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Summary 

 

 
Modified atmosphere packaging (MAP) is a dynamic process of altering gaseous composition 

inside a package. It relies on the interaction between the respiration rate (RR) of the 

produce, and the transfer of gases through the packaging material. These two processes are 

dependent on numerous factors such as storage temperature, film thickness and surface 

area, produce weight as well as free headspace within the pack. Therefore, in order to 

achieve the desired modified atmosphere in a given package, it is important to understand 

the three basic disciplines of MAP, namely produce physiology, polymer engineering, and 

converting technology.  

In this study the effects of storage conditions and duration on physiological responses i.e. 

respiration (RR) and transpiration rate (TR) of two pomegranate cultivars ‘Acco’ and 

‘Herskawitz’, were investigated and mathematical models were developed to predict these 

physiological responses at given time and storage conditions. The result of this study 

showed that RR of whole pomegranate fruit was significantly higher than that of fresh arils, 

and that temperature had a significant impact on the RR of both whole fruit and fresh arils. 

The influence of time, and the interaction between temperature and time also had significant 

influences on RR of fresh pomegranate arils. These findings highlight the significance of 

maintaining optimal cold-storage condition for packaged arils or whole fruit along the supply 

chain. In addition, mathematical models based on the Arrhenius-type equation and the 

power function equation coupled with Arrhenius-type equation accurately predicted the 

effect of temperature and the influence of time and temperature on the RR of fresh 

pomegranate arils for both cultivars. 

Furthermore, the results of experimental and model prediction studies showed that both 

relative humidity (RH) and storage temperature had significant effects on TR. RH was the 

variable with the greatest influence on TR, and it was observed that arils were best kept at 5 

°C and 96% RH to maintain quality for 8 days. The applicability of the transpiration model 

developed was validated based on prediction of TR of pomegranate arils under different 

combinations of storage conditions. The model adequately predicted TR and provides a 

useful tool towards understanding the rate of water loss in fresh pomegranate arils as 

affected by storage conditions and duration. 
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The effect of passive-MAP engineering design parameters as a function of produce weight 

contained, storage temperature and duration on fresh pomegranate arils was investigated. 

The result showed that produce weight of aril content, temperature and the interaction 

between temperature and time had slight but insignificant effects on measured 

physicochemical quality attributes. However, headspace gas concentration was significantly 

influenced by produce weight and storage temperature. Oxygen (O2) composition decline 

below 2% after day 3 and 5 at 15 and 10 ºC, respectively, while samples at 5 °C did not 

reach below 2% throughout the study. On the other hand, CO2 levels increased significantly 

during storage for all packaging conditions. This study showed the importance of a 

systematic approach to the design of optimal MAP systems. At lowest storage temperature 

the inability to achieve desired modified atmosphere (MA) required for optimal storage of 

arils despite the increase in produce weight, suggests that the use of active gas modification 

(gas flushing with recommended atmosphere) would be necessary. However, the present 

results show that at higher temperature macro/micro perforations would be required on 

the polymeric films used in the present study in order to avoid critical levels of O2 and CO2.  

The influence of passive MAP, storage temperature and duration on volatile composition 

and evolution of packaged pomegranate arils was investigated. The results showed that 

changes in aroma compounds were dependent on cultivar differences, storage condition and 

duration. Using GC-MS analysis of pomegranate juice HS-SPME extracts, a total of 18 and 17 

volatiles were detected for ‘Herskerwitz’ and ‘Acco’, respectively. Furthermore, flavour life 

(7 days) was shorter than the postharvest life (10 days) for both cultivars. There was a 

decrease in volatile composition during the storage period (aldehydes < alcohols < esters) 

while the concentration (%) and composition of ethyl esters increased with storage time.  

These results highlight the need for a more precise definition of flavour shelf life for MA-

packaged pomegranate arils and other packaged fresh produce. The importance of 

maintaining optimal cold storage condition, selection of appropriate packaging materials and 

a systematic approach to the design and application of MAP systems has also been shown. 
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Opsomming 

 

 
Gemodifiseerde atmosfeer-verpakking (GAV) is ’n dinamiese proses waartydens die 

gassamestelling binne-in ’n verpakking gewysig word. Dit berus op die wisselwerking tussen 

die respirasietempo (RT) van die produkte en die oordrag van gasse deur die 

verpakkingsmateriaal. Hierdie twee prosesse is van verskeie faktore soos 

bergingstemperatuur, dikte van die film en oppervlakte, gewig van die produkte asook vry 

boruimte binne-in die pakkie afhanklik. Om dus die gewenste gemodifiseerde atmosfeer in ’n 

gegewe verpakking te verkry, is dit belangrik om die drie fundamentele dissiplines van GAV 

te begryp, naamlik produkfisiologie, polimeerontwerp, en omsettingstegnologie.  

In hierdie studie is die gevolge van bergingstoestande en -duur op fisiologiese reaksie, 

met ander woorde, respirasie- (RT) en transpirasietempo (TT) van twee geselekteerde 

granaatkultivars ‘Acco’ en ‘Herskawitz’, ondersoek en wiskundige modelle is ontwikkel om 

ons in staat te stel om hierdie fisiologiese reaksies by gegewe tyd- en bergingstoestande te 

voorspel. Die resultaat van hierdie studie het aangetoon dat die respirasietempo (RT) van 

heel granaatvrugte aansienlik hoër was as die RT van vars arils, en temperatuur het  

beduidende uitwerking op RT van beide heel vrugte en vars arils gehad. Die invloed van tyd, 

en die wisselwerking tussen temperatuur en tyd het ook ’n beduidende invloed op die RT 

van vars granaatarils gehad. Hierdie bevinding beklemtoon die belang van die handhawing van 

optimale koelbewaringstoestande vir verpakte arils of heel vrugte met die aanvoerketting 

langs. Daarbenewens wiskundige modelle wat gebaseer op die Arrhenius-tipe vergelyking en 

die magsfunksie-vergelyking gepaard met Arrhenius-tipe vergelyking, die uitwerking van 

temperatuur en die invloed van tyd en temperatuur op die RT van vars granaatarils vir beide 

kultivars onderskeidelik voldoende en akkuraat voorspel. 

Afgesien die resultate van eksperimentele en modelvoorspellings die studies aangetoon 

dat beide relatiewe humiditeit (RH) en bergingstemperatuur ’n beduidende uitwerking op 

TT het. RH was die veranderlike met die grootste invloed op TT, en it was waargeneem dat 

dit die beste was om arils teen 5 °C en 96% RH te bewaar (8 dae). Die toepaslikheid van die 

transpirasiemodel wat ontwikkel is, is bevestig op grond van voorspelling van TT van 

granaatarils onder verskillende kombinasies van bergingstoestande. Die model het TT 

voldoende voorspel en sou ’n bruikbare instrument wees ten einde die waterverliestempo 
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in vars granaatarils en ander vars produkte, soos deur bergingstoestande en duur beïnvloed, 

te begryp. 

Die uitwerking van passiewe-GAV ontwerpparameters as ’n funksie van gewig van die 

produkte, bergingstemperatuur en duur op vars granaatarils is ondersoek. Dit het aan die lig 

gebring dat gewig van die produkte, temperatuur en die wisselwerking tussen temperatuur 

en tyd ’n geringe maar onbeduidende uitwerking op gemete fisikochemiese gehalte-

eienskappe gehad het. Die gaskonsentrasie in die boruimte is betekenisvol beïnvloed deur 

gewig van die produkte en bergingstemperatuur. Die O2-samestelling het tot benede 2% 

gedaal na 3 en 5 dae by 15 en 10 ºC, onderskeidelik, terwyl monsters by 5 °C deur die 

studie heen nooit laer as 2% was nie. Aan die ander kant, CO2-vlakke het gedurende berging 

betekenisvol verhoog wat betref alle verpakkingstoestande. Hierdie studie het die 

belangrikheid van ’n sistematiese benadering by die ontwerp van ’n optimale GAV-stelsel 

aangetoon. By die laagste bergingstemperatuur dui die onvermoë om die gewenste 

gemodifiseerde atmosfeer (GA) wat vir optimale berging van arils benodig word, te verkry – 

ondanks die toename in die gewig van die produkte – daarop dat die gebruik van aktiewe 

gasmodifisering (gasspoeling met aanbevole atmosfeer) nodig sou wees. Egter die huidige 

uitslae aangetoon dat by hoër temperatuur, sou makro/mikroperforasies op die 

polimeerfilms wat gebruik word in die onderhawige studie egter nodig wees ten einde 

kritiese vlakke van O2 en CO2 te verhoed.  

Die invloed van passiewe GAV, bergingstemperatuur en duur op onstabiele samestelling 

en evolusie van verpakte granaatarils is ondersoek. Die resultate aangetoon dat 

veranderinge in aromaverbindings afhanklik was van kultivarverskille, bergingstoestande en 

duur. Met behulp van GC-MS-analise van granaatsap HS-SPME-ekstrakte, het ons ’n totaal 

van 18 en 17 vlugtige stowwe vir ‘Herskawitz’ en ‘Acco’, onderskeidelik bespeur. Verder het 

ons waargeneem dat die smaakleeftyd (7 dae) korter was as die na-oesleeftyd (10 dae) vir 

beide kultivar. Daar was ’n afname in vlugtige samestelling (aldehiede < alkohole < esters) 

terwyl die konsentrasie (%) en samestelling van etielesters het met bergingstyd verhoog.  

Hierdie resultate het die aandag gevestig op die behoefte aan ’n meer presiese definisie 

van geur-raklewe vir GA-verpakte granaatarils en ander verpakte vars produkte. Die belang 

van die handhawing van die optimale koelbewaringstoestand, seleksie van geskikte 

verpakkingsmateriaal en ’n sistematiese benadering tot die ontwerp van ’n optimale GAV-

stelsel, is ook beskryf. 
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CHAPTER 1 

 

INTRODUCTION 

 

Almost all the world‟s pomegranate is cultivated in the northern hemisphere, with India 

being the world's largest producer of pomegranates with an estimated annual production of 

about 900,000 tons (INMA, 2008). During 2005/2006, the global export earnings from 

pomegranate were estimated at US$ 188 million (GOI-UNCTAD DFID, 2007). The harvest 

dates of pomegranate in the northern hemisphere are between September and November 

depending on the cultivar (Gil et al., 1996a; López-Rubira et al., 2005). This opens a window 

of opportunity when the fruit is not available (due to alternating seasons across the 

hemisphere), for the southern hemisphere including South Africa to export into the 

northern hemisphere. 

During the last decade, there has been a remarkable increase in the commercial farming of 

pomegranate fruits globally, due to the potential health benefits of the fruit (Hess-Pierce & 

Kader, 2003; Holland & Bar Ya‟akov, 2008) such as, its high antioxidant, anti-mutagenic, anti-

hypertension activities and the ability to reduce liver injury (Viduda-Martos et al., 2010). 

Pomegranate anthocyanins have been demonstrated to scavenge hydroxyl (OH-) and 

superoxide (O-) radicals, preventing lipid peroxidation in rat brain homogenates (Noda et al., 

2002). Also, the plasma antioxidant status of humans fed pomegranate juice was observed to 

be higher than those of the control subjects (Seeram et al., 2004). This observation suggests 

that pomegranate polyphenolic compounds are able to elevate the antioxidant capacity of 

the body. Pomegranate fruit is also known for its anti-inflammatory and anti-atherosclerotic 

effect activity against osteoarthritis, prostate cancer, heart disease and HIV-1 (Malik et al., 

2005; Neurath et al., 2005; Sumner et al., 2005). The edible portion of pomegranate is an 

excellent dietary source it contains a significant proportion of organic acids, soluble solids, 

polysaccharides, vitamins, fatty acids and mineral elements of nutritional significance (Ewaida, 

1987; Fadavi et al., 2006). Furthermore, different varieties of pomegranate fruit have been 

report to have a high content vitamin C (Dumlu & Gürkan, 2007; Opara et al., 2009), 

significant antimicrobial effects (Opara et al., 2009) and various industrial applications this 

include; their use as dyes, food colourants, inks, tannins for leather and juice (Ergun & Ergun, 

2009). 
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In spite of the numerous health benefits, pomegranate consumption is still limited, due to 

the difficulties of extracting the arils from the fruit and, the irritation of phenolic metabolites‟ 

which stain the hands during preparation of seeds (Gil et al., 1996b). Fruit disorder such as 

sun-burnt husks, splits and cracks, and husk scald on the whole fruit reduces marketability 

and consumer acceptance (Saxena et al., 1987; Defilippi et al., 2006; Sadeghi & Akbarpour, 

2009). Hence, minimally processed pomegranate fruit (ready-to-eat arils), presents a more 

appealing produce to consumers than whole fruit (Gil et al., 1996a; Gil et al., 1996b; 

Sepúlveda et al., 2000; Ergun & Ergun, 2009), and increases the prospect of production and 

consumption of pomegranate. Therefore, fresh arils could be an excellent way to obtain a 

commercial profit from unacceptable whole fruit with disorder such as sun-burn husk and 

cracks. 

Modified atmosphere packaging is an active or passive dynamic process of altering gaseous 

composition inside a packaged. It relies on the interaction between the respiration rate (RR) 

of the fresh or fresh-cut produce and exchange of gases through the packaging material 

(Fonseca et al., 2002). Application of MAP for fresh produce slow down physiological 

processes, delay softening and ripening and a reduced incidence of various physiological 

disorders and pathogenic infestations (Saltveit, 2003). However, when fruit respiration does 

not correlate to the permeability properties of packaging film, increase in the concentration 

of CO2 will build up resulting in a state of anaerobic respiration and ethanol accumulation in 

the fruit. This results in the development of off-flavours and decay of fruit while in the 

package unit (Fonseca et al., 2002; Ares et al., 2007).  

Studies have shown that modified atmosphere packaging (MAP), and controlled 

atmosphere storage have the ability to delay quality losses and thus extend shelf life of fresh 

or minimally processed pomegranate arils (Artés et al., 2000; Sepúlveda et al., 2000; López-

Rubira et al., 2005). Current research on aroma and flavour of pomegranate fruit 

concentrated on identification of unique volatiles produced by ripe pomegranate fruit (Calín-

Sánchez et al., 2011; Melgarejo et al., 2011; Mayuoni-Kirshinbanum et al., 2012). Calín-

Sánchez et al. (2011) and Melgarejo et al. (2011) suggested that consumer liking of 

pomegranate juices could be linked with the high levels of monoterpenes. This was 

corroborated by report of Mayuoni-Kirshinbanum et al., (2012), wherein 5 out the 12 

detected „Wonderful‟ pomegranate aroma-active compounds by the GC-O sniffing panellists 

were terpens. Thus, this suggests that class of aroma compound and concentration plays a 
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role among cultivar preference for pomegranate (Melgarejo et al., 2011). However, increased 

interest in minimally processed and fresh-cut pomegranate arils with high nutritional value 

and improved arils quality has highlighted our limited knowledge of factors that affect flavour 

development in modified atmosphere packaged pomegranate arils. 

 

However, there is limited information on the quantitative description of physiological 

response of fresh arils via mathematical modeling, which is essential for the design of MAP. 

These studies were based on empirical rather than systematic approach as no MAP design 

was reported. The aim of the current study was to investigate the application of MAP for 

postharvest storage of pomegranate arils. Highlight the quality changes in physicochemical 

properties of pomegranate arils during storage. Better understanding of the responses of 

arils to MAP will extend the shelf or storage life of the fruit. Assist all the role players in the 

pomegranate value chain including fruit producers, suppliers and processors in selecting 

packaging materials and storage conditions, in order to maintain physicochemical, sensory 

and microbial stability of minimally processed pomegranate arils. 

 

References 

 

Ares, G., Lareo, C. & Lema, P. (2007). Modified atmosphere packaging for postharvest 

storage of mushrooms. A review. Fresh Produce, 1, 32-40. 

Artés, F., Villaescusa, R. & Tudela, J.A. (2000). Modified atmosphere packaging of 

pomegranate. Journal of Food Science, 65, 1112-1116. 

Caleb, O.J., Opara, U.L. & Witthuhn, C.R. (2012). Modified atmosphere packaging of 

pomegranate fruit and arils: a review. Food and Bioprocess Technology, 5, 15-30. 

Calín-Sánchez, A., Martínez, J.J., Vázquez-Araú L., Burló, F., Melgarejo, P., & Carbonell-

Barrachina, A.A. (2011). Volatile composition and sensory quality of Spanish 

pomegranates (Punica granatum L.). Journal of Science Food Agriculture, 91, 586-992. 

Defilippi, B.G., Whitaker, B.D., Hess-Pierce, B.M. & Kader, A.A. (2006). Development and 

control of scald on Wonderful pomegranate during long-term storage. Postharvest Biology 

and Technology, 41, 234-243. 

Stellenbosch University  http://scholar.sun.ac.za



5 

 

 

Dumlu, M.U. & Gürkan, E. (2007). Elemental and nutritional analysis of Punica granatum from 

Turkey. Journal of Medical Food, 10, 392-395. 

Ergun, M. & Ergun, N. (2009). Maintaining quality of minimally processed pomegranate arils 

by honey treatments. British Food Journal, 111, 396-406. 

Ewaida, E.H. (1987). Nutrient composition of “Taifi” pomegranate (Punica granatum L). 

Fragments and their suitability for the production of jam. Persian Gulf Science Research 

Agricultural and Biological Sciences, 3, 367-378. 

Fadavi, A., Barzegar, M. & Azizi, H. (2006). Determination of fatty acids and total lipid 

content in oilseed of 25 pomegranate variaties grown in Iran. Journal of Food Composition 

and Analysis, 19, 676-680. 

Fonseca, S.C., Oliveira, F.A.R. & Brecht, J.K. (2002). Modeling respiration rate of fresh fruits 

and vegetables for modified atmosphere packages: a review. Journal of Food Engineering, 52, 

99-119. 

Gil, M.I., Artés, F. & Toma-Barberan, F.A. (1996a). Minimal processing and modified 

atmosphere packaging effects on pigmentation of pomegranate seeds. Journal of Food 

Science, 61, 161-164. 

Gil, M.I., Martínez, J.A. & Artés, F. (1996b). Minimally processed pomegranate seeds. 

Lebensmittel-Wissenschaft und Technologie, 29, 708-713.  

GOI-UNCTAD DFID (2007). Project on strategies and preparedness for trade and 

globalization in India. Agricultural Finance Corporation Ltd. 

Hess-Pierce, B. & Kader, A. (2003). Responses of „wonderful‟ pomegranates to controlled 

atmosphere. Acta Horticulturae, 600, 751-757. 

Holland, D. & Bar-Ya‟akov, I. (2008). The pomegranate: New interest in an ancient fruit. 

Chronica Horticulturae, 48, 12-15. 

INMA (2008). Iraq – a strategy for pomegranate, Agribusiness Program, USAID. 

López-Rubira, V., Conesa, A., Allende, A. & Artés, F. (2005). Shelf life and overall quality of 

minimally processed pomegranate arils modified atmosphere packaged and treated with 

UV-C. Postharvest Biology and Technology, 37, 174-185. 

Malik, A., Afaq, F., Sarfaraz, S., Adhami, V.M., Syed, D.N. & Mukhtar, H. (2005). Pomegranate 

fruit juice for chemoprevention and chemotherapy of prostate cancer. Proceedings of the 

National Academy of Sciences, 102, 14813-14818. 

Mayuoni-Kirshinbaum, L., Tietel, Z., Porat, R. & Ulrich, D., 2012. Identification of aroma-

active compounds in „wonderful‟ pomegranate fruit using solvent-assisted flavour 

Stellenbosch University  http://scholar.sun.ac.za



6 

 

 

evaporation and headspace solid-phase micro-extraction methods. European Food Research 

Technology, 235, 277-283. 

Melgarejo, P., Sánchez, A.C., Vázquez-Araújo, L., Hernández, F., José-Martínez, J., Legua P. & 

Carbonell-Barrachina, A.A., 2011. Volatile composition of pomegranates from 9 Spainish 

cultivars using headspace solid phase microextraction. Journal of Food Science, 76, S114-

S120. 

Neurath, A.R., Strick, N., Li, Y. & Debnath, A.K. (2005). Punica granatum (pomegranate) juice 

provides an HIV-1 entry inhibitor and candidate topical microbicide. Annals of New York 

Academy of Sciences, 1056, 311-327. 

Noda, Y., Kaneyuki, T., Mori, A. & Packer, L. (2002). Antioxidant activities of pomegranate 

fruit extract and its anthocyanidins: Delphinidin, cyanidin and pelargonidin. Journal of 

Agricultural and Food Chemistry, 50, 166-171. 

Opara, U.L., Al-Ani, M.R. & Al-Shuaibi, Y.S. (2009). Physico-chemical properties, vitamin C 

content, and antimicrobial properties of pomegranate fruit (Punica granatum L.). Food and 

Bioprocess Technology, 2, 315-321. 

Sadeghi, H. & Akbarpour, V. (2009). Liquid acrylic and polyamide plastic covering affect 

quality and storability of pomegranate (cv. Malas-e-Saveh). Journal of Food, Agriculture and 

Environment, 7, 405-407. 

Saltveit, M. E. (2003). Is it possible to find an optimal controlled atmosphere? Postharvest 

Biology and Technology, 27, 3-13.  

Saxena, A.K., Manan, J.K. & Berry, S.K. (1987). Pomegranates: Post-harvest technology, 

chemistry and processing. Indian Food Packer, 41, 43-60. 

Seeram, N., Lee, R., Hardy, M. & Heber, D. (2005). Rapid large scale purification of 

ellagitannins from pomegranate husk, a by-product of the commercial juice industry. 

Separation and Purification Technology, 41, 49-55. 

Sepúlveda, E., Galletti, L., Sáenz, C. & Tapia, M. (2000). Minimal processing of pomegranate 

var. Wonderful. CIHEAM-Opitions Mediterraneennes, 42, 237-242. 

Sumner, M.D., Elliott-Eller, M., Weidner, G., Daubenmier, J.J., Chew, M.H., Marlin, R., Raisin, 

C.J. & Ornish, D. (2005). Effects of pomegranate juice consumption on myocardial 

perfusion in patients with coronary heart disease. American Journal of Cardiology, 96, 810-

814. 

Stellenbosch University  http://scholar.sun.ac.za



7 

 

 

Viuda-Martos, M., Fernández-López, J. & Pérez-Álvarez, J.A. (2010). Pomegranate and its 

many functional components as related to human health: A Review. Comprehensive reviews 

in Food Science and Food Safety, 9, 635-65. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 

Chapter 2 

Literature Review 
 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



8 

 

CHAPTER 2 

 

LITERATURE REVIEW  

 

A. Background 

 

Pomegranate (Punica granatum L.) belongs to the subclass Rosidae, order Myrtales, which is 

home to a few other fruits such as the guava (Psidium sp.) and feijoa (Feijoa sp.). However, 

pomegranate is unusual in being one of only two species in its genus, Punica, which is the sole 

genus in the family Punicaceae (ITIS, 2006). Recent molecular studies suggest a taxonomic 

reconsideration might place the genus Punica within the Lythraceae (Graham et aI., 2005). It 

is widely considered native to the Mediterranean basin up to northern India. It is capable of 

adapting to adverse climatic conditions and different soil types (Sepúlveda et al., 2000). 

Pomegranate fruit have an irregular rounded shape with rinds that vary from yellow, green 

or pink to bright deep red, depending on the stage of ripening and variety (Elyatem & Kader, 

1984; Holland et al., 2009). However, there are some exceptional cultivars such as the black 

pomegranate. These cultivars acquire black color very early and remain black until ripening 

time (Holland et al., 2009). Internally, pomegranates have a multi-ovule chambers separated 

by membranous walls (septum) and a fleshy mesocarp. The chambers are filled with seeds 

called arils (Fig. 1). The arils are the succulent and edible portion, which develops from the 

outer epidermal cells of the seed and elongates to a very large extent in a radial direction 

(Fahan, 1976). Arils vary in size and in hardness depending on the varieties, while some 

varieties are referred to as seedless but contain soft seeds. The colour of the arils equally 

varies from white to deep red depending on the variety (Holland et al., 2009). And 

occasionally, a state of metaxenia does occur wherein there are several seeds of different 

colour within a pomegranate fruit (Levin, 2006). 

The physico-chemical properties of pomegranate fruit cultivars grown in different regions 

have been reported by several researchers (Artés et al., 2000; Al-Said et al., 2009; Al-Yahyai 

et al., 2009; Opara et al., 2009; Zarei et al., 2010). The physical properties reported include 

the fruit weight, whole fruit and aril colour, juice content and juice dry matter content. 

These and other researchers have also shown that the physic-chemical properties of 

pomegranate cultivars vary among agro-climatic regions (Al-Said et al., 2009; Opara et al., 
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2009; Zarei et al., 2010). Furthermore, several chemical properties and phyto-nutrients such 

as the vitamin C, total phenolics, total tannins and condensed tannins, total soluble solids and 

anthocyanins in the peel and arils of various pomegranate cultivar have been reported (Artés 

et al., 2000; Al-Said et al., 2009; Opara et al., 2009; D‟Aquino et al., 2010; Zarei et al., 2010). 

Rind

Albedo

Arils/seeds

Membrane

 

Figure 1 An annotated picture of pomegranate fruit. 

Furthermore, current research on aroma and flavour of pomegranate fruit concentrated 

on identification of unique volatiles produced by ripe pomegranate fruit (Calín-Sánchez et al., 

2011; Melgarejo et al., 2011; Mayuoni-Kirshinbanum et al., 2012). Using the headspace solid-

phase micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) 

Calín-Sánchez et al. (2011) and Melgarejo et al. (2011) identified 18 and 21 aroma volatiles, 

respectively, in juices of nine difference Spanish pomegranate cultivars. Mayuoni-

Kirshinbanum et al. (2012) in their study performed a stir bar sorptive extraction (SBSE), 

coupled with GC-MS analysis to indentify 23 aroma volatiles in „Wonderful‟ pomegranate. 

The identifications included various classes such as aldehydes, monoterpenes, alcohols, 

esters, furans and acids, and the most prominent volatiles were ethyl-2-methylbutanoate, 

hexnal, limonene, trans-2-hexenal, cis-3-hexenol, cis-2-heptenal, β-pinene and β-

caryophyllene. Furthermore, Calín-Sánchez et al. (2011) and Melgarejo et al. (2011) suggested 

that consumer liking of pomegranate juices could be linked with the high levels of 

monoterpenes. This was corroborated by report of Mayuoni-Kirshinbanum et al., (2012), 

wherein 5 out the 12 detected „Wonderful‟ pomegranate aroma-active compounds by the 

GC-O sniffing panellists were terpens. Thus, this suggests that class of aroma compound and 

concentration plays a role among cultivar preference for pomegranate (Melgarejo et al., 

2011). However, increased interest in minimally processed and fresh-cut pomegranate arils 

with high nutritional value and improved arils quality has highlighted our limited knowledge 

of factors that affect flavour development in modified atmosphere packaged pomegranate 

arils. 
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B. Pomegranate production in South Africa 

 

The current world pomegranate production is estimated to be about 2.5 million tons, with 

production dominated by India and Iran. Commercial production of pomegranate fruit in 

South Africa started less than a decade ago, and presently approximately 1,200 ha of land is 

under cultivation (Joubert, 2012). South Africa production per hectare contributes less than 

1% of total global production (Fig. 2). However, between year 2010 and 2012, the number 

cartons of pomegranate exported from South Africa has grown from 71,640 to 442,800 

(PPECB, 2012). With such an exponential growth in export, pomegranate could become a 

dominate cash crop within the local and international market for South Africa. Thus, 

adequate and appropriate post harvest handling and storage condition is required for the 

sustainability of the young pomegranate production in South Africa. 

 

 

Figure 2 An annotated picture of pomegranate fruit. Source: NAMC, 2011. 
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C. Deterioration in pomegranate fruit quality 

 

Pomegranate is classified as a non-climacteric fruit, because, maturation and ripening occurs 

on the plant prior to harvest, fruits harvested before ripening do not continue ripening in 

storage and are of inferior eating quality (Elyatem & Kader, 1984). Contrary to non-

climacteric fruit, the ripening process of climacteric fruit is accompanied by a peak of 

respiration rate and a concomitant burst of ethylene production (Barry & Giovannoni, 2007). 

Kader et al. (1984) reported that pomegranate fruits had a relatively low respiration rate, 

which declined with postharvest to a steady rate of 8 mL kg-1 hr-1 for about 3 months and 

ethylene production was in trace quantity less than 0.2 μl kg-1 hr-1, when stored at 20 °C for 

2 weeks. These observed metabolic processes confirms pomegranate as a non-climacteric 

fruit, being that it exhibits no drastic changes in postharvest physiology and composition. In 

spite of the non-climacteric nature of the fruit, quantitative and qualitative loss still occur 

due to postharvest handling processes, resulting in chilling injuries, husk scalding, weight loss 

and decay (Kader et al., 1984; Ben-Arie & Or, 1986; Artés & Tomás-Barberán 2000; Artés et 

al., 2000).  

 

Chilling injury 

 

The shelf life of pomegranate fruit based on experimental data with the „Wonderful‟ cultivar 

suggested that fruits quality attributes are best kept or maintained at 5 °C for 8 weeks with 

relative humidity of above 95 % (Elyatem & Kader, 1984; Kader et al., 1984). However, 

depending on the cultivar, pomegranate can be stored for 2 to 7 months at temperatures 

ranging from 0 to 10 °C (Köksal, 1989; Treglazova & Fataliev, 1989; Onur et al., 1992). 

Pomegranate fruit have been reported to be susceptible to chilling injury if stored longer 

than one month at temperatures below 5 °C (Elyatem & Kader, 1984; Kader et al., 1984), 

with symptoms such as skin rotting, etiolating and cracking, browning of the rind, necrotic 

pitting and internal discolouration and browning of seeds (Elyatem & Kader, 1984; Köksal, 

1989; Artés, 1992). High temperature treatment such as water dipping at 45 °C has been 

reported to reduce incidence of chilling injury and increase the ratio of saturated or 

unsaturated fatty acids of membrane as well as the concentration of spermidine and 

putrescine (Mirdehghan et al., 2007a, b). Also intermittent warming of fruits at high 
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temperature prior to storage has been shown to prevent chilling injury‟s symptoms and fruit 

decay (Artés et al., 2000). 

 

Husk scald 

 

Husk scald is a superficial browning which is restricted to the husk, with no observable 

internal changes on the arils or on the white astringent membrane as observed with chilling 

injury (Ben-Arie & Or, 1986). This physiological disorder is suggested to be due to the 

oxidation of phenolic compounds on the husk when stored at temperatures above 5 °C.  

Ben-Arie & Or (1986) observed a correlation between husk scald incidence and the amount 

of extractable o-dihydroxyphenols obtained from the affected husk. In line with Ben-Arie & 

Or (1986) they observed that, the most effective control of husk scald in „Wonderful‟ 

pomegranates was the storage of late-harvest fruits in 2 % oxygen at 2 °C. However, the 

treatment resulted in accumulation of ethanol which led to off-flavours in the fruits. 

 

Weight loss 

 

Beside chilling injury another major storage challenge is the effect of weight loss on the 

pomegranate fruit, which leads to hardening and browning of the rind and arils (Artés et al., 

2000; Nanda et al., 2001; D‟Aquino et al., 2010). Weight loss is regarded as a major cause of 

loss in the visual quality for horticultural products, as excessive transpiration can lead to 

desiccation, shriveling, wilting, reduced firmness and crispness and promotes senescence by 

lowering the endogenous enzymatic processes or regulators and ageing (Ben-Yehoshua & 

Rodov, 2003). Nanda et al. (2001) reported weight losses of 1.2 - 1.3% in shrink-wrapped 

„Ganesh‟ pomegranates stored at 8 °C for 12 weeks and weight losses of 2.2 - 3.7% for 

those stored at 15 °C for 10 weeks, in comparison to non-wrapped fruits with weight loss 

of 20.4 and 30.7% at 8 ° and 15 °C, respectively. In a similar study, by D‟Aquino et al. (2010) 

they observed that after 6 weeks of storage at 8 °C unwrapped and untreated control 

„Primosole‟ pomegranate had a weight loss of 5.1%, while polyolephinic film wrapped fruits 

lost only 0.6%, and weight loss increased up to 12.7% in control as against 3.1 % for wrapped 

fruits after 12 weeks of cold storage. Artés et al. (2000) observed weight losses of 1.15 or 

1.34% in unpackaged control „Mollar de Elche‟ cultivars exposed to thermal treatment prior 

to storage at 5 or 2 °C for 12 weeks, compared to weight loss of 0.07 % in thermal treated 

fruits packaged in standard polypropylene films at both 5 ° and 2 °C for 12 weeks. 
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Decay 

 

Another limiting factor for long term storage and a major cause of postharvest losses is 

pomegranate fruit decay, caused by various pathogens such as Botrytis cinerea, Aspergillus 

niger, Penicillum spp. and Alternaria spp. (Roy & Waskar, 1997; Nerya et al., 2006; D‟ Aquino 

et al., 2010). The diseases caused by these pathogens are, grey mould rot by Botrytis cinerea; 

heart rot by Aspergillus niger and Alternaria spp.; and penicillium rot by P. expansum and other 

Penicillum spp. (Roy & Waskar, 1997). Botrytis cinerea develops a characteristic grey mycelium 

on the affected region under a moist condition. The grey mould rot decay usually starts from 

the calyx, and progresses on to the skin making the skin tough and leathery with a change in 

skin colour (Ryall & Pentzer, 1974). In heart rot, with Aspergillus niger and Alternaria spp. 

infestation the fruits show a slightly abnormal skin colour with a mass of blackened arils 

within. Often this disease develops while the fruits are on the tree and are usually detected 

by sorters and removed from the package (Roy & Waskar, 1997). Vyas & Panwar (1976) 

observed that Alternaria solani caused damage to pomegranate fruits during transit and 

storage.  P. expansum and other Penicillum spp. produce watery areas at the site of infection 

followed by the development of blue or green spores. Infection usually occurs via skin 

breaks caused by cracking, insect punctures or mechanical injuries (Sonawane et al., 1986). 

Treatments with aqueous Topsin-M (0.1%) and Bavistin (0.05 - 0.1%) was reported to 

inhibit the growth of Aspergillus niger (Padule & Keskar, 1988). Also, when pomegranate fruits 

were treated with fludioxonil (FLU) and stored at 10 °C for 2-5 months, the natural 

incidence of decay of fruits were shown to be significantly reduced to 0 - 8% (Adaskaveg & 

Förster, 2003). These reports suggest that one principal factor affecting the quality of 

pomegranate during postharvest storage is principally the suitability of cultivars to storage 

conditions and postharvest handling. 

 

D. MAP technology – An overview 

 

MAP is an active or passive dynamic process of altering gaseous composition within a 

package. It relies on the interaction between the respiration rate of the produce, and the 

transfer of gases through the packaging material, with no further control exerted over the 

initial gas composition (Farber et al., 2003; Mahajan et al., 2007; Caleb et al., 2012c). Passive-
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MAP can be generated inside a package by relying on the natural process of produce 

respiration and film permeability to attain the desired gas composition over time (Charles et 

al., 2003; Farber et al., 2003). While, active-MAP is a rapid process of gas replacement or 

displacement, or the use of gas scavengers or absorbers to establish a desired gas mixture 

within a package (Kader & Watkins, 2000; Charles et al., 2003; Farber et al., 2003). This 

involves the addition of active agents into packaged food product, such as O2, CO2 and 

ethylene scavengers (Phillips, 1996; Sandhya, 2010). For example, CO2 absorbers can prevent 

a build-up of CO2 gas to deleterious levels (Kader & Watkins, 2000).  

Both produce respiration rate and film permeability properties are dependent on 

extrinsic factors such as temperature. Therefore, the purpose of applying MAP is to maintain 

a desirable atmosphere within a specific temperature range. If the temperature changes by 

more than a few degrees, the package atmosphere will also change and may become 

inappropriate or even injurious to the product (Zagory, 1995). Therefore, in order to 

achieve the desired modified atmosphere in a given package, it is expedient to understand 

the three basic disciplines underpinning MAP (Brandenburg & Zagory, 2009), namely 

produce physiology (such as the extrinsic and intrinsic factors affecting produce respiration 

rate), polymer engineering (which identifies the choice of specific polymer‟s physical, 

chemical, and gas transmission rate properties), and converting technology (which entails the 

fabrication of raw polymers, films, adhesives, inks and additives into packages of desired 

format monolayer or multi to complex layers, with or without perforation). 

The physiological processes of produce (mainly respiration and transpiration) play 

significant roles in the postharvest quality of MA-packaged fresh and fresh-cut fruit and 

vegetables. Respiration is a metabolic activity that provides the energy needed for other 

plant biochemical reactions (Fonseca et al., 2002a). Aerobic respiration (referred to as 

respiration throughout this paper) involves the oxidative breakdown of complex organic 

compounds such as carbohydrates, lipids, and organic acids into simpler molecules, including 

CO2 and water with the release of energy (Fonseca et al., 2002a, b). Table 1 summarizes 

factors that influences fresh or fresh-cut produce respiration rate. Respiration rate can be 

reduced by decreasing O2 concentration around the fresh produce. This process induces a 

decrease in the activity of oxidizing enzymes such as polyphenoloxidase, glycolic acid oxidase 

and ascorbic acid oxidase (Kader, 1986). Decreasing respiration rate via MA and lowering 

temperature delays enzymatic degradation of complex substrates and reduces sensitivity to 

ethylene synthesis (Saltviet, 2003; Tijskens et al., 2003), thereby extending the shelf life and 

Stellenbosch University  http://scholar.sun.ac.za



15 

 

avoiding senescence of the produce. De Santana et al. (2011) evaluated the effect MAP on 

respiration rate and ethylene synthesis during 6 days storage at 1 and 25 °C. They reported 

that ethylene production was proportional to respiration rate for peaches during ripening at 

25 °C. However, lower ethylene synthesis and respiration rate were obtained at lower 

temperature in MAP treatments. This principle is a critical component to the successful 

application of MAP. Excessively low O2 level, below 1% may result in anaerobic respiration 

leading to tissue deterioration as well as production of off-odours and off-flavours (Lee et al., 

1995; Austin et al., 1998; Ares et al., 2007). The influence of CO2 on respiration rate has not 

been well clarified as there are varying theories on this, such as the idea that CO2 being a 

product of respiration process will cause a feedback inhibition (Fonseca et al., 2002a, b). 

Another concept considered that elevated CO2 might affect the Krebs cycle‟s enzymes and 

intermediates, while another suggested that CO2 might inhibit ethylene production instead of 

having a direct influence on respiration process (Mathooko, 1996; Fonseca et al., 2002a, b). 

Retarding ethylene synthesis has tremendous benefits for the storage of sensitive 

horticultural produce. Although, for some non-climacteric produce such as vegetable tissue 

and citrus ethylene production is under a negative feed-back response, hence reducing 

ethylene will stimulate its production (Saltveit, 2003). 

Table 1 Factors influencing respiration rate quantification 

Intrinsic factors Extrinsic factors 

Produce cultivar Temperature 

Growing season Level of oxygen 

Farming system Level of carbon dioxide 

Growing region Storage time 

Produce maturity level 

 Pre-treatment 

processes 

 Type of cuts* 

 Size of cuts* 

 Type of cutting blade*   

*Factors due to produce processing 

Source: Fonseca et al. (2002a); Kader et al. (2002); Monetro-Calderón & Cerdas-Araya (2011) 
 

The other physiological process of significant importance in postharvest quality of fresh 

and fresh-cut produce is transpiration. Once the fresh produce is detached from the growing 

plant, they solely depend on internal water content for transpiration resulting in water loss 

(Mahajan et al., 2008c). The loss of water from fresh produce result in weight loss and 

shrivelling, leading to unsalable loss during retail marketing and a direct financial loss. 
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Transpiration rate of produce during postharvest handling and storage is influenced by 

produce factors such as surface-to-volume ratio, surface injuries, morphological and 

anatomical characteristics, as well as maturity stage and environmental factors including, 

temperature, relative humidity (RH), air movement, and atmospheric pressure (Kader, 2002; 

Mahajan et al., 2008c). Studies have shown that there is a close relationship between 

temperature and relative humidity on transpiration rate (Mahajan et al., 2008c), which plays a 

significant role in determining the optimal storage conditions of fresh and fresh-cut produce. 

At a given RH, the increase in transpiration rate is directly proportional to the increase in 

temperature (Kader, 2002; Mahajan et al., 2008c).  

