The Development of a Telemedicine Service Maturity Model

by

Liezl van Dyk

Dissertation presented for the degree of Doctor of Philosophy at Stellenbosch University

Department of Industrial Engineering
Stellenbosch University
Private Bag X1
Matieland 7602
South Africa

Promoter: Prof. CSL Schutte

December 2013
Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification.

December 2013

Copyright © Stellenbosch University

All rights reserved
Abstract

A telemedicine service is a healthcare service (medicine) that is delivered over a distance (tele-). The interest in the potential of telemedicine to increase the quality, accessibility, utilization, efficiency and effectiveness of healthcare services is fuelled by the rapid development of information and communication technology (ICT) and connectivity. Despite this potential, the success rate of telemedicine services disappoints. Many mistakes in the implementation of telemedicine services are repeated over and over again and best practices are not captured and replicated. This study responds to the need for reference models for the assessment and optimization of telemedicine services in a consistent, systematic and systemic way.

Maturity models are reference models that describe typical patterns in the development of organizational capabilities and depict a sequence of stages towards the desired state. Many reference models exist that are applicable to telemedicine services, but none of these provide guidance for the optimization of services, like a maturity model does. Many maturity models exist within a health systems context, but none of these can be applied "as is" to telemedicine services.

In this study an iterative top-down design approach is followed to develop a Telemedicine Service Maturity Model (TMSMM). This model facilitates the assessment of a telemedicine service on micro, meso, and macrolevel along all the domains that comprise the telemedicine health system. Sets of capability statements are defined, which follow each other in a cumulative manner, hence providing a maturation path towards the desired maturity state.

These sets of capability statements provide yardsticks according to which quantitative values are allocated to an intangible concept, such as maturity. Once an individual service is assessed, further actions towards the optimization of the service can be derived from these yardsticks. The multidimensional design of the TMSMM, as well as the fact that capability statements facilitate the consistent quantification of maturity, makes it possible to analyze the aggregated results of cohort of services. To accomplish this, principles of business intelligence and data warehouse design are applied together with online analytic processing (OLAP) procedures.

The TMSMM addresses the previously unfulfilled need for a reference model to assess and optimize telemedicine services in a consistent, systematic and systemic way. This study spans several academic and professional domains and thereby contributes to the scientific world of telemedicine and ehealth.
Opsomming

'n Telegeneeskunde diens is 'n gesondheidsdiens (-geneeskunde) wat oor 'n afstand gelever word (tele-). Met die snelle ontwikkeling van inligtings-en kommunikasietechnologie bou telegeneeskunde die potensiaal in om die kwaliteit, toeganklikheid, benutting, doelmatigheid en doeltreffendheid van gesondheidsdienste te verhoog. Ten spyte van hierdie potensiaal, stel die aantal onsuksesvolle telegeneeskunde dienste teleur. Heelwat foute in die implementering van telegeneeskundedienste word oor en oor gemaak, terwyl die beste praktyke nie vasgevang en herhaal word nie. Hierdie studie is onderneem in reaksie op die behoefte aan 'n verwysingsmodel vir die assessering en optimering van telegeneeskunde dienste op 'n konsekwente, sистematische en sistemiese manier.

Volwassenheidsmodelle is verwysingsmodelle wat tipiese patrone in die ontwikkeling van organisatoriese vermoëns beskryf. Dit stip 'n aantal fases neer wat uiteindelik behoort te lei na die ideale organisatoriese toestand. Daar bestaan verskeie verwysingsmodelle wat van toepassing is op telegeneeskunde dienste, maar geen een daarvan gee leiding met die oog op die optimering van die diens, soos in die geval van 'n volwassenheidsmodel nie.

In hierdie studie word 'n iteratiewe van-bo-na-onder ontwerpsbenadering gevolg om 'n telegeneeskunde volwassenheidsmodel (TMSMM) te ontwikkel. Hierdie model basiliteer die assessering van 'n telegeneeskunde diens op 'n mikro-, meso- en makrolvlak en met betrekking tot al die fasette waaruit 'n telegeneeskunde stelsel bestaan. 'n Aantal vermoëëstellings is gedefinieer. Hierdie stellings volg op mekaar en akkumuleer om sodoende 'n volwassenheidspad na die verlangde toestand aan te dui.

Hierdie vermoëëstellings verskaf maatsawwe waarvolgens kwantitiewe waardes toegeken kan word aan 'n ontasbare konsep, soos volwassenheid. So dra 'n individuele diens geassesseer is, kan verdere aksies met die oog op die optimering van diens afgelei word. Die multidimensionele ontwerp van die TMSMM, tessemaan met die feit dat die vermoëëstellings volwassenheid op 'n konsekwente manier kwantifiseer, maak dit moontlik dat die data van 'n Kohort dienste saamgevoeg kan word met die oog op analyse. Beginnels van besigheidsintelligensie, datastroontwerp asook aanlyn analitiese prosessering (OLAP) word hiervoor ingespan.

Die TMSMM spreek tot die voorheen onvervulde behoefte aan 'n verwysingsmodel waarmee telegeneeskunde dienste geassesseer in geoptimeer word in 'n konsekwente, sистematische en sistemiese manier. Hierdie studie strek oor verskeie akademiese en professionele domeine en lever sodoende 'n bydrae tot die multidisiplinêre wetenskapswêreld van telegeeskunde en e-gesondheid.
Acknowledgements

I am grateful to the following people without whom I would not have been able to complete this dissertation:

- My promoter, Professor Corne Schutte, who undertook this journey with me, never instructing me where to go, but always asking the right questions at the right time.
- Those who participated in the structured interviews, for spending valuable time to assist in the validation of the research.
- My colleagues, for absorbing a substantial part of my workload and supporting me in many ways.
- Zaan Bester and Marlene Rose, for patiently proofreading this document.
- Dr Heinz Essmann for pre-examining this document.
- The many students and fellow scholars who explored this research domain with me, in particular Miekie Treurnicht and Jill Fortuin.
- My parents, for encouraging me to study and to stay a lifelong learner.

I am grateful for my dearest two children, Karla and Tobias, who now for the first time in their lives have a mother not working on a dissertation.

I finally acknowledge my husband, Tobie, for his encouragement, patience and love and for simulatenously being my greatest critic and greatest supporter.

The partial financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.
Contents

1 Introduction
 1.1 Research Problem .. 2
 1.2 Research Opportunity ... 2
 1.3 Maturity Models: A Possible Solution? 3
 1.4 Research Hypothesis, Purpose and Objectives 4
 1.4.1 Research hypothesis .. 4
 1.4.2 Research purpose .. 4
 1.4.3 Research objectives .. 4
 1.5 Research Methodology .. 5
 1.5.1 Literature study .. 6
 1.5.2 Requirements mapping 8
 1.5.3 Iterative design process 8
 1.5.3.1 Development of the conceptual model 10
 1.5.3.2 Development of the capability statements 10
 1.5.3.3 Assessment methodology 10
 1.5.4 Verification and validation 10
 1.6 Conclusion .. 12

2 The Telemedicine Landscape .. 14
 2.1 Origin of Telemedicine .. 14
 2.2 Existing Definitions, Paradigms and Trends 15
 2.2.1 Telemedicine as an academic discipline 16
 2.2.2 The impact of technology on the evolution of telemedicine 16
 2.2.2.1 Telecommunications era 17
 2.2.2.2 Digital era ... 17
 2.2.2.3 Internet era .. 17

List of Figures xiv
List of Tables xvii
CONTENTS

2.2.4 Era of ubiquitous technology .. 17
2.2.3 Telemedicine service contexts .. 17
2.2.4 Telemedicine, eHealth, telehealth, telecare and mHealth 18
 2.2.4.1 Telehealth ... 18
 2.2.4.2 Telecare ... 19
 2.2.4.3 eHealth ... 19
 2.2.4.4 mHealth ... 19
2.2.5 Service delivery mode .. 20
2.3 Telemedicine Specializations .. 20
 2.3.1 Methodology to identify telespecializations 21
 2.3.1.1 Gartner Group's Telemedicine Hype Cycle 21
 2.3.1.2 Statistical topic analysis .. 22
 2.3.1.3 Google search trends .. 22
 2.3.1.4 Frequency clusters .. 22
 2.3.2 High frequency telemedicine specializations 24
 2.3.2.1 Teleradiology ... 24
 2.3.2.2 Teledermatology .. 25
 2.3.2.3 Telepathology .. 26
 2.3.2.4 Telepharmacy ... 26
 2.3.2.5 Telesurgery ... 27
 2.3.2.6 Telepsychiatry ... 27
 2.3.3 Lower frequency specializations .. 27
 2.3.3.1 Telestroke ... 27
 2.3.3.2 Tele-ophthalmology ... 27
 2.3.3.3 Tele-audiology ... 28
 2.3.3.4 Teleconsultation .. 28
 2.3.3.5 Tele-oncology .. 28
 2.3.3.6 Tele-ultrasound .. 29
2.4 Conclusion .. 29

3 Maturity Models ... 30
 3.1 The Origin of Maturity Models ... 30
 3.1.1 Capability maturity model (CMM) 31
 3.1.2 Other maturity models .. 31
 3.2 Descriptive, Prescriptive and Comparative Models 32
 3.3 CMM-like Models, Maturity Grids and Likert-like Scales 33
 3.3.1 CMM-like models .. 33
 3.3.2 Maturity grid ... 34
 3.3.3 Hybrids and Likert-like scales .. 35
 3.4 Maturity .. 35
 3.4.1 Organizational learning .. 36
 3.4.2 Organizational entity under consideration 36
 3.4.3 Domains and dimensions .. 37
 3.4.3.1 Domain ... 37
CONTENTS

3.4.3.2 Dimension .. 37
3.4.4 Capability and maturity levels 38
3.4.5 Capability areas and process areas 39
3.4.6 Organizational life cycle 40
3.4.7 Maturity of telemedicine services 41
3.5 The Science of Maturity Models 41
3.5.1 Iterative design approach 41
3.5.2 Top-down approach vs bottom-up approach 42
3.6 Design Requirements .. 42
3.6.1 Application domain 43
3.6.2 Purpose ... 44
3.6.3 Target group ... 44
3.6.3.1 Internal stakeholders 44
3.6.3.2 External stakeholders 45
3.6.4 Class of entities under investigation 46
3.6.5 Domains, dimensions, maturation paths and capability statements .. 46
3.7 Conclusion ... 47

4 Telemedicine Frameworks 48
4.1 Framework Categories ... 49
4.2 Frameworks Related to the Diffusion of Innovation 50
4.2.1 Barriers to the diffusion of telemedicine 50
4.2.2 Influences on the diffusion of telemedicine 51
4.2.3 Design requirements satisfied by these frameworks? 51
4.3 eReadiness Frameworks .. 53
4.3.1 eHealth readiness assessment tools for healthcare institutions in developing countries 53
4.3.2 Unified theory of acceptance and use of technology (UTAUT) 55
4.3.3 Design requirements satisfied by these frameworks? 57
4.4 Retrospective Guidelines 58
4.4.1 Seven core principles for the successful development of telemedicine services 58
4.4.2 Lessons in teledermatology service innovation 59
4.4.3 Framework for assessing the health system challenges to scaling up mhealth in South Africa 59
4.4.4 Design requirements satisfied by these frameworks? 60
4.5 Life Cycle Frameworks ... 61
4.5.1 The layered telemedicine implementation model 62
4.5.2 Pragmatic evaluation of ehealth interventions 63
4.5.3 The Khoja-Durrani-Scott (KDS) evaluation framework ... 63
4.5.4 Design requirements satisfied by these frameworks? 65
4.6 Maturity Models ... 66
4.6.1 NHS infrastructure maturity model (NIMM) 66

Stellenbosch University http://scholar.sun.ac.za
4.6.2 The PACS maturity model
- Page 66

4.6.3 eHealth maturity categories for health information systems
- Page 67

4.6.4 Design requirements satisfied by these frameworks?
- Page 68

4.7 Other Models
- Page 68
 - 4.7.1 Comprehensive model for evaluating telemedicine
 - Page 68
 - 4.7.2 Model for assessment of telemedicine applications (MAST)
 - Page 70

4.8 Conclusion
- Page 71

5 The Conceptual Maturity Model
- Page 74
 - 5.1 Iterative Design Process
 - 5.1.1 Top-down approach
 - Page 75
 - 5.1.2 Inputs from the world of everyday life
 - 5.1.2.1 Stakeholder workshops
 - Page 75
 - 5.1.2.2 Peer reviewed publications
 - Page 76
 - 5.1.3 Inputs from the world of science
 - Page 78
 - 5.1.4 Iterative development of dimensions
 - Page 78
 - 5.2 Domain Dimension
 - 5.2.1 First iteration
 - Page 78
 - 5.2.2 Second and third iterations
 - Page 79
 - 5.2.3 Fourth iteration
 - Page 79
 - 5.2.4 Second iteration
 - Page 80
 - 5.3 Service Dimension
 - 5.3.1 First iteration
 - Page 81
 - 5.3.2 Second and third iterations
 - Page 82
 - 5.3.3 Fourth iteration
 - Page 82
 - 5.3.3.1 Microlevel telemedicine processes
 - Page 82
 - 5.3.3.2 Simplifying the number of micro-level processes
 - Page 83
 - 5.4 Combining the Domain Dimension with the Service Dimension
 - Page 83
 - 5.5 Maturity Scale
 - 5.5.1 First iteration
 - Page 84
 - 5.5.2 Second, third and fourth iteration
 - Page 85
 - 5.5.3 Domain-specific maturity scale
 - Page 86
 - 5.6 Conclusion
 - Page 88

6 Development of Capability Statements
- Page 91
 - 6.1 Iterative Design Process
 - 6.1.1 Design requirements
 - Page 92
 - 6.1.2 Inputs from the world of science
 - Page 92
 - 6.1.3 Inputs from the world of everyday life
 - Page 93
 - 6.1.4 The conceptual TMSMM
 - Page 93
 - 6.2 Capability Statements for the Man Domain
 - Page 95
 - 6.2.1 Users of telemedicine services
 - Page 95
 - 6.2.2 Communities
 - Page 96
 - 6.2.3 Technology acceptance amongst healthcare workers
 - Page 98
CONTENTS

6.2.4 Continuous education and professional development 98
6.2.5 Evidence-based practice 99
6.3 Capability Statements for the Machine Domain 100
 6.3.1 Telemedicine devices and applications 100
 6.3.2 Network service . 101
 6.3.3 Physical infrastructure 102
 6.3.4 Interorganizational system 103
6.4 Capability Statements for the Material Domain 105
 6.4.1 Data . 105
 6.4.2 Data transmission processes 106
 6.4.3 Electronic record management 106
6.5 Capability Statements for the Method Domain 109
 6.5.1 Work procedures . 109
 6.5.2 Network service . 110
 6.5.3 Change management . 111
 6.5.4 Policies and strategies . 112
6.6 Capability Statements for the Money Domain 114
 6.6.1 Operational costs . 114
 6.6.2 Business models . 115
 6.6.3 National business case . 115
6.7 Capability Statements per Maturity Level 118
6.8 Conclusion . 120

7 Maturity Assessment Methodology 121
7.1 Iterative Design Process . 121
 7.1.1 Design requirements . 122
 7.1.2 The conceptual TMSMM 123
 7.1.3 Capability statements . 123
 7.1.4 Intermediary applications of the TMSMM 123
 7.1.5 Case studies . 123
 7.1.5.1 A teleophthalmology service in pilot phase 123
 7.1.5.2 A private sector teleradiology service 124
 7.1.5.3 Cohort case studies 124
 7.1.5.4 Teleradiology cohort 124
 7.1.5.5 Hospital network cohort 125
7.2 Maturity Assessment Resources 125
 7.2.1 Participants . 125
 7.2.2 Facilitator . 125
 7.2.3 Assessment tool . 125
7.3 Description and Assessment of Individual Services 126
7.4 Reports on Individual Services 128
7.5 Aggregated Analysis . 129
 7.5.1 Data warehousing . 129
 7.5.2 Data aggregation . 130
CONTENTS

10.4.3.1 Standardized descriptions .. 168
10.4.3.2 Descriptive, prescriptive and comparative maturity model .. 168
10.4.3.3 The role of the facilitator .. 168
10.4.3.4 Meso- and macrolevel capability areas .. 168
10.4.4 Refining capability statements .. 169
10.4.5 Cohort studies ... 169
10.4.6 Development of specific assessment tools .. 169
10.5 Conclusion ... 170

Appendices

A Peer Reviewed Research Outputs

A.1 The International Conference on eHealth, Telemedicine, and Social Medicine .. 173
A.1.1 2010: Towards a regional innovation system for telemedicine in South Africa .. 173
A.1.2 2012: A maturity model for telemedicine implementation .. 173
A.2 The Conference of the Southern African Institute for Industrial Engineering .. 174
A.2.1 2010: Telemedicine - Leverage competitive advantage through the use of ICT investment .. 174
A.2.2 2011: A systems engineering approach to telemedicine system implementation .. 174
A.2.3 2012: Business models for sustained eHealth implementation: lessons from two continents .. 174
A.2.4 2013: An assessment of the maturity of teleradiology services within the South African public healthcare system .. 174
A.2.5 2013: Assessing the technology acceptance of cell phones within the context of the primary health care system of South Africa .. 175
A.3 The International eHealth Telemedicine and Health ICT Forum .. 176
A.3.1 2011: A framework for the assessment of teleradiology in South Africa: An Eastern Cape Case Study .. 176
A.3.2 2011: A telemedicine system to increase patient’s access to specialised cardiac care for assisting remote diagnosis .. 176
A.3.3 2011: Meeting the demand for skilled foetal ultrasound services in the Boland/Overberg public health district .. 176
A.3.4 2011: A South African national telemedicine survey .. 176
A.3.5 2012: Yardsticks for teleradiology maturity: A teleradiology case study .. 177
A.3.6 2013: A staged telemedicine reference tool for optimization of telemedicine services .. 177
A.4 Book Chapters ... 178
CONTENTS

A.4.1 2012: Clinical-pull approach to telemedicine implementation policies using health informatics in the developing world 178
A.4.2 2013: The telemedicine service maturity model: A Framework for the measurement and improvement of telemedicine services 178

A.5 The Southern African Journal for Industrial Engineering 179

A.6 Miscellaneous 180
A.6.1 2011: eHealth assessment survey amongst members of the South African Department of Health (DoH) 180
A.6.2 2012: Meta-study of telemedicine services 180

B Ethical Approval 181

C Summary of Answers to Interview Questions 187

List of Questions 188

D Case Studies 195
D.1 Individual Cases 196
D.1.1 A teleophthalmology service 197
D.1.2 Teleradiology Service of a Private Hospital Group in South Africa 199

D.2 Cohort Study of Teleradiology Cases 204
D.2.1 Who would be interested in this cohort study? 205
D.2.2 Overview of services included in this cohort 205
D.2.2.1 Analysis of process maturity per type of process 206
D.2.2.2 Analysis of capture processes 206
D.2.2.3 Analysis of transmit processes 209
D.2.2.4 Analysis of diagnose processes 209
D.2.2.5 Analysis of react processes 211
D.2.3 Significance to stakeholders 217
D.2.4 Other observations that confirmed the validity of the TMSMM 219

D.3 Cohort Study of Telemedicine Services of a Specific Hospital Network 220
D.3.1 Stakeholders 220
D.3.2 Analysis of process maturity per type of process 221
D.3.2.1 Analysis of capture processes 224
D.3.2.2 Analysis of transmit processes 226
D.3.2.3 Analysis of diagnose processes 228
D.3.2.4 Analysis of react processes 230
D.3.3 Significance to stakeholders 232

E Workshop Worksheets 233

F Capability Statement Sheets 237
F.1 Capability Statements per Type of Service 237
CONTENTS

F.2 Capability Statements per Maturity Level ... 237
F.3 Guidelines for Further Actions ... 237

List of References .. 249
List of Figures

1.1 Research methods ... 6
1.2 Research roadmap: A study of the state of the art 6
1.3 Research roadmap: Requirements mapping 8
1.4 Research roadmap: Iterative design process 9
1.5 Research roadmap: Verification and validation 11
1.6 Research roadmap for this study 12
2.1 Telemedicine, ehealth, telehealth, telecare and mhealth 18
2.2 Google search trends concerning telemedicine, ehealth and mhealth 19
2.3 The Telemedicine Hype Cycle for 2012 (Handler, 2012) 21
2.4 Clinical specializations with telemedicine application: Frequency analysis 23
2.5 Google trends for five high frequency telemedicine specializations 23
2.6 Google trends for five high frequency telemedicine specializations (tele-radiology excluded) 24
3.1 Trends in terms of new maturity models (Mettler and Rohner, 2009) and academic articles Niehaves et al. (2011) 32
3.2 Procedure for the development of a stages-of-growth model (Solli-Saether and Gottschalk, 2010) 42
4.1 Requirements mapping ... 48
4.2 The unified theory of acceptance and use of technology (UTAUT) (Venkatesh et al., 2003) 55
4.3 Technology acceptance model (TAM) for ehealth in ambulatory care (Dünnebeil et al., 2012) 56
4.4 The layered telemedicine implementation model (Broens et al., 2007) 62
4.5 Framework for the pragmatic approach to the evaluation of an ehealth interventions (Scott, 2010) 63
4.6 PACS maturity model (Van de Wetering, 2009) 66
4.7 Comprehensive model for evaluating telemedicine (Hicks et al., 2004) 69
5.1 Research roadmap: Development of the TMSMM 74
5.2 Iterative development of the TMSMM domain dimension 79
5.3 Iterative development of the TMSMM service dimension 81
5.4 A matrix according to which a telemedicine service can be described 84
LIST OF FIGURES

5.5 The development of the maturity scale dimension 85
5.6 Five domain-specific maturity scales for microlevel processes 87
5.7 Five domain-specific maturity scale for meso- and macrolevel processes . . . 87
5.8 The conceptual model .. 89
5.9 Examples of sets of capability statements for each capability area . . . 90

6.1 Research roadmap: Development of the TMSMM 91
6.2 Iterative design process to develop capability statements 93
6.3 Conceptual TMSMM 118
6.4 Capability statements viewed per maturity Level 3 119

7.1 Methodology to arrive at user specifications 121
7.2 Phases of the assessment methodology 122
7.3 Input mask for microlevel processes 127
7.4 Context-specific capability statements per process area 127
7.5 The logical multidimensional data model and OLAP operations 131
7.6 Concept hierarchy of service dimension 132

8.1 Research roadmap: Verification, validation and conclusion 133

9.1 Research roadmap: Verification, validation and conclusion 148
9.2 Telemedicine services included in the meta-study by Van Zyl (2012) 152

10.1 Complete research roadmap 164

D.1 Phases of the assessment methodology 195
D.2 Ophthalmoscope system (Blanckenberg et al., 2011) 197
D.3 Description and assessment of a teleophthalmology service 198
D.4 Recommendation report for a teleophthalmology service (part 1) 200
D.5 Recommendation report for a teleophthalmology service (part 2) 201
D.6 Description and assessment of a teleradiology service 202
D.7 Recommendation report for a teleradiology service 203
D.8 Teleradiology services included in this cohort study 204
D.9 The average maturity in terms of the type of process 206
D.10 Slice and dice for type of process = "capture" 207
D.11 Pearson correlation matrix for "capture" processes 208
D.12 Pearson correlation matrix for "capture" processes (2) 208
D.13 Boxplots for "capture" processes 208
D.14 Slice and dice for type of process = "transmit" 210
D.15 Pearson correlation matrix for "transmit" processes 211
D.16 Boxplots for "transmit" processes 211
D.17 Slice and dice for type of process = "Diagnose" 212
D.18 Boxplots for "diagnose" processes 213
D.19 Pearson correlation matrix for "diagnose" processes 213
D.20 Slice and dice for type of process = "react" 214
LIST OF FIGURES

D.21 Pearson correlation matrix for "react" processes 215
D.22 Boxplots for "react" processes . 215
D.23 Pearson correlation matrix for the mesolevel processes 216
D.24 Boxplots for the mesolevel processes 216
D.25 Pearson correlation matrix for the macrolevel processes 217
D.26 Boxplots for the macrolevel processes 217
D.27 Slice domain . 218
D.28 Summary of service maturity of the nine networks 221
D.29 Maturity of type of service in cohort study 222
D.30 Maturity of type of service: Drill-down for process 223
D.31 Pearson correlation matrix for "capture" processes 224
D.32 Boxplots for "capture" processes . 224
D.33 Slice and dice for type of process = "capture" 225
D.34 Boxplots for "transmit" processes . 226
D.35 Slice and dice for type of process = "transmit" 227
D.36 Pearson correlation matrix for "diagnose" processes 228
D.37 Boxplots for "diagnose" processes . 228
D.38 Slice and dice for type of process = "diagnose" 229
D.39 Boxplots for "react" processes . 230
D.40 Slice and dice for type of Process = "react" 231

F.1 Capability statement sheet for the capture, diagnose, react processes 238
F.2 Capability statement sheet for the transmit processes 239
F.3 Capability statement sheet for the mesolevel processes 240
F.4 Capability statement sheet for the macro processes 241
F.5 Capability statement sheet for maturity level 1 242
F.6 Capability statement sheet for maturity level 2 243
F.7 Capability statement sheet for maturity level 3 244
F.8 Capability statement sheet for maturity level 4 245
F.9 Capability statement sheet for maturity level 5 246
F.10 Guidelines for further actions: diagnose, analyse and react processes . . . 247
F.11 Guidelines for further actions: transmit data process 248
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Objectives and questions addressed by literature study</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Objectives and questions addressed through requirements mapping</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives and questions addressed through the iterative design process</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>TMSMM verification and research validation</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Research methodology</td>
<td>13</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of maturity models (Fraser et al., 2002)</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Typical telemedicine/ ehealth life cycle stages</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Influences on the diffusion of telemedicine (Grigsby et al., 2002)</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Relationship between Tanriverdi and Iacono (1998) and Khoja et al. (2007)</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Framework for assessing the health system challenges to scaling up mhealth in South Africa (Leon et al., 2012)</td>
<td>60</td>
</tr>
<tr>
<td>4.4</td>
<td>The Khoja-Durrani-Scott (KDS) evaluation framework</td>
<td>64</td>
</tr>
<tr>
<td>4.5</td>
<td>Design requirements satisfied by existing frameworks</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Iterative development of dimensions</td>
<td>78</td>
</tr>
<tr>
<td>5.2</td>
<td>Relationship between the 4Ms of manufacturing and the Barriers to the diffusion of telemedicine</td>
<td>80</td>
</tr>
<tr>
<td>6.1</td>
<td>Capability area: Individual user</td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>Capability area: Healthcare worker community</td>
<td>97</td>
</tr>
<tr>
<td>6.3</td>
<td>Capability area: Society</td>
<td>97</td>
</tr>
<tr>
<td>6.4</td>
<td>Capability area: Telemmediene device or application</td>
<td>100</td>
</tr>
<tr>
<td>6.5</td>
<td>Capability area: Transmission network</td>
<td>102</td>
</tr>
<tr>
<td>6.6</td>
<td>Capability area: Physical infrastructure</td>
<td>103</td>
</tr>
<tr>
<td>6.7</td>
<td>Capability area: Interorganizational system</td>
<td>104</td>
</tr>
<tr>
<td>6.8</td>
<td>Capability area: Used data</td>
<td>105</td>
</tr>
<tr>
<td>6.9</td>
<td>Capability area: Transmitted data</td>
<td>106</td>
</tr>
<tr>
<td>6.10</td>
<td>Capability area: Electronic medical record (EMR) management</td>
<td>107</td>
</tr>
<tr>
<td>6.11</td>
<td>Capability area: Electronic health record (EHR) management</td>
<td>108</td>
</tr>
<tr>
<td>6.12</td>
<td>Capability area: Work procedures</td>
<td>109</td>
</tr>
<tr>
<td>6.13</td>
<td>Capability area: Network service</td>
<td>110</td>
</tr>
<tr>
<td>6.14</td>
<td>Capability area: Change management</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF TABLES

6.15 Capability area: National policies and strategies .. 113
6.16 Capability area: Operational costs .. 114
6.17 Capability area: Business model ... 115
6.18 Capability area: National business case .. 116

8.1 Expert interviews ... 140
8.2 Interview Questions per design requirement .. 141
8.3 Cross-verification of design requirements ... 145

9.1 Research outputs: Understanding the telemedicine landscape 154
9.2 Research outputs: Telemedicine frameworks ... 155
9.3 Research outputs: Development of the TMSMM ... 155
9.4 External validation: Questions from expert interview 157
9.5 Research outputs: External validation ... 160
9.6 External validation: Cross-validation of research purpose 161
9.7 Cross-validation of research questions .. 162

D.1 All services included in this study ... 196
D.2 Telemedicine services included in this cohort study 222
Glossary

Capability area: A cluster of related activities, associated with a specific combination of dimensions and spanning all maturity levels.

Capability statement: A generic statement that describes a characteristic of a process as it applies to a specific maturity level.

Dimension: The measurement (of something) in a particular direction.

Domain: A sphere of activity, concern, or function (Merriam Webster, 2013) and represents an angle from which to view the use, consequences and implications of the entity under consideration.

Maturity model: A maturity model is a reference model, which describes typical patterns in the development of organizational capabilities and usually depicts a sequence of stages toward the desired state. Together, these stages form an anticipated, desired or logical path from an initial to a target maturity state (De Bruin et al., 2005; Solli-Saether and Gottschalk, 2010; Pöppelbuß et al., 2011).

Maturity (organizational context): An organizational design term used to indicate the capability of a process, object or person to respond to circumstances or the environment in an appropriate manner.

Maturity level: The degree of process improvement across a predefined set of areas (Paulk et al., 1993).

Organizational) maturity: Organizational maturity is an organizational design term used to indicate the capability of a process, object or person to respond to the internal and external organizational environment according to a certain level of maturity.

Reference model: An abstract framework for understanding significant relationships among the entities of some environment, and for the development of consistent standards or specifications supporting that environment (OASIS, 2013).

mHealth: Healthcare services enabled by mobile technology.

Process area: A cluster of related activities, associated with a specific maturity level that, when performed together, achieve a set of goals considered important (Bate et al., 1995).

Telemedicine service: A healthcare service delivered over a distance
Accronyms

ATA American Telemedicine Association
CMM Capability Maturity Model
CMMI Capability Maturity Model Integration
DoH Department of Health
DR Design Requirement
EHR Electronic Health Record
EMR Electronic Medical Record
HIS Hospital Information System
ICT Information and Communication Technology
ISDN Integrated Service
ISfTeH International Society for Telemedicine and eHealth
KDS Khoja-Durrani-Scott
MAST Model for the Assessment of Telemedicine
NIMM NHS Infrastructure Maturity Model
NHLS National Health Laboratory Services
OLAP On-line Analytical Processing
PACS Picture Archiving and Communication System
QMMG Quality Management Maturity Grid
RIS Radiology Information System
RQ Research Question
SATMA South African Telemedicine Association
SEI Software Engineering Institute
SLA Service Level Agreement
SITA State Information Technology Agency
SPC Statistical Process Control
SPICE Software Process Improvement and Capability Determination
TAM Technology Acceptance Model
TMSMM Telemedicine Service Maturity Model
TQM Total Quality Management
UTAUT Unified Theory of Acceptance and Use of Technology
Chapter 1

Introduction

Telemedicine broadly refers to the delivery of healthcare (medicine) where distance (tele) is an issue. This can entail a simple telephone conversation between a doctor and his patient or a complicated laparoscopic choleystectomy by a team of surgeons, situated 6000km from the patient (Holt et al., 2004).

Telemedicine has the potential to address diverse problems in modern healthcare by increasing the quality, accessibility, utilization, efficiency and effectiveness of healthcare while reducing costs (Bashshur et al., 2000; Edwards, 2011). Despite such potential, the success rate of telemedicine services is disappointing (Bangert and Doktor, 2003; Broens et al., 2007; Paul et al., 1999). Reasons for this include poor technology performance, organizational issues, financial and legal barriers, as well as resistance to change on the part of all role players (Bashshur et al., 2000; ETHAL, 2008; Paul et al., 1999; Mars, 2011).

The South African National Department of Health (NDoH), in 1998, published a proposal for the establishment of a South African telemedicine system (Government, 1998). This document focuses on the delivery of healthcare over distance to improve the accessibility of specialist healthcare in the rural areas of the country. Since then, a significant amount of telemedicine services have been initiated by the NDoH. Many of these projects were not implemented successfully or did not survive past the pilot phase. In some cases, telemedicine equipment, for example video-conferencing equipment or electronic monitoring devices, are locked in store-rooms, are in need of maintenance, or are being used for a purpose other than the one for which they were originally developed for (Mars, 2009; Wynchank and Fortuin, 2012).

Apart from the waste of equipment and human resources, Yellowlees (2005) considers the damage to the reputation of telemedicine an even greater expense. In 2010, the NDoH placed a moratorium on the deployment of new telemedicine services in the South African public health system until the reasons and remedies for
failures had been established (Fortuin, 2010). No full scale evaluation study has been conducted since then, but the moratorium does not exist anymore.

In the 2012 – 2017 eHealth Strategy the NDoH acknowledges the initial failure in the setting up and sustaining of telemedicine services. However, the strategy still recognizes the potential of telemedicine as an "enabling tool that could bridge the gap between rural healthcare and specialist facilities".

1.1 Research Problem

A number of international studies (Grigsby et al., 2002; Yellowlees, 2005; Bashshur et al., 2005) have identified the same problems experienced by the NDoH. Broens et al. (2007) conducted a systematic review of telemedicine services, published in the International Journal for Telemedicine and Telecare to respond to the question of why telemedicine services fail. They found that 75 per cent of successful pilot services did not last.

The problem is, first, that many telemedicine services, which proved to be successful in the pilot phase, are not sustained. But, secondly, an even greater problem is that many mistakes in the implementation of telemedicine services are repeated over and over again. Only a few examples of good practices are replicated. A lack of reference models for telemedicine services also results in a lack of guidelines for the optimization of these services.

1.2 Research Opportunity

By the end of the previous decade, the first telemedicine initiatives of pioneers were taken further with the use of telemedicine applications being adopted for daily healthcare routines (ETHAL, 2008). At the same time many authors, for example Steele (1996), Scott et al. (1999) and Hebert (2001), identified the need for general frameworks or methodologies for the evaluation of telemedicine initiatives. The need for models and frameworks for the implementation, evaluation and optimization of ehealth and telemedicine is also echoed throughout the recent eHealth Strategy for South Africa (Government, 2012).

The concept of health systems strengthening, as defined by the World Health Organization (WHO, 2013) is "the process of identifying and implementing an array of initiatives towards the improvement of the health system under consideration". Frameworks are not only needed to evaluate the eventual outcomes of the telemedicine services, they are also needed as a guide in their optimization thereof.

The lack of standardized evaluation frameworks may result in early-stage assessments of new initiatives that show significant benefits in some areas, but other
important parameters – most often costs – are not considered (Jackson and Mc-
Clean, 2012). The opposite is also possible, namely that a pilot project is prema-
turely stopped, because an early-stage assessment of outcomes was made before
the service had reached maturity. Standardized frameworks, furthermore, could
facilitate meaningful comparisons and analyses of cohorts of services to produce
the broad evidence base needed to demonstrate the value of telemedicine services
(Scott, 2010).

Two other groups of researchers identified similar research gaps and have recently
published valuable contributions in this regard. The development of the model
for assessment of telemedicine applications (MAST) by Kidholm et al. (2012) is
an ongoing research project by the European Commission. Khoja et al. (2013a)
developed a framework to provide "a systematic and comprehensive approach to
evaluating e-health initiatives and making it easier to compare".

These two studies serve as confirmation of the need for frameworks that can assess
and provide guidelines towards the optimization of telemedicine services. They,
 together with other existing frameworks, are critically evaluated in Chapter 4 and
serve to confirm the unique contribution made by this study.

1.3 Maturity Models: A Possible Solution?

Mettler (2012) explains that maturity models fall within the scope of reference
models in that they include reusable and efficient state of the art practices, which
constitute a reference for a certain domain. A reference model is thus more than
simply a checklist, an assessment methodology or an implementation framework.
The Organization for the Advancement of Structured Information Standards’ (OA-
SIS, 2013) definition for a reference model is quoted below (own emphasis).

A reference model is an abstract framework for understanding significant rela-
tionships among the entities of some environment, and for the development of
consistent standards or specifications supporting that environment. A reference
model is based on a small number of unifying concepts and may be used as a
basis for education and explaining standards to a non-specialist. A reference
model is not directly tied to any standards, technologies or other concrete
implementation details, but it does seek to provide a common semantics that
can be used unambiguously across and between different implementations.

A maturity model is a reference model, which describes typical patterns in the
development of organizational capabilities and usually depicts a sequence of stages
toward the desired state. Together, these stages form an anticipated, desired or
logical path from an initial to a target maturity state (De Bruin et al., 2005;
Solli-Saether and Gottschalk, 2010; Pöppelbuß et al., 2011).
A telemedicine maturity model has the potential to address the repeated call for
general frameworks or methodologies for the evaluation of the capabilities and out-
comes of telemedicine, but also as a guide towards the optimization of telemedicine
services.

1.4 Research Hypothesis, Purpose and
Objectives

Departing from this research opportunity, the following research hypothesis, pur-
pose and objectives are set:

1.4.1 Research hypothesis

A maturity model for telemedicine services can fulfill the need for a reference model
to assess telemedicine services and to guide and educate stakeholders towards the
optimization of these services.

1.4.2 Research purpose

The purpose of this study is to either find or develop a maturity model for tele-
medicine services that can be used to describe and assess telemedicine services
as well as to guide and educate stakeholders towards the optimization of these
services.

1.4.3 Research objectives

In order to accomplish the research purpose, the following objectives are set:

1. Understand the telemedicine landscape and define concepts and paradigms
 relevant to this study.
2. Understand the scientific and design considerations of maturity models and
 define concepts and paradigms relevant to this study.
3. Define design requirements for a telemedicine maturity model.
4. Search for a framework that satisfies all of these requirements.
5. If such a framework cannot be found, develop a maturity model for tele-
 medicine services.
6. Verify that this model does satisfies all the design requirements.
7. Confirm the validity of the research process.
1.5 Research Methodology

Whereas in everyday life we search for knowledge that will help us cope better with challenges and demands of every day (a very pragmatic interest), the aim of science is to generate truthful (valid and reliable) descriptions, models and theories of the world (Mouton, 2001).

Mouton (2001) explains that any research process fluctuates between two so-called worlds. The world of everyday life encompasses the ordinary and physical reality in which we exist, the ordinary problems we have to solve and the ordinary lessons we learn on a daily basis. The world of science and scientific research takes issues from the world of everyday life and turns these into objects of systematic and rigorous enquiry.

Earlier in this chapter, a problem from the world of everyday life was described: despite the potential that telemedicine services hold, their success rates are disappointing. From the world of science a research gap was identified: there is a need for telemedicine evaluation frameworks and reference models that can be used to assess and guide throughout the life cycle of a service. The concept of a maturity model was then introduced as an existing artefact from the world of science that could possibly fill this gap. The research hypothesis was set accordingly.

The four sets of research methods that are used in this study, are indicated in Figure 1.1. It can be seen in this figure that the research methodology is anchored in the world of science (top) as well as the world of everyday life (bottom). The numbers of the research objectives, which are investigated in terms of each of the methods, are indicated in this figure.

Literature study to understand the state of the art (Research objectives 1 and 2): A review of the current scientific literature was conducted in order to find definitions, paradigms, approaches, models and frameworks relevant to this study.

Requirements mapping (Research objectives 3 and 4): The design requirements as derived from the science of maturity models were mapped against the existing models and frameworks concerning telemedicine.

Iterative design process (Research objective 5): The iterative design approach has as input, first, empirical data from the world of everyday life. This is in the form of inputs from telemedicine practitioners and peers as well as application of early versions of telemedicine maturity model to actual services. Second, from the world of science, paradigms, models and frameworks which serve as input to the development of a maturity model for telemedicine services.
Verification and validation (Research objectives 6 and 7): Case studies, expert interviews and peer review yielded empirical data which were drawn from the world of everyday life. Together with the knowledge gained from the world of science, these data are used to verify and validate that the research outcome correlates with existing knowledge from the world of science and contributes new knowledge to this field.

![Figure 1.1: Research methods](http://scholar.sun.ac.za)

In the sections that follow, more detail is provided on each research method as well as the relevant research questions and chapters.

1.5.1 Literature study

Table 1.1 shows the research objectives and questions addressed by the literature study. The respective chapters are indicated in the last column of Table 1.1 as well as by the numbered indicators on Figure 1.2.

![Figure 1.2: Research roadmap: A study of the state of the art](http://scholar.sun.ac.za)
Table 1.1: Objectives and questions addressed by literature study

<table>
<thead>
<tr>
<th>Research Objectives</th>
<th>Research Questions</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understand the telemedicine landscape and define concepts and paradigms relevant to this study.</td>
<td>1.1. What are the origins of telemedicine?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2. What are the existing definitions, paradigms and trends and applications?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3. What are typical telemedicine services?</td>
<td></td>
</tr>
<tr>
<td>2. Understand the science and design considerations of maturity models and define concepts and paradigms relevant to this study.</td>
<td>2.1. What are the origins, existing definitions, paradigms and trends concerning the science of maturity models?</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2.2. What maturity models exist?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2. What design approaches and requirements are applicable to maturity models?</td>
<td></td>
</tr>
<tr>
<td>3. Define design requirements for a telemedicine maturity model.</td>
<td>3. What are the design requirements a reference model must satisfy so that it can be used to describe and assess telemedicine services and to guide and educate stakeholders towards optimization of these services.</td>
<td>3</td>
</tr>
</tbody>
</table>

Two research domains are of concern to this study, namely telemedicine and maturity models. Existing research literature was studied to understand and describe the paradigms, definitions, theories and research gaps of the research domains as well as current trends and thought processes. This included peer reviewed publications (articles, books, theses, dissertations, position papers) from both domains as well as grey literature (non-peer reviewed internet publications and opinions in the form of discussion fora and commentary pieces). Several local and international conferences on this topic were also attended and addressed.

The state of the art presented in Chapter 2 (The Telemedicine Landscape) and Chapter 3 (Maturity Models) contain the paradigms, theories and definitions that form the basis of this study. Chapter 3 is concluded with a set of design requirements. These design requirements are based on design considerations taken from the science of maturity models, within the context of the telemedicine landscape.

The next objective was to find a framework which adheres to these requirements.
CHAPTER 1. INTRODUCTION

To this purpose, Chapter 4 critically examines, in terms of design requirements, frameworks that could possibly address the research problem. Selection of the frameworks for inclusion in this chapter, was based on relevance, potential (to address the research problem) as well as quality and authority of the publication.

1.5.2 Requirements mapping

The knowledge gained in terms of telemedicine, telemedicine frameworks and the science of maturity models, was used as input for the requirements mapping phase (refer to Figure 1.3). The design requirements that are defined in Chapter 3, are mapped with exiting telemedicine frameworks in order to answer the research questions outlined in Table 1.2.

![Figure 1.3: Research roadmap: Requirements mapping](image)

Table 1.2: Objectives and questions addressed through requirements mapping

<table>
<thead>
<tr>
<th>Research Objectives</th>
<th>Research Questions</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Search for a framework that satisfies all of these requirements.</td>
<td>4.1. What telemedicine reference models, frameworks or guidelines exist?</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4.2. Which design requirements are satisfied by each of the respective frameworks?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.3. Do any of these frameworks satisfy all the design requirements?</td>
<td></td>
</tr>
</tbody>
</table>

1.5.3 Iterative design process

Chapter 4 concluded with the notion that no framework exists which is able to satisfy all the design requirements and a new framework thus needs to be developed. This framework is referred to as the Telemedicine Service Maturity Model (TMSMM).
As shown in Figure 1.4, an iterative design process was followed to develop a conceptual model (Chapter 5), capability statements (Chapter 6), and an assessment methodology (Chapter 7). In doing so, research objective 5 is addressed (refer to Table 1.3).

![Figure 1.4: Research roadmap: Iterative design process](image)

Table 1.3: Objectives and questions addressed through the iterative design process

<table>
<thead>
<tr>
<th>Research Objectives</th>
<th>Research Questions</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Develop a new telemedicine service maturity model (TMSMM).</td>
<td>5.1. How should the conceptual model be designed to address the design requirements?</td>
<td>5,6,7</td>
</tr>
<tr>
<td></td>
<td>5.2. How should the capability statements be formulated to address the design requirements?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.3. How should the service data be captured, stored, aggregated and analyzed to meet the design requirements?</td>
<td></td>
</tr>
</tbody>
</table>

The scientific approach followed in the development of the TMSMM resembles the frameworks of Solli-Saether and Gottschalk (2010), De Bruin et al. (2005) and Von Wangenheim et al. (2010). It takes into account the iterative nature of the maturity model development process, as well as the need to combine theoretical and empirical research. Insights from a previous phase (study of the state of the art) serve as input for this iterative design process, together with empirical inputs from telemedicine practitioners, peers and intermediary applications of the TMSMM. The Health Research Ethics Committees of Stellenbosch University as well as the
Western Cape Departement of Health approved the gathering of empirical inputs from telemedicine practioners (refer to Appendix B).

A top-down approach (De Bruin et al., 2005) was followed in that the conceptual model is developed first (Chapter 5) followed by the more detailed capability statements (Chapter 6) and maturity assessment methodology (Chapter 7).

1.5.3.1 Development of the conceptual model

Four research iterations were executed in the development of the conceptual model (Chapter 5). Each iteration starts with a stakeholder workshop and is considered to be complete once the results are peer reviewed and published. The results of each iteration, together with more stakeholder input and new insights concerning the state of the art, are then used as input for the next iteration (refer to Figure 1.4).

1.5.3.2 Development of the capability statements

In Chapter 6 the capability statements are defined within the framework of the conceptual model and also with the design requirements in mind. It also draws upon knowledge concerning the telemedicine landscape and existing frameworks (world of science) as well as information from the world of everyday life, based on the application of early versions of the TMSMM.

1.5.3.3 Assessment methodology

If the purpose of this study was limited to the development of an abstract framework for telemedicine services, then this purpose would have been achieved by the development of the conceptual TMSMM (Chapter 5) and the capability statements of the TMSMM (Chapter 6). However, the purpose also includes confirmation that this model can be used to assess telemedicine services and to guide and educate stakeholders towards the optimization of these services. Therefore, a maturity assessment methodology needed to be developed whereby the TMSMM can be used for this purpose. This is discussed in Chapter 7.

1.5.4 Verification and validation

The objectives and questions relevant to this part of the methodology are indicated in Table 1.4. The concern of the verification process is whether the TMSMM satisfied the initial design requirements.

Leedy and Ormrod (2012) distinguish between internal and external validation. The purpose of internal validation is to ensure that the research process has sufficient controls to ensure that the research outputs are warranted by the research inputs and research process. External validation confirms that the research outputs can be used to make generalizations about the world beyond the research context.
The design requirements for the TMSMM, research questions and research purpose are indicated at the top of Figure 1.5. These elements, from earlier chapters (refer to grey chapter numbers), serve as controls for the verification (Chapter 8), internal validation and external validation (Chapter 9) processes respectively. With these controls in mind, retrospective reviews of the design process and research process are amongst the research methods that are applied in chapters 8 and 9.

Other research methods are indicated on the bottom of Figure 1.5. More detail about the case studies, expert interviews and academic peer review are presented in the respective chapters.

![Research roadmap: Verification and validation](image)

Figure 1.5: Research roadmap: Verification and validation

<table>
<thead>
<tr>
<th>Research Objectives</th>
<th>Research Questions</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Verify that this model satisfies all design requirements.</td>
<td>6. Does the model satisfy all design requirements?</td>
<td>8</td>
</tr>
<tr>
<td>7. Validate this research.</td>
<td>7.1. Internal validation: Are the answers to each research question warranted by the research inputs and research process?</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>7.2. External validation: Is the research purpose accomplished with respect to the world beyond the research context?</td>
<td></td>
</tr>
</tbody>
</table>
1.6 Conclusion

The purpose of this study is to either find or develop a maturity model for telemedicine services and then to confirm that this model is indeed a reference model that can be used to assess telemedicine services and to guide and educate stakeholders towards the optimization of these services.

In this chapter, the rationale for the study was presented, as well as a discussion surrounding the appropriate methodology and methods which are proposed to accomplish this end. Table 1.5 shows how these methods relate to each of the research objectives. The number of the chapter in which a specific objective is addressed, is indicated in brackets. This forms the basis of Figure 1.6, the research roadmap.

![Research roadmap for this study](image)

Figure 1.6: Research roadmap for this study

The execution of this methodology is described in the rest of this document, starting in the next chapter with a state of the art study on the telemedicine landscape.
Table 1.5: Research methodology

<table>
<thead>
<tr>
<th>Research Objectives</th>
<th>Research Questions</th>
</tr>
</thead>
</table>
| 1. Understand the telemedicine landscape and define concepts and paradigms relevant to this study. ([Chapter 2](#)) | 1.1. What are the origins of telemedicine?
1.2. What are the existing definitions, paradigms and trends?
1.3. What are typical telemedicine services? |
| 2. Understand the science and design considerations of maturity models and define concepts and paradigms relevant to this study. ([Chapter 3](#)) | 2.1. What are the origin, existing definitions, paradigms and trends concerning the science of maturity models?
2.2. What maturity models exist?
2.3. Which design considerations and approaches are applicable to maturity models? |
| 3. Define design requirements for a telemedicine maturity model. ([Chapter 3](#)) | 3.1. What are the design requirements a reference model must satisfy so that it can be used to describe and assess telemedicine services and to guide and educate stakeholders towards the optimization of these services. |
| 4. Search for a framework that satisfies all of these requirements. ([Chapter 4](#)) | 4.1. What telemedicine reference models, frameworks or guidelines exist?
4.2. Which design requirements are satisfied by each of the respective frameworks?
4.3. Do any of these frameworks satisfy all the design requirements? |
| 5. Develop a new telemedicine service maturity model ([TMSMM](#)). ([chapters 5,6,7](#)) | 5.1. What conceptual design will address the design requirements?
5.2. Which detail descriptions in terms of capability statements will address the design requirements?
5.3. Which assessment methodology will address the design requirements? |
| 6. Verify that this model satisfies all design requirements. ([Chapter 8](#)) | 6.1. Does the model adhere to each and every design requirement? |
| 7. Validate this research ([Leedy and Ormrod, 2012](#)). ([Chapter 9](#)) | 7.1. Internal validation: Are the answers to each research question warranted by the research inputs and research process?
7.2. External validation: Is the research purpose accomplished with respect to the world beyond the research context? |
Chapter 2
The Telemedicine Landscape

Telemedicine is not new, a special discipline of medicine, a new branch of medicine, a technology or a mature discipline. It is unlikely that there is any medical practitioner in South Africa who has not practised telemedicine, albeit unwittingly. (Mars and Jack, 2011)

The landscape of telemedicine is ever-changing to keep pace with rapid development of information and communication technology as well as advancements in clinical practices and processes. It is necessary to first consider the origin and context of telemedicine in order to arrive at a definition for the purposes of this study. The first objective of this study is therefore to understand the telemedicine landscape and define the concepts and paradigms relevant to the study. With this objective in mind, the first three research questions are addressed in this chapter:

Research Question 1.1: What are the origins of telemedicine? (Section 2.1)
Research Question 1.2: What are the existing definitions, paradigms and trends? (Section 2.2)
Research Question 1.3: What are typical telemedicine services? (Section 2.3)

2.1 Origin of Telemedicine

The first mention of the term telemedicine in an academic publication was in 1969, when Bird et al. as quoted by Bashshur et al. (2000) defined telemedicine as the delivery of medical care "without the usual patient confrontation". But telemedicine services existed long before this term was coined. For example, in 1906 results of experiments by a Dutch physician and inventor were published. He recorded - with the help of a string galvanometer and a telephone line - electrical cardiac signals of patients in a hospital 1.5 km away (Strehle and Shabde, 2006).
He called this invention a telecardiogram. Moreover, the terms telagnosis, telefluouroscopy and telediagnosis were used in academic publications in 1950, 1959 and 1967, respectively (Mars and Jack, 2011).

Stanberry (2000) gives the example of a medical advice service for seafarers in the 1920s as well as the early use of two-way closed circuit television systems to facilitate the transmission of radiographs, medical consultations and other medical images in the 1960s (Grigsby et al., 2002).

In spite of the fact that a significant number of experiments, pilot projects and even full-scale telemedicine service implementations were executed between 1970 and 1993, only a few studies related to telemedicine were published in the academic domain. Findings and conclusions concerning these initiatives were mainly reported retrospectively in academic publications from the mid 1990s.

2.2 Existing Definitions, Paradigms and Trends

Sood et al. (2007) executed a systematic literature review in answer to the question "What is Telemedicine?" They included definitions from 104 sources in their study. Two of these definitions were published during the 1970s, 49 definitions appeared between 1993 and 1999, 36 between 2000 and 2007 and 17 of these definitions are undated definitions which are taken from the websites, whitepapers or constitutions of associations concerned with telemedicine.

Most definitions of telemedicine are rather context-specific, particularly the earlier definitions which were influenced by the prevalent technology of that time. Some examples are interactive audio-video communication system (Bird, 1971) as quoted by Sood et al. (2007) the internet (Maheu et al., 2001), images, voice and other data (Grigsby et al., 1998) and video-conferencing (Whitten and Collins, 1997). Other definitions are limited to a specific research discipline, for example medical informatics (Krol, 1997) biomedicine technology (Sood et al., 2007) or biomedical engineering.

It is also noteworthy that some authors who published repeatedly on the topic of telemedicine, redefined their definitions of telemedicine in follow-up publications, for example Bashshur (1995); Bashshur et al. (1997); Bashshur and Shannon (2009) as well as Grigsby et al. (1998, 2002). This is possibly an indication of the fact that this field of study is still evolving.

In the case of the TMSMM, it is a reference model and therefore should not "directly tied to any standards, technologies or other concrete implementation details" (OASIS, 2013). Thus, the broad definition of telemedicine as healthcare services delivered over a distance is used throughout this study.
CHAPTER 2. THE TELEMEDICINE LANDSCAPE

2.2.1 Telemedicine as an academic discipline

The fact that telemedicine is linked to a number of associations, education centres and journals bears out its status as an established and well researched academic domain. The American Telemedicine Association (ATA), which was established in 1993, is possibly the oldest association to be primarily concerned with telemedicine. Other associations included in the study by Sood et al. (2007) are the Association for Telehealth Service Providers, the Swiss Telemedicine Association, the Telemedicine and eHealth Information Service, UK, and the European Health Telematics Observatory.

