co-supervisor of this dissertation. In this capacity, he was involved in the conceptual development and execution of this study.

# Evaluation of the *Mycoplasma nasistruthionis* sp. nov. str. Ms03 oligopeptide permease substrate-binding domain (OppA) as a DNA vaccine candidate in ostriches

Martha Wium, Annelise Botes and Dirk U. Bellstedt

#### Abstract

DNA vaccines containing the *oppA* gene of *Mycoplasma nasistruthionis* sp. nov. str. Ms03, were developed and the potential of these DNA vaccine to elicit an immune response in ostriches was evaluated. The *oppA* gene was cloned and site-directed mutagenesis was used for codon correction. The mutated *oppA* gene was then subcloned into the DNA vaccine vectors: pCI-neo, VR1012 and VR1020. Three-month-old ostriches were vaccinated with these vaccines and the ability to elicit an anti-OppA immune response was evaluated by enzyme-linked immunosorbent assay (ELISA) in which recombinant OppA protein was used as coating antigen. The VR1020\_*oppA* and pCI-neo\_*oppA* constructs elicited a statistically significant immune response indicating their ability to induce a primary immune response in ostriches. This can therefore be viewed as the first step in the development of a DNA vaccine for the control of mycoplasma infections in ostriches.

#### Introduction

Mycoplasmas are a unique group of bacteria that can be distinguished from other bacteria by their lack of a cell wall and small A+T (adenine and thymine) rich genome (Razin et al. 1998). Mycoplasmas are host-specific (Pitcher and Nicholas 2005) and can infect the mucosal membranes of the eyes, nose, respiratory- and urogenital tract as well as causing joint inflammation. These infections cause numerous diseases in humans, animals and birds (Razin et al. 1998). Three ostrich-infecting *Mycoplasma* species have been identified, Ms01, Ms02 and Ms03 (Botes et al. 2005a) of which two Ms01 and Ms03 have been provisionally described and given the species names, *Mycoplasma struthionis* sp. nov. and *Mycoplasma nasistruthionis* sp. nov., respectively (Langer 2009). These mycoplasmas cause upper respiratory tract infections in ostriches. Mycoplasmas are specifically problematic amongst feedlot ostriches where infections cause retardation of growth, mortalities and carcass downgrading, which have a financial impact on rearing of slaughter birds. The majority of ostriches destined for slaughter are reared in feedlots from three months of age (Hoffman and Lambrechts 2011).

Infections can be treated with antibiotics, but due to carrier conditions long-term treatment may be required. Long-term antibiotic treatment can lead to unwanted

accumulation of antibiotic residues in meat with concomitant risks for consumers (Nisha 2008; Darwish et al. 2013). An alternative control measure would be the use of vaccines. Live attenuated and inactivated whole organism mycoplasma vaccines are available for commercial use in chickens (Kleven 2008; Jacob et al. 2014), but chicken vaccines were found to be ineffective in treating mycoplasmosis in ostriches (Pretorius 2009). Traditional approaches for mycoplasma vaccine development for use in ostriches is hampered by the fact that ostrich-infecting *Mycoplasma* species are difficult to culture in large volumes and require complex medium for growth. This makes whole organism vaccine market if compared to that of poultry.

As an alternative to whole organism vaccines, DNA vaccines are an attractive option. Over the past two decades, four DNA vaccines were registered for veterinary use in salmon, swine, horse and dogs (Kutzler and Weiner 2008; Giese 2012). Compared to inactivated whole organism vaccines and protein subunit vaccines, DNA vaccines have the advantage of being able to stimulate both humoral and cellular immune responses (Liu 2011). DNA vaccines also have an excellent safety profile (Schalk et al. 2006; Giese 2012) and can be produced at relatively low cost (Mahoney et al. 2000). Production of DNA vaccines also does not rely on large scale culturing of the pathogen which is problematic in some mycoplasmas including Ms03 (Waites and Talkington 2004; Flores-Medina et al. 2012; Citti and Blanchard 2013; Bueno et al. 2014). Furthermore, they are more temperature stable than other vaccines (Giese 1998) making them a particular attractive option for veterinary use under extensive farming conditions. Ostriches are usually farmed in semi-desert and desert regions where high temperatures are frequently found making cold storage of vaccines problematic.

The *Mycoplasma* genus is known for its small genome size ranging from 564 kbp in *Mycoplasma parvum* (do Nascimento et al. 2013) to 1 359 kbp in *Mycoplasma penetrans* (Sasaki et al. 2002). With it comes a parasitic lifestyle and dependence on the host for nutrients. Mycoplasmas therefore have a wide range of transporters that are essential for survival. Transport proteins have been indicated as possible targets in vaccine development (Garmory and Titball 2004; Grandi 2010). Among these are ATP binding cassette (ABC) transporters that play a crucial role in the energy dependent import of nutrients. The oligopeptide permease transport (Opp) system is an ABC transporter that is responsible for the import of oligopeptides. Similar to other ABC transporters (Berntsson et al. 2010) this transporter has five domains: OppA is the substrate-binding domain, OppB and OppC form a pore within the cell membrane and OppD and OppF hydrolyse ATP to provide energy for translocation of the oligopeptide. These domains are

each encoded by an open reading frame (ORF), which is usually found in tandem within an operon structure in the genome.

In bacteria, OppA has also been reported to play a role in spore formation (Rudner et al. 1991), cytadherence (Henrich et al. 1999), antibiotic resistance (Mistry et al. 2013), biofilm formation (Lee et al. 2004) and ecto-ATPase activity (Hopfe and Henrich 2004). OppA is an attractive target for vaccine development because of its essential function as well as its location on the external bacterial membrane surface, which exposes the protein to the immune system of the host. To this end OppA has been evaluated as a target in subunit vaccines for *Brachyspira pilosicoli* (Movahedi and Hampson 2010), *Moraxella catarrhalis* (Yang et al. 2011) and *Yersinia pestis* (Tanabe et al. 2006).

The genome of *M. nasistruthionis* sp. nov. str. Ms03 (Ms03, this abbreviation is used for brevity) was found to have two complete *opp* operons and therefore two possible *oppA* genes that could be used as vaccine candidates. Phylogenetic analysis of Opp proteins in *Mycoplasma* species allowed *opp* operons to be grouped into three types; A, B and C (See Chapter 3 of this dissertation, Wium et al. (2015)). Only Type A is found in all *Mycoplasma* species of the pneumoniae and hominis groups indicating an essential biological role for this operon. Furthermore, the immunogenicity and essential nature of the Type A OppA protein in *M. hominis* was experimentally confirmed (Henrich et al. 1993; Henrich et al. 1999). The *oppA* gene that forms part of the Type A *opp* operon of Ms03 was therefore selected as vaccine candidate gene (KM410300).

This study investigated the potential of using the Ms03 Type A *oppA* gene in the development of a DNA vaccine for the control of Ms03 infections in ostriches. For this purpose, the Ms03 *oppA* gene was cloned into the pGEM<sup>®</sup>-T Easy vector followed by codon correction using site-directed mutagenesis (SDM). The mutated *oppA* gene was sub-cloned into an expression vector and the gene product was expressed as a GST-fusion protein that was used to develop an anti-OppA enzyme-linked immunosorbent assay (ELISA). The mutated *oppA* gene was also sub-cloned into three different DNA vaccine vectors that were assessed for their ability to elicit an anti-OppA humoral immune response in ostriches using the aforementioned ELISA.

#### Materials and methods

## Mycoplasma cultivation and DNA isolation

Cultures of Ms03 were obtained from Mr J.J. Gouws (Faculty of Veterinary Science, Onderstepoort, University of Pretoria). Genomic DNA (gDNA) was isolated from these cultures using a method described by Hempstead (1990). In short: The cells were harvested from 25 ml of Chanock's medium by centrifugation at 27 200 × g for 60 min at

4°C (Beckman Model J2-21 centrifuge, JA-20 rotor). The harvested cells were washed by resuspension in 1 ml concentrated TE buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA) followed by centrifugation, 10 000 × g for 30 min at 4°C (Biofuge Fresco, Heraeus). The pellet was resuspended in 100 µl concentrated TE buffer and incubated at -20°C for 60 min or stored overnight. The frozen cells were lysed by a rapid thaw step at 55°C for 2 to 5 min. The contaminating proteins within the lysed cell sample was digested by adding 1 ml of SDS TE buffer (50 mM Tris-HCl, 10 mM EDTA, 1% (w/v) SDS, pH 7.5) and proteinase K (Roche, Switzerland) to a final concentration of 20 mg/ml. This was followed by an incubation step at 55°C for 30 min to allow the cell suspense to clarify. Proteins are denatured by the combination of high detergent concentration (SDS) and proteinase K (Hilz et al. 1975). RNA was digested by adding 6 µl RNase A (20 mg/ml, PureLinkTM RNase A, Invitrogen, USA) and 100 µl concentrated TE buffer followed by incubation for 60 min at 37°C. The SDS was precipitated from the solution by adding 100 µl of potassium acetate (5 M) and incubating it on ice for 30 min. The SDS precipitation was removed by centrifugation, 16 000 × g for 10 min at 4°C. Contaminating proteins were removed from the supernatant by three equal volume extractions with chloroform: isopropanol (24:1, v/v). In each extraction, the solutions were mixed by inverting them for 10 min followed by centrifugation, 16 000 × g for 2 min at room temperature. gDNA was precipitated by adding 1/10 of a volume of sodium acetate solution (3 M) and 2 volumes of 95% ethanol followed by an overnight incubation at -20°C. The precipitated gDNA was collected by centrifugation, 16 000  $\times$  g for 60 min at 4°C, and was washed by adding 1.5 ml 70% ethanol followed by incubation for 20 min at room temperature. gDNA was collected by centrifugation, 16 000 × g for 10 min at 4°C and air dried at room temperature before dissolving it in 50 µl Milli-Q<sup>®</sup> water by incubation at 4°C overnight.

The concentrations of gDNA samples were determined spectrophotometrically (NanoDrop spectrophotometer, ND-1000), while the integrity of the gDNA samples were assessed on a 1% (w/v) agarose gel.

## Cloning and site-directed mutagenesis of the oppA gene

The *oppA* gene was amplified from Ms03 gDNA using proof-reading Kapa HiFi DNA polymerase (Kapa Biosystems, South Africa) according to the manufacturer's instructions. Restriction enzyme sites of Mlul and Accl were added to the Ms03\_P100F and Ms03\_P100R primers respectively (Table 5.1). All primers used within this study were synthesized and purified by Integrated DNA Technologies (IDT, USA). PCR products were separated and visualised using a 1% (w/v) agarose gel containing 0.5 µg/ml ethidium bromide under UV light. PCR products were purified using the GFX<sup>™</sup>

PCR DNA and gel band purification kit (GE Healthcare Life Science, UK) according to the manufacturer's instructions.

For SDM the purified PCR product was cloned into the pGEM<sup>®</sup>-T Easy vector (Promega, USA). To this end, 3' terminal deoxyadenosine residues were added to the blunt ends of the purified PCR product using the A-tailing procedure as described in the pGEM<sup>®</sup>-T Easy system I manual. A DNA clean and concentrator<sup>TM</sup>-5 kit (ZYMO Research, USA) was used to clean and concentrate the A-tailing product followed by overnight ligation (vector: insert ration 1:1 and 1:3) at 4°C into the pGEM<sup>®</sup>-T Easy vector, according to the manufacturer's instructions. The ligation products (pGEM\_*oppA*) were transformed into *E. coli* JM109 cells and grown on Luria-Bertani (LB) agar plates (15 g/L) containing 100 µg/ml ampicillin (Sigma-Aldrich, USA), 0.16 mM isopropyl β-D-1-thiogalactopyranoside (IPTG, Bioline, UK) and 0.04 mg/ml X-Gal (Bioline, UK) for 16-18 h at 37°C.

| Primer name          | Sequence*                                                                      | Anneal.<br>Temp                                               | Comment                                                                       |  |
|----------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Ms03_P100F           | 5'- <u>ACGCGT</u> ATGAAAAAATGATGATTATT-3'                                      | For cloning into pCI-neo (5'<br>Mlul restriction enzyme site) |                                                                               |  |
| Ms03_P100R           | 5'- <u>GTCGAC</u> CTATTTAGGTCTTACACCGT-3'                                      | For cloning into pCl-neo (5'<br>Accl restriction enzyme site) |                                                                               |  |
| Ms03_P100Sall_F      | 5'- <u>GTCGAC<b>ATG</b>AAAAAATGGTGGTTAT-3</u> '                                | For cloning into VR1012 (5'<br>Sall restriction enzyme site)  |                                                                               |  |
| Ms03_P100NotI_R2     | 55-5'-AT <u>GCGGCCGC<b>CTA</b>TTTAGGTCTTACAC-3'</u>                            |                                                               | For cloning into VR1012 and<br>pGEX-4T-1 (5' Notl<br>restriction enzyme site) |  |
| Ms03_P100BamHI_<br>F | For cloning into VR1020 and<br>pGEX-4T-1 (5' BamIH<br>restriction enzyme site) |                                                               |                                                                               |  |
| Ms03_P100BamHI_<br>R | 5'- <u>GGATCC</u> CTATTTAGGTCTTACACCG-3'                                       | 60                                                            | For cloning into VR1020 (5'<br>BamIH restriction enzyme<br>site)              |  |
| T7_R                 | 5'-GCTGTAATTTGGGCATTTTCTTG-3' 74                                               |                                                               | Internal oppA primers, position 592-615                                       |  |
| P100_1F              | 5'-CATTAATTTAGCTTTATTAAAAGAT-3'                                                | Internal oppA primers, position 549-573                       |                                                                               |  |
| P100_1R              | 5'-GAAACAAATGAAATTGAAACAGTAT-3'                                                | Internal oppA primers, position 1 220-1 244                   |                                                                               |  |
| P100_2F              | 5'-GACAACACTGTAAGTTTTGGAAATC-3'                                                | Internal <i>oppA</i> primers, position 1 177-1 201            |                                                                               |  |
| P100_2R              | 5'-ATTTTTCTGGTTTTAATAAGTCATC-3' 67                                             |                                                               | Internal oppA primers, position 1 906-1 930                                   |  |
| P100_3F              | 5'-CCCTAGAGCAAACTATGGAAATAAA-3' 72                                             |                                                               | Internal oppA primers, position 1 851-1 875                                   |  |
| P100_3R              | 5'-CAGAAGAAGGTATTTACTAATGTGT-3' 65                                             |                                                               | Internal oppA primers, position 2 525-2 549                                   |  |
| P100_4F              | 5'-AGAGATGCTGTAAATAAAGATCCTG-3' 69                                             |                                                               | Internal oppA primers, position 2 461-2 485                                   |  |
| P100_4R              | 5'-TGTTCAGTAGTTGGTTTAACAAAGT-3' 68                                             |                                                               | Internal oppA primers, position 3 185-3 209                                   |  |
| SP6_F                | 5'-GCTTTAGATTTAGTAATTGCTGCTT-3' 70                                             |                                                               | Internal <i>oppA</i> primers, position 3 130-3 154                            |  |
| pGEM-T Easy_T7       |                                                                                |                                                               |                                                                               |  |
| pGEM-T Easy_SP6      | 5'-ATTTAGGTGACACTATAGAA-3'                                                     |                                                               | pGEM <sup>®</sup> -T Easy vector                                              |  |
| pGEX_F               | 5'-GGGCTGGCAAGCCACGTTTGGTG-3'                                                  | pGEX-4T-1 vector                                              |                                                                               |  |
| pGEX_R               |                                                                                |                                                               |                                                                               |  |
| pCI-neo_T7EEV        |                                                                                | – pCI-neo vector                                              |                                                                               |  |
| pCI-neo_T3           |                                                                                |                                                               |                                                                               |  |

Table 5.1 Primers used in this study

| Primer name   | Sequence Annea<br>Temp                                                           |                                 | Comment                               |  |  |
|---------------|----------------------------------------------------------------------------------|---------------------------------|---------------------------------------|--|--|
| VR1012_F      | 5'-CGCGCCACCAGACATAATAG-3'                                                       | VR1012 vector                   |                                       |  |  |
| VR1012_R      | 5'-AACAACAGATGGCTGGCAAC-3'                                                       |                                 |                                       |  |  |
| VR1020_F      | 5'-CGTCGACAGAGCTGAGATCCTACAG-3'                                                  | VR1020 vector                   |                                       |  |  |
| VR1020_R      | 5'-GACACCTACTCAGACAATGCGATGC-3'                                                  | 5'-GACACCTACTCAGACAATGCGATGC-3' |                                       |  |  |
| Site1&2_F     | 5'-ACGCGT <b>ATG</b> AAAAAATG <b>G</b> TG <b>G</b> TTATTACCAGTAGCTAGTACA-3'      |                                 | SDM reaction 1, mutate                |  |  |
| <br>Site1&2_R | 5'-TGTACTAGCTACTGGTAATAACCACCATTTTTTCATACGCGT-3'                                 |                                 | positions 12 &15                      |  |  |
| Site10_F      | 5'-TTTTAACAGCAGCTATTGACTG <b>G</b> AACTCAATCGCTTCAATT-3'                         | 66                              | SDM reaction 1, mutate                |  |  |
| Site10_R      | 5'-AATTGAAGCGATTGAGTTCC <u>A</u> GTCAATAGCTGCTGTTAAAA-3'                         |                                 | position 2 727                        |  |  |
| Site9_F       | 5'-TGATGAATATGCTTACACAATGTGGGGAATGTCAGCAGCAGA-3'                                 |                                 | SDM reaction 2, mutate position 2 626 |  |  |
| Site9_R       | 5'-TCTGCTGCTGACATTCCCCACATTGTGTAAGCATATTCATCA-3'                                 |                                 |                                       |  |  |
| Site13&14_F   | 5'-AACCAACTACTGAACAATG <b>G</b> AGAAATTACTG <b>G</b> ACAGGAACTTC 68<br>TCCATT-3' |                                 | SDM reaction 2, mutate                |  |  |
| Site13&14_R   | 5'-AATGGAGAAGTTCCTGTCC <u>A</u> GTAATTTCTCC <u>A</u> TTGTTCAGTAG<br>TTGGTT-3'    |                                 | positions 3 213 & 3 225               |  |  |
| Site3_F       | 5'-ACTTAAAGCATCTGATAAGTG <u>G</u> GAATTAAATGAAAACG-3'                            |                                 | SDM reaction 3, mutate                |  |  |
| Site3_R       | 5'-CGTTTTCATTTAATTCCCACTTATCAGATGCTTTAAGT-3'                                     | position 1 290                  |                                       |  |  |
| Site7_F       | 5'-ACAGTAATTAATAAGAATTACTG <b>G</b> GACACAGAATATGTTAAT-3'                        | 61                              | SDM reaction 3, mutate                |  |  |
| Site7_R       | 5'-ATTAACATATTCTGTGTCCC <b>A</b> GTAATTCTTATTAATTACTGT-3'                        |                                 | position 2 301                        |  |  |
| Site4_F       | 5'-GAGTTAGACCAGGTCATTTCTG <b>G</b> ACCGATGCTAAAGGAAA-3'                          |                                 | SDM reaction 4, mutate                |  |  |
| Site4_R       | 5'-TTTCCTTTAGCATCGGTCC <u>A</u> GAAATGACCTGGTCTAACTC-3'                          | 05                              | position 1 680                        |  |  |
| Site12_F      | 5'-TTAGATTTAGTAATTGCTGCTTG <b>G</b> AACGGATTAGATCCAAGA-3'                        | 65                              | SDM reaction 4, mutate position 3 156 |  |  |
| Site12_R      | 5'-TCTTGGATCTAATCCGTTCC <b>A</b> AGCAGCAATTACTAAATCTAA-3'                        |                                 |                                       |  |  |
| Site5_F       | 5'-GATTATTAAGAACACAAATGTGGGGACACACCTTATAGGCTA-3'                                 |                                 | SDM reaction 5, mutate position 1 762 |  |  |
| Site5_R       | 5'-TAGCCTATAAGGTGTGTCCC <u>A</u> CATTTGTGTTCTTAATAATC-3'                         | 64                              |                                       |  |  |
| Site8_F       | 5'-CACATTAGTAAATACCTTCTTCTG <b>G</b> TCAATTCTGCCAAAAGA-3'                        | 04                              | SDM reaction 5, mutate position 2 550 |  |  |
| Site8_R       | 5'-TCTTTTGGCAGAATTGACC <u>A</u> GAAGAAGGTATTTACTAATGTG-3'                        |                                 |                                       |  |  |
| Site6_F       | 5'-CTAAATTGAGTGGTATTTACTG <b>G</b> TATGGACTTTCAGTTGAT-3'                         |                                 | SDM reaction 6, mutate position 2 196 |  |  |
| Site6_R       | 5'-ATCAACTGAAAGTCCATACC <u>A</u> GTAAATACCACTCAATTTAG-3'                         | 62                              |                                       |  |  |
| Site16_F      | -TGTATTTAGTTCAAGATTCTG <b>G</b> CTAAACTATACAACATCAC-3'                           | 02                              | SDM reaction 6, mutate                |  |  |
| Site16_R      | 5'-GTGATGTTGTATAGTTTAGCC <b>A</b> GAATCTTGAACTAAATACA-3'                         |                                 | position 3 609                        |  |  |
| Site11_F      | 5'-CCTCAACCGGTTAAACCTTG <u>G</u> ATTACAGGATTGTCTCCTGAC-3'                        |                                 | SDM reaction 7, mutate position 2 775 |  |  |
| Site11_R      | 5'-GTCAGGAGACAATCCTGTAATCC <u>A</u> AGGTTTAACCGGTTGAGG-3'                        | 68                              |                                       |  |  |
| Site15_F      | 5'-TCCATTTTCACTAGCAGGTTG <u>G</u> GGTTATGACTACGATGGTAT-3'                        | 00                              | SDM reaction 7, mutate position 3 258 |  |  |
| Site15_R      | 5'-ATACCATCGTAGTCATAACCCCAACCTGCTAGTGAAAATGGA-3'                                 |                                 |                                       |  |  |

| Table 5.1 (Continued). |
|------------------------|
|------------------------|

\*Restriction enzyme sites, included for cloning purposes, are underlined, the start and termination codon are bold and the nucleotides change by site-directed mutagenesis are bold and underlined.

White colonies were screened with colony PCR to confirm the presence of the insert using the pGEM–T Easy\_T7 and P100\_2R primers (Table 5.1). Each colony PCR reaction contained 1 × reaction buffer, 0.2 mM of each dNTP (Kapa Biosystems, South Africa), 2 mM MgCl<sub>2</sub>, 1 pmol/ml of each primer and 0.2 units of Super-Therm Taq DNA polymerase (JMR Holdings, USA) in a final volume of 10  $\mu$ l. Bacteria from a single colony were transferred with a sterilized toothpick into the PCR mixture. PCR conditions were as follows: 25 cycles of 94°C for 30 sec, 55°C for 15 sec and 72°C for 1 min, followed by a final step at 72°C for 6 min in a Veriti 96 well Thermal Cycler (Applied Biosystems, USA). Positive colonies were inoculated into 5 ml LB medium containing 100  $\mu$ g/ml ampicillin and grown at 37°C for 16 h, shaking at 250 rpm. Plasmid DNA (pDNA) was isolated from

2 ml culture with the Invisorb<sup>®</sup> spin plasmid mini two kit (Invitek GmbH, Germany), according to the manufacturer's instruction. All pDNA samples were stored at 4°C. Freezer stocks were prepared from left over culture by diluting 1:1 with 80% glycerol and stored at -80°C.

Accurate insertion of the gene into the vector was confirmed by sequencing. Each sequencing reaction contained 1  $\mu$ I BigDye<sup>®</sup> Terminator mix (v3.1, Applied Biosystems, USA), 3  $\mu$ I Halfdye (Bioline, UK), 300 ng pDNA, 1 pmol primer (Table 5.1) and Milli-Q<sup>®</sup> water to a final volume of 10  $\mu$ I. PCR conditions were as follows: 35 cycles of 94°C for 10 sec, 55°C for 30 sec and 60°C for 4 min, followed by a final step at 60°C for 10 min. The Central Analytical Facility (CAF) of the University of Stellenbosch, South Africa analysed the products with an ABI<sup>®</sup> 3100 Genetic Analyser (Applied Biosystems, USA). The resulting sequences were edited and aligned against the vector and the gene sequence of Ms03 *oppA* using BioEdit v7.0.5.2 (Hall 1999).

Seven consecutive SDM steps were carried out to change all 16 of TGA codons to the universal codon for tryptophan i.e. TGG. The positions of the nucleotides mutated within the *oppA* gene were 12, 15, 1 290, 1 680, 1 762, 2 196, 2 301, 2 550, 2 626, 2 727, 2 775, 3 156, 3 213, 3 225, 3 258 and 3 609. A strategy of using two primer pairs that bound to the *oppA* gene at distant positions and possessed very similar annealing temperatures was followed, to allow combinations of primers to be used in order to reduce the number of SDM steps to seven in total. In each step, the pGEM\_*oppA* vector was amplified with two sets of SDM primers (Table 5.1) with Kapa HiFi DNA polymerase according to the manufacturer's instructions using 2.25 mM MgCl<sub>2</sub>. The SDM PCR products were treated with DpnI (Promega, USA) according to the manufacturer's instructions and concentrator<sup>TM</sup>-5 kit (ZYMO Research, USA) before transforming the plasmids into *E. coli* JM109 cells. Colony PCR was used to select positive colonies and the plasmid was subsequently isolated and the insert sequenced as before to confirm the success of each SDM step.

## Expression and purification of recombinant OppA protein

Recombinant OppA protein was produced for use as coating antigen in an enzyme-linked immunosorbent assay (ELISA). For expression, the SDM *oppA* gene was sub-cloned from SDM pGEM\_*oppA* vector into the pGEX-4T-1 vector (GE Healthcare Life Science, UK). The mutated *oppA* gene was first amplified by PCR from the pGEM\_*oppA* vector using the Ms03\_P100BamHI\_F and Ms03\_P100NotI\_R2 primers with BamHI and NotI restriction sites (Table 5.1). The PCR product was next sub-cloned into a pGEM<sup>®</sup>-T Easy vector and the pGEM plasmid containing *oppA* and the BamHI and NotI restriction sites (pGEM\_*oppA*<sub>BamNot</sub>) isolated as describe above. Double digests of pGEM\_*oppA*<sub>BamNot</sub> and

the pGEX-4T-1 vector were performed with BamHI and NotI (FastDigest, Thermo Scientific, USA) and the digested products purified with the Zymo-DNA clean and concentrator<sup>™</sup>-5 kit (Zymo Research, USA). The BamHI/NotI digested linear pGEX-4T-1 product was further treated with shrimp alkaline phosphatase (SAP, Promega, USA) according to the manufacturer's instructions and purified as before. Ligation was performed overnight at 4°C with a vector to insert ration of 1:1 and 1:3 using T4 DNA ligase (Promega, USA) before transforming the plasmids into *E. coli* JM109 cells. A control was included which contained digested pGEX-4T-1 without insert. Positive colonies were identified using colony PCR with the pGEX\_F and P100\_2R primers (Table 5.1) as described above followed by plasmid sequencing as before to confirm accurate insertion.

The pGEX-4T-1\_oppA plasmid was transformed into E. coli BL21(DE3)pLysS cells. Expression of the glutathione S-transferase (GST) OppA fusion protein was induced at an OD<sub>600</sub> of 0.3 by the addition of 0.4 mM IPTG and cells harvested after 6 h. Terrific broth with 100 µg/ml ampicillin, 1% (w/v) glucose and 34 µg/ml chloramphenicol was used for expression experiments. The GST-OppA protein was isolated using glutathioneagarose chromatography (Sigma-Aldrich, USA) within a gravity flow column system at 4°C according to the manufacturer's instructions. An extra 50 ml phosphate-buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub> and 1.5 mM KH<sub>2</sub>PO<sub>4</sub>, pH 7.2) wash step was added before bound GST-OppA protein was eluted with 10 mM reduced L-glutathione in Tris-HCI buffer (50 mM, pH 9.5). Fractions (1 ml) were collected and their protein concentration determined using a Bradford assay. In brief, 5 µl the protein fractions or BSA standards (concentrations in the range of 0 to 1.75 mg/ml) were diluted in 250 µl Bradford reagent (8.5% (w/v) phosphoric acid, 0.01% (w/v) Coomassie Brilliant Blue G-250 and 4.7% (v/v) ethanol) and incubated for 5 min at room temperature within 96-well microtitre plate. Absorbance was measured at 620 nm. A standard curve using BSA was generated in order to calculate the protein concentrations of the fractions. Expression and isolation products were analysed using SDS-PAGE and Coomassie blue staining.

For western blot analysis the proteins were transferred to a 0.45 µm nitrocellulose membrane (Schleicher and Schuel, Sigma-Aldrich) by electrophoresis (20 mA for 16 h), followed by three 1 h incubation steps at 37°C: blocking with casein buffer (10 mM Tris-HCI, 150 mM NaCI, 0.5% casein and 0.02% Thiomersal), 1:12 000 dilution of primary antibody (goat anti-GST, GE Healthcare Life Science, UK) and a 1:10 000 dilution of secondary antibody (rabbit anti-goat IgG (whole molecule) peroxidase conjugate, Sigma-Aldrich, USA). Antibodies were diluted with casein-Tween buffer (0.5% casein buffer containing 0.1% (v/v) Tween 20). After each binding step the membrane was washed

three times with PBS-Tween 20 (0.1%). The membrane was developed for 20 min in a solution containing 0.05% (w/v) 4-chloro-1-naphthol, 16.6% (v/v) methanol, 114 mM NaCl, 2.25 mM KCl, 8.3 mM Na<sub>2</sub>HPO<sub>4</sub> and 1.25 mM KH<sub>2</sub>PO<sub>4</sub> and 0.025  $\mu$ l/ml H<sub>2</sub>O<sub>2</sub> (30%). The colour reaction was stopped by washing the membrane in Milli-Q<sup>®</sup> water.

#### **Preparation of DNA vaccines**

The SDM *oppA* gene was sub-cloned into pCI-neo (Promega, USA), VR1012 and VR1020 (Vical Inc., USA). For sub-cloning into pCI-neo single consecutive digests of the pCI-neo and the SDM pGEM\_*oppA* vectors were performed with AccI and Mlul (FastDigest, Thermo Scientific, USA). AccI and MluI sites were previously added to amplification primers (Table 5.1) Digested products were purified and pCI-neo further treated with SAP followed by ligation and transformation as described above. A control was included which contained pCI-neo without insert. Positive colonies were identified using T7EEV and P100\_2R primers (Table 5.1) by colony PCR and the insert sequenced as described above to confirm accurate insertion.

For sub-cloning into VR1012 and VR1020, the *oppA* gene was PCR amplified from the SDM pGEM\_*oppA* vector. For cloning into VR1012, Sall and Notl restriction enzyme sites were included in the forward and reverse primers, respectively and for cloning into VR1020, BamIH restriction enzyme sites were included in both the forward and reverse primers (Table 5.1). The PCR product with appropriate restriction sites was cloned into a pGEM<sup>®</sup>-T Easy vector as describe above. Plasmid DNA was isolated (as above) and a double digest was performed with Sall and NotI for VR1012 and a single digest with BamHI for VR1020. Purification, SAP treatment, ligation and transformation were performed as described above except that a different antibiotic was used (kanamycin, 50 µg/ml). Positive colonies were identified in VR1012 using VR1012\_F and P100\_2R primers and in VR1020 using VR1020\_F and P100\_2R primers (Table 5.1) followed by sequencing of the insert as described above to confirm accurate insertion.

For large scale production of the pCI-neo\_*oppA* vaccine, five large scale cultures were used, while four large scale cultures were used for both the VR1012\_*oppA* and VR1020\_*oppA* vaccines. For each large scale culture, 450 ml of LB medium was inoculated with *E. coli* JM109 cells that contain the respective vaccine plasmids and cultivated for 16 h (A<sub>600</sub> between 0.650 and 1.150). The DNA vaccine plasmids (pCI-neo\_*oppA*, VR1012\_*oppA* and VR1020\_*oppA*) were purified with an Endotoxin-free plasmid DNA purification kit (NucleoBond<sup>®</sup> Xtra Maxi plus EF, Macherey-Nagel, Germany). The yields were determined using a Nanodrop (Thermo Scientific, USA) while the integrity of the plasmid DNA was confirmed with electrophoresis on a 1% agarose

gel. The DNA vaccines were diluted to final concentrations of 100  $\mu$ g/ml in sterile PBS buffer for use as vaccines.

## **DNA** vaccine trial

A vaccine trial on ostriches in the Oudtshoorn district (Western Cape) in South Africa in which of all three vaccines were to be tested was planned. Ethical clearance to perform this trial was obtained from the University of Stellenbosch Animal Ethics Committee (Ref: 10NB\_BOT01) prior to the start of the trial. Three-month-old ostriches used for the trial were from, and housed on, a commercial ostrich farm near Oudtshoorn in the Klein Karoo region. Trial ostriches were not kept in isolation, but were housed and treated in the same manner as non-trial ostriches on the farm, receiving food and water *ad libitum*. Each ostrich was tagged with a unique number according to standard ostrich farming practices. The trial was therefore conducted under similar conditions to which a commercial vaccine would be administered.

The vaccine trial consisted of three experimental groups. Group 1 (25 ostriches) was vaccinated with pCI-neo\_*oppA*, group 2 (21 ostriches) with VR1012\_*oppA*, group 3 (21 ostriches) with VR1020\_*oppA* and the control group (23 ostriches) received no vaccination. Ostriches were vaccinated intramuscularly in the upper thigh with a single dose (100 µg in 1 ml PBS) at week 0. Blood (4 ml) was drawn from the jugular vein in Vacuette<sup>®</sup> Z serum sep clot activator tubes with 18G x 1" needles (Vacuette, UK). Serum was separated by centrifugation at low speed for 20 min and transferred to a 1.5 ml microcentrifuge tube before storage at -20°C. Blood samples were collected and the weight of each ostrich recorded before vaccination at week 0 and after vaccination at week 3 (The reader is referred to page 101 where the implications of an outbreak of avian influenza during this trial are outlined).

## Monitoring of existing mycoplasma infections

Saliva samples were used to monitor existing mycoplasma infections in the trial ostriches in order to interpret immune responses after vaccination, as existing infections may have influenced the results. Saliva samples were collected before vaccination at week 0 and at week 3 after vaccination. Saliva samples were collected from all ostriches by swabbing the trachea with a sterile transport swab (plain rayon tipped with plastic applicator, Copan, Italy) after which the swab was again placed in its sterile polypropylene tube. In the laboratory, each swab was rinsed in a microcentrifuge tube containing 200 µl PBS buffer followed by PCR testing with species-specific primers for the three ostrich-infecting mycoplasmas, *M. struthionis* sp. nov. str. Ms01 (Ms01), *Mycoplasma* sp. Ms02 (Ms02)

and Ms03 using Super-Therm Taq DNA polymerase (JMR Holdings, USA) as described by Botes et al. (2005a).

## Evaluation of the immune response

Microtiter plates (Maxisorp, Nunc) were coated overnight at 4°C with 100 µl of recombinant GST-OppA protein diluted to 10 µg/ml in carbonate buffer (50 mM, pH 9.6). Non-specific binding was prevented by blocking with 300 µl/well of 0.5% casein buffer for 2 h at 37°C after which the casein buffer was decanted. Serum samples were diluted 1:100 with casein-Tween buffer (0.5% casein buffer containing 0.1% (v/v) Tween 20) and 100 µl/well loaded in triplicate before incubation for 1 h at 37°C. The plate was decanted and washed eight times with PBS-Tween (137 mM NaCl, 2.7 mM KCl, 10 mM Na<sub>2</sub>HPO<sub>4</sub> and 1.5 mM KH<sub>2</sub>PO<sub>4</sub>, pH 7.2, 0.1% (v/v) Tween 20), before 100 µl/well of biotinylated rabbit anti-ostrich IgG antibodies (Blignaut et al. 2000) (diluted 1:100 with casein-Tween buffer) was added followed by incubation for 1 h at 37°C. After decantation and washing (as above), a 100 µl/well streptavidin horseradish peroxidase (HRP) conjugate mixture (2 ml Streptavidin (Invitrogen), 38 ml 0.5% casein buffer and 40 ml (50%) glycerol) diluted 1:100 with casein-Tween buffer was added and incubated for 1 h at 37°C. After decantation and washing, 100 µl of substrate solution (0.5 mg/ml ABTS, 0.5 µl/ml H<sub>2</sub>O<sub>2</sub>, 0.1 M citrate buffer, pH 5) was added. Absorbances were read at 405 nm after 30 min incubation at 37°C.

Serum collected from ostrich 7736 (VR1020\_*oppA* group) at week 0 and 3 was used as internal control and column blanks (containing all components except ostrich serum) were used to standardize the results.

## Statistical analysis of data

Statistical analysis of the data was performed with the Agrobase Generation II<sup>®</sup> (Agronomix Software Inc.) software. ANOVA and least significant differences (LDS) between the groups were calculated.

#### Results

#### Mycoplasma cultivation and DNA isolation

Ms03 cultures were successfully cultivated by Mr J.J. Gouws (Faculty of Veterinary Science, Onderstepoort, University of Pretoria). In medium, Ms03 grew slowly and did not reach high cell densities. Genomic DNA was successfully isolated from the cultured Ms03. The concentration of the gDNA samples range from 755 to 1022 ng/µl and the 260/280 ratio range from 2.00 to 2.05. The higher 260/280 ratios (above 2) are not surprising since absorbance is depend on the nucleotide composition of the DNA sample.

Mycoplasma genomes are A+T rich and the nucleotide, adenine has a high 260/280 ratio.

#### Cloning, site-directed mutagenesis, expression and purification of OppA

Subsequently, the gDNA was used as template for the amplification of the *oppA* gene. The *oppA* gene was successfully cloned into the pGEM<sup>®</sup>-T Easy vector which was confirmed by sequencing (results shown in Appendix 4). The 16 TGA codons were mutated successfully to TGG in seven consecutive steps of site-directed mutagenesis as confirmed by sequencing. The results of each consecutive step are shown in Appendix 4. This therefore gave an *oppA* gene that was suitable for transcription according to the universal code, cloned into the pGEM<sup>®</sup>-T Easy vector.

Restriction enzyme sites (BamHI and NotI) were added to mutated *oppA* gene by PCR amplification before it was again cloned into the pGEM<sup>®</sup>-T Easy vector. The success of the resulting pGEM\_*oppA*<sub>BamNot</sub> vector was confirmed by sequencing (Appendix 4). Restriction digestion and ligation was used to sub-clone the *oppA*<sub>BamNot</sub> gene into the prokaryotic pGEX-T4-1 expression vector as confirmed by sequencing (results shown in Appendix 4).

SDS-PAGE analysis showed that the recombinant OppA protein was expressed successfully as an N-terminal GST-fusion protein of the predicted size of about 170 kDa (26 kDa due to the GST tag), Figure 5.1 A, lane 2. The isolation of the GST-OppA fusion protein was achieved by affinity purification as shown in Figure 5.1 A, lane 3. This fraction was shown to contain free GST and GST-OppA fusion protein (Figure 5.1 A, lane 3). This could have resulted from enzymatic cleavage during isolation and storage (Braun et al. 2002). Success of the isolation was confirmed by western blot analysis using anti-GST antibodies (Figure 5.1 B). The concentration of the isolated recombinant OppA protein was determined by Bradford analysis using BSA as a standard. An additional PBS wash step was introduced during isolation due to interference of Triton-X in the first wash step with the Bradford analysis. Protein was eluted between fraction 7 and 12 with the highest concentration obtained in the 9th fraction (Figure 5.2).

## **Preparation of DNA vaccines**

The mutated *oppA* gene was successfully sub-cloned into pCI-neo with the use of the restriction enzyme sites (MluI and AccI) previously added. The results were confirmed by sequencing as shown in Appendix 4.

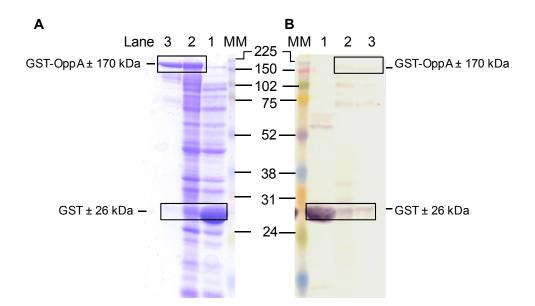



Figure 5.1 Expression of recombinant GST-OppA protein. SDS-PAGE (A) and western blot (B) analysis of the expressed OppA protein. Lane 1 *E. coli* BL21(DE3)pLysS cells expressing GST-control, lane 2 *E. coli* BL21(DE3)pLysS cells expressing GST-OppA protein and lane 3 isolated recombinant GST-OppA protein. MM is the GE Healthcare full-range rainbow molecular weight marker, molecular sizes indicated in kDa.

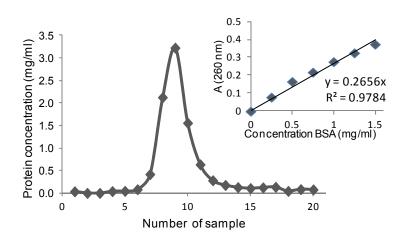



Figure 5.2 Protein isolation profile of the recombinant GST-OppA. Inserted in top right-hand corner is the BSA standard curve used to calculate protein concentrations.

For sub-cloning into VR1012, restriction enzyme sites (Sall and Notl) were added to the mutated *oppA* gene with PCR amplification before it was successfully cloned into the pGEM<sup>®</sup>-T Easy vector. The success of the resulting pGEM\_*oppA*<sub>SalNot</sub> vector was confirmed by sequencing (Appendix 4). The mutated *oppA*<sub>SalNot</sub> was sub-cloned into VR1012 with success as confirmed by sequencing (Appendix 4).

For sub-cloning into VR1020, PCR amplification was used to add restriction enzyme sites to the mutated *oppA* gene before it was cloned into the pGEM<sup>®</sup>-T Easy vector. The success of the resulting pGEM\_*oppA*<sub>BamBam</sub> vector was confirmed by sequencing

(Appendix 4). The mutated  $oppA_{BamBam}$  gene was sub-cloned into VR1020 as confirmed by sequencing (Appendix 4).

Large scale production of the DNA vaccines was achieved. In total 3522  $\mu$ g of pCI-neo\_*oppA* plasmid DNA was isolated from 2 250 ml of medium, 6303  $\mu$ g of VR1012\_*oppA* plasmid DNA was isolated from 1 800 ml of medium and 4572  $\mu$ g of VR1020\_*oppA* plasmid DNA was isolated from 1 800 ml of medium. The 260/280 ratio of the isolated plasmids ranged from 1.89 to 1.95. These were used to dilute the three vaccines to the required concentration of 100  $\mu$ g/ml for vaccination.

## DNA vaccine trial

Ostriches were successfully vaccinated with the prepared DNA vaccines. No adverse reactions were observed at the injection sites. Blood and saliva samples were successfully collected. It was observed that within minutes after vaccination and sample collection (saliva and blood), the ostriches resumed normal behaviour such as eating, walking around and exploring, which indicates that the procedure did not have an immediate effect on the birds' behaviour. Later adverse behaviour and inflammation at the vaccination sites was also not observed.

#### Monitoring of existing mycoplasma infections

The results of the mycoplasma infections that were monitored with PCR during the trial are presented in Table 5.2. At week 0, 43 of the 90 birds (48%) had mycoplasma infections (Table 5.2). Of the ostriches, 34 (38%) were infected with Ms03 and 33 (36%) with Ms02. This includes 24 ostriches that were not only infected with a single species, but had dual infections of Ms02 and Ms03. No Ms01 infections could be detected. These infections were spread over the different vaccine and control groups. At week 3, the total number of infections were 38 (42%) with 21 of the 90 ostriches (23%) being infected with Ms03, 25 (28%) with Ms02 and 3 ostriches infected with Ms01. Once again multiple infections were present in some birds, with seven ostriches being infected with Ms02 and Ms03 infections and two ostriches were infected with Ms01, Ms02 and Ms03. Infections at week 3 were spread over all groups, but the three Ms01 infections were only found in the VR1012\_oppA group (Appendix 5, Supplementary Table 5.1).

Overall the number of infections decreased from week 0 to week 3 within the control and VR1012\_oppA groups but increased for pCI-neo\_oppA and VR1020\_oppA groups. These changes in infection status could not be related to the vaccines since the VR1012\_oppA and control group received a non-scheduled treatment with Terramycin four days before the week 3 sampling point. This was prompted by lack of weight increase of ostriches in the control group and a weight decrease in the VR1012\_oppA

group (Table 5.3) with an overall poor condition in both of these groups that could have been due to an underlying infection other than just mycoplasma. Terramycin is commonly used under field conditions to treat birds with physical signs of infection and thereby limit possible disease progression. It is a long-acting tetracycline with a broad-spectrum antibiotic activity, which also has some activity against mycoplasma.

|              | Ms01 |      | Ms02  |       | Ms03  |       | Total nu<br>infected |                    | Number of<br>birds with<br>infections in<br>week 0 and/or<br>week 3* |
|--------------|------|------|-------|-------|-------|-------|----------------------|--------------------|----------------------------------------------------------------------|
| Week         | 0    | 3    | 0     | 3     | 0     | 3     | 0                    | 3                  |                                                                      |
| Control      | 0/23 | 0/23 | 15/23 | 5/23  | 19/23 | 1/23  | 21/23 <sup>∆</sup>   | 6/23               | 21/23                                                                |
| pCI-neo_oppA | 0/25 | 0/25 | 1/25  | 7/25  | 1/25  | 13/25 | 2/25                 | 16/25#             | 16/25                                                                |
| VR1012_oppA  | 0/21 | 3/21 | 16/21 | 9/21  | 13/21 | 4/21  | 18/21 <sup>•</sup>   | 10/21 <sup>Ω</sup> | 18/21                                                                |
| VR1020_oppA  | 0/21 | 0/21 | 1/21  | 4/21  | 1/21  | 3/21  | 2/21                 | 6/21 <sup>¥</sup>  | 7/21                                                                 |
| Total        | 0/90 | 3/90 | 33/90 | 25/90 | 34/90 | 21/90 | 43/90                | 38/90              | 62/90                                                                |

Table 5.2 Summary of the mycoplasma infections during the vaccine trial as determined by PCR

\*Since ostriches were infected with more than one Mycoplasma species, total numbers of infected birds are not the sum of the individual infections.

 $^{\rm \Delta}$  13 dual infections of Ms02 and Ms03 in the control group in week 0

# 4 dual infections of Ms02 and Ms03 in the pCI-neo\_oppA group in week 3

\* 11 dual infections of Ms02 and Ms03 in the VR1012 oppA group in week 0

<sup>Ω</sup> 2 dual infections of Ms02 and Ms03 as well as 2 infected with Ms01, Ms02 and Ms03 in the VR1012\_oppA group in week 3 \* 1 dual infections of Ms02 and Ms03 in the VR1020\_*oppA* group in week 3

#### Evaluation of the immune response

The ELISA was successfully optimized with regard to the coating concentration of the recombinant OppA protein as well as the serum dilution. It was found that when serum samples of ostrich 7736 were used they gave consistent absorbance values of about 0.750 (week 0) and 1.750 (week 3) repeatedly. Consequently these serum samples were included on each plate as internal controls to monitor plate-to-plate variation. Plate-toplate variation was within 20% of the mean. The number of freeze-thaw cycles of the 7736 serum sample may have increased the variation. The negative controls gave consistent low absorbance values.

The results of the vaccination trial are shown in Figure 5.3. Mean titre values are shown for week 0 (before vaccination) and week 3 (after vaccination). At week 0, the mean ELISA titre values (405 nm) for the control and vaccinated groups ranged between 0.938 and 1.142, but these differences were not statistically significant. The titre value for the control group was maintained at week 3 with a mean of 0.958. High absorbance values for all of the groups at the start of the trial and the control group at week 3 may be a result of mycoplasma infections occurring before and during the trial. This may be due to possible existing antibodies against OppA in the serum or due to increased background values of the ELISA. The ANOVA analysis showed a significant treatment x time interaction (P=0.0428) between the vaccinated groups. However using the calculated least significant difference (LSD, P $\leq$  0.05) as basis for determining statistically significant differences, only the pCI-neo\_*oppA* and VR1020\_*oppA* treatment groups differed significantly from that of the control group. This implied that the ostriches were responding to vaccination. The OppA protein was therefore expressed *in vivo* and was sufficiently immunogenic to induce a primary antibody response.

The weight of the ostriches was monitored during the vaccine trial as an indication of the birds' health. An ANOVA analysis was performed for the recorded ostrich weights at week 0 and week 3. The average weight per group remained constant or increased slightly from week 0 to week 3 (except for VR1012\_*oppA* which showed a slight decrease). No statistically significant difference over time or treatment x time interaction was found. A significant difference was found between treatments (P=0.0000) with a LSD value of 2.713, but this difference was not significant over time as it was already present at the onset of the trial due to the variation in weight between groups (Appendix 5, Supplementary Table 5.2). At the start of the trial the average weight per group ranged from 28.4 to 38.9 kg (Table 5.3) with the VR1012\_*oppA* and VR1020\_*oppA* groups not differing significantly. All weights were, however, in the expected range for the age group used since the weight of three-month-old ostriches can range from 4 to 44 kg (Bunter and Cloete 2004). The lack of an increase in weight between groups during the trial could therefore not be ascribed to the DNA vaccine administered as the unvaccinated control group also did not gain weight.

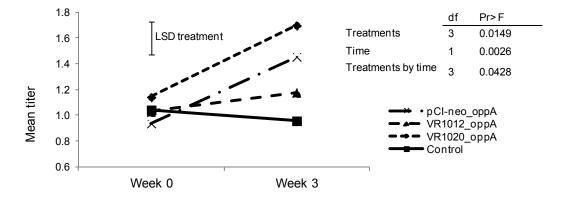



Figure 5.3 Anti-OppA immune response of ostriches vaccinated with three different DNA vaccine vectors containing the mutated *oppA* gene of *M. nasistruthionis* sp. nov. str. Ms03. Vaccinated ostriches received a single DNA vaccine dose (100  $\mu$ g/ml) at week 0 and the control group did not receive any vaccine. Statistical parameters are indicated in the top right-hand corner. Additional ANOVA statistical data are available in Appendix 5, Supplementary Table 5.3.

|              | Mean weight |        |  |  |
|--------------|-------------|--------|--|--|
|              | Week 0      | Week 3 |  |  |
| Control      | 28.4        | 28.6   |  |  |
| pCI-neo_oppA | 38.9        | 39.9   |  |  |
| VR1012_oppA  | 35.1        | 34.9   |  |  |
| VR1020_oppA  | 33.6        | 36.8   |  |  |

Table 5.3 Summary of the mean weight recorded per vaccine group during the vaccine trial

#### Discussion

In this study, DNA vaccines were developed using the Ms03 *oppA* gene as vaccine candidate gene. The codon optimization was required due to the use of the universal stop codon TGA as a tryptophan codon in mycoplasmas. The Ms03 *oppA* gene contains 16 TGA codons. A strategy of combining two primer pairs to amplify the vector and *oppA* gene during SDM PCR was successfully employed to reduce the number of consecutive steps from 14 to 7 and to thereby correct all 16 TGA codons within *oppA* to TGG codons.

Three different eukaryotic expression vectors (pCI-neo, VR1012 and VR1020) were used to develop the DNA vaccines within this study. They were selected based on DNA vaccine studies in other birds (Lee et al. 2003; McCutchan et al. 2004; Klotz et al. 2007) and on special characteristics such as a TPA-signal peptide in VR1020 that should result in the export of the translated protein from the cell and thus better activation of the immune system. The *oppA* gene was cloned into each vector using different restriction enzymes to ensure that the *oppA* gene is in-frame for *in vivo* protein expression. Large scale production of the constructs (pCI-neo\_*oppA*, VR1012\_*oppA* and VR1020\_*oppA*) was successfully achieved, indicating that scaling up for commercial production should be possible.

The humoral immune response elicited by the ostriches against these DNA vaccines was evaluated with an ELISA that was developed to using recombinant OppA protein as coating antigen. ELISA titre values were already raised at the start of the vaccination trial. The same observation was made by Yang et al. (2011) when using recombinant OppA protein as subunit vaccine against *M. catarrhalis* in mice. They suggested that the high titres were due to background and not recombinant OppA reacting to native OppA antibodies. Negative controls in our ELISA (serum replaced with casein buffer containing Tween 20) were used to test for nonspecific background and gave consistent low absorbance values (0.078-0.150). The raised titre values can therefore not be ascribed to non-specific binding.

Yang et al. (2011) also postulated the possible presence of existing systemic antibodies to OppA as a result of existing infections. In this study, a large proportion of the ostriches

in all groups had existing mycoplasma infections at the start of the trial, which could account for the presence of anti-OppA antibodies. There were, however, ostriches that tested negative for mycoplasma with high titre values.

Possible existing antibodies did, however, not mask the detection of an immune response to the OppA during vaccination. Vaccination resulted in a statistical significant increase in ELISA titre values for both the VR1020\_*oppA* and pCI-neo\_*oppA* vaccines with the VR1020\_*oppA* construct resulting in the largest increase from week 0 to week 3. No significant increase was observed for VR1012\_*oppA*. The DNA vaccine vectors (VR1020\_*oppA* and pCI-neo\_*oppA*) were therefore able to express the OppA protein *in vivo*, which in turn was sufficiently immunogenic to induce an anti-OppA immune response.

Despite the fact that all three the vaccine vectors contain a CMV promoter, which is known to enhance the expression of genes, this may not have occurred in all three vaccines as an increase in anti-OppA antibodies was not observed in the VR1012\_oppA vaccinated birds. The CMV promoter of VR1012 is optimized for use in mice and could therefore possibly not function in ostriches (Suarez and Schultz-Cherry 2000). However the main difference between the VR1012 and VR1020 vectors is the presence of the TPA-signal peptide within VR1020 vector. The export of the expressed OppA protein may therefore explain the significant antibody response following vaccination with the VR1020\_oppA vaccine compared to the VR1012\_oppA vaccine.

An increase or decrease of PCR-detected infections did not correlate with immune responses. Ostriches typically produce a maximum primary immune response upon vaccination after 21 days, irrespective of the vaccine used (Blignaut et al. 2000; Bonato et al. 2009). The PCR was used to detect the presence or absents of mycoplasmas in the trial ostriches, but the technique does not quantify the bacterial load within the ostriches. Although a decrease in mycoplasma infections was not observed within the duration of this vaccine trial, it does not exclude the possibility that the bacterial load within the infected ostriches might have decreased. Thus the DNA vaccines may prove to be effective in eliminating existing mycoplasma infections given a longer duration, optimum dose or a second booster immunization. In future studies, the use of a quantitative technique such as real-time PCR to determine the bacterial load during vaccination trials may be advantageous.

Although not statistically significant, the weight of the pCI-neo\_oppA and VR1020\_oppA vaccine groups increased while that of VR1012\_oppA group decreased and the control group showed no change. Growth rate of birds is affected by many factors such as stress, nutrition, temperature fluctuations and diseases. Before the age of three months,

chicks were kept in small camps where chick numbers were low and they receive stimuli to encourage eating. At three months of age they were moved in to larger camps where there were a larger number of birds. In the new camps food ration as well as food and water bowls were different. The changes in social dynamic along with their housing environment result in birds being stressed and not eating sufficiently which can impact on growth. Ostriches are known to be severely affected by stress (Hoffman and Lambrechts 2011) and during this adaption period retardation in weight gain and even weight loss in some case is therefore normal among farm ostriches. Furthermore stress is known to depress immune responses. This indicates that, in future trials, serious attention should be given to reducing stress. Ostriches have only been farmed intensively since about 1860 and this may indicated that stress may play a major role in reducing immune responses in ostriches in general.

Due to an outbreak of avian influenza, it was not possible to evaluate a secondary immune response during this study (the reader is referred to page 101 where the implications of an outbreak of avian influenza during this trial are outlined). This would have indicated whether or not the vaccinations had lead to immune memory. Further trials are now required to establish the optimal doses for immune memory and whether or not these vaccines will lead to protection against mycoplasma infections.

In conclusion, this study developed three DNA vaccines using the *oppA* gene as vaccine candidate gene. These DNA vaccines were produced on large scale and used to immunize ostriches. The pCI-neo\_*oppA* and VR1020\_*oppA* vaccines elicited an immune response in the vaccinated ostriches which implies that the OppA protein was expressed *in vivo*. As antigen, the OppA protein was therefore sufficiently immunogenic to elicit a primary immune response. This is the first study that shown a DNA vaccine was capable of eliciting an immune response in ostriches. This study can therefore be viewed as the first step in the development of a DNA vaccine for the control of mycoplasma infections in ostriches.

## Acknowledgements

We would like to thank Vical Inc., USA for supplying the VR1012 and VR1020 vectors for research purposes and Mr JJ Gouws (Faculty of Veterinary Science, Onderstepoort, University of Pretoria) for the culturing of the mycoplasma bacteria. We would like to acknowledge the funding bodies, The Technology and Human Resources for Industry Programme (THRIP) (Project reference TP50090719) and South African Ostrich Business Chamber.

**Chapter 6 Conclusion** 

## Chapter 6 Conclusion

Vaccines are one of the great achievements of modern medicine. The discovery of DNA vaccines, more than two decades ago, has opened a new economical and safe possibility for the treatment of diseases.

This study set out to explore the genome of *Mycoplasma nasistruthionis* sp. nov. str. Ms03 in terms of its metabolic capacity (Chapter 3) and found that i) genome replication, cell division, RNA transcription, protein translation and glycolysis in Ms03 resembles that of the closely related *Mycoplasma synoviae* 53, ii) purine and pyrimidine metabolism is incomplete and *de novo* synthesis is not possible, iii) amino acid synthesis is mostly absent, with Ms03 only able to convert aspartate to asparagine and glycine to serine and iv) more importers than exporters were annotated owing to the lack of synthesis pathways in Ms03. This is typical for mycoplasmas that have parasitic life styles.

This study was unable to generate a complete genome sequence for Ms03. Considering that 25.2 Mb of 454 sequencing data was used to assemble the Ms03 genome and that the genome size of the genus *Mycoplasma* ranges from 564 to 1 359 kbp, the coverage of the Ms03 genome would be about 25 times which should have been sufficient to generate a complete or near complete genome. The characteristics of the genome (A+T content as well as the occurrence of repeats and runs) and the technology used to sequence the genome (454 pyrosequencing in this case) influenced the assembly outcome. Two approaches to overcome this may be to generate data with longer read lengths (like PacBio) or to generate paired-end data.

The KEGG pathways generated from the Ms03 genome annotation were comparable to that of *M. synoviae* 53 and the annotation mostly completed. The absence of some genes within pathways is, however, questionable since it would render the pathways incomplete. The incomplete genome sequence of the Ms03 genome could have resulted in some ORFs not being predicted by the annotation programs. Additionally ORFs may also have been truncated due to the incomplete genome sequence. Annotation of these truncated proteins would be complicated as some functional motifs may be located on the "missing" part of the sequence. A large number of genes were annotated as "hypothetical protein" implying that it was not possible to predict the function of these proteins due to a lack of evidence. A more comprehensive annotation may assign function to some of these hypothetical proteins and lead to the identification of some of the genes which absence is questionable.

This study sought to identify and characterize the *opp* operon and associated *oppA* gene within the Ms03 genome and found that the Ms03 genome had two *opp* operons,

#### Chapter 6 Conclusion

therefore two *oppA* genes and that each of the identified *opp* genes (A, B, C, D and F) had typical motifs associated with the respective function of the protein products in Opp transporters.

Furthermore the prevalence of *oppA* genes as part of the *oppBCDF* operons within *Mycoplasma* species was evaluated (Chapter 4) and it was confirmed that the substratebinding domain is present in all species and therefore must play an essential part in oligopeptide transport. All mycoplasmas (except for hemoplasma) had one to three *opp* operons that could be divided into three types (Type A, B and C). Each type had unique InterPro and MEME domains and motifs which together with the phylogenetic analysis suggest a unique role that may be a strategy towards survival under different conditions. Ms03 had a Type A and a Type B *opp* operon, the Type A *oppA* was used as vaccine candidate gene.

The Ms03 Type A *oppA* is a suitable vaccine candidate choice because:

- The importers of the ATP-binding cassette (ABC) family are unique to plants, bacteria and archaea (Berntsson et al. 2010; Rice et al. 2014). This implies that no homologue of the sequence should be found in the ostrich. At the time this study was initiated the genome sequence of the ostrich was not available. It was however recently published and it was confirmed with a tBLASTx search that no homologues of the *oppA* gene were present in the ostrich genome (3).
- OppA is located on the outer surface of the mycoplasma cell membrane (Chapter 4).
- Oligopeptide import is an essential process in Ms03 as deducted from the lack of genes for amino acid synthesis in the Ms03 draft genome (Chapter 3). Additionally transposon mutagenesis studies in *Mycoplasma genitalium* and *Mycoplasma pulmonis* had found the *oppA* gene to be essential (Glass et al. 2006; French et al. 2008). Furthermore the *Mycoplasma hominis* OppA protein not only acts as a substrate-binding protein but also possesses a cytoadherence function and has ecto-ATPase activity (Henrich et al. 1993; Hopfe and Henrich 2004). The *M. hominis opp* operon belongs to Type A.
- The two OppA proteins of Ms03 only share 19.7% amino acid identity (Chapter 3). This along with the phylogenetic and other bioinformatic analyses suggest that each type of OppABCDF transporter should have a unique role (Chapter 4).

Lastly the study aimed to develop and evaluate DNA vaccines containing the Ms03 Type A *oppA* gene for the treatment of Ms03 infections in ostriches and found that DNA vaccines were able to elicit a primary immune response in the ostriches. Due to an

#### Chapter 6 Conclusion

outbreak of avian influenza only two sample points were included in the DNA vaccine trial which was unfortunate. As a result, a second booster vaccination was not possible which could have contributed positively to the vaccine study. However this study shown that, the use of DNA vaccines may be a viable approach for the control of mycoplasma infections in ostriches in future.

In this dissertation, the first Ms03 draft genome and annotation was presented which contributed to our understanding of Ms03 as a miniature genetically independent bacterium. The analysis of the *opp* operons provides insight into the organization and relationships amongst oligopeptide transporters in *Mycoplasma* species. Three DNA vaccines were developed using the *oppA* gene as vaccine candidate gene. This is the first study to show that DNA vaccines are capable of eliciting an immune response in ostriches.

#### **Reference list**

- Abolnik C, Fehrsen J, Olivier A, van Wyngaardt W, Fosgate G, Ellis C. 2013. Serological investigation of highly pathogenic avian influenza H5N2 in ostriches (*Struthio camelus*). Avian Pathology 42(3): 206.
- Agüero F, Al-Lazikani B, Aslett M, Berriman M, Buckner FS, Campbell RK, Carmona S, Carruthers IM, Chan AWE, Chen F. 2008. Genomic-scale prioritization of drug targets: The TDR targets database. *Nature Reviews Drug Discovery* **7**(11): 900.
- Alarcon F, de Vasconcelos ATR, Yim L, Zaha A. 2007. Genes involved in cell division in mycoplasmas. Genetics and Molecular Biology 30(1): 174.
- Allan E, Wren BW. 2003. Genes to genetic immunization: Identification of bacterial vaccine candidates. Methods 31(3): 193.
- Allwright DM, Burger WP, Geyer A, Terblanche AW. 1993. Isolation of an influenza A virus from ostriches (*Struthio camelus*). Avian Pathology **22**(1): 59.
- Arraes FBM, de Carvalho MJA, Maranhao AQ, Brigido MM, Pedrosa FO, Felipe MSS. 2007. Differential metabolism of *Mycoplasma* species as revealed by their genomes. *Genetics and Molecular Biology* 30(1): 182.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M. 2008. The RAST Server: Rapid annotations using subsystems technology. *BMC Genomics* 9(1): 75.
- Babiuk LA, Pontarollo R, Babiuk S, Loehr B, van Drunen Littel-van den Hurk S. 2003. Induction of immune responses by DNA vaccines in large animals. *Vaccine* 21: 649.
- Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. 2008. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. *Journal of Proteome Research* 7(12): 5082.
- Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: Tools for motif discovery and searching. *Nucleic Acids Research* 37(Web Server issue): W202.
- Batista L, Pijoan C, Ruiz A, Utrera V, Dee S. 2004. Assessment of transmission of *Mycoplasma* hyopneumoniae by personnel. Journal of Swine Health and Production 12(2): 75.
- Bermúdez-Humarán LG, Kharrat P, Chatel JM, Langella P. 2011. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. *Microbial Cell Factories* 10(Supplement 1): S4.
- Berntsson RP, Doeven MK, Fusetti F, Duurkens RH, Sengupta D, Marrink SJ, Thunnissen AM, Poolman B, Slotboom DJ. 2009. The structural basis for peptide selection by the transport receptor OppA. *The EMBO Journal* 28(9): 1332.
- Berntsson RP, Smits SH, Schmitt L, Slotboom DJ, Poolman B. 2010. A structural classification of substratebinding proteins. FEBS Letters 584(12): 2606.
- Beven L, Charenton C, Dautant A, Bouyssou G, Labroussaa F, Skollermo A, Persson A, Blanchard A, Sirand-Pugnet P. 2012. Specific evolution of F1-like ATPases in mycoplasmas. *PLoS One* 7(6): e38793.
- Bizarro CV, Schuck DC. 2007. Purine and pyrimidine nucleotide metabolism in *Mollicutes. Genetics and Molecular Biology* 30(1): 190.
- Black D, Glatz PC. 2011. Ratite health: Welfare implications. In *The Welfare of Farmed Ratites* (ed. PC Glatz, C Lunam, I Malecki), pp. 165-194. Springer, Berlin Heidelberg.
- Blignaut A, Burger WP, Morley AJ, Bellstedt DU. 2000. Antibody responses to La Sota strain vaccines of Newcastle disease virus in ostriches (*Struthio camelus*) as detected by enzyme-linked immunosorbent assay. *Avian Diseases* 44(2): 390.
- Bonato M, Evans MR, Hasselquist D, Cloete SWP, Cherry MI. 2009. Growth rate and hatching date in ostrich chicks reflect humoral but not cell-mediated immune function. *Behavioral Ecology and Sociobiology* **64**(2): 183.
- Botes A. 2004. Immunological and epidemiological investigations in South African ostriches and penguins. PhD Dissertation, Stellenbosch University, South Africa.
- Botes A, Peyrot BM, Olivier AJ, Burger WP, Bellstedt DU. 2005a. Identification of three novel *Mycoplasma* species from ostriches in South Africa. *Veterinary Microbiology* **111**: 159.
- Botes A, Peyrot BM, Olivier AJ, Burger WP, Bellstedt DU. 2005b. Investigations into mycoplasma infections in South African ostriches. In *Proceedings of the 3rd International Ratite Science Symposium of the World's Poultry Science Association (WPSA) and 12th World Ostrich Congress*, pp. 211-216, Madrid, Spain.
- Bradbury JM. 2005. Gordon memorial lecture. Poultry mycoplasmas: Sophisticated pathogens in simple guise. *British Poultry Science* **46**(2): 125.

#### Reference list

- Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, LaBaer J. 2002. Proteome-scale purification of human proteins from bacteria. *Proceedings of the National Academy of Sciences* **99**(5): 2654.
- Breton M, Tardy F, Dordet-Frisoni E, Sagne E, Mick V, Renaudin J, Sirand-Pugnet P, Citti C, Blanchard A. 2012. Distribution and diversity of mycoplasma plasmids: Lessons from cryptic genetic elements. *BMC Microbiology* 12(1): 257.
- Brocchieri L. 2001. Phylogenetic inferences from molecular sequences: Review and critique. *Theoretical Population Biology* **59**(1): 27.
- Brown DR. 2010. Phylum XVI. Tenericutes Murray 1984a, 356<sup>VP</sup> (Effective publication: Murray 1984b, 33.). In *Bergey's Manual® of Systematic Bacteriology* (ed. NR Krieg, JT Staley, DR Brown, BP Hedlund, BJ Paster, NL Ward, W Ludwig, WB Whitman), pp. 567-723. Springer New York.
- Brown DR, Farmerie WG, May M, Benders GA, Durkin AS, Hlavinka K, Hostetler J, Jackson J, Johnson J, Miller RH et al. 2011. Genome sequences of *Mycoplasma alligatoris* A21JP2T and *Mycoplasma crocodyli* MP145T. *Journal of Bacteriology* 193(11): 2892.
- Brown TA. 2002. Chapter 13, Genome Replication. In *Genomes 2nd edition*. Oxford: Wiley-Liss Available from: <u>http://www.ncbi.nlm.nih.gov/books/NBK21113/</u>.
- Browning GF, Marenda MS, Noormohammadi AH, Markham PF. 2011. The central role of lipoproteins in the pathogenesis of mycoplasmoses. *Veterinary Microbiology* **153**: 44.
- Browning GF, Noormohammadi AH, Markham PF. 2014. Identification and characterization of virulence genes in mycoplasmas. In *Mollicutes: Molecular Biology and Pathogenesis* (ed. GF Browning, C Citti), pp. 77-90. Caister Academic Press, Norfolk, UK.
- Bueno TP, Miranda LS, Ruiz-Apodaca IR, Bravo TD, Edreira MR, Marrero SM. 2014. Influence of culture medium components on *Mycoplasma gallisepticum* growth. *Revista de Salud Animal* **36**(2): 130.
- Bunter KL, Cloete SWP. 2004. Genetic parameters for egg-, chick- and live-weight traits recorded in farmed ostriches (*Struthio camelus*). *Livestock Production Science* **91**(1): 9.
- Caffrey CR, Rohwer A, Oellien F, Marhöfer RJ, Braschi S, Oliveira G, McKerrow JH, Selzer PM. 2009. A comparative chemogenomics strategy to predict potential drug targets in the metazoan pathogen, *Schistosoma mansoni*. *PLoS One* **4**(2): e4413.
- Cai Y, Rodriguez S, Hebel H. 2009. DNA vaccine manufacture: Scale and quality. Expert Review of Vaccines 8(9): 1277.
- Castellanos M, Wilson DB, Shuler ML. 2004. A modular minimal cell model: Purine and pyrimidine transport and metabolism. *Proceedings of the National Academy of Sciences of the United States of America* **101**(17): 6681.
- Chastain M, Simon AJ, Soper KA, Holder DJ, Montgomery DL, Sagar SL, Casimiro DR, Middaugh CR. 2001. Antigen levels and antibody titers after DNA vaccination. *Journal of Pharmaceutical Sciences* 90(4): 474.
- Chen LL, Chung WC, Lin CP, Kuo CH. 2012. Comparative analysis of gene content evolution in phytoplasmas and mycoplasmas. *PLoS One* **7**(3): e34407.
- Chopra-Dewasthaly R, Citti C, Glew MD, Zimmermann M, Rosengarten R, Jechlinger W. 2008. Phaselocked mutants of *Mycoplasma agalactiae*: Defining the molecular switch of high-frequency Vpma antigenic variation. *Molecular Microbiology* **67**(6): 1196.
- Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. *Science* **311**(5765): 1283.
- Citti C, Blanchard A. 2013. Mycoplasmas and their host: Emerging and re-emerging minimal pathogens. *Trends in Microbiology* **21**(4): 196.
- Citti C, Nouvel LX, Baranowski E. 2010. Phase and antigenic variation in mycoplasmas. *Future Microbiology* **5**(7): 1073.
- Cizelj I, Bercic RL, Dusanic D, Narat M, Kos J, Dovc P, Bencina D. 2010. Mycoplasma gallisepticum and *Mycoplasma synoviae* express a cysteine protease, CysP, which can cleave chicken IgG into Fab and Fc. *Microbiology* **157**(2): 362.
- Clore GM, Venditti V. 2013. Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. *Trends in Biochemical Sciences* **38**(10): 515.
- Commans S, Böck A. 1999. Selenocysteine inserting tRNAs: An overview. *FEMS Microbiology Reviews* 23(3): 335.
- Cordova CMM, Lartigue C, Sirand-Pugnet P, Renaudin J, Cunha RAF, Blanchard A. 2002. Identification of the origin of replication of the *Mycoplasma pulmonis* chromosome and its use in *oriC* replicative plasmids. *Journal of Bacteriology* 184(19): 5426.
- DAFF. 2014. A profile of the South African ostrich market value chain. Department of Agriculture, Forestry and Fisheries, Pretoria, South Africa.
- Darwish WS, Eldaly EA, El-Abbasy MT, Ikenaka Y, Nakayama S, Ishizuka M. 2013. Antibiotic residues in food: The African scenario. *Japanese Journal of Veterinary Research* 61(Supplement): S13.

- Delaney NF, Balenger S, Bonneaud C, Marx CJ, Hill GE, Ferguson-Noel N, Tsai P, Rodrigo A, Edwards SV. 2012. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, *Mycoplasma gallisepticum*. *PLoS Genetics* 8(2): e1002511.
- Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23(6): 673.
- Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. 1999. Improved microbial gene identification with GLIMMER. *Nucleic Acids Research* 27(23): 4636.
- Detmer A, Glenting J. 2006. Live bacterial vaccines- A review and identification of potential hazards. *Microbial Cell Factories* **5**: 23.
- do Nascimento NC, Dos Santos AP, Chu Y, Guimaraes AM, Pagliaro A, Messick JB. 2013. Genome sequence of *Mycoplasma parvum* (formerly *Eperythrozoon parvum*), a diminutive hemoplasma of the pig. *Genome Announcements* 1(6): e00986.
- do Nascimento NC, Santos AP, Guimaraes AM, Sanmiguel PJ, Messick JB. 2012. *Mycoplasma haemocanis*The canine hemoplasma and its feline counterpart in the genomic era. *Veterinary Research* 43(1): 66.
- Doeven MK, Kok J, Poolman B. 2005. Specificity and selectivity determinants of peptide transport in *Lactococcus lactis* and other microorganisms. *Molecular Microbiology* **57**(3): 640.
- Dordet Frisoni E, Marenda MS, Sagné E, Nouvel LX, Guérillot R, Glaser P, Blanchard A, Tardy F, Sirand-Pugnet P, Baranowski E. 2013. ICEA of *Mycoplasma agalactiae*: A new family of self-transmissible integrative elements that confers conjugative properties to the recipient strain. *Molecular Microbiology* 89(6): 1226.
- Dorman CJ. 2011. Regulation of transcription by DNA supercoiling in *Mycoplasma genitalium*: Global control in the smallest known self-replicating genome. *Molecular Microbiology* **81**(2): 302.
- Dybvig K, Cao ZH, Lao P, Jordan DS, French CT, Tu AHT, Loraine AE. 2008. Genome of *Mycoplasma* arthritidis. Infection and Immunity **76**(9): 4000.
- Dybvig K, Lao P, Jordan DS, Simmons WL. 2010. Fewer essential genes in mycoplasmas than previous studies suggest. *FEMS Microbiology Letters* **311**(1): 51.
- Dybvig K, Sitaraman R, French CT. 1998. A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. *Proceedings of the National Academy of Sciences* **95**(23): 13923.
- Ederveen THA, Overmars L, van Hijum SAFT. 2013. Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction. *PLoS One* **8**(5): e63523.
- Engelen S, Vallenet D, Médigue C, Danchin A. 2012. Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC. *BMC Genomics* **13**(1): 69.
- Erickson HP, Osawa M. 2010. Cell division without FtsZ A variety of redundant mechanisms. *Molecular Microbiology* **78**(2): 267.
- Escoffre JM, Zeghimi A, Novell A, Bouakaz A. 2013. *In-vivo* gene delivery by sonoporation: Recent progress and prospects. *Current Gene Therapy* **13**(1): 2.
- Evans JD, Leigh SA, Branton SL, Collier SD, Pharr GT, Bearson SMD. 2005. Mycoplasma gallisepticum: Current and developing means to control the avian pathogen. Journal of Applied Poultry Research 14(4): 757.
- Faurez F, Dory D, Le Moigne V, Gravier R, Jestin A. 2010. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. *Vaccine* **28**(23): 3888.
- Faustino CR, Jennelle CS, Connolly V, Davis AK, Swarthout EC, Dhondt AA, Cooch EG. 2004. *Mycoplasma gallisepticum* infection dynamics in a house finch population: Seasonal variation in survival, encounter and transmission rate. *Journal of Animal Ecology* 73(4): 651.
- FDA. 1996. Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Docket No. 96-N-0400. Food and Drug Administration, Washington, DC.
- Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. 2011. Clinical applications of DNA vaccines: Current progress. *Clinical Infectious Diseases* **53**(3): 296.
- Findik A, Çiftci A. 2012. Bacterial DNA vaccines in veterinary medicine: A review. *Journal of Veterinary Advances* **2**(4): 139.
- Fioretti D, Iurescia S, Rinaldi M. 2014. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. *Recent Patents on Anti-cancer Drug Discovery* **9**(1): 66.
- Fisunov GY, Alexeev DG, Bazaleev NA, Ladygina VG, Galyamina MA, Kondratov IG, Zhukova NA, Serebryakova MV, Demina IA, Govorun VM. 2011. Core proteome of the minimal cell: Comparative proteomics of three mollicute species. *PLoS One* 6(7): e21964.
- Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB. 2013. Synthetic DNA vaccines: Improved vaccine potency by electroporation and co-delivered genetic adjuvants. *Frontiers in Immunology* 4: 354.

- Flores-Medina S, Soriano-Becerril DM, Diaz-Garcia FJ. 2012. Molecular diagnostics of mycoplasmas: Perspectives from the microbiology standpoint. In *Polymerase Chain Reaction* (ed. P Hernandez-Rodriguez, APR Gomez), pp. 119-142. INTECH Open Access Publisher.
- Fonseca MM, Harris DJ, Posada D. 2014. Origin and length distribution of unidirectional prokaryotic overlapping genes. *G3: Genes Genomes Genetics* **4**(1): 19.
- Fox LK, Kirk JH, Britten A. 2005. Mycoplasma mastitis: A review of transmission and control. Journal of Veterinary Medicine Series B-Infectious Diseases and Veterinary Public Health 52(4): 153.
- Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al. 1995. The minimal gene complement of *Mycoplasma genitalium*. *Science* 270(5235): 397.
- French CT, Lao P, Loraine AE, Matthews BT, Yu H, Dybvig K. 2008. Large-scale transposon mutagenesis of *Mycoplasma pulmonis*. *Molecular Microbiology* **69**(1): 67.
- Frey J. 2002. Mycoplasmas of animals. In *Molecular biology and pathogenicity of mycoplasmas* (ed. S Razin, R Herrmann), pp. 73-90. Springer US.
- Fukuda Y, Nakayama Y, Tomita M. 2003. On dynamics of overlapping genes in bacterial genomes. *Gene* **323**: 181.
- Fukuda Y, Washio T, Tomita M. 1999. Comparative study of overlapping genes in the genomes of *Mycoplasma genitalium* and *Mycoplasma pneumoniae*. *Nucleic Acids Research* 27(8): 1847.
- Fürnkranz U, Siebert-Gulle K, Rosengarten R, Szostak MP. 2013. Factors influencing the cell adhesion and invasion capacity of *Mycoplasma gallisepticum*. Acta Veterinaria Scandinavica 55(1): 63.
- Galens K, Orvis J, Daugherty S, Creasy HH, Angiuoli S, White O, Wortman J, Mahurkar A, Giglio MG. 2011. The IGS standard operating procedure for automated prokaryotic annotation. *Standards in Genomic Sciences* 4(2): 244.
- Galli V, Simionatto S, Marchioro SB, Fisch A, Gomes CK, Conceição FR, Dellagostin OA. 2012. Immunisation of mice with *Mycoplasma hyopneumoniae* antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. *Vaccine* 31(1): 135.
- Galperin MY, Koonin EV. 1999. Searching for drug targets in microbial genomes. *Current Opinion in Biotechnology* **10**(6): 571.
- Gao F, Zhang CT. 2008. Ori-Finder: A web-based system for finding oriCs in unannotated bacterial genomes. *BMC Bioinformatics* **9**(1): 79.
- Gardner SW, Minion FC. 2010. Detection and quantification of intergenic transcription in *Mycoplasma hyopneumoniae*. *Microbiology* **156**(8): 2305.
- Garmory HS, Brown KA, Titball RW. 2003. DNA vaccines: Improving expression of antigens. *Genetic Vaccines and Therapy* 1(1): 2.
- Garmory HS, Titball RW. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. *Infection and Immunity* **72**(12): 6757.
- Garver KA, Conway CM, Elliott DG, Kurath G. 2005. Analysis of DNA-vaccinated fish reveals viral antigen in muscle, kidney and thymus, and transient histopathologic changes. *Marine Biotechnology* **7**(5): 540.
- Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM *et al.* 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. *Science* **329**(5987): 52.
- Giese M. 1998. DNA-antiviral vaccines: New developments and approaches- A review. *Virus Genes* 17(3): 219.
- Giese M. 2012. Approved veterinary vaccines: Paving the way to products for human health. In *Gene Vaccines* (ed. J Thalhamer, R Weiss, S Scheiblhofer), pp. 265-283. Springer, Vienna.
- Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC. 2006. Essential genes of a minimal bacterium. *Proceedings of the National Academy of Sciences* 103(2): 425.
- Glass JI, Lefkowitz EJ, Glass JS, Heiner CR, Chen EY, Cassell GH. 2000. The complete sequence of the mucosal pathogen *Ureaplasma urealyticum*. *Nature* **407**(6805): 757.
- Glenn TC. 2011. Field guide to next-generation DNA sequencers. Molecular Ecology Resources 11(5): 759.
- Gollop N, March PE. 1991. A GTP-binding protein (Era) has an essential role in growth rate and cell cycle control in *Escherichia coli*. *Journal of Bacteriology* 173(7): 2265.
- Grandi G. 2010. Bacterial surface proteins and vaccines. F1000 Biology Reports 2: 36.
- Grosjean H, Breton M, Sirand-Pugnet P, Tardy F, Thiaucourt F, Citti C, Barré A, Yoshizawa S, Fourmy D, de Crécy-Lagard V. 2014. Predicting the minimal translation apparatus: Lessons from the reductive evolution of *Mollicutes*. *PLoS Genetics* 10(5): e1004363.
- Großhennig S, Schmidl SR, Schmeisky G, Busse J, Stülke J. 2013. Implication of glycerol and phospholipid transporters in *Mycoplasma pneumoniae* growth and virulence. *Infection and Immunity* **81**(3): 896.

- Grover RK, Zhu X, Nieusma T, Jones T, Boero I, MacLeod AS, Mark A, Niessen S, Kim HJ, Kong L. 2014. A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union. *Science* **343**(6171): 656.
- Guell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M, Doerks T, Kuhner S et al. 2009. Transcriptome complexity in a genome-reduced bacterium. Science 326(5957): 1268.
- Guimaraes AM, Santos AP, SanMiguel P, Walter T, Timenetsky J, Messick JB. 2011. Complete genome sequence of *Mycoplasma suis* and insights into its biology and adaption to an erythrocyte niche. *PLoS One* **6**(5): e19574.
- Halbedel S, Hames C, Stulke J. 2007. Regulation of carbon metabolism in the mollicutes and its relation to virulence. *Journal of Molecular Microbiology and Biotechnology* **12**(1): 147.
- Halbedel S, Stulke J. 2007. Tools for the genetic analysis of *Mycoplasma*. International Journal of Medical Microbiology 297(1): 37.
- Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* **41**: 95.
- Harrington CT, Lin EI, Olson MT, Eshleman JR. 2013. Fundamentals of pyrosequencing. Archives of Pathology and Laboratory Medicine 137(9): 1296.
- Hartfield M, Murall CL, Alizon S. 2014. Clinical applications of pathogen phylogenies. Trends in Molecular Medicine 21(4): 196.
- Hartikka J, Sawdey M, Cornefert-Jensen F, Margalith M, Barnhart K, Nolasco M, Vahlsing HL, Meek J, Marquet M, Hobart P. 1996. An improved plasmid DNA expression vector for direct injection into skeletal muscle. *Human Gene Therapy* 7(10): 1205.
- Hatchel JM, Balish MF. 2008. Attachment organelle ultrastructure correlates with phylogeny, not gliding motility properties, in *Mycoplasma pneumoniae* relatives. *Microbiology* **154**(1): 286.
- Hegde S, Hegde S, Spergser J, Brunthaler R, Rosengarten R, Chopra-Dewasthaly R. 2014. In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model. International Journal of Medical Microbiology 304(8): 1024.
- Hempstead PG. 1990. An improved method for the rapid isolation of chromosomal DNA from *Mycoplasma* spp. *Canadian Journal of Microbiology* **36**(1): 59.
- Henrich B, Feldmann RC, Hadding U. 1993. Cytoadhesins of *Mycoplasma hominis*. *Infection and Immunity* **61**(7): 2945.
- Henrich B, Hopfe M, Kitzerow A, Hadding U. 1999. The adherence-associated lipoprotein P100, encoded by an *opp* operon structure, functions as the oligopeptide-binding domain OppA of a putative oligopeptide transport system in *Mycoplasma hominis*. *Journal of Bacteriology* **181**(16): 4873.
- Hilz H, Wiegers U, Adamietz P. 1975. Stimulation of proteinase K action by denaturing agents: Application to the isolation of nucleic acids and the degradation of 'masked' proteins. *European Journal of Biochemistry* 56(1): 103.
- Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R. 1996. Complete sequence analysis of the genome of the bacterium *Mycoplasma pneumoniae*. *Nucleic Acids Research* 24(22): 4420.
- Hoelzle K, Doser S, Ritzmann M, Heinritzi K, Palzer A, Elicker S, Kramer M, Felder KM, Hoelzle LE. 2009. Vaccination with the *Mycoplasma suis* recombinant adhesion protein MSG1 elicits a strong immune response but fails to induce protection in pigs. *Vaccine* 27(39): 5376.
- Hoffman L, Lambrechts H. 2011. Bird handling, transportation, lairage, and slaughter: Implications for bird welfare and meat quality. In *The Welfare of Farmed Ratites* (ed. P Glatz, C Lunam, I Malecki), pp. 195-235. Springer, Berlin Heidelberg.
- Hopfe M, Henrich B. 2004. OppA, the substrate-binding subunit of the oligopeptide permease, is the major ecto-ATPase of *Mycoplasma hominis*. *Journal of Bacteriology* **186**(4): 1021.
- Hopfe M, Henrich B. 2008. OppA, the ecto-ATPase of *Mycoplasma hominis* induces ATP release and cell death in HeLa cells. *BMC Microbiology* **8**(1): 55.
- Hopfe M, Henrich B. 2014. Multifunctional cytoadherence factors. In *Mollicutes: Molecular Biology and Pathogenesis* (ed. GF Browning, C Citti), pp. 107-129. Caister Academic Press, Norfolk, UK.
- Houk BE, Martin R, Hochhaus G, Hughes JA. 2001. Pharmacokinetics of plasmid DNA in the rat. *Pharmaceutical Research* **18**(1): 67.
- Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S *et al.* 2012. InterPro in 2011: New developments in the family and domain prediction database. *Nucleic Acids Research* **40**(Database issue): D306.
- Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC. 1999. Global transposon mutagenesis and a minimal mycoplasma genome. *Science* **286**(5447): 2165.
- Inamine JM, Ho KC, Loechel S, Hu PC. 1990. Evidence that UGA is read as a tryptophan codon rather than as a stop codon by *Mycoplasma pneumoniae*, *Mycoplasma genitalium*, and *Mycoplasma gallisepticum*. Journal of Bacteriology **172**(1): 504.

#### Reference list

- Ishii TM, Zerr P, Xia XM, Bond CT, Maylie J, Adelman JP. 1998. Site-directed mutagenesis. *Methods in Enzymology* **293**: 53.
- Ito K, Akiyama Y. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. *Annual Review of Microbiology* **59**: 211.
- Jacob R, Branton SL, Evans JD, Leigh SA, Peebles ED. 2014. Effects of live and killed vaccines against Mycoplasma gallisepticum on the performance characteristics of commercial layer chickens. Poultry Science 93(6): 1403.
- Jaffe JD, Stange-Thomann N, Smith C, DeCaprio D, Fisher S, Butler J, Calvo S, Elkins T, FitzGerald MG, Hafez N et al. 2004. The complete genome and proteome of *Mycoplasma mobile*. Genome Research 14(8): 1447.
- Kanellos T, Sylvester ID, Ambali AG, Howard CR, Russell PH. 1999. The safety and longevity of DNA vaccines for fish. *Immunology* 96: 307.
- Kent BN, Foecking MF, Calcutt MJ. 2012. Development of a novel plasmid as a shuttle vector for heterologous gene expression in *Mycoplasma yeatsii*. Journal of Microbiological Methods **91**(1): 121.
- Kibeida OAI. 2011. A comparison of methods used to measure the *in vitro* antimicrobial susceptibilities of *Mycoplasma* species of animal origin. MSc Thesis, University of Pretoria South Africa.
- Kircher M, Kelso J. 2010. High-throughput DNA sequencing Concepts and limitations. *Bioessays* **32**(6): 524.
- Kitahara K, Yasutake Y, Miyazaki K. 2012. Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in *Escherichia coli*. *Proceedings of the National Academy of Sciences* **109**(47): 19220.
- Klepsch MM, Kovermann M, Löw C, Balbach J, Permentier HP, Fusetti F, de Gier JW, Slotboom DJ, Berntsson RP. 2011. Escherichia coli peptide binding protein OppA has a preference for positively charged peptides. Journal of Molecular Biology 414(1): 75.
- Kleven SH. 2008. Control of avian mycoplasma infections in commercial poultry. *Avian Diseases* **52**(3): 367.
- Klotz C, Gehre F, Lucius R, Pogonka T. 2007. Identification of *Eimeria tenella* genes encoding for secretory proteins and evaluation of candidates by DNA immunisation studies in chickens. *Vaccine* 25(36): 6625.
- Kono N, Arakawa K, Tomita M. 2012. Validation of bacterial replication termination models using simulation of genomic mutations. *PLoS One* 7(4): e34526.
- Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED. 2012. Hybrid error correction and *de novo* assembly of single-molecule sequencing reads. *Nature Biotechnology* 30(7): 693.
- Kutzler MA, Weiner DB. 2008. DNA vaccines: ready for prime time? Nature Reviews Genetics 9(10): 776.
- Langer B, Renner M, Scherer J, Schüle S, Cichutek K. 2013. Safety assessment of biolistic DNA vaccination. In *Biolistic DNA delivery*, pp. 371-388. Springer.
- Langer S. 2009. Proposal for molecular tools for the epidemiology of contagious bovine pleuro pneumonia and classification of unknown *Mycoplasma* sp. isolated from *Struthio camelus*. Mag. rer.nat., Universität Wien, Republic of Austria.
- Lartigue C, Blanchard A, Renaudin J, Thiaucourt F, Sirand-Pugnet P. 2003. Host specificity of *Mollicutes* oriC plasmids: Functional analysis of replication origin. *Nucleic Acids Research* **31**(22): 6610.
- Lechardeur D, Lukacs GL. 2006. Nucleocytoplasmic transport of plasmid DNA: A perilous journey from the cytoplasm to the nucleus. *Human Gene Therapy* **17**(9): 882.
- Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, Beatty B, Squire J, O'Brodovich H, Lukacs GL. 1999. Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. *Gene Therapy* 6(4): 482.
- Lee CW, Senne DA, Suarez DL. 2003. Development of hemagglutinin subtype-specific reference antisera by DNA vaccination of chickens. *Avian Diseases* **47**(S3): 1051.
- Lee EM, Ahn SH, Park JH, Lee JH, Ahn SC, Kong IS. 2004. Identification of oligopeptide permease (*opp*) gene cluster in *Vibrio fluvialis* and characterization of biofilm production by *oppA* knockout mutation. *FEMS Microbiology Letters* **240**(1): 21.
- Lee SW, Browning GF, Markham PF. 2008. Development of a replicable *oriC* plasmid for *Mycoplasma gallisepticum* and *Mycoplasma imitans*, and gene disruption through homologous recombination in *M. gallisepticum*. *Microbiology* **154**(9): 2571.
- Levine MM, Sztein MB. 2004. Vaccine development strategies for improving immunization: The role of modern immunology. *Nature Immunology* **5**(5): 460.
- Lewis PJ, Babiuk LA. 1999. DNA vaccines: A review. Advances in Virus Research 54: 129.
- Li L, Saade F, Petrovsky N. 2012. The future of human DNA vaccines. *Journal of Biotechnology* **162**(2): 171.

