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Abstract 

 

Non-destructive portable X-ray Fluorescence (pXRF) and Particle Induced X-ray 

Emission (PIXE) were used to measure the elemental concentration of rock art 

fragment paintings. For pXRF the Amptek Silicon Drift Detector (SDD) and Niton 

XL3t spectrometers were used to perform the measurements. These two 

spectrometers use different spectrum analysis methods. The Peak Deconvolution 

(PD) analysis method is used for the Amptek SDD and an Inverse Overlap Matrix 

(IOM) method is used for the Niton XL3t spectrometer.  

The pXRF methods were validated by using alloys, coins and rock standards. The 

validation is important to establish if the pXRF technique is properly understood and 

used and to advance the investigation to more complex rock art paintings, with 

heterogeneous and layered properties. The elemental concentrations obtained for 

the Standard Reference Materials (SRMs), which were used for the validation, were 

in good agreement with that of the known concentration of the SRMs.  

 

The two rock art fragments which were analysed from the Mount Ayliff and Ha 

Khotso caves were part of larger rock art painting prior to it being naturally exfoliated 

from the rock. For the Mount Ayliff rock art, seven paint points, two unpainted rock 

(varnish) point adjacent to the paint and the back of the rock were analysed. The 

colour of the paint ranged from black, shades of brown and shades of red. The black 

paint is due to manganese or charcoal. The red colour is due to iron oxide and the 

red-brown colour is due to Hematite (a type of ferrous oxide) [1]. For the Ha Khotso 

fragment the paint on the front of the rock and the rock substrate (back of the rock) 

were analysed. 

For the Mount Ayliff rock art fragment the results for both pXRF spectrometers 

indicated that the elemental concentration was uniform across the fragment. This is 

due to the formation of a uniform layer of minerals such as silica and calcium 

introduced by the seepage of water through the cracks of the cave. Therefore no 

correlation could be established between the colour of the rock art paint and the 

elements detected, as was found with the work done by Peisach, Pineda and 

Jacobson [1]. For the Ha Khosto rock fragment a relation between the Ca 

composition and the cream colour of the rock art paint was established. Both the 

PIXE and pXRF techniques were used to identify the compound concentrations of 

the Ha Khotso rock art fragment. The comparison between the two techniques 

highlights the complexity of rock art paint analysis. The results from the PIXE 

elemental mapping indicated the non-uniform distribution of the elements in the 

analysed region.    
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From the rock art fragment measuring the analysed points 5 times and obtaining the 

same results, indicated that the particle size and inhomogeneities did not have much 

effect on the compound compositions.      

In order to obtain high accuracy results with pXRF, sound scientific methodology with 

specific knowledge and expertise, not only about the XRF technique, but also about 

the sample under investigation is required. For alloy analysis pXRF is well suited, the 

analysis of geological material however more complex, since they are composed 

predominately of low atomic elements e.g. silicon, aluminium, magnesium, sodium, 

oxygen and carbon – all of which are excited with very low efficiencies.  
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Uittreksel 

 

Nie-beskadigended X-straal Fluoresensie (pXRF) en Deeltjie Geinduseerde X-straal 

emmissie (PIXE) was gebruik om die elementêre konsentrasie van die rotstekeninge 

in hierdie studie te bepaal. Vir die pXRF-tegniek is die “Amptek Silicon Drift Detector 

(SDD)” en die “Thermo Scientific Niton XL3t” spektrometers gebruik gemaak om die 

metings uit te voer. Die twee spektrometers maak gebruik van verskillende spektrum 

analiseringsmetodes.Die “Peak Deconvolution (PD)” analiseringsmetode is gebruik 

vir die “Amptek SDD” en die “Inverse Overlap Matrix (IOM)” analiseringsmetode is 

gebruik vir die “Thermo Scientific Niton XL3t” spektrometer.   

Vir die validasie van die pXRF-metode is van allooie, muntstukke en rots 

standaarded gebruik gemaak. Die validasie is belangrik om vas te stel of die pXRF 

tegniek behoorlik verstaan en gebruik word en om die ondersoek te bevorder na 

meer komplekse rotstekeninge, met heterogene en lae eienskappe. Die element 

konsentrasies wat vir die “Standard Reference Material (SRM)” wat gebruik is vir die 

validasie, was in 'n goeie ooreenkoms met die van die konsentrasie van die SRM, 

wat bekend is.  

Die twee rotstekeninge wat ontleed is van die Mount Ayliff en Ha Khotso grotte en  

was deel van 'n groter rots kuns skildery voordat hul natuurlik afgebreek het. Vir die 

Mount Ayliff rotskuns, is sewe verf punte, twee ongeverfde rots (vernis) punte 

aangrensend aan die verf en die agterkant van die rots ontleed. Die kleur van die 

verf het gewissel van swart, skakerings van bruin en skakerings van rooi. Die swart 

verf kan toegeskryf word aan mangaan of houtskool. Die rooi kleur is as gevolg van 

ysteroksied en die rooi-bruin kleur is as gevolg van Hematiet ('n tipe van yster 

oksied) [1]. Vir die Ha Khotso rotskuns is die verf aan die voorkant van die rots en 

die rots substraat (agterkant van die rots) ontleed.  

Vir die Mount Ayliff rotstekening het die resultate vir beide pXRF spektrometers 

aangedui dat die elementele konsentrasie uniform oor die rotstekening is. Dit is as 

gevolg van die vorming van 'n uniforme lagie van silica en kalsium, wat deur die 

sypeling van water deur die krake van die grot na die oppervlak van die rotstekening 

beweeg het. Daarom kon geen korrelasie tussen die kleur van die rotstekening en 

die elemente wat gemeet is bepaal word nie, soos gevind deur die werk van 

Peisach, Pineda en Jacobson [1]. Vir die Ha Khotso rotstekening is ‘n verband 

tussen die room kleur van die rotstekening verf en Ca konsentrasie gevind. Beide die 

PIXE en pXRF tegnieke is gebruik om die konsentrasies van die Ha Khotso 

rotstekening te identifiseer. Die vergelyking tussen die twee tegnieke beklemtoon die 

kompleksiteit van rotstekening verf analise. Die resultate van die PIXE elementele 

karakterisering het aangedui die nie-eenvormige verspreiding van die elemente in 

die ontlede area.  
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Deur die meting van die ontlede punte 5 keer te herhaal, en dieselfde resultate 

verkry, is ‘n aanduiding dat die deeltjie grootte en inhomogeniteite nie veel invloed 

op die elementele konsentrasies het nie.  

Ten einde 'n hoë akkuraatheid resultate te kry met pXRF, moet goeie wetenskaplike 

metode toegepas word met spesifieke kennis en kundigheid, nie net oor die XRF 

tegniek, maar ook oor die rotstekening wat ondersoek word vereis. pXRF is wel 

geskik vir die ontleding van allooie, die ontleding van geologiese materiaal is egter 

meer kompleks, aangesien die materiaal hoofsaaklik bestaan uit lae atoomgetal 

elemente bv silikon, aluminium, magnesium, natrium, suurstof en koolstof - wat almal 

met lae doeltreffentheid opgewek en baie afgerem word in die materiaal.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION  

South Africa has a very rich heritage of rock art, particularly rock paintings [2] left 

behind by the San hunter-gatherers, also known as Bushmen, which were the only 

inhabitants of a large part of the interior of the southern Africa. These rock art 

paintings can be found in caves or on rock faces, with visibility varying from very 

bright to barely visible. Common themes displayed were hunting scenes, animals 

and trance dance.    

As the paintings are increasingly under threat of degradation, from a variety of 

causes, it is vital to carry out preferably non-destructive research to determine the 

elemental concentrations of rock art paint for preservation and future restoration 

purposes. In addition, the elemental concentrations of rock art paint can be used to 

obtain information about the raw material used during the paint preparation process,  

this will however not be explored in this study.    

With the successful migration of the versatile XRF analytical technique, out of the 

laboratory to the field, rock art elemental concentration measurements with Portable 

X-ray Fluorescence (pXRF) have become increasingly common [3]. pXRF is a 

valuable technique with advantages such as, non-sample destructivity, quick 

analysis, portable and easy to use in field and the laboratory, relatively user friendly 

software interface and affordable equipment. Aaron N. Shugar from the Art 

Conservation Department of the Buffalo State College in New York, describe this 

period as an exciting time where the ongoing miniaturization of the analytical 

instrumentation has advanced to a state where traditionally lab-based analysis can 

now be performed in the field [4]. For pXRF the Amptek SDD and Niton XL3t 

spectrometer were used with a ‘point and shoot’ methodology. Data is collected by 

the spectrometer and propriety software is usually used for the determination of the 

elemental concentrations. The validation of the pXRF spectrometers were done by 

making use of various alloys, coins and rock reference materials. 

Particle Induced X-ray Emission (PIXE) [5] which is a laboratory technique were also 

used, where protons generated by an accelerator and focused onto a very small 

area of the target material.  PIXE is usually used to perform perform high sensitivity 

elemental concentration measurements [6].  

The two rock art fragments from the Mount Ayliff and Ha Khotso caves were 

measured by making use of pXRF and PIXE. 
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1.2  PROBLEM STATEMENT             

Since the rock art paintings degrade due to several causes such as weathering, the 

need to develop preservation and restoration strategy is of vital importance. This can 

be achieved by determining the elemental concentration of the rock art paint. 

Additionally surface deposition information, such as composition is necessary for 

patina restoration work.    

The characterisation of the rock art paint can be challenging due to the fragment 

size, uneven or curved surfaces and variable thickness. According to Aaron N. 

Shugar, the fields of art and archaeology provide analysts with some of the most 

difficult sample to characterize [4]. 

 

1.3   LITERATURE REVIEW  

X-ray fluorescence has a long and diverse history as an analytical technique. The 

development and miniaturization of components (detectors, X-ray tubes etc.) has 

facilitated the evolution of this powerful tool into a handheld / portable device [9,10]. 

The range of applications includes industries such as geology, mining, environmental 

and recycling.  For geology pXRF is used for the characterization of rock, ores and 

metals in the mining industry. In the recycling industry pXRF has established itself as 

a technique of choice, due to its ability to accelerate the identification of alloys in 

scrap metals. Within the archaeology field itself, there have been diverse 

applications of XRF technology to analyse multiple materials. These include stones, 

rock art, stone based sculpture, architectural features such as glass, corroded 

metals, jewellery and museum collections. Several studies exploring the applicability 

of pXRF to a variety of case studies around the world has been conducted with great 

success [1,3,11,12]. These are however not the only application, many more related 

studies have been performed over the last decade as the equipment has improved.  

Rock art which are represented in painting, drawings and engravings are essentially 

found across the world, including Africa, Australia, Southeast Asia, Europe, India, 

Northern and Southern America. These rock art sites typically form a very important 

part of the cultural heritage of the country and therefore the importance of developing 

conservation strategies to deal with problems that threaten rock art. These threats 

include water impact, salt decay, damage caused by animals and insects, soil and 

vegetation cover impact, site visitors and vandalism (graffiti). As a step towards the 

preservation and possible future restoration of the rock art, elemental concentration 

analysis of the rock art paint is performed by using a variety of both destructive and 

non-destructive techniques [1,3]. The elemental concentration of rock art paint is 

usually used to obtain information about the raw material used during the paint 

preparation process. Since the rock art usually consists of a large scheme of colours 

ranging from black, shades of brown and shades of red, the elemental 

concentrations of each individual colour is usually performed. 
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1.4  RESEARCH OBJECTIVES 

This work focuses on the determination of the rock art elemental concentration of 

two fragments from the Mount Ayliff and Ha Khotso caves, to investigate four 

concepts: 

1. Can the elements of the rock art paint be correctly identified by the two 

spectrometers?   

2. Are the elemental concentration results obtained from the two different pXRF 

spectrometers in good agreement ? 

3. Are the pXRF and PIXE results in good agreement ? 

4. Is there a correlation between the colour of the rock art paint and the 

elements measured ? 

 

1.5  IMPORTANCE OF STUDY 

The non-destructive elemental concentrations measurements of rock art fragments 

can assist with the preservation and restoration strategies of rock art. Furthermore, 

accurate elemental concentrations results are not merely achieved by trusting the 

output results from the pXRF spectrometer, thorough information about the rock art 

fragment investigated should be known.  

 
 

1.6  RESEARCH METHODOLOGY  

The validation of the analytical pXRF technique was done with homogeneous 

standard reference materials (SRMs) with known composition and concentration. 

The SRM included nine alloys, three coins standards and two rock standards. The 

SRMs used for validation of the XRF technique where specifically selected to cover a 

range of atomic numbers (13 to 82) and different combinations of atomic numbers. 

The validation of the homogeneous SRMs are important, to advance the 

investigation to unknown heterogeneous layered samples, such as the rock art 

paintings from the Mount Ayliff and Ha Khotso caves.  
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1.7  CHAPTER OUTLINE 

Chapter one provided an overview of the importance, objectives and research 

methodology followed for this study. A literature review of relevant previous studies 

conducted to determine elemental concentration of rock art paint, with similar 

techniques is also included.  

Chapter two cover the pXRF and PIXE theory which include concepts such as 

interaction of photons with matter, characteristic X-ray(s), labelling of the X-ray 

transitions, fluorescence yield, mass attenuation coefficients and bremsstrahlung. 

These concepts are fundamental to the understanding of the techniques. The 

experimental setup and components of each technique is also discussed.   

Chapter three discusses the spectra evaluation and concentration extraction 

methodology followed.  

Chapter four will provide the results of the pXRF technique validation. This is 

important to establish if the pXRF technique is properly understood and used.    

Chapter five will provide the results of the measurements done on the rock art 

fragments. This chapter will also indicate if the elements are correctly identified and if 

there is a significant difference between the results for the different techniques.  

Finally, chapter six will conclude the study and offer recommendations.  
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CHAPTER 2 

XRF SPECTROSCOPY AND PIXE THEORY   

 

2.1 INTERACTION OF PHOTONS WITH MATTER      

The interaction of the X-ray(s) with matter can either be by absorption or scattering 

process. In materials with finite thickness some of the X-ray(s) can also be 

transmitted, as illustrated in Figure 2.1. The favoured process depends on the 

sample thickness, density, composition and the incident X-ray energy. 

The absorption process occur when the X-ray interact with the absorbing material at 

atomic level to transfer its entire energy and causes XRF, which form the basis of 

XRF spectroscopy. Scattering involve the deflection of the incident photon with the 

scattered material, this can occur both with energy loss (Compton scattering) or 

without energy loss (Rayleigh scattering). Compton Scattering is the interaction 

between the incoming photon with the atoms of the target material which causes the 

photon to change direction.  

 

Rayleigh Scatter   Incident X-ray    Fluorescence  

Compton Scatter 

 

 

 

 

  Transmitted X-ray(s) 

 

Figure 2.1: X-ray interaction process. 
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2.2 XRF PROCESS AND CHARACTERISTIC X-RAY(S)   

For the Photoelectric absorption process to occur the energy of the photon needs to 

be equal or higher than the binding energy of the electron. An inner shell electron 

which is ejected after the incoming photon is completely absorbed leaves the atom in 

a highly excited state, since a vacancy has been created in one of the inner shells. 

The atom will return to its neutral state with the emission of a characteristic X-ray 

photon specific to the atom, also known as XRF and demonstrated in Figure 2.2. The 

energy difference between the ejected and replaced electron is characteristic of the 

element atom in which the fluorescent process occur. This is the key feature of XRF 

for elemental identification purposes.    