Other associations not listed by Sood et al. (2007), include the Canadian Society of Telehealth and the International Society for Telemedicine and eHealth (ISfTeH) (AMDTelemedicine, 2013). Research and education centres elsewhere in the world include the Norwegian Centre for Telemedicine, the PAN Asian Collaboration for Evidence-based eHealth Adoption and Application as well as the mHealth Alliance. Academic journals on telemedicine include the Journal for Telemedicine and Telecare, the International Journal for Telemedicine and eHealth and the International Journal of Telemedicine and Applications.

In South Africa, an academic Telemedicine Department has been established at the University of KwaZulu-Natal and the South African Telemedicine Association (SATMA) was established in 2011.

2.2.2 The impact of technology on the evolution of telemedicine

In this study, telemedicine is defined as healthcare services delivered over a distance but does not imply the use of any specific technology. A telephone conversation between a doctor and his patient can be considered to be telemedicine. In contrast to this simple technology some examples of telemedicine services literally involve cutting edge technology. For example in 2001 a team of surgeons, situated in New York City, removed the gallbladder (laparoscopic cholecystectomy) from a woman, 6000km away in Strasbourg (Holt et al., 2004). Many successful telesurgery services followed in the footsteps of this successful operation.

There is a definite relation between the evolution of telemedicine and the evolution of technology. According to Bashshur et al. (2000) "telemedicine is a product of the information age, just as the assembly line was the product of the industrial age". To support his statement Bashshur et al. (2000) distinguish between three technological eras, namely the telecommunications era, the digital era and the Internet era.
2.2.2.1 Telecommunications era

The so-called telecommunications era spanned the 1970s and continued into the early 1980s. This era depended on broadcast and television technologies, which comprised complex, cumbersome, and often unreliable communication systems. Telemedicine services were not integrated with any other clinical data. Telemedicine programs during the first era often ended as governments terminated the funding before these programs had matured.

2.2.2.2 Digital era

The second era of telemedicine (late 1980s to 1990s) was characterized by the integration of telecommunications and computer processing coupled with transmission of relatively large amounts of information on limited bandwidth. The transmission of data was supported by various communication mediums ranging from telephone lines to integrated service digital network (ISDN) lines. The high costs associated with higher bandwidth became a considerable challenge (Olla, 2007).

2.2.2.3 Internet era

The Internet allows access to a global-communication environment with technology becoming increasingly affordable and available to a growing number of people (Bashshur et al., 2000). The enhanced speed and quality offered by Internet or 3G mobile telephony is providing a host of new opportunities in telemedicine (Olla, 2007).

2.2.2.4 Era of ubiquitous technology

Olla (2007) proposed a fourth era, which is characterized by the use of Internet protocol (IP) technologies, ubiquitous networks, and mobile and wireless networking capabilities.

2.2.3 Telemedicine service contexts

Many authors consider telemedicine to be an answer to the problem of healthcare delivery to underprivileged and under-resourced rural areas and have defined telemedicine accordingly (Perednia and Brown, 1995; Yellowlees, 1997; Higa et al., 1997; LaMay, 1997). It is significant that these definitions were published at the same time that the first telemedicine strategy was proposed by the South African National Department of Health (Government, 1998) as it represents the paradigm within which this strategy was developed. The delivery of healthcare to underprivileged rural areas is a cornerstone of this strategy, as well as the 2012 to 2017 eHealth Strategy (Government, 2012).
CHAPTER 2. THE TELEMEDICINE LANDSCAPE

Other contexts, especially within the developed world, include home-based healthcare, rehabilitation, emergency/acute and patient self management.

This study originated from a practical problem in the South African public health care system where many of the stakeholders involved in the development and validation of the TMSMM are involved in this system. However, the problem is universal and the reference model should be applicable to telemedicine services within any context.

2.2.4 Telemedicine, ehealth, telehealth, telecare and mhealth

Figure 2.1 is a combination of frameworks from the TeleSCoPE project and the European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry (Rudel et al., 2011). The concepts shown in this figure are often used interchangeably. To appreciate the specific position of telemedicine, as it is viewed for purposes of this study, the meanings of related concepts are considered in this section.

![Figure 2.1: Telemedicine, ehealth, telehealth, telecare and mhealth](image)

2.2.4.1 Telehealth

Bashshur et al. (2011) explain that telehealth relates to telemedicine the same way as health relates to medicine. Sood et al. (2007) considered 104 peer reviewed definitions for telemedicine and then concluded that telemedicine is a subset of telehealth. According to Bashshur et al. (2011), Bennet et al. coined the term telehealth in 1978 to extend the scope of telemedicine by incorporating a "broader set of activities, including patient and provider education".
CHAPTER 2. THE TELEMEDICINE LANDSCAPE

The notion that telemedicine is a subset of telehealth (Sood et al., 2007; Bashshur et al., 2011) is supported by the community who maintains the telehealth wikipage (Telehealth, 2012). According to them telehealth is an expansion of telemedicine, and unlike telemedicine, which more narrowly focusses on the curative aspect, it encompasses the preventative, promotive and curative aspects of the field.

2.2.4.2 Telecare

According to the Telecare Aware Group (TelecareAware, 2013), "telecare is the continuous, automatic and remote monitoring of real time emergencies and lifestyle changes over time in order to manage the risks associated with independent living." As a preventative health application, it is thus within the scope of telehealth, but not telemedicine.

2.2.4.3 eHealth

The terms ehealth and telehealth are most often used interchangeably. Semantically the difference between these two concepts is that ehealth applications are not limited to healthcare over a distance, as is the case with telehealth. This distinction is maintained in this study.

2.2.4.4 mHealth

mHealth refers to ehealth applications which are executed with the help of mobile technology. The concept mhealth appeared relatively recently on the ehealth scene (Istepanian et al., 2006) and is confirmed by the Google search trends, as shown by Figure 2.2.

![Figure 2.2: Google search trends concerning telemedicine, ehealth and mhealth](image)

In the Telemedicine Hype Cycle Report by the Gartner group, Handler (2012) is critical of what he calls the "over-excitement" surrounding mhealth. He considers the term to be obsolete, because mobile technologies are now routinely incorporated into the delivery of healthcare. Bashshur et al. (2011) also draw attention to the fact that mhealth is the only ICT-based health domain justified solely on
the basis of mobility and related technology. Despite their doubts that mhealth is conceptually and empirically differentiated from telemedicine, they incorporate mhealth in their *Taxonomies of Telemedicine* due to the wide adoption of the terminology.

For the purposes of this study, mhealth is considered to be a subcategory of ehealth, telehealth or telemedicine, cutting across these categories, as shown in Figure 2.1. The emphasis is on the means (mobile technologies) and not necessarily the end (healthcare delivery) (Edwards, 2011). Since reference models, such as the one relevant to this study, are not tied to any specific technology, no distinction is made between mhealth and non-mhealth in this document.

2.2.5 Service delivery mode

Most publications distinguish between two categories of telemedicine services:

- **Store-and-forward (or asynchronous) telemedicine services** involve the transmission of medical data from a patient to a doctor, or from one healthcare worker to another, for assessment at a later time.

- **Real-time (or synchronous or interactive) telemedicine services** use technology such as video-conferencing and telephones for real-time remote communication.

It is also possible that one telemedicine service has a store-and-forward as well as a real-time component.

A third category has been added in recent publications (Cochrane, 2013; Ramos, 2010), namely **remote monitoring**, which is primarily used for the management of chronic diseases or rehabilitation processes. The recent growth in telemedicine services related to remote monitoring can possibly be linked to the fourth technology era, which was added in Section 2.2.2, namely the era of ubiquitous technology, as well as the attention given to mhealth applications in the past few years.

2.3 Telemedicine Specializations

Like specializations in the health services, various references to telemedicine specializations can be found, for example teleradiology, teledermatology and telepsychiatry. It may be argued that there are as many telemedicine specializations as actual health science specializations. However, certain health services are more frequently delivered by means of telemedicine, than others. This led to the next research question:
Research Question 1.3: What are typical telemedicine services?

2.3.1 Methodology to identify telespecializations

For the purposes of this study, three different analyses were used to identify the typical telemedicine applications: (1) Gartner group’s Telemedicine Hype Cycle, (2) Google’s search trends and (3) a statistical topic analysis (STA) of publications from the *Journal for Telemedicine and Telecare* as well as the *International Journal for Telemedicine and eHealth* (Van Dyk, 2010).

2.3.1.1 Gartner Group’s Telemedicine Hype Cycle

The Gartner Group periodically compiles reports on Technology Hype Cycles (Edwards *et al.*, 2008; Fenn *et al.*, 2009, 2000; Edwards, 2011; Handler, 2012) in which they differentiate between different telemedicine applications in terms of the so-called technology hype associated with each. This Hype Cycle is shown in Figure 2.3. This curve shows the relationship between expectations on the vertical axis and time (years to mainstream adoption) on the horizontal axis.

![Figure 2.3: The Telemedicine Hype Cycle for 2012 (Handler, 2012)](http://scholar.sun.ac.za)
2.3.1.2 Statistical topic analysis
Van Dyk (2010) used the technique of statistical topic analysis (STA) to identify trends and themes with respect to telemedicine (Appendix A.2.1). A total of 651 papers from the Journal of Telemedicine and Telecare (September 2013 - June 2010) as well as 1121 papers from the Journal for Telemedicine and eHealth were included as a corpus for this study.

A statistical topic model can be used to produce a vocabulary list of all words that appear in the corpus. All telemedicine specializations that were found in this vocabulary list are indicated in Figure 2.4. The x-axis of this figure indicates how frequently a specific terminology appears in the vocabulary of the corpus.

2.3.1.3 Google search trends
Whereas the STA indicates the frequency of vocabulary in the corpus of academic articles, Google search trends indicate how frequently a certain term is entered as a Google search term (Google, 2013). The Google search trend graph shows how often a particular search-term is entered relative to the total search volume in various languages and across diverse regions of the world.

Although, the intent of Google Inc. was probably not to produce an academic research tool, it is used, amongst others, as a research method (Preis et al., 2013; Ball, 2013). Within the context of market competition in the internet industry, it is possible that in a few years, another search engine will surpass Google. However, information about search frequencies will remain relevant trend indicators.

2.3.1.4 Frequency clusters
The y-axis of Figure 2.4 indicates the relative frequency of the above-mentioned vocabulary, in terms of Google search trends. By combining the results of these two analyses in one figure, two clusters of telemedicine specializations can be derived, namely the cluster of low frequency specializations (Figure 2.4) and the high frequency specializations (top right corner):

High Frequency Telemedicine Specializations: teleradiology, telemonitoring, telesurgery, telepharmacy, telepathology, telepsychiatry, teledermatology and telerehabilitation

Lower Frequency Telemedicine Specializations: telestroke, telementoring, teleophthalmology, tele-audiology, teleconsultation, tele-oncology, telecardiology, tele-ultrasound

Unlike the other types of telemedicine services in the high frequency cluster, **telemonitoring** and **telerehabilitation** are not linked to a specific clinical specialization.
Instead, they relate to remote monitoring, which is added as third mode of telemedicine service delivery in recent publications (refer to Section 2.2.5). Mobile health monitoring and home health monitoring (trough of disillusionment) as well as remote ECG monitoring and remote ICU monitoring (slope of enlightenment), are identified in Gartner’s Hype Cycle Handler (2012) as technology drivers for telemonitoring.

The Google trends graph for the five clinical telemedicine specializations with the highest frequency is shown in Figure 2.5. In Figure 2.6 teleradiology has been excluded so that the trends of the other high frequency specializations are more clearly visible.

Figure 2.4: Clinical specializations with telemedicine application: Frequency analysis

Figure 2.5: Google trends for five high frequency telemedicine specializations
The remainder of this chapter is structured around these clusters. A detailed discussion is provided on each of the high frequency clinical specializations. The position of these are considered in terms of the Google trends, the STA as well relevant technology from Gartner’s group Hype Cycle. Furthermore, some international as well as South African examples and practices are highlighted.

2.3.2 High frequency telemedicine specializations

Each of the telemedicine specializations that appears in the top-right section of Figure 2.4 are elaborated upon in this section.

2.3.2.1 Teleradiology

Of all the telemedicine specializations, teleradiology applications are the most often successfully integrated into health systems (Grigsby et al., 2002). Teleradiology has been adopted as standard clinical practice, to such an extent that it does not even appear on the Telemedicine Hype Cycle (Figure 2.3). The Journal of Telemedicine and eHealth use the term radiology much more often than teleradiology, which could explain the reason why the STA indicated a lower frequency for the use of the term (teleradiology) than was expected.

Teleradiology is already used routinely in many European healthcare institutions. More advanced examples of teleradiology involve a Picture Archiving and Communication System (PACS). Here the radiological image, associated with an electronic health record, is stored on a central database. This information can then be viewed and shared by radiographers, radiologists and other clinicians, irrespective of the location of users.

In South Africa, most private hospital groups and some public hospital networks have fully functional teleradiological services. Within the private health sector, PACSs are fully integrated into the hospital information system as well as the
information systems of medical insurers. In some areas of the South African public health system, teleradiology services run successfully on a PACS, in others, less sophisticated teleradiology services may be found, for example:

- "Hard-copy" radiological images (e.g. x-rays) are taken, digitized by means of a scanner, and then uploaded to a PACS.
- "Hard-copy" radiological images (e.g. x-rays) are taken, digitized by means of a scanner, and then e-mailed to a specialist. The image is not archived.
- Medical officers take digital pictures of the "hard-copy" radiological image and then SMS this image to a specialist.

2.3.2.2 Teledermatology

Like teleradiology, teledermatology is also well suited for telemedicine, since it relies to a large extent on visual information for diagnosis. According to the STA, the term teledermatology appears most frequent in the corpus of articles included in this study. However, the average number of Google searches for teledermatology is less than for teleradiology, telesurgery, telemonitoring and telepsychiatry. Handler (2012) nonetheless, positioned it on the slope of enlightenment of the Hype Cycle.

Handler (2012) explains that there are two primary models of teledermatology as well as a hybrid between these two. The first comprises images that are transmitted asynchronously. In the second, synchronous video consultations are used. With the hybrid model high quality images are forwarded to the dermatologist before a video-consultation with the patient. According to Whited (2010) asynchronous teledermatology is cost effective, while video-based teledermatology is not.

Krupinski et al. (2008) found that teledermatology consultations are as reliable and accurate as face-to-face consultations. They also found that patients and clinicians are moderately satisfied with teledermatology and that it significantly reduces the health care delivery lead times. This was confirmed by VanDerHeijden (2010) who found that in the Netherlands, the average specialist response time is 5 hours, while it could take 4 to 12 weeks to get an appointment for a face-to-face consultation.

To identify features that contributed to a service becoming standard practice, Finch et al. (2006) studied 12 dermatology services within the British National Health System (NHS) that did or did not become part of routine healthcare practice. The successful services were mostly based on store-and-forward technology and involved communication between a nurse or general practitioner (GP) and a specialist.

1 Examples of teleradiology services are described in more detail in Appendix D. Section D.1.2 describes a teleradiology service within context of the private healthcare system of South Africa. Section D.2 is a cohort analysis of some teleradiology services in South Africa. These case studies are used (amongst others) to verify and validate the output of this study.
Colven et al. (2011) describe a Cape Town-based teledermatology service in which primary care providers were equipped with technology and training to take dermatology images and forward these to a dermatologist based at a tertiary hospital. The system also allowed the dermatologist to send back his diagnostic opinion after reviewing the image. Only asynchronous teledermatology services were found in South Africa.

2.3.2.3 Telepathology

In certain surgical operations – usually when there is a suspicion of malignant recurrence – a part of the intra-operatively removed tissue is examined by the clinical pathologist during an operation. It is essential that results are promptly available, within the operation time frame, so if no pathologist is available on site, specialist opinion can be obtained through telepathology. Typically the pathologist controls the commands for the microscope and the images are transferred in real-time (ETHAL, 2008).

Two recent technological advancements lead to the development of so-called digital telepathology (indicated in Figure 2.3 as a technology trigger). These advancements are the development of software that includes diagnostic algorithms for automated image analysis as well as more rapid slide-scanning techniques (Handler, 2012). Schools of Medicine are particularly interested in digital telepathology, since it facilitates consultations, second opinions and training.

Banach et al. (2008) describe a successful pilot project in South Africa in which three pathology microscopes were installed in Mthatha, East London and Port Elizabeth. These microscopes are connected to the server of the National Health Laboratory Services (NHLS). Images (pathology slides) from the microscopes can be viewed from any computer connected to the NHLS. This service has been improved since 2008 and is still operational.

2.3.2.4 Telepharmacy

Handler (2012) identified three modes of telepharmacy services. First, a pharmacy assistant is able to remotely consult with a pharmacist before dispensing medication. Secondly, a pharmacist can log onto an EHR system and remotely sign off medications. Lastly, a vending machine is able to dispense drugs directly to a patient.

As far as could be established, no official telepharmacy service is currently running in South Africa. There is, however, a high probability that conventional pharmacy services are now being supported by ICT to the extent that the service can be defined as a telepharmacy service.

2Some of the telemedicine examples listed in Appendix D.1 are teledermatology services.
CHAPTER 2. THE TELEMEDICINE LANDSCAPE

2.3.2.5 Telesurgery

Surgical procedures carried out remotely with the assistance of robotic devices and a real-time video and audio connection (Rudel et al., 2011) are referred to as telesurgery. The surgeon is not at the patient's immediate side: visualization and manipulation are performed using tele-electronic devices (Stanberry, 2000). Telesurgery is considered as a technology trigger on the Hype Cycle.

2.3.2.6 Telepsychiatry

Telepsychiatry primarily makes use of video-conferencing technology to provide psychiatric services to patients living in remote locations or otherwise inaccessible areas like psychiatric services in correctional facilities (The American Psychiatric Association, 2013). It is also effective in cases where a second opinion is needed. Not only does it enhance access to services, but it also provides the opportunity for collaboration between professionals who work with the same patient.

Telepsychiatry does not appear on Gartner's Telemedicine Hype Cycle per se, but it is primarily executed by means of video-conferencing. So-called video-visits appear on the trough of disillusionment of the Hype Cycle.

In South Africa Chipps and Mars (2012), Chipps et al. (2012a) and Chipps et al. (2012b) conducted extensive development work and research in KwaZulu Natal. They developed a model for the implementation of telepsychiatry services in a resource constrained environment.

2.3.3 Lower frequency specializations

The telemedicine specializations that are discussed in this section are from the lower frequency cluster of Figure 2.4 (bottom-left corner).

2.3.3.1 Telestroke

Telestroke services enable hospitals to get their patients assessed at short notice by a remotely located neurologist. Four out of five strokes are ischemic strokes and it is therefore critical that a neurologist is consulted within the first three hours of such a stroke in order to advise on the administering of a clot-busting drug. Such drugs can minimize disability resulting from the stroke, but can also cause bleeding on the brain (Handler, 2012). Since this is an acute service, synchronous consultation is essential.

2.3.3.2 Tele-ophthalmology

Handler (2012) included teleretinal imaging on Gartner's Telemedicine Hype Cycle. This is the use of store-and-forward imaging to remotely diagnose diseases of the retina, especially diabetic retinopathy.
Blanckenberg et al. (2011) developed a low cost mobile phone-based ophthalmoscope, which was proven to be clinically effective for retinal examinations to manage both hypertensive and diabetic retinopathy. The developers had the low income communities in Cape Town in mind when they developed this ophthalmoscope. This case is also elaborated upon in Appendix D.1.1.

2.3.3.3 Tele-audiology

The field of audiology encompasses prevention, assessment and rehabilitation. This is accomplished through (1) screening, (2) diagnosis and (3) intervention. Swanepoel and Hall III (2010) give examples of tele-audiology with respect to all three of these service delivery modes.

Typical tele-audiology diagnostic procedures of audiometry, video otoscopy, otoacoustic emissions and auditory brainstem response, produce results that are clinically equivalent to face-to-face versions. Swanepoel and Hall III (2010) found only two examples of tele-audiology interventions, namely hearing aid verification and internet-based treatment for tinnitus. In both these cases the reliability and effectiveness of tele-audiology were demonstrated, however, the cost-effectiveness of tele-audiology has not yet been determined.

2.3.3.4 Teleconsultation

Like telemonitoring and telerehabilitation, teleconsultation does not refer to a particular clinical specialization. A telephone call between two healthcare workers or between a doctor and a patient is per definition a teleconsultation. The most commonly used technology for teleconsultation is video-conferencing. Technology trends from the Gartner Hype Cycle that relate to teleconsultation are e-visits, video visits, clinical kiosks, real-time virtual visits and virtual medical assistants (Handler, 2012).

2.3.3.5 Tele-oncology

Examples of tele-oncology services are varied and depend on the type of cancer and its treatment. Hazin and Qaddoumi (2010) conducted a systematic review of tele-oncology services and divided them into four categories. Each of these respective categories falls within the scope of previously mentioned telemedicine disciplines and are indicated in brackets:

- Video-conferencing (teleconsultation)
- Virtual telemicroscope (telepathology)
- Robotic telesurgery (telesurgery)
- Multimedia collaboration (combination of teleconsultation and teleradiology)
2.3.3.6 Tele-ultrasound

In its millennium development goals, the United Nations prioritized the improvement of maternal health in developing countries (Uys and Van Dyk, 2011). Most tele-ultrasound services are established with this goal in mind. A tele-ultrasound service typically entails the sharing of ultrasound images or image-streams between a primary healthcare provider (e.g. midwife) and a specialist (e.g. gynaecologist). This can either be synchronous or asynchronous.

Uys and Van Dyk (2011) considered the feasibility of a tele-ultrasound system to meet the sonography skills shortage in South Africa. An asynchronous tele-ultrasound service within the context of the Boland Overberg district was found to be feasible in terms of technology, processes, economics and policies. Unfortunately, this service was never implemented.

2.4 Conclusion

The purpose of this study is to either find or develop a maturity model for telemedicine services that can be used to describe and assess telemedicine services and to guide and educate stakeholders towards the optimization of these services. This purpose brings together two research domains, namely telemedicine and maturity models.

In this chapter, the state of the art of telemedicine was determined. Telemedicine is an established research field and academic discipline, but continuous developments in terms of technology and clinical practice has led to the continuous redefinition and reorganization of telemedicine concepts. In this chapter the current telemedicine landscape was described in terms of the evolution of the concept and origin of telemedicine, technology drivers, the mode of service delivery as well as typical telemedicine specializations.

The next chapter focuses on the state of the art concerning the second research domain, namely maturity models.
Chapter 3

Maturity Models

The purpose of this chapter is to understand the science of maturity models and define concepts and paradigms relevant to this study. In so doing, a design approach and design requirements for a telemedicine service maturity model can be defined. The following three research questions apply:

Research Question 2.1: What are the origins, existing definitions, paradigms and trends concerning the science of maturity models?

Research Question 2.2: What maturity models exist?

Research Question 2.3: Which design approaches and requirements are applicable to maturity models?

Research Question 3: What are the design requirements a reference model must satisfy so that it can be used to describe and assess telemedicine services and guide stakeholders towards the optimization of these services?

3.1 The Origin of Maturity Models

Science is nothing else but trained and organized common sense, differing from the latter only as a veteran may differ from a raw recruit: and its methods differ from those of common sense only as far as the guardsman's cut and thrust differ from the manner in which a savage wields his club (Thomas Henry Huxley).

This quote was included in an early publication by Nolan and Gibson (1973), describing the so-called stages-of-growth model. Although this initial model has been criticized ever since – even by the author himself – Nolan's attempt to "train and organize common sense" by means of a staged model is acknowledged by many as the inspiration for the development of maturity models (Pöppelbuß et al., 2011; Solli-Saether and Gottschalk, 2010). Nolan (1973) built his theory on the
fact that the budget for the ICT life cycle, when plotted over time from initial investment to mature operation, forms an S-shaped curve, yielding three turnings which separate four stages.

Solli-Saether and Gottschalk (2010) and Pöppelbuß et al. (2011) also attribute other multistage models, like the hierarchy of human needs (Maslow, 1943), as well as the theory of economic growth (Kuznets, 1955) to the initial development of maturity models. Soon after Nolan developed his model, Crosby (1979) published a Quality Management Maturity Grid (QMMG) in his book Quality is Free, which provided a means for organizations to measure and manage the quality of their processes according to five maturity levels.

3.1.1 Capability maturity model (CMM)

Nolan’s and Crosby’s respective work served as an inspiration for the maturity model developed by the US Defence Software Engineering Institute (SEI) in the 1980s. In the 1980s, US military projects involving software contractors either ran over-budget or were completed, if at all, far later than planned. A process maturity framework was thus developed to aid in capability evaluation as part of the contract awarding process of the software contractors, which became known as the capability maturity model (CMM).

The introduction of the CMM is considered to be a trigger for the development and adoption of other maturity models (Pöppelbuß et al., 2011; De Bruin et al., 2005; Mettler, 2011). Although the CMM comes from the field of software development, it is also used as a general model to aid in business processes.

The SEI has since created six maturity models, of which three legacy models are now incorporated into one Capability Maturity Model Integration (CMMI). The CMMs and CMMI also serve as a compliance standard (De Bruin et al., 2005). The Capability Maturity Model (CMM) is a registered service mark of Carnegie Mellon University (Bate et al., 1995).

3.1.2 Other maturity models

Many other models have been developed since: Mettler and Rohner (2009) evaluated and compared 135 maturity models, which were retrieved from the ACM digital library, IEEE Explore, and the AISeL database, in conjunction with the exploration of non-research sources using EBSCOhost. Their analysis of maturity models over a period of time (refer to the dotted line on the primary x-axis of Figure 3.1) indicates an exponential growth in the development of these models. They also indicated on this graph, as matter of reference, when certain of the models from the CMM-family, were introduced.
Niehaves et al. (2011) searched for academic articles that deal with maturity within an organizational design context. Their results are included as the solid line on the secondary x-axis of Figure 3.1.

De Bruin et al. (2005) conducted a similar study, but did not limit their search to academic publications from a certain field. They also searched in the non-academic domain and counted over 105 maturity models developed by 2005.

3.2 Descriptive, Prescriptive and Comparative Models

Maturity models provide a way of measuring the status quo and facilitate an improvement process that best suits the enterprise, while remaining within the prescribed best practices parameters of the particular domain (Essman, 2009). Röglinger et al. (2012) confirm that "maturity models are used to assess "as-is" situations [descriptive], to guide improvement initiatives and to control progress [prescriptive]."

A descriptive maturity model is a diagnostic tool that is suitable for internal, external and longitudinal benchmarking (Maier et al., 2012). It provides a snapshot of an organization’s performance at a certain point and is normally driven internally (Pöppelbuß et al., 2011). Prescriptive models provide guidelines on improvement measures and typically draw upon historical data from a significant number of applications (Niehaves et al., 2011) to suggest specific and detailed courses of action.
Maier et al., 2012). It enables the development of a road-map for improvement (De Bruin et al., 2005). Prescriptive models typically draw upon historical data from a significant number of applications.

Some authors (De Bruin et al., 2005; Pöppelbuß and Röglinger, 2011) add a third model type, namely comparative models. This kind of model allows for benchmarking across industries or regions and could also facilitate the comparison of similar practices or processes within and across organizations.

De Bruin et al. (2005) explain that each model type represents an evolutionary phase in the life cycle of a model. A deeper understanding of the "as-is" domain situation is firstly achieved by means of a descriptive model. After the model is applied a few times, it can then evolve and become prescriptive. Finally, for a model to be used comparatively, it must be applied in a wide range of organizations in order to obtain sufficient data to enable valid comparisons.

3.3 CMM-like Models, Maturity Grids and Likert-like Scales

Fraser et al. (2002) were the first to distinguish between CMM-like maturity models, maturity grids and hybrids. This categorization has appealed to others (Maier et al., 2012; Mettler et al., 2010; Pöppelbuß et al., 2011) and is also of significance in this study. Table 3.1 was compiled by Fraser et al. (2002) to compare the maturity models available to them at that stage. Their categorization followed from this analysis.

3.3.1 CMM-like models

CMM-like models (Fraser et al., 2002) are based on a more formal architecture. They specify a number of goals and key practices in reaching a predefined level of sophistication (Mettler et al., 2010). Many CMM-like models follow a standard format, are internationally recognized and are also frequently used for certification purposes. To accommodate their complexity, CMM-like models need extensive support material and assessment training or benchmarking software (Mettler, 2012).

Within the context of health systems, the British National Health System (NHS) infrastructure maturity model (NIMM) (Savidas, 2009) is possibly the only maturity model that is sophisticated and comprehensive enough to be considered a comparative model. The MEDI SPICE model (Von Wangenheim et al., 2012) has the potential to fit into this category, but it is yet to be completed.
Table 3.1: Comparison of maturity models (Fraser et al., 2002)

<table>
<thead>
<tr>
<th>Subject and reference</th>
<th>Maturity levels (Broens et al., 2007)</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Management Maturity Grid (Crosby, 1979)</td>
<td>(1) uncertainty (2) awakening (3) enlightenment (4) wisdom (5) certainty</td>
<td>grid, 6 issues, detailed description at each</td>
</tr>
<tr>
<td>R&D Effectiveness Audit (Szaköyi, 1994)</td>
<td>(A) not recognized (B) initial efforts (C) skills (D) methods (E) responsibilities (F) continuous improvement</td>
<td>grid, 10 issues, detailed description at each</td>
</tr>
<tr>
<td>Technical Innovation Audit (Chiesa et al., 1990)</td>
<td>(0) (1) (2) (3)</td>
<td>grid, 5 areas, 23 issues, detailed description at each level</td>
</tr>
<tr>
<td>Product & Cycle time Excellence (McGrath et al., 1992)</td>
<td>(1) informal (2) functionally focused project management (3) cross-functional project management (4) enterprise wide integration of project development</td>
<td>grid, 10 issues, detailed description at each</td>
</tr>
<tr>
<td>Design Maturity Model Fraser et al. (2001)</td>
<td>Operational Product</td>
<td>Sustained Operation</td>
</tr>
<tr>
<td>Collaboration maturity model (Fraser and Gregory, 2002)</td>
<td>(1) none (2) partial (3) formal (4) culturally embedded</td>
<td>grid, 7 issues, detailed descriptions and captions</td>
</tr>
<tr>
<td>Supplier relationships (Macbeth and Ferguson, 1994)</td>
<td>(1) adversarial (2) traditional (3) partnership</td>
<td>grid/hybrid, 9 issues, brief description at 3 levels plus 7 point scale</td>
</tr>
<tr>
<td>ISO9004 (ISO 9004:2000)</td>
<td>(1) no formal approach (2) reactive approach (3) stable formal system approach (4) continual improvement emphasised (5) best in class performing</td>
<td>global levels defined, 5 questions, 11 issues</td>
</tr>
<tr>
<td>Project Management Maturity (Dooley et al., 2001)</td>
<td>(1) (2) (3) (4) (5)</td>
<td>Likert style questionnaire, 15 areas, 85 issues, no description of performance</td>
</tr>
<tr>
<td>Software CMM - Staged maturity levels (Pauk et al., 1993)</td>
<td>(1) initial (2) repeatable (3) defined (4) managed (5) optimizing</td>
<td>CMM style</td>
</tr>
<tr>
<td>Agile maturity model (change proficiency) (Dove, 1999)</td>
<td>(1) accidental (2) repeatable (3) defined (4) managed (5) mastered</td>
<td>CMM style</td>
</tr>
<tr>
<td>Usability maturity (human factors) (Earthy, 1998)</td>
<td>(X) not recognised (A) designed (B) implemented (C) integrated (E) institutionalised</td>
<td>CMM style</td>
</tr>
<tr>
<td>CMMI continuous: capability levels (Shrum, 2000)</td>
<td>(0) not performed (1) performed (2) managed (3) defined (4) quantitatively managed (5) optimizing</td>
<td>CMM style</td>
</tr>
<tr>
<td>Capability assessment framework (Wognum and Faber, 1999)</td>
<td>(2) repeatable (3) defined (4) managed (5) optimizing</td>
<td>CMM style</td>
</tr>
</tbody>
</table>

3.3.2 Maturity grid

According to Maier et al. (2012) maturity grids are generic tools that define the characteristics of high performance processes, irrespective of the company or enterprise. Fraser et al. (2002) explains that "the principal idea of the maturity grid is that it describes in a few phrases, the typical behaviour exhibited by [an organization] at a number of levels of maturity, for each of the several aspects of the area under study."

A typical maturity grid allows the visualization of maturity levels, which is not necessarily the case for CMM-like models. Maturity grids aim to illustrate a number of levels of maturity in a simple, textual manner (Mettler et al., 2010) and are typically descriptive frameworks, used for self-assessment purposes. Since the
CHAPTER 3. MATURITY MODELS

The purpose of a maturity grid is not that of certification, it tends to be a simpler diagnostic and improvement tool. Companies often follow a number of parallel approaches, but maturity grid assessment can be used independently, as a subset of a broader improvement initiative (Maier et al., 2012).

3.3.3 Hybrids and Likert-like scales

Hybrids and Likert-like questionnaires are comparable with maturity grids. However, the focus is more on scoring specific statements of good practice and not on describing the overall levels of maturity (Mettler et al., 2010).

Technology-readiness, system readiness and organizational-readiness instruments are typical examples of this sort of maturity assessment (Maier et al., 2012). Many readiness instruments have already been developed and are in use within the context of telemedicine and eHealth (Jennett et al., 2005; Legare et al., 2010; Khoja et al., 2007). These instruments are elaborated upon in Chapter 4. The scoring systems of the Khoja-Durrani-Scott (KDS) evaluation framework (Khoja et al., 2007), as well as the model for assessment of telemedicine applications (MAST) (Kidholm et al., 2012), are also based on Likert-like scales.

3.4 Maturity

The glossary of the Systems Engineering Capability Maturity Model (Bate et al., 1995) provides a definition for capability, capability level, capability maturity model maturity level as well as maturity model. However, it does not provide a definition for maturity. Likewise, most publications on this topic provide a definition for a maturity model (Fraser et al., 2002; De Bruin et al., 2005; Essman, 2009; Mettler and Rohner, 2009; Kohlegger et al., 2009; Maier et al., 2012), but very few (none of the authors referenced here) elaborate on the concept of maturity.

A possible reason for this may be a general consensus on the meaning of the concept maturity from a psychological point of view. The analogy drawn from the business world is clear and it thus may thus seem unnecessary to contest the definition. In this section, the parallels between organizational maturity, as it applies to this thesis, and human maturity are considered.

Maturity is a psychological term used to indicate how a person responds to the circumstances or environment in an appropriate manner. This response is generally learned rather than instinctive, and is not determined by one's age ... knowing when to act appropriately according to the situation and the culture of the society one lives in (Weschler, 1950).
CHAPTER 3. MATURITY MODELS

This definition of psychological maturity within the context of human development, has been cited by many scholars and provides a basis for the comparison between psychological maturity and organizational maturity.

3.4.1 Organizational learning

Maturity is a psychological term used to indicate how a person responds to the circumstances or environment in an appropriate manner. This response is generally learned rather than instinctive, and is not determined by one's age. (Weschler, 1950).

Maturity is not just about a current state; it also implies the notion of moving from some initial state to a more advanced state. According to Fraser et al. (2002), this suggests that the subject may pass through a number of intermediary states en route to maturity. In the development of capability-maturity models, an explicit assumption is that a perfected end-state exists, whether it unfolds from within or is designed from the outside (Fraser et al., 2002). A maturity model is not only used to assess the current state, but also facilitates the process of moving towards the perfected end-state.

3.4.2 Organizational entity under consideration

Maturity is a psychological term used to indicate how a person responds to the circumstances or environment in an appropriate manner. This response is generally learned rather than instinctive, and is not determined by one’s age. ... knowing when to act appropriately according to the situation and the culture of the society one lives in (Weschler, 1950).

Here the maturity of a person is considered within a psychological context. Mettler (2011) and Niehaves et al. (2011) identified three groups of organizational entities that are typically measured through maturity models, within an organizational context:

- **Process maturity** refers to the extent to which a specific process is explicitly defined, managed, measured, controlled and effective. It is focussed on activities and work practices. The underlying goal of process-orientated maturity is almost always efficiency.

- **Object or technology maturity** refers to the extent to which a particular object or technology reaches a predefined level of sophistication.

- **People or culture maturity** relates to the extent to which the workforce can create knowledge and enhance proficiency.
3.4.3 Domains and dimensions

Maturity is a psychological term used to indicate how a person responds to the circumstances or environment in an appropriate manner. This response is generally learned rather than instinctive, and is not determined by one's age ... knowing when to act appropriately according to the situation and the culture of the society one lives in (Weschler, 1950).

Like psychological maturity, which depends on the situation and culture, the organizational context affects the way in which organizational maturity is viewed. Most (possibly all) maturity models include at least one of the following design components: domains or dimensions. These components are used to provide the context for the measurement of maturity. The organizational entity exhibits different levels of maturity depending on the domain and depth of dimension under consideration.

As with the concept of maturity, many authors use the terms domain or dimension without explaining their understanding of the termininology. This may be because they assume a universal understanding of these terms, at least with respect to their target audience. These terminologies are not used consistently and are often used interchangeably in the same publication. It was not possible to find universally agreed upon definitions for these concepts. The definitions that are adopted for the purposes of this study are presented here:

3.4.3.1 Domain

Some authors (Haris, 2010; Kidholm et al., 2012; Procter et al., 1995) considers domains as components of a maturity model while for others an entire model fits within a specific domain (Pöppelbuß et al., 2011; De Bruin et al., 2005; Van de Wetering, 2009).

The definitions of Kidholm et al. (2012) and Merriam Webster (2013) are combined to come up with a definition for domain for the purposes of this study: A domain is a sphere of activity, concern, or function (Merriam Webster, 2013) and represents an angle from which to view the use, consequences and implications (Kidholm et al., 2012) of the entity under consideration.

3.4.3.2 Dimension

The generic definition for this concept, as stipulated in the Cambridge International Dictionary of English are adopted here, namely "the measurement (of something) in a particular direction" (Procter et al., 1995).
3.4.4 Capability and maturity levels

Maturity is a psychological term used to indicate how a person responds to the circumstances or environment in an appropriate manner. This response is generally learned rather than instinctive, and is not determined by one's age ... knowing when to act appropriately according to the situation and the culture of the society one lives in (Weschler, 1950).

A particular response can be expected from a person with a certain level of maturity. The way in which a person responds or acts is indicative of his level of maturity. Similarly, the maturity of a process is usually shown by its so-called capability. The maturity level refers to "the degree of process improvement", while capability indicates the "achievement of process [or object] improvement" (Bate et al., 1995).

Crosby (1979) inspired the notion of progressing through stages towards maturity. He did not, however, formalize the concept of measuring organizational capabilities. The concept of capability was introduced through the family of capability maturity models (CMMs). The significant influence of these models on the development of other models was indicated in Section 3.1.1. It is common for a maturity model to incorporate the notion of capability by linking the capability of an organization, or organizational unit, with the maturity level.

Statistical process control (SPC) - as part of Total Quality Management (TQM) - originates from the manufacturing environment as method to continuously monitor all manufacturing processes to ensure that they operate according to their capability (Croarkin and Tobias, 2012). Cooke-Davies (2004) explains that the family of capability maturity models draws on the concept that every process has a natural capability, which can be measured and controlled. This is an underlying principle in the formulation of the maturity levels for the CMMs (Bate et al., 1995).

A process is matured to a stage of standard operation (level 3). Further maturity levels indicate process control and measurement (level 4) and improvement (level 5). Scott (2010) too recognizes in his Pragmatic Evaluation of Telemedicine Interventions (Section 4.5.2) that continuous process improvement follows the measurement of the value of the process.

In the CMMI, maturity levels are defined as follows:

1. Initial (chaotic, ad hoc): The starting point for use of a new or undocumented process.
2. Repeatable: The process is sufficiently documented so that repeating the same steps may be attempted.
3. Defined: The process is defined/confirmed as a standard business process.
4. **Quantitatively Managed:** The process is quantitatively managed in accordance with agreed-upon metrics.

5. **Optimizing:** Process management includes deliberate process optimization/improvement.

Capability levels are often expressed as a set of improvement measures, criteria (De Bruin et al., 2005; Mettler, 2011), common features, key practices, goals within a process area (Paulk et al., 1993; Bate et al., 1995), or capability statements. Savidas (2009) explains that for the NHS infrastructure maturity model (NIMM) "generic capability statements are the most useful way of describing 'what life is like' ... at each of the five levels." Pöppelbuß and Röglinger (2011) describe capabilities as repeatable patterns of action.

Maturity levels are presented as different discrete stages, while improvement measures, common features, key practices goals or capability statements are typically positioned along a continuous scale of capability levels (Bate et al., 1995). This continuous scale also implies that a higher capability level implicitly includes the attributes of the lower levels.

Within the scope of this study, capability statements are used as mechanism to describe the capability of a process. A capability statement is defined as generic statement that describes a characteristic of a process as it applies to a specific maturity level.

3.4.5 Capability areas and process areas

Pöppelbuß and Röglinger (2011) found from the work of De Bruin et al. (2005), Hammer (2007) and Weber et al. (2008), that a combination of different dimensions, different maturity levels as well as different levels of granularity are represented through concepts such as capability areas, factors, process areas, enablers, or enterprise capabilities. Jokela et al. (2006) also recognizes capability areas, process areas as well as foci of assessment as recurring components of many maturity models.

The ways in which these concepts are defined and used varies depending on the specific maturity model under consideration. Two of these concepts are used within the scope of this study and are defined as follows:

Process Area: A cluster of related activities, associated with a specific maturity level that, when performed together, achieve a set of goals considered important (Bate et al., 1995).

Capability Area: A cluster of related activities, associated with a specific combination of dimensions and spanning all maturity levels.
3.4.6 Organizational life cycle

Maturity is a psychological term used to indicate how a person responds to the circumstances or environment in an appropriate manner. This response is generally learned rather than instinctive, and is not determined by one's age ... knowing when to act appropriately according to the situation and the culture of the society one lives in (Weschler, 1950).

Maturity is a human characteristic that is attributed to organizations. Similarly, the human life cycle is often used as a metaphor for an organizational life cycle: birth-growth-maturity-Decline-death (Whetten, 1987). So too within the context of telemedicine, some of the frameworks discussed in the next chapter recognize that telemedicine goes through different life cycle stages (refer to Table 3.2). These phases are often deliberately considered when a telemedicine service is developed and deployed, particularly in the case of top-down initiatives.

Table 3.2: Typical telemedicine/ ehealth life cycle stages

<table>
<thead>
<tr>
<th>Systematic approach to the evaluation of ehealth interventions (Scott, 2010)</th>
<th>Layered telemedicine implementation model (Broens et al., 2007)</th>
<th>Stages of the ehealth life cycle (Khoja et al., 2013a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-ehealth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development</td>
<td>Prototype</td>
<td>Development</td>
</tr>
<tr>
<td>Implementation</td>
<td>Small-scale Pilot</td>
<td>Implementation</td>
</tr>
<tr>
<td>Integration</td>
<td>Large-scale Pilot</td>
<td>Integration</td>
</tr>
<tr>
<td>Sustained Operation</td>
<td>Operational Product</td>
<td>Sustained Operation</td>
</tr>
</tbody>
</table>

There are, however, some telemedicine services that have been initiated by individuals or small groups of health care practitioners, without consideration of the life cycle stages. Although such practitioners have not given much thought to the various stages of the service, they have gone through phases of experimentation and implementation, before operationalizing the service in a sustainable way. In any case maturity models can be instrumental in facilitating the organizational growth process in reaching maturity. Either way, it seems certain that maturity models can be instrumental in facilitating the organizational growth process and help these services reach maturity. They can then also continue to be of use in maintaining the maturity levels and in so doing, prevent organizational decline and the ultimate demise of a telemedicine service.

As with a human being, who's maturity is not necessarily determined by his physical age, the organizational life cycle phase does not necessarily determine the level of organizational maturity. Although one can expect some correlation, the life cycle phase does not automatically equate to maturity level. For example, a telemedicine
service, undergoing technological development or prototype phase, may exhibit high levels of maturity in terms of methods, while another service in a large-scale pilot phase may have low levels of maturity in terms of financial processes.

For a service to function optimally, a holistic view on maturity is needed. All determinants for the success of a service must be addressed simultaneously and synergistically, irrespective of the life cycle stage.

3.4.7 Maturity of telemedicine services

Most publications on organizational maturity circumscribe, rather than define, the concept of maturity. Hence, in this section, a definition for maturity was taken from the field of Psychology to investigate the issues relating to organizational maturity. To conclude this section a new definition is presented for the purposes of this study:

The maturity of a telemedicine service indicates the capability of the service, within different domains and dimensions, expressed according to a certain level of maturity.

3.5 The Science of Maturity Models

The world of everyday life is the ordinary and physical reality in which we exist, the ordinary problems we have to solve and the ordinary lessons we learn. The world of science and scientific research takes issues from the world of everyday life and makes these into objects of systematic and rigorous enquiry (Mouton, 2001).

Section 3.1 described the origin and evolution of maturity models. It was found that the development of maturity models was primarily driven by industry needs. More recently (about a decade ago) maturity models became a topic of interest to academic scholars. Under academic scrutiny, maturity models which were developed for use in the world of everyday life, are turned into objects of systematic and rigorous enquiry. In this section the focus is on a scientific approach towards the development of a maturity model.

3.5.1 Iterative design approach

Solli-Saether and Gottschalk (2010) suggest a developmental approach, similar to the approach seen in Figure 3.2 for a stages-of-growth model, such as maturity models. Their procedure takes into account two issues that are mentioned and/or practiced by others: first, the iterative nature of the maturity model development process (De Bruin et al., 2005; Strehle and Shabde, 2006; Von Wangenheim et al., 2010; Essman, 2009; Niehaves et al., 2011; Mettler, 2011; Röglinger et al., 2012)
and secondly, the need to combine theoretical and empirical research (De Bruin et al., 2005; Thomas, 2007; Solli-Saether and Gottschalk, 2010).

3.5.2 Top-down approach vs bottom-up approach

When developing a maturity model, either a bottom-up or a top-down approach can be followed. In a bottom-up approach capabilities/factors/foci/enablers are defined first and then, based on these definitions, maturity is defined to reflect these, and the rest of the maturity model is constructed. With a top-down approach (De Bruin et al., 2005), the maturity and other constructs are defined first, followed by the measures or capability statements (Mettler, 2011).

De Bruin et al. (2005) explains that "a top-down approach works well if the domain is relatively naive and there is little evidence of what is thought to represent maturity. The emphasis in this instance is first on what represents maturity, and second how can this be measured." For the development of the TMSMM a top-down approach is followed. The conceptual model (Chapter 5) was developed first, followed by a definition of the capability statements are defined within the framework, provided by the conceptual maturity model (Chapter 6).

3.6 Design Requirements

As part of their contribution to the scientific rigour of the development of maturity models, Pöppelbuß and Röglinger (2011) conducted a systematic review of
the development of a significant number of maturity models. From this, they defined a number of design considerations. These considerations, as they apply to descriptive maturity models, are grouped into two categories for the purposes of this discussion.

Design considerations in terms of methodology

These considerations apply to the model development methodology.

- Differentiation from related maturity models and frameworks
- Underpinning foundations with respect to evolution and change
- Definition of central constructs
- Design process and extent of empirical validation

Considerations related to design requirements

These considerations provide structure for the rest of this section, in which the design requirements for the TMSMM are defined. These design requirements are also revisited in Chapter 8 to verify that the TMSMM does indeed satisfy all of these.

- Application domain
- Purpose
- Target group
- Class of entities under investigation
- Domains, dimensions, maturity levels and maturation paths
- Available level of granularity of maturation

3.6.1 Application domain

The application domain of the TMSMM concerns telemedicine services. For the purposes of this study, telemedicine is defined as the delivery of healthcare (medicine) where distance (tele) is an issue. The first design requirement encapsulates this domain.

Design Requirement 1: The TMSMM can describe any healthcare service that is delivered over a distance (telemedicine service).
3.6.2 Purpose

The difference between descriptive, prescriptive and comparative maturity models is described in Section 3.2. De Bruin et al. (2005) explain that each model type represents an evolutionary phase in the model’s life cycle. A deeper understanding of the "as-is" domain situation is firstly achieved by means of a descriptive model. After the model is applied a few times, it can then be further developed to become prescriptive. The TMSMM is in the first place a descriptive model, which lead to the second design requirement:

Design Requirement 2: The TMSMM enables the assessment of the maturity of the service.

The TMSMM is also a prescriptive maturity model which guides and educates stakeholders towards the initialization, standardization and optimization of these services.

Design Requirement 3: Based on each service assessment, further steps towards the achievement of the target maturity state are indicated.

3.6.3 Target group

De Bruin et al. (2005) recommend that decisions concerning the granularity (level of detail) of the maturity model are based on the intended target audience. A maturity model has two target groups: those who would use the maturity model to describe and assess the processes (internal stakeholders) and those who are interested in the reported results (internal and external stakeholders). A high level of abstraction is suitable for interaction with external stakeholders, on a strategic decision making level, while a lower level of abstraction helps internal stakeholders manage maturity within complex domains. It also aids in choosing improvement measures.

3.6.3.1 Internal stakeholders

In terms of internal stakeholders, the TMSMM is targeted at individuals involved in the development and/or operation of telemedicine services. These stakeholders could be involved in any aspect of the telemedicine process, ranging from patients, healthcare fieldworkers, or ICT technicians, to nurses, health system managers and specialists. Many of these stakeholders are non-specialists when it comes to telemedicine. The TMSMM must therefore be designed to be useful to non-specialists from multiple disciplines. Further maturity models, like any reference model (OASIS, 2013) "may be used as basis for education and explaining standards to a non-specialist".
CHAPTER 3. MATURITY MODELS

Depending on the complexity of the telemedicine service, the TMSMM can be used by an individual or a group of people. The requirement of the model for the assessment of telemedicine (MAST) (Kidholm et al., 2012) to enable multidisciplinary assessment, is also relevant to the TMSMM. Multidisciplinary assessment teams can also help to overcome the bias of single-informants, to build cross-functional consensus and to raise buy-in on initiatives (Fraser et al., 2002; Burger et al., unknown publication date).

Design Requirement 4: The TMSMM can be used as basis for education and explaining standards.

Design Requirement 5: The maturity assessment methodology can be followed easily and intuitively.

Design Requirement 6: Role players from multiple disciplines can use the TMSMM to describe and assess the telemedicine service at the level on which they are engaged.

3.6.3.2 External stakeholders

External stakeholders are not directly involved in the telemedicine service or the assessment of the maturity of the service. They are interested in viewing the assessments on a higher level of abstraction. For example, in the recent eHealth Strategy of the South African NDoH (Government, 2012) reference was made to "widely differing levels of eHealth maturity across and within provinces". Decision makers at governmental level or within certain provinces, would therefore be interested in an analysis of the maturity of a cohort of services within a certain health system.

Other examples of external stakeholders that may be interested to understand the maturity of certain cohorts of services, are identified by Khoja et al. (2007, 2013a). Their framework provides different views for different stakeholders, for example managers or service providers.

Design Requirement 7: Results from a cohort of individual service descriptions and assessments can be aggregated along dimensions culminating in an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic level decision-makers.

There is value for any single entity (healthcare organisation, sub-national region, country) to identify and adopt a single model or framework. Doing so permits the evidence gathered to be more meaningfully compared, and individual evaluations then collectively and rapidly accumulate the broad evidence-base needed to demonstrate the value of ehealth interventions (Scott, 2010).
3.6.4 Class of entities under investigation

The way in which the TMSMM measures maturity should focus on the telemedicine service, rather than the maturity or the complexity of related elements. For example, state-of-the-art technology does not necessarily result in a mature telemedicine service. Likewise, a service can be mature, even though it is delivered using elementary technology. Savidas (2009) states, for example, that the NHS infrastructure maturity model (NIMM) must not be technology-independent and Kidholm et al. (2012) define the principle of un bias for the model for the assessment of telemedicine applications (MAST).

Design Requirement 8: The TMSMM is not directly tied to any standards, technologies or concrete implementation details.

3.6.5 Domains, dimensions, maturation paths and capability statements

As a reference model, the capability statements of the TMSMM need to be a complete set (OASIS, 2013), which implies the following design requirements:

Design Requirement 9: The capability statements are mutually exclusive.

Design Requirement 10: The capability statements are collectively exhaustive.

Maturity models describe typical patterns in the development of organizational capabilities and usually depict a sequence of stages. Together, these stages form an anticipated, desired or logical path from an initial to a target maturity state (De Bruin et al., 2005; Solli-Sæther and Gottschalk, 2010; Pöppelbuß et al., 2011). The final two design requirements are defined accordingly:

Design Requirement 11: Descriptions of capability statements clearly relate to and discriminate between maturity levels.

Design Requirement 12: The capability statements and maturity levels accumulate. Each level and statement also includes the preceding lower level statements.
CHAPTER 3. MATURITY MODELS

3.7 Conclusion

This chapter addressed two of the research objectives:

Research Objective 2: Understand the science and design considerations of maturity models and define concepts, approaches and paradigms relevant to this study.

Research Objective 3: Define design requirements for a telemedicine maturity model.

The development of maturity models was inspired by theories and frameworks from the world of science, such as Maslow’s Hierarchy of Human Needs, Kuznet’s Theory of Economic Growth and Nolan’s stages-of-growth model. Since the early 1980’s, maturity models have become popular in the world of everyday life as instruments to manage, standardize, measure and optimize processes in complex systems and projects.

Recently, researchers such as Fraser et al. (2002); De Bruin et al. (2005); Jokela et al. (2006); Niehaves et al. (2011); Mettler (2011); Pöppelbuß et al. (2011); Pöppelbuß and Röglinger (2011) and Maier et al. (2012) have started to consider the development and application of these models in the world of everyday life. Their ultimate purpose, however, is to contribute truthful, valid and reliable descriptions, models and theories (Mouton, 2001) to the world of science.

Concepts, approaches and paradigms relevant to this study were taken from the work of these authors and presented in this chapter. In the event of insufficient consensus among researchers, definitions were formulated for the purposes of this study and design requirements for a maturity model for telemedicine services were defined accordingly.

The next chapter ‘marries’ the two research domains that have been individually considered in Chapter 2 (the telemedicine landscape) and this chapter (maturity models). In Chapter 4 telemedicine frameworks are presented and mapped against the design requirements in the quest for a framework that satisfies all these requirements.
Chapter 4

Telemedicine Frameworks

The previous chapters considered the telemedicine landscape as well as the science of maturity models in order to define a set of design requirements that such a model should adhere to. The next objective is to search for a framework that satisfies all these requirements. This is done according to the research roadmap of Figure 4.1.