- Li Y, Zheng H, Liu Y, Jiang Y, Xin J, Chen W, Song Z. 2011. The complete genome sequence of *Mycoplasma bovis* strain Hubei-1. *PLoS One* **6**(6): e20999.
- Lin Y, Zhang RR. 2011. Putative essential and core-essential genes in mycoplasma genomes. *Scientific reports* **1**: 53.
- Lin YL, Pasero P. 2012. Interference between DNA replication and transcription as a cause of genomic instability. *Current Genomics* 13(1): 65.
- Liu L, Panangala VS, Dybvig K. 2002. Trinucleotide GAA repeats dictate pMGA gene expression in *Mycoplasma gallisepticum* by affecting spacing between flanking regions. *Journal of Bacteriology* 184(5): 1335.
- Liu MA. 2011. DNA vaccines: An historical perspective and view to the future. *Immunological Reviews* 239(1): 62.
- Liu W, Fang L, Li M, Li S, Guo S, Luo R, Feng Z, Li B, Zhou Z, Shao G et al. 2012. Comparative genomics of mycoplasma: Analysis of conserved essential genes and diversity of the pan-genome. PLoS One 7(4): e35698.
- Lluch-Senar M, Querol E, Pinol J. 2010. Cell division in a minimal bacterium in the absence of *ftsZ*. *Molecular Microbiology* **78**(2): 278.
- Lluch-Senar M, Vallmitjana M, Querol E, Pinol J. 2007. A new promoterless reporter vector reveals antisense transcription in *Mycoplasma genitalium*. *Microbiology* 153(8): 2743.
- Loreto ELS, Ortiz MF, Port JIR. 2007. Insertion sequences as variability generators in the *Mycoplasma hyopneumoniae* and *M. synoviae* genomes. *Genetics and Molecular Biology* **30**(1): 283.
- Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. 2000. Size-dependent DNA mobility in cytoplasm and nucleus. *Journal of Biological Chemistry* **275**(3): 1625.
- Lysnyansky I, Calcutt MJ, Ben-Barak I, Ron Y, Levisohn S, Methe BA, Yogev D. 2009. Molecular characterization of newly identified IS3, IS4 and IS30 insertion sequence-like elements in *Mycoplasma bovis* and their possible roles in genome plasticity. *FEMS Microbiology Letters* **294**(2): 172.
- Macao B, Luirink J, Samuelsson T. 1997. Ffh and FtsY in a *Mycoplasma mycoides* signal-recognition particle pathway: SRP RNA and M domain of Ffh are not required for stimulation of GTPase activity *in vitro*. *Molecular Microbiology* **24**(3): 523.
- MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB *et al.* 1998. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: Safety and host response. *Journal of Infectious Diseases* 178(1): 92.
- Madeira HMF, Gabriel JE. 2007. Regulation of gene expression in mycoplasmas: Contribution from Mycoplasma hyopneumoniae and Mycoplasma synoviae genome sequences. Genetics and Molecular Biology 30(1): 277.
- Maglennon GA, Cook BS, Matthews D, Deeney AS, Bossé JT, Langford PR, Maskell DJ, Tucker AW, Wren BW, Rycroft AN. 2013. Development of a self-replicating plasmid system for *Mycoplasma hyopneumoniae*. Veterinary Research 44(1): 63.
- Mahoney RT, Wen YM, Wilde H, Xu ZY. 2000. The introduction of new DNA vaccines into developing countries. In *Madame Curie Bioscience Database*. Landes Biosciences, Georgetown. Available from: <u>http://www.ncbi.nlm.nih.gov/books/NBK5994/</u>.
- Manjila SB, Baby JN, Bijin EN, Constantine I, Pramod K, Valsalakumari J. 2013. Novel gene delivery systems. *International Journal of Pharmaceutical Investigation* **3**(1): 1.
- Mao F, Dam P, Chou J, Olman V, Xu Y. 2009. DOOR: A database for prokaryotic operons. *Nucleic Acids Research* **37**(Database issue): D459.
- Marchioro SB, Maes D, Flahou B, Pasmans F, Del Pozo Sacristán R, Vranckx K, Melkebeek V, Cox E, Wuyts N, Haesebrouck F. 2013. Local and systemic immune responses in pigs intramuscularly injected with an inactivated *Mycoplasma hyopneumoniae* vaccine. *Vaccine* **31**(9): 1305.
- Marenda MS. 2014. Genomic mosaics. In *Mollicutes: Molecular Biology and Pathogenesis* (ed. GF Browning, C Citti), pp. 15-54. Caister Academic Press, Norfolk, UK.
- Marín A, Xia X. 2008. GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: New substitution models incorporating strand bias. *Journal of Theoretical Biology* 253(3): 508.
- Mauro VP, Chappell SA. 2014. A critical analysis of codon optimization in human therapeutics. *Trends in Molecular Medicine* **20**(11): 604.
- May M, Brown DR. 2014. Glycosidase activity in *Mollicutes*. In *Mollicutes: Molecular Biology and Pathogenesis* (ed. GF Browning, C Citti), p. 149. Caister Academic Press, Norfolk, UK.
- McCormack WM. 1993. Susceptibility of mycoplasmas to antimicrobial agents: Clinical implications. *Clinical Infectious Diseases* 17(Supplement 1): S200.

McCutchan TF, Grim KC, Li J, Weiss W, Rathore D, Sullivan M, Graczyk TK, Kumar S, Cranfield MR. 2004. Measuring the effects of an ever-changing environment on malaria control. *Infection and Immunity* **72**(4): 2248.

McDowall J, Hunter S. 2011. InterPro protein classification. Methods in Molecular Biology 694: 37.

- Medina JL, Coalson JJ, Brooks EG, Winter VT, Chaparro A, Principe MF, Kannan TR, Baseman JB, Dube PH. 2012. *Mycoplasma pneumoniae* CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. *American Journal of Respiratory Cell and Molecular Biology* 46(6): 815.
- Mena A, Andrew ME, Coupar BEH. 2001. Rapid dissemination of intramuscularly inoculated DNA vaccines. *Immunology and Cell Biology* **79**(1): 87.
- Messick JB. 2004. Hemotrophic mycoplasmas (hemoplasmas): A review and new insights into pathogenic potential. *Veterinary Clinical Pathology* **33**(1): 2.
- Metzker ML. 2009. Sequencing technologies- The next generation. Nature Reviews Genetics 11(1): 31.
- Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In *Gateway Computing Environments Workshop (GCE)*, pp. 1-8.
- Mistry A, Warren MS, Cusick JK, Karkhoff-Schweizer RR, Lomovskaya O, Schweizer HP. 2013. Highlevel pacidamycin resistance in *Pseudomonas aeruginosa* is mediated by an *opp* oligopeptide permease encoded by the *opp-fabI* operon. *Antimicrobial Agents and Chemotherapy* **57**(11): 5565.
- Moore C, Cumming GS, Slingsby J, Grewar J. 2014. Tracking socioeconomic vulnerability using network analysis: Insights from an avian influenza outbreak in an ostrich production network. *PLoS One* **9**(1): e86973.
- Moran NA. 2002. Microbial minimalism: Genome reduction in bacterial pathogens. Cell 108(5): 583.
- Moss RB. 2009. Prospects for control of emerging infectious diseases with plasmid DNA vaccines. *Journal* of Immune Based Therapies and Vaccines 7(1): 3.
- Mourez M, Hofnung M, Dassa E. 1997. Subunit interactions in ABC transporters: A conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. *The EMBO journal* **16**(11): 3066.
- Movahedi A, Hampson DJ. 2010. Evaluation of recombinant *Brachyspira pilosicoli* oligopeptide-binding proteins as vaccine candidates in a mouse model of intestinal spirochaetosis. *Journal of Medical Microbiology* **59**: 353.
- Mushegian AR, Koonin EV. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. *Proceedings of the National Academy of Sciences of the United States of America* **93**(19): 10268.
- Nicolás MF, Barcellos FG, Hess PN, Hungria M. 2007. ABC transporters in *Mycoplasma hyopneumoniae* and *Mycoplasma synoviae*: Insights into evolution and pathogenicity. *Genetics and Molecular Biology* **30**(1): 202.
- Nisha AR. 2008. Antibiotic residues- A global health hazard. Veterinary World 1(12): 375.
- Noormohammadi AH, Markham PF, Kanci A, Whithear KG, Browning GF. 2000. A novel mechanism for control of antigenic variation in the haemagglutinin gene family of *Mycoplasma synoviae*. *Molecular Microbiology* **35**(4): 911.
- Notredame C, Higgins DG, Heringa J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. *Journal of Molecular Biology* **302**(1): 205.
- Nouvel LX, Marenda M, Sirand-Pugnet P, Sagne E, Glew M, Mangenot S, Barbe V, Barre A, Claverol S, Citti C. 2009. Occurrence, plasticity, and evolution of the *vpma* gene family, a genetic system devoted to high-frequency surface variation in *Mycoplasma agalactiae*. *Journal of Bacteriology* **191**(13): 4111.
- Okuda K, Wada Y, Shimada M. 2014. Recent developments in preclinical DNA vaccination. *Vaccines* **2**(1): 89.
- Oliveira PH, Mairhofer J. 2013. Marker-free plasmids for biotechnological applications Implications and perspectives. *Trends in Biotechnology* **31**(9): 539.
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M. 2013. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). *Nucleic Acids Research* 42(D1): D206.
- Pachkov M, Dandekar T, Korbel J, Bork P, Schuster S. 2007. Use of pathway analysis and genome context methods for functional genomics of *Mycoplasma pneumoniae* nucleotide metabolism. *Gene* **396**(2): 215.
- Palumbo RN, Zhong X, Panus D, Han W, Ji W, Wang C. 2012. Transgene expression and local tissue distribution of naked and polymer-condensed plasmid DNA after intradermal administration in mice. *Journal of Controlled Release* 159(2): 232.
- Paulsen IT, Nguyen L, Sliwinski MK, Rabus R, Saier MH. 2000. Microbial genome analyses: Comparative transport capabilities in eighteen prokaryotes. *Journal of Molecular Biology* 301(1): 75.

- Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. 2015. Bacteriophage-mediated spread of bacterial virulence genes. *Current Opinion in Microbiology* 23: 171.
- Pereira VB, Zurita-Turk M, Saraiva TDL, De Castro CP, Souza BM, Agresti PM, Lima FA, Pfeiffer VN, Azevedo MSP, Rocha CS. 2014. DNA vaccines approach: From concepts to applications. *World Journal of Vaccines* 4(2): 50.
- Pereyre S, Sirand-Pugnet P, Beven L, Charron A, Renaudin H, Barre A, Avenaud P, Jacob D, Couloux A, Barbe V et al. 2009. Life on arginine for *Mycoplasma hominis*: Clues from its minimal genome and comparison with other human urogenital mycoplasmas. *PLoS Genetics* 5(10): e1000677.
- Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: Discriminating signal peptides from transmembrane regions. *Nature Methods* 8(10): 785.
- Pilo P, Frey J, Vilei EM. 2007. Molecular mechanisms of pathogenicity of *Mycoplasma mycoides* subsp mycoides SC. *The Veterinary Journal* **174**(3): 513.
- Pilo P, Vilei EM, Peterhans E, Bonvin-Klotz L, Stoffel MH, Dobbelaere D, Frey J. 2005. A metabolic enzyme as a primary virulence factor of *Mycoplasma mycoides* subsp *mycoides* small colony. *Journal of Bacteriology* 187(19): 6824.
- Pinard R, de Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, Egholm M, Rothberg JM, Leamon JH. 2006. Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. *BMC Genomics* 7(1): 216.
- Pitcher DG, Nicholas RAJ. 2005. Mycoplasma host specificity: Fact or fiction? *The Veterinary Journal* **170**(3): 300.
- Pollack JD, Myers MA, Dandekar T, Herrmann R. 2002. Suspected utility of enzymes with multiple activities in the small genome *Mycoplasma* species: The replacement of the missing "household" nucleoside diphosphate kinase gene and activity by glycolytic kinases. *OMICS* 6(3): 247.
- Pollard H, Remy JS, Loussouarn G, Demolombe S, Behr JP, Escande D. 1998. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. *Journal of Biological Chemistry* 273(13): 7507.
- Pretorius B. 2009. The ostrich mycoplasma *Ms01*: The identification, isolation, and modification of the P100 vaccine candidate gene and immunity elicited by poultry mycoplasma vaccines. MSc Thesis, Stellenbosch University, South Africa.
- Price MN, Alm EJ, Arkin AP. 2005. Interruptions in gene expression drive highly expressed operons to the leading strand of DNA replication. *Nucleic Acids Research* **33**(10): 3224.
- Prysliak T, van der Merwe J, Perez-Casal J. 2013. Vaccination with recombinant *Mycoplasma bovis* GAPDH results in a strong humoral immune response but does not protect feedlot cattle from an experimental challenge with *M. bovis. Microbial Pathogenesis* **55**: 1.
- Punyapornwithaya V, Fox LK, Hancock DD, Gay JM, Alldredge JR. 2012. Time to clearance of mycoplasma mastitis: The effect of management factors including milking time hygiene and preferential culling. *The Canadian Veterinary Journal* 53(10): 1119.
- Quaak SG, Haanen JB, Beijnen JH, Nuijen B. 2010. Naked plasmid DNA formulation: Effect of different disaccharides on stability after lyophilisation. *AAPS PharmSciTech* **11**(1): 344.
- Raherison S, Gonzalez P, Renaudin H, Charron A, Bébéar C, Bébéar C. 2005. Increased expression of two multidrug transporter-like genes is associated with ethidium bromide and ciprofloxacin resistance in *Mycoplasma hominis*. *Antimicrobial Agents and Chemotherapy* **49**(1): 421.
- Raherison S, Gonzalez P, Renaudin H, Charron A, Bebear C, Bebear CM. 2002. Evidence of active efflux in resistance to ciprofloxacin and to ethidium bromide by *Mycoplasma hominis*. *Antimicrobial Agents* and Chemotherapy 46(3): 672.
- Razin S, Yogev D, Naot Y. 1998. Molecular biology and pathogenicity of mycoplasmas. *Microbiology and Molecular Biology Reviews* 62(4): 1094.
- Rechnitzer H, Brzuszkiewicz E, Strittmatter A, Liesegang H, Lysnyansky I, Daniel R, Gottschalk G, Rottem S. 2011. Genomic features and insights into the biology of *Mycoplasma fermentans*. *Microbiology* 157(3): 760.
- Rees DC, Johnson E, Lewinson O. 2009. ABC transporters: The power to change. Nature Reviews Molecular Cell Biology 10(3): 218.
- Rice AJ, Park A, Pinkett HW. 2014. Diversity in ABC transporters: Type I, II and III importers. *Critical Reviews in Biochemistry and Molecular Biology* **49**(5): 426.
- Rocha EPC. 2008. The organization of the bacterial genome. Annual Review of Genetics 42: 211.
- Rocha EPC, Blanchard A. 2002. Genomic repeats, genome plasticity and the dynamics of *Mycoplasma* evolution. *Nucleic Acids Research* **30**(9): 2031.
- Rosengarten R, Wise KS. 1990. Phenotypic switching in mycoplasmas: Phase variation of diverse surface lipoproteins. *Science* 247(4940): 315.

- Rudner DZ, Ledeaux JR, Ireton K, Grossman AD. 1991. The spook locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. Journal of Bacteriology 173(4): 1388.
- Sanders GM, Dallmann HG, McHenry CS. 2010. Reconstitution of the *B. subtilis* replisome with 13 proteins including two distinct replicases. *Molecular Cell* **37**(2): 273.
- Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, Yoshino C, Horino A, Shiba T, Sasaki T et al. 2002. The complete genomic sequence of *Mycoplasma penetrans*, an intracellular bacterial pathogen in humans. *Nucleic Acids Research* 30(23): 5293.
- Saurin W, Dassa E. 1996. In the search of *Mycoplasma genitalium* lost substrate-binding proteins: Sequence divergence could be the result of a broader substrate specificity. *Molecular Microbiology* 22(2): 389.
- Schalk JAC, Mooi FR, Berbers GAM, Van Aerts LAGJM, Ovelgonne H, Kimman TG. 2006. Preclinical and clinical safety studies on DNA vaccines. *Human Vaccines* 2(2): 45.
- Schmidl SR, Otto A, Lluch-Senar M, Piñol J, Busse J, Becher D, Stülke J. 2011. A trigger enzyme in Mycoplasma pneumoniae: Impact of the glycerophosphodiesterase GlpQ on virulence and gene expression. PLoS Pathogens 7(9): e1002263.
- Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JHD. 2005. Structures of the bacterial ribosome at 3.5 Å resolution. *Science* **310**(5749): 827.
- Sheets RL, Stein J, Manetz TS, Duffy C, Nason M, Andrews C, Kong WP, Nabel GJ, Gomez PL. 2006. Biodistribution of DNA plasmid vaccines against HIV-1, Ebola, Severe Acute Respiratory Syndrome, or West Nile virus is similar, without integration, despite differing plasmid backbones or gene inserts. *Toxicological Sciences* 91(2): 610.
- Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nature Biotechnology 26(10): 1135.
- Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Söll D. 2008. From one amino acid to another: tRNAdependent amino acid biosynthesis. *Nucleic Acids Research* 36(6): 1813.
- Shu HW, Liu TT, Chan HI, Liu YM, Wu KM, Shu HY, Tsai SF, Hsiao KJ, Hu WS, Ng WV. 2011. Genome sequence of the repetitive-sequence-rich *Mycoplasma fermentans* strain M64. *Journal of Bacteriology* 193(16): 4302.
- Shu HW, Liu TT, Chan HI, Liu YM, Wu KM, Shu HY, Tsai SF, Hsiao KJ, Hu WS, Ng WV. 2012. Complexity of the *Mycoplasma fermentans* M64 genome and metabolic essentiality and diversity among mycoplasmas. *PLoS One* 7(4): e32940.
- Simionatto S, Marchioro SB, Galli V, Brum CB, Klein CS, Rebelatto R, Silva EF, Borsuk S, Conceição FR, Dellagostin OA. 2012. Immunological characterization of *Mycoplasma hyopneumoniae* recombinant proteins. *Comparative Immunology, Microbiology and Infectious Diseases* 35(2): 209.
- Simmons WL, Cao ZH, Glass JI, Simecka JW, Cassell GH, Watson HL. 1996. Sequence analysis of the chromosomal region around and within the V-1-encoding gene of *Mycoplasma pulmonis*: Evidence for DNA inversion as a mechanism for V-1 variation. *Infection and Immunity* **64**(2): 472.
- Simons R, Houman F, Kleckner N. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. *Gene* **53**(1): 85.
- Singh AK, Pluvinage B, Higgins MA, Dalia AB, Woodiga SA, Flynn M, Lloyd AR, Weiser JN, Stubbs KA, Boraston AB. 2014. Unravelling the multiple functions of the architecturally intricate *Streptococcus pneumoniae* β-galactosidase, BgaA. *PLoS Pathogens* 10(9): e1004364.
- Sippel KH, Robbins AH, Reutzel R, Boehlein SK, Namiki K, Goodison S, Agbandje-McKenna M, Rosser CJ, McKenna R. 2009. Structural insights into the extracytoplasmic thiamine-binding lipoprotein p37 of *Mycoplasma hyorhinis*. *Journal of Bacteriology* **191**(8): 2585.
- Sippel KH, Venkatakrishnan B, Boehlein SK, Sankaran B, Quirit JG, Govindasamy L, Agbandje-McKenna M, Goodison S, Rosser CJ, McKenna R. 2011. Insights into *Mycoplasma genitalium* metabolism revealed by the structure of MG289, an extracytoplasmic thiamine binding lipoprotein. *Proteins* 79(2): 528.
- Siqueira FM, de Souto Weber S, Cattani AM, Schrank IS. 2014. Genome organization in *Mycoplasma hyopneumoniae*: Identification of promoter-like sequences. *Molecular Biology Reports* **41**(8): 5395.
- Siqueira FM, Schrank A, Schrank IS. 2011. *Mycoplasma hyopneumoniae* transcription unit organization: Genome survey and prediction. *DNA Research* **18**(6): 413.
- Sirand-Pugnet P, Citti C, Barre A, Blanchard A. 2007a. Evolution of *Mollicutes*: Down a bumpy road with twists and turns. *Research in Microbiology* **158**(10): 754.
- Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barre A, Barbe V, Schenowitz C, Mangenot S, Couloux A, Segurens B *et al.* 2007b. Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. *PLoS Genetics* 3(5): 744.
- Slotboom DJ. 2014. Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. *Nature Reviews Microbiology* 12(2): 79.

- Smiley BK, Minion FC. 1993. Enhanced readthrough of opal (UGA) stop codons and production of Mycoplasma pneumoniae P1 epitopes in Escherichia coli. Gene 134(1): 33.
- Soppa J, Kobayashi K, Noirot-Gros MF, Oesterhelt D, Ehrlich SD, Dervyn E, Ogasawara N, Moriya S. 2002. Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the *Bacillus subtilis* family members ScpA and ScpB. *Molecular Microbiology* 45(1): 59.
- Spencer PS, Siller E, Anderson JF, Barral JM. 2012. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. *Journal of Molecular Biology* **422**(3): 328.
- Sridhar S, Reyes-Sandoval A, Draper S, Moore A, Gilbert S, Gao G, Wilson J, Hill A. 2008. Single-dose protection against *Plasmodium berghei* by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. *Journal of Virology* 82(8): 3822.
- Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. 2010. Co-orientation of replication and transcription preserves genome integrity. *PLoS Genetics* 6(1): e1000810.
- Staats CC, Boldo J, Broetto L, Vainstein M, Schrank A. 2007. Comparative genome analysis of proteases, oligopeptide uptake and secretion systems in *Mycoplasma* spp. *Genetics and Molecular Biology* 30(1): 225.
- Stamatakis A. 2014. RAXML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**(9): 1312.
- Stamburski C, Renaudin J, Bové JM. 1991. First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon: Synthesis of chloramphenicol acetyltransferase in *Spiroplasma citri*. *Journal of Bacteriology* **173**(7): 2225.
- Steenmans S. 2010. The identification, contiguous sequence annotation, cloning and site-directed mutagenesis of the P100 vaccine candidate gene of the ostrich mycoplasma *Ms02*. MSc Thesis, Stellenbosch University, South Africa.
- Strydom M. 2013. The ostrich mycoplasma Ms02 partial genome assembly, bioinformatic analysis and the development of three DNA vaccines. MSc Thesis, Stellenbosch University, South Africa.
- Suarez DL, Schultz-Cherry S. 2000. The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model. *Avian Diseases* 44(4): 861.
- Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. 2012. Drift-barrier hypothesis and mutation-rate evolution. Proceedings of the National Academy of Sciences 109(45): 18488.
- Swofford DL. 2002. PAUP\*: Phylogenetic analysis using parsimony (\*and other methods) Version 4.0b10 Sinauer Associates, Sunderland, Massachusetts.
- Szczepanek SM, Boccaccio M, Pflaum K, Liao X, Geary SJ. 2014. Hydrogen peroxide production from glycerol metabolism is dispensable for the virulence of *Mycoplasma gallisepticum* in the tracheas of chickens. *Infection and Immunity* 82(12): 4915.
- Tadokoro K, Koizumi Y, Miyagi Y, Kojima Y, Kawamoto S, Hamajima K, Okuda K, Tanaka S, Onari K, Wahren B. 2001. Rapid and wide-reaching delivery of HIV-1 env DNA vaccine by intranasal administration. *Viral Immunology* 14(2): 159.
- Tanabe M, Atkins HS, Harland DN, Elvin SJ, Stagg AJ, Mirza O, Titball RW, Byrne B, Brown KA. 2006. The ABC transporter protein OppA provides protection against experimental *Yersinia pestis* infection. *Infection and Immunity* 74(6): 3687.
- Tavel JA, Martin JE, Kelly GG, Enama ME, Shen JM, Gomez PL, Andrews CA, Koup RA, Bailer RT, Stein JA et al. 2007. Safety and immunogenicity of a Gag-Pol candidate HIV-1 DNA vaccine administered by a needle-free device in HIV-1-seronegative subjects. Journal of Acquired Immune Deficiency Syndromes 44(5): 601.
- Thiaucourt F, Manso-Silvan L, Salah W, Barbe V, Vacherie B, Jacob D, Breton M, Dupuy V, Lomenech AM, Blanchard A et al. 2011. Mycoplasma mycoides, from "mycoides small colony" to "capri". A microevolutionary perspective. BMC Genomics 12: 114.
- Toffan A, Olivier A, Mancin M, Tuttoilmondo V, Facco D, Capua I, Terregino C. 2010. Evaluation of different serological tests for the detection of antibodies against highly pathogenic avian influenza in experimentally infected ostriches (*Struthio camelus*). Avian Pathology **39**(1): 11.
- Tonheim TC, Bøgwald J, Dalmo RA. 2008. What happens to the DNA vaccine in fish? A review of current knowledge. *Fish & Shellfish Immunology* **25**(1): 1.
- Treangen TJ, Salzberg SL. 2011. Repetitive DNA and next-generation sequencing: Computational challenges and solutions. *Nature Reviews Genetics* **13**(1): 36.
- Trivedi S. 2010. Do simple sequence repeats in replication, repair and recombination genes of mycoplasmas providing genetic variability? *Journal of Cell and Molecular Biology* 7(2): 53.
- Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R. 2008. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. *Journal of Molecular Biology* **383**(2): 281.
- Tu AH, Voelker LL, Shen X, Dybvig K. 2001. Complete nucleotide sequence of the mycoplasma virus P1 genome. *Plasmid* 45(2): 122.

- Tuomela M, Malm M, Wallen M, Stanescu I, Krohn K, Peterson P. 2005. Biodistribution and general safety of a naked DNA plasmid, GTU<sup>®</sup>-MultiHIV, in a rat, using a quantitative PCR method. *Vaccine* **23**(7): 890.
- Unnikrishnan M, Rappuoli R, Serruto D. 2012. Recombinant bacterial vaccines. *Current Opinion in Immunology* **24**(3): 337.
- Uphoff CC, Drexler HG. 2014. Detection of mycoplasma contamination in cell cultures. Current Protocols in Molecular Biology 106: 28.4.
- Uttenthal A, Parida S, Rasmussen TB, Paton DJ, Haas B, Dundon WG. 2010. Strategies for differentiating infection in vaccinated animals (DIVA) for foot-and-mouth disease, classical swine fever and avian influenza. *Expert Review of Vaccines* **9**(1): 73.
- van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 2014. Ten years of next-generation sequencing technology. *Trends in Genetics* **30**(9): 418.
- Van Helden LS, Grewar JD, Visser D, Dyason E, Koen P. 2012. An outbreak of highly pathogenic avian influenza in domestic ostriches: The current situation in South Africa. In Proceedings of the 10th annual congress of the Southern African society for veterinary epidemiology and preventive medicine, pp. 11-12.
- Van Veen HW, Konings WN. 1998. The ABC family of multidrug transporters in microorganisms. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1365(1): 31.
- Vandermeulen G, Marie C, Scherman D, Préat V. 2011. New generation of plasmid backbones devoid of antibiotic resistance marker for gene therapy trials. *Molecular Therapy* 19(11): 1942.
- Vasconcelos AT, Ferreira HB, Bizarro CV, Bonatto SL, Carvalho MO, Pinto PM, Almeida DF, Almeida LG, Almeida R, Alves-Filho L et al. 2005. Swine and poultry pathogens: The complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. Journal of Bacteriology 187(16): 5568.
- Vaughan EE, Dean DA. 2006. Intracellular trafficking of plasmids during transfection is mediated by microtubules. *Molecular Therapy* 13(2): 422.
- Verwoerd DJ. 2000. Ostrich diseases. *Revue scientifique et technique (International Office of Epizootics)* **19**(2): 638.
- Vilei EM, Frey J. 2001. Genetic and biochemical characterization of glycerol uptake in Mycoplasma mycoides subsp mycoides SC: Its impact on H<sub>2</sub>O<sub>2</sub> production and virulence. Clinical and Diagnostic Laboratory Immunology 8(1): 85.
- Vilei EM, Nicolet J, Frey J. 1999. IS1634, a novel insertion element creating long, variable-length direct repeats which is specific for *Mycoplasma mycoides* subsp. *mycoides* small-colony type. *Journal of Bacteriology* 181(4): 1319.
- Villarreal I, Maes D, Vranckx K, Calus D, Pasmans F, Haesebrouck F. 2011. Effect of vaccination of pigs against experimental infection with high and low virulence *Mycoplasma hyopneumoniae* strains. *Vaccine* 29(9): 1731.
- Voelker LL, Weaver KE, Ehle LJ, Washburn LR. 1995. Association of lysogenic bacteriophage MAV1 with virulence of *Mycoplasma arthritidis*. *Infection and Immunity* **63**(10): 4016.
- Volokhov DV, Simonyan V, Davidson MK, Chizhikov VE. 2012. RNA polymerase beta subunit (*rpoB*) gene and the 16S–23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family *Mycoplasmataceae*. Molecular Phylogenetics and Evolution **62**(1): 515.
- VPN/04/2012-01(Revision\_6.0). 2012. Standard for the requirements, registration, maintenance of registration and official control of ostrich compartments in South Africa. Department of Agriculture, Forestry and Fisheries, South Africa.
- Vyas JM, Van der Veen AG, Ploegh HL. 2008. The known unknowns of antigen processing and presentation. *Nature Reviews Immunology* **8**(8): 607.
- Waites KB, Lysnyansky I, Bebear C. 2014. Emerging antimicrobial resistance in mycoplasmas of humans andanimals. In *Mollicutes: Molecular Biology and Pathogenesis* (ed. GF Browning, C Citti), pp. 289-322. Caister Academic Press, Norfolk, UK.
- Waites KB, Talkington DF. 2004. Mycoplasma pneumoniae and its role as a human pathogen. Clinical Microbiology Reviews 17(4): 697.
- Wang G, Pan L, Zhang Y. 2011. Approaches to improved targeting of DNA vaccines. *Human Vaccines* 7(12): 1271.
- Wang MD. 2012. Ostrich (*Struthio camelus*) chick survival to 6 months post hatch: Estimation of environmental and genetic parameters and the effect of imprinting, foster parenting and deliberate care. MSc Thesis, Stellenbosch University, South Africa.
- Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L. 2004. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. *Gene Therapy* 11(8): 711.

- Weber SS, Sant'Anna FH, Schrank IS. 2012. Unveiling Mycoplasma hyopneumoniae promoters: Sequence definition and genomic distribution. DNA Research 19(2): 103.
- Weisburg WG, Tully JG, Rose DL, Petzel JP, Oyaizu H, Yang D, Mandelco L, Sechrest J, Lawrence TG, Van Etten J et al. 1989. A phylogenetic analysis of the mycoplasmas: Basis for their classification. *Journal of Bacteriology* 171(12): 6455.
- Westberg J, Persson A, Holmberg A, Goesmann A, Lundeberg J, Johansson KE, Pettersson B, Uhlen M. 2004. The genome sequence of *Mycoplasma mycoides* subsp. *mycoides* SC type strain PG1(T), the causative agent of contagious bovine pleuropneumonia (CBPP). *Genome Research* 14(2): 221.
- Wiley EO, Lieberman BS. 2011a. Parametric phylogenetics. In Phylogenetics: Theory and Practice of Phylogenetic Systematics, Second Edition, pp. 203-228. John Wiley & Sons, USA.
- Wiley EO, Lieberman BS. 2011b. Parsimony and parsimony analysis. In *Phylogenetics: Theory and Practice of Phylogenetic Systematics, Second Edition*, pp. 152-202. John Wiley & Sons, USA.
- Williams JA. 2013. Vector design for improved DNA vaccine efficacy, safety and production. *Vaccines* 1(3): 225.
- Wium M, Botes A, Bellstedt DU. 2015. The identification of *oppA* gene homologues as part of the oligopeptide transport system in mycoplasmas. *Gene* **558**(1): 31.
- Woese CR, Maniloff J, Zablen LB. 1980. Phylogenetic analysis of the mycoplasmas. *Proceedings of the National Academy of Sciences* 77(1): 494.
- Woese CR, Stackebrandt E, Ludwig W. 1984. What are mycoplasmas: The relationship of tempo and mode in bacterial evolution. *Journal of Molecular Evolution* 21(4): 305.
- Wolf M, Müller T, Dandekar T, Pollack JD. 2004. Phylogeny of *Firmicutes* with special reference to *Mycoplasma* (*Mollicutes*) as inferred from phosphoglycerate kinase amino acid sequence data. *International Journal of Systematic and Evolutionary Microbiology* 54: 871.
- Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. 1990. Direct gene-transfer into mouse muscle in vivo. Science 247(4949): 1465.
- Xu Y, Yuen PW, Lam JK. 2014. Intranasal DNA vaccine for protection against respiratory infectious diseases: The delivery perspectives. *Pharmaceutics* 6(3): 378.
- Yang M, Johnson A, Murphy TF. 2011. Characterization and evaluation of the *Moraxella catarrhalis* oligopeptide permease A as a mucosal vaccine antigen. *Infection and Immunity* **79**(2): 846.
- Yang Z, Rannala B. 2012. Molecular phylogenetics: Principles and practice. *Nature Reviews Genetics* **13**(5): 303.
- Yin Y, Zhang H, Olman V, Xu Y. 2010. Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome. *Proceedings of the National Academy of Sciences* 107(14): 6310.
- Yogev D, Rosengarten R, Watson-McKown R, Wise K. 1991. Molecular basis of mycoplasma surface antigenic variation: A novel set of divergent genes undergo spontaneous mutation of periodic coding regions and 5' regulatory sequences. *The EMBO Journal* **10**(13): 4069.
- Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ et al. 2010. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. *Bioinformatics* 26(13): 1608.
- Zhang F, Saha S, Shabalina SA, Kashina A. 2010. Differential arginylation of actin isoforms is regulated by coding sequence–dependent degradation. *Science* **329**(5998): 1534.
- Zhang Q, Wise KS. 2001. Coupled phase-variable expression and epitope masking of selective surface lipoproteins increase surface phenotypic diversity in *Mycoplasma hominis*. *Infection and Immunity* 69(8): 5177.
- Zhao F, Lv M, Tao X, Huang H, Zhang B, Zhang Z, Zhang J. 2012. Antibiotic sensitivity of 40 Mycoplasma pneumoniae isolates and molecular analysis of macrolide-resistant isolates from Beijing, China. Antimicrobial Agents and Chemotherapy 56(2): 1108.
- Zheng X, Liu S. 2008. The relaxing ori-ter balance of Mycoplasma genomes. Science in China Series C: Life Sciences 51(2): 182.
- Zhou JH, You YN, Chen HT, Zhang J, Ma LN, Ding YZ, Pejsak Z, Liu YS. 2013. The effects of the synonymous codon usage and tRNA abundance on protein folding of the 3C protease of foot-andmouth disease virus. *Infection, Genetics and Evolution* 16: 270.
- Zimmerman CU. 2014. Current insights into phase and antigenic variation in mycoplasmas. In *Mollicutes:* Molecular Biology and Pathogenesis (ed. GF Browning, C Citti), p. 165. Caister Academic Press, Norfolk, UK.

# Appendix 1 A inventory of *Mollicutes* species with an available complete genome sequence and their genome characteristics

| Species                                     | Strain                | IMG Genome<br>ID | Release<br>Date | Host Name        | Genome<br>Size | Gene<br>Count | GC   | CDS<br>Count | CDS % | rRNA<br>Count | tRNA<br>Count | w/o function prediction % |
|---------------------------------------------|-----------------------|------------------|-----------------|------------------|----------------|---------------|------|--------------|-------|---------------|---------------|---------------------------|
| Order: Acholeplasmatales                    | Family: Acholeplasma  |                  | Genus: Achol    | leplasma         |                |               |      |              |       |               |               |                           |
| Acholeplasma laidlawii                      | PG-8A                 | 641522601        | 01/08/2008      |                  | 1 496 992      | 1 422         | 0.32 | 1 380        | 97.05 | 6             | 36            | 25.74                     |
| Order: Acholeplasmatales                    | Family: Acholeplasma  | taceae           | Genus: Candi    | datus Phytoplasi | ma             |               |      |              |       |               |               |                           |
| Aster yellows witches'-broom<br>phytoplasma | AY-WB                 | 2606217303       | 10/03/2015      | Plant: Lettuce   | 723 970        | 706           | 0.27 | 665          | 94.19 | 6             | 32            | 32.58                     |
| Candidatus Phytoplasma                      |                       | 642555117        | 01/12/2008      |                  | 879 959        | 727           | 0.27 | 684          | 94.09 | 6             | 35            | 37.55                     |
| australiense                                | NZSb11                | 2554235337       | 01/01/2014      |                  | 959 779        | 1 155         | 0.27 | 1 114        | 96.45 | 6             | 35            | 45.97                     |
| Candidatus Phytoplasma mali                 | AT                    | 642555118        | 01/12/2008      |                  | 601 943        | 518           | 0.21 | 479          | 92.47 | 6             | 32            | 29.54                     |
| Candidatus Phytoplasma solani               | 284/09                | 2558309089       | 26/02/2014      |                  | 570 238        | 547           | 0.28 | 520          | 95.06 | -             | 27            | 23.58                     |
| Onion yellows phytoplasma                   | OY-M                  | 2606217364       | 10/03/2015      |                  | 853 092        | 977           | 0.28 | 935          | 95.70 | 6             | 32            | 39.00                     |
| Order: Entomoplasmatales                    | Family: Entomoplasma  | taceae           | Genus: Meso     | plasma           |                | •             |      |              | •     |               |               |                           |
| Maganlaama flamm                            | L1                    | 2606217385       | 10/03/2015      | Plant: Solidago  | 793 224        | 721           | 0.27 | 682          | 94.59 | 6             | 29            | 19.00                     |
| Mesoplasma florum                           | W37                   | 2558309067       | 26/02/2014      | Plant: Solidago  | 825 824        | 768           | 0.27 | 733          | 95.44 | 6             | 29            | 20.05                     |
| Order: Entomoplasmatales                    | Family: Spiroplasmata |                  | Genus: Spire    | plasma           |                | •             |      |              | •     |               |               |                           |
| Spiroplasma apis                            | B31                   | 2563366575       | 14/04/2014      |                  | 1 160 554      | 1 030         | 0.28 | 998          | 96.89 | 3             | 29            | 30.39                     |
| Spiroplasma chrysopicola                    | DF-1                  | 2554235371       | 01/01/2014      |                  | 1 123 322      | 1 051         | 0.29 | 1 015        | 96.57 | 3             | 33            | 30.54                     |
| Spiroplasma culicicola                      | AES-1                 | 2558860239       | 07/03/2014      | Mosquito         | 1 175 131      | 1 103         | 0.26 | 1 071        | 97.10 | 3             | 29            | 32.64                     |
| Spiroplasma diminutum                       | CUAS-1                | 2554235383       | 01/01/2014      | Mosquito         | 945 296        | 890           | 0.25 | 858          | 96.40 | 3             |               | 27.75                     |
| Spiroplasma mirum                           | SMCA                  | 2558860251       | 07/03/2014      | Rabbit tick      | 1 132 608      | 1 422         | 0.29 | 1 386        | 97.47 | 3             | 33            | 51.76                     |
| Spiroplasma sabaudiense                     | Ar-1343               | 2558860238       | 07/03/2014      | Mosquito         | 1 075 953      | 967           | 0.30 | 931          | 96.28 | 6             | 30            | 30.40                     |
| Spiroplasma syrphidicola                    | EA-1                  | 2554235381       | 01/01/2014      | Hoverfly         | 1 107 344      | 1 044         | 0.29 | 1 009        | 96.65 | 3             | 32            | 31.99                     |
| Spiroplasma taiwanense                      | CT-1                  | 2561511192       | 23/03/2014      | Mosquito         | 1 086 278      | 1 093         | 0.24 | 1 061        | 97.07 | 3             | 29            | 39.98                     |
| Order: Mycoplasmatales                      | Family: Mycoplasmata  | eae              | Genus: Myco     | plasma           |                |               |      |              |       |               |               |                           |
| Candidatus Mycoplasma<br>haemolamae         | Purdue                | 2521172720       | 01/02/2013      | Alpaca           | 756 845        | 961           | 0.39 | 925          | 96.25 | 3             | 33            | 65.87                     |
| Museeleene exclestice                       | 5632                  | 2540341079       | 19/09/2013      |                  | 1 006 702      | 866           | 0.30 | 825          | 95.27 | 6             | 34            | 20.67                     |
| Mycoplasma agalactiae                       | PG2                   | 646564553        | 01/08/2010      |                  | 1 006 702      | 854           | 0.30 | 813          | 95.20 | 6             | 34            | 43.09                     |
| Mycoplasma arthritidis                      | 158L3-1               | 642555141        | 01/12/2008      | Human            | 820 453        | 666           | 0.31 | 631          | 94.74 | 3             | 32            | 34.38                     |
|                                             | CQ-W70                | 2576861438       |                 | Cattle           | 948 516        | 816           | 0.29 | 778          | 95.34 | 4             | 34            | 16.42                     |
| Museeleene heuis                            | Donetta PG45          | 649633071        | 01/07/2011      | Cattle           | 1 003 404      | 806           | 0.29 | 765          | 94.91 | 6             | 34            | 14.27                     |
| Mycoplasma bovis                            | HB0801                | 2521172704       | 01/02/2013      | Cattle           | 991 702        | 849           | 0.29 | 809          | 95.29 | 6             | 34            | 13.90                     |
|                                             | Hubei-1               | 650716062        | 01/12/2011      | Cattle           | 948 121        | 839           | 0.29 | 801          | 95.47 | 4             | 34            | 35.40                     |
| Mycoplasma bovoculi                         | M165/69               | 2558860179       | 07/03/2014      | Cattle           | 760 240        | 625           | 0.28 | 591          | 94.56 | 3             | 30            | 18.40                     |
| Mycoplasma californicum                     | ST-6                  | 2576861462       |                 | Cattle           | 793 841        | 672           | 0.31 | 635          | 94.49 | 6             | 31            | 19.94                     |
| Mycoplasma capricolum                       | ATCC 27343            | 2606217281       | 10/03/2015      | Goat             | 1 010 023      | 875           | 0.24 | 835          | 95.43 | 6             | 30            | 22.74                     |
| Mycoplasma conjunctivae                     | HRC/581               | 644736392        | 01/12/2009      | Sheep            | 846 214        | 725           | 0.29 | 691          | 95.31 | 3             | 29            | 42.62                     |
| Mycoplasma crocodyli                        | MP145                 | 646564554        | 01/08/2010      | Crocodile        | 934 379        | 731           | 0.27 | 689          | 94.25 | 6             | 34            | 25.58                     |
| Mycoplasma cynos                            | C142                  | 2540341156       | 19/09/2013      | Dog              | 998 123        | 891           | 0.26 | 883          | 99.10 | 8             | -             | 26.15                     |
| Mucanlaama formantana                       | JER                   | 648028044        | 01/01/2011      | Human            | 977 524        | 838           | 0.27 | 797          | 95.11 | 5             | 36            | 35.68                     |
| Mycoplasma fermentans                       | M64                   | 649633072        | 01/07/2011      | Human            | 1 118 751      | 1 091         | 0.27 | 1 050        | 96.24 | 5             | 36            | 43.54                     |

| Species                      | Strain              | IMG Genome<br>ID | Release<br>Date | Host Name   | Genome<br>Size | Gene<br>Count | GC   | CDS<br>Count | CDS % | rRNA<br>Count | tRNA<br>Count | w/o function<br>prediction % |
|------------------------------|---------------------|------------------|-----------------|-------------|----------------|---------------|------|--------------|-------|---------------|---------------|------------------------------|
|                              |                     | 2517093027       | 06/09/2012      |             | 986 257        | 809           | 0.32 | 771          | 95.30 | 6             | 32            | 20.02                        |
|                              | CA06_2006.052-5-2P  | 2517093024       | 06/09/2012      |             | 976 412        | 801           | 0.32 | 763          | 95.26 | 6             | 32            | 19.85                        |
|                              | F                   | 646862333        | 01/08/2010      |             | 977 612        | 795           | 0.31 | 756          | 95.09 | 7             | 32            | 25.53                        |
|                              | NC06_2006.080-5-2P  | 2518645544       | 04/12/2012      | House finch | 938 869        | 782           | 0.32 | 744          | 95.14 | 6             | 32            | 19.95                        |
|                              | NC08_2008.031-4-3P  | 2517093025       | 06/09/2012      |             | 926 650        | 777           | 0.32 | 739          | 95.11 | 6             | 32            | 19.95                        |
| Mucanlaama calliaantiaum     | NC95_13295-2-2P     | 2518645562       | 04/12/2012      |             | 953 989        | 792           | 0.32 | 754          | 95.20 | 6             | 32            | 20.33                        |
| Mycoplasma gallisepticum     | NY01_2001.047-5-1P  | 2518645563       | 04/12/2012      |             | 965 525        | 798           | 0.32 | 760          | 95.24 | 6             | 32            | 20.18                        |
|                              | R(high)             | 646862334        | 01/08/2010      |             | 1 012 027      | 805           | 0.31 | 766          | 95.16 | 7             | 32            | 24.97                        |
|                              | R(low)              | 2606217644       | 10/03/2015      |             | 1 012 800      | 826           | 0.31 | 788          | 95.40 | 4             | 32            | 25.30                        |
|                              | S6                  | 2531839059       | 23/08/2013      | Chicken     | 929 411        | 757           | 0.31 | 720          | 95.11 | 4             | 33            | 20.74                        |
|                              | VA94_7994-1-7P      | 2518645561       | 04/12/2012      |             | 964 110        | 805           | 0.32 | 767          | 95.28 | 6             | 32            | 20.50                        |
|                              | WI01_2001.043-13-2P | 2518645557       | 04/12/2012      |             | 939 844        | 784           | 0.32 | 746          | 95.15 | 6             | 32            | 20.28                        |
|                              | G37                 | 2606217665       | 10/03/2015      | Human       | 580 076        | 563           | 0.32 | 521          | 92.54 | 3             | 36            | 17.76                        |
|                              | M2288               | 2540341178       | 19/09/2013      | Human       | 579 558        | 545           | 0.32 | 506          | 92.84 | 3             | 36            | 14.31                        |
| Mycoplasma genitalium        | M2321               | 2512564088       | 31/01/2014      | Human       | 579 977        | 588           | 0.32 | 547          | 93.03 | 3             | 36            | 20.41                        |
| , .                          | M6282               | 2540341080       | 19/09/2013      | Human       | 579 504        | 523           | 0.32 | 484          | 92.54 | 3             | 36            | 14.72                        |
|                              | M6320               | 2540341081       | 19/09/2013      | Human       | 579 796        | 548           | 0.32 | 509          | 92.88 | 3             | 36            | 14.23                        |
| Mycoplasma haemocanis        | Illinois            | 2511231066       | 28/02/2012      | Dog         | 919 992        | 1 190         | 0.35 | 1 156        | 97.14 | 3             | 31            | 71.60                        |
| No se ale suas la suas falla | Langford 1          | 649633073        | 01/07/2011      | Cat         | 1 147 259      | 1 580         | 0.39 | 1 545        | 97.78 | 3             | 31            | 79.49                        |
| Mycoplasma haemofelis        | Ohio2               | 651053045        | 01/12/2011      |             | 1 155 937      | 1 561         | 0.39 | 1 527        | 97.82 | 3             | 31            | 78.99                        |
| Mycoplasma hominis           | PG21, ATCC 23114    | 646311946        | 01/04/2010      | Human       | 665 445        | 563           | 0.27 | 523          | 92.90 | 7             | 33            | 33.04                        |
|                              | 168                 | 650377960        | 01/07/2011      | Pig         | 925 576        | 728           | 0.28 | 695          | 95.47 | 3             | 30            | 15.25                        |
|                              | 168-L               | 2554235345       | 01/01/2014      | Pig         | 921 093        | 726           | 0.28 | 693          | 95.45 | 3             | 30            | 27.55                        |
|                              | 232                 | 2606217661       | 10/03/2015      |             | 892 758        | 713           | 0.29 | 677          | 94.95 | 3             | 30            | 30.43                        |
| Mycoplasma hyopneumoniae     | 7422                | 2554235315       | 01/01/2014      | Pig         | 898 495        | 711           | 0.29 | 677          | 95.22 | 3             | 30            | 27.29                        |
|                              | 7448                | 2606217470       | 10/03/2015      | Pig         | 920 079        | 722           | 0.28 | 686          | 95.01 | 3             | 30            | 29.92                        |
|                              | J                   | 2606217353       | 10/03/2015      | -           | 897 405        | 728           | 0.29 | 690          | 94.78 | 3             | 30            | 29.95                        |
|                              | DBS 1050            | 2554235454       | 01/01/2014      |             | 837 447        | 782           | 0.26 | 749          | 95.78 | 3             | 30            | 21.61                        |
|                              | GDL-1               | 2511231163       | 28/02/2012      |             | 837 480        | 740           | 0.26 | 707          | 95.54 | 3             | 30            | 28.38                        |
| Mycoplasma hyorhinis         | HUB-1               | 648028045        | 01/01/2011      | Pig         | 839 615        | 687           | 0.26 | 654          | 95.20 | 3             | 30            | 23.44                        |
|                              | MCLD                | 2512047042       | 23/03/2012      |             | 829 709        | 811           | 0.26 | 778          | 95.93 | 3             | 30            | 27.37                        |
|                              | SK76                | 2519103106       |                 |             | 836 897        | 786           | 0.26 | 753          | 95.80 | 3             | 30            | 21.88                        |
| Maran la ama la a abii       | 99/014/6            | 651053046        | 01/12/2011      | Cattle      | 1 017 232      | 942           | 0.24 | 905          | 96.07 | 6             | 31            | 6.48                         |
| Mycoplasma leachii           | PG50                | 649633074        | 01/07/2011      | Cattle      | 1 008 951      | 922           | 0.24 | 882          | 95.66 | 6             | 30            | 25.27                        |
|                              | 163K                | 637000180        | 01/12/2006      |             | 777 079        | 669           | 0.25 | 633          | 94.62 | 3             | 28            | 9.27                         |
| Mycoplasma mobile            | 163K                | 2606217309       | 10/03/2015      |             | 777 079        | 688           | 0.25 | 655          | 95.20 | 3             | 28            | 21.80                        |
|                              | 95010               | 650716063        | 01/12/2011      |             | 1 155 838      | 959           | 0.24 | 922          | 96.14 | 6             | 30            | 27.84                        |
|                              | GM12                | 646862335        | 01/08/2010      |             | 1 084 586      | 868           | 0.24 | 830          | 95.62 | 6             | 30            | 18.89                        |
| Mycoplasma mycoides          | GM12                | 646862336        | 01/08/2010      |             | 1 089 202      | 870           | 0.24 | 832          | 95.63 | 6             | 30            | 18.97                        |
|                              | Gladysdale          | 648231714        | 01/01/2011      |             | 1 193 808      | 1 134         | 0.24 | 1 095        | 96.56 | 6             | 30            | 25.93                        |
|                              | PG1                 | 2606217549       | 10/03/2015      |             | 1 211 703      | 1 178         | 0.24 | 1 1 38       | 96.60 | 6             | 30            | 29.37                        |
| Mycoplasma ovis              | Michigan            | 2558309058       | 26/02/2014      |             | 702 511        | 886           | 0.32 | 851          | 96.05 | 4             | 31            | 62.19                        |
| Mycoplasma parvum            | Indiana             | 2554235465       | 01/01/2014      |             | 564 395        | 616           | 0.27 | 582          | 94.48 | 3             | 31            | 49.84                        |
| Mycoplasma penetrans         | HF-2                | 2606217263       | 10/03/2015      | Human       | 1 358 633      | 1 075         |      | 1 0 3 8      | 96.56 | 3             | 30            | 27.53                        |

Appendix 1

| Species                              | Strain             | IMG Genome<br>ID | Release<br>Date | Host Name | Genome<br>Size | Gene<br>Count | GC   | CDS<br>Count | CDS % | rRNA<br>Count | tRNA<br>Count | w/o function<br>prediction % |
|--------------------------------------|--------------------|------------------|-----------------|-----------|----------------|---------------|------|--------------|-------|---------------|---------------|------------------------------|
|                                      | 309                | 2511231209       | 28/02/2012      | Human     | 817 176        | 749           | 0.40 | 707          | 94.39 | 3             | 36            | 17.89                        |
| Mucanlaama nnaumaniaa                | FH                 | 648231715        | 01/01/2011      | Human     | 811 088        | 670           | 0.40 | 629          | 93.88 | 3             | 36            | 31.94                        |
| Mycoplasma pneumoniae                | M129-B7            | 2606217423       | 10/03/2015      | Human     | 816 394        | 796           | 0.40 | 753          | 94.60 | 3             | 37            | 27.39                        |
|                                      | M29                | 2597489969       | 08/12/2014      | Human     | 857 799        | 837           | 0.40 | 794          | 94.86 | 3             | 37            | 27.24                        |
| Mycoplasma pulmonis                  | UAB CTIP           | 2606217467       | 10/03/2015      |           | 963 879        | 789           | 0.27 | 753          | 95.44 | 4             | 29            | 24.84                        |
| Museeleeme nutrefeeiene              | KS1                | 2511231058       | 28/02/2012      | Goat      | 832 603        | 724           | 0.27 | 686          | 94.75 | 6             | 30            | 21.69                        |
| Mycoplasma putrefaciens              | Mput9231           | 2540341179       | 19/09/2013      |           | 859 996        | 746           | 0.27 | 709          | 95.04 | 6             | 30            | 27.21                        |
| Museenleeme evie                     | Illinois           | 650716064        | 01/12/2011      | Pig       | 742 431        | 879           | 0.31 | 844          | 96.02 | 3             | 32            | 62.80                        |
| Mycoplasma suis                      | KI_3806            | 2511231073       | 28/02/2012      | Pig       | 709 270        | 844           | 0.31 | 809          | 95.85 | 3             | 32            | 62.56                        |
| Mycoplasma synoviae                  | 53                 | 2606217384       | 10/03/2015      |           | 799 476        | 736           | 0.28 | 695          | 94.43 | 4             | 34            | 27.72                        |
| Mycoplasma wenyonii                  | Massachusetts      | 2517093037       | 06/09/2012      | Cattle    | 650 228        | 687           | 0.34 | 652          | 94.91 | 3             | 32            | 50.22                        |
| Order: Mycoplasmatales               | Family: Mycoplasma | taceae           | Genus: Urea     | olasma    |                |               |      |              |       |               |               |                              |
|                                      |                    | 641522658        | 01/08/2008      | Human     | 751 679        | 642           | 0.25 | 609          | 94.86 | 6             | 27            | 30.69                        |
| Ureaplasma parvum                    | ATCC 700970        | 2606217444       | 10/03/2015      | Human     | 751 719        | 656           | 0.25 | 617          | 94.05 | 6             | 30            | 27.59                        |
| Ureaplasma urealyticum Western 64334 |                    | 643348586        | 01/04/2009      | Human     | 874 478        | 679           | 0.26 | 646          | 95.14 | 6             | 27            | 31.08                        |

Data was downloaded from Integrated Microbial Genomes (IMG) system (<u>http://www.jgi.doe.gov/</u>) on 25 June 2015

#### Summary of the above genomes

| Order                | Family                   | Genus                   | Number    | Number    | Genome      | Gene      | GC        | CDS       | CDS %       | rRNA  | tRNA  | w/o function |
|----------------------|--------------------------|-------------------------|-----------|-----------|-------------|-----------|-----------|-----------|-------------|-------|-------|--------------|
|                      | -                        |                         | of        | of        | Size        | Count     |           | count     |             | Count | Count | prediction % |
|                      |                          |                         | Species   | Genome*   |             |           |           |           |             |       |       | -            |
| Acholeplasmatales    | Acholeplasmataceae       | Acholeplasma            | 1         | 1         | 1 497       | 1 422     | 0.32      | 1 380     | 97.05       | 6     | 36    | 25.74        |
|                      |                          | Phytoplasma Candidatus  | 5         | 6         | 570-960     | 518-1 155 | 0.21-0.28 | 479-1 114 | 92.47-96.45 | 6     | 27-35 | 23.58-45.97  |
| Entomoplasmatales    | Entomoplasmataceae       | Mesoplasma              | 1         | 2         | 793-825     | 721-768   | 0.27      | 682-733   | 94.59-95.44 | 6     | 29    | 19.00-20.05  |
|                      | Spiroplasmataceae        | Spiroplasma             | 8         | 8         | 945-1 175   | 890-1 422 | 0.24-0.30 | 858-1 386 | 96.28-97.47 | 3-6   | 29-33 | 27.75-51.76  |
| Mycoplasmatales      | Mycoplasmataceae         | Mycoplasma              | 30        | 71        | 564-1 359   | 523-1 580 | 0.24-0.40 | 506-1 545 | 92.54-99.10 | 3-8   | 28-37 | 6.48-79.49   |
|                      |                          | Ureaplasma              | 2         | 3         | 752-874     | 642-679   | 0.25-0.26 | 609-646   | 94.05-95.14 | 6     | 27-30 | 27.59-31.08  |
| Class: Mollicutes    |                          |                         | 47        | 91        | 564-1 497   | 518-1 580 | 0.21-0.40 | 479-1 545 | 92.47-99.10 | 3-8   | 27-37 | 6.48-79.49   |
| * In many cases more | e than one strain of the | same species had a comp | ete genor | ne sequen | ce availabl | e         | •         | •         |             |       |       | <u>.</u>     |

## Appendix 2 Supplementary tables and figures for Chapter 3

Supplementary Table 2.1 Contigs generated by the GS de novo assembler arrange from longest to shortest\*

| Contig      | Length (bp)   | Number of reads | Contig      | Length (bp)  | Number of reads |
|-------------|---------------|-----------------|-------------|--------------|-----------------|
| contig00239 | 39354         | 4190            | contig00083 | 4229         | 558             |
| contig00095 | 31157         | 2304            | contig00206 | 4137         | 341             |
| contig00059 | 26529         | 2537            | contig00144 | 4125         | 216             |
| contig00408 | 25616         | 1634            | contig00343 | 4099         | 233             |
| contig00350 | 24392         | 2473            | contig00427 | 4059         | 251             |
| contig00132 | 21804         | 1480            | contig00198 | 3922         | 325             |
| contig00135 | 21012         | 1729            | contig00204 | 3897         | 256             |
| contig00160 | 20872         | 2102            | contig00088 | 3768         | 202             |
| contig00061 | 17129         | 2026            | contig00255 | 3753         | 170             |
| contig00166 | 15961         | 819             | contig00020 | 3618         | 211             |
| contig00051 | 15263         | 1508            | contig00267 | 3155         | 229             |
| contig00316 | 14165         | 808             | contig00433 | 3153         | 159             |
| contig00311 | 14034         | 1003            | contig00155 | 3089         | 190             |
| contig00116 | 13910         | 923             | contig00222 | 2966         | 110             |
| contig00353 | 13542         | 915             | contig00067 | 2955         | 177             |
| contig00034 | 13149         | 631             | contig00118 | 2906         | 155             |
| contig00161 | 13130         | 1297            | contig00465 | 2859         | 231             |
| contig00180 | 12250         | 1026            | contig00200 | 2859         | 214             |
| contig00098 | 12230         | 1315            | contig00200 | 2780         | 298             |
| contig00098 | 11983         | 922             | contig00077 | 2750         | 124             |
| contig00013 | 10933         | 816             | contig00097 | 2750         | 124             |
| •           | 10406         |                 | contig00091 |              | 119             |
| contig00142 | 10406         | 1062<br>1298    | <b>v</b>    | 2724<br>2712 | 310             |
| contig00177 |               |                 | contig00371 |              |                 |
| contig00070 | 10116<br>9874 | 861             | contig00085 | 2663         | 168             |
| contig00285 |               | 463             | contig00004 | 2638         | 385             |
| contig00148 | 9719          | 637             | contig00189 | 2614         | 370             |
| contig00389 | 9507          | 909             | contig00196 | 2344         | 45              |
| contig00191 | 9482          | 1026            | contig00092 | 2248         | 327             |
| contig00075 | 9466          | 531             | contig00048 | 2201         | 69              |
| contig00009 | 8637          | 1062            | contig00322 | 2191         | 176             |
| contig00058 | 8088          | 508             | contig00209 | 2171         | 67              |
| contig00068 | 7993          | 702             | contig00257 | 2092         | 81              |
| contig00159 | 7930          | 691             | contig00169 | 2078         | 107             |
| contig00011 | 7663          | 540             | contig00175 | 2060         | 150             |
| contig00046 | 7436          | 298             | contig00219 | 1999         | 53              |
| contig00130 | 7434          | 708             | contig00474 | 1981         | 121             |
| contig00450 | 7396          | 353             | contig00165 | 1978         | 1054            |
| contig00056 | 6932          | 222             | contig00221 | 1944         | 79              |
| contig00284 | 6856          | 475             | contig00007 | 1938         | 59              |
| contig00151 | 6529          | 740             | contig00245 | 1892         | 181             |
| contig00052 | 6515          | 329             | contig00038 | 1884         | 67              |
| contig00050 | 6462          | 388             | contig00187 | 1859         | 60              |
| contig00014 | 6425          | 745             | contig00253 | 1845         | 138             |
| contig00117 | 6219          | 348             | contig00317 | 1811         | 460             |
| contig00212 | 6173          | 251             | contig00185 | 1796         | 111             |
| contig00152 | 6137          | 571             | contig00030 | 1731         | 56              |
| contig00006 | 6028          | 268             | contig00018 | 1719         | 42              |
| contig00031 | 5819          | 479             | contig00054 | 1677         | 221             |
| contig00262 | 5683          | 327             | contig00251 | 1658         | 49              |
| contig00274 | 5663          | 641             | contig00261 | 1601         | 70              |
| contig00258 | 5545          | 157             | contig00381 | 1576         | 276             |
| contig00218 | 5293          | 298             | contig00352 | 1545         | 75              |
| contig00467 | 5147          | 528             | contig00190 | 1532         | 235             |
| contig00002 | 4807          | 161             | contig00210 | 1514         | 52              |
| contig00364 | 4675          | 241             | contig00233 | 1476         | 103             |
| contig00199 | 4521          | 253             | contig00005 | 1419         | 64              |
| contig00237 | 4423          | 277             | contig00432 | 1349         | 294             |
| contig00178 | 4323          | 250             | contig00125 | 1317         | 65              |
| contig00133 | 4272          | 353             | contig00357 | 1312         | 63              |
| contig00220 | 4231          | 235             | contig00032 | 1276         | 56              |
| CONTIGUOZZO | 7231          | 200             | 1/2         | 1270         | 50              |

| contig00081         1219         313         contig00482         444         68           contig00036         1176         97         contig0029         439         12           contig00281         1176         276         contig0029         439         12           contig00281         1133         181         contig0027         424         137           contig00281         1122         14         contig0027         419         23           contig00281         1085         54         contig0027         419         23           contig00331         1004         26         contig0028         410         8           contig00481         1055         54         contig00485         409         24           contig00481         1055         54         contig00485         404         127           contig00481         1055         84         contig0049         404         127           contig00186         926         88         contig00418         404         127           contig00186         930         212         contig0018         390         212           contig00186         946         17         contig00181         387 <th>Contig</th> <th>Length (bp)</th> <th>Number of reads</th> <th>Contig</th> <th>Length (bp)</th> <th>Number of reads</th> | Contig      | Length (bp) | Number of reads | Contig      | Length (bp) | Number of reads |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------|-------------|-------------|-----------------|
| contig0026         1176         97         contig0029         4.39         12           contig00289         1175         276         contig00024         4.37         6           contig000129         1133         181         contig00037         4.24         137           contig00053         1122         14         contig00255         4.21         40           contig00281         1098         74         contig00275         4.19         23           contig00481         1055         54         contig0028         410         8           contig0033         1004         26         contig0048         409         24           contig0033         1004         26         contig00497         405         148           contig00341         1055         54         contig00463         388         233           contig00343         1004         26         contig00497         405         18           contig00379         881         38         contig0041         387         145           contig00441         806         24         contig00367         370         174           contig00367         797         4         contig00367         370                                                                                                                          | contig00081 | 1219        | 313             | contig00482 | 444         | 68              |
| contig00399         1176         276         contig00290         437         6           contig00129         1133         181         contig00137         424         137           contig00039         1124         39         contig00257         424         40           contig000291         1089         74         contig00275         419         23           contig0048         1055         54         contig00275         419         23           contig0048         1050         20         contig00485         409         24           contig00393         1004         26         contig0048         405         148           contig00366         398         contig0037         405         148           contig00379         811         38         contig00386         398         233           contig00418         910         17         contig00386         392         98           contig00418         905         24         contig00386         392         98           contig0041         805         24         contig00387         370         174           contig0038         787         14         contig00387         377         174 <td>contig00354</td> <td>1182</td> <td>85</td> <td>contig00057</td> <td>440</td> <td>7</td>                                  | contig00354 | 1182        | 85              | contig00057 | 440         | 7               |
| contig00289         1153         58         contig0010137         4284         66           contig00039         1124         39         contig00137         424         137           contig00039         1122         14         contig00255         421         40           contig00281         1055         54         contig00275         419         23           contig0048         1055         54         contig0048         409         24           contig0031         1060         20         contig0048         409         24           contig0016         926         88         contig0048         405         18           contig00186         926         88         contig0038         398         233           contig00146         946         17         contig00188         392         98           contig00146         846         17         contig00188         392         98           contig00141         806         12         contig00141         387         145           contig00141         806         24         contig0044         369         286           contig00241         796         22         contig00243         367                                                                                                                                  | contig00036 | 1176        | 97              | contig00229 | 439         | 12              |
| contig00129         1133         181         contig0017         424         137           contig00053         1122         14         contig00255         421         40           contig00281         1089         74         contig00255         441         93           contig0048         1055         54         contig00275         419         23           contig0033         1004         26         contig00385         409         24           contig0033         1004         26         contig00385         409         24           contig00316         926         88         contig00386         398         233           contig0034         910         17         contig00386         398         233           contig0034         987         17         contig00386         392         98           contig0034         910         17         contig00141         373         16           contig0035         797         4         contig00361         370         174           contig0036         797         4         contig00243         367         18           contig0034         769         137         contig00243         361                                                                                                                                       | contig00359 | 1176        | 276             | contig00250 | 437         | 6               |
| contig00039         1124         39         contig0028         422         39           contig00053         1122         14         contig0028         421         40           contig00468         1055         54         contig0028         419         23           contig0043         1050         20         contig0048         409         24           contig0043         1050         20         contig0048         409         24           contig0046         926         88         contig00402         404         127           contig00166         926         88         contig00188         392         233           contig00164         940         17         contig00188         392         98           contig00164         866         17         contig00188         392         98           contig00141         806         12         contig0041         387         145           contig00214         786         22         contig0047         370         174           contig00241         786         22         contig00243         367         18           contig00214         786         22         contig00243         361                                                                                                                                        | contig00269 | 1153        | 58              | contig00044 | 426         | 6               |
| contig00063         1122         14         contig00275         421         440           contig00468         1055         54         contig00425         410         8           contig0043         1050         20         contig00485         409         24           contig00133         1004         26         contig00485         409         24           contig00166         926         88         contig00140         405         18           contig00166         926         88         contig00012         398         233           contig00148         910         17         contig00166         390         212           contig00146         846         17         contig00166         390         212           contig00041         805         24         contig00451         373         16           contig00141         796         23         contig0044         369         286           contig00141         786         22         contig0044         369         286           contig00142         778         18         contig00476         344         78           contig00349         769         137         contig00476         344                                                                                                                                |             | 1133        | 181             | contig00137 | 424         | 137             |
| contig00063         1122         14         contig00275         421         440           contig00468         1055         54         contig00425         410         8           contig0043         1050         20         contig00485         409         24           contig00133         1004         26         contig00485         409         24           contig00166         926         88         contig00140         405         18           contig00166         926         88         contig00012         398         233           contig00148         910         17         contig00166         390         212           contig00146         846         17         contig00166         390         212           contig00041         805         24         contig00451         373         16           contig00141         796         23         contig0044         369         286           contig00141         786         22         contig0044         369         286           contig00142         778         18         contig00476         344         78           contig00349         769         137         contig00476         344                                                                                                                                | contig00039 | 1124        | 39              | contig00410 | 422         | 39              |
| contig00468         1055         54         contig0028         410         8           contig0043         1050         20         contig00485         409         24           contig0022         977         141         contig0049         405         148           contig00248         910         17         contig00164         404         127           contig00179         881         38         contig00185         392         15           contig00146         846         17         contig00166         390         212           contig00047         805         12         contig00367         370         174           contig00041         805         24         contig00367         370         174           contig0035         797         4         contig00461         369         286           contig00214         786         22         contig00243         367         18           contig00214         786         23         contig00243         367         18           contig00214         786         24         contig00243         367         18           contig00214         786         26         contig00261         353                                                                                                                                     | contig00053 | 1122        | 14              |             | 421         | 40              |
| contig00468         1055         54         contig0028         410         8           contig0043         1050         20         contig00485         409         24           contig0022         977         141         contig0049         405         148           contig00248         910         17         contig00164         404         127           contig00179         881         38         contig00185         392         15           contig00146         846         17         contig00166         390         212           contig00047         805         12         contig00367         370         174           contig00041         805         24         contig00367         370         174           contig0035         797         4         contig00461         369         286           contig00214         786         22         contig00243         367         18           contig00214         786         23         contig00243         367         18           contig00214         786         24         contig00243         367         18           contig00214         786         26         contig00261         353                                                                                                                                     | contig00291 | 1089        | 74              | contig00275 | 419         | 23              |
| contig00043         1050         20         contig00485         409         24           contig00131         1004         26         contig00480         405         148           contig00186         926         88         contig00402         404         127           contig00448         910         17         contig00386         398         233           contig00179         881         38         contig00168         392         98           contig0044         897         17         contig0066         390         212           contig0044         866         17         contig00413         373         16           contig00441         866         12         contig0047         370         174           contig00035         797         4         contig00243         367         18           contig00142         776         18         contig00243         361         11           contig00182         777         18         contig00243         361         11           contig0028         768         26         contig00263         353         10           contig00193         727         46         contig00263         331                                                                                                                                      |             |             | 54              |             |             |                 |
| contig000033         1004         26         contig0197         405         148           contig00186         926         88         contig0042         404         127           contig00248         910         17         contig00386         398         233           contig000379         881         38         contig00158         392         98           contig0045         806         12         contig00158         392         98           contig0045         806         12         contig00451         373         16           contig00041         805         24         contig00451         373         16           contig00142         776         4         contig00441         389         286           contig00142         778         18         contig00243         367         18           contig00349         769         137         contig00243         361         11           contig00368         733         132         contig00466         353         10           contig00368         733         132         contig00476         344         78           contig00368         733         132         contig00476         344                                                                                                                                 |             |             | 20              | •           | 409         | 24              |
| contig00292         977         141         contig00400         405         18           contig00186         926         88         contig00402         404         127           contig00244         910         17         contig0012         392         15           contig00042         897         17         contig00018         392         98           contig00045         806         12         contig00046         390         212           contig00041         805         24         contig00471         337         16           contig00035         797         4         contig00471         336         286           contig0041         796         23         contig00243         367         18           contig00244         786         22         contig00243         367         18           contig00244         786         137         contig00243         363         10           contig00486         733         132         contig00266         353         10           contig00185         750         42         contig00266         353         10           contig00186         750         45         contig00160         331                                                                                                                                    |             |             |                 |             |             | 148             |
| contig00186         926         88         contig0042         404         127           contig000248         910         17         contig0012         392         15           contig000379         881         38         contig00158         392         98           contig00044         846         17         contig00141         387         145           contig000379         881         00         212         contig00037         373         16           contig00035         797         4         contig0041         387         145           contig00035         797         4         contig00241         376         18           contig00241         786         22         contig00242         361         11           contig00241         786         22         contig00242         361         11           contig0028         788         26         contig00243         363         10           contig0028         783         132         contig00146         344         78           contig00195         750         42         contig00163         331         32           contig00186         733         132         contig00164                                                                                                                                      | -           |             |                 | -           |             |                 |
| contig00248         910         17         contig00366         398         233           contig00042         897         17         contig0012         392         15           contig0079         881         38         contig0066         390         212           contig00045         806         12         contig00451         373         16           contig00041         805         24         contig00451         373         16           contig00214         796         23         contig00244         369         286           contig00214         796         23         contig00243         367         18           contig00244         786         22         contig00243         361         11           contig00182         778         18         contig00246         353         10           contig0028         733         132         contig00276         344         78           contig00195         750         42         contig00143         342         15           contig00195         750         42         contig00143         327         12           contig00197         726         345         contig00143         327                                                                                                                                      | -           |             |                 |             |             |                 |
| contig00042         897         17         contig00012         392         15           contig00146         881         38         contig00166         392         98           contig00041         806         12         contig00066         390         212           contig00041         805         24         contig00267         373         16           contig00035         797         4         contig00247         370         174           contig00214         786         22         contig00243         367         18           contig00214         786         22         contig00242         361         11           contig00208         778         18         contig00243         367         18           contig00208         789         137         contig00103         358         13           contig00389         727         46         contig00266         353         10           contig00049         733         132         contig00276         334         32           contig00079         726         345         contig00160         331         32           contig00166         705         171         contig00177         325                                                                                                                                  |             |             |                 | -           | -           |                 |
| contig00379         881         38         contig00158         392         98           contig00046         806         12         contig00066         390         212           contig00045         806         12         contig000411         387         145           contig00041         805         24         contig00451         373         16           contig00241         796         23         contig0044         369         286           contig00218         778         18         contig00423         367         18           contig00182         778         18         contig00103         358         13           contig00195         750         442         contig00103         356         130           contig00195         750         442         contig00104         342         15           contig00088         733         132         contig00104         342         15           contig00195         750         442         contig00145         327         12           contig00196         727         46         contig00127         325         53           contig00165         705         171         contig00145         327 <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                 | ,           |             |                 |             |             |                 |
| contig00146         846         17         contig00066         390         212           contig00045         806         12         contig000451         373         145           contig00041         805         224         contig000451         373         16           contig00214         796         23         contig00243         367         18           contig00214         786         22         contig00243         367         18           contig00240         769         137         contig00243         3667         18           contig00268         768         26         contig00266         353         10           contig00268         733         132         contig00266         353         10           contig0068         733         132         contig0029         331         32           contig00766         744         78         contig0009         727         46         contig00104         342         15           contig0079         726         345         contig00104         342         15         contig00165         331         32           contig00166         705         171         contig00173         315         137 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                          |             |             |                 |             |             |                 |
| contig00045         806         12         contig0011         387         145           contig00035         797         4         contig00367         370         174           contig00035         797         4         contig00367         370         174           contig00035         797         4         contig00367         370         174           contig00182         778         18         contig00243         367         18           contig00182         778         18         contig00242         361         11           contig00182         778         18         contig00243         358         13           contig00208         768         26         contig00266         353         10           contig00195         750         42         contig00104         342         15           contig00079         726         345         contig00150         331         3           contig0018         696         49         contig00127         325         53           contig0018         696         49         contig00127         326         53           contig0018         697         50         contig00127         325 <t< td=""><td>•</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                   | •           |             |                 |             |             |                 |
| contig00041         805         24         contig00451         373         16           contig00241         796         23         contig00244         369         286           contig00214         786         22         contig00243         367         18           contig00249         769         137         contig00243         367         18           contig00249         769         137         contig00242         361         11           contig00249         769         137         contig00266         353         10           contig00368         733         132         contig00266         353         10           contig00368         733         132         contig00176         344         78           contig00368         733         132         contig00180         331         32           contig0040         719         28         contig00150         331         32           contig00207         687         22         contig00177         325         53           contig0018         696         49         contig0037         315         137           contig00207         687         22         contig0037         315                                                                                                                                   | -           |             |                 |             |             |                 |
| contig00035         797         4         contig00247         370         174           contig00241         796         23         contig00243         367         18           contig00182         778         18         contig00242         361         11           contig00203         367         18         contig00203         358         13           contig00208         768         26         contig00211         356         130           contig00208         768         26         contig00266         353         10           contig00089         727         46         contig00164         342         15           contig00079         726         345         contig00150         331         32           contig00156         705         171         contig00145         327         12           contig00158         705         177         contig00145         327         12           contig00121         657         50         contig00145         324         9           contig00121         657         50         contig0039         320         4           contig00121         657         50         contig0031         308                                                                                                                                       | •           |             |                 | •           |             |                 |
| contig00241         796         23         contig00243         369         286           contig00182         778         18         contig00242         361         11           contig00182         778         18         contig00103         358         13           contig00208         768         26         contig00266         353         10           contig00368         733         132         contig00104         344         78           contig00195         750         42         contig00104         342         15           contig00089         727         46         contig00104         342         15           contig00197         726         345         contig00150         331         3           contig00240         719         28         contig00161         327         12           contig00186         696         49         contig00162         324         9           contig00207         687         22         contig0039         320         4           contig00161         643         84         contig00437         315         137           contig00064         621         262         contig00131         297                                                                                                                                      |             |             |                 | •           |             |                 |
| contig00214         786         22         contig00243         367         18           contig00182         778         18         contig00242         361         11           contig00208         769         137         contig00211         356         130           contig00208         768         26         contig00266         353         10           contig0038         733         132         contig00076         344         78           contig00079         726         345         contig00029         331         3           contig00165         705         171         contig00150         331         32           contig00156         705         171         contig00162         324         9           contig00121         657         50         contig0039         320         4           contig00037         617         11         contig00037         315         137           contig00037         617         11         contig0018         297         10           contig00026         589         67         contig0031         295         36           contig00026         589         67         contig0031         295                                                                                                                                        | •           |             |                 | 5           |             |                 |
| contig00182         778         18         contig00242         361         11           contig00349         769         137         contig00211         356         130           contig0028         768         26         contig00266         353         10           contig00368         733         132         contig00266         353         10           contig00079         726         345         contig0014         342         15           contig0079         726         345         contig00150         331         3           contig00240         719         28         contig00150         331         3           contig00188         696         49         contig00127         325         53           contig00188         696         49         contig00437         315         137           contig00161         643         84         contig00437         315         137           contig000510         643         84         contig00437         315         137           contig00064         621         262         contig00437         315         137           contig00082         614         143         contig0015         297                                                                                                                                 | •           |             |                 |             |             |                 |
| contig00349         769         137         contig00103         358         13           contig00208         768         26         contig00211         356         130           contig00195         750         42         contig00266         353         10           contig00088         733         132         contig00144         344         78           contig00079         726         345         contig00150         331         3           contig00156         705         171         contig00145         327         12           contig00207         687         22         contig00127         325         53           contig00207         687         22         contig00137         315         137           contig00121         657         50         contig00399         320         4           contig00137         617         11         contig00437         315         137           contig00037         617         11         contig00139         305         132           contig00179         607         136         contig00181         297         10           contig0037         617         11         contig00313         295                                                                                                                                 | ,           |             |                 | •           |             |                 |
| contig00208         768         26         contig00211         356         130           contig00195         750         42         contig00266         353         10           contig00089         727         46         contig00104         344         78           contig0079         726         345         contig00103         331         3           contig00156         705         171         contig00145         327         12           contig00166         705         171         contig00127         325         53           contig00121         667         22         contig0039         320         4           contig00121         667         50         contig00137         315         137           contig000207         687         22         contig00130         308         113           contig000121         667         50         contig00130         305         132           contig00027         617         11         contig00130         305         132           contig00038         617         11         contig00131         297         15           contig00078         582         255         contig00141         297                                                                                                                                |             |             | -               |             |             |                 |
| contig00195         750         42         contig00266         353         10           contig00388         733         132         contig00476         344         78           contig00079         726         345         contig00102         331         3           contig00179         726         345         contig00150         331         32           contig00178         705         171         contig00145         327         12           contig00188         696         49         contig00127         325         53           contig00207         687         22         contig00399         320         4           contig00121         657         50         contig00399         320         4           contig00064         621         262         contig00437         315         137           contig00082         614         143         contig0018         308         113           contig00026         589         67         contig00181         297         10           contig00078         582         255         contig00143         278         12           contig00046         561         25         contig00143         278                                                                                                                                  | •           |             |                 | -           |             |                 |
| contig00368         733         132         contig00176         344         78           contig00089         727         46         contig00029         331         3           contig00179         726         345         contig00029         331         3           contig001266         705         171         contig00127         325         53           contig00121         657         50         contig00127         325         53           contig00121         657         50         contig00123         308         113           contig00121         657         50         contig00437         315         137           contig00082         617         11         contig00430         308         113           contig00082         614         143         contig00181         297         15           contig00082         614         143         contig0011         290         51           contig00078         582         255         contig0031         295         36           contig00086         570         19         contig00131         295         36           contig00086         570         19         contig0027         276                                                                                                                                  | -           |             | 26              |             |             | 130             |
| contig00089         727         46         contig00104         342         15           contig00079         726         345         contig0029         331         3           contig00166         719         28         contig00150         331         32           contig00166         705         171         contig00177         325         53           contig00170         687         22         contig00162         324         9           contig0010         643         84         contig00162         324         9           contig0010         643         84         contig00162         315         137           contig000121         657         50         contig00139         308         113           contig00013         617         11         contig00139         305         132           contig00026         614         143         contig00181         297         15           contig00026         589         67         contig0031         295         36           contig00078         582         255         contig0031         290         51           contig0016         570         19         contig00148         278                                                                                                                                        | contig00195 | 750         | 42              | contig00266 | 353         | 10              |
| contig00079         726         345         contig0029         331         3           contig00156         705         171         contig00150         331         32           contig00127         325         53         327         12           contig00127         687         22         contig00127         325         53           contig00121         657         50         contig00399         320         4           contig00121         657         50         contig00399         320         4           contig0010         643         84         contig00437         315         137           contig00037         617         11         contig00139         305         132           contig00037         617         11         contig0015         297         15           contig00179         607         136         contig00181         297         10           contig00179         607         136         contig00181         297         10           contig0018         582         255         contig00181         297         10           contig00078         582         255         contig00143         278         12      <                                                                                                                                        | contig00368 | 733         | 132             | contig00476 | 344         | 78              |
| contig00240         719         28         contig00150         331         32           contig00156         705         171         contig00145         327         12           contig00127         325         53         53         53           contig00207         687         22         contig00399         320         4           contig00510         643         84         contig00437         315         137           contig00064         621         262         contig00430         308         113           contig00082         614         143         contig0015         297         15           contig00179         607         136         contig0015         297         15           contig00082         614         143         contig00181         297         10           contig00078         582         255         contig0010         290         51           contig00049         561         25         contig00143         278         12           contig00140         556         71         contig00143         278         12           contig00157         546         157         contig00297         276         12                                                                                                                                            | contig00089 | 727         | 46              | contig00104 | 342         | 15              |
| contig00156         705         171         contig00145         327         12           contig0188         696         49         contig00127         325         53           contig00207         687         22         contig00162         324         9           contig00121         657         50         contig00399         320         4           contig00510         643         84         contig0037         315         137           contig00064         621         262         contig00139         305         132           contig00082         614         143         contig0015         297         15           contig00179         607         136         contig00181         297         10           contig00078         582         255         contig0010         290         51           contig00078         582         255         contig00143         278         12           contig00049         561         25         contig00143         278         12           contig00140         556         71         contig0027         276         12           contig00047         540         5         contig0028         270                                                                                                                                        | contig00079 | 726         | 345             | contig00029 | 331         | 3               |
| contig001188         696         49         contig00127         325         53           contig00207         687         22         contig00162         324         9           contig00121         657         50         contig00399         320         4           contig00064         621         262         contig00437         315         137           contig00064         621         262         contig0019         308         113           contig00082         614         143         contig0015         297         15           contig00082         614         143         contig00181         295         36           contig00078         582         255         contig00110         290         51           contig00078         582         255         contig00101         290         51           contig00140         556         71         contig00143         278         12           contig00140         556         71         contig00297         276         12           contig00157         546         157         contig00286         266         64           contig00124         527         139         contig00499         265                                                                                                                                | contig00240 | 719         | 28              | contig00150 | 331         | 32              |
| contig00207         687         22         contig00162         324         9           contig00510         643         84         contig00399         320         4           contig00510         643         84         contig00437         315         137           contig00064         621         262         contig00430         308         113           contig00082         617         11         contig0015         297         15           contig00082         614         143         contig00015         297         15           contig00082         614         143         contig00181         297         10           contig00078         582         255         contig00010         290         51           contig00078         582         255         contig00140         290         33           contig00049         561         25         contig00143         278         12           contig00049         561         25         contig0027         276         12           contig00140         556         71         contig0028         275         175           contig00157         546         157         contig0028         275                                                                                                                                    | contig00156 | 705         | 171             | contig00145 | 327         | 12              |
| contig00121         657         50         contig00399         320         4           contig00510         643         84         contig00437         315         137           contig00064         621         262         contig00437         308         113           contig00082         614         143         contig00015         297         15           contig00082         614         143         contig00015         297         15           contig00082         614         143         contig00015         297         15           contig00082         614         143         contig000112         297         10           contig00082         67         contig0031         295         36           contig00078         582         255         contig0010         290         51           contig00049         561         25         contig00143         278         12           contig00140         556         71         contig00247         276         12           contig00147         540         5         contig00246         270         7           contig00147         540         5         contig000496         266         64                                                                                                                                    | contig00188 | 696         | 49              | contig00127 | 325         | 53              |
| contig00510         643         84         contig00437         315         137           contig00064         621         262         contig00430         308         113           contig00037         617         11         contig00139         305         132           contig00082         614         143         contig0015         297         15           contig00179         607         136         contig0031         295         36           contig00026         589         67         contig0031         295         36           contig00078         582         255         contig0010         290         51           contig00140         561         25         contig0013         278         12           contig00140         556         71         contig00297         276         12           contig00157         546         157         contig00276         175         175           contig00124         527         139         contig00246         270         7           contig00023         504         30         contig0049         265         471           contig00183         492         19         contig00238         256                                                                                                                                   | contig00207 | 687         | 22              | contig00162 | 324         | 9               |
| contig00064         621         262         contig00430         308         113           contig00037         617         11         contig00139         305         132           contig00082         614         143         contig00015         297         15           contig00079         607         136         contig00018         297         10           contig00026         589         67         contig00031         295         36           contig00078         582         255         contig00010         290         51           contig00078         582         255         contig00010         281         103           contig00049         561         25         contig00143         278         12           contig00140         556         71         contig00297         276         12           contig00264         547         56         contig00297         276         12           contig00047         540         5         contig00246         270         7           contig00124         527         139         contig0046         266         64           contig00203         504         30         contig00477         263                                                                                                                                 | contig00121 | 657         | 50              | contig00399 | 320         | 4               |
| contig00037         617         11         contig00139         305         132           contig00082         614         143         contig00015         297         15           contig00179         607         136         contig00181         297         10           contig00026         589         67         contig0031         295         36           contig00078         582         255         contig00049         290         33           contig00049         561         25         contig00110         281         103           contig00140         556         71         contig00297         276         12           contig00264         547         56         contig00246         270         7           contig00157         546         157         contig00246         270         7           contig00124         527         139         contig00496         266         64           contig00205         500         60         contig00497         263         42           contig00205         500         60         contig00380         256         7           contig00205         500         60         contig00238         252                                                                                                                                    | contig00510 | 643         | 84              | contig00437 | 315         | 137             |
| contig00082         614         143         contig00015         297         15           contig00179         607         136         contig00181         297         10           contig00026         589         67         contig00331         295         36           contig00078         582         255         contig00049         290         33           contig00306         570         19         contig00710         281         103           contig00140         556         71         contig00143         278         12           contig00264         547         56         contig00297         276         12           contig00157         546         157         contig00246         270         7           contig00124         527         139         contig00496         266         64           contig00025         500         60         contig00497         263         42           contig00183         492         19         contig00238         252         3           contig00183         492         19         contig00351         242         112           contig0016         488         18         contig00471         251                                                                                                                                   | contig00064 | 621         | 262             | contig00430 | 308         | 113             |
| contig00082         614         143         contig00015         297         15           contig00179         607         136         contig00181         297         10           contig00026         589         67         contig00331         295         36           contig00078         582         255         contig00049         290         33           contig00306         570         19         contig00710         281         103           contig00140         556         71         contig00143         278         12           contig00264         547         56         contig00297         276         12           contig00157         546         157         contig00246         270         7           contig00124         527         139         contig00496         266         64           contig00025         500         60         contig00497         263         42           contig00183         492         19         contig00238         252         3           contig00183         492         19         contig00351         242         112           contig0016         488         18         contig00471         251                                                                                                                                   | contig00037 | 617         | 11              | contig00139 | 305         | 132             |
| contig00179         607         136         contig00181         297         10           contig00026         589         67         contig00331         295         36           contig00078         582         255         contig00010         290         51           contig00306         570         19         contig00149         281         103           contig00140         556         71         contig00143         278         12           contig00264         547         56         contig00297         276         12           contig00157         546         157         contig00246         270         7           contig00144         527         139         contig0049         266         64           contig00124         527         139         contig00477         263         42           contig0023         504         30         contig00477         263         42           contig0016         488         18         contig00380         256         7           contig0016         488         18         contig00471         251         102           contig0017         469         44         contig00351         242                                                                                                                                       |             | 614         | 143             |             | 297         | 15              |
| contig00026         589         67         contig0031         295         36           contig00078         582         255         contig00010         290         51           contig00306         570         19         contig00469         290         33           contig00140         556         71         contig00143         278         12           contig00264         547         56         contig00297         276         12           contig00157         546         157         contig00264         270         7           contig00047         540         5         contig00264         270         7           contig00124         527         139         contig0049         265         471           contig00023         504         30         contig00477         263         42           contig00205         500         60         contig00238         252         3           contig00183         492         19         contig00238         252         3           contig00120         488         18         contig00351         242         112           contig001210         488         24         contig00351         242                                                                                                                                        |             | 607         | 136             |             | 297         | 10              |
| contig00078         582         255         contig0010         290         51           contig00306         570         19         contig0049         290         33           contig00049         561         25         contig00710         281         103           contig00140         556         71         contig00143         278         12           contig00264         547         56         contig00297         276         12           contig00157         546         157         contig00286         270         7           contig00047         540         5         contig00246         270         7           contig00124         527         139         contig0049         265         471           contig00023         504         30         contig0049         265         471           contig00205         500         60         contig00380         256         7           contig00183         492         19         contig00238         252         3           contig00120         488         24         contig00351         242         112           contig0017         469         44         contig00147         231 <t< td=""><td></td><td>589</td><td>67</td><td></td><td>295</td><td>36</td></t<>                                                          |             | 589         | 67              |             | 295         | 36              |
| contig0030657019contig0046929033contig0004956125contig00710281103contig0014055671contig0014327812contig0026454756contig0029727612contig00157546157contig002462707contig001475405contig002462707contig00124527139contig0049626664contig0008451584contig00409265471contig0020550060contig003802567contig0018349219contig002382523contig001648818contig00351242112contig00274679contig001923512contig00274679contig0014723112contig0023646547contig0027922930contig0036459116contig0047222118contig00390459116contig00472221182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |             |                 | -           |             |                 |
| contig0004956125contig00710281103contig0014055671contig0014327812contig0026454756contig0029727612contig00157546157contig0080275175contig00475405contig002462707contig00124527139contig0049626664contig008451584contig00409265471contig002350430contig0047726342contig0018349219contig002382567contig001648818contig00471251102contig0012048824contig00351242112contig0021746944contig0011923512contig00274679contig0014723112contig0023646547contig0027922930contig0030459116contig0047222118contig00405453204contig0065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                 |             |             |                 |
| contig0014055671contig0014327812contig0026454756contig0029727612contig00157546157contig00080275175contig000475405contig002462707contig00124527139contig0049626664contig0008451584contig00409265471contig0002350430contig0047726342contig0020550060contig003802567contig0018349219contig002382523contig001648818contig00351242112contig0012048824contig00351242112contig0021746944contig0011923512contig0023646547contig0027922930contig003646547contig0027922930contig00390459116contig0047222118contig00405453204contig0065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |                 |             |             |                 |
| contig0026454756contig0029727612contig00157546157contig00080275175contig000475405contig002462707contig00124527139contig0049626664contig0008451584contig00409265471contig0002350430contig0047726342contig0020550060contig003802567contig001648818contig00471251102contig0012048824contig00351242112contig0005547411contig0019024051contig0021746944contig0011923512contig0023646547contig0027922930contig002174679contig0014723112contig0023646547contig0027922930contig000146234contig002722118contig00390459116contig0047222118contig00405453204contig0065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -           |             |                 |             |             |                 |
| contig00157546157contig00080275175contig000475405contig002462707contig00124527139contig0049626664contig0008451584contig00499265471contig0002350430contig0047726342contig0020550060contig003802567contig0018349219contig002382523contig001648818contig00351242112contig0012048824contig00351242112contig0021746944contig0011923512contig0023646547contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig0065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |                 |             |             |                 |
| contig000475405contig002462707contig00124527139contig0049626664contig0008451584contig00499265471contig0002350430contig0047726342contig0020550060contig002382567contig0018349219contig002382523contig001648818contig00471251102contig0012048824contig00351242112contig0005547411contig0019024051contig00274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig0065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                 |             |             |                 |
| contig00124527139contig0049626664contig0008451584contig00409265471contig0002350430contig0047726342contig0020550060contig003802567contig0018349219contig002382523contig001648818contig00351242112contig0012048824contig00351242112contig0005547411contig0019024051contig00274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig0065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0           |             |                 | •           |             |                 |
| contig0008451584contig00409265471contig0002350430contig0047726342contig0020550060contig003802567contig0018349219contig002382523contig001648818contig00471251102contig0012048824contig00351242112contig0005547411contig009024051contig00274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |             |                 | -           |             |                 |
| contig0002350430contig0047726342contig0020550060contig003802567contig0018349219contig002382523contig001648818contig00471251102contig0012048824contig00351242112contig0005547411contig009024051contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |             |                 |             |             |                 |
| contig0020550060contig003802567contig0018349219contig002382523contig0001648818contig00471251102contig0012048824contig00351242112contig0005547411contig009024051contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |                 |             |             |                 |
| contig0018349219contig002382523contig0001648818contig00471251102contig0012048824contig00351242112contig0005547411contig009024051contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |                 |             |             |                 |
| contig0001648818contig00471251102contig0012048824contig00351242112contig0005547411contig0009024051contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -           |             |                 | -           |             |                 |
| contig0012048824contig00351242112contig0005547411contig0009024051contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -           |             |                 | -           |             |                 |
| contig0005547411contig0009024051contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -           |             |                 | -           |             |                 |
| contig0021746944contig0011923512contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |                 | -           |             |                 |
| contig000274679contig0014723112contig0023646547contig0027922930contig0000146234contig002302222contig00390459116contig0047222118contig00405453204contig00065215182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -           |             |                 | -           |             |                 |
| contig00236         465         47         contig00279         229         30           contig00001         462         34         contig00230         222         2           contig00390         459         116         contig00472         221         18           contig00405         453         204         contig0065         215         182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |                 | -           |             |                 |
| contig00001         462         34         contig00230         222         2           contig00390         459         116         contig00472         221         18           contig00405         453         204         contig0065         215         182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |             |                 |             |             |                 |
| contig00390         459         116         contig00472         221         18           contig00405         453         204         contig00065         215         182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           |             |                 |             |             |                 |
| contig00405 453 204 contig00065 215 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -           |             |                 |             |             |                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -           |             |                 | -           |             |                 |
| contig00247 444 12 contig00268 214 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |             |                 |             |             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | contig00247 | 444         | 12              | contig00268 | 214         | 13              |