 

 

 

 

 

 

 

 

 

 

Figure 2.2: X-ray fluorescence process [13]. 

 

2.3 LABELLING OF X-RAY TRANSITIONS   

With each unique atom having a number of available electrons and with all having 

different possible de-excitation routes, a set of selection rules have been defined to 

account therefore. Each electron in an atom can be defined by a set of four unique 

quantum numbers: n, l, m and s. The principal quantum number n take all integral 

values, with n = 1 being the K level and n = 2 the L level, the angular quantum 

number l taking all the values from n - 1 to zero, the magnetic quantum number m 

taking value from + l  to – l  and the spin quantum number s with a value of ± 1/2. 

The total momentum J of an electron is given by the vector sum of  l + s.  
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The production of diagram lines requires that the principal number change by at least 

one (∆ n >= 1), the angular quantum number must change by at least one (∆ l = ± 1), 

and the J quantum number must change by zero or one (∆J = 0, ±1). Hence not all 

transitions from the outer shells or subshells are allowed, only those obeying the 

selection rules for electric dipole radiation. The transition that is not allowed is called 

forbidden lines, which arise from outer orbital levels where there is no sharp energy 

distinction between the orbitals. 

The theory of X-ray spectra shows the existence of a limited number of allowed 

transitions, the rest is “forbidden”.  The X-ray lines and energy levels are shown in 

the Figure 2.3 and Table 2.1:  

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Transitions that give rise to the various X-ray line emissions [14].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1: Energy level and electron configuration. 

Energy level 
Principle 
number n 

Angular 
number l 

Total 
momentum j 

Electron 
configuration 

N7 4 3 7/2 4f7/2 

N5 4 2 5/2 4d 5/2 

N3 4 1 3/2 4p 3/2 

N1 4 0 1/2 4s 

M5 3 2 5/2 3d5/2 

M3 3 1 3/2 3p3/2 

M1 3 0 1/2 3s 

L3 2 1 3/2 2p3/2 

L2 2 1 1/2 2p½ 

L1 2 0 1/2 2s 

K1 1 0 1/2 1s 
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For example when an electron ejected from a K shell, the electron vacancy will be 

filled by an electron coming from the L shell. The transition is accompanied by the 

emission of an X-ray line known as the K�	line and leaves a vacancy in the L shell. If 

the atom already has sufficient electrons, the K shell vacancy might be filled by an 

electron coming from an M level that is accompanied by the emission of the �� 	 line. 

All the energies of the principal X-ray emission lines for the K and L shell can be 

found in Appendix II, Table 4 of Reference [15]. 

 

2.4 FLUORESCENCE YIELD   

For an electron to be expelled from one of the orbitals, the X-ray energy must 

exceed to binding energy of the electron. Below the binding energy a drop in 

absorption is observed since the energy is not sufficient to emit electrons from that 

shell and too high in energy to emit electrons form the lower energy shells. If the 

energy is too high only a few electrons will be knocked out. As X-ray energy reduces 

and approaches the electron binding energy, the yield of the expelled electrons 

increases.  

Since not all incident X-ray(s) result in the emission of characteristic X-ray(s) 

fluorescence, fluorescence yield is the ratio of fluorescence X-ray(s) to incident X-

ray(s), as illustrated in Figure 2.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: The K and L fluorescence yield as a function of atomic number, Z [13]. 

 

From Figure 2.4 it can be seen that the yield is low for light elements and high for 

heavy elements, this is mainly due to the Auger effect. This is a phenomenon were 

the filling of an inner shell vacancy of an atom is accompanied by the emission of an 

electron from the same atom i.e. instead of X-ray fluorescence, emission energy can 

be transferred to another electron, which is ejected from the atom. A consequence of 

the Auger effect is that the actual number of X-ray photons produced from an atom is 
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less than expected, since the vacancy in a given shell might be filled through non-

radiative transition. Auger electrons are predominately produced during relaxation of 

K-shell ionisation of light elements (Z < 20) [15]. 

 

 2.5 MASS ATTENUATION COEFFICIENT      

The attenuation coefficient is the quantity that characterise how easily the material 

can be penetrated by an X-ray. A large attenuation coefficient is an indication that 

the X-ray is quickly attenuated (weakened) as it passes through the medium and a 

small attenuation coefficient means that the X-ray goes through the material quite 

easily.    

The mass attenuation coefficient �	(�	

� )  is defined as the ratio of linear attenuation 

coefficient and the density of the material. The equation for the linear attenuation 

coefficient µ* per centimetre of travel in the absorber is: 

�∗ 	� �
�		� = ���� � �	


���		� 	�	 � �
�	��	��� 	����	�	

� �                 

where	� is the density of the medium and �� is Avogadro’s number.  

Where ����	 is the sum of the probability for each of the competing interaction 

processes. The sum of these cross sections is normalized to a per atom basis 

���� = � +	� 	 +⋯     

where � is the total Photoelectric absorption cross section per atom and �   the 

Compton collision cross section.   

 

2.6 BREMSSTRAHLUNG   

Bremsstrahlung occurs following the deceleration (loss of energy) of the electrons 

within the material, due to the interaction of the impinging electrons with the target 

elements. Hence at each collision as the electrons are decelerated part of the kinetic 

energy is lost and emitted as X-ray photons.  

During a collision with material an electron can lose any amount of energy between 

zero and Emax which results in a bremsstrahlung continuum with energies in that 

range, as presented in Figure 2.5. The characteristic lines of Tungsten (W) and 

Argon (Ar) are superimposed on the bremsstrahlung continuum. The W is introduced 

from the anode material and the Ar from the air space between the sample and 

detector.  
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Figure 2.5: Amptek SDD Compton scattering spectrum for air with a Tungsten (W) X-ray tube.  
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2.7 pXRF INTRODUCTION  

XRF spectroscopy is the technique used to analyse fluorescent X-ray(s), in order to 

determine the elemental composition of a particular material. The components of the 

pXRF device are a source of X-ray(s), a sample, detector, spectrometer and 

processor (computer), as illustrated in Figure 2.6.  

 

 

 

 

 

 

 

Figure 2.6: pXRF system [13]. 

 

The operating principle of an X-ray generator is to pass an electric current through a 

filament which causes electrons to be emitted. These electrons are then accelerated 

by high voltage (typically 25 – 50 kV) towards an anode (which is typically made of 

Ag or W material). The deceleration of the electrons (when they hit the anode 

material) causes an X-ray continuum to be emitted, known as Bremsstrahlung. 

Additionally a fraction of the electrons will cause characteristic X-ray fluorescence 

from the anode material. Hence the energy spectra from the X-ray generator will be 

the characteristic fluorescence lines from the target material superimposed on the 

broad bremsstrahlung continuum. This energy spectrum is then directed to the 

sample through the Beryllium (Be) window, as illustrated in Figure 2.7.  
 

 

 

 

 

 

 

Figure 2.7: Transmission of X-ray from the X-ray generator [13]. 

X-Ray(s) 

Electrons 
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The X-ray detector converts X-ray photon energies into measureable and countable 

voltage pulses. This is done by photoionization, where the interaction between the 

incoming X-ray photon and the active detector material produces an energetic 

electron which in turn produces many more. The incident X-ray is therefore 

essentially absorbed by the detector material, and causing one or more electron-hole 

pairs to form. The energy to do this is fixed for that particular material and therefore 

the X-ray will form as many electron-hole pairs as its energy will allow. These 

electrons are pulled of the detector to produce a current (which is proportional to the 

number of electron-hole pairs and directly related to X-ray energy) and converted 

into a voltage with amplitude proportional to the incident energy, by using a capacitor 

and resistor i.e. a voltage is thus generated for every X-ray photon that enters the 

detector. 

The pre-amplification and processing electronics are then employed to maintain the 

linearity of the voltage signal with respect to the original charge pulse. In other words 

the rate at which the voltage signal is recorded is the same as the rate at which the 

X-ray photons enter the detector. 

Therefrom, the multichannel analyser accumulates an energy spectrum of the 

sequential events in a histogram memory. The counts associated with a photon of a 

specific energy should hypothetically end up in a signal channel, but are distributed 

in a Gaussian fashion over several adjacent channels in the spectrum due to the 

statistical fluctuations in the number of electron-hole pairs created when an X-ray of 

a given energy enters the detector.  

 

2.8 pXRF SPECTROMETERS  

The two pXRF spectrometers used are the Amptek Silicon Drift Detector (SDD) and 

the Niton XL3t, with a Tungsten (W) and Silver (Ag) X-ray anode tube respectively, 

as demonstrated in Figure 2.8 and Figure 2.9. Both the spectrometers are capable of 

40 kV excitation energy and uses SDD for detection. The spectrometers were placed 

as close as possible to the sample to minimize the X-ray attenuation by air, 

especially for the low energy X-ray(s) [16].  

 

 

 

 

 

 

Figure 2.8: Amptek SDD pXRF system setup. 

Tungsten (W) X-ray tube 

Silicon Drift Detector and 

multichannel pulse-height 

analyser (MCA) 

Sample 

Stellenbosch University http://scholar.sun.ac.za



 

13 

 

 

Figure 2.9: Niton XL3t handheld XRF analyser [17]. 

 

2.8.1 X-ray Generator 
 
 

For the Tungsten (W) anode material, the L line is most effectively used for the 

exciting of light elements in the range of 1 - 10 keV, since the Lβ line and Lα line for 

W is at 9.81 keV and 8.36 keV respectively. For higher energy lines for example 

Zirconium Zr Kα at 15.78 keV the L lines of W provide no excitation as they are lower 

in energy than the absorption edge of the Zr K line at 17.99 keV. Hence the 

bremsstrahlung hump provides the excitation.  For Ag as anode material the Kβ, Kα, 

Lβ and Lα line energies are at 25.20 keV, 22.08 keV, 3.25 keV and 2.99 keV, 

respectively.  

The energy distribution directed towards the target governs the effectiveness of 

excitation and hence the importance of selecting the most optimal                

excitation energy (eV) and accelerating voltage (kV). The limited counting capacity of 

the detector and the multi-elemental samples are adding complications to the 

derivation of the optimum excitation conditions. For X-ray fluorescence to be 

generated it is necessary to have incident X-ray energies above the absorption edge 

of the elemental line series that needs to be excited. A general rule of thumb is to 

use an X-ray tube voltage of about 1.5 to 2 times higher than the absorption edge of 

interest.  
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2.8.2 Silicon Drift Detector (SDD)  

The SDD consists of a volume of n-type silicon bulk depleted from both sides: a 

homogeneous, shallow p+-n junction on the side where the incoming radiation enters 

the detector and a structure of circular p+ drift rings on the opposite side as shown in 

Figure 2.10. 

 

 

 

 

 

   

 

Figure 2.10: Schematic cross section of a SDD with integrated FET [18]. 

 

By applying a negative voltage on the homogeneous back side (radiation entrance 

window) and an increasingly negative voltage on the drift rings, a potential field 

distribution is created inside the detector such that the electrons generated by the 

absorption of ionizing radiation drift towards a small sized collecting anode situated 

in the centre of the device. The detector spectroscopic performance is improved by 

integrating the first amplification stage (a JFET transistor as shown in Figure 2.10) 

directly into the sensor. The connection of the anode to the transistor gate is reduced 

to a small metal strip of a few microns length, which suppress some electronic noise.    

In order to minimize the noise from these thermally generated charges, the detector 

crystal (active part of the detector) must be kept cold throughout the time the bias is 

applied. This is produced by thermoelectric, Peltier cooling. If cooling is lost or 

degrades over time the automatic bias shutoff system (temperature sensor) will be 

activated, which will switch the detector off. Cooling is further essential to minimise 

the detector leakage current, the main source of noise in a detector, which is derived 

from the generation of charge carriers in the absence of X-ray(s) through the thermal 

vibration of the detector crystal lattice. Additionally the detector head (crystal and 

FET) is enclosed within vacuum, which is retained by a thin (typically 5-50 µm) 

beryllium entrance window. Any H2 escaping through the window degrades the high 

vacuum and leads to increased temperature, leakage current and deteriorating 

performance. 
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Important feature of a detector is the energy resolution. This the precision with which 

the energy of specific X-ray(s) photons can be determined. Energy resolution is 

usually expressed as Full Width Half Maximum (FWHM) of the pulse-height 

distribution measured at a specific energy. With the 7 mm2 Amptek SDD detectors a 

FWHM of approximately 140 eV at 5.9 keV for a shaping time (the time constant of 

the detector) of 9.6 µs is achievable. The resolution of the Niton XL3t varies between 

145 to 165 eV for a shaping time of 4 µs or between 155 to 175 eV for 1 µs shaping 

time.  

The FWHM might give a good indication of the quality of the detection system, but 

other factors such as the maximum count rate, the presence of background and 

artifacts is of similar importance. 

The measured FWHM of the X-ray line (∆ETotal) is the quadratic sum of the 

contribution due to the detector intrinsic resolution processes (∆EDet) and that 

associated with the electronic pulse processing system (∆EElec) [15]:  

"#$���% =	&"#'(�) + 	"#*%(�)		  .                (3.1) 

The contribution to resolution associated with electronic noise (∆EElec) is due to 

random fluctuations in thermally generated leakage currents within the detector and 

in the early stages of the amplifier components, which are intrinsic processes to the 

overall measurement process. ∆EDet is a result of the statistics of the free-charge 

production process occurring in the depleted volume of the SDD.  

The intrinsic full energy efficiency of a detector corresponds to the probability that an 

X-ray will enter the front of the detector and deposit all its energy inside the detector 

via the photoelectric effect. Near-unity intrinsic efficiencies for the detector over a 

wide range of X-ray energies (2 keV to 15 keV) are can be seen in Figure 2.11 for 

the Amptek SDD. The high-energy limits are established by the photoelectric cross 

section of the detector material (silicon) and the thickness of the active depth of the 

SDD (500µm). The low-energy cutoff is determined by the thickness of the Beryllium 

window either 0.3 mil (8 µm), 0.5 mil (12.5 µm) and 1 mil (25 µm) as well as the 

presence of a thin absorbing layer and dead layer on the surface of the detector. The 

thin absorbing layer is for protection purposes and the dead layer, which is 

effectively inactive and no charge can be collected. 
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Figure 2.11: Combination of the effect of transmission through the absorbers, such 

as the Beryllium window and the dead layer of the detectors, and the interaction in 

the SDD [19]. 

Most of the photons (with different energies) coming from the sample interact with 

the detector, except the photons that just pass right through. The detector signal 

processing chain processes these events in a range of 1 – 500 Hz. A detailed 

description of the functioning of a digital pulse processor is presented in Appendix A.  

For the digital pulse processor there is effectively a trade-off between accuracy or 

resolution ability and speed [15]. When the shaping time is increased the best 

resolution is achieved (lowest FWHM) at the expense of a lower count rate. When 

the count rate increases the resolution degrades. Hence an optimum for resolution 

and count rate needs to be established. In cases where severe peak overlaps exist, 

the best resolution should be selected. For light elements measurements the 

excitation condition need to be optimized to make best use of the limited count rate 

available. This is done by using two important parameters, namely current of the     

x-ray generator and measuring time.    

