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Abstract

A Parallel Cellular Automaton Simulation Framework using

CUDA

R. Fourie

Department of Mathematical Sciences,
Computer Science Division,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc (Computer Science)

February 2015

In the current digital age, the use of cellular automata to simulate natural systems
has grown more popular as our understanding of cellular systems increases. Up until
about a decade ago, digital models based on the concept of cellular automata have
primarily been simulated with sequential rule application algorithms, which do not
exploit the inherent parallel nature of cellular automata. However, since parallel
computation platforms have become more commercially available, researchers have
started to investigate the advantages of parallel rule application algorithms for basic
cellular automata.

For this thesis, a parallel cellular automaton framework, based on NVIDIA
CUDA is developed to simplify the implementation of a wide range of cellular
automata. This framework is used to investigate the potential performance ad-
vantages of using graphical processing units as a parallel processing platform for
cellular automata.
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Uittreksel

'n Parallelle Sellulêre Outomaat Simulasieraamwerk

gebaseer op CUDA

R. Fourie

Departement Wiskundige Wetenskappe,
Afdeling Rekenaarwetenskap,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc (Rekenaar Wetenskap)

Februarie 2015

In die huidige digitale era het die gebruik van sellulêre outomate om natuurlike
stelsels te simuleer, aansienlik toegeneem soos wat ons begrip van sellulêre stelsels
verbreed word. Tot om en by 'n dekade gelede is digitale modelle wat met behulp
van sellulêre outomate gesimuleer word, hoofsaaklik met sekwensiële reëlfunksies
gesimuleer. As gevolg hiervan het die inherente parallelle natuur van sellulêre ou-
tomate nie tot sy volle reg gekom nie. Aangesien parallelle berekenings-platforms
egter onlangs meer kommersieël beskikbaar geraak het, span navorsers hierdie plat-
forms nou in om parallelle reëlfunksies te skep vir meer basiese sellulêre outomate.

Vir hierdie tesis is 'n parallelle sellulêre outomaat simulasieraamwerk geskep,
wat gebruik maak van die NVIDIA CUDA parallelle berekenings-platform. Hierdie
raamwerk is geskep om die implementasie van 'n verskeidenheid van sellulêre ou-
tomate te vereenvoudig, en is ingespan om die potensiële tydsvoordeel van gra�ese
verwerkingseenhede te ondersoek in die implementasie van sellulêre outomate.
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Chapter 1

Introduction

Computer simulations play a large part in modern life. Physical and biological
research is supported by various mathematical and computer science techniques
and programming algorithms, to get a more concise picture of how these systems
work or would react in certain scenarios [61].

To gain an understanding of biological self-replicating systems, the concept
of cellular automata (CA) was introduced by Ulam and Von Neumann in the
1940s [58]. A CA is made up of an N -dimensional grid of discrete cells, where
the state of each cell changes as a function of time, according to a prede�ned set
of rules [24]. Each cell contains a value that represents the current state of a cell,
where, on the most basic level, the state will either be 0 or 1 (dead or alive) [45, 59].

There are two key aspects to take into account regarding CA. Firstly, a cell gen-
erally does not have a time dependency on any of its neighbouring cells during the
calculation of its next state. And secondly, the next state of each cell is calculated
before the entire CA is updated. Thus, the cells of a CA are essentially processed
in a parallel fashion. In practice, however, the general trend has long been to use
sequential algorithms to simulate a CA, where only one cell is processed at a time.
For a two-dimensional CA this practice is equal to a O(MN) time complexity,
where M is the number of rows and N is the number of columns of the CA grid.
A compute-intensive rule application function will exacerbate the high execution
time.

A proper parallel updating algorithm for the CA would potentially alleviate the
execution time problem. In order to simulate a CA with a parallel algorithm, a
parallel processing platform is required. Ideally, it should maximize the number
of cells that are processed simultaneously. With the advancements in graphical
processing unit (GPU) architecture in the past decade, that allow programmers to
harness the power of the GPU for general computation, the GPU seems like an
ideal platform on which a CA can be simulated in parallel.

In this thesis the performance gain achieved by implementing a CA on a GPU
is investigated, by using di�erent parallel data segmentation methods. Each data

1
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CHAPTER 1. INTRODUCTION 2

segmentation method uses a di�erent amount of GPU processing resources. To
that end, we develop a general CA framework in C/C++, based on CUDA. The
framework will be used to investigate the execution times of the di�erent parallel
CA simulations based on the data segmentation methods, in comparison to the
results obtained with a sequential CA simulation. All parallel algorithms will be
performed on the GPU, and all the sequential algorithms will be performed on the
CPU. To set a benchmark for a basic CA simulation, the Game of Life CA will
be implemented. For more complex CA, the concept of virtual clay deformation
will be implemented as a benchmark, since more complex calculations need to be
performed when calculating a new generation. And to set a benchmark for CA
simulations that have potential race conditions for a parallel implementation, the
ant clustering CA will be implemented.

1 Thesis outline

In this thesis, di�erent parallel processing platforms that have been applied for CA
simulations, are investigated and discussed in Chapter 2.

In Chapter 3 the requirements, design, and implementation of the CA framework
is discussed.

The application of the CA framework is discussed in Chapter 4, where the per-
formance of sequential and parallel CA rule application algorithms are investigated.

In Chapter 5 we conclude this thesis by discussing the overall �ndings and by
stating possible future work.
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Chapter 2

Literature survey

The framework developed for this thesis is applied to investigate the potential per-
formance advantages of parallel implementations of CA. As background, di�erent
applications of CA are introduced. This is followed by an overview of paralleliza-
tion techniques for solving CA, with speci�c reference to the graphics processor.
Finally, an overview of GPGPU is given, how this �eld has expanded, and where
it has been applied.

1 Cellular automata

The concept of discrete CA models was introduced in the 1940s, and interest in it
has grown since then [22, 43, 45, 60]. The use of CA to solve small scale practi-
cal problems has increased in a number of �elds. For example, Nandi et al apply
CA in the �eld of cryptography to construct one-dimensional block-ciphers [34];
Yuen et al discuss tra�c modeling and structural design using CA [65]; Tran et al dis-
cuss a CA model to simulate the cardiac tissue electrical activity observed in pa-
tients that su�er from atrial �brillation [53]; and Gosálvez et al apply CA for erosion
simulation using both continuous and discrete CA models [18]. Other applications
of CA are listed by Ganguly et al [13], and include:

� simple simulations such as Conway's Game of Life, the �ring squad problem,
and the iterated prisoner's dilemma;

� social systems, such as social interactions and racial segregation;

� modeling physical and biological systems such as water-�ow modeling, chem-
ical processes and the immune system;

� Very Large Scale Integration (VLSI);

� digital image processing;

3
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CHAPTER 2. LITERATURE SURVEY 4

� pattern recognition; and

� the theoretical inspiration of CA for the development of parallel processors.

An important attribute of CA is its inherent parallel nature; cells can generally be
processed in parallel without the risk of causing an error in the overall state of the
CA. Tran et al reason that simulating cardiac tissue electrical activity using a CA
model would grant them better performance, when coupling the CA model with
a parallel adapted algorithm. This is in contrast to the conventional method of
cardiac tissue simulation, which involves solving elaborate systems of partial di�er-
ential equations, which would normally be sent o� to supercomputer facilities [53].

To look beyond the CPU and its sequential nature of processing, research has
focused on developing parallelization techniques based on parallel processors. The
next section will look at parallelization techniques and the related hardware that
has been applied to CA algorithms.

2 Parallelization techniques

In this section di�erent parallel processing platforms that have been used to imple-
ment CA are investigated.

2.1 Field Programmable Gate Array

Murtaza et al proposed to address the problem of sequential processing of CA by
using the Field Programmable Gate Array (FPGA) [33]. Their study was conducted
in order to provide an alternative method to process CA in a more parallel fashion
than can be achieved with a single CPU.

An FPGA consists of a number of compute engines, RAM and I/O ports, where
each compute engine has a set number of processing elements. Two drawbacks of
FPGAs are that these devices are generally expensive, and, because the architecture
of the FPGA is based on programmable logic blocks and not a �xed instruction-
set (as is the case with CPUs, GPUs and MPPAs1), it requires knowledge of logic
programming to be able to use FPGAs e�ectively [48]. However, current FPGAs
are powerful computational devices, and can perform over 1012 single precision
�oating point operations per second [1].

At an abstract level, an FPGA is the same as a CA. During execution of a
CA algorithm, each cell is mapped to a processing element in the FPGA. Each
processing element then calculates the next state of the cell assigned to it. If the CA
has more cells than there are processing elements on the FPGA, any unprocessed
cells will be assigned to the next available processing element.

1Massively Parallel Processor Array.
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CHAPTER 2. LITERATURE SURVEY 5

Murtaza et al considered both compute intensive CA and I/O intensive CA. For
each case, a di�erent FPGA board is proposed, to alleviate potential bottlenecks
as best possible. For a compute intensive CA, more time is spent calculating
the next state of a cell, and thus an FPGA board that can utilize more of the
available compute resources, is used. The abstract model shown in Figure 2.1(a)
depicts this scenario: the data of k cells can be processed at a time, and thus k
processing elements are assigned to process the data and write the results. For an
I/O intensive CA, more time is spent reading data into memory. To compensate for
this bottleneck, an FPGA board with a more sophisticated control block (which is
responsible for I/O, and routing data to processing elements) is used. This allows
the FPGA to chain the results of n processing elements together in order to calculate
the n'th generation of a single cell. This process is applied to all cells currently in
memory, and after completion, the processed cells are written to storage, and the
next chunk of unprocessed cells is loaded into memory (see Figure 2.1(b)).

(a) Compute-bound board (b) I/O-bound board

Figure 2.1: An abstract representation of compute-bound and I/O-bound FPGA boards.
The compute-bound board scales vertically: it assigns more resources to compute one
generation of k cells in parallel. The I/O-bound board scales horizontally: it assigns more
resources to process n generations of k cells in parallel (taken from [33]).

2.2 Massively Parallel Processor Array

The second parallelization technique uses the more recent developed Massively Par-
allel Processor Array (MPPA). The MIMD (Multiple Instruction, Multiple Data)
architecture of the MPPA is a single chip, comprising hundreds of 32-bit RISC
processors, assembled onto compute units and laid out in a grid. These compute
units are interconnected, allowing the MPPA to distribute a workload among the
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CHAPTER 2. LITERATURE SURVEY 6

processors, which then process the data independently, in a parallel fashion. This
design makes the MPPA a suitable alternative for processing CA. For example,
the Am2045 MPPA, one of the �rst commercially launched MPPAs, developed by
Ambric Inc., consists of 42 CU�RU (Compute Unit and RAM Unit) brics2, where
each bric has two CUs and two RUs. The Am2045 MPPA chip has a total of 336
RISC processors [6]. Figure 2.2 gives a schematic overview of the Ambric Am2045
MPPA.

(a) CU and RU bric (b) Bric-interconnections

Figure 2.2: Schematic representations of the Ambric Am2045 CU and RU bric, which
show how the brics are interconnected on the chip (taken from [19]).

Since an MPPA consists of a multitude of RISC processors, these processors are
not clocked at a high frequency, in order to reduce the power usage of an MPPA.
Although MPPAs have e�cient performance based on power consumption, it does
lack in terms of cache size per processor, and in terms of total global memory. These
limitations, as well as the manner in which the compute units are interconnected,
can introduce problems when designing algorithms for MPPAs [48].

Millo et al discuss the similarities between CA and MPPAs, and how to design
a schema to optimally map a CA to an MPPA [32]. The biggest issue identi�ed
and addressed is the routing of data between the multitude of parallel-execution
cores on an MPPA. Millo et al �rst looked at implementing a k-periodically routed
graph (KRG), that allows data-�ow routing directives to occur, and introduced
the Neighbourhood Broadcasting Algorithm (NBA) which calculates these routing

2A bric is the term used by Ambric Inc. to refer to the dies onto which all the physical
processing units are assembled. These brics are laid out in a grid, to make up a complete MPPA
unit.
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directives. By combining the NBA with a KRG for a speci�c CA, the data of a
cell is correctly propagated to its neighbourhood, thereby increasing the e�ciency
of calculating the next generation of a CA.

A study conducted by Top et al tests the programmability and performance of
both an FPGA and an MPPA [51]. Their study was based on an Altera StratixII
FPGA3 and an Ambric Am2045 MPPA. Top et al conclude that mapping algo-
rithms onto the FPGA is more di�cult than for the MPPA, as it requires signif-
icant knowledge of the hardware, software, and parallel computation techniques.
The algorithms implemented for the FPGA take longer to compile and are more
di�cult to debug than when compared to the same algorithms implemented for the
MPPA. However, the FPGA outperforms the MPPA by a factor of 3 to 11 times
in execution speed. The MPPA did however outperform the sequential implemen-
tations (executed on the benchmark system which uses a dual-core CPU, clocked
at 3.4GHz), and produced a speed up of 2 to 9 times the execution speed of the
sequential algorithm.

2.3 GPU

The third parallelization technique is based on the GPU. Navarro et al focused on
the performance gains o�ered by the GPU and the CPU [35]. Their study shows
that the modern CPU, based on the MIMD architecture, is more adept at running
di�erent processes, each with its own data set, in parallel. Computing scalable
problems, normally consisting of a single process with a large data set, is where the
GPU excels, as the SIMD (Single Instruction, Multiple Data) architecture of the
GPU is more suitable for problems of this kind. The GPU architecture is well suited
to process systems based on CA, since CA are essentially also based on SIMD; a
prede�ned set of rules is applied on a �xed number of cells for each time step.

Kau�mann et al conducted two related studies to investigate the computational
power of the GPU as applied to CA based problems. In both of these studies,
the GPU is used to process image segmentation algorithms, with medical image
data represented as CA. In the �rst study, the watershed-transformation is used to
identify image segments [23]. The Ford-Bellman shortest path algorithm (FBA) is
then applied to perform the segmentation. For their second study, a GPU based
framework is implemented to perform a seeded N -dimensional image segmentation,
again using the FBA [24]. The results obtained in both studies show that the GPU
implementation outperforms a similar sequential algorithm executed on a CPU, as
the image size increases. The parallel implementation on the GPU is about ten
times faster than the sequential implementation.

Kau�mann et al noted two problems with the GPU implementation. The �rst
issue had to do with slow memory transfer from the CPU to the GPU, across

3Altera Corporation is one of the current FPGA market leaders.
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the PCI-Express port, which hampered overall performance. The other issue was
due to restricted data-type usage on the GPU, where double-precision �oats are
unavailable on the GPU that was used for their experiments.

Gobron et al conducted a study on arti�cial retina simulation, and proposed a
pipelined model of an arti�cial retina based on CA. To simulate the CA, a par-
allel algorithm for the GPU was proposed. Their study shows that the parallel
implementation is about 20 times faster than the conventional sequential imple-
mentation [17]. In a subsequent study by Gobron et al, a GPU accelerated method
for real-time simulation of a two-dimensional hexagonal-grid CA, was proposed. In
this study, six di�erent computer con�gurations were used, and in all cases, the
parallel implementation outperforms the sequential implementation [16]. For both
studies, the OpenGL Shading Language (GLSL) was used to implement the parallel
algorithms.

Zaloudek et al looked at evolutionary CA rules, speci�cally focusing on genetic
algorithms, and used the NVIDIA CUDA framework (refer to Section 4.2, page
11) to implement parallel algorithms, that execute these rules on one-dimensional
CA [66].

Rybacki et al looked at basic two-dimensional CA used in social sciences, in-
cluding Game of Life, the parity model, and the majority model. The James II
Java simulation and modeling framework was used to measure the throughput of
several CPU compute models and a GPU compute model, when used to simulate
the CA [42].

Ferrando et al expanded on a study conducted by Gosálvez et al [18], and used
an octree data structure to store surface model data. Each octree is stored in
a �supercell� and a surface is modeled with continuous CA that is made up of a
two-dimensional grid of supercells. The algorithm proposed to simulate complex
surface erosion, loads data into the GPU global memory and uses a CUDA kernel
function to process the data [12].

Caux et al used CUDA to accelerate the simulation of three-dimensional CA
models based on integrative biology. Two parallel implementations, which compare
global and local memory usage, were measured against a sequential implementation.
Their study shows that both parallel implementations produce a signi�cant speed
up over the sequential implementation [7].

López-Torres et al looked at a CA model used to simulate laser dynamics, and
presented a parallel implementation using CUDA. The parallel implementation
delivers a speed up of up to 14.5 over the sequential implementation [29].

Finally, a study conducted by Gibson et al investigates the speed up of threaded
CPU and GPU implementations of the Game of Life CA, over a sequential imple-
mentation. In their study, di�erent con�gurations of a two-dimensional Game of
Life CA were used. The study also looked at the di�erence in performance when
using di�erent work-group (thread-block) sizes. OpenCL was used for the GPU
implementations [15].
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Of the three platforms discussed above, the GPU is the most viable option
in general, since it is the most accessible of the three and still provides excellent
performance. Its design is well suited for problems modeled with CA, and a GPU
is much cheaper than an FPGA or MPPA.

The next two sections give an overview of how the GPU has been adapted to
solve more general computational problems, as well as the programming platforms
used to harness the power of the GPU.

3 GPGPU overview

Over the last 15 years, GPU manufactures started shifting the focus of graph-
ics processor architectures away from a �xed-function pipeline and started placing
more emphasis on versatility (refer to Appendix A on page 95). This shift in the
architectural design allowed more focus on general-purpose programming on the
GPU (GPGPU). The earliest GPGPU studies, all performed on consumer GPUs,
focused on a variety of areas, including: basic mathematical calculations [54], fast
matrix multiplications [28], image segmentation and smoothing [64], physical sys-
tem modeling and simulations [20] and �uid dynamics [11]. Thompson et al discuss
the development of a programming framework that allows for easier compilation of
general algorithms to machine instructions executed by the GPU [49]. The frame-
work was used to implement a matrix multiplication algorithm and a 3-satis�ability
problem solver. Both implementations performed on the GPU delivered a substan-
tial speed up in performance when compared to the sequential implementations.

Currently, GPGPU is regularly applied in medical image processing. Shi et al
studied techniques used for medical image processing that are portable to the GPU
(where parallelization is exploitable), and evaluated the performance of the GPU
for these techniques [44]. For the three techniques (segmentation, registration, and
visualization) studied, the GPU tended to show better performance than the CPU.
Kirtzic et al used the GPU to reduce the latency on a system which simulates radi-
ation therapy [26]. The experiments showed a substantial increase in performance
when compared to both a sequential and threaded CPU implementation.

4 GPGPU APIs

Owens et al [40] surveyed the evolution of GPGPU, and in particular the progression
of the GPU's traditional �xed-function pipeline into a more �exible programmable
pipeline. In order to exploit the changes made to GPU architectures, parallel
programming APIs were developed. Two of the current most popular APIs are
OpenCL [25] and CUDA [39].

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. LITERATURE SURVEY 10

4.1 OpenCL

OpenCL (Open Computing Language) is an open-source low-level API used for
heterogeneous computing. OpenCL 1.0, the �rst version of OpenCL, was introduced
in 2008. The most recent version, OpenCL 2.0, was released in 2013. OpenCL is
maintained by Khronos Group, and is used in gaming, entertainment, scienti�c
research, and medical software. It is also the most widely used open-source parallel
programming API [25].

OpenCL supports a diverse range of computational devices including CPUs,
GPUs, FPGAs, and digital signal processors (DSPs). The core concept of OpenCL
is to unify heterogeneous computing by employing all available compute resources
and e�ectively balancing the system load. An abstract model of the compute
platform sees a host device connected to compute devices. The host device is
responsible for starting kernel processes that are executed by the compute devices.
Compute devices are made up of compute units, each with its own set of processing
elements (see Figure 2.3(a)). The host device also regulates data transfer from host
memory to the so called global memory of a compute device. Global memory on
the compute device is then transferred to the local or workgroup memory of each
compute unit, which is used to store local variables and locally calculated results
(see Figure 2.3(b)). In order to execute an OpenCL program, the host device has

(a) Compute platform model (b) Memory transfer hierarchy

Figure 2.3: Abstract representations of the compute platform model and memory trans-
fer hierarchy (taken from [55]).

to establish communication with OpenCL viable devices and create a context with
which it will address these devices. Then, according to the problem being solved,
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kernels are selected for aspects of the problem that can be solved in parallel. Data
is transferred to the compute device(s) that will be employed to process the data
(solve the problem), and the kernels are then started. After the work has been
completed, the processed data is transferred back from the compute device(s) to
the host device.

4.2 CUDA

CUDA (Compute Uni�ed Device Architecture) is a proprietary parallel programing
platform, developed by NVIDIA and is used with CUDA-enabled NVIDIA GPUs,
that have been designed on the uni�ed shader GPU architecture. CUDA was �rst
introduced in 2006 as CUDA 1.0, when NVIDIA launched the GeForce G8x GPU
series. The most recent production version of CUDA, CUDA 6.5, was released
in 2014 [39]. CUDA is accessible through supported industry standard languages,
including C, C++ and Fortran. Essentially, CUDA is a set of language-speci�c
libraries, compiler directives, and extensions, compiled into an SDK. There are also
third party wrappers available for other common programming languages including
Python, Perl, Java, Haskell and MATLAB (amongst others).

On an abstract level, CUDA is similar to OpenCL. A kernel process is started
by the host (CPU), after the relevant data has been transferred from host memory
to device (GPU) memory, and is then executed by the device. Figure 2.4 gives
an overview of this process. As with OpenCL, the data is transferred back to the
host for post processing and analysis, after the kernel process has been completed.
Work performed by the device is segmented into blocks of threads, or thread-

Figure 2.4: An abstract representation of the model of work �ow, from the CPU (host)
to the GPU (device) (taken from [52]).
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blocks, and a grid of thread-blocks. Each thread-block is de�ned as a one, two, or
three-dimensional array of threads, with the total number of threads not allowed to
exceed 1024. Each thread-block is executed by one of the streaming multiprocessors
(SMs), with a single GPU currently having from 2 to 15 SMs [5]. To optimize data
processing on the device, the global memory of the device can be cached to each
SM. This allows an SM to read and write relevant data more quickly during kernel
execution.

CUDA is exclusively used for data parallelism with NVIDIA GPUs, whereas
OpenCL is used for both data parallelism (with GPUs, DSPs, and FPGAs) and
task parallelism (with multi core and multi-threaded CPUs). The limited device
support of CUDA allows NVIDIA to include more intricate code debugging and
runtime debugging tools, that work in tandem to point out errors in code (aside
from syntax errors), such as incorrect host-to-device memory transfers [21, 27].
These tools along with other tools and features that have been added to CUDA
since its original release in 2006 [38], help to simplify the task of the programmer
when implementing parallel algorithms. A programmer also does not need to learn
a new programming language if the programmer already has experience with an
o�cially supported language. CUDA has also been used in more studies that
investigate potential speed ups for CA simulations, and all these studies indicate
a success when CUDA is used. All these advantages considered make CUDA an
ideal platform to use for the CA framework implemented for this thesis.

5 Conclusion

In Section 2.3 a variety of GPU based CA studies are discussed. The studies
that have been performed tend to investigate the speed up of a proposed parallel
implementation of a speci�c CA, over a conventional sequential implementation.

