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Abstract 

The extraction of hemicelluloses prior to pulping that would have been dissolved in black 

liquor during pulping process, is an attractive alternative for pulp and paper mills as they, in 

addition to their core products, can increase their revenue by producing biofuels, biopolymers, 

paper additives and other chemicals. However, the amount of hemicelluloses extracted will be 

limited by the requirement to maintain pulp yield and pulp quality in comparison to existing 

pulping processes. 

In the present study, mild alkaline (NaOH) and dilute sulphuric acid conditions were used to 

extract hemicelluloses from Eucalyptus grandis, giant bamboo (Bambusa balcooa) and 

sugarcane (Saccharum officinarum) bagasse (SCB) prior to kraft or sodaAQ pulping 

processes. The effects of catalyst concentration, temperature and reaction time on 

hemicelluloses pre-extraction were studied, using a statistical experimental design to 

investigate conditions under which hemicelluloses could be extracted prior to alkaline pulping 

with minimal interference on cellulose (glucan) content. Subsequently, selected pre-extracted 

materials were subjected to kraft or sodaAQ pulping to evaluate the effect of the 

hemicelluloses pre-extraction on cooking chemicals, pulp yield and properties. This study 

also included evaluation of hot water hemicelluloses pre-extraction of SCB as it was part of a 

dilute sulphuric acid experimental design. The pulp yield, cooking chemicals and handsheet 

strength properties were compared with those obtained from kraft or sodaAQ pulping of non 

extracted raw materials. 

The results showed that alkaline pre-extraction options investigated preserves the pulp yield 

with minimal effect on handsheet strength properties depending on the choice of the 

subsequent pulping method while a fraction of xylan was extracted in polymeric form. In 

addition, less active alkali was required to delignify the xylan extracted materials.  

The integration of hemicelluloses pre-extraction by alkaline methods into a kraft pulping 

process was preferred for giant bamboo and E. grandis since it maintained pulp yields at 

desired industrial levels of 50%, and pulps within a bleachable kappa number range.  
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Another advantage observed was the reduction in total cooking active alkali required to 

delignify alkaline extracted giant bamboo or E. grandis by 8or 3 percentage points 

respectively. However, the compromise to maintain the pulp yield was obtained when only 

13.6% or 12.4% polymeric xylan was solubilised from giant bamboo or E. grandis 

respectively. Slight improvement in burst index of the handsheet was observed for extracted 

giant bamboo. On the other hand, pulp viscosity was increased by 13% due to the removal of 

low molecular weight hemicelluloses, while the breaking strength of the handsheet was also 

increased by 8.9% for pulps produced from extracted E. grandis.  

In the case of sugarcane bagasse, hemicelluloses pre-extraction by alkaline methods 

integrated well with the sodaAQ pulping process. It enabled a xylan recovery of 69.1%, while 

providing pulp with higher screened pulp yield (45.0%), with an advantageous decrease in 

kappa number (15.5). The handsheet tear index was superior without reduction in viscosity 

compared to pulp produced from non extracted SCB.  

On the contrary, results obtained from optimised dilute sulphuric acid pre-extraction of all the 

tested feedstocks were found to negatively impact subsequent kraft or sodaAQ pulping 

processes resulting in lower pulp yields and poorer strengths properties. Nonetheless, the 

differences were better when sodaAQ pulping was used compared to kraft pulping. SodaAQ 

protects the carbohydrates against the peeling reaction under alkaline medium. 

Conversely, pre-extraction of SCB with hot water resulted in low concentration of xylo-

oligomers (5.7%), while the subsequent sodaAQ pulping resulted in no pulp yield reduction. 

The tear index and optical brightness of the handsheet papers produced from hot water 

extracted SCB were slightly improved while the breaking length, tensile and burst indexes 

were similar to those of pulps produced from non extracted SCB fibres. 

Of equal importance were the observed higher tear and burst indexes of handsheets produced 

from giant bamboo compared to E. grandis for both extracted and non extracted materials 

prepared under similar pulping processes. The advantage of bamboo was due to the larger 

fibre length and different morphological properties to those of hardwoods.  
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However, the pulps produced from giant bamboo showed higher kappa numbers than those 

pulps produced from E. grandis due to the high condensation behaviour of bamboo lignins 

under alkaline conditions. Higher kappa numbers explained the higher demand for subsequent 

bleaching chemicals. 

In conclusion, the pulp mill biorefinery concept through hemicelluloses pre-extraction with 

NaOH can be achieved with modified kraft pulping or the sodaAQ pulping processes, but it 

depends on the type of raw material, extraction method and quality and performance 

requirements of a particular paper. The low pulping chemicals demand, comparable pulp 

yields and the improvement in some physico-chemical properties of the pulps from pre-

extracted materials were observed. Furthermore, owing to xylan pre-extraction a larger 

amount of (extracted) material could be loaded into the digester as when non-extracted 

materials were used.  
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Opsomming 

Ekstraksie van hemiselluloses wat tydens verpulping in die swartloog opgelos word, bied ‘n 

aantreklike alternatief aan pulp- en papiermeulens om, addisioneel tot hul hoofprodukte, hul 

inkomste deur die vervaardiging van biobrandstowwe, biopolimere, papierbymiddels en ander 

chemikalië, daardeur te kan verhoog. Die hoeveelheid hemiselluloses wat ge-ekstraheer kan 

word, sal egter beperk word deur die vereiste dat pulpopbrengs en –kwaliteit tydens bestaande 

verpulpingsprosesse gehandhaaf moet word. 

In hierdie ondersoek is matige alkaliese (NaOH) en verdunde swawelsuurtoestande gebruik 

om hemiselluloses vóór kraft- of natriumantrakinoonverpulping uit Eucalyptus grandis, reuse 

bamboes (Bambusa balcooa) en suikerriet (Saccharum officinarum) bagasse, mee te 

ekstraheer. 

Die invloed van katalisatorkonsentrasie, temperatuur en reaksietyd is mbv ‘n statistiese, 

eksperimentele ontwerp ondersoek om die toestande te bepaal waaronder hemiselluloses, met 

minimale effek op die sellulose (glukaan) –inhoud, vóór alkaliese verpulping ge-ekstraheer 

kan word. Die pre-ge-ekstraheerde materiale, met hoë glukaan- en voldoende hemiselluloses-

inhoud, is vervolgens aan kraft- en natriumantrakinoonverpulping onderwerp om die invloed 

van pre-ekstraksie van hemiselluloses op die verpulpingsreagense, pulpopbrengs en -

eienskappe vas te stel. Hierdie studie het ook die evualering van warmwater 

hemisellulosespre-ekstraksie van suikerrietbagasse, wat deel is van ‘n verdunde swawelsuur 

eksperimentele uitleg, ingesluit. Pulpopbrengs, die hoeveelheid verpulpingsreagense en 

handveleienskappe van dieselfde materiale wat nie vooraf ge-ekstraheer is nie, is vergelyk. 

 

Die resultate toon dat alkaliese pre-ekstraksie metodes wat ondersoek is die pulpopbrengs met 

minimale effek op handvel sterkte-eienskappe afhangende van die keuse van daaropvolgende 

pulpmetode kon handhaaf terwyl ‘n fraksie van xilaan in polimeriese vorm ge-ekstraheer is. 

Addisioneel, is minder aktiewe alkali benodig om die xilaan ge-ekstraheerde materiale te 

delignifiseer.  
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Die integrasie van hemisellulosespre-ekstraksie dmv alkaliese metodes tydens ‘n kraft 

verpulpingsproses is vir reuse bamboes en E. grandis verkies omdat pulpopbrengste op ideale 

industriële vlakke van 50% gehandhaaf en is en pulp in ‘n bleikbare kappa nommergebied 

interval kon lewer. ‘n Verdere voordeel wat waargeneem is was die vermindering in die totale 

gekookte aktiewe alkali benodig vir reuse bamboes of E. grandis met 8 of 3 persentasiepunte 

onderskeidelik. Die kompromie om die pulpopbrengs te handhaaf is verkry toe slegs 13.6% of 

12.4% polimeriese xilaan opgelos is vanuit reuse bamboes of E. grandis onderskeidelik. ‘n 

Effense verbetering in bars-indeks van die handvelle is waargeneem vir ge-ekstraheerde reuse 

bamboes. Pulpviskositeit het met 13% gestyg agv die verwydering van die lae molekulêre 

massa hemiselluloses, terwyl breeksterkte van handvelle ook met 8.9% toegeneem het vir 

pulp verkry uit pre-gekstraheerde E. grandis.  

NaOH pre-ekstraksie van 69.1% xilaan (droë massa) uit suikerriet bagasse (SCB) het ‘n hoër 

natriumantrakinoon, gesifte pulpopbrengs gelewer (45.0%) met ‘n verbeterde afname in 

kappa-getal (15.5) en uitstekende skeursterkte sonder verlaging in viskositeit, soos vergelyk 

met nie-ge-ekstraheerde suikkerrietbagasse. 

 

Daarteenoor het die resultate verkry met die geoptimeerde verdunde swawelsuur pre-

ekstraksie  van al die getoetste rumateriale getoon om‘n negatiewe effek te gehad het op die 

daaropvolgende kraft- of natriumantrakinoonverpulping dws het laer pulpopbrengste en 

swakker sterkte-eienskappe opgelewer. Die verskille was nietemin kleiner toe 

natriumantrakinoonverpulping ipv kraftverpulping gebruik is. Antrakinoon beskerm die 

koolhidrate teen die afskilreaksie in alkaliese medium.   
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Daarteenoor het pre-ekstraksie van suikerrierbagasse met warm water tot 'n lae hoeveelheid 

(5.7%) xilaanoligomere gelei, terwyl die daaropvolgende natriumantrakinoonverpulping geen 

verlaging in pulpopbrengs veroorsaak het nie. Skeursterkte en optiese helderheid van 

handvelle wat uit warm water ge-ekstraheerde suikerrietbagasse vervaardig is, het ietwat 

verbeter terwyl breek-, trek- en barssterkte dieselfde was as van suikerrietbagasse pulp wat 

nie ge-ekstraheer is nie. Net so belangrik was die waargenome hoër skeur- en barsindekse van 

handvelle vervaardig van reuse bamboes in vergelyking met E. grandis van beide ge-

ekstraheerde en nie ge-ekstraheerde materiale voorberei onder dieselfde verpulpings 

toestande. Bamboes se sterker eienskappe was as gevolg van die hoër vesellengte en ander 

morfologiese eienskappe as diévan loofhout. Pulp wat vervaardig is van reuse bamboes het ‘n 

hoër kappanommer getoon as pulp van E. grandis  as gevolg van die hoë kondensasiegedrag 

van bamboeslignien onder alkaliese toestande. Hoër kappanommers kon die gepaardgaande 

hoër aanvraag vir bleikchemikalieë verklaar.   

 

Ten slotte, die pulpmeul bio-raffinaderykonsep nl. deur hemisellulosesekstraksie met NaOH 

gekombineer met óf ‘n gemodifiseerde kraft verpulping óf ‘n gemodifiseerde 

natriumantrakinoon verpulping, is wel uitvoerbaar. Dit word egter sterk beïnvloed deur die 

tipe ru-materiaal en die ekstraksie-metode gebruik, asook deur die kwaliteits- en 

gebruiksvereistes van verskillende tipes papier. ‘n Lae aanvraag vir verpulpingschemikalieë, 

vergelykbare pulpopbrengste en die verbetering in fisies-chemiese eienskappe van pulp vanaf 

pre-ge-ekstraheerde materiale is waargeneem. Verder kon, as gevolg van xilaan ekstraksie, 

meer ge-ekstraheerde materiaal in die verteerder gelaai word as wanneer  nie-ge-ekstraheerde 

materiaal gebruik is.  
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Keywords and General definition 
 
AQ    -anthraquinone (pulping catalyst/accelerator) 

Active alkali -active ingredients in the pulping process i.e., NaOH + Na2S 

(both as Na2O) 

 

Delignification     -removal of lignin from plant material by dissolution 

Kappa number   -amount of residual lignin in pulp after digestion 

Pulp     - plant material separated into fibrous form 

Sulfidity/Sulphidity -ratio of Na2S to the active alkali expressed as percentage     

[Na2S]/ [NaOH + Na2S] x 100% 

 
Beating -mechanical treatment of pulp fibres to develop their paper 

technical properties, such as ability to bond each other 

 

Brightness (%ISO) -colour of pulp, measured against whiteness of MgO at  

457 nm wavelength 

 

Freeness (°SR)   -measure of the rate of wetness/drainage of pulp 

Breaking length (km) -measure the length of the paper strip that will break under its 

own weight 

 

Tear index (mN m2/g) -force required to tear paper 

 

Burst strength (kPa m2/g) -puncture resistance of paper 
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CHAPTER 1: Introduction to hemicelluloses pre-extraction 
incorporation in a pulp mill biorefinery 
 

1.1 Background and motivation 
 

World demand for paper and paperboard is anticipated to grow from 300 million 

tonnes to over 490 million tonnes by the year 2020, which is expected to raise the cost of pulp 

wood (Agnihotri et al., 2010). The increasing demand coupled with environmental concerns, 

have increased interest in alternative feedstocks and processes for more efficient, integrated 

use of the raw material according to the “zero waste” context (Ohara, 2003; Kamm and 

Kamm, 2004). In this context, the implementation of the bio-refinery concept in the existing 

chemical pulp mills is regarded as a strategy for the sustainable co-production of paper, fuels, 

power and high value chemicals from diverse and heterogenous lignocellulosic materials 

(Carvalheiro et al., 2008).  

Another intrinsic aspect of a biorefinery facility is the flexibility in terms of raw 

material. In this dissertation three different raw materials were selected: a hardwood 

(Eucalyptus grandis), an herbaceous grass (sugarcane bagasse) and a woody grass (giant 

bamboo). Eucalyptus grandis (E. grandis) was selected since this is one of the main sources 

of fibre used for pulp production in South Africa. The total capacity of approximately 1 350 

000 tons of chemical pulp per annum is generated mainly from Eucalyptus in South Africa’s 

pulp mills (Chamberlain et al., 2005). Sugarcane bagasse (SCB) represents an alternative and 

cheap fibre option to the South African pulp industry. The South African sugar industry 

generates approximately 6 million tonnes of sugarcane bagasse annually, from which around 

70 000 tons of unbleached and 60 000 tons of bleached bagasse pulp grades are produced per 

annum (Mashoko et al., 2008; Naledi, 2004).  
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Another feedstock that can be considered in South Africa is giant bamboo (Bambusa 

balcooa). Bamboo is certainly a much newer feedstock, although its suitability for pulping 

has increased interest in its use as an alternative lignocellulosic feedsctock. Several 

commercial plantations are under investigation, but no scientific data on production yields for 

local context (Biomass Corporation SA (Pty) Ltd). 

 

1.2 Research aim 
 

The objective of the pulping process is to remove lignin and retain the 

polysaccharides, in particular the cellulose fibres for pulp and paper production (Fengel and 

Wegener 2003). The chemical pulps are mainly produced from alkaline treatments processes 

namely kraft pulping and soda pulping. The kraft pulping process is the preferred 

methodology for woody biomass, and employs a mixture of sodium hydroxide (NaOH) and 

sodium sulphide (Na2S) for cooking. In the case of soda pulping, the application is limited to 

nonwoody biomass i.e. agricultural by-products, and uses mainly NaOH, although it can 

incorporate other chemicals such as anthraquinone (AQ) in the sodaAQ variant (López et al., 

2005; Khristova et al., 2006; Gonzàlez-Garcìa et al., 2010). 

Figure 1 illustrates the steps of a typical kraft pulp mill process and the modified 

process incorporating a hemicelluloses pre-extraction step. In a conventional kraft pulping 

process, the wood chips are primarily subjected to a solution of NaOH and Na2S known as 

white liquor. During this step, the mjority of hemicelluloses, along with most of the lignin, are 

dissolved in the delignification stage and used for energy recovery (Lisboa et al., 2005; 

Santiago et al., 2008). Another fraction of hemicelluloses remains with the fibre, which is 

necessary to provide certain properties in the final product (Fardim and Duran, 2004; Silva et 

al., 2011). Given the low heating value of hemicelluloses (13.6 MJ/kg) compared with that of 

lignin (27.0 MJ/kg), its underutilisation in the present pulping processes is evident (van 

Heiningen, 2006; Yoon et al., 2011).  
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The extraction of hemicelluloses before the pulping process and further conversion to value 

added products under the biorefinery concept have significant potential to provide additional 

income for pulp and paper mills, while continuing to meet the growing demand for pulp and 

paper (Ragauskas et al., 2006; van Heiningen, 2006). The extracted hemicelluloses could 

constitute a feedstock for several products such as bioethanol, biopolymers and chemicals 

(Gabrielii et al., 2000; Ragauskas et al., 2006; Ren et al., 2007a; Mendes et al., 2009). Most 

interestingly, the extracted hemicelluloses can be used as strength additive either in its 

extracted form or derivatised for paper pulp production to create desired properties of the 

paper that is to be produced (Ren et al., 2007b, Postma et al., 2012). Moreover, the 

implementation of hemicelluloses pre-extraction could lead not only to the reduction of 

chemicals and cooking times, but also to the increment production capacity since the 

extracted wood chips have a lower mass compared to non extraction (Huang et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Conventional kraft pulping process (black arrows) and modified process 

(orange arrows) including hemicelluloses pre-extraction  

(redrawn from Gullichsen et al., 2000). 
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Extraction of hemicelluloses prior to pulping can be carried out by a variety of 

treatments including steam pretreatment (San Martin et al., 1995), dilute acid extraction 

(Parajo et al., 1994; Al-Dajani et al., 2009), hot water extraction (Casebier et al., 1969, 

Kubikova et al., 1996, Yoon and van Heiningen 2008; Kämppi et al., 2010) and alkaline 

extraction (Brienzo et al., 2009; Sixta and Schild 2009; Liu et al., 2010). Among these 

treatments, dilute acid and alkali treatments were selected in the present study (papers I-V ) 

partly because dilute acid is a cheap and effective way of hemicelluloses removal (Koukios 

and Valkanas, 1982). Furthermore alkaline methods can be integrated into pulping without 

major changes in pH (Al-Dajani and Tschirner, 2008; Yoon et al., 2008). The limitations of 

alkaline methods in comparison to dilute acid include the conversion of some alkali to large 

amount of salts during the extraction process and that becomes a challenge for alkaline 

treatments (Hu and Ragauskas 2012). This phenomenon increase the capital cost of recycling 

alkali (Mosier et al., 2005). The integration of hemicelluloses pre-extraction and pulping in a 

combined approach, however, require an optimisation of hemicelluloses pre-extraction 

conditions and subsequent adaptation of pulping requirements. The pre-extraction should be 

optimised for selective extraction of hemicelluloses with minimal degradation of the cellulose 

component of the papermaking fibre, thereby avoiding a reduction in the pulp yield and 

quality from the combined pre-extraction-pulping process. At the same time, the fibres should 

contain sufficient hemicelluloses for the production of high quality pulps. The optimal 

process conditions for combined hemicelluloses-and-pulp production will depend on 

composition and structural properties of the raw materials selected for this study. 
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1.3 General aim of the study. 
 