The count rate limitations associated with semiconductor spectrometer are an 

inherent property associated with the finite pulse processing time required by the 

electronic shaping network. When a random sequence of pulses is incident on the 

detector system, the events cannot be processed without uncertainty. For each 

event a total pulse processing time �+ is required after the arrival of the pulse and 

before the system is ready to accept the next event. This means that the events are 

statistically uncorrelated and thus implies that the events are not uniformly 

distributed in time. Hence there is a probability that two pulses will occur within the 

same processing time interval and causes pulse overlap. With low counting rate, 

pulse overlap is not a limiting factor, but as the count rate is increased the probability 

that the second event will occur before the first has been processed, also increases 

[15]. If the two events occur within a time internal less than the shaping time of an 

amplifier, the charge signals are indistinguishable and a “pileup” energy signal 

results. Modern systems rely on the inspection of fast discriminator output to 
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determine if two pulses have occurred in rapid succession. Logic is used to gate the 

output of the processor to eliminate the resultant uncertain energy signal and 

produces an uncertain pileup energy output [15].  

 

2.8.3 Spectrometer Geometry  

The geometric angle values for the Amptek SDD which form part of the input values 

for the Peak Deconvolution Fundamental Parameter (PD-FP) method are shown in 

Table 2.2 and schematically illustrated in Figure 2.12. These angle input values 

together with information about the equipment properties from part of the PD-FP 

TRF input file, as presented in Appendix B.  

 

 

 

 

 

 

 

Table 2.2: PD-FP (Amptek SDD) input values. 

   

 

 

 

 

 

 

Figure 2.12: Geometry angles of a typical pXRF setup [20]. 

 

For the Niton XL3t spectrometer there is no need to provide the analysis software 

with the geometry, since the experimental angle values are fixed and encoded in the 

software. From the Niton XL3t product specification the values of the θtube-and-surface 

and θdetector-and-surface is given as 71⁰ and 61⁰ respectively.  

Input parameters Value 

Distance between tube-
sample (mm): 

15 

Distance between sample-
detector (mm) : 

15 

Incident angle (⁰) 45 

Take-off angle (⁰) 45 

Scatter angle (⁰) 90 

Alpha angle (⁰) 0 
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2.9 PROTON INDUCED X-RAY EMISSION (PIXE)  

The nuclear microprobe is used for quantitative nondestructive microanalysis for 

various fields including, material science, geology and biomedicine. This is due to 

the significant progress that has been made with the instrumentation hardware, such 

as lenses, collimator slits, data acquisition systems and target chambers. The 

nuclear microprobe combined with PIXE, can detect trace elements to the 

sensitivities of a few ppm (or even sub ppm) concentrations.   

A schematic of the 6 MV Van de Graaff Accelerator equipped with a Nuclear 

Microprobe (NMP) at iThemba Labs, is shown in Figure 2.13. 

 

Figure 2.13: Van de Graff accelerator and NMP layout at iThemba Labs [21] (with 

the most important features shown, which distances in-between shown in mm). 

The Van de Graaff accelerator accelerates ions vertically downwards, with energy 

stabilisation and beam selection made by a 90⁰ analysing magnet. The ions then 

travel through a horizontal flight path to the target. After the analysing magnet, the 

ions travel through the energy stabilisation slits situated in front of the main 

beamstop. Ions then pass through a quadrupole duplet for focusing of the beam at 

the object slits. Before the object slits, the beam passes through a switching magnet 

with a narrow entrance port in the Y direction (1.2 mm), which is used for the beam 

lines at an angle to the NMP line. The primary beam is then allowed to pass through 

the object slits with a diameter of 1 mm [21].  

 

A beam current of between 50–100 pA is transmitted through the collimator with the 

use of a variable slit. This allows the use of intense beams, for achieving the 

smallest beam spot size possible.  
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The target chamber is pumped down with a diffusion pump backed by a roughing 

pump; this allows for quick sample changing and higher throughput. The target 

chamber is the standard Oxford NMP chamber. The features include an X-ray 

detector situated 35 mm away from the target at 135º to the incoming ion direction, 

an annular Si surface barrier (SSB) detector situated close to 180º, channeltron 

electron detector for secondary electron imaging, electron suppression ring in front 

and behind the target and the optical microscope at 45º with respect to the normal to 

the sample surface. The target chamber allows for the stepper motor control of the 

samples for X, Y and Z axes. Signals from the detectors are fed to the normal 

electronic units for amplification and digitisation [21].  

 

The data is collected by using the XSYS [22] acquisition system, with event-by-event 

storing capability, and the GeoPIXEII software package [23] is used for the extraction 

of the elemental concentrations, from the raw spectra.  

 

For PIXE analysis the target material is bombarded with ions of sufficient energy 

(usually protons with energy in megaelectron volt (MeV) range) generated by an 

accelerator, instead of X-ray(s) as in the case of XRF.  

 

The Ha Khotso rock art surface was scanned using a proton probe (microprobe), 

with energy of 3.0 MeV over an area of approximately 0.8 mm2. The beam was 

focused to a minimum spot size of 3 µm2 with a current of 100 pA. The scanned area 

were analysed in a rectangular pattern divided in a map size of 128 x 128 pixels, with 

a dwell time of ~10 ms/pixel. For the elemental mapping, PIXE and proton 

backscattering spectra were acquired simultaneously in event-by-event mode, using 

a Si (Li) PGT Pentafet X-ray detector with a 3.0 mm thick Si crystal. The detector 

diameter, surface area and resolution (FWHM) is 6.18 mm, 29.99 mm2 and 160 eV at 

5.898 keV for Mn, respectively. The count rate was kept below 1000 counts/second 

to avoid pulse pile-up and to achieve acceptable counting statistics. For the analysis 

of light elements such as Na and Mg, a proton probe with energy of 1.5 MeV and 

lateral resolution of approximately 2.5 µm2 were used. Additionally a 25 µm Be 

absorber was used to stop the scattered ions reaching the detector.  
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CHAPTER 3 

SPECTRA EVALUATION AND CONCENTRATION EXTRACTION  

 

Spectrum evaluation uses mathematical techniques to extract peak intensities from 

the spectrum, which can be used to determine the elements and their concentration. 

This is done by using Peak Deconvolution Fundamental Parameter (PD-FP) or 

Inverse Overlap Matrix Fundamental Parameter (IOM-FP).  

  

The PD-FP process is a series of steps used to remove the undesirable occurrences 

which contribute to the spectra. These steps are illustrated in Figure 3.1. The PD 

process relies heavily on mathematical techniques to extract useful information; 

therefore it is important to employ optimal experimental conditions to obtain the 

spectra, since this will determine the effectiveness of the PD process.  Optimal 

conditions can be achieved in a number of ways either by increasing the counting 

statistics or by keeping the dead time low. Additionally control over the distance from 

the sample to the detector is essential to obtain enough statistics for the lower 

energy lines of the low atomic number elements. Factors internally performed by the 

electronics of the system such as keeping the detector cold and maintaining the 

stability of the high voltage power supply are of similar importance.  
 

The IOM-FP process is an accelerated spectrum processing method which is much 

faster than the PD-FP spectra process. The IOM-FP process is usually required for 

certain applications where results are needed within a few seconds. This is done by 

using calibration standards with known Compton-to-Rayleigh (C/R) peak intensity 

ratios to generate calibration curves (XRF C/R peak intensity ratio versus atomic 

number).  These curves are then use to determine the elements from the spectra. 

Since the elemental and corresponding peak intensity is known, the elemental 

concentration can be determined with the FP equations.  Full detail of the IOM-FP 

spectra process is however not known, since it is propriety company information. 

Prior to sample measurement an energy calibration needs to be performed. This is 

done by taking measurements of calibration standards with known elemental 

composition; since the exact energy of these elements are known [15]. The ADMCA 

display window for the calibration is presented in Appendix C. 

 

The goal of quantitative XRF is to determine the concentration of the elements 

present in the sample; this is done by using the FP equations. A first estimate of the 

concentration is evaluated, from the measured intensities with the FP method, 

proposed by Criss and Birks [25]. This estimate is then used to calculate a new set 

of intensities from which a new revised estimate of composition is calculated. This 

process is iterated until the difference between two consecutive iterations becomes 
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insignificant. The main advantage of the FP equation is its theoretical exactness and 

the ability to correct for matrix effects. However a first estimate is necessary for this 

method to function properly. Frequently a poor first approximation is generated from 

measured intensities, because such intensities have been strongly modified by 

matrix effects. Matrix effects are the result of variations in the physical character of 

the sample and include parameters such as particle size, uniformity, homogeneity 

and surface condition [26]. 

 

The FP equations are calculated each iteration, which can cause the analysis 

process to be lengthy and slow.  This is due to a large number of iterations which is 

sometimes required, since the first approximation of the composition is often very far 

from the final composition [27].  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Peak Deconvolution (PD) processing steps [20]. 

  

Spectra smoothing  

 Si escape peak removal  

Sum peak removal 

Background removal  

Blank removal 

Intensity extraction 
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3.1 SPECTRA SMOOTHING   

The smoothing technique is ideal to remove or suppress statistical fluctuations, such 

as fictitious maxima which occur on both the continuum and on the slope of the 

characteristic peaks. Statistical fluctuations occur due to the uncertainty on each 

channel content yi. The technique reduces the uncertainty in the data locally and 

redistributes the original channel content over the adjacent channels. 

To smooth the fluctuating signals the moving average technique can be employed. 

For a measured spectrum y, a smoothed spectrum y* is obtained, by calculating the 

mean channel content around each channel i [15]:  

,∗- = ,.- =	 �
)	/� 	∑ ,-/1		/		123	  .                 (3.1) 

 

The smoothing effect depends on the width of the filter, 2m+1. The filter can however 

introduce peak distortions, which depends on the filter-width-to-peak-width ratio. The 

peak distortion is caused by the fact that for the calculation of ,∗- , the content of all 

adjacent channels is used with equal weight. These peak distortions and broadening 

can be minimized by using a non-uniform filter with some weighing function that 

place more weight on the central channels and less on the edge of the filter [15]:  

 

 ,∗- = 	 �� 	∑ ℎ1,-/112	123	                    (3.2) 

 

where hj  are the convolution integers and N is a suitable normalization factor. 

 

3.2 SILICON ESCAPE PEAK   

If the energy of the incoming X-ray(s) is higher than the Si K absorption edge at 

1.832 keV, it can produce characteristic Si Kα X-ray(s) (E = 1.739 keV) from the XRF 

detector material, called escape peaks. Most of the Si K X-ray(s) will immediately be 

absorbed within the detector volume, because of their low energy and short range in 

materials. There is however a non-zero probability that the Si Kα X-ray(s) produced 

will escape from the detector volume and not contribute to the charge collected from 

the primary photon that was detected. The resulting lower energy peak is called Si 

escape peak. This usually occurs after photoelectric absorption of the impinging     

X-ray photon near the edge regions or the front of the detector crystal. The energy 

deposited in the detector by the incoming X-ray is therefore reduced by the escaping 

SiK photon energy (the escape peaks are at expected 1.739 keV (Si Kα) below the 

parent peak). At energies of above 10 keV the Si escape peak effect can effectively 

be negligible [15], since the X-ray(s) are more penetrating and hence interact deeper 

in the material before they undergo photoelectric absorption, hence the SiK X-ray(s) 

do not come out. For energies below 10 keV, the Si escape peak is removed by the 

PD-FP method and added back to their parent peak.  
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3.3 SUM PEAK REMOVAL    

 

Sum peaks arise from a specific form of peak (pulse) pileup, where two events from 

high-intensity peaks occur in the pulse processing electronics shortly one after the 

other, without the pileup inspector recognizing them as two separate events. The 

signal is thus seen as one and the energy is registered as the sum of the two. 

Therefore it needs to be removed from the spectra by the PD-FP method.  

This can either be for two elements from the same sample or the same elemental 

peak e.g. Si (Kα of 1.74 KeV) and Al (Kα of 1.487KeV) and hence a peak at 3.23 KeV 

is detected or the sum of two Si Kα events at (3.48 keV). The sum peaks are unlikely 

to be identified as a different element, but they may interfere with important lines in 

the analysis. 

The intensity of the sum peak is count rate dependant and an effective way to 

reduce the effect of the sum peak is to reduce the count rate [15]. Furthermore a 

short pulse shaping time is important, to optimize the detection pulses which are 

closely spaced in time.  

 

 

3.4 BACKGROUND REMOVAL    

 

The detector background is mainly the result of fundamental X-ray and electron-

energy loss processes i.e. the coherent and incoherent scattering of the excitation   

X-ray(s). Other effects contributing to the background are the effects associated with 

the partial collection or incomplete charge collection, usually producing tailings, 

which are higher than the expected continuum.  

The background removal is done by the peak stripping method, which is based on 

the removal of rapidly varying structures in a spectrum by comparing the channel 

content yi with the channel content of its neighbours [15]: 

5- = 	 67/6789)  .                     (3.3) 

If yi is smaller than mi , the content of channel i is replaced by the mean mi .By 

repeating this procedure, the peaks are gradually “stripped” from the spectrum. 

The method does however pick up local fluctuations in the continuum, which is 

caused by the Be window. The Si internal fluorescence peak and absorption edge 

caused by the dead layer effects can further cause fluctuations in the continuum. 
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3.5 BLANK REMOVAL    

 

This method is mainly used for the removal of the Argon (which fluorescence in air) 

and X-ray tube scattering peaks. This method uses a channel-by-channel subtraction 

of the blank counts from the corresponding counts in the spectrum. For this method it 

is assumed that a blank sample is acquired under the same conditions as the normal 

spectra e.g. live-time, X-ray beam parameters and the spectra is evaluated via all the 

prior mentioned methods i.e. smoothing, escape peak removal, background removal.  

 

3.6 INTENSITY EXTRACTION    

 

After the spectra processing steps have been carried out, the final step is to extract 

the net peak intensity. The peak intensity extraction analysis is performed by making 

use of either the Gaussian deconvolution, integration or reference methods. The 

Gaussian deconvolution method is used for those elements that have well defined 

Gaussian shape and make use of linear or nonlinear least square fitting where each 

peak in the spectrum is fitted with an individual Gaussian distribution. For             

non-Gaussian fitting the integration or reference methods are used. The integration 

method determine the peak area by integrated over a certain region of interest (ROI) 

and the reference method uses stored profiles of each element to fit the peaks. 

 

3.6.1 Gaussian Peak Fitting: Linear Least Square [15] 

 

For the linear least square method only the peak heights can be adjusted during the 

fitting process. The relative peak heights within a series (e.g. Kα1, Kα2, Kβ1, K β2, Kβ3 

for K-series) are taken from tabulated values and are not allowed to vary during 

linear fitting. For this method to work properly, the spectrum calibration, detector 

resolution and efficiency need to be known accurately.  

The aim is to obtain optimal values for the parameters of a linear function, by fitting 

the experimental data with the following linear function 

, = :�;� + :);) +⋯+ :	;	 .                 (3.4) 

This is called least squares parameter estimate, also called curve fitting.  

The optimum set of parameters a1 , ……am that gives a least-squares fit of     

equation 3.4 are the values that minimize the chi-square (<))	function: 

<) = 	∑ �
=7


>-2� 	(,- − :�;� − :);) −⋯− :	;	)) .              (3.5) 
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3.6.2 Gaussian Peak Fitting: Non-linear Squares    
 

With the non-linear squares fitting procedure the heights, positions and widths of the 

peaks in the spectrum are fitted. Since, none of these variables are directly solvable 

by standard linear least square fitting. A standard nonlinear algorithm is employed 

namely the Marquardt-Levenberg method, which allows the three parameters for 

each peak to be adjusted independently. This algorithm is however slower than the 

linear method, since more fitting needs to be done.  