#### Appendix 2

| Contig      | Length (bp) | Number of reads | Contig      | Length (bp) | Number of reads |
|-------------|-------------|-----------------|-------------|-------------|-----------------|
| contig00231 | 198         | 2               | contig00716 | 136         | 74              |
| contig00176 | 198         | 54              | contig00303 | 134         | 7               |
| contig00069 | 195         | 202             | contig00022 | 132         | 11              |
| contig00101 | 190         | 26              | contig00428 | 132         | 51              |
| contig00366 | 189         | 151             | contig00076 | 132         | 39              |
| contig00460 | 188         | 6               | contig00107 | 129         | 2               |
| contig00416 | 186         | 649             | contig00192 | 140         | 280             |
| contig00270 | 183         | 172             | contig00713 | 140         | 17              |
| contig00213 | 182         | 27              | contig00168 | 127         | 29              |
| contig00415 | 181         | 6               | contig00003 | 126         | 10              |
| contig00363 | 176         | 9               | contig00707 | 126         | 7               |
| contig00324 | 173         | 65              | contig00310 | 122         | 16              |
| contig00108 | 166         | 1432            | contig00733 | 120         | 115             |
| contig00374 | 166         | 39              | contig00714 | 120         | 20              |
| contig00711 | 165         | 203             | contig00479 | 119         | 124             |
| contig00588 | 164         | 814             | contig00730 | 118         | 1142            |
| contig00466 | 164         | 99              | contig00260 | 116         | 30              |
| contig00344 | 162         | 3               | contig00294 | 116         | 10              |
| contig00223 | 159         | 7               | contig00216 | 113         | 13              |
| contig00226 | 154         | 2               | contig00300 | 112         | 10              |
| contig00228 | 151         | 14              | contig00376 | 110         | 29              |
| contig00328 | 151         | 44              | contig00319 | 110         | 9               |
| contig00184 | 151         | 77              | contig00330 | 108         | 1723            |
| contig00346 | 150         | 25              | contig00272 | 108         | 32              |
| contig00295 | 149         | 160             | contig00340 | 108         | 61              |
| contig00735 | 148         | 370             | contig00273 | 106         | 5               |
| contig00128 | 146         | 94              | contig00280 | 105         | 16              |
| contig00301 | 146         | 11              | contig00715 | 103         | 258             |
| contig00480 | 146         | 97              | contig00024 | 102         | 25              |
| contig00734 | 144         | 19              | contig00481 | 102         | 58              |
| contig00335 | 142         | 7               | contig00123 | 101         | 19              |
| contig00235 | 141         | 110             | contig00731 | 101         | 103             |
| contig00400 | 141         | 6               | contig00017 | 100         | 5               |
| contig00040 | 140         | 3               | contig00448 | 100         | 452             |

\* Contigs from the final assemble with 25.2 Mb of 454 data

| Supplementary Table 2.2 List of the IGS and RAST | annotate genes gene within t | he Ms03 draft genome  |
|--------------------------------------------------|------------------------------|-----------------------|
|                                                  | annotato gonoo gono manni    | and mode analygemente |

| IGS     |                                                            |                         |                                          |                   |                   |    |                                                                             | RAST    |                                                                   |                                                                                                                        |        |       |   |
|---------|------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------|-------|---|
| Gene_id | Common_name                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>³</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                          | Subsystem                                                                                                              | Start⁵ | Stop⁵ | S |
| mnas_1  | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 28                | 157               | +  | Unknown: General                                                            |         |                                                                   |                                                                                                                        |        |       |   |
| mnas_2  | endonuclease/Exonucl<br>ease/phosphatase<br>family protein |                         |                                          | 270               | 2244              | +  | Unknown: Enzymes of<br>unknown specificity                                  | peg.214 | Membrane nuclease,<br>lipoprotein                                 | - none -                                                                                                               | 271    | 2244  | + |
| mnas_3  | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 2191              | 2392              | +  | Unknown: General                                                            |         |                                                                   |                                                                                                                        |        |       |   |
|         |                                                            |                         |                                          |                   |                   |    |                                                                             | peg.215 | hypothetical protein                                              | - none -                                                                                                               | 2406   | 2287  | - |
| mnas_4  | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 2457              | 3255              | +  | Unknown: General                                                            | peg.216 | hypothetical protein                                              | - none -                                                                                                               | 2458   | 3255  | + |
| mnas_5  | putative lipoprotein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 3284              | 6431              | -  | Cell envelope: Other                                                        | peg.217 | hypothetical protein                                              | - none -                                                                                                               | 6431   | 3285  | - |
| mnas_6  | metallo-beta-lactamase<br>superfamily protein              |                         |                                          | 6674              | 8564              | +  | Unknown: General<br>Hypothetical                                            | peg.218 | Ribonuclease J1<br>(endonuclease and 5'<br>exonuclease)           | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: Ribonucleases in<br>Bacillus | 6675   | 8564  | + |
| mnas_7  | M42 glutamyl<br>aminopeptidase family<br>protein           |                         |                                          | 8572              | 9652              | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.219 | Endo-1,4-beta-glucanase                                           | - none -                                                                                                               | 8573   | 9652  | + |
| mnas_8  | conserved hypothetical protein                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 9672              | 9909              | +  | Unknown: Conserved                                                          | peg.220 | <i>M. genitalium</i> predicted coding region MG335.1              | - none -                                                                                                               | 9673   | 9909  | + |
| mnas_9  | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 10188             | 10656             | +  | Unknown: General                                                            |         |                                                                   |                                                                                                                        |        |       |   |
| mnas_10 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 10657             | 10990             | +  | Unknown: General                                                            | peg.221 | hypothetical protein                                              | - none -                                                                                                               | 10658  | 10990 | + |
| mnas_11 | Putative potassium<br>uptake protein KtrB                  | ktrB                    |                                          | 11069             | 12809             | +  | Transport and binding<br>proteins: Unknown<br>substrate                     | peg.222 | Potassium uptake protein,<br>integral membrane<br>component, KtrB | - none -                                                                                                               | 11124  | 12809 | + |
| mnas_12 | trkA-C domain protein                                      | ktrA                    |                                          | 12815             | 13490             | +  | Unknown: General<br>Hypothetical                                            | peg.223 | Trk system potassium uptake<br>protein TrkA                       | Category: Potassium<br>metabolism<br>Subcategory: Potassium<br>metabolism<br>Subsystem: Potassium<br>homeostasis       | 12816  | 13490 | + |

| IGS     |                                                                                    |                         |                                                         |                   |                   |    |                                                                                                                                         | RAST    |                                                                                                      |                                                                                                                                                                                                                       |        |       |    |
|---------|------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----|
| Gene_id | Common_name                                                                        | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                                             | Subsystem                                                                                                                                                                                                             | Start⁵ | Stop⁵ | S⁴ |
| mnas_13 | DNA gyrase, A subunit<br>(EC 5.99.1.3)                                             | gyrA                    | GO:0003916,<br>GO:0003918,<br>GO:0006265,<br>GO:0009330 | 13588             | 16267             | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                     | peg.224 | DNA gyrase subunit A<br>(EC 5.99.1.3)                                                                | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA<br>topoisomerases, Type II, ATP-<br>dependent                                                                                              | 16267  | 13589 | -  |
|         |                                                                                    |                         |                                                         |                   |                   |    |                                                                                                                                         |         |                                                                                                      | Category: Virulence, Disease<br>and Defense<br>Subcategory: Resistance to<br>antibiotics and toxic compounds<br>Subsystem: Resistance to<br>fluoroquinolones<br>Subsystem: Cell Division<br>Subsystem including YidCD |        |       |    |
| mnas_14 | ribosomal large subunit<br>pseudouridine<br>synthase B<br>(EC 5.4.99.22)           | rluB                    | GO:0003723,<br>GO:0006364,<br>GO:0001522,<br>GO:0009982 | 16366             | 17083             | _  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.225 | Ribosomal large subunit<br>pseudouridine synthase B<br>(EC 4.2.1.70)                                 | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA pseudouridine<br>syntheses                                                                                              | 17083  | 16367 | -  |
| mnas_15 | nicotinate<br>(nicotinamide)<br>nucleotide<br>adenylyltransferase<br>(EC 2.7.7.18) | nadD                    | GO:0000309,<br>GO:0004515,<br>GO:0005737,<br>GO:0009435 | 17082             | 18165             | -  | Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Pyridine nucleotides                                               | peg.226 | Nicotinate-nucleotide<br>adenylyltransferase (EC<br>2.7.7.18) / Hydrolase (HAD<br>superfamily), YqeK | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: NAD and NADP<br>Subsystem: NAD and NADP<br>cofactor biosynthesis global                                                                 | 18165  | 17083 | -  |
| mnas_16 | Damage-repair DNA<br>polymerase IV<br>(EC 2.7.7.7)                                 | dinB                    |                                                         | 18170             | 19400             | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                     | peg.227 | DNA polymerase IV<br>(EC 2.7.7.7)                                                                    | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                                                                                                            | 19400  | 18171 | -  |
| mnas_17 | nifU-like N terminal<br>domain protein                                             |                         |                                                         | 19399             | 19810             | -  | Unknown: General<br>Hypothetical                                                                                                        | peg.228 | Putative iron-sulfur cluster<br>assembly scaffold protein for<br>SUF system, SufE2                   | - none -                                                                                                                                                                                                              | 19810  | 19400 | -  |
| mnas_18 | aminotransferase<br>class-V family protein                                         |                         |                                                         | 19799             | 20963             | -  | Unknown: Enzymes of<br>unknown specificity                                                                                              | peg.229 | Cysteine desulfurase<br>(EC 2.8.1.7),<br>SufS subfamily                                              | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: mm5U34<br>biosynthesis bacteria<br>Category: Amino Acids and<br>Derivatives<br>Subcategory: Alanine, serine,                | 20963  | 19800 | -  |
|         |                                                                                    |                         | 00 0000450                                              | 00000             | 04404             |    |                                                                                                                                         |         |                                                                                                      | and glycine<br><b>Subsystem</b> : Alanine<br>biosynthesis                                                                                                                                                             | 04000  | 00070 |    |
| mnas_19 | hypothetical protein                                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 20969             | 21491             | -  | Unknown: General                                                                                                                        | peg.230 | hypothetical protein                                                                                 | - none -                                                                                                                                                                                                              | 21368  | 20970 | -  |
| mnas_20 | nusB family protein                                                                |                         |                                                         | 21471             | 21954             | -  | Unclassified: Role<br>category not yet<br>assigned                                                                                      | peg.231 | Transcription termination<br>protein NusB                                                            | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: Transcription<br>factors bacterial                                                                                                               | 21954  | 21472 | -  |

| IGS     |                                                      |                         |                                                                                                                     |                   |                   |    |                                                                             | RAST    |                                                                                      |                                                                                                                                                       |        |       |    |
|---------|------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----|
| Gene_id | Common_name                                          | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                               | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                                             | Subsystem                                                                                                                                             | Start⁵ | Stop⁵ | S⁴ |
| mnas_21 | putative membrane<br>protein                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                                                            | 22078             | 23686             | -  | Cell envelope: Other                                                        | peg.232 | hypothetical protein                                                                 | - none -                                                                                                                                              | 23686  | 22079 | -  |
| mnas_22 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 23764             | 24154             | -  | Unknown: General                                                            | peg.233 | hypothetical protein                                                                 | - none -                                                                                                                                              | 24154  | 23765 | -  |
| mnas_23 | translation elongation<br>factor P                   | efp                     | GO:0003746,<br>GO:0005737,<br>GO:0006414                                                                            | 24304             | 24868             | +  | Protein synthesis:<br>Translation factors                                   | peg.234 | Translation elongation factor<br>P                                                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>elongation factors bacterial                        | 24305  | 24868 | +  |
| mnas_24 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 24867             | 25179             | +  | Unknown: General                                                            | peg.235 | hypothetical protein                                                                 | - none -                                                                                                                                              | 24868  | 25179 | +  |
| mnas_25 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 25178             | 25508             | +  | Unknown: General                                                            | peg.236 | Expressed protein                                                                    | - none -                                                                                                                                              | 25521  | 26450 | +  |
| mnas_26 | putative membrane<br>protein                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                                                            | 25520             | 26450             | +  | Cell envelope: Other                                                        |         |                                                                                      |                                                                                                                                                       |        |       |    |
| mnas_27 | putative nicotinate<br>phosphoribosyltransfer<br>ase |                         | GO:0008152,<br>GO:0003824,<br>GO:0004516,<br>GO:0016757,<br>GO:0019363,<br>GO:0004514,<br>GO:0016740,<br>GO:0009435 | 26439             | 27447             | +  | Cellular processes:<br>Other,<br>Unknown: Enzymes of<br>unknown specificity | peg.237 | Nicotinate<br>phosphoribosyltransferase<br>(EC 2.4.2.11)                             | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: NAD and NADP<br>Subsystem: NAD and NADP<br>cofactor biosynthesis global | 26440  | 27447 | +  |
| mnas_28 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 27517             | 28297             | +  | Unknown: General                                                            | peg.238 | Mobile element protein                                                               | - none -                                                                                                                                              | 27518  | 28297 | +  |
| mnas_29 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 28310             | 29933             | -  | Unknown: General                                                            | peg.239 | hypothetical protein                                                                 | - none -                                                                                                                                              | 29933  | 28311 | -  |
| mnas_30 | putative lipoprotein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                                                            | 29898             | 33624             | -  | Cell envelope: Other                                                        | peg.240 | hypothetical protein                                                                 | - none -                                                                                                                                              | 33624  | 29899 | -  |
| mnas_31 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 33705             | 35799             | -  | Unknown: General                                                            | peg.241 | hypothetical protein                                                                 | - none -                                                                                                                                              | 35799  | 33706 | -  |
| mnas_32 | peptidase M60-like<br>family protein                 |                         |                                                                                                                     | 35900             | 37121             | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.242 | Integral membrane protein<br>(Rhomboid family)                                       | - none -                                                                                                                                              | 37118  | 35901 | -  |
| mnas_33 | hypothetical protein                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 37086             | 38961             | -  | Unknown: General                                                            | peg.243 | hypothetical protein                                                                 | - none -                                                                                                                                              | 38961  | 37087 | -  |
| mnas_34 | DNA methylase family<br>protein                      |                         |                                                                                                                     | 39414             | 40404             | +  | DNA metabolism:<br>Restriction/modification                                 | peg.414 | Type III restriction-<br>modification system<br>methylation subunit<br>(EC 2.1.1.72) | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Restriction-<br>Modification System                                             | 39496  | 40404 | +  |

| IGS     |                                                                      |                         |                                                                                                      |                   |                   |    |                                                                              | RAST    |                                                                                       |                                                                                                                                        |        |       |    |
|---------|----------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----|
| Gene_id | Common_name                                                          | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                   | Gene_id | Function                                                                              | Subsystem                                                                                                                              | Start⁵ | Stop⁵ | S⁴ |
| mnas_35 | putative type III<br>restricction-modification<br>system: methylase  |                         | GO:0003677,<br>GO:0032775,<br>GO:0008170,<br>GO:0016740,<br>GO:0032259,<br>GO:0006306,<br>GO:0009007 | 40506             | 40806             | +  | Cellular processes:<br>Other,<br>Unknown: Enzymes of<br>unknown specificity  | peg.415 | Type III restriction-<br>modification system<br>methylation subunit<br>(EC 2.1.1.72)  | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Restriction-<br>Modification System                              | 40507  | 40806 | +  |
| mnas_36 | DEAD/DEAH box<br>helicase family protein                             |                         |                                                                                                      | 40807             | 43450             | +  | Unknown: Enzymes of<br>unknown specificity                                   | peg.416 | Type III restriction-<br>modification system DNA<br>endonuclease res<br>(EC 3.1.21.5) | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Restriction-<br>Modification System                              | 40808  | 43450 | +  |
| mnas_37 | helix-turn-helix family<br>protein                                   |                         |                                                                                                      | 43698             | 44694             | +  | Regulatory functions:<br>DNA interactions                                    | peg.417 | Sucrose operon repressor<br>ScrR, LacI family                                         | - none -                                                                                                                               | 43720  | 44694 | +  |
| mnas_38 | Putative potassium<br>channel protein                                |                         |                                                                                                      | 44758             | 45874             | +  | Transport and binding<br>proteins: Cations and<br>iron carrying<br>compounds | peg.418 | putative potassium channel<br>protein                                                 | - none -                                                                                                                               | 44759  | 45874 | +  |
| mnas_39 | putative endonuclease<br>4                                           |                         | GO:0003677,<br>GO:0006281,<br>GO:0008270,<br>GO:0005622,<br>GO:0008833                               | 45866             | 46694             | +  | Cellular processes:<br>Other,<br>Unknown: Enzymes of<br>unknown specificity  | peg.419 | Endonuclease IV<br>(EC 3.1.21.2)                                                      | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                             | 45867  | 46694 | +  |
| mnas_40 | ribosomal protein L33                                                | rpmG                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                                              | 46776             | 46929             | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification   | peg.420 | LSU ribosomal protein L33p<br>@ LSU ribosomal protein<br>L33p, zinc-dependent         | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                           | 46777  | 46929 | +  |
| mnas_41 | metallopeptidase M24<br>family protein                               |                         |                                                                                                      | 46989             | 48051             | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides  | peg.421 | Aminopeptidase YpdF (MP-,<br>MA-, MS-, AP-, NP- specific)                             | Category: Protein Metabolism<br>Subcategory: Protein<br>degradation<br>Subsystem: Protein<br>degradation                               | 46990  | 48051 | +  |
| mnas_42 | prolyl aminopeptidase<br>(EC 3.4.11.5)                               | pip                     | GO:0016804,<br>GO:0030163                                                                            | 48034             | 48985             | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides  | peg.422 | Proline iminopeptidase<br>(EC 3.4.11.5)                                               | - none -                                                                                                                               | 48035  | 48985 | +  |
| mnas_43 | conserved hypothetical<br>protein                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 49099             | 49483             | -  | Unknown: Conserved                                                           |         |                                                                                       |                                                                                                                                        |        |       |    |
| mnas_44 | tRNA-Asn                                                             |                         |                                                                                                      | 49170             | 49245             | +  |                                                                              | rna.15  | tRNA-Asn-GTT                                                                          | - none -                                                                                                                               | 49171  | 49242 | +  |
| mnas_45 | tRNA-Glu                                                             |                         |                                                                                                      | 49251             | 49327             | +  |                                                                              | rna.16  | tRNA-Glu-TTC                                                                          | - none -                                                                                                                               | 49252  | 49324 | +  |
| mnas_46 | tRNA-Val                                                             |                         |                                                                                                      | 49332             | 49408             | +  |                                                                              | rna.17  | tRNA-Val-TAC                                                                          | - none -                                                                                                                               | 49333  | 49405 | +  |
| mnas_47 | tRNA-Thr                                                             |                         |                                                                                                      | 49409             | 49485             | +  |                                                                              | rna.18  | tRNA-Thr-TGT                                                                          | - none -                                                                                                                               | 49410  | 49482 | +  |
| mnas_48 | tRNA-Leu                                                             |                         |                                                                                                      | 49520             | 49604             | +  | <b>-</b>                                                                     | rna.19  | tRNA-Leu-TAG                                                                          | - none -                                                                                                                               | 49521  | 49601 | +  |
| mnas_49 | ECF-type riboflavin<br>transporter, S<br>component family<br>protein |                         |                                                                                                      | 49839             | 50841             | +  | Transport and binding<br>proteins: Unknown<br>substrate                      | peg.423 | Substrate-specific component<br>FoIT of folate ECF transporter                        | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Folate and<br>pterines<br>Subsystem: Folate biosynthesis | 49840  | 50841 | +  |
| mnas_50 | hypothetical protein                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 50851             | 53320             | +  | Unknown: General                                                             | peg.424 | oligopeptide ABC transporter<br>ATP-binding protein                                   | - none -                                                                                                                               | 50852  | 53320 | +  |

| IGS     |                                                                                    |                         |                                          |                   |                   |    |                                                                             | RAST    |                                                               |                                                                                                                                                                                                                                                                                           |        |       |    |
|---------|------------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|----|
| Gene_id | Common_name                                                                        | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                      | Subsystem                                                                                                                                                                                                                                                                                 | Start⁵ | Stop⁵ | S⁴ |
| mnas_51 | high affinity transport<br>system p37 family<br>protein                            |                         |                                          | 53466             | 54666             | +  | Transport and binding<br>proteins: Unknown<br>substrate                     | peg.425 | High affinity transport system<br>protein p37 precursor       | - none -                                                                                                                                                                                                                                                                                  | 53467  | 54666 | +  |
| mnas_52 | Phosphate/phosphonat<br>e ABC transporter,<br>ATP-binding protein<br>(EC 3.6.3.28) | PhnC                    |                                          | 54667             | 55396             | +  | Transport and binding<br>proteins: Unknown<br>substrate                     | peg.426 | ABC transporter ATP-binding<br>protein                        | - none -                                                                                                                                                                                                                                                                                  | 54668  | 55396 | +  |
| mnas_53 | bindingdependent<br>transport system inner<br>membrane component<br>family protein |                         |                                          | 55490             | 57062             | +  | Transport and binding<br>proteins: Unknown<br>substrate                     | peg.427 | Transport system permease<br>protein p69                      | - none -                                                                                                                                                                                                                                                                                  | 55389  | 57062 | +  |
| mnas_54 | hypothetical protein                                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 57342             | 57462             | -  | Unknown: General                                                            | peg.428 | hypothetical protein                                          | - none -                                                                                                                                                                                                                                                                                  | 57462  | 57343 | -  |
| mnas_55 | subtilase family protein                                                           |                         |                                          | 57637             | 60025             | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.429 | hypothetical protein                                          | - none -                                                                                                                                                                                                                                                                                  | 60025  | 57638 | -  |
| mnas_56 | putative lipoprotein                                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 60033             | 61671             | -  | Cell envelope: Other                                                        | peg.430 | hypothetical protein                                          | - none -                                                                                                                                                                                                                                                                                  | 61671  | 60034 | -  |
| mnas_57 | RNA polymerase beta<br>subunit                                                     |                         |                                          | 62087             | 64340             | +  | Transcription: DNA-<br>dependent RNA<br>polymerase                          | peg.431 | DNA-directed RNA<br>polymerase beta subunit<br>(EC 2.7.7.6)   | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: RNA polymerase<br>bacterial<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>DNA transcription | 62088  | 65722 | +  |
| mnas_58 | DNA-directed RNA<br>polymerase subunit<br>beta<br>(EC 2.7.7.6)                     | rроВ                    |                                          | 64459             | 65722             | +  | Transcription: DNA-<br>dependent RNA<br>polymerase                          |         |                                                               |                                                                                                                                                                                                                                                                                           |        |       |    |
| mnas_59 | DNA-directed RNA<br>polymerase, beta'<br>subunit<br>(EC 2.7.7.6)                   | rpoC                    | GO:0000345,<br>GO:0003899,<br>GO:0006350 | 65714             | 70202             | +  | Transcription: DNA-<br>dependent RNA<br>polymerase                          | peg.432 | DNA-directed RNA<br>polymerase beta'; subunit<br>(EC 2.7.7.6) | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: RNA polymerase<br>bacterial<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>DNA transcription | 65715  | 70202 | +  |
| mnas_60 | dUTPase family protein                                                             |                         |                                          | 70296             | 70599             | +  | Unclassified: Role<br>category not yet<br>assigned                          |         |                                                               |                                                                                                                                                                                                                                                                                           |        |       |    |

| IGS     |                                                                              |                         |                                                         |                   |                   |    |                                                                               | RAST    |                                                                                                      |                                                                                                                               |        |        |    |
|---------|------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id | Common_name                                                                  | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                    | Gene_id | Function                                                                                             | Subsystem                                                                                                                     | Start⁵ | Stop⁵  | S⁴ |
| mnas_61 | excinuclease ABC<br>subunit A<br>(EC 3.1.25)                                 | uvrA                    | GO:0006289,<br>GO:0009380,<br>GO:0009381                | 70611             | 73044             | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair           | peg.504 | Excinuclease ABC subunit A                                                                           | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>UvrABC system                                | 70873  | 73044  | +  |
| mnas_62 | HPr(Ser)<br>kinase/phosphatase<br>(EC 2.7.1)                                 | hprK                    | GO:0004674,<br>GO:0009401,<br>GO:0016791                | 73096             | 74038             | +  | Regulatory functions:<br>Protein interactions,<br>Signal transduction:<br>PTS | peg.505 | HPr kinase/phosphorylase<br>(EC 2.7.1) (EC 2.7.4)                                                    | Category: Regulation and Cell<br>signaling<br>Subcategory: no subcategory<br>Subsystem: HPr catabolite<br>repression system   | 73097  | 74038  | +  |
| mnas_63 | prolipoprotein<br>diacylglyceryl<br>transferase<br>(EC 2.4.99)               | lgt                     | GO:0008961,<br>GO:0009249,<br>GO:0016021                | 74039             | 75065             | +  | Protein fate: Protein modification and repair                                 | peg.506 | Prolipoprotein diacylglyceryl<br>transferase<br>(EC 2.4.99)                                          | Category: Protein Metabolism<br>Subcategory: Protein<br>processing and modification<br>Subsystem: Lipoprotein<br>Biosynthesis | 74040  | 75065  | +  |
| mnas_64 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 75106             | 79135             | -  | Unknown: General                                                              | peg.507 | DNA helicase                                                                                         | - none -                                                                                                                      | 79135  | 75107  | -  |
| mnas_65 | AAA domain protein                                                           |                         |                                                         | 79229             | 83915             | -  | Unknown: General<br>Hypothetical                                              | peg.508 | DNA helicase                                                                                         | - none -                                                                                                                      | 83915  | 79230  | -  |
| mnas_66 | thioredoxin reductase<br>(EC 1.8.1.9)                                        | trxB                    | GO:0019430,<br>GO:0050660,<br>GO:0005737,<br>GO:0004791 | 84164             | 85091             | +  | Cellular processes:<br>Other,<br>Unknown: Enzymes of<br>unknown specificity   | peg.509 | Thioredoxin reductase<br>(EC 1.8.1.9)                                                                | Category: Sulfur Metabolism<br>Subcategory: no subcategory<br>Subsystem: Thioredoxin-<br>disulfide reductase                  | 84165  | 85091  | +  |
| mnas_67 | putative lipoprotein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 85115             | 86762             | -  | Cell envelope: Other                                                          | peg.510 | hypothetical protein                                                                                 | - none -                                                                                                                      | 86363  | 85116  | -  |
| mnas_68 | subtilase family protein                                                     |                         |                                                         | 86745             | 89082             | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides   | peg.511 | hypothetical protein                                                                                 | - none -                                                                                                                      | 89082  | 86746  | -  |
| mnas_69 | putative lipoprotein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 89097             | 90441             | -  | Cell envelope: Other                                                          | peg.512 | hypothetical protein                                                                                 | - none -                                                                                                                      | 90441  | 89098  | -  |
| mnas_70 | Transposase, IS4<br>family                                                   |                         |                                                         | 90710             | 92354             | -  | Mobile and<br>extrachromosomal<br>element functions:<br>Transposon functions  | peg.513 | Mobile element protein                                                                               | - none -                                                                                                                      | 92354  | 90711  | -  |
| mnas_71 | DNA polymerase III,<br>alpha subunit, Gram-<br>positive type<br>(EC 2.7.7.7) | polC                    | GO:0003887,<br>GO:0006260,<br>GO:0009360                | 92549             | 96941             | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair           | peg.514 | DNA polymerase III alpha<br>subunit<br>(EC 2.7.7.7)                                                  | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication                                        | 96941  | 92550  | -  |
| mnas_72 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 97267             | 98905             | -  | Unknown: General                                                              | peg.579 | hypothetical protein                                                                                 | - none -                                                                                                                      | 98905  | 97268  | -  |
| mnas_73 | conserved hypothetical protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 99049             | 104383            | +  | Unknown: Conserved                                                            | peg.580 | FIG00834693: hypothetical protein                                                                    | - none -                                                                                                                      | 99086  | 104383 | +  |
| mnas_74 | bacterial extracellular<br>solute-binding protein                            | oppA                    |                                                         | 104397            | 107490            | +  | Transport and binding<br>proteins: Unknown<br>substrate                       | peg.581 | Oligopeptide ABC transporter,<br>periplasmic oligopeptide-<br>binding protein OppA<br>(TC 3.A.1.5.1) | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1)    | 104398 | 107490 | +  |

| IGS     |                                                               |                         |                                                                        |                   |                   |    |                                                                                                        | RAST    |                                                                                                          |                                                                                                                            |        |        |    |
|---------|---------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|--------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id | Common_name                                                   | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                             | Gene_id | Function                                                                                                 | Subsystem                                                                                                                  | Start⁵ | Stop⁵  | S⁴ |
| mnas_75 | Oligopeptide ABC<br>transporter, permease<br>protein (OppB)   | oppB                    |                                                                        | 107493            | 108549            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                | peg.582 | Oligopeptide transport system<br>permease protein OppB<br>(TC 3.A.1.5.1)                                 | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1) | 107494 | 108549 | +  |
| mnas_76 | Oligopeptide ABC<br>transporter, permease<br>protein (OppC)   | oppC                    |                                                                        | 108552            | 109635            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                | peg.583 | Oligopeptide transport system<br>permease protein OppC<br>(TC 3.A.1.5.1)                                 | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1) | 108553 | 109635 | +  |
| mnas_77 | oligopeptide/dipeptide<br>ATP-binding protein                 | oppD                    | GO:0005524,<br>GO:0009898,<br>GO:0015440,<br>GO:0015833,<br>GO:0043190 | 109640            | 110849            | +  | Transport and binding<br>proteins: Amino acids,<br>peptides and amines                                 | peg.584 | Oligopeptide transport ATP-<br>binding protein OppD<br>(TC 3.A.1.5.1)                                    | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1) | 109641 | 110849 | +  |
| mnas_78 | Oligopeptide ABC<br>transporter, ATP-<br>binding protein OppF | OppF                    |                                                                        | 110850            | 112182            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                | peg.585 | Oligopeptide transport ATP-<br>binding protein OppF<br>(TC 3.A.1.5.1)                                    | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1) | 110851 | 112182 | +  |
| mnas_79 | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 112196            | 112457            | +  | Unknown: General                                                                                       | peg.586 | hypothetical protein                                                                                     | - none -                                                                                                                   | 112197 | 112457 | +  |
| mnas_80 | conserved hypothetical<br>protein                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 113305            | 114154            | -  | Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.587 | TsaC protein (YrdC domain)<br>required for<br>threonylcarbamoyladenosine<br>t(6)A37 modification in tRNA | - none -                                                                                                                   | 114154 | 113306 | -  |
| mnas_81 | archaeal ATPase<br>family protein                             |                         |                                                                        | 114282            | 114936            | -  | Unknown: General<br>Hypothetical                                                                       | peg.588 | hypothetical protein                                                                                     | - none -                                                                                                                   | 114936 | 114283 | -  |
| mnas_82 | conserved hypothetical protein                                |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 115097            | 117698            | -  | Unknown: Conserved                                                                                     | peg.589 | hypothetical protein                                                                                     | - none -                                                                                                                   | 117659 | 115098 | -  |
| mnas_83 | putative membrane<br>protein                                  |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 117790            | 118237            | +  | Cell envelope: Other                                                                                   |         |                                                                                                          |                                                                                                                            |        |        |    |
| mnas_84 | ATP synthase A chain<br>family protein                        | atpB                    |                                                                        | 118238            | 119045            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                       | peg.590 | ATP synthase F0 sector<br>subunit a                                                                      | - none -                                                                                                                   | 118239 | 119045 | +  |
| mnas_85 | ATP synthase F0, C<br>subunit<br>(EC 3.6.3.14)                | atpE                    | GO:0000276,<br>GO:0015986,<br>GO:0045263,<br>GO:0045264,<br>GO:0046933 | 119062            | 119380            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                       | peg.591 | ATP synthase F0 sector<br>subunit c                                                                      | - none -                                                                                                                   | 119063 | 119380 | +  |
| mnas_86 | ATP synthase F0, B<br>subunit<br>(EC 3.6.3.14)                | atpF                    | GO:0000276,<br>GO:0015986,<br>GO:0045263,<br>GO:0045264,<br>GO:0046933 | 119389            | 119947            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                       | peg.592 | ATP synthase F0 sector<br>subunit b<br>(EC 3.6.3.14)                                                     | - none -                                                                                                                   | 119405 | 119947 | +  |
| mnas_87 | ATP synthase F1, delta<br>subunit<br>(EC 3.6.3.14)            | atpH                    | GO:0000275,<br>GO:0015986,<br>GO:0045261,<br>GO:0045262,<br>GO:0046933 | 119962            | 120511            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                       | peg.593 | ATP synthase delta chain<br>(EC 3.6.3.14)                                                                | - none -                                                                                                                   | 119963 | 120511 | +  |

| IGS     |                                                                             |                         |                                                                                                                                                                                |                   |                   |    |                                                                                                                                                                                                                                  | RAST    |                                                              |                                                                                                                                                                                                                                                                                                                                  |        |        |    |
|---------|-----------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id | Common_name                                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                                                                                          | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                                                                                       | Gene_id | Function                                                     | Subsystem                                                                                                                                                                                                                                                                                                                        | Start⁵ | Stop⁵  | S⁴ |
| mnas_88 | ATP synthase F1,<br>alpha subunit<br>(EC 3.6.3.14)                          | atpA                    | GO:0000275,<br>GO:0015986,<br>GO:0045261,<br>GO:0045262,<br>GO:0046933                                                                                                         | 120511            | 122092            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                                                                                                                                                 | peg.594 | ATP synthase alpha chain<br>(EC 3.6.3.14)                    | - none -                                                                                                                                                                                                                                                                                                                         | 120512 | 122092 | +  |
| mnas_89 | ATP synthase family<br>protein                                              | atpG                    |                                                                                                                                                                                | 122094            | 122820            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                                                                                                                                                 |         |                                                              |                                                                                                                                                                                                                                                                                                                                  |        |        |    |
| mnas_90 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 122820            | 124143            | -  | Unknown: General                                                                                                                                                                                                                 |         |                                                              |                                                                                                                                                                                                                                                                                                                                  |        |        |    |
| mnas_91 | protein yebR                                                                | yebR                    |                                                                                                                                                                                | 124152            | 124599            | -  | Unclassified: Role<br>category not yet<br>assigned                                                                                                                                                                               | peg.1   | Free methionine-(R)-sulfoxide reductase, contains GAF domain | - none -                                                                                                                                                                                                                                                                                                                         | 124599 | 124153 | -  |
| mnas_92 | lysinetRNA ligase<br>(EC 6.1.1.6)                                           | lysS                    | GO:0004824,<br>GO:0005737,<br>GO:0006430                                                                                                                                       | 124659            | 126129            | -  | Protein synthesis:<br>tRNA aminoacylation                                                                                                                                                                                        | peg.2   | Lysyl-tRNA synthetase (class<br>II)<br>(EC 6.1.1.6)          | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Lys                                                                                                                                                                                                                   | 126129 | 124660 | -  |
| mnas_93 | ABC transporter family protein                                              |                         |                                                                                                                                                                                | 126266            | 127307            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                                                                                                          | peg.3   | ABC transporter ATP-binding protein                          | - none -                                                                                                                                                                                                                                                                                                                         | 127307 | 126267 | -  |
| mnas_94 | Putative ABC<br>transporter permease<br>protein                             |                         |                                                                                                                                                                                | 127308            | 135783            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                                                                                                          | peg.4   | ABC transporter permease protein                             | - none -                                                                                                                                                                                                                                                                                                                         | 135783 | 127309 | -  |
| mnas_95 | ATP-dependent zinc<br>metalloprotease FtsH<br>domain protein<br>(EC 3.4.24) | ftsH                    | GO:0004222,<br>GO:0005524,<br>GO:0043934,<br>GO:0006950,<br>GO:0030428,<br>GO:003163,<br>GO:0051301,<br>GO:0016021,<br>GO:0016021,<br>GO:0017111,<br>GO:0008866,<br>GO:0007049 | 136009            | 138019            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Cellular processes:<br>Adaptations to atypical<br>conditions,<br>Protein fate: Other,<br>Unknown: Enzymes of<br>unknown specificity | peg.5   | Cell division protein FtsH<br>(EC 3.4.24)                    | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Folate and<br>pterines<br>Subsystem: Folate biosynthesis<br>cluster<br>Subsystem: Cell division-<br>ribosomal stress proteins cluster                                                                                                              | 138019 | 136010 | -  |
| mnas_96 | tRNA(IIe)-lysidine<br>synthetase<br>(EC 6.3.4)                              | tilS                    | GO:0006400,<br>GO:0016879                                                                                                                                                      | 138132            | 138987            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                                                                                                                                         | peg.6   | tRNA(IIe)-lysidine synthetase<br>(EC 6.3.4.19)               | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: tRNA processing<br>Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Folate and<br>pterines<br>Subsystem: Folate biosynthesis<br>cluster<br>Subsystem: Cell division-<br>ribosomal stress proteins cluster | 138987 | 138133 | -  |

| IGS      |                                                                                           |                         |                                                                        |                   |                   |    |                                                                             | RAST    |                                                                                        |                                                                                                                                                                                                                                               |        |        |    |
|----------|-------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                               | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                                               | Subsystem                                                                                                                                                                                                                                     | Start⁵ | Stop⁵  | S⁴ |
| mnas_97  | peptidyl-tRNA<br>hydrolase<br>(EC 3.1.1.29)                                               | pth                     | GO:0004045,<br>GO:0006412                                              | 138986            | 139544            | -  | Protein synthesis:<br>Other                                                 | peg.7   | Peptidyl-tRNA hydrolase<br>(EC 3.1.1.29)                                               | Category: Dormancy and<br>Sporulation<br>Subcategory: no subcategory<br>Subsystem: Sporulation-<br>associated proteins with broader<br>functions<br>Category: Protein Metabolism<br>Subcategory: Protein                                      | 139544 | 138987 | -  |
|          |                                                                                           |                         |                                                                        |                   |                   |    |                                                                             |         |                                                                                        | biosynthesis<br>Subsystem: Translation<br>termination factors bacterial<br>Subsystem: Cell division-                                                                                                                                          |        |        |    |
|          |                                                                                           |                         |                                                                        |                   |                   |    |                                                                             |         |                                                                                        | ribosomal stress proteins cluster                                                                                                                                                                                                             |        |        |    |
| mnas_98  | AAA domain protein                                                                        |                         |                                                                        | 139551            | 141768            | -  | Unknown: General<br>Hypothetical                                            | peg.8   | RecD-like DNA helicase YrrC                                                            | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial RecBCD pathway                                                                                                                                     | 141768 | 139552 | -  |
| mnas_99  | chromosomal<br>replication initiator<br>protein DnaA                                      | dnaA                    | GO:0003677,<br>GO:0003688,<br>GO:0005524,<br>GO:0006270,<br>GO:0006275 | 142050            | 143460            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair         | peg.9   | Chromosomal replication<br>initiator protein DnaA                                      | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication<br>Subsystem: Cell Division<br>Subsystem including YidCD                                                                                               | 142051 | 143460 | +  |
| mnas_100 | DNA polymerase III<br>beta subunit, central<br>domain protein<br>(EC 2.7.7.7)             | dnaN                    |                                                                        | 143607            | 144738            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair         | peg.10  | DNA polymerase III beta<br>subunit<br>(EC 2.7.7.7)                                     | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication<br>Subsystem: Cell Division<br>Subsystem including YidCD                                                                                               | 143608 | 144738 | +  |
| mnas_101 | S4 domain protein                                                                         |                         |                                                                        | 144739            | 144946            | +  | Unknown: General<br>Hypothetical                                            | peg.11  | FIG002958: hypothetical<br>protein                                                     | Subsystem: DNA replication cluster 1                                                                                                                                                                                                          | 144740 | 144946 | +  |
| mnas_102 | DNA methylase family<br>protein                                                           |                         |                                                                        | 145044            | 146124            | +  | DNA metabolism:<br>Restriction/modification                                 | peg.12  | Adenine specific DNA<br>methyltransferase (HINFIM)                                     | - none -                                                                                                                                                                                                                                      | 145045 | 146124 | +  |
| mnas_103 | putative type-2<br>restriction enzyme Hinfl                                               |                         | GO:0016787,<br>GO:0009036,<br>GO:0009307,<br>GO:0004519,<br>GO:0004518 | 146116            | 146911            | +  | Cellular processes:<br>Other,<br>Unknown: Enzymes of<br>unknown specificity | peg.13  | Type II restriction enzyme<br>Hinfl<br>(EC 3.1.21.4)<br>(Endonuclease Hinfl) (R.Hinfl) | - none -                                                                                                                                                                                                                                      | 146117 | 146911 | +  |
| _        | putative lipoprotein                                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 146990            | 147200            | +  | Cell envelope: Other                                                        | peg.14  | hypothetical protein                                                                   | - none -                                                                                                                                                                                                                                      | 147187 | 146957 | -  |
| mnas_105 | 2,3-<br>bisphosphoglycerate-<br>independent<br>phosphoglycerate<br>mutase<br>(EC 5.4.2.1) |                         |                                                                        | 147256            | 148009            | +  | Unknown: Enzymes of<br>unknown specificity                                  | peg.61  | 2,3-bisphosphoglycerate-<br>independent<br>phosphoglycerate mutase<br>(EC 5.4.2.1)     | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis<br>Category: Miscellaneous<br>Subcategory: -no subcategory<br>Subsystem: Phosphoglycerate<br>mutase protein family | 147371 | 148009 | +  |

| IGS      |                                                             |                         |                                                                        |                   |                   |    |                                                                                                                                                                                                          | RAST    |                                                                                 |                                                                                                                                                                                                              |        |        |    |
|----------|-------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                                                               | Gene_id | Function                                                                        | Subsystem                                                                                                                                                                                                    | Start⁵ | Stop⁵  | S  |
| mnas_106 | integral membrane<br>family protein                         |                         |                                                                        | 148120            | 149113            | +  | Cell envelope: Other                                                                                                                                                                                     | peg.62  | hypothetical protein                                                            | - none -                                                                                                                                                                                                     | 148121 | 149113 | +  |
| mnas_107 | D-lactate<br>dehydrogenase<br>(EC 1.1.1.28)                 | <i>ldhA</i>             | GO:0008720,<br>GO:0006950,<br>GO:0009236,<br>GO:0051287,<br>GO:0008939 | 149269            | 150307            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Cellular processes:<br>Adaptations to atypical<br>conditions,<br>Unknown: Enzymes of<br>unknown specificity | peg.63  | D-lactate dehydrogenase<br>(EC 1.1.1.28)                                        | Category: Carbohydrates<br>Subcategory: Fermentation<br>Subsystem: Fermentations:<br>Lactate                                                                                                                 | 149270 | 150307 | +  |
| mnas_108 | major intrinsic family protein                              |                         |                                                                        | 150299            | 151364            | +  | Unclassified: Role<br>category not yet<br>assigned                                                                                                                                                       | peg.64  | Aquaporin Z                                                                     | Category: Stress Response<br>Subcategory: Osmotic stress<br>Subsystem: Osmoregulation                                                                                                                        | 150300 | 151364 | +  |
| mnas_109 | S1 RNA binding<br>domain protein                            |                         |                                                                        | 151475            | 153614            | +  | Unknown: General<br>Hypothetical                                                                                                                                                                         | peg.65  | Transcription accessory<br>protein (S1 RNA-binding<br>domain)                   | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: Transcription<br>factors bacterial<br>Subsystem: Cell division-<br>ribosomal stress proteins cluster                                    | 151476 | 153614 | +  |
| mnas_110 | tRNA-GIn                                                    |                         |                                                                        | 153820            | 153745            | -  |                                                                                                                                                                                                          | rna.3   | tRNA-GIn-TTG                                                                    | - none -                                                                                                                                                                                                     | 153820 | 153749 | 1- |
| mnas_111 | tRNA-Tyr                                                    |                         |                                                                        | 153909            | 153825            | -  |                                                                                                                                                                                                          | rna.4   | tRNA-Tyr-GTA                                                                    | - none -                                                                                                                                                                                                     | 153909 | 153829 | -  |
| mnas_112 | putative lipoprotein                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 154014            | 154989            | +  | Cell envelope: Other                                                                                                                                                                                     | peg.66  | hypothetical protein                                                            | - none -                                                                                                                                                                                                     | 154015 | 154989 | +  |
| mnas_113 | ribulose-phosphate 3<br>epimerase family<br>protein         |                         |                                                                        | 155012            | 155678            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                                                                               | peg.67  | Ribulose-phosphate 3-<br>epimerase<br>(EC 5.1.3.1)                              | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Pentose phosphate<br>pathway<br>Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyltransferase | 155678 | 155013 | -  |
| mnas_114 | ribosome small<br>subunit-dependent<br>GTPase A<br>(EC 3.6) | rsgA                    | GO:0005525,<br>GO:0006412,<br>GO:0043022                               | 155677            | 156526            | -  | Protein synthesis:<br>Translation factors                                                                                                                                                                | peg.68  | Ribosome small subunit-<br>stimulated GTPase EngC                               | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases                                                                                                         | 156526 | 155678 | -  |
| mnas_115 | phosphotransferase<br>enzyme family protein                 |                         |                                                                        | 156525            | 157521            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                                                                               | peg.69  | Serine/threonine protein<br>kinase PrkC, regulator of<br>stationary phase       | Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyltransferase                                                                                                                          | 157521 | 156526 | -  |
| mnas_116 | phosphatase 2C family protein                               |                         |                                                                        | 157507            | 158287            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                                                                               | peg.70  | Protein serine/threonine<br>phosphatase PrpC, regulation<br>of stationary phase | Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyltransferase                                                                                                                          | 158287 | 157508 | -  |
| mnas_117 | guanylate kinase<br>(EC 2.7.4.8)                            | gmk                     | GO:0004385,<br>GO:0015949                                              | 158276            | 158891            | -  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions                                                                                               | peg.71  | Guanylate kinase<br>(EC 2.7.4.8)                                                | Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Purine conversions                                                                                                            | 158891 | 158277 | -  |

| IGS      |                                                         |                         |                                                         |                   |                   |    |                                                                            | RAST    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |    |
|----------|---------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                 | Gene_id | Function                                                                                                                                  | Subsystem                                                                                                                                                                                                                                                                                                                                                                                                 | Start⁵ | Stop⁵  | S⁴ |
| mnas_118 | tRNA<br>pseudouridine(55)<br>synthase<br>(EC 5.4.99.25) | truB                    | GO:0004730,<br>GO:0006400,<br>GO:0016870                | 159005            | 159848            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                   | peg.72  | tRNA pseudouridine synthase<br>B<br>(EC 4.2.1.70)                                                                                         | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA pseudouridine<br>syntheses<br>Subsystem: tRNA processing<br>Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Riboflavin, FMN,<br>FAD<br>Subsystem: Riboflavin, FMN<br>and FAD metabolism in plants                                                                             | 159006 | 159848 | +  |
| mnas_119 | HAD hydrolase, IIB<br>family protein                    |                         | GO:0008152,<br>GO:0016787                               | 159847            | 160666            | +  | Unknown: Enzymes of<br>unknown specificity                                 | peg.73  | FIG00834275: hypothetical<br>protein                                                                                                      | - none -                                                                                                                                                                                                                                                                                                                                                                                                  | 159848 | 160666 | +  |
| mnas_120 | FAD synthetase family protein                           |                         |                                                         | 160665            | 161508            | +  | Unknown: Enzymes of<br>unknown specificity                                 | peg.74  | Riboflavin kinase<br>(EC 2.7.1.26) / FMN<br>adenylyltransferase<br>(EC 2.7.7.2)                                                           | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Riboflavin, FMN,<br>FAD<br>Subsystem: Riboflavin, FMN<br>and FAD metabolism in plants<br>Subsystem: Riboflavin, FMN<br>and FAD metabolism in plants<br>Subsystem: Riboflavin to FAD<br>Subsystem: Riboflavin to FAD<br>Subsystem: Riboflavin, FMN<br>and FAD metabolism<br>Subsystem: Riboflavin, FMN<br>and FAD metabolism | 160666 | 161508 | +  |
| mnas_121 | putative lipoprotein                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 161659            | 164827            | +  | Cell envelope: Other                                                       | peg.75  | no similarity found Pfscan:<br>pos. 16-26 PS00013  <br>PROKAR_LIPOPROTEIN<br>Prokaryotic membrane<br>lipoprotein lipid attachment<br>site | - none -                                                                                                                                                                                                                                                                                                                                                                                                  | 161660 | 164827 | +  |
| mnas_122 | ribosomal protein S15                                   | rpsO                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 164971            | 165238            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.76  | SSU ribosomal protein S15p<br>(S13e)                                                                                                      | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                                                                                                                                                                                                                                                                              | 164972 | 165238 | +  |
| mnas_123 | hypothetical protein                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 165357            | 165678            | +  | Unknown: General                                                           | peg.77  | hypothetical protein                                                                                                                      | - none -                                                                                                                                                                                                                                                                                                                                                                                                  | 165358 | 165678 | +  |
| mnas_124 | DAK2 domain fusion<br>YloV family protein               |                         |                                                         | 165670            | 167311            | +  | Unknown: General<br>Hypothetical                                           | peg.78  | Dihydroxyacetone kinase<br>family protein                                                                                                 | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria                                                                                                                                                                                                                                           | 165671 | 167311 | +  |

| IGS      |                                                   |                         |                                          |                   |                   | _  |                                                                                                                                            | RAST    |                                                    |                                                                                                                                                                                             |        |        | _  |
|----------|---------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                       | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                 | Gene_id | Function                                           | Subsystem                                                                                                                                                                                   | Start⁵ | Stop⁵  | S⁴ |
| mnas_125 | fatty acid/phospholipid<br>synthesis protein PIsX | plsX                    | GO:0003824,<br>GO:0008610                | 167310            | 168321            | +  | Fatty acid and<br>phospholipid<br>metabolism:<br>Biosynthesis                                                                              | peg.79  | Phosphate:acyl-ACP<br>acyltransferase PIsX         | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria                             | 167311 | 168321 | +  |
| mnas_126 | ribonuclease III<br>(EC 3.1.26.3)                 | rnc                     | GO:0004525,<br>GO:0006396                | 168313            | 169006            | +  | Transcription: RNA processing                                                                                                              | peg.80  | Ribonuclease III<br>(EC 3.1.26.3)                  | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA processing<br>and degradation, bacterial                                                      | 168314 | 169006 | +  |
| mnas_127 | hypothetical protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 169088            | 169754            | -  | Unknown: General                                                                                                                           |         |                                                    |                                                                                                                                                                                             |        |        |    |
| mnas_128 | tRNA sulfurtransferase<br>Thil<br>(EC 2.8.1.4)    | thil                    | GO:0003824,<br>GO:0006400,<br>GO:0009228 | 169746            | 170895            | -  | Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Thiamine,<br>Protein synthesis:<br>tRNA and rRNA base<br>modification | peg.118 | tRNA S(4)U 4-thiouridine<br>synthase (former Thil) | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Cofactors,<br>Vitamins, Prosthetic Groups,<br>Pigments - no subcategory<br>Subsystem: Thiamin<br>biosynthesis | 170895 | 169747 | -  |
| mnas_129 | hypothetical protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 170884            | 172480            | -  | Unknown: General                                                                                                                           | peg.119 | DNA double-strand break repair Rad50 ATPase        | - none -                                                                                                                                                                                    | 172480 | 170885 | -  |
| mnas_130 | hypothetical protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 172691            | 173186            | +  | Unknown: General                                                                                                                           | peg.120 | hypothetical protein                               | - none -                                                                                                                                                                                    | 172584 | 173186 | +  |
| mnas_131 | HAD hydrolase, IIB family protein                 |                         | GO:0008152,<br>GO:0016787                | 173197            | 174184            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                 | peg.121 | Hydrolase (HAD superfamily)                        | - none -                                                                                                                                                                                    | 174184 | 173198 | -  |
| mnas_132 | conserved hypothetical protein                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 174240            | 174702            | +  | Unknown: Conserved                                                                                                                         | peg.122 | predicted coding region                            | - none -                                                                                                                                                                                    | 174241 | 174702 | +  |
| mnas_133 | conserved hypothetical<br>protein                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 174701            | 175199            | +  | Unknown: Conserved                                                                                                                         | peg.123 | hypothetical protein                               | - none -                                                                                                                                                                                    | 174994 | 174794 | -  |
|          |                                                   |                         |                                          |                   |                   |    |                                                                                                                                            | peg.124 | hypothetical protein                               | - none -                                                                                                                                                                                    | 175032 | 175199 | +  |
| mnas_134 | conserved hypothetical<br>protein                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 175182            | 175566            | +  | Unknown: Conserved                                                                                                                         | peg.125 | Expressed protein                                  | - none -                                                                                                                                                                                    | 175183 | 175566 | +  |
| mnas_135 | hypothetical protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 176098            | 176542            | +  | Unknown: General                                                                                                                           | peg.126 | hypothetical protein                               | - none -                                                                                                                                                                                    | 176099 | 176542 | +  |
| mnas_136 | nusA-like KH domain<br>protein                    |                         |                                          | 176549            | 178202            | +  | Unknown: General<br>Hypothetical                                                                                                           | peg.127 | Transcription termination<br>protein NusA          | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: Transcription<br>factors bacterial<br>Subsystem: NusA-TFII Cluster                                                     | 176550 | 178202 | +  |
| mnas_137 | conserved hypothetical<br>protein                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 178185            | 178473            | +  | Unknown: Conserved                                                                                                                         | peg.128 | hypothetical protein                               | - none -                                                                                                                                                                                    | 178186 | 178473 | +  |

| IGS      |                                                          |                         |                                                         |                   |                   |    |                                                                                                        | RAST    |                                                      |                                                                                                                                                                                   |        |        |    |
|----------|----------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|--------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                              | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                             | Gene_id | Function                                             | Subsystem                                                                                                                                                                         | Start⁵ | Stop⁵  | S⁴ |
| mnas_138 | translation initiation<br>factor IF-2                    | infB                    | GO:0003743,<br>GO:0005737,<br>GO:0006413                | 178456            | 179602            | +  | Protein synthesis:<br>Translation factors                                                              | peg.129 | Translation initiation factor 2                      | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases                                                                              | 178457 | 180291 | +  |
|          |                                                          |                         |                                                         |                   |                   |    |                                                                                                        |         |                                                      | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>initiation factors bacterial<br>Subsystem: NusA-TFII Cluster                    |        |        |    |
| mnas_139 | translation-initiation<br>factor 2 family protein        |                         |                                                         | 179643            | 180291            | +  | Protein synthesis:<br>Translation factors,<br>Disrupted reading<br>frame: NULL                         |         |                                                      |                                                                                                                                                                                   |        |        |    |
| mnas_140 | adenine<br>phosphoribosyltransfer<br>ase<br>(EC 2.4.2.7) | apt                     | GO:0003999,<br>GO:0005737,<br>GO:0006166                | 180290            | 180797            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Salvage of<br>nucleosides and<br>nucleotides | peg.130 | Adenine<br>phosphoribosyltransferase<br>(EC 2.4.2.7) | Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Purine conversions                                                                                 | 180291 | 180797 | +  |
| mnas_141 | ribosomal protein L1                                     | rplA                    | GO:0000311,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 180893            | 181589            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                             | peg.131 | LSU ribosomal protein L1p<br>(L10Ae)                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                      | 181589 | 180894 | -  |
| mnas_142 | ribosomal protein L11                                    | rplK                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 181588            | 182179            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                             | peg.132 | LSU ribosomal protein L11p<br>(L12e)                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial<br>Subsystem: LSU ribosomal                                          | 182179 | 181589 | -  |
|          |                                                          |                         |                                                         | 100510            |                   |    |                                                                                                        |         |                                                      | proteins cluster                                                                                                                                                                  | 100500 |        |    |
| mnas_143 | LMP repeated region<br>family protein                    |                         |                                                         | 182519            | 183395            | +  | Unclassified: Role<br>category not yet<br>assigned                                                     | peg.133 | VlhA.4.04                                            | - none -                                                                                                                                                                          | 182520 | 183395 | +  |
| mnas_144 | Putative Beta-<br>galactosidase                          |                         |                                                         | 183431            | 186473            | -  | Unknown: General<br>Hypothetical                                                                       | peg.134 | Beta-galactosidase<br>(EC 3.2.1.23)                  | Category: Carbohydrates<br>Subcategory: Di- and<br>oligosaccharides<br>Subsystem: Lactose utilization<br>Category: Sulfur Metabolism<br>Subcategory: no subcategory<br>Subsystem: | 186473 | 183432 | -  |
|          |                                                          |                         |                                                         |                   |                   |    |                                                                                                        |         |                                                      | Galactosylceramide and<br>Sulfatide metabolism                                                                                                                                    |        |        |    |

| IGS      |                                                                           |                         |                                                                                                                                                                                |                   |                   |    |                                                                                                                                                                              | RAST    |                                                                                                 |                                                                                                                                                                                                                                     |        |        |    |
|----------|---------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                               | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                                                                                          | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                                   | Gene_id | Function                                                                                        | Subsystem                                                                                                                                                                                                                           | Start⁵ | Stop⁵  | S⁴ |
| mnas_145 | beta-galactosidase<br>domain protein<br>(EC 3.2.1.23                      | bgaA<br>2               | GO:0016020,<br>GO:0008152,<br>GO:0003824,<br>GO:0016798,<br>GO:0009986,<br>GO:004986,<br>GO:004553,<br>GO:0004553,<br>GO:0004563,<br>GO:00045618,<br>GO:0005618,<br>GO:0005975 | 186593            | 186770            | -  | Energy metabolism:<br>Sugars,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Disrupted reading<br>frame: NULL,<br>Unknown: Enzymes of<br>unknown specificity | peg.135 | hypothetical protein                                                                            | - none -                                                                                                                                                                                                                            | 186770 | 186594 | -  |
| mnas_146 | beta-galactosidase<br>domain protein<br>(EC 3.2.1.23)                     | bgaA                    | GO:0016020,<br>GO:0008152,<br>GO:0003824,<br>GO:0016798,<br>GO:0009986,<br>GO:0043169,<br>GO:0004553,<br>GO:0004553,<br>GO:00045618,<br>GO:0005975                             | 186883            | 187102            | -  | Energy metabolism:<br>Sugars,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity                                      | peg.136 | Beta-galactosidase<br>(EC 3.2.1.23)                                                             | Category: Carbohydrates<br>Subcategory: Di- and<br>oligosaccharides<br>Subsystem: Lactose utilization<br>Category: Sulfur Metabolism<br>Subcategory: no subcategory<br>Subsystem:<br>Galactosylceramide and<br>Sulfatide metabolism | 187102 | 186884 | -  |
| mnas_147 | glycosyl hydrolases<br>family 2, sugar binding<br>domain protein          |                         |                                                                                                                                                                                | 187112            | 189515            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                                                   | peg.137 | Beta-galactosidase<br>(EC 3.2.1.23)                                                             | Category: Carbohydrates<br>Subcategory: Di- and<br>oligosaccharides<br>Subsystem: Lactose utilization<br>Category: Sulfur Metabolism<br>Subcategory: no subcategory<br>Subsystem:<br>Galactosylceramide and<br>Sulfatide metabolism | 189515 | 187113 | -  |
| mnas_148 | ABC transporter family<br>protein                                         |                         |                                                                                                                                                                                | 189740            | 190124            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                                                      | peg.138 | Lipid A export ATP-<br>binding/permease protein<br>MsbA                                         | - none -                                                                                                                                                                                                                            | 190100 | 189741 | -  |
| mnas_149 | hypothetical protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 190132            | 190285            | -  | Unknown: General                                                                                                                                                             |         |                                                                                                 |                                                                                                                                                                                                                                     |        |        |    |
| mnas_150 | hypothetical protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 190495            | 200602            | +  | Unknown: General                                                                                                                                                             | peg.157 | Putative peptidoglycan bound<br>protein (LPXTG motif)<br>Lmo1799 homolog                        | - none -                                                                                                                                                                                                                            | 190496 | 200602 | +  |
| mnas_151 | hypothetical protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 200893            | 204526            | +  | Unknown: General                                                                                                                                                             | peg.158 | Exonuclease SbcC                                                                                | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                                                                                                                          | 200894 | 204526 | +  |
| mnas_152 | type I restriction-<br>modification system, M<br>subunit<br>(EC 2.1.1.72) | hsdM                    | GO:0006306,<br>GO:0009007,<br>GO:0009307,<br>GO:0015666                                                                                                                        | 204706            | 205987            | +  | DNA metabolism:<br>Restriction/modification                                                                                                                                  | peg.159 | Type I restriction-modification<br>system, DNA-<br>methyltransferase subunit M<br>(EC 2.1.1.72) | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Type I Restriction-<br>Modification<br>Subsystem: Restriction-<br>Modification System                                                                         | 204707 | 206292 | +  |
| mnas_153 | N-6 DNA Methylase<br>family protein                                       |                         |                                                                                                                                                                                | 205944            | 206292            | +  | Unknown: Enzymes of<br>unknown specificity                                                                                                                                   |         |                                                                                                 |                                                                                                                                                                                                                                     |        |        |    |

| IGS      |                                                                                    |                         |                                          |                   |                   |    |                                                                                                            | RAST    |                                                                                   |                                                                                                                                                                          |        |        |    |
|----------|------------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                        | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                 | Gene_id | Function                                                                          | Subsystem                                                                                                                                                                | Start⁵ | Stop⁵  | S⁴ |
| _        | type I restriction<br>modification DNA<br>specificity domain<br>protein            |                         |                                          | 206314            | 207580            | +  | DNA metabolism:<br>Restriction/modification                                                                | peg.160 | Type I restriction-modification<br>system, specificity subunit S<br>(EC 3.1.21.3) | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Type I Restriction-<br>Modification<br>Subsystem: Restriction-<br>Modification System              | 206315 | 207580 | +  |
| _        | type I restriction<br>modification DNA<br>specificity domain<br>protein            |                         |                                          | 207533            | 208235            | +  | DNA metabolism:<br>Restriction/modification                                                                | peg.161 | Type I restriction-modification<br>system, specificity subunit S<br>(EC 3.1.21.3) | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Type I Restriction-<br>Modification<br>Subsystem: Restriction-<br>Modification System              | 207534 | 208235 | +  |
|          | type I site-specific<br>deoxyribonuclease,<br>HsdR family protein<br>(EC 3.1.21.3) | hsdR                    | GO:0009035,<br>GO:0009307,<br>GO:0019812 | 208238            | 211040            | +  | DNA metabolism:<br>Restriction/modification                                                                |         |                                                                                   |                                                                                                                                                                          |        |        |    |
| mnas_157 | hypothetical protein                                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 211050            | 212709            | +  | Unknown: General                                                                                           | peg.182 | massive surface protein MspF                                                      | - none -                                                                                                                                                                 | 211366 | 212709 | +  |
| mnas_158 | hypothetical protein                                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 212867            | 212987            | +  | Unknown: General                                                                                           | peg.183 | hypothetical protein                                                              | - none -                                                                                                                                                                 | 212868 | 212987 | +  |
|          | DNA polymerase III,<br>subunit gamma and tau<br>(EC 2.7.7.7)                       | dnaX                    | GO:0003887,<br>GO:0006260,<br>GO:0009360 | 213184            | 215344            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                        | peg.184 | DNA polymerase III subunits<br>gamma and tau<br>(EC 2.7.7.7)                      | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication<br>Subcategory: DNA uptake,<br>competence<br>Subsystem: DNA processing<br>cluster | 213185 | 215344 | +  |
| mnas_160 | DNA-binding protein,<br>YbaB/EbfC family                                           |                         | GO:0003677,<br>GO:0005737,<br>GO:0008150 | 215353            | 215638            | +  | Unknown: Conserved                                                                                         | peg.185 | FIG000557: hypothetical<br>protein co-occurring with<br>RecR                      | Category: DNA Metabolism<br>Subcategory: DNA uptake,<br>competence<br>Subsystem: DNA processing<br>cluster                                                               | 215354 | 215638 | +  |
| mnas_161 | recR family protein                                                                |                         |                                          | 215637            | 216222            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                        | peg.186 | Recombination protein RecR                                                        | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication<br>Subcategory: DNA uptake,<br>competence<br>Subsystem: DNA processing<br>cluster | 215638 | 216222 | +  |
| _        | thymidylate kinase<br>(EC 2.7.4.9)                                                 | tmk                     | GO:0004798,<br>GO:0015949                | 216239            | 216896            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions | peg.187 | Thymidylate kinase<br>(EC 2.7.4.9)                                                | - none -                                                                                                                                                                 | 216240 | 216896 | +  |
| _        | Putative DNA<br>polymerase III, delta'<br>subunit<br>(EC 2.7.7.7)                  | holB                    |                                          | 216882            | 217782            | +  | Unknown: General<br>Hypothetical                                                                           | peg.188 | DNA polymerase III delta<br>prime subunit<br>(EC 2.7.7.7)                         | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication                                                                                   | 216883 | 217782 | +  |

| IGS      |                                                                    |                         |                                                         |                   |                   |    |                                                                             | RAST    |                                                        |                                                                                                                                                                                                                                                                |        |        |    |
|----------|--------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                        | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                               | Subsystem                                                                                                                                                                                                                                                      | Start⁵ | Stop⁵  | S⁴ |
| mnas_164 | tetrapyrrole<br>(Corrin/Porphyrin)<br>Methylases family<br>protein |                         |                                                         | 217774            | 218506            | +  | Unknown: Enzymes of<br>unknown specificity                                  | peg.189 | rRNA small subunit<br>methyltransferase I              | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: 16S rRNA<br>modification within P site of<br>ribosome<br>Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended | 217775 | 218506 | +  |
| mnas_165 | hypothetical protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 218495            | 219779            | +  | Unknown: General                                                            | peg.190 | hypothetical protein                                   | - none -                                                                                                                                                                                                                                                       | 218496 | 219779 | +  |
| mnas_166 | conserved hypothetical protein                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 219800            | 220277            | -  | Unknown: Conserved                                                          | peg.191 | Protein yjgK                                           | - none -                                                                                                                                                                                                                                                       | 220277 | 219801 | -  |
| mnas_167 | conserved hypothetical<br>protein                                  |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 220343            | 222005            | -  | Unknown: Conserved                                                          | peg.192 | Chromosome partition protein smc                       | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: DNA structural<br>proteins, bacterial                                                                                                                                                    | 222005 | 220344 | -  |
| mnas_168 | hypothetical protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 222372            | 222588            | +  | Unknown: General                                                            | peg.193 | hypothetical protein                                   | - none -                                                                                                                                                                                                                                                       | 222373 | 222588 | +  |
| mnas_169 | cytidylyltransferase<br>family protein                             |                         |                                                         | 222687            | 223755            | -  | Fatty acid and<br>phospholipid<br>metabolism:<br>Biosynthesis               | peg.194 | Phosphatidate<br>cytidylyltransferase<br>(EC 2.7.7.41) | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria                                                                                                | 223755 | 222688 | -  |
| mnas_170 | hypothetical protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 224286            | 225714            | -  | Unknown: General                                                            | peg.195 | hypothetical protein                                   | - none -                                                                                                                                                                                                                                                       | 225714 | 224287 | -  |
| mnas_171 | subtilase family protein                                           |                         |                                                         | 225911            | 227657            | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.196 | hypothetical protein                                   | - none -                                                                                                                                                                                                                                                       | 227513 | 225912 | -  |
| mnas_172 | hypothetical protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 227599            | 228199            | -  | Unknown: General                                                            | peg.197 | hypothetical protein                                   | - none -                                                                                                                                                                                                                                                       | 228175 | 227600 | -  |
| mnas_173 | DNA topoisomerase<br>family protein                                |                         |                                                         | 228205            | 229624            | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair         |         |                                                        |                                                                                                                                                                                                                                                                |        |        |    |
| mnas_174 | ribosomal protein S6                                               | rpsF                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 229809            | 230271            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification  | peg.244 | SSU ribosomal protein S6p                              | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystern Ribosome SSU<br>bacterial                                                                                                                                                   | 229867 | 230271 | +  |

| IGS      |                                                                                              |                         |                                                                        |                   |                   |    |                                                                                                            | RAST    |                                                                                              |                                                                                                                                                                 |        |        |    |
|----------|----------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                                  | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                 | Gene_id | Function                                                                                     | Subsystem                                                                                                                                                       | Start⁵ | Stop⁵  | S⁴ |
| mnas_175 | single-stranded DNA-<br>binding family protein                                               | ssb                     | GO:0003697,<br>GO:0006260,<br>GO:0006281,<br>GO:0006310,<br>GO:0006350 | 230304            | 230943            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                        | peg.245 | Single-stranded DNA-binding<br>protein                                                       | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                                                      | 230305 | 230943 | +  |
| mnas_176 | ribosomal protein S18                                                                        | rpsR                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627                | 231029            | 231233            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                 | peg.246 | SSU ribosomal protein S18p<br>@ SSU ribosomal protein<br>S18p, zinc-independent              | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial<br>Subsystem: Ribosome SSU<br>bacterial            | 231030 | 231233 | +  |
| mnas_177 | tRNA (guanine-N(7)-)-<br>methyltransferase<br>(EC 2.1.1.33)                                  | trmB                    | GO:0006400,<br>GO:0008176                                              | 231282            | 231891            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                   | peg.247 | tRNA (guanine46-N7-)-<br>methyltransferase<br>(EC 2.1.1.33)                                  | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                                                       | 231891 | 231283 | -  |
| mnas_178 | RNA<br>methyltransferase,<br>RsmD family<br>(EC 2.1.1)                                       |                         | GO:0008168,<br>GO:0031167                                              | 231951            | 232497            | +  | Unknown: Enzymes of<br>unknown specificity                                                                 | peg.248 | 16S rRNA (guanine(966)-<br>N(2))-methyltransferase<br>(EC 2.1.1.171) ## SSU rRNA<br>m(2)G966 | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                                                       | 231952 | 232497 | +  |
| mnas_179 | 23S rRNA (uracil-5-)-<br>methyltransferase<br>RumA<br>(EC 2.1.1)                             | rumA                    | GO:0000154,<br>GO:0008649                                              | 232484            | 233780            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                   | peg.249 | RNA methyltransferase, TrmA family                                                           | - none -                                                                                                                                                        | 232485 | 233780 | +  |
| mnas_180 | glycosyl transferase 2<br>family protein                                                     |                         |                                                                        | 234006            | 235026            | +  | Cell envelope:<br>Biosynthesis and<br>degradation of surface<br>polysaccharides and<br>lipopolysaccharides | peg.250 | Glycosyltransferase                                                                          | - none -                                                                                                                                                        | 234007 | 235026 | +  |
| mnas_181 | RDD family protein                                                                           |                         |                                                                        | 235025            | 235646            | +  |                                                                                                            | peg.251 | predicted coding region                                                                      | - none -                                                                                                                                                        | 235026 | 235646 | +  |
| mnas_182 | uvrD/REP helicase N-<br>terminal domain protein                                              |                         |                                                                        | 235648            | 237832            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                        | peg.252 | ATP-dependent DNA helicase<br>UvrD/PcrA                                                      | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial UvrD and related<br>helicases                                        | 235649 | 237832 | +  |
| mnas_183 | hypothetical protein                                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 237834            | 239493            | +  | Unknown: General                                                                                           | peg.253 | predicted coding region                                                                      | - none -                                                                                                                                                        | 237835 | 239493 | +  |
| mnas_184 | EDD, DegV family<br>domain protein                                                           |                         | GO:0005575,<br>GO:0008150,<br>GO:0016740                               | 239605            | 240448            | +  | Unknown: General<br>Hypothetical                                                                           | peg.254 | FIG00836191: hypothetical<br>protein                                                         | - none -                                                                                                                                                        | 239456 | 240448 | +  |
| mnas_185 | hypothetical protein                                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 240447            | 240690            | +  | Unknown: General                                                                                           | peg.255 | hypothetical protein                                                                         | - none -                                                                                                                                                        | 240448 | 240690 | +  |
| mnas_186 | CDP-diacylglycerol<br>glycerol-3-phosphate 3-<br>phosphatidyltransferas<br>e<br>(EC 2.7.8.5) | pgsA                    | GO:0008444,<br>GO:0008654                                              | 240741            | 241395            | -  | Fatty acid and<br>phospholipid<br>metabolism:<br>Biosynthesis                                              | peg.256 | CDP-diacylglycerol-glycerol-<br>3-phosphate 3-<br>phosphatidyltransferase<br>(EC 2.7.8.5)    | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria | 241395 | 240742 | -  |
| mnas_187 | hypothetical protein                                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 241378            | 241942            | -  | Unknown: General                                                                                           | peg.257 | hypothetical protein                                                                         | - none -                                                                                                                                                        | 241942 | 241379 | -  |

| IGS      |                                                                                 |                         |                                          |                   |                   |    |                                                                              | RAST    |                                                                                                                                               |                                                                                                                                                                                                                                                   |        |        |    |
|----------|---------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                     | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                   | Gene_id | Function                                                                                                                                      | Subsystem                                                                                                                                                                                                                                         | Start⁵ | Stop⁵  | S⁴ |
| mnas_188 | conserved hypothetical<br>protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 241950            | 242274            | -  | Unknown: Conserved                                                           | peg.258 | hypothetical protein                                                                                                                          | - none -                                                                                                                                                                                                                                          | 242274 | 241951 | -  |
| mnas_189 | magnesium transporter                                                           | mgtE                    | GO:0015095,<br>GO:0015693                | 242282            | 243617            | -  | Transport and binding<br>proteins: Cations and<br>iron carrying<br>compounds | peg.259 | Mg/Co/Ni transporter MgtE /<br>CBS domain                                                                                                     | Category: Membrane Transport<br>Subcategory: Cation<br>transporters<br>Subsystem: Magnesium<br>transport                                                                                                                                          | 243617 | 242283 | -  |
| mnas_190 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 243694            | 243784            | -  | Unknown: General                                                             |         |                                                                                                                                               |                                                                                                                                                                                                                                                   |        |        |    |
| mnas_191 | disA bacterial<br>checkpoint controller<br>nucleotide-binding<br>family protein |                         |                                          | 243785            | 244196            | -  | Unclassified: Role<br>category not yet<br>assigned                           |         |                                                                                                                                               |                                                                                                                                                                                                                                                   |        |        |    |
| mnas_192 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 244214            | 244547            | +  | Unknown: General                                                             | peg.277 | hypothetical protein                                                                                                                          | - none -                                                                                                                                                                                                                                          | 244296 | 244547 | +  |
| mnas_193 | tRNA-Arg                                                                        |                         | 1                                        | 244829            | 244752            | -  |                                                                              | rna.11  | tRNA-Arg-TCT                                                                                                                                  | - none -                                                                                                                                                                                                                                          | 244829 | 244756 | -  |
| mnas_194 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 245280            | 248232            | +  | Unknown: General                                                             | peg.278 | Predicted cell-wall-anchored<br>protein SasA (LPXTG motif)                                                                                    | - none -                                                                                                                                                                                                                                          | 245281 | 248232 | +  |
| mnas_195 | GDSL-like<br>Lipase/Acylhydrolase<br>family protein                             |                         |                                          | 248502            | 258885            | +  | Unknown: Enzymes of<br>unknown specificity                                   | peg.279 | hypothetical protein                                                                                                                          | - none -                                                                                                                                                                                                                                          | 248524 | 258885 | +  |
| mnas_196 | cation transporting<br>ATPase, family protein                                   |                         |                                          | 258959            | 259481            | -  | Transport and binding<br>proteins: Unknown<br>substrate                      | peg.280 | Lead, cadmium, zinc and<br>mercury transporting ATPase<br>(EC 3.6.3.3) (EC 3.6.3.5);<br>Copper-translocating P-type<br>ATPase<br>(EC 3.6.3.4) | Category: Membrane Transport<br>Subcategory: Cation<br>transporters<br>Subsystem: Copper Transport<br>System<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Resistance to<br>antibiotics and toxic compounds<br>Subsystem: Copper | 259481 | 258960 | -  |
| mnas_197 | recombination O N terminal family protein                                       |                         |                                          | 259497            | 259776            | -  | Unclassified: Role<br>category not yet<br>assigned                           |         |                                                                                                                                               | homeostasis                                                                                                                                                                                                                                       |        |        |    |
| mnas_198 | chaperone protein<br>DnaJ                                                       | dnaJ                    | GO:0005515,<br>GO:0006457,<br>GO:0009408 | 259848            | 260949            | +  | Protein fate: Protein<br>folding and stabilization                           | peg.291 | Chaperone protein DnaJ                                                                                                                        | Category: Protein Metabolism<br>Subcategory: Protein folding<br>Subsystem: Protein chaperones<br>Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended                                      | 259849 | 260949 | +  |
| mnas_199 | conserved hypothetical<br>protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 260949            | 261324            | +  | Unknown: Conserved                                                           | peg.292 | FIG000605: protein co-<br>occurring with transport<br>systems (COG1739)                                                                       | - none -                                                                                                                                                                                                                                          | 260950 | 261324 | +  |

| IGS      |                                                               |                         |                                                         |                   |                   |    |                                                                             | RAST    |                                                 |                                                                                                                                                                                                                                                                                                                                   |        |        |    |
|----------|---------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                   | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                        | Subsystem                                                                                                                                                                                                                                                                                                                         | Start⁵ | Stop⁵  | S⁴ |
| mnas_200 | cytosol aminopeptidase<br>family, catalytic domain<br>protein |                         |                                                         | 261323            | 262694            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.293 | Cytosol aminopeptidase<br>PepA<br>(EC 3.4.11.1) | Category: Protein Metabolism<br>Subcategory: Protein<br>degradation<br>Subsystem: Aminopeptidases<br>(EC 3.4.11)                                                                                                                                                                                                                  | 261324 | 262694 | +  |
| mnas_201 | cytosol aminopeptidase<br>family, catalytic domain<br>protein |                         |                                                         | 262702            | 264076            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.294 | Cytosol aminopeptidase<br>PepA<br>(EC 3.4.11.1) | Category: Protein Metabolism<br>Subcategory: Protein<br>degradation<br>Subsystem: Aminopeptidases<br>(EC 3.4.11)                                                                                                                                                                                                                  | 262703 | 264076 | +  |
| mnas_202 | peptidase S41 family<br>protein                               |                         |                                                         | 264139            | 266107            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.295 | hypothetical protein                            | - none -                                                                                                                                                                                                                                                                                                                          | 264140 | 266107 | +  |
| mnas_203 | endonuclease I family<br>protein                              |                         |                                                         | 266153            | 267725            | -  | Unknown: Enzymes of<br>unknown specificity                                  | peg.296 | Endonuclease I                                  | - none -                                                                                                                                                                                                                                                                                                                          | 267725 | 266154 | -  |
| mnas_204 | HAD hydrolase, IIB<br>family protein                          |                         | GO:0008152,<br>GO:0016787                               | 267833            | 268661            | -  | Unknown: Enzymes of<br>unknown specificity                                  | peg.297 | hypothetical protein                            | - none -                                                                                                                                                                                                                                                                                                                          | 268661 | 267834 | -  |
| mnas_205 | calcineurin-like<br>phosphoesterase<br>family protein         |                         |                                                         | 268775            | 271316            | +  | Unknown: Enzymes of<br>unknown specificity                                  | peg.299 | 5'-nucleotidase<br>(EC 3.1.3.5)                 | Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Purine conversions                                                                                                                                                                                                                                 | 268959 | 271316 | +  |
|          |                                                               |                         |                                                         |                   |                   |    |                                                                             | peg.298 | hypothetical protein                            | - none -                                                                                                                                                                                                                                                                                                                          | 268999 | 268877 | 1- |
| mnas_206 | ribosomal protein S12                                         | rpsL                    | GO:000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627  | 271479            | 271890            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification  | peg.300 | SSU ribosomal protein S12p<br>(S23e)            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (SSU<br>ribosomal proteins) | 271480 | 271890 | +  |
| mnas_207 | ribosomal protein S7                                          | rpsG                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 271950            | 272421            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification  | peg.301 | SSU ribosomal protein S7p<br>(S5e)              | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (SSU<br>ribosomal proteins) | 271951 | 272421 | +  |
| mnas_208 | translation elongation factor G                               | fusA                    | GO:0003746,<br>GO:0006414                               | 272433            | 273702            | +  | Protein synthesis:<br>Translation factors                                   |         |                                                 |                                                                                                                                                                                                                                                                                                                                   |        |        |    |

| IGS          |                                                                            |                         |                                          |                   |                   |    |                                                                     | RAST    |                                                          |                                                                                                                                                         |        |        |    |
|--------------|----------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------------------|---------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id      | Common_name                                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                          | Gene_id | Function                                                 | Subsystem                                                                                                                                               | Start⁵ | Stop⁵  | S⁴ |
| mnas_209     | hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 273712            | 274435            | +  | Unknown: General                                                    | peg.308 | hypothetical protein                                     | - none -                                                                                                                                                | 273743 | 274435 | +  |
|              |                                                                            |                         |                                          |                   |                   |    |                                                                     | peg.309 | hypothetical protein                                     | - none -                                                                                                                                                | 274609 | 274761 | +  |
| mnas_210     | preprotein translocase,<br>SecE subunit                                    | secE                    | GO:0005887,<br>GO:0015450,<br>GO:0043952 | 274760            | 275003            | +  | Protein fate:Protein and<br>peptide secretion and<br>trafficking    | peg.310 | Preprotein translocase<br>subunit SecE<br>(TC 3.A.5.1.1) | Subsystem: LSU ribosomal<br>proteins cluster                                                                                                            | 274761 | 275003 | +  |
| mnas_211     | KOW motif family<br>protein                                                |                         |                                          | 275027            | 275633            | +  | Unclassified: Role<br>category not yet<br>assigned                  | peg.311 | Transcription antitermination<br>protein NusG            | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: Transcription<br>factors bacterial<br>Subsystem: LSU ribosomal<br>proteins cluster | 275028 | 275633 | +  |
| mnas_212     | ABC-2 type transporter<br>family protein                                   |                         |                                          | 275685            | 276825            | -  | Transport and binding<br>proteins: Unknown<br>substrate             | peg.312 | ABC transporter, permease protein                        | - none -                                                                                                                                                | 276825 | 275686 | -  |
| mnas_213     | ABC transporter family protein                                             |                         |                                          | 276805            | 277750            | -  | Transport and binding<br>proteins: Unknown<br>substrate             | peg.313 | Methionine ABC transporter<br>ATP-binding protein        | - none -                                                                                                                                                | 277750 | 276806 | -  |
| mnas_214     | tRNA-Trp                                                                   |                         |                                          | 277866            | 277792            | -  |                                                                     | rna.13  | tRNA-Trp-CCA                                             | - none -                                                                                                                                                | 277866 | 277796 | -  |
| <br>mnas_215 | putative membrane<br>protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 278060            | 278345            | +  | Cell envelope: Other                                                | peg.314 | hypothetical protein                                     | - none -                                                                                                                                                | 278061 | 278345 | +  |
| mnas_216     | hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 278507            | 278636            | +  | Unknown: General                                                    | peg.315 | hypothetical protein                                     | - none -                                                                                                                                                | 278508 | 278636 | +  |
| mnas_217     | 50S ribosome-binding<br>GTPase family protein                              |                         |                                          | 278781            | 279882            | -  | Unknown: General<br>Hypothetical                                    | peg.316 | GTP-binding and nucleic<br>acid-binding protein YchF     | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases                                                    | 279882 | 278782 | -  |
| mnas_218     | HNH endonuclease<br>family protein                                         |                         |                                          | 279918            | 281205            | -  | Unclassified: Role<br>category not yet<br>assigned                  | peg.317 | hypothetical protein                                     | - none -                                                                                                                                                | 281205 | 279919 | -  |
| mnas_219     | adenine-specific<br>methyltransferase<br>EcoRI family protein              |                         |                                          | 281191            | 281860            | -  | Unknown: Enzymes of<br>unknown specificity                          | peg.318 | Phage protein                                            | - none -                                                                                                                                                | 281860 | 281192 | -  |
| mnas_220     | DNA (cytosine-5-)-<br>methyltransferase<br>family protein<br>(EC 2.1.1.37) | dcm                     | GO:0003886,<br>GO:0006304                | 282059            | 283031            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair | peg.319 | DNA-cytosine<br>methyltransferase<br>(EC 2.1.1.37)       | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                                              | 282060 | 283031 | +  |
| mnas_221     | hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 283064            | 283388            | +  | Unknown: General                                                    | peg.320 | hypothetical protein                                     | - none -                                                                                                                                                | 283065 | 283388 | +  |
| mnas_222     | fic/DOC family protein                                                     |                         |                                          | 283395            | 284010            | +  | Unclassified: Role<br>category not yet<br>assigned                  | peg.321 | hypothetical protein                                     | - none -                                                                                                                                                | 283396 | 284010 | +  |
| mnas_223     | hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 284169            | 285819            | +  | Unknown: General                                                    | peg.322 | predicted coding region                                  | - none -                                                                                                                                                | 284170 | 285819 | +  |