Based on the above background and considerations, the general aim of the present 

study was to investigate the process conditions that would maximise hemicelluloses 

extraction from South African grown E. grandis, SCB and giant bamboo prior to pulping, 

without negatively affecting the subsequent pulp yield and paper properties significantly.  

 

1.4 Objectives identified for the study. 
 

The following objectives were identified and addressed, in order to accomplish the general 

aim:  

Objective 1 

To analyse the composition (extractives, carbohydrates, lignin, and ash) of E. grandis, 

depithed SCB and giant bamboo obtained from local sources (papers I-V). 

The study has provided information on the composition of different lignocelluloses 

materials that are associated with pulp and paper manufacturing in South Africa such as E. 

grandis and SCB. Similar work was done on giant bamboo, a potential fibre source available 

in South Africa. The chemical composition in terms of carbohydrates, lignin and inorganic 

substances was determined (Table 2 in section 2.3). This was necessary to establish their 

response to hemicelluloses pre-extraction and subsequent pulping technologies. 

 

Objective 2 

To investigate by experimental design the effects of reaction conditions (catalyst 

concentration, temperature and reaction time) of dilute acid and mild alkaline pre-extractions 

on hemicelluloses yield and cellulose recovery in the fibre residue obtained from E. grandis 

chips (4-8mm thickness), depithed SCB and giant bamboo chips of 4-8mm thickness 

comprised of nodes and internodes. 
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The strategy to accomplish this objective was to selectively extract hemicelluloses by 

varying reaction conditions using experimental designs. The solid residue obtained after each 

pre-extraction condition was characterised for its chemical composition. In this way, it was 

possible to establish the reaction conditions that could solubilise optimum hemicelluloses 

whilst high cellulose (glucan) and enough hemicelluloses were retained in the solid residue. 

The experimental optimisation was repeated for all three feedstocks considered in this study, 

and the results are presented on the appended papers (I-V ).  

 

Objective 3 

Based on the outcomes of Objective 2, to select those fibre residues for further micro 

and macro-pulping, kraft or sodaAQ, in order to determine the effects of hemicelluloses pre-

extraction on pulp properties and paper quality. 

To address this objective, we first screened selected conditions obtained from 

previous experiments, for their ability to improve alkaline pulping by means of quantitative 

analysis of pulping trials of extracted materials on a micro scale. Pulping conditions that 

improved pulp properties were selected and performed on the pilot scale and the pulp yield 

and properties were compared to the pulps produced from sodaAQ/kraft pulping of non-

extracted materials. The experimental optimisation was repeated for all three feedstocks 

considered in this study, and the results are distributed on the appended papers (I-V ).  

 

Objective 4 

To compare the integration of hemicelluloses pre-extraction prior to pulping in 3 

different sources of lignocellulosic materials: E. grandis (hardwood), SCB (herbaceous) and 

giant bamboo (woody grass). 

In the evaluation of the results obtained after macro pulping it was essential to make a 

comparison among the studied materials to determine the feasibility of this kind of technical 

integration when using different lignocellulosic materials.  
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This comparison between raw materials, and the impact of raw material properties on 

optimised process conditions, is covered in Chapter 2 (section 2.7) as well as in General 

Conclusions (Chapter 3). 

 

1.5 Statement of novelty  
 

To the author’s knowledge, there is no information in the public domain on 

hemicelluloses pre-extraction from giant bamboo followed by an alkaline pulping with strong 

elements of the biorefinery approach. The study reported in this dissertation is a first 

investigation with dilute acid hydrolysis and mild alkaline extraction of bamboo for the 

production of fermentable sugars and xylan polymers with the aim of adding value to 

hemicelluloses that would have been wasted in pulping black liquors.  

Secondly, pulp and paper characteristics of giant bamboo were compared with those 

obtained from E. grandis and depithed SCB mainly used as fibre source in the South African 

pulp industry. Since South Africa is ranked the 18th largest producer of pulp and 24th largest 

producer of paper and board, a large amount of hemicelluloses or their sugars are currently 

only burnt to generate steam and energy for the recovery boilers. Extraction of hemicelluloses 

from E. grandis or SCB prior to pulping is presently not done in the South African pulp 

industry. The present study investigated dilute acid or mild alkaline methods to extract xylan 

from E. grandis (Papers I  and II ) SCB (Paper III ) and giant bamboo (Paper IV and V) prior 

to established kraft or sodaAQ pulping processes used by South african pulp industry.  

The work done in this study on hemicelluloses extraction from these lignocellulosic materials 

showed the prospects of hemicelluloses utilisation with improved profitability options for the 

industry.  
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CHAPTER 2: Literature review and findings of the present study 

2.1 Introduction 
 

2.1.1 Importance and overview of the pulping processes 
 

The importance of paper products in modern life is obvious to everyone. No 

manufactured product plays a more vital role in every aspect of human activity. Paper 

provides the means for recording, storage and dissemination of information. The largest 

utilisation of paper is for printing, writing, wrapping, packaging and sanitary purposes 

(Baecker, 1995; Saika et al., 1997; Ververis et al., 2004). 

Paper and other related products are manufactured from a fibrous cellulosic mass 

called pulp obtained after cellulose-bearing raw material has been broken down into 

individual fibres. The task can be accomplished mechanically, chemically or by combinations 

of these treatments. Existing commercial processes are generally categorised as chemical, 

semi-chemical, chemi-mechanical or mechanical (Biermann, 1996; Fengel and Wegener, 

2003; Sridach, 2010). These processes differ mainly by the nature of the process employed 

and the yield of pulp obtained. Typically, chemical processes produce a pulp yield in the 

range 35 to 65%, semi-chemical 70 to 85%, chemi-mechanical 85 to 95% and mechanical 

processes 93 to 97% (Biermann, 1996; Henriksson and Gatenholm 2002). These yield 

differences show that the chemical process effectively separates the cellulose from lignin 

present, whereas the mechanical process converts all the components present. The choice of 

the process will depend on the nature of the material to be pulped and the grade of paper or 

board product desired (Fengel and Wegener 2003). Chemical processes are often used 

commercially to produce fibre for strength and high quality printing products such as kraft 

paper or fine paper (Muneri, 1997). Mechanical and chemi-mechanical processes produce 

pulp for lower grade products such as newsprint and paper board (Kayserberg, 1989). 
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2.1.2 Lignocellulose materials and pulping methods 
 

Wood is largely the conventional raw material for pulp and paper production 

worldwide, and accounts for 90% of total fibre input (Little et al., 2003). Globally 

approximately 300 million tons of paper is produced per year and the demand for paper or 

paper products is expected to continue to increase (Jun and Tschirner, 2010). Pulps produced 

from Eucalyptus are dominating the world hardwood pulp markets (Patt et al., 2006). 

Economical and technical reasons for the utilisation of eucalypts come from its fast growth 

rate under suitable conditions, with good tree form and excellent wood quality for pulp 

production (Little et al., 2003; Patt et al., 2006; Moussaouiti et al., 2012). In South Africa, 

eucalyptus hybrid clones are grown over short rotations ranging from six to nine years in 

order to meet the increasing demand for pulpwood (Little et al., 2003).  

With the future of the wood-based fibre supply being debated worldwide, increasing 

interest is being shown to use various alternate fibrous resources for papermaking. Scarcity 

and depleting forest resources combined with increased paper demand are the driving forces 

to use nonwood materials such as cereals straw, sugarcane bagasse, bamboo, esparto grass, 

abaca (manila hemp), sisal and kenaf (De Lopez et al., 1996; Madakadze et al., 1999; Jun and 

Tschirner, 2010; Ribas Batalha et al., 2012). Wastepaper and waste paperboard are already 

available fibre sources and will become even more important in the future due to improved 

techniques of secondary fibre pulping (Fengel and Wegener, 2003). 

Sugarcane bagasse (SCB) is the second most commonly used nonwood fibre plant 

material for pulp and paper production in many parts of the world including India, Brazil, 

China, South Africa and others due to its availability (Liu et al., 2006). The annual production 

of bagasse throughout the world exceeds 54 million tons on dry basis (Rowell et al., 1991; 

Samariha and Khakifirooz, 2011). Bamboo is also the preferred nonwood material used for 

the production of paper after SCB, specifically in Asian countries where the giant grass plants 

are indigenous covering an area of over 180 000 km2 (Scurlock et al., 2000). Unlike wood, 

Stellenbosch University  http://scholar.sun.ac.za



 11 

bamboo grows rapidly and can be felled after 3 years and it provides pulps comparable to or 

resembles in quality that of hardwood pulps (Vû et al., 2004; He et al., 2007). 

The main chemical pulping processes for lignocelluloses are the alkaline kraft and 

soda pulping processes (Haygreen and Bowyer, 1982). Generally, softwoods (spruce, 

hemlock and pine) and hardwoods (acacia, beech, birch, and eucalyptus) are used for the 

production of kraft paper pulps (Bierman, 1996; Pinto et al., 2005; Jahan et al., 2008) whilst 

nonwood material (sugarcane bagasse, reeds, straws, kenaf, bamboo, etc.) has been explored 

for soda pulping (De-Lopez et al., 1996; Kamthai, 2007; Agnihotri et al., 2010; Mossello et 

al., 2010). However, kraft pulping process is the best process for bamboo due to its structural 

resemblance to woods (Vû et al., 2004).  

In South Africa, E. grandis is the major wood species used for pulp production, and 

accounts for 59% of all the produced chemical pulps. Pinus patula also contributes to the 

production of the pulps. SCB on the other hand has received a considerable amount of 

attention in South Africa as the major nonwood resource. The volume and types of pulp 

outputs from South Africa’s pulp mills are listed in Table 1 (Chamberlain et al., 2005). 

 

Table 1. Pulp production by grade from South Africa’s pulp mills. 

(adapted from Chamberlain et al., 2005). 

Pulp grade Production 
(1000 t) Percentage Application 

Chemical 1,350 59% 
Printing and writing; Cartonboard or 
corrugated paper 

Mechanical 277 12% Newsprint, Magazine grade paper 

Semichemical 155 7% 
Linerboard, fluting, Low-cost printing 
paper, Grease-proof paper, Bond 
papers, 

Dissolving 490 22% 
Sold exclusively on international 
market 

Total 2,272 100%  
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In principle, fibres are produced by degrading or dissolving, under chemical pulping 

processes, the lignin that binds the individual cellulosic fibres (Santos et al., 2011). Lignin is 

thus extracted by subjecting the raw material to extreme pH values, high temperature and 

pressure, while leaving the cellulose fibres intact (Pinto et al., 2005; Lourenco et al., 2012). 

The majority of hemicelluloses in lignocellulose are solubilised and extracted together with 

lignin during pulping processes commonly used in industry, where after lignin and 

hemicelluloses are co-processed in the “black liquor” stream (Lisboa et al., 2005). In practice, 

separation of the cellulose, hemicelluloses and lignin is never completely realised, yet 

satisfactory compromises are reached in these processes. The pulp produced is very strong 

depending on the type of cellulosic sources and coooking conditions used (Sridach, 2010) and 

can be bleached to a high brightness (Macloed et al., 1995; Rahmati et al., 2007). The 

unbleached pulp is mainly used for cartonboard or corrugated paper, whilst bleached pulp is 

used for writing and printing papers (Muneri, 1997). However, the disadavantages of kraft 

pulping processes are pollution constraints and the lower pulp yield (Holmberg and 

Gustavsson, 2007; Kamthai, 2007).  

Mechanical pulping methods on the other hand use mechanical force, heat and/or 

pressure, and sometimes mild chemical treatments to physically disrupt wood structure into 

pulp (Li et al., 2006). The most important industrial mechanical pulp processes are Stone 

groundwood (SGW) and Thermomechanical pulp (TMP) (Kayseber, 1989). Unlike chemical 

pulping methods, inexpensive sawdust, edgings, chipped slabs and short fibred hardwoods are 

utilised as raw materials. The advantages of these pulping processes are relatively low 

pollutant generation, high yield (above 90%) and pulps that give good print quality 

(Holmberg and Gustavsson, 2007). This pulp is suitable for grades of paper that do not 

require high strength properties, and short utility papers such as newsprint and magazine 

grades. The disadvantages of mechanical pulps are the high amounts of energy required and 

the paper turns yellow with exposure to air and light due to the presence of lignin in the pulp 

(Biermann, 1996).  
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However, chemical pre-treatments have been introduced to overcome some of the above 

problems associated with mechanical pulping in chemi-thermomechanical pulping (CTMP) 

processes (Henriksson and Gatenholm, 2002; Ren et al., 2010). This process typically pre-

treats the raw material with 1 to 4% of sodium sulfite. The advantages obtained included an 

increase in strength properties and increase in brightness; however the chemical costs makes 

this process expensive (Wright et al., 1995). 

Semichemical pulping processes use a combination of chemical and mechanical 

treatments (Hocking, 2005). They generally require some mechanical agitation to disintegrate 

the wood chips after chemical treatment. The principal semichemical process is the neutral 

sulfite, semichemical (NSSC) process. The principal process involves up to 15% sodium 

sulfite liquor and 4-5% sodium carbonate impregnation of the raw material prior mechanical 

defibration (Manskinen et al., 2011). The main advantages of the NSSC process are low 

requirements with regard to wood quality and species, high pulp yields (above 60%), low 

consumption of chemicals at a given residual lignin content, low capital investment and 

profitable small production units as compared to full chemical pulping (Biermann, 1996). 

Such pulps are used to produce linerboard, fluting, low-cost printing paper and several other 

paper grades, depending on the special pulp properties obtained by varied pulping conditions 

(Samriha and Khakifirooz, 2011). However, the strength values (except burst strength) and 

the freeness are lower than those of comparable full chemical pulps (Fengel and Wegener 

2003). 

 Dissolving pulp is a low-yield bleached pulp ranging from 30 to 35% characterized 

by high alpha cellulose (>90%) content. These pulps contain low hemicelluloses (1 to 10%) 

and lignin (<0.05%) contents compared to other types of paper pulps (Behin et al., 2008; 

Ribas Batalha et al., 2012). The pulp is produced by acid prehydrolysis of hemicelluloses 

from lignocellulosic material followed by kraft pulping of the extracted material (cellulignin) 

to solubilise lignin (Kouskios and Valkanas, 1982; Ibrahim et al., 1996; Li et al., 2010). The 

pulp is then subjected to cold alkali extraction integrated with bleaching process to improve 

cellulose purity.  
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These pulps are used as raw material for the production of cellophane, viscose rayon, and 

celluloses derivatives such as cellulose esters (acetates and nitrates). The production of 

dissolving pulp is disadvantaged by high costs due to low pulp yield and restrictions due to 

the environmental problems caused by bleaching with hazardous chlorine and chlorine based 

compounds (Behin et al., 2008; Ribas Batalha et al., 2012). However totally chlorine-free 

bleaching techniques have been developed for dissolving pulps. 

 

2.2 Hemicelluloses applications 
 

Hemicelluloses extraction prior to pulping to develop new biofuels (Ren et al., 2007a) 

and biopolymer based materials (Ebringerová and Heinze, 2000) has become an interesting 

topic in recent years as part of the biorefinery approach. Hemicelluloses are one of the main 

polymeric constituent in wood and herbaceous plants biosynthesised in large quantities. 

Approximately 20-35% of the dry mass of hardwood (eucalyptus) (Mendes et al., 2009), 

agricultural residues (sugarcane bagasse) (Sun et al., 2004) and grasses (bamboo) (Scurlock et 

al. 2000) are hemicelluloses (Biermann, 1996). An estimated annual production of 

hemicelluloses on the earth from plants is in the range of 60 billion tons (dry basis; Grondahl 

et al., 2004). Thus, hemicelluloses represent an ernomous renewable resource that remains 

almost completely unused or under-utilised in combustion processes during pulping 

production for papermaking (Ragauskas et al., 2006; van Heiningen, 2006).  