In this thesis we investigate the potential performance advantages of parallel CA
implementations, based on di�erent parallel data segmentation methods; each uses
a di�erent amount of GPU processing resources (see Section 3.1.2 on page 22). The
computation time of the di�erent parallel CA implementations are measured and
compared with the results of a sequential CA implementation. The investigation
is performed on the Game of Life, clay deformation, and ant clustering CA; all
implemented with the CUDA based CA framework developed for this thesis.

In the next chapter the design and implementation of the CA framework is
discussed.
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Chapter 3

Design and implementation

The CA framework proposed for this thesis encompasses many diverse concepts.
Essentially the framework must allow a programmer to easily create a new CA,
by simplifying the process of specifying unique attributes of the CA, specifying
the rule system of the CA, and how the CA must display its overall state during
a simulation. The main application of the framework for this thesis, will be to
investigate the performance di�erence between sequential and parallel algorithms
used to calculate the generation of a CA.

This chapter focuses on design and implementation aspects of the proposed CA
framework. Essential requirements for the framework are discussed, followed by an
overview of the structure of the framework, and how all the di�erent parts must
interact in order to simplify the end-user's experience when using the framework.

1 Requirements

Core attributes of the proposed framework include:

� modularity;

� abstraction;

� sequential and parallel algorithms;

� visualization; and

� experimental results.

In the following subsections these attributes will be discussed, as well as the re-
quirements from a software development perspective, in order to incorporate these
attributes into the framework.

13
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1.1 Modularity

Modularity refers to software partitioning, and entails dividing di�erent aspects of
the software into separate modules [4]. When looking at the framework proposed
in this thesis, di�erent modules will be implemented based on the characteristics
of CA.

Since a CA is a grid of cells, which changes according to a set of rules unique to
the speci�c CA, the framework has to simplify the creation of a new and unique CA.
CA are used to model a variety of problems, and therefore the di�erent attributes
of a CA such as its states, rules, and the dimensions of its grid, must be made
adaptable based on the problem being modeled. A basic CA such as Game of Life
only needs cells to keep record of their current states [45]. However, a CA such
as is proposed for clay deformation, requires each cell to also keep record of how
much clay the cell contains [3]. Each CA also requires a separate rule set and
algorithm which applies the rule set. Based on these ideas, it will be ideal to design
a framework for a CA based on three core modules: a module that de�nes the
attributes of the cell, a module that combines cells into a grid, and a module that
de�nes the rule set of the CA and how it is applied to the grid of cells.

In addition to these core modules, a module for rendering CA and a module
for executing CA algorithms will also be required. The rendering module must be
able to visualize the current state of CA, which generally means to draw a CA
according to the speci�cation of the programmer. The execution module should
start the rule application algorithm of the CA. The execution module must also be
able to interact with the rendering module, to allow a user to render the CA either
perpetually, after a certain number of time steps, or not at all, depending on the
experimental data being gathered during execution.

1.2 Abstraction

A modular approach to create the framework will help to reduce the coding pro-
cess when implementing a new CA. By also making features of the proposed core
modules abstract in nature (where it applies), the framework as a whole will be
able to function more cohesively.

By creating a base abstract class that incorporates the base attributes and func-
tions needed for a CA, a derived class for each unique CA can then be implemented.
An example of an abstraction approach, along with the programming concept of
polymorphism, occurs when the rule application function for a CA is called from
the execution module. The execution module only needs one central function with
an argument for the CA base class, which will allow it to call the rule application
function of any derived CA class.

However, if an approach of abstraction is not followed, a separate function for
each unique CA will need to be added to the execution module in order to call the
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rule application function of each unique CA.
Abstraction is thus advantageous for modules that are extensible, and helps to

reduce redundant code.

1.3 Sequential and parallel algorithms

The algorithm that applies the rules of a CA is generally unique. However, speci�c
aspects of an algorithm for a certain CA A might coincide with the algorithm used
for CA B, such as determining the neighbourhood of a cell. For any coinciding
parts of algorithms, it would be advantageous to write static functions stored in
a central module that can be called in order to provide the service. In doing so,
re-occurring parts of di�erent algorithms will not need to be re-coded for each
separate algorithm.

For parallel algorithms, the CUDA parallel platform developed by NVIDIA will
be used to apply the rules of a CA. CUDA follows a general protocol of transferring
the required data to the GPU, and after having performed the relevant work on the
data, the data is transferred back to main memory. This process of transferring data
will have to be performed for any parallel algorithm, and must be made available
to all CA as a general service.

All algorithms used for applying the rules of a CA must provide the time taken to
complete the algorithm. This data is essential for analyzing performance di�erences
between sequential and parallel algorithms.

1.4 Visualization

In order to simulate every new generation of a CA, visualization is an important
requirement. Therefore a su�cient visual drawing library needs to be incorporated
into the framework. Ideally this library must be able to render the state of each
cell in the CA. It would be preferable if the library provides features to create a
Graphical User Interface (GUI), to simplify interaction with the CA, and to display
experimental results.

Notice that the process of visualizing each new generation does in�uence the
total time taken to complete an experiment, since an additional constant amount
of time is required to render each generation of the CA. For parallel algorithms,
the data processed on the GPU must be transferred back to main memory in order
to render the next generation of the CA. This process slows down the performance
of the parallel experiments by a constant amount of time.

1.5 Experimental results

This thesis will investigate the advantages and disadvantages of using a GPU as
an alternative computation platform for CA simulations. It is thus important
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to have access to experimental results. The framework must be able to provide
experimental data such as computation time per time step, average computation
time over a number of time steps, total accumulative computation time, and the
number of frames that are drawn per second.

2 Design

Following the core requirements speci�ed in Section 1, this section will analyze the
core design of the framework and how it meets the requirements. An overview
is given of the design of the framework, followed by the details of the individual
components of the framework.

In order to add parallel algorithms to the framework, the CUDA software devel-
opment kit will be used. Therefore, a programming language that supports CUDA
is required to develop the framework. Currently, there are solutions for Fortran,
C/C++, C#, and Python. For this thesis, the C/C++ programming language will
be used, as it o�cially supports CUDA and incorporates the software paradigms
discussed in Section 1.

2.1 Framework overview

Figure 3.1 provides an overview of the implementation of the framework. Each
node in the diagram represents a class that is implemented in C++. Edges between
nodes represent interaction between the di�erent classes. In Figure 3.1 there are

Figure 3.1: A basic overview of the proposed framework.
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six primary classes, four of which make up the core of the CA framework, namely:
Cell, Grid, CellularAutomaton, and StaticFunctions. The GUI class is used to
draw a user interface, which will display the CA and render the generations of the
CA. The Execution class starts the program and creates an instance of the GUI.
A user can perform the experiments with the additional functionality provided by
the GUI.

The following subsections will discuss the core classes listed above, in more
detail.

2.2 CA core

The Cell class stores all the basic attributes and functions of a cell, as is shown in
Figure 3.2. The basic attributes include dimensional values and the state value of

Figure 3.2: The Cell base class.

the cell. A standard getter function is included to return the state of the cell. A
set() function is included and is primarily used for initializing each cell of the CA.
It is important to note that all attributes that must be accessed when calculating
the next state of a cell, must be made public, since CUDA does not allow function
calls of objects during kernel executions.

Since extra attributes might be required for a cell, depending on the speci�c
CA, the Cell class is used as a base class, and is extended to include additional
attributes. To reiterate, any additional attributes that are used when calculating
the next state of a cell, must be de�ned as public.

The Grid class stores a grid of cells for the CA and provides relevant utility func-
tions; refer to Figure 3.3. The two Cell* attributes are initialized as arrays of type
Cell; grid is used as the primary array of the CA cells. The array grid_temp is
used as temporary storage, and is used (for certain CA such as Game of Life) when
calculating the overall next state of the CA. The dimensions of the grid are stored
in dimx and dimy, and are declared public to provide parallel algorithms with data
(for example, it is used when mapping GPU threads to cells).
Three base utility functions printGrid(), copyGrid(), and getGridStartIndex()
are provided. The Grid class is not abstract, but can be extended to provide addi-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. DESIGN AND IMPLEMENTATION 18

Figure 3.3: The Grid base class.

tional attributes such as an extra dimension to the CA, or by providing additional
utility functions.

The CellularAutomaton class combines the Cell and the Grid classes. In addi-
tion, the CellularAutomaton class provides the sequential and parallel algorithms
wherein the rules of the speci�c CA are de�ned, and are used to calculate the next
generation of the CA. Figure 3.4 expands on the base attributes and functions
required for a standard CA. The attributes csize, live, and dead are used for

Figure 3.4: The CellularAutomaton abstract base class.

rendering, and refer to pixel space to occupy per cell, the colour of a live cell, and
the colour of a dead cell, respectively. A pointer to the grid of cells is provided by
the grid attribute.
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The CellularAutomaton class declares four abstract functions, that are to be
implemented according to a speci�c CA. The function initCALayout() provides a
procedure which initializes the CA (setting the states and other relevant attributes
of speci�c cells of the CA). The following two functions, gridNextStateSEQ()

and gridNextStatePAR(), de�ne the sequential and parallel algorithms to be
executed when calculating the next generation of a CA. Finally, the function
updateGridGUI() speci�es how the CA must be rendered. Two utility functions
getGrid() and getCycles return a handle to the grid of cells, and the number of
generations to execute, respectively.

The CellularAutomaton class is de�ned as an abstract base class, and provides
a programmer with a general basis upon which a new unique CA can be de�ned.

2.3 GUI

The GUI class acts as a static class and provides a platform for rendering the user
interface of the framework. The CellularAutomaton class provides the GUI class
with the function updateGridGUI(). The function call is made by the GUI class
when rendering the next state of the particular CA.

The C++ GUI library, wxWidgets [63], is used for the framework to render
the CA, as well as provide a GUI for user-system interaction. Since a modular
approach is taken to implement the framework, other graphical drawing libraries
for C/C++ can be used to render the CA and GUI (depending on the need of the
programmer).

The GUI is also designed to print the time taken to calculate the next state
change of the CA, along with the aggregated time to calculate x generations of the
CA. This data is used for analysis of the particular algorithm used. Figure 3.5 gives
a schematic overview of the GUI. Buttons to control the simulation of a CA are
placed in the simulation control area. The CA is displayed in the CA simulation
area, which shows the change in overall state of a CA. The printout area is used to
print required data during the simulation of a CA.

2.4 Execution

The Execution class is used to initialize all procedures involved in setting up a
newly de�ned CA, and to then start the simulation of the CA. It is essentially
used as the main class from where execution starts, and provides necessary macros
needed by the wxWidgets GUI library in order to transfer runtime control to the
GUI.
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Figure 3.5: A basic schematic overview of the GUI.

3 Implementation

In this section, speci�c aspects of the implementation phase are discussed. A closer
look is taken at how CUDA is used for the parallel algorithms which apply the CA
rules. Other aspects such as the GUI and problems that were encountered during
the implementation of the framework, are brie�y discussed.

3.1 CUDA

A brief overview of CUDA is given in Chapter 2, page 11, where the concepts
of host-device interaction and data segmentation are discussed. This subsection
expands on these ideas and explains their integration into the framework.

3.1.1 CUDA work structure

When solving problems using CUDA, a default set of procedures must be followed.
Figure 3.6 gives a visual representation of the overall procedure. In Figure 3.6,
the blue boxes represent instructions performed by the CPU, with the CPU being
referred to as SEQ. The green boxes represent instructions performed by the GPU,
with the GPU being referred to as PAR. Red boxes represent memory transfers
between the CPU and the GPU.

After having de�ned the data set on which the work will be performed (a grid of
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Figure 3.6: The set of procedures followed when solving a problem using CUDA.

cells for CA), an appropriate amount of memory must be allocated on the GPU
and a pointer assigned to the memory. Memory, for storing the results, must also
be allocated on both the GPU and in main memory, and pointers must also be
assigned to the resultant memory. For certain CA, the results can replace the
original data set and thus additional memory is not required.

To allocate memory on the GPU and to transfer data between main memory
and GPU memory, the correct amount of memory must be calculated. The C unary
operator sizeof calculates the size of the derived cell type used for the particular
CA. This result is multiplied by the number of cells in the CA, to get the value of
the total amount of memory that needs to be allocated and transfered.

For memory allocation on the GPU, the following CUDA built-in function is
called:

� cudaMalloc(void** devPtr, size_t size).

The address of the device memory pointer, as well as the amount of memory to
allocate is provided as arguments. To transfer memory, the following CUDA built-
in function is called:

� cudaMemcpy(void* dst, void* src, size_t size, kind).

The �rst two arguments specify pointers to the destination and source memory
locations, respectively. The third argument speci�es the amount of data to transfer.
The �nal argument speci�es the kind of transfer to perform; either a transfer from
the host to the device, or from the device to the host, and are speci�ed as either:

� cudaMemcpyHostToDevice, or
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� cudaMemcpyDeviceToHost.

After memory allocation, the original data set is loaded from main memory into
the global memory of the GPU. The allocation and transfer of memory from main
memory to the GPU, work in tandem, and have thus been combined into a single
function which is part of the StaticFunctions class.

Next, the data set is segmented by setting the number of threads per thread-
block and the dimensions of the grid of thread-blocks (Section 3.1.2). After these
steps have been completed, the GPU kernel process which will perform the work,
is called. A kernel process is called as one would call a normal C/C++ function,
with an additional set of arguments provided as shown in the following example:

� kernel_foo<<<grid_size, block_size>>>(arg1, arg2, ...).

The additional arguments are enclosed in the <<< >>> angle brackets, and provide
the GPU with the dimensional information regarding the number of threads per
thread-block and the number of thread-blocks it needs, when spawning threads to
perform the work.

When the kernel process has �nished, the processed data set in the GPU memory
is loaded back to main memory, and all memory allocated on the GPU is freed using
the CUDA built-in function

� cudaFree(void* devPtr);

The argument speci�es a pointer to the allocated GPU memory used.
CUDA simpli�es almost all the procedures discussed in this subsection, with the

built-in functions listed. However, the procedure of data segmentation does require
more input from the programmer than simply deciding how many threads are to
be used when solving a problem. The following subsection discusses the process of
data-to-thread assignment in detail.

3.1.2 Data segmentation

Data segmentation involves the utilization of processing resources on the GPU.
The CUDA enabled GPU architecture is made up of a number of multi-threaded
Streaming Multiprocessors. Each Streaming Multiprocessor (SM) is designed to
execute hundreds of threads concurrently, and in order to do so, it uses a SIMT
(Single Instruction, Multiple-Thread) architecture [37]. The number of threads
that are processed simultaneously is equal to the total number of CUDA cores that
a GPU has. It is important for a programmer to maximize the use of processing
resources available, as maximum resource utilization generally increases the overall
performance gained [30, 37].

The threads performing the work are sectioned into one, two, or three-dimensional
thread-blocks; all thread-blocks are the same size and a thread-block is limited to
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a maximum of 1024 threads. During the execution of a parallel code segment, each
thread-block is assigned to an SM, and a programmer should ideally create at least
as many thread-blocks as SMs [5, 37].

When segmenting a data set, the constraint on the maximum number of threads
per thread-block must be taken into account. The general approach for data seg-
mentation is to have a number of thread-blocks, each assigned to a subset of the
data set. Since each thread-block is assigned to an SM, it is advantageous to create
at least as many thread-blocks as the number of SMs. This allows more data to be
processed concurrently, depending on factors such as global memory access between
threads and optimal instruction usage [5, 30, 37].

Thread-blocks combined are known as a grid, and the dimensions of the grid are
de�ned by the number of thread-blocks in every dimension. Figure 3.7 shows an

Figure 3.7: A twenty by twenty CA (blue and white blocks), segmented into a grid of
thread-blocks. Each thread-block is made up of an eight by eight block of threads.

example of a data set divided into a grid of thread-blocks. The thread-blocks are
marked in green. Red cells in the �gure represent threads to which work cannot be
assigned as there are less cells in the CA than there are threads. Each thread-block
is assigned to one of the SMs which spawns 82 threads. An SM then maps each
of its threads to a di�erent cell in the in the CA. Thus, each SM will process a
maximum of 82 = 64 cells.
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One way of segmenting the data of a CA (the cells to be processed), is to assign a
sub-grid of cells to a single thread, also known as grid-per-thread assignment [30].
The number of sub-grids to be processed, is equal to the number of SMs that the

GPU has. By following this approach, only one nth of the available calculation
power per SM is being utilized, where n is the number of CUDA cores that each
SM has. This is because only one thread is spawned per SM to process the data,
and therefore an SM only uses one CUDA core to execute the thread. If the data
set is small, the impact on performance will not be signi�cant, as each thread will
only need to processes a few cells. However, as the size of the CA grid increases,
each thread will have to process a larger number of cells, which inevitably will cause
the overall performance to diminish.

An alternative approach is a row-per-thread assignment. In this scenario, an
entire row of cells is assigned to a single thread, where the number of threads to
utilize is equal to the number of rows in the CA. Thus, a single SM will process
up to 1024 rows worth of cells, where the number of cells that are simultaneously
processed is equal to the number of CUDA cores per SM. Since any CUDA enabled
GPU has more CUDA cores per SM than SMs per GPU [37], one is able to process
more cells simultaneously than with grid-per-thread assignment. However, only one
SM per 1024 rows in the CA is being utilized. To increase the number of threads
that are concurrently processed in the row-per-thread assignment, one can divide
the number of rows in the CA by the number of SMs that the GPU has, and then
assign a subset of rows to each SM. For example, If a GPU has two SMs, and
192 CUDA cores per SM, and has to process a square CA of 1000 rows by 1000
columns, the �rst row-per-thread segmentation method will assign all 1000 rows
of cells to a single SM, and the SM will process 192 rows of cells simultaneously.
The second row-per-thread segmentation method will assign 500 rows of cells to
each SM, and each SM will process 192 rows simultaneously, thereby doubling the
number of rows processed.

For both the grid-per-thread and row-per-thread assignment methods, each
thread calculates the state of a number of cells. A �nal approach to consider
(and which is generally adopted for problems solved with a GPU) is to assign a
single cell to a single thread. This method, known as cell-per-thread assignment,
generally tends to use all processing resources of the GPU, depending on the size
of the data set as well as the dimensions speci�ed for the thread-blocks. All the
data segmentation methods will be analyzed in Chapter 4.

The dimensions of a thread-block and grid are de�ned using the CUDA data type
dim3. For example, the size of a two-dimensional thread-block and grid of thread-
blocks for a two-dimensional CA are respectively de�ned as:

� const dim3 block_size(k, k, 1), and

� const dim3 grid_size (dimx/k, dimy/k, 1).
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Here, k is a constant value in the range 1�32 (so as not to exceed the threshold of
1024 threads per thread-block), and dimx and dimy are the x and y dimensions of
the two-dimensional CA grid.

3.1.3 CUDA kernel functions

The C/C++ functions that are executed by the GPU are known as kernel func-
tions. Kernel functions are preceded by either the __global__ or __device__

macros. The __global__ kernel function must be declared as void, as it cannot
return a value or reference after execution. These kernel functions are called from
a standard C/C++ function and control is passed to the GPU. The __device__

kernel function can return a value or reference and is used primarily as utility func-
tions. A __device__ kernel function can be called from another __device__ kernel
function or from a __global__ kernel function.

Both kernel function types are coded as normal C/C++ function. However,
object method calls are not permitted in kernel functions. Therefore, any object
argument passed to a kernel function must be set up in such a way that attributes,
that are to be changed, can be accessed without the need for object function calls.

As with standard C/C++ functions, a kernel function needs access to the data
set on which the algorithm, contained in the kernel function, must be performed.
The pointer assigned to the memory location of the data set must be given as an
argument, and unless the same memory will be altered, a pointer to the resul-
tant memory location must also be provided. Any speci�c parameters required to
perform the algorithm must also be provided.

In order to map threads to the data set, __global__ kernel functions have access
to the following built-in CUDA kernel indexing parameters:

� blockIdx,

� blockDim, and

� threadIdx.

These indexing parameters adopt the dimensional information speci�ed in the
<<< >>> angle brackets, during a kernel function call. Therefore, depending on
how thread-blocks have been set up, the parameter blockIdx will store the X,
Y, and Z index of the thread-block to which a thread belongs. The same applies
to the threadIdx index parameter, which stores the thread index information of
the speci�c thread being executed. The index parameter, blockDim, stores the
dimensional information of a thread-block.

The framework developed for this thesis stores the data set as an array of cells.
To index into a two-dimensional CA in the __global__ kernel function, one would
need the X and Y indices. The X index can be calculated as follows:
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� x = blockIdx.x * blockDim.x + threadIdx.x

(the Y index is calculated similarly). Since the X index is a column o�set into the
Y'th row, the data of a speci�c cell at the index (x,y), is retrieved as follows:

� data_in[y * dimx + x],

where dimx is the number of cells per row in the CA.

3.2 Issues encountered

In this subsection, issues that were encountered during the implementation of the
framework are discussed.

3.2.1 Independent C++ GUI integration

Visualization of a CA is an important aspect for any CA simulation. Since a
standard GUI library is not part of C/C++, the choice of how to integrate the
chosen GUI library into the framework was an important factor.

The original design for the framework was to include wxColour objects in the
CellularAutomaton class, and to allow for the inclusion of additional wxColour
objects. The reason was to allow the user to customize the visual simulation of
the speci�c CA implemented with the framework. This approach does however
restrict a user from using a di�erent GUI library with the framework, or enforces
the inclusion of the wxWidgets libraries when using the framework.

A decision was made to remove wxColour objects from the CellularAutomaton
class and to create default wxColour objects in the GUI class. As a result, a set of
default colours were chosen to represent the di�erent states that a cell can have for
the CA that were implemented with the framework.

This decision also removes the restriction that forces a programmer to use the
GUI library that was chosen for this thesis. This is useful for users who want to use
the framework along with a di�erent GUI library or with a 3D rendering library,
such as OpenGL.

3.2.2 CUDA CA algorithms

The di�erence between sequential and parallel algorithms essentially comes down to
data segmentation. For a sequential algorithm, all work is assigned to one process,
whereas for algorithms implemented with CUDA, data segmentation adds a new
dimension to the overall implementation of the rule application function.

Since the e�ectiveness of di�erent data segmentation methods is investigated for
this thesis, overlapping code appeared when these methods were �rst implemented.
By porting some sections of the algorithms to __device__ kernel functions, a lot
of redundant code was removed.
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The use of __device__ kernel functions have been applied to the process of
calculating the neighbourhood of a cell, and rule application. By separating neigh-
bourhood calculation from the rest of the algorithm, any future implemented CA
which uses the same kind of neighbourhood, can make use of the same static func-
tion speci�cally designed to calculate the neighbourhood in question. Since di�erent
data segmentation methods are used for each CA implemented for this thesis, the
part of the algorithm which applies the rules of the CA has been moved to a static
function, which also signi�cantly reduces redundant code.

3.2.3 Representing the grid data structure

The primary purpose of the Grid class is to store an array of cells which represents
the grid of the CA. Originally, this data structure was represented with a two-
dimensional matrix, Cell[][]. This approach resulted in two issues. The �rst
issue was that this method imposed a limitation on the dimensions of the grid;
it could only represent a one or two-dimensional grid of cells. The second issue
involves de�ning functions that must use this matrix, since in C/C++, a matrix
must have a prede�ned bound for the second dimension, when the function is �rst
de�ned. For example, a function that receives a matrix as parameter, must be
de�ned as:

� void foo(Cell grid[][x]),

where the value of x must be de�ned as a constant or must be replaced with an
integer value. Because of this limitation, a programmer must change the second
dimensional value x, in the code.