| IGS      |                                                                    |                         |                                                                        |                   |                   |    |                                                                                                                                         | RAST    |                                                                                 |                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
|----------|--------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                        | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                        | Subsystem                                                                                                                                                                                                                                                                                                                                           | Start⁵ | Stop⁵  | S⁴ |
| mnas_224 | histidinetRNA ligase<br>(EC 6.1.1.21)                              | hisS                    | GO:0004821,<br>GO:0005737,<br>GO:0006427                               | 285808            | 287191            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                                               | peg.323 | Histidyl-tRNA synthetase<br>(EC 6.1.1.21)                                       | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, His                                                                                                                                                                                                                                      | 285809 | 287191 | +  |
| mnas_225 | OB-fold nucleic acid<br>binding domain protein                     |                         |                                                                        | 287201            | 287780            | +  | Unknown: General<br>Hypothetical                                                                                                        |         |                                                                                 |                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_226 |                                                                    | hlyC                    | GO:0050660,<br>GO:0003824,<br>GO:0055114                               | 287782            | 288106            | +  | Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity                                  | peg.333 | hypothetical protein                                                            | - none -                                                                                                                                                                                                                                                                                                                                            | 287891 | 288106 | +  |
| mnas_227 | Probable<br>spermidine/putrescine/<br>ABC transporter<br>substrate | potD                    | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 288456            | 290397            | +  | Unknown: General                                                                                                                        | peg.334 | Probable<br>spermidine/putrescine<br>substrate binding protein in<br>Mollicutes | - none -                                                                                                                                                                                                                                                                                                                                            | 288508 | 290397 | +  |
| mnas_228 | ribosomal protein S20                                              | rpsT                    | GO:0000312,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627                | 290447            | 290708            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                              | peg.335 | SSU ribosomal protein S20p                                                      | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                                                                                                                                                                                                                        | 290448 | 290708 | +  |
| mnas_229 | thymidine kinase<br>(EC 2.7.1.21)                                  | tdk                     | GO:0046872,<br>GO:0005524,<br>GO:0006260,<br>GO:0004797,<br>GO:0005737 | 290785            | 291346            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.336 | Thymidine kinase<br>(EC 2.7.1.21)                                               | - none -                                                                                                                                                                                                                                                                                                                                            | 291346 | 290786 | -  |
| mnas_230 | sporulation Regulator<br>WhiA C terminal<br>domain protein         |                         |                                                                        | 291364            | 292240            | -  | Unknown: Conserved                                                                                                                      | peg.337 | FIG001886: Cytoplasmic<br>hypothetical protein                                  | - none -                                                                                                                                                                                                                                                                                                                                            | 292231 | 291365 | -  |
| mnas_231 | translation initiation<br>factor IF-3                              | infC                    | GO:0003743,<br>GO:0006413                                              | 292734            | 293247            | +  | Protein synthesis:<br>Translation factors                                                                                               | peg.338 | Translation initiation factor 3                                                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>initiation factors bacterial<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (LSU<br>ribosomal proteins) | 292735 | 293247 | +  |

| IGS      |                                                                                         |                         |                                                         |                   |                   |    |                                                                            | RAST    |                                                                             |                                                                                                                                                                                                                   |        |        |    |
|----------|-----------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                 | Gene_id | Function                                                                    | Subsystem                                                                                                                                                                                                         | Start⁵ | Stop⁵  | S⁴ |
| mnas_232 | ribosomal protein L35                                                                   | rpml                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 293227            | 293416            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.339 | LSU ribosomal protein L35p                                                  | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial<br>Category: Virulence, Disease<br>and Defense                                                       | 293228 | 293416 | +  |
|          |                                                                                         |                         |                                                         |                   |                   |    |                                                                            |         |                                                                             | Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (LSU<br>ribosomal proteins)                                                |        |        |    |
| mnas_233 | ribosomal protein L20                                                                   | rpIT                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 293473            | 293827            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.340 | LSU ribosomal protein L20p                                                  | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                      | 293474 | 293827 | +  |
|          |                                                                                         |                         |                                                         |                   |                   |    |                                                                            |         |                                                                             | Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (LSU<br>ribosomal proteins) |        |        |    |
| mnas_234 | DHHA1 domain protein                                                                    |                         |                                                         | 294264            | 295239            | -  | Unknown: General<br>Hypothetical                                           | peg.341 | FIG146085: 3'-to-5'<br>oligoribonuclease A, Bacillus<br>type                | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA processing<br>and degradation, bacterial                                                                            | 295239 | 294265 | -  |
| mnas_235 | DHHA1 domain protein                                                                    |                         |                                                         | 295238            | 296201            | -  | Unknown: General<br>Hypothetical                                           | peg.342 | FIG146085: 3'-to-5'<br>oligoribonuclease A, Bacillus<br>type                | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA processing<br>and degradation, bacterial                                                                            | 296201 | 295239 | -  |
| mnas_236 | hypothetical protein                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 296202            | 297330            | -  | Unknown: General                                                           | peg.343 | hypothetical protein                                                        | - none -                                                                                                                                                                                                          | 297330 | 296203 | -  |
| _        | HAD super, subIIIB<br>family protein                                                    |                         |                                                         | 297495            | 298860            | +  | Unknown: Enzymes of<br>unknown specificity                                 | peg.344 | Multiple banded antigen                                                     | - none -                                                                                                                                                                                                          | 297496 | 298860 | +  |
| mnas_238 | branched-chain amino<br>acid transport system /<br>permease component<br>family protein |                         |                                                         | 298946            | 299903            | -  | Transport and binding<br>proteins: Other                                   | peg.345 | Unspecified monosaccharide<br>ABC transport system,<br>permease component 2 | - none -                                                                                                                                                                                                          | 299903 | 298947 | -  |
| mnas_239 | Putative sugar ABC<br>transporter permease<br>protein                                   |                         |                                                         | 299902            | 301714            | -  | Transport and binding proteins: Other                                      | peg.346 | Sugar ABC transporter, permease protein                                     | - none -                                                                                                                                                                                                          | 301636 | 299903 | -  |

| IGS      |                                                                                               |                         |                                                                                                                                                                                |                   |                   |    |                                                                                                                                                                              | RAST    |                                                                      |                                                                                                                                                             |        |        |    |
|----------|-----------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                                   | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                                                                                          | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                                   | Gene_id | Function                                                             | Subsystem                                                                                                                                                   | Start⁵ | Stop⁵  | S⁴ |
| mnas_240 | spermidine/putrescine<br>ABC transporter<br>permease PotB domain<br>protein                   | potB                    | GO:0006810,<br>GO:0016021,<br>GO:0005886,<br>GO:0005215                                                                                                                        | 301718            | 302042            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                                                      |         |                                                                      |                                                                                                                                                             |        |        |    |
| mnas_241 | putative<br>permidine/putrescine<br>transport system ATP-<br>binding protein<br>(EC 3.6.3.31) | potA                    |                                                                                                                                                                                | 302025            | 302700            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                                                      | peg.353 | Putrescine transport ATP-<br>binding protein PotA<br>(TC 3.A.1.11.1) | - none -                                                                                                                                                    | 303408 | 302026 | -  |
| mnas_242 | putative<br>spermidine/putrescine<br>import ATP-binding<br>protein PotA                       |                         | GO:0006810,<br>GO:0005524,<br>GO:0016820,<br>GO:0016787,<br>GO:0000166,<br>GO:0005200,<br>GO:0043190,<br>GO:0005886,<br>GO:0015417,<br>GO:0016887,<br>GO:0005215               | 302678            | 303149            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Disrupted reading<br>frame: NULL,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                      |                                                                                                                                                             |        |        |    |
| mnas_243 | spermidine/putrescine<br>import ATP-binding<br>PotA domain protein<br>(EC 3.6.3.31)           | potA                    | GO:0006810,<br>GO:0005524,<br>GO:0016820,<br>GO:001682,<br>GO:0006200,<br>GO:0017111,<br>GO:0043190,<br>GO:0015886,<br>GO:0015417,<br>GO:0005886,<br>GO:0016887,<br>GO:0005215 | 303195            | 303408            | -  | Cellular processes:<br>Other, Transport and<br>binding proteins:<br>Unknown substrate,<br>Disrupted reading<br>frame: NULL,<br>Unknown: Enzymes of<br>unknown specificity    |         |                                                                      |                                                                                                                                                             |        |        |    |
| mnas_244 | hypothetical protein                                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 303450            | 303588            | -  | Unknown: General                                                                                                                                                             | peg.354 | hypothetical protein                                                 | - none -                                                                                                                                                    | 303588 | 303451 | -  |
| mnas_245 | DNA polymerase III,<br>alpha subunit<br>(EC 2.7.7.7)                                          | dnaE                    | GO:0003887,<br>GO:0006260,<br>GO:0009360                                                                                                                                       | 303755            | 306668            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                                                          | peg.355 | DNA polymerase III alpha<br>subunit<br>(EC 2.7.7.7)                  | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication                                                                      | 303756 | 306668 | +  |
| mnas_246 | Putative DNA<br>polymerase I<br>(EC 2.7.7.7)                                                  |                         |                                                                                                                                                                                | 306660            | 307536            | +  | DNA metabolism:<br>Degradation of DNA                                                                                                                                        | peg.356 | DNA polymerase I<br>(EC 2.7.7.7)                                     | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA Repair Base<br>Excision<br>Subcategory: DNA replication<br>Subsystem: DNA-replication | 306661 | 307536 | +  |
| mnas_247 | hypothetical protein                                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 307811            | 308810            | +  | Unknown: General                                                                                                                                                             | peg.357 | Helicase loader DnaB                                                 | - none -                                                                                                                                                    | 307812 | 308810 | +  |
| mnas_248 | hypothetical protein                                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                                                       | 308877            | 309813            | +  | Unknown: General                                                                                                                                                             | peg.358 | Putative DNA helicase                                                | - none -                                                                                                                                                    | 308878 | 309813 | +  |

| IGS      |                                                                             |                         |                                                         |                   |                   |    |                                                                                                                                         | RAST    |                                                                               |                                                                                                                                                                                                                                                              |         |        |    |  |
|----------|-----------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|----|--|
| Gene_id  | Common_name                                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                      | Subsystem                                                                                                                                                                                                                                                    | Start⁵  | Stop⁵  | S⁴ |  |
| mnas_249 | methionyl-tRNA<br>formyltransferase<br>(EC 2.1.2.9)                         | fmt                     | GO:0004479,<br>GO:0005737,<br>GO:0006431                | 309803            | 310640            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                                               | peg.359 | Methionyl-tRNA<br>formyltransferase<br>(EC 2.1.2.9)                           | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>initiation factors bacterial<br>Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyltransferase                                        | 309804  | 310640 | +  |  |
|          | glyceraldehyde-3-<br>phosphate<br>dehydrogenase, type I<br>(EC 1.2.1)       | gap                     | GO:0006094,<br>GO:0006096,<br>GO:0008943,<br>GO:0019682 | 310772            | 311777            | +  | Energy metabolism:<br>Glycolysis/gluconeogen<br>esis                                                                                    | peg.360 | NAD-dependent<br>glyceraldehyde-3-phosphate<br>dehydrogenase<br>(EC 1.2.1.12) | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis                                                                                                                                   | 310773  | 311777 | +  |  |
| mnas_251 | tRNA uridine 5-<br>carboxymethylaminom<br>ethyl modification<br>enzyme GidA | gidA                    | GO:0006400,<br>GO:0016740                               | 311865            | 313701            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                                                | peg.361 | tRNA uridine 5-<br>carboxymethylaminomethyl<br>modification enzyme GidA       | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: mnm5U34<br>biosynthesis bacteria<br>Subsystem: Cell Division<br>Subsystem including YidCD<br>Subsystem: RNA modification<br>and chromosome partitioning<br>cluster | 311866  | 313701 | +  |  |
| mnas_252 | putative type II DNA<br>modification enzyme                                 |                         | GO:0003677,<br>GO:0008168,<br>GO:0016740,<br>GO:0032259 | 313720            | 314827            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.362 | putative type II DNA<br>modification enzyme<br>(methyltransferase)            | - none -                                                                                                                                                                                                                                                     | 313721  | 314827 | +  |  |
| mnas_253 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 314816            | 315296            | +  | Unknown: General                                                                                                                        |         |                                                                               |                                                                                                                                                                                                                                                              |         |        |    |  |
| mnas_254 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 315304            | 315889            | +  | Unknown: General                                                                                                                        | peg.367 | hypothetical protein                                                          | - none -                                                                                                                                                                                                                                                     | 315338  | 315889 | +  |  |
| mnas_255 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 315891            | 316371            | +  | Unknown: General                                                                                                                        | peg.368 | Phage excisionase                                                             | - none -                                                                                                                                                                                                                                                     | 3158141 | 316371 | +  |  |
| mnas_256 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 316382            | 316541            | -  | Unknown: General                                                                                                                        | peg.369 | hypothetical protein                                                          | - none -                                                                                                                                                                                                                                                     | 316541  | 316383 | -  |  |
| mnas_257 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 316542            | 316881            | -  | Unknown: General                                                                                                                        | peg.370 | hypothetical protein                                                          | - none -                                                                                                                                                                                                                                                     | 316881  | 316543 | -  |  |
| mnas_258 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 316897            | 318844            | -  | Unknown: General                                                                                                                        | peg.371 | massive surface protein<br>MspJ';                                             | - none -                                                                                                                                                                                                                                                     | 318727  | 316898 | -  |  |
| mnas_259 | hypothetical protein                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 318845            | 320141            | -  | Unknown: General                                                                                                                        | peg.372 | Phage protein                                                                 | - none -                                                                                                                                                                                                                                                     | 320141  | 318846 | -  |  |

| IGS      |                                                            |                         |                                          |                   |                   |    |                                                                     | RAST    |                                                     |                                                                                                                                                                                                                                                        |        |        |    |
|----------|------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------------------|---------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                          | Gene_id | Function                                            | Subsystem                                                                                                                                                                                                                                              | Start⁵ | Stop⁵  | S⁴ |
| mnas_260 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 320145            | 321108            | -  | Unknown: General                                                    | peg.373 | Phage protein                                       | - none -                                                                                                                                                                                                                                               | 321108 | 320146 | -  |
| -        | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 321122            | 321608            | -  | Unknown: General                                                    | peg.374 | Phage protein                                       | - none -                                                                                                                                                                                                                                               | 321608 | 321123 | -  |
| mnas_262 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 321649            | 323716            | -  | Unknown: General                                                    | peg.375 | Phage protein                                       | - none -                                                                                                                                                                                                                                               | 323716 | 321650 | -  |
| mnas_263 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 323690            | 324881            | -  | Unknown: General                                                    | peg.376 | Phage protein                                       | - none -                                                                                                                                                                                                                                               | 324881 | 323691 | -  |
| mnas_264 | putative marRP                                             |                         |                                          | 324867            | 326547            | -  | Unclassified: Role<br>category not yet<br>assigned                  | peg.377 | MarRP                                               | - none -                                                                                                                                                                                                                                               | 326547 | 324868 | -  |
| mnas_265 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 326551            | 327529            | -  | Unknown: General                                                    | peg.378 | hypothetical protein                                | - none -                                                                                                                                                                                                                                               | 327529 | 326552 | -  |
| mnas_266 | dnaB-like helicase C terminal domain protein               |                         |                                          | 327515            | 328475            | -  | Unknown: General<br>Hypothetical                                    | peg.379 | Replicative DNA helicase<br>(DnaB)<br>(EC 3.6.4.12) | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication                                                                                                                                                                 | 328106 | 327516 | -  |
| mnas_267 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 328489            | 329512            | +  | Unknown: General                                                    | peg.382 | hypothetical protein                                | - none -                                                                                                                                                                                                                                               | 328703 | 329512 | +  |
| mnas_268 | glycinetRNA ligase<br>(EC 6.1.1.14)                        | glyS                    | GO:0004820,<br>GO:0006426,<br>GO:0009345 | 329639            | 330980            | +  | Protein synthesis:<br>tRNA aminoacylation                           | peg.383 | Glycyl-tRNA synthetase (EC<br>6.1.1.14)             | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Gly                                                                                                                                         | 329616 | 330980 | +  |
| mnas_269 | DNA primase<br>(EC 2.7.7)                                  | dnaG                    | GO:0003896,<br>GO:0006269                | 331007            | 332948            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair | peg.384 | DNA primase<br>(EC 2.7.7)                           | Category: Cell Division and Cell<br>Cycle<br>Subcategory: no subcategory<br>Subsystem: Macromolecular<br>synthesis operon<br>Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication                                    | 331008 | 332948 | +  |
| mnas_270 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 332950            | 333211            | +  | Unknown: General                                                    | peg.385 | hypothetical protein                                | - none -                                                                                                                                                                                                                                               | 332951 | 333211 | +  |
| mnas_271 | RNA polymerase sigma<br>factor, sigma-70 family<br>protein | rpoD                    |                                          | 333300            | 334452            | +  | Transcription: DNA-<br>dependent RNA<br>polymerase                  | peg.386 | RNA polymerase sigma factor<br>RpoD                 | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: Transcription<br>initiation, bacterial sigma factors<br>Category: Cell Division and Cell<br>Cycle<br>Subcategory: no subcategory<br>Subsystem: Macromolecular<br>synthesis operon | 333301 | 334452 | +  |
| mnas_272 | NIF3 family protein                                        |                         |                                          | 334459            | 335239            | +  | Unclassified: Role<br>category not yet<br>assigned                  | peg.387 | UPF0135 protein Bsu YqfO                            | - none -                                                                                                                                                                                                                                               | 334460 | 335239 | +  |

| IGS      |                                                             |                         |                                          |                   |                   |    |                                                                                                                                                                                                                                         | RAST    |                                                              |                                                                                                                                                                                                              |        |        |           |
|----------|-------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|
| Gene_id  | Common_name                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                                                                                              | Gene_id | Function                                                     | Subsystem                                                                                                                                                                                                    | Start⁵ | Stop⁵  | S⁴        |
| mnas_273 | AAA ATPase, central<br>region                               |                         | GO:0005524,<br>GO:0017111                | 335501            | 336722            | +  | Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity                                                                                                                                  | peg.388 | ATPase, AAA family                                           | - none -                                                                                                                                                                                                     | 335502 | 336722 | +         |
| mnas_274 | phenylalaninetRNA<br>ligase, alpha subunit<br>(EC 6.1.1.20) | pheS                    | GO:0004826,<br>GO:0006432,<br>GO:0009328 | 336721            | 337675            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                                                                                                                                               | peg.389 | Phenylalanyl-tRNA<br>synthetase alpha chain<br>(EC 6.1.1.20) | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Phe                                                                                               | 336722 | 337675 | +         |
| mnas_275 | uracil DNA glycosylase<br>superfamily protein               |                         |                                          | 337664            | 337904            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                                                                                                                     | peg.390 | Uracil-DNA glycosylase,<br>family 1                          | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: Uracil-DNA<br>glycosylase<br>Subsystem: DNA Repair Base<br>Excision                                                                        | 337665 | 338322 | +         |
| mnas_276 | superfamily protein                                         |                         |                                          | 337980            | 338322            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                                                                                                                     |         |                                                              |                                                                                                                                                                                                              |        |        |           |
| mnas_277 | tRNA synthetase B5<br>domain protein                        |                         | GO:0004826,<br>GO:0006432                | 338330            | 340490            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                                                                                                                                               | peg.391 | Phenylalanyl-tRNA<br>synthetase beta chain<br>(EC 6.1.1.20)  | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Phe                                                                                               | 338331 | 340490 | +         |
| mnas_278 | serine<br>hydroxymethyltransfera<br>se<br>(EC 2.1.2.1)      | glyA                    |                                          | 340489            | 341647            | +  | Surface structures:<br>Serine family,<br>Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Folic acid,<br>Purines, pyrimidines,<br>nucleosides, and<br>nucleosides; Nucleotide<br>and nucleoside<br>interconversions |         |                                                              |                                                                                                                                                                                                              |        |        |           |
| mnas_279 | hsp70 family protein                                        |                         |                                          | 341651            | 342440            | -  | Protein fate: Protein folding and stabilization                                                                                                                                                                                         |         |                                                              |                                                                                                                                                                                                              |        |        | $\square$ |
| mnas_280 | grpE family protein                                         |                         |                                          | 342528            | 343383            | -  | Protein fate: Protein folding and stabilization                                                                                                                                                                                         | peg.393 | Heat shock protein GrpE                                      | Category: Protein Metabolism<br>Subcategory: Protein folding<br>Subsystem: Protein chaperones<br>Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended | 343383 | 342529 | -         |
| mnas_281 | hrcA C terminal domain protein                              |                         |                                          | 343397            | 344435            | -  | Unknown: General<br>Hypothetical                                                                                                                                                                                                        | peg.394 | Heat-inducible transcription<br>repressor HrcA               | Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended                                                                                                  | 344435 | 343398 | -         |
| mnas_282 | putative lipoprotein                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 344704            | 346750            | +  | Cell envelope: Other                                                                                                                                                                                                                    | peg.395 | massive surface protein<br>MspC                              | - none -                                                                                                                                                                                                     | 344705 | 346750 | +         |

| IGS      |                                                                            |                         |                                                                                       |                   |                   |    |                                                                                                                                                                         | RAST    |                                                                                                   |                                                                                                                                                                                                        |        |        |    |
|----------|----------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|-------------------|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                 | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                              | Gene_id | Function                                                                                          | Subsystem                                                                                                                                                                                              | Start⁵ | Stop⁵  | S⁴ |
| mnas_283 | phosphocarrier protein<br>HPr<br>(EC 2.7.11)                               | ptsH                    | GO:0006355,<br>GO:0016301,<br>GO:0006351,<br>GO:0005351,<br>GO:0009401,<br>GO:0005737 | 346838            | 347102            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Signal transduction:<br>PTS,<br>Unknown: Enzymes of<br>unknown specificity | peg.396 | Phosphotransferase system,<br>phosphocarrier protein HPr                                          | Category: Regulation and Cell<br>signaling<br>Subcategory: no subcategory<br>Subsystem: HPr catabolite<br>repression system                                                                            | 347102 | 346839 | -  |
| mnas_284 | phospholipase D family protein                                             |                         |                                                                                       | 347174            | 348692            | -  | Fatty acid and<br>phospholipid<br>metabolism:<br>Degradation                                                                                                            | peg.397 | Cardiolipin synthetase<br>(EC 2.7.8)                                                              | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Cardiolipin<br>synthesis<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria | 348692 | 347175 | -  |
| mnas_285 | conserved hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 348732            | 348978            | -  | Unknown: Conserved                                                                                                                                                      | peg.398 | hypothetical protein                                                                              | - none -                                                                                                                                                                                               | 348978 | 348733 | -  |
| mnas_286 | Putative ribose-5-<br>phosphate isomerase<br>(EC 5.3.1.6)                  |                         |                                                                                       | 348980            | 349421            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                                              | peg.399 | Ribose 5-phosphate<br>isomerase B<br>(EC 5.3.1.6)                                                 | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Pentose phosphate<br>pathway                                                                                  | 349421 | 348981 | -  |
| mnas_287 | ABC transporter family protein                                             |                         |                                                                                       | 349525            | 351553            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                                                 | peg.400 | ABC transporter atp-binding<br>and permease protein (MDR<br>homolog)                              | - none -                                                                                                                                                                                               | 349526 | 351553 | +  |
| mnas_288 | hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 351584            | 351914            | +  | Unknown: General                                                                                                                                                        | peg.401 | hypothetical protein                                                                              | - none -                                                                                                                                                                                               | 351600 | 351914 | +  |
| mnas_289 | putative rRNA<br>maturation factor YbeY                                    |                         | GO:0008150,<br>GO:0046872                                                             | 351954            | 352437            | +  | Unknown: Conserved                                                                                                                                                      | peg.402 | Metal-dependent hydrolase<br>YbeY, involved in rRNA<br>and/or ribosome maturation<br>and assembly | - none -                                                                                                                                                                                               | 351955 | 352437 | +  |
| mnas_290 | cytidine deaminase<br>(EC 3.5.4.5)                                         | cdd                     | GO:0004126,<br>GO:0005737,<br>GO:0008655                                              | 352423            | 352822            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Salvage of<br>nucleosides and<br>nucleotides                                                                  | peg.403 | Cytidine deaminase<br>(EC 3.5.4.5)                                                                | - none -                                                                                                                                                                                               | 352424 | 352822 | +  |
| mnas_291 | GTP-binding protein<br>Era                                                 | era                     | GO:0003924,<br>GO:0005525,<br>GO:0019843,<br>GO:0042254,<br>GO:0043022                | 352823            | 353726            | +  | Cellular processes: Cell<br>division,<br>Regulatory functions:<br>RNA interactions                                                                                      | peg.404 | GTP-binding protein Era                                                                           | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases                                                                                                   | 352824 | 353726 | +  |
| mnas_292 | putative SPOUT<br>methyltransferase<br>family protein                      |                         |                                                                                       | 353767            | 353929            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                                                              |         |                                                                                                   |                                                                                                                                                                                                        |        |        | Π  |
| mnas_293 | ATP synthase<br>alpha/beta family,<br>nucleotide-binding<br>domain protein |                         |                                                                                       | 353957            | 354818            | +  | Unknown: Enzymes of<br>unknown specificity                                                                                                                              | peg.405 | ATP synthase alpha chain<br>(EC 3.6.3.14)                                                         | - none -                                                                                                                                                                                               | 353958 | 354818 | +  |

| IGS      |                                                   |                         |                                                                        |                   |                   |    |                                                                                 | RAST    |                                                                                                                                  |                                                                                                                                        |        |        |    |
|----------|---------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                       | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                      | Gene_id | Function                                                                                                                         | Subsystem                                                                                                                              | Start⁵ | Stop⁵  | S⁴ |
| mnas_294 | ATP synthase F1, beta<br>subunit<br>(EC 3.6.3.14) | atpD                    | GO:0000275,<br>GO:0015986,<br>GO:0045261,<br>GO:0045262,<br>GO:0046933 | 354817            | 356179            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                | peg.406 | ATP synthase beta chain<br>(EC 3.6.3.14)                                                                                         | - none -                                                                                                                               | 354818 | 356179 | +  |
| mnas_295 | conserved hypothetical protein                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 356190            | 358470            | +  | Unknown: Conserved                                                              | peg.407 | Prolipoprotein                                                                                                                   | - none -                                                                                                                               | 356191 | 358470 | +  |
| mnas_296 | putative lipoprotein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 358513            | 360538            | -  | Cell envelope: Other                                                            | peg.408 | massive surface protein<br>MspG                                                                                                  | - none -                                                                                                                               | 360538 | 358514 | -  |
| mnas_297 | conserved hypothetical protein                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 360673            | 362746            | +  | Unknown: Conserved                                                              | peg.409 | FIG00833989: hypothetical<br>protein                                                                                             | - none -                                                                                                                               | 360674 | 362746 | +  |
| mnas_298 | phosphotransferase<br>enzyme family protein       |                         |                                                                        | 362821            | 363574            | +  | Unknown: Enzymes of<br>unknown specificity                                      | peg.410 | Choline kinase family                                                                                                            | - none -                                                                                                                               | 362822 | 363574 | +  |
| mnas_299 | hypothetical protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 363701            | 363899            | +  | Unknown: General                                                                | peg.411 | hypothetical protein                                                                                                             | - none -                                                                                                                               | 363717 | 363899 | +  |
| mnas_300 | putative membrane<br>protein                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 363888            | 364953            | +  | Cell envelope: Other                                                            | peg.412 | hypothetical protein                                                                                                             | - none -                                                                                                                               | 363889 | 364953 | +  |
| mnas_301 | putative membrane<br>protein                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 365046            | 366111            | +  | Cell envelope: Other                                                            | peg.413 | hypothetical protein                                                                                                             | - none -                                                                                                                               | 365047 | 366111 | +  |
| mnas_302 | putative lipoprotein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 366212            | 366557            | -  | Cell envelope: Other                                                            |         |                                                                                                                                  |                                                                                                                                        |        |        |    |
| mnas_303 | putative lipoprotein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 366761            | 368090            | -  | Cell envelope: Other                                                            | peg.433 | hypothetical protein                                                                                                             | - none -                                                                                                                               | 368090 | 366762 | -  |
| mnas_304 | hypothetical protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 368166            | 377586            | +  | Unknown: General                                                                | peg.434 | Putative peptidoglycan bound<br>protein (LPXTG motif)<br>Lmo1799 homolog                                                         | - none -                                                                                                                               | 368242 | 377586 | +  |
| mnas_305 | ribonuclease HII family<br>protein                |                         |                                                                        | 378227            | 378746            | -  | Transcription:<br>Degradation of RNA                                            |         |                                                                                                                                  |                                                                                                                                        |        |        |    |
| mnas_306 | phosphorylase<br>superfamily protein              |                         |                                                                        | 377758            | 378235            | +  | Unclassified: Role<br>category not yet<br>assigned                              | peg.435 | HMP-PP hydrolase (pyridoxal<br>phosphatase) Cof, detected in<br>genetic screen for thiamin<br>metabolic genes<br>(PMID:15292217) | - none -                                                                                                                               | 379658 | 378750 | -  |
| mnas_307 | family protein                                    |                         | GO:0008152,<br>GO:0016787                                              | 378749            | 379658            | -  | Unknown: Enzymes of<br>unknown specificity                                      | peg.436 | Dihydrofolate reductase<br>(EC 1.5.1.3)                                                                                          | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Folate and<br>pterines<br>Subsystem: Folate biosynthesis | 380268 | 379741 | -  |
| mnas_308 | dihydrofolate reductase<br>family protein         |                         |                                                                        | 379740            | 380268            | -  | Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Folic acid |         |                                                                                                                                  |                                                                                                                                        |        |        |    |

| IGS      |                                                |                         |                                          |                   |                   |    |                                                                                                            | RAST    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                   |        |        |    |
|----------|------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                    | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                 | Gene_id | Function                                                                                       | Subsystem                                                                                                                                                                                                                                                                                                                                                                         | Start⁵ | Stop⁵  | S⁴ |
| mnas_309 | UMP kinase<br>(EC 2.7.4.22)                    | pyrH                    | GO:0015949,<br>GO:0033862                | 380436            | 381156            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions | peg.437 | Uridine monophosphate<br>kinase<br>(EC 2.7.4.22)                                               | Subsystem: Ribosome<br>recycling related cluster                                                                                                                                                                                                                                                                                                                                  | 380437 | 381156 | +  |
| mnas_310 | ribosome recycling<br>factor                   | frr                     | GO:0005737,<br>GO:0006412,<br>GO:0008135 | 381155            | 381707            | +  | Protein synthesis:<br>Translation factors                                                                  | peg.438 | Ribosome recycling factor                                                                      | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>termination factors bacterial<br>Subsystem: Ribosome<br>recycling related cluster,                                                                                                                                                                                              | 381156 | 381707 | +  |
| _        | tRNA modification<br>GTPase TrmE<br>(EC 3.6)   | trmE                    | GO:0003924,<br>GO:0006400                | 381748            | 383146            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                   | peg.439 | GTPase and tRNA-U34 5-<br>formylation enzyme TrmE                                              | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: mnn5U34<br>biosynthesis bacteria<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases<br>Subsystem: Cell Division<br>Subsystem: RNA modification<br>and chromosome partitioning<br>cluster<br>Subsystem: RNA modification<br>cluster |        | 383146 | +  |
| mnas_312 | tatD related DNase<br>family protein           |                         |                                          | 383147            | 383942            | +  | Unknown: Enzymes of<br>unknown specificity                                                                 | peg.440 | Putative deoxyribonuclease<br>YcfH                                                             | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: YcfH                                                                                                                                                                                                                                                                                                        | 383148 | 383942 | +  |
| mnas_313 | dimethyladenosine<br>transferase<br>(EC 2.1.1) | ksgA                    | GO:0000154,<br>GO:0000179                | 383941            | 384724            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                   | peg.441 | SSU rRNA (adenine(1518)-<br>N(6)/adenine(1519)-N(6))-<br>dimethyltransferase<br>(EC 2.1.1.182) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome<br>biogenesis bacterial                                                                                                                                                  | 383942 | 384724 | +  |
| mnas_314 | HIT domain protein                             |                         |                                          | 384750            | 385098            | -  | Unknown: Enzymes of<br>unknown specificity                                                                 | peg.442 | HIT-family hydrolase protein                                                                   | - none -                                                                                                                                                                                                                                                                                                                                                                          | 385098 | 384751 | -  |
| -        | hypothetical protein                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 385097            | 386327            | -  | Unknown: General                                                                                           | peg.443 | P60-like lipoprotein                                                                           | - none -                                                                                                                                                                                                                                                                                                                                                                          | 386327 | 385098 | -  |
| mnas_316 | hypothetical protein                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 386326            | 388534            | -  | Unknown: General                                                                                           | peg.444 | <i>M. hominis</i> p80-related protein                                                          | - none -                                                                                                                                                                                                                                                                                                                                                                          | 388534 | 386327 | -  |
| mnas_317 | hypothetical protein                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 388650            | 389151            | +  | Unknown: General                                                                                           | peg.445 | hypothetical protein                                                                           | - none -                                                                                                                                                                                                                                                                                                                                                                          | 388615 | 389151 | +  |

| IGS      |                                                                                     |                         |                                          |                   |                   |    |                                                                             | RAST    |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |        |        |    |
|----------|-------------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                         | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                                                                                                | Subsystem                                                                                                                                                                                                                                                                                                                                             | Start⁵ | Stop⁵  | S⁴ |
| mnas_318 | recF/RecN/SMC N<br>terminal domain protein                                          |                         |                                          | 389204            | 391247            | +  | Cellular processes: Cell division                                           | peg.446 | Chromosome partition protein smc                                                                                                        | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: DNA structural<br>proteins, bacterial                                                                                                                                                                                                                                           | 389790 | 391247 | +  |
| mnas_319 | GTP-binding protein<br>LepA<br>(EC 3.6.5)                                           | lepA                    | GO:0005525                               | 391496            | 393299            | +  | Unknown: General<br>Hypothetical                                            | peg.447 | Translation elongation factor<br>LepA                                                                                                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>elongation factors bacterial<br>Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended | 391497 | 393299 | +  |
| mnas_320 | conserved hypothetical protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 393377            | 395834            | -  | Unknown: Conserved                                                          | peg.448 | hypothetical protein                                                                                                                    | - none -                                                                                                                                                                                                                                                                                                                                              | 395783 | 393378 | -  |
| mnas_321 | peptidase M13 family<br>protein                                                     |                         |                                          | 396052            | 397960            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.449 | Neutral endopeptidase O<br>(EC 3.4.24)                                                                                                  | - none -                                                                                                                                                                                                                                                                                                                                              | 396053 | 397960 | +  |
| mnas_322 | OB-fold nucleic acid<br>binding domain protein                                      |                         |                                          | 399642            | 400500            | -  | Unknown: General<br>Hypothetical                                            |         |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |        |        |    |
| mnas_323 | hypothetical protein                                                                |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 398311            | 399646            | +  | Unknown: General                                                            |         |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |        |        |    |
| mnas_324 | virulence factor BrkB<br>family protein                                             |                         |                                          | 400523            | 401621            | -  | Unclassified: Role<br>category not yet<br>assigned                          | peg.450 | FIG00835188: hypothetical<br>protein                                                                                                    | - none -                                                                                                                                                                                                                                                                                                                                              | 401621 | 400524 | -  |
| mnas_325 | aspartyl/glutamyl-<br>tRNA(Asn/Gln)<br>amidotransferase, B<br>subunit<br>(EC 6.3.5) | gatB                    | GO:0006424,<br>GO:0030956,<br>GO:0050567 | 401604            | 403026            | -  | Protein synthesis:<br>tRNA aminoacylation                                   | peg.451 | Aspartyl-tRNA(Asn)<br>amidotransferase subunit B<br>(EC 6.3.5.6) @ Glutamyl-<br>tRNA(GIn) amidotransferase<br>subunit B<br>(EC 6.3.5.7) | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Asp and Asn;<br>Subsystem: tRNA<br>aminoacylation, Glu and Gln                                                                                                                                                                             | 403026 | 401605 | -  |
| mnas_326 | amidase family protein                                                              |                         |                                          | 403027            | 404350            | -  | Unknown: Enzymes of<br>unknown specificity                                  | peg.452 | Aspartyl-tRNA(Asn)<br>amidotransferase subunit A<br>(EC 6.3.5.6) @ Glutamyl-<br>tRNA(GIn) amidotransferase<br>subunit A<br>(EC 6.3.5.7) | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Asp and Asn<br>Subsystem: tRNA<br>aminoacylation, Glu and Gln                                                                                                                                                                              | 404350 | 403028 | -  |

| IGS      |                                                                                 |                         |                                          |                   |                   |    |                                                                                                | RAST    |                                                                                                                                         |                                                                                                                                                                 |        |        | -  |
|----------|---------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                     | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                     | Gene_id | Function                                                                                                                                | Subsystem                                                                                                                                                       | Start⁵ | Stop⁵  | S⁴ |
| mnas_327 | glu-tRNAGIn<br>amidotransferase C<br>subunit                                    |                         |                                          | 404349            | 404652            | -  | Protein synthesis:<br>tRNA aminoacylation                                                      | peg.453 | Aspartyl-tRNA(Asn)<br>amidotransferase subunit C<br>(EC 6.3.5.6) @ Glutamyl-<br>tRNA(GIn) amidotransferase<br>subunit C<br>(EC 6.3.5.7) | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Asp and Asn<br>Subsystem: tRNA                       | 404652 | 404350 | -  |
|          |                                                                                 |                         |                                          |                   |                   |    | <b>D</b> ( ) ( )                                                                               |         | <b>S</b> <sup>1</sup>                                                                                                                   | aminoacylation, Glu and Gln                                                                                                                                     |        |        |    |
| mnas_328 | RNA pseudouridylate<br>synthase family protein                                  |                         |                                          | 404658            | 405534            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                       | peg.454 | Ribosomal large subunit<br>pseudouridine synthase C<br>(EC 4.2.1.70)                                                                    | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA pseudouridine<br>syntheses                                        | 405534 | 404659 | -  |
|          |                                                                                 |                         |                                          |                   |                   |    |                                                                                                |         |                                                                                                                                         | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome<br>biogenesis bacterial                                             |        |        |    |
| mnas_329 | segregation and<br>condensation protein B                                       | scpB                    | GO:0005515,<br>GO:0007059,<br>GO:0030261 | 405576            | 406152            | -  | Cellular processes: Cell<br>division,<br>DNA metabolism:<br>Chromosome-<br>associated proteins | peg.455 | Segregation and<br>condensation protein B                                                                                               | CBSS-314276.3.peg.1499                                                                                                                                          | 406152 | 405577 | -  |
| mnas_330 | segregation and condensation protein A                                          | scpA                    |                                          | 406141            | 406906            | -  | Cellular processes: Cell<br>division,<br>DNA metabolism:<br>Chromosome-<br>associated proteins | peg.456 | Segregation and<br>condensation protein A                                                                                               | CBSS-314276.3.peg.1499                                                                                                                                          | 406906 | 406142 | -  |
| mnas_331 | Putative 1-acyl-sn-<br>glycerol-3-phosphate<br>acyltransferase<br>(EC 2.3.1.51) | plsC                    |                                          | 406895            | 407666            | -  | Unknown: Enzymes of<br>unknown specificity                                                     | peg.457 | 1-acyl-sn-glycerol-3-<br>phosphate acyltransferase<br>(EC 2.3.1.51)                                                                     | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria | 407666 | 406896 | -  |
| mnas_332 | phosphopantetheine<br>transferase domain<br>protein                             |                         |                                          | 407658            | 408033            | -  | Protein fate: Protein modification and repair                                                  | peg.458 | Holo-[acyl-carrier protein]<br>synthase<br>(EC 2.7.8.7)                                                                                 | - none -                                                                                                                                                        | 407985 | 407659 | -  |
| mnas_333 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 408072            | 409734            | -  | Unknown: General                                                                               | peg.459 | hypothetical protein                                                                                                                    | - none -                                                                                                                                                        | 409734 | 408073 | -  |
| mnas_334 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 410384            | 419783            | -  | Unknown: General                                                                               | peg.460 | glycosyl hydrolase, family<br>31/fibronectin type III domain<br>protein                                                                 | - none -                                                                                                                                                        | 419759 | 410385 | -  |
| _        | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 419994            | 420525            | +  | Unknown: General                                                                               | peg.461 | unknown; predicted coding region                                                                                                        | - none -                                                                                                                                                        | 420022 | 420525 | +  |
| mnas_336 | transcription elongation<br>factor GreA domain<br>protein                       | greA                    | GO:0003711,<br>GO:0006354                | 420668            | 421184            | +  | Transcription:<br>Transcription factors                                                        | peg.462 | Transcription elongation<br>factor GreA                                                                                                 | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: Transcription<br>factors bacterial                                                         | 420669 | 421184 | +  |

| IGS      |                                                                |                         |                                                         |                   |                   |    |                                                                                                            | RAST    |                                                                                     |                                                                                                                                                                                                                                                                                         |        |        |    |
|----------|----------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                    | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                 | Gene_id | Function                                                                            | Subsystem                                                                                                                                                                                                                                                                               | Start⁵ | Stop⁵  | S  |
| mnas_337 | deoxynucleoside<br>kinase family protein                       |                         |                                                         | 421303            | 421960            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions | peg.463 | Deoxyadenosine kinase (EC<br>2.7.1.76) / Deoxyguanosine<br>kinase<br>(EC 2.7.1.113) | Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Purine conversions<br>Subsystem: Purine conversions                                                                                                                                                      | 421304 | 421960 | +  |
| mnas_338 | hypoxanthine<br>phosphoribosyltransfer<br>ase<br>(EC 2.4.2.8)  | hpt                     | GO:0004422,<br>GO:0006166                               | 421965            | 422574            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Salvage of<br>nucleosides and<br>nucleotides     | peg.464 | Hypoxanthine-guanine<br>phosphoribosyltransferase<br>(EC 2.4.2.8)                   | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Folate and<br>pterines<br>Subsystem: Folate biosynthesis<br>cluster<br>Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Cell division-<br>ribosomal stress proteins cluster | 421966 | 422574 | +  |
| mnas_339 | preprotein translocase,<br>SecA subunit                        | secA                    | GO:0009898,<br>GO:0015450,<br>GO:0016887,<br>GO:0043952 | 422797            | 425623            | +  | Protein fate:Protein and<br>peptide secretion and<br>trafficking                                           | peg.465 | Protein export cytoplasm<br>protein SecA ATPase RNA<br>helicase<br>(TC 3.A.5.1.1)   | - none -                                                                                                                                                                                                                                                                                | 422798 | 425623 | +  |
| mnas_340 | hypothetical protein                                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 425653            | 426412            | +  | Unknown: General                                                                                           | peg.466 | hypothetical protein                                                                | - none -                                                                                                                                                                                                                                                                                | 425654 | 426412 | +  |
| mnas_341 | ABC transporter family<br>protein                              |                         |                                                         | 426586            | 428206            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                    | peg.467 | ABC transporter ATP-binding<br>protein uup                                          | - none -                                                                                                                                                                                                                                                                                | 426587 | 428206 | +  |
| mnas_342 | RNA<br>methyltransferase,<br>RsmE family protein<br>(EC 2.1.1) |                         | GO:0016436,<br>GO:0031167                               | 428205            | 428886            | +  | Unknown: Conserved                                                                                         | peg.468 | Ribosomal RNA small subunit<br>methyltransferase E<br>(EC 2.1.1)                    | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation<br>Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended                                                                | 428206 | 428886 | +  |
| mnas_343 | ribosomal protein L13                                          | rplM                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 429035            | 429470            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                 | peg.469 | LSU ribosomal protein L13p<br>(L13Ae)                                               | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                                                                            | 429036 | 429470 | +  |
| mnas_344 | 30S ribosomal protein<br>S9                                    | rpsl                    | GO:0005840,<br>GO:0006412,<br>GO:0003735                | 429469            | 429862            | +  | Cellular processes:<br>Other                                                                               | peg.470 | SSU ribosomal protein S9p<br>(S16e)                                                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem Ribosome SSU<br>bacterial                                                                                                                                                                             | 429470 | 429862 | +  |
| mnas_345 | mycoplasma<br>MG185/MG260 family<br>protein                    |                         |                                                         | 429892            | 431416            | -  | Unclassified: Role<br>category not yet<br>assigned                                                         | peg.471 | hypothetical protein                                                                | - none -                                                                                                                                                                                                                                                                                | 430488 | 430892 | +  |
|          | ľ                                                              |                         | Ī                                                       | l l               | 1                 | 1  | -                                                                                                          | peg.472 | hypothetical protein                                                                | - none -                                                                                                                                                                                                                                                                                | 431106 | 431438 | 1+ |

| IGS      |                                                            |                         |                                                                                       |                   |                   |    |                                                                                                                                      | RAST    |                                                                     |                                                                                                                                        |        |        |   |
|----------|------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|-------------------|-------------------|----|--------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---|
| Gene_id  | Common_name                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                 | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                           | Gene_id | Function                                                            | Subsystem                                                                                                                              | Start⁵ | Stop⁵  | S |
| mnas_346 | antibiotic biosynthesis<br>monooxygenase family<br>protein |                         |                                                                                       | 431616            | 431901            | -  | Cellular processes:<br>Toxin production and<br>resistance                                                                            | peg.473 | hypothetical protein                                                | - none -                                                                                                                               | 431901 | 431617 | - |
| mnas_347 | methionine-tRNA<br>ligase domain protein<br>(EC 6.1.1.10)  | metG                    | GO:0005524,<br>GO:0000166,<br>GO:0004825,<br>GO:0006431,<br>GO:0005737,<br>GO:0016874 | 431917            | 432442            | -  | Cellular processes:<br>Other, Transport and<br>binding proteins:<br>Unknown substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.474 | Methionyl-tRNA synthetase<br>(EC 6.1.1.10)                          | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Met                         | 433472 | 431918 | - |
| mnas_348 | methioninetRNA<br>ligase<br>(EC 6.1.1.10)                  | metG                    | GO:0004825,<br>GO:0005737,<br>GO:0006431                                              | 432401            | 433472            | -  | Protein synthesis:<br>tRNA aminoacylation                                                                                            |         |                                                                     |                                                                                                                                        |        |        |   |
| mnas_349 | conserved hypothetical<br>95 family protein                |                         |                                                                                       | 433474            | 434278            | -  | Unclassified: Role<br>category not yet<br>assigned                                                                                   | peg.475 | tRNA (adenine37-N(6))-<br>methyltransferase TrmN6<br>(EC 2.1.1.223) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                              | 434278 | 433475 | - |
| mnas_350 | ribonuclease R<br>(EC 3.1.13.1)                            | rnr                     | GO:0006401,<br>GO:0008997                                                             | 434243            | 436445            | -  | Transcription:<br>Degradation of RNA                                                                                                 | peg.476 | 3'-to-5' exoribonuclease<br>RNase R                                 | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA processing<br>and degradation, bacterial | 436445 | 434244 | - |
| mnas_351 | preprotein translocase,<br>SecG subunit                    | secG                    | GO:0005887,<br>GO:0015450,<br>GO:0043952                                              | 436455            | 436695            | -  | Protein fate:Protein and<br>peptide secretion and<br>trafficking                                                                     | peg.477 | hypothetical protein                                                | - none -                                                                                                                               | 436695 | 436456 | - |
| mnas_352 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 437093            | 439496            | +  | Unknown: General                                                                                                                     | peg.478 | hypothetical protein                                                | - none -                                                                                                                               | 437094 | 439496 | + |
| mnas_353 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 439555            | 439645            | -  | Unknown: General                                                                                                                     |         |                                                                     |                                                                                                                                        |        |        |   |
| mnas_354 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 439651            | 441286            | -  | Unknown: General                                                                                                                     | peg.479 | hypothetical protein                                                | - none -                                                                                                                               | 441313 | 441984 | + |
| mnas_355 | putative membrane<br>protein                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                              | 441312            | 441984            | +  | Cell envelope: Other                                                                                                                 |         |                                                                     |                                                                                                                                        |        |        |   |
| mnas_356 | tyrosinetRNA ligase<br>(EC 6.1.1.1)                        | tyrS                    | GO:0004831,<br>GO:0005737,<br>GO:0006437                                              | 442022            | 443264            | -  | Protein synthesis:<br>tRNA aminoacylation                                                                                            | peg.480 | Tyrosyl-tRNA synthetase<br>(EC 6.1.1.1)                             | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Tyr                         | 443264 | 442023 | - |
| mnas_357 | putative tRNA binding<br>domain protein                    |                         |                                                                                       | 443266            | 443875            | -  | Unknown: General<br>Hypothetical                                                                                                     | peg.481 | Phenylalanyl-tRNA<br>synthetase domain protein<br>(Bsu YtpR)        | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Phe                         | 443875 | 443267 | - |
| mnas_358 | EDD, DegV family<br>domain protein                         |                         | GO:0005575,<br>GO:0008150,<br>GO:0016740                                              | 443900            | 444767            | +  | Unknown: General<br>Hypothetical                                                                                                     | peg.482 | hypothetical protein                                                | - none -                                                                                                                               | 443997 | 444767 | + |

| IGS      |                                                                         |                         |                                          |                   |                   |    |                                                                              | RAST    |                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |        |    |
|----------|-------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                   | Gene_id | Function                                                                                           | Subsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Start⁵ | Stop⁵  | S⁴ |
| mnas_359 | tRNA<br>threonylcarbamoyl<br>adenosine modification<br>protein YjeE     |                         | GO:0005737,<br>GO:0006400,<br>GO:0016887 | 444760            | 445147            | +  | Unknown: Conserved                                                           | peg.483 | TsaE protein, required for<br>threonylcarbamoyladenosine<br>t(6)A37 formation in tRNA              | Category: Cell Wall and<br>Capsule<br>Subcategory: no subcategory<br>Subsystem: YjeE                                                                                                                                                                                                                                                                                                                                                                                               | 444761 | 445147 | +  |
| mnas_360 | tRNA<br>threonylcarbamoyl<br>adenosine modification<br>protein YeaZ     | yeaZ                    |                                          | 445156            | 445717            | +  | Transport and binding<br>proteins: Cations and<br>iron carrying<br>compounds | peg.484 | TsaB protein, required for<br>threonylcarbamoyladenosine<br>(t(6)A) formation in tRNA              | Category: Cell Division and Cell<br>Cycle<br>Subcategory: no subcategory<br>Subsystem: YgjD and YeaZ<br>Category: Cell Wall and<br>Capsule<br>Subcategory: no subcategory<br>Subsystem: YjeE<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome<br>biogenesis bacterial<br>Subsystem: Bacterial RNA-<br>metabolizing Zn-dependent<br>hydrolases<br>Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyttransferase | 445157 | 445717 | +  |
| mnas_361 | tRNA<br>threonylcarbamoyl<br>adenosine modification<br>protein YgjD     |                         |                                          | 445716            | 446646            | +  | Transport and binding<br>proteins: Cations and<br>iron carrying<br>compounds | peg.485 | TsaD/Kae1/Qri7 protein,<br>required for<br>threonylcarbamoyladenosine<br>t(6)A37 formation in tRNA | Category: Cell Division and Cell<br>Cycle<br>Subcategory: no subcategory<br>Subsystem: YgjD and YeaZ<br>Subsystem: Macromolecular<br>synthesis operon<br>Subsystem: Bacterial RNA-<br>metabolizing Zn-dependent<br>hydrolases<br>Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyltransferase                                                                                                                                                               | 445717 | 446646 | +  |
| mnas_362 | type I restriction<br>modification DNA<br>specificity domain<br>protein |                         |                                          | 446816            | 448133            | +  | DNA metabolism:<br>Restriction/modification                                  | peg.486 | Type I restriction-modification<br>system, specificity subunit S<br>(EC 3.1.21.3)                  | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Type I Restriction-<br>Modification<br>Subsystem: Restriction-<br>Modification System                                                                                                                                                                                                                                                                                                                        | 446817 | 448133 | +  |
| mnas_363 | type I restriction<br>modification DNA<br>specificity domain<br>protein |                         |                                          | 448080            | 448788            | +  | DNA metabolism:<br>Restriction/modification                                  | peg.487 | Type I restriction-modification<br>system, specificity subunit S<br>(EC 3.1.21.3)                  | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Type I Restriction-<br>Modification<br>Subsystem: Restriction-<br>Modification System                                                                                                                                                                                                                                                                                                                        | 448372 | 448788 | +  |
| mnas_364 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 449190            | 449838            | -  | Unknown: General                                                             | peg.488 | hypothetical protein                                                                               | - none -                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 449375 | 449872 | +  |

| IGS      |                                                                                                        |                         |                                                                                                      |                   |                   |    |                                                                                                                                         | RAST    |                                                                      |                                                                                                                                                                                                                                  |        |        |    |
|----------|--------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                                            | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                             | Subsystem                                                                                                                                                                                                                        | Start⁵ | Stop⁵  | S⁴ |
| mnas_365 | type III restriction-<br>modification system<br>methylation subunit<br>domain protein<br>(EC 2.1.1.72) | sthIM                   | GO:0003677,<br>GO:0032775,<br>GO:0008170,<br>GO:0016740,<br>GO:0032259,<br>GO:0006306,<br>GO:0009007 | 448982            | 449198            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                      |                                                                                                                                                                                                                                  |        |        |    |
| mnas_366 | hypothetical protein                                                                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 450101            | 452267            | -  | Unknown: General                                                                                                                        | peg.489 | hypothetical protein                                                 | - none -                                                                                                                                                                                                                         | 452267 | 450102 | -  |
| mnas_367 | hypothetical protein                                                                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 452547            | 454830            | -  | Unknown: General                                                                                                                        | peg.490 | VlhA.5.03                                                            | - none -                                                                                                                                                                                                                         | 454830 | 452548 | -  |
|          |                                                                                                        |                         |                                                                                                      |                   |                   |    |                                                                                                                                         | peg.491 | hypothetical protein                                                 | - none -                                                                                                                                                                                                                         | 454832 | 454975 | +  |
| mnas_368 | hypothetical protein                                                                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 455138            | 457310            | -  | Unknown: General                                                                                                                        | peg.492 | VlhA.4.08                                                            | - none -                                                                                                                                                                                                                         | 457010 | 455139 | -  |
| mnas_369 | ribosomal protein L19                                                                                  | rpIS                    | GO:0000311,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                                              | 457336            | 457693            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                              | peg.493 | LSU ribosomal protein L19p                                           | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                     | 457693 | 457337 | -  |
| mnas_370 | tRNA (guanine(37)-<br>N(1))-<br>methyltransferase                                                      | trmD                    | GO:0006400,<br>GO:0009019                                                                            | 457682            | 458390            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                                                | peg.494 | tRNA (Guanine37-N1) -<br>methyltransferase<br>(EC 2.1.1.31)          | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome<br>biogenesis bacterial | 458390 | 457683 | -  |
| mnas_371 | ribosomal protein S16                                                                                  | rpsP                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627                                              | 458389            | 458638            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                              | peg.495 | SSU ribosomal protein S16p                                           | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                                                                                                     | 458638 | 458390 | -  |
| mnas_372 | methyltransferase<br>substrate binding family<br>protein                                               |                         |                                                                                                      | 458750            | 459512            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                                                | peg.496 | 23S rRNA (guanosine-2';-O-)<br>-methyltransferase rImB<br>(EC 2.1.1) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                                                                                                                        | 459512 | 458751 | -  |
| mnas_373 | cysteinetRNA ligase<br>(EC 6.1.1.16)                                                                   | cysS                    | GO:0004817,<br>GO:0006423                                                                            | 459540            | 460776            | -  | Protein synthesis:<br>tRNA aminoacylation                                                                                               | peg.497 | Cysteinyl-tRNA synthetase<br>(EC 6.1.1.16)                           | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Cys                                                                                                                   | 460692 | 459541 | -  |
| mnas_374 | argininetRNA ligase<br>(EC 6.1.1.19)                                                                   | argS                    | GO:0004814,<br>GO:0005737,<br>GO:0006420                                                             | 460892            | 462548            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                                               | peg.498 | Arginyl-tRNA synthetase<br>(EC 6.1.1.19)                             | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Arg                                                                                                                   | 460893 | 462548 | +  |

| IGS      |                                                                                         |                         |                                                         |                   |                   |    |                                                                                          | RAST    |                                                             |                                                                                                                                                                                                                       |        |        |    |
|----------|-----------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                               | Gene_id | Function                                                    | Subsystem                                                                                                                                                                                                             | Start⁵ | Stop⁵  | S⁴ |
| mnas_375 | conserved hypothetical<br>protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 462561            | 462825            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate | peg.499 | hypothetical protein                                        | - none -                                                                                                                                                                                                              | 462562 | 462825 | +  |
| mnas_376 | fructose-1,6-<br>bisphosphate aldolase,<br>class II<br>(EC 4.1.2.13)                    | fba                     | GO:0004332,<br>GO:0006096                               | 462826            | 463696            | +  | Energy metabolism:<br>Glycolysis/gluconeogen<br>esis                                     | peg.500 | Fructose-bisphosphate<br>aldolase class II<br>(EC 4.1.2.13) | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis                                                                                            | 462827 | 463696 | +  |
| mnas_377 | eco57I restriction-<br>modification methylase<br>family protein                         |                         |                                                         | 463734            | 464700            | +  | DNA metabolism:<br>Restriction/modification                                              | peg.501 | Transcriptional regulator                                   | - none -                                                                                                                                                                                                              | 463735 | 464700 | +  |
| mnas_378 | conserved hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 464822            | 465893            | +  | Unknown: General<br>Hypothetical                                                         | peg.502 | Thermonuclease family protein                               | - none -                                                                                                                                                                                                              | 464823 | 465893 | +  |
| mnas_379 | DNA gyrase subunit B<br>(EC 5.99.1.3)                                                   | gyrB                    |                                                         | 465983            | 467939            | +  | DNA metabolism:<br>Other                                                                 | peg.503 | DNA gyrase subunit B<br>(EC 5.99.1.3)                       | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA<br>topoisomerases, Type II, ATP-<br>dependent                                                                                              | 465984 | 467931 | +  |
|          |                                                                                         |                         |                                                         |                   |                   |    |                                                                                          |         |                                                             | Category: Virulence, Disease<br>and Defense<br>Subcategory: Resistance to<br>antibiotics and toxic compounds<br>Subsystem: Resistance to<br>fluoroquinolones<br>Subsystem: Cell Division<br>Subsystem including YidCD |        |        |    |
| mnas_380 | tetrahydrofolate<br>dehydrogenase/cyclohy<br>drolase, NAD(P)-<br>binding domain protein |                         |                                                         | 468061            | 468208            | -  | Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Folic acid          |         |                                                             |                                                                                                                                                                                                                       |        |        |    |
| mnas_381 | hypothetical protein                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 468224            | 476891            | +  | Unknown: General                                                                         | peg.515 | hypothetical protein                                        | - none -                                                                                                                                                                                                              | 473356 | 472508 | -  |
|          |                                                                                         |                         |                                                         |                   |                   |    |                                                                                          | peg.516 | hypothetical protein                                        | - none -                                                                                                                                                                                                              | 474529 | 473522 | -  |
|          |                                                                                         |                         |                                                         |                   |                   |    |                                                                                          | peg.517 | hypothetical protein                                        | - none -                                                                                                                                                                                                              | 475507 | 474623 | -  |
|          |                                                                                         |                         |                                                         |                   |                   |    |                                                                                          | peg.518 | hypothetical protein                                        | - none -                                                                                                                                                                                                              | 476803 | 476126 | -  |
| mnas_382 | ribosomal protein L15                                                                   | rplO                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 477052            | 477487            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.519 | LSU ribosomal protein L15p<br>(L27Ae)                       | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                          | 477487 | 477053 | -  |
| mnas_383 | ribosomal protein S5                                                                    | rpsE                    | GO:0000312,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 477491            | 478136            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.520 | SSU ribosomal protein S5p<br>(S2e)                          | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                                                                                          | 478136 | 477492 | -  |

| IGS      |                                     |                         |                                                                        |                   |                   |    |                                                                                          | RAST    |                                                                                                 |                                                                                                                                                      |        |        | - 1 |
|----------|-------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----|
| Gene_id  | Common_name                         | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                               | Gene_id | Function                                                                                        | Subsystem                                                                                                                                            | Start⁵ | Stop⁵  | S⁴  |
| mnas_384 | ribosomal protein L18               | rplR                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 478135            | 478486            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.521 | LSU ribosomal protein L18p<br>(L5e)                                                             | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 478486 | 478136 | -   |
| mnas_385 | ribosomal protein L6                | rplF                    | GO:0003735,<br>GO:0006412,<br>GO:0019843,<br>GO:0022625                | 478510            | 479050            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.522 | LSU ribosomal protein L6p<br>(L9e)                                                              | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 479050 | 478511 | -   |
| mnas_386 | ribosomal S8 family<br>protein      |                         |                                                                        | 479060            | 479456            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.523 | SSU ribosomal protein S8p<br>(S15Ae)                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                         | 479456 | 479061 | -   |
| mnas_387 | 30S ribosomal protein<br>S14 type Z | rpsZ                    | GO:0005840,<br>GO:0046872,<br>GO:0006412,<br>GO:0003735,<br>GO:0019843 | 479455            | 479641            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate | peg.524 | SSU ribosomal protein S14p<br>(S29e) @ SSU ribosomal<br>protein S14p (S29e), zinc-<br>dependent | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial<br>Subsystem: Ribosome SSU<br>bacterial | 479641 | 479456 | -   |
| mnas_388 | 50S ribosomal protein<br>L5         | rplE                    | GO:0005840,<br>GO:0006412,<br>GO:0000049,<br>GO:0003735,<br>GO:0019843 | 479640            | 480186            | -  | Cellular processes:<br>Other                                                             | peg.525 | LSU ribosomal protein L5p<br>(L11e)                                                             | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 480186 | 479641 | -   |
| mnas_389 | ribosomal protein L24               | rplX                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 480187            | 480520            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.526 | LSU ribosomal protein L24p<br>(L26e)                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 480520 | 480188 | -   |
| mnas_390 | ribosomal protein L14               | rplN                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 480538            | 480904            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.527 | LSU ribosomal protein L14p<br>(L23e)                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 480904 | 480539 | -   |
| mnas_391 | 30S ribosomal protein<br>S17        | rpsQ                    | GO:0003735,<br>GO:0006412,<br>GO:0022627                               | 480903            | 481173            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.528 | SSU ribosomal protein S17p<br>(S11e)                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                         | 481173 | 480904 | -   |
| mnas_392 | ribosomal protein L29               | rpmC                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 481172            | 481364            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.529 | LSU ribosomal protein L29p<br>(L35e)                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 481364 | 481146 | -   |
| mnas_393 | ribosomal protein L16               | rplP                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 481363            | 481789            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.530 | LSU ribosomal protein L16p<br>(L10e)                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                         | 481789 | 481364 | -   |

| IGS      |                                                                            |                         |                                                                        |                   |                   |    |                                                                                                                                                                                     | RAST    |                                                    |                                                                                                                                                                                                                                                                                          |        |        |    |
|----------|----------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                                                          | Gene_id | Function                                           | Subsystem                                                                                                                                                                                                                                                                                | Start⁵ | Stop⁵  | S⁴ |
| mnas_394 | ribosomal protein S3                                                       | rpsC                    | GO:0000312,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627                | 481788            | 482442            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                                                                          | peg.531 | SSU ribosomal protein S3p<br>(S3e)                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                                                                                                                                                             | 482442 | 481789 | -  |
| mnas_395 | ribosomal protein L22                                                      | rpIV                    | GO:0000311,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 482443            | 482779            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                                                                          | peg.532 | LSU ribosomal protein L22p<br>(L17e)               | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                                                                             | 482779 | 482444 | -  |
| mnas_396 | ribosomal protein S19                                                      | rpsS                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627                | 482778            | 483057            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                                                                          | peg.533 | SSU ribosomal protein S19p<br>(S15e)               | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial                                                                                                                                                                             | 483057 | 482779 | -  |
| mnas_397 | ribosomal protein L2                                                       | rpIB                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 483056            | 483902            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                                                                          | peg.534 | LSU ribosomal protein L2p<br>(L8e)                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                                                                             | 483902 | 483057 | -  |
| mnas_398 | 50S ribosomal L23<br>domain protein                                        | rpIW                    | GO:0005840,<br>GO:0000166,<br>GO:0006412,<br>GO:0003735,<br>GO:0019843 | 484016            | 484490            | -  | Cellular processes:<br>Other                                                                                                                                                        | peg.535 | LSU ribosomal protein L23p<br>(L23Ae)              | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                                                                             | 484490 | 484017 | -  |
| mnas_399 | ribosomal L4/L1 family<br>protein                                          |                         |                                                                        | 484489            | 484780            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                                                                          | peg.536 | LSU ribosomal protein L4p<br>(L1e)                 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                                                                             | 484780 | 484490 | -  |
| mnas_400 | hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 485007            | 486828            | -  | Unknown: General                                                                                                                                                                    |         |                                                    |                                                                                                                                                                                                                                                                                          |        |        |    |
| mnas_401 | DNA topoisomerase 4<br>subunit A<br>(EC 5.99.1)                            | parC                    | GO:0005524,<br>GO:0003918,<br>GO:0005694,<br>GO:0006265,<br>GO:0003700 | 487275            | 489867            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Transcription:<br>Transcription factors,<br>Unknown: Enzymes of<br>unknown specificity | peg.537 | Topoisomerase IV subunit A<br>(EC 5.99.1)          | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA<br>topoisomerases, Type II, ATP-<br>dependent<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Resistance to<br>antibiotics and toxic compounds<br>Subsystem: Resistance to<br>fluoroquinolones | 487276 | 489867 | +  |
| mnas_402 | DNA (cytosine-5-)-<br>methyltransferase<br>family protein<br>(EC 2.1.1.37) | dcm                     | GO:0003886,<br>GO:0006304                                              | 490036            | 490495            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair,<br>Disrupted reading<br>frame: NULL                                                                            | peg.538 | DNA-cytosine<br>methyltransferase<br>(EC 2.1.1.37) | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                                                                                                                                                                               | 490037 | 490495 | +  |

| IGS      |                                                                 |                         |                                                                                                      |                   |                   |    |                                                                                                                                         | RAST    |                                                                                                         |           |        |        |    |
|----------|-----------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|-----------|--------|--------|----|
| Gene_id  | Common_name                                                     | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                                                | Subsystem | Start⁵ | Stop⁵  | S⁴ |
| mnas_403 | putative cytosine-<br>specific<br>methyltransferase             |                         | GO:0003677,<br>GO:0009307,<br>GO:0008168,<br>GO:0006306,<br>GO:0003886,<br>GO:0016740,<br>GO:0032259 | 490518            | 490869            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate, Unknown:<br>Enzymes of unknown<br>specificity | peg.539 | DNA-cytosine<br>methyltransferase                                                                       | - none -  | 490519 | 490869 | +  |
| mnas_404 | type-2 restriction<br>enzyme DpnII<br>(EC 3.1.21.4)             | dpnB                    | GO:0003677,<br>GO:0009307,<br>GO:0009036                                                             | 491431            | 492319            | -  | Cellular processes:<br>Other, Transport and<br>binding proteins:<br>Unknown substrate,<br>Unknown: Enzymes of<br>unknown specificity    | peg.540 | Type II restriction enzyme<br>MjaIII<br>(EC 3.1.21.4)                                                   | - none -  | 492319 | 491432 | -  |
| mnas_405 | modification methylase<br>DpnIIA<br>(EC 2.1.1.72)               | dpnM                    | GO:0009307,<br>GO:0009007,<br>GO:0003676                                                             | 492319            | 493036            | -  | Cellular processes:<br>Other, Transport and<br>binding proteins:<br>Unknown substrate,<br>Unknown: Enzymes of<br>unknown specificity    | peg.541 | DNA adenine methylase<br>(EC 2.1.1.72)                                                                  | - none -  | 492877 | 492320 | -  |
| mnas_406 | ABC transporter<br>transmembrane region<br>family protein       |                         |                                                                                                      | 493036            | 493804            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                 | peg.542 | Lipid A export ATP-<br>binding/permease protein<br>MsbA                                                 | - none -  | 495533 | 493788 | -  |
| mnas_407 | ABC transporter family protein                                  |                         |                                                                                                      | 493787            | 495533            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                 |         |                                                                                                         |           |        |        |    |
| mnas_408 | bacterial regulatory ,<br>arsR family protein                   |                         |                                                                                                      | 495532            | 495898            | -  | Regulatory functions:<br>DNA interactions                                                                                               | peg.543 | arsenical resistance operon<br>repressor family protein                                                 | - none -  | 495898 | 495533 | -  |
| mnas_409 | AAA domain protein                                              |                         |                                                                                                      | 495979            | 500236            | -  | Unknown: General<br>Hypothetical                                                                                                        | peg.544 | Apolipoprotein N-<br>acyltransferase (EC 2.3.1) in<br>lipid-linked oligosaccharide<br>synthesis cluster | - none -  | 500236 | 495980 | -  |
|          | Putative PTS system<br>glucose-specific<br>enzyme IIB component |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 500247            | 500607            | -  | Transport and binding<br>proteins: Unknown<br>substrate,<br>Signal transduction:<br>PTS, Unknown:<br>Enzymes of unknown<br>specificity  | peg.545 | PTS system glucose-specific<br>enzyme IIB component                                                     | - none -  | 500607 | 500248 | -  |
| mnas_411 | hypothetical protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 500832            | 501000            | -  | Unknown: General                                                                                                                        |         |                                                                                                         |           |        |        |    |
| mnas_412 | hypothetical protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 501010            | 501196            | -  | Unknown: General                                                                                                                        |         |                                                                                                         |           |        |        |    |
| mnas_413 | oligoendopeptidase F<br>(EC 3.4.24)                             | pepF                    | GO:0004222,<br>GO:0006508                                                                            | 502226            | 504056            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides                                                             | peg.546 | Oligoendopeptidase F<br>(EC 3.4.24)                                                                     | - none -  | 502227 | 504056 | +  |
| mnas_414 | oligopeptide ABC<br>transporter substrate-<br>binding protein   | оррА                    | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 504068            | 507935            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                 | peg.547 | Lipoprotein                                                                                             | - none -  | 504069 | 507935 | +  |

| IGS      |                                                           |                         |                                          |                   |                   |    |                                                                                                            | RAST    |                                    |                                                                                                                                                                                |        |        |   |
|----------|-----------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------|---------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---|
| Gene_id  | Common_name                                               | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                 | Gene_id | Function                           | Subsystem                                                                                                                                                                      | Start⁵ | Stop⁵  | S |
| mnas_415 | Oligopeptide ABC<br>transporter, permease<br>protein OppB | оррВ                    |                                          | 507946            | 508705            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                    |         |                                    |                                                                                                                                                                                |        |        |   |
| mnas_416 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 508709            | 509093            | -  | Unknown: General                                                                                           |         |                                    |                                                                                                                                                                                |        |        |   |
| mnas_417 | terminase-like family<br>protein                          |                         |                                          | 509193            | 511155            | -  | Unclassified: Role<br>category not yet<br>assigned                                                         | peg.548 | Phage terminase, large<br>subunit  | Category: Phage packaging<br>machinPhages, Prophages,<br>Transposable elements,<br>Plasmids<br>Subcategory: Phages,<br>Prophages<br>Subsystem: Phage packaging<br>machineryery | 511155 | 509194 | - |
| mnas_418 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 511154            | 511388            | -  | Unknown: General                                                                                           | peg.549 | hypothetical protein               | - none -                                                                                                                                                                       | 511388 | 511155 | - |
| mnas_419 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 511389            | 511728            | -  | Unknown: General                                                                                           | peg.550 | hypothetical protein               | - none -                                                                                                                                                                       | 511728 | 511390 | - |
| mnas_420 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 511714            | 511939            | -  | Unknown: General                                                                                           | peg.551 | hypothetical protein               | - none -                                                                                                                                                                       | 511939 | 511715 | - |
| mnas_421 | phage Mu F like family<br>protein                         |                         |                                          | 511931            | 512765            | -  | Mobile and<br>extrachromosomal<br>element functions:<br>Prophage functions                                 | peg.552 | Phage protein                      | - none -                                                                                                                                                                       | 512765 | 511932 | - |
| mnas_422 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 512764            | 514513            | -  | Unknown: General                                                                                           | peg.553 | DNA polymerase B region            | - none -                                                                                                                                                                       | 514513 | 512765 | - |
| mnas_423 | thymidylate kinase<br>(EC 2.7.4.9)                        | tmk                     | GO:0004798,<br>GO:0015949                | 514514            | 515099            | -  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions | peg.554 | Thymidylate kinase<br>(EC 2.7.4.9) | - none -                                                                                                                                                                       | 515099 | 514515 | - |
| mnas_424 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 515100            | 515457            | -  | Unknown: General                                                                                           | peg.555 | hypothetical protein               | - none -                                                                                                                                                                       | 515457 | 515101 | - |
| mnas_425 | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 515485            | 515980            | -  | Unknown: General                                                                                           |         |                                    |                                                                                                                                                                                |        |        |   |
| -        | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 515981            | 516137            | -  | Unknown: General                                                                                           | peg.556 | hypothetical protein               | - none -                                                                                                                                                                       | 516125 | 515982 | - |
|          | hypothetical protein                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 516185            | 520046            | +  | Unknown: General                                                                                           | peg.557 | hypothetical protein               | - none -                                                                                                                                                                       | 516249 | 520046 | + |
| mnas_428 | putative membrane<br>protein                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 520183            | 521065            | -  | Cell envelope: Other                                                                                       | peg.558 | hypothetical protein               | - none -                                                                                                                                                                       | 521065 | 520184 | - |

| IGS      |                                                                             |                         |                                                                                                                                    |                   |                   |    |                                                                                                                                         | RAST    |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
|----------|-----------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                                              | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                          | Subsystem                                                                                                                                                                                                                                                                                                                                                                           | Start⁵ | Stop⁵  | S⁴ |
| mnas_429 | excinuclease ABC<br>subunit B<br>(EC 3.1.25)                                | uvrB                    | GO:0006289,<br>GO:0009380,<br>GO:0009381                                                                                           | 521216            | 523220            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                     | peg.559 | Excinuclease ABC subunit B                                        | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>UvrABC system                                                                                                                                                                                                                                                                                      | 521217 | 523220 | +  |
| mnas_430 | excinuclease ABC<br>subunit A domain<br>protein                             | uvrA                    | GO:0003677,<br>GO:0005524,<br>GO:0009432,<br>GO:0006289,<br>GO:0006289,<br>GO:0009380,<br>GO:0046872,<br>GO:0009381,<br>GO:0016887 | 523209            | 523647            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_431 | ribosome biogenesis<br>GTP-binding protein<br>YlqF                          | ylqF                    | GO:0003924,<br>GO:0005525,<br>GO:0005737,<br>GO:0042254                                                                            | 523647            | 524412            | -  | Unclassified: Role<br>category not yet<br>assigned                                                                                      |         |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| -        | divIVA domain protein                                                       |                         |                                                                                                                                    | 524401            | 524668            | -  | Unknown: General<br>Hypothetical                                                                                                        | peg.560 | hypothetical protein                                              | - none -                                                                                                                                                                                                                                                                                                                                                                            | 524668 | 524402 | -  |
| mnas_433 | RNA 2'-O ribose<br>methyltransferase<br>substrate binding family<br>protein |                         |                                                                                                                                    | 524670            | 525402            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                                                | peg.561 | FIG011178: rRNA methylase                                         | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                                                                                                                                                                                                                                                                           | 525402 | 524671 | -  |
| mnas_434 | spoU rRNA Methylase<br>family protein                                       |                         |                                                                                                                                    | 525385            | 525922            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                                                                | peg.562 | tRNA (cytidine(34)-2';-O)-<br>methyltransferase<br>(EC 2.1.1.207) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                                                                                                                                                                                                                                                                           | 525922 | 525386 | -  |
| mnas_435 | translation elongation<br>factor Tu                                         | tuf                     | GO:0003746,<br>GO:0006414                                                                                                          | 525991            | 527179            | -  | Protein synthesis:<br>Translation factors                                                                                               | peg.563 | Translation elongation factor<br>Tu                               | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases<br>Subsystem: Translation<br>elongation factors bacterial<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (SSU<br>ribosomal proteins) | 527179 | 525992 | -  |

| IGS      |                                                                         |                         |                                          |                   |                   |    |                                                                                                        | RAST    |                                                                                                                    |                                                                                                                                                                                                                                                                               |        |        |    |
|----------|-------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|--------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                             | Gene_id | Function                                                                                                           | Subsystem                                                                                                                                                                                                                                                                     | Start⁵ | Stop⁵  | S⁴ |
| mnas_436 | xylulose-5-phosphate<br>phosphoketolase (EC<br>4.1.2.9)                 | xpkA                    | GO:0005975,<br>GO:0050193                | 527686            | 530062            | +  | Energy metabolism:<br>Sugars,<br>Unknown: Enzymes of<br>unknown specificity                            | peg.564 | Xylulose-5-phosphate<br>phosphoketolase (EC 4.1.2.9)<br>@ Fructose-6-phosphate<br>phosphoketolase (EC<br>4.1.2.22) | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Pentose phosphate<br>pathway<br>Subsystem: Pentose phosphate<br>pathway<br>Subcategory: Fermentation<br>Subsystem: Fermentations:<br>Lactate<br>Subsystem: Fermentations:<br>Lactate | 527687 | 530062 | +  |
| mnas_437 | conserved hypothetical<br>protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 531075            | 531387            | -  | Unknown: Conserved                                                                                     |         |                                                                                                                    |                                                                                                                                                                                                                                                                               |        |        |    |
| mnas_438 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 530223            | 531087            | +  | Unknown: General                                                                                       |         |                                                                                                                    |                                                                                                                                                                                                                                                                               |        |        |    |
| mnas_439 | AAA domain protein                                                      |                         |                                          | 531412            | 532342            | -  | Unknown: General<br>Hypothetical                                                                       | peg.565 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 532342 | 531413 | -  |
| mnas_440 | conserved hypothetical<br>protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 532325            | 532718            | -  | Unknown: Conserved                                                                                     | peg.566 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 532718 | 532326 | -  |
| mnas_441 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 532727            | 533117            | -  | Unknown: General                                                                                       | peg.567 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 533117 | 532728 | -  |
| mnas_442 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 533203            | 533617            | -  | Unknown: General                                                                                       | peg.568 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 533581 | 533204 | -  |
| mnas_443 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 533558            | 533714            | -  | Unknown: General                                                                                       | peg.569 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 533714 | 533559 | -  |
| mnas_444 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 533985            | 534894            | -  | Unknown: General                                                                                       | peg.570 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 534894 | 533986 | -  |
| mnas_445 | inosine-uridine<br>preferring nucleoside<br>hydrolase family<br>protein |                         |                                          | 534886            | 535915            | -  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Salvage of<br>nucleosides and<br>nucleotides | peg.571 | preQ1-regulated inosine-<br>uridine nucleoside hydrolase<br>(EC 3.2.2.1)                                           | Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Purine conversions                                                                                                                                                                             | 535915 | 534887 | -  |
| mnas_446 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 535916            | 536267            | -  | Unknown: General                                                                                       | peg.572 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 536267 | 535917 | -  |
| mnas_447 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 536259            | 536577            | -  | Unknown: General                                                                                       |         |                                                                                                                    |                                                                                                                                                                                                                                                                               |        |        |    |
| mnas_448 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 536730            | 536910            | -  | Unknown: General                                                                                       | peg.573 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 536910 | 536731 | -  |
| mnas_449 | conserved hypothetical<br>protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 537104            | 538043            | -  | Unknown: Conserved                                                                                     | peg.574 | hypothetical protein                                                                                               | - none -                                                                                                                                                                                                                                                                      | 537986 | 537105 | -  |

| IGS      |                                                                                           |                         |                                                         |                   |                   |    |                                                                             | RAST    |                                                                   |                                                                                                                                                                                                        |        |        |    |
|----------|-------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                               | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                          | Subsystem                                                                                                                                                                                              | Start⁵ | Stop⁵  | S⁴ |
| mnas_450 | trigger factor<br>(EC 5.2.1.8)                                                            | tig                     | GO:0003755,<br>GO:0005854,<br>GO:0051082,<br>GO:0051083 | 538059            | 539262            | +  | Protein fate: Protein folding and stabilization                             |         |                                                                   |                                                                                                                                                                                                        |        |        |    |
| mnas_451 | papain cysteine<br>protease family protein                                                |                         |                                                         | 539360            | 540677            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.575 | Aminopeptidase C<br>(EC 3.4.22.40)                                | Category: Protein Metabolism<br>Subcategory: Protein<br>degradation<br>Subsystem: Protein<br>degradation                                                                                               | 539361 | 540677 | +  |
| mnas_452 | tRNA (5-<br>methylaminomethyl-2-<br>thiouridylate)-<br>methyltransferase<br>(EC 2.1.1.61) | trmU                    | GO:0004808,<br>GO:0005737,<br>GO:0006396                | 540686            | 541802            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                    | peg.576 | tRNA-specific 2-thiouridylase<br>MnmA                             | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA methylation                                                                                              | 540687 | 541802 | +  |
| mnas_453 | alaninetRNA ligase<br>(EC 6.1.1.7)                                                        | alaS                    | GO:0004813,<br>GO:0005737,<br>GO:0006419                | 541809            | 544434            | +  | Protein synthesis:<br>tRNA aminoacylation                                   | peg.577 | Alanyl-tRNA synthetase<br>(EC 6.1.1.7)                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Ala                                                                                         | 541810 | 544434 | +  |
| mnas_454 | conserved hypothetical<br>protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 544421            | 544847            | +  | Unknown: Conserved                                                          | peg.578 | Putative Holliday junction<br>resolvase YqgF                      | - none -                                                                                                                                                                                               | 544422 | 544847 | +  |
| mnas_455 | phosphatidylinositol-<br>specific phospholipase<br>C, X domain protein                    |                         |                                                         | 544947            | 546894            | +  | Unknown: General<br>Hypothetical                                            | peg.595 | Phosphatidylinositol-specific<br>phospholipase C<br>(EC 4.6.1.13) | Category: Phage packaging<br>machinPhages, Prophages,<br>Transposable elements,<br>Plasmids<br>Subcategory: Pathogenicity<br>islands<br>Subsystem: Listeria<br>Pathogenicity Island LIPI-1<br>extended | 545065 | 546894 | +  |
| mnas_456 | lipoassociated domain protein                                                             |                         |                                                         | 546869            | 550376            | +  | Unknown: General<br>Hypothetical                                            | peg.596 | hypothetical protein                                              | - none -                                                                                                                                                                                               | 546870 | 550376 | +  |
| mnas_457 | AspartatetRNA ligase<br>(EC 6.1.1.12)                                                     |                         |                                                         | 550450            | 551500            | -  | Unknown: Enzymes of<br>unknown specificity                                  | peg.597 | Aspartyl-tRNA synthetase<br>(EC 6.1.1.12)                         | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Asp and Asn                                                                                 | 551428 | 550451 | -  |
| mnas_458 | Glutamyl-tRNA<br>synthetase<br>(EC 6.1.1.17)                                              |                         | GO:0004818                                              | 551508            | 552183            | -  | Unknown: Enzymes of<br>unknown specificity                                  |         |                                                                   |                                                                                                                                                                                                        |        |        |    |
| mnas_459 | tRNA-Lys                                                                                  |                         |                                                         | 552267            | 552343            | +  |                                                                             | rna.20  | tRNA-Lys-CTT                                                      | - none -                                                                                                                                                                                               | 552268 | 552340 | +  |
| mnas_460 | conserved hypothetical<br>protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 552533            | 553844            | +  | Unknown: Conserved                                                          | peg.598 | FIG00834982: hypothetical protein                                 | - none -                                                                                                                                                                                               | 552534 | 553844 | +  |
| mnas_461 | tRNA-Thr                                                                                  |                         |                                                         | 554066            | 553992            | -  |                                                                             | rna.21  | tRNA-Thr-CGT                                                      | - none -                                                                                                                                                                                               | 554066 | 553996 | -  |

| IGS      |                                                                                   |                         |                                          |                   |                   |    |                                                                                 | RAST    |                                       |                                                                                                                                                                                                                                                                                                |        |        |    |
|----------|-----------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------------------------------|---------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                       | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                      | Gene_id | Function                              | Subsystem                                                                                                                                                                                                                                                                                      | Start⁵ | Stop⁵  | S⁴ |
| mnas_462 | ssrA-binding protein                                                              | smpB                    | GO:0003723,<br>GO:0006450                | 554439            | 554877            | -  | Protein synthesis:<br>Other                                                     | peg.599 | tmRNA-binding protein SmpB            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>termination factors bacterial                                                                                                                                                                | 554877 | 554440 | -  |
|          |                                                                                   |                         |                                          |                   |                   |    |                                                                                 |         |                                       | Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended                                                                                                                                                                                    |        |        |    |
| mnas_463 | valinetRNA ligase<br>(EC 6.1.1.9)                                                 | valS                    | GO:0004832,<br>GO:0005737,<br>GO:0006438 | 555014            | 557501            | +  | Protein synthesis:<br>tRNA aminoacylation                                       | peg.600 | Valyl-tRNA synthetase<br>(EC 6.1.1.9) | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Val                                                                                                                                                                                 | 555015 | 557501 | +  |
| mnas_464 | tetrahydrofolate<br>dehydrogenase/cyclohy<br>drolase, catalytic<br>domain protein |                         |                                          | 557485            | 558055            | +  | Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Folic acid |         |                                       |                                                                                                                                                                                                                                                                                                |        |        |    |
| mnas_465 | hypothetical protein                                                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 558059            | 564545            | -  | Unknown: General                                                                | peg.601 | hypothetical protein                  | - none -                                                                                                                                                                                                                                                                                       | 558124 | 559089 | +  |
|          |                                                                                   |                         |                                          |                   |                   |    |                                                                                 | peg.602 | hypothetical protein                  | - none -                                                                                                                                                                                                                                                                                       | 559465 | 560025 | +  |
| mnas_466 | hypothetical protein                                                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 564553            | 565924            | -  | Unknown: General                                                                |         |                                       |                                                                                                                                                                                                                                                                                                |        |        |    |
| _        | hypothetical protein                                                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 565946            | 567257            | -  | Unknown: General                                                                | peg.603 | hypothetical protein                  | - none -                                                                                                                                                                                                                                                                                       | 567257 | 565947 | -  |
| mnas_468 | DJ-1/Pfpl family protein                                                          |                         |                                          | 567420            | 567987            | -  | Unclassified: Role<br>category not yet<br>assigned                              | peg.604 | hypothetical protein                  | - none -                                                                                                                                                                                                                                                                                       | 567987 | 567421 | -  |
| mnas_469 | putative membrane<br>protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 567986            | 569000            | -  | Cell envelope: Other                                                            | peg.605 | hypothetical protein                  | - none -                                                                                                                                                                                                                                                                                       | 569000 | 567987 | -  |
| mnas_470 | hypothetical protein                                                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 569002            | 570289            | -  | Unknown: General                                                                | peg.606 | hypothetical protein                  | - none -                                                                                                                                                                                                                                                                                       | 570289 | 569003 | -  |
| mnas_471 | (EC 3.5.1.88)                                                                     | def                     | GO:0006464,<br>GO:0042586                | 570303            | 570861            | -  | Protein fate: Protein modification and repair                                   | peg.607 | Peptide deformylase<br>(EC 3.5.1.88)  | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>termination factors bacterial<br>Subsystem: Bacterial RNA-<br>metabolizing Zn-dependent<br>hydrolases<br>Subsystem: Conserved gene<br>cluster associated with Met-<br>tRNA formyltransferase | 570798 | 570304 | -  |
| mnas_472 | conserved hypothetical<br>protein                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 571010            | 571736            | -  | Unknown: Conserved                                                              |         |                                       |                                                                                                                                                                                                                                                                                                |        |        |    |

| IGS      |                                                                           |                         |                                                         |                   |                   |    |                                                                              | RAST    |                                                                                 |                                                                                                                                                                                                                                                                                                          |        |        |    |
|----------|---------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                               | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                   | Gene_id | Function                                                                        | Subsystem                                                                                                                                                                                                                                                                                                | Start⁵ | Stop⁵  | S⁴ |
| mnas_473 | putative Replicative<br>DNA helicase<br>(EC 3.6.1)                        | dnaB                    |                                                         | 571777            | 573238            | -  | Unknown: General<br>Hypothetical                                             | peg.608 | Replicative DNA helicase (EC 3.6.1)                                             | - none -                                                                                                                                                                                                                                                                                                 | 573238 | 571778 | -  |
| mnas_474 | ribosomal protein L9                                                      | rpll                    | GO:0000311,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 573224            | 573686            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification   | peg.609 | LSU ribosomal protein L9p                                                       | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                                                                                                             | 573686 | 573225 | -  |
| mnas_475 | DHHA1 domain protein                                                      |                         |                                                         | 573687            | 575673            | -  | Unknown: General<br>Hypothetical                                             | peg.610 | Phosphoesterase, DHH<br>family protein                                          | - none -                                                                                                                                                                                                                                                                                                 | 575673 | 573688 | -  |
| mnas_476 | ZIP Zinc transporter<br>family protein                                    |                         |                                                         | 575782            | 576790            | -  | Transport and binding<br>proteins: Cations and<br>iron carrying<br>compounds | peg.611 | hypothetical protein                                                            | - none -                                                                                                                                                                                                                                                                                                 | 576790 | 575783 | -  |
| mnas_477 | transcriptional regulator<br>family protein                               |                         |                                                         | 576789            | 577263            | -  | Transcription:<br>Transcription factors                                      | peg.612 | FIG000859: hypothetical<br>protein YebC                                         | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: Riboflavin, FMN,<br>FAD<br>Subsystem: Riboflavin, FMN<br>and FAD metabolism in plants<br>Category: DNA Metabolism<br>Subcategory: DNA<br>recombination<br>Subsystem: RuvABC plus a<br>hypothetical                         | 577215 | 576790 | -  |
| mnas_478 | Spermidine/putrescine/<br>ABC transporter<br>substrate binding<br>protein | potD                    | GO:0016020                                              | 577279            | 579238            | +  | Transport and binding<br>proteins: Unknown<br>substrate                      | peg.613 | Probable<br>spermidine/putrescine<br>substrate binding protein in<br>Mollicutes | - none -                                                                                                                                                                                                                                                                                                 | 577451 | 579238 | +  |
| mnas_479 | ribosome-binding factor<br>A                                              | rbfA                    | GO:0006396,<br>GO:0019843                               | 579306            | 579648            | +  | Transcription: RNA<br>processing                                             | peg.614 | Ribosome-binding factor A                                                       | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>initiation factors bacterial<br>Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA processing<br>and degradation, bacterial<br>Subsystem: NusA-TFII Cluster | 579307 | 579648 | +  |
| mnas_480 | hypothetical protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 579843            | 580533            | +  | Unknown: General                                                             | peg.615 | hypothetical protein                                                            | - none -                                                                                                                                                                                                                                                                                                 | 579844 | 580533 | +  |
| mnas_481 | hypothetical protein                                                      |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 580729            | 581755            | +  | Unknown: General                                                             | peg.616 | hypothetical protein                                                            | - none -                                                                                                                                                                                                                                                                                                 | 580730 | 581755 | +  |
| mnas_482 | methionine<br>adenosyltransferase<br>(EC 2.5.1.6)                         | metK                    | GO:0004478,<br>GO:0006556                               | 581907            | 583050            | +  | Central intermediary metabolism: Other                                       | peg.617 | S-adenosylmethionine<br>synthetase<br>(EC 2.5.1.6)                              | - none -                                                                                                                                                                                                                                                                                                 | 581908 | 583050 | +  |