Xylans, the principal hemicelluloses in hardwoods and nonwood materials, can be 

used as pure poly-and oligomers or unpurified extracts containing bound proteins, phenolic 

substances or other polysaccharides (Hromádková et al., 2006; Kohnke et al., 2008; 

Ebringerová and Heinze, 2000). This influences with end uses as well as the production cost.  
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Xylans are known to interact specifically with the surfaces of celluloses fibre during 

alkaline kraft pulping process, to improve some properties in the pulp (Bhaduri et al., 1995; 

Ban et al., 2011). Historically, hemicelluloses such as galactomannans, glucomannan and 

recently xyloglucans from annual plants (locust bean gum, guar gums, ramie straw) have been 

exploited as natural beater additives and dry strength aids (Lima et al., 2005; Ren et al., 

2009). Hence, pulp strength properties that are important for packaging grades, such as 

tensile, bursting strength and folding endurance, can be improved by hemicelluloses addition 

(Ahrenstedt et al., 2008; Schwikal et al., 2011). This is the strong incentive to favour 

extraction of hemicelluloses from E. grandis, SCB and giant bamboo prior to pulping under 

alkaline conditions (papers II, III and IV ) and their re-introduction on pulp fibres as 

additives to raise the content of hemicelluloses, which is a preferred approach instead of the 

adjustment of pulping conditions (Westbye et al., 2006; Silva et al., 2011). Besides, higher 

xylan content on the surfaces of pulp fibres might increase the strength independently of the 

surface charge (Bhardwaj et al., 2004; Ren et al., 2009). However, addition of pre-extracted 

hemicelluloses back to the pulp fibre was beyond the scope of this study, which focussed on 

integrated pre-extraction-pulping process development.  

An alternative path for increasing the suitability of hemicelluloses as sizing additives 

and adhesives in papermaking, is by functionalising the hydroxyl groups of the xylose units in 

hemicelluloses. For example, quaternized xylan-rich SCB hemicelluloses have been reported 

to strengthen properties of sheets formed from old corrugated container pulp (Ren et al., 

2007b). Quaternization involves modification of hemicelluloses hydroxyl group through 

addition of 2.3-epoxypropyltrimethylammonium chloride (ETA), thus enhancing their 

solubility and yielding a cationic or ampholytic polymers (Schwikal et al., 2011).  

The development of second generation biofuels such as bioethanol, which can be 

manufactured from fermentation of monomeric sugars present in the hemicelluloses extracted 

prior to pulping, is another application area of interest (Mao et al., 2010; Chandel et al., 

2011).  
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In the case of ethanol production from hardwoods, agricultural residues and grasses, the 

hemicelluloses contain pentose sugars (five carbon; xylose, arabinose) and six carbon sugars 

(glucose, mannose) (Taherzadeh and Karimi, 2007a; Amidon and Liu, 2009). The production 

of ethanol from lignocellulosic biomass involves the hydrolysis of the polysaccharides into 

monomeric sugars syrup and the fermenting of the sugars to ethanol by micro organisms prior 

to distilling and dehydrating ethanol (Mosier et al., 2005). A comprehensive literature is 

available on the hydrolysis of polysaccharides either enzymatically or chemically by e.g. 

dilute sulfuric acid or hot water (Pessoa Jr et al., 1996; Laser et al., 2002; Rabinovich et al., 

2002; Sun and Cheng 2002; Jorgensen et al., 2003). Once the monosaccharides are released 

from the lignocellulose matrix, the pentose sugars can be cofermented by newly developed 

metabolically engineered strains such as Zymomonas mobilis or recombinant Escherichia coli 

(McMillan et al., 1999; Wyman, 1999; Taherzadeh and Karimi, 2007b).  

The potential of relatively pure xylans, which may be used in various industrial and 

non-industrial applications, can be extended by appropriate modifications of the molecular 

structure. For example, xylans obtained from hardwood have been tested as hydrogels, the 

crosslinked networks of hydrophilic polymers that are capable of retaining considerable 

amounts of water without disintegration (Gatenholm and Gabrielli, 1998). Hydrogels may 

play an important role as matrices for controlled release of pharmaceutical proteins and for 

encapsulation of living cells. Xylans also have shown a promising potential to become very 

attractive alternative renewable materials for packaging coatings and barrier films (Grondahl 

et al., 2004). In addition, furfural is an interesting product of xylan degradation that can 

subsequently be converted into a large variety of furan compounds, which can be used as 

starting materials for adhesive and additives to plastics manufacturing (Benko et al., 2007). 
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2.3 Lignocellulose biomass composition 
 

Current lignocellulosic materials for papermaking can be classified in five categories: 

hardwoods (aspen, poplar, eucalyptus), softwood (pine, spruce), agricultural byproducts 

(sugarcane bagasse, wheat straw), herbaceous biomass (switchgrass, miscanthus) and woody 

grasses (giant bamboo, kenaf) (Belayachi and Delmas, 1995; Biermann, 1996). 

The main macromolecular components of all lignocellulosic biomass are cellulose, 

hemicellulose and lignin. Other components found in lesser proportion are pectins, extractives 

and inorganic matter. The chemical composition and structural properties of the 

lignocellulosic material determine its response to processing conditions (Patt et al., 2006; Jun 

and Tschirner, 2010). The proportions and chemical composition of these components differ 

depending on the type of feedstock.  

Table 2 summarises the composition of the raw materials used in the present study, 

together with other lignocelluloses that are used for pulp and paper production.  
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Table 2. Chemical composition of wood and nonwood found in the literature and those obtained in the present study used for pulp and paper 
production (% oven dry mass). 

Raw material Total 
extractives Ash Glucan Xylan Arabinan Galactan Mannan Klason 

lignin 
Acetyl 
group Reference 

Softwoods 

Loblolly Pine 3.5 na 42.4 6.3 1.1 1.8 9.1 28 1 Wei et al., 2011 
Spruce n.a na 49.9 5.3 1.7 2.3 12.3 28.7 n.a Söderstrom et al., 2004 

Hardwoods 

*E. grandis 3.3±0.4 1.7 47.2±4.2 14.9±1.1 0.5 n.a n.a 26.8±1.7 n.a Paper I 
*E. grandis 4.2±1.0 1.2 52.6±2.0 15.3±0.3 0.5 n.a n.a 20.9±2.0 n.a Paper II 
E. grandis 3.3 na 44.7 15.3 n.a n.a n.a 25.8 n.a Emmel et al., 2003. 
E. grandis 3.5 na 44.9 11.4 n.a n.a n.a 26.2 n.a Yu et al., 2010 
E. grandis n.a na 46.7±0.3 11.5±0.3 0.5 1.2 1 29.2±0.3 2.8 Alves et al., 2010 

Herbaceous 

*SCB 4.1±0.5 2.6 46.3±2.5 25.9±2.1 2.4±1.0 n.a n.a 18.2±2.1 2.6 Paper III 
SCB 6 4 36 22 2 1 n.a 19 n.a Diedericks et al., 2011 

SCB 1.7 2.7 52.4 25.8 n.a n.a n.a 21.7 n.a 
Rezayati-Charani and 
Mohammadi-Rovshandeh, 
2005 

SCB 9.1 1.4 44.9 22.2 1.1 n.a n.a 19.1 2.6 Canilha et al., 2011 

Woody grasses 

*Giant bamboo 7.1±0.2 2.4 54.6±2.0 21.6±1.5 1.1±0.6 n.a n.a 25.2±3.2 n.a Paper IV-V 
Bambusa vulgaris n.a na 50.4±0.3 19.6 1.1 0.4 0.3 23.4±0.3 2.4 Alves et al., 2010 
Moso bamboo 13 1.4 41.3 22 1.1 0.3 0.6 22.8 n.a Li et al., 2012 

SCB = sugarcane bagasse. n.a. = not available 
*Mean and standard deviation of four measurements 
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Generally, giant bamboo and SCB contain more glucan and xylan (holocellulose) 

than E. grandis or the two softwoods pine and spruce, which are the species used currently for 

commercial production of pulp and paper (Martin et al., 1995; Little et al., 2003). The 

combination of high glucan and xylan content in the raw material suggests that reasonable 

yields of pulp could be obtained from bamboo material (Scurlock et al., 2000; Lei et al., 

2010). Moreover, the xylan represents a valuable feedstock for the production of high valued 

products in a pulp mill biorefinery, whilst enough xylan can be retained in extracted solid 

materials for improving pulp quality under suitable process conditions (Ragauskas et al., 

2006; van Heiningen, 2006). 

The amount of lignin was on lower side in SCB whereas the lignin content of giant 

bamboo was comparable to the ranges reported for E. grandis and pine. This could imply that 

SCB in general would be more easily delignified, requiring milder and shorter processing 

conditions than the giant bamboo and wood sources (Madakadze at al., 1999; Ververis et al., 

2004; del Rio et al., 2007; Dutt and Tyagi, 2011). However, various factors including the 

three dimensional structure of lignin and its interaction with cellulose and hemicelluloses in 

lignin carbohydrate complexes (LCCs), and the degree of polymerisation of lignin, might also 

account for the changes in extraction and delignification rate (Steward et al., 2006). 

Relative to other materials giant bamboo has a higher extractives content and 

therefore could demand extensive preparation processes (Ribas Batalha et al., 2012). 
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2.4 Cellulose 
 

In pulping, the most important lignocellulosic material component to retain and 

protect is cellulose, which is a strength bearing, linear, high molecular mass polysaccharide 

(Sun et al., 1999; Palm and Zacchi, 2004). Cellulose or β-(1→4) glucan is a linear polymer of 

glucose or cellobiose units with about 10 800 or 10 300 glucose residues i.e. degree of 

polymerisation (DP) for grasses and hardwoods respectively (Biermann, 1996; Fengel and 

Wegener, 2003). The chains are packed in a parallel alignment by means of hydrogen and 

Van der Waals bonds in so-called elementary fibrils, originally considered to be 3 to 4 nm 

wide and containing about 36 chains – although larger crystalline fibrils up to 16 nm have 

also been discovered (Ha et al., 1998). These elementary fibrils are then packed in 

microfibrils, where the elementary fibrils are connected to each other by hemicelluloses, an 

amorphous polymer of different sugars, as well as other polymers such as pectin substances 

and held together by lignin (Delmer and Amor 1995). The microfibrils are often associated in 

the form of macrofibrils (Fig 2) (Karimi et al., 2006). 

Cellulose fibrils consist of crystalline regions that vary from 80-70% for grasses and 

96-89% for native cellulose (cotton) and the remainder being composed of disorganised 

(amorphous) region (Fengel and Wegener, 2003). The depolymerisation of cellulose under 

dilute acid hydrolysis primarily occurs in the amorphous region to a certain level called the 

levelling-off or limiting DP (LODP). This phenomenon is also influenced by the length of the 

cellulose crystallites (Hakansson et al., 2005).  

In papers I, III  and V, the decrease in cellulose (glucan) content of the lignocellulosic 

raw material, after dilute sulphuric acid extraction of hemicelluloses (primarily xylan) from E. 

grandis, SCB and giant bamboo was less than 10%. This indicated low cellulose degradation 

during extraction, although some acid hydrolysis of cellulose may result in reduction in 

cellulose DP, contributing to the pulp fibre strength losses (Koukios and Valkanas, 1982; 

Yoon and van Heiningen, 2008; Mendes et al., 2009). 

. 
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Figure 2. Structure of cellulose (adapted from Karimi et al., 2008). 

2.5 Hemicelluloses 
 

Unlike cellulose, hemicelluloses are heterogeneous polymers of five-carbon sugars or 

pentoses (β-D-xylose, α-L-arabinopyranose, α-L-arabinofuranose) and six-carbon sugars or 

hexoses (β-D-glucose, β-D-mannose, α-D-galactose), as well as of some hexuronic acids (β-

D-glucuronic, β-D-galacturonic, α-D-4-O-Methylglucuronic) and deoxy-hexoses (α-L-

rhamnose and α-L-fucose) (Jeffries, 1994; Ebringerova and Heinze, 2000). They are 

characterised by being soluble in acids, hot water and most frequently in aqueous alkali 

(Gabrielli et al., 2000; Glasser et al., 2000; Hoije et al., 2005; Nabarlatz et al., 2007).  

The hemicelluloses content and structure differ between softwoods, (e.g. pine) 

hardwoods (eucalyptus), woody grasses (giant bamboo) and grasses (sugarcane bagasse). The 

DP of hardwood xylan (150-200) is higher than that of softwood xylan (70-130) and 65-90 for 

nonwood xylan (Sjöholm et al., 2000; Saha, 2003). 

The major hemicelluloses in softwoods are acetylated galactoglucomannans and 

arabino-4-O-methyl-D-glucurono-β-D-xylan (arabinoglucuronoxylan) (Holmbom, 2003; 

Willför et al., 2005; Peng et al., 2012). The L-arabinofuranose units are linked by α-(1→3) 

bond to the xylan backbone. The ratio of arabinofuranoside groups to xylose residues is 

approximately 1:8 and acetyl groups are rarely attached to softwood xylan (Biermann, 1996). 

Hardwood and nonwood hemicellulose is mainly O-acetyl-4-O-methyl-D-glucorono-β-D-

xylan (glucuronoxylan) (Fig 3). Hardwood glucuronoxylan is highly acetylated at the C-2 and 

C-3 positions with the amount of about 8-17% of total xylan and in the case of nonwood is 6-

7% of total xylan (Biermann 1996; Vû et al., 2004).  
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To the partially acetylated xylan backbone of hardwoods every tenth xylose units in the main 

chain is linked to a side group of 4-O-methylglucuronic acid (10 Xyl: 1 Me-GluA) whereas in 

nonwood the average ratio is 26:1 (Xyl: Me-GluA). In contrast from hardwood xylans, on 

average, every 13th xylose contained an L-arabinofuranose unit linked by an α-(1→3) bond 

like that of softwood xylans (Fig 4) (Brillouet et al., 1982; Sun et al., 1996; Sun et al., 2004; 

Wen et al., 2011). Due to the furanosidic structure of the arabinose side chains, they are easily 

hydrolysed by acids. In general, highly branched xylans are more hydrophilic and bind less 

tightly to cellulose, whereas molecules with infrequent side chains are less hydrophilic and 

bind more tightly to cellulose (Amidon and Liu 2009). The reducing ends of hardwood xylans 

contain trace amounts of rhamnose and galacturonic acid in the following sequence: β-D-

Xylp-1→4-β-D-Xylp-1→3-α-L-Rhap-1→2-α-D-GalpU-1→4-β-D-Xyl (Evtuguin et al., 

2003). This structure has been reported to be responsible for the alkali resistance of the xylan 

molecule, as the galacturonic acid makes it stable after the removal of the reducing xylose 

unit (Peng et al., 2012). In addition, small amounts of glucomannans are also reported to be 

present in hardwood hemicelluloses at about 2-5%, having a glucose to mannose ratio that 

varies between 1:2 and 1:1, depending on wood species (Sjöström et al., 2000). 

In the plant cell wall hemicelluloses act as filler between cellulose and lignin to 

increase the stability of the cellulose-hemicelluloses-lignin matrix (Hocking, 2005). 

Hemicelluloses play a major role in papermaking pulps as they assist to increase bonding 

strength of the fibres and improvement of the pulp tensile and burst strength (Bhaduri et al., 

1995; Mosello et al., 2010). 

In the present study, the extractability of xylan by either dilute sulphuric acid or mild 

alkaline conditions from SCB was easier compared to E. grandis and giant bamboo (papers I-

V). Among the extraction conditions tested, the best compromise between xylan extraction 

yields and minimal effect on fibre quality was the use of 0.3% H2SO4 at 120°C where original 

dry mass 23.8% xylan from SCB fibres (paper III ) and only 11.3% xylan from giant bamboo 

chips were recovered under such conditions (paper V). Extraction of xylan from E. grandis 

with 0.3% H2SO4 at 140°C resulted in 21.4% xylan recovery (paper I ).  
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This was in good accordance with the chemical composition of the different raw materials, in 

particular their lignin content. The solubilisation of the xylan components of giant bamboo 

was difficult, probably due to the condensation of the bamboo lignin under acidic conditions 

which may have decreased the xylan release since xylan is linked to lignin (Vû et al., 2004). 

Another explanation could be high extractives content which likely hindered the chip 

impregnation. Previously, using a hot water extraction method, only 9.9% of the xylan could 

be removed from bamboo relative to 29.9% recovered from eucalyptus (Ribas Batalha et al., 

2012). 

Alternatively, mild alkaline xylan pre-extraction from SCB effectively solubilised 

69.1% of xylan based on original dry material under 1.5M NaOH; 65°C; 3h (paper III ). In 

comparison, only 13.6% or 12.4% xylan was extracted from giant bamboo or E. grandis 

based on original material under 1M NaOH, 90°C, 4h or 2M NaOH, 40°C, 4h respectively 

(papers II  and IV ). Compact structure, besides the lignin content of E. grandis and giant 

bamboo materials, might have hindered the penetration of alkaline extraction liquor into the 

chips, thus decreasing the xylan removal rate. These results correspond with earlier findings 

in which alkaline pre-extraction solubilised 57% xylan in barley straw (De Lopez et al., 1996) 

compared to 24.8 - 29.8% xylan that could be recovered from aspen hardwood chips prior to 

chemical pulping processes without reducing pulp yield (Al-Dajani and Tschirner, 2008).  

 

 

Figure 3. Stereochemical structure of a common hardwood hemicelluloses: 

glucuronoxylan. (redrawn from Amidon and Liu 2009). 
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Figure 4. Chemical structure of arabino-O-acetyl-4-O-methyl-D-glucorono-β-D-xylan 

from nonwood. (redrawn from Subramaniyan and Prema 2002).  

 

2.6 Lignin 
 

Accessibility of plant cell wall polysaccharides to chemical treatments is limited by 

many physical and chemical properties/factors, including the presence of lignin in fibres 

(Steward et al., 2006). Lignin is an aromatic polymer composed of three building blocks: p-

coumaryl alcohol, coniferyl alcohol and sinapyl alcohol (Fig 5) consists of p-hydroxyphenyl 

(H), guaiacyl (G; 4-hydroxy-3-methoxyphenyl) and syringyl (S; 4-hydroxy-3,5-

dimethoxyphenyl) units respectively (Govender et al., 2009; Li et al., 2010). The substituents 

are connected by both ether and carbon-carbon linkages.  

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 25 

OH

CH

CH

CH2OH

OH

OCH3

CH

CH

CH2OH

CH

OCH3

OH

H3CO

CH

CH2OH
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Figure 5. The aromatic alcohols that are precursors in the synthesis of lignin (redrawn 

from Govender et al., 2009). 