As these restrictions made the use of the standard C/C++ matrix di�cult, a
data structure using the standard C++ vector class was then used. That is, a
matrix is a vector of vectors. However, the total size of the data structure was
increased since each column of cells is represented by a vector object. This caused
the copy function to reduce the performance of the sequential algorithm, and apart
from this issue, the limitation of the dimensions of the grid was still present.

Finally, to take care of the performance decrease and the dimensional limitation
of the grid, the grid was changed to be a Cell pointer. By using a Cell pointer,
the grid is e�ectively de�ned as an array. Indexing into the array was then achieved
by standard indexing techniques. If the Cell array, grid[], represents a grid of N
dimensions, indexing into grid[] is achieved by

� grid[n1 + (n2 ∗ d1) + (n3 ∗ d2 ∗ d1) + . . .+ (nN ∗ dN−1 ∗ dN−2 ∗ . . . ∗ d2 ∗ d1)].

In this equation, nx represents the index into the xth dimension, and dx represents
the length of the grid in the xth dimension.

It is important to note that changing from a matrix representation to a array
representation will not change the order in which cells are stored in memory. Thus,
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the C++ row-major order is retained. Also note that since data is stored in a
row-major order in both the main memory and GPU global memory, an issue of
data non-locality does occur when processing the neighbourhood information of a
cell. However, the data non-locality issue will occur for both the CPU and the
GPU when processing a cell [5], and the time required to read all neighbouring
cells into cache memory will be consistent on both the CPU and GPU. Therefore,
data non-locality is ignored during experimentation.

4 Ful�llment of requirements

In this section the design and implementation of the framework will be assessed,
by considering how the requirements (as discussed in Section 1) are met.

4.1 Modularity and abstraction

The core of the framework has been designed to be modular, as discussed in Sec-
tion 2.2. Abstraction is applied to the CellularAutomaton base class to simplify
the coding process involved with execution and visualization of a CA. When cre-
ating a new CA, the user simply extends the Cell class as needed, and adds ad-
ditional cell attributes. The derived Cell class is then passed to the Grid class
using a special constructor. After setting up the Grid, it is passed to the default
CellularAutomaton constructor, used by all derived CellularAutomaton classes.
Using a modular approach simpli�es the construction of new CA, and helps with
applying changes to other modules such as the GUI class and StaticFunctions

class.

4.2 CA algorithms

In order to reduce redundant code in algorithms for CA which use the same neigh-
bourhoods, functions that calculate the relevant neighbourhood of a particular cell,
are separated from the algorithm which calculates the next state of the CA. These
functions are added to the StaticFunctions class. To make use of implemented
functions, the StaticFunctions header �le is included in the CellularAutomaton
base class.

All unique CA that are derived from the CellularAutomaton base class, set up
the CA rule application algorithms by implementing the

� gridNextStateSEQ(), and

� gridNextStatePAR()

functions. For this thesis, these functions are called from the GUI class. Finally,
in order to determine the calculation time of the algorithms, the C++ standard
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chrono library is used for sequential algorithms. For parallel algorithms, a helper
utility class GpuTimer is used.

4.3 Visualization

For this thesis the chosen GUI library, wxWidgets, is su�cient for runtime control
of CA simulations, displaying state change time-lapses, and visualizing the CA.
Figure 3.8 gives an example of the GUI implementation. The top bar of the GUI

Figure 3.8: An example of the GUI, created with wxWidgets.

contains buttons that the user can use to interact with CA simulation. These in-
clude starting, stopping, and resetting the CA, and selecting which algorithm to
use (sequential or parallel). Below the buttons, to the left is the display area of the
current CA generation. To the right is a print area where the calculation time of
each generation is printed. Once the simulation has �nished, the total time taken
as well as the average calculation time per generation, is printed.

The next chapter will analyze speci�c CA implemented with the framework dis-
cussed in this chapter.
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Chapter 4

Experiments and results

1 Overview

With the CA framework in place, speci�c CA implemented using the framework
are discussed in detail in this chapter. For each CA, a sequential rule application
function and parallel rule functions, based an the data segmentation methods (dis-
cussed in Section 3.1.2 on page 22), are implemented. The time taken to calculate
a number of generations for di�erent CA grid sizes is measured and is analyzed for
each implementation. The CA implemented with the framework are:

� Conway's Game of Life [14];

� clay deformation based on free form shape modeling, proposed by Arata et
al [3]; and

� ant clustering as proposed by Lumer et al [31].

These three CA have di�erent state calculation functions that can produce vastly
di�erent measurable performance results, when performed on the same grid sizes.
Game of Life is the most basic of the three CA proposed, as its state calculation
function only consists of conditional checks (if statements) and integer arithmetic.

The clay deformation CA, requires �oating point arithmetic for its state change
function. These �oating point arithmetic operations are performed in a so-called
stabilization function, which is repeated until the clay structure is stable.

The ant clustering CA has a complex rule application function, which relies on
random number generation. This CA also has a di�erent state update function
to the previous two CA, where cells to which the rules are applied, can shift to
random neighbouring locations in the CA grid. For a parallel algorithm, which
updates many cells simultaneously, collisions can occur where two or more cells are
moved to the same location. As a result, cells are updated conditionally to avoid
collisions.

30
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1.1 Hardware used for experiments

For this thesis, two computers (A and B) will be used; thus two CPU and GPU con-
�gurations are used to gather the experimental results. Computer A is less powerful
than Computer B. These computers have been selected to check for consistency in
the experimental data gathered, to check how the di�erent GPUs perform against
each other, and how the slower GPU performs against the faster CPU.

For the CPUs and the GPUs, the clock speeds are provided in Table 4.1 and
Table 4.2. Additionally for the GPUs, the SM count, CUDA cores, memory bus
width and bandwidth are provided in Table 4.2.

Computer A Computer B
CPU model i7-3630QM i5-4690
CPU clock speed 2.40 GHz 3.50 GHz

Table 4.1: Intel CPUs used for sequential experiments.

Computer A Computer B
GPU model GeForce GT 650M GeForce GTX 780
GPU core clock speed 950 MHz 954 MHz
SM count 2 12
CUDA cores 384 (192 per SM) 2304 (192 per SM)
Memory bus width 128 bit 384 bit
Memory bandwidth 80 GB/s 288.4 GB/s

Table 4.2: NVIDIA GPUs used for parallel experiments.

In terms of the CPUs used, the CPU of Computer A is 1.1 GHz slower than the
CPU of Computer B, and as a results we expect Computer B to produce better
time performance data for all sequential algorithms. In terms of the GPUs used,
Computer A and Computer B have GPUs clocked at nearly the same clock speed
(a 4 MHz di�erence). However, Computer A only has two SMs in contrast with
the 12 SMs of Computer B. Thus we expect Computer B to perform better than
Computer A, when there is an increase in the number of additional cores used.

Another noticeable di�erence between the GPUs of Computer A and Com-
puter B is the memory bus width. Computer B has a bus width which is three
times wider than Computer A; therefore, more data can be copied from main mem-
ory to the GPU global memory of Computer B, per second (refer to the memory
bandwidth in Table 4.2). Since both Computer A and Computer B use DDR3-1600
MHz dual channel memory controllers, we expect memory bottlenecks to occur as
a result of the memory transfer speed o�ered by the GPUs.
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2 Game of Life

The �rst CA that will be analyzed is Conway's classical Game of Life [14]. Game
of Life is a simple two-dimensional CA used to simulate life, death, and survival
through the evolution of an initial pattern of live cells.

A Game of Life initial state con�guration can produce one of three conditions
after having evolved over a number of generations [14, 45]:

� extinction, where all cells have died out;

� stability, where all live cells stay alive and do not change state anymore; and

� oscillation, where live cells enter into an endless cycle.

2.1 Rules

The rules of Game of Life are based on the simulation of life, death, and survival,
by checking the neighbourhood of a cell for being overcrowded (too many live
cells in the neighbourhood), having a lack of life (not enough live cells in the
neighbourhood), or having an appropriate number of live cells in its neighbourhood
to sustain the life of the cell into the next generation. Cells are either alive (have a
state of `1') or dead (have a state of `0'). The rules of Game of Life are as follows:

1. A live cell will die if it has less than two live neighbours (under-population).

2. A live cell will die if it has more than three live neighbours (overcrowding).

3. A live cell will stay alive in the next generation if it has two or three live
neighbours.

4. A dead cell will become alive if it has exactly three live neighbours. Else, it
will stay dead.

The type of neighbourhood used for the Game of Life CA is a Moore neighbourhood
with a one cell radius [45], which, for a two-dimensional CA, includes all four
orthogonally adjacent and all four diagonally adjacent neighbours (see Figure 4.1).

2.2 State calculation analysis

In order to calculate the next state of a cell, eight conditional checks must be
performed. A conditional check is performed on each neighbouring cell, of the cell
in question. During the conditional check, the state of a cell is checked to determine
whether the cell is alive or dead. An integer counter, which counts the number of
live neighbouring cells of the current cell is incremented for each live neighbour.
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Figure 4.1: Two-dimensional Moore neighbourhood, with a one cell radius. Red neigh-
bours are orthogonally adjacent. Blue neighbours are diagonally adjacent.

Since the CA grid is stored as an array, the state look-up is performed in constant
time by specifying the index of a neighbouring cell into the array.

For each cell in the CA, eight array indexing operations (along with eight con-
ditional checks) are performed. Depending on the number of live cells in the neigh-
bourhood of a cell, a maximum of eight additional integer arithmetic operations are
performed, to increment the live neighbour counter. Finally, a conditional check is
performed depending on the current state of the cell, to determine what its state
will be in the next generation.

For an M ×N sized grid, where M is the number of rows and N the number of
columns, the operations described will have to be performedM×N times. Thus the
work complexity of the Game of Life CA is O(MN). All operations are performed
in constant time, and the time complexity is O(MN). For convenience, without the
loss of generality, a square grid CA is used in all the experiments. Thus, M = N
and the time complexity is O(N2).

2.3 Experimental setup

All the Game of Life CA experiments are performed for the grid sizes 2502, 5002,
7502, 10002 and 12502, to test the scalability and to investigate the time complexity
of of each implementation. For each grid size, 100 generations of the CA is simulated
in order to reduce the number of outliers (generations which took above the average
time to calculate). The total time to calculate 100 generations is measured in
milliseconds. This process is repeated ten times to validate the calculation times
measured.

2.4 Sequential implementation

In this subsection the sequential implementation of the Game of Life CA is consid-
ered.
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2.4.1 Sequential code extracts

The reader may refer to Listing B.1 for details on the sequential implementation.
The rule application algorithm, as discussed in Section 2.2 requires the calculation
of the number of live cells for each cell in the CA. This calculation is performed
with a separate function and provided in Listing B.2.

2.4.2 Sequential experiment results

Table 4.3 shows the average calculation times for each grid size and the average
number of CA generations calculated per second, for both Computer A and Com-
puter B. Figure 4.2 shows the calculation time series.

Table 4.3: Results for Game of Life sequential experiments.

Calculation time (msecs) Generations per second
Grid size Computer A Computer B Computer A Computer B

2502 414 330 241 303
5002 1638 1298 61 77
7502 3656 2895 27 35
10002 6492 5134 15 19
12502 10126 7976 10 13

Figure 4.2: Game of Life sequential calculation time with quadratic trend lines.

Computer A takes longer to calculate 100 generations, which also leads to fewer
generations calculated per second, because Computer A has a slower clock speed
than Computer B. The data indicates a quadratic time increase between N = 250
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to N = 500, and N = 500 to N = 1000 as well as a quarter of the average number
of generations calculated per second, which corresponds to the time complexity
of O(N2) (refer to Table 4.4). When comparing the calculation time results with

Table 4.4: Expected results according to the time complexity of the algorithm, compared
to actual data for Computer A and Computer B.

Time increase constant Generation decrease constant
Computer A Computer B Computer A Computer B

Expected 4 0.25
250→500 3.95 3.94 0.25 0.25
500→1000 3.96 3.95 0.25 0.25

the number of cells for the value of N , a correlation of 0.999999403 between Com-
puter A and the number of cells is found, and a correlation of 0.999993957 between
Computer B and the number of cells. Assuming it takes time t to calculate the
state of one cell, and since cells are processed sequentially, it will take time N2t
to process all the cells for one generation. Thus, the correlation indicated above
between the complexity of O(N2) and the calculation time results are as expected.

2.5 Parallel implementation

In this subsection the parallel implementations for each of the data segmentation
methods used for the Game of Life CA is considered.

2.5.1 Game of Life parallel code extracts

As discussed in Section 3.1.2 of Chapter 3, there are four data segmentation meth-
ods that will be used. The �rst method divides the CA grid into sub-grids equal
to the number of SMs a GPU has. Each sub-grid is then assigned to one thread,
executed by on one of the SMs. Listing B.3 provides the algorithm used to perform
the grid-per-thread rule application for Game of Life.

The next two data segmentation methods are based on row-per-thread assign-
ment, and the algorithm to apply the rules is given in Listing B.4. For the �rst
method of row-per-thread assignment, one thread-block is created for every 1024
rows of cells. If there are more than 1024 rows in the CA grid, an additional SM
will be used to process the next 1024 rows of cells. The second method of row-per-
thread assignment divides the number of rows in the CA grid, by the number of SMs
in the GPU. The di�erence between the �rst and second method of row-per-thread
assignment is in the dimension of the thread-blocks used. The thread-block dimen-
sion is set when providing the grid and thread-block size parameters in the angle
brackets. For the �rst method of row-per-thread assignment the angle brackets are
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set as <<<dimy/tbm+1, tbm>>>, where tbm is equal to the maximum number of
threads allowed per thread-block. For the second method of row-per-thread assign-
ment the angle brackets are set as <<<smc, rptc>>>, where smc is equal to the
number of SMs of the particular GPU executing the algorithm, and rptc is equal
to the rows assigned to each SM.

The �nal data segmentation method is based on cell-per-thread assignment, and
the algorithm to apply the rules is given in Listing B.5. The assignment of a thread
to a speci�c cell is performed by determining both the row and column indices of
the cell, relevant to the thread and the thread-block to which the thread belongs.
The thread-blocks are made up of k × k threads, where k is a value between 1
and 32. We have chosen k = 16, which is big enough to reduce the number of
thread-blocks assigned to each SM, and small enough to reduce the thread-to-core
assignment bottleneck per SM. Each thread-block is assigned to a k × k sub-grid.

All three functions given (for the di�erent data segmentation methods) in List-
ings B.3, B.4, and B.5 use the parallel utility functions N_Moore_GPU() and
GoL_Rules_GPU(). N_Moore_GPU() returns the number of live cells in the neigh-
bourhood of a speci�c cell, identical to Listing B.2. GoL_Rules_GPU applies the
rules of Game of Life to a cell, by referring to the current state of the cell and the
number of live neighbours it has, as is shown in Listing B.6.

2.5.2 Parallel experiment results

Table 4.5 shows the data gathered for the grid-per-thread data segmentation met-
hod. Figure 4.3 shows the calculation time series.

Table 4.5: Results for Game of Life parallel grid-per-thread segmentation method ex-
periments.

Calculation time (msecs) States per second
Grid size Computer A Computer B Computer A Computer B

2502 17658 2755 5.66 36
5002 70510 11068 1.42 9.03
7502 158562 24898 0.63 4.02
10002 281953 44243 0.35 2.26
12502 440756 69135 0.23 1.45

For the grid-per-thread segmentation method the data is equally divided between
the number of SMs. Each SM has a workload of 1

Sc
N2, where Sc is the number

of SMs of a GPU. Each SM processes one cell at a time (since only one thread
is started to process the work), taking time t. Thus each SM takes time 1

2
N2t to

process its workload. A direct correlation between the N2 growth in the work load
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Figure 4.3: Game of Life parallel grid-per-thread method: calculation time with a
quadratic trend line.

and the time taken to process all the cells is expected (refer to Figure 4.3). The data
shows a 0.9999997181 correlation between the calculation time of Computer A and
the work load increase, and a 0.9999997775 correlation between the calculation
time of Computer B and the work load increase.

Table 4.6 shows the data gathered for the �rst row-per-thread data segmentation
method. Figure 4.4 shows the calculation time series.

Table 4.6: Results for Game of Life parallel row-per-thread segmentation method one
experiments.

Calculation time (msecs) States per second
Grid size Computer A Computer B Computer A Computer B

2502 483 283 207 353
5002 1005 638 100 157
7502 1747 1368 57 73
10002 3083 2514 32 40
12502 3891 3135 26 32

The �rst row-per-thread segmentation method assigns a maximum of 1024 rows
of cells to each SM; each row containing N cells. For N ≤ 1024 the SM to which the
work is assigned must process N2 cells. For N > 1024 the next available SM will
process the remaining r rows, where r ≤ 1024. In the case of N = 2048, two SMs
will be used, each one having a workload of 1024×N cells. In this case 1024 = 1

2
N ,
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Figure 4.4: Game of Life parallel row-per-thread method one: calculation time with
quadratic trend lines.

and each SM thus has a workload of 1
2
N2. In general, depending on the number

of SMs of the GPU, for every N = 1024k, where k = 1, 2, 3, . . . , Sc, each SM will
have a workload equal to 1

k
N2.

For experiments performed using the �rst row-per-thread segmentation method,
only the experiment for N = 1250 utilizes a second SM to process the remaining
rows. Since both SMs will start processing their workloads simultaneously, a de-
crease in the time needed to calculate the 12502 grid size is expected, relative to
the time-increase for grid sizes: 2502, 5002, 7502, and 10002. Figure 4.4 shows this
trend; there is a noticeable di�erence between the asymptotic growth from N = 750
to N = 1000 to N = 1000 to N = 1500.

Analyzing the time complexity of the �rst row-per-thread segmentation method,
one has to take into account that each SM has 192 cores, which process work
simultaneously. Once processing starts, an SM assigns the �rst 192 rows of cells to
its cores, each core processing one cell at a time. If it takes time t to process 192 cells
simultaneously, it will take 1

192
N2t to process N2 cells, for N < 1024. In general

it will take time equivalent to 1
192Sc

N2t, for N > 1024. Referring to Figure 4.4, a
relative correlation between the computation times and the quadratic trend lines
is noticeable. When an additional SM is utilized, the growth in computation time
decreases slightly since an additional 192 cells are being processed. However, as N
increases, there are more cells per row to process. As N reaches the next multiple k
of 1024, each SM takes time 1

192
10242kt+ 1

192
N2−1024kt or 1

192
(N2+1024k(1023))t

to process its workload. The dominating factor in this time complexity function is
N2, and therefore as N →∞, a stable quadratic increase in the computation time
is expected.
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Table 4.7 shows the data gathered for the second row-per-thread data segmentation
method. Figure 4.5 shows the calculation time series.

Table 4.7: Results for Game of Life parallel row-per-thread segmentation method two
experiments.

Calculation time (msecs) States per second
Grid size Computer A Computer B Computer A Computer B

2502 480 227 208 441
5002 972 546 103 183
7502 1477 819 68 122
10002 2055 1096 49 91
12502 2968 1378 34 73

Figure 4.5: Game of Life parallel row-per-thread method two: calculation time with a
quadratic trend line and a linear trend line.

The second row-per-thread segmentation method utilizes all the SMs of a GPU
for N ≥ Sc, and divides the workload by dividing the number of rows in the grid
equally between the number of SMs. Each SM must process 1

Sc
N rows of N cells,

for a total of 1
Sc
N2 cells.

It is important to note how the value of N will in�uence the computation time.
For 0 < N ≤ 192Sc, each SM will assign a single row of N cells to one of its cores.
Assuming all cores process their work simultaneously, taking time t to process one
cell, it will take time Nt to process all N2 cells. For N > 192Sc there are more rows
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of cells than there are cores. For the �rst 192Sc number of rows, the calculation
time will again be equal to Nt, assuming all work is processed simultaneously. The
remaining N − 192Sc rows are processed afterwards, which will steadily increase
the computation time. The data from Table 4.7 re�ect this trend as a near linear
increase in the calculation time is noticed (also refer to Figure 4.5).

Computer A only has 384 CUDA cores, and thus from N = 500, an increase in
the computation time is noticeable. Computer B, for which the computation time
increases roughly at a constant rate, has 2304 CUDA cores and an increase in the
computation time is only expected for N > 2304. In general, the time complexity
function is 1

192Sc
N2t, assuming it takes time t to process 192 cells. As with the time

complexity function of the �rst row-per-thread method, a quadratic increase in the
computation time is expected, as N →∞.

Note that, for all the experiments performed, all the SMs are utilized. The
results show that the second row-per-thread segmentation method is faster than
the �rst row-per-thread method. This occurs because more cells are processed si-
multaneously for smaller grid sizes. For Computer B, six times more cells will be
processed simultaneously for larger grid sizes, where N > 192Sc.

Table 4.8 shows the data gathered for the cell-per-thread data segmentation method.
Figure 4.6 shows the calculation time series.

Table 4.8: Results for Game of Life parallel cell-per-thread segmentation method exper-
iments.

Calculation time (msecs) States per second
Grid size Computer A Computer B Computer A Computer B

2502 32 6.09 3160 16422
5002 115 18 871 5497
7502 247 37 405 2676
10002 443 66 226 1512
12502 682 97 147 1031

For the cell-per-thread segmentation method, the grid is divided into sub-grids of
size k × k. These sub-grids are then equally divided amongst the SMs, and each
cell per sub-grid is assigned to a single thread. For an N2 grid size, there are 1

k2
N2

sub-grids, each sub-grid containing k2 cells. For Sc number of SMs, each SM has
to process 1

Sck2
N2 cells.

For the time complexity of the cell-per-thread segmentation method, the time
taken for an SM to process its workload is measured �rst. Since a sub-grid is of size
k × k where k ≤ 32, a thread-block of the same size is assigned to each sub-grid.
Thus each SM has to process k2 cells (processing 192 cells simultaneously), which
takes time t. Therefore it will take 1

192
k2t to process all cells per sub-grid. The
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Figure 4.6: Game of Life parallel cell-per-thread method: calculation time with
quadratic trend lines.

total time to process N2 cells is N2

Sck2
× k2

192
t = 1

192Sc
N2t, which is the same as the

time complexity function for the second row-per-thread segmentation method. The
di�erence is that this time complexity is only achievable for large grid sizes for the
row-per-thread methods, where more rows have to be processed. For the cell-per-
thread method it is the average time complexity since all processing resources are
utilized for all grid sizes.

The dominating factor in the time complexity function is the grid size, N2,
whilst Sc stays constant for the GPU used. The computation time is expected to
increase quadratically as the size of N is increased. Figure 4.6 shows this trend
when comparing the calculation times with a quadratic trend line.