Furthermore, the use of polymeric films in MAP serves as mechanical barrier to the 

movement of water vapour and this helps to maintain a high level of RH within the package, 

and reduce produce weight loss (Suparlan & Itoh, 2003). However, an excessively high level 

of RH within the package can result in moisture condensation on produce, thereby creating 

a favourable condition for the growth pathogenic and spoilage microorganisms (Zagory & 

Kader, 1988; Aharoni et al., 2003; Távora et al., 2004). Ding et al. (2002) reported a minimal 

water loss of 0.9-1.5 % in modified atmosphere packaged loquat fruit, in comparison to 

perforated polyethylene packaged fruit which had 8.9 % water loss after storage for 60 days 

at 5 °C. It was also observed in their study that MAP significantly maintained loquat organic 

acid levels and fruit quality. Suparlan & Itoh (2003) investigated the combined effect of hot 

water treatment and MAP on the quality of tomatoes. MAP was found to reduce the weight 

loss of tomatoes to about 41 % compared to the unpacked samples during a 2 week storage 

period at 10 °C. Singh et al. (2009) reported a minimal physiological loss in weight and a 

higher shelf life for jasmine buds packaged using polypropylene film under passive MAP 

compared to non-MAP stored buds at 2 °C. These finding shows that lowering temperature 

and applying other technology such as MAP to decrease the rate of physiological process has 

a beneficial effect on preservation of fresh produce. 

 

E. Produce physiology and mathematical predictions 

 

Understanding the multi-complex interactions within various physiological processes 

towards MAP design requires a suitable model to predict these responses as function of 

time, temperature, gas composition or RH in the case of transpiration rate. Over the last 

decade, significant advancements in computing and the use of statistical tools for data fitting 
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and numerical integration, with more accurate analytical techniques, have enabled a better 

understanding of the physiological interactions involved on MAP of fresh and fresh-cut 

produce through the development of predictive models (Charles et al., 2003; Mahajan et al., 

2007). However, there are various limitations to the development of such predictive models. 

This include time consuming experiments with potentially large experimental errors, and the 

complex nature of respiration process for the determination of respiration rates of produce 

for MAP design (Fonseca et al., 2002a, b). Other limitations of mathematical models are that, 

models are based on limited number of experimental observations, and inherent biological 

variation and the dynamic response of stored fresh or fresh-cut produce to environmental 

changes is not adequately accounted for. Often these variables are held constants or 

assumed to be negligible (Saltviet, 2003; Tijskens et al., 2003). Therefore, the development of 

models should incorporate adequate measure of the produce‟s dynamic response to 

extrinsic factors such as RH, temperature, light, time and others (Saltviet, 2003; Tijskens et 

al., 2003; Caleb et al., 2012b). 

Following up on the review by Fonseca et al. (2002b), Table 2 presents a summary of 

articles on respiration rate since 2000, highlighting the produce, experimental approach, 

experimental conditions, and the types of models developed or applied. Most respiration 

rate models have been oriented towards either one or two out of the three functions of 

time, temperature and gas composition. The Michaelis-Menten type equations 

(uncompetitive, non-competitive, or uncompetitive/competitive) based on CO2 inhibitory 

effect (Lee et al., 1991; Peppelenbos & Leven, 1996; Del Nobile et al., 2006; Rocculi et al., 

2006; Bhande et al., 2008), and the Arrhenius-type equations, which describe temperature as 

a function of respiration (Jacxsens et al., 2000; Kaur et al., 2010; Uchino et al., 2004; Torrieri 

et al., 2010), have been widely reported for respiration rate of fresh produce as a function of 

both temperature and gas composition. A major limitation of respiration rate modeling is of 

the lack of adequate respiratory data information. Often, data available are either based on 

O2 consumption or CO2 production rates, based on the assumption that the respiratory 

quotient (RQ) = 1. The downside to this is that if the RQ were to be > 1, the model would 

underestimate CO2 production and if RQ < 1, the predictive would underestimate likewise 

(Fonseca et al., 2002b). 

Mathematical prediction of transpiration rate for fresh produce is challenging, due to 

insufficient information on the dynamic interactions between evaporation on the produce 

surface due to heat released during respiration and the permeability property of the 
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packaging film (Song et al., 2002). Existing models for predicting water loss in fresh produce 

have been limited in application to cooling process and bulk storage (Sastry & Buffingtin, 

1982; Chau & Gaffney, 1985; Gaffney et al., 1985), and these models may not be suitable for 

MAP systems (Song et al., 2002). Most models describe moisture loss as a function of the 

bio-physical and thermo-physical properties such as skin thickness, surface cellular structure 

and pore-fraction in the skin, thermal diffusivity and geometry of produce. Measuring these 

properties is time consuming (Song et al., 2002). Predicting the rate of water loss is 

important towards estimating the shelf life of produce, and designing appropriate packaging 

at optimal storage conditions. To overcome methodological challenges in the measurement 

and prediction of water loss, the weight loss approach for fresh produce can be adopted 

(Leonardi et al., 1999). This approach was successfully applied by Mahajan et al. (2008a). 

 

F. Packaging material 

 

Another critical parameter in the successful use of MAP is the choice of packaging material 

(Sivalumar & Korsten, 2006). The degree to which modification of the atmosphere takes 

place in packages is dependent on variables such as film permeability to O2, CO2, water 

vapour, film thickness, package surface area and the free volume inside the package (Mahajan 

et al., 2008b). Gas flux through the package film or film permeability can be mathematically 

predicted, using permeability equation based on the Fick‟s diffusion laws for thin and infinite 

films, where in the gas flux per unit time through the film can be determined (Crank & Park, 

1968). Furthermore, Arrhenius equation which describes the temperature sensitivity of film 

permeability to gases can be coupled with other mathematical models to obtain a more 

robust and descriptive parameters.  
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Table 2 Respiration rate models presented in literature from 2002 

Produce Experimental approach Storage T (°C) Model(s) Reference 

Blueberry Close system; gas chromatography (Hewlett Packard 5890A) 15 and 25 Regression equation Song et al. (2002) 

Tomatoes Close system; gas chromatography (Micro GC, CP2003) 20 MMNC Charles et al. (2003) 

Fresh endives Close system; gas chromatograhy (Micro GC, CP2003) 5, 8 and 20 MMNC Charles et al. (2005) 

Minimally processed lettuce MA packaged; gas chamber (M.K.S. Baratron 221A) 5 MM Del Nobile et al. (2006) 

Sliced golden delicious apple Active MA packaged; gas anlyser (PBI Dansensor) 4 MM Rocculi et al. (2006) 

Banana Closed system; gas analyser (PBI Dansensor) 10 to 30 Regression equation and UCI Bhande et al. (2008) 

Fresh-cut melons Active MA packaged; gas anlyser (Micro-GC Chrompack) 4 Weibull model and logistic Oms-Oliu et al. (2008) 

Green mature mango Closed system; gas chromatograph (Nucon AIMIL 5765) 5, 10, 15, 20, 25 and 30 MMUC Ravindra & Goswami (2008) 

Sapota Closed system; gas analyser (PBI Dansensor) 0, 5,10, 15, 20, 25 and 30 Regression equation and UCI Dash et al. (2009) 

Fresh-cut 'Annurea' apple Modified closed system; gas analyser (PBI Dansensor) 5, 10, 15 and 20 MMUC and Arrhenius-type Torrieri et al. (2009) 

Shredded carrots Closed system; gas analyser (PBI Dansensor) 0, 4, 8, 12, 16 and 20 MMUC and Arrhenius-type Iqbal et al. (2009a) 

Whole mushroom Closed system; gas analyser (PBI Dansensor) 0, 4, 8, 12, 16 and 20 
 

Iqbal et al. (2009b) 

Whole and sliced mushroom Closed system; gas analyser (PBI Dansensor) 0, 4, 8, 12, 16 and 20 
 

Iqbal et al. (2009c) 

Guava Closed system; gas analyser (PAC CHECK, Model 325, MOCON) 5, 10, 15, 20, 25 and 30 MM; Arrhenius-type and ANN Wang et al. (2009) 

Pomgranate arils Closed system; gas analyser (PBI Dansensor) 4 MMUC; MMC; MMNC; MMUC & MMC Ersan et al. (2010) 

Fresh-cut 'Rocha' pear Permeable system; gas analyser 0, 5, 10 and 15 MM and Non-competitive inhibition Gomes et al. (2010) 

Fresh-cut spinach Closed system; gas analyser (Quantek Instrument) 10 to 15 Arrhenius-type Kaur et al. (2010) 

Minimally processed broccoli Modified close system; gas analyser (PBI Dansensor) 3, 5, 7, 10, 15 and 20 MMC Torrieri et al. (2010) 

Minimally processed organic carrots MA packaged; gas chromatograph (Model 35) 1, 5 and 10 MMUC; MMC; MMNC and Arrhenius-type Barbosa et al. (2011) 

Baby corn Close system; gas analyser (Model 902 D Dualtrak, Quantek) 5, 10 and 15 Fourth order Runge-Kutta method Rai & Singh (2011) 

Pomgranate fruit and arils Closed system; gas analyser (PBI Dansensor) 5, 10 and 15 Arrhenius-type Caleb et al. (2012a) 

Pomgranate arils Closed system; gas analyser (PBI Dansensor) 5, 10 and 15 Arrhenius-type and power equation model Caleb et al. (2012b) 

     ANN: Artificial neural network; MMC: Michaelis-Menten competitive inhibition; MMUC: Michaelis-Menten uncompetitive inhibition; UCI: Uncompetive inhibition; MMNC: Michaelis-Menten 

noncompetitive inhibition
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Table 3 and 4 presents the properties of various packaging materials and the permeability 

of some commonly used polymeric films at set conditions. Although petroleum-based 

polymeric materials are mostly used in packaging of fresh produce, these materials are not 

biodegradable and burning them leads to environmental pollution, which poses a global 

ecological challenge and detrimental to human health (Isobe, 2003; Kirwan & Strawbridge, 

2003; Tharanathan, 2003; Siracusa et al., 2008; Zhang & Mittal, 2010). Hence, the growing 

paradigm shift due to environmental awareness by consumers towards packaging films which 

are biodegradable, and processes which are user- and eco-friendly (Tharanathan, 2003). Raw 

materials used to make biodegradable films can be classified into three groups, namely 

extracts derived from agricultural raw materials (e.g. protein, lipids, and starch), by-products 

from microorganisms (e.g. polyhydroxyalcanoates and poly-3-hydroxy-butyrate), and 

synthesis from bio-derived monomers (e.g. polylactic acid) (Cha & Chinnan, 2004; Smith, 

2005; Siracusa et al., 2008; Joseph et al., 2011; Jiménez et al., 2012). Other source of 

biodegradable films include a matrix of synthetic and natural polymers, for example, the 

properties of a mixture of wheat starch, ethylene acrylic acid and low density polyethylene 

(LDPE) were investigated by Arvanitoyannis et al. (1997). Several studies have compared the 

properties of biodegradable films and their effect on the quality of fresh produce (Makino & 

Hirata, 1997; Rakotonirainy et al., 2001; Srinivasa et al., 2002; Del Nobile et al., 2006; 

Almenar et al., 2008; Siracusa et al., 2008; Guillaume et al., 2010). 
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Table 3 Properties of major packaging material 

Packaging 

material 

Properties 

Advantages Disadvantage 

Paper (i) Strength and rigidity (i) Opacity 

 

(ii) Printability 

 
Tinplate (i) Corrosion resistance (i) Higher barrier to gases 

 

(ii) Excellent barrier to gases, water vapour, light and odour (i) Tin toxicty 

 

(iii) Heat-treatable 

 

 

(iv) Ability to seal hermetically; ductility and formability  

 
Tin-free steel (i) Corrosion resistance (i) Higher barrier to gases 

 

(ii) Excellent barrier to gases, water vapour, light and odour 

 

 

(iii) Heat-treatable 

 

 

(iv) Ability to seal hermetically  

 

 

(v) Ductility and formability 

 

 

(vi) Less expensive compared to tinplate 

 
Aluminium foil (i) Negligible permeability to gases, odours and water vapour (i) Opacity 

 

(ii) Dimensional stability (ii) High barrier to gases 

 

(iii) Grease resistance 

 

 

(iv) Brilliant appearance 

 

 

(v) Dead folding characteristics 

 
Glass (i) Formability and rigidity (i) Higher barrier to gases 

 

(ii) Transparency and UV protection due to colour variation 

(ii) Heavy weight adds to 

transport cost 

 
(iii) Impermeable to gases, water vapour and odour 

 

 

(iv) Chemical resistance to all food products 

 

 

(v) Heat stable 

 Cellulose film 

(coated) (i) Strength   (i) Low permeability barrier 

 

(ii) Attractive appearance 

 

 

(iii) Low permeability to water vapour, gases, and odours (coat 

dependent) 

 

 

(iv) Grease resistance, printability 

 
Cellulose acetate (i) Strength and rigidity (i) Glossy appearance 

 

(ii) Dimensional stability, printability 

 Ethylene vinyl 

alcohol (EVOH) (i) Excellent barrier to gases and odour (i) Moisture sensitive barrier 

 

(ii) Effective oxygen barrier material 

 Ethylene vinyl 

acetate (EVA) (i) Very good adhesive properties (i) Poor gas barrier 

 

(ii) Excellent transparency (ii) Poor moisture barrier 

 

(iii) Heat-sealability 

 
Polyethylene (i) Durability and fexibility (i) HDPE; Poor clarity 

 

(ii) Heat-sealability (ii) LLDPE; heat sensitive 

 

(iii) Good moisture barrier 

 

 

(iv) Chemical resistance 

 

 

(v) Good low-temperature performance 

 
  (vi) Permeable to gases   
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Table 3 Continued 

Packaging material 

Properties 

Advantages Disadvantages 

Polypropylene 

(i) Harder, denser and more transparent than 

polyethylene  

 

(ii) Better response to heat sealing 

 

 

(iii) Excellent grease resistance 

 

 
(iv) Good resistance to chemical 

 

 

(v) Higher gas and water vapour barrier 

 
Polyesters (PET/PEN) (i) Excellent durability and mechanical properties  

 

(ii) Excellent transparency 

 

 

(iii) Good resistance to heat, mineral oil and chemical 

degradation 

 

 

(iv) Adequate barrier to gases, water vapour and odours 

 
Polyvinyl chloride (PVC) (i) Strong and transparent 

 

 

(ii) Good gas barrier and moderate barrier to water 

vapour 

 

 

(iii) Excellent resistance to chemicals, greases and oils 

 

 

(iv) Heat-sealability 

 Polyvinylidene chloride 

(PVDC) (i) Low permeability to gases, water vapour and odours (i) Low permeability barrier 

 

(ii) Good resistance to greases and chemicals 

 

 

(iii) Heat-sealability 

 

 

(iv) Useful in hot filling, and low temperature storage 

 

Polystyrene (i) High tensile strength 

(i) Poor barrier to gas and water 

vapour 

 

(ii) Excellent transparency 

 
Polyamide (nylon-6) (i) Strong   (i) Poor water vapour barrier 

 

(ii) Moderate oxygen barrier, excellent odour and 

flavour barrier 

 

 
(iii) Good chemical resistance 

 

 

(iv) Thermal and mechanical properties similar to PET 

 
  (v) High temperature performance   

Source: FAD/WFP (1970); Page et al. (2003); Marsh & Bugusu (2007); Mangaraj et al. (2009) 

For example, Koide & Shi (2007) investigated the microbial and physicochemical quality of 

green peppers stored in a polylactic acid based biodegradable and low-density polyethylene 

(LDPE) film packaging. Results obtained by the authors showed that physicochemical 

properties such as weight loss, hardness, colour, ascorbic acid and gas concentrations, and 

microbial levels did not show significant changes during the storage period. However, the 

total coliform bacteria increased by 2.3 log CFU g-1 in LDPE film and 0.9 and 0.2 log CFU g-1 

in the perforated LDPE and biodegradable film packaging, respectively. These findings 

indicated that biodegradable film with higher water vapour permeability would better 

maintain the quality of green peppers. As no fungal growth was observed in biodegradable 
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film-packaged green peppers, this was associated to the high water vapour permeability 

which lowered the relative humidity inside the biodegradable packaging. 

Pyla et al. (2010) investigated both antimicrobial and antioxidant effect of corn-starch 

matrix mixed with tannic acid. They found that the matrix exhibited an antimicrobial activity 

against Listeria monocytogenes and Escherichia coli O157:H7 and antioxidant effect on soybean 

oil. Kim et al. (2011) reported antimicrobial activity of chitosan biopolymer films (CBFs) with 

four different viscosities against L. monocytogenes, Samonella typhimurium and E. coli O157:H7. 

CBFs with 100 mPa s chitosan had an antilisterial effect on 104 cfu mL-1 inoculation. In a 

more recent study, Ture et al. (2011) investigated the effect of wheat gluten (WG) and 

methyl cellulose (MC) biopolymers containing natamycin on the growth of Aspergillus niger 

and Penicillium roquefortii on the surface of fresh kashar cheese. WG and MC films were 

found to be effective against A. niger with about 2 log reductions in spore count. This 

information highlights the potential for biodegradable films towards optimal microbiological 

safety of MA-packaged fresh and fresh-cut produce. As more innovative biodegradable 

packaging materials emerge within the nanotechnology field (Siracusa et al., 2008), it is 

necessary to conduct research on their microbiological safety to ensure the overall integrity 

of food. 

Another form of biodegradable polymer is edible films, which comprise of a thin layer of 

edible materials applied to food as surface coating (Mangaraj et al., 2009; Campos et al., 

2011). There are several benefits of using edible films as packaging material, including the 

ability to minimize microbial growth by lowering the water activity aw, enzymatic activities 

and mitigating moisture loss, gas and aroma absorption into food, and improving the 

mechanical integrity and shelf life of food (Cutter, 2002; Marsh & Bugusu, 2007; Campos et 

al., 2011). As with other MAP technologies, edible films can create a low level of O2 within 

package (Odriozola-Serrano et al., 2008), which can facilitate the growth of anaerobic 

pathogens such as C. botulinum (Guilbert et al., 1996). However, edible films are ideal vehicles 

for incorporating a wide variety of additives such as antimicrobials, antioxidants, and texture 

agents to customize the film (Baldwin, 1994; Cutter, 2002; Farber et al., 2003; Campos et al., 

2011). 
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Table 4 Types of polymeric films and their permeability properties at set conditions 

Polymeric film 
Permeance (mol sec-1m-2Pa-1 for 25 μm film at 25 °C) WVT(mol sec-1m-2Pa-1)  

Oxygen Carbon dioxide Nitrogen at 38 °C and 90 % RH 

Ethylene vinyl alcohol (EVOH) 1.87 x 10-14 - - 8.01 x 10-5 

Ethylene vinyl acetate (EVA) 5.84 x 10-11 2.33 x 10-10 2.29 x 10-11 2.36 x 10-4 

Polyamide (PA) (Nylon-6) 1.87 x 10-13 7.94 x 10-13 6.54 x 10-14 7.50 x 10-3 

Polyethylene (PE), LD 3.64 x 10-11 1.96 x 10-10 1.31 x 10-11 8.48 x 10-5 

Polyethylene (PE), HD 1.21 x 10-11 3.55 x 10-11 3.04 x 10-12 4.01 x 10-5 

Polypropylene (PP), cast 1.73 x 10-11 4.67 x 10-11 3.18 x 10-12 5.18 x 10-5 

Polypropylene (PP), oriented 9.34 x 10-12 3.74 x 10-11 1.87 x 10-12 2.83 x 10-5 

Polypropylene (PP), oriented, PVDC coated 7.00 x 10-14 1.98 x 10-13 4.90 x 10-14 2.12 x 10-5 

Polystyrene (PS), oriented 2.33 x 10-11 8.41 x 10-13 3.74 x 10-12 5.30 x 10-4 

Polyurethane (Polyester) 5.37 x 10-12 7.47 x 10-11 4.20 x 10-12 2.36 x 10-3 

Rigid, Polyvinyl chloride (PVC) 1.17 x 10-12 3.39 x 10-12 4.90 x 10-13 1.65 x 10-4 

Plasticized, PVC 7.12 x 10-11 1.11 x 10-10 2.40 x 10-11 1.30 x 10-4 

Polyvinylidene chloride (PVDC), coated 5.60 x 10-14 1.17 x 10-13 - - 

PVDC-PVC copolymer (Saran) 7.70 x 10-14 4.67 x 10-13 1.07 x 10-14 1.53 x 10-5 

 

Oxygen permeance (mol/sec.m-2.Pa at 23°C) WVT (mol/sec.m-2.Pa at 23°C and 85 % RH) 

Ethylene vinyl alcohol 4.70 x 10-18- 4.70 x 10-17 

 

4.71 x 10-06- 1.41 x 10-05 

 Polyamide (PA) 4.70 x 10-16- 4.70 x 10-15 

 

2.36 x 10-06- 4.71 x 10-05 

 Polyethylene (PE) 2.35 - 9.40 x 10-13 

 

2.36 - 9.43 x 10-06 

 Ployethylene terephthalate (PET) 4.71 x 10-15- 2.35 x 10-14 

 

2.36 - 9.43 x 10-07 

 Ployethylene naphthalate (PEN) 2.35 x 10-15 

 

3.29878 x 10-06 

 Polypropylene (PP) 2.3 - 4.70 x 10-13 

 

9.43 x 10-07- 1.89 x 10-06 

 Polystyrene (PS) 4.70 - 7.05 x 10-13 

 

4.71 x 10-06- 1.89 x 10-05 

 Polyvinyl alcohol (PVAL) 9.40 x 10-17 

 

1.41 x 10-04 

 Polyvinyl chloride (PVC) 9.40 x 10-15- 3.76 x 10-14 

 

4.71 -9.42 x 10-06 

 Polyvinylidene chloride (PVDC) 4.70 x 10-18- 1.41 x 10-15   4.71 x 10-07   
Source: Guilbert et al. 1996; Phillips, 1996; Chung & Yam, 1999; Park, 1999; Han, 2000; Lange & Wyser, 2003 *Data has been converted to SI unit (Banks et al. 1995). 
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Several researchers have shown that antimicrobial compounds such as minerals and 

vitamins, organic acids, bacteriocins, enzymes, proteins and peptides, antibiotics and 

fungicides could be added to edible films to inhibit microbial growth on a variety of fresh 

produce (Ayranci & Tunc, 2004; Han et al., 2004; Martínez-Romero et al., 2006; Tapia et al., 

2008; Türe et al., 2008; Rojas-Graü et al., 2009; Corrales et al., 2009; Ibarguren et al., 2010; 

Campos et al., 2011; Shakeri et al., 2011). Basch et al. (2012) investigated the antimicrobial 

effectiveness of nisin and potassium sorbate, incorporate into edible films made with tapioca 

starch mixed with hydroxypropyl methylcellulose (HPMC). They observed that the 

combination of both antimicrobial agents was more effective against L. innocua and 

Zygosaccharomyces bailii, than their individual incorporation. With growing interest in 

incorporating nutritional and bioactive compounds into edible films or coatings to improve 

their functional properties (Campos et al., 2011), the concentration of these additives and 

their potential side effects must be carefully investigated to determine the optimal range of 

barrier, mechanical and antimicrobial properties. 

 

G. Converting technology and MAP design 

 

The combination of various packaging material results in the development of a wide variety 

of MAP formats, ranging from the very simple monolayer side weld bags to complex 

multilayer coextruded, metalized, laminated-reverse-printable, thermoformed multilayer tray 

with peelable lids and nanocomposites polymers with or without micro perforations (Farber 

et al., 2003; Brandenburg & Zagory, 2009; Lange & Wyser 2003; Mangaraj et al., 2009; Marsh 

& Bugusu, 2007). The objective of MAP design is to define conditions that will create the 

atmosphere best suited for the extended storage of a given produce, while minimizing the 

equilibrium time required in achieving this atmosphere (Mahajan et al., 2007). This includes 

the determination of intrinsic properties of the produce, i.e. respiration rate, optimum O2 

and CO2 gas concentrations, and film permeability characteristics. Determining optimum 

package permeability characteristic involves the selection of suitable films for a given 

produce, including its area and thickness, filling weight, equilibrium time, and the equilibrium 

gas composition at isothermal and non-isothermal conditions (Mahajan et al., 2007; Mangaraj 

et al., 2009). Poorly designed MAP systems may be in-effective or even shorten the storage 
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life of a product, because O2 and/ or CO2 levels are out of recommended range, or if the 

appropriate atmosphere is not rapidly established within the package (Mahajan et al., 2007). 

The development of MAP in industry has been mainly empirical with “trial and error” or 

“pack and pray” approach, which is time consuming with financial and safety consequences. 

This results in most commercial fresh produce packages often deviating from the optimal 

MAP (Mahajan et al., 2008b; Mangaraj et al., 2009). To overcome this setback, a systematic 

approach in designing optimal equilibrium modified atmosphere packaging (eMAP) for fresh 

produce was developed by Mahajan et al. (2007). The software contains a database on 

respiration rate of various fruits and vegetables, optimum temperature, optimum range of O2 

and CO2 levels and gas permeability properties of commonly used packaging films, including 

micro-perforated films. The Pack-in-MAP software is accessible online 

(www.packinmap.com). It enables the user to define the type of product and the system then 

selects the optimum temperature, the O2 and CO2 concentrations, and calculates the 

respiration rate for the product. Furthermore, it identifies the best possible packaging 

material and/or amount of product required to achieve optimal packaging conditions. 

Table 5 presents a summary of variables involved in MAP design using polymeric films. 

Once a produce has been selected and its environmental conditions for storage are 

established, 8 out of these 14 listed variables in Table 6 are fixed. For instance, variables such 

as the surrounding gas composition and temperature, the product density, the production 

rate of CO2, the consumption rate of O2, and, the gas composition to be attained in the 

package so that the product shelf life is extended, are all produce- and temperature-specific 

(Jacxsen et al., 1999a; Fonseca et al., 2000; Paul & Clarke, 2002; Mahajan et al., 2007). These 

variables must satisfy the design equations (1) and (2) and therefore, the system has 4 design 

variables, that is, only 4 out of the remaining variables, M, V, A, e, PO2
 and PCO2

, can be 

specified arbitrarily. However, it should be noted that some of these variables are inter-

dependent, e.g. once the packaging material is selected both PO2
 and PCO2

 are fixed and only 

2 degrees of freedom remain. Also, some restrictions must be applied as the volume of the 

package must be large enough to accommodate the required amount of product to be 

packed, and the area available for gas exchange depends on the type and size of the package 

(Mahajan et al., 2007; Mangaraj et al., 2009).  
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       (1) 

          (2) 

where Vf is the headspace (free volume) in the package, y is the gas concentration (in molar 

fraction), e is the thickness of polymeric film, P is the permeability of the package expressed 

in volume of gas exchanged in volume of gas generated/consumed per unit time and weight 

of the fresh product is M, across the area A of polymeric film; the subscripts O2 and CO2 refer 

to oxygen and carbon dioxide, respectively. The limitation of these models, however, is that 

they are only useful for describing the unsteady-state behaviour of MAP system during the 

process of passive modification within a package (Mahajan et al., 2007). At steady-state the 

gas accumulation term is zero. Thus, in order to adequately describe the dynamic 

equilibrium behaviour of MAP system, where the rate of evolution of CO2 equals the rate of 

efflux of CO2 through the package and the O2 consumption rate equals the influx rate of O2 

into the package, equations (3) and (4) below is applicable. With equations (3) and (4), it is 

equally important to keep track of design variables involved (Mahajan et al., 2007). 

           (3) 

           (4) 

In the case of long storage of produce, the dynamic equilibrium behaviour is more important 

in comparison to the unsteady state behaviour. 

 

H. Advances in MAP sensing and monitoring 

 

The desire to improve on safety of MAP products and to extend the technology to a 

broader spectrum of products led to the introduction of „smart‟ or „active‟ or „intelligent‟ 

packaging system (Sneller, 1986; Labuza, 1989; Summers, 1992; Church, 1994). This 

advancement is considered as the most significant area of development of MAP technology 

(Church, 1994). For simplicity the term „smart‟ packaging will be used broadly in this paper 

to designate the packaging systems. „Smart‟ packaging can be defined as, an interaction 
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between the packing system and the product itself which confers intelligence appropriate to 

function and use of the product with the ability to sense or be sensed and to communicate 

(Summer, 1992). Due to this interaction there is often a visible change in the properties of 

the indicator used, such as colour change, which allows the consumer the privilege to 

monitor the safety and shelf life of the product (Phillips, 1996). „Smart‟ packaging of food can 

divided into active packaging and intelligent packaging (Yam et al., 2005; Sandhya, 2010). 

 

Table 5 Components and variables involved in MAP design (adapted from Mahajan et al., 2007) 

MAP components Variables Designation 

Produce-related Produce mass M 

 

Produce density ρ 

 

Respiration rate RO2, RCO2 

 

Desired gas composition yO2
eq, yCO2

eq 

Environment-related Gas composition yO2
out, yCO2

out 

 

Temperature T 

Package-related: Volume V 

 

Thickness of the film E 

 

Available film surface area for gas flux A 

 

Gas permeability PO2, PCO2 

Macro-perforated films Number of perforations NH 

 

Radius of perforations RH 

Tube-mediated perforation Number of tubes Np 

 

Length of tubes Lp 

 

Diameter of tubes D 

  Porosity of the tube packing ε 

 

Active packaging 

 

Active packaging involves the interaction between the package and food product in order to 

extend the shelf life of the product (Sandhya, 2010). This involves the addition of active 

agents into the packaged food product, such as oxygen and carbon dioxide scavengers, 

carbon dioxide, ethylene and water vapour removals and aroma releasing compounds 

(Church, 1994; Phillips, 1996; Sandhya, 2010). Two approaches to the development of 

oxygen scavenging systems have been reported. However, the most successful in 

commercial application has been the use of sachets and labels that are included in the 

packaged product. The other approach is the development of oxygen scavenging films with 
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immobilized oxidizing enzymes (e.g. alcohol oxidase and glucose oxidase) on the inner 

surface of the packaging film. The cost of this approach makes commercial application 

unlikely (Church, 1994). Also scavengers with higher absorption speed at low temperatures 

and those that are microwaveable have been developed (Church, 1993).  

Carbon dioxide and ethylene removals have equally been applied with commercial 

success. Carbon dioxide removals have been used in the packaging of freshly roasted coffee 

and this approach extended the shelf life more than three times the expected shelf life 

(Church, 1994). Various ethylene removals based on activated carbon system („Freshkeep‟ 

from Kurarey, Osaka, Japan) or silicon dioxide or potassium permanganate („Acepack‟ from 

Nippon Greener, Tokyo, Japan) or polyethylene film impregnated with mineral („Peakfresh‟ 

from Klerk Plastic Industrie, Noordwijkerhoot, The Netherlands) have been used in the 

removal of ethylene from packed food product (Church, 1994).  

 

Intelligent packaging 

 

On the other hand, intelligent packaging involves the monitoring of the quality and/ or safety 

of a food product, while providing an indication or information that can be helpful in the 

distribution or supply chain (Yam et al., 2005; Sandhya, 2010). Examples of such indicators 

include time-temperature indicators (TTIs), Radio frequency identification RFID tags, gas 

indicators, sensors, leak detection and edible films (Church, 1994; Yam et al., 2005; Sandhya, 

2010). TTIs are often small self-adhesive labels attached onto individual consumer packages 

or shipping containers (Yam et al., 2005). They provide a visual indication of temperature 

history, which gradually changes over time, and the rate of change observed is directly 

proportional to the increase in temperature (Yam et al., 2005; Sandhya, 2010). The observed 

changes are often in the form of distinct changes in colour intensity or diffusion of a dye 

(indicator) along a straight path (Yam et al., 2005). They can also be used as “freshness 

indicators” for estimating the shelf life of perishable products (Yam et al., 2005). According 

to Singh (2000), there are basically 3 types of commercially available TTIs this include full 

history indicator; partial history indicators; and critical temperature indicators. The 

operating principles and functionality of these indicators have been extensively reviewed in 

literature (Singh & Wells, 1985; Taoukis et al., 1991; Selman, 1995; Taoukis & Labuza, 2003; 

Smolander et al., 2004).  
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TTIs are more reliable in monitoring the remaining shelf life of perishable produce than 

expiration dates. Expiration dates assume a specific temperature history, but, variation from 

this temperature could result in premature spoilage and possible sales of spoiled product. 

While, TTIs respond directly to temperature and reflect the temperature history of the 

product (Sandhya, 2010). The setback, however, is that TTIs are sensitive to actinic radiation 

and must be stored at low temperature prior to usage. These criteria elevate the cost of 

production and introduce an element of uncertainty based on the reliability of the indicators 

(Sandhya, 2010). Hence, the need to advance the technology of TTI labels to be more cost 

efficient with more reliability. 

Radio frequency identification (RFID) involves a wireless transfer and collection of data 

(Sandhya, 2010; Yam et al., 2005). A reader emits radio waves which capture data from a 

RFID tag, and the data is then transferred onto a host computer (with either a local or 

internet networking) for analysis and interpretations, which guides in decision making (Want, 

2004). RFID tags can be classified into 2 types, this include passive tags and active tags 

(Goodrum & McLaren, 2003; Yam et al., 2005). The passive tags are powered by the energy 

supplied via the reader and have a reading range of about 15 feet, while active tags are 

battery powered with a broadcasting range of up to 100 feet (Yam et al., 2005). The 

capability of RFID to wirelessly transfer data gives the technology an edge above 

conventional bar-coding. The ability to wirelessly transfer data enables real time monitoring 

product and analysis of data, as well as provides a reduction in inventory cost (Sandhya, 

2010). Furthermore, RFID tag can be integrated with a TTI or a biosensor to collect time-

temperature history and microbiological data (Nambi et al., 2003; Want, 2004).  

In a modified atmosphere packaged product the respiration of the fresh produce, or gas 

flux through the packaging film, or gas generation by spoilage microbes, or leakage, may 

cause a change in gaseous composition within the package. Gas indicators in the form of 

labels or print on the packaging films can help to monitor the safety and quality of the 

packed produce (Yam et al., 2005). Oxygen indicators are the most frequently used gas 

indicator (Krumhar & Karel, 1992; Inoue et al., 1994; Ahvenainen et al., 1997; Smiddy et al., 

2002), this is due to the ability of oxygen to cause oxidative colour change and enhance 

microbial spoilage. Carbon dioxide indicator can be used to detect early spoilage as well as 

to monitor the levels of carbon dioxide within modified atmosphere packages on transit and 

within storage facility (Hong & Park, 2000; Neethirajan et al., 2009). 
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I. Microbiological safety of MAP 

 

It is important to differentiate between the categories of MA-packaged fresh produce. This 

includes those with or without minimal pre-treatment such as antimicrobial solution, ozone, 

super-atmospheric oxygen, or artificial ultraviolet light (UV-C) prior to packaging (Artés et 

al., 2009), which are eaten without heat treatment immediately prior to consumption such as 

„ready-to-eat‟. Or, those produce with or without any minimal pre-treatment prior to 

packaging, which is subsequently cooked or heat treated prior to consumption (Phillips, 

1996; Sivertsvik et al., 2002). The safety concern for pathogenic microbial contamination is 

minimal in later since they are subsequently cooked, and vegetative cells of pathogens are 

killed in this process (Hotchkiss, 1988). However, for ready-to-eat product the microbial 

load as well as infestation of pathogenic microorganisms during postharvest handling, 

processing and distribution is of critical importance. The safety and stability of MA-packaged 

produce depends on its natural microflora, which is produce-dependent and the storage 

conditions (Phillips, 1996; Farber et al., 2003). The success and microbiological safety of MA-

packaged produce is anchored on controlled low temperature storage, and produce intrinsic 

and extrinsic characteristics, as summarized in Table 6. Therefore, maintaining the quality of 

fresh and fresh-cut produce during postharvest processing, distribution and storage is mainly 

by retarding of growth spoilage microorganisms at an optimal storage condition (Phillips, 

1996). Oliveira et al. (2010) reported a significant increase in non-pathogenic strain of 

Escherichia coli O157:H7 (NCTC 12900), Salmonella choleraesuis BAA-709 (ATCC) and 

Listeria monocytogenes inoculated onto MA-packaged shredded „Romaine‟ lettuce stored at 25 

°C compared to those stored at 5 °C.  Similarly, they observed a decrease in E. coli O157:H7 

and S. choleraesuis on MA-packaged shredded lettuce stored at 5 °C.  

Amanatidou et al. (1999) reported that the use of “oxygen shock” or high levels of O2 

was very effective in retarding enzymatic discolouration, anaerobic fermentation process, 

and both aerobic and anaerobic microbial growth. However, they also observed that high O2 

levels of 80 - 90% stimulated the growth of food-borne pathogenic microbes such as L. 

monocytogenes and E. coli were stimulated. The reduction in O2 levels reduces respiration 

rate of fruit and vegetables, due to a decrease in the activity of oxidative enzymes such as 

glycolic acid oxidase, ascorbic acid oxidase and polyphenol oxidase (Kader, 1986). Extremely 

low level of O2 may create potential risk for the growth of pathogenic anaerobic microbes 

such as Clostridium perfringens, C. botulinum and L. monocytogenes (Charles et al., 2003; Farber 
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et al., 2003; Phillips, 1996). Furthermore, at excessively low level of O2 (< 1%) anaerobic 

respiration may occur, resulting in tissue deterioration, production of off-flavours and off-

odours (Ares et al., 2007). 

Nitrogen (N2) is an inert, odourless, tasteless, and colourless gas, which is used as a filler 

gas in MAP gas mixture to balance the volume decrease due to CO2 absorption into 

produce tissue and to prevent package collapse (Sandhya, 2010; Phillips, 1996). In MA-

packaged products such as fresh meat packed with high concentration of CO2, package 

collapse could occur due to the solubility of CO2 in meat tissue (Phillips, 1996). For example, 

Ahmed et al. (2011) reported the use of 100% N2 gas in MAP to maintain the quality and 

shelf life of persimmon fruit stored at 0 ºC and 85 - 90% RH for 90 days. They observed that 

the fruit quality parameters such as firmness, colour and chemical properties were 

maintained and the shelf life of the fruit was extended at optimum storage conditions. 

Additionally, N2 is used to displace O2, thereby, helps to retard oxidative processes as well 

as the growth of aerobic spoilage microorganisms (Farber et al., 2003). 

Furthermore, other noble gases such as helium, argon and xenon have been reported in 

successful MAP applications to reduce microbial growth and maintain the quality of fresh 

produce (Nasar-Abbas et al., 2008; Zhang et al., 2008; Meng et al., 2012), as well as under 

controlled atmosphere and cold storage conditions (Jamie & Saltveit, 2002; Wu et al., 2012a, 

b). In a recent work, Meng et al. (2012) investigated the effect of pressurized argon 

treatments (2, 4 and 6 MPa) on fresh-cut green peppers placed in polystyrene packages with 

gas combination of 5 and 8% O2 and CO2, respectively and stored at 4 °C and 90% RH for 

12 days. Their study showed that pressurized argon treatments were able to maintain the 

cell integrity of the produce by inhibiting the production of malondialdehyde, as well as the 

activities of catalase and peroxidase. The treatments were also reported to reduce the 

proliferation of spoilage microorganisms such as coliforms, yeast and moulds. Yu et al. (2009) 

compared the efficacy of ordinary MAP and argon-MAP on the preservation of cherries 

stored at ambient temperature. The results showed that the freshness of the cherries was 

better preserved with argon-MAP, due to the reduced mobility of water molecules. 

Inert gases treatment could play a critical role in lowering water activity in fresh and 

fresh-cut produce, thereby reducing the leaching of organic material from fresh-cuts and 

movement of microbes into deeper tissues in comparison to other pretreatments (Meng et 

al. 2012). Studies have shown that at specific temperatures and pressures, inert gases can 
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form ice-like crystals called clathrate hydrates, in which molecules are trapped within cage-

like structure of water molecules and stabilized by bonding via van der Waals forces 

(Gbaruko et al., 2007; Disalvo et al., 2008; Ruffine et al., 2010). The mobility of water is 

restricted by the formation of calthrate hydrates (Yoshioki, 2010). Previous studies have 

reported the formation of calthrate hydrates in certain fruit and vegetables (Zhan, 2005; 

Zhang et al., 2008; Ando et al., 2009). Zhan (2005) investigated the effect of a mixture of 

argon and xenon at a pressure range of 0.4 - 1.1 MPa on cucumber samples. The study found 

that the formation of calthrate hydrates had occurred and that the activity of intracellular 

water was restrained due to this formation. Similarly, Oshita et al. (2000) observed a 

reduced mobility of intracellular water in broccoli under xeon gas with a partial pressure of 

0.45 MPa at 298 K, and the visual quality of broccoli was well preserved. All these finding 

highlights the potential inherent in the use of inert gases to maintain both microbial safety 

and keeping quality of fresh produce. The clathrate hydrates phenomenon could be used to 

maintain the microbiological quality of MA-packed products, by maintaining desired water 

activity (aw) level. Hence, more research on the role of inert gases in the optimization of 

MAP for fresh and fresh-cut produce should be investigated. 