| IGS      |                                                                                  |                         |                                          |                   |                   |    |                                                                                                                                         | RAST    |                                                               |                                                                                                                                                       |        |        |    |
|----------|----------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                      | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                      | Subsystem                                                                                                                                             | Start⁵ | Stop⁵  | S⁴ |
| mnas_483 | hypothetical protein                                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 583101            | 583230            | +  | Unknown: General                                                                                                                        | peg.618 | hypothetical protein                                          | - none -                                                                                                                                              | 583102 | 583230 | +  |
| mnas_484 | ATP-dependent<br>protease La<br>(EC 3.4.21.53)                                   | lon                     | GO:0004252,<br>GO:0006508,<br>GO:0008846 | 583478            | 586061            | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides                                                             |         |                                                               |                                                                                                                                                       |        |        |    |
| mnas_485 | leucinetRNA ligase<br>(EC 6.1.1.4)                                               | leuS                    | GO:0004823,<br>GO:0005737,<br>GO:0006429 | 586071            | 588402            | -  | Protein synthesis:<br>tRNA aminoacylation,<br>Disrupted reading<br>frame: NULL                                                          | peg.619 | Leucyl-tRNA synthetase<br>(EC 6.1.1.4)                        | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Leu                                        | 588402 | 586072 | -  |
| mnas_486 | NAD <sup>+</sup> synthetase<br>(EC 6.3.1.5)                                      | nadE                    | GO:0005737,<br>GO:0008795,<br>GO:0009435 | 588691            | 589474            | +  | Biosynthesis of<br>cofactors, prosthetic<br>groups, and carriers:<br>Pyridine nucleotides                                               | peg.620 | NAD synthetase<br>(EC 6.3.1.5)                                | Category: Cofactors, Vitamins,<br>Prosthetic Groups, Pigments<br>Subcategory: NAD and NADP<br>Subsystem: NAD and NADP<br>cofactor biosynthesis global | 588692 | 589474 | +  |
| mnas_487 | transcriptional regulator<br>family protein                                      |                         |                                          | 589488            | 589659            | +  | Transcription:<br>Transcription factors                                                                                                 |         |                                                               |                                                                                                                                                       |        |        |    |
| mnas_488 | putative sn-glycerol-3-<br>phosphate ABC<br>transporter, ATP-<br>binding protein | ugpC                    | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 589659            | 591540            | +  | Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity                                  | peg.621 | Multiple sugar ABC<br>transporter, ATP-binding<br>protein     | - none -                                                                                                                                              | 589912 | 591540 | +  |
| mnas_489 | putative sn-glycerol-3-<br>phosphate transport<br>system permease<br>protein     | ugpA                    | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 591529            | 592576            | +  | Cell envelope: Other                                                                                                                    | peg.622 | N-Acetyl-D-glucosamine ABC transport system, permease protein | - none -                                                                                                                                              | 591530 | 592576 | +  |
| mnas_490 | ABC transporter<br>permease protein ugpE                                         | ugpE                    |                                          | 592520            | 593543            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                 | peg.623 | ABC transporter permease protein                              | - none -                                                                                                                                              | 592554 | 593543 | +  |
| mnas_491 | hypothetical protein                                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 593545            | 593821            | +  | Unknown: General                                                                                                                        | peg.624 | hypothetical protein                                          | - none -                                                                                                                                              | 593546 | 593821 | +  |
| mnas_492 | hypothetical protein                                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 593823            | 595719            | +  | Unknown: General                                                                                                                        |         |                                                               |                                                                                                                                                       |        |        |    |
| mnas_493 | hypothetical protein                                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 595725            | 596658            | +  | Unknown: General                                                                                                                        | peg.625 | hypothetical protein                                          | - none -                                                                                                                                              | 595786 | 596658 | +  |
| mnas_494 | tRNA-Gly                                                                         |                         |                                          | 597015            | 596941            | -  |                                                                                                                                         | rna.22  | tRNA-Gly-TCC                                                  | - none -                                                                                                                                              | 597015 | 596945 | 1- |
| mnas_495 | tRNA-Arg                                                                         |                         |                                          | 597174            | 597097            | -  |                                                                                                                                         | rna.23  | tRNA-Arg-ACG                                                  | - none -                                                                                                                                              | 597174 | 597101 | -  |
| mnas_496 | tRNA-Cys                                                                         |                         |                                          | 597257            | 597182            | -  |                                                                                                                                         | rna.24  | tRNA-Cys-GCA                                                  | - none -                                                                                                                                              | 597257 | 597186 | -  |
| mnas_497 | modification methylase<br>Banl<br>(EC 2.1.1.37)                                  | banl<br>M               | GO:0003677,<br>GO:0009307,<br>GO:0003886 | 597393            | 598746            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.626 | DNA-cytosine<br>methyltransferase (EC<br>2.1.1.37)            | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial                                                            | 597394 | 598746 | +  |

| IGS      |                                                            |                         |                                                                        |                   |                   |    |                                                      | RAST    |                                                            |                                                                                                                                                                                                                     |        |        |    |
|----------|------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------|---------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                           | Gene_id | Function                                                   | Subsystem                                                                                                                                                                                                           | Start⁵ | Stop⁵  | S⁴ |
| mnas_498 | endonuclease/Exonucl<br>ease/phosphatase<br>family protein |                         |                                                                        | 598815            | 599928            | -  | Unknown: Enzymes of<br>unknown specificity           | peg.627 | membrane nuclease                                          | - none -                                                                                                                                                                                                            | 599928 | 598816 | -  |
| mnas_499 | aspartate-ammonia<br>ligase<br>(EC 6.3.1.1)                | asnA                    |                                                                        | 599974            | 600955            | -  | Unclassified: Role<br>category not yet<br>assigned   | peg.628 | Aspartateammonia ligase<br>(EC 6.3.1.1)                    | Category: Amino Acids and<br>Derivatives<br>Subcategory: Glutamine,<br>glutamate, aspartate,<br>asparagine; ammonia<br>assimilation<br>Subsystem: Glutamine,<br>Glutamate, Aspartate and<br>Asparagine Biosynthesis | 600955 | 599975 | -  |
| mnas_500 | smr domain protein                                         |                         |                                                                        | 600962            | 601280            | -  | Unknown: General<br>Hypothetical                     | peg.629 | unknown; predicted coding<br>region                        | - none -                                                                                                                                                                                                            | 601280 | 600963 | -  |
| mnas_501 | isochorismatase family<br>protein                          |                         |                                                                        | 601267            | 601564            | -  | Unknown: Enzymes of<br>unknown specificity           | peg.630 | hypothetical protein                                       | - none -                                                                                                                                                                                                            | 601450 | 601268 | -  |
| mnas_502 | putative hydrolase                                         |                         | GO:0016787                                                             | 601570            | 602803            | -  | Unknown: Enzymes of<br>unknown specificity           |         |                                                            |                                                                                                                                                                                                                     |        |        |    |
| mnas_503 | domain protein                                             |                         | GO:0016787                                                             | 602847            | 603048            | -  | Unknown: Enzymes of<br>unknown specificity           | peg.631 | Ribonuclease J2<br>(endoribonuclease in RNA<br>processing) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: Ribonucleases in<br>Bacillus<br>Subsystem: Bacterial RNA-<br>metabolizing Zn-dependent<br>hydrolases                      | 603048 | 602848 | -  |
| mnas_504 | pyruvate kinase<br>(EC 2.7.1.40)                           | pyk                     | GO:0004743,<br>GO:0005737,<br>GO:0006096                               | 603175            | 604609            | -  | Energy metabolism:<br>Glycolysis/gluconeogen<br>esis | peg.632 | Pyruvate kinase (EC 2.7.1.40)                              | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Pyruvate<br>metabolism I: anaplerotic<br>reactions, PEP<br>Subsystem: Glycolysis and<br>Gluconeogenesis;                   | 604609 | 603176 | -  |
| mnas_505 | hypothetical protein                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 604675            | 605578            | -  | Unknown: General                                     | peg.633 | hypothetical protein                                       | - none -                                                                                                                                                                                                            | 605578 | 604676 | -  |
| mnas_506 | GTP-binding protein<br>YsxC                                | ysxC                    | GO:0003924,<br>GO:0005525,<br>GO:0005737,<br>GO:0042254,<br>GO:0043022 | 605567            | 606158            | -  | Unclassified: Role<br>category not yet<br>assigned   | peg.634 | GTP-binding protein EngB                                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases                                                                                                                |        | 605568 | -  |
| mnas_507 | acetate kinase<br>(EC 2.7.2.1)                             | ackA                    | GO:0005737,<br>GO:0006083,<br>GO:0006113,<br>GO:0008776                | 606159            | 607281            | -  | Energy metabolism:<br>Fermentation                   | peg.635 | Acetate kinase<br>(EC 2.7.2.1)                             | Category: Carbohydrates<br>Subcategory: Fermentation<br>Subsystem: Fermentations:<br>Lactate                                                                                                                        | 607185 | 606160 | -  |

| IGS      |                                                  |                         |                                          |                   |                   |    |                                                                                                     | RAST    |                                                                      |                                                                                                                                                                                                              |        |        |    |
|----------|--------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                      | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                          | Gene_id | Function                                                             | Subsystem                                                                                                                                                                                                    | Start⁵ | Stop⁵  | S⁴ |
| mnas_508 | hsp70 family protein                             |                         |                                          | 607297            | 607717            | +  | Protein fate: Protein folding and stabilization                                                     | peg.15  | Chaperone protein DnaK                                               | Category: Protein Metabolism<br>Subcategory: Protein folding<br>Subsystem: Protein chaperones<br>Category: Stress Response<br>Subcategory: Heat shock<br>Subsystem: Heat shock dnaK<br>gene cluster extended | 607388 | 607717 | +  |
| _        | phosphoglucose<br>isomerase family<br>protein    |                         |                                          | 607836            | 609141            | +  | Energy metabolism:<br>Pentose phosphate<br>pathway                                                  | peg.16  | Glucose-6-phosphate<br>isomerase<br>(EC 5.3.1.9)                     | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis                                                                                   | 607837 | 609141 | +  |
| _        | RNA pseudouridylate<br>synthase family protein   |                         |                                          | 609140            | 609644            | +  | Protein synthesis:<br>tRNA and rRNA base<br>modification                                            | peg.17  | Ribosomal small subunit<br>pseudouridine synthase A<br>(EC 4.2.1.70) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA pseudouridine<br>syntheses                                                                                     | 609141 | 609865 | +  |
| mnas_511 | hypothetical protein                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 609709            | 609865            | +  | Unknown: General                                                                                    |         |                                                                      |                                                                                                                                                                                                              |        |        |    |
| mnas_512 | neisseria meningitidis<br>TspB family protein    |                         |                                          | 609854            | 611543            | +  | Unclassified: Role<br>category not yet<br>assigned                                                  | peg.18  | hypothetical lipoprotein                                             | - none -                                                                                                                                                                                                     | 609855 | 611543 | +  |
| mnas_513 | Phosphopentomutase (EC 5.4.2.7)                  | deoB                    | GO:0006139,<br>GO:0008973                | 611597            | 612788            | -  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Other                                     | peg.19  | Phosphopentomutase (EC 5.4.2.7)                                      | - none -                                                                                                                                                                                                     | 612788 | 611598 | -  |
|          | dUTPase family protein                           |                         |                                          | 613000            | 613219            | +  | Unclassified: Role<br>category not yet<br>assigned                                                  | peg.20  | hypothetical protein                                                 | - none -                                                                                                                                                                                                     | 613070 | 613219 | +  |
| mnas_515 | tRNA-Leu                                         |                         |                                          | 613243            | 613327            | +  |                                                                                                     | rna.1   | tRNA-Leu-CAA                                                         | - none -                                                                                                                                                                                                     | 613244 | 613324 | +  |
| mnas_516 | ahpC/TSA family<br>protein                       |                         |                                          | 613365            | 613863            | +  | Cellular processes:<br>Detoxification, Cellular<br>processes: Adaptations<br>to atypical conditions | peg.21  | Thiol peroxidase, Tpx-type<br>(EC 1.11.1.15)                         | Category: Sulfur Metabolism<br>Subcategory: no subcategory<br>Subsystem: Thioredoxin-<br>disulfide reductase                                                                                                 | 613366 | 613863 | +  |
| mnas_517 | aminopeptidase<br>domain protein<br>(EC 3.4.11)  | celM<br>2               | GO:0004177,<br>GO:0016787                | 613864            | 614053            | +  | Unknown: Enzymes of<br>unknown specificity                                                          | peg.22  | hypothetical protein                                                 | - none -                                                                                                                                                                                                     | 613865 | 614053 | +  |
| mnas_518 | M42 glutamyl<br>aminopeptidase family<br>protein |                         |                                          | 614052            | 614949            | +  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides                         | peg.23  | Endo-1,4-beta-glucanase                                              | - none -                                                                                                                                                                                                     | 614068 | 614949 | +  |
| mnas_519 | conserved hypothetical protein                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 615080            | 615446            | +  | Unknown: Conserved                                                                                  | peg.24  | hypothetical protein                                                 | - none -                                                                                                                                                                                                     | 615210 | 615446 | +  |
| mnas_520 | NUDIX domain protein                             |                         |                                          | 615484            | 615934            | -  | Unknown: Enzymes of<br>unknown specificity                                                          | peg.25  | MutT/nudix family protein                                            | - none -                                                                                                                                                                                                     | 615934 | 615485 | -  |

| IGS      |                                                                 |                         |                                                         |                   |                               |    |                                                                            | RAST    |                                                      |                                                                                                                                                                                    |        |        |    |
|----------|-----------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------------------|----|----------------------------------------------------------------------------|---------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                     | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup>             | S⁴ | TIGR_roles                                                                 | Gene_id | Function                                             | Subsystem                                                                                                                                                                          | Start⁵ | Stop⁵  | S⁴ |
| mnas_521 | ribosomal protein S2                                            | rpsB                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 616187            | 617054                        | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.26  | SSU ribosomal protein S2p<br>(SAe)                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial<br>Subsystem: Ribosome<br>recycling related cluster                   | 616188 | 617054 | +  |
| mnas_522 | translation elongation<br>factor Ts                             | tsf                     | GO:0003746,<br>GO:0006414                               | 617095            | 617974                        | +  | Protein synthesis:<br>Translation factors                                  | peg.27  | Translation elongation factor<br>Ts                  | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>elongation factors bacterial<br>Subsystem: Ribosome<br>recycling related cluster | 617096 | 617974 | +  |
| mnas_523 | putative lipoprotein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 618098            | 61Gener<br>al<br>Unknow<br>n9 | +  | Cell envelope: Other                                                       |         |                                                      |                                                                                                                                                                                    |        |        |    |
| mnas_524 | hypothetical protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 618594            | 622437                        | +  | Unknown: General                                                           | peg.28  | Siderophore-mediated iron<br>transport protein       | - none -                                                                                                                                                                           | 618595 | 622437 | +  |
| mnas_525 | putative membrane<br>protein                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 622451            | 623906                        | +  | Cell envelope: Other                                                       |         |                                                      |                                                                                                                                                                                    |        |        |    |
| mnas_526 | chromate transporter<br>family protein                          |                         |                                                         | 623910            | 624492                        | +  | Transport and binding<br>proteins: Anions                                  | peg.29  | Chromate transport protein                           | - none -                                                                                                                                                                           | 623947 | 624492 | +  |
| mnas_527 | chromate transporter<br>family protein                          |                         |                                                         | 624491            | 625139                        | +  | Transport and binding<br>proteins: Anions                                  | peg.30  | chromate ion transporter (CHR) family, putative      | - none -                                                                                                                                                                           | 624492 | 625139 | +  |
| mnas_528 | hypothetical protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 625754            | 626051                        | +  | Unknown: General                                                           | peg.31  | hypothetical protein                                 | - none -                                                                                                                                                                           | 625863 | 626051 | +  |
|          |                                                                 |                         |                                                         |                   |                               |    |                                                                            | peg.32  | putative                                             | - none -                                                                                                                                                                           | 626843 | 627547 | +  |
| mnas_529 | eco57I restriction-<br>modification methylase<br>family protein |                         |                                                         | 627536            | 628559                        | -  | DNA metabolism:<br>Restriction/modification                                | peg.33  | N6 adenine-specific DNA methyltransferase, N12 class | - none -                                                                                                                                                                           | 628559 | 627537 | -  |
| mnas_530 | putative restriction<br>endonuclease Hpy8I                      |                         | GO:0004519                                              | 626842            | 627547                        | +  | Unknown: Enzymes of<br>unknown specificity                                 |         |                                                      |                                                                                                                                                                                    |        |        |    |
| mnas_531 | hypothetical protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 628740            | 629073                        | -  | Unknown: General                                                           | peg.34  | hypothetical protein                                 | - none -                                                                                                                                                                           | 628992 | 628741 | -  |
| mnas_532 | anticodon binding<br>domain protein                             |                         |                                                         | 629093            | 629480                        | +  | Unknown: General<br>Hypothetical                                           | peg.35  | Threonyl-tRNA synthetase<br>(EC 6.1.1.3)             | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Thr                                                                     | 629127 | 629480 | +  |
| mnas_533 | hypothetical protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 629472            | 630051                        | +  | Unknown: General                                                           | peg.36  | hypothetical protein                                 | - none -                                                                                                                                                                           | 629473 | 630051 | +  |

| IGS      |                                                                                 |                         |                                                                        |                   |                   |    |                                                                                               | RAST    |                                                                                                                                                                                                                                               |                                                                                                                                                                         |        |        | -  |
|----------|---------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                     | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                    | Gene_id | Function                                                                                                                                                                                                                                      | Subsystem                                                                                                                                                               | Start⁵ | Stop⁵  | S⁴ |
| mnas_534 | PTS system,<br>glucose/glucosamine/b<br>eta-glucoside-specific<br>(EC 2.7.1.69) |                         |                                                                        | 630093            | 630882            | -  | Unknown: Enzymes of<br>unknown specificity                                                    | peg.37  | PTS system, N-<br>acetylglucosamine-specific<br>IIA component (EC 2.7.1.69) /<br>PTS system, N-<br>acetylglucosamine-specific<br>IIB component (EC 2.7.1.69) /<br>PTS system, N-<br>acetylglucosamine-specific<br>IIC component (EC 2.7.1.69) | - none -                                                                                                                                                                | 630882 | 630094 | -  |
| mnas_535 | ribosomal protein<br>L7/L12                                                     | rpIL                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                | 631037            | 631409            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                    | peg.38  | LSU ribosomal protein L7/L12<br>(P1/P2)                                                                                                                                                                                                       | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial<br>Subsystem: LSU ribosomal<br>proteins cluster            | 631409 | 631038 | -  |
| mnas_536 | 50S ribosomal protein<br>L10                                                    | rplJ                    | GO:0005840,<br>GO:0042254,<br>GO:0006412,<br>GO:0006950,<br>GO:0003735 | 631440            | 631938            | -  | Cellular processes:<br>Other,<br>Cellular processes:<br>Adaptations to atypical<br>conditions | peg.39  | LSU ribosomal protein L10p<br>(P0)                                                                                                                                                                                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial<br>Subsystem: LSU ribosomal                                | 631938 | 631441 | -  |
| mnas_537 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 632180            | 632645            | -  | Unknown: General                                                                              | peg.40  | hypothetical protein                                                                                                                                                                                                                          | proteins cluster<br>- none -                                                                                                                                            | 632609 | 632181 | -  |
| mnas_538 | hypothetical protein                                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 632629            | 633916            | -  | Unknown: General                                                                              | peg.41  | Sialidase NanB<br>(EC 3.2.1.18)                                                                                                                                                                                                               | - none -                                                                                                                                                                | 633445 | 632630 | -  |
| mnas_539 | ruvA, C-terminal<br>domain protein                                              |                         |                                                                        | 633980            | 634598            | +  | Unknown: General<br>Hypothetical                                                              | peg.42  | Holliday junction DNA<br>helicase RuvA                                                                                                                                                                                                        | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication<br>Subcategory: DNA<br>recombination<br>Subsystem: RuvABC plus a<br>hypothetical | 633981 | 634598 | +  |
| mnas_540 | holliday junction DNA<br>helicase RuvB<br>(EC 3.6.4.12)                         | ruvB                    | GO:0006310,<br>GO:0009378,<br>GO:0009379                               | 634572            | 635526            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                           | peg.43  | Holliday junction DNA<br>helicase RuvB                                                                                                                                                                                                        | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication<br>Subcategory: DNA<br>recombination<br>Subsystem: RuvABC plus a<br>hypothetical | 634573 | 635526 | +  |
| mnas_541 | export membrane<br>protein SecF                                                 | secF                    | GO:0015450,<br>GO:0031522,<br>GO:0043952                               | 635590            | 638176            | +  | Protein fate:Protein and<br>peptide secretion and<br>trafficking                              | peg.44  | Protein-export membrane<br>protein SecD<br>(TC 3.A.5.1.1) / Protein-<br>export membrane protein<br>SecF<br>(TC 3.A.5.1.1)                                                                                                                     | - none -                                                                                                                                                                | 635591 | 638176 | +  |
| mnas_542 | GIY-YIG catalytic<br>domain protein                                             |                         |                                                                        | 638639            | 639758            | -  | DNA metabolism:<br>Restriction/modification                                                   |         |                                                                                                                                                                                                                                               |                                                                                                                                                                         |        |        |    |

| IGS      |                                                                  |                         |                                          |                   |                   |    |                                                                     | RAST    |                                                                      |                                                                                                                                                                                                                                                 |        |        |    |
|----------|------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------------------|---------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                      | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                          | Gene_id | Function                                                             | Subsystem                                                                                                                                                                                                                                       | Start⁵ | Stop⁵  | S⁴ |
| mnas_543 | recombination U family protein                                   |                         |                                          | 638276            | 638639            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair |         |                                                                      |                                                                                                                                                                                                                                                 |        |        |    |
| mnas_544 | NADPH-dependent<br>FMN reductase family<br>protein               |                         |                                          | 639818            | 640409            | -  | Energy metabolism:<br>Electron transport                            | peg.45  | FMN-dependent NADH-<br>azoreductase                                  | - none -                                                                                                                                                                                                                                        | 640409 | 639819 | -  |
| mnas_545 | NADPH-dependent<br>FMN reductase family<br>protein               |                         |                                          | 640414            | 641005            | -  | Energy metabolism:<br>Electron transport                            | peg.46  | FMN-dependent NADH-<br>azoreductase                                  | - none -                                                                                                                                                                                                                                        | 641005 | 640415 | -  |
| mnas_546 | tRNA-Ser                                                         |                         |                                          | 641317            | 641408            | +  |                                                                     | rna.2   | tRNA-Pseudo-GCT                                                      | - none -                                                                                                                                                                                                                                        | 641318 | 641405 | +  |
| mnas_547 | triose-phosphate<br>isomerase<br>(EC 5.3.1.1)                    | tpiA                    | GO:0004807,<br>GO:0006096                | 641493            | 642237            | +  | Energy metabolism:<br>Glycolysis/gluconeogen<br>esis                | peg.47  | Triosephosphate isomerase<br>(EC 5.3.1.1)                            | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis                                                                                                                      | 641494 | 642237 | +  |
| mnas_548 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 643188            | 644022            | -  | Unknown: General                                                    |         |                                                                      |                                                                                                                                                                                                                                                 |        |        |    |
| mnas_549 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 642223            | 643192            | +  | Unknown: General                                                    |         |                                                                      |                                                                                                                                                                                                                                                 |        |        |    |
| mnas_550 | conserved hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 644182            | 644398            | +  | Unknown: Conserved                                                  | peg.48  | FIG00837018: hypothetical protein                                    | - none -                                                                                                                                                                                                                                        | 644183 | 644398 | +  |
| mnas_551 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 644504            | 645458            | -  | Unknown: General                                                    | peg.49  | predicted coding region                                              | - none -                                                                                                                                                                                                                                        | 645458 | 644505 | -  |
| mnas_552 | pseudouridine<br>synthase, RluA family<br>protein<br>(EC 5.4.99) |                         | GO:0001522,<br>GO:0009451,<br>GO:0009982 | 645458            | 646388            | -  | Protein synthesis:<br>tRNA and rRNA base<br>modification            | peg.50  | Ribosomal large subunit<br>pseudouridine synthase D<br>(EC 4.2.1.70) | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: RNA pseudouridine<br>syntheses<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome<br>biogenesis bacterial | 646388 | 645459 | -  |
| mnas_553 | conserved hypothetical<br>protein                                |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 646482            | 646980            | -  | Unknown: Conserved                                                  | peg.51  | hypothetical protein                                                 | - none -                                                                                                                                                                                                                                        | 646980 | 646483 | -  |
| mnas_554 | conserved hypothetical<br>protein                                |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 646955            | 647645            | -  | Unknown: Conserved                                                  | peg.52  | hypothetical protein                                                 | - none -                                                                                                                                                                                                                                        | 647264 | 646956 | -  |
| mnas_555 | zinc finger found in<br>FPG and IleRS family<br>protein          |                         |                                          | 647663            | 648242            | +  | Unclassified: Role<br>category not yet<br>assigned                  | peg.53  | Isoleucyl-tRNA synthetase<br>(EC 6.1.1.5)                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Ile                                                                                                                                  | 647673 | 648242 | +  |

| IGS      |                                                                          |                         |                                                         |                   |                   |    |                                                                            | RAST    |                                                   |                                                                                                                    |        |        |    |
|----------|--------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------|---------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                              | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                 | Gene_id | Function                                          | Subsystem                                                                                                          | Start⁵ | Stop⁵  | S⁴ |
| mnas_556 | signal peptidase<br>(SPase) II family<br>protein                         |                         |                                                         | 648250            | 648964            | +  | Protein fate:Protein and<br>peptide secretion and<br>trafficking           | peg.54  | Lipoprotein signal peptidase<br>(EC 3.4.23.36)    | Category: Protein Metabolism<br>Subcategory: Protein<br>processing and modification<br>Subsystem: Signal peptidase | 648251 | 648964 | +  |
|          |                                                                          |                         |                                                         |                   |                   |    |                                                                            |         |                                                   | Subsystem: Lipoprotein<br>Biosynthesis                                                                             |        |        |    |
| mnas_557 | conserved hypothetical<br>protein                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 649069            | 650386            | +  | Unknown: Conserved                                                         | peg.55  | Conserved expressed protein                       | - none -                                                                                                           | 649070 | 650386 | +  |
| mnas_558 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 650471            | 650714            | +  | Unknown: General                                                           | peg.56  | hypothetical protein                              | - none -                                                                                                           | 650472 | 650714 | +  |
| mnas_559 | ribosomal protein L21                                                    | rpIU                    | GO:0000311,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 650820            | 651120            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.57  | LSU ribosomal protein L21p                        | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial       | 650821 | 651120 | +  |
| mnas_560 | ribosomal protein L27                                                    | rpmA                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 651127            | 651388            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.58  | LSU ribosomal protein L27p                        | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial       | 651128 | 651388 | +  |
| mnas_561 | DNA recombination-<br>mediator A family<br>protein                       |                         |                                                         | 651448            | 652006            | -  | Unclassified: Role<br>category not yet<br>assigned                         | peg.59  | SMF family protein, DNA processing chain A (dprA) | - none -                                                                                                           | 651943 | 651449 | -  |
| mnas_562 | integrase core domain<br>protein                                         |                         |                                                         | 652014            | 652500            | -  | Unknown: General<br>Hypothetical                                           |         |                                                   |                                                                                                                    |        |        |    |
| mnas_563 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 652676            | 652895            | -  | Unknown: General                                                           |         |                                                   |                                                                                                                    |        |        |    |
| mnas_564 | ABC transporter family protein                                           |                         |                                                         | 653065            | 654874            | +  | Transport and binding<br>proteins: Unknown<br>substrate                    | peg.60  | FIG00836097: hypothetical<br>protein              | - none -                                                                                                           | 653066 | 654874 | +  |
| mnas_565 | ABC transporter<br>transmembrane region<br>family protein                |                         |                                                         | 654882            | 656322            | +  | Transport and binding<br>proteins: Unknown<br>substrate                    |         |                                                   |                                                                                                                    |        |        |    |
| mnas_566 | large-conductance<br>mechanosensitive<br>channel, MscL family<br>protein |                         |                                                         | 656550            | 656955            | -  | Transport and binding<br>proteins: Unknown<br>substrate                    | peg.81  | Large-conductance<br>mechanosensitive channel     | Category: Potassium<br>metabolism<br>Subcategory: Potassium<br>metabolism<br>Subsystem: Potassium<br>homeostasis   | 656955 | 656551 | -  |
| mnas_567 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 657185            | 658805            | +  | Unknown: General                                                           | peg.82  | hypothetical protein                              | - none -                                                                                                           | 657186 | 658805 | +  |
| mnas_568 | ribosomal protein S4                                                     | rpsD                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 659041            | 659641            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.83  | SSU ribosomal protein S4p<br>(S9e)                | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial       | 659042 | 659641 | +  |

| IGS      |                                                                                                |                         |                                                                                                                     |                   |                   |    |                                                                                                                                         | RAST    |                                                                          |                                                                                                                            |        |        |           |
|----------|------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|
| Gene_id  | Common_name                                                                                    | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                               | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                 | Subsystem                                                                                                                  | Start⁵ | Stop⁵  | S⁴        |
| mnas_569 | ribosomal protein L31                                                                          | rpmE                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                                                             | 659658            | 659868            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                              | peg.84  | LSU ribosomal protein L31p                                               | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial               | 659659 | 659868 | +         |
| mnas_570 | uvrC Helix-hairpin-helix<br>N-terminal family<br>protein                                       |                         |                                                                                                                     | 660055            | 660577            | -  | Unclassified: Role<br>category not yet<br>assigned                                                                                      | peg.85  | Excinuclease ABC subunit C                                               | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>UvrABC system                             | 660394 | 660056 | -         |
| mnas_571 | DNA polymerase III,<br>delta subunit                                                           | holA                    |                                                                                                                     | 660635            | 661577            | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                     | peg.86  | DNA polymerase III delta<br>subunit<br>(EC 2.7.7.7)                      | Category: DNA Metabolism<br>Subcategory: DNA replication<br>Subsystem: DNA-replication                                     | 661577 | 660636 | -         |
| mnas_572 | comEC/Rec2-related<br>domain protein                                                           |                         |                                                                                                                     | 661589            | 662885            | -  | Unknown: General<br>Hypothetical                                                                                                        | peg.87  | hypothetical protein                                                     | - none -                                                                                                                   | 662885 | 661590 | -         |
| mnas_573 | hypothetical protein                                                                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 662905            | 663325            | -  | Unknown: General                                                                                                                        | peg.88  | hypothetical protein                                                     | - none -                                                                                                                   | 663364 | 662906 | -         |
| mnas_574 | uracil<br>phosphoribosyltransfer<br>ase<br>(EC 2.4.2.9)                                        | upp                     | GO:0004845,<br>GO:0008655                                                                                           | 664082            | 664712            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Salvage of<br>nucleosides and<br>nucleotides                                  | peg.89  | Uracil<br>phosphoribosyltransferase<br>(EC 2.4.2.9)                      | - none -                                                                                                                   | 664083 | 664712 | +         |
| mnas_575 | hypothetical protein                                                                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 664860            | 665001            | +  | Unknown: General                                                                                                                        |         |                                                                          |                                                                                                                            |        |        | $\square$ |
| mnas_576 | Oligopeptide ABC<br>transporter system,<br>permeaseprotein<br>(OppC)                           | OppC                    |                                                                                                                     | 665000            | 666362            | +  | Transport and binding<br>proteins: Unknown<br>substrate                                                                                 | peg.90  | Oligopeptide transport system<br>permease protein OppC<br>(TC 3.A.1.5.1) | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1) | 665001 | 666362 | +         |
| mnas_577 | Oligopeptide ABC<br>transporter, ATP-<br>binding protein OppD                                  | oppD                    | GO:0005524,<br>GO:0009898,<br>GO:0015440,<br>GO:0015833,<br>GO:0043190                                              | 666374            | 667421            | +  | Transport and binding<br>proteins: Amino acids,<br>peptides and amines                                                                  | peg.91  | Oligopeptide transport ATP-<br>binding protein OppD<br>(TC 3.A.1.5.1)    | Category: Membrane Transport<br>Subcategory: ABC transporters<br>Subsystem: ABC transporter<br>oligopeptide (TC 3.A.1.5.1) | 666375 | 667421 | +         |
| mnas_578 | conserved hypothetical<br>protein                                                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 669019            | 669571            | -  | Unknown: Conserved                                                                                                                      |         |                                                                          |                                                                                                                            |        |        | $\square$ |
| mnas_579 | ABC superfamily ATP<br>binding cassette<br>transporter, ABC<br>domain protein<br>(EC 3.6.3.24) | nikE                    | GO:0005524,<br>GO:0016787,<br>GO:0000166,<br>GO:0017111,<br>GO:0006200,<br>GO:0015833,<br>GO:0015413,<br>GO:0016887 | 667413            | 669027            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                          |                                                                                                                            |        |        |           |
| mnas_580 | putative membrane<br>protein                                                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                                                            | 669549            | 670995            | -  | Cell envelope: Other                                                                                                                    | peg.92  | FIG065159: hypothetical 2<br>cooccurring with ATP<br>synthase chains     | - none -                                                                                                                   | 670995 | 669550 | -         |
| mnas_581 | hypothetical protein                                                                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                            | 671013            | 673176            | -  | Unknown: General                                                                                                                        | peg.93  | Siderophore-mediated iron<br>transport protein                           | - none -                                                                                                                   | 673047 | 671014 | -         |

| IGS      |                                                        |                         |                                                         |                   |                   |    |                                                                                                            | RAST    |                                                                    |                                                                                                                                                                                                                 |        |        |    |
|----------|--------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                            | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                 | Gene_id | Function                                                           | Subsystem                                                                                                                                                                                                       | Start⁵ | Stop⁵  | S⁴ |
| mnas_582 | 5s_rRNA                                                |                         |                                                         | 673329            | 673226            | -  |                                                                                                            | rna.5   | 5S RNA                                                             | - none -                                                                                                                                                                                                        | 673333 | 673227 | -  |
| mnas_583 | 60Kd inner membrane<br>family protein                  |                         |                                                         | 673412            | 675431            | -  | Cell envelope: Other                                                                                       | peg.94  | Inner membrane protein<br>translocase component YidC,<br>long form | Subsystem: Cell Division<br>Subsystem including YidCD<br>Subsystem: RNA modification<br>cluster                                                                                                                 | 675395 | 673413 | -  |
| mnas_584 | ribonuclease P protein<br>component<br>(EC 3.1.26.5)   | rnpA                    | GO:0004526,<br>GO:0006396                               | 675381            | 675720            | -  | Transcription: RNA<br>processing                                                                           | peg.95  | Ribonuclease P protein<br>component<br>(EC 3.1.26.5)               | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: tRNA processing<br>Subsystem: Cell Division<br>Subsystem including YidCD<br>Subsystem: RNA modification<br>cluster    | 675720 | 675382 | -  |
| mnas_585 | ribosomal protein L34                                  | rpmH                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 675734            | 675881            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                 | peg.96  | LSU ribosomal protein L34p                                         | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial<br>Subsystem: Cell Division<br>Subsystem including YidCD<br>Subsystem: RNA modification<br>cluster | 675881 | 675735 | -  |
| mnas_586 | serinetRNA ligase<br>(EC 6.1.1.11)                     | serS                    | GO:0004828,<br>GO:0005737,<br>GO:0006434                | 676092            | 677319            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                  |         |                                                                    |                                                                                                                                                                                                                 |        |        |    |
| mnas_587 | preprotein translocase,<br>SecY subunit                | secY                    | GO:0005887,<br>GO:0015450,<br>GO:0043952                | 677514            | 678822            | +  | Protein fate:Protein and<br>peptide secretion and<br>trafficking                                           | peg.97  | Preprotein translocase secY<br>subunit<br>(TC 3.A.5.1.1)           | - none -                                                                                                                                                                                                        | 677533 | 678822 | +  |
| mnas_588 | adenylate kinase<br>(EC 2.7.4.3)                       | adk                     |                                                         | 678815            | 679481            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions | peg.98  | Adenylate kinase<br>(EC 2.7.4.3)                                   | Category: Nucleosides and<br>Nucleotides<br>Subcategory: Purines<br>Subsystem: Purine conversions                                                                                                               | 678816 | 679481 | +  |
| mnas_589 | methionine<br>aminopeptidase, type I<br>(EC 3.4.11.18) | map                     | GO:0004239,<br>GO:0006464                               | 679496            | 680267            | +  | Protein fate: Protein<br>modification and repair                                                           | peg.99  | Methionine aminopeptidase<br>(EC 3.4.11.18)                        | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>termination factors bacterial                                                                                 | 679515 | 680267 | +  |
| mnas_590 | translation initiation<br>factor IF-1                  | infA                    | GO:0003743,<br>GO:0006413                               | 680267            | 680483            | +  | Protein synthesis:<br>Translation factors                                                                  | peg.100 | Translation initiation factor 1                                    | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>initiation factors bacterial                                                                                  | 680268 | 680483 | +  |
| mnas_591 | ribosomal protein L36                                  | rpmJ                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 680497            | 680611            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                 | peg.101 | LSU ribosomal protein L36p                                         | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                    | 680498 | 680611 | +  |

| IGS      |                                                               |                         |                                          |                   |                   |    |                                                                            | RAST    |                                                     |                                                                                                              |        |        |    |
|----------|---------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------|---------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                   | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                 | Gene_id | Function                                            | Subsystem                                                                                                    | Start⁵ | Stop⁵  | S⁴ |
| mnas_592 | 30S ribosomal protein<br>S13                                  | rpsM                    | GO:0003735,<br>GO:0006412,<br>GO:0022627 | 680645            | 681011            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.102 | SSU ribosomal protein S13p<br>(S18e)                | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial | 680646 | 681011 | +  |
| mnas_593 | ribosomal S11 family<br>protein                               |                         |                                          | 681117            | 681414            | +  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification | peg.103 | SSU ribosomal protein S11p<br>(S14e)                | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial | 681018 | 681224 | +  |
| mnas_594 | PQ loop repeat family<br>protein                              |                         |                                          | 681803            | 682541            | +  | Unclassified: Role<br>category not yet<br>assigned                         | peg.104 | predicted coding region                             | - none -                                                                                                     | 681804 | 682541 | +  |
| mnas_595 | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 683097            | 684696            | -  | Unknown: General                                                           | peg.105 | hypothetical protein                                | - none -                                                                                                     | 684771 | 683098 | -  |
| mnas_596 | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 684727            | 685366            | -  | Unknown: General                                                           | peg.106 | hypothetical protein                                | - none -                                                                                                     | 685339 | 684728 | -  |
| mnas_597 | phosphoglycerate<br>kinase<br>(EC 2.7.2.3)                    |                         | GO:0004618                               | 685368            | 686469            | -  | Energy metabolism:<br>Glycolysis/gluconeogen<br>esis                       |         |                                                     |                                                                                                              |        |        |    |
| -        | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 686587            | 687697            | -  | Unknown: General                                                           | peg.107 | hypothetical protein                                | - none -                                                                                                     | 687697 | 686588 | -  |
| mnas_599 | lemA family protein                                           |                         |                                          | 687732            | 688386            | -  | Unclassified: Role<br>category not yet<br>assigned                         | peg.108 | LemA PROTEIN                                        | - none -                                                                                                     | 688386 | 687733 | -  |
| mnas_600 | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 688508            | 689003            | -  | Unknown: General                                                           | peg.109 | hypothetical protein                                | - none -                                                                                                     | 689003 | 688509 | -  |
| mnas_601 | Oligopeptide ABC<br>transporter, ATP-<br>binding protein OppF | oppF                    |                                          | 688995            | 689301            | -  | Transport and binding<br>proteins: Unknown<br>substrate                    | peg.110 | Oligopeptide ABC transporter<br>ATP-binding protein | - none -                                                                                                     | 689271 | 688996 | -  |
| mnas_602 | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 689313            | 690792            | +  | Unknown: General                                                           | peg.111 | predicted coding region                             | - none -                                                                                                     | 689443 | 690792 | +  |
| mnas_603 | conserved hypothetical<br>protein                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 690809            | 691469            | +  | Unknown: Conserved                                                         | peg.112 | Cysteinyl-tRNA synthetase<br>related protein        | CBSS-261594.1.peg.788                                                                                        | 690810 | 691469 | +  |
| mnas_604 | hypothetical protein                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 691558            | 692149            | -  | Unknown: General                                                           | peg.113 | hypothetical protein                                | - none -                                                                                                     | 692149 | 691559 | -  |
| mnas_605 | sigma-70, region 4 family protein                             |                         |                                          | 692240            | 692465            | -  | Unclassified: Role<br>category not yet<br>assigned                         | peg.114 | hypothetical protein                                | - none -                                                                                                     | 692450 | 692241 | -  |

| IGS      |                                                                                             |                         |                                                         |                   |                   |    |                                                                                                                                                    | RAST    |                                                                                            |                                                                                                                                                                                                                                                                           |        |        |    |
|----------|---------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                                         | Gene_id | Function                                                                                   | Subsystem                                                                                                                                                                                                                                                                 | Start⁵ | Stop⁵  | S⁴ |
| mnas_606 | signal recognition<br>particle-docking protein<br>FtsY                                      | ftsY                    | GO:0003924,<br>GO:0005047,<br>GO:0009306                | 692457            | 693084            | -  | Protein fate:Protein and<br>peptide secretion and<br>trafficking                                                                                   | peg.115 | Signal recognition particle<br>receptor protein FtsY (=alpha<br>subunit)<br>(TC 3.A.5.1.1) | Category: Membrane Transport<br>Subcategory: Protein<br>translocation across cytoplasmic<br>membrane<br>Subsystem: Bacterial signal<br>recognition particle (SRP)<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases | 693084 | 692458 | -  |
| mnas_607 | DNA ligase, NAD-<br>dependent<br>(EC 6.5.1.2)                                               | ligA                    | GO:0003911,<br>GO:0006260,<br>GO:0006281,<br>GO:0006310 | 693519            | 695565            | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                                | peg.116 | DNA ligase<br>(EC 6.5.1.2)                                                                 | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA Repair Base<br>Excision                                                                                                                                                                             | 695565 | 693520 | -  |
| mnas_608 | hypothetical protein                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 695711            | 696842            | +  | Unknown: General                                                                                                                                   | peg.117 | hypothetical protein                                                                       | - none -                                                                                                                                                                                                                                                                  | 695712 | 696842 | +  |
|          | phage integrase family<br>protein                                                           |                         |                                                         | 696894            | 697806            | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair,<br>Mobile and<br>extrachromosomal<br>element functions:<br>Prophage functions |         |                                                                                            |                                                                                                                                                                                                                                                                           |        |        |    |
| mnas_610 | collagen triple helix<br>repeat family protein                                              |                         |                                                         | 698876            | 699716            | +  | Unclassified: Role<br>category not yet<br>assigned                                                                                                 | peg.139 | Phage tail fiber protein                                                                   | Category: Phage packaging<br>machinPhages, Prophages,<br>Transposable elements,<br>Plasmids<br>Subcategory: Phages,<br>Prophages<br>Subsystem: Phage tail fiber<br>proteins                                                                                               | 698877 | 699716 | +  |
| mnas_611 | hypothetical protein                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 699772            | 700552            | +  | Unknown: General                                                                                                                                   |         |                                                                                            |                                                                                                                                                                                                                                                                           |        |        |    |
| mnas_612 | peptidase M60-like<br>family protein                                                        |                         |                                                         | 700552            | 701815            | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides                                                                        |         |                                                                                            |                                                                                                                                                                                                                                                                           |        |        |    |
| mnas_613 | hypothetical protein                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 701851            | 703735            | -  | Unknown: General                                                                                                                                   | peg.140 | hypothetical protein                                                                       | - none -                                                                                                                                                                                                                                                                  | 703507 | 701852 | -  |
| -        | ATP synthase<br>alpha/beta family,<br>nucleotide-binding<br>domain protein<br>(EC 3.6.3.14) | atpA                    |                                                         | 703767            | 704628            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion                                                                                   | peg.141 | ATP synthase alpha chain<br>(EC 3.6.3.14)                                                  | - none -                                                                                                                                                                                                                                                                  | 703768 | 704628 | +  |

| IGS      |                                                                                       |                         |                                                                        |                   |                   |    |                                                                  | RAST    |                                                                                                                  |                                                                                                                                                                                                                                                                           |        |        |    |
|----------|---------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                           | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                       | Gene_id | Function                                                                                                         | Subsystem                                                                                                                                                                                                                                                                 | Start⁵ | Stop⁵  | S⁴ |
| mnas_615 | ATP synthase F1, beta<br>subunit<br>(EC 3.6.3.14)                                     | atpD                    | GO:0000275,<br>GO:0015986,<br>GO:0045261,<br>GO:0045262,<br>GO:0046933 | 704627            | 705989            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion | peg.142 | ATP synthase beta chain<br>(EC 3.6.3.14)                                                                         | - none -                                                                                                                                                                                                                                                                  | 704628 | 705989 | +  |
| mnas_616 | conserved hypothetical<br>protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 706000            | 706936            | +  | Unknown: Conserved                                               |         |                                                                                                                  |                                                                                                                                                                                                                                                                           |        |        |    |
| mnas_617 | metalloenzyme<br>superfamily protein                                                  |                         |                                                                        | 706936            | 707713            | -  | Unclassified: Role<br>category not yet<br>assigned               |         |                                                                                                                  |                                                                                                                                                                                                                                                                           |        |        |    |
| mnas_618 | protein-(glutamine-N5)<br>methyltransferase,<br>release factor-specific<br>(EC 2.1.1) | prmC                    | GO:0006412,<br>GO:0008757,<br>GO:0018364                               | 707723            | 708449            | -  | Unknown: Enzymes of<br>unknown specificity                       | peg.143 | Protein-N(5)-glutamine<br>methyltransferase PrmC,<br>methylates polypeptide chain<br>release factors RF1 and RF2 | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>termination factors bacterial                                                                                                                                           | 708449 | 707724 | -  |
| mnas_619 | peptide chain release<br>factor 1                                                     | prfA                    | GO:0003747,<br>GO:0006415                                              | 708448            | 709513            | -  | Protein synthesis:<br>Translation factors                        | peg.144 | Peptide chain release factor 1                                                                                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>termination factors bacterial                                                                                                                                           | 709513 | 708449 | -  |
| mnas_620 | putative membrane<br>protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 709608            | 710049            | -  | Cell envelope: Other                                             | peg.145 | Amino acid permease                                                                                              | - none -                                                                                                                                                                                                                                                                  | 709983 | 709609 | -  |
| mnas_621 | putative membrane<br>protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                               | 710069            | 710993            | +  | Cell envelope: Other                                             | peg.146 | hypothetical protein                                                                                             | - none -                                                                                                                                                                                                                                                                  | 710163 | 710993 | +  |
| mnas_622 | signal recognition<br>particle protein                                                | ffh                     | GO:0003924,<br>GO:0005048,<br>GO:0009306,<br>GO:0048501                | 711337            | 712693            | +  | Protein fate:Protein and<br>peptide secretion and<br>trafficking | peg.147 | Signal recognition particle,<br>subunit Ffh SRP54<br>(TC 3.A.5.1.1)                                              | Category: Membrane Transport<br>Subcategory: Protein<br>translocation across cytoplasmic<br>membrane<br>Subsystem: Bacterial signal<br>recognition particle (SRP)<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases | 711383 | 712693 | +  |
| mnas 623 | tRNA-Thr                                                                              |                         |                                                                        | 712768            | 712843            | +  |                                                                  | rna.6   | tRNA-Thr-GGT                                                                                                     | - none -                                                                                                                                                                                                                                                                  | 712769 | 712840 | +  |
| mnas_624 | hypothetical protein                                                                  |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 713229            | 716046            | -  | Unknown: General                                                 | peg.148 | contains gram positive anchor<br>domain                                                                          | - none -                                                                                                                                                                                                                                                                  | 715617 | 713230 | 1- |
| mnas_625 | mraW methylase family protein                                                         |                         |                                                                        | 716062            | 716491            | +  | Unknown: Enzymes of<br>unknown specificity                       | peg.149 | rRNA small subunit<br>methyltransferase H                                                                        | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: 16S rRNA<br>modification within P site of<br>ribosome                                                                                                                           | 716285 | 716491 | +  |
| mnas_626 | hypothetical protein                                                                  |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 716507            | 717770            | +  | Unknown: General                                                 | peg.150 | hypothetical protein                                                                                             | - none -                                                                                                                                                                                                                                                                  | 716676 | 717770 | +  |

| IGS      |                                                        |                         |                                                                                       |                   |                   |    |                                                                                                                                         | RAST    |                                                                    |                                                                                                                |        |        |    |
|----------|--------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                            | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                 | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                           | Subsystem                                                                                                      | Start⁵ | Stop⁵  | S⁴ |
| mnas_627 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 717769            | 718930            | +  | Unknown: General                                                                                                                        | peg.151 | hypothetical protein                                               | - none -                                                                                                       | 717770 | 718930 | +  |
| mnas_628 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 719004            | 719304            | +  | Unknown: General                                                                                                                        |         |                                                                    |                                                                                                                |        |        |    |
| mnas_629 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 719294            | 721619            | +  | Unknown: General                                                                                                                        | peg.152 | FIG057547: hypothetical<br>cooccurring with ATP<br>synthase chains | - none -                                                                                                       | 719295 | 721619 | +  |
| mnas_630 | Putative ATP synthase<br>alpha chain domain<br>protein |                         | GO:0045261,<br>GO:0015986,<br>GO:0016787,<br>GO:0005524,<br>GO:0046933,<br>GO:0046961 | 721618            | 721891            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                    |                                                                                                                |        |        |    |
| mnas_631 | obg family GTPase<br>CgtA                              | cgtA                    | GO:0005525,<br>GO:0042254                                                             | 722034            | 723309            | -  | Protein synthesis:<br>Other                                                                                                             | peg.153 | GTP-binding protein Obg                                            | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases           | 723309 | 722035 | -  |
| mnas_632 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 723422            | 724283            | +  | Unknown: General                                                                                                                        | peg.154 | hypothetical protein                                               | - none -                                                                                                       | 723423 | 724283 | +  |
| mnas_633 | bacterial DNA-binding family protein                   |                         |                                                                                       | 724369            | 724666            | +  | DNA metabolism:<br>Chromosome-<br>associated proteins                                                                                   | peg.155 | Integration host factor<br>alpha/beta                              | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: DNA structural<br>proteins, bacterial    | 724370 | 724666 | +  |
| mnas_634 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 724789            | 725398            | +  | Unknown: General                                                                                                                        | peg.156 | hypothetical protein                                               | - none -                                                                                                       | 724829 | 725398 | +  |
| mnas_635 | tRNA-His                                               |                         |                                                                                       | 725837            | 725913            | +  |                                                                                                                                         | rna.7   | tRNA-His-GTG                                                       | - none -                                                                                                       | 725838 | 725910 | +  |
| mnas_636 | putative membrane<br>protein                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                              | 726121            | 727603            | +  | Cell envelope: Other                                                                                                                    |         |                                                                    |                                                                                                                |        |        |    |
| mnas_637 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 727607            | 728645            | +  | Unknown: General                                                                                                                        | peg.162 | hypothetical protein                                               | - none -                                                                                                       | 727860 | 728645 | +  |
| mnas_638 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 728684            | 730373            | -  | Unknown: General                                                                                                                        | peg.163 | hypothetical protein                                               | - none -                                                                                                       | 730286 | 728685 | -  |
| mnas_639 | putative membrane<br>protein                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                                              | 730389            | 730800            | +  | Cell envelope: Other                                                                                                                    | peg.164 | hypothetical protein                                               | - none -                                                                                                       | 730546 | 730800 | +  |
| mnas_640 | prolinetRNA ligase<br>(EC 6.1.1.15)                    | proS                    | GO:0004827,<br>GO:0006433                                                             | 730877            | 732368            | +  | Protein synthesis:<br>tRNA aminoacylation                                                                                               | peg.165 | Prolyl-tRNA synthetase<br>(EC 6.1.1.15),<br>archaeal/eukaryal type | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Pro | 730911 | 732368 | +  |
| mnas_641 | hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                              | 732586            | 733084            | +  | Unknown: General                                                                                                                        | peg.166 | hypothetical protein                                               | - none -                                                                                                       | 732587 | 733084 | +  |

| IGS      |                                                                                              |                         |                                                                                                      |                   |                   |    |                                                                                                                                         | RAST    |                                                                                 |                                                                                                              |        |        |    |
|----------|----------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                                  | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                        | Subsystem                                                                                                    | Start⁵ | Stop⁵  | S⁴ |
| mnas_642 | 16s_rRNA                                                                                     |                         |                                                                                                      | 733261            | 734756            | +  |                                                                                                                                         | rna.8   | Small Subunit Ribosomal<br>RNA; ssuRNA; SSU rRNA                                | - none -                                                                                                     | 733282 | 734818 | +  |
|          |                                                                                              |                         |                                                                                                      |                   |                   |    |                                                                                                                                         | rna.9   | Large Subunit Ribosomal<br>RNA; IsuRNA; LSU rRNA                                | - none -                                                                                                     | 735059 | 735903 | +  |
| mnas_643 | Putative ATP synthase<br>alpha chain domain<br>protein                                       |                         | GO:0045261,<br>GO:0015986,<br>GO:0016787,<br>GO:0005524,<br>GO:0046933,<br>GO:0046961                | 735919            | 736192            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                                 |                                                                                                              |        |        |    |
| mnas_644 |                                                                                              |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 736191            | 738369            | -  | Unknown: General                                                                                                                        | peg.167 | FIG057547: hypothetical<br>cooccurring with ATP<br>synthase chains              | - none -                                                                                                     | 738369 | 736192 | -  |
| mnas_645 | hypothetical protein                                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 738359            | 738659            | -  | Unknown: General                                                                                                                        |         |                                                                                 |                                                                                                              |        |        |    |
| mnas_646 | hypothetical protein                                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 738677            | 738941            | +  | Unknown: General                                                                                                                        | peg.168 | hypothetical protein                                                            | - none -                                                                                                     | 738747 | 738941 | +  |
| mnas_647 | cytidylate kinase<br>(EC 2.7.4.14)                                                           | cmk                     | GO:0004127,<br>GO:0015949                                                                            | 738992            | 739673            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Nucleotide<br>and nucleoside<br>interconversions                              | peg.169 | Cytidylate kinase<br>(EC 2.7.4.25)                                              | - none -                                                                                                     | 738993 | 739673 | +  |
| mnas_648 | ribosome-associated<br>GTPase EngA                                                           | engA                    | GO:0003924,<br>GO:0005525,<br>GO:0005737,<br>GO:0042254,<br>GO:0043022                               | 739665            | 740979            | +  | Unclassified: Role<br>category not yet<br>assigned                                                                                      | peg.170 | GTP-binding protein EngA                                                        | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases         | 739666 | 740979 | +  |
| mnas_649 | ribosomal protein L28                                                                        | rpmB                    | GO:0000311,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625                                              | 741085            | 741277            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                                                              | peg.171 | LSU ribosomal protein L28p<br>@ LSU ribosomal protein<br>L28p, zinc-independent | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial | 741277 | 741086 | -  |
| mnas_650 | hypothetical protein                                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                             | 741374            | 744044            | +  | Unknown: General                                                                                                                        |         |                                                                                 |                                                                                                              |        |        |    |
| mnas_651 | energy-coupling factor<br>transporter ATP-<br>binding EcfA 1 domain<br>protein<br>(EC 3.6.3) | ecfA1                   | GO:0006810,<br>GO:0016787,<br>GO:0005524,<br>GO:0000166,<br>GO:0006200,<br>GO:0005886,<br>GO:0016887 | 744048            | 744384            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity | peg.172 | ATPase component of<br>general energizing module of<br>ECF transporters         | - none -                                                                                                     | 744082 | 744384 | +  |
| mnas_652 | energy-coupling factor<br>transporter ATP-<br>binding protein EcfA2<br>(EC 3.6.3)            | ecfA2                   |                                                                                                      | 744374            | 745718            | +  | Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity                                  | peg.173 | ATPase component of<br>general energizing module of<br>ECF transporters         | - none -                                                                                                     | 744375 | 745718 | +  |

| IGS      |                                                                         |                         |                                                         |                   |                   |    |                                                                                          | RAST    |                                                                             |                                                                                                              |        |        |    |
|----------|-------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                               | Gene_id | Function                                                                    | Subsystem                                                                                                    | Start⁵ | Stop⁵  | S⁴ |
| mnas_653 | energy-coupling factor<br>transporter<br>transmembrane protein<br>EcfT  | ecfT                    | GO:0015087,<br>GO:0016021,<br>GO:0009236,<br>GO:0005886 | 745717            | 746698            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate |         |                                                                             |                                                                                                              |        |        |    |
|          |                                                                         |                         |                                                         |                   |                   |    |                                                                                          | peg.175 | hypothetical protein                                                        | - none -                                                                                                     | 748105 | 748272 | +  |
| mnas_654 | putative membrane<br>protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 746762            | 748139            | -  | Cell envelope: Other                                                                     | peg.174 | Unspecified monosaccharide<br>ABC transport system, ATP-<br>binding protein | - none -                                                                                                     | 748139 | 746763 | -  |
| mnas_655 | Putative Sugar ABC<br>transporter ATP-<br>binding protein               | mglA                    |                                                         | 748233            | 749064            | -  | Transport and binding<br>proteins: Unknown<br>substrate                                  | peg.176 | Unspecified monosaccharide<br>ABC transport system, ATP-<br>binding protein | - none -                                                                                                     | 748917 | 748234 | -  |
| mnas_656 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 749080            | 750265            | +  | Unknown: General                                                                         | peg.177 | hypothetical protein                                                        | - none -                                                                                                     | 749207 | 750265 | +  |
| mnas_657 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 750251            | 750698            | +  | Unknown: General                                                                         | peg.178 | hypothetical protein                                                        | - none -                                                                                                     | 750252 | 750698 | +  |
| mnas_658 | phosphopantetheine<br>attachment site family<br>protein                 |                         |                                                         | 750705            | 750924            | +  | Unclassified: Role<br>category not yet<br>assigned                                       | peg.179 | hypothetical protein                                                        | - none -                                                                                                     | 750706 | 750924 | +  |
| mnas_659 | tRNA-SeC                                                                |                         |                                                         | 750949            | 751024            | +  |                                                                                          | rna.10  | tRNA-SeC-TCA                                                                | - none -                                                                                                     | 750950 | 751021 | +  |
| mnas_660 | basic membrane family protein                                           |                         |                                                         | 751354            | 752332            | -  | Cell envelope: Other                                                                     |         |                                                                             |                                                                                                              |        |        |    |
| mnas_661 | NAD-dependent<br>glycerol-3-phosphate<br>dehydrogenase<br>(EC 1.1.1.94) |                         |                                                         | 751067            | 751358            | +  | Energy metabolism:<br>Other                                                              |         |                                                                             |                                                                                                              |        |        |    |
| mnas_662 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 752542            | 752701            | -  | Unknown: General                                                                         | peg.180 | hypothetical protein                                                        | - none -                                                                                                     | 752701 | 752543 | -  |
| mnas_663 | inorganic<br>pyrophosphatase<br>family protein                          |                         |                                                         | 752851            | 753406            | -  | Central intermediary<br>metabolism:<br>Phosphorus<br>compounds                           | peg.181 | Inorganic pyrophosphatase<br>(EC 3.6.1.1)                                   | Category: Phosphorus<br>Metabolism<br>Subcategory: no subcategory<br>Subsystem: Phosphate<br>metabolism      | 753406 | 752852 | -  |
| mnas_664 | ribosomal protein L32                                                   | rpmF                    | GO:0000315,<br>GO:0003735,<br>GO:0006412,<br>GO:0022625 | 753660            | 753861            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification               | peg.198 | LSU ribosomal protein L32p                                                  | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial | 753861 | 753661 | -  |
|          |                                                                         |                         |                                                         |                   |                   |    |                                                                                          | peg.199 | FIG007079: UPF0348 protein family                                           | - none -                                                                                                     | 754166 | 755134 | +  |
| mnas_665 | hypothetical protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 755123            | 755810            | -  | Unknown: General                                                                         | peg.200 | hypothetical protein                                                        | - none -                                                                                                     | 755651 | 755124 | -  |
| mnas_666 | cytidyltransferase-like<br>domain protein                               |                         |                                                         | 754165            | 755134            | +  | Unknown: Enzymes of<br>unknown specificity                                               |         |                                                                             |                                                                                                              |        |        |    |
| mnas_667 | PD-(D/E)XK nuclease<br>superfamily protein                              |                         |                                                         | 755814            | 756633            | -  | Unclassified: Role<br>category not yet<br>assigned                                       |         |                                                                             |                                                                                                              |        |        |    |

| IGS      |                                                                          |                         |                                                         |                   |                   |    |                                                                                                 | RAST    |                                                        |                                                                                                              |        |        |    |
|----------|--------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                              | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                      | Gene_id | Function                                               | Subsystem                                                                                                    | Start⁵ | Stop⁵  | S⁴ |
| mnas_668 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 756656            | 757046            | -  | Unknown: General                                                                                | peg.201 | hypothetical protein                                   | - none -                                                                                                     | 757046 | 756657 | -  |
| mnas_669 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 757164            | 757398            | -  | Unknown: General                                                                                | peg.202 | hypothetical protein                                   | - none -                                                                                                     | 757398 | 757165 | -  |
| mnas_670 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 757502            | 758021            | -  | Unknown: General                                                                                | peg.203 | hypothetical protein                                   | - none -                                                                                                     | 757916 | 757503 | -  |
| mnas_671 | pyrimidine-nucleoside<br>phosphorylase family<br>protein<br>(EC 2.4.2.2) | pdp                     | GO:0006213,<br>GO:0016154                               | 758052            | 759222            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Other                                 | peg.204 | Pyrimidine-nucleoside<br>phosphorylase<br>(EC 2.4.2.2) | - none -                                                                                                     | 758053 | 759222 | +  |
| mnas_672 | deoxyribose-phosphate<br>aldolase<br>(EC 4.1.2.4)                        | deoC                    | GO:0004139,<br>GO:0009264                               | 759247            | 759577            | +  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Other,<br>Energy metabolism:<br>Other | peg.205 | Deoxyribose-phosphate<br>aldolase<br>(EC 4.1.2.4)      | - none -                                                                                                     | 759248 | 759911 | +  |
| mnas_673 | deoC/LacD aldolase<br>family protein                                     |                         |                                                         | 759674            | 759911            | +  | Unknown: Enzymes of<br>unknown specificity                                                      |         |                                                        |                                                                                                              |        |        |    |
| mnas_674 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 760153            | 760660            | -  | Unknown: General                                                                                |         |                                                        |                                                                                                              |        |        |    |
| mnas_675 | cof-like hydrolase<br>family protein                                     |                         | GO:0008152,<br>GO:0016787                               | 760876            | 761701            | -  | Unknown: Enzymes of<br>unknown specificity                                                      | peg.206 | Hydrolase (HAD superfamily)                            | - none -                                                                                                     | 761701 | 760877 | -  |
| mnas_676 | TM2 domain protein                                                       |                         |                                                         | 761891            | 762110            | +  | Unknown: General<br>Hypothetical                                                                | peg.207 | hypothetical protein                                   | - none -                                                                                                     | 761892 | 762110 | +  |
| mnas_677 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 762151            | 762259            | -  | Unknown: General                                                                                |         |                                                        |                                                                                                              |        |        |    |
| mnas_678 | isoleucinetRNA ligase<br>(EC 6.1.1.5)                                    | ileS                    | GO:0004822,<br>GO:0005737,<br>GO:0006428                | 762331            | 764371            | +  | Protein synthesis:<br>tRNA aminoacylation                                                       |         |                                                        |                                                                                                              |        |        |    |
| mnas_679 | 50S ribosomal protein<br>L3                                              | rpIC                    |                                                         | 764427            | 765093            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                      | peg.208 | LSU ribosomal protein L3p<br>(L3e)                     | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial | 765226 | 764428 | -  |
| mnas_680 | putative ISU ribosomal<br>protein L3P                                    |                         | GO:0005840,<br>GO:0006412,<br>GO:0005622,<br>GO:0003735 | 765061            | 765226            | -  | Cellular processes:<br>Other                                                                    |         |                                                        |                                                                                                              |        |        |    |
| mnas_681 | ribosomal protein S10                                                    | rpsJ                    | GO:0000314,<br>GO:0003735,<br>GO:0006412,<br>GO:0022627 | 765261            | 765570            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification                      | peg.209 | SSU ribosomal protein S10p<br>(S20e)                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome SSU<br>bacterial | 765570 | 765262 | -  |
| mnas_682 | thioredoxin family<br>protein                                            |                         |                                                         | 765767            | 766109            | -  | Energy metabolism:<br>Electron transport                                                        | peg.210 | Possible periplasmic thiredoxin                        | - none -                                                                                                     | 766109 | 765768 | -  |
| mnas_683 | conserved hypothetical protein                                           |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 766186            | 766390            | -  | Unknown: Conserved                                                                              |         |                                                        |                                                                                                              |        |        |    |

| IGS      |                                                                               |                         |                                          |                               |                   |    |                                                                     | RAST    |                                                                   |                                                                                                                                                                 |        |        |    |
|----------|-------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------------------|-------------------|----|---------------------------------------------------------------------|---------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                   | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup>             | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                          | Gene_id | Function                                                          | Subsystem                                                                                                                                                       | Start⁵ | Stop⁵  | S⁴ |
| mnas_684 | threonyl and Alanyl<br>tRNA synthetase<br>second additional<br>domain protein |                         |                                          | 766394                        | 767297            | -  | Protein synthesis:<br>tRNA aminoacylation                           |         |                                                                   |                                                                                                                                                                 |        |        |    |
| mnas_685 | tryptophantRNA<br>ligase<br>(EC 6.1.1.2)                                      | trpS                    | GO:0004830,<br>GO:0005737,<br>GO:0006436 | 767304                        | 768297            | -  | Protein synthesis:<br>tRNA aminoacylation                           | peg.211 | Tryptophanyl-tRNA<br>synthetase<br>(EC 6.1.1.2)                   | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Trp                                                  | 768297 | 767305 | -  |
| mnas_686 | DNA gyrase B subunit,<br>carboxyl terminus<br>family protein<br>(EC 5.99.1)   | gyrB1                   |                                          | 76Gener<br>al<br>Unknown<br>9 | 770429            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair |         |                                                                   |                                                                                                                                                                 |        |        |    |
| mnas_687 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 770437                        | 772243            | +  | Unknown: General                                                    | peg.212 | VlhA.4.04                                                         | - none -                                                                                                                                                        | 770516 | 772243 | +  |
| mnas_688 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 772296                        | 772401            | -  | Unknown: General                                                    |         |                                                                   |                                                                                                                                                                 |        |        | Ι  |
| mnas_689 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 772405                        | 772546            | -  | Unknown: General                                                    | peg.213 | hypothetical protein                                              | - none -                                                                                                                                                        | 774263 | 772632 | -  |
| mnas_690 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 772487                        | 772619            | -  | Unknown: General                                                    |         |                                                                   |                                                                                                                                                                 |        |        |    |
| mnas_691 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 772631                        | 774263            | -  | Unknown: General                                                    |         |                                                                   |                                                                                                                                                                 |        |        |    |
| mnas_692 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 774391                        | 775252            | +  | Unknown: General                                                    | peg.260 | hypothetical protein                                              | - none -                                                                                                                                                        | 774809 | 775252 | +  |
| mnas_693 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 775500                        | 775953            | +  | Unknown: General                                                    | peg.261 | hypothetical protein                                              | - none -                                                                                                                                                        | 775501 | 775953 | +  |
| mnas_694 | glycerol-3-phosphate<br>acyltransferase family<br>protein                     |                         |                                          | 776321                        | 776816            | +  | Unknown: Enzymes of<br>unknown specificity                          | peg.262 | Acyl-phosphate:glycerol-3-<br>phosphate O-acyltransferase<br>PIsY | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria | 776343 | 776816 | +  |
| mnas_695 | phosphopyruvate<br>hydratase<br>(EC 4.2.1.11)                                 | eno                     | GO:0004634,<br>GO:0006096                | 776Gene<br>ral<br>Unknown     | 778227            | -  | Energy metabolism:<br>Glycolysis/gluconeogen<br>esis                | peg.263 | Enolase<br>(EC 4.2.1.11)                                          | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis                                      | 778014 | 776857 | -  |
| mnas_696 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 778276                        | 779878            | -  | Unknown: General                                                    | peg.264 | hypothetical protein                                              | - none -                                                                                                                                                        | 779878 | 778277 | -  |
| mnas_697 | hypothetical protein                                                          |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 779858                        | 780122            | -  | Unknown: General                                                    | peg.265 | hypothetical protein                                              | - none -                                                                                                                                                        | 780104 | 779859 | -  |

| IGS      |                                                                                                                             |                         |                                                                                                                                                  |                   |                   |    |                                                                                                                                         | RAST    |                                                  |                                                                                                                                                          |        |        |    |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                                                                 | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                                                            | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                         | Subsystem                                                                                                                                                | Start⁵ | Stop⁵  | S⁴ |
| mnas_698 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 780243            | 782001            | -  | Unknown: General                                                                                                                        | peg.266 | hypothetical protein                             | - none -                                                                                                                                                 | 781524 | 780244 | -  |
| mnas_699 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 782015            | 782402            | +  | Unknown: General                                                                                                                        | peg.267 | hypothetical protein                             | - none -                                                                                                                                                 | 782067 | 782402 | +  |
| mnas_700 | Putative glucose-6-<br>phosphate isomerase<br>(EC 5.3.1.9)                                                                  |                         | GO:0004347                                                                                                                                       | 782379            | 783636            | +  | Energy metabolism:<br>Pentose phosphate<br>pathway                                                                                      | peg.268 | Glucose-6-phosphate<br>isomerase<br>(EC 5.3.1.9) | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Glycolysis and<br>Gluconeogenesis                               | 782380 | 783636 | +  |
| mnas_701 | multidrug resistance<br>ABC superfamily ATP<br>binding cassette<br>transporter, membrane<br>domain protein<br>(EC 3.6.3.42) | ndvA                    | GO:0006810,<br>GO:0055085,<br>GO:0015441,<br>GO:0005524,<br>GO:0016787,<br>GO:000166,<br>GO:0006200,<br>GO:0017111,<br>GO:0016021,<br>GO:0016887 | 783659            | 783848            | -  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                  |                                                                                                                                                          |        |        |    |
| mnas_702 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 783858            | 784389            | -  | Unknown: General                                                                                                                        |         |                                                  |                                                                                                                                                          |        |        |    |
| mnas_703 | DNA (cytosine-5-)-<br>methyltransferase<br>family protein<br>(EC 2.1.1.37)                                                  | dcm                     | GO:0003886,<br>GO:0006304                                                                                                                        | 784390            | 785557            | -  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                     | peg.269 | CPG DNA methylase                                | - none -                                                                                                                                                 | 785557 | 784391 | -  |
| mnas_704 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 785842            | 786892            | +  | Unknown: General                                                                                                                        | peg.270 | hypothetical protein                             | - none -                                                                                                                                                 | 785843 | 786892 | +  |
| mnas_705 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 786891            | 787461            | +  | Unknown: General                                                                                                                        |         |                                                  |                                                                                                                                                          |        |        |    |
| mnas_706 | protein RecA                                                                                                                | recA                    | GO:0003677,<br>GO:0005737,<br>GO:0006281,<br>GO:0006310,<br>GO:0008094,<br>GO:0009432                                                            | 787461            | 788181            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                                                     | peg.271 | RecA protein                                     | Category: DNA Metabolism<br>Subcategory: DNA repair<br>Subsystem: DNA repair,<br>bacterial<br>Subcategory: DNA replication<br>Subsystem: DNA-replication | 787684 | 788181 | +  |
| mnas_707 | ymdB-like family<br>protein                                                                                                 |                         |                                                                                                                                                  | 788238            | 789069            | +  | Unclassified: Role<br>category not yet<br>assigned                                                                                      | peg.272 | FIG006542: Phosphoesterase                       | - none -                                                                                                                                                 | 788239 | 789069 | +  |
| mnas_708 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 789218            | 789437            | +  | Unknown: General                                                                                                                        | peg.273 | hypothetical protein                             | - none -                                                                                                                                                 | 789437 | 789775 | +  |
| mnas_709 | phage holin family<br>protein                                                                                               |                         |                                                                                                                                                  | 789436            | 789775            | +  | Unclassified: Role<br>category not yet<br>assigned                                                                                      |         |                                                  |                                                                                                                                                          |        |        | T  |
| mnas_710 | hypothetical protein                                                                                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                         | 789764            | 790073            | +  | Unknown: General                                                                                                                        | peg.274 | hypothetical protein                             | - none -                                                                                                                                                 | 789765 | 790073 | +  |

| IGS      |                                                                  |                         |                                                         |                   |                   |    |                                                                             | RAST    |                                                                                      |                                                                                                                                                                                                                   |        |        |            |
|----------|------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------------|
| Gene_id  | Common_name                                                      | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                  | Gene_id | Function                                                                             | Subsystem                                                                                                                                                                                                         | Start⁵ | Stop⁵  | S⁴         |
| mnas_711 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 790023            | 790494            | +  | Unknown: General                                                            | peg.275 | hypothetical protein                                                                 | - none -                                                                                                                                                                                                          | 790024 | 790494 | +          |
| mnas_712 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 790502            | 790925            | +  | Unknown: General                                                            |         |                                                                                      |                                                                                                                                                                                                                   |        |        |            |
|          |                                                                  |                         |                                                         |                   |                   |    |                                                                             | peg.276 | hypothetical protein                                                                 | - none -                                                                                                                                                                                                          | 790997 | 791128 | +          |
| mnas_713 | HAD ATPase, P-type,<br>IC family protein<br>(EC 3.6.3)           |                         |                                                         | 791145            | 792615            | +  | Unclassified: Role<br>category not yet<br>assigned                          |         |                                                                                      |                                                                                                                                                                                                                   |        |        |            |
| mnas_714 | ribosomal protein L17                                            | rplQ                    | GO:0003735,<br>GO:0005762,<br>GO:0006412,<br>GO:0022625 | 792787            | 793150            | -  | Protein synthesis:<br>Ribosomal proteins:<br>synthesis and<br>modification  | peg.281 | LSU ribosomal protein L17p                                                           | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Ribosome LSU<br>bacterial                                                                                                      | 793150 | 792788 | -          |
| mnas_715 | DNA-directed RNA<br>polymerase, alpha<br>subunit<br>(EC 2.7.7.6) | rроА                    | GO:000345,<br>GO:0003899,<br>GO:0006350                 | 793151            | 794198            | -  | Transcription: DNA-<br>dependent RNA<br>polymerase                          | peg.282 | DNA-directed RNA<br>polymerase alpha subunit<br>(EC 2.7.7.6)                         | Category: RNA Metabolism<br>Subcategory: Transcription<br>Subsystem: RNA polymerase<br>bacterial                                                                                                                  | 794198 | 793152 | -          |
| mnas_716 | DNA methylase family protein                                     |                         |                                                         | 794260            | 795649            | +  | DNA metabolism:<br>Restriction/modification                                 | peg.283 | Type III restriction-<br>modification system<br>methylation subunit<br>(EC 2.1.1.72) | Category: DNA Metabolism<br>Subcategory: no subcategory<br>Subsystem: Restriction-<br>Modification System                                                                                                         | 794339 | 795649 | +          |
| mnas_717 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 795658            | 795868            | +  | Unknown: General                                                            |         |                                                                                      |                                                                                                                                                                                                                   |        |        |            |
| mnas_718 | peptidase S41 family<br>protein                                  |                         |                                                         | 795892            | 797401            | -  | Protein fate:<br>Degradation of<br>proteins, peptides, and<br>glycopeptides | peg.284 | hypothetical protein                                                                 | - none -                                                                                                                                                                                                          | 797401 | 795893 | -          |
| mnas_719 | ribonuclease HII family<br>protein                               |                         |                                                         | 797530            | 798136            | -  | Transcription:<br>Degradation of RNA                                        | peg.285 | Ribonuclease HII<br>(EC 3.1.26.4)                                                    | Category: RNA Metabolism<br>Subcategory: RNA processing<br>and modification<br>Subsystem: Ribonucleases in<br>Bacillus<br>Subsystem: Ribonuclease H;<br>Subsystem: Conserved gene<br>cluster associated with Met- | 798136 | 797531 | -          |
| mnas_720 | hypothetical protein                                             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 798711            | 799005            | -  | Unknown: General                                                            | peg.286 | hypothetical protein                                                                 | tRNA formyltransferase<br>- none -                                                                                                                                                                                | 798188 | 798715 | +          |
| mnas_721 | hypothetical protein                                             |                         | GO:0003575<br>GO:0008150,<br>GO:0003674,<br>GO:0005575  | 798187            | 798715            | +  | Unknown: General                                                            |         |                                                                                      |                                                                                                                                                                                                                   |        |        | $\uparrow$ |
| mnas_722 | conserved hypothetical protein                                   |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 799009            | 800440            | -  | Unknown: Conserved                                                          | peg.287 | hypothetical protein                                                                 | - none -                                                                                                                                                                                                          | 800082 | 800477 | +          |

| IGS      |                                                                              |                         |                                                         |                   |                   |    |                                                                                                    | RAST    |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
|----------|------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-------------------|-------------------|----|----------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                                  | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                   | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                         | Gene_id | Function                                              | Subsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Start⁵ | Stop⁵  | S⁴ |
| mnas_723 | 16S rRNA<br>(guanine(527)-N(7))-<br>methyltransferase GidB<br>(EC 2.1.1.170) | gidB                    | GO:0005575,<br>GO:0008168,<br>GO:0031167,<br>GO:0046118 | 800563            | 801184            | -  | Unknown: Enzymes of<br>unknown specificity                                                         |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_724 | ribose-phosphate<br>diphosphokinase family<br>protein<br>(EC 2.7.6.1)        | prs                     | GO:0004749,<br>GO:0009152                               | 801185            | 802067            | -  | Purines, pyrimidines,<br>nucleosides, and<br>nucleotides: Purine<br>ribonucleotide<br>biosynthesis |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_725 | putative lipoprotein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020                | 802075            | 802666            | -  | Cell envelope: Other                                                                               | peg.288 | Ribose-phosphate<br>pyrophosphokinase<br>(EC 2.7.6.1) | Category: Carbohydrates<br>Subcategory: Central<br>carbohydrate metabolism<br>Subsystem: Pentose phosphate<br>pathway                                                                                                                                                                                                                                                                                                                                                                                               | 802034 | 801186 | -  |
| mnas_726 | mycoplasma lipo, C-<br>terminal region family<br>protein                     |                         |                                                         | 802737            | 803526            | -  | Unclassified: Role<br>category not yet<br>assigned                                                 | peg.289 | hypothetical protein                                  | - none -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 803019 | 802738 | -  |
| mnas_727 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 803538            | 804915            | +  | Unknown: General                                                                                   |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_728 | elongation factor G,<br>domain IV family<br>protein                          |                         |                                                         | 804927            | 805773            | +  | Unknown: General<br>Hypothetical                                                                   | peg.290 | Translation elongation factor<br>G                    | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Universal GTPases<br>Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: Translation<br>elongation factors bacterial<br>Subsystem: Translation<br>elongation factor G family<br>Category: Virulence, Disease<br>and Defense<br>Subcategory: Invasion and<br>intracellular resistance<br>Subsystem: Mycobacterium<br>virulence operon involved in<br>protein synthesis (SSU<br>ribosomal proteins) | 805033 | 805773 | +  |
| mnas_729 | recA bacterial DNA<br>recombination family<br>protein                        |                         |                                                         | 805892            | 806276            | +  | DNA metabolism: DNA<br>replication,<br>recombination, and<br>repair                                |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_730 | 23s_rRNA                                                                     |                         |                                                         | 811845            | 806381            | -  |                                                                                                    | rna.12  | Large Subunit Ribosomal<br>RNA; IsuRNA; LSU rRNA      | - none -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 807600 | 806382 | -  |
| mnas_731 | conserved hypothetical protein                                               |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 806553            | 806925            | -  | Unknown: Conserved                                                                                 |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |
| mnas_732 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                | 807620            | 808544            | -  | Unknown: General                                                                                   |         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |        |    |

| IGS      |                                            |                         |                                          |                   |                   |    |                                                    | RAST    |                      |           |        |        |    |
|----------|--------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|----------------------------------------------------|---------|----------------------|-----------|--------|--------|----|
| Gene_id  | Common_name                                | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                         | Gene_id | Function             | Subsystem | Start⁵ | Stop⁵  | S⁴ |
| mnas_733 | aromatic cluster<br>surface family protein |                         |                                          | 808932            | 809841            | -  | Cell envelope: Surface structures                  |         |                      |           |        |        |    |
| mnas_734 | aromatic cluster<br>surface family protein |                         |                                          | 809840            | 810179            | -  | Cell envelope: Surface structures                  |         |                      |           |        |        |    |
| mnas_735 | protein                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 810195            | 811104            | +  | Unknown: Conserved                                 | peg.302 | Prolipoprotein       | - none -  | 810415 | 811104 | +  |
| mnas_736 | conserved hypothetical protein             |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 811876            | 812617            | +  | Unknown: Conserved                                 |         |                      |           |        |        |    |
| mnas_737 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 812621            | 812828            | +  | Unknown: General                                   | peg.303 | hypothetical protein | - none -  | 812649 | 812828 | +  |
| mnas_738 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 812839            | 813313            | +  | Unknown: General                                   | peg.304 | hypothetical protein | - none -  | 812840 | 813313 | +  |
| mnas_739 | putative lipoprotein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 813351            | 813825            | +  | Cell envelope: Other                               |         |                      |           |        |        |    |
| mnas_740 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 813829            | 814135            | -  | Unknown: General                                   |         |                      |           |        |        |    |
| mnas_741 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 814137            | 814308            | -  | Unknown: General                                   |         |                      |           |        |        |    |
| mnas_742 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 814352            | 814664            | -  | Unknown: General                                   | peg.305 | hypothetical protein | - none -  | 814664 | 814353 | -  |
| mnas_743 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 814670            | 815006            | -  | Unknown: General                                   |         |                      |           |        |        |    |
| mnas_744 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 816183            | 817335            | -  | Unknown: General                                   |         |                      |           |        |        |    |
| mnas_745 | GA module family protein                   |                         |                                          | 815024            | 816191            | +  | Unclassified: Role<br>category not yet<br>assigned |         |                      |           |        |        |    |
| mnas_746 | protein                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 817339            | 817936            | -  | Unknown: Conserved                                 |         |                      |           |        |        |    |
| mnas_747 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 818071            | 818410            | -  | Unknown: General                                   | peg.306 | hypothetical protein | - none -  | 818410 | 818072 | -  |
| mnas_748 | hypothetical protein                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 818497            | 818941            | -  | Unknown: General                                   |         |                      |           |        |        |    |

| IGS      |                                                                                                         |                         |                                                                                                                                                   |                   |                   |    |                                                                                                                                         | RAST    |                                                                                                |                                                                                                                                           |        |        |           |
|----------|---------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|-----------|
| Gene_id  | Common_name                                                                                             | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                                                                                             | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                                                                                              | Gene_id | Function                                                                                       | Subsystem                                                                                                                                 | Start⁵ | Stop⁵  | S⁴        |
| mnas_749 | tRNA synthetases<br>class I (E and Q),<br>catalytic domain protein                                      |                         |                                                                                                                                                   | 818933            | 819605            | -  | Unknown: Enzymes of<br>unknown specificity                                                                                              | peg.307 | Glutamyl-tRNA synthetase<br>(EC 6.1.1.17) @ Glutamyl-<br>tRNA(GIn) synthetase<br>(EC 6.1.1.24) | Category: Protein Metabolism<br>Subcategory: Protein<br>biosynthesis<br>Subsystem: tRNA<br>aminoacylation, Glu and Gln<br>Subsystem: tRNA | 819605 | 818934 | -         |
|          |                                                                                                         |                         |                                                                                                                                                   |                   |                   |    |                                                                                                                                         |         |                                                                                                | aminoacylation, Glu and Gln                                                                                                               |        |        |           |
| mnas_750 | conserved hypothetical<br>protein                                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 819636            | 820374            | +  | Unknown: General<br>Hypothetical                                                                                                        | peg.324 | hypothetical protein                                                                           | - none -                                                                                                                                  | 820240 | 820374 | +         |
| mnas_751 | sn-glycerol-3-<br>phosphate ABC<br>transporter, ATP-<br>binding UgpC domain<br>protein<br>(EC 3.6.3.20) | ugpC                    | GO:0006810,<br>GO:0005524,<br>GO:0016820,<br>GO:0016787,<br>GO:0000166,<br>GO:00017111,<br>GO:0015430,<br>GO:0043190,<br>GO:004387,<br>GO:0005215 | 820488            | 820725            | +  | Cellular processes:<br>Other,<br>Transport and binding<br>proteins: Unknown<br>substrate,<br>Unknown: Enzymes of<br>unknown specificity |         |                                                                                                |                                                                                                                                           |        |        |           |
| mnas_752 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 820725            | 821136            | +  | Unknown: General                                                                                                                        | peg.325 | hypothetical protein                                                                           | - none -                                                                                                                                  | 820783 | 821136 | +         |
| mnas_753 | conserved hypothetical<br>protein                                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 821150            | 821807            | +  | Unknown: Conserved                                                                                                                      |         |                                                                                                |                                                                                                                                           |        |        | Π         |
| mnas_754 | AAA domain protein                                                                                      |                         |                                                                                                                                                   | 822073            | 822688            | -  | Unknown: General<br>Hypothetical                                                                                                        |         |                                                                                                |                                                                                                                                           |        |        | Π         |
| mnas_755 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 821906            | 822095            | +  | Unknown: General                                                                                                                        | peg.326 | hypothetical protein                                                                           | - none -                                                                                                                                  | 821907 | 822095 | +         |
|          |                                                                                                         |                         |                                                                                                                                                   |                   |                   |    |                                                                                                                                         | peg.327 | hypothetical protein                                                                           | - none -                                                                                                                                  | 822709 | 822074 | -         |
| mnas_756 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 822839            | 823850            | -  | Unknown: General                                                                                                                        |         |                                                                                                |                                                                                                                                           |        |        |           |
| mnas_757 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 823852            | 824059            | -  | Unknown: General                                                                                                                        |         |                                                                                                |                                                                                                                                           |        |        | Π         |
| mnas_758 | HNH endonuclease<br>family protein                                                                      |                         |                                                                                                                                                   | 824147            | 824810            | -  | Unclassified: Role<br>category not yet<br>assigned                                                                                      | peg.328 | hypothetical protein                                                                           | - none -                                                                                                                                  | 824612 | 824148 | [-        |
| mnas_759 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 824814            | 825372            | -  | Unknown: General                                                                                                                        |         |                                                                                                |                                                                                                                                           |        |        | $\square$ |
| mnas_760 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 825376            | 825760            | -  | Unknown: General                                                                                                                        | peg.329 | hypothetical protein                                                                           | - none -                                                                                                                                  | 825673 | 825377 | -         |
| mnas_761 | hypothetical protein                                                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                                                                                                          | 825764            | 825875            | -  | Unknown: General                                                                                                                        | peg.330 | hypothetical protein                                                                           | - none -                                                                                                                                  | 826290 | 825877 | -         |

| IGS      |                                                                              |                         |                                                                        |                   |                   |    |                                                                  | RAST    |                                                                                                          |           |        |        |    |
|----------|------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------|-------------------|-------------------|----|------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------|-----------|--------|--------|----|
| Gene_id  | Common_name                                                                  | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                                                  | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                                       | Gene_id | Function                                                                                                 | Subsystem | Start⁵ | Stop⁵  | S⁴ |
| mnas_762 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 825876            | 826290            | -  | Unknown: General                                                 |         |                                                                                                          |           |        |        |    |
| mnas_763 | conserved hypothetical<br>protein                                            |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 826289            | 826691            | -  | Unknown: Conserved                                               | peg.331 | hypothetical protein                                                                                     | - none -  | 826541 | 826290 | -  |
| mnas_764 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 826724            | 827606            | -  | Unknown: General                                                 | peg.332 | hypothetical protein                                                                                     | - none -  | 827492 | 826725 | -  |
| mnas_765 | ATP synthase F1, beta<br>subunit<br>(EC 3.6.3.14)                            | atpD                    | GO:0000275,<br>GO:0015986,<br>GO:0045261,<br>GO:0045262,<br>GO:0046933 | 827622            | 828504            | +  | Energy metabolism:<br>ATP-proton motive<br>force interconversion |         |                                                                                                          |           |        |        |    |
| mnas_766 | ATP synthase F1,<br>epsilon subunit<br>(EC 3.6.3.14)                         | atpC                    | GO:000275,<br>GO:0015986,<br>GO:0045261,<br>GO:0045262,<br>GO:0046933  | 829415            | 829835            | -  | Energy metabolism:<br>ATP-proton motive<br>force interconversion | peg.347 | ATP synthase epsilon chain<br>(EC 3.6.3.14)                                                              | - none -  | 829835 | 829416 | -  |
| mnas_767 | ATP synthase subunit<br>beta<br>(EC 3.6.3.14)                                | atpD                    |                                                                        | 829837            | 830173            | -  | Energy metabolism:<br>ATP-proton motive<br>force interconversion |         |                                                                                                          |           |        |        |    |
| mnas_768 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 831020            | 831707            | +  | Unknown: General                                                 | peg.348 | hypothetical protein                                                                                     | - none -  | 831378 | 831707 | +  |
| mnas_769 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 831706            | 831844            | +  | Unknown: General                                                 |         |                                                                                                          |           |        |        |    |
| mnas_770 | Spermidine/putrescine<br>ABC transporter<br>permease protein PotB            | PotB                    |                                                                        | 831867            | 832221            | +  | Transport and binding<br>proteins: Unknown<br>substrate          | peg.349 | Spermidine Putrescine ABC<br>transporter permease<br>component PotB<br>(TC 3.A.1.11.1)                   | - none -  | 831868 | 832221 | +  |
| mnas_771 | spermidine/putrescine<br>transport system<br>permease PotC domain<br>protein | potC                    | GO:0016020,<br>GO:0006810,<br>GO:0005215                               | 832213            | 832666            | +  | Transport and binding<br>proteins: Unknown<br>substrate          |         |                                                                                                          |           |        |        |    |
| mnas_772 | telomere recombination family protein                                        |                         |                                                                        | 832846            | 833314            | -  | Unclassified: Role<br>category not yet<br>assigned               | peg.350 | TsaC protein (YrdC domain)<br>required for<br>threonylcarbamoyladenosine<br>t(6)A37 modification in tRNA | - none -  | 833314 | 832847 | -  |
| mnas_773 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 833387            | 833480            | +  | Unknown: General                                                 |         |                                                                                                          |           |        |        |    |
| mnas_774 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 833705            | 834293            | +  | Unknown: General                                                 |         |                                                                                                          |           |        |        |    |
| mnas_775 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 834607            | 834718            | -  | Unknown: General                                                 |         |                                                                                                          |           |        |        |    |
| mnas_776 | hypothetical protein                                                         |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575                               | 835093            | 835480            | -  | Unknown: General                                                 |         |                                                                                                          |           |        |        |    |

| IGS      |                                                                          |                         |                                          |                   |                   |    |                                                         | RAST    |                                                                               |                                                                                                                                                                 |        |        |    |
|----------|--------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------|---------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----|
| Gene_id  | Common_name                                                              | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                              | Gene_id | Function                                                                      | Subsystem                                                                                                                                                       | Start⁵ | Stop⁵  | S⁴ |
| mnas_777 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 834821            | 835097            | +  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_778 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 835442            | 835871            | -  | Unknown: General                                        | peg.351 | hypothetical protein                                                          | - none -                                                                                                                                                        | 835706 | 835443 | -  |
| mnas_779 | NAD-dependent<br>glycerol-3-phosphate<br>dehydrogenase family<br>protein |                         |                                          | 835906            | 836638            | -  | Energy metabolism:<br>Other                             | peg.352 | Glycerol-3-phosphate<br>dehydrogenase [NAD(P) <sup>*</sup> ]<br>(EC 1.1.1.94) | Category: Fatty Acids, Lipids,<br>and Isoprenoids<br>Subcategory: Phospholipids<br>Subsystem: Glycerolipid and<br>Glycerophospholipid Metabolism<br>in Bacteria | 836626 | 835907 | -  |
| mnas_780 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 836648            | 837320            | -  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_781 | ABC transporter family protein                                           |                         |                                          | 837407            | 838070            | -  | Transport and binding<br>proteins: Unknown<br>substrate |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_782 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 838173            | 838920            | -  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        | Γ  |
| mnas_783 | conserved hypothetical<br>protein                                        |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 838920            | 839268            | -  | Unknown: Conserved                                      |         |                                                                               |                                                                                                                                                                 |        |        | Γ  |
| mnas_784 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 839749            | 840229            | -  | Unknown: General                                        | peg.363 | hypothetical protein                                                          | - none -                                                                                                                                                        | 839887 | 839750 | -  |
| mnas_785 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 840222            | 840393            | -  | Unknown: General                                        | peg.364 | hypothetical protein                                                          | - none -                                                                                                                                                        | 840375 | 840223 | -  |
| mnas_786 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 840405            | 840531            | +  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_787 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 840530            | 840986            | +  | Unknown: General                                        | peg.365 | hypothetical protein                                                          | - none -                                                                                                                                                        | 840531 | 840986 | +  |
| mnas_788 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 841116            | 841809            | -  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_789 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 840960            | 841128            | +  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_790 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 841821            | 842451            | +  | Unknown: General                                        | peg.366 | hypothetical protein                                                          | - none -                                                                                                                                                        | 841870 | 842451 | +  |
| mnas_791 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 843153            | 843459            | -  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |
| mnas_792 | hypothetical protein                                                     |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 842500            | 843157            | +  | Unknown: General                                        |         |                                                                               |                                                                                                                                                                 |        |        |    |

| IGS      |                                                                                      |                         |                                          |                   |                   |    |                                                         | RAST         |                                                  |           |        |        |   |
|----------|--------------------------------------------------------------------------------------|-------------------------|------------------------------------------|-------------------|-------------------|----|---------------------------------------------------------|--------------|--------------------------------------------------|-----------|--------|--------|---|
| Gene_id  | Common_name                                                                          | Sym<br>bol <sup>1</sup> | GO terms <sup>2</sup>                    | fmin <sup>3</sup> | fmax <sup>3</sup> | S⁴ | TIGR_roles                                              | Gene_id      | Function                                         | Subsystem | Start⁵ | Stop⁵  | S |
| mnas_793 | hypothetical protein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 843442            | 843796            | -  | Unknown: General                                        |              |                                                  |           |        |        |   |
| mnas_794 | putative lipoprotein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0016020 | 843802            | 844339            | -  | Cell envelope: Other                                    |              |                                                  |           |        |        |   |
| mnas_795 | hypothetical protein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 844342            | 844444            | -  | Unknown: General                                        |              |                                                  |           |        |        |   |
| mnas_796 | hsp70 family protein                                                                 |                         |                                          | 844464            | 845103            | +  | Protein fate: Protein folding and stabilization         |              |                                                  |           |        |        |   |
| mnas_797 | amino acid permease<br>family protein                                                |                         |                                          | 845105            | 845720            | +  | Transport and binding<br>proteins: Unknown<br>substrate | peg.380      | hypothetical protein                             | - none -  | 845404 | 845204 | - |
| mnas_798 | hypothetical protein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 845724            | 846330            | -  | Unknown: General                                        |              |                                                  |           |        |        |   |
| mnas_799 | hypothetical protein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 846342            | 846549            | -  | Unknown: General                                        |              |                                                  |           |        |        |   |
| mnas_800 | conserved hypothetical<br>protein                                                    |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 847090            | 847447            | +  | Unknown: Conserved                                      | peg.381      | hypothetical protein                             | - none -  | 847091 | 847447 | + |
| mnas_801 | conserved hypothetical protein                                                       |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 847595            | 848141            | +  | Unknown: Conserved                                      |              |                                                  |           |        |        |   |
| mnas_802 | ABC transporter family protein                                                       |                         |                                          | 848720            | 849290            | -  | Transport and binding<br>proteins: Unknown<br>substrate |              |                                                  |           |        |        |   |
| mnas_803 | recF/RecN/SMC N terminal domain protein                                              |                         |                                          | 848141            | 848720            | +  | Cellular processes: Cell division                       |              |                                                  |           |        |        | Τ |
| mnas_804 | hypothetical protein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 849882            | 850437            | +  | Unknown: General                                        |              |                                                  |           |        |        |   |
| mnas_805 | hypothetical protein                                                                 |                         | GO:0008150,<br>GO:0003674,<br>GO:0005575 | 850671            | 850980            | -  | Unknown: General                                        | peg.392      | hypothetical protein                             | - none -  | 850869 | 850672 | - |
|          |                                                                                      |                         |                                          |                   |                   |    |                                                         | rna.14       | Large Subunit Ribosomal<br>RNA; IsuRNA; LSU rRNA | - none -  | 851512 | 851009 | - |
| mnas_806 | Putative oligopeptide<br>ABC transporter, ATP-<br>binding protein OppF<br>C-terminal |                         |                                          | 851524            | 852058            | -  | Transport and binding<br>proteins: Unknown<br>substrate |              |                                                  |           |        |        |   |
|          | mbol<br>t and stop condon positior<br>t and stop codon postions                      |                         |                                          |                   |                   |    | ology terms<br>d (+ or -) on which the pre              | edicted gene | e is located                                     |           |        |        |   |

|          | IGS      |               |              | RAST   |                                                     |               |              |
|----------|----------|---------------|--------------|--------|-----------------------------------------------------|---------------|--------------|
|          | RNA_ID   | Location      | Size<br>(nt) | RNA_ID | Description                                         | Location      | Size<br>(nt) |
| 5s_rRNA  | mnas_582 | 673329-673226 | 103          | rna.5  | 5S RNA                                              | 673333-673227 | 107          |
| 16s_rRNA | mnas_642 | 733261-734756 | 1495         | rna.8  | Small Subunit Ribosomal<br>RNA; ssuRNA; SSU<br>rRNA | 733282-734818 | 1537         |
|          |          |               |              | rna.9  | Large Subunit Ribosomal<br>RNA; IsuRNA; LSU rRNA    | 735059-735903 | 845          |
| 23s_rRNA | mnas_730 | 811845-806381 | 5464         | rna.12 | Large Subunit Ribosomal<br>RNA; IsuRNA; LSU rRNA    | 807600-806382 | 1219         |
|          |          |               |              | rna.14 | Large Subunit Ribosomal<br>RNA; IsuRNA; LSU rRNA    | 851512-851009 | 504          |