The data from Table 4.8 also shows results synonymous with quadratic growth.
For Computer A, the growth in calculation time for N = 250 to N = 500 is 3.63,
and for N = 500 to N = 1000, 3.85. For Computer B, the growth in calculation
time for N = 250 to N = 500 is 2.99 and for N = 500 to N = 1000, 3.63.
Both Computer A and Computer B have a calculation time growth less than the
expected quadratic growth. The main factor for this result is the number of cells
that can be processed simultaneously (Computer B having 6 times the number of
cores that Computer A has). As N increases, the growth in computation time is
expected to stabilize at a quadratic increase, since the number of processing cores
stays constant.
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2.6 Sequential versus parallel experiment data

The experimental data shows that parallel implementations deliver better results
when using more processing resources. However, when limiting the use of processing
resources, the sequential implementation performs better. Figure 4.7 shows the
speed up factor of each parallel data segmentation method over the sequential
implementation.

(a) Computer A.

(b) Computer B.

Figure 4.7: Game of Life parallel segmentation methods: speed up factors over sequential
implementation.
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The grid-per-thread segmentation method does not produce any speed up over
the sequential implementation since a minimal amount of GPU processing resources
is used. For both Computer A and Computer B the sequential implementation
outperforms the grid-per-thread method, where the sequential implementation is
about 43 times faster than the grid-per-thread method for Computer A, and about
8.61 times faster for Computer B.

For both row-per-thread segmentation methods the GPU starts to outperform
the sequential implementation. For the �rst row-per-thread method, the sequential
implementation outperforms the parallel method for N = 250 for Computer A, and
the parallel implementation only starts to deliver better performance for N ≥ 296.
For Computer B the parallel implementation is faster than the sequential implemen-
tation for N = 250, but is slower than the sequential implementation for N ≤ 210.
The sequential implementation is expected to outperform the parallel row-per-
thread method for certain values of N , as there is an overhead when transferring
the data to the GPU, and since the CPU has a higher clocks speed. The GPU
needs to use more of its processing resources before it can deliver equivalent or
better performance than the sequential implementation.

The same applies for the second row-per-thread segmentation method. For Com-
puter A the sequential implementation outperforms the parallel implementation for
N = 250, since the GPU utilizes less processing resources. The parallel implemen-
tation only starts to outperform the sequential implementation for N ≥ 296. For
Computer B, the sequential implementation outperforms the parallel implementa-
tion for N ≤ 135, but is outperformed by the parallel implementation for N > 135.

For the cell-per-thread segmentation method, the parallel implementation starts
to outperform the sequential implementation for N ≥ 13 for Computer A and
N ≥ 15 for Computer B. For greater values of N the parallel implementation starts
to outperform the sequential implementation by a signi�cant margin. Figure 4.7
indicates a speed up factor of about 14 over the sequential implementation for Com-
puter A, and between 50 and 80 for Computer B. The primary reason attributing to
this observation is that the cell-per-thread method starts using all its available pro-
cessing resources for any value of N , where applicable; for small values of N , where
there are less cells than CUDA cores, all the cells are processed simultaneously.

It is also interesting to note that the cell-per-thread implementation performed
on the less powerful GPU of Computer A, delivers better performance times than
the sequential implementation performed on the more powerful CPU of Com-
puter B. This is the case for all the experiments conducted. Figure 4.8 shows
the performance times of the sequential implementations and the parallel cell-per-
thread implementations for both Computer A and Computer B. Figure 4.8 shows
a strong indication of the pro�ciency of the GPU when utilizing all available pro-
cessing resources.
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Figure 4.8: Game of Life sequential versus parallel cell-per-thread: calculation times for
all experiments.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. EXPERIMENTS AND RESULTS 45

3 Clay deformation

The second CA that will be analyzed is a clay deformation simulation. The original
idea behind this CA is based on three-dimensional free form shape modeling within
a voxel space, and was proposed by Arata et al [3]. For this thesis a discrete two-
dimensional model proposed by Druon et al will be used, which is based on the
model proposed by Arata et al. In the clay deformation CA, an object is modeled
by assigning `clay' to certain cells during the initialization of the CA [10]. In order
to deform the initial clay model, a `plate' is used to push down on the clay model,
which causes the cells directly impacted by this operation to have an overload of
clay. Cells that are overloaded or overburdened with clay, shift portions of clay to
neighbouring cells.

3.1 Rules

For the clay deformation CA, each cell can have one three states:

� 0 � the cell is empty (not �lled with clay);

� 1 � the cell contains a speci�c amount of clay; or

� 2 � the cell is part of a plate and contains no clay.

Cells containing clay can either be stable or overburdened, which means that the
amount of clay contained in the cell is either below or above a certain threshold,
respectively. If the clay-containing cells in the CA are stable, the clay model will
not be subjected to deformation. If, however, some cells become overburdened,
these cells will distribute a speci�ed amount of clay to its neighbours that are not
overburdened. The process of distributing clay from an overburdened cell to its
stable neighbouring cells is performed when executing the repartition rule function
of the CA.

The type of neighbourhood used for clay deformation is a Margolus neighbour-
hood [3], presented in Figure 4.9. The Margolus neighbourhood was created to
accommodate partitioning CA. A partitioning CA is based on the following three
attributes:

� the grid of cells is partitioned into disjoint cell blocks;

� each cell block is processed separately with a block rule (identical to a rule
function of the CA); and

� the partitioning changes for each subsequent step of rule application, in order
to have overlap between blocks [50].
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Figure 4.9: Two-dimensional Margolus neighbourhood: blue cells are processed during
odd steps and red cells are processed during even steps, along with the gray (pillar) cell
during execution of the repartition function.

A two-dimensional Margolus neighbourhood groups cells into blocks of size 2 × 2.
Blocks of size 2× 1, 1× 2, or 1× 1 are used for border cases where cells cannot be
divided into 2×2 cell blocks. For clay deformation, the block rule is applied during
the repartitioning function, for a number of steps. For even steps, a cell block is
created by expanding a cell block from a pillar cell to the bottom-right diagonal
cell of the pillar cell (refer to the red cell block in Figure 4.9). Figure 4.10 shows
the cell blocks of an 8× 3 grid, for an even step.

Figure 4.10: 8× 3 grid of cells with 8 cell blocks for an even step, where all pillar cells
are marked as gray.

For odd steps, a cell block is created by expanding a cell block from a pillar cell to
the top-left diagonal cell of the pillar cell (refer to the blue cell block in Figure 4.9).
Figure 4.11 shows the cell blocks of an 8× 3 grid, for an odd step. The pillar cells
in the last column are created to compensate for border cases, where none of the
original pillar cells include the cells from the last column in its cell blocks. By
creating these additional pillar cells, all cells are now part of cell blocks and can be
processed.

When initializing the grid of cells, all cells containing clay have a stable amount
of clay. In order to cause overburdened cells, a plate is used to push down on
the top row of cells that contain clay. A plate is an x × 1 row of cells, all with
a state of 2 and that do not contain clay. When the plate pushes down on the
top row of clay-�lled cells, the clay of each cell is transferred to the cell below it
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Figure 4.11: 8 × 3 grid of cells with 8 cell blocks for an odd step, where all pillar cells
are marked as gray.

thereby creating overburdened clay cells. After the plate push operation is �nished,
the repartitioning operation is started. During this operation the repartitioning
function is executed on the entire grid to distribute clay from overburdened cells to
neighbouring cells. The repartitioning operation runs for i iterations (steps) or until
the clay model is in a stable state before the i'th iteration is reached. Each iteration
marks an even or an odd step. This entire process�the plate push operation and
performing the repartitioning operation� is performed to calculate one generation
of the clay deformation CA.

3.2 State calculation analysis

For clay deformation, most state calculations will be performed on cell blocks of
size 2×2, as discussed in Section 3.1. Before a cell block can be processed, the size
of the cell block must �rst be determined. A cell block is the even or odd Margolus
neighbourhood of a pillar cell. For each pillar cell, a conditional check is performed
to determine if the current repartitioning step is even or odd. Following this check,
two conditional checks are performed to determine if a pillar cell can expand its
Margolus neighbourhood one cell horizontally and one cell vertically (whether or
not the pillar cell is on the border of the grid). To expand the neighbourhood in
either direction, requires incrementing an integer assigned to each direction.

Once the dimensions of a cell block have been determined, the coordinates of
the cell block are sent to the rule application function, which processes the cells in
the cell block. The rule application function is divided into two parts. For the �rst
part, a check is performed to determine if the cell block only consists of a pillar
cell. If this is the case, an additional check is performed to determine of the pillar
cell is overburdened. If the cell block consists of more than one cell, the number
of cells in the cell block is determined by using simple integer arithmetic. These
operation are all performed per pillar cell. The following operations are performed
per cell. Each overburdened cell in the cell block is determined, by checking the
amount of clay (stored as a float) against the threshold value, with a conditional
check. The amount of clay of overburdened cells is multiplied by a constant float
value, and the result is added to another float which stores the aggregate value
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of all overburdened cells. This aggregate value is the amount of clay that will be
distributed to stable clay cells. Finally, one of three integers values are adjusted
depending on the state of the cell and the amount of clay.

For the second part of the rule application function a check is �rst performed to
determine if all cells are overburdened. A similar check is performed to determine
if the number of cells below the threshold is equal to the number of cells in the
cell block. In either case, no operations can be performed on the cell block, in
terms of clay redistribution, and a function return is performed. For cell blocks
with both overburdened cells and stable cells, the clay redistribution process is
performed. First, the amount of clay that must be distributed is divided by the
number of stable cells, which requires a �oating point operation. For all stable cells,
the amount of clay that each cell must receive is added to the current amount of
clay of each cell, which is one �oating point operations. For overburdened cells, an
appropriate amount of clay to subtract is calculated and then subtracted from the
current amount of clay of each overburdened cell, which requires two �oating point
operations. In addition, a check is performed to determine if any of the cells are
overburdened after the process of clay redistribution. If any cell is overburdened,
a boolean value is updated.

The �rst part of the rule function will always be executed. If an N ×N grid is
perfectly divisible by 2×2 cell blocks, then for each pillar cell, �ve integer operations
and three conditional checks must be performed. For each cell in the cell block,
one conditional check, two �oating point operations (if a cell is overburdened), and
one integer operation must be performed.

The second part of the rule function will only be performed conditionally, which
is determined by two conditional checks per pillar cell. Before clay redistribution,
one �oating point operation is performed per pillar cell. During the clay redistri-
bution process two �oating point operations are performed for overburdened cells,
and one �oating point operation is performed for stable cells. In addition, for each
cell two conditional checks are performed.

In the worst case scenario, where both parts of the algorithm are executed,
six integer operations, nine conditional checks, and ten �oating point operations
must be performed for each of the 1

4
N2 cell blocks. All operations are performed in

constant time. Compared to the Game of Life CA, less operations are performed per
cell for the clay deformation CA. However, the additional operations for each pillar
cell are also performed. For an N × N clay deformation CA, the rule application
function is applied to 1

4
N2 cell blocks. The dominating factor is N2 and therefore

the time complexity for all experiments is expected to be O(N2).

3.3 Experimental setup

All the clay deformation CA experiments are performed for the grid sizes 2502,
5002, 7502, 10002 and 12502 to test the scalability and to investigate the time
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complexity of of each implementation. For each grid size, ten generations of the CA
is simulated. The total time to calculate ten generations is measured in milliseconds.
This process is repeated ten times to validate the calculation times measured.

3.4 Sequential implementation

In this subsection the sequential implementation of the clay deformation CA is
considered.

3.4.1 Sequential code extracts

The sequential algorithm is encompassed in the gridNextStateSEQ() function of
the derived clay deformation Clay class in Listing B.7. This function iterates over
every pillar cell, determines the Margolus neighbourhood of the pillar cell (the cell
block coordinates), and sends the information to the rule application function, also
known as the clay redistribution function. Pillar cells are �xed cells in the grid,
located at each intersection of the even numbered rows and even numbered columns
on the CA grid.

The clay redistribution function is given in Listing B.8. An overview of this
function is given in Section 3.2. This function essentially determines whether there
are any cells that are overburdened and if there are any cells to which the excess
amount of clay can be transferred. A check must also be performed to determine
if any of the cells in the cell block are part of a plate (has a state of `2'), since no
clay can be transferred to a cell which is part of a plate.

For a scenario where clay can be transferred from overburdened cells to stable
cells, the amount of clay of each cell in the cell block is updated. The sequential
algorithm terminates once the clay model is stable or if i iterations of the clay
redistribution function has been applied to clay model.

3.4.2 Sequential experiment results

It is important to note that the number of steps of clay redistribution will have
a noticeable impact on the time taken to calculate a single generation of a clay
deformation CA. If no limit is used on the number of steps for the clay redistribution
process, the time needed to calculate even a single generation could take exceedingly
long. To demonstrate this, a clay deformation CA with a grid size of 2502 is used to
simulate 100 generations. The clay model is in the shape of a column and spans 80%
the width of the grid and 95% the height of the grid. This experiment is performed
on Computer B and is repeated for the following number of redistribution step
limits: 1, 50, 100, 150, 200, 250, and 300. The results of this experiment are given
in Table 4.9.
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Table 4.9: Sequential redistribution step experiment: average calculation times for dif-
ferent step limits in milliseconds.

Step limit Calculation time
1 58
50 3807
100 8361
150 12735
200 16847
250 20626
300 24252

No limit 411716

Figure 4.12: Clay redistribution for one step limit and for no limit, for 100 generations.

(a) Original model.

(b) One step deformed
model.

(c) Completely de-
formed model.

When only one clay redistribution step is performed, the total time needed to cal-
culate 100 generations is faster than when calculating 100 generations for a Game
of Life CA with the same grid size. However, very little clay is distributed and no
real deformation is observed. If no limit is placed on the number of redistribution
steps, a completely deformed clay model is produced (refer to Figure 4.12). How-
ever, it takes approximately 6 minutes and 52 seconds to calculate 100 generation
when using no limit. By increasing the number of steps by a constant number, the
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(a) 50 steps. (b) 100 steps.

(c) 150 steps. (d) 200 steps.

(e) 250 steps. (f) 300 steps.

Figure 4.13: Clay deformation for di�erent redistributed step limits.
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calculation time increases by a near constant amount, and the clay model becomes
more deformed. Figure 4.13 shows the deformation of the clay model for each re-
distribution step limit, for 100 generations. By 300 steps of redistribution, the clay
model is nearly as deformed as when no redistribution limit is applied.

For all the clay deformation CA experiments performed, a 300 step redistribution
limit is used. Table 4.10 shows the average calculation times for each grid size
and the average number of CA generations calculated per second, for both Com-
puter A and Computer B. Figure 4.14 shows the calculation time series. First

Table 4.10: Results for clay deformation sequential experiments.

Calculation time (msecs) Generations per second
Grid size Computer A Computer B Computer A Computer B

2502 2033 1585 4.92 6.31
5002 7996 6188 1.25 1.62
7502 18774 14728 0.53 0.68
10002 33215 25803 0.30 0.39
12502 51852 40654 0.19 0.25

Figure 4.14: Clay deformation sequential calculation time with quadratic trend lines.

notice that the time needed to calculate ten generations of clay deformation is con-
siderably more than the time needed to calculate 100 generations for the Game of
Life CA. This is because a maximum of 300 steps for the redistribution of clay is
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used. If it takes time t to process one cell block during one step of clay redistribu-
tion, it will take time 1

4
N2t to process all cell blocks. This process will be repeated

a maximum of 300 times for each generation of clay deformation. Thus the total
time to calculate one generation is equal to 75N2t. The dominating factor in this
formula is N2, and thus a quadratic time increase is expected as the value of N
increases.

When referring to the results in Table 4.10, notice that the time increase constant
for N = 250 to N = 500 is 3.93 and 3.90 for Computer A and Computer B,
respectively. The time increase constant for N = 500 to N = 1000 is 4.15 and 4.16
for Computer A and Computer B, respectively. In both cases the value of N is
doubled and a quadratic time increase is expected, which is re�ected in the results.

3.5 Parallel implementation

In this subsection the parallel implementations for each of the data segmentation
methods used for the clay deformation CA is considered.

3.5.1 Parallel code extracts

The four data segmentation methods for the parallel algorithms largely stay the
same as for the Game of Life CA experiments. There is one di�erence that comes
into play for the row-per-thread and cell-per-thread methods, which has to do with
the fact that threads now process cell blocks instead of cells. For the row-per-thread
methods, the work is divided into rows of cell blocks, and each row is assigned to
a thread. For the cell-per-thread method, a cell block is assigned to each thread.

Overall, the grid-per-thread method is similar to the method used for Game of
Life. The only di�erence is the change in the for-loop iterations to compensate
for the fact that pillar cells are being worked with, and that the cell blocks are
created from each pillar cell. The grid-per-thread segmentation method is provided
in Listing B.9.

The row-per-thread data segmentation methods for clay deformation use the
same parallel algorithm, which is included in Listing B.10. The di�erence between
the methods is based on how many threads and thread-blocks are utilized during the
function call, de�ned in the angle brackets. The �rst row-per-thread segmentation
method, which utilizes 1024 threads per thread-block, assigns one thread to one
row of cell blocks. One SM will thus process a maximum of 2048 rows of cells. The
second row-per-thread segmentation method divides the number of rows equally
among the SMs.

The cell-per-thread data segmentation method for clay deformation assigns one
thread to one pillar cell or cell block of 2 × 2 cells. As discussed in Section 2.5.1,
thread-blocks of size 16 × 16 are used. Each thread-block will process 4 × 162

cells. The parallel algorithm used for the clay deformation cell-per-thread method
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is included in Listing B.11.

The rule application function referred to in each of the segmentation methods is
identical to the rule application function used for the sequential implementation
(refer to Listing B.8).

3.5.2 Parallel experiment results

For the grid-per-thread method the experiments were only performed once per grid
size. This decision was made because the time needed to calculate ten generations
for any grid size was far greater than the in�uence of background processes running
on the systems could have on the total calculation time. Table 4.11 shows the data
gathered for the grid-per-thread data segmentation method. Figure 4.15 shows the
calculation time series. First notice the calculation time needed to calculate ten

Table 4.11: Results for clay deformation parallel grid-per-thread segmentation method
experiments.

Calculation time (msecs) Generations per second
Grid size Computer A Computer B Computer A Computer B

2502 301060 34774 0.0330 2.88
5002 1220276 135301 0.0082 0.74
7502 2857308 309091 0.0035 0.32
10002 5045249 537198 0.0020 0.19
12502 7890809 850924 0.0013 0.12

generations, and the average number of generations that are processed per second.
For the smallest grid size of 2502, the ine�ciency of this segmentation method is
signi�cant, especially for Computer A1.

When analyzing the time increase betweenN = 250 toN = 500, a time increases
constant of 4.05 and 3.89 is observed for Computer A and Computer B, respectively.
The time increase constant between N = 500 to N = 1000 is 4.13 and 3.97 for
Computer A and Computer B, respectively. These time increase constants suggest
a quadratic time complexity function. Since the data is divided equally between
the number of SMs (Sc), each SM has to process 1

4Sc
N2 cell blocks during one

clay redistribution step. If it takes time t to process one cell block, and since the
redistribution process is repeated for a maximum of 300 steps, it will take time
equal to 1

Sc
75N2t to calculate one generation per SM. The dominating factor in

this formula is N2, which con�rms a quadratic time increase when analyzing the
data. Note the close correlation between the time increase and a quadratic function

1Performance speed analysis between the sequential and parallel algorithms are given in Sec-
tion 3.6
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Figure 4.15: Clay deformation parallel grid-per-thread method: calculation time with
quadratic trend lines.

as is shown in Figure 4.15.

Table 4.12 shows the data gathered for the �rst row-per-thread data segmentation
method. Figure 4.16 shows the calculation time series.

Table 4.12: Results for clay deformation parallel row-per-thread segmentation method
one experiments.

Calculation time (msecs) Generations per second
Grid size Computer A Computer B Computer A Computer B

2502 12090 7007 0.83 1.43
5002 22855 13610 0.44 0.73
7502 36154 21600 0.28 0.46
10002 48449 28972 0.21 0.35
12502 64834 39609 0.15 0.25

For the �rst row-per-thread method, a maximum of 2048 rows of cells are as-
signed to one SM, since a single thread covers two rows of cells and because the
thread limit per thread-block is 1024. Each thread e�ectively processes a single row
of cell blocks. All experiments are therefore performed with one SM. For N ≤ 2048,
one SM processes all 1

4
N2 cell blocks; each thread processing 1

2
N cell blocks, or 2N

cells. For N > 2048 an additional SM is used to process the remaining rows, and
the �rst SM will process 512N cell blocks. In general, an SM will process 1

4Sc
N2

cell blocks.
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Figure 4.16: Clay deformation parallel row-per-thread method one: calculation time
with linear trend lines.

Note that a total of 192 cell blocks are processed simultaneously, since an SM
has 192 cores. If it takes time t to process 192 cell blocks per redistribution step,
it will take time 300

768
N2t for one SM to process one generation, for a maximum of

300 redistribution steps, where N ≤ 2048. In general, it will take time 300
768Sc

N2t to
process one generation, where N > 2048Sc. The dominating factor in this formula
is N2, and thus the time complexity for the row-per-thread method is O(N2). A
quadratic increase in the calculation time is expected as the value of N is increased.

However, when analyzing Table 4.12 the data yields a time increase constant of
1.89 and 1.94 between N = 250 to N = 500, for Computer A and Computer B,
respectively. Between N = 500 to N = 1000 the time increase constant is 2.12 and
2.13 for Computer A and Computer B, respectively. These results suggest a more
linear increase in the calculation time as the value of N increases (see Figure 4.16).

This is because a number of rows of cell blocks are processed simultaneously,
where each row has 1

2
N cell blocks. If N increases by a constant number, the num-

ber of cell blocks per row also increases by a constant number. However, more rows
of cell blocks must also be processed, thus the calculation time gradually increases.
Notice that between N = 250 to N = 500 and N = 500 to N = 1000 there is in in-
crease (albeit slightly) in the calculation times as N is doubled. Thus, as N →∞,
the calculation time is expected to stabilize at a quadratic time increase, since the
GPU processing resources stay constant.

Table 4.13 shows the data gathered for the second row-per-thread data segmenta-
tion method. Figure 4.17 shows the calculation time series. The second row-per-
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Table 4.13: Results for clay deformation parallel row-per-thread segmentation method
two experiments.

Calculation time (msecs) Generations per second
Grid size Computer A Computer B Computer A Computer B

2502 12084 5652 0.83 1.77
5002 22736 11994 0.44 0.83
7502 35950 20979 0.28 0.48
10002 47991 25841 0.21 0.39
12502 63805 35118 0.16 0.28

Figure 4.17: Clay deformation parallel row-per-thread method two: calculation time
with linear trend lines.

thread method divides the rows of the grid equally between the number of SMs.
Each SM has to process 1

2Sc
N rows of cell blocks with 1

2
N cell blocks per row, for

a total of 1
4Sc
N2 cell blocks.

All SMs are used for all values of N (but not necessarily all processing cores),
thus more rows of cell blocks will be processed simultaneously than for the �rst
row-per-thread method. Since each SM can process 192 rows of cell blocks simul-
taneously (or 384 rows of cells), only one row of cell blocks will be assigned to a
single processing core for 0 < N ≤ 384Sc. When N ≤ 384Sc, if it takes time t to
process one cell block for one step of clay redistribution, it will take time 150Nt
to process one generation with a 300 redistribution step limit. For N > 384Sc,
each processing core that has �nished processing its row of cell blocks, is assigned
to an unprocessed row of cell blocks until all the rows have been processed. As

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. EXPERIMENTS AND RESULTS 58

N increases, each processing core has to process an additional constant number
of cell blocks per row (while more processing cores will be utilized), thus steadily
increasing the load for each processing core.