For the general case of least-squares fitting with a function that is nonlinear in one or 

more of its fitting parameters, no direct solution exists. Therefore the function <) is 

defined:  

<) = ∑ �
=
7 [,- − ,(A-, :)])-    [15]                (3.6) 

whose minimum is obtained when the partial derivative with respect to the 

parameters are zero, generally the Leverberg-Marquardt algorithm is used (a 

detailed description of the method can be found in Appendix D). 

 

3.6.3 Non-Gaussian Fitting: Integrated [15]  
 

Since the number of counts under the characteristic X-ray peak (after the correction 

for the continuum has been done) is proportional to the concentration of the analyte, 

the concentration can therefore be determined by using the integrated method, were 

the peak area Np , is determined by integrating over a certain ROI.   

�D =	∑ [,- − ,E(F)] = 	∑ ,- −	∑ ,E(F) = �$ − �E---D�-	D)              (3.7) 

where NT and NB are the total number of counts of the spectrum and the continuum 

in the integration window  iP1 – iP2 .  

 

3.6.4 Non-Gaussian Fitting: Reference [15]  
 

The reference deconvolution method performs quantitative analysis without obtaining 

the peak area of the characteristic line, but by using stored profiles for each element 

to fit the peaks. These stored profiles are obtained by measuring pure elements and 

applying all the spectra processing steps on the measured pure element. The 

method is particularly useful in cases where the peak shape deviate substantially 

from Guassian shapes, usually for low energy peaks.  

If a measured spectrum of an unknown sample can be described as a linear 

combination of spectra of pure elements constituting the sample, then  

,-	�+ = 	∑ :1A1-	12�                   (3.8) 
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With ,-	�+ the content of channel i	 in the model spectrum, A1-  the content of channel 

i		in the jth reference spectrum and :1 coefficients are a measure of the contribution of 

pure reference spectra to the unknown spectrum. The value of :1 are obtained via 

multiple linear least-squared fitting, minimizing the sum of the weighted squared 

differences between the measured spectrum and the model: 

<) = 	∑ �
=7


>
-2>9 	[,- − ,(F)]) =	∑ �
=7


>
-2>9 	[,- −	∑ :1A1-]	12� )
           (3.9) 

with ,- being the channel content, �- are the uncertainty of the measured spectrum 

and H� and H) are the limits of the fitting region 

A measure of the goodness of the fit is given by the reduced <) value: 

<) = 	 �
(>
3>9/�)3	 	<)                (3.10) 

The <) value divided by the number of points in the fit minus the number of reference 

spectra. A value ~ 1 is seen as a good fit, indicating that the reference spectra are 

describing the unknown spectrum. 

 

3.7 CONCENTRATION EXTRACTION FOR PD-FP AND IOM-FP METHODS 

 

For the FP method [11,12] the measured emitted intensity as a function of the 

intensity emitted by the pure analyte, the analyte concentration in the specimen and 

the ratio of their respective absorption coefficients are given in: 

I-J = I(-)JK- �L7∗LM∗�J    [28]          (3.11) 

where 

I-J refer to the theoretically calculated primary fluorescence intensity 

I(-)J  as above for specimen of pure analyte ‘i’ 

K-  concentration (weight fraction) of element ‘i’ 

�-∗  total effective mass abdorption coefficient for pure analyte ‘i’ 

��∗  total effective mass absorption coefficient for specimen ‘s’ 

With some mathematics, as can been seen in Appendix E, equation 3.11 can be 

rewritten in a form where a polychromatic excitation source can be used and where 

absorption, enhancement and their combined (matrix) effects of multi-element 

systems are taken into consideration.   
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3.8 LIMITATION OF THE SPECTRA EVALUATION AND CONCENTRATION 

EXTRACTION  

 

No method correct for physical effects such as particle size. The physical effects can 

be limited by the pellet preparation process. Instrumental effects such as 

background, overlap and dead time is also not corrected for and must therefore be 

minimised by the selection of measurement conditions.    

For the PD-FP method random and systematic errors exist which have an effect on 

the precision with which the net peak areas area determined. Random errors are 

associated with the uncertainty σi of the channel content yi, and systematic error is 

the discrepancies between the fitting model and the observed data [15].  

Furthermore, the PD-FP method cannot measure the concentration of low atomic 

number elements such as C,O and H, called the balance. The balance cannot be 

measured due to the high absorption of their low energy X-ray K lines, but it can 

typically be determined by the intensity ratio of the Compton to Rayleigh (C/R) 

scatter peaks calibrations, since it is a function of the atomic number of the sample. 

This low atomic number calibration is however not incorporated in the PD-FP 

method. The IOM-FP however uses the C/R ratio calibrations extensively to 

determine the elements in the analysed sample [29,30,31]. The functionality of the 

method is company propriety information, but it basically uses standards and 

calculates a least-squares fit to obtain the C/R ratios as a function of atomic number 

of the material. This approach however does not take into account any no matrix 

effect, therefore the calibration standards can only be used for the analysis of 

samples with similar (or identical) matrices e.g. the calibration curve generated with 

a set of alloys will produce incorrect results when analysing mineralogical samples. 

Furthermore the inverse overlap matrix approach accelerates the spectrum 

processing process by assumes a constant ratio for Kα / Kβ or Lα / Lβ of the peak 

element. This ratio however varies in certain instances, especially where the 

absorption edge of one element falls between the Kα and Kβ lines of another 

element.  

Many assumptions are made with for the FP method such as, the incident radiation 

is parallel, the X-ray(s) effectively travel in a straight line within the sample until it is 

absorbed and the measured fluorescent X-ray(s) exit the specimen at the same 

angle. These assumptions are however not perfect, but experience have shown that 

the model performs well in practice.      
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CHAPTER 4 

XRF TECHNIQUE VALIDATION  

 

The validation of the analytical pXRF technique was done with homogeneous 

standard reference materials (SRMs) with known composition and concentration, to 

ensure that the XRF technique is property understood and used. SRMs of nine 

alloys, three coins and two rock reference material were used. The surfaces of the 

coins were flattened to ensure that errors resulting from surface roughness can be 

eliminated. The metal SRM was bought with the Niton XL3t spectrometer from 

Thermo Scientific. The rock SRMs were supplied by the McGregor Museum in 

Kimberley and the Central Analytical Facility (CAF) in Stellenbosch.  

The SRMs used for validation of the XRF technique where specifically selected to 

cover a range of atomic numbers (13 to 82) and different combinations of atomic 

numbers.  The SRMs can therefore be divided into three categories: metal alloys, 

coins and rock standards, as presented in Table 4.1.  

All the SRM’s have been analysed with the Amptek SDD and the Niton XL3t 

spectrometers. 

 

Alloys Coins Rock 

Stainless Steel 410 Nordic gold coin SARM-48 

CDA715 Copper centre coin SARM-69 

Inconel-600 Krugerrand coin  

Ti-CP (Grade 2)   

Stainless Steel 316   

Al 29-4-C   

F-255   

20Cb3   

Brass   

 

Table 4.1: SRM categories. 
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4.1 METAL ALLOY STANDARDS 

 

The results of Stainless Steel 410 [32], CDA715 [33], Inconel-600 [34],                    

Ti-CP (Grade 2) [35] and Brass alloy are presented in Table 4.2 to Table 4.6. The 

other four SRMs were analysed and presented in Appendix F, since they have 

similar elemental composition than Stainless Steel 410.  

 
4.1.1 Metal standards results 

 

Table 4.2: Niton XL3t and Amptek SDD measurements for Stainless Steel 410 [32]. 

 

The elemental concentrations for both spectrometers were within the known 

concentration range as per the SRM certificate of analysis. As discussed in the 

method limitation section 3.8, the low atomic number elements cannot be determined 

by the PD-FP method, since the method do not use the Compton to Rayleigh 

scattering ratio.  

 

Table 4.3: Niton XL3t and Amptek SDD measurements for CDA 715 alloy [33]. 

Elements 
Atomic 

number 

Niton XL3t 

Concentration (wt %) 

Amptek 

Concentration (wt %) 

SRM 

Concentration (wt %) 

Ni 28 0.25 ± 0.02 0.19 ± 0.01 0.5 max. 

Fe 26 87.08 ± 0.06 85.99 ± 0.25 85 – 88.5 

Mn 25 0.48 ± 0.03 0.56 ± 0.02 1.0 max.  

Cr 24 12.03 ± 0.02 13.26 ± 0.11 11.5 – 13.5 

Other  Low  0.16 - 0.82 max. 

Elements 
Atomic 

number 

Niton XL3t  
Concentration 

(wt %) 

Amptek SDD 

Conctration 

(wt %) 

SRM known 

concentration 

(wt %) 

Cu 29 68.49 ± 0.06 67.15 ± 0.11 69.5 

Ni 28 29.96 ± 0.06 31.27 ± 0.26 29.0 – 33.0 

Fe 26 0.58 ± 0.01 0.73 ± 0.03 0.4 – 0.7 

Mn 25 0.86 ± 0.01 0.89 ± 0.04 1.0 max. 

Other  Low 0.11 - 1.05 max. 
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For the CDA715 alloy all the elemental concentrations for both pXRF spectrometers 

were in concentration range, as defined by the certificate of analysis of the SRM.  

 

Table 4.4: Niton XL3t and Amptek SDD measurements for Inconel-600 alloy [34]. 

 

The concentrations of the other elements, such as Ni, Fe, Mn, Cr and Ti were all 

within the known concentration range, as per the SRM certificate of analysis, for both 

spectrometers.  

The Ti-CP alloy analysed, which is an example of an alloy with one abundant 

element, Ti and a very low concentration of Fe.   

 

Table 4.5: Niton XL3t and Amptek SDD measurements for Ti-CP (Grade 2) alloy 

[35]. 

 

Both the elements and their respective concentration values for the Ti-CP alloy were 

within the known concentration range of the SRM.  

 

 

 

Elements Atomic number 

Niton XL3t 
Concentration (wt 

%) 

Amptek SDD 

Concentration 

(wt%) 

SRM known 

concentration 

(wt %) 

Ni 28 74.38 ± 0.061 72.94 ± 0.13 72.0 min. 

Fe 26 9.79 ± 0.036 9.75 ± 0.05 6.0 – 10.0 

Mn 25 0.29 ± 0.02 0.45 ± 0.01 1.0 max. 

Cr 24 14.84 ± 0.04 15.99 ± 0.08 14.0 – 17.0 

Other  Low 0.7 - 1.165 max. 

Elements Atomic number 

Niton XL3t 
Concentration  

(wt %) 

Amptek SDD 

Concentration 

(wt%) 

SRM known 

concentration 

(wt %) 

Fe 26 0.14 ± 0.01 0.083 ± 0.02 0 – 0.3 

Ti 22 99.83 ± 0.03 99.92 ± 0.62 99.3 – 100 

Other  Low 0.03 - 0.4 
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For pXRF measurements an X-ray generator with a maximum energy of 40 keV was 

used, therefore heavier elements are only detected through their L lines. This makes 

the spectra analysis more complicated since a variety of lines with different 

intensities are observed in the spectrum. Therefore the spectrometer will be 

validated for a few high atomic number elements, such as Pb and Au. Pb being part 

of the composition of brass were comparatively analysed with the two spectrometers. 

The Amptek SDD and concentration results are presented in Figure 4.1 and         

Table 4.6, respectively. The Au concentration in the Krugerrand coin will be analysed 

in the next section.   
 

  
Figure 4.1: Amptek SDD spectrometer spectrum for Brass. 

 

 

Table 4.6: Brass sample concentration results. 

 

The elemental concentrations of all the elements obtained with both spectrometers 

are consistent, with a relative low concentration for Pb found. From the results it can 

be concluded that the concentration extraction by using the excited L lines is 

effective even though the task is more complex.   

Element Z number 
Niton XL3t 

concentration (wt %) 

Amptek SDD 
concentration  

(wt %) 

 

Pb 82 3.09 ± 0.03 3.63 ± 0.12  

Zn 30 38.46 ± 0.12 39.39 ± 0.13   

Cu 29 57.56 ± 0.15 56.59 ± 0.16  

Co 27 0.025  ± 0.008 0.029 ± 0.012  

Fe 26 0.31 ± 0.01 0.39 ± 0.01  

V 23 0.021 ± 0.001 0.03 ± 0.02  

Other  Low 0.53 -  

 Pb Mα

 Ar

 V

 Fe Kα

 Fe Kβ

 Co

 Cu Kα  Zn Kα

 Cu K β

 Zn Kβ

 Pb Lα  Pb Lβ

 Pb Lɣ
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4.2 COIN STANDARDS  

 

The Nordic gold coin and a copper centre coin are 50 euro cents and 2 euros 
respectively. For both coins only the front surface was prepared by flattening the 
surface. The back of the coin was also measured, to investigate the effect of surface 
roughness on elemental concentrations. The elemental concentrations are presented 
in Table 4.7 and Table 4.8.    
 
The Krugerrand coin was investigated to determine if the concentration of Au can be 

successfully extracted from the L excitation lines. The measured surface of the 

Krugerrand coin was not flattened, due to the high monetary value. The elemental 

concentration for the Krugerrand coin is presented in Table 4.9.      

 
4.2.1 Coin standards results  

 

Table 4.7: Nordic gold coin concentration results [36]. 

 

The elemental concentrations obtained by the Niton XL3t for the Zn, Cu, Al and Sn 

elements of the Nordic gold coin, were in line with the expected results. 

 

For the Amptek SDD the Al concentration could however not be determined by the 

PD-FP method, since the histogram bin corresponding to the characteristic x-ray 

Element Z number 

Front Back 
Back and 

Front 

Niton XL3t 
concentration 

(wt %) 

Amptek SDD 
Concentration 

(wt %) 

Niton XL3t 
concentration  

(wt %) 

Amptek SDD 
Concentration 

(wt %) 

Known 
concentration 

(wt %) 

Sn 50 0.88 ± 0.01 1.84 ± 0.12 0.87 ± 0.01 1.88 ± 0.16 1.0 

Nb 41 0.102 ± 0.002 0.254 ± 0.021 0.126 ± 0.005 0.343 ± 0.010 - 

Zr 40 0.096 ± 0.005 0.158 ± 0.016 0.117 ± 0.016 0.141 ± 0.011 - 

Zn 30 5.03 ± 0.03 5.46 ± 0.05 5.04 ± 0.03 5.49 ± 0.04 5.0 

Cu 29 89.32 ± 0.30 87.67 ± 0.17 88.93 ± 0.32 87.59 ± 0.17 89.0 

Fe 26 0.047 ± 0.004 0.061 ± 0.004 0.053 ± 0.012 0.061 ± 0.001 - 

Mn 25 0.012 ± 0.005 0.118 ± 0.006 0.035 ± 0.004 0.115 ± 0.003 - 

Al 13 4.76 ± 0.35 
not 

determined 
5.087 ± 0.34 

not 

determined 
5.0 

Other  Low 0 - 0.07 - 0.0 

Stellenbosch University http://scholar.sun.ac.za



 

33 

 

energy of Al only contain a few counts as can be seen in Amptek SDD spectrum in 

Figure 4.2. When analysed by the PD-FP method, it leads to large concentration 

errors. For the Niton XL3t the Al concentration could be determined, since the    

IOM-FP method uses the information of the Rayleigh and Scatter peaks intensities to 

determine the low atomic number concentrations.    