![Figure 4.1: Requirements mapping](image)

The following three questions are asked:

Research Question 4.1: What telemedicine reference models, frameworks or guidelines exist?

Research Question 4.2: Which design requirements are satisfied by each of the respective frameworks?

Research Question 4.3: Do any of these frameworks satisfy all the design requirements?
4.1 Framework Categories

Principles, attributes, lessons, elements, influences, frameworks, critical steps, instruments and models: these are all terms used to describe the concepts presented in this chapter. For the sake of uniformity, in this chapter, all these are collectively referred to as frameworks, hence the title of this chapter. For discussion purposes, similar frameworks are grouped together:

The diffusion of innovation: Tanriverdi and Iacono (1998, 1999) and Grigsby et al. (2002) consider the relevance of theories for the diffusion of innovation to the implementation of telemedicine services. These two frameworks are discussed first in Section 4.1, because many of the frameworks that follow contain aspects of Tanriverdi and Iacono (1998).

eReadiness refers to the degree to which a community is prepared to participate and succeed in an ICT-driven service. It concerns the beginning of the implementation life cycle. Section 4.3 considers a few eReadiness frameworks as well as the unified theory of acceptance and use of technology (UTAUT), as it is applied to telemedicine and ehealth.

Retrospective guidelines contain issues that should be addressed during the implementation or scaling up of a telemedicine service. These guidelines, which appear in Section 4.4, were typically compiled retrospectively from the experience of implementing a number of telemedicine services.

Staged frameworks recognize the fact that different dynamics are applicable to different stages. Two types of staged frameworks are included in this chapter: First, those that consider the dynamics of different life cycle stages of the telemedicine service (Section 4.5) and, second, frameworks related to telemedicine that facilitate different maturity and capability levels (Section 4.6).

Other frameworks for the evaluation of telemedicine services: This section considers two frameworks which were specifically developed for the evaluation of telemedicine services, but which do not fit within any of the previous sections. These two models are the so-called comprehensive model for evaluating telemedicine (Hicks et al., 2004) and the model for the assessment of telemedicine (MAST) (Kidholm et al., 2012).

As each of these frameworks are presented, the extent to which they satisfy the TMSMM design requirements is considered. These conclusions culminate in Section 4.8 in order to determine if any of these frameworks satisfy all the design requirements.
4.2 Frameworks Related to the Diffusion of Innovation

For the past few decades, researchers have been intrigued by innovation and the factors that impact their diffusion. This interest has intensified as technology and technological innovations develop and the complexity of enterprises increases. With the Barriers to the diffusion of telemedicine publications (Tanriverdi and Iacono, 1998, 1999) and the Influences on the diffusion of telemedicine (Grigsby et al., 2002), some of these concepts have been brought into the telemedicine research domain.

Rogers’ (1995) categories of innovation adoption, namely innovators, early adopters, early majority, late minority and laggards can be recognized in the diffusion of telemedicine innovation. During the first few decades after the term telemedicine was used for the first time (1970), mainly the pioneering initiatives by innovators followed (ETHAL, 2008; Edwards, 2011). Then, from about 1995, motivated by significant ICT developments (Grigsby et al., 2002; Bashshur et al., 2000), it was not only the pioneers and innovators, but also the early adopters who used telemedicine applications to improve their daily work in healthcare. Today telemedicine is becoming a key issue in the implementation of healthcare services and is of interest to the early majority.

4.2.1 Barriers to the diffusion of telemedicine

Tanriverdi and Iacono (1999) were the first to recognize that insights concerning the diffusion of innovation can be applied to the implementation of telemedicine services. They based their research on the work of Attewell (1992) concerning Technology diffusion and organizational learning and defined four so-called innovation barriers. They went on to translate these into barriers for the diffusion of telemedicine: these barriers and some of their observations with respect to telemedicine are listed below:

Technical barrier: It is imperative that the appropriate technology is available as well as knowledge about it.

Behavioural barrier: This barrier involves change management, especially with respect to resistance to change and the power and politics surrounding telemedicine. Tanriverdi and Iacono (1999) emphasized the importance of so-called proponents of telemedicine in accomplishing this change.

Economical barrier: Two major concerns of Tanriverdi and Iacono (1999) were to reimburse healthcare workers for telemedicine consultations and to open up new patient markets.
Organizational barrier: Tanriverdi and Iacono (1999) found the integration of telemedicine services (and the institutional support necessary to execute these services), into organizational structures to be of critical importance.

4.2.2 Influences on the diffusion of telemedicine

Scott (1990) brought Rogers' diffusion of innovation theory into the healthcare domain by applying it to medical care organizations. Grigsby et al. (2002) narrowed the focus to telemedicine services and compiled a list of factors that influence the adoption of innovative technologies, based on the work by (Scott, 1990). These factors are listed in the left-hand column of Table 4.1. Grigsby et al. (2002) added, what they considered at that stage, to be of relevance to telemedicine.

4.2.3 Design requirements satisfied by these frameworks?

The fourth objective of this study is to search for a framework that satisfies all the design requirements. The extent to which the two frameworks from this section, satisfy all the design requirements is discussed below. The results of this discussion are summarized in Table 4.5 at the end of this chapter.

The two frameworks described in this section, satisfy some of the design requirements: both of these frameworks apply to telemedicine services (DR 1 satisfied) and both can be used as a basis for education and explaining standards (DR 4 satisfied), although they are not directly tied to any standards, technologies or concrete implementation details (DR 8 satisfied). In addition, these frameworks can be used by non-specialists (DR 6 satisfied) as well as external stakeholders, researchers and strategic level decision-makers (DR 7 satisfied).

However, there are a few design requirements they do not satisfy: neither of these frameworks provides a means of assessing a telemedicine service and prescribing actions towards optimization, nor do they provide an interface to accomplish this (DRs 2, 3 and 5 not satisfied). Furthermore, Tanriverdi and Iacono (1998, 1999) do not provide any statements that give an indication of capability (DRs 9, 10, 11 and 12 not satisfied). It may be argued that the list of Influences on the Diffusion of Telemedicine by Grigsby et al. (2002) constitutes capability statements, which are mutually exclusive (DR 9), but they are not collectively exhaustive (DRs 10 not satisfied). Instead, they are aligned with maturity levels and are not in sequence (DRs 11 and 12 not satisfied).
Table 4.1: Influences on the diffusion of telemedicine (Grigsby et al., 2002)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Relevance to Telemedicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authoritarian decision-making</td>
<td>Adoption fastest when the decision to adopt is made by an individual with authority to enforce the decision</td>
</tr>
<tr>
<td>Capable of pilot test</td>
<td>Depending on technology and application, there may be sufficient opportunity for pilot testing</td>
</tr>
<tr>
<td>Communication channels</td>
<td>Information dissemination most effective if done by peers with similar interests and concerns</td>
</tr>
<tr>
<td>Compatibility with status quo</td>
<td>Significant systemic changes may be required in the way care is provided</td>
</tr>
<tr>
<td>Complexity of skills required</td>
<td>Reasonable learning curve, but requires acquisition of new habits associated with providing care</td>
</tr>
<tr>
<td>Consistency with social norms</td>
<td>Greater likelihood of adoption when an innovation is close to the professional/organizational mainstream</td>
</tr>
<tr>
<td>Cost of the technology</td>
<td>Relative cost to institution varies by site; absolute costs decline but are excessive for small/rural facilities</td>
</tr>
<tr>
<td>Effect on quality of services</td>
<td>Quality probably comparable to in-person care; possible improvement associated with increased access</td>
</tr>
<tr>
<td>Improvement in efficiency</td>
<td>Little increase in efficiency for many applications, especially using video-conferencing, because of inconvenience</td>
</tr>
<tr>
<td>Organizational change required</td>
<td>Some degree of change may be required, but not necessarily disruptive to ordinary processes of care</td>
</tr>
<tr>
<td>Organizational/social structure</td>
<td>Diffusion facilitated by hierarchical, authoritarian systems, and hampered by loosely organized systems</td>
</tr>
<tr>
<td>Return on investment</td>
<td>Revenue is minimal, but this varies by application, size of facility, and geographic location</td>
</tr>
<tr>
<td>Risk or uncertainty</td>
<td>Payment for services is questionable, as is the issue of whether providers will use the service</td>
</tr>
<tr>
<td>Role of opinion leaders</td>
<td>Mainstream, charismatic individuals are likely to influence their peers to adopt new technology</td>
</tr>
<tr>
<td>Significance of research data</td>
<td>Important for early adopters, but less important than interpersonal channels involving professional peers</td>
</tr>
<tr>
<td>Social approval</td>
<td>Moderately high appeal to general public and news media, but many providers remain skeptical</td>
</tr>
</tbody>
</table>
4.3 eReadiness Frameworks

Theories on the adoption and diffusion of innovation form the basis for theories on readiness as well as Lewin’s three phase model (Jennett et al., 2005). eHealth and telemedicine readiness is defined as the degree to which a community is prepared to participate and support an ehealth or telemedicine service. This is normally measured before the implementation of the service (Khoja et al., 2007) and considers the capacity for making changes as well as the perceived need to change. Jennett et al. (2005) specifically refer to ehealth readiness when arguing that time, money and energy can be saved if the status quo of an ehealth/telemedicine system context is determined before implementation.

A few readiness instruments have already been developed and are in use within the context of telemedicine and ehealth. Legare et al. (2010) identified six different assessment tools that use Likert scale questionnaires to measure e-readiness within a certain health care context. The first of these tools was developed in 1996: The Organizational information technology/systems innovation readiness scale supports the evaluation, diagnosis and treatment selection for different steps in patient care, in the context of telehealth.

The second, third and fourth tools mentioned by Legare et al. (2010) were built upon each other and are focussed on home-based telehealth applications. Khoja et al. (2007) developed the eHealth readiness assessment toolset for healthcare institutions in developing countries. Jennett et al. (2005) developed the Telehealth Readiness Assessment Tool that focusses on ehealth applications in rural settings.

4.3.1 eHealth readiness assessment tools for healthcare institutions in developing countries

This toolset by Khoja et al. (2007) is singled out for three reasons. First, it forms the basis of a recent evaluation framework by the same group of researchers (Khoja et al., 2013a), which is considered in the next section. Secondly, this toolset has had the best reception from the academic community, if measured by the rate at which it is cited by others. A few authors have used this as a reference in the development of other telemedicine and ehealth assessment frameworks (Chattopadhyay et al., 2008; Tamburis et al., 2012; Leon et al., 2012) and two publications on ehealth readiness have specifically referred to this toolset.

Chipps and Mars (2012) assessed the preparedness of health districts and designated hospitals in the KwaZulu-Natal (KZN) province for proposed telepsychiatry services. They concluded that for telepsychiatry to succeed in KwaZulu-Natal, a change management awareness is needed. However, it is not clear if and how the ehealth readiness assessment toolset will assist with this.
Durrani et al. (2012) used this toolset to measure the ehealth readiness of two separate ehealth programmes, one in Kabul and the other in Bamiyan. The ehealth readiness assessment toolset was found to be useful, firstly, in comparing the ehealth readiness of these two programmes, and secondly in "broadening the vision of the institutions as a whole."

The third reason why these assessment tools have been singled out, is because they were components of the workshops that provided empirical input for the development of the TMSMM. These workshops are elaborated upon in Section 5.1.2.1.

The set of eHealth readiness assessment tools for healthcare institutions in developing countries (Khoja et al., 2007) covers five categories. Each category contains a number of statements with which a respondent is asked to agree/disagree with, according to a 5-point Likert scale. Each of these statements addresses a single determinant of access to ehealth. The way in which each statement is expressed, together with the Likert scale, provides a means of quantifying the perceived ehealth readiness.

1. **Core Readiness** (21 statements) deals with aspects of planning and integration.
2. **Technological Readiness** (10 statements) considers availability, reliability, affordability and ICT, and related infrastructure.
3. **Learning Readiness** (6 statements) addresses issues related to the programs and resources available for the provision of training in the use of the technology.
4. **Societal Readiness** (11 statements) considers the interaction between the institution and other institutions in the region and beyond. Socio-cultural factors are also included.
5. **Policy Readiness** (12 statements) deals with policies, at government and institutional levels, which are in place to address common issues such as licensing, liability and reimbursement.

Khoja et al. (2007) grouped these sets of statements into two so-called toolsets. The first toolset is targeted at managers and includes Core readiness, Technological readiness, Societal readiness and Policy readiness, excluding Learning readiness. The second toolset, which is targeted at healthcare providers, includes Core readiness, Learning readiness, Societal readiness and Policy readiness, but not Technological readiness.

Table 4.2 is compiled to show the relationship between the work of Tanriverdi and Iacono (1998) and the work of Khoja et al. (2007). The barriers to the successful
implementation of telemedicine (Tanriverdi and Iacono, 1998) are indicated in the first column. The toolsets of Khoja et al. (2007) are indicated in the second (micro level) and third (macro level) columns. Khoja et al. (2007) did not differentiate between these two levels. This differentiation is made for purposes of this study.

Table 4.2: Relationship between Tanriverdi and Iacono (1998) and Khoja et al. (2007)

<table>
<thead>
<tr>
<th>Barriers (Tanriverdi and Iacono, 1998)</th>
<th>Microlevel</th>
<th>Macrolevel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical</td>
<td>Technology (hardware and software)</td>
<td>Technology (ICT infrastructure)</td>
</tr>
<tr>
<td>Behavioural</td>
<td>Learning (healthcare workers)</td>
<td>Society</td>
</tr>
<tr>
<td>Economical</td>
<td>Core (budget)</td>
<td>Policy (reimbursement models)</td>
</tr>
<tr>
<td>Organizational</td>
<td>Core (process integration and prioritization)</td>
<td>Policy (planning and promotion of telehealth)</td>
</tr>
</tbody>
</table>

4.3.2 Unified theory of acceptance and use of technology (UTAUT)

The UTAUT was the result of a study by Venkatesh et al. (2003) that synthesized eight theories/models of technology use. Since then many extensions and adaptations of the UTAUT have been published. The most published version is presented in Figure 4.2.

Figure 4.2: The unified theory of acceptance and use of technology (UTAUT) (Venkatesh et al., 2003)
Dünnebeil et al. (2012) adapted the technology acceptance model (TAM), which is one of the theoretical frameworks underlying the UTAUT, to investigate determinants of physicians’ technology acceptance for eHealth in ambulatory care. Their version of the TAM is shown in Figure 4.3.

![Figure 4.3: Technology acceptance model (TAM) for eHealth in ambulatory care (Dünnebeil et al., 2012)](image)

The UTAUT and TAM comprise a model, which indicates the interaction between different variables that determine the acceptance of technology, as indicated in Figure 4.2. This model is accompanied by a questionnaire which contains a list of statements related to each of these variables. For each statement respondents are presented with a Likert scale, according to which they are asked indicate the extent to which they agree or disagree, for example:

- I find [the technology under consideration] useful in my daily life.
- Using [the technology under consideration] helps me accomplish things more quickly.
- The [technology under consideration] is reasonably priced.
- The use of [the technology under consideration] has become a habit for me.

Dünnebeil et al. (2012) administered their questionnaire to 117 physicians and found that the perceived importance of standardization and the perceived impor-
tance of the current IT utilization were the most significant drivers for accepting electronic health services (EHS) in their practice.

Cilliers and Flowerday (2013) used the UTAUT to investigate user acceptance of telemedicine in the public health care system in the Eastern Cape. They concluded that "in general, the acceptance of Telemedicine in the Eastern Cape Department of Health is positive, but in order to integrate it into standard work practices, more must be done with regards to the promotion and education of telemedicine".

4.3.3 Design requirements satisfied by these frameworks?

Chipps and Mars (2012) and Van Dyk and Fortuin (2011) showed that the eHealth Readiness Assessment Tools are applicable to a typical telemedicine service. Cilliers and Flowerday (2013) did the same for UTAUT (DR 1 satisfied). Both allow the assessment of the service (DR 2 satisfied), but do not indicate further steps towards achievement of the target state (DR 3 not satisfied). These examples proved that the frameworks can be used as a basis for education and are easy to use by internal stakeholders from multiple disciplines (DRs 4 and 7 satisfied).

Durrani et al. (2012) and Van Dyk and Fortuin (2011) showed that eHealth Readiness Assessment Tools are suitable for a high level of abstraction to external stakeholders and strategic level decision-makers (DR 7 satisfied). Cilliers and Flowerday (2013) and Yarbrough and Smith (2007) did the same for the UTAUT. Both of these frameworks have questionnaires which can be followed intuitively by role players from multiple disciplines (DRs 5 and 6 satisfied). Neither of these frameworks are directly tied to standards, technologies or concrete implementation details (DR 8 satisfied).

Both of these frameworks rely on a Likert scale. A set of statements is provided on which respondents are asked to agree or disagree. These (capability) statements are mutually exclusive (DR 9). Due the specific focus of the UTAUT the capability statements are not collectively exhaustive in terms of all factors impacting the telemedicine service (DR 10 not satisfied). However, the eHealth Readiness Assessment Tools are probably collectively exhaustive (DR 10 satisfied).

Neither of the models in this section recognises a concept that resembles maturity or maturity levels (DR 11 not satisfied). Although the Likert scale suggests different levels of agreement, the (capability) statements themselves do not accumulate (DR 12 not satisfied).

Fraser et al. (2002) (Section 3.3) identified three categories for maturity models, namely (1) CMM-like models, (2) maturity grids, and (3) hybrids and Likert-like questionnaires. The focus of hybrids and Likert-like questionnaires is more on
scoring specific statements of good practice rather than describing the overall levels of maturity (Mettler et al., 2010). The same applies to the frameworks discussed in this section.

4.4 Retrospective Guidelines

Most frameworks in this chapter are based on theories from the world of science, for example Diffusion of innovation, Lewin’s three phase model or Theories of technology acceptance. However, the frameworks that are discussed in this section are not based on a specific theory. They are lists that were compiled retrospectively, based on knowledge that was gained through the experience of developing, implementing and optimizing telemedicine services.

4.4.1 Seven core principles for the successful development of telemedicine services

Yellowlees (1997) identified seven broad principles, based on his experience in setting up three telemedicine systems in Australia. He intended these principles to be applicable to any telemedicine system, whether newly developed or in operation for some time. These principles are listed below:

1. Telemedicine applications as sites should be selected pragmatically, rather than philosophically.
2. Clinician drivers and telemedicine users must own the systems.
3. Telemedicine management and support should be from the bottom up rather than from the top down.
4. The technology should be as user-friendly as possible.
5. Telemedicine users must be well trained and supported, both technically and professionally.
6. Telemedicine applications should be evaluated in a clinically appropriate and user-friendly manner.
7. Information about the development of telemedicine must be shared.

He republished these principles eight years later, without any changes. Up until 2012, Yellowlees (1997, 2005) were cited in a total of 142 other publications on Google Scholar, of which 8 were during 2012. This shows that although published a relatively long time ago, they remain relevant.
4.4.2 Lessons in teledermatology service innovation

Finch et al. (2006) conducted a longitudinal study between 1997 and 2005 on twelve existing teledermatology services. They conducted a total of 68 interviews with service role players to identify those factors that contributed to these services becoming routine practice. These factors were organized into 5 themes:

Policy context: Policies should be formulated in such a way that it encourages, rather than discourages, teledermatology innovation. It is also important that the policies are translated into resources.

Evidence gathering, 'proving' safety and managing risk: The successful teledermatology services were those for which potential risks were acknowledged and safeguards built into the systems. Furthermore, such services emphasized the close monitoring of effects and outcomes, rather than formal, scientific evaluation.

Perceived benefit and related commitment: There is a direct link between the willingness of role players to commit to new technology and/or methods and the benefit they are perceived to have.

Reconfiguring services: The focus should not be on the technology, but on the way in which the service is delivered.

Professional roles and boundary crossing: Together with changes in work procedures, clinicians need to make changes to their traditionally perceived professional roles.

Of the 43 publications who later cited Finch et al. (2006), eleven used these insights to gain an understanding of issues that impact on the success and sustainability of telemedicine initiatives.

4.4.3 Framework for assessing the health system challenges to scaling up mhealth in South Africa

Leon et al. (2012) recently published a framework that was developed after nineteen interviews with key roleplayers in the field of mhealth, the assessment of three local mhealth projects and a review of grey and indexed literature. This framework is presented in Table 4.3. Leon et al. (2012) defined four so-called dimensions, which are strongly reminiscent of the Barriers to the diffusion of telemedicine by Tanriverdi and Iacono (1998), although the authors did not refer to this. For each of these dimensions, a set of so-called capacity requirements is defined.
CHAPTER 4. TELEMEDICINE FRAMEWORKS

Table 4.3: Framework for assessing the health system challenges to scaling up mHealth in South Africa (Leon et al., 2012)

<table>
<thead>
<tr>
<th>Framework</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government stewardship</td>
<td>Is there a policy environment supportive of mHealth?</td>
</tr>
<tr>
<td>Strategic leadership</td>
<td>Strategic leadership is present through policy guidelines that promote alignment with strategic health goals, funding sources, common ICT standards and partnerships for collaboration nationally and internationally.</td>
</tr>
<tr>
<td>Learning environment</td>
<td>Government stewardship includes creating a learning environment, where projects are evaluated systematically and where collaboration and sharing of knowledge can contribute to a central repository of evidence on mHealth, which in turn can influence policy and practice.</td>
</tr>
<tr>
<td>Organizational</td>
<td>Is there a culture of and capacity for using information technology for management?</td>
</tr>
<tr>
<td>Capacity for implementation</td>
<td>The health system has the capacity, managerially and technologically, to successfully implement mHealth interventions. This includes assessment of eHealth readiness, a functional ICT environment and effective mechanisms for implementation, support and monitoring and evaluation.</td>
</tr>
<tr>
<td>Culture of information use</td>
<td>There is an organizational culture and tradition of using health information for management - to ensure that the increased access to electronic information is used for quality improvements in health services.</td>
</tr>
<tr>
<td>Technological</td>
<td>How useable, integrated and sustainable is the chosen technology?</td>
</tr>
<tr>
<td>Use-ability</td>
<td>The technology has ease of use, flexibility and durability and end users experience the new technology as benefiting their work.</td>
</tr>
<tr>
<td>Interoperability</td>
<td>Interoperability of information systems ensures there is smooth communication across technological and information platforms as well as smooth integration with existing work practices. Common standards (required for interoperable systems) are developed through consensus amongst the multiple stakeholders including health ministries, digital providers, health management, clinical staff, patients, and funders. The relative merits of open source versus proprietary software are addressed as this has implications not only for interoperability, but also for financial sustainability.</td>
</tr>
<tr>
<td>Privacy and security</td>
<td>Privacy and security of data is ensured. Additional regulations for protecting electronic data may be required to secure privacy of data.</td>
</tr>
<tr>
<td>Financial</td>
<td>Is adequate financial provision being made for the medium to long term use of mHealth?</td>
</tr>
<tr>
<td>Sustainable funding</td>
<td>Securing sustainable funding for large-scale implementation is a major requirement and requires clear business and funding plans. Plans should be realistic, especially as ICT projects may cost more and take longer than initially planned.</td>
</tr>
<tr>
<td>Cost-effectiveness</td>
<td>The cost-effectiveness of mHealth strategies is evaluated. mHealth interventions are weighed up against other priority and evidence-based interventions (in terms of the costs, resources and capacity requirements), and opportunity costs are routinely considered. Unintended consequences of introducing new technology within a weak health system are monitored to minimize negative effects.</td>
</tr>
</tbody>
</table>

4.4.4 Design requirements satisfied by these frameworks?

All of these guidelines were developed specifically with telemedicine services in mind. The Lessons in teledermatology can also be applied to other telemedicine specializations. mHealth, as it is referred to by Leon et al. (2012), fits this study's
definition of telemedicine. Hence, DR 1 is satisfied within the context of all three sets of retrospective guidelines considered in this section.

These sets of guidelines do not describe, assess or provide advice based on assessment, as is required according to DRs 2 and 3. They can be used as a basis for education and explaining standards (DR 4 satisfied), although they do not set any standards as such. None of these provide an end-user interface (DR 5 not satisfied), nor is the level of granularity sufficiently appropriate to enable internal stakeholders to describe the telemedicine service at the detail level they are engaged with (DR 6 not satisfied). Furthermore, these frameworks do not describe or assess and thus fail to produce results of interest to external stakeholders (DR 7 not satisfied).

The frameworks by Yellowlees (2005) and Finch et al. (2006) are not directly tied to standards, technologies or concrete implementation details (DR 8 satisfied). However, Leon et al. (2012) distinguish, in their capability requirements, between open source and proprietary software.

Some issues are, nevertheless, re-emerging, for example the need for economically viable business models, the quest for evidence and sharing of best practices. However, each list also contains unique issues, for example the selection of a telemedicine site (Yellowlees, 1997), quality of services (Grigsby et al., 2002), professional roles and boundary crossing (Finch et al., 2006) and privacy and security (Leon et al., 2012). Hence, neither DR 9, nor DR 10 are met.

The framework for assessing the health system challenges to scaling up mhealth in South Africa includes capacity requirements (Leon et al., 2012), which fit this study’s definition for capability statements. These capability requirements were deduced from and structured according to this framework, but they do not relate to maturity levels and they also do not accumulate (DRs 11 and 12 not satisfied).

Although these sets of guidelines satisfy few design requirements, it proved to be useful to other telemedicine practitioners and researchers many of whom have cited these frameworks. Indeed, they could serve as valuable input for a new TMSMM.

4.5 Life Cycle Frameworks

It was explained in the previous chapter that organizational maturity often relates to an organizational life cycle, just as psychological maturity typically relates to a life stage. However, (organizational) maturity does not always correlate with (organizational) life stages. In the same section the frameworks of Scott (2010), Broens et al. (2007) and Khoja et al. (2013a), were used to propose a typical telemedicine service life cycle (refer to Table 3.2 in the previous chapter). These three frameworks are considered in this section.
4.5.1 The layered telemedicine implementation model

Broens et al. (2007) conducted a systematic literature review to answer the question "why is it so difficult to implement telemedicine and what goes wrong?". In this study the Barriers to the diffusion of telemedicine publication (Tanriverdi and Iacono, 1998) is used as a theoretical framework in the identification of the so-called determinants for the successful implementation of telemedicine.

Broens et al. (2007) postulate that different determinants apply along the implementation life cycle and their layered implementation model was developed accordingly. The relationship between each implementation layer and its associated determinants (in brackets) is shown in Figure 4.4.

![Figure 4.4: The layered telemedicine implementation model (Broens et al., 2007)](http://scholar.sun.ac.za)

At first, during the prototype phase, the focus was on the technological feasibility of the telemedicine service. Innovation acceptance (Section 4.2.2) and technology acceptance (Section 4.3.2) are the focus of some of the frameworks discussed earlier in this chapter. The extent to which this technology is accepted by the users and society determines, according to Broens et al. (2007), the success of the pilot phase.

As soon as the pilot projects are scaled up the financial and organizational considerations determine the success of the telemedicine service. Broens et al. (2007) explain that the research stages (prototype and pilot) are most often funded externally. Indeed, many telemedicine projects fail, because the financial sustainability beyond the research phases was not considered. Organizational issues include the definition of standards and protocols, as well as ensuring that the organization fits the new service rather than making the technology fit the old organization.

Broens et al. (2007) describe a fully implemented service as an operational product. They identified policy and legislation as critical to this phase.
4.5.2 Pragmatic evaluation of ehealth interventions

Scott (2010) designed a so-called pragmatic evaluation to assist in the selection of the most appropriate approach to the evaluation of an ehealth intervention (refer to Figure 4.5). In the framework different evaluation methods are recommended, depending on the life cycle stage. During the early life cycles the focus is on formative and summative evaluation to prove the value of the intervention. In later life cycle stages, key indicators are used to facilitate continuous quality improvement (CQI).

Figure 4.5: Framework for the pragmatic approach to the evaluation of an ehealth interventions (Scott, 2010)

4.5.3 The Khoja-Durrani-Scott (KDS) evaluation framework

The Khoja-Durrani-Scott (KDS) evaluation framework (refer to Table 4.4) was developed as a PANACeA (PAN Asian Collaboration for Evidence-based ehealth Adoption and Application) output by some of the authors who developed the ehealth readiness assessment tools.

The significance of this framework lies in the fact that it acknowledges the need for different assessment strategies throughout this implementation life cycle. This framework has several dimensions. The first two dimensions can be seen in Table 4.4: Column headings are the stages of the ehealth life cycle and the themes
Table 4.4: The Khoja-Durrani-Scott (KDS) evaluation framework

<table>
<thead>
<tr>
<th>Stages of the ehealth life cycle</th>
<th>Themes of Evaluation</th>
<th>Development</th>
<th>Implementation</th>
<th>Integration</th>
<th>Sustained Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Services</td>
<td>Ongoing and periodic assessment of health status, existing services needs and opportunities</td>
<td>Improved diagnosis and treatment of disease conditions</td>
<td>Health impact leading to change in disease status</td>
<td>Health impact showing change via indicators</td>
<td></td>
</tr>
<tr>
<td>Technology</td>
<td>Development cost, availability, affordability</td>
<td>Interoperability</td>
<td>Appropriate in a variety of conditions</td>
<td>Scalability</td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td>Affordability</td>
<td>Cost-utility</td>
<td>Cost-benefit</td>
<td>Improved DALYs</td>
<td></td>
</tr>
<tr>
<td>Behavioral and Socio-technical</td>
<td>Human resource factors</td>
<td>Strategy for e-health implementation</td>
<td>Strategy for broader e-health adoption</td>
<td>Adoption/adaption of technology on a wider scale</td>
<td></td>
</tr>
<tr>
<td>Ethical</td>
<td>Prioritizing ehealth over other issues</td>
<td>Sensitive to socio-cultural issues</td>
<td>Broader perspective on security, liability, licensure and reimbursement</td>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Readiness and Change</td>
<td>Plan for change management</td>
<td>Training of staff, including clinical and management staff</td>
<td>Effective change management (maintenance)</td>
<td>modification, improvement, customization</td>
<td></td>
</tr>
<tr>
<td>Policy</td>
<td>Policies for change management</td>
<td>Limited changes in organizational and national policies</td>
<td>Policies changes to facilitate broader adoption</td>
<td>Healthy public policy and organizational practice</td>
<td></td>
</tr>
</tbody>
</table>

For each of the 4 stages of the ehealth life cycle (taken from Scott, 2010) and for each of the 7 themes of evaluation (28 cells in total), Khoja *et al.* (2013a) defined desired outcomes or outcome characteristics. Some examples of these outcomes are indicated in Table 4.4.

A further dimension of the KDS-framework does not appear in Figure 4.4, but is available on the Internet (Khoja *et al.*, 2013b) in the form of a collection of evaluation questionnaires. These questionnaires consist of a series of statements, linked to a Likert scale and are similar to the ehealth readiness tools. While the former was scaled from 'not-prepared' to 'prepared' (Khoja *et al.*, 2007), the scaling
of the KDS-framework is more specific: 'unsatisfactory - below expectations - meet expectations - above expectations - extraordinary'.

Three sets of questionnaires are available, depending on the viewpoint of the respondent. Also similar to the ehealth readiness assessment tools, a few sets of questionnaires are developed. The appropriateness set is determined by the viewpoint of the assessor, i.e. (1) manager or (2) healthcare provider. A third viewpoint category is added to the KDS, namely (3) client.

4.5.4 Design requirements satisfied by these frameworks?

All three of these frameworks were developed specifically for telemedicine or ehealth (of which telemedicine is a subset). All three frameworks can be used for education and explanation to a multidisciplinary audience. None of these are directly tied to any standards, technology or implementation details. Hence, DRs 1, 5 and 8 are satisfied. However, the layered implementation model (Broens et al., 2007) does not contain any statements/descriptions that can be defined as capability statements (DRs 9, 10, 11 and 12 are not satisfied).

The Pragmatic evaluation of ehealth interventions offers approaches to the assessment of different stages. However, only the KDS evaluation framework includes a tool (Likert-like scale) for the assessment of the telemedicine service (DR 2 and DR 5). The assessment entails that the participant(s) indicates on a Likert scale, the degree to which they agree or disagree but does not necessarily equip the analyst to derive actions to enhance maturity upon completion (DR 3 not satisfied). It does, however, provide the interaction with internal and external stakeholders required by DR 6 and 7.

Like the eHealth readiness assessment tools (Khoja et al., 2007) the questionnaires of the KDS evaluation framework contain a series of (capability) statements, which are associated with a Likert scale. These statements are probably mutually exclusive (DR 9) and collectively exhaustive (DR 10). Although the statements are organized according to different life cycle stages they do not relate to maturity levels and they do not accumulate (DRs 11 and 12 not satisfied).

Based on the fact that the KDS-framework satisfied DRs 1, 2, 4, 5, 6, 7, 8, 9 and 10, it can be said to serve as a reference model for telemedicine services. The three design requirements that are not satisfied by the KDS-framework (DRs 3, 11 and 12) are those design requirements that describe typical patterns in the development of organization capabilities, which together form a desired or logical path from initial to target maturity state. As is the case in the ehealth readiness frameworks (Section 4.3), the KDS falls within the category of hybrids and Likert-like scales (Fraser et al., 2002), but it does not qualify as a maturity model.
4.6 Maturity Models

In this section existing maturity models within the context of telemedicine services are considered.

4.6.1 NHS infrastructure maturity model (NIMM)

The NIMM is an IT infrastructure maturity model that was developed by the NHS Technology Office together with a number of different NHS IT Organizations in the United Kingdom. During its development, the NHS team worked closely with Atos Healthcare, a consultant company, helping to define and develop the NIMM (Savidas, 2009). The NIMM consists of two sub-models, each with its own categories:

Business sub-model: (1) procurement, (2) financial management, (3) business alignment, (3) people and skills, and (5) principles, standards, procedures and guidelines

Technology sub-model: (1) end-user devices, (2) common applications and services, (3) operating systems, (4) infrastructure and hardware platforms, (5) principles, standards, procedures and guidelines, and (6) IT security and information governance

4.6.2 The PACS maturity model

![PACS maturity model](http://scholar.sun.ac.za)

Figure 4.6: PACS maturity model (Van de Wetering, 2009)
Around the time of NIMM’s development, Van de Wetering and Batenburg (2009) recognized the potential benefit of maturity models for healthcare services. In accordance with teleradiology as their specific area of focus, they developed a maturity model for Picture Archiving and Communication Systems (PACSs). Van de Wetering (2009) defined five dimensions and five maturity levels. The dimensions are as follows:

Strategy and policy include organization of strategy and policy procedures.

Organization and processes address processes as a basic principle of organizational development.

Monitoring and control include financial and non-financial management control.

Information technology (IT) concerns IT management and development processes.

People and culture reflects value and significance of employees for an organization.

Van de Wetering (2009) formulated 6 capability statements for each of the five dimensions and two statements each for maturity level 3, 4 and 5. According to him, "statements for maturity level 1 and 2 for each organizational domain are omitted for practical reasons and due to the fact that all Dutch hospitals [where the study was executed] have a PACS implemented (initial maturity level). Level 2 can be deducted from assigned scores to level 3 statements."

4.6.3 eHealth maturity categories for health information systems

The 2012 eHealth Strategy (Government, 2012) of the South African Department of Health makes reference to the so-called eHealth maturity categories which are used in a landscape analysis of health information systems (HISs) in developing countries (Government, 2012):

1. "paper-based systems for collecting district health indicators,
2. optimisation of paper systems through simplifying indicators and reducing duplication,
3. migration of traditional district health information systems to electronic storage and reporting,
4. introduction of operational ICT systems as a source of data for HIS,
5. a fully comprehensive and integrated national HIS."
4.6.4 Design requirements satisfied by these frameworks?

The detailed content of the NIMM is not available in the public domain. However, based on the information provided by the United Kingdom Health and Social Care Information Centre (NHS, 2013), it is assumed that the NIMM adheres to all design requirements, except DRs 1 and 2. The reason for this is that the application domain of this model is ICT within a healthcare system, but with no specific reference to telemedicine or even ehealth.

Similarly, the PACS maturity model probably satisfies DRs 3 to 7 and 9 to 12. (DR 8 is not satisfied, as the PACS MM includes reference to specific technology.) However, it is directed at a specific teleradiology application and cannot be used to describe or assess any telemedicine service (DR 1 and 2). Also, Van de Wetering (2009) specifically envisaged the PACS MM to be applied to Dutch hospitals. For this reason he found it necessary to define capability statements for maturity levels 1 and 2.

The maturity scale of the ehealth maturity categories for health information systems is cumulative and has one (capability) statement for each level (DRs 11 and 12). However, none of the other design requirements is satisfied. This framework is therefore only one-dimensional and limited to health information systems (HISs). The only value it holds, is that it serves as basis for comparison between the countries considered in the report. South Africa is placed at stage 3. In the 2012 eHealth Strategy (Government, 2012), it is recognized that some provinces within South Africa are at stage 2, others at stage 4, while some regions and districts within one province can vary between 1, 2 and 3.

4.7 Other Models

This section considers two frameworks that were specifically developed for the evaluation of telemedicine services, but which do not fit in any of the previous sections.

4.7.1 Comprehensive model for evaluating telemedicine

This model is based on the theories of transactional economics, also referred to as transaction cost economics, and has three dimensions, as indicated in Figure 4.7. Hicks et al. (2004) call their model comprehensive because of its three-dimensional approach which, according to them, ensures that the myriad of issues related to telemedicine services are considered.
Figure 4.7: Comprehensive model for evaluating telemedicine (Hicks et al., 2004)

Level of analysis: Each of the three broad categories (individual, community and society) comprises multiple elements of which some examples are indicated on Figure 4.7. "Conclusions regarding the acceptability of telemedicine may vary substantially across the three levels, since benefits and costs may accrue to entities outside the immediate transaction" (Hicks et al., 2004).

Focus of analysis: This dimension considers the often conflicting considerations of cost, quality, and access to health care.

Activities of analysis: Telemedicine services are mostly directed towards clinical examinations, consultations, discussions and other clinical purposes. It is also recognized that telemedicine service infrastructure is also used for education, research and administration.

This model satisfies DR 1, since it provides a framework within which a telemedicine service can be positioned and described. But it is unclear how the service is assessed within this framework. Consequently, no further suggestions can be derived, no assessment methodology to follow intuitively, nor results to aggregate (DRs 2, 3, 5 and 7 not satisfied). However, this framework can be used as basis for education and explaining standards (DR 4). Role players from multiple disciplines can use the TMSMM on their level, but not necessarily for assessment purposes (DR 6 partially satisfied).

Hicks et al.'s model is not tied to any standards, technologies or concrete implementation details (DR 8 satisfied). It does not contain additional detail concerning outcomes, capability statements or evaluation criteria, which disqualifies DRs 9, 10, 11 and 12.
4.7.2 Model for assessment of telemedicine applications (MAST)

The development of this model is based on results from workshops with stakeholders and users of telemedicine, a systematic literature review (Ekeland et al., 2011) and the European Health Technology Assessment Network (Lampé and Mäkelä, 2012) a core model for interventions.

According to Kidholm et al. (2012) MAST defines the relevant assessment as a multi-disciplinary process that summarizes and evaluates information about the medical, social, economic and ethical issues related to the use of telemedicine.

Kidholm et al. (2012) also acknowledge that empirical tests of the usability of MAST are needed to ensure its usefulness. Empirical studies would have been carried out from 2010 to 2013 in the Renewing Health project initiated by the European Commission, but no results of any of these are available in the public domain. Furthermore, only a draft version of the MAST manuals is available (MethoTelemed, 2012) and the official MAST website (MAST, 2013) is under construction.

The MAST toolkit (MAST, 2013) comprises an Excel document with seven sheets, one each per domain (Health Problem, Safety, Clinical Effectiveness, Patient Perspectives, Economic Aspects, Organizational Aspects, Socio-cultural and Legal Aspects). Each of these seven sheets has a list of statements or questions, which the participant must either indicate as "true" or "false". The relationship between these statements/questions is unclear and no indication is given of further actions, based on this assessment.

The MAST (Kidholm et al., 2012) considers a telemedicine service to be mature if the application has been used on a sufficiently large number of patients for most problems to have been addressed. Then the service is in the so-called steady state. This state is comparable with the generic CMM maturity level 3 (define). Only then can an assessment based on MAST be executed. Similarly, in terms of the CMM maturity levels, a process should only be quantitatively managed (level 4) once the process is standardized.

Even if enough information were available to be able to declare that the MAST is an effective reference model for telemedicine services (DRs 1,2,4,5,6,7,8,9,10), it is limited to the measurement (maturity level 4) of defined (maturity level 3) telemedicine services. As such, it definitely does not satisfy DRs 3, 11 and 12.
4.8 Conclusion

Table 4.5 summarises the requirements mapping analysis. Frameworks are listed that were discussed in prior sections which were included due to their potential to satisfy the design requirements. The 12 columns on the right hand side each represent a design requirement. It is indicated against each framework whether the design requirements are satisfied, based on the information discussed earlier in this chapter.

Table 4.5: Design requirements satisfied by existing frameworks

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Framework</th>
<th>Design requirements addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>Barriers to the diffusion of telemedicine</td>
<td>1 x x 4 x 6 7 8 x x x x</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Influences on the diffusion of telemedicine</td>
<td>1 x x 4 x 6 7 8 9 x x x</td>
</tr>
<tr>
<td>4.3.1</td>
<td>E-health readiness assessment tools</td>
<td>1 2 x 4 5 6 7 8 9 10 x x</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Unified theory of acceptance and use of technology (UTAUT)</td>
<td>1 2 x 4 5 6 7 8 x 9 x x</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Seven core principles for the successful development of telemedicine</td>
<td>1 x x 4 x x 8 x x x x</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Lessons in teledermatology service innovation</td>
<td>1 x x 4 x x x 8 x x x x</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Framework for assessing the health system challenges to scaling up mhealth in South Africa</td>
<td>1 x x 4 x x x x x x x x</td>
</tr>
<tr>
<td>4.5.1</td>
<td>The layered telemedicine implementation model</td>
<td>1 x x 4 x x 8 x x x x</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Pragmatic evaluation of ehealth interventions</td>
<td>1 x x 4 x x 8 x x x x</td>
</tr>
<tr>
<td>4.5.3</td>
<td>The Khoja-Durrani-Scott (KDS) evaluation framework</td>
<td>1 2 x 4 5 6 7 8 9 10 x x</td>
</tr>
<tr>
<td>4.6.1</td>
<td>NHS Infrastructure maturity model (NIMM)</td>
<td>x x 3 4 5 6 7 8 ?? ?? ?? ?</td>
</tr>
<tr>
<td>4.6.2</td>
<td>The PACS maturity model</td>
<td>x x 3 4 5 6 7 9 10 x 12</td>
</tr>
<tr>
<td>4.6.2</td>
<td>eHealth maturity categories for health information systems</td>
<td>x x x x x x x x x x x 11 12</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Comprehensive model for the evaluation of telemedicine</td>
<td>1 x x 4 x 6 x 8 x x x x</td>
</tr>
<tr>
<td>4.7.2</td>
<td>The model for the assessment of telemedicine services (MAST)</td>
<td>1 2 4 5 6 7 8 9 10 x x</td>
</tr>
</tbody>
</table>
The objective of this chapter was to search for a framework that satisfies all the design requirements of a maturity model for telemedicine services. The following questions were asked:

Research Question 4.1: What telemedicine reference models, frameworks or guidelines exist?

Research Question 4.2: Which design requirements are satisfied by each of the respective frameworks?

Research Question 4.3: Do any of these frameworks satisfy all the design requirements?

If there was the slightest possibility that a design requirement would be met, it has been indicated as such. For example, *statements* (Khoja et al., 2007, 2013a) and *capability requirements* (Leon et al., 2012) were viewed as *capability statements* for the purposes of the mapping exercise. Furthermore, in the case of NIMM and MAST, not enough information was available to satisfactorily confirm that certain design requirements had been met. However, any assumptions made, were in favour of these frameworks, based on the claims by the developers.

In addition, DR 1 specifically refers to telemedicine services as they are defined for the purposes of this study (healthcare services delivered over a distance). Some frameworks, e.g. the eHealth Readiness Assessment Tools, have a wider scope, including all ICT supported healthcare services. In these cases DR 1 was indicated as satisfied.

The requirements mapping analysis (Table 4.5) revealed that none of these frameworks satisfies all the design requirements. However, a few of the frameworks satisfy a sufficient number of design requirements to be considered as reference models for telemedicine and/or ehealth.

These frameworks are the eHealth readiness assessment tools, the Unified theory of acceptance and use of technology (UTAUT) as it is applied to telemedicine, the KDS evaluation framework and possibly the model for the assessment of telemedicine. However, none of these frameworks describe typical patterns in the development of organizational capabilities and none depict a sequence of stages toward the desired state (DRs 3, 11 and 12), as can be expected from a maturity model (De Bruin et al., 2005; Solli-Saether and Gottschalk, 2010; Pöppelbuß et al., 2011).

On the other hand, the frameworks that were considered in Section 4.6 do satisfy the requirements related to maturity and maturation paths, but they are either restricted to a specific telemedicine application and specific implementation details
(PACS maturity model) or encompasses a larger health system (NHS infrastructure maturity model), at the cost of the detail needed to assess a telemedicine service.

This study originated from the following research problem (Section 1.1): many telemedicine services which showed initial success, are not sustained. Many mistakes in the implementation of telemedicine services are repeated over and over again and only a few good practices are replicated. There is a need for a reference model that can be used to assess telemedicine services and which can guide and educate stakeholders towards the optimization of these services.

Some of the models presented in this section can be used to assess a telemedicine service. Some models provide guidelines for the implementation of telemedicine services and some allow the assessment of processes and guide accordingly towards a desired state of maturity, but are not specifically directed towards telemedicine services. It is concluded that a maturity model for telemedicine services does not exist.

Given the urgent need for effective telemedicine services that could provide more efficient health care, there is clearly a need for such a model. Over the next three chapters, the development of a new telemedicine service maturity model (TMSMM) is described.
Chapter 5

The Conceptual Maturity Model

The purpose of this study is to find or develop a maturity model for telemedicine services that can be used to describe and assess telemedicine services and guide and educate stakeholders towards the optimization thereof.

The conclusion of the previous chapter was that none of the existing frameworks from the state of the art satisfies all the design requirements. Hence, the next objective is to develop a new telemedicine service maturity model (TMSMM) that can do so. The development of this model is described over the next three chapters, as indicated by Figure 5.1. This chapter describes the model development approach as well as the development and design of the conceptual TMSMM.

![Figure 5.1: Research roadmap: Development of the TMSMM](image)
5.1 Iterative Design Process

In Chapter 3 it was established that an iterative top-down approach is typically followed in the development of maturity models (refer to Section 3.5). Such an approach was followed in the development of the TMSMM. This approach resembles the frameworks of Solli-Sæther and Gottschalk (2010), De Bruin et al. (2005) and Von Wangenheim et al. (2010).

Figure 5.1 shows the iterative design process, specific to this study. Inputs from both the world of science (the telemedicine landscape and other frameworks) and the world of everyday life (stakeholder workshops and peer review) are used in an iterative way.

5.1.1 Top-down approach

When developing a maturity model, either a bottom-up or a top-down approach can be followed. In a bottom-up approach capabilities are defined first and then, based on these definitions, maturity levels are defined and the rest of the maturity model is constructed. With a top-down approach (De Bruin et al., 2005), the maturity model is first conceptualized in terms of dimensions (Section 5.2 and Section 5.3) and maturity levels (Section 5.5). The capability statements are then formulated within the frame of the conceptual model (Chapter 6).

The latter approach was followed in this study. Research questions 5.1, 5.2 and 5.3 applies to this process and are addressed in this sequence. An entire chapter is devoted to each of these questions:

Research Question 5.1: What conceptual design will address the design requirements? (Chapter 5)

Research Question 5.2: Which detailed descriptions in terms of capability statements, will address the design requirements? (Chapter 6)

Research Question 5.3: Which assessment methodology will address the design requirements? (Chapter 7)

5.1.2 Inputs from the world of everyday life

For purposes of the development of the conceptual TMSMM inputs from the world of everyday life are from stakeholder workshops and peer review.

5.1.2.1 Stakeholder workshops

Between June 2011 and December 2011, a series of workshops was held in South Africa. Representatives included healthcare workers (e.g., specialists, radiologists,
radiographers and nurses), as well as persons responsible for the development, implementation and maintenance of hospital information and communication technology (ICT). Most of the workshop participants were from the public health sector.

The first day of these workshops was used to educate representatives about telemedicine. On the second day, workshop delegates used earlier versions of the TMSMM to describe and assess telemedicine services within their context. In doing so, they gained an appreciation for all of the aspects that determine telemedicine success and learned from each other about the clinical and technical detail concerning their telemedicine service. Some outputs from these workshops are added to Appendix E.

It was also explained to the participants that the framework used during the workshop is in a process of continuous involvement. They were informed that their inputs may be used to inform future versions of this framework. All participants consented in writing to be involved in this way, provided that neither their own identities nor the identities of their institutions are revealed.

5.1.2.2 Peer reviewed publications

All of the peer reviewed publications that resulted from this study are included in Appendix A. The interaction between these stakeholder inputs and the peer review process are described below:

Concept development iteration 1: The first of these workshops was held on 13 and 14 June 2011 at the Universitas Hospital, Bloemfontein, involving 4 clinicians and 4 technicians from various provincial hospitals within a 200 km radius of Bloemfontein. The results were presented at the International Conference on Industrial Engineering, Systems Engineering and Engineering Management (Stellenbosch), which was held in September 2011 (Van Dyk et al., 2011) (Appendix A.2.2).

The purpose of this paper was to develop a framework that can be used to measure and manage the capability of a health system to sustain health care delivery after the pilot phase of a telemedicine project. At that point in time maturity models were not yet identified as type of model that can possibly address this purpose. Four existing frameworks were used as input to this maturity model, namely the ISO 15288 Systems Engineering Life Cycle Standards, the ISO/IEC 15504 Software Process Improvement and Capability Determination (SPICE), eHealth Readiness Instrument for developing countries and the Layered Telemedicine Implementation Model. The output was a three dimensional model. The relation between the dimensions of this framework and the eventual TMSMM is described in sections 5.2.1, 5.3.1 and 5.5.1.
CHAPTER 5. THE CONCEPTUAL MATURITY MODEL

Concept development iteration 2: The next conference paper (Van Dyk et al., 2012a) presented data from two provincial workshops (Appendix A.1.2). These workshops were held in East London (3 and 4 August 2011 with 12 participants) and Vryburg (30 and 31 August with 25 participants).

This was the first research output which included the term maturity model in the title. In addition to the theoretical frameworks considered in the first paper, this iteration also considered the PACS Maturity Model and the NHS Maturity Model. The output was a three dimensional model. The relation between the dimensions of this framework and the eventual TMSMM is described in sections 5.2.2, 5.3.2 and 5.5.2.

Concept development iteration 3: On 8 and 9 December 2011 a workshop was held in Port Elizabeth, involving 5 technicians and 4 clinicians. Data gathered during this workshop was used as input for a full journal article (Van Dyk and Schutte (2012), Appendix A.5).

The full journal article where produced for a special edition of this journal upon invitation of the conference organizers of the first paper and on merit of the potential of the first paper. The most significant difference between models presented in the respective papers is with regards to the service dimension as explained in section 5.2.3. This paper also included a few case studies.

Concept development iteration 4: During 2012 this conceptual model was used in a few studies on specific telemedicine applications, two of which were shared at and published in proceedings of international conferences (Van Gemert-Pijnen et al., 2011; Trieugaardt and Van Dyk, 2012; Trieugaardt, 2013). In the execution of these studies, insights were gained concerning the conceptual model, which lead to further improvements to the construct. The iteration is concluded with a chapter publication (Van Dyk and Schutte, 2013) (Appendix A.4.2).

This chapter was introduced along with some background on maturity models to provide the rationale for using maturity models as research artefact was provided. The scope of the chapter allowed for the inclusion of detailed domain-specific maturity scales and capability statements for the microlevel processes. The relationship between the dimensions of this framework and the eventual TMSMM is described in sections 5.2.4, 5.3.3 and 5.5.2.

Further iterations were executed in the development of the capability statements (Chapter 6) as well as the end-user interface (Chapter 7) and will be elaborated upon in the respective chapters.
5.1.3 Inputs from the world of science

From the world of science, further inputs to the iterative design process include the existing telemedicine frameworks (Chapter 4) as well as the design requirements (Chapter 3). The influence of specific frameworks as well as the intentional consideration of design requirements in each iteration of the development of the conceptual TMSMM are described in the remainder of this chapter.

5.1.4 Iterative development of dimensions

As is described in Section 3.4.3, a maturity model consists of one or more dimensions. From the first development iteration, the design of the TMSMM included two dimensions. Despite many iterative changes to the categories of each of these respective dimensions, no dimension was added or taken away. Table 5.1 shows the iterative development of these two dimensions. In the sections that follow, each of these dimensions is elaborated upon.

Table 5.1: Iterative development of dimensions

<table>
<thead>
<tr>
<th>Concept development iteration</th>
<th>Name of model</th>
<th>Domain dimension (Section 5.2)</th>
<th>Telemedicine service dimension (Section 5.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A systems engineering approach to telemedicine implementation</td>
<td>Success Determinants</td>
<td>Systems Engineering Processes</td>
</tr>
<tr>
<td>2</td>
<td>A maturity model for telemedicine implementation</td>
<td>eReadiness Categories</td>
<td>Telemedicine Process</td>
</tr>
<tr>
<td>3</td>
<td>The Telemedicine Maturity Model (TMMM)</td>
<td>Maturity Categories</td>
<td>Telemedicine Process</td>
</tr>
<tr>
<td>4</td>
<td>The telemedicine service maturity model (TMSMM)</td>
<td>Domain Dimension</td>
<td>Telemedicine Service Dimension</td>
</tr>
</tbody>
</table>

5.2 Domain Dimension

A domain is a sphere of activity, concern, or function (Merriam Webster, 2013) and represents perspective from which to view the use, consequences and implications (Kidholm et al., 2012) of the entity under consideration.

5.2.1 First iteration

Figure 5.2 shows the development of the Domain dimension. The domains for the first two iterations (Van Dyk et al., 2011) were primarily derived from the work of Broens et al. (2007) and Khoja et al. (2007). These frameworks were elaborated
5.2.2 Second iteration

At the start of the study, maturity models had not yet been identified as artefacts which could address the research problem. However, from the second iterations onward, the development of a maturity model was purposefully pursued. For this reason maturity models within the healthcare domain were specifically consulted. Two models were included at that stage, namely the NHS infrastructure maturity model (NIMM) (Savidas, 2009) and the PACS maturity model (Van de Wetering and Batenburg, 2009).