Figure 4.17 tends to show a linear increase in the calculation time, as can ex-
pected for the grid sizes used. When analyzing the data, the time increase constants
between N = 250 to N = 500 are 1.88 and 2.12 for Computer A and Computer B,
respectively. Between N = 500 to N = 1000 the time increase constants are 2.11
and 2.15 for Computer A and Computer B, respectively. These results coincide
with the linear time increase. However, as with the �rst row-per-thread segmenta-
tion method, the time increase constants do increase as N is doubled. And thus,
for N >> 384Sc, the calculation time is expected to stabilize at a quadratic time
increase, since the GPU processing resources stay constant.

Table 4.14 shows the data gathered for the cell-per-thread data segmentation
method. Figure 4.18 shows the calculation time series.

Table 4.14: Results for clay deformation parallel cell-per-thread segmentation method
experiments.

Calculation time (msecs) Generations per second
Grid size Computer A Computer B Computer A Computer B

2502 520 137 19 73
5002 1767 282 5.66 35
7502 3780 561 2.64 18
10002 6556 942 1.53 11
12502 10056 1437 0.99 6.95

For clay deformation the cell-per-thread segmentation method uses thread-blocks
of size k×k to process the 1

4
N2 cell blocks. Each thread per thread-block is assigned

to one cell block, thus 1
4k2
N2 thread-blocks is needed to process all N2 cells. For

Sc SMs, each SM will process 1
4k2Sc

N2 thread-blocks.
When analyzing the time complexity of the cell-per-thread method, one must

�rst analyze the time it takes for an SM to process one thread-block for one re-
distribution step. An SM can process 192 threads simultaneously, taking time t.
To process an entire thread-block will thus take time 1

192
k2t, or 300

192
k2t for a 300

redistribution step limit. In general, since all the processing resources are used,
the total time to calculate one generation is equal to 300

768Sc
N2t. As with the other

segmentation methods, a quadratic time increase is expected as the value of N is
increased.

Figure 4.18 shows the close correlation between the calculation time series of
both Computer A and Computer B, and a quadratic trend line. This �gure also
shows that the cell-per-thread segmentation method performs according to its time
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Figure 4.18: Clay deformation parallel cell-per-thread method: calculation time with
quadratic trend lines.

complexity function. The results of Table 4.14 indicate time increases constants of
3.40 and 2.06 between N = 250 to N = 500 for Computer A and Computer B,
respectively. The time increase constants between N = 500 to N = 1000 are 3.71
and 3.34 for Computer A and Computer B, respectively. Since the GPU of Com-
puter B has more SMs than the GPU of Computer A, the workload per SM is less.
Thus, a slower increase in the convergence of the calculation time for Computer B,
with the expected quadratic time-increase is observed. For Computer A (which
has six times less SMs than Computer B) the time-increase constant more quickly
converges with the theoretical quadratic time increase.

3.6 Sequential versus parallel experiment data

Figure 4.19 shows the speed up factor of each parallel data segmentation method
over the sequential implementation.

As with the Game of Life CA experiments, the grid-per-thread method is the
most ine�cient method when processing a CA. Limiting the use of processing
resources on the GPU to only one thread per SM, severely slows the calculation
time. Figure 4.19 indicates speed up factors all below 1, for the grid-per-thread
method. The sequential implementation is about 152 times faster than grid-per-
thread method for Computer A, and about 21 times faster for Computer B.

In contrast to speed up provided by the row-per-thread implementations for the
Game of Life CA, the more computationally involved rule application function of
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(a) Computer A.

(b) Computer B.

Figure 4.19: Clay deformation parallel segmentation methods: speed up factors over
sequential implementation.

the clay deformation CA, hampers the performance of the row-per-thread imple-
mentations. When increasing the use of processing resources as is done with the
�rst row-per-thread method, the sequential implementation still outperforms the
particular parallel implementation for Computer A. When comparing the quotient
between the calculation times of parallel and sequential implementations, the cal-
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(a) Computer A.

(b) Computer B.

Figure 4.20: Clay deformation sequential and parallel row-per-thread methods: calcu-
lation times plotted for di�erent values of N.

culation time of the parallel implementation starts to converge with the calculation
time of the sequential implementation, for N > 1250. Thus, the row-per-thread
implementation is expected to outperforming the sequential implementation for
larger grid sizes. For Computer B, the �rst row-per-thread parallel implementation
is slower than the sequential implementation, and only starts to outperform the
sequential implementation for N ≥ 1250.

For the second row-per-thread method, the sequential implementation also out-
performs the parallel implementation in all the experiments performed on Com-
puter A. The quotient between the calculation times of the parallel and sequential
implementations, also decreases for larger grid sizes, and the calculation time of the
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parallel implementation is expected to converge with the calculation time of the
sequential implementation, for N > 1250. For Computer B, the sequential imple-
mentation outperforms the parallel implementation for N < 1020. For N ≥ 1020,
the parallel implementation starts to outperform the sequential implementation,
and is about 1.16 times faster than the sequential implementation, for N = 1250.
Figure 4.20 compares the calculation times of the sequential implementation and
the parallel row-per-thread methods.

Finally, the cell-per-thread implementation, which utilizes all of the GPU pro-
cessing resources, is faster than the sequential implementation for all values of N .
Figure 4.19 indicates a speed up factor between 4 and 5 over the sequential im-
plementation for Computer A, and between 10 and 25 for Computer B. For very
small grid sizes, where the overload of copying data to the GPU is more signi�cant
than for larger grid sizes, the sequential implementation outperforms the parallel
implementation for N ≤ 76 for Computer A, and N ≤ 64 for Computer B. Finally,
as with the Game of Life CA experiments, the cell-per-thread implementation per-
formed on the less powerful GPU of Computer A, delivers better performance
times than the sequential implementation performed on the more powerful CPU
of Computer B. For N = 1250, the GPU of Computer A outperforms the CPU of
Computer B by about 30 seconds (refer to Figure 4.21).

Figure 4.21: Clay deformation sequential and parallel cell-per-thread method: calcula-
tion times plotted for di�erent values of N.
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4 Ant clustering

The third CA that will be analyzed is based on sorting a complex data set, by
clustering similar data points [31, 41]. The algorithm proposed by Lumer et al,
known as the LF algorithm, refers to data points as objects that are scattered on
a two-dimensional grid. A number of ants are then placed on the grid at random
locations, and are used to relocate the objects. The ultimate objective is for the
ants to create the least number of clusters of similar objects, which implies better
clustering. Once an ant encounters an object, it might pick up the object depending
on the density of similar objects in the neighbourhood of the object in question.
The ant will be more likely to pick up the object if there are not many similar
objects in its neighbourhood. If the ant has picked up the object, the ant will move
around on the grid and drop the object based on a similar principle. If the ant has
located to an area on the grid that contains many objects similar to the object that
it is carrying, it will more likely drop the object at its current location [31].

With the model of Lumer et al in mind, Chen et al [8] proposed a model for
ant clustering, where, instead of having both ants and objects on the grid, the
objects are represented as di�erent types of ants. Their model is known as the
Ant Sleeping Model or ASM. Each ant moves around on a grid until it �nds a
neighbourhood which is populated by ants of the same kind. An ant is more likely
to sleep at a location which contains a higher density of ants of the same kind. If
the neighbourhood of an ant (that is currently sleeping) becomes less populated by
similar ants, the ant will have a higher probability of waking up and relocating to
a di�erent location on the grid. Chen et al proposed the Adaptive Arti�cial Ant
Clustering Algorithm or A4C that performs the ant clustering on a data set.

For the ant clustering CA, both the LF algorithm and the A4C will be used.

4.1 Rules

4.1.1 LF algorithm

The rules of the LF algorithm are based on an ant picking up an object with a
pick-up probability of Pp, or an ant dropping an object with a drop probability of
Pd. The pick-up probability for an object i is de�ned as

Pp(i) = (
kp

kp + f(i)
)2, (4.1)

where kp is a constant real value that regulates the pick-up sensitivity of objects;
a higher value translates into a higher likelihood of picking up similar objects [41].
The function f(i) represents the �tness of the object i (see Equation 4.3). The
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drop probability for an object i is de�ned as

Pd(i) =

{
2f(i) if f(i) < kd

1 otherwise,
(4.2)

where kd is a constant real value that regulates the drop probability; a higher value
translates into a need for more similar objects in the neighbourhood to drop an
object [41]. The function f(i) is a local estimation of the density of objects and
their similarity to the object i, known as the �tness value. It is de�ned as

f(i) =


1
N

N∑
j=1

(1− d(i,j)
α

) if f(i) > 0

0 otherwise,

(4.3)

where 1
N
is the normalizing term, and N is equal to the number of cells in the local

neighbourhood of object i. The function d(i, j)measures the dissimilarity of objects
i and j. More speci�cally, the Euclidean distance of the value space of objects i
and object j is measured. The value space of an object can di�er depending on
the data being represented by the objects. For the ant clustering CA experiments,
one-dimensional data objects will be used; thus an object is represented by a single
real value. If the value for object i is x and the value for object j is y, then
d(i, j) = |x− y|.

Finally, α is the average dissimilarity constant between all objects in the grid,
and is predetermined as

α =
1

on × (on − 1)

on∑
i=1

on∑
j=1

d(i, j), (4.4)

where on is the number of objects on the CA grid. Note that α is a real value.
In order for an ant to pick up an object, or to drop the object that it is carrying,

the �tness value of the object f(i), must �rst be calculated. Next, either the pick-
up or the drop probability for the object is calculated. The relevant probability is
measured against a pseudo-random number to determine whether to pick up the
object, or to drop the object. After this process, the algorithm �nishes by moving
the ant to a random neighbouring location. To calculate one generation of the CA,
this process is performed for each ant.

4.1.2 A4C

The rules of the A4C is based on whether an ant will sleep at its current location,
or wake up and move to a neighbouring location. This process is started by �rst
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determining the �tness value f(i) of an ant i, using Equation 4.3. With the �tness
value calculated, the activation probability Pa of an ant i is calculated as follows:

Pa(i) =
βλ

βλ + f(i)λ
, (4.5)

where both β and λ are constant real values. In this function β represents the
threshold of an agent's active �tness, while λ is normally equal to 2 [8]. If β >>
Pa(i) then ant i has a higher probability of waking up. The activation probability
of the ant is measured against a pseudo-random number to determine whether the
ant will stay at its current location or move to a neighbouring location. If an
ant does move, the location it moves to is determined by calculating which of its
neighbouring positions is the most �tting. For this process, the �tness of each of
the vacant neighbouring cells are calculated, and the ant will move to the location
with the highest �tness. The next generation of the CA is calculated once all the
ants have been processed.

4.2 Generation calculation analysis

In this subsection the operations performed to calculate a generation of ant clus-
tering is discussed for both the LF algorithm and the A4C.

4.2.1 LF algorithm

In order to calculate the next generation of the ant clustering CA using the LF
algorithm, two steps are performed. The �rst step involves checking if an ant is
carrying an object and if the current location of the ant is vacant, or if the ant is
not carrying an object and whether the current location of the ant does contain an
object. In either case, two conditional checks are performed. If none of the cases
are met, the second step of the algorithm is executed. Otherwise, the �rst step con-
tinues. Next, the �tness value of the object is calculated which involves performing
Equation 4.3. For Equation 4.3, a Moore neighbourhood is used; consisting of nine
cells. For each cell, a conditional check is performed to determine whether the cell
contains an object. If the cell does contain an object, the dissimilarity between the
neighbouring object j and object i is calculated, which requires two �oating point
operations. Next, the quotient of the result and α is calculated and subtracted
from 1.0, which is an additional two �oating point operations. The result is added
to a temporary float, since the sum of all dissimilarity values is being calculated.
In total, therefore, one conditional check and �ve �oating point operations are per-
formed for each neighbouring object. The sum of the dissimilarity values is divided
by the total number of neighbours, which is an additional �oating point operation.
Finally, a check is performed to determine if the �nal result is greater than zero.
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In general, a total of 41 �oating point operations and nine conditional checks are
performed to calculate the �tness value of an object i.

With the �tness value calculated, either the pick-up probability or the drop prob-
ability is calculated. For the pick-up probability, three �oating point operations
must be performed. For the drop probability, a conditional check and a conditional
�oating point operation must be performed. Having calculated the appropriate
probability, a pseudo-random number is generated and a conditional check is per-
formed to determine whether the probability value is less than the pseudo-random
number. If the probability value is less than the pseudo-random number, the state
of the ant and the state of the cell where the ant is currently located, is updated.

The second step of the of the LF algorithm involves selecting and moving the
ant to a random neighbouring location. This process involves generating a pseudo-
random number, and depending on the number generated, the ant is moved to one
of the eight neighbouring locations, if the location is vacant. This process performs
a maximum of eight conditional checks and updates the X and Y coordinate values
of the ant.

In the worst case scenario, if all neighbouring cells around an ant contain an
object, a total of 41 �oating point operations are performed (all during the �tness
calculation) and 17 conditional checks (nine during the �tness calculation and eight
during the move calculation) are performed. However, since the number of ants are
generally far less than the total number of cells on the grid, the total number of
operations that are performed is far less than for the Game of Life CA or the clay
deformation CA. Typically, the number of objects located on the grid is an order
of magnitude less than the number of cells, and the number of ants is an order of
magnitude less than the number of objects [31].

4.2.2 A4C

Calculating the next generation of an ant clustering CA with the A4C requires
iterating over each ant. For each ant, the �tness of the ant must be calculated with
Equation 4.3; as is done with the LF algorithm. As mentioned in Section 4.2.1,
for each cell in the neighbourhood of ant i, a conditional check is performed to
determine if the cell is an ant, and if so, an additional �ve �oating points operations
are performed per ant. In the worst case scenario, if all neighbouring cells contain
an ant, 41 �oating points operations and nine conditional checks are performed to
calculate the �tness value of ant i.

Once the �tness value of an ant has been calculated, the activation probability
of the ant must be calculated. This process involves performing �ve �oating point
operations. The activation probability value is measured against a pseudo-random
number using a conditional check. If the activation-probability is less than the
random number, the ant must wake up and relocate; else, the ant stays at its
current location.
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If an ant has to relocate, a greedy relocation algorithm is used to determine what
the best location is for the ant. This process involves checking the �tness value of
the vacant neighbouring cells of the ant, and an additional conditional check is per-
formed to determine if the �tness value of a vacant cell is higher than the previous
highest �tness value. If more neighbouring cells are vacant, more operations will
have to be performed. In the worst case scenario, where all neighbouring cells are
vacant but are surrounded by an outer ring of ants, the �tness value of nine cells
must be calculated which involves calculating the dissimilarity values of 40 ants;
see Figure 4.22. In total, 205 �oating point operations are performed; �ve for each

Figure 4.22: Worst case scenario of calculations for a single ant with the A4C. The blue
cell is the ant in question, the white cells are its neighbouring cells, and the red cells are
the ants surrounding the neighbouring cells.

ant when calculating the dissimilarity values during the �tness value calculations,
and the �ve operations during the activation probability calculation. The total
number of conditional checks is 49; one for each ant during the �tness value calcu-
lations, one for the activation probability calculation, and eight to determine the
best �tness value during the move calculation.

For the A4C, the total number of operations performed per ant, is more than
for each cell for the Game of Life CA and the clay deformation CA. However, as
mentioned, the number of ants on which the work is performed, is one order of
magnitude less than the number of cells in the CA grid.

4.2.3 Ant clustering CA time complexity

For both of the LF algorithm and the A4C, the number of ants is dependent on
the total number of cells. The number of ants is determined by multiplying an ant
density value a with the number of cells, where 0 < a ≤ 1. The number of ants is
equal to aN2. Thus, the time complexity of an ant clustering CA is O(N2) since
the calculations performed per ant is done in constant time.

4.3 Experimental setup

In this subsection the experimental setup of both the the LF algorithm and the
A4C are discussed.
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4.3.1 LF algorithm

For the LF algorithm implementations (both sequential and parallel), the experi-
ments are performed on a �xed grid size while changing the ant density value. A
grid size of 100×100 is used, which is a total of 10 000 cells. The number of objects
is one order of magnitude less than the number of cells, giving 1000 objects. The
number of ants, or the ant density, varies as indicated in Table 4.15, where the
number of ants is equal to a density value multiplied by the number of objects.
In order to test the scalability of the algorithm, a second set of experiments are
performed on a grid size of 200× 200, which contains 2000 objects. The same ant
density values indicated in Table 4.15 are used.

Table 4.15: Ant density values for LF algorithm.

Number of cells: 1002

Experiment Ant density Number of ants
1 1.00 1000
2 0.75 750
3 0.50 500
4 0.25 250
5 0.10 100

For each experiment the total time to calculate 10 000 generations is measured
in milliseconds. This process is repeated ten times to validate the calculation times
measured.

4.3.2 A4C

For the A4C, objects are portrayed as ants, and thus the number of ants to iterate
over is typically more than for the LF algorithm. For the A4C algorithm imple-
mentations (both sequential and parallel) a 100×100 grid is used for the �rst set of
experiments, where the number of ants is equal to an order of magnitude less than
the number of cells, multiplied by an ant density value. The ant density values are
given in Table 4.16. The second set of experiments will be performed on a grid size

Table 4.16: Ant density values for A4C method.

Number of cells: 1002

Experiment Ant density Number of ants
1 0.20 2000
2 0.10 1000
3 0.05 500
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of 200 × 200 to test the scalability of the A4C, while using the same ant density
values. For each experiment the total time to calculate 10 000 generations is mea-
sured in milliseconds. This process is repeated ten times to validate the calculation
times measured.

4.4 Sequential implementation: LF algorithm

In this subsection the sequential implementation of the LF algorithm for the ant
clustering CA is considered.

4.4.1 LF algorithm sequential code extracts

The sequential implementation for the LF algorithm is encompassed in the function
gridNextStateSEQ() of the derived ant clustering AntLFA class in Listing B.12.
This function iterates over every ant and performs the rule set of the LF algorithm
as discussed in Section 4.2.1. Listing B.13 provides the function that is used to
calculate the �tness value of an ant. To pick up an object the pick-up probability
must be calculated (see Listing B.14). Else, to drop an object the drop probability
must be calculated (see Listing B.15).

4.4.2 LF algorithm sequential experiment results

The results for the sequential LF algorithm implementation are given in Table 4.17,
which provides the average calculation times and the average number of CA gener-
ations calculated per second, for both Computer A and Computer B. Figure 4.23
shows the calculation time series.
The results in Table 4.17 indicate that a higher ant density results in a longer
calculation time, since there are more ants to process. However, a higher ant
density results in a better overall clustering of objects. Figure 4.24 shows a typical
unclustered grid and Figure 4.25 shows the clustering for each ant density value,
after 10 000 generations.

Notice that the calculation times for N = 200, for each density value, is more or
less four times greater than the calculation times for N = 100 (see also Figure 4.23).
The number of objects is ten times less than the number of cells (one order of
magnitude less). Thus, for an N × N size grid, the number of objects I, is equal
to 1

10
N2. The number of ants is equal to a fraction of the number of objects (as

indicated in Table 4.15), and thus for I objects the number of ants is equal to I×r,
where 0 < r ≤ 1. Since I = 1

10
N2, the number of ants is equal to 1

10
rN2. If the

time taken to process one ant is t, the calculation time for one generation is equal
to 1

10
rN2t. The dominating factor in this formula is N2. A quadratic increase

in the calculation time is therefore expected as the value of N increases, which is
indicated by the results.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. EXPERIMENTS AND RESULTS 70

Table 4.17: Results for ant clustering LF algorithm sequential experiments.

Calculation time (msecs) Generations per second
Ants Computer A Computer B Computer A Computer B

1002 cells; 1000 objects
1000 6771 5417 1477 1846
750 6208 4945 1611 2022
500 4737 3781 2111 2645
250 2425 1914 4123 5225
100 988 762 10126 13129

2002 cells; 4000 objects
4000 26792 21363 373 468
3000 24545 19605 407 510
2000 19239 15345 520 652
1000 9936 7862 1006 1272
400 3986 3146 2509 3179

Figure 4.23: LF algorithm sequential calculation times.

4.5 Sequential implementation: A4C

In this subsection the sequential implementation of the A4C for the ant clustering
CA is considered.
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Figure 4.24: Objects randomly distributed on a 100× 100 size grid.

4.5.1 A4C sequential code extracts

The sequential implementation for the A4C is contained in the gridNextStateSEQ()
function of the derived ant clustering Ant class in Listing B.16.

This function iterates over every ant and performs the rule set of the A4C as
discussed in Section 4.2.2. Listing B.13 provides the function that is used to cal-
culate the ant �tness value. The �tness value is used to calculate the activation
probability of an ant (see Listing B.17). Listing B.18 gives the function that is used
to determine the location that an ant moves to.

4.5.2 A4C sequential experiment results

Table 4.18: Results for ant clustering A4C sequential experiments.

Calculation time (msecs) Generations per second
Ants Computer A Computer B Computer A Computer B

1002 cells
2000 8141 9946 1228 1005
1000 4133 4996 2420 2002
500 2169 2553 4611 3917

2002 cells
8000 59438 54858 168 182
4000 16825 20206 594 495
2000 8717 10281 1147 973
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(a) 1.00 (b) 0.75

(c) 0.50 (d) 0.25

(e) 0.10

Figure 4.25: LF algorithm ant clustering for di�erent ant density values.
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Figure 4.26: A4C sequential calculation times.

(a) Unclustered (b) Clustered

Figure 4.27: A4C implementation for a density value of 0.2.

The results for the sequential A4C implementation for ant clustering is given in
Table 4.18. Figure 4.26 shows the calculation time series.

As with the LF algorithm, the ant density values for the A4C in�uences the
calculation times. However, the density of the ants does not in�uence the overall
clustering of the ants after 10 000 generations. Figures 4.27, 4.28, and 4.29 show
the clustering of each ant density value for a grid size of 100 × 100, after 10 000
generations.

The A4C also performs better clustering than the LF algorithm, in a shorter
amount of time. For example, the LF algorithm performed on a 100× 100 size grid
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(a) Unclustered (b) Clustered

Figure 4.28: A4C implementation for a density value of 0.1.

(a) Unclustered (b) Clustered

Figure 4.29: A4C implementation for a density value of 0.05.

for 1000 ants for 10 000 generations, is slower than the A4C for the same grid size,
number of ants and number of generations, by 2.64 seconds on Computer A and
0.42 seconds on Computer B. The A4C also performs better clustering since the
A4C has less disjoint objects; refer to Figure 4.30.

(a) LF algorithm (b) A4C method

Figure 4.30: LF algorithm versus the A4C, for the same grid size and number of ants.

The calculation time of the A4C tends to grow quadratically as the value of
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N increases, and consequently as the number of ants increases. As with the LF
algorithm, the A4C has O(N2) number of ants to process, and therefore has a
O(N2) time complexity, since the time to process one ant is equal to a constant
time t (see Figure 4.26).

4.6 Parallel implementation: LF algorithm

In this subsection the parallel implementations of the LF algorithm for the ant
clustering CA are considered.