 

J. Microbiology of packaging 

 

The growth and survival of microorganisms in fresh and fresh-cut fruit and vegetables is 

significantly influenced by the intrinsic properties of the produce, as well as by extrinsic 

factors as summarized in Table 6 (Church, 1993; Ahvenainen, 1996; Cutter, 2002).  Fruit and 

vegetables vary in their intrinsic properties. For instance, kernel and pome fruit have a high 

amount of organic acids which are responsible for their low pH values. In contrast fruit such 

as melon and avocado have higher pH values, closer to those of vegetables (Willkox et al., 

1993; Soliva-Fortuny et al., 2004; Hounsome et al., 2008). The aw of intermediate-moisture 

dried fruit ranges from 0.51 to 0.62 for raisins, 0.65 to 0.83 for prunes and figs, and 0.73 to 

0.81 for peaches and apricots (Taoukis et al., 1988), while, high moisture (HM) dried fruit 

could retain up to 0.85 aw (Witthuhn et al., 2005). Additionally, due to damage inflicted by 

mechanical operations on fruit tissue during processing, fresh-cut fruit have a much larger 

cut surface area resulting in higher aw in comparison to whole fruits (Gorny et al., 2000; 

Garrett, 2002). Various studies have shown a direct relationship between aw and the growth 
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rate of spoilage or pathogenic microorganisms (Wijtzes et al., 1993; Samapundo et al., 2005; 

Sağirli et al., 2008; Garia et al., 2011).  

The aw requirement of various microorganisms varies. Gram-positive non-spore forming 

bacteria can grow at aw of between 0.90 - 0.94, while Gram-negative organisms require a 

minimum aw of between 0.93 - 0.96. Generally, fungi; yeast and molds have lower aw 

requirements ranging from 0.62 to 0.88 in comparison to bacteria (Farkas, 1997; Alzamora et 

al., 2003; Witthuhn et al., 2005). A summary of minimum level of water activity for various 

important microorganisms occurring in foods is has been reported by Lee & Khang, (2004). 

The predominant microflora of fresh fruit is fungi, due to the low aw on the surface 

(Goepfert, 1980). However, processing operations and packaging conditions may transform 

the microbial ecology of fresh produce (Lanciotti et al., 1999; Watson, 2000; Soliva-Fortuny 

et al., 2004). By decreasing or maintaining a low aw, the lag phase of microbial growth can be 

extended thereby reducing the microbial growth rate (Farkas, 1997). 

 

Table 6 Intrinsic and extrinsic characteristics influencing the shelf life and microbiological safety of 

MA-packaged produce 

Intrinsic properties Extrinsic properties 

water activity (aw) Storage temperature at all stages 

pH Storage relative humidity 

Nutrient composition Time interval before packaging 

oxidation-reduction potential Initial and final gas composition 

Presence of natural antimicrobial 

compounds Gas purity 

Microbial flora: Headspace to product ratio 

Natural flora present Barrier properties of packaging film(s) 

Microbial succession  MAP design 

growth rate 

HACCP procedures: Hygienic produce 

processing 

Presence of spores Finished product 

Concentration and type of preservatives 

used   
Sources: Church, 1993; Cutter, 2002; Ahvenainen, 1996 

 

Furthermore, other intrinsic factors such as storage temperature, pH, nutrient 

composition and oxidative-reduction potential have a synergistic effect on aw and can 

influence microbial growth even at a high aw value (Wijtzes et al., 1993; Samapundo et al., 

2005; Sağirli et al., 2008; Garia et al., 2011). For instance, Garcia et al. (2011) reported that 
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at a constant aw and low storage temperature of between 25 - 30 °C, a short lag phase was 

observed for A. ochraceus, but, a sharp increase in growth was observed at 37 °C. At a 

specific temperature, the ability of microbes to grow is restricted as aw is lowered, while, the 

availability of nutrients increases the range of aw over which microorganisms can survive (Jay 

et al., 2005). Furthermore, in packaged produce aw in conjunction with relative humidity of 

the storage environment has a critical influence on microbial growth (Jay et al., 2005). 

Caution should be exercised when storing produce with low aw in environments where 

relative humidity is high, due to moisture transfer from environment to food (Cutter, 2002). 

As change in aw of the produce could affect the microflora associated with the product, 

resulting in an accelerated rate of decay. In contrast, however, when packaged produce with 

high aw are stored in an environment with low relative humidity this could result in moisture 

loss from the food to the environment (Cutter, 2002).  

Additionally, the osomoregulatory capability in response to low aw differs for bacteria and 

fungi. The strategy adopted by microorganisms to protect against osmotic stress involves the 

accumulation of compatible solutes, such as the maintenance of high potassium chloride 

(KCl) in the cytoplasm of halophiles, and/ or the increase in compatible solutes via their 

uptake from environment or de novo synthesis (Jay et al., 2005). The compatible solutes 

have no net charge nor do they adhere to or react with intracellular macromolecules 

(Sleator & Hill, 2001). The three most common compatible solutes in most bacteria are 

glycine betaine, carnitine and proline, while fungi have been reported to accumulate 

polyhydric alcohols to a concentration commensurate with their extracellular aw (Jay et al., 

2005). 

Storage temperature is another extrinsic factor that influences microbial growth in fresh 

or fresh-cut produce. Microorganisms grow over a wide range of temperatures from as low 

as -34 °C to highest exceeding 100 °C (Jay et al., 2005). Based on temperature requirements, 

microorganisms can be categorized into three groups, namely: those that grow well at or 

below 7 °C but optimally between 20 °C and 30 °C are classified as psychrotrophs; the 

mesophilic group grow well between 20 °C and 45 °C with optimal growth between 30 °C 

and 40 °C; and, those that grow well at and above 45 °C with optima between 55 °C and 65 

°C are classified as thermophiles. Molds are able to grow over the psychrotrophic 

temperatures. For example species of Aspergillus, Cladosporium and Thamnidium may be found 

growing on eggs, beef and fruit. Yeasts generally grow optimally within the psychrotrophic 

and mesophilic temperature ranges but not within thermophilic range (Jay et al., 2005). The 

Stellenbosch University  http://scholar.sun.ac.za



36 

 

possibility of contamination and growth of anaerobic psychrotrophic and some thermophiles 

foodborne pathogens such as Aeromonas caviae, A. hydrophila, Escherichia coli, C. perfringens, C. 

botulinum, L. monocytogenes, Salmonella spp., is of concern to guarantee the safety of MA-

packaged fresh or fresh-cut and/ or minimally processed fruit and vegetables (Philips, 1996; 

Szabo et al., 2000; Farber et al., 2003; Soliva-Fortuny et al., 2004; Jay et al., 2005). Since 

limited O2 levels in MAP conditions is proven to inhibit the growth of most aerobic 

microorganisms (Farber, 1991). 

The influence of temperature on microbial growth in MA-packaged fresh or fresh-cut fruit 

and vegetables has been well documented (Jacxsens et al., 1999b; Jacxsens et al., 2002; 

Valdramidis et al., 2006; Oliveira et al., 2010). However, there is still limited information 

regarding the influence of temperature on microbial gene expression in MA-packaged fresh 

and fresh-cut fruit and vegetables (Chua et al., 2008; Li & Zhang, 2010; Sharma et al., 2011). 

Recent studies have shown that although psychrotrophic microbes grow slower under 

refrigerated conditions, they also express different genes and are physiologically different 

from mesophilic microorganisms (Phadtare, 2004). Change in temperature has also been 

reported to influence gene expression and synthesis of other proteins such as toxin (Chua et 

al., 2008; Carey et al., 2009; Li & Zhang, 2010; Sharma et al., 2011). On leafy green „Romaine‟ 

lettuce inoculated with E. coli O157:H7 strain expressing both stx1 and stx2 stored at 4 °C, 

Carey et al. (2009) observed an up-regulation in stx2 and intimin (eae) gene expression after 

9 days of storage under atmospheric conditions. In a study investigating the effect of MAP 

and storage temperature, on the persistence and expression of virulence factors of E. coli 

O157:H7 on shredded Iceberg lettuce, Sharma et al. (2011) observed a significantly greater 

expression of eae, iha, stx2, ehxa, and rfhE genes on day 10 at 15 °C in MA-packages 

subjected to near-ambient atmospheric conditions with micro-perforations. Similarly, Chua 

et al. (2008) reported that enterohemorrhagic E. coli isolates with defective rpoS genes, 

which were inoculated into MA-packaged fresh-cut lettuce were able to induce acid 

resistance over the 8 day storage at 15 °C. No acid resistance was induced for MAP-stored 

lettuce kept at 5 - 10 °C. 

The oxidation-reduction potential (ORP) of a substrate refers to the rate at which a 

substrate gains or losses electrons and is determined by the characteristic pH of the food, its 

resistance to change in potential (poising capacity), and the oxygen tension of the 

surrounding atmosphere as well as its access to the product (Jay et al., 2005; Kalia & Gupta, 

2006). Compounds such as sulphide groups, ascorbic acid and reducing sugars help to 
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maintain reducing conditions in fruit and vegetables (Jay et al., 2005). Aerobic 

microorganisms such as bacilli, micrococci, actinobacters, and pseudomonas require positive 

ORP values, while, anaerobes such as clostridia requires a negative ORP or a reduced state 

for optimal growth, and they cannot lower the ORP of their environment (Jay et al., 2005; 

Kalia & Gupta, 2006). Therefore, the availability of adequate quantities of oxidizing and 

reducing compounds in food and optimal gas composition within packaged fruit and 

vegetables is important to militate against microbial activity and growth. 

Carbon dioxide (CO2) is the only gas used in MAP that confers a significant level of 

antimicrobial influence on the product. Farber (1991) suggested various theories to explain 

the antimicrobial influence of carbon dioxide on MAP product this include direct inhibition 

of enzyme systems or decrease in rate of enzyme reactions; alteration of cell membrane 

function including uptake and absorption of nutrient; gas penetration of bacterial membranes 

leading to decrease in intracellular pH; direct changes in the physical and chemical properties 

of proteins. Growth of microorganism is retarded at high concentration of CO2 in various 

products, due to an increased lag phase and generation time during the logarithmic phase of 

microbial growth (Phillips 1996; Guevara et al., 2003; Soliva-Fortuny et al., 2004; Oliveira et 

al., 2010). Guevara et al. (2003) reported on the effect of elevated concentrations of CO2 on 

MA-packaged prickly pear cactus stems stored at 5 °C. They found that semi-active MAP 

with 20 kPa CO2 significantly influenced microbial population after 15-20 days of storage, in 

comparison to semi-active MAP with 40 kPa CO2 and semi-active MAP with 80 kPa CO2. 

Semi-active MAP with 20 kPa CO2 decreased the microbial counts for total aerobic 

mesophiles, moulds and yeast, but, observed a slight increase in the total anaerobic 

mesophilic bacteria. 

The inhibitory effect of CO2 is not universal and this is dependent on microbial flora 

present and the produce characteristics. For instance, while aerobic bacteria such as the 

pseudomonads are inhibited by moderate to high levels of CO2, microbes such as lactic acid 

bacteria and yeasts can be stimulated at such levels of CO2 (Amanatidou et al., 1999; 

Guevara et al., 2003; Soliva-Fortuny et al., 2004; Oliveira et al., 2010). Furthermore, food-

associated pathogens such as C. perfringens, C. botulinum and L. monocytogenes are minimally 

affected by CO2 levels below 50% (Philips, 1996; Charles et al., 2003; Farber et al., 2003). 

Therefore, the use of CO2 is most effective on produce where the spoilage microorganisms 

consist mainly of aerobic, psychrotropic gram-negative bacteria. Better understanding of the 

background microflora for each MA-packaged produce is essential towards a successful MAP 
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design. More research is needed on the effects of various atmospheric modifications on the 

growth and survival of food-associated pathogens on fresh and fresh-cut produce. 

 

K. Regulations on microbiological safety of fresh produce 

 

Microbial quality assurance for MA-packaged fresh and fresh-cut fruit and vegetables is 

invaluable. Considering the critical points for contamination from farm to fork, this includes 

postharvest handling, contaminated processing equipment or transportation vehicles, cross-

contamination (Farber et al., 2003; Oliveira et al., 2010), and possibility of abuse of optimal 

storage conditions (Chua et al., 2008; Oliveira et al., 2010). Furthermore, modified 

atmosphere within the package may inhibit the natural microflora on the product, while, 

growth of pathogens may be enhanced. The ability of MAP to extend product shelf life, 

pathogens may increase microbial counts above regulated threshold (Farber et al., 2003). In 

Europe and South Africa, food safety criteria for fresh-cut fruits and vegetables are regulated 

by the amended Commission Regulation EC No. 1441/2007 (OJEU L322/12-29, 7 December 

2007) and the Foodstuffs, Cosmetics and Disinfectants (FCD) Act 54 of 1972. These criteria 

include: absence of Salmonella in products placed on the market during their shelf life; and, 

absence of L. monocytogenes in 25 g before the food has left the immediate control of the 

food processor and < 100 cfu g-1 in products placed on the market during their shelf life, 

among others. In the summary of the commission report, consideration was given to other 

approaches to the microbiological safety and quality of foods such as the preventive 

approach based on the principles of Hazard Analysis and Critical Control Points (HACCP) 

and the development of guides to Good Hygienic Practice (GHP). That will have longer term 

implications for microbiological standards in EC food hygiene legislation. 

Stakeholders in the fresh produce chain have introduced measures to prevent product 

contamination (FDA/CFSAN, 2001). At the farm level, Good Agricultural Practices (GAPs) 

and documentation of these practices were introduced. These guidelines help in promoting 

safe practices, and most retailers encourage the use of these guidelines by demanding results 

of audits of practices (FDA, 1998a, b). Also, the International Fresh Cut Produce Association 

(IFPA) published food safety guidelines for fresh-cut food processors. Documents produced 

include a model HACCP plan, best practice guidelines for activities, a model food allergen 

plan, as well as a sanitary equipment buying guide and development checklist (James, 2006). 

The HACCP plan ensures that operations are audited in each area in a pack-house, and risk 
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assessments are conducted accordingly (James, 2006). Such assessment may also indentify 

areas where good manufacturing practices (GMPs) are failing and help in improving GMPs. 

The application of GAPs, GMPs, and HACCP in the fresh fruit and vegetables industry 

provide the basic framework for safe products for the consumer.  

The integration of HACCP into the fresh and fresh-cut fruit and vegetables and the pack-

house should be more comprehensive with regulations towards optimizing MAP, and, 

HACCP implementation can be standardized and improved by incorporating MAP 

technology. For example, the monitoring and control of gas and water vapour permeability, 

package integrity, accuracy of gas mixtures, headspace gaseous composition, storage 

temperature, humidity and microbial activity (Ooraikul, 1991). The HACCP plan should 

include selection of appropriate packaging material for produce storage and distribution; 

identification of potential microbiological risk factors in the product design; identification of 

ways to reduce packaged product risks by adopting microbiological barriers such as low pH 

and aw, competitive microflora, thermal processing, preservatives and modified atmosphere; 

and consumer awareness and education program on the proper handling and storage of 

packaged foods (Cutter, 2002). Examples of such indictors used within the food industry 

include time-temperature indicators (TTIs), radio frequency identification (RFID) tags, gas 

indicators, and leak detectors (Church, 1994; Yam et al., 2005; Sandhya 2010). 

Furthermore, the success of HACCP is centered largely on adequate efforts to establish 

GAPs and GMPs thereby hazard analysis can be limited to few Critical Control Points 

(CCPs) by which the safety of food product is ensured (Notermans et al., 1995; James, 

2006). Although, complete elimination of a hazard is impossible for foods, but, an acceptable 

level must be defined (Notermans et al., 1995; James, 2006). Tools such as quantitative risk 

assessment, surrogates and indicator microorganisms can be used in assessing the safety of 

fresh fruit and vegetables, and to measure the effectiveness of control points (Notermans et 

al., 1995; Busta et al., 2003; James, 2006). Martins & Germano (2008) investigated the 

validation of control measures in order to establish performance indicators of HACCP 

system in the manufacturing process of Lasagna Bolognese, using total mesophile and faecal 

coliform counts as microbial indicators (MIs). They reported non-significant change in the MI 

count on lasagna meat after storage. Their finding shows that if the HACCP system allowed 

them to meet both the company and Brazilian government regulations. The use of indicators 

and surrogates can serve as scientific basis to obtain quantitative information to support the 

development and validation of fresh produce decontamination and packaging processes. 
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Additional research is needed to identify suitable surrogates and indicators for fresh and 

fresh-cut produce. For an extensive research needs in the use of indicators and surrogates, 

the reader is referred to Busta et al. (2003). 

 

L. Predictive microbiology and MA-packaged produce 

 

The risk of food borne disease outbreak involves a series of events, from the possibility of 

exposure to the microbial pathogen, to the likelihood of infection or intoxication leading to 

illness and the degree of such illness (Lammerding & McKellar, 2004). MAP of fresh and 

fresh-cut produce is a complex system with many variables affecting both the probability and 

the severity of the occurrence of food borne pathogens and diseases. Some of these 

variables include, gas composition, pre-treatment, properties of packaging films, and storage 

conditions (Cutter, 2002; Oliveira et al., 2010; Sandhya, 2010; Caleb et al., 2012c). Thus, to 

manage food safety in MA-packaged produce effectively, a systemic means of understanding 

these variables is necessary. Often, it is impossible to measure the effects of these factors 

directly on microbial response in MAP; hence they should be adequately predicted over time 

by evaluating available data, using mathematical predictions and re-evaluating the critical 

hazard points. 

Over the last decade, predictive microbiology has evolved in its empirical nature ranging 

from “black box” approaches, such as artificial neural network models, to “grey box” models 

which include microbial theoretical knowledge in order to describe well characterized 

microbial response to intrinsic and extrinsic factors (Geeraerd et al., 2004; McMeekin et al., 

2008;  Fakruddin et al., 2011). In a recent review by McMeekin et al. (2002), they described 

the concepts of predictive microbiology and highlighted on new trends, such as the 

progressive approximation of the growth or no growth interface and the increased 

application of probability models. Gompertz and logistic equations have been used 

extensively by various researchers to fit a variety of microbial growth curves such as: 

Penicillium chrysogenum (Dantigny et al., 2011), P. expansum and Aspergillus niger (Gougouli et 

al., 2011), Yersinia enterocolitica ATCC 35669 (Chen & Hoover, 2003), L. monocytogenes 

(Chhabra et al., 2002; Corbo et al., 2006), E. coli O157:H7 and generic E. coli (Kim et al., 

2007). Ratkowsky et al. (2005) reported a thermodynamically dependent model, describing 

the effect of temperature on microbial growth rates based on reversible protein 

denaturation both at low and high temperature. Others includes the Baranyi model (Baranyi 
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et al., 1993; Baranyi & Roberts, 1994), the Buchanan model (Buchanan & Bagi, 1994; 

Buchanan et al., 1997), the Hills model (Hills & Wright, 1994; Hills & Mackey, 1995), 

heterogeneous population model (McKeller, 1997), the Fermi model (Peleg 1997; Gastélum 

et al., 2010) and artificial neural networks (ANN) (Jeyamkondan et al., 2001). Although, these 

models have all been used in various studies to describe the behavior of microbes to 

parameters such as changing temperature, gaseous concentration, pH, and aw (Farber et al., 

1996; McKeller, 1997; Jeyamkondan et al., 2001; Chen & Hoover, 2003; Braun & Sutherland, 

2005; Dantigny et al., 2011). More effort should be concerted towards modeling microbial 

growth „in situ‟ in MA-packaged fresh and fresh-cut fruit and vegetables. A recent work 

although on fish fillet by Speranza et al. (2012), reported the use of desirability and 

polynomial models to predict the inhibition of Photobacterium phosphoreum, Shewanella 

putrefaciens and Pseudomonas fluorescens in fish fillets using a combination of antimicrobials 

and MAP technology. They observed that the effectiveness of MAP with a high content of 

CO2 combined with antimicrobial solution was consistent with the stability time from the 

model. 

Furthermore, methods which define the physiological state/ stage of food borne 

pathogens under various storage conditions should be developed (Fakruddin et al., 2011), in 

order to provide real time reporting for MA-packaged produce. Additionally, models which 

take into consideration possible interactions between microbial flora present in products 

should be explored (Ross & McMeekin, 1994; Gram et al., 2002). Especially for fresh and 

fresh-cut produce where natural microflora could be influenced by handling and processing, 

as well as microbial succession due to change in gas composition. Mathematical predictions 

which combine enzymatic and microbial growth kinetics data would be very beneficial to the 

fresh produce industry and HACCP, providing valuable quantitative information of microbial 

growth kinetics. The combination of predictive microbiology will aid in optimizing processing 

conditions, identifying critical control points and establishing corrective actions towards 

optimal safety and security of MA-packaged fresh and fresh-cut produce (Notermans et al., 

1995; McDonald & Sun, 1999). 
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M. Influence of MAP on microbial growth and survival on fresh 

produce  

 

The commonly encountered microflora of fruit and vegetables such as Pseudomonas spp., 

Erwinia herbicola, Flavobacterium, Xanthomonas, Enterobacter agglomerans, Lactobacillus spp., 

Leuconostoc mesenteroides, molds and yeasts are largely associated with spoilage of fresh 

produce (Farber et al., 2003). The microflora population found on fruit and vegetables is 

dependent on the type of produce and storage conditions. Nonetheless, the safety of fresh 

and fresh-cut produce is mostly related to the maintenance of the cold chain. Low 

temperatures have been reported to retard the growth of foodborne pathogens such as 

Salmonella, Shigella, E. coli O157:H7 (Leverentz et al., 2001; Oliveira et al., 2010; Sharma et al., 

2011). Exceptions to this are other psychrotrophic foodborne pathogens including L. 

monocytogenes, Y. enterocolitica, C. botulinum and A. hydrophilia, which studies have shown to 

multiply on the surface of shredded „Romaine‟ lettuce, cut melons, chopped parsley, 

wounded apple tissue and chopped tomatoes stored at low temperatures (Harris et al., 

2003; Oliveira et al., 2010).  

MAP has been successfully used to maintain the microbial quality of fresh and fresh-cut 

fruit and vegetables (Kader & Watkins, 2000; Yahia, 2006), as well as combined application of 

MAP and antimicrobial agents (Sivakumar et al., 2008). However, the effect of MAP on 

microorganisms can vary depending on the type of produce packaged (Farber et al., 2003). 

For instance, the increase CO2 and decreased O2 concentrations used in MAP generally 

favours the growth of lactic acid bacteria. This can accelerate the spoilage of produce 

sensitive to lactic acid bacteria such as carrots, chicory leaves, and lettuce (Nguyen-the & 

Carlin, 1994). Furthermore, oxygen concentrations below 1-2% can create a potential risk 

for the growth of pathogens such as C. botulinum (Charles et al., 2003; Farber et al., 2003). 

Therefore, it is necessary to highlight some foodborne pathogens that can be potential 

health risks due to the vulnerability of MA-packaged produce. 

 

N. MAP of whole pomegranate fruit 

 

Storage conditions of pomegranate fruit varies depending on the cultivar of interest (Kader 

et al., 1984; Salunkle & Desai, 1986; Köksal, 1989; Treglazova & Fataliev, 1989), so do the 

recommendations for controlled atmosphere storage. Artés et al. (1996) recommended a 
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controlled atmosphere of (5% O2 + 0-5% CO2) storage at 5 °C with RH above 95% during 

the storage of „Mollar‟ cultivar, to minimize decay, weight loss and chilling injuries. In 

contrast, Kader (1997) recommended for the storage of pomegranate a gas composition of 

(3 to 5% O2 + 5-10% CO2) at 5 °C. Studies have shown that the storage of pomegranate at 

temperatures lower than 5 °C resulted in chilling injuries (Elyatem & Kader, 1984; Kader, 

1985; Ben-Arie & Or, 1986; Artés, 1992). However, other researchers have also 

demonstrated that the optimum storage temperature is cultivar dependent. For instance, 

Köksal (1989) found that after 4 months storage the lowest weight loss in pomegranate fruit 

(cv. Gök Bahce) treated with anti-transpirant occurred at 1°C. Furthermore, Onur et al. 

(1992) investigated the effects of storage temperatures (2, 6 and 10 °C) on pomegranate (cv. 

Hicaz). After 5 months, the authors reported that storage at 2 °C resulted in the least 

weight loss with slight chilling injury in comparison with other storage temperatures. These 

studies highlight the importance of cultivar differences in optimizing the storage conditions of 

pomegranate and other horticultural produce. 

Only one publication reported the gas composition on modified atmosphere packaging of 

whole fruit, other studies focused on the fruit quality attributes obtained with different 

polymeric films (Caleb et al., 2012c). Artés et al. (2000) investigated the effect of different 

packaging films; unperforated polypropylene (UPP) 25 µm thick, and perforated 

polypropylene (PPP) 20 µm thick, on the quality attributes, physiological disorders, and decay 

of sweet „Mollar de Elche‟ fruit, during cold storage and shelf life. They observed that at 2 

and 5 °C within the sealed UPP bags, traces of C2H2 were detected occasionally, while, 

within perforated bags the atmospheric composition was practically like air at the end of the 

12 weeks of storage. At the end of the shelf life, all treatments maintained or increased in 

pH values, with the exception of PPP treatment at 5 °C which had slightly decreased values. 

The values of titratable acid (TA) at the end of 12 week storage at 2 or 5 °C were lower 

than those at harvest except for PPP at 5 °C. Comparing the soluble-solids content (SSC) at 

harvest with those of the treatments at the end of refrigerated storage, no changes were 

detected, however, during the refrigerated storage at 2 and 5 °C, the SSC/TA ratio 

increased significantly in MAP-stored fruits, due to the decrease in TA. Based on their 

assessment, the best treatment for maintaining red colour of the arils at the end of cold 

storage was PPP at 5 °C and the lowest physiological disorders were found in MAP 

treatments at both refrigerated-storage temperatures.  
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Another study on whole fruit pomegranate “var. Wonderful” harvested from a 

commercial orchards in the central coastal region of Israel was reported by Porat et al. 

(2009). They recommended the use of either Xtend® Easy-Tear or regular Xtend® modified 

atmosphere or modified humidity bags in 4-5 Kg export cartons. They observed that the 

Xtend® film had a higher moisture vapour transmission rates (MVTR) in comparison to 

conventional polyethylene and polypropylene films, which helps to eliminate excess 

moisture. Xtend® packaging reduced weight loss and scald incidence of the fruit and 

maintains internal quality and taste.  

Bayram et al. (2009) investigated the storage performance of 07 N 08 Hicaznar cultivar 

pomegranates, exposed to three different packaging treatment this include, a Strecfilm 

wrapped (SFW), modified atmosphere packaging and a control with no treatment. The fruits 

were stored for 6 month at 6 °C and relative humidity greater than 90%. They observed the 

least weight loss of 3% in the modified atmosphere packaged fruits compared to 24% 

recorded for the control treatment, and the MAP treatment gave the best visual and quality 

scores at the end of the storage period. 

Nanda et al. (2001) studied the effect of shrink film wrapping of two polyolefin films (BDF-

2001 and D-955) and skin coating with a sucrose polyester (SPE) SemperfreshTM on the 

quality and shelf life of soft-seeded „Ganesh‟ pomegranates stored at 8, 15 and 25 °C. They 

observed that the shrink wrapping significantly reduced the respiration rate compared to 

non-wrapped pomegranates, but, no detectable level of ethylene was found during storage at 

ambient and low temperature conditions both in wrapped and non-wrapped fruits. 

Furthermore, shrink wrapping of pomegranates was observed to have a reduction in weight 

loss during storage at different temperatures in comparison to the other treatments. After 

25 days of storage at 25 °C, fruits shrink-wrapped with BDF and D-955 films lost 1.5 and 

2.3% of weight respectively, as compared to 14.0 and 7.8% weight lost in non-wrapped and 

SPE-treated fruits, respectively. Also, the pomegranate fruits remained firm throughout the 

storage period, in all film-wrapped treatment but it was significantly maintained better when 

the fruits were wrapped with BDF-2001 film compared to D-955 film at ambient and low 

temperature storage. Comparing the non-wrapped fruits to the SPE-treated fruits, the SPE-

treatment maintained firmness better at all the storage temperatures.  

In a recent study on pomegranate “Primosole” cultivar by D‟ Aquino et al. (2010), they 

investigated the effect of film wrapping and fludioxonil (FLU) application on reducing the 

Stellenbosch University  http://scholar.sun.ac.za



45 

 

occurrence of husk scald, weight loss and decay of pomegranate fruit. FLU is a synthetic 

analogue of pyrrolnitrin (Rosslenbroich & Stuebler, 2000), in the class of phenylpyrroles and 

recently registered for controlling postharvest decay of various horticultural crops including 

pomegranates in USA (US EPA, 2005). D‟ Aquino et al. observed a reduction in respiration 

within the first week of storage at 8 °C and 90% RH and no significant difference was 

detected among treatments after 6 weeks. However, from the 10th week respiration in 

control treatment was significantly lower than in wrapped fruits. Wrapping retarded weight 

loss, husk scald and preserved fruit freshness for the whole storage time. Fludioxonil 

application alone and in combination with wrapping, effectively controlled mold growth with 

50-67 % less decay in comparison to control treatments after 12 weeks at 8 °C including 

one week shelf life. 

 

O. MAP of minimally processed pomegranate arils 

 

Caleb et al. (2012c) presented a summary of MAP on arils of various pomegranate cultivars, 

highlighting the types of packaging adopted, and the modified atmosphere condition attained 

in the packages. Gil et al. (1996a) investigated the influence of different washing solutions, 

temperatures, and packaging on the anthocyanins content of minimally processed 

pomegranate “Mollar de Elche” seeds. They found no significant differences in the 

anthocyanin composition after washing with different solutions. However, unpackaged 

pomegranate seeds stored for 7 days at 8, 4, and 1 °C, were observed to be shriveling, with 

almost half of the water originally present in the seeds lost during the unpackaged storage. 

On the other hand, MAP stored seeds had a minimal water loss compared to unpackaged. 

During cold storage in modified atmospheres at 1 °C, an increase in anthocyanin content 

was observed while a decrease was recorded at 8 and 4 °C. Comparing the perforated 

oriented polypropylene (OPP) and unperforated OPP package bags, stored with arils at 1 °C 

for 7 days. They observed that the unperforated OPP bags maintained the pigments better 

compared to perforated OPP bags. However, when the storage condition was extended for 

additional 4 days at 4 °C to mimic domestic storage, the seeds were better preserved in the 

perforated films. In a similar study by Gil et al. (1996b), the best outcomes in quality and 

appearance were obtained for pomegranate seeds washed with chlorine (100 mg kg-1) plus 

antioxidants (5 g L-1 ascorbic acid and 5 g L-1 citric acid) sealed in OPP film, using an initial 

atmosphere actively modified to 0 mL L-1 CO2 and 20 mL L-1 O2 and stored for 7 days at 1 
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°C. Under this condition, the minimally processed seeds maintained good quality without 

fungal attacks or off-flavour development. 

López-Rubira et al. (2005) investigated the effect of harvest time, use of different UV-C 

radiation and passive MAP storage on sensory, chemical and microbial quality as well as on 

the shelf life of minimally fresh processed arils extracted from “Mollar of Elche” 

pomegranate. They observed that the rate of respiration of fresh processed arils was higher 

in the late harvest than in the earlier harvested fruit, with an average respiration rate (RR) of 

26.6 ± 1.88 and 14.5 ± 2.48 nmol CO2 Kg-1 s-1 respectively. No significant differences were 

observed between the control and UV-C treated arils and there was no observable 

interaction between the passive MAP and UV-C treatments. Except that the CO2 

accumulation within aril packages was higher in December harvest than those of October, 

due to their higher RR. However, microbial counts of minimally fresh processed arils 

increased throughout the shelf life, with mesophilic counts of control arils processed in 

October slightly higher than those from December. Their anthocyanin content investigation 

was in agreement with previous report by Gil et al. (1996b). They found no significant change 

in total anthocyanin content of “Mollar” arils harvested in early October during MAP storage 

at 1 °C for 7 days. However, their findings suggested that the shelf life of fresh processed 

arils is at least 10 days, contrary to 7 days reported by Gil et al. (1996b) for “Mollar” 

pomegranate arils harvested in early October and stored at 1 °C under MAP. 

García et al. (2000) studied the respiratory intensity (RI) of pomegranate “Mollar” seeds 

and the gas composition inside both a semi-permeable and an impermeable plastic at a 

storage temperature of 4 °C for 10 days. They observed a RI of 30.8 ± 0.4 (mL CO2 kg-1 h-1) 

for the pomegranate seeds which was much lower compared to sliced oranges with 57.05 ± 

1 (mL CO2 kg-1 h-1) from their study. In the case of modified atmosphere packages the 

atmosphere within the semi-permeable plastic was inadequate to prolong the shelf life of the 

minimally processed and refrigerated pomegranates. The high relative humidity within the 

packages helps reduce weight loss, maintaining the turgency and texture of the pomegranate 

seeds.     

Sepúlveda et al. (2000) investigated the influence of various types of antioxidant solutions 

and three semi-permeable films; two cryovac, based on ethyl vinyl acetate (BE and BB4) and 

perforated polyethylene film as control on the quality of minimally processed pomegranate 

„var. Wonderful‟ arils from Chile stored at 4 °C ± 0.5 for 14 days. A slight browning of arils 
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was observed in all treatments, but this was highest in treatments without antioxidants. The 

weight loss of arils was lower in the arils packaged in BE and BB4 film and was significantly 

different from the arils in PE packages. After 14 days, all the treatments with BE and BB4 

packages showed a very low total count for mesophilic aerobes, which could be attributed 

to higher concentration of carbon dioxide inside the packages. The use of semi-permeable 

films allowed successful storage for 14 days at 4 °C ± 0.5, with good physical, chemical, and 

microbiological quality. Additionally, the decrease in microbial growth was in agreement with 

Gorny (1997), who observed a decrease in the growth of microorganisms with CO2 

concentrations between 15 and 20%.  

Chemical and organoleptic characteristics of minimally processed seeds of pomegranate 

„Primosole‟ were examined after packaging in a 40 µm thick polypropylene film and stored at 

5 °C for 10 days by Palma et al. (2009). They observed that a passive modified atmosphere 

was established within the package, with a progressive increase in CO2 and decrease in O2 

level. Ethylene concentration increased rapidly to the end of storage, the increase in 

ethylene was associated with wound injuries on the seeds. Furthermore for their study, no 

significant changes in chemical properties of analyzed juice. However, an increase in 

titratable acidity was observed in packaged seeds, this increase acidity was attributed to the 

absorption of CO2 which lowers pH when dissolved in aqueous phase (Malhotra & Prasad, 

1999). 

The use of honey treatments has also been explored in preserving the fresh-like quality of 

arils and to extend their shelf life. Ergun & Ergun (2009) evaluated the efficacy of varying 

concentration of 10 and 20% honey dip treatment on the quality and shelf life of minimally 

processed pomegranate arils of „Hicaznar‟ stored at 4 °C in loosely closed plastic containers. 

It was demonstrated that honey treated arils had brilliant aroma throughout the 10 days 

storage period, compared to arils treated with water. After five days of storage, arils treated 

with honey solution had a significantly lower rate of softening than control samples. The 

total aerobic microbial count was lower in honey treated arils compared to the control but 

the counts increased across all treatment compared to the count immediately after 

treatment.  

Microbial quality criteria are often used to determine the acceptability limit and the shelf 

life of minimally fresh processed produce and this is used as a minimal standard for 

processed produce having a limited microbial count and free of pathogenic microorganisms 
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(Willocx, 1995). Storage of arils under optimal MA have been shown to reduce the risk of 

Enterobacteriaceae, latic acid bactria, mesophilic, psychrotrophic, as well as moulds and yeast 

counts (Sepúlveda et al., 2000; López-Rubira et al., 2005). Furthermore, since pomegranate 

arils are stored at lower temperature, the risk of microbial proliferation is reduced. 

According to Artés et al. (2000), higher levels of decay (mainly due to Penicillium spp.) were 

observed in unpackaged treatments at 5 °C than in those at 2 °C.  Similarly, López-Rubira et 

al. (2005) observed a low count of micro-aerophilic lactic acid bacteria after 10 days of aril 

storage without any trace of fermentative metabolism. 

 

P. Conclusion 

 

Comprehensive review of literature showed that MAP application for pomegranate whole 

fruit and minimally processed arils is still restricted to certain cultivars either because of the 

profit margin gained from packaging them or due to limited information on the metabolic 

properties of the other cultivars. As new cultivars are merging for commercial farming, it is 

expedient to investigate the postharvest physiology for both the newly introduced cultivars 

and other unstudied cultivars. It was also shown in this review that different pomegranate 

cultivars responded differently to MAP. Hence, experimental studies should be carried out 

separately for each cultivar with a more informative output on the physiological 

characteristics (e.g. respiration rates of whole fruits or arils) under various conditions, in 

order to enable the successful application of the available technology. Additionally, challenges 

such as: the choice of polymeric films, as no single polymeric film can offer all the required 

properties for MAP, can be overcome buy adequate understanding of the interconnected 

three disciplines towards an optimal MAP for pomegranate whole fruit and arils. 

Furthermore, it has been established that inconsistent or abusive temperature contributes 

to increased respiration and transpiration rates, which in turn can enhance microbial 

proliferation and deterioration of MA-packaged fresh or fresh-cuts. This highlights the need 

for more concerted effort towards the maintenance of strict cold chain along the whole 

distribution continuum. The integration of multiple intelligent systems coupled with 

microbiological data should be evaluated towards the optimal success of MAP. The 

application of novel technologies such as high pressured inert gases, „smart‟ packaging and 

pre-packaging treatment for fresh produce offer additional potential to increase produce 
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shelf-life and microbial safety. This includes the development of optimal inert gas-MAP 

atmospheric composition for fresh produce; bioactive polymeric films with antimicrobial 

activity against foodborne pathogens, via immobilization of bacterial cells or antimicrobials 

on polymers; the incorporation and controlled release of volatile and non-volatile 

antimicrobial agents into packages; and, the use of biopolymers that are inherently 

antimicrobial.  

It was also shown in this review that the interaction of background microflora with 

foodborne pathogens in various MAP conditions could retard the growth of potential 

foodborne pathogens. Different microbial species, as well as different species strains showed 

different phenotypic and genetic expressions to gas atmospheres. Therefore, the 

investigation of individual potential foodborne pathogen should be conducted independently 

over a wide range of MAP and storage conditions, as well as, their interactions with 

background microflora specific for each MA-packaged produce. Similarly, the behaviour and 

survival of enteric viral and bacterial foodborne pathogens on MA-packaged produce should 

be studied extensively and this information may play an integral role in assuring product 

safety and successful application of MAP.  

Given the increasing importance of MAP in the postharvest handling and marketing of 

fresh pomegranate arils, and the critical need to assure produce safety, collaboration among 

research institutions in critical areas like predictive microbiology, with the industry and 

regulatory agencies will be a key to the success of quality and safety assurance systems, for 

maintain the microbiological safety of MA-packaged fresh and fresh-cut produce. 
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CHAPTER 3 

 

Investigating the impact of temperature and relative 

humidity on the transpiration rate of pomegranate arils 

 

Summary 

 

This study investigated the transpiration rate (TR) of pomegranate (Punica granatum L.) arils 

under various combinations of temperature (5, 10 and 15°C) and relative humidity (RH) (76, 

86 and 96%) during storage. TR ranged from 1.14 to 16.75 g kg-1 day-1 across the various 

combinations of RH and temperature studied. RH had the most significant impact on TR (p 

< 0.05). TR increased 6 folds when RH was reduced from 96 to 76%, and correlated well 

with water vapour pressure deficit (WVPD) (R2 = 96.1%). Aril weight loss increased at 

higher WVPD. After 8 days of storage, losses in quality attributes of arils were higher with 

increasing storage temperature and lowering RH. A mathematical model to predict TR as a 

function of temperature and RH was developed and successfully validated at 8°C. The target 

water vapour transmission rate of packaging materials for pomegranate arils was found to 

be 33 to 68 g m-2 day-1. 