#### Supplementary Table 2.3 Ribosomal RNAs found within the IGS and RAST annotations of the Ms03 draft genome

|     | IGS           |          |               |              | RAST   |                 |               |              |
|-----|---------------|----------|---------------|--------------|--------|-----------------|---------------|--------------|
| aa  | Gene_ID       | RNA      | Location      | Size<br>(nt) | RNA_ID | RNA             | Location      | Size<br>(nt) |
| Ala | No annotation | tRNA     |               |              |        |                 |               |              |
| ٨ra | mnas_193      | tRNA-Arg | 244829-244752 | 77           | rna.11 | tRNA-Arg-TCT    | 244829-244756 | 74           |
| Arg | mnas_495      | tRNA-Arg | 597174-597097 | 77           | rna.23 | tRNA-Arg-ACG    | 597174-597101 | 74           |
| Asn | mnas_44       | tRNA-Asn | 49170-49245   | 75           | rna.15 | tRNA-Asn-GTT    | 49171-49242   | 72           |
| Asp | No annotation | tRNA     |               |              |        |                 |               |              |
| Cys | mnas_496      | tRNA-Cys | 597257-597182 | 75           | rna.24 | tRNA-Cys-GCA    | 597257-597186 | 72           |
| Gln | mnas_110      | tRNA-GIn | 153820-153745 | 75           | rna.3  | tRNA-GIn-TTG    | 153820-153749 | 72           |
| Glu | mnas_45       | tRNA-Glu | 49251-49327   | 76           | rna.16 | tRNA-Glu-TTC    | 49252-49324   | 73           |
| Gly | mnas_494      | tRNA-Gly | 597015-596941 | 74           | rna.22 | tRNA-Gly-TCC    | 597015-596945 | 71           |
| His | mnas_635      | tRNA-His | 725837-725913 | 76           | rna.7  | tRNA-His-GTG    | 725838-725910 | 73           |
| lle | No annotation | tRNA     |               |              |        |                 |               |              |
| Leu | mnas_48       | tRNA-Leu | 49520-49604   | 84           | rna.19 | tRNA-Leu-TAG    | 49521-49601   | 81           |
| Leu | mnas_515      | tRNA-Leu | 613243-613327 | 84           | rna.1  | tRNA-Leu-CAA    | 613244-613324 | 81           |
| Lys | mnas_459      | tRNA-Lys | 552267-552343 | 76           | rna.20 | tRNA-Lys-CTT    | 552268-552340 | 73           |
| Met | No annotation | tRNA     |               |              |        |                 |               |              |
| Phe | No annotation | tRNA     |               |              |        |                 |               |              |
| Pro | No annotation | tRNA     |               |              |        |                 |               |              |
| Ser | mnas_546      | tRNA-Ser | 641317-641408 | 91           | rna.2  | tRNA-Pseudo-GCT | 641318-641405 | 88           |
| 561 | mnas_659      | tRNA-SeC | 750949-751024 | 75           | rna.10 | tRNA-SeC-TCA    | 750950-751021 | 72           |
|     | mnas_47       | tRNA-Thr | 49409-49485   | 76           | rna.18 | tRNA-Thr-TGT    | 49410-49482   | 73           |
| Thr | mnas_461      | tRNA-Thr | 554066-553992 | 74           | rna.21 | tRNA-Thr-CGT    | 554066-553996 | 71           |
|     | mnas_623      | tRNA-Thr | 712768-712843 | 75           | rna.6  | tRNA-Thr-GGT    | 712769-712840 | 72           |
| Trp | mnas_214      | tRNA-Trp | 77866-77792   | 74           | rna.13 | tRNA-Trp-CCA    | 277866-277796 | 71           |
| Tyr | mnas_111      | tRNA-Tyr | 153909-153825 | 84           | rna.4  | tRNA-Tyr-GTA    | 153909-153829 | 81           |
| Val | mnas_46       | tRNA-Val | 49332-49408   | 76           | rna.17 | tRNA-Val-TAC    | 49333-49405   | 73           |

Supplementary Table 2.4 The transfer RNAs found within the IGS and RAST annotations of the Ms03 draft genome

|          | IGS                    |                                                          |                | RAST                  |                                                |
|----------|------------------------|----------------------------------------------------------|----------------|-----------------------|------------------------------------------------|
| EC       | Gene_id                | Gene name                                                | Gene<br>symbol | Gene_id               | Gene name                                      |
| 2.7.7    | mnas_269               | DNA primase                                              | dnaG           | peg.384               | DNA primase                                    |
| 2.7.7.7  | mnas_71                | DNA polymerase III, alpha<br>subunit, Gram-positive type | polC           | peg.514               | DNA polymerase III alpha subunit               |
| 2.7.7.7  | mnas_100               | DNA polymerase III beta subunit, central domain protein  | dnaN           | peg.10                | DNA polymerase III beta subunit                |
| 2.7.7.7  | mnas_159               | DNA polymerase III, subunit gamma and tau                | dnaX           | peg.184               | DNA polymerase III subunits gamma and tau      |
| 2.7.7.7  | mnas_163               | Putative DNA polymerase III,<br>delta' subunit           | holB           | peg.188               | DNA polymerase III delta prime subunit         |
| 2.7.7.7  | mnas_245               | DNA polymerase III, alpha subunit                        | dnaE           | peg.355               | DNA polymerase III alpha subunit               |
| 2.7.7.7  | mnas_571               | DNA polymerase III, delta subunit                        | holA           | peg.86                | DNA polymerase III delta subunit               |
| 2.7.7.7  | mnas_246*              | Putative DNA polymerase I                                |                | peg.356*              | DNA polymerase I                               |
| 3.1.26.4 | mnas_719 <sup>#</sup>  | Ribonuclease HII family protein                          |                | peg.285 <sup>#</sup>  | Ribonuclease HII                               |
| 3.6.1    | mnas_473               | Putative replicative DNA helicase                        | dnaB           | peg.608               | Replicative DNA helicase                       |
| 3.6.4.12 | mnas_266               | DnaB-like helicase C terminal domain protein             |                | peg.379               | Replicative DNA helicase (DnaB)                |
| 6.5.1.2  | mnas_607 <sup>\$</sup> | DNA ligase, NAD-dependent                                | ligA           | peg.116 <sup>\$</sup> | DNA ligase                                     |
| -        | mnas_175               | Single-stranded DNA-binding<br>family protein            | ssb            | peg.245               | Single-stranded DNA-binding protein            |
| -        | mnas_99                | Chromosomal replication initiator<br>protein DnaA        | dnaA           | peg.9                 | Chromosomal replication initiator protein DnaA |

Supplementary Table 2.5 DNA replication genes found within the IGS and RAST annotations of the Ms03 draft genome

\* Correspond to the Dpol of DNA polymerase I in Figure 3.5 # Correspond to the RNaseHII in Figure 3.5

<sup>\$</sup> Correspond to the Lig of DNA ligase in Figure 3.5

Supplementary Table 2.6 Purine metabolism genes found within the IGS and RAST annotations of the Ms03 draft genome

|                       | IGS                    |                                                                      |                | RAST                 |                                                                                  |
|-----------------------|------------------------|----------------------------------------------------------------------|----------------|----------------------|----------------------------------------------------------------------------------|
| EC                    | Gene_id                | Gene name                                                            | Gene<br>symbol | Gene_id              | Gene name                                                                        |
| 2.4.2.7               | mnas_140               | Adenine<br>phosphoribosyltransferase                                 | apt            | peg.130              | Adenine<br>phosphoribosyltransferase                                             |
| 2.4.2.8               | mnas_338*              | Hypoxanthine<br>phosphoribosyltransferase                            | hpt            | peg.464*             | Hypoxanthine-guanine phosphoribosyltransferase                                   |
| 2.7.1.40 <sup>#</sup> | mnas_504               | Pyruvate kinase                                                      | pyk            | peg.632              | Pyruvate kinase                                                                  |
| 2.7.1.113<br>2.7.1.76 | mnas_337               | Deoxynucleoside kinase family protein                                |                | peg.463              | Deoxyadenosine kinase (EC<br>2.7.1.76) / Deoxyguanosine<br>kinase (EC 2.7.1.113) |
| 2.7.4.3               | mnas_588 <sup>\$</sup> | Adenylate kinase family protein                                      | adk            | peg.98 <sup>\$</sup> | Adenylate kinase                                                                 |
| 2.7.4.8               | mnas_117               | Guanylate kinase                                                     | gmk            | peg.71               | Guanylate kinase                                                                 |
| 2.7.6.1               | mnas_724 <sup>∆</sup>  | Ribose-phosphate<br>diphosphokinase family protein                   | prs            | peg.288 <sup>∆</sup> | Ribose-phosphate<br>pyrophosphokinase                                            |
| 3.1.3.5               | mnas_205               | Calcineurin-like phosphoesterase<br>family protein                   |                | peg.299              | 5'-nucleotidase                                                                  |
| 3.2.2.1               | mnas_445               | Inosine-uridine preferring<br>nucleoside hydrolase family<br>protein |                | peg.571              | preQ1-regulated inosine-<br>uridine nucleoside hydrolase                         |
| 5.4.2.7               | mnas_513 <sup>£∆</sup> | Phosphopentomutase                                                   | deoB           | peg.19 <sup>£∆</sup> | Phosphopentomutase                                                               |

\* Enzyme number for reverse reaction is EC 2.4.2.22

\* Part of glycolysis

<sup>\$</sup> Enzyme number for reverse reaction is EC 2.7.4.11

<sup>A</sup> Part of Pentose phosphate pathway <sup>£</sup> Enzyme number for reverse reaction is EC 5.4.2.2

|                       | IGS                   |                                                                       |                | RAST                 |                                                                      |
|-----------------------|-----------------------|-----------------------------------------------------------------------|----------------|----------------------|----------------------------------------------------------------------|
| EC                    | Gene_id               | Gene name                                                             | Gene<br>symbol | Gene_id              | Gene name                                                            |
| 1.8.1.9               | mnas_66               | Yhioredoxin reductase                                                 | trxB           | peg.509              | Thioredoxin reductase                                                |
| 2.4.2.2 <sup>△</sup>  | mnas_671 <sup>0</sup> | Pyrimidine-nucleoside<br>phosphorylase family protein                 | pdp            | peg.204 $^{\theta}$  | Pyrimidine-nucleoside phosphorylase                                  |
| 2.4.2.9               | mnas_574              | Uracil phosphoribosyltransferase                                      | ирр            | peg.89               | Uracil phosphoribosyltransferase                                     |
| 2.7.1.21              | mnas_229              | Thymidine kinase                                                      | tdk            | peg.336              | Thymidine kinase                                                     |
| 2.7.4.9               | mnas_423              | Thymidylate kinase                                                    | tmk            | peg.554              | Thymidylate kinase                                                   |
| 2.7.4.9               | mnas_162              | Thymidylate kinase                                                    | tmk            | peg.187              | Thymidylate kinase                                                   |
| 2.7.4.22              | mnas_309              | UMP kinase                                                            | pyrH           | peg.437              | Uridine monophosphate kinase                                         |
| 2.7.4.14 <sup>Ω</sup> | mnas_647              | Cytidylate kinase                                                     | cmk            | peg.169              | Cytidylate kinase (EC 2.7.4.25 $^{\Omega}$ )                         |
| 4.2.1.70              | mnas_14               | Ribosomal large subunit<br>pseudouridine synthase B (EC<br>5.4.99.22) | rluB           | peg.225              | Ribosomal large subunit<br>pseudouridine synthase B                  |
| 4.2.1.70              | mnas_118              | tRNA pseudouridine(55) synthase<br>(EC 5.4.99.25)                     | truB           | peg.72               | tRNA pseudouridine synthase B (EC 4.2.1.70)                          |
| 4.2.1.70              | mnas_328              | RNA pseudouridylate synthase family protein                           |                | peg.454              | Ribosomal large subunit<br>pseudouridine synthase C (EC<br>4.2.1.70) |
| 4.2.1.70              | mnas_552              | Pseudouridine synthase, RluA family protein (EC 5.4.99)               |                | peg.50               | Ribosomal large subunit<br>pseudouridine synthase D (EC<br>4.2.1.70) |
| 4.2.1.70              | mnas_510              | RNA pseudouridylate synthase family protein                           |                | peg.17               | Ribosomal small subunit<br>pseudouridine synthase A (EC<br>4.2.1.70) |
| 3.1.3.5               | mnas_205              | Calcineurin-like phosphoesterase family protein                       |                | peg.299 <sup>¥</sup> | 5'-nucleotidase                                                      |
| 3.5.4.5*              | mnas_290              | Cytidine deaminase                                                    | cdd            | peg.403              | Cytidine deaminase                                                   |

Supplementary Table 2.7 Pyrimidine metabolism genes found within the IGS and RAST annotations of the Ms03 draft genome

\* Part of glycolysis <sup>§</sup>Enzyme number for reverse reaction is EC 2.7.4.11 <sup>A</sup>Part of Pentose phosphate pathway

<sup>A</sup> Part of Pentose phosphate pathway
 \*Part of Purine metabolise
 <sup>B</sup> Enzyme number for reverse reaction is EC 2.4.2.3
 <sup>A</sup> The eukaryotic enzyme EC 2.7.4.14 is a bifunctional enzyme that catalyses the phosphorylation of both CMP and UMP with similar efficiency (dCMP can also act as acceptor). Different from the monofunctional prokaryotic enzymes EC 2.7.4.25, (d)CMP kinase and EC 2.7.4.22, UMP kinase.
 <sup>C</sup> This enzyme can accept both the ribonucleoside uridine (EC 2.4.2.3) and the 2'-deoxyribonucleosides 2'-deoxyuridine (EC 2.4.2.3) and thymidine (EC 2.4.2.4). Formally known as EC 2.4.2.23.
 \* Enzyme number for reverse reaction is EC 3.5.4.14

|         | IGS                  |                                                      |                | RAST     | RAST                                      |  |  |
|---------|----------------------|------------------------------------------------------|----------------|----------|-------------------------------------------|--|--|
| EC      | Gene_id              | Gene name                                            | Gene<br>symbol | Gene_id  | Gene name                                 |  |  |
| -       | mnas_271             | RNA polymerase sigma factor, sigma-70 family protein | rpoD           | peg.386  | RNA polymerase sigma<br>factor RpoD       |  |  |
| 2.7.7.6 | mnas_715             | DNA-directed RNA polymerase, alpha subunit           | rpoA           | peg.282  | DNA-directed RNA polymerase alpha subunit |  |  |
| 2.7.7.6 | mnas_59              | DNA-directed RNA polymerase, beta' subunit           | rpoC           | peg.432  | DNA-directed RNA polymerase beta' subunit |  |  |
| 2.7.7.6 | mnas_57*<br>mnas_58* | RNA polymerase beta subunit rpoB                     | rpoB           | peg.431* | DNA-directed RNA polymerase beta subunit  |  |  |

Supplementary Table 2.8 RNA polymerase genes found within the IGS and RAST annotations of the Ms03 draft genome

\* The ORF of mnas\_57 and mnas\_58 from 64459 to 65722 and 65714 to 70202, respectively. The ORF of peg.431 are from 62088 to 65722 and therefore include both mnas\_57 and mnas\_58

| IGS        | y Table 2.9 Ribosomal genes found w |           | RAST               | 5                                                              |
|------------|-------------------------------------|-----------|--------------------|----------------------------------------------------------------|
| Gene_id    | Gene name                           | Gene      | Gene_id            | Gene name                                                      |
| _          |                                     | symbol    | Gene_iu            |                                                                |
| mnas_40    | ribosomal protein L33               | rpmG      | peg.420            | LSU ribosomal protein L33p                                     |
| mnas_122   | ribosomal protein S15               | rpsO      | peg.76             | SSU ribosomal protein S15p (S13e)                              |
| mnas_141   | ribosomal protein L1                | rpIA      | peg.131            | LSU ribosomal protein L1p (L10Ae)                              |
| mnas_142   | ribosomal protein L11               | rplK      | peg.132            | LSU ribosomal protein L11p (L12e)                              |
| mnas_174   | ribosomal protein S6                | rpsF      | peg.244            | SSU ribosomal protein S6p                                      |
| mnas_176   | ribosomal protein S18               | rpsR      | peg.246            | SSU ribosomal protein S18p @ SSU ribosomal protein S18p, zinc- |
|            |                                     |           |                    | independent                                                    |
| mnas_206   | ribosomal protein S12               | rpsL      | peg.300            | SSU ribosomal protein S12p (S23e)                              |
| mnas_207   | ribosomal protein S7                | rpsG<br>T | peg.301            | SSU ribosomal protein S7p (S5e)                                |
| mnas_228   | ribosomal protein S20               | rpsT      | peg.335            | SSU ribosomal protein S20p                                     |
| mnas_232   | ribosomal protein L35               | rpml      | peg.339            | LSU ribosomal protein L35p                                     |
| mnas_233   | ribosomal protein L20               | rpIT      | peg.340            | LSU ribosomal protein L20p                                     |
| mnas_343   | ribosomal protein L13               | rpIM      | peg.469            | LSU ribosomal protein L13p (L13Ae)                             |
| mnas_344   | 30S ribosomal protein S9            | rpsl      | peg.470            | SSU ribosomal protein S9p (S16e)                               |
| mnas_369   | ribosomal protein L19               | rpIS      | peg.493            | LSU ribosomal protein L19p                                     |
| mnas_371   | ribosomal protein S16               | rpsP      | peg.495            | SSU ribosomal protein S16p                                     |
| mnas_382   | ribosomal protein L15               | rplO      | peg.519            | LSU ribosomal protein L15p (L27Ae)                             |
| mnas_383   | ribosomal protein S5                | rpsE      | peg.520            | SSU ribosomal protein S5p (S2e)                                |
| mnas_384   | ribosomal protein L18               | rplR      | peg.521            | LSU ribosomal protein L18p (L5e)                               |
| mnas_385   | ribosomal protein L6                | rplF      | peg.522            | LSU ribosomal protein L6p (L9e)                                |
| mnas_386   | ribosomal S8 family protein         |           | peg.523            | SSU ribosomal protein S8p (S15Ae)                              |
|            |                                     |           |                    | SSU ribosomal protein S14p (S29e)                              |
| mnas_387   | 30S ribosomal protein S14 type Z    | rpsZ      | peg.524            | @ SSU ribosomal protein S14p                                   |
|            |                                     |           |                    | (S29e), zinc-dependent                                         |
| mnas_388   | 50S ribosomal protein L5            | rplE      | peg.525            | LSU ribosomal protein L5p (L11e)                               |
| mnas_389   | ribosomal protein L24               | rplX      | peg.526            | LSU ribosomal protein L24p (L26e)                              |
| mnas_390   | ribosomal protein L14               | rpIN      | peg.527            | LSU ribosomal protein L14p (L23e)                              |
| mnas_391   | 30S ribosomal protein S17           | rpsQ      | peg.528            | SSU ribosomal protein S17p (S11e)                              |
| mnas_392   | ribosomal protein L29               | rpmC      | peg.529            | LSU ribosomal protein L29p (L35e)                              |
| mnas_393   | ribosomal protein L16               | rpIP      | peg.530            | LSU ribosomal protein L16p (L10e)                              |
| mnas_394   | ribosomal protein S3                | rpsC      | peg.531            | SSU ribosomal protein S3p (S3e)                                |
| mnas_395   | ribosomal protein L22               | rpIV      | peg.532            | LSU ribosomal protein L22p (L17e)                              |
| mnas_396   | ribosomal protein S19               | rpsS      | peg.533            | SSU ribosomal protein S19p (S15e)                              |
| mnas_397   | ribosomal protein L2                | rplB      | peg.534            | LSU ribosomal protein L2p (L8e)                                |
| mnas_398   | 50S ribosomal L23 domain protein    | rplW      | peg.535            | LSU ribosomal protein L23p (L23Ae)                             |
| mnas 399   | ribosomal L4/L1 family protein      |           | peg.536            | LSU ribosomal protein L4p (L1e)                                |
| mnas 474   | ribosomal protein L9                | rpll      | peg.609            | LSU ribosomal protein L9p                                      |
| mnas_521   | ribosomal protein S2                | rpsB      | peg.26             | SSU ribosomal protein S2p (SAe)                                |
| mnas_535   | ribosomal protein L7/L12            | rpIL      | peg.38             | LSU ribosomal protein L7/L12 (P1/P2)                           |
| mnas_536   | 50S ribosomal protein L10           | rplJ      | peg.39             | LSU ribosomal protein L10p (P0)                                |
| mnas 559   | ribosomal protein L21               | rplU      | peg.57             | LSU ribosomal protein L21p                                     |
| mnas 560   | ribosomal protein L27               | rpmA      | peg.58             | LSU ribosomal protein L27p                                     |
| mnas 568   | ribosomal protein S4                | rpsD      | peg.83             | SSU ribosomal protein S4p (S9e)                                |
| mnas 569   | ribosomal protein L31               | rpmE      | peg.84             | LSU ribosomal protein L31p                                     |
| mnas 585   | ribosomal protein L34               | rpmH      | peg.96             | LSU ribosomal protein L34p                                     |
| mnas_591   | ribosomal protein L36               | rpmJ      | peg.101            | LSU ribosomal protein L36p                                     |
| mnas 592   | 30S ribosomal protein S13           | rpsM      | peg.102            | SSU ribosomal protein S13p (S18e)                              |
| mnas 593   | ribosomal S11 family protein        |           | peg.102<br>peg.103 | SSU ribosomal protein S11p (S14e)                              |
| mnas 649   | ribosomal protein L28               | rpmB      | peg.100<br>peg.171 | LSU ribosomal protein L28p                                     |
| mnas 664   | ribosomal protein L32               | rpmF      | peg.171<br>peg.198 | LSU ribosomal protein L32p                                     |
| mnas 679   | 50S ribosomal protein L3            | rpIC      | peg.190<br>peg.208 | LSU ribosomal protein L3p (L3e)                                |
| mnas 681   | ribosomal protein S10               | rpsJ      | peg.200<br>peg.209 | SSU ribosomal protein S10p (S20e)                              |
| mnas 714   | ribosomal protein L17               | rpIQ      | peg.203<br>peg.281 | LSU ribosomal protein L17p                                     |
| 1111a5_/14 |                                     | ipiQ      | pey.zoi            |                                                                |

## Supplementary Table 2.9 Ribosomal genes found within the IGS and RAST annotations of the Ms03 draft genome

| EC       | IGS                                                            |          | RAST                                                   |         |  |
|----------|----------------------------------------------------------------|----------|--------------------------------------------------------|---------|--|
|          | Gene name                                                      | Gene id  | Gene name                                              | Gene id |  |
| 2.1.2.9  | methionyl-tRNA formyltransferase                               | mnas_249 | Methionyl-tRNA formyltransferase                       | peg.359 |  |
| 6.1.1.1  | tyrosinetRNA ligase                                            | mnas_356 | Tyrosyl-tRNA synthetase                                | peg.480 |  |
| 6.1.1.2  | tryptophantRNA ligase                                          | mnas_685 | Tryptophanyl-tRNA synthetase                           | peg.211 |  |
|          | threonyl and Alanyl tRNA                                       |          | Threonyl-tRNA synthetase                               | peg.35  |  |
| 6.1.1.3  | synthetase second additional                                   | mnas_684 |                                                        | _       |  |
|          | domain protein                                                 |          |                                                        |         |  |
| 6.1.1.4  | leucinetRNA ligase                                             | mnas_485 | Leucyl-tRNA synthetase                                 | peg.619 |  |
| 6.1.1.5  | isoleucinetRNA ligase                                          | mnas_678 | Isoleucyl-tRNA synthetase                              | peg.53  |  |
| 6.1.1.6  | lysinetRNA ligase                                              | mnas_92  | Lysyl-tRNA synthetase (class II)                       | peg.2   |  |
| 6.1.1.7  | alaninetRNA ligase                                             | mnas_453 | Alanyl-tRNA synthetase                                 | peg.577 |  |
| 6.1.1.9  | valinetRNA ligase                                              | mnas_463 | ValyI-tRNA synthetase                                  | peg.600 |  |
| 6.1.1.10 | methioninetRNA ligase                                          | mnas_348 | Methionyl-tRNA synthetase                              | peg.474 |  |
| 6.1.1.11 | serinetRNA ligase                                              | mnas_586 |                                                        |         |  |
| 6.1.1.12 | aspartatetRNA ligase                                           | mnas_457 | Aspartyl-tRNA synthetase                               | peg.597 |  |
| 6.1.1.14 | glycinetRNA ligase                                             | mnas_268 | Glycyl-tRNA synthetase                                 | peg.383 |  |
| 6.1.1.15 | prolinetRNA ligase                                             | mnas_640 | Prolyl-tRNA synthetase                                 | peg.165 |  |
| 6.1.1.16 | cysteinetRNA ligase                                            | mnas_373 | Cysteinyl-tRNA synthetase                              | peg.497 |  |
| 6.1.1.17 | glutamyl-tRNA synthetase                                       | mnas_458 | Glutamyl-tRNA synthetase                               | peg.307 |  |
| 6.1.1.19 | argininetRNA ligase                                            | mnas_374 | Arginyl-tRNA synthetase                                | peg.498 |  |
|          | phenylalaninetRNA ligase, alpha subunit                        | mnas_274 | Phenylalanyl-tRNA synthetase alpha<br>chain            | peg.389 |  |
| 6.1.1.20 | tRNA synthetase B5 domain                                      |          | Phenylalanyl-tRNA synthetase domain protein (Bsu YtpR) | peg.391 |  |
|          | protein                                                        | mnas_277 | Phenylalanyl-tRNÁ synthetase beta chain                | peg.481 |  |
| 6.1.1.21 | histidinetRNA ligase                                           | mnas 224 | Histidyl-tRNA synthetase                               | peg.323 |  |
| 6.1.1.24 | tRNA synthetases class I (E and Q), catalytic domain protein   | mnas_749 | Glutamyl-tRNA(Gln) synthetase                          | peg.307 |  |
|          |                                                                |          | Aspartyl-tRNA(Asn) amidotransferase subunit A          | peg.452 |  |
| 6.3.5.6  | glu-tRNAGIn amidotransferase C subunit                         | mnas_327 | Aspartyl-tRNA(Asn) amidotransferase subunit B          | peg.451 |  |
|          |                                                                |          | Aspartyl-tRNA(Asn) amidotransferase subunit C          | peg.453 |  |
|          |                                                                |          | Glutamyl-tRNA(Gln) amidotransferase subunit A          | peg.452 |  |
| 6.3.5.7  | aspartyl/glutamyl-tRNA(Asn/Gln)<br>amidotransferase, B subunit | mnas_325 | Glutamyl-tRNA(Gln) amidotransferase subunit B          | peg.451 |  |
|          |                                                                |          | Glutamyl-tRNA(Gln) amidotransferase subunit C          | peg.453 |  |

Supplementary Table 2.10 The aminoacyl-tRNA biosynthesis genes found within the IGS and RAST annotations of the Ms03 draft genome

| IGS      |                       |                                                                    |                    | RAST                 |                                                                                                                                                                                            |  |
|----------|-----------------------|--------------------------------------------------------------------|--------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EC       | Gene_id               | Gene name                                                          | Gene<br>symb<br>ol | Gene_id              | Gene name                                                                                                                                                                                  |  |
| 1.2.1.12 | mnas_250 <sup>#</sup> | Glyceraldehyde-3-phosphate<br>dehydrogenase, type I                | gap                | peg.360 <sup>#</sup> | NAD-dependent glyceraldehyde-3-<br>phosphate dehydrogenase                                                                                                                                 |  |
| 2.7.1.40 | mnas_504              | Pyruvate kinase                                                    | pyk                | peg.632              | Pyruvate kinase                                                                                                                                                                            |  |
| 2.7.1.69 | mnas_534              | PTS system,<br>glucose/glucosamine/beta-<br>glucoside-specific     | -                  | peg.37               | PTS system, N-acetylglucosamine-<br>specific IIA component / PTS<br>system, N-acetylglucosamine-<br>specific IIB component / PTS<br>system, N-acetylglucosamine-<br>specific IIC component |  |
| 2.7.2.3  | mnas_597              | Phosphoglycerate kinase                                            | -                  |                      |                                                                                                                                                                                            |  |
| 4.1.2.13 | mnas_376              | Fructose-1,6-bisphosphate aldolase, class II                       | fba                | peg.500              | Fructose-bisphosphate aldolase<br>class II                                                                                                                                                 |  |
| 4.2.1.11 | mnas_695              | Phosphopyruvate hydratase                                          | eno                | peg.263              | Enolase                                                                                                                                                                                    |  |
| 5.3.1.1  | mnas_547              | Triose-phosphate isomerase                                         | tpiA               | peg.47               | Triosephosphate isomerise                                                                                                                                                                  |  |
| 5.3.1.9  | mnas_509              | Phosphoglucose isomerase family protein                            |                    | peg.16               | Glucose-6-phosphate isomerise                                                                                                                                                              |  |
| 5.3.1.9  | mnas_700              | Putative glucose-6-phosphate<br>isomerase                          | -                  | peg.268              | Glucose-6-phosphate isomerise                                                                                                                                                              |  |
| 5.4.2.1  | mnas_105              | 2,3-bisphosphoglycerate-<br>independent phosphoglycerate<br>mutase | -                  | peg.61               | 2,3-bisphosphoglycerate-<br>independent phosphoglycerate<br>mutase                                                                                                                         |  |

Supplementary Table 2.11 Glycolysis / gluconeogenesis genes found within the IGS and RAST annotations of the Ms03 draft genome

\*Enzyme number for reverse reaction is EC 1.2.1.59

| EC        | IGS                   |                                                    |                | RAST                |                                                                                    |
|-----------|-----------------------|----------------------------------------------------|----------------|---------------------|------------------------------------------------------------------------------------|
| EC        | Gene_id               | Gene name                                          | Gene<br>symbol | Gene_id             | Gene name                                                                          |
| 2.7.6.1   | mnas_724              | ribose-phosphate<br>diphosphokinase family protein | prs            | peg.288             | Ribose-phosphate<br>pyrophosphokinase                                              |
| 4.1.2.4   | mnas_672              | deoxyribose-phosphate<br>aldolase                  | deoC           | peg.205             | Deoxyribose-phosphate aldolase                                                     |
| 4.1.2.9   | mnas_436              | xylulose-5-phosphate<br>phosphoketolase            | xpkA           | peg.564             | Xylulose-5-phosphate<br>phosphoketolase / Fructose-<br>6-phosphate phosphoketolase |
| 4.1.2.13* | mnas_376              | Fructose-1,6-bisphosphate aldolase, class II       | fba            | peg.500             | Fructose-bisphosphate<br>aldolase class II                                         |
| 5.1.3.1   | mnas_113              | Ribulose-phosphate 3 epimerase family protein      | -              | peg.67              | Ribulose-phosphate 3-<br>epimerase                                                 |
| 5.4.2.7   | mnas_513 <sup>#</sup> | Phosphopentomutase                                 | deoB           | peg.19 <sup>#</sup> | Phosphopentomutase                                                                 |
| 5.3.1.6   | mnas_286              | Putative ribose-5-phosphate<br>isomerase           | -              | peg.399             | Ribose 5-phosphate<br>isomerase B                                                  |
| 5.3.1.9*  | mnas_509              | Phosphoglucose isomerase<br>family protein         |                | peg.16              | Glucose-6-phosphate<br>isomerise                                                   |
| 5.3.1.9*  | mnas_700              | Putative glucose-6-phosphate<br>isomerase          | -              | peg.268             | Glucose-6-phosphate<br>isomerase                                                   |

#### Supplementary Table 2.12 Pentose phosphate pathway

\*Part of glycolysis <sup>#</sup> Enzyme number for reverse reaction is 5.4.2.2

#### Supplementary Table 2.13 Pyruvate metabolism

|           | IGS      |                         |                | RAST    |                         |
|-----------|----------|-------------------------|----------------|---------|-------------------------|
| EC        | Gene_id  | Gene name               | Gene<br>symbol | Gene_id | Gene name               |
| 1.1.1.28  | mnas_107 | D-lactate dehydrogenase | ldhA           | peg.63  | D-lactate dehydrogenase |
| 2.7.2.1   | mnas_507 | Acetate kinase          | ackA           | peg.635 | Acetate kinase          |
| 2.7.1.40* | mnas_504 | Pyruvate kinase         | pyk            | peg.632 | Pyruvate kinase         |

\*Part of glycolysis

| IGS           |                                                                                         |                | RAST        |                                                                                                                                                                                                                                    |
|---------------|-----------------------------------------------------------------------------------------|----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gene_id       | Gene name                                                                               | Gene<br>symbol | Gene_id     | Gene name                                                                                                                                                                                                                          |
| Putative pota | assium uptake (ktrB/ktrA)                                                               |                |             |                                                                                                                                                                                                                                    |
| mnas_11       | Putative potassium uptake protein KtrB                                                  | ktrB           | peg.222     | Potassium uptake protein, integral<br>membrane component, KtrB                                                                                                                                                                     |
| mnas_12       | TrkA-C domain protein                                                                   | ktrA           | peg.223     | Trk system potassium uptake protein TrkA                                                                                                                                                                                           |
| Magnesium     | (channel-type mechanism)                                                                |                |             |                                                                                                                                                                                                                                    |
| mnas_189      | Magnesium transporter                                                                   | mgtE           | peg.259     | Mg/Co/Ni transporter MgtE / CBS domain                                                                                                                                                                                             |
| Putative cati | on transporting P-type ATPase (Copper, L                                                | ead, cadm      | ium, zinc a | nd mercury)                                                                                                                                                                                                                        |
| mnas_196      | Cation transporting ATPase, family protein                                              |                | peg.280     | Lead, cadmium, zinc and mercury<br>transporting ATPase (EC 3.6.3.3) (EC<br>3.6.3.5); Copper-translocating P-type<br>ATPase (EC 3.6.3.4) 259481-258960                                                                              |
| Phosphoeno    | Ipyruvate-dependent sugar phosphotrans                                                  | ferase sys     | tem         |                                                                                                                                                                                                                                    |
| mnas_283      | phosphocarrier protein HPr (EC 7.11)                                                    | ptsH           | peg.396     | Phosphotransferase system, phosphocarrier protein HPr                                                                                                                                                                              |
| mnas_410      | Putative PTS system glucose-specific<br>enzyme IIB component                            |                | peg.545     | PTS system glucose-specific enzyme IIB component                                                                                                                                                                                   |
| mnas_62       | HPr(Ser) kinase/phosphatase (EC 2.7.1)                                                  | hprK           | peg.505     | HPr kinase/phosphorylase (EC 2.7.1) (EC 2.7.4)                                                                                                                                                                                     |
| mnas_534      | PTS system, glucose/glucosamine/beta-<br>glucoside-specific (EC 2.7.1.69)               |                | peg.37      | PTS system, N-acetylglucosamine-specific<br>IIA component (EC 2.7.1.69) / PTS system,<br>N-acetylglucosamine-specific IIB<br>component (EC 2.7.1.69) / PTS system, N-<br>acetylglucosamine-specific IIC component<br>(EC 2.7.1.69) |
| Putative ene  | rgy-coupling factor transporter                                                         |                |             |                                                                                                                                                                                                                                    |
| mnas_651      | Energy-coupling factor transporter ATP-<br>binding EcfA1 domain protein (EC 3.6.3       | ecfA1          | peg.172     | ATPase component of general energizing module of ECF transporters                                                                                                                                                                  |
| mnas_652      | Energy-coupling factor transporter ATP-<br>binding protein EcfA2 (EC 3.6.3)             | ecfA2          | peg.173     | ATPase component of general energizing module of ECF transporters                                                                                                                                                                  |
| mnas_653      | energy-coupling factor transporter<br>transmembrane protein EcfT                        | ecfT           |             |                                                                                                                                                                                                                                    |
| mnas_49       | ECF-type riboflavin transporter, S component family protein                             |                | peg.423     | Substrate-specific component FoIT of<br>folate ECF transporter                                                                                                                                                                     |
|               | rmidine/putrescine ABC transporter perme                                                |                | r           | 1                                                                                                                                                                                                                                  |
| mnas_227      | Probable spermidine/putrescine/ABC<br>transporter substrate                             | potD           | peg.334     | Probable spermidine/putrescine substrate binding protein in Mollicutes                                                                                                                                                             |
| mnas_240      | Spermidine/putrescine ABC transporter<br>permease PotB domain protein                   | potB           |             |                                                                                                                                                                                                                                    |
| mnas_241      | Putative spermidine/putrescine transport<br>system ATP-binding protein (EC<br>3.6.3.31) | potA           |             |                                                                                                                                                                                                                                    |
| mnas_242      | Putative spermidine/putrescine import<br>ATP-binding protein                            | potA           |             |                                                                                                                                                                                                                                    |
| mnas_243      | Spermidine/putrescine import ATP-<br>binding PotA domain protein (EC<br>3.6.3.31)       | potA           |             |                                                                                                                                                                                                                                    |
| mnas_478      | Spermidine/putrescine/ABC transporter substrate binding protein                         | potD           | peg.613     | Probable spermidine/putrescine substrate<br>binding protein in Mollicutes                                                                                                                                                          |
| mnas_770      | Spermidine/putrescine ABC transporter<br>permease protein PotB                          | potB           | peg.349     | Spermidine Putrescine ABC transporter permease component PotB (TC 3.A.1.11.1)                                                                                                                                                      |
| mnas_771      | Spermidine/putrescine transport system<br>permease PotC domain protein                  | potC           |             |                                                                                                                                                                                                                                    |

## Supplementary Table 2.14 Membrane associated, substrate-binding and transport proteins in the Ms03 draft genome.

| IGS          |                                                                                  |                | RAST    |                                                                                                  |  |
|--------------|----------------------------------------------------------------------------------|----------------|---------|--------------------------------------------------------------------------------------------------|--|
| Gene_id      | Gene name                                                                        | Gene<br>symbol | Gene_id | Gene name                                                                                        |  |
|              | cerol-3-phosphate ABC transporter                                                |                |         |                                                                                                  |  |
| mnas_488     | Putative sn-glycerol-3-phosphate ABC transporter, ATP-binding protein            | ugpC           | peg.621 | Multiple sugar ABC transporter, ATP-<br>binding protein                                          |  |
| mnas_489     | Putative sn-glycerol-3-phosphate<br>transport system permease protein            | ugpA           | peg.622 | N-Acetyl-D-glucosamine ABC transport system, permease protein                                    |  |
| mnas_490     | ABC transporter permease protein ugpE                                            | ugpE           | peg.623 | ABC transporter permease protein                                                                 |  |
| mnas_751     | sn-glycerol-3-phosphate ABC transporter,<br>ATP-binding UgpC domain protein      | ugpC           |         |                                                                                                  |  |
| p37 transpo  |                                                                                  |                |         |                                                                                                  |  |
| mnas_51      | High affinity transport system p37 family<br>protein                             |                | peg.425 | High affinity transport system protein p37 precursor                                             |  |
| mnas_52      | Phosphate/phosphonate ABC<br>transporter, ATP-binding protein (EC<br>3.6.3.28)   | PhnC           | peg.426 | ABC transporter ATP-binding protein                                                              |  |
| mnas_53      | Binding-dependent transport system<br>inner membrane component family<br>protein |                | peg.427 | Transport system permease protein p69                                                            |  |
|              | e permease ABC transporter                                                       | 1              | 1       |                                                                                                  |  |
| mnas_50      | Hypothetical protein                                                             |                | peg.424 | Oligopeptide ABC transporter ATP-binding<br>protein                                              |  |
| mnas_74      | Bacterial extracellular solute-binding protein                                   | оррА           | peg.581 | Oligopeptide ABC transporter, periplasmic<br>oligopeptide-binding protein OppA (TC<br>3.A.1.5.1) |  |
| mnas_75      | Oligopeptide ABC transporter, permease protein (OppB)                            | оррВ           | peg.582 | Oligopeptide transport system permease<br>protein OppB (TC 3.A.1.5.1)                            |  |
| mnas_76      | Oligopeptide ABC transporter, permease protein (OppC)                            | оррС           | peg.583 | Oligopeptide transport system permease<br>protein OppC (TC 3.A.1.5.1)                            |  |
| mnas_77      | Oligopeptide/dipeptide ATP-binding protein                                       | oppD           | peg.584 | Oligopeptide transport ATP-binding protein<br>OppD (TC 3.A.1.5.1)                                |  |
| mnas_78      | Oligopeptide ABC transporter, ATP-<br>binding protein OppF                       | oppF           | peg.585 | Oligopeptide transport ATP-binding protein<br>OppF (TC 3.A.1.5.1)                                |  |
| mnas_414     | Oligopeptide ABC transporter substrate-<br>binding protein                       | оррА           | peg.547 | Lipoprotein                                                                                      |  |
| mnas_415     | Oligopeptide ABC transporter, permease protein OppB                              | оррВ           |         |                                                                                                  |  |
| mnas_576     | Oligopeptide ABC transporter system,<br>permease protein OppC                    | оррС           | peg.90  | Oligopeptide transport system permease protein OppC (TC 3.A.1.5.1)                               |  |
| mnas_577     | Oligopeptide ABC transporter, ATP-<br>binding protein OppD                       | oppD           | peg.91  | Oligopeptide transport ATP-binding protein<br>OppD                                               |  |
| mnas_601     | Oligopeptide ABC transporter, ATP-<br>binding protein OppF                       | oppF           | peg.110 | Oligopeptide ABC transporter ATP-binding protein                                                 |  |
| mnas_806     | Putative oligopeptide ABC transporter,<br>ATP-binding protein OppF C-terminal    |                |         |                                                                                                  |  |
| Putative Lip |                                                                                  | 1              | 1       |                                                                                                  |  |
| mnas_148     | ABC transporter family protein                                                   |                | peg.138 | Lipid A export ATP-binding/permease protein MsbA                                                 |  |
| mnas_407     | ABC transporter family protein                                                   |                | peg.542 | Lipid A export ATP-binding/permease protein MsbA                                                 |  |
|              | rotein with beta galactosidase activity                                          |                |         |                                                                                                  |  |
| mnas_144     | Putative Beta-galactosidase                                                      |                | peg.134 | Beta-galactosidase (EC 3.2.1.23)                                                                 |  |
| mnas_145     | Beta-galactosidase domain protein (EC 3.2.1.23)                                  | bgaA2          | peg.135 | hypothetical protein                                                                             |  |
| mnas_146     | Beta-galactosidase domain protein (EC 3.2.1.23)                                  | bgaA           | peg.136 | Beta-galactosidase (EC 3.2.1.23)                                                                 |  |
| mnas_147     | Glycosyl hydrolases family 2, sugar<br>binding domain protein                    |                | peg.137 | Beta-galactosidase (EC 3.2.1.23)                                                                 |  |
|              |                                                                                  |                |         |                                                                                                  |  |

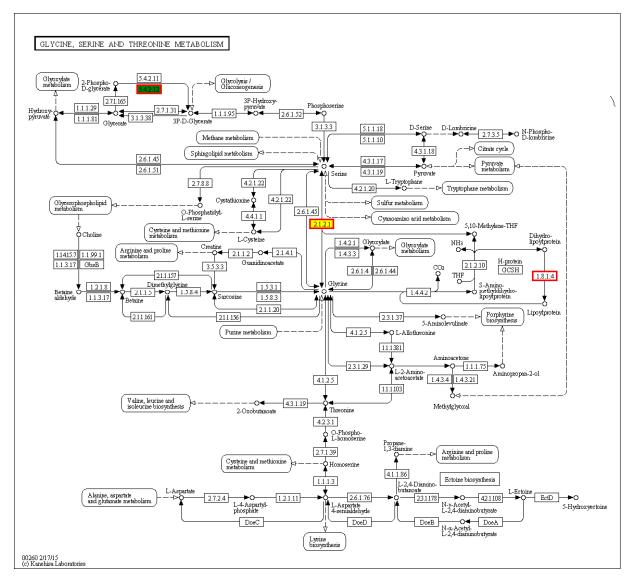
| IGS               |                                                                                                              |                | RAST         |                                                                                          |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|----------------|--------------|------------------------------------------------------------------------------------------|--|
| Gene_id Gene name |                                                                                                              | Gene<br>symbol | Gene_id      | Gene name                                                                                |  |
|                   | I membrane, peripheral, transport and puta                                                                   | ative ABC      |              |                                                                                          |  |
| mnas_476          | ZIP Zinc transporter family protein                                                                          |                | peg.611      | hypothetical protein                                                                     |  |
| mnas_199          | conserved hypothetical protein                                                                               |                | peg.292      | FIG000605: protein co-occurring with transport systems (COG1739)                         |  |
| mnas_226          | hemolysin C domain protein                                                                                   | hlyC           | peg.333      | Hypothetical protein                                                                     |  |
| mnas_797          | amino acid permease family protein                                                                           |                |              |                                                                                          |  |
| mnas_107          | D-lactate dehydrogenase (EC 1.1.1.28)                                                                        | ldhA           | mnas_10<br>7 | D-lactate dehydrogenase                                                                  |  |
| mnas_401          | DNA topoisomerase 4 subunit A (EC 5.99.1)                                                                    | parC           | peg.537      | Topoisomerase IV subunit A (EC 5.99.1)                                                   |  |
| mnas_239          | Putative sugar ABC transporter permease                                                                      |                | peg.345      | Unspecified monosaccharide ABC                                                           |  |
|                   | protein                                                                                                      |                |              | transport system, permease component 2                                                   |  |
|                   |                                                                                                              |                | peg.346      | Sugar ABC transporter, permease protein                                                  |  |
| mnas_93           | ABC transporter family protein                                                                               |                | peg.3        | ABC transporter ATP-binding protein                                                      |  |
| mnas_94           | Putative ABC transporter permease<br>protein                                                                 |                | peg.4        | ABC transporter permease protein                                                         |  |
| mnas_701          | Multidrug resistance ABC superfamily ATP binding cassette transporter, membrane domain protein (EC 3.6.3.42) | ndvA           |              |                                                                                          |  |
| mnas_273          | AAA ATPase, central region                                                                                   |                | peg.388      | ATPase, AAA family                                                                       |  |
| mnas_212          | ABC-2 type transporter family protein                                                                        |                | peg.312      | ABC transporter, permease protein                                                        |  |
| mnas_213          | ABC transporter family protein                                                                               |                | peg.313      | Methionine ABC transporter ATP-binding protein                                           |  |
| mnas_287          | ABC transporter family protein                                                                               |                | peg.400      | ABC transporter ATP-binding and permease protein (MDR homolog)                           |  |
| mnas_341          | ABC transporter family protein                                                                               |                | peg.467      | ABC transporter ATP-binding protein uup                                                  |  |
| mnas_406          | ABC transporter transmembrane region family protein                                                          |                |              |                                                                                          |  |
| mnas_565          | ABC transporter transmembrane region family protein                                                          |                |              |                                                                                          |  |
| mnas_564          | ABC transporter family protein                                                                               | 1              | peg.60       | FIG00836097: hypothetical protein                                                        |  |
| mnas_781          | ABC transporter family protein                                                                               |                |              |                                                                                          |  |
| mnas_802          | ABC transporter family protein                                                                               |                |              |                                                                                          |  |
| mnas_654          | putative membrane protein                                                                                    |                | peg.174      | Unspecified monosaccharide ABC<br>transport system, ATP-binding protein<br>748139-746763 |  |
| mnas_579          | ABC superfamily ATP binding cassette<br>transporter, ABC domain protein (EC<br>3.6.3.24)                     | nikE           |              |                                                                                          |  |
| mnas_655          | Putative Sugar ABC transporter ATP-<br>binding protein                                                       | mglA           | peg.176      | Unspecified monosaccharide ABC transport system, ATP-binding protein                     |  |

| OppA   |                                                                      | embership: None predicted                    |                                   |  |  |  |  |  |  |  |
|--------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|
| (1288) | InterPro Domain                                                      | s: None predicted                            |                                   |  |  |  |  |  |  |  |
|        | GO term prediction                                                   |                                              |                                   |  |  |  |  |  |  |  |
|        | Biological Process: None predicted                                   |                                              |                                   |  |  |  |  |  |  |  |
|        | Molecular Function: None predicted                                   |                                              |                                   |  |  |  |  |  |  |  |
|        | Cellular Component: None predicted                                   |                                              |                                   |  |  |  |  |  |  |  |
|        | Signature matches                                                    |                                              |                                   |  |  |  |  |  |  |  |
|        | Program                                                              | Motif/domain                                 | Regions                           |  |  |  |  |  |  |  |
|        | PROSITE                                                              | PS51257 (PROKAR_LIPOPROTEIN)                 | 1-23                              |  |  |  |  |  |  |  |
|        | COILS                                                                | Coil                                         | 68-103, 158-224, 249-284          |  |  |  |  |  |  |  |
|        | PHOBIUS                                                              | SIGNAL_PEPTIDE                               | 1-20                              |  |  |  |  |  |  |  |
|        |                                                                      | SIGNAL_PEPTIDE_C_REGION                      | 17-20                             |  |  |  |  |  |  |  |
|        |                                                                      | SIGNAL_PEPTIDE_H_REGION                      | 5-16                              |  |  |  |  |  |  |  |
|        |                                                                      | SIGNAL_PEPTIDE_N_REGION                      | 1-4                               |  |  |  |  |  |  |  |
|        |                                                                      | Non_Cytoplasmic_Domains                      | 21-1288                           |  |  |  |  |  |  |  |
| OppA2  |                                                                      | membership: ABC-type oligopeptide transport  | system, solute-binding component, |  |  |  |  |  |  |  |
| (1030) | Mycoplasmatacea                                                      | ae, predicted (IPR016880)                    |                                   |  |  |  |  |  |  |  |
|        | InterPro Domains: Solute-binding protein family 5 domain (IPR000914) |                                              |                                   |  |  |  |  |  |  |  |
|        |                                                                      | GO term prediction                           |                                   |  |  |  |  |  |  |  |
|        | -                                                                    | Process: None predicted                      |                                   |  |  |  |  |  |  |  |
|        |                                                                      | Function: None predicted                     |                                   |  |  |  |  |  |  |  |
|        | Cellular Component: None predicted                                   |                                              |                                   |  |  |  |  |  |  |  |
|        | Signature matches                                                    |                                              |                                   |  |  |  |  |  |  |  |
|        | Program                                                              | Motif/domain                                 | Regions                           |  |  |  |  |  |  |  |
|        | PIR                                                                  | PIRSF028335 (ABC_oligopep_OppA_prd)          | 2-1030                            |  |  |  |  |  |  |  |
|        | Pfam                                                                 | PF00496 (SBP_bac_5)                          | 191-710                           |  |  |  |  |  |  |  |
|        | GENE3D                                                               | CATH Superfamily: G3DSA:3.10.105.10          | 617-749                           |  |  |  |  |  |  |  |
|        | PROSITE                                                              | PS51257 (PROKAR_LIPOPROTEIN)                 | 1-27                              |  |  |  |  |  |  |  |
|        | PHOBIUS                                                              | SIGNAL_PEPTIDE                               | 1-27                              |  |  |  |  |  |  |  |
|        |                                                                      | SIGNAL_PEPTIDE_C_REGION                      | 20-27                             |  |  |  |  |  |  |  |
|        |                                                                      | SIGNAL_PEPTIDE_H_REGION                      | 8-19                              |  |  |  |  |  |  |  |
|        |                                                                      | SIGNAL_PEPTIDE_N_REGION                      | 1-7                               |  |  |  |  |  |  |  |
|        | SUPERFAMILY                                                          | SSF53850:Periplasmic binding protein-like II | 391-589, 632-776                  |  |  |  |  |  |  |  |
|        |                                                                      |                                              |                                   |  |  |  |  |  |  |  |

Supplementary Table 2.15 The InterPro results of the Ms03 Opp proteins.

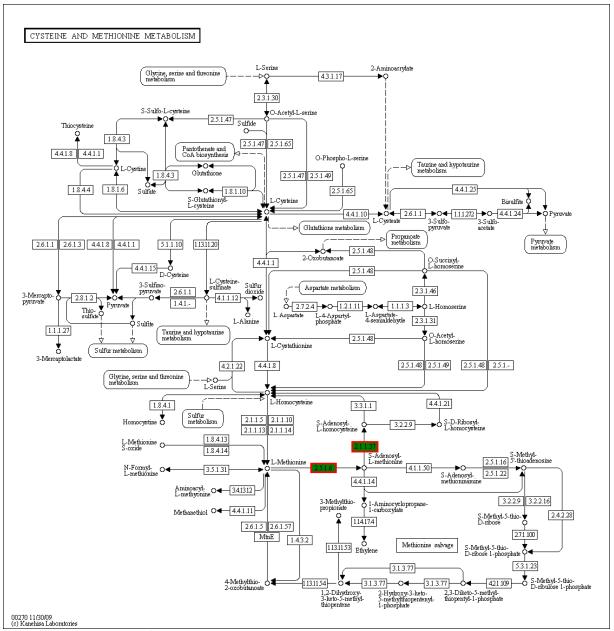
| ОррВ  | Protein family mer           | mbership: None predicted                     |                                   |  |  |  |  |  |  |  |  |
|-------|------------------------------|----------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|
| (387) | -                            | ABC transporter type 1, transmembrane domain | MetI-like (IPR000515)             |  |  |  |  |  |  |  |  |
| (001) | GO term predictio            |                                              |                                   |  |  |  |  |  |  |  |  |
|       |                              | rocess: GO:0006810 transport                 |                                   |  |  |  |  |  |  |  |  |
|       |                              | unction: GO:0005215 transporter activity     |                                   |  |  |  |  |  |  |  |  |
|       |                              | nponent: GO:0016020 membrane                 |                                   |  |  |  |  |  |  |  |  |
|       | Signature matches            | •                                            |                                   |  |  |  |  |  |  |  |  |
|       | Program Motif/domain Regions |                                              |                                   |  |  |  |  |  |  |  |  |
|       | Pfam                         | PF00528: BPD_transp_1                        | 150-353                           |  |  |  |  |  |  |  |  |
|       | PROSITE                      | PS50928: ABC TM1                             | 132-341                           |  |  |  |  |  |  |  |  |
|       | GENE3D                       | CATH Superfamily: G3DSA:1.10.3720.10         | 126-346                           |  |  |  |  |  |  |  |  |
|       | SUPERFAMILY                  | SSF161098: Metl-like                         | 126-336                           |  |  |  |  |  |  |  |  |
|       | PANTHER                      | PTHR30465 : Peptide transport system         | 1-359                             |  |  |  |  |  |  |  |  |
|       |                              | permease protein                             |                                   |  |  |  |  |  |  |  |  |
|       |                              | PTHR30465:SF0: Oligopeptide Transport        | 1-359                             |  |  |  |  |  |  |  |  |
|       |                              | System Permease Protein OppB                 |                                   |  |  |  |  |  |  |  |  |
|       | PHOBIUS                      | Cytoplasmic_Domains                          | 1-8, 160-170, 235-279, 349-387    |  |  |  |  |  |  |  |  |
|       |                              | Non_Cytoplasmic_Domains                      | 31-133, 196-214, 303-321          |  |  |  |  |  |  |  |  |
|       |                              | Transmembrane_Domains                        | 9-30, 134-159, 171-195, 215-234,  |  |  |  |  |  |  |  |  |
|       |                              | -                                            | 280-302, 322-348                  |  |  |  |  |  |  |  |  |
|       | ТМНММ                        | TMhelix                                      | 9-30, 136-158, 171-193, 218-240,  |  |  |  |  |  |  |  |  |
|       |                              |                                              | 280-302, 322-344                  |  |  |  |  |  |  |  |  |
| OppB2 | Protein family mer           | mbership: None predicted                     |                                   |  |  |  |  |  |  |  |  |
| (351) | InterPro Domains:            | ABC transporter type 1, transmembrane domain | MetI-like (IPR000515)             |  |  |  |  |  |  |  |  |
|       | GO term predictio            |                                              |                                   |  |  |  |  |  |  |  |  |
|       | -                            | rocess: GO:0006810 transport                 |                                   |  |  |  |  |  |  |  |  |
|       |                              | unction: None predicted                      |                                   |  |  |  |  |  |  |  |  |
|       |                              | nponent: GO:0016020 membrane                 |                                   |  |  |  |  |  |  |  |  |
|       | Signature matches            |                                              |                                   |  |  |  |  |  |  |  |  |
|       | Program                      | Motif/domain                                 | Regions                           |  |  |  |  |  |  |  |  |
|       | Pfam                         | PF00528: BPD_transp_1                        | 157-348                           |  |  |  |  |  |  |  |  |
|       | PROSITE                      | PS50928: ABC_TM1                             | 139-335                           |  |  |  |  |  |  |  |  |
|       | GENE3D                       | CATH Superfamily: G3DSA:1.10.3720.10         | 134-344                           |  |  |  |  |  |  |  |  |
|       | SUPERFAMILY                  | SSF161098: Metl-like                         | 133-348                           |  |  |  |  |  |  |  |  |
|       | PANTHER                      | PTHR30465 : Peptide transport system         | 27-350                            |  |  |  |  |  |  |  |  |
|       |                              | permease protein                             |                                   |  |  |  |  |  |  |  |  |
|       |                              | PTHR30465:SF0: Oligopeptide Transport        | 27-350                            |  |  |  |  |  |  |  |  |
|       |                              | System Permease Protein OppB                 |                                   |  |  |  |  |  |  |  |  |
|       | PHOBIUS                      | Cytoplasmic_Domains                          | 1-52, 166-176, 233-269, 399-351   |  |  |  |  |  |  |  |  |
|       |                              | Non_Cytoplasmic_Domains                      | 73-142, 202-212, 297-315          |  |  |  |  |  |  |  |  |
|       |                              | Transmembrane_Domains                        | 53-71, 143-165, 177-201, 213-232, |  |  |  |  |  |  |  |  |
|       |                              |                                              | 270-296, 316-338                  |  |  |  |  |  |  |  |  |
|       | ТМНММ                        | TMhelix                                      | 53-75, 142-164, 176-198, 213-235, |  |  |  |  |  |  |  |  |
|       |                              |                                              | 270-292, 317-339                  |  |  |  |  |  |  |  |  |

| OppC           | Protein family me                        | embership: None predicted                                                                                                                            |                                                     |  |  |  |  |  |  |  |  |  |
|----------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|--|--|--|
| (453)          | _                                        | s: Oligopeptide transport permease C-like, N- t                                                                                                      | erminal domain (IPR025966)                          |  |  |  |  |  |  |  |  |  |
| ( )            |                                          | ABC transporter type 1, transmembrane don                                                                                                            |                                                     |  |  |  |  |  |  |  |  |  |
|                | GO term prediction                       |                                                                                                                                                      |                                                     |  |  |  |  |  |  |  |  |  |
|                | Biological Process: GO:0006810 transport |                                                                                                                                                      |                                                     |  |  |  |  |  |  |  |  |  |
|                | Molecular Function: None predicted       |                                                                                                                                                      |                                                     |  |  |  |  |  |  |  |  |  |
|                | Cellular Component: GO:0016020 membrane  |                                                                                                                                                      |                                                     |  |  |  |  |  |  |  |  |  |
|                | Signature matches:                       |                                                                                                                                                      |                                                     |  |  |  |  |  |  |  |  |  |
|                | Program                                  | Motif/domain                                                                                                                                         | Regions                                             |  |  |  |  |  |  |  |  |  |
|                | Pfam                                     | PF12911: OppC_N                                                                                                                                      | 40-82                                               |  |  |  |  |  |  |  |  |  |
|                |                                          | PF00528: BPD_transp_1                                                                                                                                | 267-450                                             |  |  |  |  |  |  |  |  |  |
|                | PROSITE                                  | PS50928: ABC TM1                                                                                                                                     | 253-438                                             |  |  |  |  |  |  |  |  |  |
|                | SUPERFAMILY                              | SSF161098: Metl-like family                                                                                                                          | 244-431                                             |  |  |  |  |  |  |  |  |  |
|                | PANTHER                                  | PTHR30465: Peptide Transport System                                                                                                                  | -                                                   |  |  |  |  |  |  |  |  |  |
|                |                                          | Permease Protein                                                                                                                                     | 20 440                                              |  |  |  |  |  |  |  |  |  |
|                |                                          | PTHR30465:SF2 : Dipeptide transpor                                                                                                                   | 25 448                                              |  |  |  |  |  |  |  |  |  |
|                |                                          | system permease protein dppc-related                                                                                                                 | 25-440                                              |  |  |  |  |  |  |  |  |  |
|                | PHOBIUS                                  |                                                                                                                                                      | 1-49, 277-287, 337-374, 442-453                     |  |  |  |  |  |  |  |  |  |
|                | РПОВЮЗ                                   | Cytoplasmic_Domain                                                                                                                                   |                                                     |  |  |  |  |  |  |  |  |  |
|                |                                          | Non_Cytoplasmic_Domain                                                                                                                               | 74-251, 311-375, 396-417                            |  |  |  |  |  |  |  |  |  |
|                |                                          | Transmembrane                                                                                                                                        | 50-73, 252-276, 288-310, 316-336,                   |  |  |  |  |  |  |  |  |  |
|                |                                          |                                                                                                                                                      | 375-395, 418-441<br>50 72 255 277 280 211 215 227   |  |  |  |  |  |  |  |  |  |
|                | ТМНММ                                    | TMhelix                                                                                                                                              | 50-72, 255-277, 289-311, 315-337,                   |  |  |  |  |  |  |  |  |  |
|                |                                          |                                                                                                                                                      | 371-393, 419-441                                    |  |  |  |  |  |  |  |  |  |
| Opp2C<br>(360) | -                                        | <ul> <li>embership: None Predicted</li> <li>s: Oligopeptide transport permease C-like, N- t<br/>ABC transporter type 1, transmembrane don</li> </ul> |                                                     |  |  |  |  |  |  |  |  |  |
|                | GO term prediction                       |                                                                                                                                                      |                                                     |  |  |  |  |  |  |  |  |  |
|                |                                          | Process: GO:0006810 transport                                                                                                                        |                                                     |  |  |  |  |  |  |  |  |  |
|                | -                                        | Function: None predicted                                                                                                                             |                                                     |  |  |  |  |  |  |  |  |  |
|                |                                          | omponent: GO:0016020 membrane                                                                                                                        |                                                     |  |  |  |  |  |  |  |  |  |
|                | Signature matche                         | -                                                                                                                                                    |                                                     |  |  |  |  |  |  |  |  |  |
|                | Program                                  | Motif/domain                                                                                                                                         | Regions                                             |  |  |  |  |  |  |  |  |  |
|                | Pfam                                     | PF12911: OppC_N                                                                                                                                      | 84-132                                              |  |  |  |  |  |  |  |  |  |
|                |                                          | PF00528: BPD_transp_1                                                                                                                                | 181-354                                             |  |  |  |  |  |  |  |  |  |
|                | PROSITE                                  | PS50928: ABC_TM1                                                                                                                                     | 163-349                                             |  |  |  |  |  |  |  |  |  |
|                | SUPERFAMILY                              | —                                                                                                                                                    | 156-342                                             |  |  |  |  |  |  |  |  |  |
|                | GENE3D                                   | G3DSA:1.10.3720.10                                                                                                                                   | 154-357                                             |  |  |  |  |  |  |  |  |  |
|                | PANTHER                                  | PTHR30465: Peptide Transport Syste                                                                                                                   |                                                     |  |  |  |  |  |  |  |  |  |
|                | PANITER                                  |                                                                                                                                                      | 11 00-000                                           |  |  |  |  |  |  |  |  |  |
|                |                                          | Permease Protein                                                                                                                                     |                                                     |  |  |  |  |  |  |  |  |  |
|                |                                          | PTHR30465:SF2 : Dipeptide transport syste                                                                                                            | m 68-356                                            |  |  |  |  |  |  |  |  |  |
|                |                                          | permease protein dppc-related                                                                                                                        |                                                     |  |  |  |  |  |  |  |  |  |
|                | PHOBIUS                                  | Cytoplasmic_Domain                                                                                                                                   | 1-95, 189-199, 245-276, 353-360                     |  |  |  |  |  |  |  |  |  |
|                |                                          | Non_Cytoplasmic_Domain                                                                                                                               | 118-164, 220-224, 308-326                           |  |  |  |  |  |  |  |  |  |
|                |                                          | Transmembrane                                                                                                                                        | 96-117, 165-188, 200-219, 225-244, 277-307, 327-352 |  |  |  |  |  |  |  |  |  |
|                | ТМНММ                                    | TMhelix                                                                                                                                              | 96-118, 165-187. 199-221, 225-244, 273-295, 330-352 |  |  |  |  |  |  |  |  |  |

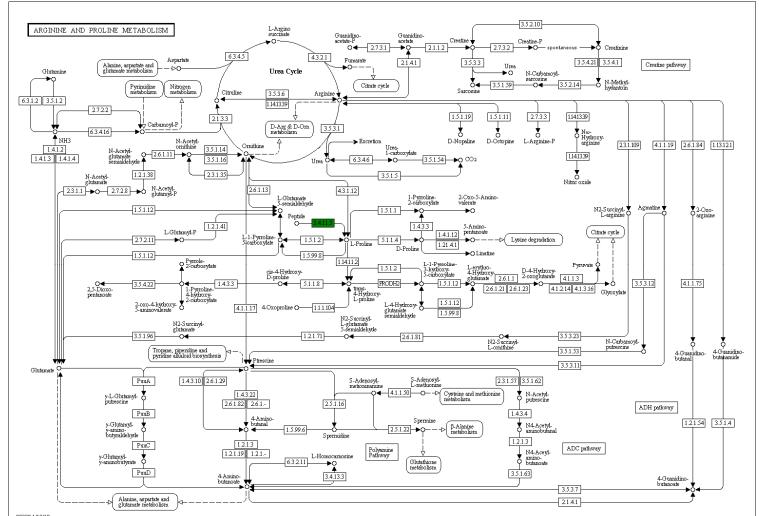

| OppD           | Protein family mem                                                                                                                                                                | bership: None predicted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |  |  |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| (348)          |                                                                                                                                                                                   | P-loop containing nucleoside triphosphate hydrolase (IPR02741)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7)                                                                                        |  |  |  |  |  |  |  |
| (0.0)          |                                                                                                                                                                                   | AAA+ ATPase domain (IPR003593)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /                                                                                         |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | ABC transporter-like (IPR003439)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3)                                                                                       |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |  |  |  |  |  |  |  |
|                | GO term prediction                                                                                                                                                                | Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C-terminal (IPR010066)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | racease: CO-0015922 pontido transport                                                     |  |  |  |  |  |  |  |
|                | Biological Process: GO:0015833 peptide transport<br>Molecular Function: GO:0000166 nucleotide binding                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |  |  |  |  |  |  |  |
|                | Wolcouldi 1                                                                                                                                                                       | GO:0005524 ATP binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           |  |  |  |  |  |  |  |
|                | GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | GO:0016887 ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |  |  |  |  |  |  |  |
|                | Cellular Con                                                                                                                                                                      | nponent: GO:0016020 membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |  |  |  |  |  |  |  |
|                | Signature matches                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |  |  |  |  |  |  |  |
|                | Program                                                                                                                                                                           | Motif/domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regions                                                                                   |  |  |  |  |  |  |  |
|                | Pfam                                                                                                                                                                              | PF00005: ABC_tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27-187                                                                                    |  |  |  |  |  |  |  |
|                | 1 Idili                                                                                                                                                                           | PF08352: oligo_HPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 239-300                                                                                   |  |  |  |  |  |  |  |
|                | PROSITE                                                                                                                                                                           | PS50893: ABC_TRANSPORTER_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8-260                                                                                     |  |  |  |  |  |  |  |
|                | GENE3D                                                                                                                                                                            | G3DSA: 3.40.50.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-263                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                           |  |  |  |  |  |  |  |
|                | SUPERFAMILY                                                                                                                                                                       | SSF52540: P-loop containing nucleoside triphosphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34-310                                                                                    |  |  |  |  |  |  |  |
|                | PANTHER                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 001                                                                                     |  |  |  |  |  |  |  |
|                | PANTHER                                                                                                                                                                           | PTHR24220: FAMILY NOT NAMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-321                                                                                     |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | PTHR24220:SF177: D,D-DIPEPTIDE TRANSPORT ATP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-321                                                                                     |  |  |  |  |  |  |  |
|                | TIODEAN                                                                                                                                                                           | BINDING PROTEIN DDPD-RELATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 007.000                                                                                   |  |  |  |  |  |  |  |
|                | TIGRFAMs                                                                                                                                                                          | TIGR01727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 237-320                                                                                   |  |  |  |  |  |  |  |
|                | SMART                                                                                                                                                                             | SM00382 (AAA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35-237                                                                                    |  |  |  |  |  |  |  |
| 0 00           |                                                                                                                                                                                   | I I NI PAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                           |  |  |  |  |  |  |  |
| OppD2          |                                                                                                                                                                                   | bership: None predicted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7)                                                                                        |  |  |  |  |  |  |  |
| OppD2<br>(402) |                                                                                                                                                                                   | P-loop containing nucleoside triphosphate hydrolase (IPR02741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7)                                                                                        |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7)                                                                                        |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |  |  |  |  |  |  |  |
|                |                                                                                                                                                                                   | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:                                                                                                                                                                 | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction                                                                                                                                           | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr                                                                                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr                                                                                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr                                                                                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr                                                                                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity                                                                                                                                                                                                                                                                                                                                                                                                                                | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr                                                                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                  | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pi<br>Molecular Fi<br>Cellular Con                                                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane                                                                                                                                                                                                                                                                                                                                                                  | 3)                                                                                        |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr<br>Cellular Con<br>Signature matches                                                                     | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane                                                                                                                                                                                                                                                                                                                                                                  | 3)<br>C-terminal (IPR010066)                                                              |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr<br>Cellular Con<br>Signature matches<br>Program                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane                                                                                                                                                                                                                                                                                                                                                                  | 3)<br>C-terminal (IPR010066)<br>Regions                                                   |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr<br>Cellular Con<br>Signature matches                                                                     | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>:<br>Motif/domain<br>PF00005: ABC_tran                                                                                                                                                                                                                                                                                                                        | 3)<br>C-terminal (IPR010066)<br>Regions<br>80-239                                         |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pi<br>Molecular Fi<br>Cellular Con<br>Signature matches<br>Program<br>Pfam                                                  | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY                                                                                                                                                                                                                                                                                                        | 3)<br>C-terminal (IPR010066)<br>Regions<br>80-239<br>291-352                              |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr<br>Cellular Con<br>Signature matches<br>Program                                                          | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1                                                                                                                                                                                                                                                                         | Regions<br>80-239<br>291-352<br>212-226                                                   |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE                                       | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2                                                                                                                                                                                                                                           | Regions<br>80-239<br>291-352<br>212-226<br>58-312                                         |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pro<br>Molecular Fri<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE<br>GENE3D                           | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300                                                                                                                                                                                                                     | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312                               |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pr<br>Molecular Fr<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE                                       | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300<br>SSF52540: P-loop containing nucleoside triphosphate                                                                                                                                                              | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312                               |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pro<br>Molecular Fri<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE<br>GENE3D<br>SUPERFAMILY            | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356)<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300<br>SSF52540: P-loop containing nucleoside triphosphate<br>hydrolases                                                                                                                                               | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312<br>62-310                     |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pro<br>Molecular Fri<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE<br>GENE3D                           | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356)<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300<br>SSF52540: P-loop containing nucleoside triphosphate<br>hydrolases<br>PTHR24220: FAMILY NOT NAMED                                                                                                                | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312<br>62-310<br>57-388           |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pro<br>Molecular Fri<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE<br>GENE3D<br>SUPERFAMILY            | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300<br>SSF52540: P-loop containing nucleoside triphosphate<br>hydrolases<br>PTHR24220: FAMILY NOT NAMED<br>PTHR24220: FAMILY NOT NAMED<br>PTHR24220: SF177: D,D-dipeptide transport ATP-binding                         | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312<br>62-310<br>57-388           |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pro<br>Molecular Fri<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE<br>GENE3D<br>SUPERFAMILY<br>PANTHER | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300<br>SSF52540: P-loop containing nucleoside triphosphate<br>hydrolases<br>PTHR24220: FAMILY NOT NAMED<br>PTHR24220: FAMILY NOT NAMED<br>PTHR24220: SF177: D,D-dipeptide transport ATP-binding<br>protein ddpD-related | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312<br>62-310<br>57-388<br>57-388 |  |  |  |  |  |  |  |
|                | InterPro Domains:<br>GO term prediction<br>Biological Pro<br>Molecular Fri<br>Cellular Con<br>Signature matches<br>Program<br>Pfam<br>PROSITE<br>GENE3D<br>SUPERFAMILY            | P-loop containing nucleoside triphosphate hydrolase (IPR02741)<br>AAA+ ATPase domain (IPR003593)<br>ABC transporter-like (IPR003439)<br>Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356<br>Oligopeptide/dipeptide ABC transporter, ATP-binding protein, C<br>rocess: GO:0015833 peptide transport<br>unction: GO:0000166 nucleotide binding<br>GO:0005524 ATP binding<br>GO:0015197 peptide transporter activity<br>GO:0016887 ATPase activity<br>nponent: GO:0016020 membrane<br>Motif/domain<br>PF00005: ABC_tran<br>PF08352: oligo_HPY<br>PS00211: ABC_TRANSPORTER_1<br>PS50893: ABC_TRANSPORTER_2<br>G3DSA: 3.40.50.300<br>SSF52540: P-loop containing nucleoside triphosphate<br>hydrolases<br>PTHR24220: FAMILY NOT NAMED<br>PTHR24220: FAMILY NOT NAMED<br>PTHR24220: SF177: D,D-dipeptide transport ATP-binding                         | Regions<br>80-239<br>291-352<br>212-226<br>58-312<br>58-312<br>62-310<br>57-388           |  |  |  |  |  |  |  |

| OppF  | Protein family memb                              | ership: None predicted.                                        |                             |  |  |  |  |  |  |  |  |
|-------|--------------------------------------------------|----------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| (795) |                                                  | -loop containing nucleoside triphosphate hydrolase (IPR027417) |                             |  |  |  |  |  |  |  |  |
| (100) |                                                  | AA+ ATPase domain (IPR003593)                                  |                             |  |  |  |  |  |  |  |  |
|       |                                                  | BC transporter-like (IPR003439)                                |                             |  |  |  |  |  |  |  |  |
|       |                                                  | Digopeptide/dipeptide ABC transporter, C- terminal (IPR013563) |                             |  |  |  |  |  |  |  |  |
|       | GO term prediction                               |                                                                |                             |  |  |  |  |  |  |  |  |
|       | Biological Process: GO:0015833 peptide transport |                                                                |                             |  |  |  |  |  |  |  |  |
|       | _                                                | action: GO:0000166 nucleotide binding                          |                             |  |  |  |  |  |  |  |  |
|       |                                                  | GO:0005524 ATP binding                                         |                             |  |  |  |  |  |  |  |  |
|       |                                                  | GO:0005524 ATP binding<br>GO:0016887 ATPase activity           |                             |  |  |  |  |  |  |  |  |
|       |                                                  | GO:0017111 nucleoside-triphosphatase activity                  |                             |  |  |  |  |  |  |  |  |
|       | Cellular Comr                                    | oonent: None predicted.                                        |                             |  |  |  |  |  |  |  |  |
|       | Signature matches                                | Sonent. None predicted.                                        |                             |  |  |  |  |  |  |  |  |
|       | Program                                          | Motif/domain                                                   | Regions                     |  |  |  |  |  |  |  |  |
|       | Pfam                                             |                                                                | -                           |  |  |  |  |  |  |  |  |
|       | Fidili                                           | PF00005: ABC_tran                                              | 26-127, 594-660<br>711-743  |  |  |  |  |  |  |  |  |
|       | DDOOLTE                                          |                                                                | -                           |  |  |  |  |  |  |  |  |
|       | PROSITE                                          | PS50893: ABC_TRANSPORTER_2                                     | 6-732                       |  |  |  |  |  |  |  |  |
|       |                                                  | PS00211: ABC_TRANSPORTER_1                                     | 632-646                     |  |  |  |  |  |  |  |  |
|       | GENE3D                                           | G3DSA: 3.40.50.300                                             | 2-127, 610-735              |  |  |  |  |  |  |  |  |
|       | SUPERFAMILY                                      |                                                                | 4-126, 596-723              |  |  |  |  |  |  |  |  |
|       |                                                  | hydrolases                                                     |                             |  |  |  |  |  |  |  |  |
|       | PANTHER                                          | PTHR24220: FAMILY NOT NAMED                                    | 1-744                       |  |  |  |  |  |  |  |  |
|       |                                                  | PTHR24220:SF214: D,D-DIPEPTIDE TRANSPORT ATP-                  | 1-744                       |  |  |  |  |  |  |  |  |
|       |                                                  | BINDING PROTEIN DDPF-RELATED                                   |                             |  |  |  |  |  |  |  |  |
|       | SMART                                            | SM00382: AAA                                                   | 34-709                      |  |  |  |  |  |  |  |  |
|       | COILS                                            | Coil                                                           | 394-419,441-462,<br>470-491 |  |  |  |  |  |  |  |  |
| OppF2 | Protein family memb                              | ership: None predicted.                                        |                             |  |  |  |  |  |  |  |  |
| (443) | InterPro Domains: P                              | -loop containing nucleoside triphosphate hydrolase (IPR027417) |                             |  |  |  |  |  |  |  |  |
|       |                                                  | AAA+ ATPase domain (IPR003593)                                 |                             |  |  |  |  |  |  |  |  |
|       |                                                  | ABC transporter-like (IPR003439)                               |                             |  |  |  |  |  |  |  |  |
|       |                                                  | Oligopeptide/dipeptide ABC transporter, C- terminal (IPR01356  | 3)                          |  |  |  |  |  |  |  |  |
|       | GO term prediction                               |                                                                |                             |  |  |  |  |  |  |  |  |
|       | Biological Pro                                   | cess: GO:0015833 peptide transport                             |                             |  |  |  |  |  |  |  |  |
|       | Molecular Fur                                    | nction: GO:0000166 nucleotide binding                          |                             |  |  |  |  |  |  |  |  |
|       |                                                  | GO:0005524 ATP binding                                         |                             |  |  |  |  |  |  |  |  |
|       |                                                  | GO:0016887 ATPase activity                                     |                             |  |  |  |  |  |  |  |  |
|       | Cellular Comp                                    | oonent: None predicted.                                        |                             |  |  |  |  |  |  |  |  |
|       | Signature matches                                |                                                                |                             |  |  |  |  |  |  |  |  |
|       | Program                                          | Motif/domain                                                   | Regions                     |  |  |  |  |  |  |  |  |
|       | Pfam                                             | PF00005: ABC_tran                                              | 64-312                      |  |  |  |  |  |  |  |  |
|       |                                                  | PF08352: oligo_HPY                                             | 364-396                     |  |  |  |  |  |  |  |  |
|       | PROSITE                                          | PS50893: ABC_TRANSPORTER_2                                     | 45-385                      |  |  |  |  |  |  |  |  |
|       |                                                  | PS00211: ABC_TRANSPORTER_1                                     | 285-299                     |  |  |  |  |  |  |  |  |
|       | GENE3D                                           | G3DSA: 3.40.50.300                                             | 44-162, 249-395             |  |  |  |  |  |  |  |  |
|       | SUPERFAMILY                                      | SSF52540: P-loop containing nucleoside triphosphate            |                             |  |  |  |  |  |  |  |  |
|       |                                                  | hydrolases                                                     |                             |  |  |  |  |  |  |  |  |
|       | PANTHER                                          | PTHR24220: FAMILY NOT NAMED                                    | 44-394                      |  |  |  |  |  |  |  |  |
|       |                                                  | PTHR24220:SF336: D,D-DIPEPTIDE TRANSPORT ATP-                  |                             |  |  |  |  |  |  |  |  |
|       |                                                  | BINDING PROTEIN DDPF-RELATED                                   |                             |  |  |  |  |  |  |  |  |
|       | SMART                                            | SM00382: AAA                                                   | 71-362                      |  |  |  |  |  |  |  |  |
|       | COILS                                            | Coil                                                           | 234-258                     |  |  |  |  |  |  |  |  |
|       | 10013                                            |                                                                | 234-230                     |  |  |  |  |  |  |  |  |




Supplementary Figure 2.1 Alanine, aspartate and glutamate metabolism in Ms03. The enzymes coloured in green were annotated in both RAST and IGS analyses while the enzymes in white were not annotated in Ms03 draft genome annotations. In the *M. synoviae* 53 genome no enzymes were annotated for this pathway. The schematic was downloaded from metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53. This schematic represents the KEGG reference pathway 00250.






Supplementary Figure 2.2 Glycine, serine and theonine metabolism in Ms03. The enzymes coloured in green were annotated in both RAST and IGS analyses, enzymes in yellow were only annotated in IGS analyses while the enzymes in white were not annotated in Ms03 draft genome annotations. Annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 (msy00270). This schematic represents the KEGG reference pathway 00270.





Supplementary Figure 2.3 Cysteine and methionine metabolism in Ms03. The enzymes coloured in green were annotated in both RAST and IGS analyses while the enzymes in white were not annotated in Ms03 draft genome annotations. Annotated enzymes of the complete *M. synoviae* 53 genome are indicated with red boxes. The schematic was downloaded from metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins as well as the KEGG pathway of the *M. synoviae* 53 (msy00270). This schematic represents the KEGG reference pathway 00270.



00330 1/12/10 (c) Kanehisa Laboratories

Supplementary Figure 2.4 Arginine and proline metabolism in Ms03. The enzymes coloured in green were annotated in both RAST and IGS analyses while the enzymes in white were not annotated in Ms03 draft genome annotations. In the *M. synoviae* 53 genome no enzymes were annotated for this pathway. The schematic was downloaded from metabolic analysis in RAST and adapted to include the Ms03 IGS annotated proteins. This schematic represents the KEGG reference pathway 00330.