4.6.1 LF algorithm parallel code extracts

For the ant clustering CA ants move around on the grid. If ants are processed
sequentially, no two ants will be able to move to the same location when calculating
the next generation of the CA, since each ant that has been moved will be directly
updated on the grid. Therefore, when processing the following ant, the previous
ant is already at its new location. However, if the process of moving ants is done
in parallel, collisions can occur when two or more ants attempt to move to the
same cell simultaneously. To compensate for collisions, two parallel algorithms are
proposed.

The �rst parallel algorithm is a sequential-parallel hybrid algorithm (henceforth
known as a hybrid parallel algorithm). The �rst part of the LF algorithm which
calculates the appropriate probabilities for the ants, are performed by the GPU.
Since the ants are not being moved, no collisions can occur. The CPU performs the
second part of the algorithm sequentially. This algorithm is encompassed in the
function gridNextStatePARhybrid() of the derived ant clustering AntLFA class in
Listing B.19.

The �rst part of the algorithm, to be processed by the GPU, involves the cal-
culation of the �tness value of an ant, and either the pick-up probability or the
drop probability. The function Ant_Fitness_ApT() calculates the �tness value
of each ant; see Listing B.20. The calculated value is then sent to the function
Ant_LFAprob_ApT() which calculates the appropriate probability for the particu-
lar ant assigned to a thread; see Listing B.21. The calculated probabilities are sent
to main memory. This process is performed for each generation.

Once the calculated probabilities are transferred from GPU memory to main
memory, the sequential part of the algorithm continues. In the sequential part of
the algorithm, an ant will either pick up an object or drop an object, after which
the ant moves to a new location.

The second parallel algorithm is performed exclusively on the GPU and is performed
with the function Ant_Move_ApT_LFA(). This function is identical to the function
given in Listing B.12. However, a CUDA __syncthread() operation is performed
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which acts as a barrier to synchronize all threads before the ants are moved. In
order to avoid collisions, each thread checks if any other thread with a lower thread
ID wants to move its assigned ant to the same location, in which case the current
thread will not move its ant. Thus, threads with a lower thread ID have a higher
precedence.

Since the rule application function is only applied to the ants and not to each cell
on the grid (as is done with the Game of Life and clay deformation CA), the grid-
per-thread and row-per-thread segmentation methods are not applicable for the ant
clustering CA. Both parallel algorithms only use an ant-per-thread segmentation
method, which is equivalent to a cell-per-thread segmentation method.

4.6.2 LF algorithm parallel experiment results

The results for the hybrid parallel LF algorithm implementation are given in Ta-
ble 4.19. Figure 4.31 shows the calculation time series.

Table 4.19: Results for ant clustering hybrid parallel LF algorithm experiments.

Calculation time (msecs) Generations per second
Ants Computer A Computer B Computer A Computer B

1002 cells; 1000 objects
1000 8498 6110 1177 1637
750 7938 5673 1260 1763
500 6739 4820 1484 2075
250 4632 3166 2159 3158
100 3295 2046 3035 4887

2002 cells; 4000 objects
4000 29764 20714 336 483
3000 25959 19296 385 518
2000 21598 16075 463 622
1000 13230 9504 756 1052
400 7619 5116 1313 1955

When analyzing the calculation times of the hybrid parallel algorithm, notice
that the calculation times for N = 200, with higher ant density values, tend to be
closer to four times the calculation time for N = 100, with the same ant density
values. For N = 200 with lower ant density values, there are less ants to iterate
over, and the calculation times are far less than the expected value of four times the
calculation time for N = 100, with the same density values; refer to Figure 4.31.
This is because the most computationally expensive part of the algorithm is per-
formed in parallel, while the sequential part of the algorithm will only conditionally
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Figure 4.31: Hybrid parallel LF algorithm calculation times.

pick up or drop objects and move ants to new locations. Thus, if the number of
ants is less than or equal to the number of GPU processing cores, the probabili-
ties will be calculated simultaneously. If there are more ants than the number of
GPU processing cores, each core will start processing more ants, thus leading to an
increase in the calculation time constant.

The time complexity of the ant clustering CA is O(N2) as discussed in Sec-
tion 4.2.3. Since the hybrid parallel implementation processes all the ants sequen-
tially in the second part of the algorithm and since the GPU processing resources
stay constant, the growth in calculation time is expected to be quadratic as the
value of N increases.

The results for the fully parallel LF algorithm implementation are given in Ta-
ble 4.20. The time taken to calculate 10 000 generations is signi�cantly longer than
the sequential or hybrid parallel implementations. This is because threads with a
higher thread ID must scan through a larger portion of the ants, to check whether
other ants want to move to the same location. This measure to prevent collisions,
along with the random number generation performed on the GPU, slows the fully
parallel LF algorithm down signi�cantly. Another problem that occurs because
of the measure to prevent collisions is that the clustering of objects, for a higher
density of ants, is also negatively impacted. Since there is a higher probability that
two or more ants want to move to the same location, less ants will ultimately be
allowed to move on the grid; refer to Figure 4.32

A lower ant density results in a faster calculation time as is expected, although
the di�erence in calculation times is small. Notice that the calculation time for
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Table 4.20: Results for ant clustering fully parallel LF algorithm experiments.

Calculation time (msecs) Generations per second
Ants Computer A Computer B Computer A Computer B

1002 cells; 1000 objects
1000 129219 60278 77 166
750 116732 55659 86 180
500 112431 51969 89 192
250 98580 45719 101 219
100 72427 33682 138 297

2002 cells; 4000 objects
4000 283316 96812 35 103
3000 176143 86814 57 115
2000 151944 71703 66 139
1000 128505 60135 78 166
400 100891 49033 99 204

(a) Unclustered (b) Clustered

Figure 4.32: Fully parallel LF algorithm performed with an ant density of 1.00 on a
100× 100 size grid.

N = 200 is between 1.32 and 1.61 times the calculation time for N = 100. A
quadratic time increase is expected since the time complexity is O(N2), but for
smaller values of N , more ants are processed simultaneously. As N increases, the
calculation time will tend towards a quadratic time increase, since the number
of ants processed simultaneously stays constant, while the number of ants to be
processed increases quadratically.
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4.7 Parallel implementations: A4C

In this subsection the parallel implementations of the A4C for the ant clustering
CA are considered.

4.7.1 A4C parallel code extracts

For the A4C, two parallel algorithms are also proposed to process the CA, which
are similar to the parallel algorithms used for the LF algorithm. The �rst par-
allel algorithm is also a hybrid parallel algorithm, encompassed in the function
gridNextStatePARhybrid() of the derived Ant class in Listing B.22. The part
of the algorithm performed on the GPU calculates the �tness of each ant; see
Listing B.20. The activation probability of an ant is calculated with the function
Ant_ActPrb_ApT(); see Listing B.23.

Once the activation probabilities have been calculated and the data is sent back
to the main memory, the sequential part of the algorithm continues to process each
ant to determine whether an ant must sleep, or wake up and move.

The second parallel algorithm is performed exclusively on the GPU and is also
a fully parallel algorithm. The fully parallel A4C is identical to the function
Ant_Move_ApT() given in Listing B.16. As with the fully parallel LF algorithm,
collisions need to be eliminated. Thus, each thread checks if a thread with a lower
thread ID wants to move its ant to the same location, in which case the current
thread will not move its ant.

The parallel A4C algorithms also use the ant-per-thread segmentation method.

4.7.2 A4C parallel experiment results

The results for the hybrid parallel A4C implementation are given in Table 4.21.
The hybrid parallel method only calculates the activation probability of each ant
on the GPU, while the locations that the ants are moved to are calculated in the
sequential part of algorithm. Therefore the ant clustering performed by the hybrid
parallel implementation does not di�er from the sequential A4C implementation;
only the calculation times do.
The calculation times di�er depending on the number of ants, as expected. How-
ever, the di�erence in calculation times are smaller than for the sequential A4C im-
plementation. For a smaller number of ants (for N = 100), the calculation times
tend to be closer. For a larger number of ants (for N = 200), the di�erence in
calculation times is greater. For a smaller number of ants, more activation proba-
bility values are simultaneously calculated, than for a larger number of ants; refer
to Figure 4.33.
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Table 4.21: Results for ant clustering hybrid parallel A4C experiments.

Calculation time (msecs) Generations per second
Ants Computer A Computer B Computer A Computer B

1002 cells
2000 4679 2899 2137 3450
1000 3948 2385 2533 4192
500 3600 2153 2778 4646

2002 cells
8000 36588 24923 273 401
4000 10395 5519 962 1812
2000 7085 4468 1411 2238

Figure 4.33: Hybrid parallel A4C calculation times.

The time complexity of the hybrid parallel function is the same as the sequential
A4C implementation. Although the �rst part of the hybrid parallel function pro-
cesses ants simultaneously, the number of ants that can be processed is still a �xed
number, which depends on the number of processing cores on the GPU. Thus, for
larger values of N , the calculation times of the hybrid parallel function will grow
quadratically, since the time complexity is O(N2).

The results for the fully parallel A4C implementation are given in Table 4.22. As
with the fully parallel LF algorithm implementation, the calculation times for the
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fully parallel A4C implementation are far greater than the sequential or hybrid
parallel implementations.

Table 4.22: Results for ant clustering fully parallel A4C experiments.

Calculation time (msecs) Generations per second
Ants Computer A Computer B Computer A Computer B

1002 cells
2000 148063 69583 68 144
1000 127855 59550 78 168
500 113089 51941 88 193

2002 cells
8000 510765 139303 20 72
4000 273069 94351 37 106
2000 151592 70660 66 142

Because of the need to compensate for potential collisions, and since random
numbers (needed to measure the activation probabilities against) are generated
on the GPU, the fully parallel A4C implementation does not perform well when
measured against the hybrid parallel implementation.

The fully parallel A4C implementation does however perform better clustering
than the fully parallel LF algorithm implementation. The A4C implementation is
1.36 seconds faster the LF algorithm implementation, for 1000 ants on a 100× 100
size grid; refer to Figure 4.34.

(a) Unclustered (b) Clustered

Figure 4.34: Fully parallel A4C implementation performed with an ant density of 0.10
on a 100× 100 size grid.
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As with the hybrid parallel A4C implementation, the time complexity of the
fully parallel A4C implementation is also O(N2), and the number of ants processed
simultaneously stays constant. Thus, as N increases, the calculation time of the
fully parallel A4C implementation will tend towards a quadratic time increase.

4.8 Sequential versus parallel experiment data

The sequential implementations for the ant clustering CA tend to perform better
than the proposed hybrid parallel implementations for both the LF algorithm and
the A4C.

The sequential LF algorithm implementation outperforms the hybrid parallel
LF algorithm implementation for all the experiments performed. However, as the
number of ants increases, the calculation time of the hybrid parallel implementa-
tion is closer to the sequential implementation; see Figure 4.35 and Figure 4.36.
The overhead of transferring the �tness values, calculated by the GPU, back to

Figure 4.35: LF algorithm: sequential and hybrid parallel calculation times forN = 100.

main memory hampers the overall performance of the hybrid parallel LF algorithm
implementation.

The fully parallel LF algorithm is between 7.2 and 73.3 times slower than the
sequential algorithm for Computer A, and between 4.4 to 44.2 for Computer B.
These values are dependent on the number of ants to be processed, where the se-
quential implementation is faster for less ants. The fully parallel LF algorithm
implementation also delivers poor object clustering, and this algorithm should not
be used for any form of ant clustering, since it does not have any bene�ts.

The sequential A4C implementation only outperforms the hybrid parallel A4C im-
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Figure 4.36: LF algorithm: sequential and hybrid parallel calculation times forN = 200.

plementation for N = 100 and a density value of 0.50, on Computer A. For all
the other experiments, the hybrid parallel A4C implementation outperforms the
sequential implementation. As with the LF algorithm, the number of ants to be
processed in�uences the calculation times. For a larger number of ants, the hybrid
parallel implementation tends to outperform the sequential implementation by a
greater margin, whereas if the number of ants is smaller, the sequential implemen-
tation calculation times tend to be closer to the hybrid parallel implementation
calculation times; see Figure 4.37 and Figure 4.38.

Figure 4.37: A4C: sequential and hybrid parallel calculation times for N = 100.
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Figure 4.38: A4C: sequential and hybrid parallel calculation times for N = 200.

The fully parallel A4C implementation is outperformed by the sequential A4C im-
plementation. For Computer A, the fully parallel implementation is between 8.6
and 52.1 times slower than the sequential implementation, and between 2.5 and
20.3 for Computer B. Again, the number of ants to be processed has an in�uence
on the di�erence in calculation times. Although the fully parallel A4C implemen-
tation performs better ant clustering than its LF algorithm counterpart, it is still
slower than the sequential implementation by a signi�cant margin, and therefore
should not be used.

Ultimately, from the experiments performed on the ant clustering CA, it is clear
that the A4C is better than the LF algorithm, both in terms of calculation time
and object clustering. From the experimental data it is also found that it is better
to use a sequential implementation for clustering when the ant density is far lower
than the number of cells. However, for a larger grid size and for a higher density of
ants, it is better to use the hybrid parallel implementation to perform the cluster-
ing, since the in�uence of the overhead of transferring data to and from the GPU
for each generation becomes less.

5 GPU performance

In this section the e�ectiveness of the GPU is discussed by analyzing the perfor-
mance of the di�erent segmentation methods performed on the GPU, against the
sequential implementations that are performed on the CPU. The results of the dif-
ferent CA are compared according to the potential speed up for the segmentation
methods used, and when it is bene�cial to use the GPU over a sequential rule
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application function.

5.1 Comparison of results

For the Game of Life and clay deformation CA, the rule application functions are
applied to each cell in the CA grid, whereas for the ant clustering CA the rule
application function is only applied to a subset of the CA grid, where the ants
are located. For both the Game of Life and clay deformation CA, the grid-per-
thread, row-per-thread, and cell-per-thread parallel data segmentation methods are
implemented. For the ant clustering CA, an ant-per-thread segmentation method,
which is equivalent to the cell-per-thread segmentation method, is implemented.

For the grid-per-thread segmentation method, the Game of Life implementa-
tion performs better than the clay deformation implementation when comparing
the di�erence between the speed up of the sequential implementations over the
parallel implementations. For Computer A, the Game of Life grid-per-thread im-
plementation is between 3 and 4 times more e�ective than the clay deformation
grid-per-thread implementation, and between 2 and 3 times for Computer B. The
GPU delivers a better e�ciency for rule application functions that only require
conditional checks and integer operations, as is the case with the rule applica-
tion function for the Game of Life CA. For the clay deformation rule application
function, where �oating point operations are required, the GPU delivers slower
performance.
This trend is also seen when comparing the row-per-thread and cell-per-thread
segmentation methods for the Game of Life and clay deformation CA; refer to
Figure 4.39. The di�erent row-per-thread implementations for the Game of Life
CA start to provide a speed up over the sequential implementation for smaller grid
sizes than in the case of the clay deformation CA. For the �rst row-per-thread
method, the Game of Life implementation starts to provide a speed up over the
sequential implementation for N ≥ 296 for Computer A, and for N ≥ 211 for
Computer B. For the clay deformation CA, the �rst row-per-thread implementation
does not provide a speed up over the sequential implementation for the experiments
performed on Computer A. For Computer B, the �rst row-per-thread method only
starts to provide a speed up for N ≥ 1250. When comparing the e�ectiveness of the
Game of Life and the clay deformation implementations, the �rst row-per-thread
implementation for Game of Life is between 3 and 5 times more e�ective than the
clay deformation implementation for Computer A, and between 2 and 5 times for
Computer B.

In the case of the second row-per-thread method, the Game of Life CA im-
plementation starts to provide a speed up over the sequential implementation for
N ≥ 296 for Computer A, and for N ≥ 136 for Computer B. In the case of the
clay deformation CA, the second row-per-thread implementation does not provide
a speed up over the sequential implementation for the experiments performed on
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(a) Computer A

(b) Computer B

Figure 4.39: Parallel segmentation methods: speed ups for the Game of Life CA mea-
sured against the speed ups for the clay deformation CA.

Computer A. For Computer B, the second row-per-thread method only starts to
provide a speed up for N ≥ 1020. When comparing the e�ectiveness of the Game
of Life and the clay deformation implementations, the second row-per-thread im-
plementation is between 4 and 5 times more e�ective than the clay deformation
implementation for Computer A, and is about 5 times more e�ective for Com-
puter B.

For the cell-per-thread implementation for the Game of Life CA, a speed up is
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noticed for smaller grid sizes than for the clay deformation implementation. The
cell-per-thread implementation for the Game of Life CA starts to outperform the
sequential implementation for N ≥ 13 for Computer A, and N ≥ 15 for Com-
puter B. For the clay deformation cell-per-thread implementation, a speed up is
only noticed for N ≥ 76 for Computer A, and N ≥ 64 for Computer B. When
comparing the e�ectiveness of the Game of Life and the clay deformation imple-
mentations, the cell-per-thread implementation is about 3 times more e�ective than
the clay deformation implementation for Computer A, and is between 3 and 5 times
for Computer B.

For both the Game of Life and clay deformation CA, the cell-per-thread segmen-
tation method gives the best performance of all four segmentation methods used,
since all of the CUDA cores are utilized. Figure 4.40 shows the speed up of the
cell-per-thread method over the other segmentation methods.

For the ant clustering CA, the hybrid parallel implementations of the LF al-
gorithm only provides a speed up over the sequential implementation when the
number of ants is greater or equal to 3000 on Computer B, where the speed up
factor is about 1.02. For Computer A, no speed up is noticed for the experiments
performed. For the hybrid parallel implementation of the A4C, a speed up over the
sequential implementation is noticed on Computer A, when the number of ants is
greater or equal to 1000. For Computer B, a speed up is noticed when the number
of ants is greater or equal to 500. The speed up factor for Computer A is between
1.05 and 1.74, and is between 1.19 and about 4 for Computer B.

When comparing the hybrid parallel implementations for the ant clustering CA
with the cell-per-thread implementations used for both the Game of Life and clay
deformation CA, one can see a signi�cant increase in performance gained when the
work size is increased. For the ant clustering CA, the hybrid parallel implementa-
tions provides a speed up over the sequential implementations when the number of
ants pass a certain threshold (depending on the algorithm used) and the speed up
factor increases as the number of ants increases. This trend is also noticed for the
Game of Life and clay deformation CA.

The fully parallel implementations for the LF algorithm and the A4C tend to
deliver equal performance. However, since the A4C tends to performs less calcula-
tions than the LF algorithm, the sequential implementation of the A4C outperforms
the fully parallel implementation by a greater margin than in the case of the LF
algorithm.

5.2 Parallel over sequential

From the results discussed above, it is clear that a sequential implementation of a
CA rule application function can provide better performance than even the fastest
of the parallel implementations, the cell-per-thread data segmentation method,
but only tends to occur for small grid sizes. Depending on the CA and the com-
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(a) Game of Life

(b) Clay deformation

Figure 4.40: Cell-per-thread method speed up over the grid-per-thread and row-per-
thread methods for the Game of Life and clay deformation CA.

putational complexity of its rule application function, there seems to be a certain
threshold on the grid size which dictates when a parallel rule application function
will start to outperform the sequential rule application function. This threshold
is also dependent on the number of cells processed simultaneously, the number of
cells that can be processed per second by the computational device (the GPU or
the CPU), and any form of overhead.
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A sequential implementation only processes one cell at a time. However, the
CPU has a higher clock speed than the GPU, and thus more cells can be processed
per second for a single thread on a CPU. There is also no additional overhead
required for copying data and assigning sections of the data to processing cores,
as is the case with all the parallel implementations. A parallel implementation
processes more than one cell simultaneously, depending on the amount of processing
cores used. However, cells are processed with a lower clock speed. Thus, if the
number of cells processed simultaneously do not compensate for any overhead and
less throughput per thread because of a slower clock speed, the CPU will always
outperform the parallel implementation, as seems to be the case with the grid-per-
thread implementations. For a parallel implementation to produce a speed up over
the sequential implementation, the number of cells processed simultaneously must
compensate for any overhead and the lower clock speed of the GPU.

The sequential calculation time Ts for a grid size N
2 is de�ned as Ts =

N2

Cs
, where

Cs is the number of cells processed per second on the CPU. The parallel calculation
time Tp for a grid size N2 is de�ned as Tp =

N2

Cp
+ Op, where Cp is the number of

cells processed per second on the GPU and Op is the additional overhead of the

parallel implementation. At the threshold, where Ts = Tp, we get
N2

Cs
= N2

Cp
+ Op.

Writing this formula as a function of the grid size N2 we get:

N2 = Op
CpCs

(Cp − Cs)
(5.1)

For the parallel implementation, the number of cells processed per second is equal to
the number of cells cp processed per second by k cores; thus Cp = kcp. Substituting
the alternative representation for Cp into Equation 5.1 we get:

N2 = Op
kcpCs

(kcp − Cs)
(5.2)

From this equation a formula for N is determined, where the parallel implementa-
tion starts to outperform the sequential implementation:

N = Op

√
kcpCs

(kcp − Cs)
(5.3)

Equation 5.3 is represented in terms of the number of GPU cores k, the number of
cells processed per GPU core per second, and the number of cells processed by the
CPU per second. While the number cells processed per second stays constant, the
number of GPU cores does change depending on the grid size and the segmentation
method used. For the cell-per-thread segmentation method, all cores are used when
the number of cells, cell blocks, or ants is equal to the number of cores.

The overhead Op has a large in�uence on the value of N , depending on the
amount of data that has to be copied and assigned to processing cores on the
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GPU. Additionally, the di�erence in calculation time between the CPU and GPU,
for certain operations such as �oating point operations, also in�uences the overall
calculation time. For example, the cell-per-thread implementation for the Game
of Life CA on Computer B, starts to outperform the sequential implementation
for N = 15 or for 225 cells. However, the cell-per-thread implementation for the
clay deformation CA only starts to outperform the sequential implementation for
N = 64 or for 4096 cells. Also note that for the Game of Life implementation,
only 225 of the 2304 processing cores are used, in contrast to the 1024 cores used
by the clay deformation CA. In order for the GPU to produce a speed up over
the sequential implementation for the clay deformation CA, 4.55 times more GPU
processing cores must be used than in the case of the Game of Life implementation.

In this chapter, the performance of a traditional sequential rule application function,
for three di�erent CA, have been measured against di�erent parallel rule application
functions. The following chapter concludes this thesis.
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Chapter 5

Conclusion

1 Overview

For this thesis a CA framework was developed that is based on CUDA. The frame-
work was applied to investigate the potential performance increase gained when
using a GPU for parallel rule application algorithms based on di�erent data segmen-
tation methods, for di�erent CA. The performance of the parallel implementations
was measured against the performance of traditional sequential rule application
functions of the CA implemented with the framework.

This chapter concludes the thesis by discussing the overall �ndings of the exper-
iments performed and discussed in Chapter 4, and by discussing potential future
work.

2 Findings

From the experiments performed on the Game of Life, clay deformation and ant
clustering CA, there is a clear indication that the GPU does provide a speed up
over the traditional sequential implementations of these CA. The speed up that is
produced does however depend on the amount of GPU processing resources used,
the complexity of the rule application function of the CA, and the grid size of the
CA.