 

The amount of lignin in softwoods is generally higher than in other types of 

lignocellulose, and it is characterised by higher amounts of G units (one methoxy group) 

(Guerra et al., 2008), while the hardwood lignin has H,G and S units (two methoxy groups) 

(Hu and Ragauskas, 2012), and the herbaceous contain all the three precursors (G, H, S) with 

higher amount of H units than wood (Madakadze et al., 1999; Rencoret et al., 2007; Agnihotri 

et al., 2010). It is reported that a favourable G:H:S ratio make SCB lignin to be solubilised 

more easily by alkali, in comparison to E. grandis and giant bamboo. 

The data in Table 3 obtained from the present study shows that higher alkalinity was 

required to delignify non-extracted giant bamboo to achieve pulp with comparable kappa 

number as E. grandis. On the other hand, milder sodaAQ pulping was used to delignify SCB. 

The higher alkaline requirement for delignification of giant bamboo may be due to the higher 

extractives content or higher degree of condensation of bamboo lignins (Salmela et al., 2008). 

The difference in H:S:G ratio of 1:2:2.1 and 0.1:2:1 for bamboo and eucalyptus respectively, 

has been reported which indicates a higher degree of condensation in bamboo lignin 

compared to that of eucalyptus (Ribas Batalha et al., 2012). These reactions are undesirable 

because they could lead to restriction of dissolution of lignin since a higher molecular mass is 

achieved (Gellerstedt et al., 2004). 
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Table 3. Kraft and sodaAQ pulp properties from non-extracted Eucalyptus grandis; 

giant bamboo and sugarcane bagasse 

 E. grandis1 
giant 
bamboo2 

sugarcane 
bagasse3 

 Kraft pulping sodaAQ pulping 

Active alkali (NaOH) % 17 18.7 14 
Sulfidity (%) 22 25 - 
Anthraquinone (%) - - 0.1 
kappa number 20.0 22.7 22.8 
Pulp yield (%) 45.7 41.2 40.1 
Viscosity (cP) 7.2 10.0 7.2 

                1Data from paper I 
                2Data from paper IV 
                3Data from paper III 
 

2.7 Other components 
 

Extractives and inorganic constituents of lignocelluloses can cause production 

problems related to pitch formation during pulp and paper production (Lopez et al., 2012).The 

cell wall extractives consists of rosin waxes, fatty acids, phenols, terpenes, steroids, etc., 

whereas the inorganic content or ash (SiO2, Ca, K, Mg, Fe, Co and Mn) content is influenced 

by the amount of silica present in plants (De Lopez et al., 1996; Scurlock et al., 2000; Cheng 

et al., 2010; Ribas Batalha et al., 2012).  

Nonwood material normally has higher extractives and silica content than wood 

(Hurter, 1988; Kaur et al., 2010). Extractives are released from fibres during pulping and 

agglomerate to the so-called colloidal pitch (Hassler, 1988; Jahan et al., 2012). The 

consequences are poor dewatering of pulps due to blockage of the paper machine wire and 

leave stains in the resulting paper sheets (Covey et al., 2006; Marques et al., 2007). On the 

other hand, dissolved silica in the pulping liquor (black liquor) led to difficulties in the 

recovery of cooking sodium and energy by creating scaling problems, plugging boilers and 

increasing viscosity, which hinders both evaporation and combustion of the black liquor 

(Chaudhur, 1993; Deniz et al., 2001; Dutt and Tyagi, 2011).  
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These challenges make chemical recovery of black liquor produced from nonwood material 

difficult, less efficient, and costly as compared to recovery of black liquor from wood.  

Silica can be removed by precipitation from black liquor by partial acidification with carbon 

dioxide from flue gasses or by addition of calcium oxide (Covey et al., 2006). Moreover, the 

problem of silica can be reduced through alkaline hemicelluloses pre-extraction processes (De 

Lopez et al., 1996; Cheng et al., 2010). 

2.8 Morphology of the fibre and its influence on pulp and paper 
properties 
 

In considering wood or nonwood as a source of fibre for the production of pulp and 

paper, two factors must be taken into account: the yield of fibre per given volume or weight of 

raw material (more so in the chemical processes), and the quality of the resulting fibre. The 

former depends on the characteristics of the feedstock prior to pulping and the process 

employed in its conversion into pulp, while the latter is mainly a result of morphological 

features of the individual fibres and their modification brought about by the methods of 

conversion (Vaughn et al., 2003). The fibre variables responsible for determining the physical 

characteristics and quality of pulp and paper are classified under fibre morphological aspects. 

These variables are fibre length, cell wall thickness, fibre coarseness, fibre strength, and 

interfibre bonding (Haygreen and Bowyer, 1996; Sridach, 2010). Table 4 summarizes the 

morphological characteristics of hardwood (E. grandis); grasses (SCB); woody grass 

(bamboo) and softwood (pine) reported in the literature (Sykere, 1994; Agnihotri et al., 2010; 

Dutt and Tyagi, 2011). 

SCB fibres are of 1.1-1.5mm length and 20-21.4 micron diameter which is similar to 

hardwoods such as E. grandis (0.9-1.1 mm and 19.2-20.1 micron respectively). However, the 

quality of the pulp obtained from SCB (nonwood) is inferior to that of E. grandis (hardwood) 

as reported by other authors (Table 5, papers I and II , Belayachi and Delmas 1995). 
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The average length and cell wall thickness of fibres in bamboo species are comparable to that 

of softwood fibres indicating for the production of pulps of similar quality (Ogunsile and 

Uwajeh, 2009). Hence, the large scale delignification of bamboo is conventionally based on 

techniques similar to those generally applied to wood (Salmela et al., 2008). 

Fibre length generally influences the tearing strength of paper; the greater the fibre 

length, the higher will be the tearing resistance of paper, as observed with giant bamboo in 

Table 5 (Muneri, 1997; Fardim and Duran, 2004). Paper made from fibres that are too short 

will have insufficient common bonding area between fibres, and as a result there will be 

points of weakness for stress transfer within the sheet, and the paper will be low in strength 

(Haygreen and Bowyer, 1982).  

Fibre diameter and wall thickness influences the fibre flexibility (Dutt and Tyagi, 

2011). Thick walled fibres adversely affect the bursting strength, breaking strength, and 

folding endurance of paper. The paper manufactured from thick walled fibres will be bulky 

with coarse surface texture, and containing a large amount of void volume. Thin walled cells 

on the other hand, collapse readily to form dense, well-bonded paper, low in tear but high in 

other strength properties (Deniz et al., 2004; Agnihotri et al., 2010). 

Fibre lumen width affects the beating of pulp. The smaller the fibre lumen width, the 

poorer will be the beating of pulp because of the penetration of liquids into empty spaces of 

the fibres (Mosello et al., 2010). Indeed, E. grandis pulps required longer time to beat 

followed by giant bamboo whereas the SCB pulp required the shortest beating time (Table 6). 

SCB and bamboo have a higher Runkel ratio, compared to E. grandis, which was 

anticipated to negatively affect the breaking length (Patt et al., 2006; Moussaouiti et al., 

2012). This assumption was confirmed by the low breaking length observed with SCB and 

giant bamboo relative to E. grandis (Table 5). 

Bamboo has the highest cell wall thickness to lumen diameter (L/D) ratio compared 

to SCB and Eucalyptus (Table 4). The greater the L/D ratio, the greater the fibre flexibility 

and the better the chance of forming well-bonded papers (Haygreen and Bowyer, 1996).  
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Table 4. Morphological characteristics of Eucalyptus, Sugarcane bagasse, Bamboo and Pine found in the literature 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species 

Fibre 
length 
(L), 
mm 

Fibre 
width 
(D), µm 

 Lumen 
 diameter 
(d), µm 

Cell wall 
thickness (w), µ 

Runkel ratio 
(2w/d) 

Slenderness ratio 
(L/D) 

Rigidity  
coefficient  
(2w/D) 

Bhadrachalam E. grandis   
(Dutt and Tyagi 2011) 

1.1 19.2 3.2 12.2 0.5 55.2 0.3 

Saharanpur E. grandis      
(Dutt and Tyagi 2011) 

0.9 20.1 2.8 14.3 0.4 52.3 0.3 

E. tereticornis           
(Agnihotri et al., 2010) 

0.7 14.2 3.4 5.4 3.2 49.3 0.8 

E. robusta                   
(Agnihotri et al., 2010) 

1.1 19.0 12.1 3.4 0.6 56.3 0.4 

Indian Sugarcane bagasse 
(Agnihotri et al., 2010) 

1.5 21.4 6.3 7.7 2.5 70.6 0.7 

Mexican Sugarcane bagasse 
(Agnihotri et al., 2010) 

1.1 20.0 2.0 4.0 0.7 56.5 0.4 

India Bambusa vulgaris      
(Skyere 1994) 

2.0 15.1 4.0 5.5 2.8 134.0 - 

Phillipine Bambusa vulgaris 
(Skyere 1994) 

2.3 17.0 4.0 7.0 3.5 137.0 - 

Ghana Bambusa vulgaris 
(Skyere 1994) 

2.7 14.6 9.7 5.0 1.0 182.0 - 

Pinus kesiya                          
(Dutt and Tyagi 2011) 

2.3 40.7 34.8 5.9 0.3 56.5 0.03 
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Table 5. Handsheets  paper strength properties derived from 

non-extracted sugarcane bagasse, Eucalyptus grandis and giant bamboo 

Properties SCB1 E. grandis2 giant bamboo3 

Kraft pulping 

Beating time (min) 23 80 40 
Drainage rate(0SR) 45 40 44 
Tear index (kPa.g/m2) 3.6 8.4 14.4 
Burst index (mN.g/m2) 5 5.3 7.1 
Breaking length (km) 3.8 5.9 5.3 

sodaAQ pulping 

Beating time (min) 20 55 40 
Drainage rate(0SR) 45 40 47 
Tear index (kPa.g/m2) 3.8 4.1 15.9 
Burst index mN.g/m2 4.7 4.7 5.5 
Breaking length (km) 4.9 5.7 3.4 

    1Data from paper III  
    2Data from paper I 
    3Data from paper IV 

 

 

2.9 Pulping processes 

2.9.1 Chemical pulping process 
 

All pulping processes have continuously developed to improve economic 

performance and to meet new requirements of improved product quality and cleaner 

environmental practises. Of the two alkaline pulping processes i.e. kraft and soda, the kraft 

process is the dominating alkaline pulping process worldwide accounting for more than 90% 

of the chemical pulps (Sixta and Schild, 2009; Sridach 2010). This is mainly based on the 

higher yields and superior pulp properties with kraft pulping (kraft means strength or power in 

German) compared to soda pulping (Macloed et al., 1995; Tutus et al., 2010). At the same 

time, the kraft process accommodates a variety of wood species and can tolerate high amounts 

of extractives as well as bark residues (Biermann, 1996).  
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Conversely the acidic sulfite pulping process cannot be applied satisfactorily to wood species 

containing much resin such as pine and other acid resistant materials (Sixta and Austria, 

1998). Kraft pulping offers shorter cooking times than sulfite chemical pulping due to shorter 

heat up time and typically higher final cooking temperatures (170°C vs 140°C) (Hocking, 

2005). The heating up time is reduced to protect degradation of carbohydrates at high 

temperatures (Biermann, 1996). Kraft pulping processes are advantaged by well established 

processing of the cooking spent liquor (black liquor), including the recycling of the pulping 

chemicals and waste water, generation of process heat, as well as production of some 

secondary products such as lignin derivatives, tall oil and turpentine from pine species 

(Fengel and Wegener, 2003; South Africa NEDLAC, 2004; Chirat et al., 2012). However, 

there are also some disadvantages such as odour problems, darker pulps and low beating 

abilities. 

Although the soda process has been mainly replaced by the kraft process it is still an 

important process for the production of nonwood fibre pulps (Sadawarte, 1995; Resalati et al., 

2012). In soda pulping the cooking liquor is composed mainly of sodium hydroxide. The 

application of pulping additives such as anthraquinone (AQ) has increased the extent of 

delignification, so that it is comparable to that of the kraft method (Macloed, 1983; Khristova 

et al., 2006). To explain the mechanism of AQ in the soda pulping, a cyclic mechanism has 

been proposed (Fig 6) in which AQ is reduced by polysaccharides to anthrahydroquinone 

(AHQ2-) which is soluble in alkali medium, and the reduced AHQ2- species is oxidised back to 

AQ by lignin (Francis et al.,2007; Venica et al., 2008; Kaur et al., 2010). The AQ can take 

part again in the redox cyle. The added AQ therefore acts as a catalyst in promoting the 

splitting of the β-aryl ether linkages of the lignin structure, and the stabilisation of 

carbohydrate against end peeling by the oxidation of the reducing end group to a carboxyl 

(Khristova et al., 2006; Kamppi et al., 2010).  
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More hemicelluloses are retained compared to cellulose, due to more end-groups per 

unit mass, when using sodaAQ than the traditional kraft process (Dimmel et al., 2003; Bose et 

al., 2009). Hence, AQ addition works efficiently when a high content of hemicelluloses are 

required from soda pulping process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Schematic reaction cycle of anthraquinone as cooking additives. (adapted from 

Francis et al., 2007)  

 

Kraft pulping processes utilise an aqueous solution of sodium hydroxide (NaOH) and 

sodium sulphide (Na2S), also called white liquor, to remove lignin from wood chips at a high 

alkaline pH of 12 to 14 (Yoon et al., 2001). The liquor to wood ratio is 3/1 to 5/1 w/v. The 

wood chips are charged to the digester together with white liquor, heated to a cooking 

temperature of about 165 to 170ºC and are allowed to cook between 1.5 to 2 hours (Pinto et 

al., 2005; Tutus et al., 2010). Industrial white liquor also contains sodium carbonate resulting 

from recovery cycle. The digester systems are continuous or batch, though in many current 

kraft pulp mills still use the older batch system which is characterised by higher flexibility 

and lower maintenance costs (Rao and Corbin, 1993; Biermann, 2006).  
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Ideally for a uniform cooked pulp, each fibre should receive the same chemical treatment for 

the same length of time at the same temperature. For this to occur the chemical reagents are 

transported into the lignin rich middle lamella of the wood by bulk penetration under the 

influence of pressure and by diffusion of ions from the cooking liquor into water which is 

already present in the wood chips (Obst, 1985; Dang and Nguyen, 2007; Kaur et al., 2010). 

The objective of chemical pulping is delignification (removal of lignin) and leave 

cellulose and hemicelluloses in non degraded form. During this treatment, the hydroxyl (-OH) 

and hydrosulfide (-HS) anions of cooking liquor react with the lignin, causing the polymer to 

degrade to smaller fragments which then dissolve (Santiago and Neto, 2007). The 

delignification proceeds in three different phases: the initial phase, the bulk and the final or 

residual phase (Chakar and Ragauskas, 2004; Santiago et al., 2008). The initial delignification 

takes place below temperature of 140°C and is controlled by diffusion, while the main bulk 

delignification runs at temperatures above 140°C - 170°C until about 90% of the lignin is 

dissolved (Lindgren and Lindström, 1996; Lourenco et al., 2012). The degradation of the 

lignin macromolecule proceeds through the cleavage of the β-alkyl-aryl-ether bonds and 

carbon-carbon linkages holding the phenyl propane units together (Gierer, 1985). This type of 

cleavage resulted into the liberation of lignin fragments, thus increased their dissolution, as 

illustrated in Figure 7. On the other hand, condensation reactions of lignins might occur that 

lead to the formation of alkali stable linkages. These reactions retard lignin dissolution and 

are therefore undesirable. In the last stage of lignin removal, ascribed to cleavage of carbon-

carbon linkages, the rate of delignification significantly decreases and marks the end of the 

cook (Gierer, 1980).  
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Figure 7. Net reaction in depolymerization of lignin by SH- (Ar = aryl, R = alkyl groups) 

(redrawn from Chakar and Ragauskas, 2004). 

 

At the end of the cooking process, the black liquor is separated from the pulp fibres in the 

subsequent washing and sent to the kraft chemical recovery system (Xu et al., 2006). The 

kraft pulping process normally has pulp yields of 45-50% (w/w), with the residual lignin of 

about 4-5% (by weight) (Chakar and Ragauskas, 2004). 

The selectivity in the kraft pulping process is poor, and a part of the polysaccharides 

is removed and dissolved in the cooking liquor due to high alkali concentrations, which 

contributes to a decrease in the pulp yield. Hemicelluloses are degraded to larger extent 

(>50%) than cellulose (<20%) during kraft pulping, due to their lower degree of 

polymerisation and amorphous state (Henriksson and Gatenholm, 2001; Lounge Jr et al., 

2010). Polysaccharide degradation processes occur by stepwise end-initiated 

depolymerisation, called primary peeling reaction, and random alkaline hydrolysis of 

glycosidic bonds, followed by secondary peeling reaction (Santiago et al., 2007). The peeling 

reaction starts at about 100°C and proceeds at the reducing end until the competing stopping 

reaction has formed a stable acid end group (Fengel and Wegener, 2003). 

Glucomannan is sensitive to peeling and degrades to low molecular mass products 

whereas xylan may be dissolved into the cooking spent liquor (black liquor) without being 

extensively degraded (Danielsson et al., 2006; Berggren et al., 2003). Some of the dissolved 

xylan can re-adsorb on the surface of cellulosic fibre (Henriksson and Gatenholm, 2001; 

Magaton et al., 2011).  
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The decrease in solubility of xylan is due to the deacetylation and formation of hexenuronic 

acid (HexA), resulting from the elimination of methanol from the 4-O-methylglucuronic acid 

groups (MeGlUA) – which are side groups linked to the xylan backbone (Genco et al., 1990; 

Pedroso and Carvalho, 2003). The rate of the alkaline hydrolysis becomes severe at 

temperatures above 150°C, i.e. at the bulk stage and the degradation is more pronounced for 

hemicelluloses than for cellulose, but it still maintains its crystallinity due to the readsorbed 

hemicelluloses (Virtanen et al., 2006). 