As a result, a few aspects were added to this dimension, for example technology maintenance and reimbursement of individual users. Apart from this, the changes to this dimension primarily involved the rearrangement of eReadiness categories (as it was called during that iteration), based on inputs during stakeholder workshops.

5.2.3 Third iteration

In Chapter 4, it was shown how the Barriers to the diffusion of telemedicine (Tannriverdi and Iacono, 1998) re-emerged as a theme in other frameworks (Broens et al., 2007; Khoja et al., 2007; Van de Wetering, 2009; Leon et al., 2012; Savidas, 2009). This became evident during the third iteration, as more information from the world of science was consulted.

Reference is often made to the so-called alphabet soup of the business world. For
example: the 4Ps of marketing, the 5Ps of strategy, the 4Ps of health care, the 5Ss of lean manufacturing, the 4Ms, 5Ms, 6Ms and 7Ms of manufacturing, and the list continues. The value of these models (representations of the real world) lies in their simplicity and re-usability. The fact that these concept groupings are applied repetitively and to a variety of contexts is indicative of its validity and generalizability.

The relation between the categories of Tanriverdi and Iacono (1998) and the 4Ms of manufacturing are shown in Table 5.2. This relationship became clear during the third iteration's stakeholder workshops. The Domain dimension for this iteration was structured accordingly (compare Figure 5.2 with Table 5.2).

Table 5.2: Relationship between the 4Ms of manufacturing and the Barriers to the diffusion of telemedicine

<table>
<thead>
<tr>
<th>4Ms of Manufacturing</th>
<th>Barriers to the Diffusion of Telemedicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>behavioral barrier</td>
</tr>
<tr>
<td>Machine</td>
<td>technical barrier</td>
</tr>
<tr>
<td>Method</td>
<td>organizational barrier</td>
</tr>
<tr>
<td>Money</td>
<td>economical barrier</td>
</tr>
</tbody>
</table>

5.2.4 Fourth iteration

It may seem inappropriate to apply the 4Ms of manufacturing to the domains of the TMSMM. However, the generic description of a manufacturing process is similar to a telemedicine service: The telemedicine service entails the sourcing and acquisition of raw material (raw patient data and information) at the right place, the right time, and according to the right specification. This information is then reworked into a useful product (such as diagnosis and treatment prescription), which only has value if it reaches the external customer (patient) or internal customer (referring healthcare worker) at the right place, the right time, and according to the right specification.

The conversion of data into information (the material of the telemedicine service) and the transmission thereof, is the key to the telemedicine service. Hence, during the fourth and final iteration in the development of the conceptual model, the 4Ms were expanded to the 5Ms to include Material (data/information). It was also during the fourth iteration that Service dimension was expanded to include meso- and macro-level processes, which is the reason that two dimensions are shown for the fourth iteration in Figure 5.2.
5.3 Service Dimension

The way in which the service dimension evolved to this point is illustrated by Figure 5.3.

![Figure 5.3: Iterative development of the TMSMM service dimension](image)

5.3.1 First iteration

In the first iteration of the TMSMM this dimension was labelled Processes. At that stage it was already clear that a systems approach is needed to develop and sustain successful telemedicine services. Hence, the ISO 15288 Systems Engineering Life Cycle Standards were used.

Another reason why these standards were deemed appropriate at that stage is that the Software Process Improvement Capability Determination (SPICE) can provide
maturity level and capability statements, which are often used in conjunction with the ISO/IEC 15288 standards.

5.3.2 Second and third iterations

The ISO 15288 is multidimensional in itself. The complexity caused by adding this as dimension was the single greatest point of critique for this first iteration. In response to the critique, this dimension was deliberately replaced with a simple generic telemedicine process, as shown in Figure 5.3. The new label for this dimension was *Telemedicine Process* (Van Dyk *et al.*, 2011). From the second to the third iterations this dimension did not change at all.

5.3.3 Fourth iteration

As a consequence of this replacement, some higher level processes and systems, crucial as determinants for successful telemedicine implementation unfortunately had to be excluded. Hence, in the final version of the TMSMM the telemedicine service dimension combines the systems engineering intention of the first iteration, with the micro-level focus of the telemedicine process of the second and third iterations. In this fourth iteration, three layers of telemedicine services are defined and labelled micro-level telemedicine processes, mesolevel telemedicine processes and macro-level telemedicine processes, respectively.

5.3.3.1 Microlevel telemedicine processes

In the final TMSMM, the microlevel telemedicine service is broken up into five generic processes, which are applicable to any telemedicine service. Telemedicine is by definition the delivery of healthcare service (*medicine*) over a distance (*tele*).

The four micro-level processes are derived accordingly:

1. Data is captured (Capture Data),
2. then transmitted (Transmit Data),
3. to where the data is analysed and converted into useful information (Diagnose/Analyze),
4. which is then transmitted back so that it can be reacted upon (React).

These micro-level processes also resonate with the comment by Scott *et al.* (2004) in response to a model by Wang (2003):

In this model the seemingly endless number of possible ways of describing the application of e-health has been reduced ... to the collection, analysis, and transfer of data and information.
5.3.3.2 Simplifying the number of micro-level processes

No changes were made to the telemedicine service dimension from the second to the third iterations of the TMSMM (Figure 5.3). However, two significant changes were made during the fourth iteration. The first change, as explained in the previous paragraphs, involved the addition of a meso- and macrolevel layer.

Secondly, in the final conceptual model, the microlevel telemedicine service was simplified: The second and third iterations of the microlevel telemedicine service (then named telemedicine process) included nine steps, as opposed to the four steps of the final TMSMM. This simplification came about as a consequence of the development of the domain dimension. As will become clearer in the next section, a fifth domain was added as part of the final iteration of the TMSMM conceptual model. This fifth domain was created to include the material of the telemedicine service, namely information.

All steps that were removed from the telemedicine service (refer to italics in Figure 5.3) related to data/information (material). These steps were initially included to incorporate issues such as data security, syntactic and semantic interoperability, retention of data quality after compression and record keeping. In the final version of the TMSMM these issues were addressed by the material domain, which included all issues related to data and information.

5.4 Combining the Domain Dimension with the Service Dimension

Figure 5.4 shows the matrix that is formed by the domain dimension (vertical axis) and the Service dimension (horizontal axis). The areas that are formed as consequence are labeled in the orange cells.

For purposes of this study these areas (represented by the orange cells) are referred to as capability areas and defined as clusters of related activities, associated with a specific combination of dimensions, spanning over all maturity levels. De Bruin et al. (2005) explains that capability areas provide further detail enabling targeted maturity level.

The micro-level processes in combination the domains, form a framework according to which any telemedicine service can be described, hence addressing the first design requirement. A few examples of these are described in Appendix D includes two case studies, which are described in detail, namely a teleradiology service within the private health sector of South Africa (Section D.1.2) and a pilot project of a teleophthalmology service (Section D.1.1). For each of these services a dashboard is shown in the respective sections, according to which these telemedicine services are described and assessed. The design of this dashboard is based on Figure 5.4.
Design Requirement 1: The TMSMM can describe any healthcare service that is delivered over a distance.

<table>
<thead>
<tr>
<th>Man</th>
<th>Micro-Level Telemedicine Processes</th>
<th>Higher Level Telemedicine Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Capture, Diagnose/Analyze, React processes</td>
<td>Data Transmission processes</td>
</tr>
<tr>
<td></td>
<td>patient or healthcare worker</td>
<td>patient or healthcare worker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>healthcare worker community</td>
</tr>
<tr>
<td>Machine</td>
<td>telemedicine device/mobile phone/app etc.</td>
<td>internet service, mobile phone network etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>physical infrastructure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interorganizational system</td>
</tr>
<tr>
<td>Material</td>
<td>data</td>
<td>data/images/video etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electronic medical records (EMRs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electronic health records (EHRs)</td>
</tr>
<tr>
<td>Method</td>
<td>work procedure</td>
<td>network service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>change management process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>policies and strategies</td>
</tr>
<tr>
<td>Money</td>
<td>operational costs</td>
<td>cost of transmission service</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interorganizational business model</td>
</tr>
<tr>
<td></td>
<td></td>
<td>national business case</td>
</tr>
</tbody>
</table>

Figure 5.4: A matrix according to which a telemedicine service can be described

5.5 Maturity Scale

A maturity scale is a design component of any maturity model and it relates to four of the design requirements for the TMSMM:

Design Requirement 2: The TMSMM enables the assessment of the maturity of a telemedicine service.

Design Requirement 4: The TMSMM can be used as basis for education and explaining standards.

Design Requirement 11: The capability statements and maturity level accumulates. Each higher level statement also includes the preceding lower level statements.

Design Requirement 12: Descriptions of capability statements clearly relate to and discriminate between maturity levels.

This maturity scale provides a yardstick according which the telemedicine service can be described (DR 2) and because of its cumulative (DR 11) nature, also
provide guidance towards a more mature state (DR 4). DRs 11 and 12 are partially addressed by the maturity scale, but are revisited in Chapter 6 when the formulation of the capability statements are described.

The domain dimension, as well as the service dimension, has developed significantly since the first iteration. In contrast, the Maturity Scale underwent only minor changes (refer to Figure 5.5).

![Figure 5.5: The development of the maturity scale dimension](image-url)

5.5.1 First iteration

For the first iteration, the ISO/IEC 15504 maturity scale was used. The reason for this was that this scale is often used in conjunction with the ISO/IEC 15288 Systems Engineering Life Cycle. Due to the fact that the latter was not included in the second and third iterations, the reason for including the ISO/IEC 15504 maturity scale became irrelevant.

5.5.2 Second, third and fourth iteration

The maturity scale of the TMSMM is based on the generic level indicators of the capability maturity model (CMM). This is done for four reasons:

First, most of the existing maturity models use a maturity scale, which is either identical to, or strongly resembles the CMM-scale. This is indicative of the generic usefulness and validity of this scale.

Secondly, it opens up the possibility that the TMSMM can be used in conjunction with comparative CMM-like maturity models, for example those developed
for project management (Kerzner, 2002), and knowledge management (Kochikar, 2000).

Thirdly, in Design Requirement 6, it is acknowledged that for the TMSMM, the main concern is process maturity, as is the case for the CMM. The maturity levels are defined from this viewpoint.

Finally, many of the telemedicine frameworks presented in Chapter 4 emphasize the importance of evidence and the need for the systematic monitoring and evaluation of telemedicine services. The CMM maturity scale is based on a process control principle, where a process is first standardized (maturity level 3) and then quantitatively measured (maturity level 4), before it can be optimized. By using this scale, which includes quantitative management, the TMSMM ensures that monitoring and evaluation are considered for all domains and all types of processes.

The maturity levels used for the purposes of the TMSMM, as derived from the CMMI maturity levels, are described below:

1. **Initial (chaotic, ad hoc):** The starting point for use of a new or undocumented repeat process.
2. **Repeatable:** The process is at least documented sufficiently so that repeating the same steps can be attempted.
3. **Standard:** The process is defined/confirmed as a standard business process.
4. **Quantitatively Managed:** The process is quantitatively managed in accordance with agreed-upon metrics.
5. **Optimizing:** Process management includes deliberate process optimization/improvement.

A Level 0, namely *incomplete process* is also included in the TMSMM, similar to some CMMs. Level 0 accommodates capabilities statements that imply that no capability whatsoever, exists. Although level 0 capability statements are included, level 0 is not included as a maturity level. In doing so, the CMM practice is followed.

5.5.3 Domain-specific maturity scale

A total of ten domain-specific maturity scales are defined. These scales combine the domain dimension and maturity scale. The descriptions of these scales are themes that were taken from the state of the art, the stakeholder workshops and well as case studies based on earlier versions of the TMSMM. These domain-specific scales evolved together with the *Domain* dimension.
A maturity scale is developed for each component of the domain dimension (man, machine, material, method and money) related to microlevel services (Figure 5.6). Similarly, five domain-specific maturity scales are defined for the higher level processes (Figure 5.7). In the next chapter, the capability statements are defined along these domain-specific maturity scales.

<table>
<thead>
<tr>
<th>Micro-level Telemedicine Service</th>
<th>Level 0</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>no</td>
<td>initial</td>
<td>repeatable</td>
<td>defined</td>
<td>quantitatively managed</td>
<td>optimizing</td>
</tr>
<tr>
<td>patient or healthcare worker</td>
<td>no-one</td>
<td>entrepreneur</td>
<td>champion</td>
<td>standard</td>
<td>performance management</td>
<td>professional development</td>
</tr>
<tr>
<td>telemedicine device/ mobile phone/ app etc.</td>
<td>nothing</td>
<td>experiment</td>
<td>pilot</td>
<td>standards and interoperability</td>
<td>monitored</td>
<td>maintenance and upgrades</td>
</tr>
<tr>
<td>data</td>
<td>no data</td>
<td>uncertain quality</td>
<td>consistent quality</td>
<td>quality standards</td>
<td>quality control</td>
<td>quality improvement</td>
</tr>
<tr>
<td>work procedure</td>
<td>no innovation</td>
<td>ad hoc</td>
<td>effective</td>
<td>work standards</td>
<td>performance control</td>
<td>continuous improvement</td>
</tr>
<tr>
<td>money</td>
<td>no funds</td>
<td>R&D / entrepreneur</td>
<td>consistent, but temporary</td>
<td>consistent and permanent</td>
<td>accountability</td>
<td>cost optimization</td>
</tr>
</tbody>
</table>

Figure 5.6: Five domain-specific maturity scales for microlevel processes

<table>
<thead>
<tr>
<th>Meso- and Macro Level Telemedicine Processes</th>
<th>Level 1</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>ad hoc</td>
<td>initial</td>
<td>repeatable</td>
<td>defined</td>
<td>quantitatively managed</td>
<td>optimizing</td>
</tr>
<tr>
<td>community</td>
<td>no community</td>
<td>resistance / ignorance</td>
<td>acceptance</td>
<td>norm</td>
<td>evidence</td>
<td>change to community</td>
</tr>
<tr>
<td>infrastructure</td>
<td>none</td>
<td>insufficient</td>
<td>managed</td>
<td>standards and interoperability</td>
<td>monitored</td>
<td>continuous improvement</td>
</tr>
<tr>
<td>record management</td>
<td>no records</td>
<td>temporary</td>
<td>isolated</td>
<td>integrated</td>
<td>business intelligence</td>
<td>business optimization</td>
</tr>
<tr>
<td>change management</td>
<td>not existing</td>
<td>experiment</td>
<td>bottom-up</td>
<td>top-down</td>
<td>performance and health indicators</td>
<td>continuous improvement</td>
</tr>
<tr>
<td>business models</td>
<td>research</td>
<td>fragmented</td>
<td>synergy</td>
<td>sustainable</td>
<td>health economics</td>
<td>value optimization</td>
</tr>
</tbody>
</table>

Figure 5.7: Five domain-specific maturity scale for meso- and macrolevel processes
5.6 Conclusion

This chapter, together with the next two chapters, addresses the fifth objective of this study, namely to develop a new telemedicine service maturity model (TMSMM). In order to approach the design of the conceptual model in a scientific way, the state of the art was described in Section 3.5 to arrive at a top-down iterative design approach. The first phase of the top-down approach is to develop a conceptual model, which was the focus of this chapter.

The following components of the conceptual TMSMM were described in the chapter:

- The domain dimension (Section 5.2).
- The service dimension (Section 5.3).
- A matrix, which is formed by these two dimensions and according to which a telemedicine service can be described (Figure 5.4). Each cell of this matrix each represents a capability area.
- A maturity scale (Section 5.5)
- Domain-specific maturity scales, again in the format of two-dimensional matrices (figures 5.7 and 5.6).

When all these components are combined, a three-dimensional conceptual model is created, as shown in Figure 5.8. For each of the capability areas a set of capability statements is defined along the maturity scale, as indicated in Figure 5.9.

Research Question 5.1: What conceptual design will address the design requirements?

This conceptual model addresses DR 1 (Section 5.3) as well as DRs 1, 2, 4, 11 and 12 (Section 5.5). The conceptual model is designed in such a way that it can accommodate the formulation of capability statements (Chapter 6), followed by the development of the assessment methodology (Chapter 7). The other design requirements are addressed in these chapters. The definition of the capability statements, within the context of this conceptual model is described in the next chapter.
CHAPTER 5. THE CONCEPTUAL MATURITY MODEL

Figure 5.8: The conceptual model
Figure 5.9: Examples of sets of capability statements for each capability area
Chapter 6

Development of Capability Statements

Chapters 5, 6 and 7 describe the telemedicine service maturity model (TMSMM) and the iterative design approach that was followed to develop this model (Figure 6.1). A top-down development approach (De Bruin et al., 2005) is followed, which means the conceptual TMSMM is developed first in Chapter 5, after which the capability statements are formulated for each capability area.

![Figure 6.1: Research roadmap: Development of the TMSMM](image)

A capability statement is a generic statement that describes a characteristic of a process as it applies to a specific maturity level. A scale is an instrument by means of which a quantitative value can be associated with an intangible concept. For example, weight is measured by a weighing scale in units of grams. Similarly, the set of capability statements provides a scale to allocate a quantitative value to an intangible concept, such as maturity. The unit of measurement is the maturity level.
Many maturity models do not include capability statements. However, concepts such as improvement measures, criteria (De Bruin et al., 2005; Mettler, 2011), common features, key practices and goals within a process area (Paulk et al., 1993; Bate et al., 1995) serve more or less the same purpose. In this chapter the capability statements for each capability area of the conceptual TMSMM are presented. The significance and appropriateness of these statements are supported with evidence from the state of the art. The following research question applies:

Research Question 5.2: How should the capability statements be formulated to address the design requirements?

6.1 Iterative Design Process

Figure 6.1 indicates not only this chapter’s position in the iterative design process; it also shows the inputs to the development of the capability statements, namely (1) the design requirements, (2) intermediary applications of the TMSMM, (3) existing frameworks and insights from the state of the art, and (4) the conceptual TMSMM. Each of these inputs is elaborated upon in the section that follows:

6.1.1 Design requirements

The last four design requirements were defined in Section 3.6.5, based on design considerations concerning maturation paths and capability statements. These design requirements (DRs) served as controls in the process of defining capability statements:

- **Design Requirement 8:** The TMSMM is not directly tied to any standards, technologies or concrete implementation details.
- **Design Requirement 9:** The capability statements are mutually exclusive.
- **Design Requirement 10:** The capability statements are collectively exhaustive.
- **Design Requirement 11:** Descriptions of capability statements clearly relate to and discriminate between maturity levels.
- **Design Requirement 12:** The capability statements and maturity levels accumulate. Each higher level statement also includes the preceding lower level statements.

6.1.2 Inputs from the world of science

Throughout this chapter, it is explained how insights from the state of the art contributed to the formulation of the capability statements.
6.1.3 Inputs from the world of everyday life

Earlier versions of the TMSMM were applied to a variety of telemedicine services as part of other studies. Some of these studies are published (Van Dyk et al., 2012b; Van Zyl, 2012; Viljoen, In process; Triegaardt, 2013). These studies provided input from the world of everyday life towards the definition of capability statements.

6.1.4 The conceptual TMSMM

The conceptual TMSMM consists of 30 capability areas (5 domains for 6 process types). Each of these capability areas is represented by one block in Figure 5.9. The iterative design process that was followed to progress from the conceptual model to the formulation of the capability statements is shown in Figure 6.2.

![Figure 6.2: Iterative design process to develop capability statements](image)

For the first iteration inputs from the world of science and world of everyday life contributed to the definition of generic statements that describe characteristics of a process. These statements were positioned on the conceptual model along the domain-specific maturity scales. During this first iteration, some modifications were also made to the domain-specific maturity scale as part of the design of the conceptual model.

It was also during earlier iterations that it became clear that the microlevel processes *capture*, *diagnose*, *analyze* and *react* involve the same type of human resources, devices, applications, electronic records, operational procedures and costs.
For this reason they were grouped together and share the same set of capability statements, as indicated in Figure 5.9.

A next iteration was executed, specifically focusing on less populated capability areas, again drawing from the world of science and the world of everyday life generic statements that describe characteristics of a process as they apply to a specific maturity level.

Initially there was not a particular number of capability statements per capability area. After a few iterations it became evident that in many cases two capability statements are defined per maturity level per capability area. This finding also resonates with the observation concerning the PACS maturity model which states "based on our rigorous approach, we believe that two [capability statements] are optimal from both a scientific and practical perspective. In addition, the experts were convinced this would cover sufficient amounts of detail" (Van de Wetering, 2009).

It was decided to pursue this as a design principle. Hence, further iterations were focussed on defining exactly two capability statements per maturity level per capability area, together with the single level 0 capability statement. It is shown in the next chapter how this design principle contributes to the satisfaction of DR 5 and DR 7. This design principle also resonates with DR 11.

Design Requirement 5: The maturity assessment methodology can be followed easily and intuitively.

Design Requirement 7: Results from a cohort of individual service assessments can be aggregated along all dimensions to an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic level decision-makers.

Design Requirement 11: Descriptions of capability statements clearly relate to and discriminate between maturity levels.

The end result of this iterative design process is presented in the remainder of this chapter. The five sections that follow focus respectively on the capability areas of each of the five domains. For each capability area a total of 11 capability statements are presented and discussed: two statements for each of the five maturity levels and one statement prior to maturity level 1.
6.2 Capability Statements for the *Man* Domain

For the *Man* domain, the capability statements are identical for all microlevel processes, namely capture, diagnose, react and transmission processes (Table 6.1).

6.2.1 Users of telemedicine services

Table 6.1: Capability area: Individual user

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no-one</td>
<td>The patient or healthcare worker is not available.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>entrepreneur</td>
<td>The patient or healthcare worker is available, but not always at the appropriate time.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>entrepreneur</td>
<td>The patient or healthcare worker is normally available at the appropriate time.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>champion</td>
<td>The patient or healthcare worker wants to execute this process.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>champion</td>
<td>The patient or healthcare worker executes this process consistently.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>standard</td>
<td>The patient or healthcare worker is trained to execute this telemedicine process as standard procedure.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>standard</td>
<td>The patient or healthcare worker has the mandate to execute the telemedicine process as standard procedure.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>performance management</td>
<td>The patient or healthcare worker is measured when and how he does this.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>performance management</td>
<td>The patient or healthcare worker is monitored and appraised when and how he does this.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>professional development</td>
<td>The patient or healthcare worker performance is continuously improved through the execution of this service.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>professional development</td>
<td>The patient or healthcare worker contributes to the training and development of peers towards doing this.</td>
</tr>
</tbody>
</table>

Telemedicine services have a wide range of users. Depending on how the service is set up, the telemedicine process can include patients, as well as healthcare workers such as medical specialists, nurses, radiologists, midwives, primary care practitioners and counsellors.

Patients are not always the users of the system (Rudel *et al.*, 2011). For example, a nurse can use a telemedicine service to deliver appropriate care to a patient. In this case, the nurse is considered to be the user of the telemedicine service and not the patient. By the same token, the role of ICT technologist is imperative for the operation of a telemedicine service, but the ICT technologist is not necessarily a user of the system.

Initially users are not necessarily qualified and mandated to participate in the telemedicine service (level 1). A champion (level 2) is a user from the community who takes on the role of innovator and advocate. Many authors, for example Araki *et al.* (2007), Wade and Eliott (2012), Mars (2009) and Yellowlees (2005) list the involvement of a so-called champion as a critical success factor in the successful...
implementation of telemedicine services. It is typically, but not necessarily, the champion who wants to execute this process and who does so consistently, before standards are set (level 2).

The service is standard (level 3) in terms of this capability area if processes are in place to ensure that every user of that process, now and in future, is trained and mandated to execute the task consistently as standard and on an ongoing basis.

Another determinant for the successful implementation of telemedicine is the integration of the telemedicine service with other business processes of the hospital or healthcare system (Broens et al., 2007; Yellowlees, 2005; Khoja et al., 2013a). For example, when the users are human resources of the hospital or healthcare system, integration with the human resource business process is expected. This capability area is quantitatively managed if user performance metrics exist for each of the steps of the telemedicine process and if the user performance is appraised accordingly (level 4).

Even though the patient is not an employee of the telemedicine service, it is important that some procedures exist to measure and reward the treatment adherence of the patient. The target maturity state (level 5) concerns the continuous professional development of the user (in the case of healthcare workers) or empowerment (in the case of the patient). Procedures are in place to ensure that through training, education, mentorship or peer support, the user can improve his or her performance. The user also contributes to the development of others.

6.2.2 Communities

As each individual piece is placed in the community puzzle, a new whole is created. This new whole is able to overcome former obstacles blocking individuals. As a result, community issues may not directly reflect individual interest; however, such issues will directly affect each individual within the community (Hicks et al., 2004)

Telemedicine services inevitably cut across epistemic communities, for example medical practitioners, technicians, patients or public health practitioners (Schrapel, 2010). The users of each step of the telemedicine process are members of one of these communities.

On a microlevel the Man domain is described as the individual user of the technology that captures, diagnoses, reacts or transmits data. The healthcare worker community (Table 6.2) and the patient community, thus society (Table 6.3), are added as mesolevel and macrolevel capability areas respectively.
Table 6.2: Capability area: Healthcare worker community

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no community</td>
<td>The healthcare worker community is not aware of this service.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>resistance / ignorance</td>
<td>The healthcare worker community resists this service.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>resistance / ignorance</td>
<td>The healthcare worker community avoids this service.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>acceptance</td>
<td>The healthcare worker community’s perception is that this service is easy to use.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>acceptance</td>
<td>The healthcare worker community’s perception is that this service will contribute to job performance.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>norm</td>
<td>The healthcare worker community’s organizational considers the service mandatory.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>norm</td>
<td>The healthcare worker community’s organizational culture strengthens the use of this service.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>evidence</td>
<td>The healthcare worker community’s adoption of the service is measured.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>evidence</td>
<td>The healthcare worker community’s adoption of the service is measured by means of evidence-based scientific study.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>change to community</td>
<td>The service contributes to the professional development and positive task shift of the users.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>change to community</td>
<td>Continuous capacity building of the healthcare worker community takes place.</td>
</tr>
</tbody>
</table>

Table 6.3: Capability area: Society

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no community</td>
<td>The society is not aware of this service.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>resistance / ignorance</td>
<td>The society may be aware, but is not deliberately made aware of this service.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>resistance / ignorance</td>
<td>Society is deliberately made aware of this service.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>acceptance</td>
<td>Society is willing to receive this service.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>acceptance</td>
<td>Society wants to receive this service.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>norm</td>
<td>A sufficiently large portion of the society already used this service for most issues to be addressed.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>norm</td>
<td>Society considers this telemedicine service as the norm.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>evidence</td>
<td>The impact on society is known and monitored.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>evidence</td>
<td>The impact on society is scientifically quantified.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>evidence</td>
<td>The service is continuously improved and scaled up to increase the benefit to society.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>evidence</td>
<td>Other similar societies can learn from the example of this service.</td>
</tr>
</tbody>
</table>
6.2.3 Technology acceptance amongst healthcare workers

The skills, aptitude and attitude of the individual user does not necessarily reflect the skills, aptitude and attitude of the community to which he or she belongs. The individual users of telemedicine services are often innovators and early adopters (Rogers, 1995), which is not the norm for the population. The mesolevel of the Man domain concerns the typical healthcare worker.

In Section 4.3.2 the UTAUT was presented as one of the frameworks that is used to measure and manage an aspect of telemedicine implementation. Capability statements 2a (perceived ease of use), 2b (performance expectancy), 3a (voluntariness) and 3b (social influence) are derived from the UTAUT. Capability statement 3b also aligns with the observation by Leon et al. (2012) that for telemedicine services to be successful, they must be embedded in the culture of an organization. Khoja et al. (2013a) also points out that cultural acceptability to society is critical to the success of the telemedicine service.

6.2.4 Continuous education and professional development

Continuous education and the professional development of healthcare workers are captured by the last four capability statements of this capability area (Table 6.2).

Telemedicine services provide the opportunity for continuing clinical education, especially of primary healthcare providers in rural resource-constrained areas. According to Lustig (2012), it is important that skills with regard to the use of telemedicine services are included in the formal training of healthcare workers. Examples of such services are provided by Colven et al. (2011) (dermatology), Uys and Van Dyk (2011) (tele-ultrasound), Wynchank and Fortuin (2011) (telenursing) as well as Hazin and Qaddoumi (2010) (teleoncology).

What Finch et al. (2006) call professional boundary crossing is labelled task-shifting by the World Health Organization (Bhatta et al., 2010). Task shifting entails the reallocation of certain tasks from more specialized to less specialized health care workers across the board. For example, tasks are shifted from the physician to non-professional health care workers (Hermann et al., 2009; Fulton et al., 2011).

An example of task shifting is the case of community health workers (CHWs) being recruited from semi-skilled communities and trained to perform often routine tasks, previously performed by highly educated physicians, such as HIV or diabetes screening (Bhatta et al., 2010). As a result, physicians would have more time to focus on more specialized procedures, and a much needed opportunity for job creation would be provided. A maturity level of 5 is allocated on Table 6.2 if...
the telemedicine service deliberately causes task shifts for an entire professional community.

6.2.5 Evidence-based practice

Kidholm et al. (2012) make it clear that MAST can only be used to assess the outcomes of a telemedicine service once a sufficiently large portion of a society is using this service for most issues to be addressed. Similarly in the maturity scale of the TMSMM - as adopted from the CMMs - standardization (level 3) precedes quantitative management (level 4). The maturity level 3 capability statements are defined accordingly (Table 6.3).

Evidence-based practice is an interdisciplinary approach that originates from evidence-based medicine and has spread to other fields over the past two decades. Evidence-based medicine strives for the ideal that healthcare professionals should make "conscientious, explicit, and judicious use of current best evidence in everyday practice" (Sackett et al., 1996). In light of this, it is likely that healthcare workers and other professionals are familiar with this concept.

Evidence-based practice dictates, first, that all practical decisions should be based on research studies and, secondly, that these research studies should be selected and interpreted according to a specific and quantitative norm. If scientifically acceptable and practically useful quantitative measures of the impact on the user community is quantified, then capability statement 4b applies.

Despite the challenges in executing scientifically rigorous evidence-based studies, Finch et al. (2006) found that evidence concerning the effectiveness of teledermatology services was one of the six factors detrimental to the adoption thereof. The teledermatology services that became normalized were those for which the perceived benefits clearly outweighed the effort and commitment required to make the system work. Capability statement 4a (Table 6.2) indicates that the impact on the community of healthcare workers is known and monitored, even though it may not be by means of a scientific evidence-based study.
6.3 Capability Statements for the Machine Domain

This domain concerns technology and infrastructure. On microlevel, the same set of capability statements are used for devices and applications that capture, diagnose, analyze and react. The same capability statements apply to hardware (devices) and software (applications). A second set of microlevel capability statements is defined with respect to the network service (internet network/ mobile service etc.). The mesolevel "machine" involves the physical infrastructure and is not limited to information technology only.

6.3.1 Telemedicine devices and applications

Table 6.4 applies to the devices and applications that relate to the microlevel processes of capture, diagnose and react. Broens et al. (2007) explain that during the experimental phase (level 1) the focus is on technological feasibility. Taylor (2005) adds that during the experimental phase, the safety of a telemedicine device must first be established before the service can be piloted. Safety is also one of the seven domains of the MAST.

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>nothing</td>
<td>The telemedicine device/mobile phone/app etc. never existed.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>experiment</td>
<td>The telemedicine device/mobile phone/app etc. is confirmed to be safe.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>experiment</td>
<td>The telemedicine device/mobile phone/app etc. is used on an ad hoc/experimental basis.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>pilot</td>
<td>The telemedicine device/mobile phone/app etc. is effective and available, but still undergoes frequent modifications.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>pilot</td>
<td>The telemedicine device/mobile phone/app etc. is effective, reliable and available.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>standards and interoperability</td>
<td>The telemedicine device/mobile phone/app etc. is interoperating with upstream and downstream devices and applications.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>standards and interoperability</td>
<td>The telemedicine device/mobile phone/app etc. is operating according to a defined standard.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>monitored</td>
<td>The telemedicine device/mobile phone/app's availability is monitored.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>monitored</td>
<td>The telemedicine device/mobile phone/app's availability, reliability and maintainability are monitored.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>maintenance and upgrades</td>
<td>The telemedicine device/mobile phone/app's corrective maintenance is executed effectively and timely.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>maintenance and upgrades</td>
<td>The telemedicine device/mobile phone/app's preventative maintenance and upgrades are executed effectively and timely.</td>
</tr>
</tbody>
</table>

During the pilot phase (level 2) the device is effective and available, but still undergoes frequent modifications (Drummond et al., 2008). For a repeatable telemedicine service the telemedicine device and/or software must be regularly available and maintained. User support must be available within the context in
which the device and/or software is to be used, although it is not necessarily standard practice. This is typically what happens with pilot projects.

Interoperability is the ability of diverse systems and organizations to work together, i.e. to interoperate. Interoperability ensures there is smooth communication across technological and information devices and platforms (Leon et al., 2012). Many of the telemedicine systems in use today are adaptations or reconfigurations of existing technology, for example teleconferencing, desktop computer systems or mobile phone technology (McCaffery and Dorfling, 2010). A lack of technical, semantic and syntactic interoperability often results in these services not being sustained. To accomplish a maturity level of 3 (defined), the device and the way in which it interoperates with upstream and downstream devices must be defined as standard. The TMSMM itself does not prescribe the specific technology and standards.

Interoperability standards accross a service and across organizational units is considered as part of the macrolevel capability area, Interorganizational system in Table 6.7. Leon et al. (2012) explain that uniform standards are required for interoperable systems and are developed through consensus among multiple of stakeholders.

The quantitative management of telemedicine devices and applications (level 4) should be directed to availability (system is operating satisfactorily at any time), reliability (system will perform its intended function satisfactorily) as well as maintainability (the ease and rapidity with which a system or equipment can be restored to operational status following a failure (Parker, 1984)). In the target maturity state (level 5) corrective as well as preventative maintenance is executed effectively and timely.

6.3.2 Network service

Each telemedicine process has at least two transmission processes. For example, it is possible for a patient to transmit an image of his skin via MMS-service from a public mobile phone service provider to a dermatologist. The dermatologist can then respond by submitting feedback via a conventional telephone line or possibly a wireless LAN. As in the example, the respective transmission processes use different transmission networks. Each of the transmission processes on microlevel is defined and assessed separately, according the capability statements shown in Table 6.5.

The network service can be delivered internally (for example via company intranet). However, in the case of telemedicine services, external service providers, for example mobile phone operators, are most often used. Within the context of the public health sector of South Africa the State Information Technology Agencies (SITA) provides the internet service between public health care facilities.
Table 6.5: Capability area: Transmission network

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>nothing</td>
<td>The internet service, mobile phone network etc. never existed.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>experiment</td>
<td>The internet service, mobile phone network etc. is not available anymore.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>experiment</td>
<td>The internet service, mobile phone network etc. is confirmed to be available.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>pilot</td>
<td>The internet service, mobile phone network etc. transmits data effectively.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>pilot</td>
<td>The internet service, mobile phone network etc. transmits data effectively at an acceptable speed.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>standards and interoperability</td>
<td>The capacity (bandwidth) of internet service, mobile phone network, etc. was considered in the design of the service.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>standards and interoperability</td>
<td>The interoperability of the internet service, mobile phone network, etc. is considered in the system's standards design.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>monitored</td>
<td>The reliability and availability of the internet service, mobile phone network etc. can be measured.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>monitored</td>
<td>The reliability and availability of the internet service, mobile phone network etc. are monitored.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>maintenance and upgrades</td>
<td>Deviations from acceptable levels of availability and reliability is continuously addressed.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>maintenance and upgrades</td>
<td>The capability, reliability and availability of the internet service, mobile phone network etc. are continuously improved.</td>
</tr>
</tbody>
</table>

During the research phases (levels 1 and 2) the network service is mostly developed without the involvement of a service provider. The service is assumed to be available. At standard service level, standard service level agreements with the service provider are required (level 3). A maturity level of 4 indicates that adherence to these service level agreements is continuously monitored. To attain a maturity level of 5, the service providers ensure that these agreements are continuously and appropriately upgraded and upscaled.

6.3.3 Physical infrastructure

Clinicians are generally busy people who will regularly use a service, or an instrument, only if it is immediately accessible. Walking across the road is sometimes too far to go ... Read user-friendliness means that a clinician has a video-conferencing facility in the normal workplace, or that a teacher can give a lecture in the usual seminar room (Yellowlees, 1997).

The Machine domain does not only involve ICT. The different devices and applications are all subsystems, which fit into a larger physical infrastructure. As explained in Chapter 2, telemedicine is often defined within the context of its intended use, for example home-based care or the delivery of healthcare to rural areas. In either case, the capability of the physical environment is crucial to the success of the telemedicine service.

For example, as part of the implementation protocol of a home-based telemedicine service, the suitability of the home environment to facilitate the telemedicine service should be considered. Within the context of rural healthcare, the service can be delivered from or to a mobile clinic vehicle or from a rural primary care clinic at a local school.
The maturity of the physical infrastructure (refer to Table 6.6) depends on its appropriateness (level 1) availability (level 2). Level 3 always indicates that standards are set. A maturity level of 4 indicates that the availability, reliability and maintainability is monitored. The target maturity state is one where the infrastructure is continuously maintained as well as upgraded and upscaled when needed.

Table 6.6: Capability area: Physical infrastructure

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>none</td>
<td>The physical infrastructure never existed.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>insufficient</td>
<td>The physical infrastructure is neither appropriate nor available.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>insufficient</td>
<td>The physical infrastructure is either not appropriate or not available.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>managed</td>
<td>The physical infrastructure is appropriate and mostly available.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>managed</td>
<td>The physical infrastructure is appropriate and always available.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>standard</td>
<td>The physical infrastructure is set up specifically for this service according to defined design standards.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>standard</td>
<td>The physical infrastructure is set up specifically for this service according to defined design standards.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>monitored</td>
<td>The availability of the physical infrastructure is monitored.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>monitored</td>
<td>The physical infrastructure availability, reliability and maintainability are monitored.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>continuous improvement</td>
<td>The physical infrastructure is continuously maintained and upgraded whenever needed.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>continuous improvement</td>
<td>The physical infrastructure is scalable (can easily be expanded to accommodate more instances of this service).</td>
</tr>
</tbody>
</table>

6.3.4 Interorganizational system

Interorganizational relationships did exist in health care long before tele-cooperation. A common example is the cooperation between primary care [facilities] and hospitals. The technology is the basis for a new form of network organization, i.e. the technology allows closer collaboration between geographically dispersed organizations (Aas, 2007).

The first capability statements shown in Table 6.7 are based on the work of Aas (2007). The synchronization of resources (levels 1 and 2) are key to an effective interorganizational system. As explained in Section 6.4, interoperability standards across the interorganizational system indicate a maturity level of 3 for this capability areas. The performance of the interorganizational system is typically monitored by key performance indicators (level 4). The target maturity state is one where the organization is adopted to fit the need, as recommended by Aas (2007) (level 5).
Table 6.7: Capability area: Interorganizational system

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>none</td>
<td>The inter-organizational system never included the telemedicine service.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>insufficient</td>
<td>The interorganizational system can not accommodate the telemedicine service.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>insufficient</td>
<td>The interorganizational system's technology and resources are not synchronized.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>managed</td>
<td>The interorganizational system's technology and resources are sometimes synchronized.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>managed</td>
<td>The interorganizational system's technology and resources are mostly synchronized.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>virtual organization</td>
<td>The interorganizational system's interoperability standards are defined.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>virtual organization</td>
<td>The interorganizational system's interoperability standards are followed throughout the system.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>monitored</td>
<td>KPIs are defined with the new organizational design in mind.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>monitored</td>
<td>KPIs are routinely measured and reported on.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>continuous improvement</td>
<td>The interorganizational system is continuously adopted to fit the need.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>continuous improvement</td>
<td>The interorganizational system is scalable (can easily be expanded to accommodate more instances of this service).</td>
</tr>
</tbody>
</table>
CHAPTER 6. DEVELOPMENT OF CAPABILITY STATEMENTS

6.4 Capability Statements for the *Material* Domain

A telemedicine service converts raw data into useful information, similar to any manufacturing process in which raw material is converted into a useful product.

6.4.1 Data

The capability statements shown in Table 6.8 apply the data in the telemedicine context (e.g. text, static images or video stream), which result from the capture, diagnose or react process. Many factors influence the quality of data, and specifically images, that are used as part of the telemedicine process. The TMSMM does not define any quality standards. Rather, this capability area involves the process of controlling that quality.

The principles of process control, which are inherent to the maturity levels of the family of capability maturity models (CMMs), also apply here. It is possible for a telemedicine service to be effective, without any predefined quality standards (maturity level 2). Once quality standards are set (maturity level 3), this quality can be measured and monitored (level 4), so that causes of unacceptable quality can continuously be identified and addressed (level 5).

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no data</td>
<td>The data do not exist.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>uncertain quality</td>
<td>The data are of varying and most often unacceptable quality.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>uncertain quality</td>
<td>The data are of varying but most often acceptable quality.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>consistent quality</td>
<td>The data are created consistently at a mostly acceptable quality.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>consistent quality</td>
<td>The data are created consistently, always at an acceptable quality.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>quality standards</td>
<td>The physical quality standards of the data are defined within context of this service.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>quality standards</td>
<td>The clinical effectiveness of the data are defined.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>quality control</td>
<td>The physical quality of the data are measured.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>quality control</td>
<td>The effectiveness measures for the physical quality of the data are effectively reported.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>quality improvement</td>
<td>Causes of unacceptable quality are continuously identified.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>quality improvement</td>
<td>Causes of unacceptable quality are continuously and effectively addressed.</td>
</tr>
</tbody>
</table>
CHAPTER 6. DEVELOPMENT OF CAPABILITY STATEMENTS

6.4.2 Data transmission processes

Many studies consider the effect of (the lack of) bandwidth on the quality of telemedicine data and images, together with strategies to retain quality. The control of the quality of images is considered in the previous capability area. The capability statements of the data transmission process (Table 6.9) indicate the capability to transmit the data securely and consistently.

Table 6.9: Capability area: Transmitted data

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no data</td>
<td>The data/images/video etc. do not exist.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>uncertain quality</td>
<td>The data/images/videos etc. sometimes get lost.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>uncertain quality</td>
<td>The data/images/videos etc. do not get lost.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>consistent quality</td>
<td>The data/images/videos etc. can easily be viewed by an unauthorized person.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>consistent quality</td>
<td>The data/images/videos etc. cannot easily be viewed by an unauthorized person.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>quality standards</td>
<td>The data/images/videos etc. are transmitted according to a standard transmission protocol.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>quality standards</td>
<td>The data/images/videos etc. are appropriately encrypted and decrypted.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>quality control</td>
<td>The data/images/videos etc. can be tracked throughout the telemedicine service.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>quality control</td>
<td>The data/images/videos etc. and the identities of persons who viewed and edited them, can be tracked.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>quality improvement</td>
<td>Causes of delays and incorrectly transmitted data are identified.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>quality improvement</td>
<td>Causes of delays and incorrectly transmitted EHRs are continuously addressed.</td>
</tr>
</tbody>
</table>

Capability statements 1a (uncertain), 2a (consistent), 3a (standard) and 4a (control) relate to the transmission process only, while statements 1b, 2b, 3b and 4b define the capability of the process to keep the data secure. The TMSMM does not prescribe how data are to be transmitted or secured, but assesses if the data are securely transmitted. The legal and ethical implications of telemedicine data security are investigated in depth by Jack and Mars (Jack, 2008; Mars, 2009). In the target maturity state (level 5), processes are in place to continuously improve on the data transmission process.

6.4.3 Electronic record management

Any telemedicine service inevitably produces electronic versions of some healthcare data. The concern of the meso and macrolevel capability areas of the Material domain is whether the healthcare data are actually kept on record and managed as such. The terms electronic medical record (EMR) and electronic health record (EHR) are often used interchangeably. However, there is a distinct difference between these two:
An electronic medical record (EMR) is a digital version of the traditional paper-based medical record for an individual. The EMR represents a medical record within a single facility, such as a doctor's office or a clinic.

An electronic health record (EHR) is an official health record for an individual that is shared among multiple facilities and agencies. Digitized health information systems are expected to improve efficiency and quality of care and, ultimately, reduce costs. (ITChannel, 2013)

In the TMSMM, the mesolevel capability area for the Material domain relates to the management of EMRs (Table 6.10), while EHR management is the concern of the macrolevel capability area (Table 6.11).

Table 6.10: Capability area: Electronic medical record (EMR) management

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no records</td>
<td>The electronic medical records (EMRs) do not exist.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>temporary</td>
<td>The electronic medical records (EMRs) do not exist/exist only in paper format.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>temporary</td>
<td>The electronic medical records (EMRs) are kept and stored by user while telemedicine process is in progress.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>isolated</td>
<td>The electronic medical records (EMRs) are kept on telemedicine device.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>isolated</td>
<td>The electronic medical records (EMRs) are kept on a local database specific to telemedicine service.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>integrated</td>
<td>The electronic medical records (EMRs) are integrated with hospital information system (HIS).</td>
</tr>
<tr>
<td>Level 3b</td>
<td>integrated</td>
<td>The electronic medical records (EMRs) are managed in such a way that they can be transformed into management information.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>business intelligence</td>
<td>The electronic medical records (EMRs) are managed in such a way that they can be transformed into management information.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>business intelligence</td>
<td>The electronic medical records (EMRs) are routinely transformed into management information and considered by relevant decision makers.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>business optimization</td>
<td>Ad hoc management decisions related to telemedicine services are based on this information.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>business optimization</td>
<td>Continuous management decisions related to telemedicine services are based on this information.</td>
</tr>
</tbody>
</table>

If these electronic data are transmitted and converted by the right persons at the right time according to an appropriate method, the telemedicine service is successful. However, it cannot be assumed that the electronic data is kept on record and managed as such. Often the electronic data exists only for the duration of the service (maturity level 1) or it is not integrated with other information and record management systems (maturity level 2). For a telemedicine service to achieve a maturity level of 3 in terms of record keeping, the telemedicine data must be integrated with existing information systems, e.g. a hospital information system (HIS) in the case of the mesolevel capability area or existing EHR management records in the case of the macrolevel capability area.

Evelson and Norman (2008) defines Business Intelligence (BI) as "... a set of methodologies, processes, architectures, and technologies that transform raw data
Table 6.11: Capability area: Electronic health record (EHR) management

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no records</td>
<td>The electronic health records (EHRs) do not exist.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>temporary</td>
<td>The electronic health records (EHRs) do not exist/exist only in paper format.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>temporary</td>
<td>The electronic health records (EHRs) of telemedicine service are not kept on record after completion of the service.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>isolated</td>
<td>The electronic health records (EHRs) of telemedicine service are available to all facilities that took part in process, but not centrally. Duplicates of the record are kept by respective facilities.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>isolated</td>
<td>The electronic health records (EHRs) of telemedicine service are available centrally to all facilities that took part in process.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>integrated</td>
<td>The electronic health records (EHRs) are linked to an existing EHR management system.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>integrated</td>
<td>The electronic health records (EHRs) are integrated with an existing EHR management system.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>business intelligence</td>
<td>The electronic health records (EHRs) are managed in such a way that they can be transformed into management information.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>business intelligence</td>
<td>The electronic health records (EHRs) are routinely transformed into management information and considered by relevant decision-makers.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>business intelligence</td>
<td>Ad hoc management decisions related to telemedicine services are based on this information.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>business intelligence</td>
<td>Continuous management decisions related to telemedicine services are based on this information.</td>
</tr>
</tbody>
</table>

into meaningful and useful information used to enable more effective strategic, tactical, and operational insights and decision-making. A maturity level of 4 indicates that transactional data of the EMRs are aggregated and analyzed to show trends and other useful management information. In the target maturity state (level 5) management decisions are based on this information.

The rationale for the formulation of the macrolevel capability statements (electronic health records (EHRs)) are the same as for the mesolevel processes described above. The only difference is that EMRs are constrained to a single facility, such as a doctor’s office or a clinic, while EHRs are shared among all multiple facilities and agencies.
6.5 Capability Statements for the Method Domain

The capability statements for the capture, diagnose and react processes of the Methods domain encompass work procedures. The mesolevel and macrolevel capability areas encompass the institutional and national change processes.

6.5.1 Work procedures

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no innovation</td>
<td>The work procedure does not exist.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>ad hoc</td>
<td>The work procedure is executed on a trial and error basis.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>ad hoc</td>
<td>The work procedure differs from person to person and case to case.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>effective</td>
<td>The work procedure is executed repeatably.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>effective</td>
<td>The work procedure is at least as effective as the traditional healthcare service.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>work standards</td>
<td>The work procedure is defined and documented as standard.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>work standards</td>
<td>The work procedure is aligned with ethical and legal guidelines.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>performance control</td>
<td>Relevant and realistic efficiency measures (outputs and inputs) are defined.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>performance control</td>
<td>Efficiency measures are continuously collected and communicated to relevant decision makers.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>continuous improvement</td>
<td>The work procedure is proven to be more efficient than the traditional healthcare service.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>continuous improvement</td>
<td>The work procedure's effectiveness is continuously improved.</td>
</tr>
</tbody>
</table>

On Table 6.12 a maturity level of 1 applies to services that are executed on an ad hoc, inconsistent trial and error basis. The difference between effectiveness and efficiency is often explained as follows: "Effectiveness is doing the right things, while efficiency is doing things right." A telemedicine service is effective if the desired health outcomes are repeatedly accomplished (level 2). Khoja et al. (2013a) refer in this regard to the stability of services.

Once this is accomplished, the work procedure can be defined and documented as standard. It is important that this standard should be aligned with ethical and legal guidelines (level 3). Most healthcare services need to be executed according to a certain set of well-defined protocols in order to ensure consistency, integrity and ethical conduct. In most cases these protocols are defined and executed as such, before ICT made telemedicine possible.

Efficiency is typically measured as the ratio between output and input (level 4), e.g. the number of telemedicine triage procedures per hour or the number of physical transfers avoided as the ratio of the total number of referrals. Examples of
CHAPTER 6. DEVELOPMENT OF CAPABILITY STATEMENTS

Typical cost-benefit ratios are "number of diagnoses per specialist hour" (diagnose microlevel process); "number of e-consultations per healthcare worker" (Field, 1996) (react microlevel process) or "consultations per site per week" (Mars and Scott, 2012).

These values only have meaning when compared with, for example, values from previous time periods, industry standards or other similar processes (Field, 1996). For this reason continuous monitoring – and not only once-off measuring – is imperative. The target maturity state (level 5) is where efficiency is not only monitored continuously, but also continuously improved.

6.5.2 Network service

The capability statements for the microlevel data transmission process of the Method domain are set out in Table 6.13. The network service provider (e.g. internet service provider/mobile phone operator/wide area network (WAN) provider) determines the method by which the data is transmitted.

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no innovation</td>
<td>The network service is not available yet/anymore.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>ad hoc</td>
<td>The network service is sometimes available. Not a specific service provider.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>ad hoc</td>
<td>The network service is mostly available. Not a specific service provider.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>effective</td>
<td>The network service is delivered by a specific (set of) service provider(s) with varying service levels.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>effective</td>
<td>The network service is delivered by a specific (set of) service provider(s) with consistent service levels.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>work standards</td>
<td>The service-level-agreements (SLAs) are defined.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>work standards</td>
<td>The service-level-agreements (SLAs) are contractually agreed upon.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>performance control</td>
<td>The network service levels are measured.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>performance control</td>
<td>The network service levels are continuously monitored and penalties applied.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>continuous improvement</td>
<td>The network service levels are continuously maintained.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>continuous improvement</td>
<td>The network service levels are continuously improved.</td>
</tr>
</tbody>
</table>

The ITChannel (2013) explains that a service-level agreement (SLA) is "a contract between a network service provider and a customer that specifies, usually in measurable terms, what services the network service provider will furnish." Traditionally this contract is between an external service provider and a client. However, it is also becoming standard practice for IT departments (internal service providers) to agree on service levels with their internal customers.
Some examples of service levels are (ITChannel, 2013):

- What percentage of the time services will be available
- The number of users that can be served simultaneously
- Dial-in access availability

Within the context of the TMSMM, the service level agreement is the work standard (maturity level 3) for the transmission process. In this case performance is measured in terms of the service-level agreements. If these agreements are continuously measured and monitored, deviations can be addressed so as to maintain the service level (level 4). Ultimately, these service levels must not only be maintained, but also continuously improved (level 5).

6.5.3 Change management

The implementation of telemedicine services often changes the working routines, allocation of tasks (Mettler, 2011), location of place of work, internal co-ordination, flow of patients (Aas, 2001), business models etc.

The need for deliberate and effective change management is echoed throughout studies on the implementation of telemedicine services (Grigsby et al., 2002; Bangert and Doktor, 2003; Bashshur et al., 2000; Yellowlees, 2005; Mars, 2009; Khoja et al., 2007; Durrani and Khoja, 2009; Edwards, 2011; Chipps and Mars, 2012). Change management is the process of changing processes. Within the context of the TMSMM, change management is positioned as a mesolevel process of the Methods domain (Table 6.14).

A champion is a user from the community who takes the role of innovator and advocate. Many authors, for example Araki et al. (2007); Wade and Eliott (2012); Mars (2009) and Yellowlees (2005) list the involvement of a so-called champion as a critical factor for the successful implementation of telemedicine services. Maturity level 2 applies when such a champion is either self-appointed or appointed by the institution.

A standard maturity level (level 3) applies to a sustainable institutional commitment to accomplish change. This commitment is demonstrated first by the formal and permanent appointment of a change agent and second if the change management process also manifests in other business processes, for example, during the budget process or facilities design process.

