The earliest known Palaeozoic ensiferan insect from Africa, Afroedischia oosthuizeni gen. et sp. nov. (Orthoptera: Oedischidae)

H. Geertsema* and D.E. van Dijk†

An oedischid orthopteran Insect from the Lower Permian of southern Africa is described as Afroedischia oosthuizeni gen. et sp. nov. This is the only member of the family Oedischidae known in the Southern Hemisphere, if Pseudischia Pinto & Ornellas, 1978, of the Upper Carboniferous of Brazil, is correctly placed in a separate family Pseudischidae.

The fossil history and classification of the Orthoptera were recently discussed by Kukalová-Peck† and Carpenter.‡ Orthoptera date from the Carboniferous, about 300 million years ago. Two types of wing venation within the stem-group assemblage, represented by Oedischia and Metoedischia respectively, showing differences in the seemingly uniform orthopteroid venation, suggest that the Orthoptera is not monophyletic.¹

Oedischidae (Carboniferous – Triassic) are generally considered to be the most primitive of the known Orthoptera.³ Of the 13 genera presently placed in the Oedischidae,⁴ Oedischia Brongranti and Anhomalophlebia Handlirsch are from the Upper Carboniferous of Europe, Jassua Zalessky, Macroedischia Sharov, Rimnosentomon Zalessky, Syloedischia Sharov, Tettedischia Sharov and Urabedischia Sharov from the Permian of Asian Russia, Metoedischia Martynov and Pravositites Zalessky from the Permian of European Russia, Peromedischia Kukalovà and Plesioidischia Handlirsch from the Permian of Europe (the Czech Republic and Germany, respectively) and Paroedischia Carpenter from the Permian of the USA (Kansas). Pseudischia Pinto & Ornellas, the type of the family Pseudischidae (Protorthoptera), has been described from the Upper Carboniferous of Brazil.⁵ The Protorthoptera are currently considered to be an artificial or polyphyletic assemblage consisting of various Palaeozoic Neoptera, members of which are gradually being reassigned to other orders, including Orthoptera.¹ ² ³ Pseudischidae is probably related to Oedischidae.⁴

The earliest ensiferan Orthoptera (Tettigonioidea) described from South Africa is from the Upper Permian of KwaZulu-Natal, represented by Protettavus exilis Riek (Tettavidae).⁶ Here a new taxon is described from South Africa. Its nearest known relative appears to be Oedischia Brongranti, 1885, described from the Upper Carboniferous of France.

Description

Afroedischia gen. nov. (Oedischidae: Orthoptera), Figs 1, 2

Type species. Afroedischia oosthuizeni sp. nov., Laingsburg Formation (Karoo Sequence, Ecca Group), Lower Permian.

*Department of Entomology and Nematology and †Su Department of Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602 South Africa.
E-mail: hge@land.sun.ac.za and eddj@vandijk.co.za

Afroedischia appears to be related to Oedischia as both possess a medial crossvein connecting the stem of the median anterior (MA) and median posterior (MP) with anterior cubital (CuA), the crossvein of Afroedischia, however, being more distinct. In Afroedischia the bifurcation of MA and MP is four-tenths the distance between the origin of radial sector (Rs) and the crossvein, whereas in Oedischia it is much closer to the crossvein. In Oedischia some veins in the region posterior to costa (C) are convoluted; all veins are straight or slightly curved in Afroedischia.


Afroedischia oosthuizeni sp. nov., Figs 1, 2

Holotype. Specimen K85 in collection of Roy Oosthuizen, Swartkans, Prins Albert. This collection is being transferred to the South African Museum, Cape Town.

Geographical and stratigraphical distribution. The specimen is from 2 km west of Laingsburg, South Africa, Laingsburg Formation (Karoo Sequence, Ecca Group), Lower Permian; mudstone as is typical of this formation. Collected by a team of palaeontologists led by B. Oelofsen.

Description. Holotype forewing with tip missing, hind wing basal fragment. Length of forewing (incomplete) 42 mm. The convex curvature of the costal and anal regions shows the specimen to represent the dorsal surface of a somewhat tegmated left forewing, base to the right (Figs 1, 2). The specimen is assumed to be on the upper surface of the matrix, although orientation of the slab is unknown. To agree with general custom, these figures are inverted towards the right.