The residual lignin content of the pulp is measured as kappa number and the kappa 

number for typical bleachable hardwood pulp is about 20-30 (Muneri, 1997; Fardim and 

Duran, 2004). Kappa number is a good indicator of chemical demand for bleaching to remove 

the residual lignin on pulp fibres.  

The re-adsorption of xylan on the cellulose fibres observed during pulping can retard 

the bleaching process, since the adsorbed polymer acts as a physical barrier to the penetration 

of chemicals used to remove the residual lignin. In addition, the presence of HexA reacting 

with bleaching chemicals increases their consumption, and also increases the difficulty of 

reaching a high degree of brightness (Kautto et al., 2010). Furthermore, HexA is strongly 

associated with paper yellowing that increases the brightness reversion with age (Pedroso and 

Carvalho, 2003; Kaur et al., 2010). The hemicelluloses content of pulp in particular affects 

not only the yield, but also the strength and other papermaking properties. As such, a decrease 

in xylan content leads to a decrease in packaging related strengths properties such as tensile 

strength and tear index (Schwikal et al., 2011, Mosello et al., 2012). 

An important characteristic of the kraft process is that the spent delignification liquor 

(black liquor), consisting of soluble lignin and lower molecular lignin degradation products, 

cellulose, hemicelluloses fractions and inorganic chemicals separated from the pulp fibres in 

the washing stage, is concentrated and burnt to generate steam and inorganic smelt 

(Biermann, 1996; Fengel and Wegener 2003). The smelt composed of sodium sulphide and 

sodium carbonate is dissolved in water to form green liquor, which is reacted with calcium 

hydroxide to regenerate the sodium hydroxide for white liquor. 
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Degraded hemicelluloses and cellulose in the black liquor have a heating value of 

13.5 MJ/kg, which is about half that of lignin (27 MJ/kg) (van Heiningen, 2006). The net 

heating values of the carbohydrates are decreased due to the consumption of alkali to 

neutralise the acetyl groups released from xylan (Yoon and van Heiningen 2008; Helmerius et 

al., 2010). The recoverable heating value of the degraded polysaccharides in black liquor is 

also reduced by the amount of energy required to convert hydroxides to oxides during 

combustion (Amidon and Liu, 2009).  

Therefore, the separation of hemicelluloses before pulping could increase the overall 

efficiency of the process by decreasing the pulping chemical consumption and energy of kraft 

pulp mill (Yoon and van Heiningen 2008; Marinova et al., 2009). These hemicelluloses 

represent a good prospect for an integrated kraft pulp mill based biorefinery for the 

production of higher value added chemicals and materials in addition to the present fibre 

products (Ragauskas et al., 2006). However, it is important to analyse the effects of the 

hemicelluloses extraction step on the pulping process into which it is integrated with the aim 

of maximising hemicelluloses yield without negatively affecting pulp yield or quality, as was 

done in the present study (papers I-V). 

 

2.10 Pulp mill biorefinery with hemicellulose pre-extraction integrated 
with pulping 
 

A biorefinery is a concept for the collection of processing technologies used to 

convert the components of various biomass feedstocks into various materials, chemicals and 

energy, much likewise to petroleum refineries (Ragauskas et al., 2006; Carvalheiro et al., 

2008). Kraft pulping serves as the most suitable basis for explaining the lignocellulosic 

material biorefinery concept into practise (van Heiningen, 2006; Huang et al., 2010). It 

accommodates a variety of feedstocks, recovers and reuses all pulping chemicals and the 

fibres show excellent paper making properties (Fengel et al., 2003).  
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One biorefinery concept involves pre-extraction of hemicelluloses fraction, which is normally 

wasted in the black liquor of kraft pulp mills prior to pulping while continuing to maintain the 

quality standards for pulp and paper products (Ragauskas et al., 2006; van Heiningen, 2006; 

Luo et al., 2012). This approach to a biorefinery has been nvestigated in the present study, 

taking into consideration the unique properties of local feedstocks. 

There are various potential effective extraction methods to solubilise hemicelluloses 

from lignocellulosic biomass including alkaline, hot water and dilute acid (Mosier et al., 

2005; Carvalheiro et al., 2008). Hemicelluloses maintain more oligomeric or polymeric sugars 

in extracted liquor during alkaline extraction (Al-Dajani and Tschirner, 2008; Yoon et al., 

2008; Sixta and Schild 2009), while acidic extraction conditions break down hemicelluloses 

into a mixture of monomeric and oligomeric sugars (Parajo et al., 1994; Springer et al., 1985; 

Mendes et al., 2009; Canilha et al., 2011). Research work on the dilute acid hydrolysis of 

various lignocellulose materials have defined optimal process conditions as temperature range 

of 120-210ºC, sulphuric acid concentration typically 0.25-8 wt% and reaction time from 10 

minutes to 33 hours (Lavarack et al., 2002; Garrote et al., 2001; Hu and Ragauskas, 2012). 

Hot water treatments convert the hemicelluloses fraction into a mixture of sugar oligomers 

and monomeric sugars (Garrote et al., 2001; Leschinsky et al., 2008; Al-Dajani et al., 2009; 

Lei et al., 2010).  

 

2.10.1 Mild alkali extraction of hemicelluloses (xylans) 

 
Alkaline (NaOH in this case) extraction techniques are delignification processes with 

significant solubilisation of hemicelluloses as well. The mechanism of alkaline hydrolysis is 

saponification of intermolecular ester bonds crosslinking hemicelluloses and lignin (Sun et 

al., 1995; Liu et al., 2011).  
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Alkaline pre-extraction is well suited for combination with kraft pulping, since there will be 

no change in pH, can be carried out at lower temperatures and pressure than pulping and 

maintain subsequent pulp yield (Al-Dajani and Tschirner, 2008; Helmerius et al., 2010; Jun et 

al., 2012).  

It has been reported that the alkaline extraction would be more suitable for 

hemicelluloses extraction from hardwoods than softwoods (Helmerius et al., 2010, Walton et 

al., 2010). This is based on the fact that, during kraft pulping process, the hemicellulosic 

fraction is degraded through the alkaline peeling reaction and most of glucomannans (the 

softwood hemicellulose) are degraded whilst xylan (hardwood hemicellulose) is more stable 

and solubilised as oligomers (Fardim and Duran, 2004; Patt et al., 2006; Schild et al., 2010).  

Accordingly, nonwood materials have been shown to exhibit similar hemicellulosic 

components as hardwoods which make them suitable for the alkaline pre-extraction approach 

of hemicelluloses (Biermann, 1996; Peng et al., 2012). However, in order to maintain the pulp 

yield and minimise the loss of pulp strength, the presence of hemicelluloses is necessary in 

the fibre matrix (Yoon and van Heiningen, 2008; Mossello et al., 2010). Therefore, the 

optimised conditions are always the compromise between hemicelluloses extraction and the 

quality of the pulp obtained from the solid residues of hemicelluloses extraction.  

The present study presents the notion to integrate the alkaline pre-extraction of 

hemicelluloses from E. grandis, giant bamboo and SCB prior to pulping and subsequent kraft 

or sodaAQ pulping of the extracted materials. The detailed examination of the comparative 

studies between E. grandis, SCB and giant bamboo can be found in the appended papers II, 

III  and IV  respectively. A summary of the most promising findings is presented in Table 6 

below. 
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Table 6. Extraction conditions, xylan recovery yield, and pulping conditions for non-
extracted and alkaline extracted giant bamboo Eucalyptus grandis and  

sugarcane bagasse 
 Raw materials 

 giant bamboo E. grandis sugarcane bagasse 

Pulping process Kraft pulping sodaAQ pulping 

 Extraction condition 

 
Non-
extracted 

1M NaOH, 
90°C,  
240 min 

Non-
extracted 

2M NaOH, 
40°C,  
240 min 

non-
extracted 

1.5M 
NaOH, 
65°C,     
180 min 

Xylan yield 

g/100g OD                             
(% theoretical xylan) 

 3.0 (13.6)  2.1 (12.4 )  18.0 (69.1) 

cooking conditions 

Active alkali (%) 18.7 - 18.7 - 14.0 - 
Sulfidity (%) 25 35.7 25 35.7 - - 
AQ (%) - - - - 0.1 0.1 
*Time at 170°C (min) 30 30 45 30 30 25 
NaOH in chips/residue 
(g) 

169.6 59.3 165.4 99.2 130.4 141.1 

NaOH from Na2S (g) 30.9 21.3 28.1 32.9 - - 

Total NaOH in cook (%) 19.4 10.7 19.4 15.5 - - 

NaSH charge (g) 43.2 29.8 42.2 49.6 - - 

*Pulp properties 

Pulp yield (%) 41.2±2.0 50.4±1.5 53.1±3.0 51.1±2.0 40.1±2.0 45.0±1.3 
Rejects (%) 8.7±1.3 5.0±0.5 1.7±0.4 0.6±0.5 15.7±1.0 3.3±2.2 
kappa number 22.7±0.9 29.9±1.1 20.0±2.5 20.8±1.8 22.8±0.9 15.5±1.1 
Viscosity (cP) 
Residual alkali (g/L) 

10.2±2.0 
7.0±1.4 

10.2±1.2 
6.3±2.0 

8.1±0.5 
7.5±1.5 

9.4±0.7 
6.2±2.0 

7.2±1.7 
6.0±2.0 

7.1±1.0 
9.0±0.8 

**Handsheets strength properties 

Beating time (minutes) 40 40 80 60 20 22 
Drainage rate (˚SR) 44 41 40 39 45 38 
Tensile index (Nm/g) 51.6±3.1 44.1±2.5 40.1±1.3 43.1±1.1 49.0±1.0 43.8±0.1 
Tear index (kPa.m2/g) 14.4±0.5 13.7±3.5 9.9±2.0 9.8±1.5 3.8±0.2 8.8±0.8 
Burst index (mN.m2/g) 7.1±0.4 7.3±0.2 5.3±0.4 5.2±0.1 4.7±1.2 4.3±0.1 
Breaking length (km) 5.3±0.6 4.5±0.6 4.1±0.5 4.4±0.5 5.0±0.4 4.5±0.3 
Brightness (ISO) 41.4±1.2 31.6±0.6 43.3±1.0 50.4±1.2 39.3±0.3 55.8±0.9 
*Cooking time of extracted materials was reduced to avoid degradation of carbohydrates due 
to high concentration of NaSH in the cook 
** Mean values and standard deviation of three measurements 
***Mean values and standard deviation of ten measurements 
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The optimised alkaline extraction of xylan from the studied E. grandis followed by 

modified kraft process of the extracted material showed no effect in screened pulp yield and 

pulp quality (Table 6). Interestingly, alkaline pre-extraction of xylan from giant bamboo 

improved the kraft pulp yield by 9.2% while retaining the pulp viscosity. However, the high 

pulp yield was probably due to the high residual lignin content in pulps produced from 

extracted giant bamboo chips measured as kappa number. 

Approximately 12.4% or 13.6% of xylan could be extracted from E. grandis or giant bamboo 

respectively, whilst the screened pulp yields were maintained at desired pulp mill levels of 

50% and the kappa numbers were within the bleachable range as those of pulps produced 

from non-extracted materials (papers II  and IV ). This could be explained by the low total 

NaOH concentration of 16% or 11% used during delignification of pre-extracted E. grandis or 

giant bamboo chips respectively compared to 19% used for non-extracted chips (Table 6), 

which might have limited the alkaline hydrolysis of carbohydrates and their peeling reaction 

(Södahl et al., 2004; Jun et al., 2012). The lower NaOH concentration required for 

hemicellulose-extracted residues was in agreement with the earlier work on the effect of 

alkaline pre-extraction on pulping conditions (Yoon et al., 2011), showing potential for pre-

extraction to reduce the pulping chemicals consumption. The kraft pulping of alkaline 

extracted E. grandis or giant bamboo was unique in that no NaOH charge was added to the 

kraft cook except for the NaOH carried by the chips from the pre-extraction stage and NaOH 

generated from sodium sulphide. This explains the lower total NaOH charge used for 

delignification of extracted giant bamboo compared to extracted E. grandis. In addition, the 

dissolution of xylan and other components from the material in the pre-extraction stage might 

have contributed to less alkali demand for delignification of extracted materials. Nonetheless, 

compared with alkaline extracted E. grandis, the high pulp yield for alkaline extracted giant 

bamboo was achieved at greater kappa number (29.9 vs 20.8) and high viscosity. High kappa 

number explains high demand of subsequent bleaching chemicals (Ribas Batalha et al., 2012). 

On the other hand, pulps with high viscosity might improve the fibre strength properties 

(Gurnagul et al., 1992). 
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The modified kraft pulping process of E. grandis or giant bamboo, with pre-

extraction of hemicelluloses, was better in terms of pulp quality than previously reported for 

aspen hardwood chips (Al-Dajani and Tschirner, 2008). The reported modified kraft pulping 

method of alkaline extracted aspen chips resulted in no pulp yield loss, although a reduction 

in viscosity was observed (Al-Dajani and Tschirner, 2008).  

The discrepancy could be due to the amount of xylan pre-extracted from the aspen chips, 

which was twice as high (24.8% vs 12.4% and 13.6%) than that extracted in the present study. 

This is in agreement with previous results by other authors, according to which the quoted 

kraft pulping process of E. grandis from which 42% xylan was extracted caused a reduction 

in pulp yield (Lounge Jr et al., 2010). Limiting the yield of hemicelluloses from alkaline 

extraction can therefore avoid a reduction in both pulp yield and tensile or breaking strength 

handsheet property from subsequent kraft pulping.  

Handsheet strength testing of kraft pulps obtained from alkaline-extracted E. grandis 

residues showed an improvement in breaking length, tensile index and optical brightness by 

6.8%, 7.0% and 14.1% respectively to those of pulps produced from non-extracted raw 

materials at 40±5˚SR (Table 6 and paper II ). On the other hand all the pulps exhibited similar 

tear and burst indexes. Breaking length, tensile and burst indexes correlates strongly with 

interfibre bonding, while tear index depends strongly on fibre length (Fardim and Duran, 

2004). The percentage yield of xylan retained in the pulp after kraft pulping of the extracted 

E. grandis chips (Paper II , Table 5) appeared to have been sufficient for the maintenance of 

tensile index or breaking strength property of the resultant pulp. The overall analysis of the 

results suggest that fibres produced from alkaline extracted E. grandis residues under the 

selected kraft pulping conditions were well bonded to one another and thus presented good 

conformability without fibre shortening (Liu et al., 2012). Alkaline hemicelluloses pre-

extraction from southern mixed hardwoods prior to kraft pulping showed no effect on tensile 

strength but increased the tear index compared to kraft pulps produced from non-extracted 

wood chips (Yoon et al., 2011). 
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For giant bamboo, alkaline xylan pre-extraction showed a slight improvement in burst 

index by 3% while tensile index and breaking length were reduced by 14.5% and 15% 

respectively compared to pulps produced from non-extracted bamboo (Table 6 and paper IV ). 

The reduction in strength properties might be due to xylan deficiency in pulp samples 

produced from alkaline pre-extracted bamboo (Helmerius et al., 2010). The alkaline pre-

extraction of aspen hardwood chips also showed reduction of about 10% in tensile index due 

to alkaline extraction; although no other strength properties were reported (Al-Dajani and 

Tschirner, 2008). On the other hand, the tear index of hand sheets prepared from alkaline-

extracted giant bamboo pulps declined by 5% at 40°SR and optical brightness was reduced 

relative to non extraction  

Generally, giant bamboo had higher handsheet tear and burst indexes compared to E. 

grandis (Table 6). The observed increase was 31.4% and 28.0% for handsheet tear and burst 

indexes, respectively, for kraft pulps from alkaline extracted giant bamboo residues, relative 

to similar raw materials from E. grandis. The observed improvement in pulp strength for 

bamboo may be explained by the longer fibre length and very thick cell wall of bamboo 

compared to hardwoods (Vû et al., 2004). Nevertheless, alkaline extraction of E. grandis 

resulted in brighter pulps compared to those of giant bamboo. The darker pulps produced 

from giant bamboo may be due to higher degree of condensation of bamboo lignins compared 

to that of eucalyptus (Ribas Batalha et al., 2012). 

Alkaline-extraction of 69.1% xylan from SCB combined with sodaAQ pulping 

showed a remarkable decrease in kappa number of the resulting pulp, with no yield loss, in 

comparison to pulps from non-extracted SCB (Table 6 and paper III ). In addition, the 

handsheet tear index and optical brightness of the pulp obtained from xylan pre-extracted 

SCB residues were improved. The burst index, tensile index and breaking length of the pulp 

obtained from xylan pre-extracted SCB residues were comparable to those of pulps produced 

from non-extracted SCB. These results are in agreement with those reported for similar work 

done on other herbaceous plants such as barley straw (De-Lopez et al., 1996). 

 

Stellenbosch University  http://scholar.sun.ac.za



 43 

2.10.2 Dilute acid extraction of hemicelluloses (xylans) 
 

Much is reported in the literature about the introduction of dilute acid extraction 

(prehydrolysis) of hemicelluloses from hardwood prior to kraft pulping for the production of 

dissolving pulps (Koukios and Valkanas, 1982; Vila et al., 2011, Saeed et al., 2012). 