 

There is therefore no means to determine the concentration of Al obtained by the 

Amptek SDD and hence only the concentrations of Zn, Sn, Cu and a few low 

concentrations elements could be determined. This can be done by forcing the 

combined concentrations of Zn, Sn, Cu and the low concentrations elements within 

the PD-FP code to account for the low atomic number material, such as Al. This can 

however only be done if the concentration of the low atomic number material is 

known. In this specific case the assumption is made, since the concentration of the 

standard is known. The concentrations of the euro coins are available from KME 

database [36]. From Table 4.7 it can be observed that the elemental concentrations 

obtained for Zn and Cu are within reasonable values. The forcing of concentration 

can be seen as a significant weakness of the PD method, used by the Amptek SDD, 

especially for samples were a large part of the weight percentage is from low atomic 

number elements.  

  

Figure 4.2: Amptek SDD spectrometer spectrum for Nordic gold   

 

By comparing the elemental concentrations of the front of the coin, which is the 

flattened surface, with the elemental concentrations of the back of the coins; it can 

be concluded that for pXRF measurements for samples with surface roughness (due 

to the engraving on the coin) has little to no impact on the elemental concentrations 

for this coin. The results obtained for the Nordic gold coin were in good agreement 

 Al
 Ar  Sn 

 Mn
 Fe

 Cu Kα

 Zn Kα

 Cu K β

 Zn Kβ

 Zr

 Nb

 Sn Kα

Stellenbosch University http://scholar.sun.ac.za



 

34 

 

with that of the known elemental concentrations.  A few low concentration elements 

such as Nb, Zr, Fe and Mn were also measured. However, only the high 

concentration elements were indicated in the certificate.    

 

 

Table 4.8: Copper coin concentration results.  

 

As in the case of the Nordic gold coin, the elemental concentrations of the back and 

front of the copper coin compare well, as presented in Table 4.8. Hence there is no 

need to account for the engraving in the coins, for the conditions where the 

elemental concentration measurement is performed with PXRF.  

The second element used for the validation of the pXRF technique (for high atomic 

number elements) is Au, as found in the Krugerrand. The Amptek SDD spectrum for 

the Krugerrand is presented in Figure 4.3. 

 

Figure 4.3: Amptek SDD spectrometer spectrum for the Krugerrand coin.  

  Element Z number 

Front (flattened surface) Back Back and Front 

Niton XL3t 
concentration 

(wt %) 

Amptek SDD 
Concentration 

(wt %) 

Niton XL3t 
concentration  

(wt %) 

Amptek SDD 
Concentration 

(wt %) 

Known 
concentration 

(wt %) 

Zn 30 19.75 ± 0.15 20.58 ± 0.10 19.49 ± 0.07 19.41 ± 0.10 20.0 

Cu 29 74.98 ± 0.48 73.99 ± 0.18 74.81 ± 0.20 75.29 ± 0.19 75.0 

Ni 28 5.14 ± 0.04 5.43 ± 0.03 5.14 ± 0.02 5.29 ± 0.03 5.0 

Other  Low 0.13 - 0.56 - 0.0 

 Au Mα

 Ar
 V

 Mn

 Cu
 Au Lα  Au Lβ

 Au Lɣ

 Rb

 Sr
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Table 4.9: XRF analysis results of the Krugerrand coin [37].  

 

The deviation in the concentration for Au, as found in the elemental concentration 

results in Table 4.9, is most probably not due to the surface roughness, as 

concluded from the results of the euro coins. The overlapping of the Lα lines for Au at 

9.71 keV and Lβ for W at 9.67 keV (originating from the X-ray tube) is the most likely 

reason. Low concentration elements such as Sr, Rb, Mn and V were also measured. 

However, only the high concentration elements were indicated in the certificate.    

   

For the most optimal excitation conditions an X-ray tube energy of greater than the K 

absorption edge is required, which would excite the Kα and Kβ lines. Very high energy 

portable X-ray tubes are nowadays available which can achieve a maximum energy 

of 100 keV. There is however concerns from a radiation protection point of view, as a 

result of the high energy.  

Element Z number 
Amptek SDD 

Concentration (wt %) 
Known 

Concentration (wt %) 

Au 79 93.21 ± 0.10 91.67 

Sr 38 0.072 ± 0.001 - 

Rb 37 0.043 ± 0.010 - 

Cu 29 6.79 ± 0.03 8.33 

Mn 25 0.021 ± 0.001 - 

V 23 0.025 ± 0.004 - 

Other  Low - 0.0 
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4.3 ROCK STANDARDS  

 

Two rock SRMs, SARM-48 [7] and SARM-69 [8] with high SiO2 content were 

analysed. The SARM-48 material comes from the Buffalo Mine, South Africa with 

main compounds such as Al2O3, CaO, K2O and SiO2. The material was produced in 

a pellet form by the CAF laboratory at Stellenbosch University. The SARM-69 SRM 

pellet, which was produced at iThemba Labs, is essentially Late Iron Age pottery 

vessels remainings found on the Mkgwareng [38] site, with main compounds such as 

Fe2O3, Al2O3 and SiO2.  

 

 

4.3.1 Rock standard pellet preparation  
 

To ensure homogeneity of the sample the reference material were milled and 

pressed into a pellet disk.  

The homogeneous pellet disk will ensure that reproducible measurements can be 

obtained. This pellet preparation is done with a press capable of creating a pressure 

of 20 ton Beckman pressure. The build-up pressure on the sample is initially done 

over a 30 second period; once the pressure is reached it is maintained for a further 

30 seconds period. The pressure on the sample is then decreased to atmospheric 

pressure over a 30 second period. This method results in a pellet with a smooth 

surface. The elimination or reduction of the surface contamination was done by 

cleaning the sample preparation dye with water, acetone and alcohol before each 

pressing process started.  

 

4.3.2 Rock elemental conversion to oxide   
 

The XRF analysis of oxides is performed in an indirect manner since XRF 

spectroscopy is only sensitive to elements. Therefore, SiO2 for example is analysed 

from the Si element. A conversion factor (as shown in Table 4.10) is used to convert 

the concentration of the analysed Si Kα elemental line into the oxide form. The 

conversion factor is the molar ratio of silicon and oxygen in SiO2. In Table 4.10 all 

the elements and there major oxide phase in rock art paint are indicated.  

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



 

37 

 

 

Table 4.10: Stoichiometric factors [39].   

 

4.3.3 Rock standards results  

 

The results for SARM-48 and SARM-69 SRMs obtained by the Niton XL3t and  

Amptek SDD are presented in Table 4.11 and Table 4.12. 

 

Table 4.11: SARM 48 reference material [7]. 

 

 

 

Element Oxide phase Conversion factor 

Si SiO2 2.1393 

Ti TiO2 1.6681 

Al Al2O3 1.8895 

K K2O 1.2046 

Ca CaO 1.399 

Mg MgO 1.6581 

Fe Fe2O3 1.4297 

Mn MnO 1.2912 

P P2O5 2.2914 

Compounds 
Niton XL3t 

Concentration (wt %) 

Amptek SDD 

Concentration (wt %) 

SRM 

Concentration (wt %) 

Fe2O3 0.57 ± 0.012 0.31 ± 0.01 0.58 

Al2O3 9.78 ± 0.14 9.44 ± 0.27 11.24 

CaO 7.77 ± 0.12 8.52 ± 0.21 8.90 

K2O 5.79 ± 0.08 4.23 ± 0.11 4.26 

SiO2 72.47 ± 0.43 74.3 ± 3.0 67.11 

MgO 0.95 ± 0.36 0.99 ± 0.28 0.18 

TiO2 not detected not detected 0.10 

MnO not detected not detected 0.02 
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Table 4.12: SARM 69 reference material [8]. 

 

From the compound concentration of Table 4.11 and Table 4.12, it can be observed 

that for the two SRMs the higher atomic number compounds, such as K2O, CaO and 

Fe2O3 are in good agreement with that of the known SRM concentrations. For the 

lower atomic number compounds, such as MgO and Al2O3 where the concentrations 

obtained from the two spectrometers are not that reliable due to the high absorption 

of their low energy X-ray K lines.  

For SARM-48 the X-ray lines for the compounds TiO2 and MnO were not detected by 

either one the spectrometers. This is due to the very low concentrations.  

 

 

  

Compounds 

Niton XL3t 

Concentration    

(wt %) 

Amptek SDD 

Concentration    

(wt %) 

SRM 

(wt %) 

Fe2O3 7.71 ± 0.04 5.03 ± 0.02 4.76 – 9.8 

Al2O3 14.40 ± 0.20 18.18 ± 2.04 11.12 – 16.49 

CaO 2.23 ± 0.03 2.68 ± 0.04 1.33 – 8.19 

K2O 1.74 ± 0.03 1.83 ± 0.03 1.28 – 2.78 

SiO2 69.78 ± 0.17 70.3 ± 2.3 57.48 – 69.31 

MgO not detected 1.0 ± 1.2 1.14 – 2.68 

TiO2 0.62 ± 0.01 0.72 ± 0.01 0.57 – 1.02 

MnO 0.08 ± 0.01 0.12 ± 0.01 0.08 – 0.19 

P2O5 0.27 ± 0.03 0.27 ± 0.11 0.12 – 0.33 

Stellenbosch University http://scholar.sun.ac.za



 

39 

 

4.4  XRF TECHNIQUE VALIDATION CONCLUSIONS   

 

 

Several homogeneous SRMs were used for the validation of the XRF technique, 

covering a range of atomic numbers and different combination of atomic numbers. 

For all the SRMs the elemental concentrations obtained for both the pXRF 

spectrometers were in good agreement with the known concentrations.  

 

For the coin SRMs the front was prepared by flattening the surface. The back of the 

coin were also measured to investigate the effect of surface roughness, due to the 

engraving on the coin, on elemental concentrations.  The elemental concentrations 

of both the back and front, for the two SRMs coins, compared well and therefore 

there is no need to account for the engraving on coins when elemental concentration 

measurement is performed. For the Nordic gold coin the very small Al peak detected 

could not be used to determine the Al concentration. Since the PD method used by 

the Amptek SDD does not use the C/R calibration to determine the low atomic 

number concentrations, as in the case with the IOM-FP method used by the Niton 

XL3t. Therefore only the concentrations of Zn and Cu could be determined. This was 

done by limiting the combined concentration of Zn and Cu, by assuming the the 

known concentration of Al from the certificate, and calculating their concentrations 

respectively. This can be seen as a weakness of the PD method, especially for 

samples were a large contribution of the weight percentage is from low atomic 

number elements.  

 

From the two rock SRMs the compound concentrations for the high atomic number 

compounds are in good agreement with that of the known SRM concentration.  

However for the low atomic number compounds, such as MgO and Al2O3 the 

concentrations obtained using the two spectrometers are not reliable due to the high 

absorption of their low energy X-ray K lines.  

The Krugerrand coin measured elemental concentrations agreed well the known 

SRM elemental concentrations, which demonstrate that the extraction of 

concentrations with the use of L lines is effective, even though the task is more 

complex.    Additionally, the well resolved L X-ray lines by the pXRF detector, 

between all the other K X-ray lines, play a vital factor to achieve high accuracy 

results for high atomic number elemental concentrations.     
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CHAPTER 5 

EXPERIMENTAL RESULTS AND DISCUSSION  

 

 

5.1 MOUNT AYLIFF ROCK ART FRAGMENT   

A rock art fragment from the Mount Ayliff area in Eastern Cape found on the shelter 

floor of a cave, which had naturally exfoliated from the bigger rock art painting was 

analysed. The fragment is made of sandstone, which mainly consists of SiO2. The 

age of the paint on the fragment is estimated to be about 150 years [40] since 

scattered remnants of the Bushman still exist in the area. Ten points were 

specifically selected, as indicated in Figure 5.1 and analysed in order to obtain the 

compound concentrations of each of the points. The ten points included seven paint 

points covering a variety of paint colours, two rock varnish points and the back of the 

rock. The paint colours ranged from black, shades of brown and shades of red, 

where the black paint is due to manganese or charcoal, the red colour is due to iron 

oxide and the red-brown colour is due to Hematite (a type of ferrous oxide) [1].  

The measurements were performed in consultation with Dr L. Jacobson, the former 

Deputy Director of the McGregor Museum in Kimberley.  

  

 

 

 

 

 

 

Figure 5.1: Mount Ayliff rock art fragment with the points that were characterised. 

 

For the analysis, the assumption was made that the rock art fragment consists of 

one layer of infinite thickness. Five measurements (obtained by means of the 

Amptek SDD and the Niton XL3t spectrometers) were taken at each of the ten points 

to improve the statistics and also to avoid anomalies because of grain effects. The 

composition analyses are shown in Table 5.1 and Table 5.2 and the Amptek SDD 

spectrometer spectrum in Figure 5.2. 
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Figure 5.2: Amptek SDD spectrometer spectrum for the Mount Ayliff rock art fragment (point 1).  
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5.1.1 Compound concentrations and conclusions 

Compounds Al2O3 SiO2 P2O5 S K2O CaO TiO2 Fe2O3 

Concentration wt % wt % wt % wt % wt % wt % wt % wt % 

P
o

in
t 

1
 

B
la

ck
 Niton XL3t 0.71 ± 0.11 7.88 ± 0.08 < 0.01 6.89 ± 0.05 0.36 ± 0.01 40.69 ± 0.09 < 0.01 0.78 ± 0.01 

Amptek SDD not determined not determined 0.547 ± 0.082 8.338 ± 0.237 1.416 ± 0.015 44.566 ± 0.166 0.699 ± 0.019 2.744 ± 0.019 

P
o

in
t 

2
 

R
e

d
/B

ro
w

n
 

Niton XL3t 0.89 ± 0.12 11.29 ± 0.09 < 0.01 6.99 ± 0.06 0.38 ± 0.01 35.19 ± 0.08 < 0.01 0.76 ± 0.01 

Amptek SDD not determined not determined 0.724 ± 0.081  9.997 ± 0.206 0.929 ± 0.026 41.992 ± 0.137 0.354 ± 0.011 2.424 ± 0.015 

P
o

in
t 

3
 

R
e

d
/B

ro
w

n
 

Niton XL3t 2.11 ± 0.10 17.91 ± 0.11 < 0.01 9.19 ± 0.06 0.74 ± 0.02 32.29 ± 0.08 < 0.01 1.08 ± 0.02 

Amptek SDD not determined not determined 1.317 ± 0.111 10.478 ± 0.198 0.739 ± 0.024 28.796 ± 0.113 0.229 ± 0.008 1.742 ± 0.011 

P
o

in
t 

4
 

V
a

rn
is

h
 Niton XL3t 2.17 ± 0.14 13.86 ± 0.10 < 0.01 9.37 ± 0.06 0.56 ± 0.02 36.88 ± 0.08 < 0.01 0.94 ± 0.01 

Amptek SDD not determined not determined 0.888 ± 0.07 8.230 ± 0.200 0.792 ± 0.021 34.024 ± 0.018 0.327 ± 0.010 3.439 ± 0.016 