# Appendix 3 Supplementary tables and figures for Chapter 4

| Supplementary Table 1 | I Inventory of the opp operons | within the mycoplasma | genomes used for analyses |
|-----------------------|--------------------------------|-----------------------|---------------------------|
|                       |                                |                       |                           |

| Species                                              | Abbr         | NCBI nr               | Annotation opp operons (geno                                                     | mic I | ocation <sup>1</sup> )                                                                |    |                                                                          |    |
|------------------------------------------------------|--------------|-----------------------|----------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------|----|
| Candidatus Mycoplasma<br>haemolamae str. Purdue      | MHPL         | NC_018219.1           | ND                                                                               |       |                                                                                       |    |                                                                          |    |
| Candidatus Mycoplasma<br>haemominutum 'Birmingham 1' | MHM          | NC_021007.1           | ND                                                                               |       |                                                                                       |    |                                                                          |    |
| M. agalactiae                                        | MAGa         | NC_013948.1           | oppA <sup>2</sup> BCDF<br>(39649-34950)                                          | в     | MAGa1090 <sup>3</sup> , oppBCDF<br>(115992-124849)                                    | А  |                                                                          |    |
| <i>M. agalactiae</i> PG2                             | MAG          | NC_009497.1           | oppA <sup>2</sup> BCDF<br>(40944-32960)                                          | в     | MAG1000 <sup>3</sup> , oppBCDF<br>(112247-121103)                                     | А  |                                                                          |    |
| <i>M. alligatoris</i> A21JP2                         | MALL         | NZ_ADNC000<br>00000.1 | <i>MALL_0660<sup>3</sup>-0664</i><br>(contig: ADNC01000007.1,<br>22108-31018)    | A     | MALL_0007 <sup>2</sup> -0011<br>(contig: ADNC01000018.1, 2432-<br>10724)              | B1 | MALL_0020 <sup>2</sup> -0024<br>(contig: ADNC01000020.1, 7011-<br>14606) | B2 |
| M. arthritidis 158L3-1                               | MARTH        | NC_011025.1           | MARTH_orf403 <sup>2</sup> , oppB1C1DF<br>(366708-357886)                         | А     |                                                                                       |    |                                                                          |    |
| <i>M. bovis</i> Hubei-1                              | MMB          | NC_015725.1           | oppA1 <sup>2</sup> B1C1D1F1<br>(40995-32981)                                     | в     | oppA2 <sup>3</sup> B2C2D2F2<br>(121202-127178)                                        | А  |                                                                          |    |
| <i>M. bovis</i> PG45                                 | MBOVP<br>G45 | NC_014760.1           | MBOVPG45_0037 <sup>2</sup> , oppB,<br>MBOVPG45_0035, oppDF<br>(39666-31652)      | в     | MBOVPG45_0112 <sup>3</sup> -0116<br>(119020-127881)                                   | А  |                                                                          |    |
| <i>M. capricolum</i> subsp.<br>capricolum ATCC 27343 | MCAP         | NC_007633.1           | MCAP_0116 <sup>2</sup> -0120<br>(138537-146357)                                  | В     | MCAP_0161-0164, MCAP_0165 <sup>2</sup><br>(195862-204849)                             | С  |                                                                          |    |
| <i>M. conjunctivae</i> HRC/581                       | MCJ          | NC_012806.1           | MCJ_002370 <sup>3</sup> , oppBCD-1F<br>(220854-229281)                           | A     | oppB-1C-1D-1F-1, 2 genes <sup>4</sup> ,<br>MCJ_004440 <sup>2</sup><br>(490827-506717) | В  |                                                                          |    |
| <i>M. crocodyli</i> MP145                            | MCRO         | NC_014014.1           | oppA <sup>2</sup> B-1C-1D-1F-1<br>(389928-399020)                                | в     | MCRO_0618 <sup>3</sup> , oppB-2C-2D-2F-2<br>(726278-717361)                           | А  |                                                                          |    |
| M. fermentans JER                                    | MFE          | NC_014552.1           | MFE_02290 <sup>3</sup> , oppB1C1D1F3<br>(245804-254675)                          | А     | oppA <sup>2</sup> B2C2D2F4<br>(197036-205524)                                         | В  |                                                                          |    |
| M. fermentans M64                                    | MfeM64<br>YM | NC_014921.1           | oppA <sup>2</sup> B-1C-1D-1F-1<br>(213463-221843)                                | в     | <i>MfeM64YM_0281<sup>3</sup>, oppB-2C-2D-2F-2</i> (282323-291194)                     | А  |                                                                          |    |
| <i>M. gallisepticum</i> str. R(low)                  | MGA          | NC_004829.2           | MGA_0226 <sup>3, 5</sup> ,<br>dpp/oppBb_1Ba_1C_1D_1F_1<br>(721805-716646)        | A     | oppA <sup>2</sup> , dpp/oppB_2C_3D_2F_2<br>(724918-717083)                            | в  |                                                                          |    |
| <i>M. gallisepticum</i> str. R(high)                 | MGAH         | CP001872.1            | MGAH_0226 <sup>3, 5</sup> , dppB,<br>MGAH_0221a, 0221b, dppDF<br>(716475-707492) | A     | oppA_2 <sup>2</sup> , dppBCDF <sup>11</sup><br>(724747-716912)                        | в  |                                                                          |    |
| <i>M. gallisepticum</i> str. F                       | MGF          | CP001873.1            | MGF_2297 <sup>3, 5</sup> , dppBCDF<br>(389898-398879)                            | A     | oppA_2 <sup>2</sup> , dppBCDF<br>(381626-389461)                                      | В  |                                                                          |    |
| <i>M. genitalium</i> G37                             | MG           | NC_000908.2           | OppBCDF<br>(99383-109206)<br>MG_321 <sup>3,5</sup> (400119-402923)               | A     |                                                                                       |    |                                                                          |    |
| M. haemocanis str. Illinois                          | MHC          | NC_016638.1           | ND                                                                               |       |                                                                                       |    |                                                                          |    |
| M. haemofelis str. Langford 1                        | HF1          | NC_014970.1           | ND                                                                               |       |                                                                                       |    |                                                                          |    |
| M. hominis ATCC 23114                                | МНО          | NC_013511.1           | oppA <sup>3</sup> BCDF<br>(178627-187638)                                        | А     |                                                                                       |    |                                                                          |    |

| Species                                               | Abbr        | NCBI nr               | Annotation opp operons (genor                                                                             | mic I | ocation <sup>1</sup> )                                                                |    |  |
|-------------------------------------------------------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|----|--|
| M. hyopneumoniae 232                                  | mhp         | NC_006360.1           | oppBCDF, gene <sup>6</sup> , mhp164 <sup>2</sup><br>(192435-206054)                                       | в     | mhp502 <sup>3</sup> , oppBCDF<br>(633310-624928)                                      | А  |  |
| M. hyopneumoniae 7448                                 | MHP74<br>48 | NC_007332.1           | oppB-1C-1DF-1, gene <sup>6</sup> ,<br>MHP7448_0217 <sup>2</sup><br>(243270-256889)                        | В     | MHP7448_0505 <sup>3</sup> , oppBCD-1F<br>(670413-662031)                              | A  |  |
| M. hyopneumoniae J                                    | MHJ         | NC_007295.1           | oppB-1C-1D-1F-1, gene <sup>6</sup> ,<br>MHJ_0213 <sup>2</sup><br>(235856-249475)                          | в     | MHJ_0502 <sup>3</sup> , oppBCDF<br>(647232- 638850)                                   | A  |  |
| M. hyorhinis HUB-1                                    | MHR         | NC_014448.1           | oppBCDF, gene <sup>6</sup> , MHR_0357 <sup>2</sup><br>(467543-451680)                                     | В     | MHR_0639 <sup>3</sup> , oppBCDF<br>(786329-777920)                                    | А  |  |
| M. iowae 695                                          | GUU         | NZ_AGFP000<br>00000.1 | GUU_02828 <sup>2</sup> , 02833, 02838,<br>02843, 02848<br>(contig: AGFP01000029.1,<br>7327-16111)         | A     |                                                                                       |    |  |
| <i>M. leachii</i> PG50 <sup>17</sup>                  | MSB         | NC_014751.1           | MSB_A0161 <sup>2</sup> ,0162-165<br>(180561-188377)                                                       | В     | MSB_A0212-0215, MSB_A0216 <sup>2</sup><br>(244151- 253117)                            | С  |  |
| <i>M. mobile</i> 163K                                 | ММОВ        | NC_006908.1           | MMOB4520 <sup>3</sup> , oppBC, pgk, oppF<br>(564402-554792)                                               | А     |                                                                                       |    |  |
| <i>M. mycoides</i> subsp. <i>capri</i> LC str. 95010  | MLC         | NC_015431.1           | oppBCDFA <sup>2</sup><br>(205424-214429)                                                                  | С     | oppA <sup>2</sup> BCDF<br>(1029320-1021513)                                           | В  |  |
| <i>M. mycoides</i> subsp. <i>mycoides</i> SC str. PG1 | MSC         | BX293980.2            | oppBCDFA <sup>2</sup><br>(210699-219713)                                                                  | С     | oppA <sup>2</sup> BCDF<br>(1097481-1105303)                                           | В  |  |
| <i>M. ovis</i> str. Michigan                          | OVS         | NC_023062.1           | ND                                                                                                        |       |                                                                                       |    |  |
| <i>M. parvum</i> str. Indiana                         | PRV         | NC_022575.1           | ND                                                                                                        |       |                                                                                       |    |  |
| <i>M. penetrans</i> HF-2                              | MYPE        | NC_004432.1           | MYPE5560 <sup>3, 5</sup> , oppBCDF<br>(709149-700280)                                                     | A1    | oppBCDF<br>(1183321-1176983)<br>MYPE7570-MYPE7620 <sup>3, 5</sup><br>(993492-1008762) | A2 |  |
| M. pneumoniae 309                                     | MPNA        | NC_016807.1           | oppBCDF,<br>(264311-270394)<br>MPNA4560 <sup>3.5</sup><br>(553754-556771)                                 | A     |                                                                                       |    |  |
| M. pneumoniae M129                                    | MPN         | NC_000912.1           | oppB, amiD, oppDF<br>(265910-271993)<br>MPN456 <sup>3, 5</sup> (555398-558415)                            | A     |                                                                                       |    |  |
| M. pulmonis UAB CTIP                                  | MYPU        | NC_002771.1           | MYPU_2820 <sup>2</sup> , oppBCDF<br>(327933-336205)                                                       | А     | oppBCDF, gene <sup>6</sup> , MYPU_4150 <sup>2</sup><br>(485792-500096)                | В  |  |
| M. putrefaciens KS1                                   | MPUT        | NC_015946.1           | oppBCDFA <sup>3</sup><br>(745676-736919)                                                                  | С     |                                                                                       |    |  |
| M. suis str. Illinois                                 | MSU         | NC_015155.1           | ND                                                                                                        |       |                                                                                       |    |  |
| M. synoviae 53                                        | MS53        | NC_007294.1           | oppBC, MS53_0186, oppD <sup>7</sup> , 2<br>genes <sup>4</sup> , MS53_0190 <sup>3</sup><br>(199080-213247) | В     | MS53_0349 <sup>3</sup> , oppB-1C-1D-1F-1<br>(401341-392438)                           | А  |  |
| <i>M. nasistruthionis</i> sp. nov str.<br>Ms03        | Ms03        | KM410300<br>KM410301  | oppA <sup>3</sup> BCDF                                                                                    | А     | oppA2 <sup>2</sup> B2C2D2F2                                                           | В  |  |
| <i>Mycoplasma</i> sp. Ms02                            | Ms02        | KM410302<br>KM410304  | oppA <sup>3</sup> BCDF                                                                                    | A     | B2C2F2D2, 3 genes, oppA2 <sup>2</sup>                                                 | В  |  |

| Species                                     | Abbr | NCBI nr     | Annotation opp operons (g | jeno | nic location <sup>1</sup> ) |  |
|---------------------------------------------|------|-------------|---------------------------|------|-----------------------------|--|
| <i>M. struthionis</i> sp. nov. str.<br>Ms01 | Ms01 | KM410303    | oppA <sup>3</sup> BCDF    | А    |                             |  |
| <i>M. wenyonii</i> str.<br>Massachusetts    | WEN  | NC_018149.1 | ND                        |      |                             |  |

<sup>1</sup> From the start codon of the first gene to the stop codon of the last gene
 <sup>2</sup> Conserve domain found in NCBI BLAST search
 <sup>3</sup> No putative conserve domain found in NCBI BLAST
 <sup>4</sup> Two genes are located between *oppBCDF* and the putative *oppA*, both located on the same strand, transcribe unidirectional and code for hypothetical proteins
 <sup>5</sup> *oppA* gene identified with two PSI-BLAST iterations
 <sup>6</sup> Gene is located between *oppBCDF* and the putative *oppA*, located on the same strand, transcribe unidirectional and codes for a hypothetical protein

<sup>7</sup> Note the order of genes BCFD <sup>8</sup> Three genes are located between *oppBCDF* and the putative *oppA*, both located on the same strand, transcribe unidirectional and code for hypothetical proteins ND No *opp* operon was identified with in the genome

#### Supplementary Table 2 Annotated opp genes that are located within single or incomplete opp operon

| Species                                 | Abbr     | NCBI nr     | opp genes              | Location                           |
|-----------------------------------------|----------|-------------|------------------------|------------------------------------|
| M. agalactiae                           | MAGa     | NC_013948.1 | оррВ                   | 598047-598982                      |
| M. agalactiae PG2                       | MAG      | NC_009497.1 | оррВ                   | 548505-549440                      |
| M. arthritidis 158L3-1                  | MARTH    | NC_011025.1 | oppB2C2                | 656656-654525                      |
| M. bovis Hubei-1                        | MMB      | NC_015725.1 | oppB3                  | 613224-614159                      |
| <i>M. fermentans</i> JER                | MFE      | NC_014552.1 | oppF pseudo<br>oppB3C3 | 341222-343764<br>722489-720386     |
| <i>M. fermentans</i> M64                | MfeM64YM | NC_014921.1 | oppF3<br>oppB-3C2      | 352166-354709<br>799513-797410     |
| M. hominis ATCC 23114                   | MHO      | NC_013511.1 | oppBC                  | 210656-212795                      |
| M. mobile 163K                          | MMOB     | NC_006908.1 | oppF                   | 212201-214753                      |
| M. mycoides subsp. mycoides SC str. PG1 | MSC      | BX293980.2  | oppF<br>oppF           | 1112073-1113035<br>1121742-1122701 |
|                                         |          | ОррВ        | 3                      |                                    |
| Total                                   | ОррВС    | 4           |                        |                                    |
| lotal                                   |          | OppF        | 5                      |                                    |
|                                         |          |             | 16                     |                                    |

| Supplementary Tab | le 3 PS | ORTb, PRED | D-LIPO, Signa | alP and In | terPro results | for mycoplasma C | OppA proteins |
|-------------------|---------|------------|---------------|------------|----------------|------------------|---------------|
|                   |         |            |               |            |                |                  |               |

|                     |      |                         |           | SignalP |                                     |           |             |        | InterPro                   |                           |         |
|---------------------|------|-------------------------|-----------|---------|-------------------------------------|-----------|-------------|--------|----------------------------|---------------------------|---------|
| OppA Type A protein | Size | PSORT                   | PRED-LIPO | 4.1     | Prosite                             | Family    | Domains     | Region | Unintegrated<br>signatures | Region                    | GO term |
| GUU_02828           | 832  | Unknown                 | LIPO      | Y       | -                                   |           |             |        | G3DSA:3.40.190.10          | 317-480                   |         |
|                     |      |                         |           |         |                                     |           |             |        | G3DSA:3.90.76.10           | 173-288                   |         |
|                     |      |                         |           |         |                                     |           |             |        | PD024071                   | 609-648                   |         |
|                     |      |                         |           |         |                                     |           |             |        | SSF53850                   | 172-270, 319-506, 555-658 |         |
| MAG1000             | 959  | Unknown                 | LIPO      | Y       | -                                   |           |             |        |                            |                           |         |
| MAGa1090            | 959  | Extracellular           | LIPO      | Y       | -                                   |           |             |        |                            |                           |         |
| MALL_0660           | 949  | Unknown                 | LIPO      | Y       | PS51257 (1-27)                      |           |             |        |                            |                           |         |
| MARTH_orf403        | 918  | Unknown                 | LIPO      | Y       | PS51257 (1-31)                      |           |             |        | G3DSA:3.90.76.10           | 174-224                   |         |
| MBOVPG45_0112       | 961  | Unknown                 | LIPO      | Y       | -                                   |           |             |        |                            |                           |         |
| MCJ_002370          | 955  | Extracellular           | Membrane  | Y       | PS51257 (1-25)                      |           |             |        |                            |                           |         |
| MCRO_0618           | 940  | Unknown                 | SIGNAL    | Y       | PS51257 (1-28)<br>PS00387 (172-178) |           |             |        | G3DSA:3.90.76.10           | 213-269                   |         |
| MfeM64YM_0281       | 929  | Unknown                 | LIPO      | Y       | PS51257 (1-29)                      |           |             |        |                            |                           |         |
| MFE_02290           | 928  | Unknown                 | LIPO      | Y       | PS51257 (1-29)                      |           |             |        |                            |                           |         |
| MGAH_0226           | 897  | Cytoplasmic<br>Membrane | LIPO      | Y       | PS51257 (1-28)                      |           |             |        |                            |                           |         |
| MGA_0226            | 897  | Cytoplasmic<br>Membrane | LIPO      | Y       | PS51257 (1-28)                      |           |             |        |                            |                           |         |
| MGF_2297            | 897  | Cytoplasmic<br>Membrane | LIPO      | Y       | PS51257 (1-28)                      |           |             |        |                            |                           |         |
| MG_321              | 934  | Extracellular           | LIPO      | Y       | PS51257 (1-25)                      |           |             |        | G3DSA:3.90.76.10           | 162-356                   |         |
| _                   |      |                         |           |         | . ,                                 |           |             |        | PD024071                   | 664-934                   |         |
|                     |      |                         |           |         |                                     |           |             |        | SSF53850                   | 165-302, 335-373          |         |
| MHJ_0502            | 926  | Unknown                 | SIGNAL    | Y       | -                                   | IPR017012 | PIRSF032899 | 1-926  |                            |                           |         |
| MHO_OppA            | 961  | Unknown                 | SIGNAL    | Y       | PS51257 (1-28)                      | IPR017012 | PIRSF032899 | 1-960  | G3DSA:3.90.76.10           | 192-237                   |         |
| MHP7448_0505        | 938  | Cytoplasmic<br>Membrane | LIPO      | Y       | -                                   | IPR017012 | PIRSF032899 | 1-926  |                            |                           |         |
| mhp502              | 938  | Unknown                 | SIGNAL    | Y       | -                                   | IPR017012 | PIRSF032899 | 1-926  |                            |                           |         |
| MHR_0639            | 946  | Unknown                 | LIPO      | Y       | PS51257 (1-24)                      |           |             |        |                            |                           |         |
| MMB_OppA2           | 961  | Unknown                 | LIPO      | Y       | -                                   |           |             |        |                            |                           |         |
| MMOB4520            | 955  | Unknown                 | SIGNAL    | Y       | -                                   | IPR017012 | PIRSF032899 | 1-955  |                            |                           |         |
| MPN456              | 1005 | Unknown                 | LIPO      | Y       | PS51257 (1-25)                      |           |             |        | G3DSA:3.90.76.10           | 167-224, 274-373          |         |
|                     |      |                         |           |         |                                     |           |             |        | PD024071                   | 698-1003                  |         |
|                     |      |                         |           |         |                                     |           |             |        | SSF53850                   | 167-228, 268-326, 356-409 |         |
| MPNA4560            | 1005 | Unknown                 | LIPO      | Y       | PS51257 (1-25)                      |           |             |        | G3DSA:3.90.76.10           | 167-224, 274-373          |         |
|                     |      |                         |           |         |                                     |           |             |        | PD024071                   | 698-1003                  |         |
|                     |      |                         |           |         |                                     |           |             |        | SSF53850                   | 167-233, 279-319, 354-414 |         |
| Ms01_OppA           | 942  | Unknown                 | LIPO      | Y       | PS51257 (1-27)                      |           |             |        |                            |                           |         |
| Ms02_OppA           | 998  | Unknown                 | LIPO      | Y       | PS51257 (1-28)                      |           |             |        | G3DSA:3.90.76.10           | 192-213, 245-292          |         |
| Ms03_OppA           | 1288 | Unknown                 | LIPO      | Y       | PS51257 (1-23)                      |           |             |        |                            |                           |         |
| MS53_0349           | 991  | Unknown                 | LIPO      | Y       | PS51257 (1-26)                      |           |             |        |                            |                           |         |
| MYPE5560            | 847  | Unknown                 | SIGNAL    | Y       | -                                   |           |             |        | PD024071                   | 129-158                   |         |
| MYPE7580/MYPE7570*  | 982  | Extracellular           | SIGNAL    | Y       | PS51257 (1-26)                      |           |             |        | PD024071                   | 494-769                   |         |
| MYPE7590            | 972  | Extracellular           | LIPO      | Y       | PS51257 (1-26)                      |           |             |        | PD024071                   | 694-969                   |         |
| MYPE7600            | 965  | Extracellular           | SIGNAL    | Y       | PS51257 (1-26)                      |           |             |        | PD024071                   | 690-963                   |         |
| MYPE7610            | 1010 | Extracellular           | LIPO      | Y       | PS51257 (1-35)                      |           |             |        | PD024071                   | 720-1008                  |         |
| MYPE7620            | 990  | Extracellular           | LIPO      | Y       | PS51257 (1-26)                      |           |             |        | PD024071                   | 697-988                   |         |
| MYPU 2820           | 876  | Unknown                 | LIPO      | Y       | -                                   | IPR017012 | PIRSF032899 | 2-876  |                            |                           |         |

| OppA Type B Protein | Size | PSORT       | PRED-LIPO | SignalP<br>4.1 | InterPro       |           |             |         |                            |                           |            |
|---------------------|------|-------------|-----------|----------------|----------------|-----------|-------------|---------|----------------------------|---------------------------|------------|
|                     |      |             |           |                | Prosite        | Family    | Domains     | Region  | Unintegrated<br>signatures | Region                    | GO terms   |
| MAGa_OppA           | 983  | Unknown     | LIPO      | Y              | -              | IPR016880 | PIRSF028335 | 1-982   | G3DSA:3.10.105.10          | 576-640, 683-813, 894-938 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 437-798 | SSF53850                   | 437-639, 681-804, 892-946 | GO:0005215 |
| MAG_OppA            | 982  | Unknown     | LIPO      | Y              | -              | IPR016880 | PIRSF028335 | 1-982   | G3DSA:3.10.105.10          | 576-640, 683-813, 894-938 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 437-798 | SSF53850                   | 437-651, 698-796          | GO:0005215 |
| MALL_0007           | 938  | Unknown     | LIPO      | Y              | PS51257 (1-25) | IPR016880 | PIRSF028335 | 1-937   | G3DSA:3.10.105.10          | 559-616, 657-787, 852-896 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 464-772 | G3DSA:3.90.76.10           | 136-204                   | GO:0005215 |
|                     |      |             |           |                |                |           |             |         | SSF53850                   | 443-615, 655-778, 854-906 |            |
| MALL_0020           | 991  | Unknown     | LIPO      | Y              | PS51257 (1-24) | IPR016880 | PIRSF028335 | 1-991   | G3DSA:3.10.105.10          | 510-567, 606-737, 905-949 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 360-700 | SSF53850                   | 348-578, 621-729          | GO:0005215 |
| MBOVPG45_0037       | 983  | Unknown     | LIPO      | Y              | -              | IPR016880 | PIRSF028335 | 1-982   | G3DSA:3.10.105.10          | 576-640, 683-813, 894-938 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 437-798 | SSF53850                   | 437-639, 678-804, 892-947 | GO:0005215 |
| MCAP_0116           | 984  | Unknown     | SIGNAL    | Y              | -              | IPR016880 | PIRSF028335 | 1-984   | G3DSA:3.10.105.10          | 583-647, 688-818, 896-940 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 444-803 | SSF53850                   | 444-646, 683-809, 898-949 | GO:0005215 |
| MCJ_004440          | 888  | Unknown     | LIPO      | Y              | PS51257 (1-21) | IPR016880 | PIRSF028335 | 1-888   | G3DSA:3.10.105.10          | 482-539, 580-716, 580-716 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 146-677 | G3DSA:3.90.76.10           | 147-235                   | GO:000521  |
|                     |      |             |           |                |                |           |             |         | SSF53850                   | 144-197, 337-538, 582-727 |            |
| MCRO_OppA           | 950  | Unknown     | LIPO      | Y              | PS51257 (1-26) | IPR016880 | PIRSF028335 | 1-949   | G3DSA:3.10.105.10          | 571-628, 669-799, 864-908 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 476-784 | SSF53850                   | 456-627, 667-829          | GO:0005215 |
| MfeM64YM_OppA       | 935  | Unknown     | LIPO      | Y              | PS51257 (1-26) | IPR016880 | PIRSF028335 | 1-935   | G3DSA:3.10.105.10          | 547-604, 644-774, 853-893 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 426-757 | SSF53850                   | 405-603, 639-774          | GO:0005215 |
| MFE_OppA            | 935  | Unknown     | LIPO      | Y              | PS51257 (1-26) | IPR016880 | PIRSF028335 | 1-935   | G3DSA:3.10.105.10          | 547-604, 644-774, 853-893 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 426-757 | SSF53850                   | 405-603, 639-774          | GO:0005215 |
| MGAH_OppA_2         | 1034 | Cytoplasmic | LIPO      | Y              | PS51257 (1-26) | IPR016880 | PIRSF028335 | 1-1034  | G3DSA:3.10.105.10          | 524-581, 620-751, 948-992 | GO:0006810 |
|                     |      | Membrane    |           |                | . ,            |           | IPR000914   | 382-716 | SSF53850                   | 382-592, 635-779          | GO:0005215 |
| MGA_OppA            | 1034 | Cytoplasmic | LIPO      | Y              | PS51257 (1-26) | IPRO16880 | PIRSF028335 | 1-1034  | G3DSA:3.10.105.10          | 524-581, 620-751, 948-992 | GO:0006810 |
|                     |      | Membrane    |           |                |                |           | IPR000914   | 382-716 | SSF53850                   | 382-592, 635-779          | GO:0005215 |
| MGF_OppA_2          | 1034 | Cytoplasmic | LIPO      | Y              | PS51257 (1-26) | IPR016880 | PIRSF028335 | 1-1034  | G3DSA:3.10.105.10          | 524-581, 620-751, 948-992 | GO:0006810 |
|                     |      | Membrane    |           |                |                |           | IPR000914   | 382-716 | SSF53850                   | 382-592, 635-807          | GO:0005215 |
| MHJ_0213            | 889  | Cytoplasmic | LIPO      | Y              | -              | IPR016880 | PIRSF028335 | 1-889   | G3DSA:3.10.105.10          | 482-539, 580-715, 805-849 | GO:0006810 |
|                     |      | Membrane    |           |                |                |           | IPR000914   | 159-678 | SSF53850                   | 361-538, 582-740          | GO:0005215 |
| MHP7448_0217        | 889  | Unknown     | LIPO      | Y              | -              | IPR016880 | PIRSF028335 | 1-889   | G3DSA:3.10.105.10          | 482-539, 580-715, 805-849 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 159-679 | SSF53850                   | 361-538, 582-738          | GO:0005215 |
| mhp164              | 892  | Unknown     | LIPO      | Y              | PS51257 (1-24) | IPR016880 | PIRSF028335 | 1-892   | G3DSA:3.10.105.10          | 485-542, 583-718, 808-852 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 162-682 | SSF53850                   | 364-541, 585-740          | GO:0005215 |
| MHR_0357            | 901  | Unknown     | LIPO      | Y              | PS51257 (1-25) | IPR016880 | PIRSF028335 | 1-901   | G3DSA:3.10.105.10          | 494-551, 595-724, 816-860 | GO:0006810 |
|                     |      |             |           |                | . ,            |           | IPR000914   | 348-710 | G3DSA:3.90.76.10           | 159-214, 340-370          | GO:0005215 |
|                     |      |             |           |                |                |           |             |         | SSF53850                   | 154-207, 349-550, 593-735 |            |
| MLC_OppA            | 985  | Unknown     | SIGNAL    | N              | -              | IPR016880 | PIRSF028335 | 1-985   | G3DSA:3.10.105.10          | 584-648, 689-819, 896-941 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 446-804 | SSF53850                   | 445-647, 684-810          | GO:0005215 |
| MMB_OppA1           | 982  | Unknown     | LIPO      | Y              | -              | IPR016880 | PIRSF028335 | 1-982   | G3DSA:3.10.105.10          | 576-640, 683-813, 894-938 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 437-798 | SSF53850                   | 437-639, 678-804, 892-947 | GO:0005215 |
| Ms02_OppA2          | 895  | Unknown     | LIPO      | Y              | PS51257 (1-28) | IPR016880 | PIRSF028335 | 1-895   | G3DSA:3.10.105.10          | 512-569, 614-744, 809-853 | GO:0006810 |
|                     |      |             |           |                |                |           | IPR000914   | 374-729 | SSF53850                   | 374-568, 612-735, 794-863 | GO:0005215 |
| Ms03_OppA2          | 1030 | Unknown     | LIPO      | Y              | PS51257 (1-27) | IPR016880 | PIRSF028335 | 1-1030  | G3DSA:3.10.105.10          | 521-578, 617-749, 783-794 | GO:0006810 |
|                     |      |             |           |                | , ,            |           | IPR000914   | 191-710 | SSF53850                   | 391-589, 632-776          | GO:0005215 |
| MS53_0190           | 894  | Unknown     | LIPO      | Y              | -              |           | IPR000914   | 367-722 | G3DSA:3.10.105.10          | 511-568, 611-741, 805-849 | GO:0006810 |
|                     |      | -           | -         |                |                |           |             |         | G3DSA:3.90.76.10           | 158-212                   | GO:0005215 |
|                     | 1    |             |           |                |                |           |             |         | SSF53850                   | 371-567, 607-732, 805-858 | 1          |

Appendix 3

|                     |      |               |           | CinnalD        |                  |           |             | Int     | erPro                      |                           |            |
|---------------------|------|---------------|-----------|----------------|------------------|-----------|-------------|---------|----------------------------|---------------------------|------------|
| OppA Type B protein | Size | PSORT         | PRED-LIPO | SignalP<br>4.1 | Prosite          | Family    | Domains     | Region  | Unintegrated<br>signatures | Region                    | GO terms   |
| MSB_A0161           | 985  | Unknown       | SIGNAL    | N              | -                | IPR016880 | PIRSF028335 | 1-985   | G3DSA:3.10.105.10          | 584-648, 689-819, 896-941 | GO:0006810 |
|                     |      |               |           |                |                  |           | IPR000914   | 445-804 | SSF53850                   | 445-647, 684-810          | GO:0005215 |
| MSC_OppA            | 985  | Unknown       | SIGNAL    | N              | -                | IPR016880 | PIRSF028335 | 1-985   | G3DSA:3.10.105.10          | 584-648, 689-819, 894-941 | GO:0006810 |
|                     |      |               |           |                |                  |           | IPR000914   | 445-804 | SSF53850                   | 445-647, 684-810          | GO:0005215 |
| MYPU_4150           | 904  | Cytoplasmic   | LIPO      | Y              | PS51257 (1-23)   | IPR016880 | PIRSF028335 | 1-903   | G3DSA:3.10.105.10          | 494-551, 596-725, 811-859 | GO:0006810 |
|                     |      | Membrane      |           |                |                  |           | IPR000914   | 346-711 | G3DSA:3.90.76.10           | 163-214, 339-371          | GO:0005215 |
|                     |      |               |           |                |                  |           |             |         | SSF53850                   | 171-207, 171-207, 611-751 |            |
|                     |      |               |           | SignalP        |                  |           |             | Int     | erPro                      |                           |            |
| OppA Type C protein | Size | PSORT         | PRED-LIPO | 4.1            | Prosite          | Family    | Domains     | Region  | Unintegrated<br>signatures | Region                    | GO terms   |
| MCAP_0165           | 1035 | Unknown       | LIPO      | Y              | PS51257 (1-24)   |           | IPR000914   | 85-550  | G3DSA:3.10.105.10          | 791-853                   | GO:0006810 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.40.190.10          | 278-430                   | GO:0005215 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.90.76.10           | 76-161, 247-277           |            |
|                     |      |               |           |                |                  |           |             |         | SSF53850                   | 43-157, 243-430           |            |
| MLC_OppA            | 1044 | Extracellular | LIPO      | Y              | PS51257 (1-24)   |           | IPR000914   | 330-540 | G3DSA:3.10.105.10          | 802-903                   | GO:0006810 |
|                     |      |               |           |                |                  |           |             |         | Code: 3.40.190.10          | 288-440                   | GO:0005215 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.90.76.10           | 76-158, 253-287           |            |
|                     |      |               |           |                |                  |           |             |         | SSF53850                   | 43-158, 252-438           |            |
| MPUT_OppA           | 966  | Unknown       | LIPO      | Y              | PS51257 (1-24)   |           | IPR000914   | 85-435  | G3DSA:3.10.105.10          | 757-876                   | GO:0006810 |
|                     |      |               |           |                | PS01040 (90-112) |           |             |         | G3DSA:3.40.190.10          | 271-435                   | GO:0005215 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.90.76.10           | 74-161, 243-270           |            |
|                     |      |               |           |                |                  |           |             |         | SSF53850                   | 47-156, 236-435           |            |
| MSB_A0216           | 1031 | Extracellular | LIPO      | Y              | PS51257 (1-24)   |           | IPR000914   | 325-497 | G3DSA:3.10.105.10          | 798-888                   | GO:0006810 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.40.190.10          | 287-443                   | GO:0005215 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.90.76.10           | 76-161, 252-286           |            |
|                     |      |               |           |                |                  |           |             |         | SSF53850                   | 42-148, 245-446           |            |
| MSC_OppA            | 1047 | Extracellular | LIPO      | Y              | PS51257 (1-24)   |           | IPR000914   | 330-540 | G3DSA:3.10.105.10          | 805-859                   | GO:0006810 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.40.190.10          | 288-440                   | GO:0005215 |
|                     |      |               |           |                |                  |           |             |         | G3DSA:3.90.76.10           | 76-161, 252-287           |            |
|                     |      |               |           |                |                  |           |             | 1       | SSF53850                   | 43-158, 252-438           |            |

\* Open reading frame MYPE7570 and MYPE7580 represent the complete copy of one OppA protein

G3DSA:3.10.105.10: CATH Classification, Class 3: Alpha Beta, Architecture 3.10: Roll, Topology 3.10.105: Dipeptide-binding Protein; domain 3, Homologous Superfamily 3.10.105.10: Dipeptide-binding Protein; domain 3 G3DSA:3.40.190.10: CATH Classification, Class 3: Alpha Beta, Architecture 3.40: 3-Layer(aba) Sandwich, Topology 3.40.190: D-Maltodextrin-Binding Protein; domain 2, Homologous Superfamily 3.40.190.10: Periplasmic binding protein-like II

G3DSA:3.90.76.10: CATH Classification, Class 3: Alpha Beta, Architecture 3.90: Alpha-Beta Complex, Topology 3.90.76: Dipeptide-binding Protein; domain 1, Homologous Superfamily 3.90.76.10: Dipeptide-binding Protein; domain 1

GO:0006810 transport: Biological Process

GO:0005215 transporter activity: Molecular Function

IPR000914: Pfam PF00496, Bacterial extracellular solute-binding proteins, family 5

IPR016880: InterPro, ABC-type oligopeptide transport system, solute-binding component, Mycoplasmataceae, predicted

IPR017012: InterPro family, Uncharacterised conserved protein UCP032899 (PIRSF032899), lipoprotein

PD024071: ProDom family, lipoprotein related to MG321

PIRSF028335: Protein information Resource, ABC-type oligopeptide transport system, solute-binding component, Mycoplasmataceae type

PIRSF032899: Protein Information Resource, uncharacterized conserved lipoprotein

PS00387: Prosite, PPASE, Inorganic pyrophosphatase signature

PS01040: Prosite, SBP\_BACTERIAL\_5 Bacterial extracellular solute-binding proteins, family 5 signature

PS51257: Prosite, PROKAR\_LIPOPROTEIN, Prokaryotic membrane lipoprotein lipid attachment site

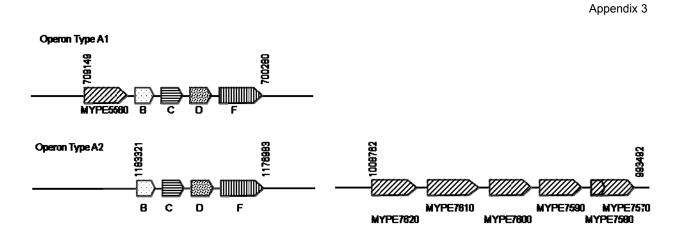
SSF53850: SCOP Classification, Class: Alpha and beta proteins (a/b) [51349], Fold: Periplasmic binding protein-like II [53849], Superfamily: Periplasmic binding protein-like II [53850]

## Supplementary Table 4 MEME motifs in Type A, B and C OppA proteins

| Motif              | Motif 1A  | Motif 2A | Motif 3A | Motif 4A | Motif 5A | Motif 6A |
|--------------------|-----------|----------|----------|----------|----------|----------|
| Size of motif      | 29        | 41       | 41       | 29       | 32       | 41       |
| E-value            | 1.0e-280  | 3.3e-339 | 8.2e-157 | 2.0e-155 | 5.3e-151 | 1.2e-193 |
| GUU_02828          | 624-652   | 162-202  | 247-287  | -        | 447-478  | 203-243  |
| MAG1000            | 762-790   | 205-245  | -        | 678-706  | -        | -        |
| MAGa1090           | 762-790   | 205-245  | -        | 678-706  | -        | -        |
| MALL_0660          | 754-782   | 209-249  | -        | 672-700  | -        | -        |
| MARTH_orf403       | 711-739   | 161-201  | -        | 628-656  | -        | 203-243  |
| MBOVPG45_0112      | 762-790   | 205-245  | -        | 678-706  | -        | -        |
| MCJ_002370         | 702-730   | 162-202  | -        | 620-648  | -        | 204-244  |
| MCRO_0618          | 746-774   | 203-243  | -        | 665-693  | 555-586  | -        |
|                    | 730-758   | 174-214  | 859-899  | 645-673  | -        | 392-432  |
| <br>MFE 02290      | 730-758   | 174-214  | 859-899  | 645-673  | -        | 392-432  |
| <br>MGAH 0226      | 134-162   | 458-498  | 570-610  | -        | 796-827  | 499-539  |
| <br>MGA_0226       | 134-162   | 458-498  | 570-610  | -        | 796-827  | 499-539  |
| MGF 2297           | 134-162   | 458-498  | 570-610  | -        | 796-827  | 499-539  |
| <br>MG 321         | 687-715   | 154-194  | 271-311  | -        | 473-504  | 201-241  |
| MHJ 0502           | 698-726   | 159-199  | -        | 616-644  | 516-547  | 201-241  |
| MHO_OppA           | 736-764   | 179-219  | -        | 651-679  | -        | -        |
| MHP7448 0505       | 698-726   | 159-199  | -        | 616-644  | 516-547  | 201-241  |
| <br>mhp502         | 698-726   | 159-199  | -        | 616-644  | 516-547  | 201-241  |
| MHR 0639           | 720-748   | 167-207  | -        | 637-665  | -        | -        |
| MMB OppA2          | 762-790   | 205-245  | -        | 678-706  | _        | -        |
| MMOB4520           | 754-782   | 173-213  | _        | 673-701  | -        | 215-255  |
| MPN456             | 721-749   | 159-199  | 288-328  | -        | 490-521  | 207-247  |
| MPNA4560           | 721-749   | 159-199  | 288-328  | -        | 490-521  | 207-247  |
| Ms01 OppA          | 730-758   | 174-214  |          | 645-673  | -        | -        |
| Ms02_OppA          | 794-822   | 232-272  | -        | 711-739  | -        | -        |
| Ms03 OppA          | 1073-1101 | 534-574  | -        | 994-1022 | -        | -        |
| MS53_0349          | 752-780   | 184-224  | _        | 673-701  | -        | 267-307  |
| MYPE5560           | 134-162   | 419-459  | 529-569  | -        | 741-772  | 460-500  |
| MYPE7570/MYPE7580* | 499-527   | 6-46     | 118-158  | -        | 327-358  | 47-87    |
| MYPE7590           | 699-727   | 208-248  | 317-357  | -        | 527-588  | 329-289  |
| MYPE7600           | 695-723   | 207-247  | 315-355  | _        | 524-555  | 248-288  |
| MYPE7610           | 738-766   | 232-272  | 349-389  | -        | 557-588  | 273-313  |
| MYPE7620           | 717-745   | 221-261  | 333-373  | -        | 543-574  | 262-302  |
| MYPU 2820          | 692-720   | 165-205  | -        | 609-637  | 502-533  | -        |
| Motif              | Motif 1B  | Motif 2B | Motif 3B | Motif 4B | Motif 5B | Motif 6B |
|                    |           |          |          |          |          |          |
| Size               | 85        | 49       | 43       | 62       | 55       | 56       |
| E-value            | 2.2e-1119 | 2.1e-710 | 3.0e-640 | 5.3e-723 | 1.2e-613 | 1.2e-623 |
| MAGa_OppA          | 503-587   | 607-655  | 909-951  | 664-725  | 148-202  | 727-782  |
| MAG_OppA           | 503-587   | 607-655  | 909-951  | 664-725  | 148-202  | 727-782  |
| MALL_0007          | 486-570   | 583-631  | 867-909  | 638-699  | 141-195  | 701-756  |
| MALL_0020          | 437-521   | 534-582  | 920-962  | 587-648  | 163-217  | 650-705  |
| MBOVPG45_0037      | 503-587   | 607-655  | 909-951  | 664-725  | 148-202  | 727-782  |
| MCAP_0116          | 510-594   | 614-662  | 911-953  | 669-730  | 152-206  | 732-787  |
| MCJ_004440         | 409-493   | 506-554  | 820-862  | 565-626  | 140-194  | 627-682  |
| MCRO_OppA          | 498-582   | 595-643  | 879-921  | 650-711  | 153-207  | 713-768  |
| MfeM64YM_OppA      | 474-558   | 571-619  | 864-906  | 625-686  | 141-195  | 688-743  |
| MFE_OppA           | 474-558   | 571-619  | 864-906  | 625-686  | 141-195  | 688-743  |
| MGAH_OppA_2        | 451-535   | 548-596  | 963-1005 | 601-662  | 172-226  | 664-719  |
| MGA_OppA           | 451-535   | 548-596  | 963-1005 | 601-662  | 172-226  | 664-719  |
| MGF_OppA_2         | 451-535   | 548-596  | 963-1005 | 601-662  | 172-226  | 664-719  |
| MHJ 0213           | 409-493   | 506-554  | 820-862  | 565-626  | 139-193  | 627-682  |

| Motif                  | Motif 1B          | Motif 2B          | Motif 3B         | Motif 4B        | Motif 5B | Motif 6B |
|------------------------|-------------------|-------------------|------------------|-----------------|----------|----------|
| MHP7448_0217           | 409-493           | 506-554           | 820-862          | 565-626         | 139-193  | 627-682  |
| mhp164                 | 412-496           | 509-557           | 823-865          | 568-629         | 142-196  | 630-685  |
| MHR_0357               | 421-505           | 518-566           | 834-874          | 576-637         | 151-205  | 638-693  |
| MLC_OppA               | 511-595           | 615-663           | 912-954          | 670-731         | 153-207  | 735-788  |
| MMB_OppA1              | 503-587           | 607-655           | 909-951          | 664-725         | 148-202  | 727-782  |
| Ms02_OppA2             | 439-523           | 536-584           | 824-866          | 595-656         | 144-198  | 658-713  |
| Ms03_OppA2             | 448-532           | 545-693           | 959-1001         | 592-653         | 171-225  | 661-716  |
| MS53_0190              | 438-522           | 535-583           | 820-862          | 592-653         | 149-203  | 655-710  |
| MSB_A0161              | 511-599           | 615-663           | 912-954          | 670-731         | 153-207  | 733-788  |
| MSC_OppA               | 511-595           | 615-663           | 912-954          | 670-731         | 153-207  | 733-788  |
| MYPU_4150              | 421-505           | 518-566           | 830-872          | 577-638         | 151-205  | 639-694  |
| Motif                  | Motif 1C          | Motif 2C          | Motif 3C         | Motif 4C        | Motif 5C | Motif 6C |
| Size                   | 100               | 100               | 100              | 74              | 100      | 57       |
| E-value                | 1.0e-184          | 2.8e-181          | 8.0e-160         | 5.7e-111        | 4.8e-119 | 4.7e-092 |
| MCAP_0165              | 72-171            | 275-374           | 745-844          | 884-957         | 453-552  | 1-57     |
| MLC_OppA               | 72-171            | 284-383           | 756-855          | 894-967         | 463-562  | 1-57     |
| MPUT_OppA              | 72-171            | 271-370           | 707-806          | 826-899         | 449-548  | 1-57     |
| MSB_A0216              | 72-171            | 283-382           | 751-850          | 880-953         | 461-560  | 1-57     |
| MSC_OppA               | 72-171            | 271-370           | 707-806          | 826-899         | 449-548  | 1-57     |
| * Open reading frame N | IYPE7570 and MYPE | E7580 represent t | he complete copy | of one OppA pro | tein     |          |

|          | Type A OppA                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motif    | Regular expression                                                                                                                                                                                                                                                                                                                      |
| Motif 1A | [YW][FIY]xxG[TS]SP[LA]GFS[GS]W[SG][YP]DY[ND]G[IV]G[TS][GW][LIY][DE][GA]L[TIS]                                                                                                                                                                                                                                                           |
| Motif 2A | SINS[EK]xF[KQ][EKD]A[LI]KKA[KT]K[LYV]QFx[IV][DRK][KT][GDN][IV]KWV[DN][SN][KN]G[NEK]PTKYE[VS][VG][APK]                                                                                                                                                                                                                                   |
| Motif 3A | F[TNR][FILV]Y[LIV][TK][KQS][PA][YF][PA][FY][TAL][FLM][GQS][MT][LFM][STK][KI][ES][YF][FL][AFT][AP][MLI]P[HY][T<br>W][NDH][PQT][KER][VI][KR][AN][IL][HKR][LI][GQS][SGK][GDQ][STAG][PD]                                                                                                                                                    |
| Motif 4A | [KQR]FK[SA][AP][KN]FKE[LI][KQ][AE]E[MV]KK[IL]LD[KE][FY]Y[QAK]DN[PKN]LG[PA]                                                                                                                                                                                                                                                              |
| Motif 5A | [MET][AR][KN][FI][LIF][YR][NQ][WS][NE]S[DEK][DE][SA][YRL][TI]IRA[GA]I[ANV][GN]LINWY[NQR]L[AS][LIQ][IV]                                                                                                                                                                                                                                  |
| Motif 6A | D[FY]ER[GA][FIL]E[SI]Y[WY]L[AS][AS]SLGYNRNGYF[LI]DL[IL]GLD[FL]EKT[VA][GN]Y[TD]P[KS][SN]                                                                                                                                                                                                                                                 |
|          | Туре В ОррА                                                                                                                                                                                                                                                                                                                             |
| Motif    | Regular expression                                                                                                                                                                                                                                                                                                                      |
| Motif 1B | LGPQG[YS][LMI][LI]LSKN[PL][SN]Y[YF]S[AS][DE][KN]TI[SP][NE][KR]I[KR]I[FY]F[SA][SQ][DN]P[NE][ILT][NL][AS][AL][<br>LM][FY][DE]D[GK]YI[AS][AQ]T[RK]IPAIQQ[LN][AKR][YF]W[TAS][ND][KP]E[YT][RK][KQ][YF][ML][KN]K[SN][SQT]G[FY<br>]GTI[AG][LF][AQG][FL]NLD                                                                                     |
| Motif 2B | DLRNAIYY[ÄG]INR[DE][DE][ML]L[NK][IL]VG[WL][ND][SF]S[FY]PV[IT]TWTAFGQG[SK][ST]S[FDR]GD[ANP][LI]E[LIT][<br>FG]FD                                                                                                                                                                                                                          |
| Motif 3B | [KAĒ][EQ][GN]WT[EQ][QN][SK][VA]F[AG][IF]I[AG][AG][LF]EKI[IV]R[DE]AAP[VI][VI]PLMEVDT[YN]WEI[SNT]R[VI][GN<br>R]G                                                                                                                                                                                                                          |
| Motif 4B | [KD][TVD][GDK][KN][KN][KT][EAP][IF]P[VLI][QL]NY[SDN][HYF][IV][DNV]HL[SA]KS[YF][NK]FE[HAK][VT]DR[TK]D[KL][<br>GA][FY][DN][LP][KE][IVT]A[NKR][FKQ]Y[LM]D[RL]FK[AK]K[HY]P[ND][LV]K[KQS][VI]TL[KN][YF][L]                                                                                                                                   |
| Motif 5B | [ILN][QP][NT][NS][NGS]N[KN][IFV][QLMV][SA][ML][TN][IG]LLNDG[KA][SN][RK]WSN[GN]DEV[VT]A[DQ]D[YF]ID[AY][I<br>L][HL]YILD[LI][NS]T[GA]SQ[KR][LQ][TDV][NT][IL]LQ                                                                                                                                                                             |
| Motif 6B | INYJŚTDE[QHJQ[NK][AV][GA][IT][AG]L[QK]D[FA][ML][RS]KA[FT][NG]G[FY][ILV]NI[ED]IK[SG]LPE[NG][VI]YE[DS][FAR<br>][RI][TE]KG[EQ][FY]D[LI][IL]Y[RQK]NFD[AT]F                                                                                                                                                                                  |
|          | Туре С ОррА                                                                                                                                                                                                                                                                                                                             |
| Motif    | Regular expression                                                                                                                                                                                                                                                                                                                      |
| Motif 1C | LQD[VIT]L[LI][TA]V[ND][RKN]HD[HN][YF]EGALA[EL][YK]W[DK][HA][ND][KST][DN][KFS][DK][YHT]W[KS]F[RK][LI]RK<br>N[AI][YK]WT[KAR]IENGK[QA]V[KD][GK][DGP][LAQ]IT[GA][LKQ]D[IFLV]FNTFRYV[LF]NKNN[LR]ALT[TL][ED][HI][FW]<br>[LS][TS][NAK][FL][KA][HN][VA][PHN][QEK]L[MI][DEN]F[IL][ND]KLSDP                                                       |
| Motif 2C | YFE[ST][VI]ISYL[AS]FAP[IM]P[ED]I[AS][LV][FQL]Y[AV][NKQS]D[KS][DG]Q[VEGK][SY][NS][IK][YF]AGT[NAL]Y[GA]KP<br>[LS][GAE][KS][KQ]SGY[NE][GT][LM]WYSG[PA]Y[VI][IV][EDQ][DE]Y[FV][PS]G[SR]NLNL[TK][KR]NE[FH]Y[YF]NK[ED<br>Q][NK]V[YH]I[EH]K[IM][NL][YF]SY[VT]NK[AG]D[AP][AS][TS][RS]R                                                          |
| Motif 3C | [TI][IN]P[FG][LN][LS][NDS][PT][TG]G[AS][DS][DG][FY]K[IN][KY][IVL][AIQ][QR][FAL]F[GK][SAT]FN[YF]LVR[KN][HKF][<br>DGN][NSG][NGS]D[IM][DN]SP[FI]V[FI]D[IP][DY][KE]P[IG][DT][FAQ][SK][NAE]Y[LG][KE][EDLQ][LIRV]R[ADE][GS]K[Y<br>FS][GA][LI][AGM][AE][FI]GW[SA]PDY[DA]DPTNYL[AY]T[LV][KL]Y[GD]G[VA][YF][ED][HY]I[QM][SGN][WM][TDK]K[VL]<br>F |
| Motif 4C | [AH][YF][KAES][DEQ]LK[NDK][IA][LIT][QE][HF][FL][TS][NK]E[LV][TE][YEN][IV]D[EK]N[EK][ASTV][DE][IK][YK][KDE]R<br>YT[EQR]LA[KQ]LEN[YF][YL][TN]L[SA]SA[IL]IIPT[HY][TV][HR][LQE][AS][DE][TF]LP[SIT][IV]S[YF][VL]D[EQ][FL][ST][KI<br>][PS][TR][WF]P[TIS]                                                                                      |
| Motif 5C | R[TPV]RT[PA][EQ]EDSILNRA[LI]ALKS[LV]RI[LM][AT]R[YF][AV]LNRSLYAKF[YFH]SEA[RK]DG[NV][DN][RH]P[TV]S[T<br>S]QLRNTFTS[KQ]Y[VI]ST[FY][EN]D[DK][EKQS][HK][QKR]V[LIV]D[KE][DNS][SL][KGT][QDE][KT]VADYADFLAK[DN]Y<br>YDI[RT]KYDD[ND]                                                                                                             |
| Motif 6C | MKK[VI]LG[ML]T[LT][LS][GT][SL][IL]IA[TS][AS][AS][AM][ST][AI]VSCS[VL][GR][IV][SGN][LP][DY]K[IL]L[NS]R[KR][NI]S[<br>ND]T[KT][VI][LY][RK][ED]L[TI][NT][YQ][SP][LI][AV][NT][LW]NS                                                                                                                                                           |

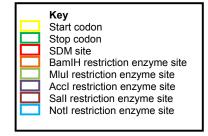

Supplementary Table 5 Regular expressions of the MEME motifs within Type A, B and C OppA protein

Supplementary Table 6 A comparison of the conserved functional motifs in *M. hominis* with the postulated motifs in *M.* struthionis sp. nov. str. Ms01, Mycoplasma sp. Ms02 and M. nasistruthionis sp. nov. str. Ms03

| Sequence of t                      | ne conserved motifs                               |                                                  |                                                    |                                                  |  |  |
|------------------------------------|---------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--|--|
|                                    | Signal peptidase II<br>recognition site           | Oligopeptide binding site                        | Walker B                                           | Walker A                                         |  |  |
| Consensus<br>motif <sup>1, 2</sup> | (+4)-VAASC-(-1)                                   | (F/Y)X(L/I)RKGVK(W/F)                            | RXXXGXXXLZZZZD                                     | GXXXXGKS/T                                       |  |  |
| Mho_OppA                           | -LVAASC-28                                        | 197-FVIRKGVKW-205                                | 737-RFDGVTGENLLAWSAD-752                           | 869-GKDSSGKS-876                                 |  |  |
| Ms01_OppA                          | -LVAAAC-28                                        | 192-YVLKDNLKW-200                                | 732-INQGANGTRNVGWSYD-747                           | 752-GSGYDGLS-759                                 |  |  |
| Ms02_OppA                          | -SVAVSC-27                                        | 250-FRIRPEQVW-258                                | 795-YWYSVSPARRGRWNYD-810                           | 815-GTGRDGYS-822                                 |  |  |
| Ms03_OppA                          | -ALALSC-28                                        | 552-FRVRPGHFW-560                                | 1074-YWTGTSPFSLAGWGYD-1089                         | 1094-GSGIDGYS-1101                               |  |  |
| Percentage ide                     | entity between the postul                         | ated and consensus motifs                        |                                                    |                                                  |  |  |
|                                    | Signal peptidase II<br>recognition site           | Oligopeptide binding<br>site                     | Walker B                                           | Walker A                                         |  |  |
| Mho_OppA                           | 100%                                              | 100%                                             | 75%                                                | 100%                                             |  |  |
| Ms01_OppA                          | 80%                                               | 50%                                              | 50%                                                | 75%                                              |  |  |
| Ms02_OppA                          | 80%                                               | 50%                                              | 37.5%                                              | 75%                                              |  |  |
| Ms03_OppA                          | 60%                                               | 50%                                              | 50%                                                | 75%                                              |  |  |
| Percentage ide                     | entity and similarity of the                      | e Ms01, Ms02 and Ms03 mo                         | tifs to that of <i>M. hominis</i> <sup>3</sup>     |                                                  |  |  |
|                                    | Signal peptidase II<br>recognition site           | Oligopeptide binding<br>site                     | Walker B                                           | Walker A                                         |  |  |
| Ms01_OppA                          | Identity: 5/6 (83.3%)<br>Similarity: 6/6 (100.0%) | Identity: 3/9 (33.3%)<br>Similarity: 7/9 (77.8%) | Identity: 5/16 (31.2%)<br>Similarity: 6/16 (37.5%) | Identity: 3/8 (37.5%)<br>Similarity: 3/8 (37.5%) |  |  |
| Ms02_OppA                          | Identity: 4/6 (66.7%)<br>Similarity: 4/6 (66.7%)  | Identity: 4/9 (44.4%)<br>Similarity: 4/9 (44.4%) | Identity: 3/16 (18.8%)<br>Similarity: 6/16 (37.5%) | Identity: 3/8 (37.5%)<br>Similarity: 3/8 (37.5%) |  |  |
| Ms03_OppA                          | Identity: 3/6 (50.0%)<br>Similarity: 4/6 (66.7%)  | Identity: 4/9 (44.4%)<br>Similarity: 5/9 (55.6%) | Identity: 4/16 (25.0%)<br>Similarity: 7/16 (43.8%) | Identity: 3/8 (37.5%)<br>Similarity: 3/8 (37.5%) |  |  |

<sup>1</sup> X represents any amino acids <sup>2</sup> Z represents all hydrophobic amino acids

<sup>3</sup> Similarity and identity calculated with EMBOSS Stretcher Pairwise alignment (<u>http://www.ebi.ac.uk/Tools/psa/emboss\_stretcher/</u>) using the BLOSUM62 matrix with a gap penalty of 10 and extension penalty of 0.5




**Supplementary Figure 1** The opp operons of *M. penetrans* HF-2. Type A1 has the oppA gene next to the OppBCDF genes in a polycistronic unit while the Type A2 opp operon has 5 copies of oppA encoded by six open reading frames, MYPE7570-MYPE7620 that is located several hundreds of bases from the opp operon. MYPE7570 and MYPE7580 represent a single copy of oppA.

## Appendix 4 Sequencing data of Chapter 5

Alignments of the *Mycoplasma nasistruthionis* sp. nov. str. Ms03 Type A *oppA* gene was done in BioEdit, as obtained by sequencing after each round of SDM modification and after each clone experiment.

|                                                                                                                                                                                                                                                              | 10                 | 20          | 30 4                      | 0 !       | 50 60                         | 70             | 80           | 90        | 100        | 110                   | 120                 | 130       | 140  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|---------------------------|-----------|-------------------------------|----------------|--------------|-----------|------------|-----------------------|---------------------|-----------|------|
|                                                                                                                                                                                                                                                              |                    |             |                           |           |                               |                |              |           |            |                       |                     |           |      |
| oppA                                                                                                                                                                                                                                                         |                    | ATC         | AAAAAA <mark>TGATG</mark> | ATTATTACC | AGTAGCTAGTAC                  | AGTTTAATTCTTCC | AGCACTTGCCCT | TTCATGTAA | AAACACATCA | AGCGAAAGAA            | CTTTACACTI          | TTTATCTGA | AAAA |
| pGEM_oppA before SDM                                                                                                                                                                                                                                         | GCGGCCGCGGGAATTCGA | TI ACGCGI   |                           |           |                               |                |              |           |            |                       |                     |           |      |
| SDM1 Site 1, 2 & 10                                                                                                                                                                                                                                          | GCGGCCGCGGGAATTCGA | TI ACGCGI   |                           | G         | . <b></b> .                   |                |              |           |            | <mark>.</mark>        |                     |           |      |
| SDM2 Site 9, 13 & 14                                                                                                                                                                                                                                         | GCGGCCGCGGGAATTCGA | TI ACGCGI   | . <mark>.</mark>          | G         |                               |                |              |           |            | . <b></b>             |                     |           |      |
| SDM3 Site 3 & 7                                                                                                                                                                                                                                              | GCGGCCGCGGGAATTCGA | TI ACGCGI   |                           | G         | . <b></b> .                   |                |              |           |            | <mark>.</mark>        |                     |           |      |
| SDM4 Site 4 & 12                                                                                                                                                                                                                                             | GCGGCCGCGGGAATTCGA | TI ACGCGI   | . <mark>.</mark>          | G         |                               |                |              |           |            | . <b></b>             |                     |           |      |
| SDM5 Site 5 & 8                                                                                                                                                                                                                                              | GCGGCCGCGGGAATTCGA | TI ACGCGI   | . <mark>.</mark>          | G         |                               |                |              |           |            | . <b></b>             |                     |           |      |
| SDM6 Site 6 & 16                                                                                                                                                                                                                                             | GCGGCCGCGGGAATTCGA | TI ACGCGI   | . <mark>.</mark>          | G         |                               |                |              |           |            |                       |                     |           |      |
| SDM7 Site 11 & 15                                                                                                                                                                                                                                            | GCGGCCGCGGGAATTCGA | TI ACGCGI   | . <mark>.</mark>          | G         |                               |                |              |           |            | . <b></b>             |                     |           |      |
| pCI-neo_oppA                                                                                                                                                                                                                                                 | TAGGCTAGCCTCGAGAAT | TCACGCG     | . <mark>.</mark>          | G         |                               |                |              |           |            | . <b></b>             |                     |           |      |
| pGem_oppA BamBam                                                                                                                                                                                                                                             | GCGGCCGCGGGAATTCGA | TIGGATCC    |                           | G         |                               |                |              |           |            |                       |                     |           |      |
| VR1020_oppA                                                                                                                                                                                                                                                  | TCGTTTCGCCCAGCGGTA | CCGGATCC    | . <mark>.</mark>          | G         |                               |                |              |           |            | . <b></b>             |                     |           |      |
| pGEM_oppA SalNot                                                                                                                                                                                                                                             | GCGGCCGCGGGAATTCGA | TTGTCGAC    | G                         | G         |                               |                |              |           |            |                       |                     |           |      |
| VR1012_oppA                                                                                                                                                                                                                                                  | TCTTTTCTGCAGTCACCG |             | • • • • • • • • • • • •   |           |                               |                |              |           |            |                       |                     |           |      |
| pGEM_oppA BamNot                                                                                                                                                                                                                                             | GCGGCCGCGGGAATTCGA |             |                           |           | · · · · · · · · · · · · · · · |                |              |           |            |                       |                     |           |      |
| pGEX_oppA                                                                                                                                                                                                                                                    | AATCGGATCTGGTTCCGC | GIGGATCC    |                           | G         | · · · · · · · · · · · · · ·   | •••••          |              |           |            | · · · · · · · · · · · | • • • • • • • • • • |           |      |
|                                                                                                                                                                                                                                                              |                    |             |                           |           |                               |                |              |           |            |                       |                     |           |      |
|                                                                                                                                                                                                                                                              | 1 5 0              | 1.60 1      | 10 10                     | 0 1       | 200                           | 210            | 220          | 220       | 240        | 250                   | 260                 | 270       | 200  |
|                                                                                                                                                                                                                                                              |                    |             | 170 18                    |           | 90 200                        | 210            |              | 230       | 240        | 250                   | 260                 | 270       | 280  |
| 0774                                                                                                                                                                                                                                                         |                    |             |                           |           |                               |                |              |           |            |                       |                     |           |      |
| oppA                                                                                                                                                                                                                                                         |                    |             |                           |           |                               |                |              |           |            |                       |                     |           |      |
| pGEM_oppA before SDM                                                                                                                                                                                                                                         |                    |             |                           |           |                               |                |              |           |            |                       |                     |           |      |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10                                                                                                                                                                                                                  |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | I I I                         | TGAATTTAATAAAT |              |           | FAGAACAACA | AGCTGATTTA            |                     | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14                                                                                                                                                                                          |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7                                                                                                                                                                       |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12                                                                                                                                                   |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8                                                                                                                                |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16                                                                                                            |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15                                                                                       |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA                                                                       |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam                                                   |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA                                    |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA<br>pGEM_oppA SalNot                |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA<br>pGEM_oppA SalNot<br>VR1012_oppA |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |
| pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA<br>pGEM_oppA SalNot                |                    | GAAAAAGCTCA | AGAATATTCAA               | AACAAGCAT | TAGCTTCACTTG                  | TGAATTTAATAAAT |              | Aacaacaat | TAGAACAACA | AGCTGATTTA            | TTAATCTTT           | CTTTACAAG | ACTT |

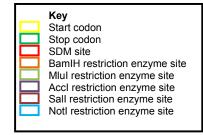


|                      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          | Appe                      |         |
|----------------------|-----------------|-------------|-----------|-----------------------------------------|----------------------------|---------------------|------------|-----------------------|---------------------------|-----------------------|-------------------------|--------------------------|---------------------------|---------|
|                      | 290             | 300         | 310       | 320                                     | 330                        | 340                 | 350        | 360                   | 370                       | 380                   | 390                     | 400                      | 410                       | 420     |
|                      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| oppA                 | AAATTCAGACTTATT |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| pGEM_oppA before SDM |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM1 Site 1, 2 & 10  |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM2 Site 9, 13 & 14 |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM3 Site 3 & 7      |                 |             |           |                                         |                            |                     |            | ••••••                | •••••                     |                       | •••••••••               | ••••••                   | • • • • • • • • • • • • • |         |
| SDM4 Site 4 & 12     |                 |             | •••••     |                                         |                            |                     | •••••      | ••••••                | •••••                     |                       | ••••••                  | •••••••••                |                           |         |
| SDM5 Site 5 & 8      |                 |             |           |                                         |                            |                     |            | ••••••                | •••••                     |                       | •••••••••               | ••••••••                 | • • • • • • • • • • • • • |         |
| SDM6 Site 6 & 16     |                 |             |           |                                         |                            |                     | •••••      | ••••••                | •••••                     |                       | ••••••                  | •••••••••                |                           |         |
| SDM7 Site 11 & 15    |                 |             |           |                                         |                            |                     |            | ••••••                | •••••                     |                       | •••••••••               | •••••••                  | • • • • • • • • • • • • • |         |
| pCI-neo_oppA         |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| pGem oppA BamBam     |                 |             |           |                                         |                            |                     | •••••      | ••••••                | •••••                     |                       | •••••••                 | •••••••••                |                           |         |
| VR1020 oppA          |                 |             |           |                                         |                            |                     | •••••      | •••••                 |                           |                       | •••••••                 | ••••••                   | ••••••                    |         |
| pGEM_oppA SalNot     |                 |             |           |                                         |                            |                     | •••••      | •••••                 |                           |                       | ••••••                  | ••••••••                 |                           |         |
| VR1012_oppA          |                 |             |           |                                         | ••••••                     |                     | •••••      | ••••••                |                           |                       | •••••••                 | ••••••                   | ••••••                    |         |
| pGEM_oppA BamNot     |                 |             | •••••     |                                         |                            |                     | •••••      | ••••••                | •••••                     |                       | ••••••                  | •••••••••                |                           |         |
| pGEX_oppA            |                 |             |           |                                         | ••••••••••                 |                     | •••••      | ••••••                | •••••                     |                       | •••••••                 | •••••••                  | ••••••                    |         |
| PGEX_OPPA            | ••••••          |             | •••••     | •••••                                   | •••••                      |                     | •••••      | ••••••                | •••••                     |                       | ••••••                  | ••••••                   | • • • • • • • • • • • • • |         |
|                      | 430             | 440         | 450       | 460                                     | 470                        | 480                 | 490        | 500                   | 510                       | 520                   | 530                     | 540                      | 550                       | 560     |
|                      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| oppA                 | TCCAAGATTTTTTAA |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| pGEM oppA before SDM |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM1 Site 1, 2 & 10  |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM2 Site 9, 13 & 14 |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM3 Site 3 & 7      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM4 Site 4 & 12     |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM5 Site 5 & 8      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM6 Site 6 & 16     |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| SDM7 Site 11 & 15    |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| pCI-neo oppA         |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| pGem oppA BamBam     |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| VR1020 oppA          |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| pGEM oppA SalNot     |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
| VR1012_oppA          |                 |             |           |                                         |                            |                     |            |                       |                           | . <b>.</b> . <b></b>  |                         |                          |                           |         |
| pGEM oppA BamNot     |                 |             |           |                                         |                            |                     |            |                       |                           | . <b>.</b> . <b></b>  |                         |                          |                           |         |
| pGEX_oppA            |                 |             |           |                                         |                            |                     |            |                       |                           | . <b></b>             |                         |                          |                           |         |
|                      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |
|                      | 570             | 580         | 590       | 600                                     | 610                        | 620                 | 630        | 640                   | 650                       | 660                   | 670                     | 680                      | 690                       | 700     |
|                      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          | .                         |         |
| oppA                 | TTAGATAATAAAAAC | ATTAATTTAGC | TTTATTAAA | AGATAAAGCA                              | AA <mark>T</mark> AAAACAGA | GCAAGAAAA           | TGCCCAAATT | ACAGCGCTAG            | AAG <mark>CT</mark> GAAAT | TCAAGCATCA            | AAAGAACAAC/             | AAACAACAA <mark>T</mark> | ITCACAAGAAT               | TAGA    |
| pGEM_oppA before SDM | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · ·    | •••••               | •••••      |                       | · · · · · · · · · · ·     | • • • • • • • • • • • | · · · · · · · · · · · · | •••••                    | • • • • • • • • • • • •   | • • • • |
| SDM1 Site 1, 2 & 10  | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · ·    | •••••               | •••••      |                       | · · · · · · · · · · ·     | • • • • • • • • • • • | · · · · · · · · · · · · | • • • • • • • • • •      | • • • • • • • • • • • •   | • • • • |
| SDM2 Site 9, 13 & 14 | •••••           |             |           | · · · · · · · · · · · ·                 | · · · · · · · · · · · · ·  | • • • • • • • • • • | •••••      |                       | · · · · · · · · · · ·     | •••••                 | ••••••                  | • • • • • • • • • •      |                           | • • • • |
| SDM3 Site 3 & 7      | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · ·    | •••••               | •••••      |                       | · · · · · · · · · · ·     | • • • • • • • • • • • | ••••••                  | ••••••                   | • • • • • • • • • • • •   | • • • • |
| SDM4 Site 4 & 12     | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   | · · · · · · · · · · · ·    | •••••               | •••••      |                       | · · · · · · · · · · ·     | • • • • • • • • • • • | ••••••                  | ••••••                   | • • • • • • • • • • • •   | • • • • |
| SDM5 Site 5 & 8      | •••••           |             | •••••     | · · · · · · · · · · ·                   | · · · · · · · · · · · ·    | •••••               | •••••      |                       | •••••                     | •••••                 | •••••                   | •••••                    | •••••                     | ••••    |
| SDM6 Site 6 & 16     | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   |                            | •••••               | •••••      |                       | •••••                     | •••••                 |                         | •••••                    | • • • • • • • • • • • •   | ••••    |
| SDM7 Site 11 & 15    | •••••           |             |           | · · · · · · · · · · · ·                 |                            | •••••               | •••••      |                       | •••••                     | •••••                 |                         | •••••                    | • • • • • • • • • • • •   | ••••    |
| pCI-neo_oppA         | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   |                            | •••••               | •••••      |                       | •••••                     | •••••                 |                         | •••••                    | • • • • • • • • • • • •   | ••••    |
| pGem_oppA BamBam     | •••••           |             |           | · · · • • • • • • • • • • • • • • • • • | · · · · · · · · · · · ·    |                     | •••••      |                       | · · · · · · · · · · · ·   | •••••                 |                         | • • • • • • • • • •      | • • • • • • • • • • •     | ••••    |
| VR1020_oppA          | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   |                            | •••••               | •••••      | · · · · · · · · · · · | · · · · · · · · · · ·     | •••••                 |                         | •••••                    | • • • • • • • • • • • •   | ••••    |
| pGEM_oppA SalNot     | •••••           |             |           | · · · • • • • • • • • • • • • • • • • • | · · · · · · · · · · · · ·  | •••••               | •••••      |                       | · · · · · · · · · · ·     | •••••                 |                         | • • • • • • • • • •      | • • • • • • • • • • •     | ••••    |
| VR1012_oppA          | •••••           |             |           | · · · · · · · · · · · · · · · · · · ·   |                            | •••••               | •••••      | · · · · · · · · · · · | · · · · · · · · · · ·     | •••••                 |                         | • • • • • • • • • •      | • • • • • • • • • • • •   | ••••    |
| pGEM_oppA BamNot     | •••••           |             |           | · · · • • • • • • • • • • • • • • • • • | · · · · · · · · · · · · ·  |                     | •••••      |                       | · · · · · · · · · · · ·   | •••••                 |                         | • • • • • • • • • •      | • • • • • • • • • • •     | ••••    |
| pGEX_oppA            | •••••           |             |           | · · · · · · · · · · · ·                 |                            | •••••               | •••••      |                       | •••••                     | •••••                 |                         | •••••                    | • • • • • • • • • • • •   | ••••    |
|                      |                 |             |           |                                         |                            |                     |            |                       |                           |                       |                         |                          |                           |         |

|                                       |                               |             | 30                        | ellenbusci | 1 Univers                      | my mips           | .//SCHUIAL.                    | Sunac.za              | 1           |                     |              |                              |                       |             |
|---------------------------------------|-------------------------------|-------------|---------------------------|------------|--------------------------------|-------------------|--------------------------------|-----------------------|-------------|---------------------|--------------|------------------------------|-----------------------|-------------|
|                                       |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              | Арр                   | endix 4     |
| оррА                                  | 710<br>   <br>TCAAAATTCTGAAAC |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
| pGEM_oppA before SDM                  |                               |             |                           |            | <b></b>                        |                   |                                |                       |             |                     |              |                              |                       |             |
| SDM1 Site 1, 2 & 10                   | ••••••                        | •••••••     |                           |            | <mark></mark>                  | •••••             |                                | • • • • • • • • • •   | •••••       |                     | •••••        | •••••••                      |                       |             |
| SDM2 Site 9, 13 & 14                  | ••••••                        | •••••••     | • • • • • • • • • •       | •••••      |                                | ••••••            | · · · · · · · · · · · · ·      |                       | •••••       | · · · · · · · · · · | •••••        | ••••••                       | · · · · · · · · · · · | • • • • •   |
| SDM3 Site 3 & 7                       | ••••••                        | ••••••      | •••••                     | •••••      | • • • • • • • • • • •          | •••••             | ••••••                         | •••••                 | •••••       | •••••               | ••••••       | ••••••••                     | •••••••••             | ••••        |
| SDM4 Site 4 & 12                      | ••••••                        | ••••••      | •••••                     | •••••      | • • • • • • • • • • •          | •••••             | ••••••                         | •••••                 | •••••       | •••••               | ••••••       | ••••••••                     | •••••••••             | ••••        |
| SDM5 Site 5 & 8                       | ••••••                        | •••••••     | •••••                     | •••••      | •••••                          | •••••             | •••••••••••                    | • • • • • • • • • • • | •••••       | •••••               | ••••••       | •••••••••                    | •••••••               | ••••        |
| SDM6 Site 6 & 16                      | ••••••••••                    | ••••••      | •••••                     | •••••      | •••••                          | •••••             | ••••••                         | •••••                 | •••••       | •••••               | •••••        | ••••••                       | •••••••               | ••••        |
| SDM7 Site 11 & 15                     | ••••••                        | ••••••••    | •••••                     | •••••      | •••••                          | •••••             | •••••                          | •••••                 | •••••       | •••••               | •••••        | ••••••                       | •••••••••             | ••••        |
| pCI-neo_oppA<br>pGem oppA BamBam      | ••••••                        | •••••       | •••••                     | •••••      | •••••                          | •••••             | •••••                          | •••••                 | •••••       |                     | •••••        | •••••                        |                       | ••••        |
| VR1020_oppA                           | ••••••                        | ••••••      | •••••                     |            | •••••                          | •••••             | •••••                          | •••••                 | •••••       |                     | •••••        | •••••                        |                       | • • • • • • |
| pGEM oppA SalNot                      | ••••••••••••••                |             | •••••                     |            | •••••                          | •••••             | ••••••                         |                       | ••••••      |                     | •••••        | ••••••                       |                       |             |
| VR1012_oppA                           |                               |             |                           |            | · · · · · · · · · · · · ·      |                   |                                |                       |             |                     |              |                              |                       |             |
| pGEM oppA BamNot                      |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
| pGEX_oppA                             |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
|                                       |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
|                                       | 850                           | 860         | 870                       | 880        | 890                            | 900               | 910                            | 920                   | 930         | 940                 | 950          | 960                          | 970                   | 980         |
|                                       |                               | .           |                           |            |                                |                   |                                |                       | .           |                     |              |                              |                       |             |
| oppA                                  | CAAAACAACAAGAAC               | TATCAACTAA  | AAAAG <mark>CT</mark> GAA | ATTAACAAAC | AAA <mark>TC</mark> AGCGA      | CCAAGGCTT         | AAA <mark>T</mark> GAAAAAA     | TTCAAAGTGC            | TTTTGATACT  | ATTCTAAGG           | CAACTGATGA   | A <mark>C</mark> AAAGAAAA    | TACAATGGT1            | TACTA       |
| pGEM_oppA before SDM                  | ••••••                        | •••••       | <mark></mark>             |            | · · · <b>· · · · · ·</b> · · · | •••••             | · · · <b>·</b> · · · · · · · · |                       |             |                     | •••••••      | · <b>·</b> · · · · · · · · · | ••••••                |             |
| SDM1 Site 1, 2 & 10                   | •••••                         | ••••••      | • • • • • • • • • • •     | •••••      | •••••••                        | •••••             | • • • • • • • • • • • •        | •••••                 | •••••       | •••••               | •••••        | • • • • • • • • • •          | •••••                 | • • • • •   |
| SDM2 Site 9, 13 & 14                  | ••••••                        | ••••••      | •••••                     | ••••••     | ••••••••                       | •••••••           | • • • • • • • • • • • •        | •••••                 | •••••       | •••••               | ••••••       | •••••                        | ••••••                | ••••        |
| SDM3 Site 3 & 7                       | ••••••                        | ••••••      | · · · · · · · · · · · ·   | •••••      | ••••••••                       | •••••             | ••••                           | •••••                 | •••••       | •••••••             | •••••••      | •••••                        | ••••••                | ••••        |
| SDM4 Site 4 & 12                      | ••••••                        | •••••       | · · · · · · · · · · · ·   | •••••      | ••••••••                       | •••••             | •••••                          | •••••                 | •••••       | •••••••             | •••••••      | •••••                        | ••••••                | ••••        |
| SDM5 Site 5 & 8                       | ••••••                        | ••••••      | ••••••                    | •••••      | •••••••                        | ••••••            | ••••                           | •••••                 | •••••       | •••••               | •••••        | •••••                        | ••••••                | ••••        |
| SDM6 Site 6 & 16                      | •••••                         | •••••       | ••••••                    | •••••      | ••••••••                       | •••••             | ••••                           | ••••••                | •••••       | •••••               | •••••        | •••••                        | ••••••                | ••••        |
| SDM7 Site 11 & 15                     | ••••••                        | •••••       | •••••••••••               | ••••••     | ••••••••                       | •••••             | •••••                          | •••••                 | •••••       | •••••               | •••••        | •••••                        | ••••••                | ••••        |
| pCI-neo_oppA<br>pGem oppA BamBam      | ••••••                        | •••••       | ••••••                    | •••••      | ••••••                         | •••••             | •••••                          | •••••                 | •••••       |                     | •••••        | •••••                        | ••••••                | ••••        |
| VR1020_oppA                           | ••••••                        | •••••       | ••••••                    | •••••      | •••••                          | •••••             | •••••                          | •••••                 |             | •••••               | •••••        | •••••                        | ••••••                |             |
| pGEM oppA SalNot                      | ••••••                        |             | ••••••                    | •••••      | •••••••••                      |                   | •••••                          | ••••••                |             | •••••               | •••••        | •••••                        |                       |             |
| VR1012_oppA                           |                               |             | · · · · · · · · · · · · · |            | · · · · · · · · · · · · ·      |                   | · · · · · · · · · · · · · ·    |                       |             |                     |              |                              |                       |             |
| pGEM oppA BamNot                      |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
| pGEX_oppA                             |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
|                                       |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
|                                       | 990                           | 1000        | 1010                      | 1020       | 1030                           | 1040              | 1050                           | 1060                  | 1070        | 1080                | 1090         | 1100                         | 1110                  | 1120        |
|                                       |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
| oppA                                  | GTCCAAAATGACATT               | TCAGCTTATAC | <b>STTATTCAAC</b>         | TAAAGATGCT | AATTTTGATG                     | AAACAGGAG         | TAATTCAGAT                     | ССТАААТАТТ            | TATCAAAACA/ | GAAGTCAAT           | 'AAAATAGTTT' | TTCCTAATGA                   | CCCTTTTGT/            | AATTC       |
| pGEM_oppA before SDM                  | •••••                         | •••••       | • • • • • • • • • •       | •••••      | • • • • • • • • • •            | • • • • • • • • • | • • • • • • • • • • •          | • • • • • • • • • •   | ••••        | ••••••••            | ••••••       | •••••                        | • • • • • • • • • •   | ••••        |
| SDM1 Site 1, 2 & 10                   | •••••                         | •••••       | •••••                     | ••••••     | ••••••                         | ••••              | •••••                          | •••••                 | •••••       | •••••••             | •••••••••    | •••••                        | •••••                 | ••••        |
| SDM2 Site 9, 13 & 14                  | •••••                         | •••••       | •••••                     | •••••      | •••••                          | ••••              | ••••••                         | •••••                 | •••••       | •••••               | •••••••••    | •••••                        | •••••                 | ••••        |
| SDM3 Site 3 & 7                       | •••••                         | •••••       | • • • • • • • • • • •     | •••••      | •••••                          | • • • • • • • • • | •••••                          | •••••                 | •••••       | ••••••••            | •••••        | •••••                        | •••••                 | ••••        |
| SDM4 Site 4 & 12                      | •••••                         | •••••       | •••••                     | ••••••     | •••••                          | ••••              | •••••                          | •••••                 | ••••••      | •••••               | ••••••••     | •••••                        | ••••••                | ••••        |
| SDM5 Site 5 & 8                       | •••••                         | •••••       | • • • • • • • • • • •     | ••••••     | •••••                          | •••••             | •••••                          | •••••                 | •••••       | •••••••••           | •••••        | •••••                        | ••••••                | ••••        |
| SDM6 Site 6 & 16<br>SDM7 Site 11 & 15 |                               | •••••       | • • • • • • • • • • • •   | ••••••     | ••••••                         | •••••             | ••••••                         | •••••                 | •••••       | •••••               | •••••        | •••••                        | •••••                 |             |
| pCI-neo_oppA                          | •••••                         |             | •••••                     |            | •••••                          |                   | ••••••                         | •••••                 |             | •••••••••           |              | •••••                        |                       |             |
| pGem oppA BamBam                      | •••••••••••••                 |             | •••••                     |            | • • • • • • • • • • •          |                   | ••••••                         |                       |             |                     |              | •••••                        |                       |             |
| VR1020_oppA                           |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
| pGEM oppA SalNot                      |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |
| VR1012_oppA                           |                               |             | •••••                     |            |                                |                   |                                |                       |             |                     |              | •••••                        |                       |             |
| pGEM_oppA BamNot                      |                               |             |                           |            |                                |                   |                                |                       | •••••       |                     |              |                              |                       |             |
| pGEX_oppA                             |                               |             |                           |            |                                | <b>.</b>          |                                |                       |             |                     |              |                              |                       |             |
|                                       |                               |             |                           |            |                                |                   |                                |                       |             |                     |              |                              |                       |             |

|                      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                | Appe                          |           |
|----------------------|------------------|---------------------------|-----------------------|----------------------------------------|---------------------|---------------------|---------------------------------------|-----------|-----------------------------|---------------------|---------------------------------------|--------------------------------|-------------------------------|-----------|
|                      | 1130             | 1140                      | 1150                  | 1160                                   | 1170                | 1180                | 1190                                  | 1200      | 1210                        | 1220                | 1230                                  | 1240                           | 1250                          | 1260      |
|                      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
|                      | ••••             |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| oppA                 | ACCAGTTAGTGATAG  | TTTTGCTAAAA               | ACGGTGTTTT            | CCAAATTGAT                             | ACAAACTCAC          | AATATTCAC           | CTGGTTATGCT                           | CCATTTGAC | AACACTGTAAG                 | TTTTGGAAA           | TCGTCAAGCTA                           | ATATTTCAG                      | TACTGTTTC                     | AATTT     |
| pGEM_oppA before SDM | •••••            | • • • • • • • • • • • •   |                       | •••••                                  |                     |                     | •••••                                 |           | · · · · · · · · · · · ·     |                     | • • • • • • • • • • • •               |                                | •••••                         |           |
| SDM1 Site 1, 2 & 10  |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM2 Site 9, 13 & 14 |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM3 Site 3 & 7      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM4 Site 4 & 12     |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM5 Site 5 & 8      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM6 Site 6 & 16     |                  | ••••••                    | •••••                 | •••••                                  |                     |                     | •••••                                 | •••••     | ••••••                      | •••••               | •••••                                 | ••••••                         |                               | • • • • • |
|                      | •••••••••••      | • • • • • • • • • • • •   | •••••                 | •••••                                  | •••••               | •••••               | •••••                                 | •••••     | ••••••                      | •••••               | •••••                                 | ••••••                         | •••••                         | • • • • • |
| SDM7 Site 11 & 15    | •••••            | ••••••                    | •••••                 | ••••••                                 | •••••               | •••••               | •••••                                 | •••••     | •••••••••••                 | •••••               | •••••                                 | ••••••                         | •••••                         | • • • • • |
| pCI-neo_oppA         | •••••••••••      | • • • • • • • • • • • •   | •••••                 | •••••                                  | •••••               | •••••••             | •••••                                 | •••••     | ••••••••••                  | • • • • • • • • • • | •••••                                 | ••••••                         | •••••                         | • • • • • |
| pGem_oppA BamBam     | ••••••           | • • • • • • • • • • • •   | •••••                 | •••••                                  | • • • • • • • • • • | • • • • • • • • •   | •••••••                               | •••••     | ••••••••••                  | • • • • • • • • •   | •••••                                 | ••••••                         | ••••••                        | • • • • • |
| VR1020_oppA          | ••••••           | • • • • • • • • • • •     | •••••                 | •••••                                  |                     |                     | •••••                                 | •••••     | •••••••••                   | • • • • • • • • •   | •••••                                 | • • • • • • • • • •            | · · · · · · · · · · ·         |           |
| pGEM_oppA SalNot     |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     | •••••                                 |                                |                               |           |
| VR1012 oppA          |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| pGEM oppA BamNot     |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| pGEX_oppA            |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| poin_oppin           |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
|                      | 1270             | 1280                      | 1290                  | 1300                                   | 1310                | 1320                | 1330                                  | 1340      | 1350                        | 1360                | 1370                                  | 1380                           | 1390                          | 1400      |
|                      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
|                      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| oppA                 | CATTTGTTTCAGCTG2 |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       | GTTTTAAGAT                     | ACAAATTAGA                    | ACTA      |
| pGEM_oppA before SDM | •••••            | · · · · · · · · · · · · · | •••••                 | •••••                                  | •••••               | • • • • • • • • •   | ••••••••••                            | •••••     | ••••••                      | •••••               | •••••                                 | • • • • • • • • • •            | •••••                         | • • • • • |
| SDM1 Site 1, 2 & 10  | •••••            | • • • • • • • • • • •     | · · · · · · · · · ·   | •••••                                  | •••••               | • • • • • • • • •   | •••••••••                             | •••••     | ••••••                      | ••••••              | •••••                                 | • • • • • • • • • •            | • • • • • • • • • •           | • • • • • |
| SDM2 Site 9, 13 & 14 | •••••            | • • • • • • • • • • • •   | · · · · · · · · · ·   | •••••                                  | • • • • • • • • • • | • • • • • • • • •   | ••••••                                | •••••     | •••••                       | • • • • • • • • • • | •••••                                 |                                | · • · · · • • • • • •         |           |
| SDM3 Site 3 & 7      | •••••••••••••    | <mark>.</mark>            |                       |                                        | G                   |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM4 Site 4 & 12     |                  | <mark>.</mark>            |                       |                                        | G                   |                     |                                       |           | <mark>.</mark>              |                     |                                       |                                |                               |           |
| SDM5 Site 5 & 8      |                  | <b>.</b> <mark>.</mark>   |                       |                                        | G                   |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM6 Site 6 & 16     |                  |                           |                       |                                        | G                   |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM7 Site 11 & 15    |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| pCI-neo oppA         |                  |                           |                       |                                        | G                   |                     |                                       |           |                             |                     |                                       |                                |                               |           |
|                      | ••••••••••••••   | •••••••                   | •••••                 | •••••                                  |                     |                     |                                       | •••••     | •••••                       | •••••               | •••••                                 | • • • • • • • • • • •          | ••••••                        | • • • • • |
| pGem_oppA BamBam     | ••••••           | ••••••••••                | •••••                 | •••••                                  |                     |                     |                                       |           |                             | •••••               | •••••                                 | • • • • • • • • • • •          | •••••                         | • • • • • |
| VR1020_oppA          | •••••            | · · · · · · · · · · · · · | •••••                 | •••••                                  |                     |                     |                                       |           | ••••••                      | •••••               | •••••                                 | • • • • • • • • • • •          | •••••                         | • • • • • |
| pGEM_oppA SalNot     | ••••••           | · · · · · · · · · · · · · | •••••                 | •••••                                  |                     |                     | •••••••••                             |           | ••••••                      | ••••••              | •••••                                 | • • • • • • • • • •            | •••••                         | • • • • • |
| VR1012_oppA          | ••••••           | • • • • • • • • • • • •   | •••••                 | •••••                                  |                     |                     | •••••••••                             | •••••     | ••••••                      | ••••••              | •••••                                 | • • • • • • • • • •            | •••••                         | • • • • • |
| pGEM_oppA BamNot     | ••••••           | • • • • • • • • • • • •   | · · · · · · · · · ·   | •••••                                  | •••••G              |                     | •••••••                               | •••••     | •••••                       | · · · · · · · · · · | • • • • • • • • • • • •               |                                | · • · · · • • • • • •         |           |
| pGEX_oppA            | ••••••           | <mark>.</mark>            | · · · · · · · · · · · | •••••                                  | G                   | • • • • • • • • • • |                                       |           | · · · · · · · · · · · · · · | · · · · · · · · · · |                                       |                                | · · · · · · · · · · ·         |           |
|                      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
|                      | 1410             | 1420                      | 1430                  | 1440                                   | 1450                | 1460                | 1470                                  | 1480      | 1490                        | 1500                | 1510                                  | 1520                           | 1530                          | 540       |
|                      |                  | .                         |                       |                                        |                     |                     | .                                     |           | .                           |                     |                                       | .                              |                               |           |
| oppA                 | GCAGACGCAATTATT  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| pGEM_oppA before SDM |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM1 Site 1, 2 & 10  |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| SDM2 Site 9, 13 & 14 |                  | ••••••                    |                       | •••••                                  |                     |                     |                                       | •••••     | •••••                       |                     |                                       | ••••••                         |                               |           |
| SDM2 Site 3 & 7      |                  | ••••••                    | •••••                 | ••••                                   | •••••               |                     | •••••                                 | •••••     | ••••••                      | •••••               | •••••                                 | •••••                          |                               | •••••     |
|                      | ••••••           | ••••••                    | •••••                 | •••••••••                              | •••••               | •••••               | •••••                                 | •••••     | •••••                       | • • • • • • • • • • | •••••                                 | •••••                          | · · · · · · · · · · · · · · · | ••••      |
| SDM4 Site 4 & 12     | ••••••           | •••••                     | •••••                 | •••••••••                              | •••••               | •••••               | ••••••••••                            | •••••     | •••••                       | • • • • • • • • •   | •••••                                 | •••••                          | · · · · · · · · · · ·         | • • • • • |
| SDM5 Site 5 & 8      | •••••            | ••••••                    | •••••                 | •••••                                  | •••••               | •••••               | •••••••••                             | •••••     | ••••••                      | • • • • • • • • •   | •••••                                 | • • • • • • • • • • •          | ••••••                        | ••••      |
| SDM6 Site 6 & 16     | •••••            | • • • • • • • • • • •     | •••••                 | •••••••••••••••••••••••••••••••••••••• | •••••               |                     | •••••••••                             | •••••     | • • • • • • • • • • • •     | • • • • • • • • •   | ••••                                  | • • • • • • • • • • •          |                               | • • • • • |
| SDM7 Site 11 & 15    | ••••••           |                           | • • • • • • • • • •   | · · · · · · · · · · · · · · · · · · ·  | ••••••              |                     | · · · · · · · · · · · · · · · · · · · |           |                             |                     | · · · · · · · · · · · · · · · · · · · | . <mark></mark> <mark>.</mark> |                               |           |
| pCI-neo_oppA         |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| pGem_oppA BamBam     |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       | . <b></b> . <b></b>            |                               |           |
| VR1020_oppA          |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| pGEM oppA SalNot     |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |
| VR1012_oppA          | ••••••           |                           | •••••                 |                                        |                     |                     |                                       |           |                             |                     | •••••                                 |                                |                               | •••••     |
|                      | •••••            | ••••••                    | •••••                 | •••••                                  | ••••••              | •••••               | •••••                                 | •••••     | •••••                       | • • • • • • • • • • | •••••                                 | ••••••                         |                               | •••••     |
| pGEM_oppA BamNot     | •••••            | ••••••                    | •••••                 | •••••••                                | ••••••••••          | •••••               | •••••••••                             | •••••     | •••••                       | • • • • • • • • • • | •••••                                 | •••••                          | •••••                         | ••••      |
| pGEX_oppA            | •••••            | • • • • • • • • • • •     | •••••                 | ••••••••                               | •••••               | •••••               | •••••••••                             | •••••     | •••••                       | • • • • • • • • •   | •••••                                 | •••••                          | •••••                         | ••••      |
|                      |                  |                           |                       |                                        |                     |                     |                                       |           |                             |                     |                                       |                                |                               |           |