However, the acid hydrolysis of hemicelluloses during dissolving pulp production may be too 

harsh for maximum hemicelluloses recovery (Behin et al., 2008). The mechanism of acid 

prehydrolysis involves cleavage of α-aryl ether bonds in lignin and hydrolysis of the non-

crystalline part of cellulose, which resulted in a structure with reduced DP but with higher 

crystallinity (Pessoa et al., 1997; Fengel and Wegener, 2003). However, reduction in DP of 

cellulose can compromise the pulp yield and paper strength properties (Al-Dajani et al., 2009; 

Mendes at al., 2009). Within this as background, optimum conditions for dilute sulphuric acid 

extraction of hemicelluloses from E. grandis, SCB and giant bamboo that would lead to 

desired pulp properties have been investigated. Complete details can be found in papers I , III  

and IV respectively. An overview of the main findings is summarised in Table 7 below. 
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Table 7. Pulp properties and handsheets paper strength properties obtained after kraft or sodaAQ pulping of non-extracted and acid extracted  

Eucalyptus grandis, sugarcane bagasse and giant bamboo  

Raw material E. grandis sugarcane bagasse   giant bamboo E. grandis 
Pulping process Kraft pulping   sodaAQ pulping 

Extraction condition non-
extracted 

0.3% H2SO4, 
140°C, 30min 

non-
extracted 

0.3% H2SO4, 
140°C, 30min 

 Non-
extracted 

0.3% H2SO4, 
140°C, 30min 

non-
extracted 

0.3% H2SO4, 
140°C, 30min 

Xylan yield 
% theoretical (xylose + oligomer)  - 21.4  - 23.8    - 11.3  - 21.4 

cooking conditions 
Active alkali (%) 17 17 12 12   16 16 17 17 
Sulfidity (%) 22 22 20 20   - - - - 
AQ (%) - - - -   0.1 0.1 0.15 0.15 
Time at 170°C (min) 90 90 30 30   30 30 120 120 

Pulp properties 

Pulp yield (%) 45.7±1.0 40.9±2.0 41.3±1.1 39.5±1.2   43.1±1.2 40.6±2.0 43.9±0.5 42.3±1.5 
Rejects (%) 1.7±0.5 5.2±0.3 5.9±1.0 3.7±0.5   17.2±1.0 17.5±1.2 4.4±1.1 4.1±0.8 
kappa number 20±2.5 26.8±1.5 7.0±2.2 6.0±1.2   22.9±0.5 27.8±0.2 22.8±1.0 20.9±1.2 
Viscosity (cP) 7.2±1.2 5.2±1.1 3.5±1.4 2.5±1.3   7.0±2.5 10.0±1.0 6.3±1.2 6.7±2.1 

Handsheet strength properties 

Beating time (min) 80 55 23 25 35 20 55 55 
Drainage (°SR) 40 45 45 46 39 36 40 43 
Tensile index (Nm/g) 51.9±1.9 44.3±2.2 51.2±1.4 29.4±2.5 

  

33.2±4.0 45.4±4.2 45.9±1.5 41.9±2.0 
Tear index (kPa.m2/g) 8.4±1.3 4.2±1.5 3.0±1.7 2.6±1.3   15.9±0.8 14.7±0.1 4.1±1.8 4.0±1.5 

Burst index (mN.m2/g) 5.3±1.1 4.2±1.5 5.2±0.5 3.4±0.4   5.5±0.6 5.5±0.8 4.7±1.0 3.9±0.9 

Breaking length (km) 5.9±0.5 4.5±0.5 4.6±1.1 2.6±2.1   3.4±0.5 4.6±0.4 4.7±0.8 4.3±1.2 
Brightness (ISO) 48.4±2.0 37.8±2.4 52.2±1.1 54.9±1.3   38.8±0.5 31.6±1.3 38.0±1.9 42.2±1.8 

Stellenbosch University  http://scholar.sun.ac.za



 45 

In the present study, no suitable conditions were found for the combined acid 

extraction of hemicelluloses with subsequent kraft or sodaAQ pulping process that resulted in 

a similar pulp yield and properties as when pulping non-extracted chips. Generally, extraction 

of hemicelluloses using dilute sulphuric acid disadvantaged the subsequent pulping process in 

terms of pulp yield, quality and handsheet paper strength properties for all the tested 

feedstocks (Table 7, papers I , III  and IV). However the differences were lower when sodaAQ 

was applied in acid pre-extracted materials compared to kraft pulping. Reduction in kraft pulp 

properties due to acid pre-hydrolysis confirmed reported results by other authors (Yoon and 

van Heiningen, 2008; Aldajani et al., 2009; Mendes et al., 2009; Testova, 2006). The poor 

response can be explained by the decrease in molecular mass of xylan under acidic conditions 

and thus the increased content of reducing end groups and with the xylan becoming easily 

soluble in the subsequent alkali medium (Mussatto et al., 2006). Consequently, the cellulose 

chains became more susceptible to the peeling reaction because the xylan layer on the 

cellulose fibrils was partially removed, hence the reduction in pulp yield and quality 

(Helmerius et al., 2010; Duarte et al., 2011). The increase of carbohydrates reaction due to 

acid extraction, explains the extra requirement of cooking alkali (NaOH), resulting in a 

decrease of the residual active alkali (Mendes et al., 2009; papers II, III  and IV ). The residual 

active alkali measured in black liquors obtained from acid extracted E. grandis and giant 

bamboo was 1.5-3.3 g/L, which was below the recommended 6-8 g/L (Lounge Jr et al., 2010). 

This strongly suggests that more cooking chemicals would be required to pulp acid extracted 

materials. 

Alternatively, dilute acid xylan extraction from giant bamboo or E. grandis chips 

resulted in sodaAQ pulps with higher pulp viscosities, especially so for giant bamboo 

compared to kraft pulps. AQ in sodaAQ pulping process oxidises the reducing end groups of 

carbohydrates that might have been generated during the pre-extraction stage and stabilises 

their peeling reaction (Bose et al., 2009). The retention of carbohydrates could possibly 

improve the strength properties of pulps produced from acid pre-extracted giant bamboo 

compared to pulps produced from non-extracted giant bamboo. 
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As expected, sodaAQ pulping of acid extracted giant bamboo residues resulted in 

similar handsheet burst index and improved tensile index and breaking length by 

approximately 26% compared to sodaAQ pulping of non-extracted giant bamboo. It has been 

reported in the literature that strength properties such as tensile and breaking length is more 

dependent on cellulose characteristics than xylan content (Silva et al., 2011). The handsheet 

brightness was reduced due to acid pre-extraction implying high demand of bleaching 

chemicals (Mendes et al., 2009) 

Generally, sodaAQ pulps produced from giant bamboo gave handsheets with higher 

tear and burst indexes compared to E. grandis. On the other hand, sodaAQ pulping of acid 

extracted giant bamboo resulted in improved tensile strength, tear and burst indexes and 

similar breaking length compared to sodaAQ pulps produced from acid extracted E. grandis 

residues. High pulp viscosity and longer fibre length observed for giant bamboo increased the 

fibre strength properties compared to E. grandis (Table 4). However, acid extraction of giant 

bamboo decreased the optical brightness of pulps than those produced from E. grandis. Pulps 

produced from giant bamboo had higher residual lignin content compared to that of E. 

grandis. 

Dilute acid extraction prior to pulping has been suggested for the production of 

dissolving pulps (Koukios and Valkanas, 1982). Although dilute acid extractions in general 

lead to a reduction in pulp yields, it has been found to increase the alpha cellulose content 

(Vila et al., 2011; Ribas Batalha et al., 2012). 
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2.10.3 Hot water extraction of hemicelluloses (xylans) 
 

Hot water pre-extraction of hemicelluloses from lignocellulosic material is of interest 

because it is cheap and environmentally friendly, corrosion problems are limited and results in 

simpler downstream processes, i.e. no sludges are generated compared to dilute acid and 

alkaline methods (Walton et al., 2010). However, the implementation of hot water pre-

extraction processes is hindered by low hemicelluloses (sugar) solubilisation under the too 

mild conditions (Lei et al., 2010; Vila et al., 2011). The mechanism of hydrolysis and 

subsequent dissolution of lignocellulosic material is promoted by acetic acid formed from 

hydrolysis of acetyl groups and uronic acid substitutions removed by hydronium ions coming 

from water auto-ionisation, both lowering the pH of the extract to the range of 3-4 (Garrote 

and Parajo, 2002). Considering hardwoods and nonwoods as feedstocks, acetylated 

glucuronoxylan is the major hemicelluloses; the application of hot water extraction to these 

feedstock would generate a separate value added stream mainly consisting of xylo-

oligosaccharides (Jahan and Rahman, 2012; Yoon et al., 2008; Alfaro et al., 2010). The hot 

water hydrolysis is selective to hemicelluloses whereas cellulose is retained in solid residue 

and shows improved susceptibility to further treatments due to the structural changes of the 

lignocellulosic matrix (Garrote and Parajo, 2002; Lei et al., 2010). In the present study, hot 

water extraction of SCB was studied since the dilute acid extraction significantly 

compromised the pulp properties (paper III ). Table 8 shows the effect of hot water xylan pre-

extraction of SCB on pulp yield, quality and handsheet strength properties. 
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Table 8. Pulp properties and handsheets paper strength properties obtained after  

sodaAQ pulping of non-extracted and hot water extracted sugarcane bagasse  

Extraction conditions non-extracted Hot water, 120°C, 30min 

cooking conditions 

Active alkali (%) 14.0 14.0 
AQ (%) 0.1 0.1 
Time at 170°C (min) 30 30 

Pulp properties 

Pulp yield (%) 40.1±2.0 41.3±1.5 
Rejects (%) 15.7±1.0 14.7±0.5 
kappa number 22.8±0.9 20.9±0.5 
Viscosity (cP) 7.2±1.7 5.5±2.0 

Handsheet strength properties 

Beating time (minutes) 20 20 
Drainage rate (˚SR) 45 40 
Tensile index (Nm/g) 49.0±1.0 48.8±1.5 
Tear index (kPa.m2/g) 3.8±0.2 4.7±0.5 
Burst index (mN.m2/g) 4.7±1.2 5.0±1.4 
Breaking length (km) 5.0±0.4 5.0±0.3 
Brightness (ISO) 39.3±0.3 41.5±1.6 

 

Pre-extraction of hemicelluloses from SCB with hot water resulted in low concentration 

of xylo-oligomers (5.7%). Subsequent sodaAQ pulping of extracted material showed similar 

screened pulp yield with a slight reduction of a kappa number compared to the pulps 

produced from non-extracted SCB. However, a decrease in pulp viscosity due to hot water 

pre-extraction was observed, indicating carbohydrate depolymerisation. This finding could be 

attributed to the formation of low molecular mass carbohydrates with high reducing end 

groups under hot water acidic conditions that becomes more susceptible to the peeling 

reaction under the subsequent alkaline medium (Aldajani et al., 2009).  

The tear index and optical brightness of the handsheet papers produced from hot 

water extracted SCB were slightly improved while the breaking length, tensile and burst 

indexes were similar to those of pulps produced from non-extracted SCB fibres despite the 

reduction in viscosity (Table 8). The chemical composition of the pulps produced from hot 

water pre-extracted SCB showed a higher hemicelluloses content (72.5% glucan and 24.4% 

xylan) compared to pulps produced from non-extracted SCB (83.5% glucan and 6.8% xylan). 
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Fibre weakening during sodaAQ pulping of hot water pre-extracted SCB residues indicated 

by the viscosity reduction was probably compensated by the improved bonding ability due to 

enough hemicelluloses retains in the pulp fibres. Similar benefits on pulp properties have been 

proved for SCB by integration of hot pre-extraction of hemicelluloses with sodaAQ pulping 

(Lei et al., 2010).  
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CHAPTER 3: Conclusions and Suggestions for future work 
 

The present study expands the current research area based on pulp mill biorefinery, 

aiming at extraction of hemicelluloses from South African grown E. grandis, sugarcane 

bagasse (SCB) and giant bamboo prior to alkaline pulping with the opportunity to produce 

value added products in addition to pulp and paper products. Pulp produced from southern 

eucalyptus and SCB is increasing its share of the global pulp market. Therefore, it is 

important that hemicellulose extraction and pulping should not impact on pulp yield or 

quality. Hemicelluloses extraction technologies including mild alkaline or dilute sulphuric 

acid combined with subsequent kraft or sodaAQ pulping of the extracted material were 

investigated in the present study. Pre-extraction of SCB with hot water was part of the dilute 

sulphuric acid experimental design and was used to evaluate the effect of xylan pre-extraction 

at lower levels. Extracting the hemicelluloses turns out to be fairly easy but a method to 

perform this extraction without negatively affecting the pulp yield or quality was the main 

challenge. The integrated hemicelluloses extraction and pulping approach produced 

significant conclusions and explains the ideas for the direction of future work that are 

discussed in this section. 

 

3.1 Conclusions from the present study 
 
Based on the experimental data obtained in the present study, the following conclusions can 

be drawn: 

Of the xylan pre-extraction processes investigated i.e. dilute acid and mild alkaline, the 

latter demonstrated favourable results. It was possible to solubilise high molecular mass xylan 

of 53,400 g/mol from E. grandis (paper II ), 32,793 g/mol from SCB (paper III ) or 42,500 

g/mol from giant bamboo (paper IV ) prior to modified kraft or sodaAQ pulping whilst 

subsequent kraft or sodaAQ pulping of the extracted materials retained or improved final pulp 

yields and pulp viscosities at comparable kappa number.  
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Futhermore, the demand of the pulping chemicals could be reduced although a decrease of 

<20% in some handsheet strength properties was observed.  

Among the three different lignocellulosic materials studied, SCB required milder 

processing conditions compared to E. grandis and giant bamboo. As expected, attractive 

xylan yield of 69.1% was easily recovered from herbaceous SCB under moderate alkaline 

conditions while E. grandis and giant bamboo had lower xylan solubility with only 12.4% and 

13.6% recovered respectively. The combination of high xylan content together with lower 

lignin content in the non-extracted SCB explains the reasonable yields of xylan extracted 

from SCB prior to pulping and low processing chemical demand when the SCB was well 

depithed. 

 

Nonetheless, although prepared under different pulping process, pulp fibres produced 

from SCB are generally of lower quality in terms of handsheet strength properties compared 

to E. grandis while giant bamboo was better or comparable to those of E. grandis. Alkali 

xylan extraction combined with mild sodaAQ pulping was the preferred option for SCB. This 

can be contrasted with the alkaline extraction process which integrated well with kraft pulping 

for both E. grandis and giant bamboo. The difference of chemical composition and 

morphological properties among the three feedstocks studied was evident in both xylan 

solubilisation and subsequent pulping performance.  

 

The overall screened yield of kraft pulps produced from alkaline pre-extracted E. grandis 

or giant bamboo was maintained at desirable industrial levels of 50% and bleachable kappa 

number range without reduction in viscosity. These conditions improved tensile index and 

breaking length for pulps produced from extracted E. grandis and a slight increase in burst 

index was observed for pulps produced from extracted giant bamboo. On the other hand, 

although the pulping process used for sugarcane bagasse was sodaAQ, alkaline extraction 

improved the pulp yield (45%) with no reduction in pulp viscosity.  
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These conditions provided brighter pulps with superior tear index whilst breaking length and 

burst index was retained in the same level as those of pulps produced from non-extracted 

SCB. 

 

Another important feature of alkaline pre-extraction of SCB was that, the higher pulp 

yields were produced at lower kappa number unlike high kappa number observed from giant 

bamboo and E. grandis pulps. In fact, pulps produced from giant bamboo presented higher 

kappa number compared to pulps produced from E. grandis treated under similar pulping 

conditions. This could be ascribed to higher extractives content observed for giant bamboo 

and more condensed lignin structures as documented in other works (Ribas Batalha et al., 

2012). Therefore, a larger demand of bleaching chemicals to remove residual lignin can be 

expected for bamboo pulps.  

 

Handsheet strength properties produced from beaten non-extracted or extracted giant 

bamboo pulps presented high tensile and breaking length as E. grandis pulps similarly treated, 

that are currently used commercially as fibre source in SA pulp industry. Particularly, the tear 

and burst indexes of giant bamboo pulps were much higher than in E. grandis pulps. 

Morphological properties of bamboo such as longer fibre length and thicker cell walls than 

that of hardwoods, positively influenced the tear and burst indexes of bamboo pulps.  

Contrary to mild alkaline, dilute sulphuric acid pre-extraction of xylan did not favour the 

subsequent modified kraft pulping of the pre-extracted E. grandis, SCB or giant bamboo. The 

screened pulp yield and the overall handsheet paper strength properties were compromised. 

This could be attributed to the formation of low molecular mass carbohydrates with high 

reducing end groups under acidic condition that becomes more hydrolysed in the subsequent 

high alkaline conditions of the kraft pulping process.  
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When selecting the best pulping process for integration of dilute sulphuric acid 

hemicelluloses pre-extraction and pulping process, sodaAQ pulping is recommended 

depending on the amount of pre-extracted xylan. Moderate alkali charge, comparable pulp 

yield and handsheets strength properties observed for giant bamboo in which 11.3% xylose 

was extracted under dilute acid conditions made sodaAQ pulping more attractive compared to 

kraft pulping. AQ has an effect on stabilisation of carbohydrates against peeling reaction in 

pulping process.  

 

Combination of hot water pre-extraction of SCB together with sodaAQ pulping may be 

the more attractive method as pulp yield was increased and the tear and burst indexes were 

improved. However, the hot water method was disadvantaged by liquid fractions containing 

lower xylan concentrations compared to acid pre-extractions. 

 

Pre-extraction step of SCB can serve the purpose to decrease the scaling problems 

influenced by the silica present in most non-wood materials during pulping process, thereby 

improving the efficiency in chemical recovery of black liquor. The silica will solubilise from 

the fibres during the initial xylan extraction stage, although some purification of the 

solubilised xylan may be required.  