 

Introduction 

 

Transpiration is one of the critical physiological processes in fresh produce such as fruit and 

vegetables. Once the produce is detached from the growing plant, it solely depends on its 

own water content for transpiration (Mahajan et al., 2008). The loss of water from fresh 

produce result in weight loss and shrivelling leading to unsaleable loss during retail 

marketing and a direct financial loss. Therefore, appropriate packaging and optimal storage 

conditions are applied to extend the shelf life of both fresh and fresh-cut produce. Fresh 
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produce large amount of water vapour and without appropriate packaging, water vapour 

could build-up inside the package, facilitating the growth of microorganisms (Mahajan et al., 

2008). TR of produce during postharvest handling and storage is influenced by intrinsic 

factors such as surface-to-volume ratio, surface injuries, morphological and anatomical 

characteristics, as well as maturity stage (Sastry & Buffington, 1982), and extrinsic factors 

such as temperature, RH, air movement, and atmospheric pressure (Chourasia et al., 2005). 

Pomegranate (Punica granatum L.) has been well documented for its potential health 

benefits such as its high antioxidant, anti-mutagenic, anti-hypertension, anti-inflammatory and 

anti-atherosclerotic activity against osteoarthritis, prostate cancer, heart disease and HIV-1 

(Viuda-Martos et al., 2010; Ríos-Romero et al., 2012). Despite these health benefits, 

pomegranate consumption is still limited, due to the difficulties of extracting the arils and 

the inconvenience due to phenolic metabolites which stain the hands during preparation of 

seeds. Modified atmosphere packaging (MAP) of ready-to-eat arils presents a more appealing 

product to consumers and increases the prospect of both production and consumption 

(Caleb et al., 2012). However, MAP could lead to water accumulation on the product 

surface due to water vapour build-up resulting in produce sliminess and enhancement of 

microbial growth (Song et al., 2001; Song et al., 2002). It is well known that package gas 

composition is influenced by respiration rate of the product and the gas permeability of the 

packaging film. Current MAP design considers the respiration rate of product as the only 

important parameter for deciding target oxygen (O2) properties required to achieve 

equilibrium, mainly O2 which is suitable for the selected product. However, besides in-

package gas composition it is also important to take into consideration the in-package level 

of humidity for fresh produce, in order to avoid condensation and/or mould and bacterial 

development in MAP systems (Song et al., 2001). Therefore, development of TR model is 

necessary for estimating the target barrier properties required from the packaging materials. 

Various types of mathematical models have been proposed for moisture loss, such as 

physical dynamic models, based on the diffusivity (Ochoa-Martínez et al., 2004). The 

objective of this study was to quantify the water loss of fresh pomegranate arils and develop 

mathematical model to relate TR to temperature and RH, and to estimate the packaging 

needs (water vapour transmission rate) of pomegranate arils to achieve RH of 90% inside 

the package. 
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Materials and Methods 

 

Plant material and sample processing 

 

Commercially ripened pomegranate fruits (cv. Acco) were procured from Robertson valley 

farm, Western Cape (33°48′0″S, 19°53′0″E), South Africa and air-freighted in well ventilated 

boxes to Process and Chemical Engineering Laboratory, University College Cork, Ireland. 

On arrival, the fruits were immediately stored at 5 °C until the next day when fruit samples 

were processed in a disinfected cold room at 5 °C, by carefully removing the husks to avoid 

damaging the arils. Free surface moisture on the arils were gently removed using sterile 

paper towels after which, the arils were weighed and equilibrated at 5, 10 and 15 °C for 1 h 

prior to experiment. Physicochemical properties of the pomegranate cv. ‘Acco’ studied 

were characterised at the start of experiment and data is presented in Table 1. 100 g of arils 

were homogenised and filtered using cheesecloth. Juice pH was measured using a digital pH 

meter (3310 Jenway, pH Meter, UK). Total soluble solids (TSS) were measured by hand 

refractometer (Atago, Tokyo, Japan). Titratable acidity (TA) expressed as % citric acid was 

determined potentiometrically by titration to an end point of pH 8.2 using 2 mL of juice 

diluted with 10 mL distilled water using an autotitrator (Metrohm 785 DMP, Titrino, 

Switzerland). Hunter colour parameters (L* (lightness), a* (redness and greenness), and b* 

(yellowness and bluness)) of arils were measured with a colour meter (Minolta Chroma 

Meter, CR-300, Japan), after calibration against a white tile background. All analyses were 

presented as mean ± standard error (S.E.) of 10 replicates. 

 

Table 1 Physicochemical properties of pomegranate fruit ‘cv. Acco’ studied. 

Cultivar Fruit size (g) CIELAB colour index TA  TSS 

(°Brix) 

pH 

L* a* b* (%w/v) 

citric acid 

Acco 242.2 ± 2.9 31.3 ± 2.0 15.4 ± 2.2 10.4 ± 0.5 2.1 ± 0.1 17.9 ± 0.2 3.2 ± 0.1 

*Values are mean ± S.E. 
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Experimental setup 

 

The experimental setup consisted of nine air-tight plastic test containers placed within 

refrigerating incubators with temperature maintained with ± 0.5 ° C of the set temperature 

of 5, 10 and 15 °C (Fig. 1). RH within the test containers were independently controlled by 

using saturated salt solutions of sodium chloride, potassium chloride, potassium nitrate 

giving 76, 86 and 96% RH respectively (Mahajan et al., 2008). The salt solutions were made 

from reagents of analytical grade, using demineralised water. The solutions were 

supersaturated in order to ensure that the constant RH was maintained through the 

experiment, the temperature and RH within the test containers were monitored continually 

using battery-powered sensor (HMP50, Campbell Scientific Inc., Utah). This setup was found 

to maintain a constant RH throughout the experimental run. The solutions were poured 

into the test containers and supports were mounted above the solution level with large 

aluminium pans to hold the Petri-dishes containing the samples. 

 

Figure 1 Annotated diagram of the experimental setup for creating RH, with temperature 

maintained with ± 0.5 ° C of the set temperature of 5, 10 and 15 °C. 

To evaluate the TR, a weight loss approach was adopted (Leonardi et al., 1999). 

Approximately 10 g of arils were placed in a petri-dish of known weight and, aril weight loss 

was measured daily using an electronic balance (Bosch SAE200, GmbH). TR was calculated 

from the changes in weight over time and expressed as change in aril weight (g) per initial 

weight of arils (kg) per unit time (day) as shown in the following equation: 

               (1) 

where, TR is the transpiration rate in g kg-1 day-1, Mi is the initial weight of arils in g and M is 

the weight of arils in g at weighed time t in days.  
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Two replicates for each storage condition were used for all analyses and the duration as 

well as measurement interval was the same for all temperature and RH conditions. 

Experiments were performed according to a full factorial design with two factors 

temperature and RH at three levels of 5, 10 and 15 °C, and 76, 86 and 96% RH respectively. 

The total number of runs was 18. An additional set of experiments with all the combinations 

of 76, 86 and 96% RH was performed at 8 °C in order to validate the mathematical model 

for TR.  

 

Model building 

 

The flow of water vapour through a fruit is proportional to the difference in water activity 

(aw) (RH/100) between the surface of a commodity and the surrounding air. This can be 

related to Fick’s law of diffusion (Ben-Yehoshua, 1987). In this model the RH of fruit internal 

atmosphere was considered as a first approximation to be 1.0 (or 100% RH). This 

parameter depends on solute content of the fruit and is slightly less than 1.0 (Mahajan et al., 

2008). The term (aw - awi) is the difference in concentration of the water vapour across the 

pomegranate aril membrane for the direction of flow from awi to aw.  Weight loss due to 

respiration was considered negligible (Shirazi & Cameron, 1993) 

          (2) 

where, aw is the water activity of the container; awi is the water activity of the arils; Ki is the 

mass transfer coefficient. At the end of the storage period, the water activity of the arils was 

measured experimentally (mean awi = 0.984 ± 0.01) using water activity meter (Aqualab, 

Pullman, USA) and did not differ among the different storage temperature and RH levels. 

This showed that aw of the arils was constant throughout the study period and gave a 

constant RH gradient across the arils resulting in uniform mass loss. Equation (1) was 

combined with Equation (2) yielding Equation (3) where TR is transpiration rate 

        (3) 

Equation (3) was then separated for M which is the weight loss of arils with time as shown 

in Equation (4). 

Stellenbosch University  http://scholar.sun.ac.za



81 

 

)        (4) 

The mass transfer coefficient Ki for each set of experimental conditions was estimated by 

fitting equation (4) to the experimental data by non-linear regression using Statistica 

software (Statistica 10.0, Statsoft, USA). Furthermore, temperature term was incorporate in 

order to estimate the overall effect of temperature on Ki, hence, equation (3) was modified 

as follows:  

      (5) 

Equation (5) was then separated for M in order to fit all the experimental data for weight 

loss of pomegranate aril (M) with time (t) as shown in Equation (6) 

       (6) 

Experimental data obtained at all combinations of temperature and RH studied were used to 

estimate the values of the constants Ki and a. The model equation (6) was fitted by non-

linear regression using Statistica software (Statistica 10.0, Statsoft, USA).  

 

Packaging needs 

 

The ability to create a stable pre-determined RH in sealed packages with the potential for 

reducing decay problems would be valuable for improving the success of MAP systems. This 

requires proper selection of packaging film material based on water vapour transmission 

rate (WVTR). Therefore, the TR model developed for arils was used for estimating the 

target WVTR required to maintain optimal RH inside the package. The package RH is 

influenced by TR of produce as well as by the water vapour permeability of the packaging 

film as shown in equation (7). This is a mass balance equation that describes the rate of 

change of RH or moisture accumulation in the headspace.7 

            (7) 

where, is the rate of water transpiration from produce to headspace (g kg-1 day-1);  is 

the rate of water permeation from headspace to surrounding (g m-2 day-1); Wa is weight of 

dry air inside the package (g). At equilibrium when the rate of change in humidity is zero, 
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equation (7) becomes  Substituting the TR and permeation rate, equation (7) 

becomes, 

         (8) 

where, W is weight of pomegranate arils, kg and A is packaging film area, m2. Re-arranging 

equation (8), 

       (9) 

Equation (9) was then used for determining packaging needs for pomegranate arils, which 

included an estimation of target WVTR required to achieve a stable RH of 90% inside a 

package containing 200 g of pomegranate arils. 

 

Quality evaluation 

 

Quality evaluation of arils from each of the experimental run was performed on the 8th day 

of storage. Colour, firmness and decay of arils were determined subjectively using a 1-5 

visual rating scale by adapting visual quality descriptors. Firmness was determined based on 

the resistance of the arils to slightly applied finger pressure and recorded using a 1-5 tactile 

rating according to method described by Nunes et al. (2011) for sliced cucumbers, adapted 

to pomegranate arils as reported in Table 2. The initial quality evaluation of arils on the 

visual rating scale for colour and firmness were scored as 5 without any form of decay. 
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Table 2 Quality scores and descriptors for pomegranate arils 

Descriptors 

Scores and description 

1 2 3 4 5 

Colour Very poor appearance Poor appearance, Fair appearance, Good appearance, Excellent appearance, 

 
with arils' severely paled-red arils is half paled half red slightly paled-red arils completely red completely dark/deep red arils 

Firmness Extremely soft, no resistance Soft, slightly resistant to  Minor signs of softness Firm, slightly loss  Very firm and turgid, delayed  

 
to finger pressure finger pressure, with evident and loss of turgidity of turgidity, slight yield yield to finger pressure 

  
loss of turgidity slight yield to finger pressure to finger pressure 

 
Decay  0 %, no decay 1-25 % of arils decayed 26-50% of arils slight to moderate 51-74 % of arils decayed, moderate 76-100 % of arils decayed, severe to extreme 

   
decay; spots with decay  to severe decay decay; the fruit is either partial or 

      and mycelia growth   completely rotten 
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Statistical analysis 

Pareto analysis was carried out at 95% confidence interval using Statistica software 

(Statistica 10.0, Statsoft, USA) to assess the effects of RH and temperature, and the 

interaction between RH and temperature on the TR of pomegranate arils. The experiment 

was replicated twice for each storage condition. 

 

Result and Discussion 

 

Transpiration rate of pomegranate arils 

 

Weight loss of pomegranate arils during storage at 10°C and 86% RH across the 

experimental combinations (Fig. 2), constantly decreased with time at all combinations of 

temperature and RH studied. TR for pomegranate arils as calculated from equation (1) 

ranged from 1.14 to 16.75 g kg-1 day-1 across all the combinations of temperature and RH 

tested. The TR values obtained in this study were lower than those reported by Mahajan et 

al. (2008) for mushroom (TR: 6.5 to 92 g kg-1 day-1) at 5, 10 and 15°C with RH 76, 86 and 

96%. In contrast, the TR values from this study were higher than that of apple (TR: 0.67 g 

kg-1 day-1) at 10°C, 86% RH (Patel et al., 1988). The high values of TR for mushroom is 

associated to its lack of a protective skin, therefore, the rate of moisture loss is higher. A 

higher surface/mass ratio for smaller fruit enhances TR compared to large fruit, this could 

explain the higher TR in arils compared to apple. TR was found to be higher at 76% RH and 

15°C compared to 96% RH and 5°C, (Fig. 3). Furthermore, WVPD was calculated from the 

temperature and RH conditions used in this study as described by Lichter et al. (2011). 

Weight loss of arils increased with higher WVPD and the effect of WVPD correlated well 

with TR of arils (R2 = 96.1%), (Fig. 4). The WVPD in this study ranged from 0.04 to 0.4 kPa 

and values were highest at low RH of 76%. Our finding corroborates Lichter et al. (2011) 

report. They observed cluster weight-loss increase in grapes with WVPD as well as highest 

WVPD values at low RH. 
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Figure 2 Changes in weight loss of pomegranate arils over time. The values were normalized with 

respect to the initial weight of pomegranate arils (Mi, g); (a) Effect of RH on weight loss at 10 °C: ○ 

represents RH at 96 %; Δ represents RH at 86 %; □ represents RH at 76 %. (b) Effect of 

temperature at 86 % RH: ● represents temperature at 5 °C; ▲ represents temperature at 10 °C; ■ 

represents temperature at 15 °C. The bars indicate standard error of mean. 
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Figure 3 Fitted square surface showing the effect of temperature and RH on transpiration rate (g 

kg-1 day-1). 

 

Figure 4 Relationship between transpiration rate (TR) and water vapour pressure deficits for 

pomegranate arils. 
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RH was the variable with greatest influence on TR, increasing RH of the container from 

76 to 96% decreased TR by 83.5% at 5°C. Temperature as well as the interaction of RH and 

temperature had significant effect on TR. Ben-Yehoshua (1987) reported that weight loss of 

3 to 10% could have an adverse effect on the appearance, salable weight, texture quality of 

fresh and FC produce. In related report, when RH of storage air for potatoes was 

decreased below 85% more than 7% water loss was observed (Chourasia et al., 2005). 

Similarly, an increase in water loss during the ripen phase of ‘Hass’ avocados was observed 

when the fruits where transferred from RH of 90 to 20%, Burdon et al. (2005) reported a 

30% increase in moisture loss when RH of stored apples was reduced from 97.5 to 95%. 

Based on Pareto analysis (Fig. 5), temperature and RH, and their interaction had a significant 

impact on TR of pomegranate arils (p < 0.05).  

 

 
Pareto Chart of  Standardized Ef f ects; Variable: TR

2 3-lev el f actors, 1 Blocks, 18 Runs; MS Residual=1.416474

.5267974

1.146245

-2.94522

7.63755

-13.683

p=.05

Standardized Ef f ect Estimate (Absolute Value)

Temp.(Q)

RH(Q)

RH X Temp.

Temp.(L)

RH(L)

.5267974

1.146245

-2.94522

 

Figure 5 Pareto chart showing the effect of RH and temperature on transpiration rate of 

pomegranate arils, and the interaction both factors at p = 0.05 indicated with vertical dashed lines. 

‘L’ and ‘Q’ are linear and quadratic effect of temperature and RH, respectively. 
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A similar result was reported by Mahajan et al. (2008), where the effects of temperature 

and RH were found to be significant on the TR of whole mushrooms. The effect of RH was 

more evident than that of temperature in this study and the interactive effects between 

temperature and RH were also significant. High RH and temperature increases the rate of 

deterioration, which is detrimental to fresh and fresh-cut fruits. As the RH in most sealed 

packaged fresh and fresh-cut fruits is close to saturation and fluctuations in temperature 

during storage and/or on transit may lead to water vapour condensation on both the film 

surface and produce. Thus supporting the growth of pathogenic and spoilage 

microorganisms resulting in produce decay (Aharoni et al., 2008). 

 

Quality of pomegranate arils 

 

Texture in terms of firmness and pigment stability (colour) are very important attributes 

associated with high quality ready-to-eat pomegranate arils and, are directly related to 

consumer acceptance and commercial value (Gil et al., 1996). After 8 day storage, firmness 

and colour of arils decreased with increase in storage temperature. The least firm, with the 

highest percentage of decay being arils stored at 15 °C and 96% RH (Table 3). The effect of 

increase temperature was more pronounced on visual quality, and this deleterious effect 

was enhanced at high RH (96%). However, the arils were best kept at 5 °C and optimally 

with 96% RH. Arils stored at 5 °C and 96% RH had the overall best keeping quality on the 

8th day in comparison to those at 76 and 86% RH. Various lengths of shelf life have been 

reported in literature for pomegranate arils under different storage conditions, but none of 

these studies reported on storage-RH condition. Palma et al. (2009) reported a shelf life of 

10 days for pomegranate (cv. Primosole) arils stored in 40 µm thick polypropylene film at 5 

°C. They observed no visible symptoms of decay or undesirable defects such as off-flavour 

and off-taste. López-Rubira et al. in their study on minimally fresh processed and UV-C 

treated pomegranate cv. ‘Mollar of Elche’ arils. They reported a shelf life of 14 and 10 days 

for early and late harvested fruit, respectively. An optimal storage RH is essential for 

successful extension of shelf-life of MAP-packed pomegranate arils to minimise losses during 

processing. Furthermore, based on these results, the quantification of TR would assist in 

developing optimal storage conditions and design of MAP for pomegranate arils. 
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Table 3 Quality attributes (firmness, colour and decay incidence) of pomegranate arils after 8 days 

under different storage conditions. 

Descriptors 
5 °C 10 °C 15 °C 

RH 

76%  

RH 

86%  

RH 

96%  

RH 

76%  

RH 

86%  

RH 

96%  

RH 

76%  

RH 

86%  

RH 

96%  

Colour 5.0a 5.0a 5.0a 4.5a 4.5a 4.5a 2.5b 2.5b 2.0c 

Firmness 4.5a 4.5a 5.0a 3.0b 3.0b 2.5b 2.0c 2.0c 1.5b 

Decay 1.0a 1.0a 1.0a 1.5b 1.5b 2.5c 2.5c 2.5c 3.5d 

*For each column, similar lower case letters are not significantly different at p < 0.05. 

 

Model development and validation 

 

The coefficient constant Ki as determined by fitting equation (4) for each set of experimental 

conditions. Ki was found to increase with temperature (Fig. 6), with R2 values > 99.5%. The 

increase in temperature created a higher shear stress or turbulence along the membrane 

surface of the arils and, this consequently, results in the observed correlation between our 

experimental temperatures and the coefficient constant Ki. This phenomenon is similar to 

that reported by Mahajan, Oliveira, & Macedo (2008), for mushrooms and, by Guiné, 

Henrriques, & Barroca (2012) for the drying of pumpkin. Fitting equation (6) with the 

experimental data at all combinations, the model described the change in mass adequately as 

shown with a R2 value of 94.3%, Ki and a with standard error value of 89.96 (± 6.87) and 

0.09 (± 0.01), respectively. A good agreement was obtained between the observed and 

predicted mass of pomegranate arils (Fig. 7). The values of mass of pomegranate predicted 

were in close agreement with those experimentally obtained. As expected, both the 

experimental data and the model prediction showed a decrease in mass with decrease in RH 

from 96 to 76% as well as with the decrease in temperature from 15 to 5°C. Similarly, a 

good agreement was obtained between the experimental and predicted TR by the model, 

(Fig. 8). In order to validate the mathematical model, its predictions of TR at 8 °C with 76, 

86 and 96 % RH were compared with experimental data. A good agreement was observed 

between experimental and predicted TR, at 8 °C. The experimental TR at RH of 76, 86 and 

96% were 9.93 (± 0.83), 5.50 (± 0.11) and 1.5 (± 0.59) g kg-1 day-1 respectively, while the 

model predicted TR were 10.5, 5.8 and 1.1 g kg-1 day-1 at the respective RH. Similarly the 
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predicted TR also decreased with the increase in RH, once more highlighting the influence 

of RH. These results therefore confirm the predictive ability of the model.  

 

 

Figure 6 Variation of coefficient Ki of the model Eqn. 4 with temperature and RH. ♦, 76%; ■, 86%; 

▲, 96%. 

 

Figure 7 Relationship between experimental and predicted values of pomegranate aril mass. 
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Figure 8 Relationship between experimental and predicted transpiration rate (TR) for pomegranate 

arils using Eqn. 3. 

 

Packaging needs 

 

One of the ways to reduce weight loss in fresh produce is by appropriate packaging, because 

this helps to maintain high RH inside the package thereby reducing the effect of WVPD. 

However, the selection of appropriate packaging material is critical towards achieving the 

optimum produce quality and to create a stable pre-determined RH in sealed fresh produce 

packages. The generally recommended level of between 85 to 95% RH for storage of fresh 

produce represents a compromise to prevent excessive weight loss while providing some 

control of microbial spoilage (Hardenburg et al., 1986). Optimizing the permeability of 

barriers such as films in order to avoid deterioration in quality of food would be valuable for 

the success of MAP. From the target WVTR determination using equation (9), it was 

observed that the target WVTR for maintaining RH of 90% inside package varied from 33 to 

68 g m-2 day-1 for the temperature range of 5 to 15°C, (Fig. 9). Hence, the existing packaging 

films such as polycarbonate, poly-lactic acid, polyamide and cellulose films would be suitable 

for packaging pomegranate arils, because they fall within the range of WVTR. 
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Figure 9 Target WVTR derived with temperature and relative humidity using equation (9). 

 

Conclusions 

 

Weight loss of pomegranate arils increased with higher WVPD, and weight loss was highest 

at experimental combinations of 15 °C with 76% RH.  Additionally, RH was the variable 

with the greatest influence on TR, and arils were best kept at 5 °C and 96% RH. This 

highlights the significance of maintaining an optimal produce storage condition. The 

applicability of the transpiration model developed was verified based on adequate prediction 

of TR of pomegranate arils during storage at different combinations of temperature and RH. 

The model would be useful towards understanding the rate of water loss as affected by 

temperature and RH over time, and thus provides a valuable guide for the storage and 

designing MAP-system for pomegranate arils. Experimental and model prediction results 

showed that both RH and temperature had significant effects on TR and quality of stored 

arils, highlighting the need to maintain optimal storage condition to assure high quality 

ready-to-eat pomegranate arils with maximum shelf-life. 
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Nomenclature 

a constant parameter 

aw water activity of the container (RH/100) 

awi water activity of arils  

Ki mass transfer coefficient 

M mass of arils (g) 

Mi initial mass of arils (g) 

RH relative humidity (%) 

T storage temperature (°C) 

t storage time (day) 

TR transpiration rate (g kg-1 day-1) 
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CHAPTER 4 

 

EVALUATING THE EFFECT OF STORAGE TEMPERATURE ON 

THE RESPIRATION RATES OF POMEGRANATE FRUIT AND 

ARILS 

 

Summary 

 

The design of modified atmosphere packaging (MAP) for fresh and fresh-cut fruits requires 

adequate prediction of respiration rate (RR). A study was conducted to determine the 

influences of storage temperature (5, 10 and 15 °C) on RR of whole pomegranate fruit and 

arils of two pomegranate cultivars (cvs: ‘Acco’ and ‘Herskawitz’). The respiration rates of 

whole fruit were two to three folds higher, in comparison to those of the fresh arils across 

all storage temperatures. Temperature had a significant influence on RR (p < 0.05). Over the 

range of storage temperatures studied, RO2 and RCO2 increased from 4.53 to 14.67 mL kg-1 

h-1 and 5.67 to 18.53 mL kg-1 h-1, respectively, for whole fruit, while RO2 and RCO2 of fresh 

arils ranged from 2.51 to 7.59 mL kg-1 h-1 and 2.72 to 9.01 mL kg-1 h-1, respectively. The 

cultivar ‘Acco’ had higher respiration rate (mL kg-1 h-1 CO2 production) than ‘Herskawitz’, 

especially as the length of storage increased at higher temperature conditions. The 

respiration quotient (RQ) for the whole fruit of both cultivars ranged from 1.14 to 1.26, 

while that of fresh arils ranged between 1.06 and 1.62. Experimental evidence showed that 

the significant influence of higher temperature in increasing RQ of pomegranate arils was 

more pronounced towards the end of storage period. The effects of temperature on rates of 

O2 consumption and CO2 production of whole fruits and arils was adequately described by 

an Arrhenius type model. The model was validated for whole fruit stored at 8 °C, and a 

good agreement was found between experimental and predicted data. 
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Introduction 

 

Pomegranate is a non-climacteric fruit, with a relatively low respiration rate (RR), which 

declines during postharvest handling to a steady rate of about 8 mL kg-1 h-1  for about 3 

months when stored between 0-10 ºC (Kader et al., 1984). Ethylene production rate 

occurred in trace quantity (less than 0.2 μL kg-1 h-1) when ‘Wonderful’ pomegranate cultivar 

was stored for 2 weeks at 20 °C (Kader et al., 1984). López-Rubira et al. (2005) reported an 

average RR of 14.45 nmol CO2 kg-1 s-1 (1.15 mL kg-1 h-1) for minimally processed fresh arils 

(cv. ‘Mollar of Elche’) stored at 5 °C. Eran et al. (2010) reported a minimum RR of 1.5 and 

0.52 mL kg-1 h-1 for RO2 and RCO2, respectively, under atmospheric composition of 2% O2 

with 10% CO2, for (cv. ‘Hicaz’). Furthermore, recommended optimum cold storage and 

controlled atmosphere storage conditions of pomegranate fruit varies depending on cultivar. 

Artés et al. (1998) recommended a controlled atmosphere of (5% O2+ 0 to 5% CO2) storage 

at 5 °C with relative humidity (RH) above 95% for ‘Mollar’ cultivar to minimize decay, weight 

loss and chilling injury. In contrast, Kader (1995) recommended a gas composition of 3 to 5% 

O2+ 5 to 10% CO2 at 5 °C for the storage of pomegranates.  These studies highlight the 

importance of understanding the physiological responses of pomegranate cultivars under 

different storage conditions to assist in developing optimal postharvest handling processes.  

Modified atmosphere packaging (MAP) is the dynamic process of altering gaseous 

composition within a package to extend storage life and optimize fresh produce quality. 

Desired MAP is achieved through the interaction between two processes: the respiration of 

the produce and the transfer of gases through the packaging material (Farber et al., 2003; 

Mahajan et al., 2007). A quantitative description of RR of fresh produce using mathematical 

modeling is essential for the design of MAP (Fonseca et al., 2002; Mahajan et al., 2007). The 

amount of product, size of packaging material, and perforation density can be adjusted for 

optimal packaging once RR is known. When fruit respiration does not correlate to the 

permeability properties of packaging film, increase in the concentration of CO2 will build up 

leading to anaerobic respiration and ethanol accumulation inside the fresh produce. This 

results in the development of off-flavours and decay (Caleb et al. 2012). Although there are 

various studies reported in literature on modeling of RR, of a wide range of fruit such as 

tomatoes (Charles et al., 2003), sliced apple (Lakakul et al., 1999), blueberries (Cameron et 

al., 1994), and other fresh produce such as mushroom (Iqbal et al., 2009) studies on 

predictive modeling of the RR of whole pomegranate fruits or fresh arils are lacking.  
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Therefore, the objectives of this study were: (i) to investigate the effect of temperature 

on RR of whole pomegranate fruit and fresh arils cvs. ‘Acco’ and ‘Herskawitz’ and, (ii) to 

develop a predictive model relating RR to temperature, thereby, providing valuable 

information in the design of MAP for pomegranate fruit. 

 

Materials and methods 

 

Produce and sample preparation 

 

Pomegranate (Punica granatum L.) fruit sweet-sour cv. ‘Acco’ and ‘Herskawitz’ harvested 

manually during commercial harvest period were obtained from Robertson valley farm, 

Western Cape (33°48′0″S, 19°53′0″E), South Africa and air-freighted in well ventilated boxes 

to the Process and Chemical Engineering Laboratory, University College Cork, Ireland. The 

duration of transportation was about 72 hours. On arrival, the fruits were randomly divided 

into two groups of 9 fruit each for whole fruit studies and arils studies, respectively, and 

immediately stored at 5 °C. For arils respiration study, fruit samples were processed in a 

clean cold room at 5 °C, where the peel (husk) was carefully removed by hand to avoid 

damaging the arils. Samples of arils (≈ 150 g each sample) and individual fruit were placed 

inside glass jars of about 428 and 1900 mL, respectively and equilibrated at 5, 10 and 15 °C 

for at least 1 hr prior to experiment. All experiments were carried out in triplicate. 

 

Experimental setup 

 

The rate of oxygen consumption (RO2) and carbon dioxide production (RCO2) of whole 

fruit and fresh arils were measured using the closed system method (Fonseca et al., 2002; 

Iqbal et al., 2009; Torrieri et al., 2009). Air-tight glass jars with a lid containing a rubber 

septum in the middle were used to store samples (one single pomegranate fruit or 150 g of 

aril) at the different temperatures (5, 10 and 15 °C). To ensure hermetic seal, Vaseline was 

incorporated into the gap between lid and jar for all the glass jars. The gas composition 

within the glass jars were monitored over time with an O2/CO2 gas analyser with an 

accuracy of 0.5% (Checkmate 3, PBI Dansensor, Ringstead, Denmark). Gas samples were 

taken at an hourly time intervals from the jar head space through the rubber septum. An 

additional set of experiment was performed at 8 °C in order to validate the mathematical 
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model. RO2 and RCO2were determined by fitting experimentally obtained data on  and 

with Eqn. 1 and 2, respectively 

        (1) 

       (2) 

where 
i

O2
y and

2Oy are, respectively, O
2 concentration (%) at the initial time ti (hours, h) 

(time zero) and at time t (hr) and 
i

CO2
y and

2COy are, respectively, CO
2 concentration (%) at 

the initial time ti (h) (or time zero) and at time t (h). RO2 and RCO2 are RR in mL kg-1 h-1 and 

W is the total weight of the product (kg). Vf is the free volume inside the glass jar (mL), 

which is the total volume of the glass jar minus volume occupied by the sample. The volume 

occupied by the fruit was calculated from the mass of fruits over apparent density of 

pomegranate fruit (0.98 g cm-3). To evaluate the influence of time on respiration rate of 

pomegranate arils over days, periodic gas samples were taken at hourly interval over a 

period of 5 hours, after which the glass jars were slightly opened overnight to minimize rapid 

moisture loss and also to avoid built-up of sub-atmospheric gases. After overnight storage, 

the jars were closed hermetically, and gas samples were taken. This cycle was repeated over 

a 5 day storage period and no microbial infestation or decay was observed over this period. 

The gas samples taken during 5 hour measurement period were used to calculate RO2 and 

RCO2 using Eqn. 1 and 2. 

Furthermore, Arrhenius-type equation which describes respiration rate as a function of 

temperature (Iqbal et al., 2009; Torrieri et al., 2010), for both RO2 and RCO2 was used in 

model fitting as presented in Eqn. 3 and 4. 

        (3) 

        (4) 

where RO2 and RCO2 are the respiration rate (mL kg-1h-1) at temperature (T, K), RO2,ref and 

RCO2,ref are respiration rate at reference temperature (Tref, K), R is the universal gas constant 

(0.008314 kJ K-1mol-1), Ea,O2 and Ea,CO2 are activation energy (kJ mol-1), Tref is the reference 

temperature (i.e. average of the temperatures studied = 283 K), and RO2,ref, RCO2,ref, Ea,O2 and 

Ea,CO2 are model constants. On substituting Eqn. 3 in Eqn. 1 and Eqn. 4 in Eqn. 2 respectively 

we get: 
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     (5) 

    (6) 

where, 
i

O2
y  = 20.6 %, 

i

CO2
y  = 0 %, t is the elapsed time (h) during respiration rate 

measurement, and RO2, ref , RCO2, ref , Ea,O2 and Ea, CO2 were model constants estimated using 

solver Microsoft Excel (Microsoft Office 2003, USA) and data was further analysed using 

Statistica software (Statistical 10.0, Statsoft, USA). 

 

Statistical analysis 

 

Pareto analysis (Mahajan et al., 2008) was used with two factors (time and temperature) each 

at three levels of temperatures 5, 10 and 15 °C at 95% confidence interval to assess the 

effects of time and temperature, and the interaction between time and temperature on the 

RR data. One-way analysis of variance (ANOVA) at 95% confidence interval was applied to 

evaluate the effect of time and temperature on respiration rate and respiratory quotient 

(RQ). All experiments were carried out in triplicate and data were analysed using Statistical 

software (Statistical 10.0, Statsoft, USA). 

 

Results and Discussion 

 

Modelling the influence of temperature on respiration rate 

 

The model appropriately described the influence of temperature on RR for both whole fruit 

and fresh arils as shown by the high R2 (93.0 to 96.8%) obtained for RO2 and RCO2. The 

scatter plot graph in Fig. 1 shows a good relationship between experimental and predicted 

respiration rate values of pomegranate whole fruit and arils. The distribution of residuals was 

normal as quantified by Kolgomorov-Smirnov test (d = 0.14) and Lilliefors (p < 0.01) at a 

significant level of 95% (Fig. 2), this indicates that the trend observed was not biased. 

Parameter estimates of the models Eqn. 3 and 4 using Eqn. 5 and 6, and relevant statistical 

data for both RO2 and RCO2 of the two cultivars (whole fruit and arils) are presented in 

Table 1. Furthermore, in order to validate the model developed its predictions of RR for RO2 
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and RCO2 at 8 °C for pomegranate fruits cv. ‘Acco’ and ‘Herskawitz’ were compared with the 

set of experimental data. The experimental RO2 and RCO2 of Acco cultivar at 8°C were 7.46 

(± 0.71) and 7.81 (± 0.55) mL kg-1 h-1, respectively, while the model predicted RO2 and RCO2 

were 6.63 and 8.83 mL kg-1 h-1, respectively. Similarly for the other cultivar Herskawitz the 

experimental values of RO2 and RCO2 at 8 °C were 6.72 (± 0.29) and 8.08 (± 0.74) mL kg-1 h-

1, respectively, while the model predicted RO2 and RCO2 were 6.65 and 9.04 mL kg-1 h-1, 

respectively confirming the predictive ability of the mathematical model. 
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Figure 1 Relationship between experimental and predict respiration rate values of pomegranate 

whole fruits and arils: Empty circles represent RCO2, mL kg-1 h-1; filled circles represent RO2, mL kg-

1 h-1. 
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Figure 2 The distribution of residuals obtained from fitting Eqn. 5 and 6. The inside graph shows the 

pattern of residuals versus O2 concentrations. 

 

Table 1 Estimated parameters and relevant statistical data of the mathematical model (Eqn. 3 and 4) 

describing the influence of temperature on respiration rate of pomegranate fruit and arils 

Pomegranate 

RO2, ref RCO2, ref Ea, O2 Ea, CO2 R2, O2  R2, CO2  

[mL kg-1 h-1] [mL kg-1 h-1] [kJ mol-1] [kJ mol-1] [%] [%] 

Whole fruit 

      
(cv. Acco) 8.55 11.10 84.18 75.74 96.2 95.8 

(cv. Herskawitz) 8.74 11.50 90.64 79.72 94.2 93.0 

Fresh arils 

      
(cv. Acco) 3.90 4.43 69.61 72.13 96.2 96.8 

(cv. Herskawitz) 3.84 4.24 54.42 54.36 93.4 93.8 

*Tref = Reference temperature, 283 K 

 

Effect of temperature on the respiration rate 

 

The influence of temperature on the O2 consumption (RO2) and CO2 production (RCO2) of 

both whole pomegranate fruit and fresh arils for the two cultivars was significant, as shown 

in fig. 3. RO2 and RCO2 were within the range of 4.53 ± 0.23 to 14.67 (± 1.29) mL kg-1 h-1 and 

5.67 (± 0.23) to 18.53 (± 2.84) mL kg-1 h-1 respectively, for whole fruit, and in the range of 

2.51 (± 0.30) to 7.59 (± 0.92) mL kg-1 h-1 and 2.72 (± 0.17) to 9.01 (± 0.73) mL kg-1 h-1, 

respectively, for fresh arils. Reducing temperature from 15 to 5 °C decreased RO2 and 
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RCO2 by about 68 and 67% for whole fruit and, 67 and 70% for fresh arils, respectively. This 

significant reduction in fruit respiration rate at lower storage temperature corroborates the 

finding reported for other types of fresh produce (Tano et al., 2007; Nie et al., 2005). For 

instance, Torrieri et al. (2010) reported a decrease in RR by 88 and 84% for RO2 and RCO2 

respectively, when the storage temperature of minimally processed broccoli was reduced 

from 20 to 3 °C. The slightly lower percentage reduction in respiration rates of both whole 

fruit and fresh arils found in the present study compared to other types of fresh produce 

such as broccoli may be attributed to the non-climacteric nature of pomegranate fruit and 

differences in temperature regimes tested. Furthermore, the whole fruit had a higher RR 

compared to the arils. This could be associated to the presence of micro-cracks on the 

cuticle of the whole, which facilitates an increase in metabolic response for the whole fruit. 

While arils are membrane-bound without micro-cracks and the integrity of each aril is well 

protected. This implies that the selection of appropriate packaging material is crucial for 

better keeping of the whole fruit and arils. 

The RR of the pomegranate cultivars in this study follows the pattern of other non-

climacteric fruit. Wang et al. (2009) reported RO2 and RCO2 of 6.90 mL kg-1 h-1 and 6.39 mL 

kg-1 h-1, respectively for guava fruit stored at 10 °C. The authors also observed a significant 

increase in respiration rate when temperature was increased to 30 °C. Manolopoulou & 

Papadopoulou (1998) reported RCO2 range of between 1.0 to 2.5 mL kg-1 h-1 for four 

different kiwi cultivars stored at 0 °C. The average RCO2 for pomegranate whole fruit at 10 

°C in this study agrees with that reported by Kader et al. (1984), which found an average of 

8 mL kg-1 h-1 for pomegranate cv. ‘Wonderful’ stored between 0 and 10 °C for about 3 

months. 

For arils, the values of RR observed in this study were relatively higher than those 

reported in literature for other pomegranate cultivars. For example, Eran et al. (2010) 

reported a minimum respiration rate (RO2 and RCO2) of 1.5 and 0.52 mL kg-1 h-1 respectively, 

for pomegranate arils cv. ‘Hicaz’ stored in 2 % O2 + 10 % CO2 at 4 °C. López-Rubira et al. 

(2005) reported RCO2 of 14.45 (± 2.48) nmol kg-1s-1 (1.15 mL kg-1 h-1) for pomegranate arils 

cv. ‘Mollar’ stored at 5 °C in air condition. Similar RCO2 of 14.77 nmol kg-1s-1 (1.30 mL kg-1 h-1) 

was reported for fresh arils cv. ‘Mollar’ stored at 4 °C (Gil et al., 1996). The observed 

difference in RR highlights the possible influences of cultivar, storage condition and growing 

region, and thus the need for detailed study of commercial cultivars to assist in design and 

optimization of postharvest handling and processing operations (Caleb et al., 2012). 
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There was no significant difference in respiration rates of the two cultivars (‘Acco’ and 

‘Herskawitz’) at all experimental temperatures (p > 0.05) studied. However, irrespective of 

cultivar, the RR of whole fruit was significantly higher than those of fresh arils as shown in 

Fig. 3. The respiration rate of whole fruit was two to three folds higher, in comparison to 

those of the fresh arils across all experimental temperatures. Contrary to other fresh-cut 

fruit in which membranes and cells are damaged, resulting in increased tissue metabolic 

process such as enzymatic browning, increased rate of water loss and respiration rate due to 

the increased surface area in contact with atmospheric oxygen (Iqbal et al., 2009; Torrieri et 

al., 2009), pomegranate arils have a protective membrane which prevents direct tissue or 

cellular interaction of its succulent portion with atmospheric condition after the husk is 

carefully removed. Therefore, careful postharvest handling of minimally processed 

pomegranate arils to avoid membrane cuts and bruises is essential for effective application of 

MAP (Caleb et al., 2012). 