Whatever the type of model, it is important that the measures that will drive achievement are defined. These measures must be understood and accepted (Van-derwerf and Latifi, 2004). The effectiveness of the change management process is
Table 6.14: Capability area: Change management

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>not existing</td>
<td>The change management process does not exist.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>experiment</td>
<td>The change management process has not been considered.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>experiment</td>
<td>The change management process was ineffective. The process regressed back to old method after pilot phase.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>bottom-up</td>
<td>The change management process is executed by an entrepreneur.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>bottom-up</td>
<td>The change management process is driven by at least a self-appointed champion.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>top-down</td>
<td>The change management process is integrated with other business processes (e.g. budget, facilities planning, service redesign).</td>
</tr>
<tr>
<td>Level 3b</td>
<td>top-down</td>
<td>The change management process is linked to key performance indicators (KPIs).</td>
</tr>
<tr>
<td>Level 4a</td>
<td>performance and health indicators</td>
<td>The change management process is linked to key performance indicators (KPIs).</td>
</tr>
<tr>
<td>Level 4b</td>
<td>performance and health indicators</td>
<td>The change management process is monitored in terms of these KPIs.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>continuous improvement</td>
<td>The change management process addresses deviations from key performance targets.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>continuous improvement</td>
<td>The change management process continuously improves on key performance targets.</td>
</tr>
</tbody>
</table>

measured in terms of performance indicators (maturity level 4). Maturity level 5 implies that processes are in place to ensure continuous improvement in terms of these performance indicators.

6.5.4 Policies and strategies

Finch et al. (2006) consider policy context the as most detrimental factor to the success of teledermatology services. Most of the services studied by them were conceived through high-level central or local health policy support. Where such support did not translate into resources, services failed to become standard practice. The importance and complexity of defining and aligning appropriate policies and strategies with telemedicine services are echoed by many others, e.g. Grigsby et al. (2002), Broens et al. (2007), Bashshur and Shannon (2009) and Mars and Scott (2010).

The 11 statements of this capability area (Table 6.15) are not sufficient to capture the dynamics of ehealth policies and strategies, but they do indicate the maturation path towards policies and strategies that facilitate the continuous improvement of telemedicine services.

Policies and strategies are normally ignored in the experimental and prototype phase. Often (mostly?) the design of these services is in conflict with existing policies (level 1). Once the service becomes operational, the service should be aligned with existing policies and strategies. This normally happens in a bottom-
CHAPTER 6. DEVELOPMENT OF CAPABILITY STATEMENTS

Table 6.15: Capability area: National policies and strategies

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>not existing</td>
<td>Policies and strategies related to the telemedicine service are not known.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>experiment</td>
<td>Policies and strategies are ignored at this stage.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>experiment</td>
<td>Policies and strategies are in conflict with the telemedicine services.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>bottom-up</td>
<td>The change management process: the service is adapted to fit the strategies.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>bottom-up</td>
<td>The change management process: the service is adapted to fit the policies and strategies.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>top-down</td>
<td>The change management process: strategies is adapted to fit the telemedicine services.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>top-down</td>
<td>Policies and strategies are aligned with the processes of the telemedicine service.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>performance and health indicators</td>
<td>Policies and strategies are linked to health indicators.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>performance and health indicators</td>
<td>Policies and strategies facilitate the systematic evaluation of this telemedicine service.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>performance and health indicators</td>
<td>Policies and strategies facilitate the sharing of best practices and management of knowledge of this service.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>performance and health indicators</td>
<td>Policies and strategies continuously facilitate the dissemination of best practices.</td>
</tr>
</tbody>
</table>

up manner (level 2) when the service is adapted to fit the policies and strategies. A more mature approach is a top-down approach (level 3) where the new policies and strategies are adapted to advance the services. Maturity level 4 always concerns the quantitative measurement of the processes within the capability areas. In this case realistic and appropriate health indicators should be in place.

Government stewardship includes creating a learning environment, where projects are evaluated systematically and where collaboration and sharing of knowledge can contribute to a central repository of evidence on [telemedicine] mHealth, which in turn can influence policy and practice (Leon et al., 2012).

Yellowlees (1997) also considered the "documentation and publication of ideas, methods, outcomes and further research questions" as a core principle for any telemedicine service. In the the target maturity state (level 5) policies and strategies should facilitate the sharing of best practices and the continuous dissemination of best practices.
6.6 Capability Statements for the *Money* Domain

Jackson and McClean (2012) consider cost-related measures as the most neglected criteria in the assessment of telemedicine services.

The maturity of the microlevel telemedicine service – as far as the money-domain is concerned – is measured in terms of the costs to operate and maintain this service. At the macrolevel, the financial sustainability of the *Money* domain is considered, first, with respect to the specific telemedicine service and, second at a higher level, with respect to the macro-economic healthcare system.

6.6.1 Operational costs

The capability statements for the microlevel processes are identical for the capture, diagnose, react and transmit process (refer to Table 6.16).

Table 6.16: Capability area: Operational costs

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no</td>
<td>The operational costs are not funded.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>R&D/entrepreneur</td>
<td>The operational costs are not considered by developers/entrepreneur.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>R&D/entrepreneur</td>
<td>The operational costs are considered and covered by seed funds while service is in development.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>consistent, but temporary</td>
<td>The operational costs will be covered on short term by seed funds.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>consistent, but temporary</td>
<td>The operational costs will be covered on long term by seed funds.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>consistent and permanent</td>
<td>The operational costs are included partially as a standard budget item.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>consistent and permanent</td>
<td>The operational costs are included fully as a standard budget item.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>accountability</td>
<td>The operational costs’ reports are a reporting item of the accounting system.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>accountability</td>
<td>The operational costs’ reports are routinely scrutinized to ensure optimal use of funds.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>cost optimization</td>
<td>Non-value-adding activities are continuously identified.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>cost optimization</td>
<td>Non-value-adding activities are continuously eliminated.</td>
</tr>
</tbody>
</table>

Maturity levels 1 and 2 apply when the operational costs are provided by external entities, either for purposes of research and development (level 1) or for philanthropic reasons by external donors. These funding modes are not sustainable. For financial sustainability, it is mandatory that operational expenses are covered as part of the standard budgeting process of the governing organization (maturity level 3). This can also include agreements with health insurers. Accountability (level 4) implies that the cost associated with each microlevel telemedicine service is measured and monitored. Cost-optimization (level 5) is a deliberate effort to continuously eliminate non-value adding activities.
6.6.2 Business models

A business model describes the rationale of how an organization creates, delivers, and captures value (Osterwalder and Pigneur, 2010). On mesolevel the focus is on how the inter-organization creates, delivers and captures value from the telemedicine services (Table 6.17). On macrolevel, the national business case for the delivery of the telemedicine service is considered (Table 6.18). The development of business models for healthcare service providers is difficult because the value that is created, delivered and captured cannot always be expressed in monetary terms. This is especially true for public healthcare systems.

Table 6.17: Capability area: Business model

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no</td>
<td>The interorganizational business model is not available yet/anymore.</td>
</tr>
<tr>
<td>Level 1a</td>
<td>fragmented</td>
<td>The interorganizational business model has never been considered.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>fragmented</td>
<td>The interorganizational business model has never been considered for the inter-organization that spans the telemedicine service.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>synergy</td>
<td>The interorganizational business model has been considered for the inter-organization that spans the telemedicine service.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>synergy</td>
<td>The interorganizational business model includes all stakeholders.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>sustainable</td>
<td>The interorganizational business model will sustain without donor funds/seed funds.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>sustainable</td>
<td>Costs and benefits are realistically measured.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>health economics</td>
<td>Costs and benefits are realistically measured.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>health economics</td>
<td>Cost-benefit analyses are continuously performed.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>value optimization</td>
<td>How the organization creates, delivers and captures value are continuously improved.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>value optimization</td>
<td>The interorganizational business model is successfully replicated elsewhere.</td>
</tr>
</tbody>
</table>

6.6.3 National business case

The aim of the capability statements for these two capability areas is not to provide guidance towards the development of a business model - an investigation into business models for the delivery of telemedicine services warrants an entire new study. Instead, these capability statements measure maturity in terms of the extent to which the business model is embraced by all stakeholders.

Level 1 (fragmented) implies that a business model was never considered for the inter-organization that spans the telemedicine services (mesolevel) or for the national health system (macrolevel). Level 2 indicates some synergetic attempt to define a business model. Level 3 indicates that a business model exists according to which the inter-organization (mesolevel) can create, deliver and capture value in a sustainable way.
Table 6.18: Capability area: National business case

<table>
<thead>
<tr>
<th>Level</th>
<th>Maturity scale</th>
<th>Capability statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0</td>
<td>no</td>
<td>The national business case is not available yet/anymore</td>
</tr>
<tr>
<td>Level 1a</td>
<td>fragmented</td>
<td>The national business case has never been considered.</td>
</tr>
<tr>
<td>Level 1b</td>
<td>fragmented</td>
<td>The national business case has never been considered.</td>
</tr>
<tr>
<td>Level 2a</td>
<td>synergy</td>
<td>Pockets of organized value creation.</td>
</tr>
<tr>
<td>Level 2b</td>
<td>synergy</td>
<td>Nationally organized value creation.</td>
</tr>
<tr>
<td>Level 3a</td>
<td>sustainable</td>
<td>National funding structures are in place.</td>
</tr>
<tr>
<td>Level 3b</td>
<td>sustainable</td>
<td>Processes for the reimbursement of telemedicine services are in place.</td>
</tr>
<tr>
<td>Level 4a</td>
<td>health economics</td>
<td>The health-economic impact of the service are measured.</td>
</tr>
<tr>
<td>Level 4b</td>
<td>health economics</td>
<td>The national business case: health economics metrics are used as decision input to health systems strengthening.</td>
</tr>
<tr>
<td>Level 5a</td>
<td>health economics</td>
<td>The service has a significant socio-economic impact on the nation.</td>
</tr>
<tr>
<td>Level 5b</td>
<td>health economics</td>
<td>The impact of the service on the socio-economic well-being of the nation is continuously expanded.</td>
</tr>
</tbody>
</table>

Health economics is a branch of economics concerned with the functioning of macro-economic healthcare systems, as well as health-affecting behaviours and interventions – such as the use of technology (Wikipedia). Health economists all over the world are grappling still with the challenge of financially justifying telemedicine services (Bashshur et al., 2005) and no clear-cut financial model has yet been developed. It is also not the intention of the TMSMM to provide answers concerning how the financial sustainability and return on investment can be measured and managed, but merely if these aspects are being managed and measured.

A maturity level of 4 implies that some form of cost metric is part of the business model. Jackson and McClean (2012) conducted a systematic literature review to identify cost metrics and methods within the context of telemedicine and ehealth:

Operational costs: A single measure for time of healthcare worker, facility, utility, technology and support service.

Healthcare professional costs: Time and financial costs measured for healthcare workers, which are not included in operational costs.

Cost effectiveness analysis: Comparison between incremental costs and incremental health effects of a service.

Cost utility analysis: Measurement of health improvements in terms of quality adjusted life years (QALYs). Khoja et al. (2013a) also included disability-adjusted life years (DALYs) in their cost utility analysis.

A cost-benefit analysis: Benefits of the service are translated into monetary terms. The cost-benefit ratio is the ratio between cost benefits and actual...
costs. However, quantifying benefits of health interventions is easier said than done.

Costs consequence analysis: Descriptive comparison of the costs and outcomes of an intervention.

Cost minimization analysis: The maximal benefit to the population for the least cost (Drummond et al., 2005). The assumption is made that the new service does not change the clinical effectiveness, efficiency or quality of the service.

Cost of hospitalization: The costs of treating patients in terms of costs of hospital accommodation, medicines, healthcare services and other in-hospital costs.

Changes in mortality rates: A health-economic measure of changes in mortality rates associated with a healthcare intervention. These measures only become available once the service is routinely used (Jackson and McClean, 2012).

On maturity level 5 the business model is continuously improved and also replicated elsewhere (mesolevel). At the macrolevel the concern of health economics is the socio-economic impact of the telemedicine service on the nation.
6.7 Capability Statements per Maturity Level

A capability statement is a generic statement that describes characteristics of a process as it applies to a specific maturity level. In this chapter the capability statements were described and supported by evidence from the state of the art. These statements were organized along the capability areas.

As design principle, exactly two capability statements are defined for each maturity level for each capability area. This design principle, together with the dimensional design of the conceptual TMSMM makes it possible that the capability statements are also organized along maturity levels, as suggested by Figure 6.3. For example, Figure 6.4 shows all capability statements as it is defined on maturity level 3. Similar sheets for the other maturity levels are shown in Appendix F.2 and demonstrate design requirement 11.

![Figure 6.3: Conceptual TMSMM](image-url)
Figure 6.4: Capability statements viewed per maturity Level 3

<table>
<thead>
<tr>
<th>Man standard</th>
<th>Capture, Diagnose/Analyze, React</th>
<th>Data Transmission processes</th>
<th>Meso-level processes</th>
<th>Macro-level processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The patient or healthcare worker is trained to execute this telemedicine process as standard procedure.</td>
<td>The patient or healthcare worker is trained to execute this telemedicine process as standard procedure.</td>
<td>The healthcare worker community considers this service as mandatory.</td>
<td>The society and (a sufficiently large portion of) already used this service for most issues to be addressed.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machine standards and interoperability</th>
<th>The telemedicine device/s mobile phone/app etc. is interoperating with upstream and downstream devices and applications.</th>
<th>The internet service, mobile phone network etc. capacity (bandwidth) was considered in the design of the service.</th>
<th>The physical infrastructure is set up specifically for this service and is always available.</th>
<th>The interorganizational system's interoperability standards are defined.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The telemedicine device/s mobile phone/app etc. is operating according to a defined standard.</td>
<td>The telemedicine device/s mobile phone/app etc. is operating according to a defined standard.</td>
<td>The physical infrastructure is set up specifically for this service according to defined design standards.</td>
<td>The interorganizational system's interoperability standards are followed throughout the system.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material quality standards</th>
<th>The data's physical quality standards are defined within context of this service.</th>
<th>The data/images/video etc. are transmitted according to a standard transmission protocol.</th>
<th>The electronic medical records (EMRs) are linked with hospital information system (HIS).</th>
<th>The electronic health records (EHRs) are linked to an existing EHR management system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The data's clinical effectiveness are defined.</td>
<td>The data/images/video etc. are appropriately encrypted and decrypted.</td>
<td>The electronic medical records (EMRs) are integrated with hospital information system (HIS).</td>
<td>The electronic health records (EHRs) are integrated with an existing EHR management system.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method work standards</th>
<th>The work procedure is defined and documented as standard.</th>
<th>The network service level-agreements (SLAs) are defined.</th>
<th>The change management process is driven by someone that is formally and permanently appointed for this purpose.</th>
<th>The policies and strategies: strategies are adapted to fit the telemedicine services.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The work procedure is aligned with ethical and legal guidelines.</td>
<td>The network service level-agreements (SLAs) are contractually agreed upon.</td>
<td>The change management process is integrated with other business processes (e.g. budget, facilities planning, service redesign).</td>
<td>The policies and strategies are aligned with the processes of the telemedicine service.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Money consistent and permanent</th>
<th>The operational costs are included partially as a standard budget item.</th>
<th>The cost of transmission service are included partially as a standard budget item.</th>
<th>The interorganizational business model is the way in which value is created is clear and sustainable.</th>
<th>The national business case: national funding structures are in place.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operational costs are included fully as a standard budget item.</td>
<td>The cost of transmission service are included fully as a standard budget item.</td>
<td>The interorganizational business model will sustain without donor funds/seed funds.</td>
<td>The national business case: processes for the reimbursement of telemedicine services are in place.</td>
<td></td>
</tr>
</tbody>
</table>
6.8 Conclusion

The purpose of this chapter was to present the capability statements for each capability area. These statements were framed within the conceptual TMSMM. The formulation was informed by the state of the art as well as insights gained in the application of earlier versions of the TMSMM, within the parameters of DRs 8, 9, 10, 11 and 12.

This concludes the second phase in the description of the TMSMM. The third and final phase involves the methodology that is to be followed when using the TMSMM to assess a telemedicine service. This is the focus of the next chapter.
Chapter 7

Maturity Assessment
Methodology

This is the third of three chapters that describe the TMSMM and the iterative design process that was followed to develop it. The conceptual TMSMM and capability statements were described in chapters 5 and 6 respectively. This chapter describes the assessment methodology for the TMSMM. In doing so, Research Question 5.3 is addressed: "How should the service data be captured, stored, aggregated and analyzed to meet the design requirements?"

7.1 Iterative Design Process

The iterative design approach, as it applies to this chapter, is shown in Figure 7.1. The process has five inputs, namely (1) the design requirements, (2) the conceptual TMSMM, (3) existing data warehousing techniques, (4) capability statements and (5) intermediary applications of the TMSMM.

![Figure 7.1: Methodology to arrive at user specifications](http://scholar.sun.ac.za)
7.1.1 Design requirements

The following four design requirements are addressed in this chapter:

DR 3: Based on this assessment, the TMSMM indicates further actions.

DR 5: The maturity assessment methodology can be followed easily and intuitively.

DR 6: Role players from multiple disciplines can use the TMSMM to describe and assess the telemedicine service on the detail level they are dealing with it.

DR 7: Results from a collection of individual service assessments can be aggregated to an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic level decision-makers.

Each of the phases of the assessment methodology, as indicated in Figure 7.2, focuses on one or more of these design requirements. First, individual services are described and assessed, with DR 5 and 6 in mind (Section 7.3). Then a report is generated for each individual service, indicating further actions (DR 3). This phase is described in Section 7.4. The third phase (Section 7.5) involves the aggregation and analysis of a cohort of services. Such cohorts are, for example, services within a specific health system or geographical region or with respect to a certain telemedicine specialization or technology driver. This must be done in such a way that DR 7 is addressed.

Figure 7.2: Phases of the assessment methodology
7.1.2 The conceptual TMSMM

The conceptual TMSMM is designed along 30 capability areas (6 processes on the Service dimension multiplied by 5 domains along the Domain dimension). These capability areas provide a framework for information about a telemedicine service. Because of the dimensional design of the conceptual TMSMM, the telemedicine service descriptions and assessment data are stored in a multidimensional data model. The design of a multidimensional data model allows the use of existing data warehousing techniques, such as online analytical processing (OLAP) operations, to create different reports through the aggregation of data.

7.1.3 Capability statements

A scale is an instrument with which a quantitative value is associated with an often intangible concept, for example weight. Similarly, the sets of capability statements are instruments with which a quantitative value is awarded to an intangible concept such as maturity. The unit of measurement is the maturity level. This instrument is an integral part of the assessment methodology.

7.1.4 Intermediary applications of the TMSMM

From the world of everyday life examples of actual telemedicine services were used as test cases to align assessment methodology with the conceptual TMSMM, the capability statements and design requirements. Van Zyl (2012), Viljoen (In process) and Hartmann (In process) contributed to this process as part of their respective postgraduate studies.

7.1.5 Case studies

In Appendix D the execution of this assessment methodology is demonstrated by means of a set of case studies. The first two phases (refer to Figure 7.2) are demonstrated by means of two unrelated individual cases, namely a teleophthalmology service in pilot phase and a private sector teleradiology service.

7.1.5.1 A teleophthalmology service in pilot phase

Also refer to Appendix D.1.1. This service aims to support nurses in rural clinics of South Africa in the screening of diabetes patients for diabetic retinopathy, by means of single field fundus photography. An ophthalmoscope system was developed by Blanckenberg et al. (2011) (refer to Figure D.2).

A standard Welch Allyn Panoptic ophthalmoscope is mounted to a digital camera. The images captured by the digital camera are sent by wireless connection to a smartphone on which custom software is installed. An ophthalmologist, typically situated at a tertiary hospital, then log into the web platform to retrieve the images
and submit a diagnosis upon which the nurse receives an SMS on the smartphone and can review the recommendation and treatment prescription (Blanckenberg et al., 2011). Blanckenberg et al. (2011) published a detail description of this service. The primary author of this paper, Dr Mike Blanckenberg, were one of the experts that were consulted in the process of verification and validation. The maturity assessment of this service were executed as part this expert interview.

7.1.5.2 A private sector teleradiology service

Also refer to Appendix D.1.2. This is the only teleradiology service included in this study that is taken from the private healthcare system of South Africa. The radiology information system (RIS) is integrated with the hospital information system (HIS) as well as an Electronic Health Record (EHR) system. The process start where the EHR is retrieved from the HIS. The referral information already appear on the system.

The radiographer then follow a well defined work procedure to take the radiograph. As soon as the radiographer is satisfied that the radiograph is capture according to an acceptable quality, the image is saved on the server of the EHR system. The radiograph is transmitted from the radiography centre to the server via the communications network of the private hospital group. The radiograph is then pushed to a radiologist within the hospital group, based on the availability and expertise of the radiologist. The referring doctor are notified once the EHR is updated to include the conclusion and recommendation.

7.1.5.3 Cohort case studies

The third phase are demonstrated by means of two cohort studies. These cohorts were decided upon after the data for all 28 services was collected. The following criteria were used to decide on the services for the cohort studies:

- Each cohort must represent at least 25 per cent of the services.
- Each cohort must have a unique set of stakeholders that may be interested in this study.

7.1.5.4 Teleradiology cohort

Also refer to Appendix D.2. This study includes all teleradiology services from the list of 28 services, irrespective of technology driver or healthcare institution. External stakeholders that may be interested in this cohort study are radiologists and radiographers that make use of teleradiology or who are interested in doing so; providers of teleradiology technology and infrastructure, for example SITA (State Information Technology Agency); telemedicine co-ordinators responsible for the
implementation of telemedicine services within a specific context as well as high-level policy makers.

7.1.5.5 Hospital network cohort

Also refer to Appendix D.3. This study includes all telemedicine services at a specific hospital network, irrespective of specialization or technology driver. The target external audience for this cohort study is typically hospital superintendents and regional managers and telemedicine co-ordinators.

More cohort studies can be executed, depending on the quantity and nature of individual telemedicine services described and assessed, as well as the type of management information required. In the section 9.3.2.1 and section 9.3.2.2 findings from each of these cohort studies are shared as part of the validation of the TMSMM.

7.2 Maturity Assessment Resources

The following should be taken into account with respect to the participants as well as the assessment tool:

7.2.1 Participants

The description and assessment of an individual service can be done by any person or group of persons from multiple disciplines that are knowledgeable concerning all facets of the service. If more stakeholders are involved, the assessment process will also contribute to communication between and buy-in from stakeholders.

7.2.2 Facilitator

At least one person must fulfill the role of facilitator. This person must understand the design of the conceptual TMSMM and appreciate how the capability statements relate to the maturity level. Ideally, the same facilitator should be used for the assessment of a cohort of services. It is common practice with respect to many other maturity models that the assessment is facilitated by a person who is specifically trained for this purpose. A detailed procedure for the training of TMSMM facilitators does not fall within scope of this study. It is discussed in Section 10.4 as one of the areas for further development.

7.2.3 Assessment tool

The TMSMM consists of 5 dimensions, 30 capability areas, each with 11 capability statements, which is applied to the description and assessment of each service. To get a comprehensive picture of telemedicine services for a specific cohort, as
many services as possible must be assessed. It is practically possible (although tedious) to do the individual assessment on paper, but a computer application is needed to aggregate and analyze the data of a cohort of services. The assessment methodology does not specify the use of a particular method or technology to capture and analyze data. In this chapter functional specifications are provided according to which such an assessment tool can be used, appropriate to the context of the study.

7.3 Description and Assessment of Individual Services

The following functional specifications apply to this phase of the assessment methodology.

1. Each telemedicine service has its own input sheet.
2. All capability areas are described on one sheet.
3. The participant(s) can define an infinite number of microlevel processes, depending on the complexity of the service.
4. The participant(s) indicates the type of microlevel service (capture, analyze, diagnose, transmit).
5. The participant(s) describes the microlevel telemedicine service by completing the sentences provided by an input form, similar to the one shown in Figure 7.3). In doing so, each capability area is described.
6. The input form includes one line each for the meso and macrolevel processes. The descriptions for these capability areas are not a user input. It is taken directly from the TMSMM.
7. The generic maturity scale and domain-specific maturity scale of the TMSMM are the headings for the capability statements.
8. When a participant(s) selects a certain capability area, the capability statements for that specific capability area should be considered.

1 The assessment tool that was developed and used for purposes of this study utilizes the pivot-table and data analysis functions of MS-Excel. Furthermore, instead of a paper-based assessment interface, MS-Excel together with Visual Basic coding enables the capturing of data directly into the database.

2 The assessment tool that was developed and used for purposes of this study presented an input mask which guided the participants to provide the appropriate descriptions for each capability area for each process, as shown in Figure 7.3.

3 The assessment tool that was developed and used for purposes of this study, automatically presented the appropriate statements, based on the capability area under consideration. The specific user description is concatenated with the capability statement to enhance intuitive use. An example is shown in Figure 7.4.
9. When the user selects the appropriate capability statement for a capability area, the maturity value is recorded together with the description of the capability area. Eleven capability statements are available for 5 levels. The first capability statement has a value of 0. The values increase in increments of 0.5, with a maximum value of 5.

Telemedicine Maturity Model:

| Number of Processes: | 2 |

<table>
<thead>
<tr>
<th>Micro-level Type</th>
<th>Description</th>
<th>User</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-level process 1</td>
<td>Capture</td>
<td>The user uses a device to create information according to a method at the cost of an institution.</td>
<td>User Community</td>
<td>Infrastructure</td>
<td>Electronic Health Record Management</td>
<td>Change Management</td>
</tr>
<tr>
<td>Micro-level process 2</td>
<td>Transmit Data</td>
<td>The user uses a network to send/pull information according to network protocol at the cost of an institution.</td>
<td>Analyst community</td>
<td>Physical infrastructure</td>
<td>Electronic Medical Record Management</td>
<td>Change Management Process</td>
</tr>
</tbody>
</table>

Figure 7.3: Input mask for microlevel processes

Figure 7.4: Context-specific capability statements per process area

4The assessment tool that was developed and used for purposes of this study adjusted the shade or color of the input block in relation to the selected maturity level.
CHAPTER 7. MATURITY ASSESSMENT METHODOLOGY

The two individual case studies which are included in Appendix D (sections D.1.2 and D.1.1) adhere to the functional specifications listed above. There are an infinite number of other technical designs that will also satisfy the functional specifications. These sheets demonstrate one such way and thereby confirm the feasibility of the functional specifications.

7.4 Reports on Individual Services

Design Requirement 3: Based on this assessment, the TMSMM indicates further actions.

The capability statements and maturity levels accumulate. Each higher level statement also includes the preceding lower level statements. Therefore, further actions can be based on follow-up capability statements. However, the completed input sheets themselves do not explicitly state these follow-up capability statements. For this reason a report must be created for each service, indicating the description of the service, the current maturity level as well as guidelines for further action, based on follow-up capability statements. This report can also be used as means of communication and education amongst stakeholders from multiple disciplines.

The functional specifications for a report on an individual Service are as follows:

1. The description for each micro, meso- and macrolevel process is replicated chronologically.
2. For each capability area, the guidelines for further action are provided, based on the value of the maturity level. These guidelines are taken from the guidelines sheet (Appendix F.3). The guidelines sheet comprises the capability statements for the microlevel processes which are rephrased so that it reads as a guideline, rather than a capability statement. As the TMSMM evolves from descriptive to prescriptive maturity model (refer to Section 3.2), it is expected that the Guideline Sheet also evolves.

As in the previous section the individual case studies (Sections D.1.2 and D.1.1) demonstrate that the functional specifications for this component met by the tool that was used for purposes of this study.

5The assessment tool that was developed and used for purposes of this study provided a maturity dashboard in that the maturity level for each capability area is indicated by means of shading. However, this dashboard in itself does not indicate future actions.
CHAPTER 7. MATURITY ASSESSMENT METHODOLOGY

7.5 Aggregated Analysis

The third phase involves the aggregation and analysis of a cohort of services (Section 7.5.1). Such cohorts are, for example, services within a specific health system/geographical region or with respect to a certain telemedicine specialization or technology driver. Analysis of aggregated results can indicate, for example, areas of exceptionally low or high maturity, the variation in maturity levels and also the correlation between the different maturity domains.

Two cohort case studies were executed for purposes of this study. Each of these studies are included as a separate appendix:

Appendix D.2: A cohort of nine teleradiology services from different hospital networks

Appendix D.3: A cohort of seven different telemedicine services from one hospital network in South Africa

7.5.1 Data warehousing

The dimensional design of the conceptual TMSMM makes it possible for the telemedicine service descriptions and assessment data to be stored as a multidimensional data model. This data model provides the structure for the data warehouse. The so-called fact table is central to the data warehouse. Jiawei and Kamber (2001) explains that a fact is a central theme around which a multidimensional data model is organized, for example sales. This is always a quantitative measure. In the case of the TMSMM, the value of the maturity level constitutes the fact.

Each line of the fact table contains exactly one fact, together with other information concerning the entity, such as the service ID and the capability area ID. This information is often linked to other tables, for example a table with information concerning the telemedicine service (i.e. service ID, name of service, specialization, geographical information, name of facilitator, date of assessment etc.). The fact table, together with these other tables, forms the data mart.

The following functional specifications apply:

1. The assessment data are captured in a fact table, with at least the following fields:
 1.1. The value of the maturity level (Fact)
 1.2. The capability area ID
 1.3. The service ID
 1.4. The description of the capability area for that specific service
The assessment methodology does not prescribe the detail design of the data mart. Attributes can be added depending on the context of the overarching study and the context of the cohort.

2. The data must be stored on a technological platform that allows online analytical processing (OLAP) operations, such as roll-up, slicing and drill-down.

7.5.2 Data aggregation

Figure 7.5 shows the logical presentation of the multidimensional data model as well as the OLAP operations and data analyses. The images representing each of these operations are taken from the teleradiology cohort case study (Appendix D.2).

7.5.2.1 The logical presentation

The logical presentation of the multidimensional data model for the TMSMM interface is central to Figure 7.5. According to Jiawei and Kamber (2001) the actual physical storage of such a multidimensional data model may differ from its logical representation. The logical model has exactly the same dimensions as the conceptual TMSMM, namely the service dimension and the domain dimension. The maturity scale which formed a third dimension of the TMSMM, is collapsed. The maturity level is captured as a non-dimensional fact.

7.5.2.2 Concept hierarchy of service dimension

Jiawei and Kamber (2001) explains that a "concept hierarchy defines a sequence of mappings from a set of low-level concepts to higher level, more general concepts. They allow raw data to be handled at higher, generalized levels of abstraction."

The concept hierarchy for the Service dimension is shown in Figure 7.6. For each layer of the concept hierarchy an attribute field is created somewhere in the data mart. In this way, the position of each fact relative the concept hierarchy is recorded in the data warehouse. This structure is particularly useful for roll-up and slice operations (Jiawei and Kamber, 2001), as shown in Figure 7.5.

7.5.3 Data analysis

The reports that are created by this operation lends itself to further data analysis in the form of correlation matrices and box-plots

7.5.3.1 Correlation matrix

A correlation matrix shows the pearson pair-wise correlation between a set of variables.
CHAPTER 7. MATURITY ASSESSMENT METHODOLOGY

Figure 7.5: The logical multidimensional data model and OLAP operations
7.5.3.2 Box-plots

A boxplot is a way of summarizing a set of data measured on an interval scale. It is often used in exploratory data analysis. It is a type of graph which is used to show the shape of the distribution, its central value, and variability. The picture produced consists of the most extreme values in the data set (maximum and minimum values), the lower and upper quartiles, and the median.

7.6 Conclusion

This chapter described an assessment methodology to use the TMSMM for the purpose for which it was developed, namely to assess telemedicine services and to guide and educate stakeholders towards the initialization, standardization and optimization of these services. In answering Research Question 5.3 this assessment methodology includes the methods for capturing (Section 7.3), reporting (Section 7.4), warehousing (Section 7.5.1), aggregation (Section 7.5.2) and cohort analysis (Section 7.5.3) of the telemedicine service data.

Research Question 5.3: How should the service data be captured, stored, aggregated and analyzed to meet the design requirements?

In this chapter it was shown how design requirements 3, 5, 6 and 7 are addressed by the maturity assessment methodology. The purpose of the next chapter is to verify whether these four design requirements, as well as the requirements applicable to the previous two chapters, are satisfied.
Chapter 8
Verification

The purpose of this study is to find or develop a maturity model for telemedicine services that can be used to describe assess telemedicine services and guide and educate stakeholders towards the optimization thereof. Design requirements for such a model were defined in Chapter 3. In Chapter 4 existing frameworks were evaluated against these design requirements. No such framework was found. The development and design of the new TMSMM were described in chapters 5, 6 and 7. This chapter responds to Research Question 6: "Does the TMSMM satisfy all the design requirements?"

8.1 Verification Methodology

Figure 8.1 is the research roadmap for chapters 8, 9 and 10. Research design elements from Chapter 1 are positioned in the green block and serve, together with the design requirements from Chapter 3, as controls for the processes followed throughout chapters 8, 9 and 10. The design requirements control the verification process documented in this chapter.

Figure 8.1: Research roadmap: Verification, validation and conclusion
CHAPTER 8. VERIFICATION

Horizontal arrows indicate the research sequence and the upwards arrows direct the inputs to the research process. The verification process has three inputs as listed below. In the sections that follow, the findings relevant to each particular input are mapped against design requirements:

Design intent: Section 8.2 is a retrospective view on the design process, indicating how the design requirements were intentionally considered, while the TMSMM was developed.

Case studies: The TMSMM was applied to 28 individual services, from which 3 cohort case studies were drawn. The execution of these case studies and their relevance to the design requirements are discussed in Section 8.3.

Expert interviews: Six of the persons who were involved in the above-mentioned case studies, were asked specific questions directly related to the design requirements (Section 8.4).

In Section 8.5, all of the evidence from the previous chapters are put together as proof that all of the design requirements are met.

8.2 Retrospective View on the Design Process

All design requirements were considered and referenced in the design and development of the conceptual model (Chapter 5), the capability statements (Chapter 6) as well as the assessment methodology (Chapter 7). In this section each design requirement are considered respectively and retrospectively in order to verify that it was considered as part of the design process.

DR 1: The domain dimension represents all areas of concern applicable to the telemedicine services. The service dimension encompasses all layers and sub-processes that a telemedicine service comprises. With each of the several design iterations executed, these dimensions were adapted so that they include all aspects relevant to the telemedicine service.

Each cell of this matrix represents one capability area. In Section 5.4 these two dimensions are brought together to form a matrix, according to which any telemedicine service can be described. This matrix also forms the basis for the service description phase of the assessment methodology (Section 7.3).
CHAPTER 8. VERIFICATION

DR 1:	The TMSMM can describe any healthcare service that is delivered over a distance (telemedicine service).
DR 2:	The TMSMM enables the assessment of the maturity of this service.
DR 3:	Based on each service assessment, further steps towards the achievement of the target maturity state are indicated.
DR 4:	The TMSMM can be used as basis for education and explaining standards.
DR 5:	The maturity assessment methodology can be followed easily and intuitively.
DR 6:	Role players from multiple disciplines can use the TMSMM to describe and assess the telemedicine service on the detail level they are dealing with it.
DR 7:	Results from a cohort of individual service descriptions and assessments can be aggregated along all dimensions to an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic level decision-makers.
DR 8:	The TMSMM is not directly tied to any standards, technologies or concrete implementation details.
DR 9:	The capability statements are mutually exclusive.
DR 10:	The capability statements are collectively exhaustive.
DR 11:	Descriptions of capability statements clearly relate to and discriminate between maturity levels.
DR 12:	The capability statements and maturity levels accumulate. Each level and statement also includes the preceding lower level statements.

DR 2: The maturity scale forms a third dimension of the conceptual TMSMM. Section 5.5 provides a domain-specific maturity scale, which is used as basis for assessment of each of the capability areas of the above-mentioned matrix. The capability statements (the entire Chapter 6) are aligned with the domain-specific maturity scales and serve as an assessment instrument.

DR 3: The assessment methodology (Section 7.4) provides functional specifications for an output report based on each individual service. This report draws upon guidelines which are derived from the capability statements as well as the maturity assessment for a specific service.

DR 4: As part of the iterative design process, earlier versions of the TMSMM were used as part of telemedicine workshops, involving various role players from various health systems (Section 5.1.2), which demonstrates the value of the TMSMM to educate.

The maturity scale of the TMSMM is based on the maturity scale of the family of CMMs (Section 5.5). The third level of this five-level scale is labelled defined as it represents the standard for that particular capability area. The fourth level outlines standard quantitative management practices.

DR 5: After a few iterations it became evident that in many cases two capability statements are defined per maturity level per capability area. It was decided to pursue this as a design principle (Section 6.1.4). One of the motivations...
for doing this is that it contributed to the simplicity of the TMSMM and hence the ease of use.

The assessment methodology (Section 7.3) includes functional specifications for the capturing of assessment data, directed towards intuitive use. This includes input masks for the description of services as well as the concatenation of descriptions and capability statements to create service specific full sentence capability statements.

DR 6: The participants of the telemedicine workshops in which earlier versions of the TMSMM were used, were from various disciplines (Section 5.1.2). Also, linked to the previous design requirement, the functional specification for the description and assessment of the telemedicine service aims to provide an interface, which is accessible to role players from multiple disciplines.

DR 7: Exactly two capability statements are defined per level per capability area (Section 6.1.4). The uniformity of these scales makes it possible to aggregate the assessment of a cohort service along the domain dimension, the services dimension, the maturity scale or any combination of these. The assessment methodology describes the data warehouse structure and OLAP procedures to accomplish this (Section 7.5).

DR 8: Capability statements were deliberately formulated in such a way that they are not tied to any standards, technologies or concrete implementation details (Chapter 6). Appendices F and F.1 show all of the capability statements from different views. From neither view are any standards, technologies or concrete implementation details visible.

DR 9: Capability statements were deliberately formulated in such a way that they are mutually exclusive. The capability statements are viewed from different angles: In Chapter 6, statements are listed per capability area. In Appendix F.1 capability statements are viewed per type of service and in Appendix F.2 it is viewed per maturity level. From all of these views, the capability statements are mutually exclusive.

DR 10: To ensure collective exhaustiveness all frameworks from the state of the art, presented in Chapter 4, as well as other sources from the state of the art (Chapter 2) were considered when the capability statements were defined. Furthermore, feedback from telemedicine workshops, for which earlier versions of the TMSMM were used, were considered in follow-up iterations to ensure that all issues impacting on the maturity of telemedicine services are considered (Section 5.1.2).

DR 11: The capability statements are directly derived from the domain-specific maturity scales (Section 6.8). The relation between the capability statements and maturity levels can be seen if the capability statements are viewed per maturity level (refer to Appendix F.2).
DR 12: All domain-specific maturity scales are based on the maturity scale of the family of CMMs (Section 6.8). Each level of this scale implies previous scales. Capability statements were deliberately formulated in such a way that they accumulate. The accumulation of capability statements can be seen if the capability statements are viewed per capability area, as in Chapter 6.

8.3 Case Studies

Chapter 7 describes the methodology to describe, assess and analyze an individual telemedicine service or a cohort of services. Reference is also made in that chapter to a computer-based tool that was developed for purposes of this study. This tool was used to describe and assess a total of 28 telemedicine services (refer to Table D.1 for a complete list of services). The detailed description and assessment of four of these services are also included in Appendix D.1.

8.3.1 Individual case studies

The description and assessment data for these services were gathered through three different processes:

Expert interview process: The first phase of each expert interview involved the definition and mapping of at least one telemedicine service. The purpose of this was firstly to familiarize the expert with the TMSMM, but secondly, a complete service description and assessment was produced through this process.

Maturity assessment of services in the Western Cape: The Western Cape Department of Health gave permission that some of their healthcare facilities can be visited to identify, define and assess telemedicine services at these facilities, by means of the TMSMM. The documents concerning the ethical approval for these visits can be found in Appendix B. This forms part of the post graduate study by Hartmann (2013), under supervision of Van Dyk.

International cases from Med-e-Tel conference: The electronic proceedings of the 2013 Med-e-Tel Conference in Luxembourg includes 200 papers. Of these 200 papers a few dozen reported on specific telemedicine services. In seven of these papers the telemedicine service was described in sufficient detail so that it could be defined by means of the TMSMM-tool. Authors of three of these seven services (Roesler et al., 2013; Lamprinos et al., 2013; Figueria et al., 2013) were interviewed during the conference to confirm correct interpretation of the paper and to complete the maturity assessment. The data for these three services are added to the data warehouse.
The Health Research Ethics Committees of Stellenbosch University as well as the Western Cape Department of Health approved the gathering of empirical inputs for purposes of these case studies (refer to Appendix B). To ensure the integrity of the research process, the descriptions and assessment of all services were facilitated by two persons only (Liezl van Dyk or André Hartmann). These facilitators executed the first four assessments together to ensure alignment of the processes followed by the respective facilitators.

In the section that follows, it is explained how DRs 1, 2, 5, 6, 8, 11 and 12 are verified by the individual cases.

DR 1	The TMSMM can describe any healthcare service that is delivered over a distance (telemedicine service).
DR 2	The TMSMM enables the assessment of the maturity of this service.
DR 3	Based on each service assessment, further steps towards the achievement of the target maturity state are indicated.
DR 4	The TMSMM can be used as basis for education and explaining standards.
DR 5	The maturity assessment methodology can be followed easily and intuitively.
DR 6	Role players from multiple disciplines can use the TMSMM to describe and assess the telemedicine service on the detail level they are dealing with it.
DR 7	Results from a cohort of individual service descriptions and assessments can be aggregated along all dimensions to an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic level decision-makers.
DR 8	The TMSMM is not directly tied to any standards, technologies or concrete implementation details.
DR 9	The capability statements are mutually exclusive.
DR 10	The capability statements are collectively exhaustive.
DR 11	Descriptions of capability statements clearly relate to and discriminate between maturity levels.
DR 12	The capability statements and maturity levels accumulate. Each level and statement also includes the preceding lower level statements.

DR 1: The 28 individual case studies (Appendix D.1) include services that vary in terms of telemedicine specialization, service complexity, geographical area, health system, roles of participants and implementation life cycle. Despite this variation, it was possible to describe all of these services with the TMSMM.

DR 2: Despite the above-mentioned service variation, it was possible to assess all of these services with the TMSMM.

DR 5: The 28 individual services included in this study were described and assessed by 13 persons with varying exposure to telemedicine services. All of these persons were able to follow the assessment methodology - with the help of a facilitator - without prior exposure to the TMSMM.
DR 6: The 13 persons who contributed to the description and assessment of the 28 services were from multiple disciplines (six medical doctors, four engineers/ICT Technologist, three project managers).

DR 8: The 28 individual services also varied in terms of the standards, technologies or implementation detail. The TMSMM was applicable to all of these.

DR 11: With the assessment of the individual services, it was experienced that capability statements clearly relate to and discriminate between maturity levels.

DR 12: With the assessment of the individual services, it was experienced that capability statements accumulate.

8.3.2 Cohort case studies

From this collection of 28 services, two cohorts of services were selected and analyzed according to the assessment methodology described in Section 7.5. Appendices D.2 and D.3 present results from two respective cohort studies and explain the significance thereof for different higher level decision-makers. The validity of these results are considered in Section 9.3.2. It is demonstrated that results from a cohort of individual service descriptions and assessments can be aggregated along all dimensions to an output that is suitable for interpretation by external stakeholders, researchers, service providers and higher level decision-makers (DR 7).
8.4 Expert Interviews

The purpose of these interviews was to ask persons with expertise concerning the implementation and optimization of telemedicine services, whether or not the TMSMM satisfies all the design requirements. Table 8.1 contains information concerning the interviews and interviewees. The interview date and place are indicated in the first column. In the second column, the expertise of each person is described to motivate why this person is qualified to provide an expert opinion.

<table>
<thead>
<tr>
<th>Person</th>
<th>Place</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Saskia Nychens</td>
<td>Office of Telemed-Africa, Midrand</td>
<td>As operations manager of Telemed-Africa she is responsible for the execution and co-ordination of "needs assessments, implementation of eHealth projects, change management, support and maintenance and training". Telemed-Africa is based in Midrand, but is also involved (amongst others) in telemedicine projects in Limpopo.</td>
</tr>
<tr>
<td>Prof Hoffie Conradie</td>
<td>Ukwanda Rural Clinical School (RCS), Worcester</td>
<td>At the RCS healthcare professionals are trained within the rural context. As director of this school, Prof Conradie's concern is the optimal use of resources, including ICTs, to enable the delivery of healthcare where distance is an issue.</td>
</tr>
<tr>
<td>Dr Jacques du Toit</td>
<td>Swellendam Hospital</td>
<td>Dr du Toit is the CEO of health services in the Bredasdorp and Swellendam sub-districts. He has knowledge about the implementation of a number of telemedicine services within these districts and was involved in or responsible for the implementation of a few.</td>
</tr>
<tr>
<td>Ms Jill Fortuin</td>
<td>Gordon's Bay</td>
<td>Until recently, Ms Fortuin was Director of Telemedicine and mHealth at the Medical Research Council of South Africa. From 1 March 2013, she is a full-time PhD student in Telemedicine at the University of Western Cape.</td>
</tr>
<tr>
<td>Dr Mike Blanckenberg</td>
<td>Stellenbosch University</td>
<td>Dr Blanckenberg is an electronic engineer. A senior lecturer of the Biomedical Engineering Research Group at Stellenbosch University, he was involved in the development of a number of telemedicine technology solutions (Behaimanot, 2005; De Vos and Blanckenberg, 2007; Blanckenberg et al., 2011; Scheffer et al., 2012), amongst which the MRC telemedicine workstation.</td>
</tr>
<tr>
<td>Ms Gladys Joubert</td>
<td>Universitas Hospital, Bloemfontein</td>
<td>Ms Joubert is the co-ordinator of telemedicine services at Universitas Hospital, Bloemfontein, since 2005. In this capacity she was involved and still is in the implementation and maintenance of many telemedicine services for the Free State Department of Health.</td>
</tr>
</tbody>
</table>

The interview questions (Table 8.2) are aligned with the design requirements. With the permission of each expert, each interview was voice-recorded. Together with notes that were made during the interview, these voice-recordings were consulted when the interview feedback was summarized (Appendix C).
Table 8.2: Interview Questions per design requirement

<table>
<thead>
<tr>
<th>DR 1:</th>
<th>The TMSMM can describe any healthcare service that is delivered over a distance (telemedicine service)</th>
<th>Can you think of any telemedicine service (healthcare service that is delivered over a distance) that cannot be described with the TMSMM?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 2:</td>
<td>The TMSMM enables the assessment of the maturity of this service.</td>
<td>Can you think of any telemedicine service (healthcare service that is delivered over a distance) that cannot be assessed with the TMSMM?</td>
</tr>
<tr>
<td>DR 3:</td>
<td>Based on each service assessment, further steps towards the achievement of the target maturity state are indicated.</td>
<td>Based on the description and assessment, advice is provided concerning further actions to be taken. Would this advice influence your decisions and planning?</td>
</tr>
<tr>
<td>DR 4:</td>
<td>The TMSMM can be used as basis for education and explaining standards.</td>
<td>Do you think the TMSMM can be used to educate other role players and explain standards about telemedicine?</td>
</tr>
<tr>
<td>DR 5:</td>
<td>The maturity assessment methodology can be followed easily and intuitively.</td>
<td>Will you be able to use the TMSMM on your own?</td>
</tr>
<tr>
<td>DR 6:</td>
<td>Role players from multiple disciplines can use the TMSMM to describe and assess the telemedicine service on the detail level they are dealing with it.</td>
<td>Which persons/entities should be involved to the definition and assessment of a telemedicine service?</td>
</tr>
<tr>
<td>DR 7:</td>
<td>Results from a cohort of individual service descriptions and assessments can be aggregated along all dimensions to an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic level decision-makers.</td>
<td>Telemedicine services are defined and assessed according to a uniform framework to allow the analysis of a cohort of studies. Who would be interested in this, if any?</td>
</tr>
<tr>
<td>DR 8:</td>
<td>The TMSMM is not directly tied to any standards, technologies or concrete implementation details.</td>
<td>Does the TMSMM indicate anything about specific standards, specific technologies, concrete implementation detail?</td>
</tr>
<tr>
<td>DR 9:</td>
<td>The capability statements are mutually exclusive.</td>
<td>Is any combination of the statements in the TMSMM repeating / contradicting each other?</td>
</tr>
<tr>
<td>DR 10:</td>
<td>The capability statements are collectively exhaustive.</td>
<td>Does the TMSMM consider all issues that impact on the success of telemedicine services?</td>
</tr>
<tr>
<td>DR 11:</td>
<td>Descriptions of capability statements clearly relate to and discriminate between maturity levels.</td>
<td>Did you understand what was meant with each capability statement and how it differed from the other statements?</td>
</tr>
<tr>
<td>DR 12:</td>
<td>The capability statements and maturity levels accumulate. Each level and statement also includes the preceding lower level statements.</td>
<td>For each aspect that is described, 11 capability statements are provided to help determine the maturity level of that aspect. Does each capability statement implicitly include previously listed statements?</td>
</tr>
</tbody>
</table>
8.4.1 Interview protocol

1. The researcher explains what the research is about. The "Informed Consent Form" is read and signed (refer to Appendix B for an example of this form).

2. A few pre-assessment questions are asked.
 2.1. What is your experience with respect to the use and implementation of telemedicine services?
 2.2. Which telemedicine services are you involved with, either as participant or as developer?
 2.3. Do you use any standard framework or guideline to help with the implementation and optimization of telemedicine services?

3. One or more telemedicine service are selected which can be described and assessed by the expert.

4. The conceptual framework that was developed in Chapter 5 is used to explain the basic building blocks of the TMSMM.

5. Then the TMSMM interface is used to describe and assess the maturity of this service. This process is facilitated by the interviewer. In doing so, the expert is familiarized with the detailed maturity levels and capability statements of the TMSMM.
 5.1. Use the TMSMM-tool to describe the service
 5.2. Assess the maturity of the current service

6. Answer the questions shown in the third column of Table 8.2. This table shows how the interview questions align with the design requirements.

8.4.2 Interview results

There was general consensus amongst experts as far as most of the interview questions were concerned. For three of these questions the opinions of experts varied to such an extent that further discussion is needed in this section.

<table>
<thead>
<tr>
<th>DR 11</th>
<th>Descriptions of capability statements clearly relate to and discriminate between maturity levels.</th>
<th>Did you understand what was meant with each capability statement and how it differed from the other statements?</th>
</tr>
</thead>
</table>

All experts agreed on this. However, one person pointed out that he only had clarity about some of the statements, because of additional information provided by the facilitator as part of the facilitation process.
The TMSMM uses a data capturing mechanism that is easy and intuitive for end users. Will you be able to use the TMSMM on your own?

All of the experts hesitated when asked this question. In hindsight, this is rather an indication of a poorly formulated research question than an indication that this design requirement is not satisfied. All of the respondents agreed that the TMSMM is easy to use, if the process is facilitated by someone with knowledge about model.

As part of the assessment methodology outlined in the previous chapter (Section 7.2.2), it is recommended that at least one of the persons involved must know the design of the conceptual TMSMM and appreciate how the capability statements relate to the maturity level. This person can then fulfill the role of facilitator. In Chapter 10 future work is recommended in this regard.

The capability statements are collectively exhaustive. Does the TMSMM consider all issues that impact on the success of telemedicine services?

Four of the six experts agreed on this. A fifth expert indicated "political will" as a key determinant in the successful implementation of telemedicine services, which is not indicated in the TMSMM. A sixth expert emphasised that for real-time telemedicine to be successful, it is important that users on both sides of the service are available at the same time. Although neither of these two issues are explicitly addressed by the capability statements, it can be accommodated in future versions of the TMSMM within the capability areas on National Policies and Strategies and Patient or Healthcare Worker.

8.4.3 Verification of design requirements

The expert responses with respect to each respective design requirement are summarized below:

DR 1 and 2: None of the six experts could identify a telemedicine service that cannot be described by and assessed with the TMSMM. Although this consensus does not exclude the possibility that DRs 1 and 2 are not satisfied, it is very unlikely that this is the case.

DR 3: Two experts confirmed this design requirement without hesitation. The other four respondents emphasized that experience and knowledge of the persons involved in the service should be considered together with the output of the TMSMM. They indicated that the value of the TMSMM is that it guide towards a structured and systematic approach to the optimization of telemedicine services.

DR 4: All experts agreed that the TMSMM can be used as basis for education and explaining standards.

DR 5: It is suggested in the maturity assessment methodology, that description and assessment of telemedicine services are facilitated by someone that knows the TMSMM (Section 7.2.2). The experts agreed that the assessment methodology is easy and intuitive to follow, as long as such a facilitator is available.

DR 6: All six experts listed persons from multiple disciplines when they were asked who they believed can be involved in the assessment and definition of telemedicine services. Furthermore, the participants of the telemedicine workshops in which earlier versions of the TMSMM were used, were from various disciplines and many were novices concerning telemedicine.

DR 7: All interviewed experts identified higher-level decision-makers that could base decisions on these results, for example regional health systems managers, policy makers, government and business consultants.

DR 8: The experts also confirmed that the TMSMM is not directly tied to any standards, technologies or concrete implementation details.

DR 9: According to all six of the experts, the capability statements are mutually exclusive.

DR 10: Most experts agreed that the capability statements are collectively exhaustive. Two experts did highlight two issues that were not explicitly addressed by any capability statements. These issues can be accommodated in future versions of the TMSMM without any changes to the conceptual TMSMM.

DR 11: This was also confirmed by all of the experts.

DR 12: This was also confirmed by all of the experts.
8.5 Summary of Cross-verification

The design requirements are listed in the first column of Table 8.3. Columns 2, 3 and 4 each summarize the conclusions concerning the verification of the TMSMM as it was made in earlier sections. The last column, address the question: "Is the design requirement satisfied?"