P
o

in
t 

 5
 

V
a

rn
is

h
 Niton XL3t 1.75 ± 0.01 11.89 ± 0.10 < 0.01 9.19 ± 0.07 0.38 ± 0.01 41.85 ± 0.09 < 0.01 0.97 ± 0.02 

Amptek SDD not determined not determined 1.718 ± 0.116 6.919 ± 0.116 0.889 ± 0.023 36.112 ± 0.111 0.350 ± 0.010 1.821 ± 0.011 

 

Table 5.1: Compound and element concentration of measured points 1 to 5 for both the Niton XL3t and Amptek SDD 

spectrometers.  
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Compounds Al2O3 SiO2 P2O5 S K2O CaO TiO2 Fe2O3 

Concentration wt % wt % wt % wt % wt % wt % wt % wt % 

P
o

in
t 

6
 

B
la

ck
 Niton XL3t   1.65 ± 0.15 11.89 ± 0.09 < 0.01 9.01 ± 0.08 0.36 ± 0.01 45.79 ± 0.11 < 0.01 0.73 ± 0.01 

Amptek 

SDD 
not determined not determined 2.016 ± 0.013 12.360 ± 0.317  1.13 ± 0.011 37.275 ± 0.171  0.419 ± 0.015 2.728 ± 0.022 

P
o

in
t 

7
 

B
la

ck
 Niton XL3t   1.59 ± 0.15 13.43 ± 0.11 < 0.01 10.39 ± 0.07 0.41 ± 0.01 41.11 ± 0.09 < 0.01 0.88 ± 0.01 

Amptek 

SDD 
not determined not determined 0.599 ± 0.08 10.184 ± 0.133 1.080 ± 0.031 38.705 ± 0.104 0.338 ± 0.012 1.904 ± 0.004 

P
o

in
t 

8
 

R
e

d
 /

 B
ro

w
n

  

Niton XL3t   0.21 ± 0.11 22.63 ± 0.13 < 0.01 11.88 ± 0.08 0.96 ± 0.02 31.08 ± 0.08 < 0.01 1.18 ± 0.01 

Amptek 

SDD 
not determined not determined 1.033 ± 0.032 9.478 ± 0.206 0.865 ± 0.024 31.652 ± 0.110 0.219 ± 0.008 1.854 ± 0.011 

P
o

in
t 

9
 

R
e

d
 /

 B
ro

w
n

 

Niton XL3t   0.15 ± 0.15 14.68 ± 0.11 < 0.01 9.59 ± 0.07 0.39 ± 0.01 40.79 ± 0.09 < 0.01 0.66 ± 0.01 

Amptek 

SDD 
not determined not determined 0.436 ± 0.011 8.864 ± 0.024 1.026 ± 0.026 38.860 ± 0.120 0.465 ± 0.060 1.830 ± 0.012 

B
a

ck
 o

f 

ro
ck

 Niton XL3t 2.39  ± 0.09 23.58 ± 0.38 < 0.01 not determined 1.29 ± 0.07 13.82 ± 0.12 < 0.01 1.75 ± 0.02 

Amptek 

SDD 
not determined not determined 0.377 ± 0.072 0.157 ± 0.033 2.437 ± 0.032 9.250 ±0.050 1.020 ± 0.014 3.589 ± 0.013 

 

Table 5.2: Compound and element concentration of measured points 6 to 9 and back of the rock, for both the Niton XL3t and 

Amptek SDD spectrometers. 
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The elemental concentrations of the low atomic number compounds Al2O3 and Si2O 

could not be determined by the Amptek SDD PD-FP method, since the PD-FP 

method does not use the C/R calibrations to determine low energy compounds. 

When the small Si peak in the Figure 5.2 is analysed with the PD-FP method, it 

leads to a large concentration error. This is a similar situation as previously 

encountered with the Al concentration for the Nordic gold coin analysis, where a 

limiting concentration value was used in the PD-FP code for Zn, Sn, Cu and low 

concentration elements.  A similar approach is used for the low compound and 

elemental concentrations Al2O3 and SiO2 of the Mount Ayliff fragment. In order to 

compare the concentration of the high atomic number compounds P2O5, S, K2O, 

CaO, TiO2 and Fe2O3 the assumption is made that the balance and the 

concentrations of Al2O3 and SiO2 for the Niton XL3t is correct and used in an attempt 

to obtain the elemental analysis with the PD-FP method.  

From the compound concentrations in Table 5.1 and Table 5.2 it can be seen that 

the total compound concentration contribution adds up to less than 100 wt %. The 

difference or balance is as of a result of elements which cannot be detected such as 

H, Na and C (from organic matter) due to the high absorption of their low X-ray 

energy in the material. The determination of the balance by the IOM-FP method 

(used by the Niton XL3t) is propriety information, but it is likely that a similar method 

is used as with the determination of low atomic compound concentrations i.e. where 

the information of the Rayleigh and Scatter peaks are used. This ability to calculate the 

low atomic number compounds with the IOM-FP method makes it a superior 

technique to the PD-FP method, used by the Amptek SDD.       

 

The concentrations of P2O5 and TiO2 compounds obtained with the Amptek SDD 

were much higher than the concentrations obtained with the Niton XL3t. Since these 

two compound are on the lower (Z = 15 for P) and higher (Z = 22 for Ti) atomic 

number compounds range (15 to 26) measured with the Amptek SDD, it is 

speculated that the PD-FP method used by the Amptek SDD do not produce 

accurate concentrations at the limits of the atomic number ranged measured.        

From the results it can be concluded that a uniform coating of high Ca and Si 

concentrations is spread across the fragment. Silica rich deposits commonly known 

as amorphous silica skins [41] have been observed for certain rock art sites [41]. The 

deposits are commonly in the order of ≤ 0.5 mm thick, but can be up to 3 mm. The 

mechanism of silica skin formation is however complex, but in the studies carried by 

Lovering [42] and Watchman [43] for rock art sites throughout Australia, it was 

concluded that the coating formation is due to the slow percolation of ground-waters 

through the sandstones. The typical yearly rainfall for the Mount Ayliff region in the 

Eastern Cape is about 672 mm per year [44], with leachable elements such as Mg, 

K, Ca, Fe and to a lesser extend Al, Si and Mn [1] forming the major constituents of 

the layer. The leach of CaO and Si2O from the back to the front of the rock is 

illustrated in Figure 5.3, where the points with the same colour were combined to 
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obtain an average concentration for each colour. The weathering processes the 

account for the account for the extensive removal of the relative mobile elements, 

such as Mg, K, Ca and Fe. It appears that this removal process did not happen for 

the Mount Ayliff rock fragment, since high CaO concentration was detected. 

Weathering processes is complex and depends on many environmental factors and 

the material properties of the rock itself [45], such as crystal structure [46], which 

result in compositional segregation at the sample surface [47,48,49,50].   

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Elemental compositions by colour and back of the rock 

 

The occurrence of a uniform CaO layer over the rock art was however unexpected. It 

was expected that the composition would vary for different colours e.g. the red paint 

lines have a high concentration of iron oxide (Fe2O3).  

The graphical illustrations of the low and high compound concentrations for the   

Niton XL3t are shown in Figure 5.4 and 5.5, Amptek SDD concentrations in Figure 

5.6 and 5.7. The concentration of P2O5 and TiO2 for the Niton XL3t is not included 

since the concentrations obtained from the Niton XL3t were all below 0.01 weight 

percent.   

 

 

 

Niton XL3t Amptek SDD 
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Figure 5.4: Compound and elemental concentrations (wt %) per point for the       

Niton XL3t spectrometer. 

 

 

Figure 5.5: Compound and elemental concentration (wt %) per point for the        

Niton XL3t spectrometer.   
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Figure 5.6: Compound and elemental concentration (wt %) per point for the   

Amptek SDD spectrometer.  

 

 

 

  
 

Figure 5.7: Compound and elemental concentration (wt %) per point for the    

Amptek SDD spectrometer.  
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5.1.2 Semi-quantitative comparison of the two pXRF spectrometers  

 

For pXRF spectrometer comparison purposes, the compound ratio value which is 

determined by dividing the Amptek SDD measured concentration by the measured 

concentration value of the Niton XL3t spectrometer, for each point is calculated. With 

the concentration ratios determined for S, K2O, CaO and Fe2O3 compounds and 

presented in Table 5.3. Since the concentrations of P2O5 and TiO2 for Niton XL3t 

were all given below 0.01, the concentration ratios were not calculated. The 

compound ratio serves as a means to do a semi-quantitative comparison of the two 

pXRF spectrometers. Graphic illustrations of the compound ratio values are 

presented in Appendix G.  

 

 

Table 5.3: Amptek SDD and Niton XL3t compound concentration ratio analysis for S, 

K2O, CaO and Fe2O3. 

 

Even though the ratio value could give some insight in the agreement between the 

two spectrometers it should not be seen as an absolute were a ratio value of 1 is 

good agreement and were any ratio greater or less than 1 is not such good 

agreement. Since it should be taken into account that the concentrations for the        

Amptek SDD were forced. However limited comparison can be done and with 

success for S and CaO compounds, were the average ratio value is approximately 1. 

It is speculated that the variation for K2O and Fe2O3 compound concentrations 

between the two spectrometers are due to spectra evaluation code inaccuracies for 

the heavy Fe (Z=26) compound and light compound K (Z=19) compound.      
  

Element 
Point 

Description 
S K2O CaO Fe2O3 

Point 1 Black 1.21 3.93 1.10 3.52 

Point 2 Red / Brown 1.43 2.44 1.19 3.19 

Point 3 Red / Brown 1.14 1.00 0.89 1.61 

Point 4 Varnish 0.88 1.41 0.92 3.66 

Point 5 Varnish 0.75 2.34 0.86 1.88 

Point 6 Black 1.37 3.14 0.81 3.74 

Point 7 Black 0.98 2.63 0.94 2.16 

Point 8 Red / Brown 0.80 0.90 1.02 1.57 

Pont 9 Red / Brown 0.92 2.63 0.95 2.77 

Average  1.05 2.27 0.97 2.68 

Standard 

Deviation  

 
0.25 1.00 0.12 0.89 
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5.2  HA KHOTSO ROCK ART FRAGMENT   

 

The rock art fragment in Figure 5.8 was found in cave Ha Khotso in Lesotho. This is 

a huge and lengthy shelter with some of the finest rock art in southern Africa. The 

cave includes animals painting such as eland, hartebeest, lion, leopard, buck and 

guinea fowl. In between these are hunters, dancers and figures of huts - all of which 

is done in beautiful styles of red, black and brown shades. The rock fragment 

analysed was naturally exfoliated from a larger rock art painting. The fragment is 

made of sandstone and its dimensions are about 9 cm2. The colour of the paint on 

the rock fragment can be described as a combination of white and yellow i.e. a 

cream colour which is covered across the fragment. The Ha Khotso fragment was 

analysed by making use of both the pXRF and PIXE [5] techniques, with the area 

measured five times. For pXRF, the Amptek SDD with miniature X-ray generator and 

for micro-PIXE, the facility at iThemba LABS were used.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Ha Khotso rock fragment, with analysed section indicated with a blue 

circle. 

 

The Ha Khotso elemental concentrations obtained by PIXE and XRF techniques are 

given in Table 5.4 and the Amptek SDD spectrometer spectrum in Figure 5.9.  
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Figure 5.9: Amptek SDD spectrometer spectrum for the front of the Ha Khotso rock fragment. 
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5.2.1 Compound concentrations and conclusions 

 

Table 5.4: PIXE and Amptek SDD results for Ha Khotso rock art fragment. 

  

Compounds Na2O MgO Al2O3 SiO2 S Cl K2O CaO TiO2 MnO Fe2O3 

Concentration  wt %  wt % wt % wt % wt % wt % wt % wt % wt % wt % wt % 

R
o

ck
 p

a
in

t 
   

   
   

  

(F
ro

n
t 

o
f 

ro
ck

) PIXE 12.71 ± 0.23 3.41 ± 0.04 9.58 ± 0.03 28.29 ± 0.16 12.92 ± 0.07 0.31 ± 0.09 1.31 ± 0.02 28.71 ± 0.33 0.16 ± 0.01 0.15 ± 0.09 1.67 ± 0.03 

Amptek 

SDD 

not 

determined 

not 

determined  

not 

determined   

31.860 ± 

1.60 

25.921 ± 

0.311 

0.571 ± 

0.069 

0.542 ± 

0.041 

11.239 ± 

0.123 

0.117 ± 

0.009 

0.211 ± 

0.011 

3.854 ± 

0.027 

B
a

ck
 o

f 
ro

ck
 PIXE 

not 

determined 
1.37 ± 0.04 12.66 ± 0.14 50.84 ± 0.19 18.37 ± 0.15 0.27 ± 0.07 0.91 ± 0.07 13.93 ± 0.05 0.30 ± 0.02 0.41 ± 0.07 0.90 ± 0.01 

Amptek 

SDD 

not 

determined 

not 

determined  

not 

determined   
51.4 ± 2.3 

12.897 ± 

0.270 

0.697 ± 

0.077 

0.881 ± 

0.061 

8.524 ± 

0.122 

0.563 ± 

0.023 

0.711 ± 

0.011 
10.98 ± 0.04 
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The graphical illustrations of the compound concentrations for the PIXE and the 

Amptek SDD spectrometer are presented in Figure 5.10 and Figure 5.11, 

respectively.   

 

Figure 5.10: SiO2, S, CaO and Fe2O3 concentration measurements with the Amptek 

SDD and PIXE for the front and back of the Ha Khotso fragment. 

 

 

Figure 5.11: K2O, TiO2, MnO and Cl concentration measurements with the Amptek 

SDD and PIXE for the front and back of the Ha Khotso fragment.    
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By comparing the CaO compound concentrations for the back and front of the rock 

(for both techniques) a reduction in the compound concentration can be observed 

from the front to back of the rock. Therefore the contribution of CaO is a result of the 

paint on the Ha Khotso rock fragment. The cream colour of the paint, as can be seen 

from Figure 5.8, can thus be correlated to CaO concentration.  

The concentration for Na2O, MgO and Al2O3 could not be determined by the Amptek 

SDD. From Figure 5.9  it can be seen that Na and Mg was not detected and for Al 

only a small peak can be observed, which when analysed with the PD-FP method, 

leads to big concentration errors.      

The Si2O concentrations from the sandstone rock, compared well for the two 

techniques. However several differences in compound concentration for the two 

techniques were observed. These differences can be attributed to the fact that the 

paint on the fragment is most probably layered and heterogeneous, with the surface 

composition having a different composition than the bulk sample. Therefore the 

variation in penetration depth due to the difference in energy with which the sample 

is bombarded for the two techniques, will result in different compound 

concentrations.     

Another factor, which could contribute to differences in compound concentrations of 

the two techniques, is the distribution of the elements in the analysed region, 

together with the difference in spectrometer collimation, 3x3 µm2 and 7 mm2 for the 

micro-PIXE and Amptek SDD respectively. Therefore the distribution of the elements 

(in the analysis area) were analysed with the micro-PIXE technique. For the larger 

beam spot size the measurement will consist of both rock and rock varnish, since the 

paint lines are very thin. For the small beam spot size the probability of hitting a 

sample grain will increase; which could introduce anomalous concentrations and 

therefore not be a true representation of the sample. 