 

Effect of time and temperature on the respiration rate 

 

Changes in respiration rate for pomegranate arils during storage at different temperatures 

(5, 10 and 15 °C) are summarized in fig. 4. The influence of both time and the interaction 

between temperature and time on the RO2 and RCO2 of fresh arils were significant (p < 

0.05). These effects were adequately described by the fitted surface plot and Pareto plots 

which are summarised in fig. 5 and fig. 6, respectively. Fig. 5 shows the change in RO2 and 

RCO2 rate over time and storage temperature for fresh arils. The observed effect of 

temperature on RR of arils as shown in fig. 3, is similar to those reported by Gil et al. (1996), 

who reported respiration rates of 1.94, 1.30, and 0.53 mL CO2 kg-1 h-1 for pomegranate arils 

cv. ‘Mollar’ stored at 8, 4, and 1 °C, respectively. However, the difference between the 

responses of the two cultivars in this study at 15 °C highlights the possible influence of 

physiological differences between cultivar responses to storage condition (Al-Mughrabi et al., 

1995). Furthermore, the spike observed in respiration rate at 15 °C (Fig. 4), suggests the 

possible influence of ethylene. Devlieghere et al. (2003) found a linear relationship when 

respiration rate at a specific temperature was plotted against the ethylene production rate 

for different O2 and CO2 concentrations for climacteric and non-climacteric fruits. 
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Figure 3 Effect of storage temperature on respiration rate of pomegranate fruit and arils of two 

cultivars: (a) cv. ‘Acco’ and (b) cv. ‘Herskawitz’. Continuous and dotted lines represent the 

respiration rate of pomegranate whole fruit and arils, respectively. Circle and triangle represents the 

O2 consumption rate and CO2 production rate, respectively. 
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Figure 4 Changes in respiration rate of arils with time at different temperatures: (a) and (b): RCO2 

and RO2 of arils (cv. ‘Acco’); (c) and (d): RCO2 and RO2 of arils (cv. ‘Herskawitz’) with ◊ 

representing 5 °C, □ for 10 °C and ∆ for 15 °C. 

 

 
Figure 5 A fitted surface plot showing the effect of temperature and time on respiration rate 

(RCO2) for pomegranate arils cv.  ‘Acco’. *Similar data was obtained for cv. ‘Herskawitz’ data not 

shown. 
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In terms of relevance to MAP design, the pattern of RR of pomegranate arils in relation 

to storage temperature and time as shown in Fig. 4. Can serve as guiding tool towards other 

MAP parameters such as package volume to packed arils volume, type of packaging material, 

barrier properties and temperature sensitivity of packaging material (Fonseca et al., 2002). 

For instance at 15 °C, if the permeability property of a packaging film does not correlate 

with the respiration rate observed. This can lead to excessive accumulation of CO2, resulting 

in cell membrane damage and physiological injuries to the product (Caleb et al., 2012). 

Furthermore, at 5 °C storage temperature respiration rate was at its lowest and appeared 

to be relatively constant over time. Thus, if an inappropriate ratio of package volume to 

packed arils volume or packaging material is used, it is possible that the gas equilibrium level 

at steady-state required inside the package for passive-MAP will take a longer time to 

establish. MAP has been reported to strongly reduce water loss and chilling injuries without 

incidence of decay in pomegranate fruit (Artés et al., 2000), and to maintain arils pigments 

(anthocyanins) better in comparison to samples packed without MAP (Gil et al., 1996). 
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Figure 6 Pareto chart showing the effect of temperature (Temp.) and time on the respiration rate of 

pomegranate arils; (cv. ‘Acco’) at 95 % significance level, indicated as a vertical dashed line: ‘L’ and ‘Q’ 

are linear and quadratic effect of temperature and time, respectively. *Similar data was obtained for 

cv. ‘Herskawitz’ data not shown. 
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The RQ for the whole fruit of both pomegranate cv. ‘Acco’ and ‘Herskawitz’ ranged from 

1.14 (± 0.06) to 1.26 (± 0.13). The RQ for arils cv. ‘Acco’ ranged between 1.06 (± 0.07) and 

1.62 (± 0.04), while, RQ for cv. ‘Herskawitz’ ranged from 1.01 (± 0.09) to 1.37 (± 0.04).  The 

RQ value of arils estimated by linear regression of RCO2 vs. RO2 was 0.98 (± 1.14) (R2 adj = 

98%) at 95% significant level. The values reported in this study, compare favourably with 

normal RQ limits (0.7 to 1.3) for aerobic respiration (Kader et al. 1989), with the exception 

of pomegranate arils (cv. ‘Acco’) at 15 °C where a significant increase in RQ was observed. 

However, there was experimental evidence which suggest the significant (p < 0.05) influence 

of time and temperature on the observed high RQ for pomegranate arils (cv. ‘Acco’) under 

aerobic conditions (Fig. 7 and 8). This phenomenon is similar to that reported by Wang et al. 

(2009) for guava fruit. Fig. 4 also confirms the change in respiration pattern with 

temperature.   

 
LS Means

Current effect: F(2, 42)=5.8793, p=.00561

Vertical bars denote 0.95 confidence intervals
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Figure 7 One-way ANOVA analyses showing the influence of temperature on the observed RQ for 

pomegranate arils (cv. ‘Acco’). 
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LS Means

Current effect: F(4, 40)=6.4625, p=.00041

Vertical bars denote 0.95 confidence intervals
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igure 8 One-way ANOVA analyses showing the influence of time on the observed RQ for 

pomegranate arils (cv. ‘Acco’), similar data was obtained for cv. ‘Herskawitz’ data not shown. 

 

Conclusions 

 

The respiration rate of pomegranate cv. ‘Acco’ and ‘Herskawitz’ whole fruit was significantly 

higher than the respiration rate of fresh arils. Temperature had a significant impact on the 

respiration rates of both whole fruit and fresh arils. The influence of time, and the 

interaction between temperature and time also had a significant influence on the respiration 

rate of fresh arils. This highlights the importance of maintaining optimal product cold chain, 

especially when MAP is used for arils. It was found that the RQ of pomegranate arils was 

dependent on temperature and time, with higher RQ value as storage temperature increased 

from 5 to 15 °C. An Arrhenius-type equation accurately predicted the effect of temperature 

on respiration rate of whole fruit and fresh arils. The model would be useful towards MAP-

design for postharvest handling of whole pomegranate fruit and freshly processed arils. 
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CHAPTER 5 

 

DEVELOPMENT OF PREDICTION MODEL DESCRIBING THE 

EFFECT OF TIME AND TEMPERATURE ON RESPIRATION RATE 

OF POMEGRANATE ARILS 

 

Summary 

 

Understanding the effect of time and temperature on the respiration rate (RR) of fresh-cut 

produce, towards the design of a suitable modified atmosphere packaging (MAP) system 

requires an adequate mathematical model for prediction of RR as a function of both time and 

temperature. This study investigated the effect of temperature (5, 10 and 15 °C) and storage 

time (1 to 5 days) on the RR (RO2 and RCO2) of two pomegranate cultivars (cv. ‘Acco’ and 

‘Herskawitz’) fresh arils.  RO2 and RCO2 were 3-4 folds significantly higher with increased 

temperature from 5 to 15 °C and were within the range of 2.51 to 7.59 mL kg-1 h-1 and 2.72 

to 9.01 mL kg-1 h-1, respectively for both cultivars. At 15 °C RCO2 increased significantly 

from 8.4 to 25.96 mL kg-1 h-1 from day 1 to 5, respectively, while at 5 °C RCO2 changed from 

2.9 to 2.05 mL kg-1 h-1 from day 1 to 5. Temperature had the greatest influence on RR and 

the interaction of time and temperature also significantly affected RO2 and RCO2. The 

respiratory quotient (RQ) estimated by linear regression was 0.98 at 95% significant level. 

The dependence of RR on temperature and time was accurately described with a 

combination of an Arrhenius-type and power equation model for RO2 and RCO2 of fresh 

pomegranate arils. 

 

Introduction 

 

During the last decade, there has been a remarkable increase in the commercial production 

of pomegranates globally, due to the potential health benefits of the fruit. These benefits 

have been attributed to the high antioxidant contents and its anti-mutagenic, anti-

hypertension, anti-inflammatory and anti-atherosclerotic activities against osteoarthritis, 

prostate cancer, heart disease and HIV-1 (Viuda-Martos et al., 2010). Furthermore, 

pomegranate fruit is an excellent dietary source rich in organic acids, soluble solids, 
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anthocyanins, vitamin C, fatty acids and mineral element, and has significant antimicrobial 

effects (Opara et al., 2009; Fawole et al., 2012). In spite of these health benefits, pomegranate 

consumption is still limited, due to the difficulties of extracting the arils and the irritation of 

phenolic metabolites which stain the hands during preparation (Caleb et al., 2012). 

Furthermore, the presence of external blemish and defects such as sunburnt husks, splits and 

cracks, and husk scald on the whole fruit reduces marketability and consumer acceptance 

(Sadeghi & Akbarpour, 2009), even though the arils are of good quality. Hence, modified 

atmosphere packaged ready-to-eat fresh pomegranate arils presents a more appealing 

product to consumers and increases the prospect of both production and consumption 

(Caleb et al., 2012; Opara & Al-Ani, 2010).  

Modified atmosphere packaging (MAP) is a dynamic process of altering gaseous 

composition within a package. It relies on the interaction between the RR of the produce, 

and the transfer of gases through the packaging material, with no further control exerted 

over the initial gas composition (Farber et al., 2003; Mahajan et al., 2007). MAP technology 

extends the shelf-life and maintains quality of fresh-cut produce by lowering the RR and 

retarding the development of physiological disorders and proliferation of spoilage pathogenic 

microbes (Artés et al., 2000). However, a quantitative description of RR of fresh produce via 

mathematical modeling is essential for the design of MAP (Fonseca et al., 2002; Mahajan et al., 

2007). When fruit respiration does not correlate to the permeability properties of packaging 

film, increase in the concentration of CO2 will build up beyond acceptable levels, leading to 

anaerobic respiration and ethanol accumulation inside the fresh produce. This results in the 

development of off-flavours and decay (Caleb et al., 2011). Although, some studies have 

reported data on the RR of arils of selected pomegranate cultivars (Eran et al., 2010), there 

is no predictive model on the RR of fresh pomegranate arils describing the effect of time and 

temperature. Therefore, the objective of this study was to investigate the effects of time and 

temperature on respiration rate of fresh arils, and to develop a predictive model relating 

respiration rate to both time and temperature, thereby providing basic information relevant 

to the design of MAP for this product. 
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Materials and methods 

 

Produce and sample preparation 

 

Fully ripe pomegranate (Punica granatum L.) fruit  sweet-sour cv. ‘Acco’ and ‘Herskawitz’ 

harvested manually during commercial harvest period were procured from Robertson valley 

farm in the Western Cape (33°48′0″S, 19°53′0″E), South Africa and air-freighted in well 

ventilated boxes to the Process and Chemical Engineering Laboratory, University College 

Cork, Ireland. The duration of transportation was about 72 hours. On arrival, fruit were 

immediately stored at 5 °C until the next day, when they were peeled manually in a clean 

cold room at 5 °C by carefully removing the arils to avoid damage. Samples of arils were 

weighed (≈ 150 g each sample), and each sample was placed inside a glass jar of about 428 

mL, and equilibrated at the desired storage temperature (5, 10 or 15 °C) for at least 1 hr 

prior to experiment. The physicochemical properties of the pomegranate cultivars studied 

were characterised at the start of experiment and data is presented in Table 1. A total of 

100 g of arils were homogenised and filtered using cheesecloth. The juice pH was measured 

using a digital pH meter (3310 Jenway, pH Meter, UK). Titratable acidity (TA) expressed as 

% citric acid was determined potentiometrically, by titration to an end point of pH 8.2 using 

2 mL of juice diluted with 10 mL distilled water using an autotitrator (Metrohm 785 DMP, 

Titrino, Switzerland). Total soluble solids (TSS) were measured by hand refractometer 

(Atago, Tokyo, Japan). Hunter colour parameters (L* (lightness), a* (redness and greenness), 

and b* (yellowness and bluness)) of arils were measured with a colour meter (Minolta 

Chroma Meter, CR-300, Japan), after calibration against a white tile background (Opara et 

al., 2009; Fawole et al., 2012). All analyses were presented as mean ± standard error (S.E.) of 

10 replicates. 

 

Table 1 Fruit physicochemical properties of the studied pomegranate cultivars 

Cultivar(s) Fruit size (g) 

CIELAB colour index TA  

TSS (°Brix) pH 
L* a* b* (%w/v) citric acid 

‘Acco’ 242.2 ± 2.9 31.3 ± 1.9 15.43 ± 2.19 10.4 ± 0.5 2.08 ± 0.09 17.8 ± 0.2 3.2 ± 0.06 

‘Herskawitz’ 252.4 ± 8.4 28.9 ± 0.8 22.45 ± 1.49 11.8 ± 0.6 1.82 ± 0.04 16.3 ± 0.2 3.1 ± 0.01 

aValues are mean ± S. E. 
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Experimental setup 

 

The rate of oxygen consumption (RO2) and carbon dioxide production (RCO2) of the 

pomegranate fresh arils were measured using the closed system method (Fonseca et al., 

2002; Iqbal et al., 2009b; Torrieri et al., 2009). Air-tight glass jars with a lid containing a 

rubber septum in the middle were used to store aril samples at the different temperatures 

of 5, 10 and 15 °C. To ensure hermetic seal, Vaseline was incorporated into the gap 

between lid and the glass jar. Gas composition inside the glass jars were monitored 

periodically using an O2/CO2 gas analyser with an accuracy of 0.5 % (Checkmate 3, PBI 

Dansensor, Ringstead, Denmark). Gas samples were taken at constant time intervals from 

the head space through the rubber septum. RO2 and RCO2 were determined by fitting 

experimentally obtained data on  and with Eqn. 1 and 2, respectively 

        (1) 

       (2) 

where: 

 
i

O2
y

=
 O

2 concentration (%) at the initial time ti (hours, h)
 

2Oy = O
2 concentration (%) at time t (h) 

i

CO2
y = CO

2 concentration (%) at the initial time ti (h) 

2COy = CO
2 concentration (%) at time t (h) 

RO2 = respiration rates in mL O2 kg-1 hr-1 

 RCO2 = respiration rates in mL CO2 kg-1 hr-1 

W = total weight of the product (kg)  

Vf = free volume inside the glass jar (ml), which is the total volume (Vt ≈ 428 ml) of the glass 

jar minus volume occupied by arils.  

The volume occupied by the arils was calculated from the mass of arils over apparent density 

(0.98g cm-3). Furthermore, in order to characterise the effect of time on respiration rate of 

the arils, periodic gas samples were taken hourly over a period of 5 hours from the hermetic 
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sealed jars, after which the glass jars were opened slightly to minimize rapid moisture loss 

and also to avoid built-up of sub-atmospheric gases. Following overnight storage time the 

jars were closed hermetically and gas samples were taken. This cycle was repeated over a 5 

day storage period and no spoilage was observed over this period. The gas samples taken 

during 5 hour measurement period were used to calculate RO2 and RCO2 using Eqn. 1 and 

2. 

 

Statistical analyses 

 

Pareto analysis (Mahajan et al., 2008) was used with two factors (time and temperature) each 

at three levels of temperatures 5, 10 and 15 °C at 95% confidence interval to assess the 

effects of time and temperature, and the interaction between time and temperature on the 

respiration rate of pomegranate arils. The experimental data obtained were treated with 

one-way analysis of variance (ANOVA) at 95% confidence interval to evaluate the effect of 

time and temperature on RR and RQ. All experiments were carried out in triplicate and 

analysed using Statistical software (Statistical 10.0, Statsoft, USA). 

 

Results and Discussion 

 

Effect of time and temperature on the respiration rate 

 

The influence of temperature on the RR (O2 consumption (RO2) and CO2 production 

(RCO2)) on both cultivars was significant, as shown in Fig.1. RO2 and RCO2 values ranged 

from 2.51 ± 0.30 to 7.59 (± 0.92) mL kg-1 h-1 and 2.72 (± 0.17) to 9.01 (± 0.73) mL kg-1 h-1, 

respectively. Reducing storage temperature of arils from 15 to 5 °C decreased RO2 and 

RCO2 by about 67 and 70 %, respectively. The significant reduction in RR at lower storage 

temperature corroborates the finding reported for other types of fresh produce (Cliffe-

Byrnes & O’Beirne 2007; Lakakul et al., 1999). Similarly, the effect of reduced temperature 

was reported by Torrieri et al. (2010). They observed a decrease RR by 88 and 84% for RO2 

and RCO2, respectively, when the storage temperature of minimally processed broccoli was 

reduced from 20 to 3 °C. However, the slightly lower percentage reduction in RR of fresh 

arils found in the present study compared to other types of fresh produce such as broccoli 
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may be attributed to the non-climacteric nature of pomegranate fruit and differences in 

temperature regimes tested. 

Based on Pareto chart (Fig. 2) and fitted surface plot (Fig. 3) show that both storage time 

and temperature, and their interaction had significant influences on RR of fresh arils (p < 

0.05). Fig. 2 shows that temperature had the most significant effect in comparison to time. 

The observed effect of temperature on RR of arils as shown in Fig. 1, is similar to those 

reported by Gil et al. (1996), who reported RR of 1.94, 1.30, and 0.53 mL CO2 kg-1 h-1  for 

pomegranate arils cv. ‘Mollar’ stored at 8, 4, and 1 °C , respectively. The RR observed in this 

study was relatively higher than those reported in literature for arils of other pomegranate 

cultivars. For instance, Eran et al. (2010) reported a minimum RO2 and RCO2 of 1.5 and 0.52 

mL kg-1 h-1 respectively, for pomegranate arils cv. ‘Hicaz’ stored in 2 % O2 + 10 % CO2 at 4 

°C. López-Rubira et al. (2005) reported RCO2 of 14.45 (± 2.48) nmol kg-1 s-1 (1.15 mL kg-1 h-1) 

for pomegranate arils cv. ‘Mollar’ stored at 5 °C in air condition. This could be attributed to 

difference in storage conditions and postharvest handling/ treatment, which was different 

from this study. 

Furthermore, the difference between the responses of the two cultivars in this study at 

15 °C highlights the possible influence of physiological differences between cultivar 

responses to storage conditions (Al-Mughrabi et al., 1995). Furthermore, the observed spike 

in RR at 15 ºC (Fig. 1) could be associated with a stress-induce response due to 

temperature. Other possible influence could be stress-induce by ethylene synthesis, 

Oosterhaven & Peppelenbos (2003) reported a linear relationship between RR at a specific 

temperature and ethylene production rate for different O2 and CO2 concentrations for 

climacteric and non-climacteric fruits.  
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Figure 1 Change of RCO2 and RO2 rate as a function of time and temperatures 5, 10 and 15 °C 

experimental and prediction data (a) and (b) cv. ‘Acco’, and (c) and (d) cv. ‘Herskawitz’ respectively: 

∆ = 15 °C, x = 10 °C, ○ = 5 °C, continuous line represents the predicted values at respective 

temperatures, the bars represents the standard deviation of the experimental data. 
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Standardized Effect Estimate (Absolute Value)

Time(Q)
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Figure 2 Pareto chart showing the effect of time, temperature (Temp) and their interaction on the 

respiration rate of pomegranate arils; cv. ‘Acco’ at 95% significance level, indicated as a vertical 

dashed line. * Similar data obtained for cv. ‘Herskawitz’ 
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RCO2 increased significantly during storage 15 °C from day 1 to 5 for both cultivars (p < 

0.05), with values ranging from 9.01 (± 0.73) to 25.9 (± 0.27) mL kg-1 h-1 for cv. ‘Acco’, and 

7.5 (± 1.04) to 17.9 (± 0.63) mL kg-1 h-1 for cv. ‘Herskawitz’. The significant increase in fruit 

RR during storage at higher temperature corroborates the finding reported for other types 

of fresh produce. For instance, Iqbal et al., (2009a) reported increased RR of sliced 

mushroom from 59.5 to 95.2 mL kg-1 h-1 during 100 h storage at 12 °C. In contrast, the 

present study showed that during 5 days storage temperature at 5 °C there was a decline in 

RCO2 from 2.9 (± 0.09) to 2.1 (±0.06) mL kg-1 h-1  for cv. ‘Acco’ and 2.7 (± 0.23) to 2.3 (± 

0.27) mL kg-1 h-1 for cv. ‘Herskawitz’. These results are in agreement with findings of Nei et 

al., (2006) who reported a slight decrease in RR of shredded cabbage during storage at 5 °C. 

Other studies have shown that metabolic and enzymatic processes in fresh produce are 

retarded at low temperature (Fonseca et al., 2002). Hence, it is important to monitor and 

control storage temperature inside MAP of fresh produce along the supply chain. 

 

 

Figure 3 A fitted surface plot showing the effect of temperature and time on respiration rate 

(RCO2) for pomegranate arils cv.  ‘Acco’. * Similar data obtained for cv. ‘Herskawitz’ data not shown.  
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The RQ of pomegranate arils ranged between 1.06 (± 0.07) and 1.62 (± 0.04) for cv. 

‘Acco’ and 1.01 (± 0.09) to 1.37 (± 0.04) for cv. ‘Herskawitz’.  The RQ value of arils 

estimated by linear regression of RCO2 vs. RO2 was 0.98 ± (0.14) (R2 adj = 98%) at 95% 

significant level. These values compares favourably with normal RQ limits (0.7 to 1.3) for 

aerobic respiration (Kader et al., 1989), with the exception of pomegranate arils cv. ‘Acco’ at 

15 °C. However, experimental evidence suggests that the significant (p < 0.05) influence of 

time and temperature on the observed high RQ for pomegranate arils (cv. ‘Acco’) occurred 

under aerobic conditions (Fig. 4), similar to the findings reported by Wang et al. (2009) for 

guava fruit. Although there was no evidence of anaerobic respiration for the conditions of 

temperature tested, it is possible that the RQ breakpoint of fresh-cut pomegranate arils (cv. 

‘Acco’) is lower than 15 °C. This breakpoint will be the highest storage temperature that 

does not induce anaerobic respiration in packaged arils. 

Considering variation in temperature during distribution chain, the RR pattern observed 

in Fig. 1 could serve as a guiding tool for selecting appropriate packaging material for 

pomegranate arils. For instance at 15 °C, if the permeability property of a selected film does 

not match with the observed RR, this might lead to excessive accumulation of CO2 causing  

physiological injuries and cell membrane damage of product (Caleb et al., 2012). Conversely, 

at 5 °C RR was at its lowest rate and appeared to be relatively constant over time, 

therefore, it will take longer period to establish an equilibrium gas composition in passive-

MAP. Furthermore, the observed RR response highlights the need for strict measures to 

monitor storage conditions along the supply chain to the retail market using devices such as 

time temperature indicators (TTIs), radio frequency identification (RFID) tags, and gas 

indicators (Caleb et al., 2012).  
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Figure 4 One-way ANOVA analyses showing the influence of temperature and time on the 

observed RQ for pomegranate arils cv. ‘Acco’. 
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Table 2 Parameter estimates from model (Eqn. 5 and 6) describing the influence of temperature on respiration rate and relevant statistical data 

Pomegranate arils 

Ri
O2, ref Ri

CO2, ref Ea, O2 Ea, CO2 R2, O2  R2, CO2  

[mL kg-1 h-1] [mL kg-1 h-1] [kJ mol-1] [kJ mol-1] [%] [%] 

cv. ‘Acco’ 4.03 4.52 71.25 75.78 94.9 95.4 

cv. ‘Herskawitz’ 4.32 4.46 69.61 77.24 95.4 96.7 
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Model building 

 

Effect of temperature on respiration rate of pomegranate arils 

 

A simple Arrhenius-type equation which describes temperature as a function of RR (Iqbal et 

al., 2009b; Torrieri et al., 2010) for both RO2 and RCO2 was applied in model fitting as 

presented in Eqn. 3 and 4: 

ref

2O,a

T

1

T

1

R

E

i

ref,2O2O eRR         (3) 

ref

2CO,a

T

1

T

1

R

E

i

ref,2CO2CO eRR        (4) 

where RO2 and RCO2 are RR (mL kg-1 h-1) at temperature (T, K), 
i

ref,2OR and 
i

ref,2COR are initial 

RR (mL kg-1 h-1) at reference temperature (Tref, K), R is the universal gas constant (0.008314 

kJ K-1 mol-1), Ea,O2 and Ea,CO2 are activation energy (kJ mol-1), T is the storage temperature (K), 

and Tref is the reference temperature (i.e. average of the storage temperatures = 283 K). A 

secondary model was built by substituting RO2 and RCO2 in Eqn. 1 and 2, with Eqn. 3 and 4, 

respectively: 
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where, 
i

O2
y  = 20.6%, 

i

CO2
y  = 0%, t is the elapsed time (hr) during RR measurement, and 

parameter estimates of 
i

ref,2OR , 
i

ref,2COR , Ea,O2 and Ea, CO2 were estimated using solver on 

Microsoft Excel (Microsoft Office 2003, USA). Data were further analysed using Statistica 

software (Statistical 10.0, Statsoft, USA). 

The models (Eqn. 5 and 6) appropriately described the influence of temperature on RR 

for both cultivars as shown by the high R2 values between 94.9 to 96.7% for RO2 and RCO2 
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(Table 2). The experimental RO2 and RCO2 data at 5, 10 and 15 °C for both cultivars and the 

predicted values are presented in fig. 5. The scatter plot in fig. 6 shows a good relationship 

between experimental and predicted data for the measured CO2 concentration. The 

distribution of residuals was normal with the Kolgomorov-Smirnov test of d = 0.13 and 

Lilliefors of p < 0.05 at a significant level of 95% as shown in fig. 7. This observation indicates 

that the model describing the effect of temperature on respiration in this study was not 

biased. Table 2 summaries the constant parameters and other relevant statistical data 

estimated using Eqn. 5 and 6. 

 

 

Figure 5 Relationship between experimental respiration rate (RO2 and RCO2) and those predicted 

values at 5, 10 and 15 °C for both cultivars using Arrhenius-type equation (Eq. 3 and 4): (a) and (b) 

represents RO2 and RCO2 cv. ‘Acco’; and (c) and (d) represents RO2 and RCO2 cv. ‘Herskawitz’, 

respectively; the shaded bars are experimental data and unshaded are predicted values. 

 

Furthermore, the estimated
i

ref,2OR , 
i

ref,2COR values of 4.03 and 4.52 mL kg-1 h-1 for cv. 

‘Acco’, and 4.32 and 4.46 mL kg-1 h-1 for cv. ‘Herskawitz’, respectively, were close to the 

experimental RO2 and RCO2 values of 3.11 (± 0.26) and 3.64 (± 0.14) mL kg-1 h-1 for cv. ‘Acco’, 

and 3.78 (± 0.12) and 4.02 (± 0.15) mL kg-1 h-1 for cv. ‘Herskawitz’, respectively. This 
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outcome implies that at least a single experimental respiration data point is sufficient to 

predict the RR at other temperatures, thereby, reducing the tedious process of data 

accumulation towards mathematical prediction.  Similarly, the estimate activation energy (Ea, 

O2 and Ea, CO2) values of 69.61 to 71.25 KJ mol-1 and 75.78 to 77.24 KJ mol-1, respectively, 

reported in this study were in accord with the normal range of (29 to 92.9 KJ mol-1) 

reported in literature for fruits and vegetables exposed to air (Exama et al., 1993). 

 

 

Figure 6 Relationship between CO2 concentration measured experimentally, and the values 

predicted using Eqn. 5 and 6 combining all storage conditions.  
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Figure 7 The distribution of residuals obtained from fitting Eqn. 5 and 6 for cv. ‘Acco’. The inside 

graph shows the pattern of residuals of O2 and CO2 versus experimental values of O2 (a) and CO2 (b) 

concentrations. 

 

Combined effect of time and temperature on respiration rate of pomegranate 

arils 

 

The relationship between RR and time as expressed by a power function, which describes 

the time effect on respiration rate in Eqn. 7 and 8 (Uye & Yashiro, 1988) was combined with 

Arrhenius-type model, which describes the effect of temperature on respiration rate (Eqn. 3 

and 4): 

          (7) 

          (8) 

where, t  is storage time in days, a and b are the model constants. Combining the above 

equations 3 to 5, and 7 and 4 to 8, respectively to describe both the influence of 

temperature and time on the respiration rate of pomegranate arils: 

       (9) 

       (10) 
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A secondary model was built by substituting RO2 and RCO2 in Eqn. 1 and 2, with Eqn. 9 and 

10, respectively: 

    (11) 

   (12) 

where, parameter estimates of 
i

ref,2OR , 
i

ref,2COR , Ea,O2 and Ea, CO2 previously obtained from 

Eqn. 5 and 6 were incorporated into Eqn. 11 and 12. Model constants a, and b were 

estimated for each tested temperatures, all data obtained at all combinations of temperature 

were used to estimate the values of global a, and b for each cultivar, so that RR can be 

predicted at any temperature. Using solver Microsoft Excel (Microsoft Office 2003, USA), 

and data was further analysed using Statistica software (Statistical 10.0, Statsoft, USA). 

Table 3 summarises the estimates of the constants and relevant statistical data. The model 

fitted well with the experimental data as shown by the high R2 of 87.11 to 97.66% obtained 

across all tested temperatures for both RO2 and RCO2. The parameter estimates for global a, 

and b has R2 value ranging above 98.4%. Respiration rate for pomegranate arils were 

observed to change with time at the various storage temperatures of 5, 10 and 15 °C, this 

was adequately described by the Arrhenius-type equation as summarized with the 

continuous line fitted into fig. 1. Similarly, Iqbal et al. (2009a) reported the increase in RR of 

sliced and whole mushrooms with storage time and this effect was well described by an 

Arrhenius-type model.  Biological reactions, such as respiration, generally increase 2 to 3-

fold for every 10 °C rise in temperature (Fonseca et al., 2002). This was consistent with the 

observation in this study with about 3-fold increase in RR from 5 to 15 °C, highlighting the 

significance of temperature. Although fresh and fresh-cut MA-packaged produce are stored 

at low temperatures, monitoring the effect of time and temperature along the supply-chain 

on produce should be taken into consideration in order to avoid the abuse of the MAP. 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



136 
 
Table 3 Parameter estimates from model (Eqn. 9 and 10) describing the influence of storage time on 

respiration rate of pomegranates at each temperature tested and relevant statistical data 

Pomegranate 

arils 

Estimated RO2   RCO2 

parameters 5 ºC 10 ºC 15 ºC Global   5 ºC 10 ºC 15 ºC Global 

cv. Acco a -0.09 0.03 3.19 0.66 

 

-

0.01 0.02 5.43 1.65 

 

b 1.64 3.22 1.0 1.38 

 

2.97 4.37 1.0 1.16 

 

R2 (%) 89.6 92.1 97.7 98.9 

 

88.7 93.3 95.7 98.4 

cv. Herskawitz a -0.05 -0.02 0.18 0.01 

 

0.09 0.02 0.26 0.04 

 

b 2.02 1.0 2.77 3.78 

 

1.0 3.95 2.81 3.23 

  R2 (%) 93.8 92.7 94.9 99.5   91.7 87.1 95.9 99.2 

 

Conclusion 

 

Respiration rates were relatively higher for cv. ‘Acco’ in comparison to cv. ‘Herskawitz’ 

across all the experimental temperatures tested. This observation highlights the possible 

influence of physiological differences between cultivar responses to storage conditions. 

Temperature had the most significant impact on the RR of arils of both pomegranate 

cultivars (cv. ‘Acco’ and ‘Herskawitz’) and the RR were 3-4 folds significantly higher with 

increased temperature from 5 to 15 °C. The influence of time, and the interaction between 

temperature and time also had a significant influence on the RR of fresh arils. This highlights 

the importance of maintaining optimal cold-storage condition for fresh produce along the 

supply-chain. The RQ was dependent on both temperature and time as the RQ value 

increased with rising temperature from 5 to 15 °C towards the end of the storage time. An 

Arrhenius-type equation accurately predicted the effect of temperature on RR of fresh 

pomegranate arils. The power function equation combined with Arrhenius-type equation 

adequately predicted the influence of time and temperature on RR of fresh pomegranate 

arils for both cultivars. These models would be useful towards the design of appropriate 

modified atmosphere package for freshly processed pomegranate arils. 
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CHAPTER 6 

 

EVALUATION OF MODIFIED ATMOSPHERE PACKAGING 

DESIGN PARAMETERS FOR POMEGRANATE ARILS 

 

Summary 

 

This study evaluated the effects of passive-MAP engineering design parameters as a function 

of the amount of product (g), storage temperature (°C) and time (days) on pomegranate 

arils. Minimally processed pomegranate arils (75, 100 and 125 g) were packed in trays, heat-

sealed with polylid film and stored at 5, 10 and 15 °C for 14 days. Packaged products were 

analysed for various physicochemical quality parameters viz headspace gas composition, 

weight loss, total soluble solids (TSS), titratable acidity (TA) (citric acid), pH, anthocyanin, 

aerobic mesophilic bacterial and fungal load (log CFU g-1). At the highest storage 

temperature and product weight, O2 concentration continuously decreased, reaching levels 

below the critical limit (2%) after 4 days, while at 5 °C this lower limit was not reached. 

CO2 concentration inside all packages continuously increased over time. Based on the 

microbial evaluation, the shelf life of packaged „Acco‟ and „Herskawitz‟ was limited to 10, 7 

and 3 days due to fungal growth ≥ 2 log CFU g-1 at 5, 10 and 15 ºC, respectively. The 

aerobic mesophilic bacteria count at all storage conditions were in the range of 0.02 - 3.8 

log CFU g-1. It was not possible to achieve an equilibrium atmosphere using passive MAP due 

to very low respiration rate of the arils despite increasing product weight and storing at 

higher temperature. Storing for 3, 5 and 10 days at 15, 10 and 5 ºC, respectively, yielded 

low O2 and high CO2 but storing beyond these times is not recommended in order to avoid 

anoxia and increased microbial load caused by excessive CO2 concentration. Using the 

unsteady state equation this study showed good agreement between simulated results and 

experimental data (R2 = 0.98). 
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Introduction 

 

During the last decade, there has been a remarkable increase in the commercial production 

of pomegranates globally, due to the potential health benefits of the fruit. These benefits 

have been attributed to the high antioxidant contents and its anti-mutagenic, anti-

hypertension, anti-inflammatory and anti-atherosclerotic activities against osteoarthritis, 

prostate cancer, heart disease and HIV-1 (Viuda-Martos et al., 2010). Furthermore, 

pomegranate fruit is an excellent dietary source rich in organic acids, soluble solids, 

anthocyanins, vitamin C, fatty acids and mineral element, and has significant antimicrobial 

effects (Opara et al., 2009). Minimally processed “ready-to-eat” pomegranate arils have 

become popular due to convenience, health benefits and high value (Ayhan & Eştürk, 2009). 

MAP has been used to extend the shelf life of minimally processed arils (Sepulveda et al., 

2000; López-Rubira et al., 2005; Ayan & Eştürk, 2009; Caleb et al., 2012c). Sepulveda et al. 

(2000) observed that minimally processed pomegranate arils cv. „Wonderful‟ were storable 

for 14 days at 4 ± 0.5 °C in semi-permeable films, however, this study was focused on the 

effect of different types of semi-permeable and antioxidant solutions on arils quality. López-

Rubira et al. (2005) investigated the shelf life and overall quality of minimally processed 

pomegranate arils cv. „Mollar Elche‟ treated with UV-C and packaged under passive-MAP in 

polypropylene (PP) baskets sealed with BOPP film and stored at 5 °C. They observed that 

the shelf life of arils was influenced by the harvested dates (earlier or late harvest). The 

report obtained on the effect of UV-C radiation on microbial growth was inconclusive, being 

that microbial count were not systematically reduced. Ayan & Eştürk (2009) studied the 

effect of various gas compositions in active-MAP on the shelf life and overall quality of 

minimally processed pomegranate arils stored at 5 °C. The authors observed no significant 

change in chemical and physical attributes of arils during cold storage, while aerobic 

mesophilic bacteria were in the range of 2.3 – 4.5 log CFU g-1. However, these studies were 

based on empirical rather than systematic approach (Caleb et al., 2012a) as no MAP design 

was reported. 

Modified atmosphere packaging (MAP) is a dynamic process of altering gaseous 

composition inside a package. It relies on the interaction between the respiration rate (RR) 

of the produce, and the transfer of gases through the packaging material, with no further 

control exerted over the initial gas composition (Fonseca et al., 2002; Mahajan et al., 2007). 

Stellenbosch University  http://scholar.sun.ac.za



143 
 

MAP technology extends the shelf-life and maintains quality of fresh-cut produce by 

lowering the RR and retarding the development of physiological disorders and proliferation 

of spoilage pathogenic microbes (Caleb et al., 2012a). However, a quantitative description of 

RR of fresh produce via mathematical modelling is essential for the design of MAP (Fonseca 

et al., 2002; Mahajan et al., 2007). An inappropriately designed MAP system may be 

ineffective towards extending the storage life of packaged produce, if the desired or optimal 

atmosphere is not established rapidly inside the package (Oliveira et al., 2012).  MAP should 

be carefully designed taking into account the amount of product, film permeability, and the 

time to achieve the optimum atmospheric equilibrium at a given temperature in order to 

maintain product quality (Oliveira et al., 2012; Caleb et al., 2012b). The objectives of this 

study were to determine the effect of MAP design parameters on the physicochemical and 

microbial attributes of mechanically processed pomegranate arils.  

 

Materials and methods 

 

Plant materials and preparation 

 

Sweet-sour pomegranate (Punica granatum L.) fruit cvs. „Acco‟ and „Herskawitz‟ harvested 

manually during commercial harvest period were obtained from Robertson valley farm, 

Western Cape (33°48′0″S, 19°53′0″E) in South Africa and immediately stored in the pack-

house (Houdoconstant Pack-house, Porterville, South Africa)  at 5 °C. Black polypropylene 

(PP) trays with the dimensions of 15.5 x 11.5 x 3.5 cm3 and POLYLID polymeric film (55µm 

with WVTR of 20 - 22 g m-2 day-1; CO2TR of 600 - 700 mL m-2 day-1; and OTR 130 - 150 mL 

m-2 day-1 at 25 ºC, 50% RH and 1 Bar) were provided by Blue Dot Packaging (Cape town, 

South Africa) and Barkai Polyon Ltd. (Kibbutz Barkai, Israel), respectively. Clear 

polyethylene terephthalate (PET) clamshell packs was used as control package with 420 µm 

thick and with the dimensions of 11.5 x 11.5 x 3.5 cm3. It has a high barrier to water vapour 

and gas permeability. 
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Fruit processing and packaging procedures 

 

Fruit were manually sorted to remove mechanically damaged fruit and the outer skins (husk) 

of healthy whole fruits were washed in sterilized water with 200 µLL-1 of sodium 

hypochlorite (NaOCl) solution. Arils were extracted from fruit using a commercial 

extraction unit (ArilSystems, Juran Metal Works, Israel). The extracted arils were collected 

on sterile conveyer belt in order to air dry and manually remove damaged arils. Each cultivar 

was processed separately and all processing was conducted at temperature below 10 °C. 

Air dried arils (with no surface moisture) were mixed together to ensure uniformity and 

weighed into lots of 75, 100 and 125 g (referred to as P-MAP 1, 2 and 3 application, 

respectively) into PP trays which had been, previously sterilized with ethylene oxide. PP 

trays were sealed with POLYLID films using a semi-automated heat sealing machine (Food 

Processing Equipment, South Africa). A label of 7.0 x 3.8 cm2 area was placed onto each 

package film, to simulate the labels found in the retails market packages. Our control 

package was clamshell trays which are frequently used within the fresh-cut industry. At the 

pack-house packaged products were cooled down to 2 °C and transported in ice-packed 

cooler boxes fitted with data loggers (Gemini Data Loggers, United Kingdom) to the 

postharvest research laboratory. On arrival temperature inside the cooler boxes ranged 

between 3 – 4.5 °C. Packaged samples were stored at 5, 10 and 15 °C and 95 (±2) % RH for 

14 d, and sampling was carried out on 0, 3, 7, 10, and 14 d of storage. Two packs were 

analyzed for each experimental condition on sampling days. 

This study involved packaging fresh arils using two different factors namely amount of 

arils in the pack and storage temperature. A full factorial experimental design was used with 

2 factors (amount of pomegranate arils and temperature) and 3 levels each (75, 100 and 125 

g and 5, 10 and 15 °C, respectively). The entire experiment was replicated twice with 6 

packages analyzed per sampling day. 