Table 8.3: Cross-verification of design requirements

<table>
<thead>
<tr>
<th>DR</th>
<th>Reference to Intentional Design</th>
<th>Case studies</th>
<th>Expert interviews</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The TMSMM can describe any healthcare service that is delivered over a distance.</td>
<td>Matrix that combines the domain dimension and service dimension (see 5.4) and used in assessment methodology (see 7.3).</td>
<td>28 Individual services</td>
<td>Confirmed</td>
<td>Yes</td>
</tr>
<tr>
<td>2. The TMSMM enables the assessment of the maturity of this service.</td>
<td>Domain-specific maturity scale (see 5.5); Capability statements for each capability area (see Chapter 6)</td>
<td>28 Individual services</td>
<td>Confirmed</td>
<td>Yes</td>
</tr>
<tr>
<td>3. Based on each service assessment, further steps towards the achievement of the target maturity state are indicated.</td>
<td>Reports on individual services (see 7.4)</td>
<td>28 Individual services</td>
<td>Confirmed</td>
<td>Yes</td>
</tr>
<tr>
<td>4. The TMSMM can be used as basis for education and explaining standards.</td>
<td>Earlier versions of TMSMM used at workshops (see 5.1.2); Standards per maturity levels (see 5.5)</td>
<td>n/a</td>
<td>Confirmed</td>
<td>Yes</td>
</tr>
<tr>
<td>5. The maturity assessment methodology can be followed easily and intuitively.</td>
<td>Standardize to two capability statements per capability area (see 6.1.4); Methodology to describe and assess each service (see 7.3)</td>
<td>28 Individual services</td>
<td>Confirmed, future work identified</td>
<td>Yes, assuming availability of facilitator</td>
</tr>
<tr>
<td>DR</td>
<td>Reference to Intentional Design</td>
<td>Case Studies</td>
<td>Expert Interviews</td>
<td>Conclusion</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>6.</td>
<td>Role players from multiple disciplines can use the TMSMM to describe and assess the telemedicine service on the detail level they are dealing with.</td>
<td>Earlier versions of TMSMM used at workshops (see 5.1.2); Functional specifications for the description and assessment of individual services (7.3)</td>
<td>28 Individual services</td>
<td>Confirmed</td>
</tr>
<tr>
<td>7.</td>
<td>Results from a cohort of individual service assessments can be aggregated to an output that is suitable for interpretation by higher-level decision-makers.</td>
<td>Standardize to two capability statements per capability area (see 6.1.4); Aggregation into cohort case studies (see 7.5)</td>
<td>3 Cohort case studies</td>
<td>Confirmed</td>
</tr>
<tr>
<td>8.</td>
<td>The TMSMM is not directly tied to any standards, technologies or concrete implementation details.</td>
<td>Formulation of capability statements (see 6.8); Capability statements viewed per Domain (see F) and per Type of Process (see F.1)</td>
<td>28 Individual services</td>
<td>Confirmed</td>
</tr>
<tr>
<td>9.</td>
<td>The capability statements are mutually exclusive.</td>
<td>Capability statements viewed per Domain (see F) and per Type of process (see F.1)</td>
<td>n/a</td>
<td>Confirmed</td>
</tr>
<tr>
<td>10.</td>
<td>The capability statements are collectively exhaustive.</td>
<td>All available telemedicine frameworks considered (see 6.8)</td>
<td>n/a</td>
<td>Confirmed</td>
</tr>
<tr>
<td>11.</td>
<td>Descriptions of capability statements clearly relate to and discriminate between maturity levels.</td>
<td>Domain-specific maturity scale (see 5.5 and 6.8); Capability statements viewed per Maturity Level (see F.2)</td>
<td>28 Individual services</td>
<td>Confirmed</td>
</tr>
<tr>
<td>12.</td>
<td>The capability statements accumulate. Each level and statement also includes the preceding lower level statements.</td>
<td>Domain-specific maturity scale (see 5.5); Capability statements viewed per domain (see F) and per type of process (see F.1)</td>
<td>28 Individual services</td>
<td>Confirmed</td>
</tr>
</tbody>
</table>
8.6 Conclusion

The objective of this chapter was to confirm that all the DRs are satisfied by the TMSMM. This was done by means of a retrospective review of the design process, case studies and expert interviews. The conclusions from each of these methods are summarized in Table 8.3.

All design requirements were positively verified by two or three research methods. The verification processes for design requirements 5 and 10 indicated room for further research and development:

DR 5: It is common practice with respect to many other maturity models that the assessment is facilitated by a person who is specifically trained for this purpose. A detailed procedure for the training of TMSMM facilitators should be part of the assessment methodology, especially as the model evolves from a descriptive to a prescriptive to a comparative model.

DR 10: It is naïve to claim collective exhaustiveness for any knowledge domain. Two issues were highlighted by experts that were not explicitly addressed by any of the capability statements and which should be included in future versions of the TMSMM, together with other issues that may surface as the TMSMM and the telemedicine knowledge domain evolves.

By confirming that the TMSMM satisfies all design requirements, Research Question 6 is answered. Because of the verification process, some areas for future work was identified and will be considered in the concluding chapter of this thesis. The next chapter considers the validity of the research process and the research outcome.
Chapter 9

Validation

The Latin root of the word *validation* is *valere*, which literally means *weight*. *Valere* is also the root of the word *value*. This chapter contemplates the rigor (*weight*) of the research process as well as the *value* of this study to the world beyond the research context.

9.1 Validation Methodology

Figure 9.1 indicates the sequence, the controls (downwards arrows) and the inputs (upwards arrows) of the research process. Chapter 9 focusses on internal and external validation. The purpose of internal validation is to ensure that the research process contains sufficient controls to ensure that the research outputs are warranted by the research inputs. With external validation it must be shown that the research outputs can be used to make generalizations about the world beyond the research context (Leedy and Ormrod, 2012).

![Figure 9.1: Research roadmap: Verification, validation and conclusion](http://scholar.sun.ac.za)
Research Question 7.1 (Internal validation): Are the answers to each research question warranted by the research inputs and research process? In Section 9.2 retrospective review of the research process, intermediary applications of the TMSMM and expert interviews are used to confirm that the answers to the research questions are warranted by the inputs.

Research Question 7.2 (External validation): Is the research purpose accomplished with respect to the world beyond the research context? Section 9.3 draws upon expert interviews, cohort case studies and peer review to confirm that the research purpose is accomplished and can be generalized with respect to the world outside the research context.

9.2 Internal Validation

Internal validation is firstly done by means of a retrospective review of the research process. Secondly it is explained how intermediary applications of the TMSMM were used as input to the research process. Thirdly, several academic peer review processes are described which are directed to a certain (set of) research question(s). All peer reviewed publications, including studies concerning the application of earlier versions of the TMSMM, are included in Appendix A. This section is concluded by a cross verification, which includes all of these methods, to confirm that all research questions are answered.

9.2.1 Retrospective review of research process

This section is a retrospective review of this research process, to argue that the research questions were indeed addressed.

RQ 1.1, RQ 1.2: Concepts, approaches and paradigms relevant to this study, were taken from the work of respected researchers. Academic research articles, white papers and other sources of grey literature were consulted, together with interaction at several domain-specific conferences. The literature study which is presented in Chapter 2 covers only the core of the state of the art, as deemed necessary for purposes of this study. In cases where insufficient consensus existed amongst researchers, definitions were formulated for purposes of this study.

RQ 1.3: A statistical topic analysis (STA) of 1772 academic articles, together with Gartner's telemedicine Hype Cycle and Google search trends was used to identify and discuss the most frequently used telemedicine specializations (Section 2.3.1).
RQ 2.1: After the early 1980s maturity models became popular in the world of everyday life as instruments to manage, standardize, measure and optimize processes in complex systems. It is only recently that researchers have started to consider the science of maturity models (Fraser et al., 2002; De Bruin et al., 2005; Jokela et al., 2006; Kohlegger et al., 2009; Niehaves et al., 2011; Mettler, 2011; Pöppelbuß et al., 2011; Pöppelß and Röglinger, 2011; Maier et al., 2012).

These authors conducted meta-studies, i.e. they considered a certain collection of maturity models in order to create generalizable descriptions, models and theories. These publications were also cited by numerous other authors, which confirms the validity thereof. Concepts, approaches and paradigms relevant to this study, were taken from the work of these authors and presented in Chapter 3. In cases where insufficient consensus existed amongst researchers, definitions were formulated for purposes of this study. Design requirements for a maturity model for telemedicine services were defined accordingly.

RQ 2.2: It was found in the state of the art that maturity models are most often developed by means of an iterative design process (Section 3.5.1). This process can either be a so-called bottom-up process or top-down process. In a bottom-up approach capabilities are defined first and then, based on these definitions, maturity levels are defined and the rest of the maturity model is constructed.
RQ 3: There does not exist an "off-the-shelf" list of design requirements for a typical maturity model. Design considerations for maturity models were identified from the state of the art and twelve design requirements applicable to the purpose of this study were formulated in Section 3.6.

RQ 4.1: Many frameworks were developed during the past two decades with the purpose of understanding and managing telemedicine services. Furthermore, a few maturity models were identified that are directed towards certain healthcare systems or services. A number of these frameworks were selected in Chapter 4 based on their authority, in terms of references by other researchers, as well as their potential to address the research problem.

RQ 4.2: The design requirements form a golden thread that is woven through the entire study. In Chapter 4 the existing telemedicine frameworks were evaluated in terms of these design requirements.

RQ 4.3 The results of this evaluation is summarized in Section 4.8 by means of a requirements map. The conclusion that can be made from this is that none of these frameworks satisfy all of the design requirements.

RQ 5.1, RQ 5.2, RQ 5.3: The TMSMM was developed by means of a top-down iterative design process. Firstly, the conceptual model was developed in Chapter 5, using inputs from stakeholder workshops (world of everyday life as well as knowledge from the world of science). Thereafter, the capability statements were formulated (Chapter 6) within the frame provided by the TMSMM. Finally a maturity assessment methodology is defined (Chapter 7) according to which the TMSMM can be used to describe and assess telemedicine services and to aggregate and analyze the captured data. The retrospective review of the design process (Section 8.2) indicates how each of these design requirements was addressed in these respective chapters.

9.2.2 Intermediary case studies of the TMSMM

The iterative design process included inputs from telemedicine practitioners as well as the application of telemedicine services to earlier versions of the TMSMM (the world of everyday life). These applications are not formally documented, but it is part of the work by Van Dyk et al. (2012b); Van Zyl (2012) and Viljoen (In process).

The paper by Van Dyk et al. (2012b) includes three case studies of telemedicine services. These services were documented and assessed by both the TMMM (Telemedicine Maturity Model, as it was called at that stage) and the roadmap of the Centre of eHealth Research (CeHReS), University for Twente (Netherlands). The three cases include a South African PACS-centered teleradiology service, a South African mobile phone-driven teledermatology service and a European web-based
platform for infection management. Two different assessments were done with respect to the web-based platform. First the service was assessed during development phase and, secondly, in operational phase. The purpose of this paper was to compare these two frameworks with each other and to propose a combined framework which draws upon the strengths of both frameworks.

Van Zyl (2012) conducted a meta-study for purposes of an MEng-study under supervision of Van Dyk. They used an earlier version of the TMSMM to describe a selection of telemedicine services that were published in the *Journal for Telemedicine and Telecare* between 2006 and 2011. The number of services of each type included in this study are indicated by Figure 9.2. All of these articles had sufficient information to describe each service, but it did not provide appropriate information to allow assessments. Van Zyl (2012) aggregated these data to get an overview of the type of telemedicine services as well as the typical users, devices and methods used for each.

![Figure 9.2: Telemedicine services included in the meta-study by Van Zyl (2012)](image)

Viljoen (In process) is using the TMSMM as basis to develop an mhealth services assessment tool, which is used by the health directorate of the GMSA (*Groupe Speciale Mobile Association*) to assess their mhealth projects in low to medium income (LMIC) countries. The first iterations in the development of this tool involved the use of the TMSMM to describe and assess a selection of mhealth services. At that stage, the capability statements of the TMSMM were not yet finalized. The application of the TMSMM to these services either confirmed that the conceptual model and capability statements adhere to all DRs or it highlighted
areas for improvement. The formulation and organization of certain capability statements were updated accordingly.

RQ 1.3: Many telemedicine specializations and applications are represented by the services described above. It contributes to an understanding of the typical TMSMM and also confirmed that the TMSMM can be applied to any telemedicine service.

RQ 5.1: The studies by Van Dyk et al. (2012b) and Van Zyl (2012) were executed during the conceptual TMSMM development phase. These studies served as confirmation that the design requirements are satisfied and it also provided direction for improvements during further development iterations.

RQ 5.2: The study by Viljoen (In process) was executed after finalization of the conceptual TMSMM and during the capability statement development phase. It served as confirmation that the capability statements are indeed generic statements that describe the characteristics of processes as it applies to a specific maturity level and it also provided direction for improvements concerning the formulation of capability statements.

RQ 5.3: The assessment methodology (Chapter 7) describes how the telemedicine services should be described and assessed, but also how the individual reports should be generated and how the data should be organized, aggregated and analyzed for purposes of cohort case studies. The intermediary application of the TMSMM provided data to test, refine the assessment methodology and to show that research outputs are warranted by the research inputs.

9.2.3 Academic peer review

Academic peer review is the process of engaging substantive experts to read and comment on new research in the fields in which they study in order to validate and certify that research. Peer review is an essential dividing line for judging what is scientific and what is speculation. (Elsevier, 2013)

A number of research outputs were produced along the research process. These research outputs were subjected to academic peer review, which serve as further validation of the research outputs. Each of these research outputs is directed to a certain (set of) research question(s) as indicated in this section.
Table 9.1: Research outputs: Understanding the telemedicine landscape

<table>
<thead>
<tr>
<th>Title</th>
<th>In-text reference</th>
<th>Type of Output</th>
<th>Audience</th>
<th>App.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards a Regional Innovation System for Telemedicine in South Africa</td>
<td>Van Dyk et al. (2010)</td>
<td>International conference paper</td>
<td>eHealth practitioners and researchers</td>
<td>A.1.1</td>
</tr>
<tr>
<td>Telemedicine - Leverage Competitive Advantage through the use of ICT Investment</td>
<td>Van Dyk (2010)</td>
<td>Local conference paper</td>
<td>Industrial Engineers</td>
<td>A.2.1</td>
</tr>
<tr>
<td>A framework for the assessment of teleradiology in South Africa: An Eastern Cape Case Study</td>
<td>Haumann et al. (2011)</td>
<td>International conference paper</td>
<td>eHealth practitioners and researchers</td>
<td>A.3.1</td>
</tr>
<tr>
<td>A telemedicine system to increase patients’ access to specialised cardiac care for assisting remote diagnosis</td>
<td>Triegaaardt et al. (2011)</td>
<td>International conference paper</td>
<td>eHealth practitioners and researchers</td>
<td>A.3.2</td>
</tr>
<tr>
<td>A health systems engineering approach to meeting the demand for skilled foetal ultrasound services in the Boland/Overberg public health district</td>
<td>Uys and Van Dyk (2011)</td>
<td>International conference paper</td>
<td>eHealth practitioners and researchers</td>
<td>A.3.3</td>
</tr>
<tr>
<td>A National Telemedicine Survey</td>
<td>Fortuin and Van Dyk (2011)</td>
<td>International conference paper</td>
<td>eHealth practitioners and researchers</td>
<td>A.3.4</td>
</tr>
<tr>
<td>Clinical-pull approach to telemedicine implementation policies using health informatics in the developing world</td>
<td>Treurnicht and Van Dyk (2012)</td>
<td>Book Chapter</td>
<td>eHealth practitioners and researchers</td>
<td>A.4.1</td>
</tr>
</tbody>
</table>

RQ 1.1, RQ 1.2: The papers listed in Table 9.1 were produced at the beginning of this study and contributed to the exploration of the state of the art as well as the conceptualization and validation of the research problem.

RQ 1.3 Appendices A.3.1 A.3.3, A.3.2 are studies about specific telemedicine specializations. The Statistical Topic Analysis of 1772 academic articles on telemedicine can be found in Appendix A.2.1. This paper was published in the early stages of this study as a way to explore the state of the art. The vocabulary created by this analysis was later used in Section 2.3.1.

RQ 2.1, RQ 2.2, RQ 3: During the conceptual TMSMM development phase, feedback was obtained from one of the one of the scholars on the science of maturity models, cited in Chapter 3. Kohlegger (2012) evaluated earlier versions of the TMSMM and provided valuable feedback and advice concerning the development of this maturity model.
RQ 4.1: The research outputs listed in Table 9.2 relate to some of the frameworks presented in Chapter 4, for example the *eHealth Readiness Assessment Tools* of Khoja *et al.* (2007) were administered amongst persons from the national and provincial DoHs of South Africa.

| RQ 5.1, RQ 5.2: The first three research outputs listed in Table 9.3 each marks the completion of an iteration in the development of the conceptual TMSMM. The fourth output also includes capability statements. |

Table 9.2: Research outputs: Telemedicine frameworks

<table>
<thead>
<tr>
<th>Title</th>
<th>In-text reference</th>
<th>Type of Output</th>
<th>Audience</th>
<th>App.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eHealth Assessment Survey Amongst Members of the South African Department of Health (DoH)</td>
<td>Van Dyk and Fortuin (2011)</td>
<td>Local conference presentation</td>
<td>eHealth practitioners and researchers</td>
<td>A.6.1</td>
</tr>
<tr>
<td>Business Models for Sustained eHealth Implementation: Lessons from Two Continents</td>
<td>Van Dyk et al. (2012b)</td>
<td>International conference paper</td>
<td>Industrial Engineers</td>
<td>A.2.3</td>
</tr>
<tr>
<td>Assessing the Technology Acceptance of Cell Phones within the Context of the Primary Health Care System</td>
<td>Snyders and Van Dyk (2013)</td>
<td>Local conference paper</td>
<td>Industrial Engineers</td>
<td>A.2.5</td>
</tr>
</tbody>
</table>

Table 9.3: Research outputs: Development of the TMSMM

<table>
<thead>
<tr>
<th>Title</th>
<th>In-text reference</th>
<th>Type of Output</th>
<th>Audience</th>
<th>App.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Systems Engineering Approach to Telemedicine System Implementation</td>
<td>Van Dyk et al. (2011)</td>
<td>Local conference paper</td>
<td>Industrial and Systems Engineers</td>
<td>A.2.2</td>
</tr>
<tr>
<td>A Maturity Model for Telemedicine Implementation</td>
<td>Van Dyk et al. (2012a)</td>
<td>International conference paper</td>
<td>eHealth practitioners and researchers</td>
<td>A.1.2</td>
</tr>
<tr>
<td>Development of a Maturity Model for Telemedicine</td>
<td>Van Dyk and Schutte (2012)</td>
<td>Full Journal Article</td>
<td>Industrial Engineers (SA Context)</td>
<td>A.5</td>
</tr>
<tr>
<td>The Telemedicine Maturity Model: A generic tool for the measurement and improvement of telemedicine services</td>
<td>Van Dyk and Schutte (2013)</td>
<td>Chapter in Book</td>
<td></td>
<td>A.4.2</td>
</tr>
</tbody>
</table>
CHAPTER 9.VALIDATION

9.3 External Validation

Research Question 8 (External validation): Is the research purpose accomplished with respect to the world beyond the research context?

The purpose of the external validation is to determine if the TMSMM can be used to make generalizations about the world outside the research context. The purpose of this study is to either find or develop a maturity model for telemedicine services that can be used to describe and assess telemedicine services and to guide and educate stakeholders toward the optimization of these services.

The ideal research method for external validation of the TMSMM is to apply the TMSMM to a large enough sample of telemedicine services, sustain these applications for a few months or years and then to evaluate if the TMSMM indeed contributed to the optimization of the telemedicine services. Unfortunately, this method is not feasible within the timeframe of a doctorate study. Due to this limitation, it is not possible to prove that the research purpose is accomplished with respect to all cases beyond the research context. In this section, three other research methods are applied which collectively confirm the applicability of the TMSMM to some situations beyond the research context.

Expert opinions were used in the previous chapter to confirm that all design requirements are met. The same experts also gave their opinion on the applicability of the TMSMM in their particular context. Section 9.3.1 considers whether these opinions indeed confirm that the research purpose is accomplished with respect to the world beyond the research context.

The cohort case studies of Section 9.3.2 demonstrate how the TMSMM are used to produce research outputs of value to the world beyond the research context.

Academic peer review on the most recent research outputs also provides external validation, as is explained in Section 9.3.3.

9.3.1 Expert opinions

The responses from expert interviews, which are documented in Appendix C, were summarized in Chapter 8 to verify that the TMSMM does adhere to the design requirements. Four of the design requirements and expert questions listed in Table 9.4 are focused on the world beyond the research context.

With the exception of one expert, none could imagine any telemedicine service that cannot be described and assessed with the TMSMM. The sixth expert was initially concerned that the TMSMM cannot be applied to real-time telemedicine services.
Table 9.4: External validation: Questions from expert interview

<table>
<thead>
<tr>
<th>Design requirement</th>
<th>Interview question</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR 1 and DR 2</td>
<td>The TMSMM can describe any healthcare service that is delivered over a distance. Can you think of any telemedicine service (healthcare service that is delivered over a distance) that cannot be described and assessed with the TMSMM?</td>
</tr>
<tr>
<td>DR 4</td>
<td>The TMSMM can be used as basis for education and explaining standards. Do you think the TMSMM can be used to educate other role players and explain standards about telemedicine?</td>
</tr>
<tr>
<td>DR 7</td>
<td>Results from a cohort of individual service assessments can be aggregated to an output that is suitable for interpretation by higher-level decision-makers. Telemedicine services are defined and assessed according to a uniform framework to allow the analysis of a cohort of studies. Who would be interested in this, if any?</td>
</tr>
<tr>
<td>DR 8</td>
<td>The TMSMM is not directly tied to any standards, technologies or concrete implementation details. Does the TMSMM indicate anything about specific standards, specific technologies, concrete implementation detail?</td>
</tr>
</tbody>
</table>

However, after some contemplation he realized that a real-time telemedicine service can be broken down into the same basic processes and assessed accordingly. One of the experts admitted that he is not involved in the training and education of users and therefore preferred not to comment on the second question of Table 9.4. All the others agreed that the TMSMM can be used within their respective contexts for purposes of education and the explanation of standards.

Within the scope of each expert interview, it was not possible to present experts with results of a cohort analysis of cases. However, all experts did appreciate the potential of the TMSMM to produce aggregated results. They furthermore identified various decision-makers that should be interested in these results, for example health district managers, local and national policy makers, telemedicine co-ordinators, business consultants and researchers.

All the experts agreed that the TMSMM is not directly tied to any standards, technologies or concrete implementation details. Three of these experts specifically observed that this characteristic of the TMSMM contributes to its generalizability.

9.3.2 Cohort case studies

These cohorts were decided upon after the data for all 28 services was collected. The following criteria were used to decide on the services for the cohort studies:

- Each cohort must represent at least 25 per cent of the services.
- Each cohort must have a unique set of stakeholders that may be interested in this study.
CHAPTER 9. VALIDATION

It is important to note that the purpose of these cohort studies is only to demonstrate that the TMSMM can be used to make generalizations about the world outside the research context. As part of future work (Section 10.4) studies are anticipated that use the TMSMM to gather data from a larger and more representative sample of service cohorts in order to produce actual generalizable results.

The two cohort studies and the stakeholders that may be interested in this study, are as follows:

Appendix D.2: All teleradiology services from the list of 28 services included in this study, irrespective of technology driver or healthcare institution. External stakeholders that may be interested in this cohort study are radiologists and radiographers that make use of teleradiology or who are interested in doing so; providers of teleradiology technology and infrastructure, for example SiTA (State Information Technology Agency); telemedicine co-ordinators responsible for the implementation of telemedicine services within a specific context as well as high-level policy makers.

Appendix D.3: All telemedicine services at a specific hospital network, irrespective of specialization or technology driver. The target external audience for this cohort study is typically hospital superintendents and regional managers and telemedicine co-ordinators.

More cohort studies can be executed, depending on the quantity and nature of individual telemedicine services described and assessed, as well as the type of management information required. In the sections that follow, findings from each of these cohort studies are shared in order to demonstrate that generalizations can be made about the world outside the research context.

9.3.2.1 Teleradiology case study

In South Africa most private hospital groups and some public hospital networks have fully functional teleradiological services. Within the private health sector the PACSs are fully integrated with the hospital information system as well as information systems from medical insurers. In some areas of the South African public health sector, teleradiology services run successfully on a PACS. At other places less sophisticated teleradiology services are found, for example:

- "Hard-copy" radiological images (e.g. x-rays) are taken and then digitized by means of a scanner, from where it is uploaded to a PACS.
- "Hard-copy" radiological images (e.g. x-rays) are taken and then digitized by means of a scanner, from where it is e-mailed to specialist. The image is not archived.
• Medical officers take digital pictures of the "hard-copy" radiological image and SMS this image to specialist.

Can the analyses in Appendix D.2 indeed be used to assess teleradiology services as cohort and to guide and educate stakeholders towards the optimization thereof? The possible value of a case study like this for each of these stakeholders is summarized below.

Providers of Teleradiology Technology and Infrastructure: Research on telemedicine most often focuses on cutting technology and best practices or, on the other hand, on service failures and possible reasons for these. Cohort studies like these provide a simple inventory of current technology and practices, which is otherwise not known.

Telemedicine co-ordinator (Person responsible for the planning and implementation of telemedicine services for a certain system, e.g. group of hospitals): The maturity of the users (man) has the greatest variation amongst different services. A deliberate effort is necessary to educate and motivate all users concerning the teleradiology services.

Policy makers on provincial and governmental level: These stakeholders should take note of the fact that in the case of services that originated from a bottom-up initiative by health care workers, the cost incurred by the healthcare worker has most often not been considered.

Radiologists and Radiographers: Generally, the same medical protocols apply to the capturing and diagnosing process as would have been the case if the service was not delivered over a distance.

9.3.2.2 Hospital network cohort study

For purposes of this cohort study a hospital network is considered to be a tertiary or secondary hospital, which is connected to a few clinics. This is also referred to as hub-and-spoke. Amongst the 28 telemedicine services listed in Appendix D.1 are 24 services from a total of nine such hospital networks.

Seven of these 24 services belongs to Hospital Network C. Appendix D.3 shows the data aggregation and analysis for these seven services. The possible value of a case study like this for each of these stakeholders is summarized below.

Telemedicine co-ordinator of the specific hospital network:

Managers (overall, clinical and technical) at the central hospital as well as secondary hospitals and healthcare clinics within the network: When a new teleradiology
service is planned, it is good to consider the levels of maturity at the hospital and clinics that will be part of this new service.

Potential sponsors of pilot projects: Companies, for example mobile phone service providers, often sponsor telemedicine experiments and pilot projects.

Telemedicine co-ordinators of other hospital networks may be interested in similar analysis for benchmarking purposes.

Decision-makers at provincial and governmental level: Figure D.28 shows the roll-up view of average maturity per hospital network. Decision-makers can identify hospital networks with high maturity in certain capability areas with the purpose of identifying best practices. This figure also indicates areas in terms of hospital complex, but also capability areas that need particular attention.

9.3.3 Peer review

The final three research outputs (Table 9.5) serve as further external validation. Van Zyl (2012) (under supervision of Van Dyk) applied an earlier version of the TMSMM to 102 articles from the *International Journal for Telemedicine and Telecare*. The paper by Hartmann and Van Dyk (2013) is part of another MEng study which is executed under supervision of Van Dyk.

<table>
<thead>
<tr>
<th>Title</th>
<th>In-text reference</th>
<th>Type of Output</th>
<th>Audience</th>
<th>App.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Staged Telemedicine Reference Tool for Optimization of Telemedicine Services</td>
<td>Van Dyk (2013)</td>
<td>International conference presentation</td>
<td>eHealth practitioners and researchers</td>
<td>A.3.6</td>
</tr>
<tr>
<td>An Assessment of the Maturity of Teleradiology Services within the South African Public Healthcare System</td>
<td>Hartmann and Van Dyk (2013)</td>
<td>Local conference paper</td>
<td>Industrial Engineers</td>
<td>A.2.4</td>
</tr>
</tbody>
</table>

The TMSMM was presented to an international audience at the annual Med-e-Tel Conference (*The International eHealth, Telemedicine and Health ICT Forum*) in Luxembourg, April 2013. The comments that were received on this presentation indicate that the TMSMM is also valid outside the South African context:
CHAPTER 9. VALIDATION

- A head of a medical informatics unit at a university in the USA that a reference model, like this, is much needed. It provides a practical tool to get a holistic view and cross-implementation view on telemedicine services.
- A business analyst from a European mobile phone operator realized the potential use of TMSMM as business analyses tool for mobile operators and other service providers.
- The author of two individual cases included in the case study data warehouse confirmed the value of the TMSMM as a way of systematically and continuously following the progress of the telemedicine service.

Table 9.6 summarizes the conclusions concerning the question whether the research purpose is accomplished with respect to the world beyond the research context.

<table>
<thead>
<tr>
<th>Expert opinions</th>
<th>Cohort case studies</th>
<th>Peer review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreement that the TMSMM can be applied to any telemedicine service and aggregated for decision making by an external target audience.</td>
<td>Two cohort case studies demonstrated that results obtained by the TMSMM can be generalized to the world beyond the research context.</td>
<td>Three peer reviewed research outputs that were produced after finalization of the TMSMM confirms the external validity.</td>
</tr>
</tbody>
</table>

Table 9.7 summarizes the findings concerning the internal validity of the research process. The research questions are listed in the first column. The second, third and fourth columns indicate the findings from Sections 9.2.1, 9.2.2 and 9.2.3 respectively.

9.4 Conclusion

The Latin root of the word validation is valere, which literally means weight. In this chapter the internal validity of the research process was considered by weighing it up against the research outputs. This was done by means of a retrospective review of the research process, intermediary case studies as well as academic peer review. Valere is also the root of the word value. The external value of the TMSMM to the world beyond the research context was evaluated by means of expert opinions, cohort case studies, as well as peer review. By doing this, the internal and external validity of the research process was confirmed. This study is concluded in the next chapter.
Table 9.7: Cross-validation of research questions

<table>
<thead>
<tr>
<th>Research question</th>
<th>Research process</th>
<th>Intermediary cases</th>
<th>Peer review</th>
<th>Valid answer to research question?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. What is the origin of telemedicine? What are the existing definitions, paradigms and trends?</td>
<td>Chapter 2</td>
<td>Section 9.2.2</td>
<td>Table 9.1</td>
<td>Yes</td>
</tr>
<tr>
<td>1.2. What are the existing definitions, paradigms and trends concerning telemedicine?</td>
<td>Chapter 2</td>
<td>Table 9.1</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>1.3. What are typical telemedicine services?</td>
<td>Section 2.3.1</td>
<td>Examples across specializations</td>
<td>Appendices A.3.1, A.3.2, A.3.3</td>
<td>Yes</td>
</tr>
<tr>
<td>2.1. What are the existing definitions, paradigms and trends concerning the science of maturity models?</td>
<td>Chapter 3</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>2.2. Which design considerations are applicable to maturity models?</td>
<td>Section 3.5.1</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>3. What are the design requirements a reference model must satisfy so that it can fulfill the research purpose?</td>
<td>Section 3.6</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>4.1. Which telemedicine reference models, frameworks or guidelines exist?</td>
<td>Chapter 4</td>
<td>Table 9.2</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>4.2 Which design requirements are satisfied by each of the respective frameworks?</td>
<td>Chapter 4</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>4.3 Do any of these frameworks satisfy all the design requirements?</td>
<td>Section 4.8</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>5.1. What conceptual design will address the design requirements?</td>
<td>Chapter 5 and Section 8.2</td>
<td>Iterative design of the conceptual TMSMM</td>
<td>Table 9.3 to A.4.2</td>
<td>Yes</td>
</tr>
<tr>
<td>5.2. Which detail descriptions in terms of capability statements will address the design requirements?</td>
<td>Chapter 6 and Section 8.2</td>
<td>Refine and validate capability statements</td>
<td>Table 9.3</td>
<td>Yes</td>
</tr>
<tr>
<td>5.3. Which assessment methodology will address the design requirements?</td>
<td>Chapter 7 and Section 8.2</td>
<td>Intermediary cases provided test data</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
Chapter 10

Conclusion

To conclude one’s research may seem like a contradiction in terms. This is because the word research suggests an ongoing process of discovery while conclusion indicates an ending. This chapter should thus be considered as merely a snapshot in the process of the search for knowledge, models and theories concerning the maturity of telemedicine services. The following four sets of questions may be helpful in contextualising this snapshot.

Reflection: Where were we? How did we get here? (Section 10.1)
Limitations: Where did we want to be? What limited us in getting there? (Section 10.2)
Contribution: Where are we? What was achieved? (Section 10.3)
Future Work: Where do we want to be? What are the next steps to take? (Section 10.4)

10.1 Reflection

Where were we? How did we get here?

Figure 10.1 shows the map of the completed research. The research journey, as it was documented in Chapters 1 to 10, is indicated by the alphabetically labelled squares. The alignment between the first chapter and this one is also indicated in this diagram.

The research problem [A] originated from the world of everyday life as well as the world of science. Practicalities in everyday life showed that despite the potential contribution of telemedicine to the quality and accessibility of healthcare, the success rate has been disappointing. Many mistakes in the implementation of telemedicine services have been repeated over and over again with only a few
CHAPTER 10. CONCLUSION

Figure 10.1: Complete research roadmap

examples of good practice being replicated. This lead to a search for scientific models and frameworks that could be used, both to assess telemedicine services, as well as to guide and educate stakeholders. However, these frameworks have been found to be unsatisfactory for this purpose.

Maturity models were found in the world of science and their potential to address the research problem was recognized. The research hypothesis [B] and purpose [C] and research objectives [D] were defined accordingly.

The purpose of this study was to find a maturity model for telemedicine services that can be used both to describe and assess telemedicine services and to guide and educate stakeholders towards its optimization.

In Chapters 2 and 3 the state of the art (world of science) was considered in order to draw the telemedicine landscape and also to understand the science of development maturity models [E]. Design requirements for a maturity model for telemedicine services were defined accordingly [F]. These requirements were used as criteria to determine if any of the existing telemedicine frameworks or maturity models within a health system context can fulfill the purpose of a maturity model for telemedicine services. No such framework was found. Hence, a new TMSMM had to be developed [G]. Chapters 5, 6 and 7 give a full explanation of this process.

These research objectives and questions [D] formed the backbone of the study and also the basis for the investigation into the internal validity [H] of the study, which was discussed in the first part of Chapter 9. The second part of Chapter 9 provides evidence that the TMSMM can be applied to the world outside the research context.

This chapter looks back on the research journey and the next section [J] describes the limitations of this study. The unique research contribution made by this study
[K] was expressed in Chapter 1 in the form of the research hypothesis and is revisited in the section 10.3. Thereafter, future work [L] are contemplated in Section 10.4.

10.2 Limitations

Where did we want to be? What limited us in getting there?

The research laboratory of an enterprise engineer comprises of one or more enterprise. In the case of this study, these enterprises are in the form of telemedicine services. In contrast with most other engineering researchers, enterprise engineers do not have much control over their laboratory. In addition, the lead time of experiments within this laboratory normally exceeds the timeframe of a typical research project. Another constraint is that there are generally fewer samples of enterprises available in an enterprise engineer's laboratory than in other engineering laboratories.

The same challenges limited this study:

- The ideal research method for external validation of the TMSMM is to apply the TMSMM to a sufficiently large sample of telemedicine services, sustain these applications for a few months or years while continuously monitoring the effects of the TMSMM on the service. It would then be necessary to evaluate whether the TMSMM had indeed contributed to the optimization of the telemedicine services. However, the time taken to conduct these experiments would exceed the timeframe allowed for a typical doctoral study.
- Ideally, for the purposes of validation, it is important that the sample of services that are covered is representative of the full range of telemedicine services. However, in this study, these services were selected based on availability and accessibility, rather than representation.

10.3 Contribution

Where are we? What was achieved?

The research journey fluctuated between the world of everyday life and the world of science.

10.3.1 The world of science

This study, first, contributed to the theories and models by means of a thorough review and synthesis of existing frameworks and models. Secondly, new a maturity model was developed specifically as reference model for telemedicine services. Many models exist that can be used to assess a telemedicine service. Some
models provide guidelines for the implementation of telemedicine services, others allow assessment of processes and guide accordingly towards a desired state of maturity, but are not specifically applicable to telemedicine services. The major contribution of this study is therefore a TMSMM that can be used as reference model for the assessment and maturation of telemedicine services.

The TMSMM was developed by means of continuous interaction between the realm of everyday life and the world of science. The plural of the word world is deliberately used here: the development, implementation and optimization of telemedicine services require services require extensive multidisciplinary efforts involving clinicians, medical specialists, technicians, managers, technical engineers, enterprise engineers, (health) economists, et cetera. The multidisciplinary nature of the telemedicine domain is possibly one of the greatest challenges concerning the development, implementation and optimization of telemedicine services. No single roleplayer has all the knowledge and skills to address the research problem.

Even more challenging than developing telemedicine services is conducting research within this multidisciplinary environment. The professional communities represented by the abovementioned roleplayers have different – and very often conflicting – approaches to the way in which they conduct research and produce new knowledge. They are from different worlds. For example, any clinical healthcare researcher should be able to conduct a Cochrane systematic literature review. Researchers from other domains also base their research on a rigorous investigation of existing theories and knowledge, even though they may not have heard about Cochrane before. The mindset with which a systematic review has to be executed fits the bottom-up development approach De Bruin et al. (2005). The top-down approach followed in this study, is aligned with a systems engineering mindset.

Few persons would undergo medical treatment if it was not confirmed to be effective and safe by means of a randomized, controlled trial. These trials are extremely costly and time-consuming. It is moreover unethical to conduct any research involving humans and animals if any adverse outcome whatsoever is suspected. Engineers and technologists, on the other hand, can usually afford to learn from experiments with adverse outcomes. In fact, these adverse outcomes are often a deliberate part of the design of the experiments. Furthermore, enterprise engineers and health economists are restricted by the timelines of their experiments, since it usually takes a few years before the effect of an enterprise model can be measured.

The TMSMM is designed to be accessible and useful to researchers and practitioners from any discipline or profession concerned with telemedicine. A number of research outputs were produced during the course of this study. These outputs were reviewed by and presented to different audiences from different research domains.
10.3.2 The world of everyday life

The theoretical framework of the TMSMM was used as basis for the development of a maturity assessment tool, which although used for the purposes of this study, can also be used for future assessments. This tool, for assessing telemedicine services, can also be effective in providing guidelines based on this assessment.

It was shown, furthermore, that the design of the TMSMM allows for results from a cohort of individual service descriptions and assessments to be aggregated along all dimensions towards an output that is suitable for interpretation by external stakeholders, researchers, service providers and strategic-level decision makers. In particular a cohort case study provided insights into selected teleradiology services in South Africa.

10.4 Future Research

Where do we want to do? What are the next steps to take?

The following topics should receive priority in future research based on the TMSMM developed in this study:

10.4.1 Longitudinal studies

The scope of this study includes the development, verification and internal validation of a telemedicine maturity model. However, the standard timeframe of a doctoral study does not allow for a completely comprehensive examination into the development, verification, internal validation and external validation of enterprise models, such as maturity models.

The opportunity exists for future work where an "as-is" maturity assessment of a telemedicine service may be used as point of departure. The purpose of such a study would then be to follow the maturation path of such (a) telemedicine service(s) and in doing so contribute (or not) to the external validity of the TMSMM.

10.4.2 Assessment from viewpoint of stakeholder

Khoja et al. (2013a) present different questionnaires to different stakeholders (for example, clients and service providers). Ideally, the assessment should be done by groups of stakeholders who can collectively contribute to the assessment of all microlevel, mesolevel and macrolevel process areas. However, it is not always possible to get all such roleplayers together at any one time, so future researchers should perhaps consider which roleplayer(s) should be involved in the assessment of which capability area, so that only the appropriate capability statements can be presented to them.
10.4.3 Further iterations of the TMSMM

An iterative design approach was followed in the development of the TMSMM. Future research would therefore need to include further iterations in the development of the TMSMM. Specific focus areas are outlined below:

10.4.3.1 Standardized descriptions

For purposes of this study the facilitator formulated the descriptions for each capability area. The data warehouse was filled with descriptions for 28 services, and it was therefore possible to identify recurring descriptions. The data integrity and the usability of the assessment methodology could be enhanced if the facilitator was able to select from a list (e.g. in the form of drop-down boxes) of typical descriptions for that particular capability area.

10.4.3.2 Descriptive, prescriptive and comparative maturity model

De Bruin et al. (2005) explain that a deeper understanding of the "as-is" domain situation is firstly achieved by means of the descriptive maturity model which was accomplished in this study. According to De Bruin et al. (2005), after the maturity model has been applied a sufficient number of times, it can be developed into a prescriptive model. Upon completion of an assessment, using the TMSMM, the analyst can derive suggested actions to enhance maturity. A topic for future research is to further develop the TMSMM into a prescriptive model. Finally, once the TMSMM has been applied to a wide range of organizations and sufficient data were obtained to enable valid comparisons, the TMSMM can evolve into a comparative maturity model.

10.4.3.3 The role of the facilitator

Future work on the development of the TMSMM should also focus on the role of the assessment facilitator. It is common practice with respect to many other maturity models that the assessment is facilitated by a person who is specifically trained for this purpose. A detailed procedure for the training of TMSMM facilitators should be part of the assessment methodology, especially when the model is developed from a descriptive to a prescriptive to a comparative model methodology, particularly as the model is developed in stages from a descriptive, to a prescriptive and then finally into a comparative model.

10.4.3.4 Meso- and macrolevel capability areas

The TMSMM allows for an unrestricted number of microlevel processes. For example, if a telemedicine service involves seven microlevel capturing processes,
each of these processes is simply defined and assessed one by one. Currently, only one mesolevel and one macrolevel can be accommodated.

In the execution of some case studies more than one mesolevel had to be created. For example, in the case of a service between a primary care clinic and a secondary hospital, two physical infrastructures (mesolevel Man domain) are involved. This is in line with an observation by Hicks et al. (2004) that the community can be further subdivided into at least two elements. As an example, they mention the service delivery (hub) community and the recipient (remote) community. Future versions of the TMSMM should allow assessment of all these mesolevel environments.

10.4.4 Refining capability statements

In this study the number of capability statements per capability area was deliberately limited to two statements per maturity level. Future iterations of the TMSMM could benefit from increasingly detailed capability statements. As part of the expert interview process, two experts highlighted two issues that were not explicitly addressed by any of the capability statements. It is possible that more such issues will surface as the TMSMM is applied to more services. By allowing more capability statements per capability area, the comprehensiveness of the TMSMM could be enhanced.

10.4.5 Cohort studies

Chapter 9 confirmed that the TMSMM can be generalized. Two cohort studies demonstrated the potential of the TMSMM to be used as a research tool to determine the maturity status of a certain cohort of telemedicine services. However, Hartmann and Van Dyk (2013) are currently using the TMSMM as part of an MEng (Management) research study to assess telemedicine services in the public health sector of the Western Cape. Future work could include other cohort studies, for example focusing on certain telemedicine specializations or comparing the telemedicine services of different healthcare systems.

10.4.6 Development of specific assessment tools

Viljoen (In process) is currently conducting an MEng (Management) study in collaboration with the Groupe Speciale Mobile Association (GSMA). The purpose of that study is to develop a tool to describe and assess mhealth services in low-to middle-income countries. This tool, although based on the TMSMM, is not a reference model, since it refers to specific technology and standards. Furthermore, whereas the maturity assessment methodology of the TMSMM is described in generic terms, Viljoen (2013) is developing a specific tool to assist in the description and assessment of these mhealth services. This paves the way for further
studies to be pursued wherein assessment tools specific to certain telemedicine applications, could be developed.

10.5 Conclusion

A multidisciplinary effort is needed to launch and sustain the potential contribution that telemedicine could offer to the quality and accessibility of healthcare services. The TMSMM serves as a frame of reference for the assessment and optimization of telemedicine services in a consistent, systematic and systemic way, that spans several academic and professional domains and thereby contributing to both the scientific and practical worlds of telemedicine.
Appendices
Appendix A

Peer Reviewed Research Outputs
A.1 The International Conference on eHealth, Telemedicine, and Social Medicine

A.1.1 2010: Towards a regional innovation system for telemedicine in South Africa

A.1.2 2012: A maturity model for telemedicine implementation
A.2 The Conference of the Southern African Institute for Industrial Engineering

A.2.1 2010: Telemedicine - Leverage competitive advantage through the use of ICT investment

A.2.2 2011: A systems engineering approach to telemedicine system implementation

A.2.3 2012: Business models for sustained eHealth implementation: lessons from two continents

In 2012 the 42th International Conference for Computers and Industrial Engineering co-incided with the annual conference of the Southern African Institute for Industrial Engineering.

A.2.4 2013: An assessment of the maturity of teleradiology services within the South African public healthcare system

A.2.5 2013: Assessing the technology acceptance of cell phones within the context of the primary health care system of South Africa

A.3 The International eHealth Telemedicine and Health ICT Forum

A.3.1 2011: A framework for the assessment of teleradiology in South Africa: An Eastern Cape Case Study

A.3.2 2011: A telemedicine system to increase patient’s access to specialised cardiac care for assisting remote diagnosis.

A.3.3 2011: Meeting the demand for skilled foetal ultrasound services in the Boland/Overberg public health district

A.3.4 2011: A South African national telemedicine survey

A.3.5 2012: Yardsticks for telemedicine maturity: A teleradiology case study

A.3.6 2013: A staged telemedicine reference tool for optimization of telemedicine services

A.4 Book Chapters

These chapters are subjected to copyright. Hence, only the front page of each chapter is included.

A.4.1 2012: Clinical-pull approach to telemedicine implementation policies using health informatics in the developing world

A.4.2 2013: The telemedicine service maturity model: A Framework for the measurement and improvement of telemedicine services

A.5 The Southern African Journal for Industrial Engineering

A.6 Miscellaneous

A.6.1 2011: eHealth assessment survey amongst members of the South African Department of Health (DoH)

A.6.2 2012: Meta-study of telemedicine services

Chapter from MEng thesis completed under supervision of Van Dyk:

Appendix B

Ethical Approval
Investigator Responsibilities
Protection of Human Research Participants

Some of the responsibilities investigators have when conducting research involving human participants are listed below:

1. Conducting the Research. You are responsible for making sure that the research is conducted according to the HREC approved research protocol. You are also responsible for the actions of all your co-investigators and research staff involved with this research.

2. Participant Enrolment. You may not recruit or enrol participants prior to the HREC approval date or after the expiration date of HREC approval. All recruitment materials for any form of media must be approved by the HREC prior to their use. If you need to recruit more participants than was noted in your HREC approval letter, you must submit an amendment requesting an increase in the number of participants.

3. Informed Consent. You are responsible for obtaining and documenting effective informed consent using only the HREC-approved consent documents, and for ensuring that no human participants are involved in research prior to obtaining their informed consent. Please give all participants copies of the signed informed consent documents. Keep the originals in your secured research files for at least fifteen (15) years.

4. Continuing Review. The HREC must review and approve all HREC-approved research protocols at intervals appropriate to the degree of risk but not less than once per year. There is no grace period. Prior to the date on which the HREC approval of the research expires, it is your responsibility to submit the continuing review report in a timely fashion to ensure a lapse in HREC approval does not occur. If HREC approval of your research lapses, you must stop new participant enrolment, and contact the HREC office immediately.

5. Amendments and Changes. If you wish to amend or change any aspect of your research (such as research design, interventions or procedures, number of participants, participant population, informed consent document, instruments, surveys or recruiting materials), you must submit the amendment to the HREC for review using the current Amendment Form. You may not initiate any amendments or changes to your research without first obtaining written HREC review and approval. The only exception is when it is necessary to eliminate apparent immediate hazards to participants and the HREC should be immediately informed of this necessity.

6. Adverse or Unanticipated Events. Any serious adverse events, participant complaints, and all unanticipated problems that involve risks to participants or others, as well as any research related injuries, occurring at this institution or at other performance sites must be reported to the HREC within five (5) days of discovery of the incident. You must also report any instances of serious or continuing problems, or non-compliance with the HREC’s requirements for protecting human research participants. The only exception to this policy is that the death of a research participant must be reported in accordance with the Stellenbosch University Health Research Ethics Committee Standard Operating Procedures. All reportable events should be submitted to the HREC using the Serious Adverse Event Report Form.

7. Research Record Keeping. You must keep the following research related records, at a minimum, in a secure location for a minimum of fifteen years: the HREC-approved research protocol and all amendments; all informed consent documents; recruiting materials; continuing review reports; adverse or unanticipated events; and all correspondence from the HREC.

8. Reports to the MCC and Sponsor. When you submit the required annual report to the MCC or you submit required reports to your sponsor, you must provide a copy of that report to the HREC. You may submit the report at the time of continuing HREC review.

9. Provision of Emergency Medical Care. When a physician provides emergency medical care to a participant without prior HREC review and approval, to the extent permitted by law, such activities will not be recognised as research nor will the data obtained by any such activities should it be used in support of research.

10. Final reports. When you have completed (no further participant enrolment, interactions, interventions or data analysis) or stopped work on your research, you must submit a Final Report to the HREC.

11. On-Site Evaluations, MCC Inspections, or Audits. If you are notified that your research will be reviewed or audited by the MCC, the sponsor, any other external agency or any internal group, you must inform the HREC immediately of the impending audit/evaluation.
23-Nov-2012
Van Dyk, Liel L.

Ethics Reference #: S12/11/277

Title: An investigation on the factors that influence the success rate of telemedicine services in the public health sector of South Africa.

Dear Mrs. Liel Van Dyk,

The New Application received on 05-Nov-2012, was reviewed by members of Health Research Ethics Committee 1 via Expedited review procedures on 23-Nov-2012 and was approved.

Please note the following information about your approved research protocol:

Please remember to use your protocol number (S12/11/277) on any documents or correspondence with the HREC concerning your research protocol.

Please note that the HREC has the prerogative and authority to ask further questions, seek additional information, require further modifications, or monitor the conduct of your research and the consent process.

After Ethical Review:

Please note a template of the progress report is obtainable on www.sun.ac.za/hse and should be submitted to the Committee before the year has expired. The Committee will then consider the continuation of the project for a further year (if necessary). Annually a number of projects may be selected randomly for an external audit.

Translation of the consent document to the language applicable to the study participants should be submitted.

Federal Wides Assurance Number: 0000372
Institutional Review Board (IRB) Number: SIR0085239

The Health Research Ethics Committee complies with the SA National Health Act No 61 2003 as it pertains to health research and the United States Code of Federal Regulations Title 45 Part 46. This committee abides by the ethical norms and principles for research, established by the Declaration of Helsinki, the South African Medical Research Council Guidelines as well as the Guidelines for Ethical Research: Principles Structures and Processes 2004 (Department of Health).

Provincial and City of Cape Town Approval

Please note that for research at a primary or secondary healthcare facility permission must still be obtained from the relevant authorities (Western Cape Department of Health and/or City Health) to conduct the research as stated in the protocol. Contact persons are Ms Claudette Abrahams at Western Cape Department of Health (healthres@gw.gov.za Tel: +27 21 483 9907) and Dr Helene Visser at City Health (Helene.Visser@capetown.gov.za Tel: +27 21 400 5981). Research that will be conducted at any tertiary academic institution requires approval from the relevant hospital manager. Ethics approval is required BEFORE approval can be obtained from these health authorities.

We wish the best as you conduct your research.

For standard HREC forms and documents please visit www.sun.ac.za/hse

If you have any questions or need further assistance, please contact the HREC office at 0219389657.

Included Documents:

Consent Form
Synopsis
Application Form
Checklist
Investigators declaration
Protocol

Sincerely,

Franklin Weber
PARTICIPANT INFORMATION LEAFLET AND CONSENT FORM

TITLE OF THE RESEARCH PROJECT:
An investigation on the factors that influence the success rate of telemedicine services in the public health sector of South Africa

REFERENCE NUMBER:

PRINCIPAL INVESTIGATOR: Liezl van Dyk CONTACT NUMBER: 021 808 3733

ADDRESS: Health Systems Engineering Research Group
Industrial Engineering Department
Stellenbosch University

You are being invited to take part in a research project. Please take some time to read the information presented here, which will explain the details of this project. Please ask the study staff or doctor any questions about any part of this project that you do not fully understand. It is very important that you are fully satisfied that you clearly understand what this research entails and how you could be involved. Also, your participation is entirely voluntary and you are free to decline to participate. If you say no, this will not affect you negatively in any way whatsoever. You are also free to withdraw from the study at any point, even if you do agree to take part.

This study has been approved by the Health Research Ethics Committee at Stellenbosch University and will be conducted according to the ethical guidelines and principles of the international Declaration of Helsinki, South African Guidelines for Good Clinical Practice and the Medical Research Council (MRC) Ethical Guidelines for Research.

What is Telemedicine?

If the word telemedicine is considered semantically, telemedicine can be defined as the delivery of healthcare services (medicine) where distance is an issue (tele). The ability to deliver telemedicine services is mainly accredited to the advances and use of information and communication technology (ICT).

Most of the time telemedicine services are being applied without the service being specifically mentioned. Take for example (1) the picture archiving and communication system (PACS) used by radiographers. PACS is used to store X-Ray images on a central server accessible from different sites (hospital, clinic, general practitioner) and the different role players involved in the process. Nowadays prescriptions are sent via e-mail to the patient in need.

In 1998, the South African National Department of Health (DoH) published a telemedicine strategy in which they recognised the potential of telemedicine, to give previously isolated communities access to healthcare. Since then, many telemedicine services have been deployed in the public health sector of South Africa. Although it is not clear if these services are really working as intended and which factors influence the success of such services.

What is this research study all about?

The purpose of this study is to determine the factors that influence the success of telemedicine service (although they might not be known as such) deployment in the public health sector of South Africa.

Why have you been invited to participate?

The hospital or clinic at which you are currently working was considered for this study due to the fact that this institution is part of a telemedicine services pilot study. Specifically the MRC-MTN telemedicine workstation. This study is not limited to the MRC-MTN workstation, the idea is to focus on any telemedicine services which can be identified.

You were identified as someone who is in one way or another influenced by or participating in a telemedicine service.

What procedure will be conducted in this research?

Two researchers from the University Stellenbosch will conduct a site visit at your hospital/clinic. It would be highly appreciated if you could spare 2½ hours of your time to take part in this structured workshop together with 2, 3 or 4 of your colleagues. At this workshop the researchers will facilitate a session during which a number of telemedicine services will be identified, described and evaluated.
Are there any risks involved in genetic research?

All potential risks, depending on the specific research protocol, should be discussed transparently. These risks could include detection of unsuspected medical conditions, anxiety, group or individual stigmatisation, employment discrimination, adoption of exclusionary policies, including discriminatory insurance policies, potential implications of the possible outcomes of the research on other family members even discovery of mis-attributed paternity. The possible need for genetic counselling should also be discussed, if relevant, including who will cover the costs of this service. Please include any/all of these risks if they may be relevant to your particular research study.

Are there any benefits to your taking part in this study and will you get told your results?

Please explain here whether or not any results will be made known to the participants. If not explain why not e.g. that blood will be stored and only tested at a later date, or that the techniques to be used are experimental and thus possibly unreliable etc. Also indicate that the research may benefit people with a similar condition in the future. Optional wording:

Your personal results will be made known to you only if they indicate that you may:
- Have a definite risk for developing a particular disorder.
- Have a condition or predisposition to developing a condition that is treatable or avoidable e.g. by a lifestyle modification.
- Need genetic counselling.

How long will your blood be stored and where will it be stored?