 

5.2.2 PIXE elemental distribution map  

 

Elemental mapping was performed using the Dynamic Analysis [51,52,53] method, 

which generate elemental images using K,L and M X-ray lines. The maps are 

overlap resolve and background subtracted, with the elements concentration 

expressed in weigh percentage. The elemental maps of the two major elements 

found in the rock paint Si and Ca are presented in Figure 5.12 and Figure 5.13. The 

elemental maps of the other elements found in the rock paint can be seen in 

Appendix H.  
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Figure 5.12: Si PIXE elemental composition map for the front of the rock. 

 

 

 

 

Figure 5.13: PIXE element (Ca) composition map for the front of the rock. 

 

From both PIXE elemental maps (1000x250 µm2 area) in Figure 5.12 and          

Figure 5.13 the non-uniform distribution of the elements can be seen. This can 

definitely result in differences in the compound concentrations for the two 

techniques.  The rock art paint is typically inhomogeneous and includes cracks, as 

demonstrated by the dark area in the centre of the PIXE elemental maps, which 

typically occur when the rock art has been exposed to environmental weathering for 

long periods of time (typically hundreds of years).  

Stellenbosch University http://scholar.sun.ac.za



 

55 

 

Since the Amptek SDD spectrometer is collimated to 7 mm2, the compound 

concentrations obtained is essentially a bulk analysis, where the elemental 

characterisation is an average of the entire sample volume. 

 

5.3 ROCK ART PAINT THICKNESS PROPERTIES  

 

Even though determination of the thickness of the paint and critical penetration depth 

was not part of the objective of the study, estimates of the thickness for rock art paint 

was done by J. Huntley with a scanning electron microscopy (SEM), showing that 

the thickness can be up to 50 µm [54]. This was measured for the rock art pigment 

from the Sydney Basin, which are comparable to the Mount Ayliff and Ha Khotso 

sandstone fragments analysed. The critical depth, beyond which any emitted photon 

is essentially absorbed and not detected, for light elements such as potassium, 

calcium, titanium and iron in silicate rock (representation of sandstone rock) is 

estimated to be 30 µm, 35 µm, 50 µm and 170 µm respectively. Since the detection 

volume is cone shaped, about half of the contribution of bulk chemical composition is 

derived from about 5 µm, 5 µm, 7.5 µm and 50 µm, respectively and for silicon the 

penetration depth is estimated to be ~10 µm [55]. 

 

5.4 EXPERIMENTAL RESULT CONCLUSIONS   

 

Not all the low atomic number compound concentrations could be determined by the 

PD-FP method used by the Amptek SDD. However the higher atomic number 

compound concentrations could be obtained, by forcing the combined concentrations 

of the high atomic number compounds within the PD-FP code. This can however 

only be done if the concentrations of these compounds is known. In the case of the 

Mount Ayliff and Ha Khotso fragment this assumption were made, since the 

concentrations are obtained from the Niton XL3t.    

 

From the results of the Mount Ayliff fragment concluded that a uniform coating of 

high Ca and Si concentrations is spread across the fragment, commonly known as 

amorphous silica skins (hydrated amorphous silicon dioxide, SiO2.nH2O). The 

mechanism for formation is complex, but it can be concluded that the coating is 

formed due to the slow percolation of ground-waters through the orthoquartzites, 

with leachable elements such as Mg, K, Ca, Fe and to a lesser extend Al, Si and Mn 

[1] forming the major constituents of the layer. Weathering processes then account 

for the removal of the relative mobile elements, such as Mg, K, Ca and Fe. It 

appears that this removal process did not yet occur for the Mount Ayliff rock 

fragment, since high Ca concentration was detected. The occurrence of this layer 

over the rock art was however unexpected. It was expected that the composition 
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would vary for different colours. The spectrometer compound concentration ratios for 

S and CaO were consistent throughout the analysed points. However, large 

variations of K2O and Fe2O3 concentrations were observed between the two 

methods, most probably due to the concentration which were not calculated 

accurately.   

The rock art paint on the Ha Khotso fragment is due to Ca and can be related to the 

cream colour of the rock art paint. The Si2O concentrations from the sandstone rock, 

compared well for the two techniques. However several differences in compound 

concentration for the two techniques can be attributed to the fact that the paint on the 

fragment is most probably layered, heterogeneous and non-uniform distribution of 

the elements in the analysed region.  Additional differences are spectrometer 

collimation and X-ray penetration depths.   
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS  

Homogeneous SRMs of metal alloys, coins and rock standards with a range of 

different atomic numbers and known elemental concentrations were used for the 

validation of the Amptek SDD and Niton XL3t spectrometers.  

 

The compound concentrations for the metal alloys agreed well with the known 

concentrations of the SRMs. From the Nordic gold coin it was learned that the Al 

concentration were not determined by the PD method used for the Amptek SDD, it 

appears to be an issue with low energy line detection. Therefore in order to 

determine the elemental concentration values for Zn and Cu a limiting concentration 

needed to be entered into the PD-FP code. Furthermore the roughness due to the 

engraving on the coin was not observed to play a significant role in the specific 

instance of Nordic gold coin. Very little difference was observed with the two 

spectrometers between the smooth and rough surfaces. Measurements on a 

Krugerrand coin and brass alloy (with known concentrations) were performed to 

demonstrate that the concentration of high atomic number elements, such as Au and 

Pb can be accurately measured.   

 

The validation of the SRMs concentrations was very important to advance the 

investigation to more complex rock art paintings with heterogeneous and layered 

properties.   

 

The characterisation of the rock art fragments, by identifying the elements of the 

paint was successfully done. Form the rock art fragment measurements it was found 

that the PD-FP method is not effective for low atomic number elements, but with the 

assumption that the balance from the Niton XL3t is correct, we have observed some 

agreement for the higher atomic numbers compounds. This is therefore by no means 

a validation of the PD-FP method but rather show the limitation which is understood 

and yield relative good results when applying the assumption. 

A uniform layer of high CaO and Si2O compound concentrations were measured. 

The slow percolation of ground-waters through the rock, leaching elements such as 

Ca, Mg, Fe and K to the surface of the rock [43] is the most likely reason. The 

variation of the composition for the different paint colours was hence not observed. 

The CaO layer appears to be invisible to the naked eye and possibly acts as a 

preserver of the rock art. This may hold the answer to long term conservation of rock 

art. A limited comparison of the compound concentrations between the two 
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spectrometers showed that CaO and S compounds compared well. It is speculated 

that the variation in concentration for the K2O and Fe2O3 compound is a result of the 

PD method not calculating the concentration accurately.  

Form the Ha Khotso fragment a reduction in the CaO compound concentration from 

the front to the back of the rock was observed with both techniques. This contribution 

is a result of the rock art paint and a relation between the high CaO concentration 

and the cream colour were established. The difference in compound concentrations 

between the PIXE and pXRF technique can be contributed to factors such as the 

differences in penetration depth due to the difference in energy with which the 

sample is bombarded, the heterogeneous distribution of elements in the analysed 

area and difference in spectrometer collimation.   

In general high accuracy results can be obtained with pXRF by following a sound 

scientific methodology, with specific knowledge and expertise, not only about the 

XRF technique, but also about the sample under investigation. Furthermore if 

appropriate sample preparation is applied, errors resulting from surface roughness, 

particle size effect or heterogeneous of the material can be eliminating or minimised 

which will result in high accuracy. Measuring the analysed points 5 times and 

obtaining the same results, indicated that the particle size and inhomogeneities did 

not have much effect on the compound compositions.      
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6.2 RECOMMENDATIONS  

We (as a community) need to integrate the pXRF instruments into archaeological 

studies, with the goal to produce accurate results that are comparable across 

instruments and manufacturers. This can be done by instrumentation improvements, 

characterisation of the effect of rock properties such as grain size, surface texture 

and weathering on the elemental concentrations measurements and determining 

optimised measurement condition such as the use of a helium environment for low 

atomic number compound measurements. The determination of the rock art paint 

thickness can also provide useful information, which can improve the accuracy of the 

compound concentrations since it can be ensured that the compound concentration 

detected is only from the paint layer.    

 

Furthermore, the conservation properties of the CaO layer need to be investigated. 

This could possible results in the development of a paint, which can be applied to the 

rock art sketches for conservation purposes.   
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APPENDIX A: 

DIGITAL PULSE PROCESSOR [56] 

 

The function of the digital pulse processor is to digitize the preamplifier output, 

applies real-time digital processing to the signal, detects the peak amplitude and bins 

this value in its histrogramming memory to generate an energy spectrum. The 

proses steps is illustrated in Figure A.1 for the DP5 used by the Amptek SDD. 

 

 

 

 

 

 

 

Figure A.1: Block diagram of the Amptek SDD digital pulse processor DP5 [56].  

 

The analog prefilter receives its input from the output of a charge sensitive 

preamplifier. The main function of this circuit are applying the appropriate gain and 

offset to utilize the dynamic range of the ADC, and carrying out some filtering and 

pulse shaping functions to optimize the digitization.  

ADC digitizes the output of the analog prefilter at a 20 to 80 MHz rate then sends it in 

real time to the digital pulse shaper.  Two parallel signal processing paths inside the 

Digital Pulse Shaper receives the output from the ADC, which is being processed 

continuously by using pipeline architecture to generate a real time shapping 

amplifier. The shaped pulse is a purely digital entity. There are two parallel signal 

processing paths inside the DPP, the ‘fast’ and the ‘slow’ channels, optimized to 

obtain different data about the incoming pulse train. The ‘slow’ channel, has a long 

shaping time constant, is optimized to obtain accurate pulse heights. The peak value 

for each pulse in the slow channel, a single digital quantity, is the primary output of 

the pulse shaper. The ‘fast’ channel is optimized to obtain timing information: 

detecting pulses which overlap in the slow channel, measuring the incoming count 

rate, measuring pulse risetimes etc. The DP5 from Amptek SDD, uses trapezoidal 

pulse shaping, which offers high energy resolution. 
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The pulse selection logic rejects pulses for which an accurate measurement cannot 

be made. It includes pileup rejection, risetime discrimination logic for an external 

gating signal etc. At high count rates, the DP5 has both better pileup reject and 

higher throughput than a traditional, analog shaping amplifier. 

Histogramming memory operates as in a traditional MCA. When a pulse occurs with 

a particular peak value, a counter in a corresponding memory location is 

incremented. The result is a histogram, an array containing, in each cell, the number 

of events with the corresponding peak values. This energy spectrum is the primary 

output of the DP5.  

The DP5 includes hardware and software to interface between these various 

functions and the user’s computer. The main function is however to transmit the 

spectrum to the user. Alternatively it controls the data acquisition, by starting and 

stopping the processing and by clearing the histogram memory. It also controls 

certain aspects of the analog and digital shaping, by setting the analog gain or pulse 

shaping time.  
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APPENDIX B:  

PD-FP TFR INPUT FILE  

 

B.1 LAYER TABLE 

 

1 

"Thick","Type","Thick.Error","Thick.Units","Density","Fixed","Norm.Flag","Total" 

0,"Bulk",0,"mg/cm2",0,"No","On",100 
 

 

B.2 SAMPLE TABLE  

 

15 

"Layer","Component","Type" 

1,"Si","Calc" 

1,"Fe","Calc" 

1,"Ca","Calc " 

1,"Ti","Calc " 

1,"P","Calc" 
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1,"Mn","Calc" 

1,"K","Calc" 

1,"C","Calc" 

1,"N","Calc" 

1,"S","Calc" 

1,"Ni","Calc" 

1,"Zr","Calc” 

1,"Sr","Calc" 

1,"Rb","Calc" 

1,"Al","Calc" 
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B.3 ELEMENT TABLE 

 

15 

"Elmt","Line","Cond.Code","Intensity","Int.Err","Back.Int","Back.Err","n-

sigma","Type","Int.Method","Ratio Method","ROI 

Low","High","Chi2","Quant.Meth.","Conc","Error","MDL","Atomic%","TCC","TCC 

Error","CC","CC2","CC3","LowMT","HighMT" 

"C ","Ka",0,0,0,0,0,0,"ConcThresh","Gaussian","None",0,0,0,"None",30,0,0,41.70259,0,0,0,0,0,0,0 

"N ","Ka",0,0,0,0,0,0,"ConcThresh","Gaussian","None",0,0,0,"None",30,0,0,35.76014,0,0,0,0,0,0,0 

"Al","Ka",0,2.616379,.1811982,0,0,0,"ConcThresh","Gaussian","None",1.410023,1.56298,1.433366,"None"

,1,0,0,.6187962,0,0,0,0,0,0,0 

"Si","Ka",1,0,0,0,0,0,"ConcThresh","Gaussian","None",1.661607,1.817797,1.160309,"FP",0,0,0,0,0,0,0,0,0,

0,0 

"P 

","Ka",1,0,0,0,0,0,"ConcThresh","Gaussian","None",1.933303,2.093103,.3202974,"FP",0,0,0,0,0,0,0,0,0,0,0 

"S 

","Ka",0,37.40493,.6851221,0,0,0,"ConcThresh","Gaussian","None",2.225513,2.388894,33.37701,"None",.

5,0,0,.260334,0,0,0,0,0,0,0 

"K 
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","Ka",0,24.44316,.5382372,0,0,0,"ConcThresh","Gaussian","None",3.224485,3.400429,7.140087,"None",.

9997905,0,0,.4269381,0,0,0,0,0,0,0 

"Ca","Ka",0,911.4768,3.286759,0,0,0,"ConcThresh","Gaussian","None",3.5995,3.780319,288.5868,"None",

25.7606,0,0,10.73147,0,0,0,0,0,0,0 

"Ti","Ka",0,10.91994,.3597536,0,0,0,"ConcThresh","Gaussian","None",4.412144,4.603585,4.966556,"None

",.2616434,0,0,9.126124E-02,0,0,0,0,0,0,0 

"Mn","Ka",0,3.50993,.2039596,0,0,0,"ConcThresh","Gaussian","None",5.788303,5.998248,1.692336,"None

",2.499507E-02,0,0,7.596178E-03,0,0,0,0,0,0,0 

"Fe","Ka",0,220.5539,1.616786,0,0,0,"ConcThresh","Gaussian","None",6.289094,6.505564,87.97106,"Non

e",1.134782,0,0,.3392659,0,0,0,0,0,0,0 

"Ni","Ka",0,3.54477,.2049694,0,0,0,"ConcThresh","Gaussian","None",7.354451,7.584724,6.17233,"None",

1.098668E-02,0,0,3.125295E-03,0,0,0,0,0,0,0 

"Rb","Ka",0,4.776441,.2379289,0,0,0,"ConcThresh","Gaussian","None",13.20637,13.52494,.4070899,"Non

e",2.823822E-02,0,0,5.516309E-03,0,0,0,0,0,0,0 

"Sr","Ka",0,38.8594,.6786457,0,0,0,"ConcThresh","Gaussian","None",13.96578,14.29735,8.155778,"None"

,.2525188,0,0,4.811708E-02,0,0,0,0,0,0,0 

"Zr","Ka",0,3.49832,.203622,0,0,0,"ConcThresh","Gaussian","None",15.55333,15.91295,3.023425,"None",

2.644894E-02,0,0,4.840742E-03,0,0,0,0,0,0,0 
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B.4 CONDITION TABLE (ACQUIRE / PROCESSING PARAMETERS) 

 

1 

"Target","Filter","Thick.(um)","kV","uA","Det.Type","Det.Filter","Thick.(um)","Atmos","Preset 

Time","Acq.Time","Smooths","Escape","Sum","Backgrd.","Blank","Blank File" 

"C/R Ratio","Compton(c/s)","ROI-Low","ROI-High","Rayleigh(c/s)","ROI-Low","ROI-High","Monitor" 

"W ","None",1.5,40,5,"Si pin","None",300,"Air",0,318.752,2,"Yes","Yes","Auto","No","" 

"No",0,0,0,0,0,0,0 
 

 

 

B.5 DETECTOR PARAMETERS   

 

"Det.Z","FWHM(eV)","Type","Model","Area(mm2)","Coll.(mm)","Thk.(mm)","Ice(nm)" 

14,165,2,0,7,5,.3,0 

"Contact(Z)","Cont.Thk(nm)","DL(um)","Azimuth","DetAngle","Alpha","Pressure(Torr)" 

79,0,0,0,45,0,0 
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B.6 WINDOW PARAMETERS 

 

"Wnd.Type","Thick(um)","Coat(Z)","Coat(nm)","C 

Cont(nm)","Grid(nm)","Gr.Fract","Grid2(Z)","Grid2(nm)","Gr2.Fract" 

1,25.4,13,0,0,0,0,0,0,0 

 

B.7 GEOMETRY PARAMETERS 

 

15,0,0,15,45,45,45,90,0,0 

 

B.8 TUBE PARAMETERS  

 

74,1,3,0,1,0,1.5,90,500,"CapOptic.txt","TubeFile.txt",90,1 

4,100 

8,64 

0,0 

0,0 

0,0 

0,0 
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0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 
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APPENDIX C:  

ADMCA 

 

Figure C.1: ADMCA program main display window.   