 

Headspace gas analysis 

 

Before packages were opened on each sampling day, gas composition inside the packages 

was determined using a gas analyzer with an accuracy of 0.5% (Checkmate 3, PBI Dansensor, 

Ringstead, Denmark). Immediately after taking the gas analysis, packages were opened and 
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used for microbial and physicochemical analyses. Furthermore, additional 18 packages 

representing 2 replicates for each factor and level were used for gas analysis for the entire 

duration of the study. These packaging trays were fitted with rubber septum for the daily 

measurement of headspace gas composition throughout the duration of the study. 

 

Weight loss 

 

Initial and final weight of each packaged arils was measured using an electronic weighing 

balance (ML3002.E, Mettler Toledo, Switzerland). Weight loss was calculated according to 

the following equation: 

          (1) 

where WL is the weight loss (%), W0 is the initial weight (g) and Wf is the final weight (g) 

prior to package analysis. 

 

Texture 

 

Firmness of individual arils was measured using texture analyzer (TA-XT Plus, Stable Micro 

Systems, Surrey, England) with a 35 mm diameter cylindrical probe. Firmness was expressed 

as maximum compression force (N). A test speed of 1.0 mm s-1 and distance of 9.5 mm 

were used. Average of 10 arils was measured for each experimental condition. 

 

Colour 

 

Aril colour was measured using a colour meter (Minolta Chroma Meter, CR-400, Japan). 

Before each measurement, the apparatus was calibrated against a white tile background 

(Illuminants C: Y = 93.6, x = 0.3133, y = 0.3195). Approximately 20 g of arils were placed 

into a Petri dish and the measurements were taken from 5 different points of the dish. 

Hunter colour parameters (L* (lightness), a* (redness and greenness), and b* (yellowness 

and bluness) were measured. All analyses were presented as mean ± standard deviation 

(S.D.) of 10 replicates. 
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Titratable acidity, pH, and total soluble solids 

 

Pomegranate arils of each pack were juiced separately using a LiquaFresh juice extractor 

(Mellerware, South Africa), and the juice was directly used for pH and total soluble solid 

(TSS) measurement using a pH meter (Crison, Barcelona, Spain) and digital refractometer 

expressed as ºBrix (Atago, Tokyo, Japan), respectively. Titratable acidity (TA) was measured 

by titration to an end point of pH 8.2 using a Metrohm 862 compact titrosampler (Herisau, 

Switzerland). All values are presented as mean ± S.D. 

 

Total anthocyanin content 

 

The total juice anthocyanin content was determined by the pH-differential method using 2 

buffer systems comprised of potassium chloride (pH 1, 0.025M) and sodium acetate (pH 4.5, 

0.4M). One mL of sample juice was mixed with 9 mL of buffer and the absorbance was 

measured at 520 and 700 nm. Total anthocyanins were calculated as cyaniding-3-glucoside 

according to the following equation 1: 

    (2) 

where A = (A520 – A 700) pH 1 – (A520 – A700) pH 4.5; MW (molecular weight) = 449.2 

g mol-1 for cyaniding-3-glucoside; DF = dilution factor; 1 = pathlength in cm; ε = 26900 

molar extinction coefficient. All analyses were done as 4 replicates (n = 4). 

 

Microbial quality 

 

Microbiological stability of samples was screened by total plate count, for aerobic mesophilic 

bacteria count plate count agar (PCA) was used and for the yeast and mould counts potato 

dextrose agar (PDA) acidified with 10% tartaric acid. Packages were opened under sterile 

conditions, and 10 g of each sample was obtained aseptically and homogenized with 90 ml of 

sterile physiological solution. Further 3-fold dilutions were prepared using 1.0 mL of diluents 

into 9 .0 mL of PS. In order to enumerate microbial load 1.0 mL of each dilution was pour-

plated in triplicate onto appropriate media, PCA for aerobic mesophilic bacteria and PDA 
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for yeast and molds. Plates for aerobic mesophilic bacteria were incubated at 37 ºC for 2 d 

and at 25 ºC for 3 – 5 d for yeast and molds. The results were presented as log CFU g-1.    

                                                           

MAP design 

 

MAP design for fresh produce requires an integrated model incorporating produce 

respiration rate as a function of temperature and gas composition, amount of product, 

package geometry and size, package gas transmission rate as a function of temperature, as 

well as other produce characteristics (Mahajan et al., 2007). Based on the assumption that 

there is no gas stratification inside the package and total pressure is constant, the unsteady-

state equations describing behaviour of MAP system during the process of passive 

modification within a package are given below in Eqs. (3) and (4): 

      (3) 

        (4) 

where Vf is the headspace (free volume) in the package, y is the gas concentration (in molar 

fraction), e is the thickness of polymeric film, P is the permeability of the package expressed 

in volume of gas exchanged per unit time and area, and weight of the product is M; and R is 

the respiration rate (RR) expressed in volume of gas generated/consumed per unit time; the 

subscripts O2 and CO2 refer to oxygen and carbon dioxide, respectively. In order to gain 

the understanding of the effect time, so that RR can be predicted at any temperature the global 

model equations from previous study by Caleb et al. (2012b) and shown in Eqn. 5 and 6 was 

applied. Table 1 summarises the estimates of the constants and relevant statistical data. 

         (5) 

       (6) 

where, Tref is the Reference temperature, 283.15 K; RO2 and RCO2 is respiration rate, mL kg-1 

hr-1; t is storage time, days; R is the universal gas constant (0.008314 kJ K-1 mol-1), Ea,O2 and 

Ea,CO2 are activation energy (kJ mol-1), T is the storage temperature (K). Eqn. 3 and 4 were 

used to predict package O2 and CO2 atmosphere during storage period.  
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Statistical analysis 

 

Pareto analysis was used with two factors (amount of arils and temperature) at three levels of 

temperatures 5, 10 and 15 °C at 95% confidence interval to assess the effects of amount of 

arils and temperature, and the interaction between these factors on the gas concentration 

profile of pomegranate arils. The experimental data obtained were treated with one-way 

analysis of variance (ANOVA) at 95% confidence interval to evaluate the effect of amount of 

pomegranate arils, storage time, temperature and their interaction on the quality attributes 

measured. Least significant difference (LSD) and Tukey Post-hoc tests were performed to 

identify specific differences in factor levels. All experimental data were analysed using 

Statistical software (Statistical 10.0, Statsoft, USA).  

 

Table 1 Parameter estimates from model (Eqn. 5 and 6) describing the influence of temperature and 

time on respiration rate (Caleb et al., 2012b) 

Pomegranate 
R

i
O2, ref R

i
CO2, ref Ea, O2 Ea, CO2 R

2
, O2  R

2
, CO2  Global model 

[mL kg
-1

h
-1

] [kJ mol
-1

] [%] [%] a, RO2  b, RO2 a, RCO2  b, RCO2 

Fresh arils 
           Acco 4.03 4.52 71.25 75.78 94.9 95.4 0.66 1.38 1.65 1.16 

Herskawitz 4.32 4.46 69.61 77.24 95.4 96.7 0.01 3.78 0.04 3.23 
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Results 

 

Package headspace gas composition 

Predicted gas compositions at higher temperature with highest product weight reached 

anoxia level after 40 and 80 hr for 15 and 10 °C, respectively. Steady state concentrations of 

18% O2 and 5% CO2 were achieved after day 6 at 5 °C, but this was not enough to create 

the optimal modified atmosphere of 5% O2 and 5% CO2 within the package. While no 

equilibrium state was observed at 15 °C, it was observed that CO2 increases rapidly during 

storage once O2 drops below critical limit. Furthermore, experimental data was in line with 

the predicted packaged atmosphere as shown in Fig. 1. For example, in the 125 g (P-MAP 3), 

package O2 concentration reached below 2% after day 5 and 3 at 10 and 15 ºC, respectively, 

while samples at 5 °C O2 was not below 2% throughout the study. On the other hand, CO2 

levels increased significantly during storage for all packaging conditions. Based on Pareto 

analysis chart, changes in headspace gas composition inside the packs were significantly 

influenced by the temperature (p < 0.05), while amount of product at a given time did not 

show any significant effect for both cultivars (Fig. 2). Headspace O2 content significantly 

decreased over time in packages at the different storage temperature up to day 14, without 

reaching an equilibrium concentration. 
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Figure 1 Examples of gas composition profiles for predicted and experimental data at (a) 5 °C; (b) 10 °C; (c) 15 °C for cv. „Acco‟ and (d) 5 °C; (e) 10 °C; 

(f) 15 °C for cv. „Herskawitz‟, at the different weight of arils. The amount of arils: ▲, 75 g; •, 100 g; ■, 125 g; shaded and unshaded makers, CO2 and O2, 

respectively.  
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Figure 2 Effect of storage temperature and pomegranate arils‟ weight cv. „Acco‟ on O2 and CO2 concentration profiles. *Similar results were observed for 

cv. „Herskawitz‟ figure not shown.

Pareto Chart of Standardized Effects; Variable: O2

2 3-level factors, 1 Blocks, 9 Runs; MS Residual=2.865903
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Pareto Chart of Standardized Effects; Variable: CO2
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Physical quality 

 

Weight loss did not exceed 0.5 and 0.8% for cv. „Acco‟ and „Herskawitz‟ at 5 ºC; 0.7 and 

0.9% at 10 ºC; and 2.1 and 1.9% at 15 ºC (Fig. 3) in passive-MA packages. While, in the 

control clamshell packages weight loss did not exceed 0.02, 0.1 and 0.08% at 5, 10, and 15 

ºC, respectively in both cultivars over the storage period, however, increase in net weight 

of product occurred throughout the storage period. 

The interaction of arils weight, storage temperature and time, had a significant effect on 

firmness of arils (p ≤ 0.05), although there was no significant difference between P-MAP 

applications until day 10. Firmness at day 0 was 76.1 ± 5.1 N and 85.6 ± 8.4 N for cv. „Acco‟ 

and „Herskawitz‟, and did not exceed 77.5 ± 7.4 N and 102.4 ± 7.6 N, respectively, at day 14 

(Table 2). Firmness of pomegranate arils packaged in control decreased over storage period 

by about 11%. No significant differences were found in fresh arils under the P-MAP 

applications throughout the 14 days at 5 ºC. 

Colour characteristics of pomegranate arils cv. „Acco‟ and „Herskawitz‟ varied over time 

with an average L* values ranging from 39.6 to 26.2 for cv. „Acco‟ and 41.6 to 30.0 for cv. 

„Herskawitz‟. While a* ranged from 29.3 to 19.3 for cv. „Acco‟ and 33.9 to 22.6 for cv. 

„Herskawitz‟, and, b* ranged from 19.7 to 12.3 for cv. „Acco‟ and 19.0 to 12.9 for cv. 

„Herskawitz‟ across all storage conditions (Table 3). A comparison between the two 

cultivars shows that cv. „Herskawitz‟ had better colour stability than „Acco‟. Based on the 

overall analysis of variance and Tukey Post-hoc test, the effect of P-MAP application and 

storage time had no significant effect colour parameters L*  (lightness), a* (redness) and b* 

(yellowness) (p > 0.05) which are used as indicators of colour stability. Although there were 

pockets of fluctuations in lightness, redness and yellowness values, these observed changes 

were not consistent throughout the storage period.  However, the interaction of storage 

temperature (15 ºC) and time had a significant effect on colour parameters within a given P-

MAP application, but there was no significant difference between the different weights 

applied in this study. 
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Table 2 Effect of produce weight, storage temperature and days on pomegranate arils firmness 

Cultivar Treatment (g) Temp. ⁰C 
Firmness (N) 

Day 0 Day 3 Day 7 Day 10 Day 14 

‘Acco’ 
       

 
P-MAP1 5 76.10 ± 5.1

A
a 77.22 ± 7.1

A
a 78.12 ± 11.3

A
a 73.49 ± 9.79

A
a 71.40 ± 12.9

A
a 

  
10 76.10 ± 5.1

A
a 70.58 ± 9.2

A
a 76.90 ± 8.0

A
a 73.94 ± 7.8

A
a 75.93 ± 8.1

A
a 

  
15 76.10 ± 5.1

A
a 73.24 ± 12.1 

A
a 77.77 ± 12.0

A
a 82.61 ± 13.1

A
a 77.25 ± 14.2

A
a 

 
P-MAP2 5 76.10 ± 5.1

A
a 69.62 ± 7.3

A
a 76.19 ± 9.9

A
a 74.58 ± 9.7

A
a 76.72 ± 7.0

A
a 

  
10 76.10 ± 5.1

A
a 67.84 ± 14.5

AB
a 78.54 ± 12.6

A
a 72.07 ± 6.9

AB
a 76.16 ± 10.9

A
a 

  
15 76.10 ± 5.1

A
a 61.84 ± 6.1

B
b 78.66 ± 6.8

A
a 69.63 ± 7.4

B
a 77.50 ± 7.4

A
a 

 
P-MAP3 5 76.10 ± 5.1

A
a 69.90 ± 7.9

AB
a 76.15 ± 8.6

A
a 70.40 ± 6.7

A
a 75.43 ± 8.9

A
a 

  
10 76.10 ± 5.1

A
a 69.25 ± 8.7

AB
a 72.78 ± 7.0

A
a 71.42 ± 4.7

B
b 69.91 ± 11.0

A
ab 

  
15 76.10 ± 5.1

A
a 70.71 ± 12.6

A
a 75.84 ± 6.0

A
a 75.06 ± 5.2

A
a 75.72 ± 7.5

A
a 

 
Control 5 76.10 ± 5.1

A
a 67.84 ± 3.1

B
b 68.94 ± 8.2

A
ab 68.63 ± 4.4

B
b 67.50 ± 2.4

B
ab 

  
10 76.10 ± 5.1

A
a 69.90 ± 7.9

AB
b 74.90 ± 8.70

A
a 70.40 ± 6.7

A
a Decay visible 

  
15 76.10 ± 5.1

A
a 70.25 ± 9.7

AB
a 69.25 ± 8.8

A
a Decay visible Decay visible 

‘Herskawitz’ 
       

 
P-MAP1 5 85.55 ± 8.4

A
a 85.51 ± 12.5

A
a 85.81 ± 11.9

A
a 73.60 ± 13.8

AB
ab 93.29 ± 17.7

A
c 

  
10 85.55 ± 8.4

A
a 82.21 ± 18.1

A
a 93.07 ± 20.6

A
a 87.41 ± 20.7

B
ab 91.55 ± 17.2

A
bc 

  
15 85.55 ± 8.4

A
a 79.19 ± 11.4

A
a 96.35 ± 8.7

A
ab 98.72 ± 10.2

B
bc 103.36 ± 7.6

B
d 

 
P-MAP2 5 85.55 ± 8.4

A
a 78.50 ± 11.2

A
a 90.01 ± 12.1

A
a 86.56 ± 13.7

B
a 88.08 ± 9.0

B
a 

  
10 85.55 ± 8.4

A
a 83.52 ± 13.6

A
a 87.25 ± 18.4

A
a 89.97 ± 14.5

B
a 89.57 ± 12.8

AB
a 

  
15 85.55 ± 8.4

A
a 82.56 ± 22.3

A
a 95.32 ± 10.5

A
a 98.11 ± 10.9

B
a 100.24 ± 17.2

B
a 

 
P-MAP3 5 85.55 ± 8.4

A
a 81.91 ± 17.03

A
a 90.57 ± 14.7

A
a 87.43 ± 14.9

B
a 93.60 ± 10.7

A
a 

  
10 85.55 ± 8.4

A
a 81.15 ± 17.1

A
a 88.19 ± 12.5

A
a 84.80 ± 15.5

AB
a 86.31 ± 13.6

AB
a 

  
15 85.55 ± 8.4

A
a 87.94 ± 16.6

A
a 94.20 ± 15.3

A
a 98.36 ± 20.0

B
a 97.32 ± 17.3

A
a 

 
Control 5 85.55 ± 8.4

A
a 74.73 ± 11.8

A
a  89.40 ± 6.3

A
ab 74.40 ± 11.6

B
abc 68.85 ± 13.5

B
c 

  
10 85.55 ± 8.4

A
a 85.52 ± 13.9

A
ac 88.91 ± 9.4

A
ab 86.00 ± 6.6

A
abc Decay visible 

    15 85.55 ± 8.4
A
a 77.53 ± 21.3

A
ac 87.3 ± 11.2

A
ab Decay visible Decay visible 

* For each column, similar upper case letters in superscript are not significantly different at p < 0.05 among the passive MAP treatments. For parameter in rows, similar 

lower case letters are not significantly different. **P-MAP1: 75 g; P-MAP2: 100 g; P-MAP3: 125 g; control: clamshell package 
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Table 3 Effect of produce weight, storage temperature and duration on changes in colour parameters of pomegranate arils 

Cultivar Application Storage time Temp. ⁰C L* a* b*   Cultivar L* a* b* 

‘Acco' 
 

Day 0 
 

39.55 ± 5.7
A
 27.75 ± 6.4

A
 15.41 ± 2.8

AB
 

 
‘Herskawitz' 37.61 ± 6.2

A
 23.49 ± 5.3

A
 14.09 ± 1.9

A
 

 
P-MAP 1 Day 3 5 28.05 ± 9.3

AB
 26.24 ± 2.7

A
 13.3 ± 1.8

A
 

  
36.88 ± 9.9

A
 30.06 ± 6.3

A
 14.70 ± 2.1

A
 

   
10 33.03 ± 2.4

A
 25.87 ± 4.4

A
 14.11 ± 1.3

A
 

  
38.86 ± 5.7

A
 29.35 ± 7.0

A
 16.10 ± 2.7

A
 

   
15 37.89 ± 8.3

A
 27.37 ± 6.8

A
 19.66 ± 3.9

AB
 

  
30.85 ± 4.6

A
 30.88 ± 6.7

ABC
 15.67 ± 3.3

A
 

  
Day 7 5 31.48 ± 6.1

A
 24.47 ± 5.5

A
 14.78 ± 3.4

AB
 

  
30.06 ± 9.6

A
 25.10 ± 7.2

A
 14.32 ± 1.3

A
 

   
10 32.99 ± 4.8

A
 21.76 ± 7.4

A
 16.16 ± 1.1

AB
 

  
31.63 ± 5.7

B
 26.29 ± 3.3

A
 15.47 ± 2.7

A
 

   
15 31.82 ± 5.0

AB
 25.45 ± 7.2

A
 16.16 ± 1.7

AB
 

  
31.14 ± 6.1

AB
 29.26 ± 4.6

A
 16.61 ± 3.1

A
 

  
Day 10 5 32.48 ± 3.9

A
 20.99 ± 6.2

A
 14.15 ± 2.1

AB
 

  
32.84 ± 5.4

A
 26.52 ± 5.1

A
 14.58 ± 1.9

A
 

   
10 28.99 ± 4.1

B
 25.09 ± 3.9

A
 15.2 ± 2.4

AB
 

  
36.63 ± 5.8

A 
 26.73 ± 7.4

A
 17.79 ± 1.9

AB
 

   
15 30.48 ± 4.9

AB
 24.95 ± 6.5

A
 15.66 ± 1.6

AB
 

  
31.74 ± 5.0

AB
 28.86 ± 4.5

AB
 16.81 ± 2.9

AB
 

  
Day 14 5 35.32 ± 3.0

AB
 20.54 ± 5.6

A
 17.33 ± 0.7

B
 

  
36.98 ± 8.2

A
 28.72 ± 2.9

A
 15.62 ± 1.2

A
 

   
10 31.96 ± 4.6

AB
 21.34 ± 7.5

A
 14.59 ± 1.2

A
 

  
41.58 ± 3.9

ABC
 24.39 ± 10.7

A
 17.89 ± 2.9

A
 

 
P-MAP 2 Day 3 5 28.63 ± 4.8

B
 27.73 ± 6.8

A
 13.53 ± 3.0

A
 

  
34.52 ± 4.6

A
 31.15 ± 3.3

B
 14.83 ± 1.9

A
 

   
10 26.22 ± 4.2

B
 25.74 ± 2.8

A
 14.1 ± 2.4

AB
 

  
34.73 ± 6.2

A
 27.17 ± 6.4

A
 13.79 ± 2.7

A
 

   
15 30.96 ± 3.6

A
 22.67 ± 2.7

A
 14.93 ± 1.7

AB
 

  
31.94 ± 7.4

A
 29.83 ± 2.9

AB
 15.55 ± 1.8

A
 

  
Day 7 5 30.63 ± 5.5

AB
 22.32 ± 3.0

A
 14.14 ± 1.6

AB
 

  
33.05 ± 7.4

A
 25.88 ± 5.0

A
 13.68 ± 1.9

A
 

   
10 36.95 ± 4.5

AB
 21.93 ± 7.3

A
 16.78 ± 2.0

AB
 

  
27.95 ± 8.9

A
 27.73 ± 2.1

A
 14.75 ± 2.3

A
 

   
15 27.85 ± 3.5

B
 23.40 ± 3.6

A
 14.26 ± 3.4

AB
 

  
33.17 ± 3.8

A
 29.31 ± 4.7

A
 16.29 ± 2.2

AB
 

  
Day 10 5 29.67 ± 4.9

AB
 20.75 ± 4.3

A
 13.46 ± 2.6

AB
 

  
34.68 ± 4.1

A
 23.39 ± 3.8

A
 13.98 ± 0.7

A
 

   
10 31.69 ± 3.6

AB
 22.55 ± 4.4

A
 15.42 ± 2.5

AB
 

  
32.16 ± 3.8

A
 26.56 ± 3.4

A
 14.53 ± 1.4

A
 

   
15 27.44 ± 3.6

B
 22.79 ± 2.5

A
 13.26 ± 2.5

A
 

  
31.84 ± 4.1

A
 25.97 ± 4.3

A
 16.29 ± 2.2

A
 

  
Day 14 5 31.29 ± 5.2

A
 19.30 ± 7.0

AB
 14.60 ± 2.5

AB
 

  
32.11 ± 7.3

A
 23.81 ± 8.2

A
 14.78 ± 2.1

A
 

      10 29.74 ± 6.6 
A
 23.61 ± 2.6

A
 14.67 ± 1.4

AB
     31.04 ± 7.9

A
 26.63 ± 3.9

A
 15.69 ± 1.8

A
 

* For each column, similar upper case letters in superscript are not significantly different at p < 0.05. 
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Table 3(continued) 

Cultivar Application Storage time Temp. ⁰C L* a* b*   Cultivar L* a* b* 

‘Acco' 
 

Day 0 
 

39.55 ± 5.7A 27.75 ± 6.4A 15.41 ± 2.8AB 
 

‘Herskawitz' 37.61 ± 6.2A 23.49 ± 5.3A 14.09 ± 1.9A 

 
P-MAP 3 Day 3 5 33.61 ± 3.7A 23.79 ± 1.9A 13.78 ± 1.3A 

  
38.64 ± 6.9A 33.95 ± 5.9AB 16.37 ± 3.0A 

   
10 32.22 ± 1.64B 22.25 ± 8.9A 13.12 ± 2.4A 

  
34.81 ± 4.8A 29.29 ± 6.1A 15.13 ± 2.5A 

   
15 29.1 ± 2.6B 24.54 ± 4.3A 14.72 ± 1.2A 

  
36.24 ± 10.5A 23.48 ± 3.6A 15.00 ± 2.7A 

  
Day 7 5 30.96 ± 4.4AB 22.01 ± 2.1A 13.39 ± 1.7A 

  
30.03 ± 7.3A 25.89 ± 4.6A 14.43 ± 2.3A 

   
10 27.66 ± 1.9B 22.58 ± 5.9A 14.29 ± 1.7A 

  
32.29 ± 6.6A 24.76 ± 5.8A 14.55 ± 1.5A 

   
15 33.49 ± 6.7A 29.29 ± 5.8A 17.20 ± 2.7AB 

  
31.79 ± 5.4A 26.11 ± 3.6A 15.57 ± 1.8A 

  
Day 10 5 30.99 ± 5.6AB 19.37 ± 5.8AB 14.02 ± 3.9AB 

  
28.64 ± 3.1AB 22.6 ± 2.8B 12.74 ± 0.9B 

   
10 25.85 ± 5.5B 19.8 ± 3.7AB 12.28 ± 1.6A 

  
34.62 ± 2.3B 25.66 ± 5.3A 14.72 ± 1.4A 

   
15 31.65 ± 3.7AB 24.29 ± 3.9A 14. 03 ± 1.7A 

  
30.79 ± 4.6A 25.78 ± 3.4A 14.49 ± 1.6A 

  
Day 14 5 33.69 ± 8.6AB 19.32 ± 2.3AB 15.72 ± 3.2AB 

  
31.55 ± 3.3A 25.24 ± 6.9A 13.59 ± 1.9A 

   
10 28.32 ± 5.3AB 21.54 ± 1.9A 14.09 ±  2.1A 

  
34.64 ± 3.4A 25.23 ± 3.6A 16.06 ± 3.8A 

 
Control Day 3 5 23.61 ± 5.2B 23.19 ± 0.8A 14.58 ± 2.5AB 

  
30.13 ± 7.1A 24.06 ± 3.7A 12.9 ± 1.3B 

   
10 30.42 ± 4.6AB 25.96 ± 2.9A 14.53 ± 2.6AB 

  
36.27 ± 6.5A 25.55 ± 3.3A 12.99 ± 1.4A 

   
15 31.76 ± 4.1AB 22.52 ± 1.7A 13.3 ± 1.5A 

  
36.85 ± 4.1A 27.24 ± 4.7A 15.37 ± 1.7A 

  
Day 7 5 29.42 ± 5.7AB 22.34 ± 1.8A 13.09 ± 1.3A 

  
31.38 ± 4.7A 25.07 ± 5.4A 14.25 ± 1.9A 

   
10 30.96 ± 6.2AB 20.42 ± 7.0A 13.78 ± 1.9A 

  
35.69 ± 5.6A 23.15 ± 4.9A 15.86 ± 2.7A 

   
15 Visible decay in package 

  
Visible decay in package 

  
Day 10 5 30.99 ± 5.6AB 19.37 ± 5.8AB 15.01 ± 3.0AB 

  
34.59 ± 5.3A 28.40 ± 6.5AB 17.03 ± 2.0AB 

   
10 32.31 ± 3.6AB 20.94 ± 3.4AB 15.88 ± 2.5AB 

  
37.32 ± 2.9AB 31.28 ± 7.8AB 18.98 ± 1.7AB 

   
15 Visible decay in package 

  
Visible decay in package 

  
Day 14 5 30.01 ± 3.6AB 17.65 ± 1.9B 14.05 ± 2.8AB 

  
36.03 ± 6.2B 27.61 ± 6.3A 17.38 ± 1.9AB 

   
10 Visible decay in package 

  
Visible decay in package 

      15 Visible decay in package     Visible decay in package 
* For each column, similar upper case letters in superscript are not significantly different at p < 0.05; **P-MAP1: 75 g; P-MAP2: 100 g; P-MAP3: 125 g; control: clamshell 

package.
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Changes in pH, total soluble solids and total titratable acidity 

 

Table 4 shows chemical parameters of fresh and modified atmosphere packaged 

pomegranate arils for both cultivars during storage. A comparison of both cultivars cv. 

„Herskawitz‟ had a significantly higher TA and pH than cv. „Acco‟, while cv. „Acco‟ had a 

relatively higher TSS. The TSS/TA was influenced by storage time and temperature. Result 

shows that there was no significant effect of increased produce weight on TA, pH, and TSS 

of pomegranate arils throughout the duration of storage compared to control (clamshell 

package) storage (p > 0.05), with some few exceptions. However, the interaction of storage 

temperature and time had a significant effect on all chemical quality parameters evaluated (p 

< 0.05).  There was a significant decrease in TTA on day 3 (p < 0.05), afterward stayed 

relatively unchanged over time for the rest of the storage period but significantly higher than 

day 3 TTA values. 

Similarly, result showed that there was a significant decrease in TSS on day 3 (p < 0.05), 

afterward stayed relatively unchanged over time for the rest of the storage period. At 7 day 

of storage TSS of cv. „Acco‟ was significantly influenced by storage temperature compared to 

cv. „Herskawitz‟. Furthermore, the changes in pH during storage for cv. „Acco‟ increased 

from 3.80 to 4.12, while, cv. „Herskawitz‟ ranged from 3.01 to 3.08. Although changes in pH 

were negligible, storage temperature and duration was found to have significant effect on 

the observed changes.  

 

Total anthocyanin content 

 

The amount of arils, storage temperature and duration, as well as the interaction the factors 

had significant effects on the total anthocyanin content (p ≤ 0.05). A general trend of 

decrease in total anthocyanin content was observed as the storage time increased for all 

treatments (Table 5). Total anthocyanin content was within the range of 21.13 to 13.32 mg 

C3gE 100 mL-1 of pomegranate juice for cv. „Acco‟, and 20.42 to 12.32 mg C3gE 100 mL-1 

for cv. „Herskawitz‟. Pomegranate arils packaged in the control clamshell packages had a 

significantly lower value in comparison to those packaged under passive MAP at all storage 

temperatures. P-MAP 3 with the highest amount of arils had a relatively higher total 

anthocyanin contents than P-MAP 1 and 2 at the end of storage.  
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Figure 3 Effect of storage temperature on weight loss of pomegranate arils over time (a) cv. „Acco‟ 

and (b) cv. „Herskawitz‟. The values were normalised with respect to the initial weight of 

pomegranate arils (Mi, g): , 5 °C; ■, 10 °C; ▲, 15 °C 
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Table 4 Effect of passive MAP design factors on chemical parameters of two pomegranate cultivars 

Cultivar           
pH, TSS, TTA, and TSS:TTA 

      

Parameter Treatment Temp Day 0 Day 3 Day 7 Day 10 Day 14 Cultivar Day 0 Day 3 Day 7 Day 10 Day 14 

‘Acco’ pH P-MAP 1 5 3.80 ± 0.01Aa 3.92 ± 0.18Aab 3.99 ± 0.0Ab 4.0 ± 0.06Ab 4.12 ± 0.01Ac ‘Herskawitz’ 3.01 ± 0.02Aa 3.11 ± 0.01Aa 3.02 ± 0.01Aa 3.03 ± 0.01Aa 3.08 ± 0.01Aa 

   
10 3.80 ± 0.01A 3.96 ± 0.21Aa 4.04 ± 0.02Ab 3.94 ± 0.06Aa 4.06 ± 0.07Aa 

 
3.01 ± 0.02Aa 3.07 ± 0.06Aab 3.02 ± 0.01Aa 3.01 ± 0.01Aa 3.07 ± 0.01Ab 

   
15 3.80 ± 0.01Aa 3.97 ± 0.19Aa 3.63 ± 0.09Bb 3.65 ± 0.07Bb Decay visible 

 
3.01 ± 0.02Aa 3.09 ± 0.0Aa 3.07 ± 0.01Aa 3.01 ± 0.02Aa Decay visible 

  
P-MAP 2 5 3.80 ± 0.01Aa 3.95 ± 0.20Aa 3.95 ± 0.04Aa 3.94 ± 0.07Aa 4.02 ± 0.06Bb 

 
3.01 ± 0.02Aa 3.11 ± 0.01Aa 3.03 ± 0.06Aa 2.97 ± 0.01Ab 3.07 ± 0.01Aa 

   
10 3.80 ± 0.01Aa 3.99 ± 0.13Aa 3.94 ± 0.04Aa 3.97 ± 0.05Aab 4.0 ± 0.01Bb 

 
3.01 ± 0.02Aa 3.16 ± 0.01Bb 3.00 ± 0.03Aa 3.0 ± 0.01Aa 3.09 ± 0.03Aa 

   
15 3.80 ± 0.01Aa 3.77 ± 0.16Aa 3.91 ± 0.0Bb 3.65 ± 0.07Bc Decay visible 

 
3.01 ± 0.02Aa 3.05 ± 0.01Aa 3.01 ± 0.03Aa 2.95 ± 0.07Aa Decay visible 

  
P-MAP 3 5 3.80 ± 0.01Aa 3.76 ± 0.22Aa 3.96 ± 0.06Ab 3.97 ± 0.02Ab 4.05 ± 0.01BCc 

 
3.01 ± 0.02Aa 2.96 ± 0.08Aa 2.99 ± 0.01Aa 3.01 ± 0.02Aa 3.05 ± 0.01Aa 

   
10 3.80 ± 0.01Aa 3.86 ± 0.25Aa 3.88 ± 0.21Aa 3.99 ± 0.07Ab 4.01 ± 0.08BCb 

 
3.01 ± 0.02Aa 3.01 ± 0.08Aa 2.96 ± 0.11Aa 3.02 ± 0.04Aa 3.06 ± 0.01Aa 

   
15 3.80 ± 0.01Aa 3.82 ± 0.03Aa 3.84 ± 0.18Aa 3.55 ± 0.07Ab Decay visible 

 
3.01 ± 0.02Aa 3.22 ± 0.04Cb 2.94 ± 0.07Aa 2.95 ± 0.07Aa Decay visible 

  
Control 5 3.80 ± 0.01Aa 3.80 ± 0.03Aa 4.02 ± 0.18Aa 4.02 ± 0.18ABa 4.12 ± 0.0Aa 

 
3.01 ± 0.02Aa 3.30 ± 0.03Ab 3.02 ± 0.18Aa 3.02 ± 0.01Aa 3.07 ± 0.01Aa 

   
10 3.80 ± 0.01Aa 3.82 ± 0.07Aa 3.93 ± 0.09Aa 4.09 ± 0.11Ba Decay visible 

 
3.01 ± 0.02Aa 3.22 ± 0.07Cb 3.03 ± 0.19Aa 3.02 ± 0.01Aa Decay visible 

   
15 3.80 ± 0.01Aa 3.83 ± 0.09Aa 3.96 ± 0.13Aa Decay visible Decay visible 

 
3.01 ± 0.02Aa 3.31 ± 0.09Cb 2.96 ± 0.13Aa Decay visible Decay visible 

               

 
TSS P-MAP 1 5 15.6 ± 0.01Aa 14.85 ± 0.92Ab 15.45 ± 0.07Aa 15.5 ± 0.00Aa 15.0 ± 0.14Aa 

 
15.03 ± 0.01Aa 13.80 ± 0.14Ab 14.60 ± 0.57Aa 15.05 ± 0.21ABa 15.20 ± 0.71Aa 

   
10 15.6 ± 0.01Aa 14.80 ± 0.85Aa 14.35 ± 0.21Ba 15.2 ± 0.42Ab 14.45 ± 0.21Ba 

 
15.03 ± 0.01Aa 13.70 ± 0.14Ab 13.90 ± 0.85Ab 14.00 ± 0.85Ab 14.20 ± 0.28Ab 

   
15 15.6 ± 0.01Aa 14.90 ± 0.42Aa 14.15 ± 0.07Bb 14.75 ± 0.07Aa Decay visible 

 
15.03 ± 0.01Aa 13.85 ± 0.07Ab 13.75 ± 0.21Ab 13.93 ± 0.12Ab Decay visible 

  
P-MAP 2 5 15.6 ± 0.01Aa 15.20 ± 0.71ABa 14.80 ± 0.14Cb 15.4 ± 0.42Aa 15.05 ± 0.07Cc 

 
15.03 ± 0.01Aa 14.35 ± 0.07Bb 14.70 ± 0.28Ab 15.30 ±0.14Bc 15.10 ± 0.28Aabc 

   
10 15.6 ± 0.01Aa 15.70 ± 0.0Ba 14.45 ± 0.07Ab 14.8 ± 0.57Ab 14.45 ± 0.07Bb 

 
15.03 ± 0.01Aa 14.05 ± 0.21Bb 14.35 ± 0.64Abc 14.75 ± 0.07Abc 14.55 ± 0.21Abc 

   
15 15.6 ± 0.01Aa 14.50 ± 1.56Ab 13.75 ± 0.78Dc 14.65 ± 0.07Ab Decay visible 

 
15.03 ± 0.01Aa 14.40 ± 0.0Bb 13.90 ± 0.28Ac 13.81 ± 0.59Abc Decay visible 

  
P-MAP 3 5 15.6 ± 0.01Aa 14.85 ± 0.21Ab 15.0 ± 0.14Cc 15.45 ± 0.21Aa 15.0 ± 0.0Ad 

 
15.03 ± 0.01Aa 14.80 ± 0.0Cb 14.80 ± 0.28Ab 15.40 ± 0.14Bc 15.15 ± 0.07Ac 

   
10 15.6 ± 0.01Aa 13.40 ± 1.70Ab 14.7 ± 0.42Ac 14.95 ± 0.21Ac 14.45 ± 0.35Bc 

 
15.03 ± 0.01Aa 14.70 ± 0.14Cb 14.40 ± 0.14Ab 14.65 ± 0.07Ab 14.60 ± 0.14Ab 

   
15 15.6 ± 0.01Aa 14.70 ± 0.14Ab 13.7 ± 0.57Dc 14.65 ± 0.07Ab Decay visible 

 
15.03 ± 0.01Aa 14.50 ± 0.14Bb 13.50 ± 0.85Ac 14.42 ± 0.59Abc Decay visible 

  
Control 5 15.6 ± 0.01Aa 15.03 ± 0.01Cb 15.50 ± 0.35Aa 15.05 ± 0.07Ac 14.95 ± 0.07ACd 

 
15.03 ± 0.01Aa 14.03 ± 0.01Bb 14.50 ± 0.35Ac 15.05 ± 0.07Aa 14.75 ± 0.07Ac 

   
10 15.6 ± 0.01Aa 13.97 ± 0.26Db 13.85 ± 1.06BCDb 14.8 ± 0.26Abc Decay visible 

 
15.03 ± 0.01Aa 13.87 ± 0.46ABb 13.85 ± 1.06Ab 14.80± 0.26Ab Decay visible 

  
  15 15.6 ± 0.01Aa 14.90 ± 0.14Ab 13.70 ± 0.85Dc Decay visible Decay visible   15.03 ± 0.01Aa 14.20 ± 0.14ABb 13.70 ± 0.85Ab Decay visible Decay visible 
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Table 4 (continued) 

Cultivar 
          pH, TSS, TTA, and TSS:TTA       

Parameter Treatment Temp Day 0 Day 3 Day 7 Day 10 Day 14 Cultivar Day 0 Day 3 Day 7 Day 10 Day 14 

‘Acco’ TA P-MAP 1 5 0.37 ± 0.01Aa 0.34 ± 0.03ABa 0.38 ± 0.01Aa 0.38 ± 0.02Aa 0.38 ± 0.01Aa ‘Herskawitz’ 1.73 ± 0.01Aa 1.66 ± 0.01Ab 1.78 ± 0.08ABa 1.84 ± 0.11Aac 1.87 ± 0.03Ac 

   
10 0.37 ± 0.01Aa 0.33 ± 0.01ABb 0.39 ± 0.01Aac 0.42 ± 0.02Ac 0.41 ± 0.02Ac 

 
1.73 ± 0.01Aa 1.65 ± 0.04Ab 1.77 ± 0.06ABab 1.79 ± 0.04Aab 1.95 ± 0.04Ac 

   
15 0.37 ± 0.01Aa 0.35 ± 0.01ABa 0.45 ± 0.0Bb 0.57 ± 0.01Bc Decay visible 

 
1.73 ± 0.01Aa 1.79 ± 0.11Aa 1.70 ± 0.01Ab 1.95 ± 0.07Ac Decay visible 

  
P-MAP 2 5 0.37 ± 0.01Aa 0.36 ± 0.02ABa 0.35 ± 0.01Ca 0.39 ± 0.02ACa 0.39 ± 0.01Aa 

 
1.73 ± 0.01Aa 1.75 ± 0.03Aa 1.82 ± 0.06Ba 1.91 ± 0.11Ab 1.83 ± 0.06Aa 

   
10 0.37 ± 0.01Aa 0.36 ± 0.01ABa 0.43 ± 0.0Db 0.52 ± 0.01Cc 0.46 ± 0.02Bb 

 
1.73 ± 0.01Aa 1.70 ± 0.01Ab 1.83 ± 0.07Bc 2.00 ± 0.08Ac 1.87 ± 0.18Ac 

   
15 0.37 ± 0.01Aa 0.36 ± 0.05ABa 0.52 ± 0.09BDEb 0.58 ± 0.01BDb Decay visible 

 
1.73 ± 0.01Aa 1.66 ± 0.06Aa 1.83 ± 0.06Bb 1.98 ± 0.07Ac Decay visible 

  
P-MAP 3 5 0.37 ± 0.01Aa 0.35 ± 0.0ABb 0.38 ± 0.01Aa 0.41 ± 0.05Aab 0.40 ± 0.01Aa 

 
1.73 ± 0.01Aa 1.72 ± 0.03Aa 1.87 ± 0.06Bb 1.89 ± 0.12Ab 1.83 ± 0.03Ab 

   
10 0.37 ± 0.01Aa 0.33 ± 0.02ABb 0.42 ± 0.04ABDa 0.50 ± 0.07ACa 0.47 ± 0.06Aa 

 
1.73 ± 0.01Aa 1.79 ± 0.04Ab 1.79 ± 0.01ABb 2.00 ± 0.16Ac 1.96 ± 0.11Ac 

   
15 0.37 ± 0.01Aa 0.43 ± 0.08Aa 0.54 ± 0.01Eb 0.60 ± 0.02Dc Decay visible 

 
1.73 ± 0.01Aa 1.74 ± 0.03Aa 1.85 ± 0.02Ab 2.08 ± 0.01Bc Decay visible 

  
Control 5 0.37 ± 0.01Aa 0.32 ± 0.02Bb 0.41 ± 0.09ABCabc 0.43 ± 0.03Ac 0.36 ± 0.06Aac 