 

The dissolution of xylan and other components into the extraction media decreased the 

mass of the extracted material and can increase the pulping capacity without additional 

investment in pulping digester. Moreover, xylan can be removed before pulping without 

degradation in molecular mass under alkaine conditions and the extracted xylan represents a 

valuable product. 
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With regards to the investigation of the suitability of giant bamboo as a potential source 

of fibre for South African pulp and paper industry, the present study showed that giant 

bamboo can produce pulp of sufficient quality for papermaking, especially so for the alkaline 

extracted giant bamboo. By utilisation of giant bamboo as a raw material for pulp and paper 

products, future prospects both for giant bamboo and pulp and papermaking industry will 

emerge. The pulp produced for giant bamboo revealed characteristics suitable for the 

production of paperboards. 
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3.2 Suggestions for future work 
 

The recommendations for the future work within the pulp mill biorefinery concept are 

towards the improvement and optimisation of the alkaline xylan recovery approach and 

conditions of the subsequent pulping with the aim to make the recovery of value added xylan 

and the pulping process more effective and competitive.  

 

3.2.1 Mild alkaline extraction of xylan 
 

� The simplicity of the alkaline pre-extraction method is an encouraging element 

towards the development of industrial processes for an integrated xylan extraction 

and alkaline pulping approach for E grandis, giant bamboo and SCB. The operations 

used to recover xylan were selected because they are already used in line with kraft 

pulping process, and the ease of scale up to production scale has been documented 

(Huang et al., 2010). The selected operations are mixing, filtering/separation of solids 

from liquid fraction, concentration/evaporation, and separation of xylan; all of which 

are conducted at low temperatures. The process of xylan pre-extraction has been 

taken from laboratory scale to large scale with less difficulty in achieving the set 

operation conditions and replicating the yield and quality of the extracts especially so 

for E. grandis and giant bamboo. Future work on the implementation of the xylan 

extraction technique at industrial scale, the main issue to address might be mainly 

related to the large volume of water and would require additional recycling for reuse. 
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� The extraction process needs to be improved to maximise the xylan recovery yield. In 

the present study, the xylan recover yield for E. grandis (paper II) obtained was lower 

(12.4% vs 24.8%) than reported by other workers for aspen hardwood chips (Al-

Dajani and Tschirner, 2008). The difference in xylan yield may be related to 

differences in separation membranes used for isolation of xylan from alkaline 

extraction liquors. A cellulose tube dialysis (12kDa cut-off) membrane was used in 

the present study to isolate xylan from the aqueous alkaline media (due to the 

limitation of laboratory facilities), which might have resulted in the loss of xylan 

fractions in the system compared to ultrafiltration membranes used in the referenced 

study. Nonetheless, nanofiltration membranes are said to be more suitable than 

ultrafiltration for isolation of xylan from alkaline extraction liquors (Schlesinger et 

al., 2006).  

� The existence of silica is still a very significant problem when working with nonwood 

materials, that might affect the xylan recovery yield and quality. Therefore 

desilication prior to pre-extraction is recommended. 

� The further fate of the alkaline extracted xylan needs to be identified. The use of the 

extracted xylan could be studied in paper and corrugated board applications were 

colour is less important as the FTIR and chemical composition results of the extracted 

xylans revealed the xylan-lignin association (paper II , III  and IV ). Furthermore, the 

characterisation of the extract quantitatively would be necessary to get the material 

balances add up to 100%. Other components of the raw material dissolved in the 

liquor extract and became unaccounted in the material balance calculations. 

� Structural changes primarly in cellulose and lignin obtained after xylan extractions 

together with pulp fibres should be reviewed. Analysis of these fractions with 

quantitative and qualitative analytical techniques such as GC/MS, HPLC/MS, SEC, 

FTIR, etc., might give a key feature needed to develop more efficient xylan pre-

extraction and pulping integration approach. 
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� Recycling and reuse of NaOH used for xylan extraction should be explored. 

For an alkaline pre-extraction approach to be commercially attractive and 

economically feasible, all the chemicals from the extraction stage should be recovered 

and reused. A literature reference found after the experiments were completed, 

suggest that the most realistic way is to use alkaline solutions such as green liquor 

(Na2CO3 + Na2S) or white liquor (NaOH + Na2S), already present in the pulp mill 

(Jun et al., 2012). However, there are some limitations reported with the green liquor 

such as, that hemicelluloses recovery yields are low, pressurised vessels will be 

required due to high extraction temperatures, and xylans are recovered in the form of 

low molecular mass oligomers. Such challenges can be improved by utilisation of 

white liquors since extractions are performed under atmospheric conditions. It would 

be interesting to explore these bases for South African grown E. grandis and giant 

bamboo. The application of the proposed bases on SCB will be constrained by their 

high alkaline strength which will damage the SCB fibres. 

 

3.2.2 Pulping processes 
 

� The integration of xylan extraction with chemi-thermomechanical pulping process 

should be considered. The research developments in biorefinery based xylan 

extraction has so far focused on chemical pulping processes (kraft and sodaAQ) and 

few attempts have been applied to mechanical pulping processes. Mechanical pulps 

account for 12% of the total pulp production in South Africa (Table 1). The chemical 

pre-treatment stage in chemi-thermomechanical pulping process could be easily 

rendered to serve as the pre-extraction stage without major capital investment. 

However, due to the advantages of mechanical or chemi-thermomechanical pulping 

such as low cost due to high pulp yield, the severe conditions used in the chemical 

delignification can be avoided.  
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Therefore, intensive research on pre-extraction to balance the potential xylan extraction 

yield and production of high yield pulps is necessary. 

 

� No characterisation of black liquor was performed in the present study. 

Hemicelluloses pre-extraction prior to pulping might change the properties of black 

liquor produced after pulping of the extracted materials. Therefore it will be 

interesting to investigate the effect of the changes in black liquor in terms of 

viscosity, organic loading, heating values and the chemical composition (by use of 

Ultraviolet spectroscopy, HPLC/MS and GC/MS) as a means to close to mass balance 

over the process. 
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Abstract 

The extraction of hemicelluloses prior to pulping is an attractive process to be incorporated in 

the pulp and paper mills to generate a valuable by-product in addition to core products. Pulp 

produced from eucalyptus grown in the Southern hemisphere is increasing its share of the 

global kraft pulp market. Therefore, it is important that hemicelluloses extraction and pulping 

should not impact on pulp yield or quality. Hemicelluloses from Eucalyptus grandis wood 

chips were extracted with dilute sulphuric acid prior to kraft or sodaAQ pulping. H2SO4 

concentration, temperature and extraction time were varied to improve xylan yield with 

minimal effects on the cellulose content of extracted wood chips. 

Wood chips with 21.3%, 39.5% and 60.2% of their xylan (determined as xylose + oligomer) 

extracted were subjected to kraft or sodaAQ pulping to evaluate the impact on cooking 

chemicals, pulp yield and properties.  
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Kraft or sodaAQ pulping of extracted wood chips with 39.5% and 60.2% xylan extraction at 

varied cooking conditions decreased pulp yield and properties. Modified sodaAQ pulping of 

the wood chips from which 21.3% of xylan was extracted using a low alkali charge 

maintained pulp yield, viscosity and kappa number as non extraction. Due to extraction, the 

handsheet’s burst index was reduced whilst less difference in tensile index, tear index and 

breaking length between pulps produced from extracted and non extracted materials were 

observed. Extraction can more likely preserve fibre strength properties if initial xylan 

solubilisation yield can be reduced. 

 

Application: This study provided information about the amount of polysaccharides 

(particularly xylan) to be extracted and best pulping process to be used for integration of 

dilute acid hemicelluloses pre-extraction on hardwood and pulping process within the context 

of pulp mill biorefinery. 
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1. Introduction 

During commercial chemical pulping processes, significant amounts of 

hemicelluloses and small amounts of cellulose are removed from wood together with 

lignin [1]. The extracted hemicellulosic products are very complex, hindering their 

separation and further purification from the pulping black liquor [2]. Instead, the black 

liquor is generally burned in the chemical recovery unit along with lignin to produce 

steam for mill operations [1]. However, hemicelluloses provide less than 20% of total 

energy for a recovery furnace as the bulk of the energy is derived from the burning of 

lignin [3]. This means that hemicelluloses are not utilised efficiently in the combustion 

process. Moreover, hemicelluloses can be used as raw material for production of furans, 

xylitol, bioethanol or as strength additives for paper-making [4, 5]. Which represents a 

significantly higher value application than thermal energy production. In this context, the 

extraction of hemicelluloses prior to pulping could provide value-added products in a 

pulp mill biorefinery approach [4]. Moreover, as extraction reduces the mass of wood 

material, it enables the loading of more material in the digester thereby improving 

productivity [6]. The amount of extracted hemicelluloses, however, must be limited since 

a required amount of hemicelluloses is necessary in the pulp to maintain pulp yield and 

paper properties [7, 8].  

Extraction of hemicelluloses from hardwoods (aspen, birch, E. globulus, and sugar 

maple) with dilute acids prior to kraft or sodaAQ pulping has been performed on 

laboratory [9, 10]; semi-large and industrial scale [8, 11]. The application of dilute acid 

extraction prior to kraft pulping process has been shown to decrease the overall pulp yield 

of the extracted wood chips and other pulp properties such as viscosity and brightness 

[10].  

The combination of acid extraction and subsequent sodaAQ pulping of the extracted 

wood chips afforded higher pulp yields than when the kraft pulping process was used [9]. 

Other acidic extraction methods such as hot water also imply reduction on pulp yields but 

with comparable pulp viscosity [12, 7].  
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The overall assessment of the results obtained from the reference studies shows that the 

major disadvantages of performing an acid extraction prior to pulping are decreased pulp 

yield and reduction in strength properties of pulps, due to cellulose depolymerisation 

(hydrolysis) and decreased residual xylan content [8, 7, 12]. Thus, careful selection of 

dilute acid extraction conditions is necessary to minimise the negative impact on residual 

fibres. 

Eucalyptus grandis is one of the main timber sources for pulp and paper production in 

South Africa [13]. The objective of this study was to investigate the yield of dilute acid 

hemicelluloses extraction under various extraction conditions from E. grandis grown in South 

Africa prior to alkaline pulping. Kraft or soda anthraquinone (sodaAQ) pulping was 

performed on the extracted cellulignin residue to develop a combined process for the 

production of a hemicelluloses hydrolysate and pulp. The feasibility of these integrated 

processes was evaluated not only by the xylan yield, but also by the hemicelluloses and the 

nature of holocellulose retained in the wood chips for the subsequent pulping process. Pulping 

of selected extracted wood chips was performed at micro-scale under different conditions and 

large scales. The effect of hemicelluloses extraction on pulp yield and pulp quality measured 

as handsheet paper properties was determined. 
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2. Materials and methods 

2.1. Materials 

Eucalyptus grandis chips were supplied by Sappi Manufacturing, Pty (Ltd), South 

Africa. The E. grandis chips were screened and a 4 - 8 mm chip size fraction was selected for 

further experiments. The material was conditioned at 23°C and 55% relative humidity before 

use. Sodium hydroxide (NaOH) and sulphuric acid (H2SO4) were purchased from Merck, and 

BUSPERSE 2262 anthraquinone (AQ) was obtained from Buckman Laboratories, 

Hammarsdale, South Africa. 

2.2. Wood chemical analysis 

The fraction of air dried E. grandis chips was sub-sampled and ground in a Retsch 

mill to 40 mesh size and used for chemical analysis. Oven dry mass (ODM) was obtained by 

heating at 105±2°C until a constant mass was achieved. Ash content, ethanol/cyclohexane 

solubility, hot water solubility and acid insoluble lignin were determined according to TAPPI 

standard methods, T211 om-85, T264 om-88 and T222 om-88 respectively [14]. Four 

replicates were used.  

The sugars (glucan, xylan and arabinan) and acetic acid in E. grandis were 

determined after hydrolysis with 72% H2SO4, according to National Renewable Energy 

Laboratory (NREL) Analytical Procedure (LAP 013) [15]. The high pressure liquid 

chromatograph (HPLC) system used for quantification comprised of a spectra system P2000 

pump, an auto-sampler (AS3000), a UV1000 detector and a Shodex RI-101 refractive index 

detector. An Aminex HPX-87H Ion Exclusion Column was equipped with a Cation-H 

cartridge (Biorad, Johannesburg, RSA). Sugars were measured with an RI detector whereas 

the acetic acid was analysed with a UV detector. The column was operated at 65°C with a 

mobile phase of 5mM H2SO4 and a flow rate of 0.6 mL min-1.  
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2.3. Hemicelluloses extraction of E. grandis wood chips 

2.3.1. Experimental design 

The experiments on dilute acid extraction were carried out according to a 23 full 

factorial experimental design created and evaluated in Statistica 7.1 (Statsoft Inc., Tulsa, 

USA) and Design Expert version 8 [16]. Dilute H2SO4 extraction variables were: acid 

concentration (0.3 - 0.7% v/v), temperature (120 - 140°C) and extraction time (20 - 30 min). 

Three assays were carried out at the center point to estimate the random error required for the 

analysis of variance (ANOVA). Xylan content of the liquid and glucan content of the solid 

fraction were taken as the responses of the factorial designs. The statistical significance of the 

regression coefficient was determined by the coefficient of determination, R2. 

2.3.2. Dilute acid extraction 

Air dried samples containing 100 g oven dry wood chips (4 - 8 mm thickness) and 

H2SO4 solutions were mixed according to a 23 full factorial design and introduced into micro 

reactors (bombs). The solid to liquor ratio was 1:4 g/mL. Filled bombs were placed in a 

digester of 15 dm3 capacity enclosed by heating jackets. Selected reaction temperatures (120 - 

140ºC) were monitored with thermocouples at different extraction times (25 – 30 minutes). 

2.4. Liquid fraction characterisation from dilute acid extraction 

After extraction, the bombs were cooled in a water bath at room temperature. The 

liquid and the solid fractions were separated by filtration on a 100 mesh screen. The liquid 

fraction was filtered through 0.2 µm membranes and analysed for its sugars (xylose, glucose 

and arabinose), acetic acid and sugar degradation products (furfural and 

hydroxymethylfurfural) using the HPLC procedure described in NREL method [17]. The 

fractions of the xylan-rich hydrolysates were further subjected to a post hydrolysis treatment 

using a dilute acid treatment at 121ºC for 10 min to convert all the remaining oligosaccharides 

to monosaccharides as described in the NREL method [15]. Acid soluble lignin (ASL) was 

quantified by Ultra Violet (UV) spectroscopy method, determining the absorbance of 

hydrolysate at 205 nm wavelength, using the 1 cm light path cuvette. A 4% solution of H2SO4 

was used as reference blank.  
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The concentration of ASL was determined employing equation: 

 

ASL, estimated (g/L) = { [A]/ [b x a] } x df  (1) 

Where A = absorbance at 205 nm, df = dilution factor; b = cell path length, 1 cm; a = 

absorptivity, equal to 110 L/g cm 

 

2.5. Characterisation of solid fraction obtained after dilute acid extraction 

The wood chips obtained after dilute H2SO4 extraction was rinsed with distilled water 

until neutral, and air dried. The solid fraction was milled to 40 mesh size and the 

polysaccharides and residual lignin content were determined using the same standard methods 

as those used for the raw materials except for the extractives determination [14]. The 

extraction mass balance (EMB) can be calculated with the following equation [18]: 

 

Extraction mass balance = ∑CLi + ∑CSi    (2) 

    ∑CRi 
 
Where Ci is the mass of each sugar (glucose or xylose) component as determined 

through HPLC, the subscripts L, S, R refer to the extracted liquid, extracted solids and raw E. 

grandis respectively. 

 

2.6. Scanning electron microscope 

The portion of the E. grandis residue from dilute sulphuric acid pre-extractions was 

mounted onto metal stubs with double-coated carbon adhesive tape. The samples were 

sputtered with gold in a high vacuum S150A sputter coater. Finally, the samples were 

examined using a LEO1430VP scanning electron microscope (SEM).  
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2.7. Micro-scale pulping after hemicelluloses extraction 

The acid extracted E. grandis wood chips were thoroughly washed with water to 

remove the acid and air dried. Washed E. grandis wood chips from extraction runs 3, 4 and 8 

(Table 2) were submitted to kraft (Table 4) or sodaAQ (Table 5) micro pulping. 

The experiments were carried out according to the central composite design created 

and evaluated by Statistica 7.1 (Statsoft Inc., Tulsa, USA). 

The pulping conditions used in this study were selected to achieve a kappa number range of 

20 - 27. Pulp kappa number (parameter related with remaining lignin levels in pulp) was 

determined by standard TAPPI method T236 cm-85.  

Kraft pulping cooking conditions were: active alkali (NaOH): 15.3 - 18.7%, sulfidity: 

21 - 26%, and pulping time: 20 - 70 min. The cooking conditions for sodaAQ pulping were: 

active alkali (NaOH): 15.3 - 18.7%, anthraquinone: 0.07 - 0.2%, and pulping time: 50 - 100 

min. Non-extracted E. grandis chips were also submitted to kraft or sodaAQ pulping under 

similar cooking conditions for comparison. The cooking conditions were selected in 

agreement with previous work done on kraft or sodaAQ pulping of hardwoods [13, 19, 20].  

The maximum cooking temperature was kept constant at 170°C and the solid-to-liquid ratio 

was fixed at 1: 4 g/mL dry mass for all pulping experiments. Pulping experiments were 

carried out in micro reactors (bombs) on dry wood chips containing 100 g oven dry material. 

Temperature and reaction time were monitored during the process. Cooking time was 

measured from the moment the system reached the maximum temperature. 

At the end of cooking, the fibres were separated from the black liquor and washed 

through a 10 mesh screen to separate the rejects (nondisintegrated pieces of wood chips) from 

the fibres. The accepted pulp was collected on a 100 mesh screen. The pulp was then screened 

through a 0.15 mm screen to remove shives (nondisintegrated fibre bundles) and then spin 

dried to a consistency of approximately 30%. Screened pulp yield was calculated as a 

percentage of ODM of the raw material using the formula: 

Pulp yield (%)   =        Oven dry mass of pulp          x     100   (3) 
                               Initial oven dry mass E. grandis 
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The rejects and the shives collected were placed in an oven to dry at 105°C until the constant 

mass was reached to establish the oven dry mass and weighed. The reject and shive content 

together were expressed as a percentage of original dry mass of E. grandis.  