Answer this question according to the specifics of your research study. Be transparent and include sufficient detail. If you are likely to ship stored specimens to another country either now or at a later date, this needs to be clarified up front.

If your blood is to be stored is there a chance that it will be used for other research?

Your blood will only be used for genetic research that is directly related to the disease or condition or reason for your original research. (the disease or condition or reason for your original research).

Also if the researchers wish to use your stored blood for additional research in this field they will be required to apply for permission to do so from the Health Research Ethics Committee at Stellenbosch University.

If you do not wish your blood specimen to be stored after this research study is completed you will have an opportunity to request that it be discarded when you sign the consent form.

How will your confidentiality be protected?

Please explain this in detail. This is particularly important with collaborative research when the specimens will be shipped to a laboratory abroad. Will the specimens be anonymised, or linked only to demographic/clinical information or will it remain possible to link the specimens to identifying information. Is there a remote possibility that information that comes to light in the future may be beneficial to the participant or possibly have unpleasant implications? If so will an attempt be made to contact participants?

Will you or the researchers benefit financially from this research?

APPENDIX B. ETHICAL APPROVAL

REFERENCE: RP 165/2012
ENQUIRIES: Ms Charlene Roderick

Department of Industrial Engineering
Stellenbosch University
Private bag X1
Matieland, 7600

For attention: Lizel van Dyk and André Hartmann

Re: An investigation on the factors that influence the success rate of telemedicine services in the public health sector of South Africa

Thank you for submitting your proposal to undertake the above-mentioned study. We are pleased to inform you that the department has granted you approval for your research.

Please contact the following people to assist you with any further enquiries.

Ceres Hospital
Mrs EM Prins
Contact No. 023 316 9626

Kindly ensure that the following are adhered to:

1. Arrangements can be made with managers, providing that normal activities at requested facilities are not interrupted.
2. Researchers, in accessing provincial health facilities, are expressing consent to provide the department with an electronic copy of the final report within six months of completion of research. This can be submitted to the provincial Research Co-ordinator (healthres@pwc.gov.za).
3. The reference number above should be quoted in all future correspondence.

Yours sincerely

[Signature]

DR NT Nekeli
DIRECTOR: HEALTH IMPACT ASSESSMENT

DATE: 4/4/2013

CC: DR L PHILLIPS

DIRECTOR: CAPE WINELANDS
Appendix C

Summary of Answers to Interview Questions

The purpose of these interviews is to determine whether or not the TMSMM satisfy all of the design requirements. The interview questions are aligned with the design requirements. The answers to these questions are summarized in this appendix. A requirement for ethical clearance was that responses are presented in such a way that it cannot be linked a specific expert.
List of Questions

C.1 Which telemedicine services are you involved with either as participant or as developer? .. 189
C.2 Do/did you use any standard framework or guideline to help with the implementation, operationalizing and optimization of telemedicine services? .. 189
C.3 Can you think of any telemedicine service that cannot be described and assessed with the TMSMM? 190
C.4 Based on the description and assessment, guidelines are provided concerning further actions to be taken. Would this advice influence your future decisions? .. 190
C.5 Do you think the TMSMM can be used to educate other role players and explain standards about telemedicine 191
C.6 Will you be able to use the TMSMM on your own? 191
C.7 Which persons/entities should be involved to the definition and assessment of a telemedicine service? 192
C.8 Telemedicine services are defined and assessed according to a uniform framework to allow the analysis of a cohort of studies. Who would be interested in this, if any? .. 192
C.9 Does the TMSMM indicate anything about specific standards, specific technologies, concrete implementation detail? 193
C.10 Is any of the statements in the TMSMM repeating / contradicting each other? ... 193
C.11 Does the TMSMM include all issues that impact on the success of telemedicine services? .. 193
C.12 For each aspect that is described, 11 capability statements are provided to help to determine the maturity level of the that aspect. Does each capability statement implicitly include previously listed statements? . . 194
C.13 Did you understand what was meant with each capability statement and how it differed from the other statements? 194

188
Question C.1: Which telemedicine services are you involved with either as participant or as developer?

The MRC-workstation was installed at our facilities before I got involved here. So, the workstation is standing here, but I do not really know how to use it. We have our own telemedicine services in that we use our own cellphones to communicate with each other either through telephone calls or text or the sending of images.

At the moment we are driving the implementation of telemedicine services for the National Department of Health in one of the provinces with one tertiary hospital as hub. We are also currently in the planning phases of a so-called virtual hospital.

We rolled out more than 60 telemedicine workstations throughout the country (public health sector). But we also coordinate quite a number of projects, involving NGOs and research institutions as well. I also facilitated the drafting of the 2012 national eHealth Strategy.

I have been involved in the telemedicine workstation and a few other telemedicine devices, such as a mobile teleophthalmoscope.

Question C.2: Do/did you use any standard framework or guideline to help with the implementation, operationalizing and optimization of telemedicine services?

When we started with the I search a lot, read a lot and talked to a lot of persons to find guidelines for the implementation of telemedicine, but we did not find anything suitable. So, we developed our own policy, which is very specifically applicable to our situation.

The telemedicine services which is currently operational developed spontaneously (bottom-up), not according to a specific guideline.

We do have a protocol according to which the telemedicine workstation is deployed.

We did try that eReadiness Questionnaires [(Khoja et al., 2007)] but found that it did not help much on operational level. I therefore compiled my one evaluation survey (of which some issues are roughly based on this other questionnaire, which I will make available to you.) [This survey include the following categories: community involvement; patient demographics, capacity and referral patterns; staff readiness and human resource assessment; general ICT skills; infrastructure and technical readiness; patient consent procedure; connectivity; equipment inventory. The survey also include a significant amount of technical and context specific detail.][1]

No
Question C.3: Can you think of any telemedicine service that cannot be described and assessed with the TMSMM?

No, even complex services has the basic components that we used now, e.g. capture, diagnose, transmit. The react component is normally done in the traditional way [not telemedicine], but it is OK that it is part of the model.

From my point of view all telemedicine services can be described by this framework. I can not imagine a telemedicine service that can not be described by this framework.

Initially I was not sure whether we could use it for the virtual hospital, but when we tried it worked. It worked well for the DoH example. As far a my experience with telemedicine is concerned, I can imagine that it can be applied to any telemedicine service.

No, if we had more time, I am certain that we could have described all our services with this framework.

I think it will be tricky to use this framework and tool if you are describing real-time telemedicine. You will need to think very carefully on how the services are broken down into process. It will take some careful consideration, but actually the basic processes of TMSMM is the same as for real-time. As soon as the process breakdown is done, the description and assessment is the same as for store-and-forward. The capability statements may be used differently, for example the user maybe available, but if both users are not available at the same time, you must mark them as sometimes available.

Question C.4: Based on the description and assessment, guidelines are provided concerning further actions to be taken. Would this advice influence your future decisions?

Yes, and there is a great need for something like that.

I think that all of the things that came out of this report are things that we would have thought of in any way. However, the way in which it is presented helps a great deal to organize and prioritise next actions. So, these guidelines will definitely influence the planning process.

Personally, I think I will mostly rely on my experience. I do agree with the significance of the advice. I and think it will be particularly useful for persons with less experience. Not the report - as such - but the actual use of the tool, made be realize of issues we still need to consider when implementing the virtual hospital.

In our [clinical] context people are conditioned to think in terms of protocols. They do not think in systems. This framework will definitely help us in this context to think in systems and consider all aspects related to the service. Maybe the value of this is not so much that it provide advice, but that it makes people think about what to do next.

It does not provide exact instructions on what to do next. It is not very specific. Whoever decide on further actions will have to base that on other information, knowledge and experience. However, dashboard and report will definitely guide further decision making.

It surely will. Just by doing this assessment, my future decisions can be influenced.
Question C.5: Do you think the TMSMM can be used to educate other role players and explain standards about telemedicine

Definitely. We are increasingly realizing the importance of telemedicine training, not only for purposes of skills development, but also for awareness and marketing. This can be a very useful tool for that purpose.

Definitely.

I agree. What makes it particularly useful is that you can use an example with which everyone is familiar. For example, if you use the example of today, together with this framework, it will definitely help to get everyone on the same page.

I believe education and awareness is one of the most important success factors for telemedicine. The technicians do not always understand the needs of the healthcare workers and the other way around. Also, the non-technical (administrative) support personnel needs to understand and be understood. If all role can sit together and use this tool to describe a telemedicine service, it will definitely help them to understand everything that impacts on telemedicine and to help understand each other's roles.

It will help different role players concerning the same system to appreciate the whole process. Often the persons at the one end of the process does not how things are working at the other end. It will help to explain and communicated standard ways of doing.

I am not really involved in the education of users, so I cannot really say "yes" or "no".

Question C.6: Will you be able to use the TMSMM on your own?

I do not completely agree. It is easy to understand, but I do not think that I would have been able to use the tool if you did not show me how.

Now that you gone through it with me, yes, but I would not have been able to use it on my own. For example, I was confused by all of these Ms (man, machine ... especially with material), but after you explained it to me, it made sense.

I consider myself a systems thinker. So, I can really relate the TMSMM. It will help the non-system-thinkers, but I am not sure if they will be able to use the tool on their own.

... [Some hesitation] ... no ... I think I will be able to use it on my own, but it is easier to sit with somebody.

I will need some training and practice, but eventually I will be able. The interface is quite user friendly.

The framework makes sense. The detail takes some time to digest.
Question C.7: Which persons/entities should be involved to the definition and assessment of a telemedicine service?

The TMSMM can be used by medical officers and specialist, but also my non-medical staff. It will actually be good if people from both sides are involved.

Medical officers, specialists, administrators, radiographers ...all of them ... It is important to involve a much as possible people.

Like now, it was possible for me to do this on my own, because I am co-ordinating the telemedicine services, but there were issues (for example the internet-issues) on which I was not certain. So, we actually needed someone from IT. In other cases one might need the input of representatives from the facilities.

Even the health care workers from the primary care clinics up to the specialist will be able to contribute to this.

I think you will have different persons contributing to different parts. The nurses and patients know the lower [micro] level processes better, but may possible not be able to comment on the higher level [macro and meso level] processes. Or, on the other hand, district managers may not know about the detail [micro-level] process, but they will be able to tell you about the policies and other higher level issues.

I think any user can contribute, not only the healthcare workers, but also the developers and technicians. You need some inside knowledge to participate here.

Question C.8: Telemedicine services are defined and assessed according to a uniform framework to allow the analysis of a cohort of studies. Who would be interested in this, if any?

I will definitely be interested. And then of course, others in a similar position than I. It will help me alot to know about self-initiated telemedicine services in my district and also what makes telemedicine services in my district successful. I

It is difficult to say. If I can see such a summary which I can relate to, it will be easier to know who will be interested. But I can really see that the fact that all services are mapped with the same framework, can help to compare services and to get a bigger picture.

I know that at a moment a number of people are working on policies with respect to the implementation of telemedicine services. The contribution of role players start here with us on sub-district level and then all inputs are integrated and escalated to national level. The framework measures outcomes consistently according to an uniform scale. It has the potential to provide the evidence needed to support policy-making decisions.

When I started as telemedicine co-ordinator 7 years ago, I had to learn everything from scratch. I had to read a lot and consult with a lot of people. It would have been very nice for me, if I could have had an overview like this back then. I think telemedicine is still very new. There are many people who can learn from reports like these.

Policy makers as well as business consultants and ministries of health. It can also be very useful to research the different level of maturity between the private health sector and the public health sector, especially with the NHI on its way.

I truly hope that government and other decision makers have a look at this. They do not really have an idea of what is going on. They need this type of information.
Question C.9: Does the TMSMM indicate anything about specific standards, specific technologies, concrete implementation detail?

No. This is interesting, because my own evaluation survey includes a lot of technical detail, which would not be relevant in other contexts. So, my survey are actually something different.

No

The TMSMM does indicate standards in terms what is typical to each process, but it does not refer to technical standards, such DICOM or HL7. These standards will differ depending on the type of service, e.g., radiology or pathology. So, it is a good thing that the TMSMM is not linked to any technical detail.

No

No, that is one of the reasons why it can be applied to many telemedicine services.

No

Question C.10: Is any of the statements in the TMSMM repeating / contradicting each other?

Not as far as our example is concerned.

I do not think so.

No

Definitely not contradicting. Of course, when assessing the same type of processes the same type of capability statements are repeated. But if the processes are considered one by one, it is not contradicting each other.

Some of the statements are very much the same, but if you look closely you see the slight differences and understand how they follow upon each other.

Nothing that could have picked up.

Question C.11: Does the TMSMM include all issues that impact on the success of telemedicine services?

I think so. You can double-check what is on my own survey with what is in the TMSMM.

Nothing I can think of. Very often people only consider the technology and infrastructure. What is very important about this model is that it considers all other factors. I believe this research is very important.

I believe the most important factor is the human factor. If someone does not want to use it or is scared of using it, it will not be successful ... but this framework did consider that.

A big thing that is possibly not reflected here, is political will and governance. I believe you covered this on macro-level, but it actually impact on micro-level. How is the tenders awarded?

Yes

Yes, as I said about the real-time services, some issues may be viewed and assessed differently, just because it is real-time. For example "The user is available". For real-time both users must be available.
Question C.12: For each aspect that is described, 11 capability statements are provided to help to determine the maturity level of the that aspect. Does each capability statement implicitly include previously listed statements?

- Agree.
- I think so.
- Yes

I immediately grasped that it is designed like that and I experienced it like that. It is quite useful, because instead of having this very long check list, with a few ticks, you actually have a lot of information. I also think it will the summaries, that you referred to in the previous question, easier to digest.

- Yes, that is why - at first glance - some statements seem the same.
- As far the examples we considered are concerned, yes.

Question C.13: Did you understand what was meant with each capability statement and how it differed from the other statements?

- Yes

I said earlier that I would not have known how to use this model, if you did not explain some concepts to me. So, yes, I did understand, but there were some possible ambiguities, which you had to explain.

- Yes, I did.
- Yes, again it helped with the understanding that the only followed on the other.
- Yes, I did.

- Yes
Appendix D

Case Studies

Chapter 7 describes a methodology for the assessment of telemedicine services, based on the conceptual TMSMM and capability statements. This methodology comprises of three phases as indicated by Figure D.1. For purposes of this study the first two phases were applied to 28 individual telemedicine services. From these 28 services, two cohort studies were compiled, based on aggregated data from a collection of services.

Case studies as research method is elaborated upon in Section 8.3. This appendix contains some evidence concerning the individual case studies (Section D.1) as well as both of the cohort studies (Sections D.2 and D.3 respectively.)

![Figure D.1: Phases of the assessment methodology](image)
D.1 Individual Cases

The 28 individual cases are listed in Table D.1 together with the average maturity assessment for each of these domains. The rest of this section is devoted to a detail discussion of two of these services, Sections D.1.2 and D.1.1 respectively.

<table>
<thead>
<tr>
<th>Service</th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecardiology at hospital B</td>
<td>2.3</td>
<td>1.8</td>
<td>1.3</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Telecardiology at hospital C</td>
<td>3.4</td>
<td>3.4</td>
<td>2.6</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Telecardiology at hospital D</td>
<td>2.3</td>
<td>2.0</td>
<td>1.5</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Telecardiology at hospital F</td>
<td>2.3</td>
<td>2.0</td>
<td>1.1</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Telecardiology at hospital G</td>
<td>2.4</td>
<td>2.4</td>
<td>1.7</td>
<td>3.3</td>
<td>2.7</td>
</tr>
<tr>
<td>Telecardiology at hospital I</td>
<td>1.5</td>
<td>2.0</td>
<td>1.4</td>
<td>3.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Teleconsultation (pediatrics) at hospital C</td>
<td>3.9</td>
<td>1.9</td>
<td>2.3</td>
<td>2.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Teleconsultation (post-operation) at hospital C</td>
<td>3.3</td>
<td>1.9</td>
<td>2.3</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Teleconsultation at hospital B</td>
<td>2.2</td>
<td>1.8</td>
<td>1.4</td>
<td>3.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Teleconsultation at hospital F</td>
<td>1.1</td>
<td>2.3</td>
<td>1.2</td>
<td>3.4</td>
<td>4.0</td>
</tr>
<tr>
<td>Teleconsultation at hospital I</td>
<td>1.3</td>
<td>2.9</td>
<td>2.6</td>
<td>2.6</td>
<td>3.2</td>
</tr>
<tr>
<td>Teledermatology at hospital B</td>
<td>2.3</td>
<td>2.0</td>
<td>1.3</td>
<td>3.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Teledermatology at hospital C</td>
<td>1.9</td>
<td>2.3</td>
<td>2.8</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Teledermatology at hospital D</td>
<td>1.6</td>
<td>1.9</td>
<td>1.6</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Teledermatology at hospital F</td>
<td>2.4</td>
<td>2.0</td>
<td>1.8</td>
<td>3.3</td>
<td>2.6</td>
</tr>
<tr>
<td>Teledermatology at hospital G</td>
<td>2.3</td>
<td>2.2</td>
<td>1.9</td>
<td>3.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Teledermatology at hospital I</td>
<td>1.9</td>
<td>2.2</td>
<td>1.6</td>
<td>3.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Tele-education at hospital C</td>
<td>3.8</td>
<td>4.2</td>
<td>2.3</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Teleophthalmology at hospital C</td>
<td>2.0</td>
<td>1.6</td>
<td>1.3</td>
<td>1.6</td>
<td>1.2</td>
</tr>
<tr>
<td>Teleradiology at hospital A</td>
<td>2.8</td>
<td>2.3</td>
<td>2.8</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Teleradiology at hospital B</td>
<td>2.2</td>
<td>3.1</td>
<td>2.6</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Teleradiology at hospital C</td>
<td>4.4</td>
<td>3.7</td>
<td>2.7</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Teleradiology at hospital D</td>
<td>2.3</td>
<td>2.8</td>
<td>2.6</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Teleradiology at hospital E</td>
<td>4.6</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Teleradiology at hospital F</td>
<td>2.5</td>
<td>2.2</td>
<td>1.8</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Teleradiology at hospital H</td>
<td>2.8</td>
<td>2.9</td>
<td>2.8</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Teleradiology at hospital I</td>
<td>1.7</td>
<td>2.2</td>
<td>1.9</td>
<td>3.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Teleophthalmology at hospital Ad Hoc</td>
<td>1.0</td>
<td>2.5</td>
<td>2.5</td>
<td>1.9</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table D.1: All services included in this study
D.1.1 A teleophthalmology service

The description of this service, together with its assessment dashboard is shown in Figure D.3. The report with recommendations is included in Figure D.4 and D.5.

Blanckenberg et al. (2011) published a detailed description of this service. The primary author of this paper, Dr Mike Blanckenberg, was one of the experts that were consulted in the process of verification and validation. The maturity assessment of this service were executed as part this expert interview. Figure D.3 shows the output of this process.

This service aims to support nurses in rural clinics of South Africa in the screening of diabetes patients for diabetic retinopathy, by means of single field fundus photography. An ophthalmoscope system was developed as shown in Figure D.2 (Blanckenberg et al., 2011). A standard Welch Allyn Panoptic ophthalmoscope is mounted to digital camera.

The images captured by the digital camera are sent by wireless connection to a smartphone on which custom software is installed. The image verification algorithm checks the images for blur, color, resolution, outline, border and whether the optical disc is within the image. The nurse decides accordingly whether the images are acceptable to be uploaded to the web platform. An ophthalmologist, who are typically situated at a tertiary hospital then log into the web platform to retrieve the images and submit a diagnosis. The nurse then receives an SMS on the smartphone and can review the recommendation and treatment prescription (Blanckenberg et al., 2011).
Telemedicine Maturity Model:

<table>
<thead>
<tr>
<th>#</th>
<th>Description</th>
<th>Micro-level Type</th>
<th>User</th>
<th>Devices and Applications</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Take digital photo of eye</td>
<td>Capture</td>
<td>The nurse</td>
<td>use(s)</td>
<td>a digital camera mounted on an ophthalmoscope</td>
<td>to create a digital photo of retina</td>
<td>according to normal ophthalmology procedure</td>
</tr>
<tr>
<td>2</td>
<td>Transmit image from camera to mobile phone</td>
<td>Transmit Data</td>
<td>The nurse</td>
<td>use(s)</td>
<td>WiFi interface</td>
<td>to send/pull digital image data</td>
<td>according to automatic procedure</td>
</tr>
<tr>
<td>3</td>
<td>Capture patient specific data</td>
<td>Capture</td>
<td>The nurse</td>
<td>use(s)</td>
<td>Mobile phone and app</td>
<td>to create patient record</td>
<td>according to app menu</td>
</tr>
<tr>
<td>4</td>
<td>Transmit image and patient record server</td>
<td>Transmit Data</td>
<td>The nurse</td>
<td>use(s)</td>
<td>3G/GPRS</td>
<td>to send/pull Patient record and image</td>
<td>according to internet protocol</td>
</tr>
<tr>
<td>5</td>
<td>Ophthalmogist pulls record</td>
<td>Transmit Data</td>
<td>The ophthalmogist</td>
<td>use(s)</td>
<td>own computer and internet connection</td>
<td>to send/pull Patient record and image</td>
<td>according to internet protocol</td>
</tr>
<tr>
<td>6</td>
<td>Ophthalmogist performs diagnosis</td>
<td>Diagnose</td>
<td>The ophthalmogist</td>
<td>use(s)</td>
<td>own desktop</td>
<td>to diagnose digital image data and patient information</td>
<td>according to standard medical protocol</td>
</tr>
<tr>
<td>7</td>
<td>SMS send to nurse</td>
<td>Transmit Data</td>
<td>The ophthalmogist</td>
<td>use(s)</td>
<td>website programming</td>
<td>to send/pull assessment and treatment</td>
<td>according to internet protocol</td>
</tr>
</tbody>
</table>

Figure D.3: Description and assessment of a teleophthalmology service

<table>
<thead>
<tr>
<th>User Community</th>
<th>Infrastructure</th>
<th>Electronic Record Management</th>
<th>Change Management</th>
<th>Financial sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Healthcare Workers at Rural Clinics</td>
<td>Screening room at rural clinic. No computer infrastructure.</td>
<td>Electronic Health Record Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophthalmologists at hospitals</td>
<td></td>
<td></td>
<td>Change Management Process</td>
<td>Business model</td>
</tr>
</tbody>
</table>

Meso-level

- Community of diabetes patients in rural parts of South Africa
- Systems including central server, 3G/GPRS facilities at hospitals
- Regional Health Information System (e.g. Glimcom/Dehfat)

Micro-level

- Change Management Process
- National Business Case

- Financial sustainability
- Change Management Process
- Business model
Communication between the mobile rural clinics (nurses) and the web platform is established by means of mobile phone networks are used instead of fixed line communication, since the former is more readily available in rural settings. The computational power of a suitable mobile phone, furthermore, eliminates the requirement for a computer in the clinic.

This service is still in pilot phase. The micro-level processes of the machine, method and material domains were assessed as either repeatable (level 2) or defined (level 3), depending on the specific capture/ transmit/ diagnose process under consideration. In this case both users (nurse and ophthalmologist) were only available during controlled experiments and therefore these micro-level processes.

The meso-level, neither the healthcare community nor the larger society is aware of this service (level 0), the meso-level physical infrastructure as well as electronic medical records as defined (level 3). The macro-level inter-organizational infrastructure is managed (level 2). Electronic Health Record systems do exist, but it is not integrated with the telemedicine service (level 1). Neither change management processes nor policies and strategies nor business models exist (level 0).

dailpage

D.1.2 Teleradiology Service of a Private Hospital Group in South Africa

The description of this service, together with its assessment dashboard is shown in Figure D.6. The report with recommendations is included in Figure D.7.

This telemedicine service is entirely digitized. It is a good practice example. All processes for all domains are gauged at a maturity level of either 5a or 5b. The radiology information system (RIS) is integrated with the hospital information system (HIS) as well as an Electronic Health Record (EHR) system. The process start where the EHR is retrieved from the HIS. The referral information already appear on the system.

The radiographer then follow a well defined work procedure to take the radiograph with equipment that is procured, installed and maintained according to system standards and service levels. This work procedure includes measurable quality controls. The performance of the radiographer is also monitored. The patient (or the medical fund of the patient) is held accountable for each of the capture/ diagnose and transmit processes.

As soon as the radiographer is satisfied that the radiograph is capture according to an acceptable quality, the image is saved on the server of the EHR system. The radiograph is transmitted from the radiography centre to the server via the
Telemedicine Service Maturity Assessment Report

Ophtalmology Research and Development Phase
14 May 2013

Capture

<table>
<thead>
<tr>
<th>Name</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>The nurse</td>
<td>use(s)</td>
<td>a digital camera mounted on an ophthalmoscope</td>
<td>to create a digital photo of retina</td>
<td>according to normal ophthalmology procedure</td>
</tr>
</tbody>
</table>

Transmit

<table>
<thead>
<tr>
<th>Name</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>The nurse</td>
<td>use(s)</td>
<td>3G / GPRS</td>
<td>to send/pull digital image data</td>
<td>according to automatic procedure</td>
</tr>
</tbody>
</table>

Diagnose

<table>
<thead>
<tr>
<th>Name</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ophthalmologist</td>
<td>use(s)</td>
<td>own computer</td>
<td>to diagnose</td>
<td>at the cost of the ophthalmologist.</td>
</tr>
</tbody>
</table>

Figure D.4: Recommendation report for a teleophthalmology service (part 1)
Transmit - SMS send to nurse

Man Machine Material Method Money

The opthalmologist uses website programming to send/pull assessment and treatment according to internet protocol at the cost of the ophthalmologist.

Current Maturity Level Advice to aid in maturity improvement

- Put measures in place to motivate user to execute this process.
- Determine peak bandwidth. Test effectiveness of data transmission under these circumstances.
- Define a transmission protocol.
- Identify available service providers.
- Ringfence funds to data transmission.

Meso

Current Maturity Level Advice to aid in maturity improvement

- Ensures the service to be used is neither appropriate nor available.
- Ensures the radiograph is kept and stored by user while telemedicine process is in progress.
- Ensures the radiologist was not even effective for pilot purposes.
- Ensures the radiologist relies on donor funds/seed funds.

Macro

Current Maturity Level Advice to aid in maturity improvement

- Ensures the radiograph is created.
- Ensures the radiograph is created.
- Ensures the radiologist dictates his diagnosis and recommendation. His dictation is automatically converted into text. After checking the quality of the transcription, the radiologist updates the EHR.

Figure D.5: Recommendation report for a teleophthalmology service (part 2)

The radiograph is then pushed to a radiologist within the hospital group, based on the availability and expertise of the radiologist. The radiologist views the radiograph with the complete EHR, which includes the medical history of the patient. The radiologist then dictates his diagnosis and recommendation. His dictation is automatically converted into text. After checking the quality of the transcription, the radiologist updates the EHR.

The referring doctor are notified once the EHR is updated to include the conclusion and recommendation. All of these processes are clearly defined and monitored.
Telemedicine Maturity Model:

<table>
<thead>
<tr>
<th>Number of Processes: 5</th>
</tr>
</thead>
</table>

1. Open up record
- **Capture**: an administrator uses an EHR system to create a patient folder according to EHR system protocol at the cost of patient.

2. Take the radiograph
- **Capture**: a radiographer uses a digital radiographic machine to create a radiograph according to clinical standards at the cost of patient.

3. Transmit radiograph to radiologist
- **Transmit Data**: a radiographer uses PACS/Radiographic software package and internet service to send a radiograph together with patient folder according to secure clinical protocol at the cost of patient.

4. Radiologist Screen radiograph
- **Diagnose**: a radiologist uses radiographic software package and desktop computer with specific monitor to diagnose a radiograph and history according to expert knowledge/experience and clinical protocol at the cost of patient.

5. Create radiographic report
- **Analyse**: a radiologist uses radiographic software package and desktop computer and dictation technology to analyse a radiograph and history according to clinical standards at the cost of patient.

User Community Infrastructure
- **Electronic Record Management**
- **Change Management**
- **Financial sustainability**

Meso-level
- **Radiographers at radiography section**
- **Full equipped radiography section**
- **Part of comprehensive EMR system**
- **Change Management Process**
- **Business model**

Macro-level
- **Community in South Africa with access to private healthcare**
- **Infrastructure of private hospital group**
- **Strategy of hospital group. Teleradiology policies.**
- **Private healthcare model.**

Figure D.6: Description and assessment of a teleradiology service
Telemedicine Service Maturity Assessment Report

Teleradiology: Private Hospital Group

17 March 2013

Capture

<table>
<thead>
<tr>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>EHR system</td>
<td>to create</td>
<td>EHR system protocol</td>
<td>at the cost of patient</td>
</tr>
</tbody>
</table>

- **Open up record**
 - Use an administrator
 - EHR system
 - To create a patient

- **Take the radiograph**
 - Use a radiographer
 - Digital radiographic machine
 - To create a radiograph
 - According to clinical standards
 - At the cost of patient

- **Transmit**
 - Use a radiographer
 - PACS/Radiographic software package and digital service
 - Send radiograph together with patient folder
 - According to clinical standards
 - At the cost of patient

- **Diagnose**
 - Use a radiologist
 - Radiographic software package and desktop computer with specific monitor and diagnostic technology
 - To diagnose
 - According to expert knowledge/experience and clinical protocol
 - At the cost of patient

- **Analyse**
 - Use a radiologist
 - Radiographic software package and desktop computer with specific monitor and diagnostic technology
 - To analyse
 - According to clinical standards
 - At the cost of patient

Meso

<table>
<thead>
<tr>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
</tbody>
</table>

- 0

Macro

<table>
<thead>
<tr>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
<tr>
<td>Advice to aid in maturity improvement</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
<td>Current Level</td>
</tr>
</tbody>
</table>

- 0

Figure D.7: Recommendation report for a teleradiology service
D.2 Cohort Study of Teleradiology Cases

In South Africa most private hospital groups and some public hospital networks have fully functional teleradiological services. Nine teleradiology services that are amongst the 28 individual services which are available in the data warehouse of this study (refer to Figure D.8). Eight of these are from the public health sector and one is from the private health sector. Within the private health sector the PACSs are mostly fully integrated with the hospital information system as well as information systems from medical insurers. In some areas of the South African public health sectors, teleradiology services run successfully on a PACS. At other places less sophisticated teleradiology services are found, for example:

- "Hard-copy" radiological images (e.g. x-rays) are taken and then digitized by means of a scanner, from where it is uploaded to a PACS.
- "Hard-copy" radiological images (e.g. x-rays) are taken and then digitized by means of a scanner, from where it is e-mailed to specialist. The image is not archived.

<table>
<thead>
<tr>
<th>Teleradiology</th>
<th>1Man</th>
<th>2Machine</th>
<th>3Material</th>
<th>4Method</th>
<th>5Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Health Sector, PACS and RIS integrated</td>
<td>4.9</td>
<td>5.0</td>
<td>4.6</td>
<td>4.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Public Health Sector, Digital CT scanner, Secondary to Tertiary hospital</td>
<td>4.4</td>
<td>4.3</td>
<td>3.2</td>
<td>4.3</td>
<td>3.9</td>
</tr>
<tr>
<td>Public Health Sector, Digital X-ray machine plus telemedicine workstation</td>
<td>2.2</td>
<td>3.1</td>
<td>2.6</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Public Health Sector, Internal Service within Secondary hospital</td>
<td>2.9</td>
<td>3.0</td>
<td>2.9</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Public Health Sector, Mobile phone driven, Bottom-up initiative</td>
<td>2.8</td>
<td>2.3</td>
<td>1.8</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Public Health Sector, PACS for entire hospital complex, fully operational</td>
<td>2.8</td>
<td>2.3</td>
<td>2.8</td>
<td>3.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Public Health Sector, PACS for entire hospital complex, pilot phase</td>
<td>1.8</td>
<td>2.9</td>
<td>2.9</td>
<td>3.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Public Health Sector, Fax to Fax, top-down initiative</td>
<td>2.4</td>
<td>2.1</td>
<td>1.8</td>
<td>3.8</td>
<td>3.5</td>
</tr>
<tr>
<td>Public Hospital, Secondary to Tertiary, Fax to Fax, service not operational anymore</td>
<td>0.3</td>
<td>2.7</td>
<td>2.5</td>
<td>2.8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure D.8: Teleradiology services included in this cohort study
• Medical officers take digital pictures of the "hard-copy" radiological image and SMS this image to specialist.

D.2.1 Who would be interested in this cohort study?

Providers of Teleradiology Technology and Infrastructure: What is the correlation (if any) between the maturity of teleradiology infrastructure and other capability areas? Which type of teleradiology process (capture or diagnose or react or transmit) typically exhibits the lowest level of maturity or the greatest variation among different services? Which devices are typically used for each of the processes?

Telemedicine co-ordinator (Person responsible for the planning and implementation of telemedicine services for a certain system, e.g. group of hospitals): Which capability areas typically exhibit the lowest level of maturity and the greatest variation among different services? What is the correlation between the maturity of mesolevel processes (which are typically the responsibility of such a person) and other capability areas.

Policy makers on provincial and governmental level: What are the maturity of the meso- and macrolevel processes?

Radiologists and Radiographers: What are the description and maturity of processes at the other end of a teleradiology service?

D.2.2 Overview of services included in this cohort

Figure D.8 shows the nine teleradiology services that were included in this study, together with their average maturity level per domain. It is significant that the private health sector teleradiology service exhibits a significantly higher level of maturity.

The aggregated maturity level per capability area (Service-dimension x Domain) are indicated in Figure D.9. Of all the microlevel processes, the maturity level of the Capture process is the highest. This can possibly attributed to the fact that the person (normally radiographer), technology, method and well as accounting procedure for the capture process are either the same or similar to the non-teleradiology service.

It can also be seen in both Figure D.8 and Figure D.8 that the Methods domain exhibits the highest level of maturity. Possible reasons for this become clearer later in this case study, when the detail descriptions of methods are considered in more detail.
APPENDIX D. CASE STUDIES

D.2.2.1 Analysis of process maturity per type of process

In the next few sections, each type of process is viewed individually. All processes of a specific type are grouped together by means of slide and dice OLAP operations. The fact of the data warehouse is the maturity level (refer to Section 7.5.1). The fact for each domain of each of these processes is also indicated next to each process description. Pairwise correlation tests are performed to determine correlation in maturity level between the respective domains. Boxplots are also compiled to show the variation in maturity level for each domain.

D.2.2.2 Analysis of capture processes

Figure D.10 shows all of the capture type of processes from the cohort of tele-radiology services. A qualitative analysis of these can be of interest to stakeholders such as telemedicine co-ordinators, radiographers and radiologists to get an idea of the typical ways (technology and methods) in which radiology data are captured.

Providers of data capturing technology (e.g. X-ray machines, CT scanners etc.) might like to know which technology is currently used, the maturity thereof in terms of users and images (material) produced by this technology and entities responsible for operational costs.

The correlation matrix of the capture processes (Figure D.11) shows a relatively low pairwise correlation between the maturity levels of the Money domain and the other domains.

- \(r_{\text{money-machine}} = 0.31; \)
- \(r_{\text{money-material}} = 0.16; \)
- \(r_{\text{money-method}} = \) no significant correlation.

Figure D.9: The average maturity in terms of the type of process
<table>
<thead>
<tr>
<th>Role</th>
<th>Device Used</th>
<th>Activity</th>
<th>According To</th>
<th>Cost of the Process</th>
<th>DoH (Employing Institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiographer (Level 1)</td>
<td>x-ray, ultrasound</td>
<td>To capture x-ray/ultrasound (digital format)</td>
<td>Standard radiography work protocol</td>
<td>At the cost of the DoH (employing institution)</td>
<td>2.5, 4, 4, 4, 3.5</td>
</tr>
<tr>
<td>Radiographer (Level 1)</td>
<td>CT Scanner</td>
<td>To capture Digital radiographical image</td>
<td>Standard protocol</td>
<td>At the cost of the referring hospital.</td>
<td>5, 5, 3, 4.5, 4.5</td>
</tr>
<tr>
<td>Radiographer (Level 1)</td>
<td>x-ray/ultrasound</td>
<td>To capture x-ray/ultrasound (digital format)</td>
<td>Standard radiography protocol</td>
<td>At the cost of the DoH (employing institution)</td>
<td>2, 3, 3, 3.5, 2</td>
</tr>
<tr>
<td>Administrator</td>
<td>EHR system</td>
<td>To capture Patient folder</td>
<td>EHR system protocol</td>
<td>At the cost of the patient.</td>
<td>5, 5, 4.5, 5, 4</td>
</tr>
<tr>
<td>Radiographer</td>
<td>digital radiographic machine</td>
<td>To capture a radiograph</td>
<td>Clinical standards</td>
<td>At the cost of the patient.</td>
<td>5, 5, 4.5, 5, 4</td>
</tr>
<tr>
<td>Radiographer</td>
<td>a computer workstation (PC)</td>
<td>To capture a radiology health record</td>
<td>System protocol of the specific x-ray</td>
<td>At the cost of the Provincial Department of Health</td>
<td>3, 2, 3, 4, 3.5</td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>mobile phone (digital camera)</td>
<td>To capture x-ray/ultrasound (digital image)</td>
<td>Own discretion</td>
<td>At the cost of the DoH (employing institution)</td>
<td>2.5, 2, 2, 1, 4</td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>traditional x-ray machine</td>
<td>To capture x-ray (film)</td>
<td>Standard radiography procedure</td>
<td>At the cost of the DoH (employing institution)</td>
<td>4, 4.5, 4.5, 4.5, 4</td>
</tr>
<tr>
<td>Radiographer (Level 1)</td>
<td>x-ray device</td>
<td>To capture x-ray (digital format)</td>
<td>Standard radiography protocol</td>
<td>At the cost of the DoH (employing institution)</td>
<td>3, 4, 3.5, 4.5, 4</td>
</tr>
<tr>
<td>Radiographer (Level 1)</td>
<td>x-ray device</td>
<td>To capture x-ray (digital format)</td>
<td>Standard radiography protocol</td>
<td>At the cost of the DoH (employing institution)</td>
<td>0, 4, 3.5, 4.5, 0</td>
</tr>
</tbody>
</table>

Figure D.10: Slice and dice for type of process = "capture"
APPENDIX D. CASE STUDIES

Figure D.11: Pearson correlation matrix for "capture" processes

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.67</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.49</td>
<td>0.76</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.50</td>
<td>0.77</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.80</td>
<td>0.31</td>
<td>0.16</td>
<td>no corr.</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.12: Pearson correlation matrix for "capture" processes (2)

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.79</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.55</td>
<td>0.76</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.63</td>
<td>0.77</td>
<td>0.81</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.67</td>
<td>0.54</td>
<td>0.28</td>
<td>0.18</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.13: Boxplots for "capture" processes
The exception is $r_{\text{money-man}}$, which is relatively high. The explanation is as follows: The last service listed on Figure D.10 represents a service which was operational until recently. However, when the seed funds dried up, it was not possible to pay the persons involved in the process. The technology, quality of material and methods are in place, but the service is not operational. When this last process is excluded from the correlation matrix, the affected pair-wise correlation coefficients all increase (refer to Figure D.12). This observation does not so much say something about teleradiology; it is rather an indication of the risk of misinterpretation when working with small sample sizes.

According to the boxplot of the maturity levels of the capture processes, the maturity of the users (man) has the greatest variation amongst different services, which indicates the need for a deliberate effort to educate and motivate all users concerning the teleradiology services.

D.2.2.3 Analysis of transmit processes

Each teleradiology service has at least two transmit processes, which is the reason why the list in Figure D.14 is the longest of all the Slide and Dice-views in this case study. The following observations are made:

- The transmission processes with the highest maturity levels were those that were delivered by the State Information Technology Association (SITA). This association is responsible for, amongst others, the internet connectivity of the public health sector. They are bound to specific service level agreements (SLAs).
- The processes involving fax transmissions resulted in the lowest maturity levels in terms of technology and material.
- Telemedicine co-ordinators and other policy makers should take note of the fact in the case of services that originated from a bottom-up initiative by healthcare workers, the cost incurred by the healthcare worker has most often not been considered. In this cohort case study, the service in which the mobile phone of the healthcare worker is used, is an example of such a study.

D.2.2.4 Analysis of diagnose processes

All of the diagnose processes included in this cohort study are listed in Figure D.17.

The variation of maturity levels for the diagnose processes (refer to boxplot, Figure D.18) is small for all domains, relative to the other processes (refer to tables D.13, D.26, D.22). A reason for this may be that these processes are homogenous in the sense that the radiologist (alias specialist) performs the diagnoses.
<table>
<thead>
<tr>
<th>Role</th>
<th>Uses</th>
<th>To transmit</th>
<th>Type</th>
<th>According to</th>
<th>At the cost of the</th>
<th>Donor Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiographer (Level 1)</td>
<td>Telemedicine Workstation</td>
<td>x-ray/ultrasound (digital format)</td>
<td>mobile phone service provider</td>
<td>at the cost of the</td>
<td>Donor Funding</td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 2)</td>
<td>department workstation (e-mail)</td>
<td>radiological case (level 2 analysis)</td>
<td>internet provider service protocol</td>
<td>at the cost of the</td>
<td>DoH (employing institution)</td>
<td></td>
</tr>
<tr>
<td>Radiographer</td>
<td>ISDN line</td>
<td>Digital radiographical image and medical info and motivation</td>
<td>SITA SLA at the cost of the referring hospital</td>
<td>DoH (employing institution)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 1)</td>
<td>ISDN line (EMAIL)</td>
<td>Diagnose report and advice.</td>
<td>SITA SLA at the cost of the referring hospital</td>
<td>DoH (employing institution)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 2)</td>
<td>departmental workstation (PACS program)</td>
<td>x-ray/ultrasound (digital format)</td>
<td>PACS protocol at the cost of the DoH (employing institution)</td>
<td>1.5 3 3.5 3 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 3)</td>
<td>departmental workstation (PACS program)</td>
<td>radiological case analysis</td>
<td>PACS protocol at the cost of the DoH (employing institution)</td>
<td>2 3 3.5 3 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiographer</td>
<td>PACS/ Radiographic software package and internet service</td>
<td>a radiograph together with patient folder</td>
<td>SITA SLA at the cost of the patient.</td>
<td>4 5 5 4.5 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>An administrator</td>
<td>radiographic software package and desktop computer</td>
<td>report</td>
<td>SITA SLA at the cost of the patient.</td>
<td>5 5 4.5 5 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 1)</td>
<td>the internet</td>
<td>radiology data</td>
<td>internet protocols at the cost of the Provincial Department of Health</td>
<td>3 3 2.5 2 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>mobile phone (SMS/IM)</td>
<td>radiography case</td>
<td>mobile service provider protocol at the cost of the Medical Officer (Level 1)</td>
<td>4 3 2 4 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 2)</td>
<td>mobile phone (SMS/IM)</td>
<td>diagnoses / treatment recommendation</td>
<td>mobile service provider protocol at the cost of the Specialist (Level 2)</td>
<td>2.5 3 2 4 0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>fax machine (land line)</td>
<td>x-ray (fax copy)</td>
<td>Telkom service protocol at the cost of the DoH (employing institution)</td>
<td>2 2 1 4 2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 2)</td>
<td>fax machine (land line)</td>
<td>treatment recommendation</td>
<td>Telkom service protocol at the cost of the DoH (employing institution)</td>
<td>2 1.5 1 4 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiographer (Level 1)</td>
<td>departmental workstation (PACS program)</td>
<td>x-ray (digital format)</td>
<td>PACS protocol at the cost of the DoH (employing institution)</td>
<td>3 3.5 4 4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 2)</td>
<td>departmental workstation (PACS program)</td>
<td>treatment recommendation / diagnosis</td>
<td>PACS protocol at the cost of the DoH (employing institution)</td>
<td>3 3.5 3.5 3 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>computer workstation with large screen in ward</td>
<td>radiological image and recommendation</td>
<td>PACS protocol at the cost of the DoH (employing institution)</td>
<td>3 3 4 2.5 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiographer (Level 1)</td>
<td>departmental workstation (PACS program)</td>
<td>x-ray (digital format)</td>
<td>PACS protocol at the cost of the DoH (employing institution)</td>
<td>0 3.5 4 4 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D.14: Slice and dice for type of process = "transmit"
Appendix D. Case Studies

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.12</td>
<td>0.66</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.70</td>
<td>0.54</td>
<td>0.36</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.45</td>
<td>0.44</td>
<td>0.20</td>
<td>0.36</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.15: Pearson correlation matrix for "transmit" processes

According to a standard medical protocol, mostly at the cost of the employing institution. Within the context of Figure D.18, machine has the greatest variation in maturity, which aligns with the variation in devices used (Figure D.17).

The fact that these processes are relatively homogenous in description and maturity level, is also reflected by the fact that the correlation coefficients (Figure D.19) are also high, relative to the correlation coefficients for the capture, transmit and react processes.

D.2.2.5 Analysis of react processes

The type of persons who react to the transformed information varies significantly, as shown in the first column of Figure D.20. This may explain the variation in maturity level of the man domain (refer to Figure D.22).

According to correlation matrix (Figure D.21) there is little or no correlation between the maturity level of the money domain and the other domains. The correlation matrices for the other types of processes also show a relatively weak correlation between the money domain and other domains. It is possible that a cohort study
<table>
<thead>
<tr>
<th>Case Study Description</th>
<th>Equipment/Software Used</th>
<th>Process Description</th>
<th>Cost to:</th>
<th>DoH (Employing Institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiologist (Level 2) uses department workstation (e-mail) to diagnose x-ray/ultrasound (digital format) according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td>2.5 3.5 2.5 4.5 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 3) uses department workstation (e-mail) to diagnose radiological case (level 2 analysis) according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td>2.5 3.5 2.5 4.5 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist uses his own desktop computer and custom software to diagnose Diagnose report according to standard protocol at the cost of the receiving hospital.</td>
<td>5 4 3 3 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 2) uses departmental workstation (PACS program) to diagnose radiological case according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td>2 3 3 4.5 2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 3) uses departmental workstation (PACS program) to diagnose radiological case analysis according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td>2 3 3 4.5 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist uses radiographic software package and desktop computer with specific monitor and dictation to diagnose radiograph and history according to expert knowledge/experience and clinical protocol at the cost of the patient.</td>
<td>5 5 4.5 5 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist uses radiographic software package and desktop computer and dictation technology to diagnose detailed report together with radiograph and history according to clinical standards at the cost of the patient.</td>
<td>5 5 3 5 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist uses radiology database to diagnose radiology data according to medical protocols at the cost of the Provincial Department of Health</td>
<td>3 2 2 4 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist uses a computer workstation (PC) to diagnose the stored radiological patient record according to medical protocols at the cost of the Provincial Department of Health</td>
<td>3 2 1 4 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 2) uses mobile phone (SMS/IM) to diagnose radiography case according to standard medical procedure at the cost of the DoH (employing institution)</td>
<td>2.5 2 3 4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialist (Level 2) uses hardcopy (no electronic device) to diagnose radiography case according to standard medical procedure at the cost of the DoH (employing institution)</td>
<td>3 2 2 4.5 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiologist (Level 2) uses departmental workstation (PACS program) to diagnose radiological case according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td>3 3.5 0 4.5 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D.17: Slice and dice for type of process = "Diagnose"
which includes more services from the private health sector, may show a higher correlation in this regard, as the public health sector is not so much driven by financial targets as the private health system.
<table>
<thead>
<tr>
<th>Medical Officer (Level 2)</th>
<th>uses Telemedicine Workstation</th>
<th>to react to treatment recommendation/diagnosis according to standard medical protocol at the cost of the DoH (employing institution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referring doctor</td>
<td>uses his own desktop computer and to react to Diagnose report and advice according to standard protocol at the cost of the referring hospital.</td>
<td></td>
</tr>
<tr>
<td>Nurse (Level 1)</td>
<td>uses departmental workstation (PACS program) to react to treatment recommendation/diagnosis according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td></td>
</tr>
<tr>
<td>Referring doctor</td>
<td>uses report and physical examination to react to recommended diagnosis of the radiologist according to clinical standards at the cost of the patient.</td>
<td></td>
</tr>
<tr>
<td>Radiologist</td>
<td>uses radiology database to react to diagnosed patient record according to system protocols at the cost of the the Provincial DoH</td>
<td></td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>uses mobile phone (SMS/IM) to react to diagnoses/treatment recommendation according to standard medical procedure at the cost of the DoH (employing institution)</td>
<td></td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>uses hardcopy (no electronic device) to react to treatment recommendation according to standard medical procedure at the cost of the DoH (employing institution)</td>
<td></td>
</tr>
<tr>
<td>Medical Officer (Level 1)</td>
<td>uses conventional hospital system to react to image and recommendation according to standard medical protocol at the cost of the DoH (employing institution)</td>
<td></td>
</tr>
</tbody>
</table>

Figure D.20: Slice and dice for type of process = "react"
APPENDIX D. CASE STUDIES

Figure D.21: Pearson correlation matrix for "react" processes

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.72</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.29</td>
<td>0.70</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.29</td>
<td>0.19</td>
<td>0.42</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.20</td>
<td>no corr.</td>
<td>no corr.</td>
<td>0.21</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.22: Boxplots for "react" processes
Figure D.23: Pearson correlation matrix for the mesolevel processes

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.62</td>
<td>0.85</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.62</td>
<td>0.85</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.62</td>
<td>0.70</td>
<td>0.80</td>
<td>0.87</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.24: Boxplots for the mesolevel processes
APPENDIX D. CASE STUDIES

Figure D.25: Pearson correlation matrix for the macrolevel processes

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.73</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.62</td>
<td>0.85</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.62</td>
<td>0.85</td>
<td>0.90</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.62</td>
<td>0.70</td>
<td>0.80</td>
<td>0.87</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.26: Boxplots for the macrolevel processes

The boxplots of the macrolevel processes show a low median maturity level with one outlier per domain, reaching values of between 4.5 and 5. These outliers belong to the single service from the private health sector, while all of the other processes are from the public health sector. This does not come as a surprise and serve as validation of the TMSMM. The service which is represented by the outliers should be analyzed with the purpose of deriving best practices.

D.2.3 Significance to stakeholders

At the beginning of this case study four stakeholder groups were identified that may be interested in these cohort studies. These groups were taken into account throughout this case study. The possible value of a case study like this for each of these stakeholders is summarized below.

Providers of Teleradiology Technology and Infrastructure: Research on telemedicine most often focuses on cutting technology and best practices or, on the other hand, on service failures and possible reasons for these. Cohort studies like these provide a simple inventory of current technology and practices, which is otherwise not known.
Service Dimension (Slice for Domain = Material)

<table>
<thead>
<tr>
<th>Analyse</th>
<th>dictated report together with radiograph and history</th>
<th>4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>radiological case</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>radiology data</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>x-ray/ultrasound (digital format)</td>
<td>2.5</td>
</tr>
<tr>
<td>Capture</td>
<td>a radiograph</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>a radiology health record</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>patient folder</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>x-ray (digital format)</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>x-ray (digital image)</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>x-ray (film)</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>x-ray/ultrasound (digital format)</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>x-ray/ultrasound (digital image)</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>x-ray/ultrasound (digital format)</td>
<td>3.0</td>
</tr>
<tr>
<td>Diagnose</td>
<td>radiograph and history</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>radiology case</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>radiography case</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>radiological case</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>radiological case (level 2 analysis)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>radiological case analysis</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>the stored radiological patient record</td>
<td>3.0</td>
</tr>
<tr>
<td>React</td>
<td>diagnosed patient record</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>diagnoses / treatment recommendation</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>image and recommendation</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>recommended diagnosis of the radiologist</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>treatment recommendation</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>treatment recommendation / diagnosis</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>treatment recommendation/diagnosis</td>
<td>3.75</td>
</tr>
<tr>
<td>Transmit Data</td>
<td>a radiograph together with patient folder</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>diagnoses / treatment recommendation</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>patient medical data (recorded in patient file)</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>radiography case</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>radiological case (level 2 analysis)</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>radiological case analysis</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>radiological image and recommendation</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>radiology data</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>report</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>treatment recommendation</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>treatment recommendation / diagnosis</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>treatment recommendation/diagnosis</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>x-ray (digital format)</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>x-ray (digital image)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>x-ray (fax copy)</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>x-ray/ultrasound (digital format)</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>x-ray/ultrasound (digital format)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Figure D.27: slice domain
Telemedicine co-ordinator (Person responsible for the planning and implementation of telemedicine services for a certain system, e.g. group of hospitals):

The maturity of the users (*man*) has the greatest variation amongst different services. A deliberate effort is necessary to narrow this to educate and motivate all users concerning the teleradiology services.

Policy makers on provincial and governmental level: These stakeholders should take note of the fact in the case of services that originated from a bottom-up initiative by healthcare workers, the cost incurred by the healthcare worker has most often not been considered.

Radiologists and Radiographers: Generally, the same medical protocols applies to the capturing and diagnosing process, than would have been the case if the service was not delivered over a distance.

D.2.4 Other observations that confirmed the validity of the TMSMM

- According to correlation matrix (Figure D.21 there is little or no correlation between the maturity level of the *money* domain and the other domains. The correlation matrices for the other types of processes also show relative low correlation between the *money* domain and other domains. With the exception of one service, all of the services in this cohort study are from the public health sector. The financial maturity of a service is of lesser concern in the public health sector than the maturity of the users, technology, information and methods.

- The *methods* domain exhibits that highest level of maturity, which makes sense in a system adherence to procedures and protocol is more important than the motivation of person, the sophistication of technology or the financial sustainability of processes.
D.3 Cohort Study of Telemedicine Services of a Specific Hospital Network

For purposes of this cohort study a hospital network is considered to be a tertiary or secondary hospital, which is connected to a few clinics. This is also referred to as hub-and-spokes. Amongst the 28 telemedicine services listed in Section D.1 are 24 services from a total of nine such hospital networks.

D.3.1 Stakeholders

Who would be interested in this cohort study?

Telemedicine co-ordinator of the particular hospital complex: Which capability areas typically exhibit the lowest level of maturity and the greatest variation among different services? What is the correlation between the maturity of meso-level processes (which are typically the responsibility of such a person) and other capability areas?

Managers (overall, clinical and technical) at the tertiary hospital as well as secondary hospitals and primary health care clinics: Which type of process (capture/diagnose/transmit) exhibits the lowest / highest level of maturity? The chain is as strong the weakest link. This information will help them to focus on areas for improvement: Which domains need attention on meso and macro level?

Sponsors of pilot projects: What is the level of maturity of this service along all domains and type of processes, relative to the other. What influence could the meso and macro level environment have on the maturity of the services.