When utilizing more GPU processing resources, the speed up that is gained
by the parallel implementation increases dramatically. The cell-per-thread data
segmentation method, which uses all of the GPU processing resources (unless the
number of cells are less than the number of processing cores), provides the best
performance of the segmentation methods. This is the case for both the Game of
Life and clay deformation CA, which is an expected outcome since the GPU can
process more cells per instance when using all of its processing resources. When
restricting the utilization of GPU processing resources, the GPU will most likely
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not provide a speed up over the sequential implementation, as is the case with the
grid-per-thread segmentation method. However, as more GPU resources are used,
as is done with the row-per-thread segmentation methods, the GPU does produce
a speed, but requires a larger grid size than is required for the cell-per-thread
segmentation method.

The rule application functions of the clay deformation and ant clustering CA
are more complex than the Game of Life rule application function. Thus, e�cient
parallel implementations such as the cell-per-thread or ant-per-thread segmenta-
tion methods only produce a speed up over the sequential implementation when
more cells must be processed. The overhead of transferring data to and from the
GPU, and assigning cells to processing cores also in�uence the performance of the
parallel implementations. When the grid size is large, the in�uence of transferring
data will become less signi�cant since the sequential implementation only processes
one cell at a time, whereas the parallel implementations process multiple cells si-
multaneously.

Finally, a parallel implementation is not necessarily the best solution for any CA,
as is the case with the ant clustering CA. For a fully parallel ant clustering rule
application function, compensation must be made for potential collisions. This
process slows the performance of the fully parallel implementation down signi�-
cantly (while using an ant-per-thread segmentation method), and the fully parallel
implementation does not provide any speed up over a sequential or hybrid parallel
implementations.

Ultimately, it was found that when using a GPU as a parallel processing platform
for CA, a programmer must utilize as much of the GPU processing resources as
possible, to produce the best possible speed up over a traditional sequential imple-
mentation of the CA. However, the programmer must be watchful of the grid size of
the CA, as the overhead of data transfer and assignment, as well as the complexity
of the rule application function of the particular CA does in�uence performance of
the parallel implementation.

3 Future work

For future work the framework implemented for this thesis can be extended to
test higher dimensional CA. As an example, an experiment can be conducted to
test whether a three-dimensional clay deformation CA delivers the same general
performance results for sequential and parallel algorithms.

Next, the performance di�erence between the parallel algorithms implemented
on the GPU for this thesis, can be measured against di�erent parallel algorithms
performed on the CPU. Although the CPU does not have the same number of cores
and cannot spawn the same number of threads as the more recent GPUs, the fact
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that the CPU has a higher clock speed than a GPU could have a signi�cant impact
on performance di�erence.

Finally, the CA framework can also be used as a foundation to investigate speci�c
real-time simulations such as general object deformation. Since this thesis con�rms
the advantage of using a parallel processing platform for CA rule application func-
tions, we can investigate how e�ciently the GPU simulates the deformation of, for
example a glass object in real time.
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Appendix A

History of GPU architectures

Current GPU architectures allow commercial users to harness the computational
ability of the GPU for all kinds of high-performance computing (HPC) projects.
The primary use of the GPU is beginning to diversify. Not only does it compute re-
alistic high resolution graphics, but it is also used in industry where data-parallelism
problems occur. In this addendum an overview of past graphics architectures is
given, followed by an analysis of the graphics pipeline (or rendering process) and
how concepts surrounding it were rethought, in order to allow general computation
on graphics hardware. Finally, a brief look into the GPU market-leading architec-
tures, in-use today, is given.

1 Early history

During the mid 1970s, GPUs were thought of as display devices. Vendors started
conceiving hardware designs around this time and some of the �rst display devices
were:

� the CDP 1861 (or Pixie) video chip, developed by RCA Corporation;

� the Television Interface Adapter (TIA) 1A, developed by Jay Miner and in-
tegrated into the Atari 2600 gaming console;

� the MC6845 developed by Motorola, Inc.; and

� the ANTIC LSI Colour/Graphics TIA developed by Atari, Inc. and integrated
into the Atari 400 gaming console [46].

These devices are only able to display low resolution images, some colour and
some monochromatic. Throughout the 1980s, display devices started expanding
into separate computational devices, linked to the host processor of a computer
through an expansion port.
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ATI Technologies Inc. (ATI) was founded in 1985, and started revolutionizing
graphics processing, on both the commercial and technological front. The Wonder
series was introduced in 1986/87 by ATI, providing higher resolution graphics at a
higher colour density. With each new release the processor clock speed and device
memory of the video card increased [62]. NVIDIA Corporation was founded in
1993, and introduced the NV1 chipset in 1995, which was incorporated into the
Diamond Edge 3D video card. The NV1 chipset was the �rst commercially sold
video processor that could render 3D graphics [9]. Later that same year, ATI
announced the ATI Rage chipset, which was their �rst graphics chipset that could
render 3D graphics. In 1996, ATI released the 3D RAGE I video card, utilizing the
ATI Rage chipset [46].

2 From rendering to computation

In order to render any graphics onto a display device, a programmer has to be
able to interface with the graphics processor. With the advent of graphics ren-
dering application programmer interfaces (APIs), this process was made simpler.
These APIs include libraries that help programmers interface with the di�erent
parts of the hardware rendering process, by relaying instructions and data to the
graphics processor. Two of the most notable modern graphics rendering APIs are
Silicon Graphics Inc.'s OpenGL (now managed by Khronos Group) and Microsoft's
Direct3D (a sub API of Microsoft DirectX).

In the early days of 3D rendering, around 1996, the process that was followed to
produce visuals, known as the graphics pipeline, was still in its infancy. Vertices,
used to describe objects in a scene to be rendered, were �rst processed by the CPU,
before the processed information was passed onto the graphics processor via the
Peripheral Component Interconnect (PCI) bus. The graphics processor would then
map colours and textures to the primitives (points, lines, triangles), generated by
the CPU. Before displaying frames on the display device, the graphics processor
�rst rasterizes the image or scene, which is the step where the image is mapped to
pixels [56].

The next generation of the graphics pipeline shifted all calculation to the graph-
ics processor, thus the CPU would only pass on scene data to the graphics processor.
Other than that, the general procedure that was followed, did not change. The Ac-
celerated Graphics Port (AGP) bus was also introduced around this time, which
increased the data throughput from the CPU to the graphics processor. It was also
around this time that NVIDIA introduced the term �GPU� for Graphics Processing
Unit.

The �rst two generations of graphics pipelines were also known as �xed function
pipelines. The graphics processors had dedicated engines to perform the sepa-
rate tasks in the pipeline, and these engines could only be used with prede�ned
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functions, as decided by the vendors, which were made accessible by the graphics
processing APIs [47]. A programmer was not able to introduce custom functions
and algorithms into the �xed function pipeline.

In 2001, with the introduction of NVIDIA's NV20 architecture and ATI's R200
architecture (among other vendors), the third generation graphics pipeline was
established. Limited programmability was made available by introducing vertex
shaders into the vector transform section of the pipeline. These shaders were pro-
grammable to a small extent, allowing the execution of basic program instructions,
such as basic arithmetic. With this advancement in graphical processing technology,
general purpose computation was made available [49]. However, it was di�cult to
do general computations, as data had to be represented as vertices, that the vertex
shaders would be able to understand.

Over the next �ve years, up until 2006, general advances were made to GPU ar-
chitectures. The most notable advancement was the introduction of pixel shaders;
similar to vertex shaders but introduced into the rasterize section of the graphics
pipeline. Pixel shaders, also known as programmable fragment processors, made
the graphics pipeline completely programmable. True conditionals, loops, and other
�ow-control mechanisms were slowly integrated into the pixel and vertex shaders,
as well as the ability to calculate primitives (longs and �oats) with higher precision.
Programmers were slowly gaining more freedom to perform more general calcula-
tions on the GPU, as well as increasing the visual quality of the graphics generated
by the GPU. However, the then current GPU architectures did still use di�er-
ent hardware engines to perform the work in the separate section of the graphics
pipeline. Because of this architectural design, calculations were not performed op-
timally, since there were generally more vertex shaders incorporated into the GPU
to perform vertex transform operation, and less pixel shaders to perform shading
and rasterizing operation. With these limitations in mind, and with GPGPU gain-
ing more interest in the world of HPC, GPU vendors set out to re-think the entire
GPU architecture [57].

3 Uni�ed shader architecture

In 2006, the main GPU vendors NVIDIA and ATI both, released a new GPU
architecture based on the uni�ed shader architecture design. This architectural
design is completely di�erent from the previous generations. The unique processor
engines of the previous generation of GPUs, designed to handle vertex, geometry,
and pixel shading operations have now essentially been combined. The new design
is a grid of uni�ed data-parallel �oating-point processors, also known as uni�ed
shaders or stream processors. A general enough instruction set is used to run all
the di�erent shader workloads [35]. Since 2006, the uni�ed shader architecture has
been the core design for all new GPU architectures.
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3.1 First uni�ed shader GPUs

ATI introduced the �rst GPU using uni�ed shader architecture, known as Xenos,
to the gaming console industry. This architecture was later introduced to the
desktop, with the arrival of the ATI R600 architecture. NVIDIA was the �rst to
introduced this GPU architectural design to the desktop PC, which is known as the
G8x architecture. ATI pursued graphical processing with their entrance into uni�ed
shader architecture era. Although this is also the case with NVIDIA, NVIDIA also
put a lot of focus into general computation. Thus, along with the NVIDIA G8x
architecture, Compute Uni�ed Device Architecture or CUDA was also introduced.

3.2 NVIDIA: Kepler

In 2012, NVIDIA launched the Kepler architecture as the successor to the Fermi
architecture. For the Kepler architecture the focus is shifted to performance e�-
ciency, and with the next generation streaming multiprocessors (SMX), NVIDIA
is able to deliver three times the performance per watt. The SMXs of the Kepler
architecture have 192 CUDA cores, which help to deliver increased performance
when compared to the SMs of the Fermi architecture, which only have 32 CUDA
cores per SM [36].

The GPUs of Computer A and Computer B, used to perform the experiments
for this thesis (refer to Chapter 4), are both based on the Kepler architecture.

3.3 AMD: GCN

After AMD had �nalized the acquisition of ATI in late 2006, AMD continued to
produce the famous Radeon GPUs of ATI. In 2012, AMD released the Graphics
Core Next (GCN) architecture as the successor to the TeraScale architecture. With
the GCN architecture, AMD also set out to increase GPU performance while reduc-
ing power consumption. AMD's GCN architecture is also their �rst design aimed
at general computing [2]. The GCN architecture, coupled with C++ AMP and
OpenCL, allow programmers to use AMD GPUs based on the GCN architecture
for general purpose computational tasks.
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Code listings

1 Game of Life

1.1 Sequential

Listing B.1: Extract from GoL.cpp � GoL::gridNextStateSEQ()

1 int neighbours = 0 ;
2 int s t a t e = 0 ;
3 auto t1 = high_reso lut ion_clock : : now ( ) ;
4
5 for ( int y = 0 ; y < dimy ; y++) {
6 for ( int x = 0 ; x < dimx ; x++) {
7 ne ighbours = Rules : : N_Moore(x , y,&gridm [ 0 ] , dimx , dimy ) ;
8 s t a t e = gridm [ y*dimx+x ] . g e tS ta t e ( ) ;
9
10 i f ( ( s t a t e == 1) && ( neighbours < 2 | | ne ighbours > 3) )
11 // l i v e c e l l i s dead in next gene ra t i on
12 gridm_temp [ y*dimx+x ] . updateState ( 0 ) ;
13 else i f ( ( s t a t e == 0) && ( neighbours == 3))
14 //dead c e l l becomes a l i v e in next gene ra t i on
15 gridm_temp [ y*dimx+x ] . updateState ( 1 ) ;
16 else

17 // c e l l r e t a i n s i t s cur r ent s t a t e in next gene ra t i on
18 gridm_temp [ y*dimx+x ] . updateState ( s t a t e ) ;
19 }
20 }
21 gr id−>copyGrid(&gridm [ 0 ] , &gridm_temp [ 0 ] ) ;
22
23 auto t2 = high_reso lut ion_clock : : now ( ) ;
24
25 durat ion<double , r a t i o <1, 1>> dbDuration ;
26 dbDuration = duration_cast<duration<double>>(t2 − t1 ) ;
27
28 // re turn time taken to c a l c u l a t e next s t a t e o f CA
29 return dbDuration . count ( )*1000 ;
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Listing B.2: Extract from StaticFunctions.cpp � Rules::N_Moore()

1 //Counter f o r number o f l i f e around a c e l l
2 int l i f e = 0 ;
3
4 // indexes −− out o f bound row and column indexes
5 //Row:
6 int xneg = Rules : : mod_n(x−1,dimx ) , xpos = (x+1)%dimx ;
7 //Column :
8 int yneg = Rules : : mod_n(y−1,dimy ) , ypos = (y+1)%dimy ;
9
10 //Row above Ce l l in ques t i on
11 i f ( g r id [ yneg*dimx+xneg ] . g e tS ta t e ( ) != 0) l i f e ++;
12 i f ( g r id [ yneg*dimx+x ] . g e tS ta t e ( ) != 0) l i f e ++;
13 i f ( g r id [ yneg*dimx+xpos ] . g e tS ta t e ( ) != 0) l i f e ++;
14
15 //Row in−l i n e with Ce l l in ques t i on
16 i f ( g r id [ y*dimx+xneg ] . g e tS ta t e ( ) != 0) l i f e ++;
17 i f ( g r id [ y*dimx+xpos ] . g e tS ta t e ( ) != 0) l i f e ++;
18
19 //Row below Ce l l in ques t i on
20 i f ( g r id [ ypos*dimx+xneg ] . g e tS ta t e ( ) != 0) l i f e ++;
21 i f ( g r id [ ypos*dimx+x ] . g e tS ta t e ( ) != 0) l i f e ++;
22 i f ( g r id [ ypos*dimx+xpos ] . g e tS ta t e ( ) != 0) l i f e ++;
23
24 return l i f e ;

1.2 Parallel

Listing B.3: Extract from StaticFunctions.cu � __global__ GoL_Stencil_GpT()

1 //Divide number o f rows in the CA between number o f SMs
2 int range = ( s i z e /smc ) ;
3 i f ( s i z e%smc != 0) range ++;
4 //Determine SM' s row s t a r t and end indexes
5 int row_start = blockIdx . x * range ;
6 int row_end = row_start + range ;
7 i f ( row_end > s i z e ) row_end = s i z e ;
8
9 //Column : l e f t and r i gh t column indexes :
10 int xneg = 0 , xpos = 0 , x ;
11 //Row: upper and lower row indexes :
12 int yneg = 0 , ypos = 0 , y ;
13
14 //Counter f o r number o f l i f e around a c e l l
15 int l i f e = 0 ;
16 int s t a t e = 0 ;
17
18 for ( y = row_start ; y < row_end ; y++) {
19 //Reset next c e l l ' s neighborhood row va r i a b l e s
20 yneg = (y+s i z e −1)%s i z e , ypos = (y+1)%s i z e ;
21 for ( x = 0 ; x < s i z e ; x++) {
22 //Reset next c e l l ' s neighborhood column va r i a b l e s
23 xneg = (x+s i z e −1)%s i z e , xpos = (x+1)%s i z e ;
24 //Get c e l l ' s l i v e neighbour count and i t s s t a t e
25 l i f e = N_Moore_gpu(d_in , x , xneg , xpos , y , yneg , ypos , s i z e ) ;
26 s t a t e = d_in [ y* s i z e+x ] . s t a t e ;
27 //Apply r u l e s to cur rent c e l l
28 GoL_rules_gpu (d_out , x , y , l i f e , s ta te , s i z e )
29 }
30 }
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Listing B.4: Extract from StaticFunctions.cu � __global__ GoL_Stencil_RpT()

1 //Mapping from a thread in i t s b lock ( in the g r id ) ,
2 // to a row in the Ce l l u l a r Automaton
3 int y = blockIdx . x*blockDim . x + threadIdx . x ;
4
5 //Check i f the mapping i s out o f the gr id−bounds
6 i f ( y >= s i z e ) return ;
7
8 //Counter f o r number o f l i f e around a c e l l
9 int l i f e = 0 ;
10 int s t a t e = 0 ;
11
12 //Column : l e f t and r i gh t column indexes :
13 int xneg = 0 , xpos = 0 ;
14 //Row: upper and lower row indexes :
15 int yneg = (y+s i z e −1)%s i z e , ypos = (y+1)%s i z e ;
16
17 for ( int x = 0 ; x < s i z e ; x++) {
18 //Reset next c e l l ' s neighborhood column va r i a b l e s
19 xneg = (x+s i z e −1)%s i z e , xpos = (x+1)%s i z e ;
20 //Get c e l l ' s l i v e neighbour count and i t s s t a t e
21 l i f e = N_Moore_gpu(d_in , x , xneg , xpos , y , yneg , ypos , s i z e ) ;
22 s t a t e = d_in [ y* s i z e+x ] . s t a t e ;
23 //Apply r u l e s to cur rent c e l l
24 GoL_rules_gpu (d_out , x , y , l i f e , s ta te , s i z e )
25 }

Listing B.5: Extract from StaticFunctions.cu � __global__ GoL_Stencil_CpT()

1 //Mapping from a thread in i t s b lock ( in the g r id ) ,
2 // to a c e l l in the Ce l l u l a r Automaton
3 int x = blockIdx . x*blockDim . x + threadIdx . x ;
4 int y = blockIdx . y*blockDim . y + threadIdx . y ;
5
6 //Check i f the mapping i s out o f the gr id−bounds
7 i f ( x >= s i z e ) return ;
8 i f ( y >= s i z e ) return ;
9
10 //Counter f o r number o f l i f e around a c e l l
11 int l i f e = 0 ;
12 int s t a t e = 0 ;
13
14 //Column : l e f t and r i gh t column indexes :
15 int xneg = (x+s i z e −1)%s i z e , xpos = (x+1)%s i z e ;
16 //Row: upper and lower row indexes :
17 int yneg = (y+s i z e −1)%s i z e , ypos = (y+1)%s i z e ;
18
19 //Get c e l l ' s l i v e neighbour count and i t s s t a t e
20 l i f e = N_Moore_gpu(d_in , x , xneg , xpos , y , yneg , ypos , s i z e ) ;
21 s t a t e = d_in [ y* s i z e+x ] . s t a t e ;
22 //Apply r u l e s to cur rent c e l l
23 GoL_rules_gpu (d_out , x , y , l i f e , s ta te , s i z e )

Listing B.6: Extract from StaticFunctions.cu � __device__ GoL_Rules_GPU()

1 //Update output array with new c e l l s t a t e s
2 i f ( s t a t e == 1 && ( l i f e < 2 | | l i f e > 3) )
3 d_out [ y*dimx+x ] . s t a t e = 0 ;
4 else i f ( s t a t e == 0 && l i f e == 3)
5 d_out [ y*dimx+x ] . s t a t e = 1 ;
6 else d_out [ y*dimx+x ] . s t a t e = d_in [ y*dimx+x ] . s t a t e ;
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2 Clay deformation

2.1 Sequential

Listing B.7: Extract from clay.cpp � Clay::gridNextStateSEQ()

1 //Perform p la t push opera t i on
2 pushPlate ( ) ;
3
4 //Get handle on two c e l l u l a r g r i d s
5 auto t1 = std : : chrono : : h igh_reso lut ion_clock : : now ( ) ;
6
7 //Test f o r s t a b i l i t y
8 bool s t ab l e = fa l se ;
9 // Trans i t i on step counter
10 int t rans = 0 ;
11 int r0 , r1 , c0 , c1 ;
12
13 while ( ! s t ab l e ) {
14 s t ab l e = true ;
15 for ( int y = 0 ; y < dimy ; y+=2) {
16 for ( int x = 0 ; x < dimx ; x+=2) {
17 //Determine Margolus neighborhood f o r c e l l
18 // I f t r a n s i t i o n step i s even :
19 i f ( t rans%2==0) {
20 r0 = y ; c0 = x ;
21 // Spec i f y y−dimension b a r r i e r
22 i f ( ( y+1) < dimy ) r1 = y+1;
23 else r1 = r0 ;
24 // Spec i f y x−dimension b a r r i e r
25 i f ( ( x+1) < dimx ) c1 = x+1;
26 else c1 = c0 ;
27 }
28 // I f t r a n s i t i o n step i s odd
29 else {
30 r1 = y ; c1 = x ;
31 // Spec i f y y−dimension b a r r i e r
32 i f ( ( y−1) < 0) r0 = r1 ;
33 else r0 = y−1;
34 // Spec i f y x−dimension b a r r i e r
35 i f ( ( x−1) < 0) c0 = c1 ;
36 else c0 = x−1;
37 }
38 i f ( Rules : : ru l e s_c lay ( c0 , c1 , r0 , r1 ,&gridm [ 0 ] , mass_thresh , alpha , dimx)==fa l se )
39 s t ab l e = fa l se ;
40 }
41 }
42 // gr id−>pr intGr id ( ) ;
43 t rans++;
44 i f ( t rans > 100) break ;
45 }
46 auto t2 = std : : chrono : : h igh_reso lut ion_clock : : now ( ) ;
47
48 std : : chrono : : durat ion<double , s td : : r a t i o <1, 1>> dbDuration ;
49 dbDuration = std : : chrono : : duration_cast<std : : chrono : : durat ion<double>>(t2 − t1 ) ;
50
51 return dbDuration . count ( )* 1000 ;
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Listing B.8: Extract from Rules.cpp � Rules::rules_clay()

1 //Test i f we are only working with one c e l l
2 i f ( x0==x1 && y0==y1 ) {
3 i f ( g r id [ y0*dimx+x0 ] . getMass ( ) > thresh ) return fa l se ;
4 else return true ;
5 }
6 int to t = (1+x1−x0)*(1+y1−y0 ) ;
7 int unSt = 0 ; int i s S t = 0 ;
8
9 f loat deltaM = 0 . 0 ;
10 f loat cel lM = 0 . 0 ;
11 f loat subM = 0 . 0 ;
12
13 for ( int r = y0 ; r <= y1 ; r++)
14 for ( int c = x0 ; c <= x1 ; c++) {
15 cel lM = gr id [ r *dimx+c ] . getMass ( ) ;
16 //Test f o r over−burdened c e l l s
17 i f ( ce l lM > thresh ) {
18 subM = cel lM * alpha ;
19 deltaM += subM ;
20 unSt++;
21 } else i f ( g r id [ r *dimx+c ] . s t a t e != 2) i s S t++;
22 else i f ( g r i d [ r *dimx+c ] . s t a t e == 2) tot−−;
23 }
24 // I f a l l c e l l s are unstab le re turn f a l s e ;
25 i f ( unSt == tot ) return fa l se ;
26 // Else i f a l l c e l l s are s t ab l e re turn true ;
27 else i f ( i s S t == tot ) return true ;
28
29 //ELSE some c e l l s are s t ab l e and some not −− d i s t r i b u t e mass
30
31 //Boolean to r ep r e s en t s t a t e o f b lock being proce s s ed
32 bool block_stab le = true ;
33 f loat addM = deltaM / i s S t ;
34
35 for ( int r = y0 ; r <= y1 ; r++)
36 for ( int c = x0 ; c <= x1 ; c++) {
37 cel lM = gr id [ r *dimx+c ] . getMass ( ) ;
38 i f ( ce l lM > thresh ) {
39 subM = cel lM * alpha ;
40 cel lM −= subM ;
41 g r id [ r *dimx+c ] . updateMass ( cel lM ) ;
42 i f ( ce l lM > thresh ) b lock_stab le = fa l se ;
43 }
44 else {
45 cel lM += addM;
46 i f ( g r id [ r *dimx+c ] . s t a t e != 2) {
47 g r id [ r *dimx+c ] . updateMass ( cel lM ) ;
48 g r id [ r *dimx+c ] . s e t ( c , r , 1 ) ;
49 }
50 i f ( ce l lM > thresh ) b lock_stab le = fa l se ;
51 }
52 }
53
54 return block_stab le ;
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2.2 Parallel