 

 

 

 

 

 

 

 

 

 

Figure C.2: ADMCA window and calibrate dialog box.  
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APPENDIX D: 

LEVERBERG-MARQUARDT ALGORITHM  

 

The gradient and first-order expansion form the basis of the popular Leverberg-

Marquardt algorithm.   

  

D.1 Gradient method [15]  

 

For the gradient method the fitting function y = y(x,a) and <) defined as a function of 

m parameters aj  

<) 	= 	 <)(:) = 	∑ �
=
7 	 [,- − ,(A- , :)])>-2�                (D.1) 

The gradient of <) in the m-dimensional parameter space is given by  

∇<) =	∑ +O

+�P1 	Q                  (D.2) 

where j is the unit vector along the axis j and the components of the gradient are 

given by  

RO
	
R�P =	−2	∑ �

=
7- 	 [,- − ,(A- , :)]	 R6R�P              (D.3) 

where T1 	is defined as  

T1 = 	− �
) 	RO



R�P                  (D.4) 

The gradient gives the direction in which <) increases most rapidly. A method to 

locate the minimum can thus be developed on this basis. Given the set of 

parameters aj , a new set of parameters a’j is calculated, for all j simultaneously: 

:1U = :1 + ∆aX	T1                 (D.5) 

which follows the direction of steepest descent and guarantees a decrease of <) (at 

least if the appropriate step sizes ∆aX	are taken). 

The gradient method works well away from the minimum, but near the minimum, the 

gradient becomes to small (or even zero) and thus is not a good method to use on its 

own.  
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D.2 First-order Expansion [15] 

By writing the fitting function y(xi, a) as a first-order Taylor expansion of the 

parameters aj around y0 

,(A, :) = ,�(A, :) +	∑ R6�(Y,�)
R�P1 	Z:1              (D.6) 

We obtain an approximation to the fitting function which is linear in the parameter 

increments Z:1. ,�(A, :) is the value of the fitting function for some initial set of 

parameters a. By inserting equation D.6 into equation D.1 the <) function can be 

express as 

<) 	= 	∑ �
=
7- 	[,- − ,�(A- , :) −	∑ R6�(Y7,�)

R�P 	Z:11 \)              (D.7) 

The linear least squares method can now be used to find parameters Z:1 so that <) 
will be minimal. Fitting the difference ,-U = ,- − ,�(A- , :) with the derivatives as 

variables and the increments Z:1 as unknowns.  

As defined in the linear least squares fitting section previously: 

;1 = 	 R6�(Y7)R�P                    (D.8) 

T1 = 	∑ �
=7


>-2� 	 [,- − ,�(A-)] R6](Y7)R�P                 (D.9) 

1̂_ = 	∑ �
=7


>-2� 	R6�(Y7)R�P 	R6�(Y7)R�`                (D.10) 

Defining a set of m normal equations in the unknowns Z:1,  
T = 	^Z^                  (D.11) 

with solution  

Z:1 =	∑ ^3�1_	_2� 	T_                (D.12) 

thus  

T1 = 	− �
) 	RO�



R�`                  (D.13) 

and the component of the gradient of <) at the point of expansion  

1̂_ ≈ 	 �) 	 R
O�

R�Pb�`                 (D.14) 

Thus, 1̂_, is the first-order approximation to the curvature matrix whose inverse is 

the error matrix.   
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The first-order expansion of the fitting function is closely related to the first order 

Taylor expansion of the <) hypersurface itself: 

<) = 	<�) +	∑ RO�

R�P1 	Z:1                (D.15) 

where <�)	 is the <) function at the point of expansion: 

<�) = 	∑ �
=7


>-2� 	 [,- − ,�(A-, :)])              (D.16) 

At the minimum, the partial derivation of <) with respect to the parameter ak will be 

zero: 

RO

R�` =	 RO�


	
R�` +	∑ R
O�


R�PR�`1 	Z:_ = 0                (D.17) 

This results in a set of equations in the parameters Z:_: 

RO�

R�` =	−	∑ RO�


R�PR�`
	12� 	Z:_               (D.18) 

T_ = 	∑ 1̂_Z:_                 (D.19) 

which is the same set of equations, except that in the expansion of the fitting 

function, only a first-order approximation of the curvature matrix is used.  

Near the minimum the first-order expansion of the <) surface is a good 

approximation. We can also conclude that the first-order expansion of the fitting 

function will yield parameter increments δaj which will direct us towards the minimum.  

For each linear parameter in the fitting function, the first-order expansion of the 

function in this parameter is exact and the calculated increment δaj will be such that 

the new value aj + δaj is optimum. 

 

D.3 Marquardt Algorithm  [15] 

Since the gradient method is effective away from the minimum and the first-order 

expansion is useful near the minimum, Marquardt developed an algorithm that 

combines both methods using a scaling factor λ that moves the algorithm either in 

the direction of the gradient search or into the direction of first-order expansion  

The diagonal terms of the curvature matrix are modified as follows: 

1̂_U = 	d:1_(1 + f), g = h
1̂_ , g ≠ h                (D.20) 

where 1̂_ is given by equation D.10 
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1̂_ = 	∑ �
=
7

>-2� 	R6�(Y7)R�P 	R6�(Y7)R�`               (D.21) 

and the matrix equation to be solved for the increments δ aj  is  

T1 = 	∑ 1̂_	U Z	:__                 (D.22) 

When λ is very large (λ >> 1), the diagonal elements of α dominate and the equation 

reduce to  

T1 ≈ 	 1̂1	U Z	:_                 (D.23) 

or 

Z	:_ ≈ 	 �
jPPk 	T1 ≈	

�
jPPk 	

+	O

+	�`               (D.24) 

which is the gradient, scaled by a factor 1̂1U  .  

For small values of λ (λ << 1) the solution is very close to first-order expansion. 

The algorithm proceeds as follows: 

1. Given some initial values of the parameters aj , evaluate <) =	<)(:) and 

initialize λ = 0.0001 

2. Compute β and α matrices  

3. Modify the diagonal elements 1̂1U = 1̂1 + 	f and compute δa 

4. If χ	)(m + δm) ≥ 	χ)	(m)				increase λ by a factor of 10 and repeat Step 3; 

If χ)	(m + δm) < 	χ)	(m)				decrease λ by a factor of 10 

accept new parameters estimates m		 ← m + 	Zm  and repeat Step 2. 

 

The algorithm thus performs two loops: the inner loop incrementing λ until χ	) starts 

to decrease and the outer loop calculating successively better approximations to the 

optimum values of the parameters. The outer loop can be stopped when χ	) 
decreases by a negligible absolute or relative amount. Once the minimum is 

reached, the diagonal elements are an estimate of the uncertainty in the fitting 

parameters just as in the case of linear least squares:  r�1	) =	 1̂13� 
which is equal to (αjj

’  )-1 providing the scaling factor λ is much smaller than 1. 
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APPENDIX E: 

FP EQUATION  

 

By dividing the numerator and denominator of the FP method (equation 4.11) by �-∗ 
gives the expression [28]: 

I- = s(7)	 7
 7/	∑ t7P PP 	                   (E.1) 

which leads to the algorithm 

K- = u-vK- +	∑ �-1K11 w             (E.2)  

where u- = s7
s(7) and Tertian proposed a matrix effect in �-1	coefficient   

�-1 	= t7P∗ 3 7	x7P
�/(�3 7)x7P  with  �-1∗  coefficient relating the absorption effect, while ℎ-1 relates the 

enhancement effect  

To eliminate the term K- on both sides of equation (E.2), Lachance and Traill 

proposed the expression 

K- = u-v1 + ∑ :-1JK11 	w              (E.3) 

where  :-1J =	 yLP∗3	L7∗L7∗ z = 	 {�-1J	 − 1|   
and usable for theoretical procedures of monochromatic excitation source, 

absorption and binary element system. 

Criss and Birks [25] proposed that the integrals be replaced by a finite summation 

over the number of discrete effective wavelength intervals and furthermore that the 

experimentally measured of the X-ray tube spectra should be used as excitation 

sources for theoretical calculations. This gave the ‘Fundamental Parameter 

Approach’ with general form: 

I- + }- = ~-K- 	∑ ��L7�
�����D�-�>	�(�	J 	(�Hℎ:H��5�H�	���5)       (E.4) 

From the general form, the concept of theoretical influence coefficients was 

developed by de Jongh, Rousseau, Lachance and Claisse with the expression [27]  

I(-)K- 	= I- + }- +	∑ �-1K1 −	∑ #-1K111           (E.5).  

Stellenbosch University http://scholar.sun.ac.za



 

81 

 

APPENDIX F:  

 NITON XL3t AND AMPTEK SDD FOR IRON (Fe) ALLOY METALS  

 

 

 

Table F.1: Niton XL3t and Amptek SDD measurements for Stainless Steel 316 [57]. 

 

 

 

Table F.2: Niton XL3t and Amptek SDD measurements for Al 29-4-C alloy [58]. 

 

Elements 
Atomic 

number 

Niton XL3t 

Concentration (wt %) 

Amptek  

Conctration (wt %) 

SRM 

Concentration (wt%) 

Mo 42 2.19 ± 0.01 3.04 ± 0.03 2.0 – 3.0 

Ni 28 11.16 ± 0.06 9.97 ± 0.07 10.0 – 14.0 

Fe 26 67.68 ± 0.07 66.88 ± 0.17 63.0 – 72.0 

Mn 25 1.84 ± 0.04 1.62 ± 0.02 2.0 max. 

Cr 24 16.84 ± 0.04 18.08 ± 0.07 16.0 – 18.0 

Other Low 0.29 - 1.01 max. 

Elements Atomic number 

Niton XL3t 
Concentration 

(wt %) 

Amptek 

Conctration 

(wt %) 

SRM 

Concentration 

(wt %) 

Mo 42 3.85 ± 0.011 3.74 ± 1.44 4.0 

Ni 28 0.23 ± 0.02 0.19 ± 0.03 0.3 

Fe 26 66.08 ± 0.08 64.94 ± 0.51 65.2 - 66.2 

Mn 25 0.34 ± 0.04 0.49 ± 0.06 0.5 

Cr 24 28.47 ± 0.06 30.36 ± 0.30 29.0 

Other  Low  1.03 - 1.01 max. 
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Table F.3: Niton XL3t and Amptek SDD measurements for F-255 alloy [59]. 

 

 

 

Table F.4: Niton XL3t and Amptek SDD measurements for 20Cb3 alloy [60]. 

 

 

Elements 
Atomic 

number 

Niton XL3t 
Concentration 

(wt %) 

Amptek 

Conctration 

(wt %) 

SRM 

Concntration  

(wt %) 

Mo 42 3.73 ± 0.01 3.49 ± 0.10 2.9 – 3.9 

Cu 29 1.45 ± 0.02 1.44 ± 0.12 1.5 – 2.5 

Ni 28 5.76 ± 0.05 5.94 ± 0.24 4.5 – 6.5 

Fe 26 63.48 ± 0.08 62.16 ± 0.66 58.6 – 67.1 

Mn 25 0.96 ± 0.04 1.28 ± 0.08 1.5 max. 

Cr 24 24.37 ± 0.05 25.92 ± 0.31 24.0 – 27.0 

Other  Low 0.25 - 1.36 

Elements 
Atomic 

number 

Niton XL3t 
Concentration (wt %) 

Amptek Conctration 

(wt %) 

SRM 

Concentration  

(wt %) 

Mo 42 2.17 ± 0.01 3.74 ± 1.24 2.0 – 3.0 

Cu 29 3.09 ± 0.03 3.13 ± 0.12 3.0 – 4.0 

Ni 28 33.07 ± 0.07 33.35 ± 0.34 32.0 – 38 

Fe 26 40.96 ± 0.06 39.38 ± 0.32 31.0 - 43.0 

Cr 24 19.39 ± 0.04 19.38 ± 0.20 19.0 – 21.0 
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APPENDIX G: 

AMPTEK SDD AND NITON XL3t COMPOUND CONCENTRATION 

RATIO VALUES FOR S, K2O, CaO AND Fe2O3 

 

 

 

 

Figure G.1: Amptek SDD and Niton XL3t ratio value for S at all points analysed.  

 

 

Figure G.2: Amptek SDD and Niton XL3t ratio value for K2O at all points analysed.  
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Figure G.3: Amptek SDD and  Niton  XL3t ratio value for CaO at all points analysed.  

 

 

Figure G.4: Amptek SDD and Niton  XL3t ratio value for Fe2O3 at  all points 
analysed. 

 

  

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1 2 3 4 5 6 7 8 9

A
m

p
te

k
 S

D
D

 /
 N

it
o

n
 X

L3
t 

co
n

ce
n

tr
a

ti
o

n

Points

CaO

Standard 

Deviation

Mean

Standard

Deviation

1.4

1.9

2.4

2.9

3.4

3.9

1 2 3 4 5 6 7 8 9

A
m

p
te

k
 S

D
D

 /
 N

it
o

n
 X

L3
t 

co
n

ce
n

tr
a

ti
o

n

Points

Fe2O3

Mean

Standard 

Deviation

Standard 

Deviation

Stellenbosch University http://scholar.sun.ac.za



 

85 

 

APPENDIX H:  

ELEMENTAL MAPS OF THE HA KHOTSO ROCK OBTAINED WITH 

THE PIXE METHOD 

 

 

 

Figure H.1: Mg PIXE elemental composition map for the front of the rock. 

 

 

 

 

Figure H.2: S PIXE elemental composition map for the front of the rock. 
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Figure H.3: K PIXE elemental composition map for the front of the rock. 

 

 

 

 

Figure H.4: Fe PIXE elemental composition map for the front of the rock. 
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