Telemedicine co-ordinators of other hospital complexes: In which areas do this hospital complex exhibit high maturity? This can guide towards the identification and adoption of best practices.

Policy makers on provincial and governmental level: What is the maturity level of the macro-level processes? How can it be improved?

This cohort study include seven telemedicine service from a certain hospital complex, which is called hospital complex C for purposes of this study. The average maturity level for this cohort, relative to the other networks are indicated in Figure D.28.

The seven services of this hospital complex are listed in Figure D.2. Five of these services were implemented in a top-down manner as initiative from the management...
Figure D.28: Summary of service maturity of the nine networks

of the hospital network. The two services that were developed as a bottom-up initiative of specialist who share medical images via SMS are the following:

- The teledermatology services
- The ophthalmology service

The maturity level difference between the top-down and bottom-up services can clearly be seen in Figure D.2. These services are effective although the users are not specifically trained and the technology are not specifically developed for this purpose. The telemedicine co-ordinator and hospital management could consider to invest time and effort to enhance the maturity of these services through a top-down approach and then to replicate the service in other contexts.

D.3.2 Analysis of process maturity per type of process

In the next few sections, each type of process is viewed individually. All processes of a specific type are grouped together by means of slide and dice OLAP operations. The fact of the data warehouse is the quantitative value of the maturity level as derived from the capability statements. The fact for each domain of each of these processes is also indicated next to each process description. Pairwise correlation tests are performed to determine correlation in maturity level between the respective domains. Boxplots are also compiled to show the variation in maturity level for each domain.
Table D.2: Telemedicine services included in this cohort study

<table>
<thead>
<tr>
<th>Service</th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.81</td>
<td>2.69</td>
<td>2.33</td>
<td>2.71</td>
<td>2.54</td>
</tr>
<tr>
<td>Telecardiology at hospital C</td>
<td>2.94</td>
<td>3.43</td>
<td>2.64</td>
<td>2.64</td>
<td>2.86</td>
</tr>
<tr>
<td>Teleconsultation (pediatrics) at hospital C</td>
<td>3.44</td>
<td>1.93</td>
<td>2.29</td>
<td>2.64</td>
<td>2.79</td>
</tr>
<tr>
<td>Teleconsultation (post-operation) at hospital C</td>
<td>2.88</td>
<td>1.93</td>
<td>2.29</td>
<td>2.64</td>
<td>2.64</td>
</tr>
<tr>
<td>Teledermatology at hospital C</td>
<td>1.69</td>
<td>2.29</td>
<td>2.79</td>
<td>2.93</td>
<td>2.07</td>
</tr>
<tr>
<td>Tele-education at hospital C</td>
<td>3.21</td>
<td>4.17</td>
<td>2.33</td>
<td>2.92</td>
<td>2.92</td>
</tr>
<tr>
<td>Teleophthalmology at hospital C</td>
<td>1.75</td>
<td>1.57</td>
<td>1.29</td>
<td>1.57</td>
<td>1.21</td>
</tr>
<tr>
<td>Teleradiology at hospital C</td>
<td>3.81</td>
<td>3.71</td>
<td>2.71</td>
<td>3.64</td>
<td>3.36</td>
</tr>
</tbody>
</table>

Figure D.29: Maturity of type of service in cohort study

<table>
<thead>
<tr>
<th>Service</th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse</td>
<td>4.50</td>
<td>5.00</td>
<td>3.00</td>
<td>3.00</td>
<td>4.50</td>
</tr>
<tr>
<td>Capture</td>
<td>3.36</td>
<td>3.14</td>
<td>2.57</td>
<td>2.21</td>
<td>2.36</td>
</tr>
<tr>
<td>Diagnose</td>
<td>3.42</td>
<td>2.00</td>
<td>2.17</td>
<td>3.00</td>
<td>3.33</td>
</tr>
<tr>
<td>React</td>
<td>3.75</td>
<td>2.92</td>
<td>2.67</td>
<td>3.83</td>
<td>3.17</td>
</tr>
<tr>
<td>Transmit Data</td>
<td>3.61</td>
<td>2.86</td>
<td>2.79</td>
<td>2.93</td>
<td>2.43</td>
</tr>
<tr>
<td>xMeso</td>
<td>1.32</td>
<td>3.50</td>
<td>2.21</td>
<td>3.07</td>
<td>3.21</td>
</tr>
<tr>
<td>xMacro</td>
<td>2.07</td>
<td>1.14</td>
<td>1.07</td>
<td>1.14</td>
<td>0.79</td>
</tr>
</tbody>
</table>
APPENDIX D. CASE STUDIES

Figure D.30: Maturity of type of service: Drill-down for process
APPENDIX D. CASE STUDIES

D.3.2.1 Analysis of capture processes

Figure D.33 shows all of the capture type of processes from the cohort of the services from this complex. A qualitative analysis of these can be of interest to stakeholders such as telemedicine co-ordinators, hospital managers and regional decision makers to get an idea of the typical ways (technology and methods) in which radiology data are captured.

<table>
<thead>
<tr>
<th></th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td>0.89</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>0.57</td>
<td>0.78</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method</td>
<td>0.45</td>
<td>0.66</td>
<td>0.76</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Money</td>
<td>0.60</td>
<td>0.77</td>
<td>0.83</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Figure D.31: Pearson correlation matrix for "capture" processes

The correlation matrix of the capture processes (Figure D.11) shows a relatively low pairwise correlation between the maturity levels of the Money domain and the other domains.

- \(r_{\text{money-machine}} = 0.31; \)
- \(r_{\text{money-material}} = 0.16; \)
- \(r_{\text{money-method}} = \) no significant correlation.
<table>
<thead>
<tr>
<th>Role</th>
<th>Equipment Used</th>
<th>Process Type</th>
<th>According To</th>
<th>Protocol</th>
<th>Cost of Process</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiographer</td>
<td>CT Scanner</td>
<td>Capture</td>
<td>Digital radiographical image</td>
<td>Standard protocol</td>
<td>Referring hospital</td>
<td>5 5 3 4.5 4.5</td>
</tr>
<tr>
<td>Medical Officer</td>
<td>TM workstation camera</td>
<td>Capture</td>
<td>Digital image of skin</td>
<td>Own discretion</td>
<td>Referring hospital</td>
<td>0.5 0.5 2 2 2</td>
</tr>
<tr>
<td>Radiographer</td>
<td>ECG-machine</td>
<td>Capture</td>
<td>ECG</td>
<td>Standard medical hospital</td>
<td>Referring hospital</td>
<td>4.5 5 5 4 4</td>
</tr>
<tr>
<td>The medical officer</td>
<td>His own mobile phone</td>
<td>Capture</td>
<td>Digital image of eye</td>
<td>Own discretion</td>
<td>Referring hospital</td>
<td>2 0.5 1 1 0.5</td>
</tr>
<tr>
<td>The medical officer in children's ward</td>
<td>Teleconferencing equipment</td>
<td>Capture</td>
<td>Real time video to present pediatric case</td>
<td>A not yet standard protocol</td>
<td>Clinic/secondary hospital</td>
<td>4.5 3 2 0.5 1.5</td>
</tr>
<tr>
<td>Nurse</td>
<td>Teleconferencing equipment</td>
<td>Capture</td>
<td>Real time video to present post surgery case</td>
<td>A not yet standard protocol</td>
<td>Clinic/secondary hospital</td>
<td>3 3 2 0.5 1.5</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Video-conferencing</td>
<td>Capture</td>
<td>Real time video of lecture</td>
<td>Standard lecturing practices</td>
<td>Sending institution</td>
<td>4 5 3 3 2.5</td>
</tr>
</tbody>
</table>

Figure D.33: Slice and dice for type of process = "capture"
D.3.2.2 Analysis of transmit processes

The following observations are based on Figure ?? and Figure D.34 are used as basis for analysis.

This specific hospital network relies strongly on ISDN-line connectivity. It is the same ISDN network used for all services in this network and it is part of the standard service delivery of the State Information Technology Agency (SITA). Hence, it can be expected that this for this particular capability are the same maturity level will apply in all cases involving an ISDN line. For all processes the maturity in the case of ISDN were gauged at 3 (with the exception of two instances that measures 3.5 and 2.5 respectively). This variation possibly indicates that the maturity assessment procedure has a level of subjectivity.

It is clear that as this particular hospital the use of mobile technology and connectivity is not formally supported. However, as few users make use of their own mobile phone and service provider and other initiatives aims at using this technology. It is suggested that the hospital management investigate the feasibility of investing in mobile phone technology.

![Boxplots for "transmit" processes](Stellenbosch University http://scholar.sun.ac.za)
Radiographer
- Uses: ISDN line
- To: transmit
- Digital radiographical image and medical info and motivation
- According to: SITA SLA
- At the cost of: referring hospital
- Costs: 5 5 3 5 4

Radiologist
- Uses: ISDN line (EMAIL)
- To: transmit
- Diagnosis report and advice
- According to: SITA SLA
- At the cost of: referring hospital
- Costs: 5 4 3 5 3

Dermatologist
- Uses: ISDN-line
- To: transmit
- Report with diagnosis and advice
- According to: TM web-interface protocol
- At the cost of: receiving hospital
- Costs: 2 4.5 3.5 3 2

Medical Officer
- Uses: ISDN-line
- To: transmit
- Digital image of skin and patient ID
- According to: SITA service
- At the cost of: referring hospital
- Costs: 2 4.5 3 4.5 2

Cardiologist
- Uses: Landline Telephone
- To: transmit
- Diagnosis and advice
- According to: normal telephone procedure
- At the cost of: referring hospital
- Costs: 2.5 2.5 3 2 3

Radiographer
- Uses: Fax-machine
- To: transmit
- ECG
- According to: normal fax procedure
- At the cost of: referring hospital
- Costs: 3 4 3 2 3

The medical officer
- Uses: his own network provider
- To: transmit
- Digital image of eye and additional information
- According to: mobile network service provider
- To: the medical officer
- At the cost of: the medical officer
- Costs: 2 2 1.5 1 0.5

The ophthalmologist
- Uses: his own mobile phone
- To: transmit
- Text message with diagnosis and advice
- According to: mobile network service provider
- At the cost of: the ophthalmologist
- Costs: 2 2 1.5 1 0.5

The ward-round technical assistant
- Uses: the 3G / WiFi connection (not yet decided)
- To: transmit
- Real time video to present pediatric case
- According to: a not yet standard protocol
- At the cost of: the tertiary hospital
- Costs: 4.5 0.5 1.5 1.5

The pediatrician
- Uses: the 3G / WiFi connection (not yet decided)
- To: transmit
- Real time video recording of advice
- According to: transmission protocol
- At the cost of: the tertiary hospital
- Costs: 4.5 0.5 4.5 3.5 4

The ward-round technical assistant
- Uses: the 3G / WiFi connection (not yet decided)
- To: transmit
- Real time video to present post surgery case
- According to: a not yet standard protocol
- At the cost of: the tertiary hospital
- Costs: 4.5 0.5 1.5 1 1.5

The pediatrician
- Uses: the 3G / WiFi connection (not yet decided)
- To: transmit
- Real time video recording of advice
- According to: transmission protocol
- At the cost of: the tertiary hospital
- Costs: 4.5 0.5 4.5 3.5 4

Facilitator
- Uses: ISDN
- To: transmit
- Real time video of lecture
- According to: SITA SLA
- At the cost of: both institutions (shared)
- Costs: 5 5 3 4 2.5

Facilitator
- Uses: ISDN
- To: transmit
- Real time video of lecture
- According to: standard
- At the cost of: both institutions (shared)
- Costs: 4 4.5 2.5 4.5 2.5

Figure D.35: Slice and dice for type of process = "transmit"
D.3.2.3 Analysis of diagnose processes

All of the diagnose processes included in this cohort study are listed in Figure D.17. The correlation between the different domains as well as boxplots are indicated respectively by Figure D.36 and Figure D.37.

Compared to boxplots of the other micro-level processes, the variation in maturity levels for the material and method domains are relatively small. This can possibly be attributed to the fact that a standard diagnosing protocol are followed based on standard information and images, irrespective the the technology use. The fact that the average maturity of the man-domain is relatively high can possibly be attributed to this fact that this particular micro-level process, diagnose, is the core responsibility of the user.

![Pearson correlation matrix for "diagnose" processes](image1)

![Boxplots for "diagnose" processes](image2)
<table>
<thead>
<tr>
<th>Role</th>
<th>Uses</th>
<th>Diagnoses using</th>
<th>Diagnoses according to</th>
<th>Standard protocol</th>
<th>At the cost of the</th>
<th>Hospital/Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiologist</td>
<td>his own desktop computer and custom software</td>
<td>to diagnose</td>
<td>Diagnose report</td>
<td>standard protocol</td>
<td>at the cost of the receiving</td>
<td>5 4 3 3 4</td>
</tr>
<tr>
<td>Dermatologist</td>
<td>TM workstation screen</td>
<td>to diagnose</td>
<td>digital image of skin and patient data from HIS</td>
<td>standard medical protocol</td>
<td>at the cost of the receiving</td>
<td>2 0.5 2 2 2</td>
</tr>
<tr>
<td>Cardiologist</td>
<td>Fax-machine</td>
<td>to diagnose</td>
<td>faxed ECG</td>
<td>standard medical protocol</td>
<td>at the cost of the receiving</td>
<td>4 3 2 3 3</td>
</tr>
<tr>
<td>The ophthalmologist</td>
<td>his own mobile phone</td>
<td>to diagnose</td>
<td>digital image of eye and additional information</td>
<td>standard diagnosing protocol</td>
<td>at the cost of the hospital</td>
<td>2 0.5 2 3 3</td>
</tr>
<tr>
<td>The pediatrician</td>
<td>official iPad (application not yet decided)</td>
<td>to diagnose</td>
<td>the pediatric case presented in real time video</td>
<td>standard medical protocol</td>
<td>at the cost of the tertiary hospital</td>
<td>4.5 2 2 3.5 4</td>
</tr>
<tr>
<td>The surgeon</td>
<td>official iPad (application not yet decided)</td>
<td>to diagnose</td>
<td>the post surgery case presented in real time video</td>
<td>standard medical protocol</td>
<td>at the cost of the tertiary hospital</td>
<td>3 2 2 3.5 4</td>
</tr>
<tr>
<td>Registrars</td>
<td>video-conferencing</td>
<td>to diagnose</td>
<td>content of lecture</td>
<td>standard protocol</td>
<td>at the cost of the receiving</td>
<td>4.5 5 3 3 4.5</td>
</tr>
</tbody>
</table>

Figure D.38: Slice and dice for type of process = "diagnose"
D.3.2.4 Analysis of react processes

The react-process is an essential part of the telemedicine service, although it mostly does not rely on information and communication technology. In most cases, the same "man", "machine", "material", "method" and "money" is used as in the case of non-telemedicine services. This may be the reason why there is a relatively small maturity level variation for most domains. The hospital management may consider to investigate the possibility of exploiting ICT for purposes of this micro-level process.

Figure D.39: Boxplots for "react" processes
<table>
<thead>
<tr>
<th>Case Study</th>
<th>Type of Communication</th>
<th>React to</th>
<th>Diagnosis and Advice</th>
<th>Standard Protocol</th>
<th>Cost of</th>
<th>Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referring doctor</td>
<td>uses his own desktop computer and custom software</td>
<td>to react to Diagnose report and advice (confirmation)</td>
<td>according to standard protocol</td>
<td>at the cost of the referring hospital.</td>
<td>5 4 3 3 3</td>
<td></td>
</tr>
<tr>
<td>Medical Officer</td>
<td>uses no specific technological device</td>
<td>to react to diagnosis and advice</td>
<td>according to standard medical protocol</td>
<td>at the cost of the referring hospital.</td>
<td>4 2 3 4 2</td>
<td></td>
</tr>
<tr>
<td>Medical Officer</td>
<td>uses conventional medical equipment</td>
<td>to react to diagnosis and advice</td>
<td>according to standard medical protocol</td>
<td>at the cost of the referring hospital.</td>
<td>4 4 2 4 3</td>
<td></td>
</tr>
<tr>
<td>The medical officer</td>
<td>uses not a specific technological device</td>
<td>to react to SMS with advice from ophthalmologist</td>
<td>according to standard medical protocol</td>
<td>at the cost of the clinic/secondary hospital.</td>
<td>2 2.5 2 4 3</td>
<td></td>
</tr>
<tr>
<td>The medical officer</td>
<td>uses not a specific technological device</td>
<td>to react to diagnosis and advice</td>
<td>according to standard medical protocol</td>
<td>at the cost of the clinic/secondary hospital.</td>
<td>4.5 2.5 3 4 4</td>
<td></td>
</tr>
<tr>
<td>The nurse</td>
<td>uses not a specific technological device</td>
<td>to react to diagnosis and advice</td>
<td>according to standard medical protocol</td>
<td>at the cost of the clinic/secondary hospital.</td>
<td>3 2.5 3 4 4</td>
<td></td>
</tr>
</tbody>
</table>

Figure D.40: Slice of slice for type of Process = "react"
D.3.3 Significance to stakeholders

At the beginning of this case study four stakeholder groups were identified that may be interested in these cohort studies. These groups were taken into account throughout this case study. The possible value of a case study like this for all of these stakeholders are summarized below.

Telemedicine co-ordinator of the specific hospital network:

Managers (overall, clinical and technical) at the central hospital as well as secondary hospitals and healthcare clinics within the network: When a new telemedicine service is planned, it is good to consider the levels of maturity at the hospital and clinics that will be part of this new service.

Potential sponsors of pilot projects: Companies, for example mobile phone service providers, often sponsor telemedicine experiments and pilot projects.

Telemedicine co-ordinators of other hospital networks may be interested in similar analysis for benchmarking purposes.

Decision-makers at provincial and governmental level: Figure D.28 shows the roll-up view of average maturity per hospital network. Decision-makers can identify hospital networks with high maturity in certain capability areas with the purpose of identifying best practices. This figure also indicates areas in terms of hospital complex, but also capability areas that need particular attention.
Appendix E

Workshop Worksheets

Between June 2011 and December 2011, a series of workshops was held in South Africa. Representatives included healthcare workers (e.g. specialists, radiologists, radiographers and nurses), as well as persons responsible for the development, implementation and maintenance of hospital information and communication technology (ICT). Most of the workshop participants were from the public health sector.

The first day of these workshops was used to educate representatives about telemedicine. On the second day, workshop delegates used earlier versions of the TMSMM to describe and assess telemedicine services within their context. In doing so, they gained an appreciation for all of the aspects that determine telemedicine success and learned from each other about the clinical and technical detail concerning their telemedicine service.

Some worksheets that were produced during these workshops are included in this appendix. Unfortunately, the worksheets for the first workshop was not archived. Although the quality of these worksheets are not acceptable for presentation of detailed information, these worksheets are included to show evidence of the methodology followed:

1. The worksheets were prepared before the commencement of the workshop. These worksheets were based on the most current version of the TMSMM.

2. During the second and third workshop contributed to the formulation of the domain dimension, through brainstorming and discussion. At that stage domain specifica maturity indicators was not provided.

3. During the fourth workshop, the delegates did not contributed to the definition of the domain-specific maturity scales, rather than the domain dimension.
A Telemedicine Maturity Model

Initiating

Ad Hoc activities

Chotic

Managed

Stable, but not standard

Controlled Environment

Defined

Standard Process

Consistent Executive

Measured

Measured Process

Quality and Productivity

Optimising

Improving process

Continued Improvement

Users are empowered and encouraged to embrace the acquisition of new skill and technology and well and the improvement of current or design of new methods.

It is merely coincidence if the person who are performing this activity are qualified, capable and willing to perform this activity with the telemedicine equipment.

Some persons who are performing this activity are qualified, capable, comfortable and willing to perform this activity with the telemedicine equipment.

All persons who are performing this task are qualified, capable, comfortable and willing to perform this activity with the telemedicine equipment and they have the necessary technical and procedural support to accomplish this.

Worker performance metrics for the execution of this task through telemedicine is included in the job appraisal and contracting process.

Users are empowered and encouraged to embrace the acquisition of new skill and technology and well and the improvement of current or design of new methods.

Financial

This task is funded by an allocation from the budgeting process. This step identifies the necessity of the process, budget and fund requirements.

The allocation and budgeting process is part of the standard telemedicine process.

Information concerning the return on investment by the telemedicine decision and reported on.

Business model input concerning the return on investment by this telemedicine investment and reported on.
Appendix F

Capability Statement Sheets

F.1 Capability Statements per Type of Service

Capability statements per type of service (capture, diagnose, transmit, meso, macro) presented along the maturity scale and domain dimension: Capture processes (Figure F.1), transmit processes (Figure F.2), mesolevel processes (Figure F.3) and macrolevel processes (Figure F.4).

F.2 Capability Statements per Maturity Level

The statements are presented along the domain and service dimensions per maturity level: Maturity level 1 (Figure F.5), maturity Level 2 (Figure F.6), maturity level 3 (Figure F.7), maturity level 4 (Figure F.8) and maturity level 5 (Figure F.9).

F.3 Guidelines for Further Actions

The guidelines presented in figures F.10 and F.11 are derived from the capability statements of the TMSMM. Once an assessment of a service is completed, these guidelines can be consulted. The computerized tool that was developed for purposes of this study used these guideline sheets to automatically derive as report:
Figure F.1: Capability statement sheet for the capture, diagnose, react processes

<table>
<thead>
<tr>
<th>Level</th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>patient or healthcare worker</td>
<td>telemedicine device/ mobile phone/app etc.</td>
<td>data</td>
<td>work procedure</td>
<td>operational costs</td>
</tr>
<tr>
<td>0</td>
<td>is not available.</td>
<td>never existed.</td>
<td>do not exist.</td>
<td>does not exist.</td>
<td>are not funded.</td>
</tr>
<tr>
<td>1</td>
<td>is available, but not always at the appropriate time.</td>
<td>is confirmed to be safe.</td>
<td>are of varying and most often unacceptable quality.</td>
<td>is executed on a trial and error basis.</td>
<td>are not considered by developers/ entrepreneur.</td>
</tr>
<tr>
<td></td>
<td>is normally available at the appropriate time</td>
<td>is used on an ad hoc/ experimental basis.</td>
<td>are of varying but most often acceptable quality.</td>
<td>differs from person to person and case to case.</td>
<td>are considered and covered by seed funds while service is in development.</td>
</tr>
<tr>
<td>2</td>
<td>wants to execute this process, but not always at the appropriate time</td>
<td>is effective and available, but still undergoes frequent modifications.</td>
<td>are created consistently at a mostly acceptable quality.</td>
<td>is executed repeatably.</td>
<td>will be covered on short term by seed funds.</td>
</tr>
<tr>
<td></td>
<td>executes this process consistently.</td>
<td>is effective, reliable and available.</td>
<td>are created consistently, always at an acceptable quality.</td>
<td>is at least as effective as the traditional healthcare service.</td>
<td>will be covered on long term by seed funds.</td>
</tr>
<tr>
<td>3</td>
<td>is trained to execute this telemedicine process as standard procedure.</td>
<td>is interoperating with upstream and downstream devices and applications.</td>
<td>s physical quality standards are defined within context of this service.</td>
<td>is defined and documented as standard.</td>
<td>are included partially as a standard budget item.</td>
</tr>
<tr>
<td></td>
<td>has the mandate to execute the telemedicine process as standard procedure.</td>
<td>is operating according to a defined standard.</td>
<td>s clinical effectiveness are defined.</td>
<td>is aligned with ethical and legal guidelines.</td>
<td>are included fully as a standard budget item.</td>
</tr>
<tr>
<td>4</td>
<td>is measured when and how he does this.</td>
<td>s availability is monitored.</td>
<td>s physical quality are measured.</td>
<td>Relevant and realistic efficiency measures (outputs and inputs) are defined.</td>
<td>are a reporting item of the accounting system.</td>
</tr>
<tr>
<td></td>
<td>is monitored and appraised when and how he does this.</td>
<td>availability, reliability and maintainability are monitored.</td>
<td>s physical quality effectiveness measures are effectively reported.</td>
<td>Efficiency measures are continuously collected and communicated to relevant decision makers.</td>
<td>reports are routinely scrutinized to ensure optimal use of funds.</td>
</tr>
<tr>
<td>5</td>
<td>performance is continuously improved through the execution of this service.</td>
<td>s corrective maintenance is executed effectively and timely.</td>
<td>Causes of unacceptable quality are continuously identified.</td>
<td>is proven to be more efficient than the traditional healthcare service.</td>
<td>Non-value-adding activities are continuously identified.</td>
</tr>
<tr>
<td></td>
<td>contributes to the training and development of peers towards doing this.</td>
<td>s preventative maintenance and upgrades are executed effectively and timely.</td>
<td>Causes of unacceptable quality are continuously and effectively addressed.</td>
<td>s effectiveness is continuously improved.</td>
<td>Non-value-adding activities are continuously eliminated.</td>
</tr>
<tr>
<td>Man</td>
<td>Machine</td>
<td>Material</td>
<td>Method</td>
<td>Money</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>patient or healthcare worker</td>
<td>internet service, mobile phone network etc.</td>
<td>data/images/video etc.</td>
<td>network service</td>
<td>cost of transmission service</td>
<td></td>
</tr>
<tr>
<td>is not available.</td>
<td>never existed.</td>
<td>do not exist.</td>
<td>is not available yet/ anymore.</td>
<td>are not funded.</td>
<td></td>
</tr>
<tr>
<td>is available, but not always at the appropriate time.</td>
<td>is normally available at the appropriate time</td>
<td>is confirmed to be available.</td>
<td>do not get lost.</td>
<td>is mostly available. Not a specific service provider.</td>
<td></td>
</tr>
<tr>
<td>is normally available at the appropriate time</td>
<td>wants to execute this process.</td>
<td>transmits data effectively.</td>
<td>can easily be viewed by an unauthorized person.</td>
<td>is delivered by a specific (set of) service provider(s) with varying service levels.</td>
<td></td>
</tr>
<tr>
<td>executes this process consistently.</td>
<td>is trained to execute the telemedicine process as standard procedure.</td>
<td>transmits data effectively at an acceptable speed.</td>
<td>cannot easily be viewed by an unauthorized person.</td>
<td>is delivered by a specific (set of) service provider(s) with consistent service levels.</td>
<td></td>
</tr>
<tr>
<td>is measured when and how he does this.</td>
<td>has the mandate to execute the telemedicine process as standard procedure.</td>
<td>is measured when and how he does this.</td>
<td>reliability and availability can be measured.</td>
<td>can be tracked throughout the telemedicine service.</td>
<td></td>
</tr>
<tr>
<td>is monitored and appraised when and how he does this.</td>
<td>performance is continuously improved through the execution of this service.</td>
<td>is measured when and how he does this.</td>
<td>reliability and availability are continuously improved.</td>
<td>levels are measured.</td>
<td></td>
</tr>
<tr>
<td>contributors to the training and development of peers towards doing this.</td>
<td>deviations from acceptable levels of availability and reliability are continuously addressed.</td>
<td>contributors to the training and development of peers towards doing this.</td>
<td>capability, reliability and availability are continuously improved.</td>
<td>levels are continuously maintained.</td>
<td></td>
</tr>
</tbody>
</table>

Figure F.2: Capability statement sheet for the transmit processes
<table>
<thead>
<tr>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>healthcare worker community</td>
<td>physical infrastructure</td>
<td>electronic medical records (EMRs)</td>
<td>change management process</td>
<td>interorganizational business model</td>
</tr>
<tr>
<td>Level 1</td>
<td>Level 2</td>
<td>Level 3</td>
<td>Level 4</td>
<td>Level 5</td>
</tr>
<tr>
<td>is not aware of this service.</td>
<td>never existed.</td>
<td>do not exist.</td>
<td>does not exist.</td>
<td>is not available yet/anymore</td>
</tr>
<tr>
<td>resists this service.</td>
<td>is neither appropriate nor available.</td>
<td>do not exist / exist only in paper format.</td>
<td>has not been considered.</td>
<td>has never been considered for the interorganization that spans the telemedicine service.</td>
</tr>
<tr>
<td>avoids this service.</td>
<td>is either not appropriate or not available.</td>
<td>are kept and stored by user while telemedicine process is in progress.</td>
<td>was ineffective. The process regressed back to old method after the pilot phase.</td>
<td>has been considered for the interorganization that spans the telemedicine service.</td>
</tr>
<tr>
<td>'s perception is that this service is easy to use.</td>
<td>is appropriate and mostly available.</td>
<td>are kept on telemedicine device.</td>
<td>is executed by an entrepreneur.</td>
<td>has been considered for the interorganization that spans the telemedicine service.</td>
</tr>
<tr>
<td>'s perception is that this service will contribute to job performance.</td>
<td>is appropriate and always available.</td>
<td>are kept on a local database specific to telemedicine service.</td>
<td>is driven by an (at least) self-appointed champion.</td>
<td>includes all stakeholders.</td>
</tr>
<tr>
<td>considers this service as mandatory.</td>
<td>is set up specifically for this service and is always available.</td>
<td>are linked with hospital information system (HIS).</td>
<td>is driven by someone that is formally and permanently appointed for this purpose.</td>
<td>: the way in which value is created is clear and sustainable.</td>
</tr>
<tr>
<td>'s organizational culture strengthens the use of this service.</td>
<td>is set up specifically for this service according to defined design standards.</td>
<td>are integrated with hospital information system (HIS).</td>
<td>is integrated with other business processes (e.g. budget, facilities planning, service redesign).</td>
<td>will sustain without donor funds/ seed funds.</td>
</tr>
<tr>
<td>'s adoption of the service is measured.</td>
<td>'s availability is monitored.</td>
<td>are managed in such a way that the can be transformed into management information.</td>
<td>is linked to key performance indicators (KPIs).</td>
<td>: Costs and benefits are realistically measured.</td>
</tr>
<tr>
<td>'s adoption of the service are measured by means of scientifically evidence-based study.</td>
<td>'availability, reliability and maintainability are monitored.</td>
<td>are routinely transformed into management information and considered by relevant decision makers.</td>
<td>is monitored in terms of these KPIs.</td>
<td>: Cost-benefit analyses are continuously performed.</td>
</tr>
<tr>
<td>Level 5</td>
<td>The service contributes to the professional development and positive task shift of the users.</td>
<td>is scalable (can easily be expanded to accommodate more instances of this service).</td>
<td>Ad hoc management decisions related to telemedicine services are based on this information.</td>
<td>: How the organization creates, delivers and captures value are continuously improved.</td>
</tr>
<tr>
<td>continuous improvement</td>
<td>is continuously maintained and upgraded whenever needed.</td>
<td>is continuously maintained and upgraded whenever needed.</td>
<td>Continuous management decisions related to telemedicine services are based on this information.</td>
<td>is successfully replicated elsewhere.</td>
</tr>
</tbody>
</table>

Figure F.3: Capability statement sheet for the meso level processes.
<table>
<thead>
<tr>
<th>Level</th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>society</td>
<td>interorganizational system</td>
<td>electronic health records (EHRs)</td>
<td>policies and strategies</td>
<td>national business case</td>
</tr>
<tr>
<td>No</td>
<td>is not aware of this service.</td>
<td>never included the telemedicine service.</td>
<td>do not exist.</td>
<td>related to the telemedicine service are not known.</td>
<td>is not available yet/anymore</td>
</tr>
<tr>
<td>Level 1</td>
<td>may be aware, but is not deliberately made aware of this service.</td>
<td>can not accommodate the telemedicine service.</td>
<td>do not exist / exist only in paper format.</td>
<td>are ignored at this stage.</td>
<td>has never been considered</td>
</tr>
<tr>
<td>Level 2</td>
<td>is deliberately made aware of this service.</td>
<td>'s technology and resources are not synchronized.</td>
<td>of telemedicine service are not kept on record after completion of the service.</td>
<td>are in conflict with the telemedicine services.</td>
<td>has never been considered</td>
</tr>
<tr>
<td>Level 2</td>
<td>is willing to receive this service.</td>
<td>'s technology and resources are sometimes synchronized.</td>
<td>are linked to an existing EHR management system.</td>
<td>: the service are adapted to fit the strategies.</td>
<td>: pockets of organized value creation</td>
</tr>
<tr>
<td>Level 2</td>
<td>wants to receive this service.</td>
<td>'s technology and resources are mostly synchronized.</td>
<td>of telemedicine service are available centrally to all facilities that took part in process.</td>
<td>: the service are adapted to fit the policies and strategies.</td>
<td>: nationally organized value creation.</td>
</tr>
<tr>
<td>Level 3</td>
<td>(a sufficiently large portion of) already used this service for most issues to be addressed.</td>
<td>'s interoperability standards are defined.</td>
<td>are integrated with an existing EHR management system.</td>
<td>: strategies are adapted to fit the telemedicine services.</td>
<td>: national funding structures are in place.</td>
</tr>
<tr>
<td>Level 3</td>
<td>considers this telemedicine service as the norm.</td>
<td>'s interoperability standards are followed throughout the system.</td>
<td>are aligned with the processes of the telemedicine service.</td>
<td>: processes for the reimbursement of telemedicine services are in place.</td>
<td></td>
</tr>
<tr>
<td>Level 4</td>
<td>: the impact on the society is known and monitored.</td>
<td>: KPIs are defined with the new organizational design in mind.</td>
<td>are managed in such a way that they can be transformed into management information.</td>
<td>are linked to health indicators.</td>
<td>: The health-economic impact of the service are measured.</td>
</tr>
<tr>
<td>Level 4</td>
<td>: the impact on the society is scientifically quantified.</td>
<td>: KPIs are routinely measured and reported.</td>
<td>are routinely transformed into management information and considered by relevant decision-makers.</td>
<td>facilitate the systematic evaluation of this telemedicine service.</td>
<td>Health economics metrics are used as decision input to health systems strengthening.</td>
</tr>
<tr>
<td>Level 5</td>
<td>: The service is continuously improved and scaled up to increase benefit to the society.</td>
<td>is continuously adopted to fit the need.</td>
<td>: Ad hoc management decisions related to telemedicine services are based on this information.</td>
<td>facilitate the sharing of best practices and management of knowledge of this service.</td>
<td>: The service has a significant socio-economic impact on the nation.</td>
</tr>
<tr>
<td>Level 5</td>
<td>: Other similar societies can learn from the example of this service.</td>
<td>is scalable (can easily be expanded to accommodate more instances of this service).</td>
<td>: Continuous management decisions related to telemedicine services are based on this information.</td>
<td>continuously facilitate the dissemination of best practices.</td>
<td>: The impact of the service on the socio-economic well-being of the nation is continuously expanded.</td>
</tr>
</tbody>
</table>

Figure F.4: Capability statement sheet for the macro processes
<table>
<thead>
<tr>
<th></th>
<th>Capture, Diagnose/Analyze, React</th>
<th>Data Transmission processes</th>
<th>Meso-level processes</th>
<th>Macro-level processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man entrepreneur</td>
<td>The patient or healthcare worker is available, but not always at the appropriate time.</td>
<td>The patient or healthcare worker is available, but not always at the appropriate time.</td>
<td>The healthcare worker community resists this service.</td>
<td>The society may be aware, but is not deliberately made aware of this service.</td>
</tr>
<tr>
<td></td>
<td>The patient or healthcare worker is normally available at the appropriate time</td>
<td>The patient or healthcare worker is normally available at the appropriate time</td>
<td>The healthcare worker community avoids this service.</td>
<td>The society is deliberately made aware of this service.</td>
</tr>
<tr>
<td>Machine experiment</td>
<td>The physical infrastructure is neither appropriate nor available.</td>
<td>The internet service, mobile phone network etc. is not available anymore.</td>
<td>The physical infrastructure is not appropriate nor available.</td>
<td>The interorganizational system can not accommodate the telemedicine service.</td>
</tr>
<tr>
<td></td>
<td>The telemedicine device/ mobile phone/ app etc. is used on an ad hoc/ experimental basis.</td>
<td>The internet service, mobile phone network etc. is confirmed to be available.</td>
<td>The physical infrastructure is either not appropriate or not available.</td>
<td>The interorganizational system's technology and resources are not synchronized.</td>
</tr>
<tr>
<td>Material uncertain quality</td>
<td>The data are of varying and most often unacceptable quality.</td>
<td>The data/images/video etc.sometimes get lost.</td>
<td>The electronic medical records (EMRs) do not exist / exist only in paper format.</td>
<td>The electronic health records (EHRs) do not exist / exist only in paper format.</td>
</tr>
<tr>
<td></td>
<td>The data are of varying but most often acceptable quality.</td>
<td>The data/images/video etc.donot get lost.</td>
<td>The electronic medical records (EMRs) are kept and stored by user while telemedicine process is in progress.</td>
<td>The electronic health records (EHRs) of telemedicine service are not kept on record after completion of the service.</td>
</tr>
<tr>
<td>Method ad hoc</td>
<td>The work procedure is executed on a trial and error basis.</td>
<td>The network service is sometimes available. Not a specific service provider.</td>
<td>The change management process has not been considered.</td>
<td>The policies and strategies are ignored at this stage.</td>
</tr>
<tr>
<td></td>
<td>The work procedure differs from person to person and case to case.</td>
<td>The network service is mostly available. Not a specific service provider.</td>
<td>The change management process was ineffective. The process regressed back to old method after the pilot phase.</td>
<td>The policies and strategies are in conflict with the telemedicine services.</td>
</tr>
<tr>
<td>Money</td>
<td>The operational costs are not considered by developers/entrepreneur.</td>
<td>The cost of transmission service are not considered by developers/entrepreneur.</td>
<td>The interorganizational business model has never been considered</td>
<td>The national business case has never been considered</td>
</tr>
<tr>
<td>R&D/entrepreneur</td>
<td>The operational costs are considered and covered by seed funds while service is in development.</td>
<td>The cost of transmission service are considered and covered by seed funds whilst service is in development phase.</td>
<td>The interorganizational business model has never been considered for the telemedicine service.</td>
<td>The national business case has never been considered</td>
</tr>
</tbody>
</table>

Figure F.5: Capability statement sheet for maturity level 1
<table>
<thead>
<tr>
<th>Man champion</th>
<th>The patient or healthcare worker wants to execute this process.</th>
<th>The patient or healthcare worker wants to execute this process.</th>
<th>The healthcare worker community’s perception is that this service is easy to use.</th>
<th>The society is willing to receive this service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The patient or healthcare worker executes this process consistently.</td>
<td>The patient or healthcare worker executes this process consistently.</td>
<td>The healthcare worker community’s perception is that this service will contribute to job performance.</td>
<td>The society wants to receive this service.</td>
<td></td>
</tr>
<tr>
<td>The telemedicine device/mobile phone/app etc. is effective and available, but still undergoes frequent modifications.</td>
<td>The telemedicine device/mobile phone/app etc. is effective, reliable and available.</td>
<td>The internet service, mobile phone network etc. transmits data effectively.</td>
<td>The interorganizational system’s technology and resources are sometimes synchronized.</td>
<td></td>
</tr>
<tr>
<td>The telemedicine device/mobile phone/app etc. is effective, reliable and available.</td>
<td>The telemedicine device/mobile phone/app etc. is effective, reliable and available.</td>
<td>The internet service, mobile phone network etc. transmits data effectively at an acceptable speed.</td>
<td>The telemedicine device/mobile phone/app etc. is effective, reliable and available.</td>
<td></td>
</tr>
<tr>
<td>The data are created consistently at a mostly acceptable quality.</td>
<td>The data/images/video etc. can easily be viewed by an unauthorized person.</td>
<td>The electronic medical records (EMRs) are kept on the telemedicine device.</td>
<td>The electronic health records (EHRs) of telemedicine service are available to all facilities that took part in process, but not centrally. Duplicates of the record are kept by respective facilities.</td>
<td></td>
</tr>
<tr>
<td>The data are created consistently, always at an acceptable quality.</td>
<td>The data/images/video etc. cannot easily be viewed by an unauthorized person.</td>
<td>The electronic medical records (EMRs) are kept on a local database specific to the telemedicine service.</td>
<td>The electronic health records (EHRs) of telemedicine service are available centrally to all facilities that took part in process.</td>
<td></td>
</tr>
<tr>
<td>The work procedure is executed repeatably.</td>
<td>The network service is delivered by a specific (set of) service provider(s) with varying service levels.</td>
<td>The change management process is executed by an entrepreneur.</td>
<td>The policies and strategies: the service are adapted to fit the strategies.</td>
<td></td>
</tr>
<tr>
<td>The work procedure is at least as effective as the traditional healthcare service.</td>
<td>The network service is delivered by a specific (set of) service provider(s) with consistent service levels.</td>
<td>The change management process is driven by an (at least) self-appointed champion.</td>
<td>The policies and strategies: the service are adapted to fit the strategies.</td>
<td></td>
</tr>
<tr>
<td>The operational costs will be covered on short term by seed funds.</td>
<td>The cost of transmission service will be covered on short term by seed funds.</td>
<td>The interorganizational business model has been considered for the interorganization that spans the telemedicine service.</td>
<td>The national business case: pockets of organized value creation.</td>
<td></td>
</tr>
<tr>
<td>The operational costs will be covered on long term by seed funds.</td>
<td>The cost of transmission service will be covered on long term by seed funds.</td>
<td>The interorganizational business model includes all stakeholders.</td>
<td>The national business case: nationally organized value creation.</td>
<td></td>
</tr>
</tbody>
</table>

Figure F.6: Capability statement sheet for maturity level 2
<table>
<thead>
<tr>
<th></th>
<th>Capture, Diagnose/ Analyze, React</th>
<th>Data Transmission processes</th>
<th>Meso-level processes</th>
<th>Macro-level processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man</td>
<td>The patient or healthcare worker is trained to execute this telemedicine process as standard procedure.</td>
<td>The patient or healthcare worker is trained to execute this telemedicine process as standard procedure.</td>
<td>The healthcare worker community considers this service as mandatory.</td>
<td>The society (a sufficiently large portion of) already used this service for most issues to be addressed.</td>
</tr>
<tr>
<td>Machine</td>
<td>The telemedicine device/ mobile phone/ app etc. is interoperating with upstream and downstream devices and applications.</td>
<td>The internet service, mobile phone network etc. capacity (bandwidth) was considered in the design of the service.</td>
<td>The physical infrastructure is set up specifically for this service and is always available.</td>
<td>The interorganizational system’s interoperability standards are defined.</td>
</tr>
<tr>
<td>Material</td>
<td>The data’s physical quality standards are defined within context of this service.</td>
<td>The data/ images/ video etc. are transmitted according to a standard transmissions protocol.</td>
<td>The electronic medical records (EMRs) are linked with hospital information system (HIS).</td>
<td>The electronic health records (EHRs) are linked to an existing EHR management system.</td>
</tr>
<tr>
<td>Method</td>
<td>The work procedure is defined and documented as standard.</td>
<td>The network service level-agreements (SLAs) are defined.</td>
<td>The change management process is driven by someone that is formally and permanently appointed for this purpose.</td>
<td>The policies and strategies: strategies are adapted to fit the telemedicine services.</td>
</tr>
<tr>
<td>Money</td>
<td>The operational costs are included partially as a standard budget item.</td>
<td>The cost of transmission service are included partially as a standard budget item.</td>
<td>The interorganizational business model: the way in which value is created is clear and sustainable.</td>
<td>The national business case: national funding structures are in place.</td>
</tr>
</tbody>
</table>

Figure F.7: Capability statement sheet for maturity level 3
<table>
<thead>
<tr>
<th>Performance Management</th>
<th>Data Transmission Processes</th>
<th>Meso-level Processes</th>
<th>Macro-level Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capture, Diagnose/Analyze, React</td>
<td>The patient or healthcare worker is measured when and how he does this.</td>
<td>The healthcare worker community’s adoption of the service is measured.</td>
<td>The society: the impact on the society is known and monitored.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machine Monitored</th>
<th>Data Transmission Processes</th>
<th>Meso-level Processes</th>
<th>Macro-level Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The telemedicine device/ mobile phone/app etc. ‘s availability is monitored.</td>
<td>The internet service, mobile phone network etc. ‘s reliability and availability can be measured.</td>
<td>The physical infrastructure ‘s availability is monitored.</td>
<td>The interorganizational system: KPIs are defined with the new organizational design in mind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material Quality Control</th>
<th>Data Transmission Processes</th>
<th>Meso-level Processes</th>
<th>Macro-level Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The data’s physical quality are measured.</td>
<td>The data/ images/video etc.can be tracked throughout the telemedicine service.</td>
<td>The electronic medical records (EMRs) are managed in such a way that the can be transformed into management information.</td>
<td>The electronic health records (EHRs) are managed in such a way that they can be transformed into management information.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method Performance Control</th>
<th>Data Transmission Processes</th>
<th>Meso-level Processes</th>
<th>Macro-level Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The work procedure: Relevant and realistic efficiency measures (outputs and inputs) are defined.</td>
<td>The network service levels are measured.</td>
<td>The change management process is linked to key performance indicators (KPIs).</td>
<td>The policies and strategies are linked to health indicators.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Money Accountability</th>
<th>Data Transmission Processes</th>
<th>Meso-level Processes</th>
<th>Macro-level Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operational costs are a reporting item of the accounting system.</td>
<td>The cost of transmission service are a reporting item of the accounting system.</td>
<td>The interorganizational business model: Costs and benefits are realistically measured.</td>
<td>The national business case: The health-economic impact of the service are measured.</td>
</tr>
</tbody>
</table>

Figure F.8: Capability statement sheet for maturity level 4
CAPABILITY STATEMENT SHEETS

<table>
<thead>
<tr>
<th>Man</th>
<th>Money</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Macro-level processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>The patient or healthcare worker performance is continuously improved through the execution of this service.</td>
<td>The operational costs: Non-value-adding activities are continuously eliminated.</td>
<td>The telemedicine device: mobile phone/ app etc.’s maintenance and upgrades are executed effectively and timely.</td>
<td>The data: Causes of unacceptable quality are continuously identified.</td>
<td>The work procedure’s effectiveness is continuously improved.</td>
<td>The society: The service is continuously improved and scaled up to increase benefit to the society.</td>
</tr>
<tr>
<td>The healthcare worker community: The service contributes to the professional development and task shift of the users.</td>
<td>The cost of transmission service: Continuous efforts by service provider to bring down costs.</td>
<td>The telemedicine device: mobile phone/ network etc.’s preventative maintenance and upgrades are executed effectively and timely.</td>
<td>The data/ images/ video: Causes of delays and incorrectly transmitted data are identified.</td>
<td>The network service levels are continuously maintained.</td>
<td>The interorganizational system is continuously maintained and expanded whenever needed.</td>
</tr>
<tr>
<td>The patient or healthcare worker contributes to the training and development of peers towards doing this.</td>
<td>The cost of transmission service: Continuous efforts by service provider to bring down costs.</td>
<td>The internet service, mobile phone network etc.: Deviations from acceptable levels of availability and reliability are continuously addressed.</td>
<td>The data/ images/ video: Causes of delays and incorrectly transmitted EHRs are continuously addressed.</td>
<td>The network service levels are continuously maintained.</td>
<td>The electronic infrastructure is scalable (can easily be expanded to accommodate more instances of this service).</td>
</tr>
<tr>
<td>The healthcare worker community: Continuous capacity building of the healthcare worker community.</td>
<td>The interorganizational system is continuously scalable (can easily be expanded to accommodate more instances of this service).</td>
<td>The physical infrastructure is continuously maintained and upgraded whenever needed.</td>
<td>The electronic health records (EMRs): Continuous management decisions related to telemedicine services are based on this information.</td>
<td>The change management process continuously improves on key performance targets.</td>
<td>The interorganizational system is continuously expanded.</td>
</tr>
<tr>
<td>The patient or healthcare worker contributes to the training and development of peers towards doing this.</td>
<td>The national business case: The service has a significant socio-economic impact on the nation.</td>
<td>The physical infrastructure is scalable (can easily be expanded to accommodate more instances of this service).</td>
<td>The electronic health records (EHRs): Continuous management decisions related to telemedicine services are based on this information.</td>
<td>The policies and strategies facilitate the sharing of best practices and management of knowledge of this service.</td>
<td>The national business case: The impact of the service on the socio-economic well-being of the nation is continuously expanded.</td>
</tr>
<tr>
<td>The data: Causes of delays and incorrectly transmitted data are identified.</td>
<td>The interorganizational system is continuously scalable (can easily be expanded to accommodate more instances of this service).</td>
<td>The electronic medical records (EMRs): Ad hoc management decisions related to telemedicine services are based on this information.</td>
<td>The electronic health records (EHRs): Continuous management decisions related to telemedicine services are based on this information.</td>
<td>The policies and strategies continuously facilitate the dissemination of best practices.</td>
<td>The interorganizational system is continuously expanded.</td>
</tr>
<tr>
<td>The data: Causes of unacceptable quality are continuously identified.</td>
<td>The interorganizational system is continuously expanded.</td>
<td>The electronic medical records (EMRs): Continuous management decisions related to telemedicine services are based on this information.</td>
<td>The telecommunication device: mobile phone/ app etc.’s capabilities, reliability and availability are continuously improved.</td>
<td>The policies and strategies continuously facilitate the dissemination of best practices.</td>
<td>The national business case: The impact of the service on the socio-economic well-being of the nation is continuously expanded.</td>
</tr>
</tbody>
</table>

Figure F.9: Capability statement sheet for maturity level 5
<table>
<thead>
<tr>
<th>Capture / Diagnose / React</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient/ doctor/ nurse etc.</td>
<td>Telemedicine device/ mobile phone etc.</td>
<td>EHR data/ images/ video etc.</td>
<td>Work procedure</td>
<td>Operational costs</td>
</tr>
</tbody>
</table>

Actions to Consider

<table>
<thead>
<tr>
<th>Current Maturity Level</th>
<th>Actions to Consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a [Entrepreneur]</td>
<td>Put measures in place to motivate user to execute this process.</td>
</tr>
<tr>
<td>1b [Entrepreneur]</td>
<td>Put measures in place to motivate user to execute this process consistently.</td>
</tr>
<tr>
<td>2a [Entrepreneur]</td>
<td>Communicate to user that the telemedicine service is the standard in this context.</td>
</tr>
<tr>
<td>2b [Entrepreneur]</td>
<td>Manage this telemedicine service as standard.</td>
</tr>
<tr>
<td>3a [Standard]</td>
<td>Determine appropriate and measurable metrics.</td>
</tr>
<tr>
<td>3b [Standard]</td>
<td>Continuously administer these metrics and compile timely reports.</td>
</tr>
<tr>
<td>4a [Professional]</td>
<td>Support the user in improving the way in which he executes the service.</td>
</tr>
<tr>
<td>4b [Professional]</td>
<td>Contributes to the training and development of peers towards doing this.</td>
</tr>
<tr>
<td>5a [Professional]</td>
<td>Maintain target maturity state.</td>
</tr>
<tr>
<td>5b [Professional]</td>
<td>Maintain target maturity state.</td>
</tr>
</tbody>
</table>

Guidelines for further actions: diagnose, analyse and react processes

Figure F.10: Guidelines for further actions: diagnose, analyse and react processes.
APPENDIX F. CAPABILITY STATEMENT SHEETS

<table>
<thead>
<tr>
<th>Transmit</th>
<th>Man</th>
<th>Machine</th>
<th>Material</th>
<th>Method</th>
<th>Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>patient/ doctor/ nurse etc.</td>
<td>use (s)</td>
<td>dimension data network</td>
<td>to … EHR data/ images/ video etc.</td>
<td>acco r-</td>
<td>dimension data service</td>
</tr>
<tr>
<td>1</td>
<td>Current</td>
<td>Maturity Level</td>
<td>Actions to consider</td>
<td>Current</td>
<td>Maturity Level</td>
</tr>
<tr>
<td>entrepreneur</td>
<td>Put measures in place to motivate user to execute this process.</td>
<td>Test availability of data transmission.</td>
<td>Define a transmission protocol.</td>
<td>Test effectiveness of data transmission.</td>
<td>Define a transmission protocol.</td>
</tr>
<tr>
<td>champion</td>
<td>Communicate to users that the telemedicine service is the standard in this context.</td>
<td>Determine peak bandwidth. Test effectiveness of data transmission under these circumstances.</td>
<td>Define a transmission protocol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>champion</td>
<td>Manage this telemedicine service as standard.</td>
<td>Consider interface specifications of all devices in this service.</td>
<td>Consider encryption and decryption protocol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>Determine appropriate and measurable metrics.</td>
<td>Define measures for availability and reliability.</td>
<td>Put measures in place to track progress of telemedicine service.</td>
<td>Development measures to monitor adherence to service level agreements.</td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td>Continuously administer these metrics and compile timely reports.</td>
<td>Put processes in place to continuously measure availability and reliability.</td>
<td>Link identities of users to tracking of telemedicine service.</td>
<td>Development measures to monitor adherence to service level agreements (SLAs).</td>
<td></td>
</tr>
<tr>
<td>professional</td>
<td>Support the user in improving the way in which he executes the service.</td>
<td>Put processes in place to ensure timely upgrades and licence renewal.</td>
<td>can be tracked throughout the telemedicine service.</td>
<td>Ensure that service level agreements are maintained.</td>
<td>Continuously scrutinize transmission costs.</td>
</tr>
<tr>
<td>professional</td>
<td>contributes to the training and development of peers towards doing this.</td>
<td>Pro-actively maintain devices.</td>
<td>and identities of persons who viewed and edited it, can be tracked.</td>
<td>Ensure that service level agreements are maintained.</td>
<td>Continuously scrutinize transmission costs.</td>
</tr>
</tbody>
</table>

Figure F.11: Guidelines for further actions: transmit data process
List of References

249

Elsevier (2013). Peer Review. Available at: http://www.elsevier.com/about/publishing-guidelines/peer-review

Fraser, P., Moultrie, J. and Holdway, R. (2001). Exploratory studies of a proposed design maturity model.

Haris, F. (2010). IT Infrastructure Maturity Model: A Roadmap to Agile IT Infrastructure. MSc, University of Twente.

ITChannel (2013). Definition Service Level Agreement (SLA). Available at: http://searchitchannel.techtarget.com

Lampe, K. and Mäkelä, M. (2012). EUnetHTA WP4-HTA Core Model for Medical and Surgical Interventions.

Telehealth (2012). Available at: en.wikipedia.org/wiki/Telehealth

Triegaardt, M., Doubell, A. and Van Dyk, L. (2011). A telemedicine system to increase patient’s access to specialised cardiac care for assisting remote diagnosis. In: Proce-

Triegaardt, M. and Van Dyk, L. (2012). Yardsticks for telemedicine maturity: A tele-

bourgh.

medicine system implementation. In: International Conference on Industrial Engineer-
ing, Systems Engineering and Engineering Management for Sustainable Global Deve-
lopment. Spier.