 
1.73 ± 0.01Aa 1.50 ± 0.11Bb 1.65 ± 0.03Cc 1.86 ± 0.11Ad 1.77 ± 0.08Aad 

   
10 0.37 ± 0.01Aa 0.34 ± 0.04ACa 0.38 ± 0.10ABCDa 0.50 ± 0.05Cb Decay visible 

 
1.73 ± 0.01Aa 1.56 ± 0.15ABb 1.90 ± 0.37ABCabc 1.88 ± 0.01Ac Decay visible 

   
15 0.37 ± 0.01Aa 0.31 ± 0.01BCb 0.34 ± 0.03Aa Decay visible Decay visible 

 
1.73 ± 0.01Aa 1.53 ± 0.23ABa 1.90 ± 0.38ABCa Decay visible Decay visible 

               

 
TSS:TA P-MAP 1 5 42.16 43.68 40.66 40.79 39.47 

 
8.69 8.31 8.20 8.18 8.13 

   
10 42.16 44.85 36.79 36.19 35.24 

 
8.69 8.30 7.85 7.82 7.28 

   
15 42.16 42.57 31.44 25.88 Decay visible 

 
8.69 7.74 8.09 7.14 Decay visible 

  
P-MAP 2 5 42.16 42.22 42.29 39.49 38.59 

 
8.69 8.20 8.08 8.01 8.25 

   
10 42.16 43.61 33.60 28.46 31.41 

 
8.69 8.26 7.84 7.38 7.78 

   
15 42.16 40.28 26.44 25.26 Decay visible 

 
8.69 8.67 7.60 6.97 Decay visible 

  
P-MAP 3 5 42.16 42.43 39.47 37.68 37.50 

 
8.69 8.60 7.91 8.15 8.28 

   
10 42.16 40.61 35.00 29.90 30.74 

 
8.69 8.21 8.04 7.33 7.45 

   
15 42.16 34.19 25.37 24.42 Decay visible 

 
8.69 8.33 7.30 6.93 Decay visible 

  
Control 5 42.16 46.97 37.80 501.67 41.53 

 
8.69 9.35 8.79 8.09 8.33 

   
10 42.16 41.09 36.45 29.60 Decay visible 

 
8.69 8.89 7.29 7.87 Decay visible 

      15 42.16 48.06 40.00 Decay visible Decay visible   8.69 9.28 7.21 Decay visible Decay visible 

* For each column, similar upper case letters in superscript are not significantly different at p < 0.05 among the passive MAP treatments. For parameter in rows, similar 

lower case letters are not significantly different. **P-MAP1: 75 g; P-MAP2: 100 g; P-MAP3: 125 g; control: clamshell package 
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Table 5 Effect of passive MAP design factors on total anthocyanin content in pomegranate arils 

Cultivar     
Total anthocyanin content (mg C3gE 100 mL-1) 

Treatment Temp Day 0 Day 3 Day 7 Day 10 Day 14 Cultivar Day 0 Day 3 Day 7 Day 10 Day 14 

‘Acco’ P-MAP 1 5 21.13 ± 0.45Aa 19.74 ± 4.11Aab 12.62 ± 1.83Ab 13.32 ± 0.58ABb 13.80 ± 1.58Ac ‘Herskawitz’ 20.42 ± 0.68Aa 18.05 ± 0.91Ab 14.39 ± 2.09Ac 17.75 ± 0.56Abd 16.06 ± 0.87Acd 

  
10 21.13 ± 0.45Aa 18.44 ± 2.04Ab 12.10 ± 0.40Ac 15.12 ± 1.78BCb 13.38 ± 1.70Ac 

 
20.42 ± 0.68Aa 17.85 ± 0.96ABb 14.56 ± 0.13Ac 15.06 ± 0.57Bd 14.45 ± 0.14Bc 

  
15 21.13 ± 0.45Aa 13.60 ± 0.81Bb 11.51 ± 0.09Ac 11.65 ± 0.07Dc Decay visible 

 
20.42 ± 0.68Aa 15.80 ± 1.13Bb 15.09 ± 1.97ABb 14.01 ± 0.02Cc Decay visible 

 
P-MAP 2 5 21.13 ± 0.45Aa 20.79 ± 3.26Aa 14.82 ± 0.22Bb 15.00 ± 0.22Cb 13.01 ± 0.19Ac 

 
20.42 ± 0.68Aa 19.32 ± 0.27Ab 17.43 ± 0.53Bc 17.43 ± 0.53Ac 18.22 ± 1.24Cbc 

  
10 21.13 ± 0.45Aa 18.57 ± 1.03Ab 17.95 ± 2.61BCb 17.95 ± 0.05Eb 14.26 ± 0.55Ac 

 
20.42 ± 0.68Aa 17.48 ± 2.59ABab 18.33 ± 0.87Bab 18.33 ± 0.07Ab 18.04 ± 1.31Cb 

  
15 21.13 ± 0.45Aa 19.46 ± 3.11Aab 18.38 ± 1.28Cb 13.65 ± 0.07Ac Decay visible 

 
20.42 ± 0.68Aa 12.99 ± 1.57Cb 18.88 ± 0.50Bc 13.88 ± 0.50Cbd Decay visible 

 
P-MAP 3 5 21.13 ± 0.45Aa 17.70 ± 1.33Ab 15.89 ± 2.43Bbc 15.89 ± 0.42Cc 16.32 ± 0.64Bbc 

 
20.42 ± 0.68Aa 13.42 ± 3.30BCb 16.96 ± 0.39Bbc 16.96 ± 0.02Ac 17.06 ± 0.12ACc 

  
10 21.13 ± 0.45Aa 16.88 ± 1.54Ab 15.83 ± 0.30Bb 15.69 ± 0.30Cb 14.02 ± 0.0Ac 

 
20.42 ± 0.68Aa 17.17 ± 1.19Ab 18.95 ± 0.45Bb 17.90 ± 0.45Ab 17.06 ± 1.01Ab 

  
15 21.13 ± 0.45Aa 20.42 ± 2.05Aab 19.24 ± 0.53Cb 13.55 ± 0.17Ac Decay visible 

 
20.42 ± 0.68Aa 14.74 ± 5.97ABCac 17.06 ± 0.91Bb 14.95 ± 0.07Bc Decay visible 

 
Control 5 21.13 ± 0.45Aa 16.95 ± 0.22Ab 13.90 ± 1.80ABc 14.04 ± 0.29Ab 13.32 ± 0.25Dc 

 
20.42 ± 0.68Aa 17.65 ±1.22Ab 13.99 ± 0.81ADc 17.04 ± 0.09Ab 13.32 ± 0.25Dc 

  
10 21.13 ± 0.45Aa 13.67 ± 0.62Bb 12.18 ± 0.20Ac 11.12 ± 0.11Db Decay visible 

 
20.42 ± 0.68Aa 11.67 ± 0.62Cb 13.18 ± 0.28Dc 13.02 ± 0.11Dc Decay visible 

    15 21.13 ± 0.45Aa 13.55 ± 0.19Bb 10.16 ± 0.41Ec Decay visible Decay visible   20.42 ± 0.68Aa 15.55 ± 0.09Bb 10.46 ± 2.01Ec Decay visible Decay visible 

* For each column, similar upper case letters in superscript are not significantly different at p < 0.05 among the passive MAP treatments. For parameter in rows, similar 

lower case letters are not significantly different. **P-MAP1: 75 g; P-MAP2: 100 g; P-MAP3: 125 g; control: clamshell package  
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Microbial quality 

 

Temperature and time had significant effects on microbial growth (p < 0.05), while the 

amount of arils used in this study had no significant influence on microbial load. The aerobic 

mesophilic bacterial and fungal growth remained below detection limit for all passive MAP 

applications until day 10 and 7 of storage at 5 ºC, respectively, for both cultivars. In 

contrast, microbial growth were observed in the control (clamshell package) treatment 

from day 3 increasing to over 3.5 log CFU g-1 at 5 ºC and decay was visible after day 10 and 

14 in samples stored at 15 and 10 ºC, respectively. We observed a significant difference 

between the microbial stability of the two cultivars in this study, cv. „Herskawitz‟ were more 

microbiologically stable compared to cv. „Acco‟. Yeast and mould count were higher than 

bacterial count at all storage conditions. Yeast and mould count were in the range of 0.36 to 

2.17 log CFU g-1 for „Herskawitz‟ and 1.76 to 2.59 log CFU g-1 for „Acco‟ after 14 days of 

storage at 5 ºC. While, the aerobic mesophilic bacterial count were in the range of 1.10 and 

1.73 for „Herskawitz‟ and 1.76 to 2.41 log CFU g-1 for „Acco‟ after 14 days of storage at 5 ºC 

(Fig. 4). 
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Figure 4 Effect of storage temperature on growth of aerobic mesophilic bacteria and yeast and mould in fresh-cut pomegranate arils from P-MAP 

treatment, (a, b) cv. „Acco‟ and (c, d) cv. „Herskawitz‟. Dark shaded bars, 15 °C; Unshaded bard, 10 °C; Gray shaded bars, 5 °C 
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Discussions 

 

Package headspace gas composition and optimal MAP design 

It is important to integrate and validate mathematical modelling for MAP design of fresh 

produce with experimental data (Sousa-Gallagher & Mahajan, in press). The present study 

showed good agreement between simulated results and experimental data (R2 = 0.98) 

(Figure 1). Slow changes in headspace gas composition could be explained by the very low 

respiration rate of pomegranate arils at the set temperatures (Caleb et al., 2012b). At 

lowest temperature the inability to achieve an equilibrium MAP (eMAP) required for optimal 

storage of arils, suggests that the use of active gas modification (gas flushing with 

recommended atmosphere) may be necessary. However, if the product is stored for longer 

duration and at higher temperature, micro/macro perforations would be required on 

polymeric film in order to avoid critical levels of O2 and CO2. According to Soliva-Fortuny et 

al. (2004) a decrease in O2 level below fermentative threshold limit could induce anaerobic 

respiration, which results in the production of off-flavours and –odours. The increase in 

CO2 caused off-flavour development as perceived after day 10, when fresh packages were 

opened. This observation suggests that rapid increase in CO2 can indicate the end of 

product shelf life, and also highlights the need for a polymeric film with higher permeability 

for CO2 in order to avoid accumulation inside the package. Additionally, our result identifies 

the important of engineering design of a MAP system, which takes into consideration 

amount of product; produce respiration rate and permeability of the packaging polymeric 

film as affected by temperature; and headspace gas composition. 

Furthermore, based on the Pareto chart analysis of investigated parameters at a given 

time, only temperature had a significant impact on the headspace gas composition. This 

highlights the importance of maintaining an optimal cold chain and retail shelf temperature. 

Our experimental and predicted data identifies the significance of time effect on respiration 

rate of fresh or fresh-cut produce. In order to achieve a desired eMAP time must be taken 

into consideration. This corroborates the study by Caleb et al. (2012b), which reported that 

time and temperature play a crucial role in the respiration rate of pomegranate arils.  
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Physical quality attributes 

 

Storage temperature and duration had significant effects on the weight of packaged arils. 

Weight loss increased with increase in temperature from 5 to 15 °C and was observed at 

day 7. Gil et al. (1996) reported a weight loss of 0.52, 0.56 and 0.70% for chlorine-treated 

pomegranate arils cv. „Mollar Elche‟ stored at 1, 4 and 8 ºC, respectively, while weight loss 

of 0.68, 0.84 and 0.72% for those treated with chlorine plus antioxidant at 1, 4 and 8 ºC 

stored for 7 days. Singh et al. (2009) reported a minimal loss in weight for jasmine buds 

packaged using polypropylene film under passive MAP compared to non-MAP stored buds at 

2 °C. MAP was able to minimize weight loss by retarding respiration and transpiration rate. 

Furthermore, the use of polymeric films in MAP serves as mechanical barrier to the 

movement of water vapour and this helps to maintain a high level of RH within the package, 

and reduce produce weight loss (Suparlan & Itoh, 2003). However, an excessively high level 

of RH within the package can result in moisture condensation on produce, thereby creating 

a favourable condition for the growth pathogenic and spoilage microorganisms (Távora et 

al., 2004; Aharoni et al., 2008). This corroborates the observation in the control experiment 

with clamshell packages, with increase in weight due moisture condensation. 

The decrease in firmness of arils packed in clamshell trays could be attributed to the 

accumulation of water vapour inside the packages, which softens the membrane of the arils. 

Furthermore, the absence of significant changes in firmness of fresh arils over time at 5 ºC 

under passive MAP indicates the fruit structure is well kept at this storage condition in 

combination with MAP. This observation in similar to report by Ayan & Eştürk (2009), they 

observed slight or no significant change in firmness for pomegranate cv. „Hicaznar‟ arils in 

stored in passive-MAP or active-MAP until 15 d at 5 ºC. Furthermore, the non-uniform flesh 

characteristics of arils contribute to the large variability among individual aril‟s mechanical 

attribute. And the relatively minimal changes observed in pomegranate textural attribute at 

5 ºC highlight the need to identify other quality and non-destructive parameters could 

adequately measure real-time changes in packaged fresh-cuts. 

The non-significant and fluctuating effects of the amount of arils, temperature and time 

on colour parameters agrees with data reported for other pomegranate arils cultivars that 

were minimally processed and stored under MAP conditions (Gil et al., 1996; Sepúlveda et 

al., 2000; Ayhan & Eştürk, 2009). For instance, Gil et al. (1996) reported a relatively small 
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change in L* parameter for cv. „Mollar‟ arils packed in OPP bags stored at 8, 4 and 1 ºC for 7 

d; Sepúlveda et al. (2000) observed no colour change in minimally processed pomegranate 

arils cv. „Wonderful‟ stored at 4 ºC ± 0.5 in semi-permeable films for 14 d. Ayhan & Eştürk 

(2009) reported that MAP application or storage time had no significant effect on redness a* 

and yellowness of b*, but observed small fluctuations throughout the 18 d of storage at 5 

ºC. 

 

Changes in pH, total soluble solids, total titratable acidity 

 

The non significant effect of passive MAP applications chemical attributes such as pH, TTS 

and TTA corroborates previous study reported by Artés et al. (2000) and Ayan & Eştürk 

(2009). Artés et al. (2000) reported, that at the end of shelf life, all MAP treatment 

maintained or had an increase in pH of arils, except for samples stored in perforated PP at 5 

ºC, which had lower pH values. Ayan & Eştürk (2009) also observed little changes in 

chemical quality of minimally processed pomegranate arils stored under modified 

atmosphere condition. The variability of pH, TSS, and TTA values found in the studies could 

be explained by several factors such as cultivar differences and the relative solubility effect of 

CO2 in water molecules surrounding the freshly packed pomegranate arils. 

 

Total anthocyanin content 

 

The observed decrease in total anthocyanin reported in our study is in agreement with 

previous studies on the effect of MAP on pomegranate arils (Artés et al., 2000; Ayhan & 

Eştürk, 2009). Artés et al. (2000) reported a general decrease in total anthocyanin content 

for all treatments of modified atmosphere packaged pomegranate fruit cv. „Mollar‟ stored at 

5 ºC for 12 wk. Ayhan & Eştürk (2009) also reported that the total anthocyanin content of 

pomegranate arils of cv. „Hicaznar‟ were significantly influence by MAP application, storage 

time, and the interaction of both MAP application × storage time. The total content of 

anthocyanin reported in this study was lower than that reported by Ayhan & Eştürk (2009) 

for pomegranate cv. „Hicaznar‟ (31.13 to 26.53 mg C3gE 100 mL-1). This is probably due to 

differences in cultivar and agro climatic regions. 
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Microbial quality 

 

The highest yeast and mould count in all passive MAP applications was less than 5 log CFU g-

1 which is the maximum limit for yeast and mould in raw and fresh-cut fruit allowed by the 

South African legislation (FCD Act 54 1979). However, after day 10, 7, and 3, fermentative 

headspace gas resulting in off-odours was noticed in P-MAP samples at 5, 10 and 15 ºC, 

respectively. Compared to the control (clamshell) package in this study, passive MAP 

prolonged the shelf life of fresh pomegranate arils for 10 days at 5 ºC. Higher counts of 

yeast and mould and a shorter lag phase reported in this study, is explained based on the 

fact that yeast and mould are capable of growing at lower pH in comparison to aerobic 

mesophilic bacteria (Suárez-Jacobo et al., 2010; Varela-Santos et al., 2012). Our result is in 

agreement with report by Varela-Santos et al. (2012). They observed that aerobic 

mesophilic bacteria count were lower than yeast and mould counts in untreated 

pomegranate juice of cv. „Wonderful‟. Furthermore, based on the aerobic mesophilic 

bacteria counts, they suggested that shelf life of unpressurized pomegranate juice was about 

13 days; while on the basis of the moulds and yeasts shelf life was around 8 days. 

Furthermore, the lower microbial count observed for „Herskawitz‟ in comparison with 

„Acco‟ may be attributed to differences in chemical characteristics such as organic acids and 

pH of the two pomegranate cultivars. For instance, cv. „Herskawitz‟ has higher TTA and pH 

than „Acco‟, this can influence microbial growth. Soliva-Fortuny & Martin-Belloso (2003) 

reported that fruit physicochemical properties such as pH and TTA have an important effect 

on microbial shelf life of fresh-cut fruit. 

 

Conclusion 

 

Headspace gas concentration was significantly influenced by produce weight and storage 

temperature. Physicochemical quality attributes evaluated in this study were not significantly 

affected by passive MAP application. Passive MA-packaged pomegranate arils had a better 

keeping quality and longer shelf life in comparison to those packed in clamshell trays. The 

influence of storage temperature, time and their interaction on evaluated parameters shows 

the significance of maintaining optimal cold-storage condition for fresh and fresh-cut 

products along the supply chain. Based on the aerobic mesophilic bacteria counts, the shelf 
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life of passive MAP fresh pomegranate arils extends beyond day 14 at 5 ºC, whereas, on the 

basis of the yeasts and moulds the shelf of product was around 10 days at 5 ºC. The 

relatively small changes observed in physicochemical attributes at optimal temperature 5 ºC 

in this study highlight the need to identify other non-invasive indictors that could indicate 

the changes occurring inside MA-packaged fresh arils during storage and shelf life. Further 

studied are recommended to evaluate the impact of produce weight and temperature on 

active MAP performance of arils.  
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CHAPTER 7 

 

CHANGES IN VOLATILE COMPOSITION AS AN INDICATOR OF 

MICROBIAL STABILITY AND SHELF LIFE OF MODIFIED 

ATMOSPHERE PACKAGED POMEGRANATE ARILS 

 

Summary 

 

This study investigated the effects of passive modified atmosphere packaging (MAP), storage 

temperature (5, 10 and 15 ºC) and duration of 14 days on the postharvest quality attributes, 

compositional change in flavour attributes and microbiological quality of minimally processed 

pomegranate arils (Punica granatum L.), cvs „Acco‟ and „Herskawitz‟. Volatile compounds 

were extracted via headspace solid phase micro-extraction (HS-SPME) and analysed by gas 

chromatography-mass spectrometry (GC-MS). Storage conditions and duration had 

significant effects (p < 0.05) on measured postharvest quality attributes and the composition 

of volatile compounds. A total of 17 and 18 volatiles were tentatively detected and identified 

in the headspace of pomegranate juices of „Acco‟ and „Herskawitz‟, respectively. Based on 

the physicochemical attributes and microbial evaluation, the postharvest life of MA-packaged 

„Acco‟ and „Herskawitz‟ was limited to 10 days due to fungal growth ≥ 2 log CFU g-1 at 5 ºC. 

However, the concentration (%) and compositional changes in volatile compounds indicated 

that the flavour/aroma life (7 days) was shorter than the postharvest shelf-life (10 days) for 

both cultivars. 

 

Introduction 

 

Assessment of postharvest shelf life of fresh-cut or minimally processed packaged fruit and 

vegetables is often based on changes/stability in physical attributes such as colour, firmness, 

juiciness, absence of decay, and chemical attributes such as total soluble sugars (TSS), pH 

and titratable acidity (TA).  These attributes reflects visual acceptance and physicochemical 

properties associated with produce quality; however, they neglect the significance of flavour 

or aroma quality (Pelayo et al., 2003; Kader, 2008). The development of desired 
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characteristic flavour in packaged fresh-cuts plays a crucial role in consumer preference and 

this influences future decision to purchase the produce. Furthermore, identification of 

characteristic aroma during storage life of packaged fresh-cuts can serve as an indicator 

product shelf-life. Thus, the understanding of volatile development should be incorporated 

into the postharvest life concept for fresh-cut fruit and vegetables. 

During the last decade, there has been an increased global production and consumption 

pomegranate, due to its health benefits and enriched bioactive phytochemicals (Viduda-

Martos et al., 2010). Current research on aroma and flavour of pomegranates have focused 

on the identification of unique volatiles produced by ripe fruit (Calín-Sánchez et al., 2011; 

Melgarejo et al., 2011; Mayuoni-Kirshinbanum et al., 2012). Using the headspace solid-phase 

micro-extraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS), Calín-

Sánchez et al. (2011) and Melgarejo et al. (2011) identified 18 and 21 aroma volatiles, 

respectively, in juices of nine different Spanish pomegranate cultivars. Mayuoni-Kirshinbanum 

et al. (2012) in their study performed a stir bar sorptive extraction (SBSE), coupled with 

GC-MS analysis to indentify 23 aroma volatiles in „Wonderful‟ pomegranate. The 

identifications included various classes such as aldehydes, monoterpenes, alcohols, esters, 

furans and acids, and the most prominent volatiles were ethyl-2-methylbutanoate, hexnal, 

limonene, trans-2-hexenal, cis-3-hexenol, cis-2-heptenal, β-pinene and β-caryophyllene. 

Furthermore, Calín-Sánchez et al. (2011) and Melgarejo et al. (2011) suggested that 

consumer liking of pomegranate juices could be linked to high levels of monoterpenes. This 

observation was corroborated by report of Mayuoni-Kirshinbanum et al. (2012), where 5 

out the 12 detected „Wonderful‟ pomegranate aroma-active compounds by the GC-O 

sniffing panellists were terpens, which suggests that this class of aroma compounds and 

concentration plays a role among cultivar preference for pomegranate (Melgarejo et al., 

2011). However, increased interest in minimally processed and fresh-cut pomegranate arils 

due to its high nutritional value and improved arils quality has highlighted the limited 

knowledge of factors that affect flavour development in modified atmosphere packaged 

pomegranate arils. 

Modified atmosphere packaging (MAP) is a dynamic process of altering gaseous 

composition inside a package. It relies on the interaction between the respiration rate (RR) 

of the produce, and the transfer of gases through the packaging material, with no further 

control exerted over the initial gas composition (Caleb et al., 2012). MAP has been reported 

to extend the shelf life of minimally processed arils (Sepulveda et al., 2000; López-Rubira et 
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al., 2005; Ayan & Eştürk, 2009). Sepulveda et al. (2000) observed that minimally processed 

pomegranate arils cv. „Wonderful‟ were storable for 14 days at 4 °C ± 0.5 in semi-

permeable films. This study was focused on the effect of different types of semi-permeable 

and antioxidant solutions on arils quality. López-Rubira et al. (2005) investigated the shelf life 

and overall quality of minimally processed pomegranate arils cv. „Mollar Elche‟ treated with 

UV-C and packaged under passive-MAP in polypropylene (PP) baskets sealed with BOPP film 

and stored at 5 °C. They observed that the shelf lives of arils were influenced by the 

harvested dates (earlier or late harvest). The report obtained on the effect of UV-C 

radiation on microbial growth was inconclusive, being that microbial count were not 

systematically reduced. Ayan & Eştürk (2009) studied the effect of various gas compositions 

in active-MAP on the shelf life and overall quality of minimally processed pomegranate arils 

stored at 5 °C. They observed no significant change in physicochemical attributes of arils 

during cold storage, while, aerobic mesophilic bacteria were in the range of 2.30 – 4.51 log 

CFU g-1. However, none of these studies provided information on the development of 

flavour in MA-packaged pomegranate arils. 

In this study we investigated the postharvest shelf life based on physicochemical 

properties, microbial stability and on changes in concentration and composition of volatile 

compounds of two pomegranate cultivars during storage under passive MAP at 5, 10 and 15 

°C. Our goal was to evaluate the potential of using changes in volatile composition as 

indicators of shelf life. 

 

Materials and methods 

 

Plant materials and preparation 

 

Sweet-sour pomegranate (Punica granatum L.) fruit cvs. „Acco‟ and „Herskawitz‟ harvested 

manually during commercial harvest period were obtained from Robertson valley farm, 

Western Cape (33°48′0″S, 19°53′0″E) in South Africa and immediately stored in the pack-

house, at the Houdoconstant Pack-house (Porterville, South Africa)  at 5 °C. Black 

polypropylene (PP) trays with the dimensions of 15.5 x 11.5 x 3.5 cm3 and POLYLID 

polymeric film (55µm with WVTR of 20 - 22 g m-2 day-1; CO2TR of 600 - 700 mL m-2 day-1; 
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and OTR 130 - 150 mL m-2 day-1 at 25 ºC, 50% RH and 1 Bar) were provided by Blue Dot 

Packaging (Cape town, South Africa) and Barkai Polyon Ltd. (Kibbutz Barkai, Israel), 

respectively. 

 

Fruit processing and packaging procedures 

 

Fruit were manually sorted to remove those with blemish after which the outer skins (husk) 

of healthy whole fruit were washed in sterilized water with 200 µLL-1 of sodium 

hypochlorite (NaOCl) solution. Fruit husk were mechanically processed for aril extraction 

using a commercial pomegranate aril extraction unit (ArilSystems, Juran Metal Works, 

Israel). The extracted arils were collected on sterile conveyer belt in order to air dry and 

manually remove damaged arils. Each cultivar was processed separately and all processing 

was conducted at temperature below 10 °C. Arils were mixed to ensure uniformity and 

portions of 125 g arils were weighed into polypropylene (PP) trays which had been 

previously sterilized with ethylene oxide. PP trays were sealed with POLYLID films using a 

semi-automated heat sealing machine (Food Processing Equipment, South Africa). A label of 

7.0 x 3.8 cm2 area was placed onto each package film to simulate the labels found in the 

retails market packages. At the pack-house, packaged products were cooled down to 2 °C 

and transported in ice-packed cooler boxes fitted with data loggers (Gemini Data Loggers, 

United Kingdom) to the postharvest research laboratory. On arrival temperature inside the 

cooler boxes ranged between 3 – 4.5 °C. Packaged samples were stored at 5, 10 and 15 °C 

and 95 ± 2% RH for 14 d, and sampling was carried out on 0, 3, 7, 10, and 14 d of storage. 

Two packs were analyzed for each experimental condition on each sampling day. A full 

factorial experimental design was used and were replicated six times (n = 6). 

 

Headspace gas analysis 

 

Before packages were opened on sampling days, the gas composition inside the packages 

was determined using a gas analyzer with an accuracy of 0.5% (Checkmate 3, PBI Dansensor, 

Ringstead, Denmark). Immediately after taking the gas analysis, packages were opened and 

used for microbial, physicochemical and volatile analyses. 
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Weight loss 

 

Initial and final weight of each packaged arils was measured using an electronic weighing 

balance (ML3002.E, Mettler Toledo, Switzerland). Weight loss was calculated according to 

the following equation: 

          (1) 

where WL is the weight loss (%), W0 is the initial weight (g) and Wf is the final weight (g) 

prior to package analysis. 

 

Texture 

 

Firmness of arils was measured using texture analyzer (TA-XT Plus, Stable Micro Systems, 

Surrey, England), with a 35 mm diameter cylindrical probe. Firmness was expressed as 

maximum compression force (N). A test speed of 1.0 mm s-1 and distance of 9.5 mm were 

used. An average of 10 arils was measured individually for each experimental condition. 

 

Titratable acidity, pH, total soluble solids and total anthocyanin content 

 

Arils (125 g) for each pack were juiced separately using a LiquaFresh juice extractor 

(Mellerware, South Africa) and the juice was directly used for pH and total soluble solid 

(TSS) measurement using a pH meter (Crison, Barcelona, Spain) and digital refractometer 

expressed as ºBrix (Atago, Tokyo, Japan), respectively. Titratable acidity (TA) was measured 

by titration to an end point of pH 8.2 using a Metrohm 862 compact titrosampler (Herisau, 

Switzerland). Total anthocyanin content was determined by the pH-differential method, 

using 2 buffer systems, namely potassium chloride (pH 1, 0.025M) and sodium acetate (pH 

4.5, 0.4M). One ml of sample juice was mixed with 9 mL of buffer and the absorbance was 

measured at 520 and 700 nm. Total anthocyanins were calculated as cyaniding-3-glucoside 

according to the following equation: 

    (2) 
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where A = (A520 – A 700) pH 1 – (A520 – A700) pH 4.5; MW (molecular weight) = 449.2 g 

mol-1 for cyaniding-3-glucoside; DF = dilution factor; 1 = pathlength in cm; ε = 26900 molar 

extinction coefficient. All analyses were done as 4 replicates (n = 4) and values are 

presented as mean ± S.D. 

 

Microbial quality 

 

Microbiological stability of samples was screened by total plate count. For aerobic 

mesophilic bacteria count, plate count agar (PCA) was used and for the yeast and mould 

count, potato dextrose agar (PDA) acidified with 10% tartaric acid was used. Packages were 

opened under sterile conditions and 10 g of each sample was obtained aseptically and 

homogenized with 90 mL of sterile physiological solution (PS). Furthermore, 3-fold dilutions 

were prepared using 1.0 mL of diluents into 9 .0 ml of PS. In order to enumerate microbial 

load, 1.0 ml of each dilution was pour-plated in triplicate onto PCA plates for aerobic 

mesophilic bacteria and PDA for yeast and moulds. Plates for aerobic mesophilic bacteria 

were incubated at 37 ºC for 2 d and at 25 ºC for 3 – 5 d for yeast and moulds. The results 

were presented as log CFU g-1.    

                                                           

Extraction procedure of volatile compounds and chromatographic analyses 

 

Approximately 5 mL of aliquots of pomegranate juice were taken from the total samples 

thawed overnight at refrigerating temperature and was placed in 20 mL SPME vials. These 

aliquots were mixed with equal amounts of 30% NaCl, to inhibit enzymatic degradation and 

facilitate the evolution of volatiles into the headspace. The aroma volatiles were trapped and 

extracted from the vial headspaces an SPME method described before by Melgarejo et al. 

(2011) and Mayuoni-Kirshinbanum et al. (2012). The vials were allowed to equilibrate for 10 

min at 50 ºC in the CTC autosampler incubator and after this equilibration time, a 50/30 µm 

three phase fiber coated with divinylbenzene/-carboxen/-polydimethylsiloxane (needle size 

23 ga, StableFlex, 57298-U Supelco, Sigma-Aldrich) was exposed to the headspace for 20 

min at 50 ºC. After extraction, desorption of the volatile compounds from the fibre coating 

was carried out in the injection port of the gas chromatography-mass spectrometry (GC-

Stellenbosch University  http://scholar.sun.ac.za



177 
 

MS) during 2 min in splitless mode and then 8 min in split mode to clean fibre. The 

temperature of the injection was maintained at 250 ºC. 

Separation of the volatile compounds was performed on a gas chromatograph using 

Agilent 6890 N (Agilent, Palo Alto, CA), coupled with an Agilent mass spectrometer 

detector Agilent 5975 MS (Agilent, Palo Alto, CA). The GC-MS system was equipped with 

an Rtx®-5Sil MS, with a 95% polydimethyl siloxane/ 5% polydiphenyl siloxane stationary 

phase and the dimensions were 30 m length; 0.25 mm inner diameter; and 0.5 µm film 

thickness. Analyses were carried out using helium as carrier gas with a flow of 1.2 mL min-1. 

The injector temperature was maintained at 250 ºC. The oven temperature was as follows: 

40 ºC for 2 min; and then ramped up to 250 ºC at 5 ºC min-1 and held for 5 min. The MSD 

was operated in full scan mode and the ion source and quadropole were maintained at 240 

ºC and 150 ºC, respectively. The transfer line temperature was maintained at 280 ºC. 

Where authentic standards were available, compounds were tentatively identified by 

comparison of retention times (RI); Kovats retention indices (KI); and, by comparison with 

mass spectral libraries (NIST, version 2.0). For quantification, the calculated relative 

abundances were used. 

The formula to obtain experimental Kovats indexes is described in the following 

equation: 

       (3) 

where I is the Kovats index, A is the unknown compound, n is the number of carbon atoms 

in the smaller n-alkane, N is the number of carbon atoms in the lager n-alkane, z is the 

difference in the carbon atoms in the smaller and larger n-alkanes and tR is the retention 

time. 

 

Statistical analysis 

 

The experimental data obtained were treated with one-way analysis of variance (ANOVA) 

at 95% confidence interval to evaluate the effect of amount of pomegranate arils inside the 

MAP, storage time, temperature and their interaction on the quality attributes. Least 

significant difference (LSD) and Tukey Post-hoc tests were performed to identify specific 
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differences in factor levels. All experimental data were analysed using Statistical software 

(Statistical 10.0, Statsoft, USA). 

 

Results and discussion 

 

Package headspace gas composition 

 

Headspace O2 content significantly decreased over time inside packages at the different 

storage temperature up to day 14, without reaching an equilibrium concentration (Fig. 1a). 

Oxygen composition went below 2% in packages stored at 10 and 15 ºC on day 7 and 4, 

respectively, while samples at 5 °C did not reach below 2% throughout the study. According 

to Soliva-Fortuny et al. (2004), a decrease in O2 level below fermentative threshold limit 

could induce anaerobic respiration, which results in the production of off-flavours and –

odours. On the other hand, CO2 levels increased significantly during storage for all 

packaging conditions; however, the increase was highest at 15 ºC (Fig. 1b). At the end of the 

storage, O2 and CO2 concentration reached approximately 4.8 and 27.8%, respectively, at 5 

ºC. This observation suggests that rapid increase in CO2 can indicate the end of product 

shelf life, and also highlights the need for a polymeric film with higher permeability for CO2 

in order to avoid accumulation inside the package. 
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Figure 1. Effect of storage temperature and time on the percentage gas composition inside MA-

packaged cv. „Acco‟ pomegranate arils: (◊) 5 ºC, (□) 10 ºC, (∆) 15 ºC. *Data similar for cv. 

„Herskawitz‟. 
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Changes in physical attributes 

 

Weight loss did not exceed 0.53 and 0.79% at 5 ºC; 0.70 and 0.91% at 10 ºC; and 2.14 and 

1.94% at 15 ºC for „Acco‟ and „Herskawitz‟, respectively. Gil et al. (1996) reported a weight 

loss of 0.52, 0.56 and 0.70% for chlorine-treated pomegranate arils cv. „Mollar Elche‟ stored 

at 1, 4 and 8 ºC, respectively, while weight loss of 0.68, 0.84 and 0.72% for those treated 

with chlorine plus antioxidant at 1, 4 and 8 ºC stored for 7 days. Furthermore, the use of 

polymeric films in MAP serves as mechanical barrier to the movement of water vapour and 

this helps to maintain a high level of RH within the package, and reduce produce weight loss 

(Suparlan & Itoh, 2003). 

Firmness at day 0 was 76.10 ± 5.1 N and 85.55 ± 8.4 N for cv. „Acco‟ and „Herskawitz‟, 

and did not exceed 77.50 ± 7.4 N and 102.36 ± 7.6 N, respectively, at day 14 (Table 1). 

Storage temperature, time, and their interaction had no significant effect on firmness of arils 

as storage progressed (p ≤ 0.05). This observation in similar to report by Ayan & Eştürk 

(2009), they observed slight or no significant change in firmness for pomegranate cv. 

„Hicaznar‟ arils in stored in passive-MAP or active-MAP until day 15 at 5 ºC.  

With regards to colour characteristics of pomegranate arils, the average L* values 

measured ranged from 39.55 to 26.22 for „Acco‟ and 41.58 to 30.03 for cv. „Herskawitz‟, 

while a* ranged from 29.29 to 19.30 for „Acco‟ and 33.95 to 22.60 for cv. „Herskawitz‟, and, 

b* ranged from 19.66 to 12.28 for „Acco‟ and 18.98 to 12.90 for cv. „Herskawitz‟ across all 

storage conditions. Comparison of the two cultivars showed that „Herskawitz‟ had better 

colour stability than „Acco‟, based on the overall analysis of variance (ANOVA) and Tukey 

Post-hoc test. Storage time had no significant effect colour parameters L* (lightness), a* 

(redness) and b* (yellowness) (p > 0.05) which are commonly used in industry as indicators 

of colour stability (Table 2). The non-significant or fluctuating effects of passive MAP and 

temperature on colour parameters agrees with data reported for other minimally processed 

pomegranate arils cultivars and stored under MAP conditions (Gil et al., 1996; Sepúlveda et 

al., 2000; Ayhan & Eştürk, 2009). Gil et al. (1996) reported a relatively small change in L* 

parameter for cv. „Mollar‟ arils packed in oriented polypropylene (OPP) bags stored at 8, 4 

and 1 ºC for 7 day. Sepúlveda et al. (2000) observed no colour change in minimally 

processed pomegranate arils „Wonderful‟ stored at 4 ºC ± 0.5 in semi-permeable films for 

14 day. Ayhan & Eştürk (2009) reported that MAP application or storage time had no 
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significant effect on redness a* and yellowness of b*, but observed small fluctuations 

throughout the 18 day of storage at 5 ºC. 

 

Table 1 Effect of passive MAP, storage temperature and duration on pomegranate arils firmness. 

Cultivar 
 

Temp. ⁰C 
Firmness (N) 

Day 0 Day 3 Day 7 Day 10 Day 14 

Acco 
       

  
5 76.10 ± 5.1Aa 69.90 ± 7.9ABa 76.15 ± 8.6Aa 70.40 ± 6.7Aa 75.43 ± 8.9Aa 

  
10 76.10 ± 5.1Aa 69.25 ± 8.7ABa 72.78 ± 7.0Aa 71.42 ± 4.7Bb 69.91 ± 11.0Aab 

  
15 76.10 ± 5.1Aa 70.71 ± 12.6Aa 75.84 ± 6.0Aa 75.06 ± 5.2Aa 75.72 ± 7.5Aa 

Herskawitz 
       

  
5 85.55 ± 8.4Aa 81.91 ± 17.03Aa 90.57 ± 14.7Aa 87.43 ± 14.9Ba 93.60 ± 10.7Aa 

  
10 85.55 ± 8.4Aa 81.15 ± 17.1Aa 88.19 ± 12.5Aa 84.80 ± 15.5ABa 86.31 ± 13.6Aa 

  
15 85.55 ± 8.4Aa 87.94 ± 16.6Aa 94.20 ± 15.3Aa 98.36 ± 20.0Ba 97.32 ± 17.3Aa 

        * For each column, similar upper case letters in superscript are not significantly different at p < 0.05. 

For parameter in rows, similar lower case letters are not significantly different.  
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Table 2 Effect of packaging, storage temperature and duration on pomegranate arils‟ CIEL*a*b* colour indices. 