|                              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       | Appe                |           |
|------------------------------|---------------------------------------|-------------------------------|----------------------------|---------------------------------------|------------------------------------------|---------------------|-------------------------|------------------------------|-------------------------|---------------------------------------|----------------------------------------|-----------------------|---------------------|-----------|
|                              | 1550                                  | 1560                          | 1570                       | 1580                                  | 1590                                     | 1600                | 1610                    | 1620                         | 1630                    | 1640                                  | 1650                                   | 1660                  | 1670                | 1680      |
|                              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| 0770                         | ACTTGATGAAAACGGT                      |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| oppA<br>pGEM oppA before SDM | ACTIGATGAAAACGGT                      | CAAGIIGIIA                    | InnGhanaChan               | CAAAIACIII                            | GCCAGIGCIG                               | AAGIIAGAA           | GATITICATCA             | MAICCIAAA                    | ICANITANCIC             | ACAGCATTI                             | CITIGAIGITI.                           |                       | AACIGAACI           | IAAAI     |
| SDM1 Site 1, 2 & 10          |                                       | •••••                         | •••••                      | •••••                                 | ••••••                                   | •••••               | ••••••                  |                              | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • • • |                     | • • • • • |
|                              | ••••••                                | •••••                         | •••••                      | •••••                                 | ••••••                                   | •••••••             | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  |                       | •••••               | • • • • • |
| SDM2 Site 9, 13 & 14         | •••••••••••••••••                     | •••••                         | •••••                      | •••••                                 | ••••••                                   | •••••               | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • • • | •••••               | • • • • • |
| SDM3 Site 3 & 7              | ••••••                                | •••••                         | ••••••                     | •••••                                 | ••••••                                   | •••••               | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  |                       | •••••               | ••••      |
| SDM4 Site 4 & 12             | •••••••••••••••••                     | •••••                         | •••••                      | •••••                                 | ••••••                                   | •••••               | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • • • | •••••               | • • • • • |
| SDM5 Site 5 & 8              | •••••••••••••••••                     | •••••                         | •••••                      | •••••                                 | ••••••••                                 | •••••               | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • • • | •••••               | • • • • • |
| SDM6 Site 6 & 16             |                                       | •••••                         | •••••                      | •••••                                 | •••••••                                  | •••••••             | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • •   | •••••               | • • • • • |
| SDM7 Site 11 & 15            |                                       | •••••                         | •••••                      | •••••                                 | •••••••                                  | •••••               | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • •   | •••••               | • • • • • |
| pCI-neo_oppA                 | •••••                                 | ••••••                        | •••••                      | •••••                                 | ••••••                                   | ••••••              | ••••••                  | ••••••                       | •••••                   | • • • • • • • • • •                   | •••••                                  | • • • • • • • • • •   | •••••               | • • • • • |
| pGem_oppA BamBam             | •••••••••••••••                       | ••••••                        | · · · · · · · · · · · ·    | •••••                                 | ••••••                                   | ••••••              | ••••••                  | ••••••                       | •••••                   | • • • • • • • • •                     | •••••                                  | • • • • • • • • • •   | •••••••             | • • • • • |
| VR1020_oppA                  | ••••••                                | •••••                         | •••••                      | •••••                                 | ••••••                                   | ••••••              | ••••••                  | •••••••                      | •••••                   | •••••                                 | •••••                                  | • • • • • • • • • •   | •••••••             | • • • • • |
| pGEM_oppA SalNot             | ••••••                                | •••••                         | ••••••                     | •••••                                 | ••••••                                   | · · · · · · · · · · | ••••••                  | ••••••                       | •••••                   | ••••••                                | •••••                                  | • • • • • • • • •     | ••••••              | ••••      |
| VR1012_oppA                  | ••••••••••••••                        | ••••••                        | •••••                      | •••••                                 | ••••••                                   | • • • • • • • • • • | ••••••                  | ••••••                       | •••••                   | •••••                                 | •••••                                  | • • • • • • • • •     | ••••••              | ••••      |
| pGEM_oppA BamNot             |                                       | • • • • • • • • • •           | ••••••                     | •••••                                 | ••••••                                   | · · · · · · · · · · | •••••                   | • • • • • • • • • •          | • • • • • • • • • • •   |                                       | •••••                                  | • • • • • • • • •     | ••••••              | • • • • • |
| pGEX_oppA                    |                                       | ••••••                        | · · · · · · · · · · · ·    | •••••                                 |                                          | · · · · · · · · · · | • • • • • • • • • • • • | · · · <b>· · · ·</b> · · · · |                         |                                       | •••••                                  |                       | · · · · · · · · · · | • • • • • |
|                              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
|                              | 1690                                  | 1700                          | 1710                       | 1720                                  | 1730                                     | 1740                | 1750                    | 1760                         | 1770                    | 1780                                  | 1790                                   | 1800                  | 1810                | 1820      |
|                              |                                       |                               |                            |                                       |                                          |                     |                         |                              | .                       |                                       |                                        | .                     |                     |           |
| oppA                         | TCAGAGTTAGACCAGG                      | TCATTTCTG7                    | ACCGATGCTA                 | AAGGAAA <mark>TC</mark> G             | АА <mark>С</mark> АААА <mark>Т</mark> АТ | CCAATAGTA           | GCAAAAGACTI             | CTATCTTGG                    | ATTATTAAGAA             | CACAAATG <mark>T</mark>               | GAGACACACCT                            | TATAGGCTAT            | CACATGGTG           | GTTCA     |
| pGEM_oppA before SDM         | ••••••                                | · · · · · · · · · · · · · · · | <b></b> .                  |                                       |                                          | · · · · · · · · · · |                         |                              | · · · · · · · · · · · · | • • • • • • • • • • • • • • • • • • • | •••••••••••••••••••••••••••••••••••••• |                       | •••••               | • • • • • |
| SDM1 Site 1, 2 & 10          |                                       |                               |                            | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM2 Site 9, 13 & 14         |                                       |                               |                            | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM3 Site 3 & 7              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM4 Site 4 & 12             |                                       |                               | . <b> </b> .               |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM5 Site 5 & 8              |                                       |                               | . <b> </b> .               |                                       |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| SDM6 Site 6 & 16             | <b>. .</b>                            |                               | . <b> </b> .               | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| SDM7 Site 11 & 15            | •••••••••••••••••••••                 |                               | ;. <b> </b> .              | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| pCI-neo oppA                 | <b>. .</b>                            |                               | . <b> </b> .               | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| pGem oppA BamBam             |                                       |                               | <mark>.</mark> . <b></b> . |                                       |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| VR1020_oppA                  | <b>. .</b>                            |                               | . <b> </b> .               | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| pGEM oppA SalNot             | ••••••                                |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| VR1012_oppA                  | <b>. .</b>                            |                               | . <b> </b> .               | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| pGEM_oppA BamNot             |                                       |                               | <mark>.</mark> . <b></b> . |                                       |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
| pGEX_oppA                    |                                       |                               | . <b> </b> .               | · · · · · · · · · · · · · · · · · · · |                                          |                     |                         |                              |                         |                                       | .G                                     |                       |                     |           |
|                              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
|                              | 1830                                  | 1840                          | 1850                       | 1860                                  | 1870                                     | 1880                | 1890                    | 1900                         | 1910                    | 1920                                  | 1930                                   | 1940                  | 1950                | 1960      |
|                              |                                       |                               |                            |                                       |                                          |                     |                         |                              | .                       |                                       |                                        | .                     |                     |           |
| оррА                         | AGGGAAACAGATAATG                      |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| pGEM_oppA before SDM         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · ·         |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM1 Site 1, 2 & 10          |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM2 Site 9, 13 & 14         |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM3 Site 3 & 7              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM4 Site 4 & 12             |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM5 Site 5 & 8              |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM6 Site 6 & 16             |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| SDM7 Site 11 & 15            |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| pCI-neo_oppA                 |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| pGem_oppA BamBam             |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| VR1020_oppA                  |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| pGEM oppA SalNot             |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| VR1012_oppA                  |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| pGEM oppA BamNot             |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| pGEX_oppA                    |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |
| Lobb                         |                                       |                               |                            |                                       |                                          |                     |                         |                              |                         |                                       |                                        |                       |                     |           |


|                                       |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       | Ahh       |           |
|---------------------------------------|-----------------------------------------|-------------------------|------------|-----------------------|-----------------------|-------------------|------------|---------------------|------------|-------------------------|-----------------------|---------------------------------------|-----------|-----------|
|                                       | 1970                                    | 1980                    | 1990       | 2000                  | 2010                  | 2020              | 2030       | 2040                | 2050       | 2060                    | 2070                  | 2080                                  | 2090      | 2100      |
|                                       |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| oppA                                  | ATCAGAAGATGACAAT                        |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| pGEM_oppA before SDM                  |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM1 Site 1, 2 & 10                   |                                         |                         |            | • • • • • • • • • • • |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM2 Site 9, 13 & 14                  |                                         |                         |            | • • • • • • • • • • • |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM3 Site 3 & 7                       |                                         |                         |            | • • • • • • • • • •   |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM4 Site 4 & 12                      |                                         |                         |            | • • • • • • • • • •   |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM5 Site 5 & 8                       |                                         |                         |            | • • • • • • • • • •   |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM6 Site 6 & 16                      |                                         |                         |            | • • • • • • • • • •   |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| SDM7 Site 11 & 15                     |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| pCI-neo_oppA                          |                                         |                         |            | ••••                  |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| pGem_oppA BamBam                      |                                         |                         |            | ••••                  |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| VR1020_oppA                           |                                         |                         | ••••••     | •••••                 |                       |                   |            |                     |            | • • • • • • • • • • •   |                       |                                       |           |           |
| pGEM_oppA SalNot                      |                                         |                         | ••••••     | •••••                 |                       |                   |            |                     |            | • • • • • • • • • • •   |                       |                                       |           |           |
| VR1012_oppA                           | · · · · · · · · · · · · · · · · · · ·   |                         | •••••      | •••••                 |                       | • • • • • • • • • |            |                     | •••••••    | • • • • • • • • • • •   |                       | • • • • • • • • • • •                 |           |           |
| pGEM_oppA BamNot                      | ••••••••••••••••                        | • • • • • • • • • • • • | •••••      | •••••                 |                       | •••••             |            |                     | •••••      | • • • • • • • • • • •   | • • • • • • • • • • • | • • • • • • • • • • •                 |           | ••••      |
| pGEX_oppA                             | ••••••••••••••••                        | • • • • • • • • • • • • | •••••      | •••••                 |                       | •••••             |            |                     | •••••      | • • • • • • • • • • •   | • • • • • • • • • • • | • • • • • • • • • • •                 |           | ••••      |
|                                       |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
|                                       | 2110                                    | 2120                    | 2130       | 2140                  | 2150                  | 2160              | 2170       | 2180                | 2190       | 2200                    | 2210                  | 2220                                  | 2230      | 2240      |
|                                       |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| oppA                                  | CTTCAAAAGCAAATGC                        | TGAAACAGTA              | ATTTCACAAA | AAGATTTAA             | GTGATGCTCAA           | CTCAAAGCA         | ATCAAATCAT | CAATCCAAAA          | TGCTAAAGGA | <b>FTGGCTAAAT</b>       | TGAGTGGTAT            | TTACTGATATO                           | GACTTTCAG | TTGAT     |
| pGEM_oppA before SDM                  | •••••                                   | •••••                   | •••••      | ••••••••              | ••••••                | •••••             | •••••      | •••••••             | •••••      | •••••                   | •••••                 | •••••••••                             | ••••••    | • • • • • |
| SDM1 Site 1, 2 & 10                   | ••••••                                  | •••••                   | •••••      | ••••••••              | ••••••                | •••••             | •••••      | •••••••             | •••••      | •••••                   | •••••                 | •••••••••                             | ••••••    | ••••      |
| SDM2 Site 9, 13 & 14                  | •••••                                   | •••••                   | •••••      | ••••••                | •••••                 | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 | ••••••                                | ••••••    |           |
| SDM3 Site 3 & 7                       | •••••                                   | •••••                   | •••••      | •••••••               | •••••                 | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 | ••••••                                | ••••••    |           |
| SDM4 Site 4 & 12                      | •••••                                   | •••••                   | •••••      | •••••••               | •••••                 | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 | ••••••                                | •••••     | •••••     |
| SDM5 Site 5 & 8<br>SDM6 Site 6 & 16   | ••••••                                  | •••••                   | •••••      |                       | ••••••                | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 | ••••••                                | ••••••    | •••••     |
| SDM6 Site 6 & 16<br>SDM7 Site 11 & 15 | ••••••                                  | •••••                   | •••••      |                       | ••••••                | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 | · · · · · · · · · · · · · · · · · · · | ••••••    | •••••     |
| pCI-neo oppA                          | ••••••                                  | •••••                   | •••••      |                       | ••••••                | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 |                                       |           |           |
| pGem oppA BamBam                      | •••••                                   | •••••                   | •••••      |                       | ••••••                | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 | G                                     |           |           |
| VR1020 oppA                           | •••••                                   | •••••                   | •••••      |                       | ••••••                | •••••             | •••••      | •••••               | •••••      | •••••                   | •••••                 |                                       |           |           |
| pGEM oppA SalNot                      |                                         |                         |            |                       |                       | •••••             |            |                     | •••••      |                         |                       |                                       |           |           |
| VR1012_oppA                           |                                         | ••••••                  |            |                       | ••••••                | ••••••            |            |                     |            | •••••                   |                       | G                                     |           |           |
| pGEM_oppA BamNot                      |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
| pGEX_oppA                             |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       | G                                     |           |           |
|                                       |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |
|                                       | 2250                                    | 2260                    | 2270       | 2280                  | 2290                  | 2300              | 2310       | 2320                | 2330       | 2340                    | 2350                  | 2360                                  | 2370      | 2380      |
|                                       |                                         | .                       |            |                       | .                     |                   |            |                     | <u></u>    |                         |                       | .                                     |           |           |
| oppA                                  | GATACTTTATATTCAG                        | GTAAATACAT              | CGGAGAAGA  | TTTAATCCA             | GACACATTAAC           | AATTTCAAC         | AGTAATTAAT | AAGAATTAOT          | GAGACACAGA | ATATGTTAAT              | GATTTAACAA            | CAATTAAAAA                            | TtCTCAAAO | AAAtA     |
| pGEM_oppA before SDM                  | ••••••••••••••••                        |                         | •••••      |                       |                       |                   |            |                     | •••••      |                         | • • • • • • • • • • • | ••••••••••                            |           | · · · ·   |
| SDM1 Site 1, 2 & 10                   | ••••••••••••••••                        |                         | •••••      |                       |                       |                   |            |                     | •••••      |                         | • • • • • • • • • • • | ••••••••••                            |           | · · · ·   |
| SDM2 Site 9, 13 & 14                  | ••••••••••••••••                        | ••••••                  | •••••      | •••••                 | • • • • • • • • • • • |                   | •••••      | • • • • • • • • • • | •••••      |                         | ••••••                | •••••••••                             | •••••     | · · · ·   |
| SDM3 Site 3 & 7                       | ••••••••••••••••                        | ••••••                  | •••••      | •••••                 | • • • • • • • • • • • |                   | •••••      | • • • • • • • • • • | .G         |                         | ••••••                | •••••••••                             | •••••     | · · · ·   |
| SDM4 Site 4 & 12                      | •••••••••••••••                         | •••••                   | •••••      | •••••                 | ••••••••              | •••••             | •••••      | ••••••              | .G         | • • • • • • • • • •     | ••••••                | • • • • • • • • • • •                 | ••••      | ••••      |
| SDM5 Site 5 & 8                       | •••••••••••••••                         | ••••••                  | •••••      | •••••                 | •••••••••             | •••••             | ••••••     | •••••••             | .G         | • • • • • • • • • •     | ••••••                | •••••••                               | •••••     | ••••      |
| SDM6 Site 6 & 16                      | •••••••••••••••••                       | ••••••                  | •••••      | •••••                 | •••••••••             | •••••             | ••••••     | ••••••••            | .G         | • • • • • • • • • •     | ••••••                | ••••••••                              | •••••     | · · · • • |
| SDM7 Site 11 & 15                     | ••••••••••••••••••                      | •••••••••               | •••••      | •••••                 | •••••••••             | •••••             | •••••      | ••••••••            | .G         | • • • • • • • • • • •   | •••••                 | ••••••                                | •••••     | ••••      |
| pCI-neo_oppA                          | ••••••••••••••••••••••••••••••••••••••• | •••••••••               | ••••••     | •••••                 | ••••••••••            | •••••             | •••••      | •••••••••           | .G         | • • • • • • • • • • •   | ••••••                | ••••••••                              | •••••     | ••••      |
| pGem_oppA BamBam                      | ••••••••••••••••••••••••••••••••••••••• | ••••••••••              | ••••••     | •••••                 | ••••••••••            | •••••             | •••••      | •••••••••           | .G         | • • • • • • • • • • •   | ••••••                | ••••••••                              | ••••••    | ••••      |
| VR1020_oppA                           | ••••••                                  | •••••                   | •••••      | •••••                 | •••••••••             | •••••             | •••••      | •••••••             | .G         | • • • • • • • • • • •   | •••••                 | ••••••                                | •••••     | ••••      |
| pGEM_oppA SalNot                      | ••••••                                  | •••••                   | •••••      | •••••                 | •••••••••             | •••••             | •••••      | •••••••••           |            | • • • • • • • • • • •   | •••••                 | ••••••                                | •••••     | ••••      |
| VR1012_oppA                           | ••••••                                  | •••••                   | •••••      | •••••                 | •••••••               | •••••             | •••••••••  | •••••••             | .G         | • • • • • • • • • • •   | •••••                 | ••••••                                | •••••     | ••••      |
| pGEM_oppA BamNot                      | ••••••                                  | •••••                   | •••••      | •••••                 | •••••••               | •••••             | •••••••••  | •••••••             | .G         | • • • • • • • • • • •   | •••••                 | ••••••                                | •••••     | ••••      |
| pGEX_oppA                             | ••••••                                  | •••••••••               | •••••      | •••••                 | ••••••••••            | •••••             | •••••      | ••••••              |            | • • • • • • • • • • • • | ••••••                | •••••••••                             |           | ••••      |
|                                       |                                         |                         |            |                       |                       |                   |            |                     |            |                         |                       |                                       |           |           |

|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       | Ahh               |               |
|---------------------------------------------|---------------------------------------|-------------------------|------------|-----------------------|-------------------------|---------------------|-------------------------|-----------------------|----------------------------------------|-------------------------|-------------------------|---------------------------------------|-------------------|---------------|
|                                             | 2390                                  | 2400                    | 2410       | 2420                  | 2430                    | 2440                | 2450                    | 2460                  | 2470                                   | 2480                    | 2490                    | 2500                                  | 2510              | 2520          |
|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| _                                           |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| oppA                                        | TGCTTCAGCACCAGT                       | TGAACCAGCTA             | CTTATTCAG  | aTTTATCATA            | CTTCTCATAto             | CTTTCGGGA           | CAAAAAGCCAC             | ATATCCATTT/           | ACAACCTTAT                             | CAAAAGCTAA              | TAGAGATGCTG             | TAAATAAAGA                            | TCCTGAAG          | GATATG        |
| pGEM_oppA before SDM                        | •••••                                 | ••••••                  | •••••      | •••••                 | • • • • • • • • • • •   | •••••               | ••••••                  | • • • • • • • • • • • | • • • • • • • • • •                    | • • • • • • • • • • •   | ••••••••••              | •••••                                 | •••••             | • • • • • •   |
| SDM1 Site 1, 2 & 10                         |                                       | ••••••                  | •••••      |                       |                         | •••••               | • • • • • • • • • • •   |                       |                                        |                         | ••••••••••              | • • • • • • • • • •                   | • • • • • • • • • |               |
| SDM2 Site 9, 13 & 14                        |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| SDM3 Site 3 & 7                             |                                       |                         |            |                       |                         | •••••               |                         |                       |                                        |                         |                         | ••••••                                |                   |               |
| SDM4 Site 4 & 12                            |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| SDM5 Site 5 & 8                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| SDM6 Site 6 & 16                            |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| SDM7 Site 11 & 15                           |                                       | ••••••                  | ••••••     | ••••••                | ••••••                  | •••••               | •••••••••••             | •••••                 | •••••                                  | ••••••                  | •••••••••••             | •••••                                 |                   |               |
|                                             |                                       | ••••••                  | •••••      | •••••                 | ••••••                  | •••••               | •••••••••••             | •••••                 | •••••                                  | • • • • • • • • • • • • | •••••••                 | •••••                                 | •••••             | •••••         |
| pCI-neo_oppA                                | •••••                                 | ••••••                  | •••••      | •••••                 | ••••••                  | •••••               | •••••••••••             | •••••                 | •••••                                  | ••••••                  | ••••••                  | •••••                                 | •••••             | •••••         |
| pGem_oppA BamBam                            | •••••                                 | •••••                   | •••••      | •••••                 | • • • • • • • • • • • • | •••••               | •••••••••               | •••••                 | •••••                                  | •••••••••               | ••••••                  | •••••                                 | •••••             | •••••         |
| VR1020_oppA                                 | •••••                                 | •••••                   | •••••      | •••••                 | • • • • • • • • • • •   | •••••               | ••••••••••              | •••••                 | •••••                                  | ••••••                  | ••••••                  | •••••                                 | •••••             | •••••         |
| pGEM_oppA SalNot                            | •••••                                 | •••••                   | •••••      | • • • • • • • • • •   | • • • • • • • • • • •   | • • • • • • • • •   | ••••••                  | •••••                 | • • • • • • • • • •                    | •••••••                 | ••••••                  | •••••                                 | •••••             | •••••         |
| VR1012_oppA                                 | •••••                                 | •••••                   | •••••      | • • • • • • • • • • • |                         | • • • • • • • • •   | ••••••••                | • • • • • • • • • •   | • • • • • • • • • •                    | • • • • • • • • • •     | ••••••                  | •••••                                 | •••••             | • • • • • •   |
| pGEM_oppA BamNot                            |                                       | ••••••                  |            |                       |                         | • • • • • • • • •   |                         |                       |                                        |                         |                         | • • • • • • • • • •                   | ••••              |               |
| pGEX oppA                                   |                                       |                         |            |                       |                         | • • • • • • • • • • |                         |                       |                                        |                         |                         |                                       |                   |               |
|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
|                                             | 2530                                  | 2540                    | 2550       | 2560                  | 2570                    | 2580                | 2590                    | 2600                  | 2610                                   | 2620                    | 2630                    | 2640                                  | 2650              | 2660          |
|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| oppA                                        | GAATTGCTTATATTC                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| pGEM_oppA before SDM                        |                                       | 01001111101             |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   | Southern      |
| SDM1 Site 1, 2 & 10                         |                                       | ••••••                  | •••••      | •••••                 | ••••••                  | ••••••              | •••••                   | ••••••                | •••••                                  |                         | •••••                   |                                       | ••••••            | •••••         |
| SDM1 SILE 1, 2 & 10<br>SDM2 Site 9, 13 & 14 |                                       | ••••••                  | •••••      | •••••                 | ••••••                  | •••••               | •••••                   | •••••                 | •••••                                  | ••••••••••              | •••••                   |                                       | •••••             | •••••         |
|                                             | ••••••                                | ••••••                  | •••••      | •••••                 | ••••••                  | •••••               | •••••                   | •••••                 | •••••                                  | ••••••                  | •••••                   | · · · · · · · · · · · · · · · · · · · | •••••             | •••••         |
| SDM3 Site 3 & 7                             | ••••••                                | • • • • • • • • • • • • | •••••      | •••••                 | • • • • • • • • • • • • | •••••               | •••••                   | •••••                 | •••••                                  | •••••••••••             | •••••                   | G                                     | •••••             | •••••         |
| SDM4 Site 4 & 12                            | ••••••                                | •••••                   | •••••      | •••••                 | ••••••                  | •••••               | •••••                   | •••••                 | •••••                                  | ••••••                  | •••••                   | G                                     | •••••             | •••••         |
| SDM5 Site 5 & 8                             | ••••••                                | ••••••                  | •••••      | •••••                 |                         | 3 <b></b> .         | •••••                   | •••••                 | •••••                                  | • • • • • • • • • •     | ••••••                  | . <b></b> . G                         | •••••             | •••••         |
| SDM6 Site 6 & 16                            | •••••                                 | • • • • • • • • • • •   | ••••••     | • • • • • • • • • •   |                         | 3 <b> </b> .        | •••••                   | • • • • • • • • • •   |                                        |                         |                         | G                                     | •••••             | • • • • • •   |
| SDM7 Site 11 & 15                           | •••••                                 | • • • • • • • • • • •   | ••••••     | • • • • • • • • • •   |                         | 3 <b> </b> .        | •••••                   | • • • • • • • • • •   |                                        |                         |                         | G                                     | •••••             | • • • • • •   |
| pCI-neo_oppA                                |                                       |                         |            |                       |                         | 3 <b> </b> .        |                         |                       |                                        |                         |                         | G                                     |                   |               |
| pGem oppA BamBam                            |                                       |                         |            |                       |                         | 3 <b></b> .         | • • • • • • • • • • •   |                       |                                        |                         |                         | G                                     |                   | • • • • • • • |
| VR1020 oppA                                 |                                       |                         |            |                       |                         | 3 <b></b> .         | • • • • • • • • • • • • |                       |                                        |                         |                         | G                                     |                   | • • • • • • • |
| pGEM oppA SalNot                            |                                       |                         |            |                       |                         | 3 <b></b>           |                         |                       |                                        |                         |                         | G                                     |                   |               |
| VR1012_oppA                                 |                                       |                         |            |                       |                         | 3                   |                         |                       |                                        |                         |                         | G                                     |                   |               |
| pGEM_oppA BamNot                            |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         | G                                     |                   |               |
| pGEX_oppA                                   |                                       | ••••••                  | ••••••     | •••••                 |                         |                     | •••••••••••             | ••••••                | •••••                                  |                         | •••••                   | G                                     |                   | •••••         |
| PGER_OPPA                                   |                                       | ••••••                  | •••••      | •••••                 |                         | 3                   | •••••                   | •••••                 | •••••                                  | •••••••••••             | •••••                   | · · · · · · · · · · · · · · · ·       | •••••             | •••••         |
|                                             | 2670                                  | 2680                    | 2690       | 2700                  | 2710                    | 2720                | 2730                    | 2740                  | 2750                                   | 2760                    | 2770                    | 2780                                  | 2790              | 2800          |
|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| oppA                                        | TCAATTAGTACAAGT                       | TCAAAAAATGC             | TATAAGAGAA | AGCAACCGCAG           | GAACTGGAGG              | JAGAATTTA           | JAAGCATTTTAA            | ACAGCAGCTA:           | ITGACITGAAAA                           | TCAATCGCT               | <b>FCAATTCAGCG</b>      | TTCACCTCAA                            | CCGGTTAA          | ACCITG        |
| pGEM_oppA before SDM                        | •••••                                 | •••••                   | •••••      | •••••                 | ••••••                  | ••••••              | ••••••                  | •••••                 | •••••                                  | •••••                   | •••••                   | •••••                                 | •••••             | • • • • • •   |
| SDM1 Site 1, 2 & 10                         | •••••                                 | •••••                   | ••••       | •••••                 | • • • • • • • • • • •   | ••••••              | ••••••                  | •••••                 |                                        | •••••                   | • • • • • • • • • • •   | •••••                                 | •••••             | • • • • • •   |
| SDM2 Site 9, 13 & 14                        | •••••                                 | • • • • • • • • • • •   | ••••       | •••••                 | • • • • • • • • • • •   | •••••               | ••••••                  | •••••                 | G                                      | • • • • • • • • • •     | • • • • • • • • • • •   |                                       | •••••             |               |
| SDM3 Site 3 & 7                             |                                       | •••••                   | ••••       |                       | <mark></mark>           | • • • • • • • • • • |                         |                       |                                        |                         | • • • • • • • • • • •   |                                       | •••••             |               |
| SDM4 Site 4 & 12                            |                                       |                         |            |                       | <mark></mark>           |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| SDM5 Site 5 & 8                             |                                       |                         |            |                       | <b></b>                 |                     |                         |                       | G                                      |                         |                         |                                       |                   |               |
| SDM6 Site 6 & 16                            | · · · · · · · · · · · · · · · · · · · |                         | ••••       |                       | <b></b>                 |                     |                         |                       |                                        |                         |                         |                                       |                   |               |
| SDM7 Site 11 & 15                           |                                       |                         |            |                       |                         |                     |                         |                       | G.                                     |                         |                         |                                       |                   |               |
| pCI-neo_oppA                                |                                       |                         |            |                       |                         |                     |                         |                       | Ģ                                      |                         |                         |                                       |                   |               |
| pGem oppA BamBam                            | •••••                                 | ••••••                  | •••••      |                       | ••••••                  | ••••••              | •••••••••               | ••••••                |                                        |                         |                         |                                       |                   |               |
| VR1020_oppA                                 | •••••                                 | •••••                   | •••••      | •••••                 | •••••••                 | ••••••              | ••••••                  | ••••••                | · · · · · · · · · · · · · · · · · · ·  | •••••                   | ••••••                  | •••••                                 | •••••             | •••••         |
|                                             | •••••                                 | •••••                   | •••••      | •••••                 | ••••••••••              | ••••••              | ••••••                  | ••••••                | · · · · · · · · · · · · · · · · · · ·  | •••••                   | ••••••                  | •••••                                 | •••••             | •••••         |
| pGEM_oppA SalNot                            | •••••                                 | ••••••                  | ••••       | •••••                 | ••••••                  | ••••••              | ••••••••                | •••••                 | •••••••••••••••••••••••••••••••••••••• | •••••                   | ••••••                  | •••••                                 | •••••             | • • • • • •   |
| VR1012_oppA                                 | ••••••                                | •••••                   | •••••      | •••••                 | •••••••                 | ••••••              | ••••••                  | •••••                 | •••••••••••••••••••••••••••••••••••••• | •••••                   | • • • • • • • • • • • • | •••••                                 | •••••             | • • • • • •   |
| pGEM_oppA BamNot                            | •••••                                 | •••••                   | ••••       | •••••                 | • • • • • • • • • • • • | ••••••              | •••••••••               | •••••                 | G                                      | •••••                   | ••••••                  | •••••                                 | •••••             | • • • • • •   |
| pGEX_oppA                                   | •••••                                 | •••••                   | ••••       | •••••                 | • • • • • • • • • • • • | ••••••              | ••••••••                | •••••                 | •••••G•••                              | •••••                   | ••••••                  | •••••                                 | •••••             | • • • • • •   |
|                                             |                                       |                         |            |                       |                         |                     |                         |                       |                                        |                         |                         |                                       |                   |               |

|                                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           | r r                   |       |
|-------------------------------------|-----------------|---------------------------------------|-------------------------|------------|-------------------------|---------------------|-------------------------|-----------------------|--------------|------------------------|-------------------------|---------------------------|-----------------------|-------|
|                                     | 2810            | 2820                                  | 2830                    | 2840       | 2850                    | 2860                | 2870                    | 2880                  | 2890         | 2900                   | 2910                    | 2920                      | 2930                  | 2940  |
|                                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| oppA<br>pGEM_oppA before SDM        | ATTACAGGATTGTC  | TUTGACTUT                             | AAAATTAATG              | AACAAAACGa | ACAGAAACAA              | ACTGTTCCA           | AATAACTTAAGA            | AGACAACAA             | GACTTAATTAA  | ATGCGGTTTT             | TGTTGTTGATT             | CAGAAACAG                 | GACAAAGAGI            | TAACT |
| SDM1 Site 1, 2 & 10                 |                 |                                       | ••••••                  | ••••••     | •••••••                 | •••••               | ••••••••••              | •••••                 | •••••        | •••••                  |                         | •••••                     | •••••••••             | ••••• |
| SDM2 Site 9, 13 & 14                |                 |                                       | ••••••                  | ••••••     | ••••••                  | •••••               |                         | •••••                 | •••••        | ••••••                 |                         | •••••                     |                       | ••••  |
| SDM3 Site 3 & 7                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM4 Site 4 & 12                    |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM5 Site 5 & 8                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM6 Site 6 & 16                    |                 |                                       |                         |            |                         |                     | • • • • • • • • • • • • |                       |              |                        |                         |                           | · · · · · · · · · · · |       |
| SDM7 Site 11 & 15                   | G               |                                       |                         | <b>. </b>  |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| pCI-neo_oppA                        | G               |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| pGem_oppA BamBam                    | G               |                                       | · · · · • • • • • • •   |            |                         |                     | ••••••                  |                       |              |                        |                         | • • • • • • • • • •       |                       |       |
| VR1020_oppA                         | G               | •••••                                 | • • • • • • • • • •     | ••••••     | ••••••                  |                     | ••••••                  |                       | •••••        | •••••                  |                         | •••••                     | •••••••               | ••••  |
| pGEM_oppA SalNot                    | G               | •••••                                 | ••••••                  | •••••      | • • • • • • • • • • •   |                     | ••••••                  | ••••                  | •••••        | •••••                  | • • • • • • • • • • • • | •••••                     | •••••••               | ••••  |
| VR1012_oppA                         | G               | •••••                                 | •••••••                 | ••••••     | ••••••                  | • • • • • • • • • • | ••••••                  | •••••                 | •••••        | ••••••                 | •••••                   | •••••                     | •••••••               | ••••  |
| pGEM_oppA BamNot                    | G               | •••••                                 | ••••••                  | ••••••     | ••••••                  | •••••               | •••••••                 | •••••                 | •••••        | ••••••                 | •••••                   | •••••                     | •••••••               | ••••  |
| pGEX_oppA                           | G               | •••••                                 | ••••••••                | •••••      | ••••••                  | •••••••             | ••••••                  | •••••                 | •••••        | •••••                  | •••••                   | •••••                     | ••••••••              | ••••  |
|                                     | 2950            | 2960                                  | 2970                    | 2980       | 2990                    | 3000                | 3010                    | 3020                  | 3030         | 3040                   | 3050                    | 3060                      | 3070                  | 3080  |
|                                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| oppA                                | TTGGTGAACTGGGTT |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| pGEM_oppA before SDM                |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM1 Site 1, 2 & 10                 |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM2 Site 9, 13 & 14                |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM3 Site 3 & 7                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| SDM4 Site 4 & 12                    |                 | •••••                                 |                         |            |                         |                     |                         |                       |              |                        | ••••••••••              | •••••                     |                       |       |
| SDM5 Site 5 & 8                     | •••••           | •••••                                 | •••••                   | •••••      |                         |                     | •••••                   | • • • • • • • • • •   | •••••        |                        | •••••                   | •••••                     | ••••••                | ••••  |
| SDM6 Site 6 & 16                    | •••••           | •••••                                 | •••••                   | •••••      |                         |                     | •••••                   | • • • • • • • • • •   | •••••        |                        | •••••                   | •••••                     | ••••••                | ••••  |
| SDM7 Site 11 & 15                   | •••••           | •••••                                 | ••••••                  | •••••      | ••••••                  | •••••               | •••••                   | •••••                 | •••••        | • • • • • • • • • •    | ••••••                  | •••••                     | •••••                 | ••••  |
| pCI-neo_oppA                        | ••••••          | •••••                                 | ••••••                  | •••••      | • • • • • • • • • • • • | •••••               | •••••                   | •••••                 | •••••        | • • • • • • • • • •    | •••••                   | •••••                     | •••••                 | ••••  |
| pGem_oppA BamBam                    | ••••••          | •••••                                 | •••••                   | •••••      | ••••••                  | •••••               | •••••                   | •••••                 | •••••        | •••••                  | ••••••                  | •••••                     | •••••                 | ••••  |
| VR1020_oppA                         | ••••••          | •••••                                 | ••••••                  | ••••••     | • • • • • • • • • • • • | •••••               | •••••                   | •••••                 | •••••        |                        | •••••                   | •••••                     | •••••                 | ••••  |
| pGEM_oppA SalNot<br>VR1012_oppA     | ••••••          | •••••                                 | •••••                   | ••••••     | ••••••••••              | ••••••              | •••••                   | •••••                 | •••••        | •••••                  | •••••                   | •••••                     | •••••                 | ••••  |
| pGEM_oppA BamNot                    | ••••••          | •••••                                 | ••••••                  | ••••••     |                         | •••••               |                         | •••••                 | •••••        |                        | ••••••                  | •••••                     |                       |       |
| pGEX_oppA                           |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
| FPF                                 |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |
|                                     | 3090            | 3100                                  | 3110                    | 3120       | 3130                    | 3140                | 3150                    | 3160                  | 3170         | 3180                   | 3190                    | 3200                      | 3210                  | 3220  |
|                                     |                 |                                       |                         | .          | .                       |                     | .                       |                       | .            | · · · <u>  · ·</u> · · |                         |                           |                       |       |
| oppA                                | AACATTCCTTCAACI | AACAAAATTA                            | GTTTTGATAT(             | CTACTACAGA | TACTTAAACT?             | ACCCAGATC           | CAGTAATTAAT             | GCTTTAGAT'            | TTAGTAATTGC: | IGCTTGAAAC             | GGATTAGATCC             | AAGAATGAA                 | TGTAAACTTT            | GTTAA |
| pGEM_oppA before SDM                | ••••••••••••••• | ••••••                                | •••••                   | •••••      | ••••••                  | ••••••              | ••••••                  | •••••                 | •••••        | •••••                  | ••••••••                | •••••                     | •••••                 | ••••  |
| SDM1 Site 1, 2 & 10                 | ••••••          | ••••••                                | •••••                   | •••••      | ••••••••                | •••••               | ••••••                  | •••••                 | •••••        | •••••                  | •••••                   | •••••                     | •••••                 | ••••  |
| SDM2 Site 9, 13 & 14                | ••••••          | •••••                                 | •••••                   | •••••      | ••••••                  | •••••               | •••••••••               | •••••                 | •••••        | •••••                  | •••••                   | •••••                     | •••••                 | ••••  |
| SDM3 Site 3 & 7<br>SDM4 Site 4 & 12 | ••••••          | •••••                                 | • • • • • • • • • • • • | •••••      | •••••••                 | ••••••              | ••••••                  | •••••                 | •••••        | G                      | ••••••                  | •••••                     | •••••                 | ••••  |
| SDM4 Site 4 & 12<br>SDM5 Site 5 & 8 | ••••••          | •••••                                 | • • • • • • • • • • • • | •••••      | •••••••                 | ••••••              | ••••••                  | •••••                 | •••••        | G                      | ••••••                  | •••••                     | •••••                 | ••••  |
| SDM5 Site 5 & 8<br>SDM6 Site 6 & 16 |                 | •••••                                 | • • • • • • • • • • • • | •••••      | ••••••                  | •••••               | ••••••••••              | •••••                 | ••••••       | G                      | ••••••                  | •••••                     | •••••                 | ••••  |
| SDM7 Site 11 & 15                   |                 |                                       |                         |            |                         |                     |                         |                       |              | G.                     |                         | · · · · · · · · · · · · · |                       |       |
| pCI-neo_oppA                        |                 |                                       |                         |            |                         |                     |                         |                       |              | G                      |                         |                           |                       |       |
| pGem oppA BamBam                    |                 |                                       |                         |            |                         |                     |                         | · · · · · · · · · · · |              | G                      |                         |                           |                       |       |
| VR1020 oppA                         |                 |                                       | •••••                   |            |                         |                     |                         | •••••                 |              | G                      |                         |                           |                       |       |
| pGEM oppA SalNot                    |                 | · · · · · · · · · · · · · · ·         |                         |            |                         |                     |                         |                       |              | G                      |                         | • • • • • • • • • •       |                       |       |
| VR1012_oppA                         |                 |                                       |                         |            |                         |                     |                         |                       |              | G                      |                         | · · · · · · · · · · · ·   |                       |       |
| pGEM_oppA BamNot                    |                 | · · · · · · · · · · · · · · · · · · · | • • • • • • • • • •     |            |                         |                     |                         |                       |              | G                      |                         | · · · · · · · · · · ·     |                       |       |
| pGEX_oppA                           |                 | •••••                                 |                         | •••••      |                         | · · · · · · · · · · | •••••••                 |                       | •••••        | G                      |                         | · · · · · · · · · · ·     |                       | ••••  |
|                                     |                 |                                       |                         |            |                         |                     |                         |                       |              |                        |                         |                           |                       |       |

|                                       | 3230                            | 3240                                  | 3250                                  | 3260                  | 3270                  | 3280                                  | 3290                    | 3300                  | 3310                                  | 3320                | 3330                       | 3340                  | 3350                                  | 3360            |
|---------------------------------------|---------------------------------|---------------------------------------|---------------------------------------|-----------------------|-----------------------|---------------------------------------|-------------------------|-----------------------|---------------------------------------|---------------------|----------------------------|-----------------------|---------------------------------------|-----------------|
|                                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| oppA                                  | ACCAACTACTGAACA                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
|                                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            | CCAAAA CA             | . I COMONI C                          | ALLCG           |
| pGEM_oppA before SDM                  |                                 | ••••••                                |                                       |                       |                       |                                       |                         | •••••••••             | •••••                                 | •••••               | ••••••                     | •••••                 | •••••                                 | •••••           |
| SDM1 Site 1, 2 & 10                   | •••••                           |                                       | · · · · · · · · · · · · · · · · · · · | • • • • • • • • • • • | ••••••                | •••••                                 | •••••                   | • • • • • • • • • • • | •••••                                 | •••••               | ••••••                     | •••••                 | •••••                                 | • • • • •       |
| SDM2 Site 9, 13 & 14                  | ••••••                          | G                                     | G                                     | • • • • • • • • • •   | •••••                 | ••••••                                | •••••                   | • • • • • • • • • •   | •••••                                 | •••••               | •••••                      | •••••                 | •••••                                 | • • • • •       |
| SDM3 Site 3 & 7                       |                                 |                                       |                                       | • • • • • • • • • •   | ••••••••••            | •••••                                 | ••••••                  | • • • • • • • • • •   | ••••••••••                            | •••••               | •••••                      | •••••                 | · • • • • • • • • • •                 | • • • • •       |
| SDM4 Site 4 & 12                      |                                 | G                                     | G                                     | • • • • • • • • • •   | • • • • • • • • • • • | •••••                                 | •••••                   | • • • • • • • • • •   | •••••                                 | •••••               | • • • • • • • • • • •      | •••••                 |                                       | • • • • •       |
| SDM5 Site 5 & 8                       |                                 |                                       | G                                     |                       |                       | •••••                                 | • • • • • • • • • • • • | • • • • • • • • • •   | ••••••••••                            | •••••               | • • • • • • • • • • •      | •••••                 |                                       | • • • • •       |
| SDM6 Site 6 & 16                      |                                 | G                                     | G                                     |                       |                       | · · · · · · · · · · ·                 |                         |                       | · · · · · · · · · · · · ·             | •••••               |                            | • • • • • • • • • • • |                                       |                 |
| SDM7 Site 11 & 15                     |                                 | G                                     | G                                     |                       |                       | G.                                    |                         |                       |                                       |                     |                            |                       |                                       |                 |
| pCI-neo oppA                          |                                 | G                                     | G                                     |                       |                       | G.                                    |                         |                       |                                       |                     |                            |                       |                                       |                 |
| pGem oppA BamBam                      |                                 | G                                     | G                                     |                       |                       | G.                                    |                         |                       |                                       |                     |                            |                       |                                       |                 |
| VR1020_oppA                           |                                 | G                                     | G                                     |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| pGEM_oppA_SalNot                      |                                 | G                                     | G                                     |                       |                       | G                                     |                         |                       |                                       |                     |                            |                       |                                       |                 |
| VR1012_oppA                           |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| pGEM_oppA BamNot                      |                                 |                                       |                                       |                       |                       |                                       |                         | ••••••                |                                       | •••••               |                            | •••••                 |                                       |                 |
|                                       |                                 |                                       |                                       |                       |                       |                                       |                         | ••••••                | •••••                                 | •••••               | ••••••                     | •••••                 | •••••                                 |                 |
| pGEX_oppA                             |                                 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | • • • • • • • • • • • | ••••••                | · · · · · · · · · · · · · · · · · · · | ••••••                  | ••••••                | ••••••                                | •••••               | ••••••                     | •••••                 | •••••                                 | •••••           |
|                                       | 2270                            | 2200                                  | 2200                                  | 2400                  | 2410                  | 2400                                  | 2420                    | 2440                  | 2450                                  | 2460                | 0.470                      | 2400                  | 2400                                  | 2500            |
|                                       | 3370                            | 3380                                  | 3390                                  | 3400                  | 3410                  | 3420                                  | 3430                    | 3440                  | 3450                                  | 3460                | 3470                       | 3480                  | 3490                                  | 3500            |
|                                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| oppA                                  | CCATAGTTGCTGATC                 | CAGAATATGC                            | AGCTAAAATGO                           | CAAAATCTTT            | TATCCTCAACT           | ATACAAAGCI                            | GCTCAATATC              | TAAAaGAGTT            | TGTCCAAATGA                           | ATCGTTTCA           | GACCTTCAATI                | TCTCTTGAT             | <b>JACTTTACAA</b>                     | ATAAA           |
| pGEM_oppA before SDM                  | •••••                           | ••••••                                | •••••                                 | • • • • • • • • • •   | • • • • • • • • • • • | •••••                                 | •••••                   | •••••••               | •••••                                 | •••••               | • • • • • • • • • • •      | •••••                 | • • • • • • • • • •                   | • • • • •       |
| SDM1 Site 1, 2 & 10                   | •••••                           | ••••••                                | · • • • • • • • • • •                 |                       |                       |                                       | • • • • • • • • • • •   |                       | • • • • • • • • • • • • •             | • • • • • • • • • • |                            | •••••                 | · · · · · · · · · · ·                 | · · · · ·       |
| SDM2 Site 9, 13 & 14                  |                                 |                                       | • • • • • • • • • • •                 |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       | · • · · ·       |
| SDM3 Site 3 & 7                       | •••••                           |                                       | . <b> .</b>                           |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| SDM4 Site 4 & 12                      |                                 |                                       | <b> .</b>                             |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       | · • · · ·       |
| SDM5 Site 5 & 8                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| SDM6 Site 6 & 16                      |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| SDM7 Site 11 & 15                     |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| pCI-neo_oppA                          |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| pGem oppA BamBam                      |                                 | ••••••                                |                                       | •••••••               |                       |                                       | •••••                   |                       |                                       | •••••               | ••••••                     |                       |                                       |                 |
|                                       | ••••••                          | ••••••                                | •••••                                 | • • • • • • • • • • • |                       | •••••                                 | •••••                   | • • • • • • • • • • • | •••••                                 | •••••               | ••••••                     | •••••                 | ••••••                                | •••••           |
| VR1020_oppA                           | ••••••                          | ••••••                                | •••••                                 | • • • • • • • • • • • |                       | •••••                                 | •••••                   | • • • • • • • • • • • | •••••                                 | •••••               | ••••••                     | •••••                 | ••••••                                | •••••           |
| pGEM_oppA SalNot                      | •••••                           | ••••••                                | ••••••                                | • • • • • • • • • • • | ••••••                | •••••                                 | •••••                   | • • • • • • • • • • • | •••••                                 | •••••               | • • • • • • • • • • • •    | •••••                 | ••••••                                | •••••           |
| VR1012_oppA                           | ••••••                          | ••••••                                | •••••                                 | • • • • • • • • • •   | ••••••                | •••••                                 | •••••                   | • • • • • • • • • •   | •••••                                 | •••••               | • • • • • • • • • • • •    | •••••                 | •••••                                 | •••••           |
| pGEM_oppA BamNot                      | ••••••                          | ••••••                                | •••••                                 | • • • • • • • • • •   | ••••••                | •••••                                 | •••••                   | • • • • • • • • • •   | •••••                                 | •••••               | • • • • • • • • • • • •    | •••••                 | · • • • • • • • • • •                 | ••••            |
| pGEX_oppA                             | ••••••                          | ••••••                                | •••••                                 | • • • • • • • • • •   | ••••••                | •••••                                 | •••••                   | • • • • • • • • • •   | •••••                                 | •••••               | • • • • • • • • • • • •    | •••••                 | · • • • • • • • • • •                 | ••••            |
|                                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
|                                       | 3510                            | 3520                                  | 3530                                  | 3540                  | 3550                  | 3560                                  | 3570                    | 3580                  | 3590                                  | 3600                | 3610                       | 3620                  | 3630                                  | 3640            |
|                                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| oppA                                  | TTAACAAATTCAAAT                 | GTTCAAGATA1                           | AGAaCATTAC                            | CTTTGGTTCA            | ATTCAAATATG           | AAAACGATGO                            | GATTTGTTGAA             | <b>FTATCAGCC</b> G    | GAAGAAGCTTCA                          | CAATATGTT           | GA <mark>CATTAGT</mark> GI | ATTTAGTTC2            | AGATTOTGA                             | CTAAA           |
| pGEM_oppA before SDM                  |                                 |                                       |                                       |                       |                       | · · · · · · · · · · ·                 |                         |                       | · · · · · · · · · · · · · · ·         | • • • • • • • • • • |                            | •••••                 | · · · · · · · · · · ·                 | • • • • •       |
| SDM1 Site 1, 2 & 10                   | • • • • • • • • • • • • • • • • |                                       |                                       |                       |                       |                                       |                         |                       | · · · · · · · · · · · · · · · · · · · |                     |                            |                       |                                       |                 |
| SDM2 Site 9, 13 & 14                  |                                 |                                       |                                       |                       |                       | · · · · · · · · · · ·                 |                         |                       | · · · · · · · · · · · · · · ·         |                     |                            |                       |                                       |                 |
| SDM3 Site 3 & 7                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| SDM4 Site 4 & 12                      |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| SDM5 Site 5 & 8                       |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |
| SDM6 Site 6 & 16                      |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       | с.<br>С                               |                 |
| SDM0 Site 0 & 10<br>SDM7 Site 11 & 15 |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       | G                                     | <u>.</u>        |
|                                       | •••••                           | •••••                                 |                                       | • • • • • • • • • • • | •••••                 | ••••••••                              |                         | ••••••                |                                       | •••••               | ••••••                     | •••••                 | · · · · · · · · · · · · · · · · · · · | •               |
| pCI-neo_oppA                          | •••••                           | ••••••                                | • • • • • • • • • • • •               | • • • • • • • • • • • | •••••                 | ••••••••                              | ••••••••                | •••••••               | ••••••••••                            | •••••               | ••••••                     | •••••                 | · · · · · · · · · · · · · · · · · · · | · · · · · ·     |
| pGem_oppA BamBam                      | •••••                           | •••••                                 | • • • • • • • • • • •                 | • • • • • • • • • •   | •••••                 | •••••••                               | ••••••                  | • • • • • • • • • •   | ••••••••••                            | •••••               | ••••••                     | •••••                 | G                                     |                 |
| VR1020_oppA                           | •••••                           | •••••                                 | •••••••••                             | •••••••••             | •••••                 | ••••••••                              | ••••••                  | ••••••••              | · · · · · · · · · · · · · · · · · · · | •••••               | ••••••                     | •••••                 | G                                     | · · · · ·       |
| pGEM_oppA SalNot                      | •••••                           | •••••                                 | • • • • • • • • • • •                 | •••••••               | •••••                 | •••••••                               | ••••••                  | ••••••                | ••••••••••                            | •••••               | • • • • • • • • • • •      | •••••                 | · · · · · · · · · · · G               | ••••            |
| VR1012_oppA                           | •••••                           | •••••                                 | • • • • • • • • • •                   | • • • • • • • • • •   | •••••                 | ••••••                                | ••••••                  | • • • • • • • • • •   | •••••••••                             | •••••               | ••••••                     | •••••                 | <mark></mark> . G                     | · · · · ·       |
| pGEM_oppA BamNot                      | •••••                           |                                       |                                       |                       | •••••                 | · · · · · · · · · · ·                 |                         |                       | · · · · · · · · · · · · · · ·         | • • • • • • • • • • |                            | •••••                 | . <b></b> . G                         | i <mark></mark> |
| pGEX_oppA                             | •••••                           | •••••                                 |                                       |                       |                       | · · · · · · · · · · ·                 |                         |                       |                                       | • • • • • • • • • • |                            |                       | <mark></mark> . G                     | • • • • •       |
| —                                     |                                 |                                       |                                       |                       |                       |                                       |                         |                       |                                       |                     |                            |                       |                                       |                 |

|                                                                                                                                                                                                                                                                      | 3650            | 3660            | 3670                      | 3680                | 3690                    | 3700                    | 3710       | 3720                  | 3730                  | 3740                | 3750                                                                                | 3760                                                                                                                                                                                                            | 3770                                                                                                                                                                                           | 3780                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|---------------------------|---------------------|-------------------------|-------------------------|------------|-----------------------|-----------------------|---------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                      |                 |                 |                           |                     |                         |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| amm 3                                                                                                                                                                                                                                                                | CTATACAACATCACC |                 |                           |                     |                         |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| oppA                                                                                                                                                                                                                                                                 |                 |                 | AICCACAAAA                | ICCAGGICA           | AAAGAAAAIC              | AIIGAICGIII             | AGACITAGIT | GAATTAGCIC            | AAGAAGIGIC            | AAACIIAGCI          | GGCGCIAII                                                                           | CAGACATIA                                                                                                                                                                                                       | ATTIAGCAGI                                                                                                                                                                                     | TICAA                                                                                                |
| pGEM_oppA before SDM                                                                                                                                                                                                                                                 | •••••           | ••••••          | ••••••                    | •••••               | ••••••                  | • • • • • • • • • • • • | •••••      | • • • • • • • • • • • | ••••••                | •••••               | •••••                                                                               | •••••                                                                                                                                                                                                           | •••••                                                                                                                                                                                          | • • • • •                                                                                            |
| SDM1 Site 1, 2 & 10                                                                                                                                                                                                                                                  | ••••••          | •••••••         | ••••••                    | •••••               | ••••••••                | • • • • • • • • • • • • | •••••      | •••••                 | ••••••                | • • • • • • • • • • | •••••                                                                               | •••••                                                                                                                                                                                                           | •••••                                                                                                                                                                                          | • • • • •                                                                                            |
| SDM2 Site 9, 13 & 14                                                                                                                                                                                                                                                 | •••••           | ••••••          | ••••••                    | •••••               | ••••••                  | • • • • • • • • • • •   | •••••      | •••••                 | ••••••                | • • • • • • • • • • | •••••••                                                                             | •••••                                                                                                                                                                                                           | •••••                                                                                                                                                                                          | • • • • •                                                                                            |
| SDM3 Site 3 & 7                                                                                                                                                                                                                                                      | •••••           | ••••••          | ••••••                    | •••••               | ••••••                  | • • • • • • • • • • •   | •••••      | •••••                 | · · · · · · · · · · · | · · · · · · · · · · | •••••                                                                               | •••••                                                                                                                                                                                                           | • • • • • • • • • •                                                                                                                                                                            | • • • • •                                                                                            |
| SDM4 Site 4 & 12                                                                                                                                                                                                                                                     | •••••           | ••••••          | · · · · · · · · · · · · · | •••••               | •••••                   |                         |            | • • • • • • • • • • • |                       | · · · · · · · · · · | •••••                                                                               | •••••                                                                                                                                                                                                           | • • • • • • • • • • •                                                                                                                                                                          |                                                                                                      |
| SDM5 Site 5 & 8                                                                                                                                                                                                                                                      | •••••           | ••••••          | · · · · · · · · · · · · · | •••••               | •••••                   |                         |            | • • • • • • • • • • • |                       | · · · · · · · · · · |                                                                                     | •••••                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                      |
| SDM6 Site 6 & 16                                                                                                                                                                                                                                                     | •••••           |                 |                           | • • • • • • • • • • | • • • • • • • • • • •   |                         |            |                       |                       |                     | •••••••                                                                             | •••••                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                      |
| SDM7 Site 11 & 15                                                                                                                                                                                                                                                    | ••••••          |                 |                           | •••••               | · · · · · · · · · · · · |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| pCI-neo_oppA                                                                                                                                                                                                                                                         |                 |                 |                           |                     | • • • • • • • • • • •   |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| pGem oppA BamBam                                                                                                                                                                                                                                                     |                 |                 |                           |                     | • • • • • • • • • • •   |                         |            |                       |                       |                     |                                                                                     | • • • • • • • • • • •                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                      |
| VR1020 oppA                                                                                                                                                                                                                                                          |                 |                 |                           |                     | • • • • • • • • • • •   |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| pGEM_oppA_SalNot                                                                                                                                                                                                                                                     |                 |                 |                           |                     | · · · · · · · · · · ·   |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| VR1012_oppA                                                                                                                                                                                                                                                          |                 |                 |                           |                     | · · · · · · · · · · ·   |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| pGEM oppA BamNot                                                                                                                                                                                                                                                     |                 |                 |                           |                     |                         |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
|                                                                                                                                                                                                                                                                      |                 |                 |                           |                     |                         |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| DGEX ODDA                                                                                                                                                                                                                                                            |                 |                 |                           |                     | <b>.</b> .              |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| pGEX_oppA                                                                                                                                                                                                                                                            | •••••           | •••••••••••     | •••••                     | •••••               | •••••••••               |                         |            |                       | ••••••                |                     | •••••                                                                               | •••••                                                                                                                                                                                                           | •••••                                                                                                                                                                                          | ••••                                                                                                 |
| pGEX_oppA                                                                                                                                                                                                                                                            | 3790            | 3800            | 3810                      | 3820                | 3830                    | 3840                    | 3850       | 3860                  | 3870                  | 3880                | 3890                                                                                | 3900                                                                                                                                                                                                            | 3910                                                                                                                                                                                           |                                                                                                      |
| pGEX_oppA                                                                                                                                                                                                                                                            |                 |                 |                           |                     |                         |                         |            |                       |                       |                     |                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| _                                                                                                                                                                                                                                                                    |                 | .               |                           |                     |                         | .                       |            |                       |                       |                     | · · ·   <u> · · ·</u> ·                                                             |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| oppA                                                                                                                                                                                                                                                                 |                 | .               |                           |                     |                         | .                       |            |                       |                       |                     | <br>TAAA <mark>Fac</mark>                                                           |                                                                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                      |
| oppA<br>pGEM_oppA before SDM                                                                                                                                                                                                                                         |                 | .               |                           |                     |                         | .                       |            |                       |                       |                     |                                                                                     | CGACAATCAC                                                                                                                                                                                                      | INGTGAATTC                                                                                                                                                                                     | GCGG                                                                                                 |
| oppA<br>pGEM_oppA before SDM<br>SDM1_Site 1, 2 & 10                                                                                                                                                                                                                  |                 | .               |                           |                     |                         | .                       |            |                       |                       |                     | TAAA FAG                                                                            | CGAC AATCAC                                                                                                                                                                                                     | INGTGAATTC                                                                                                                                                                                     | G <mark>C</mark> GG<br>G <mark>C</mark> GG                                                           |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14                                                                                                                                                                                          |                 | .               | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATG              | atgatttcca | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAA FAG                                                                            | CGAC AATCAC                                                                                                                                                                                                     | FAGTGAATTC                                                                                                                                                                                     | GCGG<br>GCGG<br>GCGG                                                                                 |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7                                                                                                                                                                       |                 | .               | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATG              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAA FAG                                                                            | CGACAATCAC<br>CGACAATCAC<br>CGACAATCAC<br>CGACAATCAC                                                                                                                                                            | TAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC                                                                                                                                           | GCGG<br>GCGG<br>GCGG<br>GCGG                                                                         |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12                                                                                                                                                   | CACAAAATATTCAA  | AaCATTAATT      | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATG              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAA FAG<br>                                                                        | CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC                                                                                                                                         | TAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC                                                                                                                             | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG                                                                 |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8                                                                                                                                | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          |                                                                                     | CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC                                                                                                                          | INGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC<br>FAGTGAATTC                                                                                                               | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG                                                         |
| oppA<br>pGEM_oppA before SDM<br>SDMI Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16                                                                                                            | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAA TAC<br>TAAA TAC<br>GTU<br>GTU<br>GTU<br>GTU<br>GTU<br>GTU<br>GTU<br>GTU<br>GTU | CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC                                                                                                           | IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC                                                                                                 | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG                                                 |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15                                                                                       | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAA TAC<br>                                                                        | CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC                                                                                            | IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC<br>IAGTGAATTC                                                                                   | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCG                                          |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA                                                                       | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAATAC<br>STC<br>STC<br>STC<br>STC<br>STC<br>STC<br>STC<br>STC<br>STC<br>ST        | CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC ATCAC                                                                              | IAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CGGCCGCTTC                                                                     | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCG                                          |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam                                                   | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAA TAG<br>                                                                        | CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC AATCAC<br>CGAC CATCAC<br>CGAC AATCAC                                                              | AGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CGCCCGCTTC<br>TAGTGAATTC                                                                      | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCG                                          |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA                                    | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAAFAG<br>3TC<br>3TC<br>3TC<br>3TC<br>3TC<br>3TC<br>3TC<br>3TC<br>3TC<br>3TC       | CCGAC AATCAC'<br>CCAC AATCAC'<br>CCAC AATCAC'<br>CCAC AATCAC'<br>CCAC AATCAC'<br>CCAC AATCAC'<br>CCAC AATCAC'<br>CCAC AATCAC'<br>CCAC CCCGGG<br>ATCC AATCAC'<br>ATCC AGATCTC                                    | TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CGGCCGCTTC<br>CGGCCGCTTC<br>CGCCGCTTC                                                        | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>CCTT<br>GCGG<br>CTAG                         |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA<br>pGEM_oppA SalNot                | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAAFAG<br>                                                                         | CCGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC CGAC AATCAC'<br>GGAC CGGATAA'<br>GGCCGGATAA'              | TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CGCCCGCTTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CGCCGCTTC<br>TAGTGAATTC<br>TAGTGAATTC              | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>CCTA<br>GCGG<br>CTAG<br>ATTC                 |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGEm_oppA BamBam<br>VR1020_oppA<br>pGEM_oppA SalNot<br>VR1012_oppA | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAATAG<br>                                                                         | CCGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>AATCC AGATCAC'<br>GGCCGC ATAA'<br>GGCCGC TTAA' | TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CGGCCGCTTC<br>CGGCCGCTTC<br>CGGCCGCTTC<br>CCGCTGCCTTC<br>CCCTATGATGA<br>CACCAGGCCGC                        | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCG                                          |
| oppA<br>pGEM_oppA before SDM<br>SDM1 Site 1, 2 & 10<br>SDM2 Site 9, 13 & 14<br>SDM3 Site 3 & 7<br>SDM4 Site 4 & 12<br>SDM5 Site 5 & 8<br>SDM6 Site 6 & 16<br>SDM7 Site 11 & 15<br>pCI-neo_oppA<br>pGem_oppA BamBam<br>VR1020_oppA<br>pGEM_oppA SalNot                | CACAAAATATTCAA  | .<br>NACATTAATT | TAATCCAAATT               | ACATCGTGC           | CTACAAACTT              | TCAGACTATO              | ATGATTTCCA | AAGATATAGA            | ACTGTAAACO            | GTGTAAGACC          | TAAAFAG<br>                                                                         | CCGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC AATCAC'<br>CGAC CGAC AATCAC'<br>GGAC CGGATAA'<br>GGCCGGATAA'              | TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>TAGTGAATTC<br>CACTAGTGA<br>SACCAGCGC<br>TCACTAGTGA | GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>GCGG<br>CCTT<br>GCGG<br>CTAG<br>ATTC<br>CTGG<br>ATTC |



# Appendix 5 Supplementary tables and figures for Chapter 5

|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       | 14/~:                                                                                                                                                                         | aht                                                                                                                                  |      | Ostrich | n mycop | lasma ir | fection | 5                                       | Averag                                                                                                                                                                                                                                                                | e A <sub>260</sub>                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|---------|---------|----------|---------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vaccine group                                                                                                                                                                                                                                                                                            | Ostrich                                                                                                                                                                                                                               | Wei                                                                                                                                                                           | gnt                                                                                                                                  | Week | 0       | Week 0  | Week 3   |         |                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                       |
| •                                                                                                                                                                                                                                                                                                        | number                                                                                                                                                                                                                                | 28/3/11                                                                                                                                                                       | 18/4/11                                                                                                                              | Ms01 | Ms02    | Ms03    | Ms01     | Ms02    | Ms03                                    | Mean                                                                                                                                                                                                                                                                  | Mean                                                                                                                                                  |
| pCI-neo_ <i>oppA</i>                                                                                                                                                                                                                                                                                     | 7689                                                                                                                                                                                                                                  | 42.4                                                                                                                                                                          | 42.4                                                                                                                                 |      |         |         |          |         |                                         | 0.556                                                                                                                                                                                                                                                                 | 0.436                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7690                                                                                                                                                                                                                                  | 34.8                                                                                                                                                                          | 37.4                                                                                                                                 |      |         |         |          |         |                                         | 0.707                                                                                                                                                                                                                                                                 | 1.617                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7692                                                                                                                                                                                                                                  | 37.8                                                                                                                                                                          | 40.4                                                                                                                                 |      |         |         |          |         |                                         | 0.511                                                                                                                                                                                                                                                                 | 0.950                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7695                                                                                                                                                                                                                                  | 42.4                                                                                                                                                                          | 42.6                                                                                                                                 |      |         |         |          |         |                                         | 0.938                                                                                                                                                                                                                                                                 | 1.298                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7696                                                                                                                                                                                                                                  | 48.6                                                                                                                                                                          | 50.0                                                                                                                                 |      |         |         |          | +       |                                         | 0.632                                                                                                                                                                                                                                                                 | 2.697                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7697                                                                                                                                                                                                                                  | 41.2                                                                                                                                                                          | 47.0                                                                                                                                 |      |         |         |          |         |                                         | 0.928                                                                                                                                                                                                                                                                 | 0.865                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7698                                                                                                                                                                                                                                  | 47.6                                                                                                                                                                          | 38.4                                                                                                                                 |      |         | +       |          |         | +                                       | 0.842                                                                                                                                                                                                                                                                 | 0.916                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7699                                                                                                                                                                                                                                  | 37.4                                                                                                                                                                          | 39.2                                                                                                                                 |      |         |         |          | +       |                                         | 0.687                                                                                                                                                                                                                                                                 | 1.999                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7701                                                                                                                                                                                                                                  | 36.6                                                                                                                                                                          | 33.8                                                                                                                                 |      |         |         |          |         | +                                       | 1.028                                                                                                                                                                                                                                                                 | 1.092                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7702                                                                                                                                                                                                                                  | 39.4                                                                                                                                                                          | 42.2                                                                                                                                 |      |         |         |          |         | +                                       | 0.706                                                                                                                                                                                                                                                                 | 0.462                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7703                                                                                                                                                                                                                                  | 38.8                                                                                                                                                                          | 42.0                                                                                                                                 |      |         |         |          | +       |                                         | 1.574                                                                                                                                                                                                                                                                 | 1.646                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7704                                                                                                                                                                                                                                  | 36.0                                                                                                                                                                          | 38.6                                                                                                                                 |      |         |         |          | +       | +                                       | 1.372                                                                                                                                                                                                                                                                 | 1.689                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7705                                                                                                                                                                                                                                  | 34.4                                                                                                                                                                          | 38.0                                                                                                                                 |      |         |         |          |         | +                                       | 1.441                                                                                                                                                                                                                                                                 | 2.639                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7706                                                                                                                                                                                                                                  | 31.6                                                                                                                                                                          | 29.2                                                                                                                                 |      |         |         |          | +       | +                                       | 1.493                                                                                                                                                                                                                                                                 | 1.120                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7707                                                                                                                                                                                                                                  | 42.4                                                                                                                                                                          | 45.8                                                                                                                                 |      |         |         |          |         |                                         | 0.557                                                                                                                                                                                                                                                                 | 0.518                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7708                                                                                                                                                                                                                                  | 34.0                                                                                                                                                                          | 40.4                                                                                                                                 |      |         |         |          |         | +                                       | 0.616                                                                                                                                                                                                                                                                 | 1.706                                                                                                                                                 |
| pCI-neo oppA                                                                                                                                                                                                                                                                                             | 7709                                                                                                                                                                                                                                  | 47.6                                                                                                                                                                          | 52.0                                                                                                                                 |      |         |         |          |         | +                                       | 0.441                                                                                                                                                                                                                                                                 | 0.728                                                                                                                                                 |
| pCI-neo oppA                                                                                                                                                                                                                                                                                             | 7710                                                                                                                                                                                                                                  | 41.6                                                                                                                                                                          | 42.4                                                                                                                                 |      | +       |         |          |         | +                                       | 0.886                                                                                                                                                                                                                                                                 | 0.960                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7711                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                          | -                                                                                                                                    |      |         |         |          | +       | +                                       | 0.870                                                                                                                                                                                                                                                                 | 1.876                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7712                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                          | 39.8                                                                                                                                 |      |         |         |          |         |                                         | 1.215                                                                                                                                                                                                                                                                 | 1.888                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7713                                                                                                                                                                                                                                  | 39.8                                                                                                                                                                          | 25.2                                                                                                                                 |      |         |         |          |         | +                                       | 1.858                                                                                                                                                                                                                                                                 | 2.942                                                                                                                                                 |
| pCI-neo oppA                                                                                                                                                                                                                                                                                             | 7714                                                                                                                                                                                                                                  | 33.0                                                                                                                                                                          | 38.4                                                                                                                                 |      |         |         |          |         | +                                       | 1.295                                                                                                                                                                                                                                                                 | 1.426                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7715                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                          | 39.8                                                                                                                                 |      |         |         |          |         |                                         | 1.231                                                                                                                                                                                                                                                                 | 2.003                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7717                                                                                                                                                                                                                                  | 35.8                                                                                                                                                                          | 36.4                                                                                                                                 |      |         |         |          | +       | +                                       | 0.288                                                                                                                                                                                                                                                                 | 1.643                                                                                                                                                 |
| pCI-neo_oppA                                                                                                                                                                                                                                                                                             | 7718                                                                                                                                                                                                                                  | 36.0                                                                                                                                                                          | 35.4                                                                                                                                 |      |         |         |          |         |                                         | 0.779                                                                                                                                                                                                                                                                 | 1.258                                                                                                                                                 |
| Mean weight                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                     | 38.9                                                                                                                                                                          | 39.9                                                                                                                                 | ľ    |         |         |          |         |                                         | 0.938                                                                                                                                                                                                                                                                 | 1.455                                                                                                                                                 |
| Total Ms01/02/03                                                                                                                                                                                                                                                                                         | Infected os                                                                                                                                                                                                                           |                                                                                                                                                                               |                                                                                                                                      | 0    | 1       | 1       | 0        | 7       | 13                                      |                                                                                                                                                                                                                                                                       |                                                                                                                                                       |
| Total infected os                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                                                               |                                                                                                                                      |      | 2       |         | -        | 16      | 1.0                                     |                                                                                                                                                                                                                                                                       |                                                                                                                                                       |
| Total infected os                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                       |                                                                                                                                                                               |                                                                                                                                      |      |         | - 1     | 6        |         |                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                       |
| VR1020_oppA                                                                                                                                                                                                                                                                                              | 7720                                                                                                                                                                                                                                  | 29.4                                                                                                                                                                          | 32.4                                                                                                                                 |      |         |         | 1        |         |                                         | 0.848                                                                                                                                                                                                                                                                 | 1.476                                                                                                                                                 |
| VR1020_oppA                                                                                                                                                                                                                                                                                              | 7721                                                                                                                                                                                                                                  | 38.0                                                                                                                                                                          | 39.6                                                                                                                                 |      |         |         |          |         |                                         | 0.895                                                                                                                                                                                                                                                                 | 1.908                                                                                                                                                 |
| VR1020_0ppA                                                                                                                                                                                                                                                                                              | 7722                                                                                                                                                                                                                                  | 33.8                                                                                                                                                                          | 35.8                                                                                                                                 |      |         |         |          | +       |                                         | 0.675                                                                                                                                                                                                                                                                 | 2.779                                                                                                                                                 |
| VR1020_oppA                                                                                                                                                                                                                                                                                              | 7724                                                                                                                                                                                                                                  | 34.6                                                                                                                                                                          | 39.4                                                                                                                                 |      |         |         |          |         |                                         |                                                                                                                                                                                                                                                                       | 0.975                                                                                                                                                 |
| VR1020_oppA                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                               |                                                                                                                                      |      |         |         |          |         |                                         | 0.677                                                                                                                                                                                                                                                                 |                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                                                                               |                                                                                                                                      |      |         |         |          |         |                                         | 0.677                                                                                                                                                                                                                                                                 |                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                          | 7725                                                                                                                                                                                                                                  | 30.6                                                                                                                                                                          | 37.2                                                                                                                                 |      |         |         |          |         |                                         | 1.441                                                                                                                                                                                                                                                                 | 0.977                                                                                                                                                 |
| VR1020_oppA                                                                                                                                                                                                                                                                                              | 7725<br>7727                                                                                                                                                                                                                          | 30.6<br>38.2                                                                                                                                                                  | 37.2<br>41.4                                                                                                                         |      |         |         |          |         | +                                       | 1.441<br>0.504                                                                                                                                                                                                                                                        | 0.977<br>0.793                                                                                                                                        |
| VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                                                                                                               | 7725<br>7727<br>7728                                                                                                                                                                                                                  | 30.6<br>38.2<br>33.0                                                                                                                                                          | 37.2<br>41.4<br>32.6                                                                                                                 |      |         |         |          |         | +                                       | 1.441<br>0.504<br>0.881                                                                                                                                                                                                                                               | 0.977<br>0.793<br>0.857                                                                                                                               |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                                                                                                | 7725<br>7727<br>7728<br>7729                                                                                                                                                                                                          | 30.6<br>38.2<br>33.0<br>32.0                                                                                                                                                  | 37.2<br>41.4<br>32.6<br>29.0                                                                                                         |      |         |         |          |         | + +                                     | 1.441<br>0.504<br>0.881<br>0.668                                                                                                                                                                                                                                      | 0.977<br>0.793<br>0.857<br>0.492                                                                                                                      |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                                                                                 | 7725<br>7727<br>7728<br>7729<br>7729<br>7730                                                                                                                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2                                                                                                                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8                                                                                                 |      |         |         |          | +       |                                         | 1.441<br>0.504<br>0.881<br>0.668<br>1.481                                                                                                                                                                                                                             | 0.977<br>0.793<br>0.857<br>0.492<br>2.696                                                                                                             |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                                                                  | 7725<br>7727<br>7728<br>7729<br>7730<br>7731                                                                                                                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2                                                                                                                                  | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8                                                                                         |      |         |         |          | +       |                                         | 1.441<br>0.504<br>0.881<br>0.668<br>1.481<br>1.936                                                                                                                                                                                                                    | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622                                                                                                    |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                                                   | 7725<br>7727<br>7728<br>7729<br>7730<br>7731<br>7731                                                                                                                                                                                  | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6                                                                                                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8                                                                                 |      |         |         |          | +       |                                         | 1.441<br>0.504<br>0.881<br>0.668<br>1.481<br>1.936<br>1.722                                                                                                                                                                                                           | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369                                                                                           |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                                    | 7725<br>7727<br>7728<br>7729<br>7730<br>7731<br>7731<br>7732<br>7733                                                                                                                                                                  | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4                                                                                                                  | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0                                                                         |      |         |         |          | +       |                                         | 1.441<br>0.504<br>0.881<br>0.668<br>1.481<br>1.936<br>1.722<br>1.228                                                                                                                                                                                                  | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285                                                                                  |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                                     | 7725<br>7727<br>7728<br>7729<br>7730<br>7731<br>7731<br>7732<br>7733<br>7736                                                                                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8                                                                                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6                                                                 |      |         |         |          |         | +                                       | 1.441<br>0.504<br>0.881<br>0.668<br>1.481<br>1.936<br>1.722<br>1.228<br>0.834                                                                                                                                                                                         | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312                                                                         |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                                      | 7725<br>7727<br>7728<br>7729<br>7730<br>7731<br>7731<br>7732<br>7733<br>7736<br>7736<br>7739                                                                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4                                                                                                  | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4                                                         |      |         |         |          | +       |                                         | 1.441<br>0.504<br>0.881<br>0.668<br>1.481<br>1.936<br>1.722<br>1.228<br>0.834<br>0.446                                                                                                                                                                                | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934                                                                |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                                       | 7725<br>7727<br>7728<br>7729<br>7730<br>7730<br>7731<br>7732<br>7733<br>7736<br>7736<br>7739<br>7740                                                                                                                                  | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4                                                                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2                                                 |      |         |         |          |         | +                                       | 1.441<br>0.504<br>0.881<br>0.668<br>1.481<br>1.936<br>1.722<br>1.228<br>0.834<br>0.446<br>1.222                                                                                                                                                                       | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260                                                       |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                                        | 7725<br>7727<br>7728<br>7729<br>7730<br>7730<br>7731<br>7732<br>7733<br>7736<br>7736<br>7739<br>7740<br>7741                                                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2                                                                                  | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8                                         |      |         | +       |          |         | +                                       | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841                                                                                 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029                                              |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                                         | 7725<br>7727<br>7728<br>7729<br>7730<br>7730<br>7731<br>7732<br>7733<br>7736<br>7739<br>7739<br>7740<br>7741<br>7741                                                                                                                  | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6                                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0                                 |      |         | +       |          |         | +                                       | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841                                                                                 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870                                     |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                                          | 7725<br>7727<br>7728<br>7729<br>7730<br>7730<br>7731<br>7732<br>7733<br>7736<br>7739<br>7736<br>7739<br>7740<br>7741<br>7741<br>7742<br>7744                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6<br>33.4                                                                  | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0<br>34.6                         |      |         | +       |          | +       | +                                       | $\begin{array}{c} 1.441\\ 0.504\\ 0.881\\ 0.668\\ 1.481\\ 1.936\\ 1.722\\ 1.228\\ 0.834\\ 0.446\\ 1.222\\ 1.841\\ 1.164\\ 1.397\\ \end{array}$                                                                                                                        | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870<br>2.726                            |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                                           | 7725<br>7727<br>7728<br>7729<br>7730<br>7730<br>7731<br>7732<br>7733<br>7736<br>7736<br>7739<br>7740<br>7741<br>7741<br>7742<br>7744<br>7745                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6<br>33.4<br>29.2                                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0<br>34.6<br>36.4                 |      | +       | +       |          |         | +                                       | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841           1.164           1.397           1.797                                 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870<br>2.726<br>2.775                   |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                                                            | 7725<br>7727<br>7728<br>7729<br>7730<br>7731<br>7731<br>7732<br>7733<br>7736<br>7739<br>7736<br>7739<br>7740<br>7741<br>7741<br>7742<br>7744<br>7745<br>7746                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6<br>33.4<br>29.2<br>30.8                                                  | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0<br>34.6<br>36.4<br>35.8         |      | +       | +       |          | +       | +                                       | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841           1.164           1.397           1.797           0.808                 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870<br>2.726<br>2.775<br>1.016          |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                              | 7725<br>7727<br>7728<br>7729<br>7730<br>7730<br>7731<br>7732<br>7733<br>7736<br>7736<br>7739<br>7740<br>7741<br>7741<br>7742<br>7744<br>7745                                                                                          | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6<br>33.4<br>29.2<br>30.8<br>36.4                                          | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0<br>34.6<br>36.4<br>35.8<br>37.8 |      | +       | +       |          | +       | +                                       | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841           1.164           1.397           1.797           0.808           1.515 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870<br>2.726<br>2.775<br>1.016<br>1.503 |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA | 7725           7727           7728           7729           7730           7731           7732           7733           7736           7739           7740           7741           7742           7744           7745           7748 | 30.6<br>38.2<br>33.0<br>32.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6<br>33.4<br>29.2<br>30.8<br>36.4<br><b>33.6</b>                           | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0<br>34.6<br>36.4<br>35.8         |      |         |         |          | +       | + + + + + + + + + + + + + + + + + + + + | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841           1.164           1.397           1.797           0.808                 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870<br>2.726<br>2.775<br>1.016<br>1.503 |
| VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA<br>VR1020_oppA                                              | 7725           7727           7728           7729           7730           7731           7732           7733           7736           7739           7740           7741           7742           7744           7745           7748 | 30.6<br>38.2<br>33.0<br>40.2<br>33.2<br>32.6<br>32.4<br>31.8<br>32.4<br>31.8<br>32.4<br>31.4<br>35.2<br>36.6<br>33.4<br>29.2<br>30.8<br>36.4<br><b>33.6</b><br><b>triches</b> | 37.2<br>41.4<br>32.6<br>29.0<br>42.8<br>36.8<br>37.8<br>27.0<br>38.6<br>38.4<br>39.2<br>37.8<br>42.0<br>34.6<br>36.4<br>35.8<br>37.8 | 0    | +       | +       |          | +       | +                                       | 1.441           0.504           0.881           0.668           1.481           1.936           1.722           1.228           0.834           0.446           1.222           1.841           1.164           1.397           1.797           0.808           1.515 | 0.977<br>0.793<br>0.857<br>0.492<br>2.696<br>2.622<br>1.369<br>0.285<br>2.312<br>0.934<br>2.260<br>3.029<br>1.870<br>2.726<br>2.775<br>1.016          |

Supplementary Table 5.1 The weight, mycoplasma infections and ELISA data of each ostrich in the vaccine trial

|                   |               | Wei     | ght     |      | Ostrich | mycopl | asma in | fections |      | Averag  | je A <sub>260</sub> |
|-------------------|---------------|---------|---------|------|---------|--------|---------|----------|------|---------|---------------------|
| Vaccine group     | Ostrich       | Week 0  | Week 3  |      | Week 0  | _ · .  |         | Week 3   |      | Week 0  | Week 3              |
|                   | number        | 28/3/11 | 18/4/11 | Ms01 | Ms02    | Ms03   | Ms01    | Ms02     | Ms03 | 28/3/11 | 18/4/11             |
| VR1012_oppA       | 7750          | 33.6    | 32.6    |      | +       | +      |         |          |      | 1.173   | 2.375               |
| VR1012_oppA       | 7752          | 38.0    | 30.8    |      | +       | +      |         |          |      | 1.031   | 0.729               |
| VR1012_oppA       | 7753          | 36.8    | 44.4    |      |         | +      |         | +        |      | 0.954   | 1.724               |
| VR1012_oppA       | 7754          | 39.6    | 39.0    |      | +       |        |         |          |      | 2.702   | 3.003               |
| VR1012_oppA       | 7755          | 41.6    | 46.8    |      | +       | +      |         | +        |      | 1.524   | 1.129               |
| VR1012_oppA       | 7756          | 45.6    | 49.6    |      | +       |        | +       |          |      | 2.923   | 1.784               |
| VR1012_oppA       | 7757          | 44.4    | 45.6    |      |         |        |         |          |      | 0.762   | 0.642               |
| VR1012_oppA       | 7759          | 42.8    | 43.0    |      | +       |        |         |          |      | 0.824   | 0.720               |
| VR1012_oppA       | 7760          | 43.4    | 31.6    |      | +       |        |         | +        |      | 0.406   | 0.586               |
| VR1012_oppA       | 7761          | 44.4    | 29.6    |      | +       | +      | +       | +        | +    | 0.807   | 0.807               |
| VR1012_oppA       | 7762          | 36.2    | 35.4    |      | +       | +      |         | +        | +    | 0.679   | 1.044               |
| VR1012_oppA       | 7763          | 32.0    | 33.8    |      | +       | +      | +       | +        | +    | 0.707   | 0.986               |
| VR1012_oppA       | 7765          | 31.0    | 35.8    |      | +       | +      |         |          |      | 0.526   | 0.842               |
| VR1012_oppA       | 7767          | 27.8    | 30.6    |      | +       | +      |         |          |      | 0.689   | 1.959               |
| VR1012_oppA       | 7768          | 26.8    | 27.6    |      |         |        |         |          |      | 1.576   | 1.242               |
| VR1012_oppA       | 7769          | 31.6    | 44.4    |      | +       | +      |         | +        | +    | 0.497   | 0.682               |
| VR1012_oppA       | 7771          | 30.0    | 25.4    |      |         | +      |         |          |      | 1.556   | 1.342               |
| VR1012_oppA       | 7773          | 27.5    | 24.4    |      | +       | +      |         | +        |      | 0.001   | 1.096               |
| VR1012_oppA       | 7775          | 28.6    | 22.2    |      | +       | +      |         |          |      | 0.950   | 0.767               |
| VR1012_oppA       | 7776          | 28.5    | 32.4    |      | +       |        |         | +        |      | 0.867   | 0.328               |
| VR1012_oppA       | 7777          | 27.6    | 28.8    |      |         |        |         |          |      | 0.475   | 0.937               |
| Mean weight       |               | 35.1    | 34.9    |      |         |        |         |          |      | 1.030   | 1.177               |
| Total Ms01/02/03  | Infected os   | triches |         | 0    | 16      | 13     | 3       | 9        | 4    |         |                     |
| Total infected os | triches per v | week    |         |      | 18      |        |         | 10       |      |         |                     |
| Total infected os | triches       |         |         |      |         | 1      | 8       |          |      |         |                     |
| Control           | 7779          | 28.0    | 34.6    |      |         | +      |         |          | +    | 0.816   | 1.374               |
| Control           | 7780          | 31.6    | 32.6    |      | +       | +      |         |          |      | 1.010   | 0.852               |
| Control           | 7781          | 27.5    | 30.0    |      | +       | +      |         | +        |      | 0.410   | 1.102               |
| Control           | 7782          | 30.5    | 26.8    |      |         |        |         |          |      | 0.251   | 2.044               |
| Control           | 7783          | 29.6    | 32.6    |      |         | +      |         |          |      | 0.510   | 0.291               |
| Control           | 7784          | 32.6    | 34.8    |      | +       | +      |         |          |      | 0.806   | 0.611               |
| Control           | 7785          | 28.6    | 29.0    |      | +       | +      |         | +        |      | 0.643   | 0.787               |
| Control           | 7787          | 31.2    | 27.8    |      | +       | +      |         | +        |      | 0.311   | 0.511               |
| Control           | 7788          | 34.2    | 36.8    |      | +       | +      |         | +        |      | 0.342   | 0.618               |
| Control           | 7789          | 21.4    | 22.8    |      | +       | +      |         |          |      | 0.854   | 0.632               |
| Control           | 7790          | 30.2    | 18.4    |      | +       | +      |         |          |      | 0.215   | 0.536               |
| Control           | 7791          | 27.4    | 26.2    |      |         | +      |         |          |      | 1.414   | 1.466               |
| Control           | 7792          | 29.2    | 31.0    |      |         |        |         |          |      | 2.276   | 0.638               |
| Control           | 7795          | 25.8    | 24.6    |      |         | +      |         | +        |      | 1.231   | 1.797               |
| Control           | 7797          | 26.0    | 27.4    |      |         | +      |         |          |      | 1.965   | 1.967               |
| Control           | 7798          | 27.2    | 30.0    |      | +       |        |         |          |      | 0.912   | 0.637               |
| Control           | 7799          | 30.4    | 34.4    |      | +       | +      |         |          |      | 1.759   | 1.662               |
| Control           | 7800          | 23.6    | 24.2    |      | +       | +      |         |          |      | 1.750   | 0.684               |
| Control           | 7802          | 27.6    | 26.0    |      |         | +      |         |          |      | 1.434   | 1.018               |
| Control           | 7803          | 25.6    | 26.0    |      | +       | +      |         |          |      | 1.646   | 0.965               |
| Control           | 7805          | 28.6    | 29.6    |      | +       | +      |         |          |      | 1.057   | 0.999               |
| Control           | 7806          | -       | 24.0    |      | +       | +      |         |          |      | 1.464   | 0.461               |
| Control           | 7807          | -       | 28.2    |      | +       |        |         |          |      | 0.908   | 0.384               |
| Mean weight       | •             | 28.4    | 28.6    |      |         |        |         |          |      | 1.043   | 0.958               |
| Total Ms01/02/03  | Infected os   |         |         | 0    | 15      | 19     | 0       | 5        | 1    |         |                     |
| Total infected os |               |         |         |      | 21      |        |         | 6        |      |         |                     |
| Total infected os |               |         |         |      |         | 2      | 21      |          |      | 1       | 1                   |
|                   | -             |         |         |      |         |        |         |          |      |         |                     |

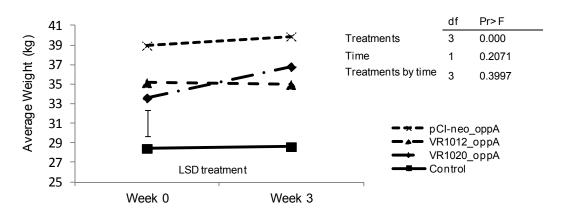
Supplementary Table 5.2 ANOVA analysis of the weight data

| Source            | df  | SS        | MS       | F-value | Pr> F  |
|-------------------|-----|-----------|----------|---------|--------|
| Treatment         | 3   | 3241.832  | 1080.611 | 24.72   | 0.0000 |
| Time              | 1   | 70.104    | 70.104   | 1.60    | 0.2071 |
| Treatment by time | 3   | 129.612   | 43.204   | 0.99    | 0.3997 |
| Residual          | 172 | 7519.021  | 43.715   |         |        |
| Total             | 179 | 10960.569 |          |         |        |

Df Degrees of freedom

SS Sum of squares

MS Mean of SS


Supplementary Table 5.3 ANOVA analysis of the ELISA data

| Source             | df  | SS     | MS    | F-value | Pr> F  |
|--------------------|-----|--------|-------|---------|--------|
| Treatments         | 3   | 4.166  | 1.389 | 3.59    | 0.0149 |
| Time               | 1   | 3.611  | 3.611 | 9.33    | 0.0026 |
| Treatments by time | 3   | 3.224  | 1.075 | 2.78    | 0.0428 |
| Residual           | 172 | 66.545 | 0.387 |         |        |
| Total              | 179 | 77.547 |       |         |        |

Df Degrees of freedom

SS Sum of squares

MS Mean of SS



**Supplementary Figure 5.1** Average weight of the ostriches vaccinated with three different DNA vaccines containing the mutated oppA gene of *M. nasistruthionis* sp. nov. strain Ms03. Vaccinated ostriches received a single DNA vaccine dose (100 µg/ml) at week 0 and the control group did not receive any vaccine. Statistical parameters are indicated.