Listing B.9: Extract from StaticFunctions.cu � __global__ Clay_Stencil_GpT()

1 //Divide the number o f rows in the CA between the number o f SMs
2 int range = dimy/smc ;
3 i f ( dimy%smc != 0) range ++;
4 //Determine SMs row s t a r t index
5 int row_start = blockIdx . x * range ;
6 int row_end = row_start + range ;
7 i f ( row_end > dimy ) row_end = dimy ;
8
9 int r0 , r1 , c0 , c1 ;
10 bool s t ab l e = true ;
11 d_out [ b lockIdx . x ] = s t ab l e ;
12 for ( int y = row_start ; y < row_end ; y+=2) {
13 for ( int x = 0 ; x < dimx ; x+=2) {
14 //Determine Margolus neighborhood f o r c e l l .
15 // I f t r a n s i t i o n step i s even :
16 i f ( even ) {
17 r0 = y ; c0 = x ;
18 // Spec i f y y−dimension b a r r i e r
19 i f ( ( y+1) < dimy ) r1 = y+1;
20 else r1 = r0 ;
21 // Spec i f y x−dimension b a r r i e r
22 i f ( ( x+1) < dimx ) c1 = x+1;
23 else c1 = c0 ;
24 }
25 // I f t r a n s i t i o n step i s odd
26 else {
27 r1 = y ; c1 = x ;
28 // Spec i f y y−dimension b a r r i e r
29 i f ( ( y−1) < 0) r0 = r1 ;
30 else r0 = y−1;
31 // Spec i f y x−dimension b a r r i e r
32 i f ( ( x−1) < 0) c0 = c1 ;
33 else c0 = x−1;
34 }
35 s t ab l e = Clay_Stecil_opp (d_in , dimx , r0 , r1 , c0 , c1 , thresh , alpha ) ;
36 i f ( s t ab l e == fa l se )
37 d_out [ b lockIdx . x ] = fa l se ;
38 }
39 }

Listing B.10: Extract from StaticFunctions.cu � __global__ Clay_Stencil_RpT()

1 //X/Y−i ndexes f o r d_out index
2 int tx = blockIdx . x*blockDim . x + threadIdx . x ;
3 int ty = blockIdx . y*blockDim . y + threadIdx . y ;
4 // Fina l index to which to wr i t e bool va lue to in d_out
5 int outIdx = ty * blockDim . x + tx ;
6 //Y−dim stays f i x e d f o r thread :
7 int y = blockIdx . x*( blockDim . x*2) + ( threadIdx . x *2 ) ;
8
9 //Check i f the mapping i s out o f the gr id−bounds
10 i f ( y >= dimx ) return ;
11
12 int r0 , r1 , c0 , c1 ;
13
14 // I f t r a n s i t i o n step i s even :
15 i f ( even ) {
16 r0 = y ;
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17 // Spec i f y y−dimension b a r r i e r
18 i f ( ( y+1) < dimx ) r1 = y+1;
19 else r1 = r0 ;
20 } else { // I f t r a n s i t i o n step i s odd :
21 r1 = y ;
22 // Spec i f y y−dimension b a r r i e r
23 i f ( ( y−1) < 0) r0 = r1 ;
24 else r0 = y−1;
25 }
26 bool s t ab l e = true ;
27 d_out [ outIdx ] = s t ab l e ;
28 // Star t thread ' s work on i t s a s s i gned row
29 for ( int x = 0 ; x < dimx ; x = x+2) {
30 // I f t r a n s i t i o n step i s even :
31 i f ( even ) {
32 c0 = x ;
33 // Spec i f y x−dimension b a r r i e r
34 i f ( ( x+1) < dimx ) c1 = x+1;
35 else c1 = c0 ;
36 } else { // I f t r a n s i t i o n step i s odd :
37 c1 = x ;
38 // Spec i f y x−dimension b a r r i e r
39 i f ( ( x−1) < 0) c0 = c1 ;
40 else c0 = x−1;
41 }
42 s t ab l e = Clay_Stecil_opp (d_in , dimx , r0 , r1 , c0 , c1 , thresh , alpha ) ;
43 i f ( s t ab l e == fa l se )
44 d_out [ outIdx ] = fa l se ;
45 }

Listing B.11: Extract from StaticFunctions.cu � __global__ Clay_Stencil_CpT()

1 //Mapping from a thread in i t s b lock ( in the g r id ) ,
2 // to a c e l l in the Ce l l u l a r Automaton
3 int x = blockIdx . x*( blockDim . x*2) + ( threadIdx . x *2 ) ;
4 int tx = blockIdx . x*blockDim . x + threadIdx . x ;
5 int y = blockIdx . y*( blockDim . y*2) + ( threadIdx . y *2 ) ;
6 int ty = blockIdx . y*blockDim . y + threadIdx . y ;
7
8 //d_out index to wr i t e boolean value to
9 int outIdx = ty * blockDim . x + tx ;
10
11 //Check i f the mapping i s out o f the gr id−bounds
12 i f ( x >= dimx ) return ;
13 i f ( y >= dimx ) return ;
14
15 int r0 , r1 , c0 , c1 ;
16 bool s t ab l e = true ;
17
18 // I f t r a n s i t i o n step i s even :
19 i f ( even ) {
20 r0 = y ; c0 = x ;
21 // Spec i f y y−dimension b a r r i e r
22 i f ( ( y+1) < dimx ) r1 = y+1;
23 else r1 = r0 ;
24 // Spec i f y x−dimension b a r r i e r
25 i f ( ( x+1) < dimx ) c1 = x+1;
26 else c1 = c0 ;
27 }
28 // I f t r a n s i t i o n step i s odd :
29 else {
30 r1 = y ; c1 = x ;
31 // Spec i f y y−dimension b a r r i e r
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32 i f ( ( y−1) < 0) r0 = r1 ;
33 else r0 = y−1;
34 // Spec i f y x−dimension b a r r i e r
35 i f ( ( x−1) < 0) c0 = c1 ;
36 else c0 = x−1;
37 }
38 s t ab l e = Clay_Stecil_opp (d_in , dimx , r0 , r1 , c0 , c1 , thresh , alpha ) ;
39 d_out [ outIdx ] = s t ab l e ;

3 Ant clustering

3.1 Sequential

Listing B.12: Extract from antLFA.cpp � antLFA::gridNextStateSEQ()

1 int dx = grid−>dimx ; int dy = grid−>dimy ;
2
3 int temp_state = 0 ;
4 f loat r = 0 . 0 ;
5 f loat act_prb = 0 . 0 ;
6
7 Tuple retAgent ;
8
9 //Get handle on two c e l l u l a r g r i d s
10 auto t1 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
11
12 int x , y , a ;
13 for ( a = 0 ; a < antNum ; a++) {
14 x = agents [ a ] . x ; y = agents [ a ] . y ;
15 temp_state = gr id−>ge tCe l l S t a t e (x , y ) ;
16 //TEST FOR PICKUP
17 i f ( temp_state > 0 && agents [ a ] . s t a t e == 0) {
18 //Random r e a l number between ( 0 . . 1 ) ;
19 r = ( f loat ) rand ( ) / ( f loat ) (RAND_MAX) ;
20 // Ca lcu la te ant ' s a c t i v e p r obab i l i t y
21 act_prb = Rules : : ru l e s_ant_f i tne s s (x , y , gr id−>grid , dx , dy , alpha ) ;
22 act_prb = Rules : : ru les_ant_act ivate ( act_prb , beta , lambda ) ;
23
24 i f ( r <= act_prb ) {
25 //Pick up ob j e c t & c l e a r g r id c e l l :
26 agents [ a ] . s t a t e = gr id−>gr id [ y*dx+x ] . s t a t e ;
27 gr id−>gr id [ y*dx+x ] . s t a t e = 0 ;
28 agents [ a ] . mass = gr id−>gr id [ y*dx+x ] . mass ;
29 gr id−>gr id [ y*dx+x ] . mass = 0 . 0 ;
30 }
31 }
32 //TEST FOR DROP
33 else i f ( temp_state == 0 && agents [ a ] . s t a t e > 0) {
34 //Random r e a l number between ( 0 . . 1 ) ;
35 r = ( f loat ) rand ( ) / ( f loat ) (RAND_MAX) ;
36 // Ca lcu la te ant ' s a c t i v e p r obab i l i t y
37 act_prb = Rules : : ru l e s_ant_f i tne s s (x , y , gr id−>grid , dx , dy , alpha ) ;
38 act_prb = Rules : : rules_ant_drop ( act_prb , betaD ) ;
39 i f ( r <= act_prb ) {
40 //Drop ob j e c t & f i l l g r i d c e l l :
41 gr id−>gr id [ y*dx+x ] . s t a t e = agents [ a ] . s t a t e ;
42 agents [ a ] . s t a t e = 0 ;
43 gr id−>gr id [ y*dx+x ] . mass = agents [ a ] . mass ;
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44 agents [ a ] . mass = 0 . 0 ;
45 }
46 }
47 //MOVE ANT TO RANDOM LOCATION
48 retAgent = Rules : : Ant_move_LFA(x , y , gr id−>grid , dx ) ;
49 i f ( retAgent . x != −1) {
50 gr id−>gr id [ y*dx+x ] . s l e e p = fa l se ;
51 agents [ a ] . x = retAgent . x ;
52 agents [ a ] . y = retAgent . y ;
53 gr id−>gr id [ retAgent . y*dx+retAgent . x ] . s l e e p = true ;
54 }
55 }
56
57 auto t2 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
58
59 chrono : : durat ion<double , r a t i o <1, 1>> dbDuration ;
60 dbDuration = chrono : : duration_cast<chrono : : durat ion<double>>(t2 − t1 ) ;
61
62 return dbDuration . count ( )*1000 ;

Listing B.13: Extract from rules.cpp � Rules::rules_ant_fitness()

1 f loat f i t n e s s = 0 . 0 ;
2
3 // Var i ab l e s to compute neighborhood f i t n e s s
4 f loat sum = 0 . 0 ;
5 f loat dst = 0 . 0 ;
6
7 f loat a i = gr id [ y*dimx+x ] . mass ;
8 f loat a j = 0 ;
9
10 for ( int j = y−1; j <= y+1; j++) {
11 for ( int i = x−1; i <= x+1; i++) {
12 //Get s t a t e o f cur r ent ne ighbor
13 a j = gr id [mod_n( j , dimy )*dimx + mod_n( i , dimx ) ] . mass ;
14 //Check i f ne ighbor i s occupied and perform c a l c u l a t i o n
15 i f ( a j != 0 . 0 ) dst = 1 .0 − ( ( f loat ) abs ( a i − a j ) / alpha ) ;
16 else dst = 0 . 0 ;
17
18 sum += dst ;
19 }
20 }
21 // Fina l sum of neighborhood o f occupied c e l l
22 sum = sum * ( 1 . 0 / 9 . 0 ) ;
23 // F i tne s s i s maximum between ZERO and sum
24 f i t n e s s = max( ( f loat ) 0 . 0 , sum ) ;
25
26 return f i t n e s s ;
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Listing B.14: Extract from rules.cpp � Rules::rules_ant_pickup()

1 i f ( f i t n e s s == 0 . 0 ) return 1 . 0 ;
2 else return pow( beta / ( beta + f i t n e s s ) , 2 . 0 ) ;

Listing B.15: Extract from rules.cpp � Rules::rules_ant_drop()

1 i f ( f i t n e s s < beta ) return (2* f i t n e s s ) ;
2 else return 1 . 0 ;

Listing B.16: Extract from ant.cpp � Ant::gridNextStateSEQ()

1 int dx = grid−>dimx ; int dy = grid−>dimy ;
2
3 int temp_state = 0 ;
4 f loat r = 0 . 0 ;
5 f loat act_prb = 0 . 0 ;
6
7 Tuple retAgent ;
8
9 //Get handle on two c e l l u l a r g r i d s
10 auto t1 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
11
12 int x , y , a ;
13 for ( a = 0 ; a < antNum ; a++) {
14 x = agents [ a ] . x ; y = agents [ a ] . y ;
15 temp_state = gr id−>ge tCe l l S t a t e (x , y ) ;
16 i f ( temp_state > 0) {
17 //Random r e a l number between ( 0 . . 1 ) ;
18 r = ( f loat ) rand ( ) / ( f loat ) (RAND_MAX) ;
19 // Ca lcu la te ant ' s a c t i v e p r obab i l i t y
20 act_prb = Rules : : ru l e s_ant_f i tne s s (x , y , gr id−>grid , dx , dy , alpha ) ;
21 act_prb = Rules : : ru les_ant_act ivate ( act_prb , beta , lambda ) ;
22
23 i f ( r <= act_prb ) {
24 retAgent = Rules : : Ant_move_greedy (x , y , gr id−>grid , dx , alpha ) ;
25 i f ( retAgent . x != −1) {
26 agents [ a ] . x = retAgent . x ;
27 agents [ a ] . y = retAgent . y ;
28 }
29 }
30 }
31 }
32
33 auto t2 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
34
35 chrono : : durat ion<double , r a t i o <1, 1>> dbDuration ;
36 dbDuration = chrono : : duration_cast<chrono : : durat ion<double>>(t2 − t1 ) ;
37
38 return dbDuration . count ( )*1000 ;

Listing B.17: Extract from rules.cpp � Rules::rules_ant_activate()

1 i f ( f i t n e s s == 0 . 0 ) return 1 . 0 ;
2 else return pow( beta , lambda ) / (pow( beta , lambda ) + pow( f i t n e s s , lambda ) ) ;
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Listing B.18: Extract from rules.cpp � Rules::Ant_move_greedy()

1 bool movable = fa l se ;
2 // F i tne s s v e r i f y
3 f loat f i t n e s s = −1;
4 f loat ftemp = 0 . 0 ;
5
6 int s t a t e = gr id [ y*dim+x ] . s t a t e ;
7 f loat mass = gr id [ y*dim+x ] . mass ;
8
9 Tuple agent ; agent . x = −1; agent . y = −1;
10 int mi , mj ;
11
12 int z = 1 ;
13 // I t e r a t e o f a l l ne ighbours :
14 for ( int j = −1*z ; j <= z ; j=j+1) {
15 for ( int i = −1*z ; i <= z ; i=i +1) {
16 i f ( j != 0) {
17 //Check i f ne ighbor ing c e l l i s empty
18 i f ( g r id [mod_n(y+j , dim) * dim + mod_n(x+i , dim ) ] . s t a t e == 0) {
19 ftemp = ru l e s_ant_f i tne s s (mod_n(x+i , dim ) , mod_n(y+j , dim ) , gr id , dim ,
20 dim , alpha ) ;
21 i f ( ftemp > f i t n e s s ) {
22 f i t n e s s = ftemp ;
23 mi = x ; mj = mod_n(y+j , dim ) ;
24 agent . x = mi ; agent . y = mj ;
25 movable = true ;
26 }
27 }
28 }
29 }
30 }
31 //Check i f the re are no p o s i t i o n s to move to :
32 i f ( ! movable ) {
33 agent . x = −1; agent . y = −1;
34 return agent ;
35 } else { //Move ant to best l o c a t i o n
36 g r id [ mj * dim + mi ] . s t a t e = s t a t e ;
37 g r id [ mj * dim + mi ] . mass = mass ;
38 g r id [ y*dim+x ] . s t a t e = 0 ; g r id [ y*dim+x ] . mass = 0 . 0 ;
39 }
40 return agent ;

3.2 Parallel

Listing B.19: Extract from antLFA.cpp � antLFA::gridNextStatePARhybrid()

1 int dx = grid−>dimx ;
2
3 int temp_state = 0 ;
4 f loat r = 0 . 0 ;
5 f loat act_prb = 0 . 0 ;
6 Tuple retAgent ;
7
8 //Get handle on two c e l l u l a r g r i d s
9 auto t1 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
10
11 // Cal l GPU prep func t i on which i n i t i a t e s a c t i v a t e p r obab i l i t y c a l c u l a t i o n
12 Rules : : AntFitnessCUDA( gr id−>getGr idStar t ing Index ( ) , d_in , &agents [ 0 ] , d_out ,
13 byteCA , byteANT , dx , antNum , alpha , beta , betaD , lambda , true ) ;
14 int x , y , a ;
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15 for ( a = 0 ; a < antNum ; a++) {
16 x = agents [ a ] . x ; y = agents [ a ] . y ;
17 temp_state = gr id−>ge tCe l l S t a t e (x , y ) ;
18 //Get a c t i v a t e p r obab i l i t y
19 act_prb = agents [ a ] . f ;
20 //TEST FOR PICKUP
21 i f ( temp_state > 0 && agents [ a ] . s t a t e == 0) {
22 //Random r e a l number between ( 0 . . 1 ) ;
23 r = ( f loat ) rand ( ) / ( f loat ) (RAND_MAX) ;
24 i f ( r <= act_prb ) {
25 //Pick up ob j e c t & c l e a r g r id c e l l :
26 agents [ a ] . s t a t e = gr id−>gr id [ y*dx+x ] . s t a t e ;
27 gr id−>gr id [ y*dx+x ] . s t a t e = 0 ;
28 agents [ a ] . mass = gr id−>gr id [ y*dx+x ] . mass ;
29 gr id−>gr id [ y*dx+x ] . mass = 0 . 0 ;
30 }
31 }
32 //TEST FOR DROP
33 else i f ( temp_state == 0 && agents [ a ] . s t a t e > 0) {
34 //Random r e a l number between ( 0 . . 1 ) ;
35 r = ( f loat ) rand ( ) / ( f loat ) (RAND_MAX) ;
36 i f ( r <= act_prb ) {
37 //Drop ob j e c t & f i l l g r i d c e l l :
38 gr id−>gr id [ y*dx+x ] . s t a t e = agents [ a ] . s t a t e ;
39 agents [ a ] . s t a t e = 0 ;
40 gr id−>gr id [ y*dx+x ] . mass = agents [ a ] . mass ;
41 agents [ a ] . mass = 0 . 0 ;
42 }
43 }
44 i f ( agents [ a ] . s t a t e > 0) retAgent = Rules : : Ant_move_greedy_LFA(x , y , gr id−>grid ,
45 dx , alpha ) ;
46 else retAgent = Rules : : Ant_move_LFA(x , y , gr id−>grid , dx ) ;
47 i f ( retAgent . x != −1) {
48 gr id−>gr id [ y*dx+x ] . s l e e p = fa l se ;
49 agents [ a ] . x = retAgent . x ;
50 agents [ a ] . y = retAgent . y ;
51 gr id−>gr id [ retAgent . y*dx+retAgent . x ] . s l e e p = true ;
52 }
53 }
54 auto t2 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
55 chrono : : durat ion<double , r a t i o <1, 1>> dbDuration ;
56 dbDuration = chrono : : duration_cast<chrono : : durat ion<double>>(t2 − t1 ) ;
57
58 return dbDuration . count ( )*1000 ;

Listing B.20: Extract from StaticFunctions.cu � __global__ Ant_Fitness_ApT()

1 //Mapping from a thread to an ant
2 int a = blockIdx . x*blockDim . x + threadIdx . x ;
3
4 //Check i f the mapping i s out o f the l a t t i c e −bounds
5 i f ( a >= ants ) return ;
6
7 int x = d_ants [ a ] . x ; int y = d_ants [ a ] . y ;
8
9 f loat f i t = ru l e s_ant_f i tne s s (x , y , d_grid , dim , A) ;
10 d_ants [ a ] . f = f i t ;

Listing B.21: Extract from StaticFunctions.cu � __global__ Ant_LFAprob_ApT()

1 //Mapping from a thread to an ant
2 int a = blockIdx . x*blockDim . x + threadIdx . x ;
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3
4 //Check i f the mapping i s out o f the l a t t i c e −bounds
5 i f ( a >= ants ) return ;
6
7 int x = d_ants [ a ] . x ; int y = d_ants [ a ] . y ;
8 f loat f i t ;
9
10 i f ( d_grid [ y*dim+x ] . s t a t e > 0 && d_ants [ a ] . s t a t e == 0)
11 f i t = rules_ant_pckPrb ( d_ants [ a ] . f , beta ) ;
12 else i f ( d_grid [ y*dim+x ] . s t a t e == 0 && d_ants [ a ] . s t a t e > 0)
13 f i t = rules_ant_drpPrb ( d_ants [ a ] . f , betaD ) ;
14 d_ants [ a ] . f = f i t ;

Listing B.22: Extract from ant.cpp � ant::gridNextStatePARhybrid()

1 int dx = grid−>dimx ;
2
3 f loat r = 0 . 0 ;
4 f loat act_prb = 0 . 0 ;
5 Tuple retAgent ;
6
7 //Get handle on two c e l l u l a r g r i d s
8 auto t1 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
9
10 // Cal l GPU prep func t i on which i n i t i a t e s a c t i v a t e p r obab i l i t y c a l c u l a t i o n
11 Rules : : AntFitnessCUDA( gr id−>getGr idStar t ing Index ( ) , d_in , &agents [ 0 ] , d_out ,
12 byteCA , byteANT , dx , antNum , alpha , beta , 0 . 0 , lambda , fa l se ) ;
13
14 int x , y , a ;
15 for ( a = 0 ; a < antNum ; a++) {
16 x = agents [ a ] . x ; y = agents [ a ] . y ;
17 // gr id−>ge tCe l l S t a t e (x , y ) ;
18 //Get a c t i v a t e p r obab i l i t y
19 act_prb = agents [ a ] . f ;
20
21 //Random r e a l number between ( 0 . . 1 ) ;
22 r = ( f loat ) rand ( ) / ( f loat ) (RAND_MAX) ;
23
24 i f ( r <= act_prb ) {
25 retAgent = Rules : : Ant_move_greedy (x , y , gr id−>grid , dx , alpha ) ;
26 i f ( retAgent . x != −1) {
27 agents [ a ] . x = retAgent . x ;
28 agents [ a ] . y = retAgent . y ;
29 }
30 }
31 }
32 auto t2 = chrono : : h igh_reso lut ion_clock : : now ( ) ;
33 chrono : : durat ion<double , r a t i o <1, 1>> dbDuration ;
34 dbDuration = chrono : : duration_cast<chrono : : durat ion<double>>(t2 − t1 ) ;
35
36 return dbDuration . count ( )*1000 ;

Listing B.23: Extract from StaticFunctions.cu � __global__ Ant_ActPrb_ApT()

1 //Mapping from a thread to an ant
2 int a = blockIdx . x*blockDim . x + threadIdx . x ;
3 //Check i f the mapping i s out o f the l a t t i c e −bounds
4 i f ( a >= ants ) return ;
5
6 f loat f i t = d_ants [ a ] . f ;
7 f i t = rules_ant_actPrb ( f i t , B, L ) ;
8 d_ants [ a ] . f = f i t ;
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