Cultivar Storage time Temp. ⁰C L* a* b* Cultivar L* a* b* 

‘Acco’ Day 0 
 

39.55 ± 5.7A 27.75 ± 6.4A 15.41 ± 2.8A  ‘Herskawitz’ 37.61 ± 6.2A 23.49 ± 5.3AB 14.09 ± 1.9A 

 
Day 3 5 33.61 ± 3.7AB 23.79 ± 1.9A 13.78 ± 1.3A 

 
38.64 ± 6.9A 33.95 ± 5.9A 16.37 ± 3.0A 

  
10 32.22 ± 1.6B 22.25 ± 8.9A 13.12 ± 2.4A 

 
34.81 ± 4.8A 29.29 ± 6.1AB 15.13 ± 2.5A 

  
15 29.1 ± 2.6B 24.54 ± 4.3A 14.72 ± 1.2A 

 
36.24 ± 10.5A 23.48 ± 3.6B 15.00 ± 2.7A 

 
Day 7 5 30.96 ± 4.4AB 22.01 ± 2.1A 13.39 ± 1.7A 

 
30.03 ± 7.3A 25.89 ± 4.6AB 14.43 ± 2.3A 

  
10 27.66 ± 1.9B 22.58 ± 5.9A 14.29 ± 1.7A 

 
32.29 ± 6.6A 24.76 ± 5.8AB 14.55 ± 1.5A 

  
15 33.49 ± 6.7AB 29.29 ± 5.8A 17.20 ± 2.7A 

 
31.79 ± 5.4A 26.11 ± 3.6AB 15.57 ± 1.8A 

 
Day 10 5 30.99 ± 5.6AB 19.37 ± 5.8A 14.02 ± 3.9A 

 
28.64 ± 3.1A 22.6 ± 2.8B 12.74 ± 0.9A 

  
10 25.85 ± 5.5B 19.8 ± 3.7A 12.28 ± 1.6A 

 
34.62 ± 2.3A 25.66 ± 5.3AB 14.72 ± 1.4A 

  
15 31.65 ± 3.7AB 24.29 ± 3.9A 14. 03 ± 1.7A 

 
30.79 ± 4.6A 25.78 ± 3.4AB 14.49 ± 1.6A 

 
Day 14 5 33.69 ± 8.6AB 19.32 ± 2.3A 15.72 ± 3.2A 

 
31.55 ± 3.3A 25.24 ± 6.9AB 13.59 ± 1.9A 

    10 28.32 ± 5.3B 21.54 ± 1.9A 14.09 ±  2.1A   34.64 ± 3.4A 25.23 ± 3.6AB 16.06 ± 3.8A 
* For each column, similar upper case letters in superscript are not significantly different at p < 0.05. 
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Changes in pH, total soluble solids, total titratable acidity and total anthocyanin 

content 

 

Table 3 shows the chemical parameters of fresh and modified atmosphere packaged 

pomegranate arils for both cultivars during storage. A comparison of both cultivars showed 

that cv. „Herskawitz‟ had a significantly higher TA and pH than „Acco‟, while „Acco‟ had a 

relatively higher TSS. The TSS/TA ratio was influenced by storage duration and temperature. 

Overall, cv. „Herskawitz‟ was more stable compared to „Acco‟ based the observed changes 

in physico-chemical attributes. The interaction of storage temperature and time had a 

significant effect on all chemical quality parameters evaluated (p < 0.05).  There was a 

significant decrease in TA day 3 (p < 0.05), afterward stayed relatively unchanged over time 

for the rest of the storage period but significantly higher than day 3. Decrease observed in 

acidity reported on day 3, could be related initial arils‟ response and metabolic activities 

during storage. Our findings are in agreement with other reports on the effect of packaging 

on the stability of chemical attributes of pomegranate arils (Artés et al., 2000; Ayan & 

Eştürk, 2009). Artés et al. (2000) reported in their study, that at the end of the shelf life all 

MAP treatment maintained or had an increase in pH values, except for samples stored in 

perforated PP at 5 ºC, which had lower pH values. Ayan & Eştürk (2009) also observed little 

changes in chemical quality of minimally processed pomegranate arils stored under modified 

atmosphere condition. The variability of pH, TSS, and TA values found in the studies could 

be explained by several factors such as cultivar differences and the relative solubility effect of 

CO2 in water molecules surrounding the freshly packed pomegranate arils. 

There was a significant effect of storage temperature and duration, as well as their 

interaction on the total anthocyanin content (p ≤ 0.05). A general trend of decrease in total 

anthocyanin content was observed as the storage time increased for all treatments (Table 

3). Total anthocyanin content was within the range from 21.13 to 13.32 mg C3gE 100 mL-1 

of pomegranate juice for „Acco‟, and 20.42 mg C3gE 100 mL-1  to 12.32 mg C3gE 100mL-1 

for „Herskawitz‟. Ayhan & Eştürk (2009) also reported that the total anthocyanin content of 

pomegranate arils of cv. „Hicaznar‟ were significantly influence by packaging, storage time, 

and their interaction. The total content of anthocyanin reported in this study was lower 

than that reported by Ayhan & Eştürk (2009) for pomegranate cv. „Hicaznar‟ (31.13 to 26.53 

mg C3gE 100 mL-1). This is probably due to differences in cultivar and agro climatic regions. 
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The increase reported in the studies could be explained by several factors such as cultivar 

differences and the relative solubility effect of CO2 in water molecules surrounding the 

freshly packed pomegranate arils. 
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Table 3 Effect of passive MAP design factors on chemical parameters of two pomegranate cultivars. 

Cultivar           
pH, TSS, TA, and TSS:TA 

      

Parameter 
 

Temp Day 0 Day 3 Day 7 Day 10 Day 14 Cultivar Day 0 Day 3 Day 7 Day 10 Day 14 

‘Acco’ pH 
 

5 3.80 ± 0.01Aa 3.76 ± 0.22Aa 3.96 ± 0.06Ab 3.97 ± 0.02Ab 4.05 ± 0.01BCc ‘Herskawitz’ 3.01 ± 0.02Aa 2.96 ± 0.08Aa 2.99 ± 0.01Aa 3.01 ± 0.02Aa 3.05 ± 0.01Aa 

   
10 3.80 ± 0.01Aa 3.86 ± 0.25Aa 3.88 ± 0.21Aa 3.99 ± 0.07Ab 4.01 ± 0.08BCb 

 
3.01 ± 0.02Aa 3.01 ± 0.08Aa 2.96 ± 0.11Aa 3.02 ± 0.04Aa 3.06 ± 0.01Aa 

   
15 3.80 ± 0.01Aa 3.82 ± 0.03Aa 3.84 ± 0.18Aa 3.55 ± 0.07Ab Decay visible 

 
3.01 ± 0.02Aa 3.22 ± 0.04Cb 2.94 ± 0.07Aa 2.95 ± 0.07Aa Decay visible 

 
TSS 

 
5 15.6 ± 0.01Aa 14.85 ± 0.21Ab 15.0 ± 0.14Cc 15.45 ± 0.21Aa 15.0 ± 0.0Ad 

 
15.03 ± 0.01Aa 14.80 ± 0.0Cb 14.80 ± 0.28Ab 15.40 ± 0.14Bc 15.15 ± 0.07Ac 

   
10 15.6 ± 0.01Aa 13.40 ± 1.70Ab 14.7 ± 0.42Ac 14.95 ± 0.21Ac 14.45 ± 0.35Bc 

 
15.03 ± 0.01Aa 14.70 ± 0.14Cb 14.40 ± 0.14Ab 14.65 ± 0.07Ab 14.60 ± 0.14Ab 

   
15 15.6 ± 0.01Aa 14.70 ± 0.14Ab 13.7 ± 0.57Dc 14.65 ± 0.07Ab Decay visible 

 
15.03 ± 0.01Aa 14.50 ± 0.14Bb 13.50 ± 0.85Ac 14.42 ± 0.59Abc Decay visible 

 
TA 

 
5 0.37 ± 0.01Aa 0.35 ± 0.0ABb 0.38 ± 0.01Aa 0.41 ± 0.05Aab 0.40 ± 0.01Aa 

 
1.73 ± 0.01Aa 1.72 ± 0.03Aa 1.87 ± 0.06Bb 1.89 ± 0.12Ab 1.83 ± 0.03Ab 

   
10 0.37 ± 0.01Aa 0.33 ± 0.02ABb 0.42 ± 0.04ABDa 0.50 ± 0.07ACa 0.47 ± 0.06Aa 

 
1.73 ± 0.01Aa 1.79 ± 0.04Ab 1.79 ± 0.01ABb 2.00 ± 0.16Ac 1.96 ± 0.11Ac 

   
15 0.37 ± 0.01Aa 0.43 ± 0.08Aa 0.54 ± 0.01Eb 0.60 ± 0.02Dc Decay visible 

 
1.73 ± 0.01Aa 1.74 ± 0.03Aa 1.85 ± 0.02Ab 2.08 ± 0.01Bc Decay visible 

 
TSS:TA 

 
5 42.16 42.43 39.47 37.68 37.50 

 
8.69 8.60 7.91 8.15 8.28 

   
10 42.16 40.61 35.00 29.90 30.74 

 
8.69 8.21 8.04 7.33 7.45 

   
15 42.16 34.19 25.37 24.42 Decay visible 

 
8.69 8.33 7.30 6.93 Decay visible 

               

Cultivar   
Total anthocyanin content (mg C3gE 100 mL-1) 

Temp Day 0 Day 3 Day 7 Day 10 Day 14 Cultivar Day 0 Day 3 Day 7 Day 10 Day 14 

‘Acco’ 
      

‘Herskawitz’ 
     

 
5 21.13 ± 0.45Aa 17.70 ± 1.33Ab 15.89 ± 2.43Bbc 15.89 ± 0.42Cc 16.32 ± 0.64Bbc 

 
20.42 ± 0.68Aa 13.42 ± 3.30BCb 16.96 ± 0.39Bbc 16.96 ± 0.02Ac 17.06 ± 0.12ACc 

 
10 21.13 ± 0.45Aa 16.88 ± 1.54Ab 15.83 ± 0.30Bb 15.69 ± 0.30Cb 14.02 ± 0.0Ac 

 
20.42 ± 0.68Aa 17.17 ± 1.19Ab 18.95 ± 0.45Bb 17.90 ± 0.45Ab 17.06 ± 1.01Ab 

 
15 21.13 ± 0.45Aa 20.42 ± 2.05Aab 19.24 ± 0.53Cb 13.55 ± 0.17Ac Decay visible 

 
20.42 ± 0.68Aa 14.74 ± 5.97ABCac 17.06 ± 0.91Bb 14.95 ± 0.07Bc Decay visible 

              *For each column, similar upper case letters in superscript are not significantly different at p < 0.05 among the passive MAP treatments. For parameter in rows, similar 

lower case letters are not significantly different. TSS, Total soluble solids; TA; Total titratable acidity 
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Microbial quality 

 

Storage conditions and duration had significant effect on microbial growth (p < 0.05). The 

aerobic mesophilic bacterial and fungal growth remained below detection limit until day 10 

and 7 of storage at 5 ºC, respectively, for both cultivars. We observed a significant 

difference between the microbial stability of the two cultivars in this study, which showed 

that „Herskawitz‟ arils were more microbiologically stable compared to „Acco‟. Yeast and 

mould count were higher than bacterial count at all storage conditions. Yeast and mould 

count were in the range of 0.36 - 2.17 log CFU g-1 for „Herskawitz‟ and 1.76 - 2.59 log CFU 

g-1 for „Acco‟ after 14 days of storage at 5 ºC. While, the aerobic mesophilic bacterial count 

were in the range of 1.10 and 1.73 for „Herskawitz‟ and 1.76 to 2.41 log CFU g-1 for „Acco‟ 

after 14 days of storage at 5 ºC (Fig. 2). Although, the highest yeast and mould count in all 

passive MAP applications was fewer than 5 log CFU g-1, which was established as the 

maximum limit for yeast and mould in raw and fresh-cut fruit by the South African legislation 

(FCD Act 54 1979). However, at day 10, 7, and 3, fermentative headspace gas resulting in 

off-odours was observed at 5, 10 and 15 ºC, respectively.  

The higher levels of yeast and mould count with a shorter lag phase found in this study 

may be attributed to the fact that yeast and mould are capable of growing at lower pH in 

comparison to aerobic mesophilic bacteria (Suárez-Jacobo et al., 2010; Varela-Santos et al., 

2012). These findings agree with the report by Varela-Santos et al. (2012), who observed 

that aerobic mesophilic bacteria count were lower than yeast and mould counts in 

untreated pomegranate juice of „Wonderful‟. Furthermore, the lower microbial count 

observed for „Herskawitz‟ in comparison with „Acco‟ may be attributed to differences in 

chemical characteristics of the two pomegranate cultivars. For instance, cv. „Herskawitz‟ has 

higher TA and pH than „Acco‟, this can influence microbial growth. Soliva-Fortuny & Martin-

Belloso (2003) reported that fruit physicochemical properties such as pH and TA have an 

important effect on microbial shelf life of fresh-cut fruit. 
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Figure 2. Effect of storage temperature on growth of aerobic mesophilic bacteria and yeast and mould in MA-packaged pomegranate arils, (a, b) cv. „Acco‟ 

and (c, d) cv. „Herskawitz‟. *Dark shaded bars, 15 °C; Unshaded bard, 10 °C; Gray shaded bars, 5 °C. Mean separation by LSD, p < 0.05. 
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Volatile composition and evolution 

 

Using GC-MS analysis of pomegranate juice HS-SPME extract, a total of 18 and 17 volatiles 

were detected for „Herskawitz‟ and „Acco‟, respectively. In general, temperature and storage 

duration had significant effects on the evolution of volatiles (p > 0.05). The cultivars differed 

quantitatively in aroma compounds; however, they exhibited the same volatile profiles which 

were categorized into primary and secondary volatiles based on their evolution. Primary 

volatiles were identified in day 0 (fresh samples), while secondary volatiles evolved over the 

storage period at different temperatures. The most abundant volatiles in both cultivars were 

trans-3-hexen-1-ol, 1-hexanol, 3-methyl-1-butanol acetate, hexyl acetate and 2-octanone 

(only in „Acco‟). Several of the other volatiles identified in both cultivars were present in 

very low concentration (%) for example limonene, benezeacetaldehyde, α-terpineol, and 2-

nonanone (Table 4). The volatile compounds found in pomegranate juices can be grouped in 

7 chemical classes: (a) monoterpenes: limonene; (b) monoterpenoids: L-terpinen-4-ol, α-

terpineol; (c) aldehydes: benzenacetaldehyde; (d) ketones: 2-octanone, 2-nonanone and 2-

undecanone; (e) alcohols: trans-3-hexen-1-ol, 1-hexanol, 2-phenylethanol and 2-nonanol; (f) 

esters: 3-methyl-1-butanol acetate, cis-3-hexenyl acetate, hexyl acetate, 2-phenylethyl 

acetate, octanoic acid-, decanoic acid- and dodecanoic acid-ethyl ester; and (g) 

sesquiterpenes: trans-α-bergamotene. 

The concentration of ketones decreased over time during the storage. Concentration of 

aldehydes, alcohols and esters decreased in the following order during the storage period: 

aldehydes < alcohols < ester. It is well known that most types of fruit have the ability to 

metabolize aldehydes into alcohols, and then into their corresponding esters during ripening 

as well as storage (Dixon & Hewett, 2000; Pelayo et al., 2003; Vazquez-Cruz et al., 2012). 

For instance, Pelayo et al. (2003) reported a decrease in the level of aldehydes and alcohols 

at the end of postharvest life of CO2-stored „Aromas‟ and „Diamante‟ strawberries with a 

notable increase in the concentration of ethyl esters. This was also the finding in this study, 

concentration and composition of ethyl esters increased with the storage period. For 

example, 2-phenylethyl acetate, octanoic acid ethyl ester and decanoic acid ethyl ester were 

detected from day 3 and in all storage conditions and duration, with 2-phenylethyl acetate 

exhibiting the highest concentration among all esters. A higher level of ethyl esters was 

observed in „Acco‟ in comparison to „Herskawitz‟ after 10 days of storage. Enhanced 
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synthesis of ethyl esters requires a fermentation process in order to supply high amounts of 

alcohol precursor.  

According to Purvis (1997), fermentative metabolism can be enhanced in fruit via various 

stress factors such as extrinsic (temperature, hypoxic conditions), intrinsic (ripening, 

senescence) and biotic (microbial growth) factors. In this study we observed that increased 

temperature and microbial growth were correlated with the evolution of ethyl esters after 

day 3 of storage. Microorganisms have been reported to produce high levels of ethyl esters 

and alcohols on fresh food produce (Longo & Sanromán, 2006; Deetae et al., 2007). In 

addition, enhanced production of ethyl esters exhibits an increased activity of alcohol 

acyltransferase enzyme (AAT), which promotes the last stage in biosynthesis of esters (Zhu 

et al., 2008). Therefore, the ability to maintain the original volatile profile during MAP 

storage depends on maintaining strict optimal cold chain, processing hygiene to reduce 

microbial load and the ability of pomegranate cultivars to maintain a reduced rate of 

fermentative metabolism.  „Acco‟ pomegranate arils did not maintain a low rate of this 

metabolic pathway compared to „Herskawitz‟. This observation highlights the need for 

precise definition of stored produce flavour life (Pelayo et al., 2003), and offers the 

possibility to use volatile evolution in MA-packaged fresh/ fresh-cuts as an indicator for 

intelligent packaging. 

Furthermore, the esters chemical group had the highest percentage composition and 

representation among the isolated, identified and quantified groups of volatiles which 

evolved as secondary volatiles. The finding in this study is in contrast with others in 

literature by Calín-Sánchez et al. (2011), Melgarejo et al. (2011) and Mayuoni-Kirshinbaum et 

al. (2012). For instance, Calín-Sánchez et al. (2011) and Melgarejo et al. (2011) identified 18 

and 21 aroma volatiles, respectively, in juices of nine different Spanish pomegranate cultivars. 

The most abundant of these volatiles were limonene, hexanal, cis-3-hexenol and trans-2-

hexenal. Mayuoni-Kirshinbaum et al. (2012) reported that majority of aroma compounds in 

„Wonderful‟ pomegranate were terpenes and aldehydes. These differences could be 

associated to cultivar, influence of agro-climatic regions on the fruit as well as the extraction 

methods used and retention time reported. However, the observation in this study is 

principally due to the influence of minimal processing, storage condition and duration on 

fresh pomegranate arils, which.  
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Flavour life can be defined as the maximum period of storage in which fruit maintain a 

similar flavour profile to that detected in freshly harvested fruit (Pelayo et al., 2003). 

However, the described changes in aroma compounds during MAP storage created new 

profiles that could influence flavour perception. Thus, flavour life could be described based 

on the compounds with the highest concentration/odour threshold that contributes to the 

global odour of a given food (Alonso et al., 2009). Based on the correlations found between 

the increasing levels of ethyl esters, changes in volatile composition and microbial growth 

during MAP storage, both cultivars exhibited a shorter flavour life (7 days) than postharvest 

life (10 days). Therefore, changes in headspace volatile composition could serve as an 

indicator of microbial stability and postharvest shelf life for MA-packaged pomegranate arils.  
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Table 4 Aromatic compounds found in the headspace of MA-packaged pomegranate juice using GC-MS analysis of HS-SPME extracts.  

Cultivar 

Common volatiles  
RT* 
mins 

 Kovats 
indexes 

Day 0 
Day 3 Day 7 

Day 10 
Sensory descriptor† 

Relative peak area 
(%)** 

Lit.a Exp.a 5°C 10°C 15°C 5°C 10°C 15°C 5°C 10°C 

Acco trans-3-Hexen-1-ol 8.3 814 804 12.7 ± 1.8a _ 6.4 ± 2.2b _ 4.6 ± 0.5b 2.4 ± 0.7c _ 2.2 ± 0.2c 0.2 ± 0.1d Plant, fruity, aromatic 

 
1-Hexanol                             8.6 831 836 16.6 ± 2.6a 10.7 ± 0.3b   18.2 ± 5.8a _ 11.5 ± 1.3b  5.1 ± 2.1c _ 2.5 ± 0.05d 0.5 ± 0.3e Mint, grass 

 

3-Methyl-1-butanol 
acetate 8.8 850 858 12.2 ± 1.0a 25.5 ± 2.5b 25.7± 6.5bcd 20.2±2.2bc 16.1 ± 2.5d 20.3 ± 3.1bc 11.5 ± 2.2a 20.2 ± 5.9bc  33.2 ± 4.5d Fruity, sweet-like, banana 

 
2-Octanone                           12.4 977 975 16.5 ± 2.5a 14.07 5.0 ± 4.3b _ 1.0 ± 0.3c 2.7 ± 1.0d  _ 1.3 ± 0.2c 0.2 ± 0.04e 

 

 
cis-3-Hexenyl Acetate 12.9 986 991 3.1 ± 0.02a 2.22 0.85 1.17 0.8 ± 0.4b 1.0 ± 0.02b 1.07 2.4 ± 0.6a 1.4 ± 0.1b Fresh, leafy, green,  

 
Acetic acid, hexyl ester             13.1 997 998 9.5 ± 0.3a 10.7 ± 1.0a 2.4 ± 1.4b 2.48 2.6 ± 1.1b 2.4 ± 0.2b 0.88 2.8 ± 0.2c 2.4 ± 0.9c Apple, cherry, floral, pear 

 
Limonene      13.7 1020 1017 3.4 ± 0.27a 1.6 ± 0.2b 2.2 ± 0.7a 0.10 1.3 ± 0.1b 0.8 ± 0.5d _ 0.6 ± 0.03d 0.3 ± 0.01e Mild, citrus, sweet, orange 

 
Benzeneacetaldehyde 14.2 1036 1033 2.3 ± 0.1a 0.75 _ 0.4 ± 0.01e 0.9 1.3 ± 0.3b 0.51 0.5 ± 0.02c  0.98 ± 0.1b Honey, sweet, flowery 

 
2-Nonanone 15.6 1069 1079 4.3 ± 0.5a   3.07 7.7 ± 1.0b 3.05 0.6 ± 0.2c 9.9 ± 1.0d 8.74 2.2 ± 0.9d 4.9 ± 0.1a Cheesy, green, fruity, dairy 

 
2-Phenylethanol 16.3 1081 1104 0 8.2 2.95 

 
_ 6.6 ± 0.2a 7.3 ± 0.2bc 6.7 ±  1.4ac 5.0 ±  1.8a Flowery, roses 

 
α-Terpineol 18.8 1169 1186 3.3 ± 1.2a  1.3 ± 0.1b _ 0.73 0.8 ± 0.1c 0.9 ± 0.1c _ 1.4 ± 0.2b _ Lilac 

 
Secondary volatiles 

 

 
2-Nonanol 15.9 1087 1091 0.00 2.18 _ 1.8 ± 0.4a  1.3 ± 0.7a 1.9 ± 0.2a 5.3 0.57 2.0 ±  0.04a cucumber 

 

Octanoic acid, ethyl 
ester 18.8 1183 1184 0.00 1.18 1.37 1.4 1.4 ± 0.02a 0.36 6.53 1.1 ±  0.1b 2.2 ±  0.5c Fruity, fresh, sweet-like 

 
2-Phenylethyl acetate 20.5 1224 1241 0.3 ± 0.02a 1.9 ± 0.4b 1.36 5.5 ± 0.2c 2.54 10.8 ± 0.3d 17.2 ± 1.1e 27.7 ± 0.1f 27.2 ± 0.2f Flowery, cooked apple 

 
2-Undecanone 21.5 1274 1275 0.00 1.65 _ 1.24 _ 0.9 ± 0.1a 2.72 0.31 0.9 ±  0.1a 

 

 

Decanoic acid, ethyl 
ester 24.2 1383 1364 0.00 1.49 0.74 1.7 ± 0.2a  _ 0.25 3.31 1.9 ± 0.3a 1.5 ±  0.5a Rancid 

  
Dodecanoic acid, ethy 
ester 29.2 1581 1526 0.00 0.5 ± 0.02a _ 0.6 _ _ 0.9± 0.1b  0.16 0.3 ±  0.1c Dry, metallic 

** Peak areas are means of two GC-MS runs; *RT = retention time; a Lit = literature (MS software, NIST version 2.0), Exp. = experimental. Similar lower case letters in 

rows are not significantly different (p < 0.05). †Melgarejo et al. 2011; SAFC (2008) 
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Table 4 continues 

Cultivar 

Common volatiles  
RT* 
mins 

 Kovats indexes 
Day 0 

Day 3 Day 7 Day 10 
Sensory descriptor† Relative peak area 

(%)** 
Lit.a Exp.a 5°C 10°C 15°C 5°C 10°C 15°C 5°C 10°C 

Herskawitz trans-3-Hexen-1-ol 8.3 814 804 10.1±0.02a 9.7 ± 0.4a 2.2± 0.3b 1.8±0.1c 3.3 ± 1.0b 1.0±0.8bc 0.3 ± 0.05d 0.5 ± 0.02e 0.2 ± 0.1f Plant, fruity,  

 
1-Hexanol 8.6 831 836 11.9± 0.2a 12.3±1.9a 6.6 ± 1.6b 2.8 ± 0.4c 8.1 ± 0.6b 2.5 ± 1.0c 0.7 ± 0.3d 0.9 ± 0.2d 0.9 ± 0.3d Mint, grass 

 

3-Methyl-1-butanol 
acetate 8.8 850 858 14.0± 0.5a 31.6±14.9bc 36.9 ± 3.0c 35.3±1.7c 31.7± 12.7c 38.2 ± 4.6c 21.9 ± 0.6b 33.6±13.2bc 35.2 ± 2.5c Fruity, sweet-like 

 
cis-3-Hexenyl Acetate 12.9 986 991 2.9± 0.1a 2.1 ± 0.7ac 2.3 ± 0.5a 2.7 ± 1.0a 1.7± 0.7ac 3.1 ± 0.8a 1.4 ± 0.05b 2.1 ± 0.2c 3.0 ± 0.3a Fresh, leafy, green,  

 
Acetic acid, hexyl ester             13.1 997 998 17.0 14.4 ± 2.1b 11.5 ± 0.6c 8.4 ± 2.6c 5.1 ± 2.9d 10.4 ± 0.1c 2.0 ± 0.4e 9.2 ± 0.7c 7.8 ± 0.9c Apple, cherry, floral 

 
Limonene 13.7 1020 1017 2.1± 0.6a 3.3 ± 1.2a 1.8± 0.5abc 0.9± 0.7b 2.6 ± 0.9a 1.1 ± 0.1c 0.4 ± 0.02d 0.4 ± 0.3d 0.5 ± 0.04d Mild, citrus,  lemon 

 
Benzeneacetaldehyde 14.2 1036 1033 1.4± 0.02a 1.3 ± 0.05a 2.0 ± 0.24b 1.3±0.1a 1.2± 0.5ab 2.2 ± 0.01c 0.9± 0.7abd 0.8± 0.6abd 1.4 ± 0.4ad Honey, flowery 

 
2-Nonanone 15.6 1069 1079 2.9±0.04ac 2.4 ± 0.6ac 5.1 ± 0.1b 2.9±0.2ac 4.7 ± 0.3b 2.4 ± 1.0cd 1.7 ± 0.03d 0.6 ± 0.3e 1.0 ± 0.4e Cheesy, fruity, dairy 

 
2-Phenylethanol 16.3 1081 1104 0.7±  0.1a 5.5±5.1abcd 4.7 ± 3.2bd 6.7±3.3bd 1.9 ± 0.2c 2.8 ± 0.1b 7.0 ± 0.05d 7.8 ± 2.5d 4.6 ± 0.6d Flowery, roses 

 
L-Terpinen-4-ol 18.4 1137 1172 0.9±0.05 _ _ _ _ _ _ _ _ Must, turpentine,  

 
α-Terpineol 18.8 1169 1186 2.8± 0.1a 1.0 ± 0.3b 0.5 ± 0.01c 0.9± 0.1b 1.4±0.02d _ 2.9 ± 0.1e 1.4 ± 0.1d _ Lilac 

 
trans-α-Bergamotene 25.3 1434 1445 0.6±0.02a 0.4 ± 0.1b 0.71 0.99 1.20 1.08 0.6 ± 0.2ab 0.78 0.4 ± 0.02c Woody, terpene-like 

 
Secondary volatiles 

 

 
Ethyl hexanoate 12.7 984 984 0.00 0.2±0.01a 0.6 ± 0.2b 0.5 ± 0.04c _ 0.4 ± 0.1d 0.9 ± 0.4bc 0.5 ± 0.2bcd 0.49 Fruity, candy 

 
2-Nonanol 15.9 1087 1091 0.00 1.6± 0.2a 1.8 ± 0.01a 0.7 ±  0.01b 1.3±0.7ab 1.4 ± 0.8ab 8.5 ± 0.3c 0.77 0.55 cucumber 

 

Octanoic acid, ethyl 
ester 18.8 1183 1184 0.00 1.1± 0.3a 0.5 1.1 ±  0.02a 1.4±0.02c 2.6 ± 0.2d 1.6 ± 0.2c 2.7±1.7abcde 3.6 ± 0.3e Fruity, fresh 

 
2-Phenylethyl acetate 20.5 1224 1241 0.00 0.00 2.9 ± 0.2a 5.78 1.0± 0.2b 4.4 ± 0.02c 10.8 ± 1.8d 24.4 ± 18.4d 11.9± 1.3d Flowery 

 

Decanoic acid, ethyl 
ester 24.2 1383 1365 0.00 1.14 0.68 0.57 _ 1.2 ± 0.4a 1.7 ± 0.3b 1.9 ± 0.7b 3.1 ± 0.2c Rancid 

  
Dodecanoic acid, ethyl 
ester 29.2 1581 1585 0.00 0.25 _ _ _ 0.42 0.82 0.3 ± 0.04a 0.6 ± 0.1b Dry, metallic 

** Peak areas are means of two GC-MS runs; *RT = retention time; a Lit = literature (MS software, NIST version 2.0), Exp. = experimental. Similar lower case letters in 

rows are not significantly different (p < 0.05). †Melgarejo et al. 2011; SAFC (2008) 
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Conclusion 

 

Changes in quality attributes and aroma compounds were dependent on cultivar differences, 

and storage condition and duration. At 5 ºC storage condition MA-packaged pomegranate 

arils of cv. „Acco‟ and „Herskawitz‟, were best kept in comparison samples at 10 and 15 °C. 

It was evident by the extension of the postharvest life based on physicochemical properties 

and the inhibition of microbial growth at the lowest storage temperature in the two 

cultivars. This shows importance of maintaining optimal cold chain in postharvest handling of 

fresh/ fresh-cut produce. However, flavour life was shorter than the postharvest life and was 

significantly influenced by storage temperature. Additional sensory evaluations would be 

needed to confirm this observation. Flavour life can be a selected parameter as a good 

indicator to determine the quality of minimally processed fresh produce. Although optimum 

flavour life is difficult to establish, due to cultivar differences, a more precise definition of 

flavour shelf life is required for MA-packaged pomegranate arils. This could be achieved by 

considering recommended levels of flavour components in order to ensure acceptable 

flavour. Further research is warranted in this area, especially given the importance of flavour 

in consumer perception of quality and purchase of pomegranate arils and other fresh 

produce. 
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CHAPTER 8 

 

GENERAL DISCUSSION AND CONCLUSION 

 

According to Brandenburg & Zagory (2009), in order to achieve the desired modified 

atmosphere in a given package, it is expedient to understand the three basic disciplines 

underpinning MAP, namely produce physiology (such as the extrinsic and intrinsic factors 

affecting produce respiration rate), polymer engineering (which identifies the choice of 

specific polymer‟s physical, chemical, and gas transmission rate properties), and converting 

technology (which entails the fabrication of raw polymers, films, adhesives, inks and additives 

into packages of desired format monolayer or multi to complex layers, with or without 

perforation). The aim of the current study was to investigate the application of MAP for 

postharvest handling of pomegranate arils. Better understanding of the responses of arils to 

passive-MAP will assist fruit processors in selecting packaging materials and storage 

conditions, in order to optimize physicochemical, sensory and microbial stability of 

minimally processed pomegranate arils. Active-MAP was not considered in this study due to 

the principal need to understand the basic response of pomegranate arils without complex 

tools, and to show an affordable, flexible and adaptable technique for the „young‟ 

pomegranate agro-economic community in South Africa. In addition to lowering postharvest 

losses of pomegranate fruit, this is one of the critical challenges in developing countries. 

The effects of storage conditions and duration on physiological responses (i.e. respiration 

and transpiration rate (TR)) of pomegranates cvs. „Acco‟ and „Herskawitz‟ were investigated 

and mathematical models were developed to predict these physiological responses at given 

time and storage condition. The result of this study showed that the respiration rate (RR) of 

whole pomegranate fruit was significantly higher than the RR of fresh arils, and temperature 

had a significant impact on the RR of both whole fruit and fresh arils. Generally, biological 

reactions such as respiration increase 2 to 3-fold for every 10 °C rise in temperature 

(Fonseca et al., 2002). This was in line with the observation in this study with about 3-fold 

increase in RR when storage temperature increased from 5 to 15 °C. The influence of time, 

and the interaction between temperature and time also had a significant effect on the RR of 
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fresh pomegranate arils. This finding highlights the significance of maintaining optimal cold 

chain conditions for packaged arils or whole fruit. Additionally, the mathematical models 

based on Arrhenius-type equation and the power function equation coupled with Arrhenius-

type equation accurately predicted the effect of temperature and the influence of time and 

temperature on the RR of fresh pomegranate arils for both cultivars, respectively. 

Furthermore, the experimental and model prediction results showed that both relative 

humidity (RH) and storage temperature had significant effects on transpiration (TR). RH was 

the variable with the greatest influence on TR, and the result showed that arils were best 

kept at 5 °C and 96% RH. Previous studies have shown close relationships between storage 

condition (temperature and RH) and transpiration rate of fresh produce (Mahajan et al., 

2008), which in turn plays a significant role in determining the optimal storage conditions to 

maintain quality. The use of polymeric films in MAP serves as mechanical barrier to the 

movement of water vapour and this helps to maintain a high level of RH within the package 

and reduces produce weight loss (Suparlan & Itoh, 2003). However, an excessively high level 

of RH within the package can result in moisture condensation on produce, thereby creating 

a favourable condition for the growth of pathogenic and spoilage microorganisms (Aharoni 

et al., 2003; Távora et al., 2004). Thus, the selection of appropriate packaging material is 

critical in order to create a stable RH in sealed fresh produce packages. The applicability of 

the transpiration model developed in this study was validated based on prediction of TR of 

pomegranate arils under different storage conditions. The model adequately predicted TR 

and could be a useful tool towards understanding the rate of water loss in fresh 

pomegranate arils and other fresh produce, as affected by storage conditions and duration. 

Evaluation of the effect of passive-MAP engineering design parameters as a function of 

produce weight, storage temperature and duration on fresh pomegranate arils revealed that 

produce weight, increase in temperature and the interaction between temperature and time 

had a slight or no significant effect on measured physicochemical quality attributes such as 

firmness, colour, pH, total soluble sugars (TSS), and total titratable acidity (TTA). This result 

is consistent with previous studies in the literature on the effects of MAP on pomegranate 

arils (Artés et al. 2000; Sepúlveda et al., 2000; Ayhan & Eştürk, 2009). The relatively small 

changes observed in this study on the physicochemical attributes of arils at 5 ºC over the 

storage period highlights the need to identify other non-invasive or intelligent indictors that 

could adequately monitor the changes occurring inside MA-packaged fresh pomegranate 

arils during storage, transit and shelf life. 
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The headspace gas concentration inside MAP was significantly influenced by produce 

weight and storage temperature, Oxygen (O2) concentration went below 2% after day 5 and 

day 3 at 10 and 15 ºC, respectively, while the O2 concentration inside MAP stored at 5 °C 

did not reduce below 2% throughout the study. On the other hand, CO2 levels increased 

significantly during storage for all packaging conditions. The rate at which headspace gas 

composition changed in this study could be explained by the very low respiration rate of 

pomegranate arils at the set temperatures reported by Caleb et al. (2012), in comparison to 

fruit such as kiwifruit and guava (Manolopoulou & Papadopoulos 1998; Wang et al., 2009). 

This study showed the importance of a systematic approach in designing optimal MAP 

system and the need to understand the three basic disciplines underpinning MAP, namely 

produce physiology, polymer engineering, and converting technology. 

Furthermore, the simulation model and evaluation of the effect of selected design 

parameters on the physiological response of pomegranate arils shows that, at low storage 

temperature the inability to achieve an equilibrium MAP (eMAP) required for optimal 

storage of arils despite the increase in produce weight, suggest that the use of active gas 

modification (gas flushing with recommended atmosphere) may be necessary in modified 

atmosphere packaging of pomegranate arils. Result of simulation study using unsteady-state 

models showed that the recommended atmosphere to maintain aril quality storage at 5 °C 

was: 5% O2 + 5% CO2. However, if the product is stored for longer duration and at higher 

temperature, and packaged with polymeric film with similar permeability properties to the 

one used in this study, macro/micro perforation of the film would be required to avoid 

critical levels of O2 and CO2. This requires the use of full factorial experiments to select the 

appropriate number of perforations for the desired storage temperature, and the 

recommended atmospheric composition has to be validated experimentally. 

Temperature and time had a significant influence on total aerobic mesophilic bacterial and 

yeast and mould growth. However, passive Map arils were best kept at 5 °C with a shelf life 

of 10 days. This highlights the importance of optimum maintaining optimum cold storage 

practice and good agricultural and manufacturing practices (GAP and GMP). During minimal 

processing, contamination with food borne pathogens can become a problem for the 

industry. Thus, the integration of Hazard Analysis and Critical Control Points-based 

programs, GAP and GMP is essential in order to ensure food quality and safety. These 

include accurate auditing of each area in the pack-house and conducting risk assessments of 

potential points.  
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With regards to aroma and flavour composition and sensory descriptors for packaged 

pomegranate arils, the influence of passive MAP, storage temperature and duration on the 

volatile composition and evolution were investigated. The results showed that changes in 

aroma compounds were dependent on cultivar, storage condition and duration. Using GC-

MS analysis of pomegranate juice HS-SPME extract, a total of 18 and 17 volatiles were 

detected for „Herskawitz‟ and „Acco‟, respectively. The importance of maintaining optimal 

cold chain in postharvest handling of fresh/ fresh-cuts was evident due to the observed 

extension in postharvest life and an extended lag phase of microbial growth in the two 

cultivars at lowest temperature. Furthermore, the flavour life was shorter than the 

postharvest life, based on the reported accumulation of ethyl esters and the decrease in 

primary volatiles while physicochemical parameters remained relatively unchanged. The 

change in volatile composition had a correlation to microbial growth. There was a decrease 

in volatile composition in the following order aldehydes < alcohols < ester during the 

storage period, and the concentration (%) and composition of ethyl esters increased with 

storage time. This was consistent with literature evidence (Pelayo et al., 2003) which 

reported a decrease in the level of aldehydes and alcohols at the end of postharvest life of 

CO2-stored „Aromas‟ and „Diamante‟ strawberries with a notable increase in the 

concentration of ethyl esters. Additional sensory evaluations would be required to confirm 

this observation with focus on lowest temperature; however, the present findings highlight 

the potential towards an innovative food packaging solution for modified atmosphere 

packaging of pomegranate arils. These include (a) nanoencapsulation of natural 

antimicrobials on biopolymers with a controlled release mechanism which controls 

microbial growth phase in packaged arils (Donsi et al., 2011), and (b) the addition of 

nanosensor on polymeric film to detect changes in volatile composition or in the evolution 

of secondary volatiles such as the ethyl esters‟ group based on pH (Xu et al., 2011). For 

example, in their concise review, Brody et al. (2008) reported the development of a 

NanoBioluminescence detection spray containing a luminescent protein that is engineered 

to bind to the surface of microbes such as E. coli and Salmonella. When bound, it emits a 

visible glow that varies in intensity based on the microbial load. This principle can be 

explored via nanoencapsulation of bioluminescence of desired volatile precursors on 

polymeric films.  

This study showed that storage conditions and duration play a crucial role on 

physiological responses (i.e. RR and TR) of whole pomegranate fruit and arils. The 
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experimental and model prediction results showed show a good agreement with the 

produce physiological response. Passive-MA packaged arils were best kept at 5 °C with 

longer shelf life (10 days) compared to the clamshell packages (< 7 days). Produce weight, 

increase in temperature and the interaction between temperature and time had a slight or 

no significant effect on measured physicochemical quality. However, the interaction of 

produce weight and temperature has a significant influence on the in-package headspace gas 

composition. Pomegranate arils cv. „Herskawitz‟ had a lower microbial load and better 

flavour stability compared to „Acco‟. Thus the choice of cultivar for MAP is critical to the 

success of the technology for pomegranate arils. Furthermore, this study showed that the 

flavour life of packaged arils was shorter than the postharvest life. This identified the need 

for a more precise definition of flavour shelf life for MA-packaged pomegranate arils and 

other packaged fresh produce. Although this is difficult to establish, due in part to cultivar 

differences, it could be achieved by considering recommended levels of flavour components 

in order to ensure acceptable flavour. Currently there is no research data available on the 

flavour or volatile composition for MA-packaged pomegranate arils. 
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