Forewing: precostal area elongate-triangular, partially obscured basally by portion of hind wing, distal part with convex-oblique veinlets; C basally slightly flexed posteriorly for one-third distance from base, then almost straight along wing margin, thinning distally; subcosta (Sc) from base initially parallel to, then diverging from, then converging until almost parallel to C; region between Sc and C with oblique veinlets from precostal termination, veinlets becoming more curved and oblique towards wing apex, spacing between veinlets initially irregular but closer distally; radius (R) strongly positive (raised), initially parallel to Sc, then diverging slightly so that R is parallel to costal margin, veinlets between diverging R and Sc short, oblique, and irregularly spaced; Rs from R at slightly more than twice the length of precostal area from wing base; median (M) first approximating, almost anastomosing with R, before diverging at same distance from wing base as apical precostal area; stem of MA and MP first parallel to R, forkings slightly less than halfway between origin of Rs and apical precostal area; MA initially parallel with, then curving towards R, then diverging to outer wing margin; region anterior to M and MA with irregularly spaced, almost straight or slightly curved, veinlets, becoming oblique near Rs; MP diverging gradually from MA, veinlets between MA and MP oblique; CuA diverging from wing base, forming cell with basal stem M, at end of cell connected to prominent crossvein from M, diverging from stem of MA and MP; then parallel for some distance to MP; cell with veinlets distally extending anteriorly towards M and R, veinlets in region distal to crossvein and between CuA, M and MP slightly oblique near stem of MA and MP; CuA with four branches, first branch at twice the length of crossvein from end of median cell, second branch equidistant from first and third branch, fourth branch diverging in line with origin of Rs; posterior cubital (CuP) initially forked with CuA, almost straight, first parallel to CuA for length of cell, then slightly diverging to first branch of CuA, veinlets in...
region anterior to CuP regularly spaced; first anal (1A) straight, initially parallel to, then diverging slightly from CuP to posterior wing margin, region between 1A and CuP with closely arranged veinlets; 2A distinct, curved from wing base, then almost straight towards posterior wing margin, veinlets anterior to 2A from base in line, especially distally, with those anterior to 1A, veinlets posterior to 2A irregular, in line with anterior ones.

Hind wing: fragment of basal region with diverging veins.

Remarks. The length of the incomplete forewing is 42 mm; if the position of the origin of Rs is as usual at half the wing length, the complete wing would be at least 70 mm.

Etymology. This species is named for Roy Oosthuizen to honour his extensive contribution to palaeontology.

Discussion. Controversial features of the venation of fossil Orthoptera have been discussed by Kukalová-Peck and Carpenter. The usual topography of the costal (C), subcostal (Sc), radial (R) and posterior cubital (CuP) veins is present, but the branches of the radial sector (Rs), median (M) and anterior cubital (CuA) veins are usually flat or neutral in the forewing. In Oedischia MP is present as a strongly concave vein, and CuA is convex. MA is not distinctly convex in any known Orthoptera.

By the nature of fossil material, diagnostic details are often missing, making comparison with modern genera difficult. Generic descriptions of oedischid genera, including drawings of venational detail, have recently been summarized.

PreЄdischia has the precostal area with a large Sc and crossveins not reticulate. Permeedischia has the precostal area more extensive than in Oedischia and MP unbranched. The forewing in Plesioidischia is wider near the middle than in Oedischia and crossveins reticulate in the region of Rs. Syloedischia has the forewing with a large precostal area, nearly as long as in Macroedischia, the costal veinlets connected by crossveins that are dense over most of the wing. The forewing of Tettodischia is slender, with a larger precostal area and costal veinlets not connected by crossveins. Uraloedischia has a long and narrow precostal area which extends about halfway to the origin of Rs and subcostal veinlets not reticulate. In Afroedischia the stem of M, forming the anterior boundary of the (median) cell, is initially concave when parallel to R, in the region of divergence from R, M becomes convex, but where connected by a distinct concave crossvein to CuA, the stem of MA + MP is clearly concave as is CuP. Venational features of Afroedischia are considered by us to be sufficiently distinct from the known generic descriptions to warrant the establishment of a new genus.

We thank the referees for constructive comments.

Received 17 July 1998. Accepted 5 January 1999.

Fig. 1. Afroedischia oosthuizeni gen. et sp. nov., left forewing (inverted to right). No further detail beyond right margin of figure. Scale = 10 mm.

Fig. 2. Afroedischia oosthuizeni gen. et sp. nov., wing venation. hw = hind wing.