 

2.8. Large scale pulping after hemicelluloses extraction 

Wood chips yielding the best results in micro pulping were repeated on a large scale 

in a 15 dm3 batch type digester. The cooking time was chosen to reach the targeted kappa 

number range of 20 - 27. Solid residue run 3 (0.3% v/v H2SO4, at 140°C for 20 min) was 

submitted to kraft or sodaAQ pulping processes. Non-extracted wood chips were pulped for 

comparison.  

Kraft pulps of non-extracted and H2SO4 extracted wood chips were generated by 

exposing 1000 g dry mass non-extracted or 885.2 g dry mass extracted material to 17% active 

alkali (NaOH) and 22% sulfidity for 90 minutes at 170°C. 

For SodaAQ pulps, 1000 g dry mass non-extracted or 882.9 g dry mass extracted 

material were exposed in a solution of 17% active alkali (NaOH) and 0.15% anthraquinone 

(AQ) for 120 minutes at 170°C. All active alkali and sulfidity masses were expressed as 

equivalent mass of Na2O. At the end of the cooking process, the fibres were treated as 

explained in section 2.5.  

Pulping black liquors were analysed for residual active alkali (RAA) according to 

TAPPI standard methods T625 cm-85. 

Screened pulp yield, rejects and kappa number were determined as described above. 

Pulp viscosity (parameter related with the degree of depolymerisation of pulp 

polysaccharides) was measured with a Brookefield viscometer instead of capillary 

viscometer. Pulp viscosity was determined by dissolving pulp sample into a 

cupricethylenediamine solution prepared according to TAPPI methods T230 om-89 [17]. The 

pulp solution was transferred to a Brookefield RVTD 382 viscometer and agitated at 100 rpm 

using a spindle number 21. The pulp viscosity was measured in centipoises (cP). 
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The development of handsheet strength, i.e. tear, burst and breaking strength of the 

pulp fibres, was evaluated by beating, using a Valley beater according to Tappi Standard 

T200 om-89.  

The pulp samples were beaten at different intervals and the drainage rate in Schopper Riegler 

(˚SR) was measured according to Tappi T227 om-99. Handsheets were formed according to 

Tappi T205 om-88 using British Standard handsheet making equipment. 

2.9. Testing of physical strength properties of the handsheet 

All handsheets were conditioned for 48 hours at 55% relative humidity and 23°C 

before being tested. The following strength properties were evaluated of each of ten 

handsheets according to TAPPI standards [14]. Burst index, breaking length and tear index 

was measured by TAPPI standards no, T403 om-91, T404 om-87, and T414 om-88, 

respectively. The brightness was measured in ISO units using a reflectance photometer (Zeiss 

Elrepho 65843, Germany). The standard deviation was below 5% showing good 

reproducibility. 
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3. Results and discussion 

3.1. Non-extracted Eucalyptus grandis wood chips composition 

The chemical composition of E. grandis wood chips is listed in Table 1. E. grandis 

contained a total of 3.3% extractives; 1.5% ash; 47.2% glucan; 14.9% xylan; 0.5% arabinose 

and 26.8% Klason lignin. These results compared well with those reported in the literature 

[21, 22]. E. grandis, like other hardwoods, have a high proportion of xylan compared to 

arabinan indicating that substantial amount of xylose will be generated during the acid 

extraction process [23, 24]. 

 

3.2. Dilute acid extraction of E. grandis wood chips 

3.2.1 Yield of sugars in the liquid fraction 

As illustrated in Table 2, the composition of the liquid fraction after different dilute 

H2SO4 extraction of the E. grandis wood chips conditions consisted of a mixture of sugars, 

sugar oligomers, xylose and glucose degradation products (furfural and 

hydroxymethylfurfural respectively), acetic acid (generated from acetyl groups) and acid 

soluble lignin (ASL).  

The dilute H2SO4 extraction resulted in a xylo-oligomeric rich liquid fraction up to 

12.8% of the total xylan content. Increasing the temperature, acid concentration, extraction 

time and their interactions increased the solubilisation of xylan (Fig 1). The maximum xylan 

recovery of 60.2% (determined as 47.4% monomeric and 12.8% oligomeric) was obtained 

under the most severe conditions (run 8; Table 2). Under these conditions, the concentration 

of furfural and HMF was <2g/L and acetic acid was <10g/L which was below the inhibition 

limit for micro-organisms renders the liquid fraction suitable to be used for the production of 

biofuels such as bioethanol [10, 25]. Also, acid soluble lignin (ASL) up to 2.7% raw material 

was present in the liquid fraction showing minor solubilisation of lignin fraction. 

Previous reports of yields recovered xylose from hemicelluloses dilute H2SO4 extraction of E. 

grandis residues closely agree with those found in the present study [26]. 
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3.2.2 Statistical analysis after dilute acid extraction of E. grandis wood chips 

Statistical analysis was performed to evaluate the effect of process variables on xylan 

solubilisation and subsequent recovery in the liquid fraction. A first order model was 

developed to describe the relationship between xylan recovery (y1) in the liquid fraction with 

H2SO4 concentration (x1), temperature (x2) and extraction time (x3). The model’s suitability of 

fit and its statistical significance after eliminating the insignificant terms is shown in Table 3. 

Xylan recovery model is described by the following equation: 

y1 = 21.7+ 5.3x1 + 18.1x2 + 6.2x3 + 4.7x1x2 + 4.1x2x3              (4) 

The equation further confirmed that an increase in temperature was the factor that 

influenced the recovery of the solubilised xylose the most, followed by acid concentration, 

and then extraction time. The response surface described by the above model equation where 

xylan recovery is plotted as a function of H2SO4 concentration and temperature at a fixed 

extraction time of 25 minutes is shown in Figure 2. The response surface showed that an 

increase in H2SO4 concentration and temperature would increase the recovery of xylose 

product in the liquid fraction after solubilisation, expressed as percentage of xylan present in 

the raw material.  

However, these same conditions might produce undesired sugar degradation product such as 

furfural (Table 2), which limit the acceptable increases in control parameters of the extraction 

process [10, 26]. 

 

3.3. Chemical composition of extracted E. grandis wood chips 

Chemical analysis of extracted E. grandis wood chips was performed to examine 

changes of cellulose (glucan), lignin and xylan content caused by the extraction process 

(Table 2). To favor the subsequent pulping processes, the amount of glucan retained in the 

solid residue should be as high as possible. Enough xylan should be retained in the extracted 

wood chips as is required in pulping to improve pulp quality [8, 27].  
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Dilute H2SO4 extraction can selectively solubilise xylan resulting in glucan rich solid 

residues. However, most hardwoods contain about 5 - 10% easily hydrolysable cellulose 

which are dissolved under dilute concentrations below 1% v/v and at moderate temperatures 

[1]. Compared with glucan content in the original E. grandis (i.e., 47.2%), the glucan range 

after dilute acid extraction varied from yield 42.6% to 46.4% dry mass original material. 

Hydrolysis (depolymerisation) could result in cellulose with a reduced degree of 

polymerization (DP) and the formation of new reducing end groups, which can possibly 

increase peeling reactions in the subsequent high alkaline pulping process, resulting in a lower 

pulp yield [10, 27]. 

Dilute H2SO4 extraction resulted in higher acid insoluble (Klason) lignin content than 

the starting material, sometimes above 100% (Table 2; run 4 and run 8). This could be due to 

the repolymerisation of sugar degradation products (such as Furfural) and/or polymerisation 

with lignin to form a lignin-like material called pseudo-lignins [28]. In addition, pseudo-

lignins can be generated from carbohydrates without a contribution from lignin during dilute 

acid extraction especially under severe extraction conditions [29]. Scanning electron 

micrograph of dilute acid pre-extracted E. grandis residue showed the presence of spherical 

droplets on the outer surface of the extracted material that might be attributed to pseudo-lignin 

(Fig 3) [22]. Fibres covered by hydrophobic lignin could retard the penetration of chemicals 

and lignin solubilisation during pulping of the extracted wood chips [11]. 

The xylan retained in the extracted wood chips was obviously influenced by xylan 

solubilisation during the acid extraction. The xylan content of wood chips from dilute 

sulphuric acid pre-extraction varied from 5.2% to 14.4% dry mass of the respective 14.9% 

xylan present in the non-extracted E. grandis wood chips. The quantity of xylan removed 

from wood chips under dilute acidic conditions prior to pulping might reduce the interfibre 

bonding of the pulp, hence a decrease in tensile and burst indexes of paper handsheets may be 

observed [7, 10, 12]. 
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3.4. Evaluation of pulp properties at micro-scale 

In order to evaluate the efficiency of xylan pre-extraction together with subsequent 

pulping in an integration approach, micro pulping experiments of selected extracted E. 

grandis were performed, with non-extracted E. grandis chips used as control. The screening 

criteria were used to identify the pulping conditions for E. grandis chips obtained after xylan 

extraction that could provide similar pulp yield and kappa number, as those of pulps produced 

from non-extracted material. E. grandis chips obtained from dilute H2SO4 pre-extraction 

condition runs 3, 4, and 8 were used. These dilute H2SO4 conditions were selected to 

incorporate the range of xylan (determined as xylose + oligomer) removed from the 

feedstock, at 21.3, 39.5 and 60.2% for runs 3, 4, and 8, respectively (Table 2). 

In Table 4 and 5, the comparative values of screened pulp yield, rejects and kappa 

number of the pulps obtained from extracted E. grandis wood chips of runs 3, 4, and 8, and 

non-extracted wood chips after kraft and sodaAQ micro-scale pulping respectively are shown.  

Generally, extracted wood chips with 39.5% (run 4) and 60.2% (run 8) xylan 

extraction produced dark and low yield pulps with high rejection levels (Table 4 and 5). This 

finding could be attributed the higher xylan removal of the initial extraction together with the 

decrease in molecular mass of xylan under acidic conditions. Thus, the increased content of 

reducing end groups and the xylan becomes easily soluble in the subsequent alkali medium. 

Consequently, cellulose became more susceptible to the peeling reaction because the xylan 

layer on the cellulose fibrils was partially removed, hence the decrease in pulp yield [10, 11]. 

The hydrophobic nature of lignin might have affected the ability of pulping liquor to penetrate 

and diffuse through the cell wall structure of the plant material, hence high rejection levels 

[23]. In a previous study, H2SO4 extraction of hemicelluloses from aspen hardwood chips 

prior to kraft pulping produced dark and brittle wood chips undesirable for subsequent pulp 

production [11]. 

The wood chips from run 3, from which 21.3% of xylan was extracted, showed less 

difference in pulp yield compared to non extraction.  
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An interesting result in Table 4, show that extracted wood chips from run 2 required 1% point 

lower alkali charge and 15 minutes shorter cooking time compared to the non-extracted wood 

chips (run 11) to reach a similar pulp yield (52.8% vs 52.3%). However, the benefit is 

lowered relative to non extraction by higher kappa number (34.4 vs 28.8) as enhanced 

delignification could reduce the pulp yield [19]. Regards to sodaAQ pulping process, of the 

pulping conditions shown in Table 5, the optimum one was run 13 for acid extraction 

provided the pulp yield (50.5%), which was comparable to pulps from non-extracted material 

of run 14 (50.2%). Dilute acid extraction allowed a reduction of 50 minutes in cooking time 

with aqueous solution of 17% active alkali and 0.15% AQ. A similar trend of reduction in 

cooking time was observed when sugar maple chips were given an acid pretreatment and then 

delignified by sodaAQ [9]. However, in the present study, it was necessary to delignify to 

higher kappa number (36.7 vs 30.7) to maintain optimum pulp yields for acid extracted wood 

chips.  

 The wood chips from run 3, from which 21.3% of xylan was extracted, was therefore 

preferred to wood chips from which 39.5% and 60.2% xylan was extracted for further pulp 

quality and handsheet paper strength evaluation. 

 

3.4.1 Statistical analysis after kraft and sodaAQ pulping of acid extracted E. grandis wood 

chips 

The models (Eqn 5 and 6) used to evaluate the data obtained after kraft (Table 4) or 

sodaAQ pulping (Table 5) of acid extracted wood chips (run 3) were refined according to the 

analysis of variance (ANOVA). As shown in Table 6 the models fitted the experimental data 

well after elimination of insignificant terms. The experimental variables i.e. active alkali (x1), 

sulfidity (x2) and pulping time (x3) after kraft pulping had significant influence only on kraft 

pulp yield of extracted wood chips and can be explained by the following second order 

equation: 

Pulp yield (%) = 38.8 - 3.1x1 - 2.7x2 + 5.0x1 
2 + 5.3x2

2 + 3.6x3
2                 (5) 
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The equation revealed that active alkali (NaOH) and sulfidity are the most influencing 

variables on pulp yield during kraft pulping. By using the equation it may be recommended 

that longer pulping time at lower active alkali and sulfidity could be used to improve the pulp 

properties such as kappa number. This recommendation is in accordance with the literature 

[12, 28, 30]. 

On the other hand, no statistical significance was found for the second order model 

between pulp yield or kappa number and the process variables performed with sodaAQ 

pulping process. The results were considered to be described better by the first order model. 

The statistical significance of active alkali (NaOH) concentration, pulping time and the 

interaction between these variables was shown only on the kappa number of the pulp 

produced from acid extracted wood chips. Nonetheless, kappa number is one of the most 

important pulp property used to measure the efficiency of pulping processes [31]. 

First order regression equation 6 describes the kappa number of the H2SO4 extracted 

wood chips as a function of active alkali concentration (x1) and pulping time (x2)  

Kappa number = 37.9 - 1.6x1 + 0.7x2 - 1.1x1x2                 (6) 

The negative sign of the active alkali concentration coefficient and the positive sign 

of the pulping time coefficient in Eqn 6 suggest low kappa number at lower dosages of alkali 

charge and longer pulping times. However, excessive delignification might negatively affect 

the fibre quality resulting in low pulp yield and paper strength properties [24].  

 

3.5. Evaluation of pulp properties from dilute acid extracted wood chips on large scale 

Kraft or sodaAQ pulping of E. grandis chips from which 21.3% xylan was extracted 

was repeated on a large scale to confirm the micro pulping results. Non-extracted wood chips 

were also pulped. Based on micro pulping results, the pulping time was extended for all cooks 

to establish the desired bleachable kappa number range (20 - 27). Previously, increase in 

cooking time reduced kappa number but also resulted in additional pulp yield loss [10, 19]. 

The cooking conditions and yields are presented in Table 7.  
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Acid extraction can be beneficial due to improvement of the pulping capacity by 12% 

since the extracted wood chips have a lower mass (882.9 - 885.2 g) compared to non 

extraction (1000 g). In addition, the total NaOH used for kraft or sodaAQ cooking of acid 

extracted E. grandis wood chips was reduced (171.8 g vs 194.1g) and (150.1 g vs 170 g) 

respectively. 

 

3.5.1 Pulping performance 

No suitable conditions were found in this study for the combined acid extraction and 

subsequent kraft pulping process that resulted in similar pulp yield and properties when 

pulping non-extracted wood chips. Dilute acid extraction caused reduction in screened pulp 

yield and residual active alkali of the kraft process at higher kappa number relative to non 

extraction. A decrease in kraft pulp yield due to acid pre-extraction was confirmed for birch 

wood [12]. Pulp viscosity was reduced by acid pre-extraction possibly due to high cellulose 

degradation [10, 11, 32] and this might results in handsheet strength loss, which can limit 

pulps applications [19]. Dilute acid pre-extraction also decreased the xylan content of the 

pulps emphasing the hypothesis of handsheet strength loss [7, 10, 12].  

Unlike the kraft process, the combined process of dilute H2SO4 xylan extraction and 

modified sodaAQ pulping preserved the pulp yield and quality. The screened yield, viscosity, 

reject levels, kappa numbers and residual active alkali were similar to those of non-extracted 

wood chips probably due to the protective behavior of AQ on polysaccharides against peeling 

reactions [20, 32].  

 

3.6. Effect of dilute acid xylose extraction on handsheet properties 

Regarding handsheet strength properties, the main effect of reduced viscosity and 

xylan content was observed in burst, tensile, tear indexes and breaking length of kraft pulps 

produced from dilute acid extracted materials (Table 7).  
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The handsheet burst, tensile, tear indexes and breaking length were decreased by 20.8%, 

14.6%, 41.7% and 23.7% respectively at maximum degree of beating. Several authors suggest 

that the main effects of acid pre-extraction on pulp strength properties were the consequence 

of reduction in interfibre bonding [8, 19]. Furthermore, the significant reduction in tear index 

showed the importance to regulate the refining/beating conditions for pulps produced from 

acid extracted wood chips to obtain maximum fibre properties rather than accepting 

freeness/drainage levels required for kraft pulps produced from non-extracted wood chips. 

On the other hand, the differences in handsheet strength properties were lower when 

sodaAQ was applied in acid extracted wood chips. Acid extraction prior to sodaAQ pulping 

reduced the handsheet’s burst index by 17.0% whereas a minimal loss of 8.7%, 2.4%, and 8.5 

% were observed for tensile index, tear index and breaking length respectively at maximum 

degree of beating. Smaller decrease in xylan content retained in pulps produced from acid 

pre-extracted material was observed compared to pulps produced from non extracted material, 

hence, less difference in tensile index, tear index and breaking length. Nevertheless, the pre-

extraction promoted an increase in optical brightness.  

The low strength properties observed from kraft or sodaAQ pulps produced from acid 

extracted wood chips enabled to be used for printing and writing papers where strength is of 

lower importance [33, 34]. 

Among the two pulping methods tested in combination with dilute H2SO4 xylan 

extraction, sodaAQ confirmed its good potential in terms of moderate cooking conditions, 

comparable pulp yields and strength properties compared to kraft pulping. 
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Conclusions 

Xylan from E. grandis wood chips was extracted with dilute H2SO4 acid prior to 

pulping and the extracted wood chips were pulped to evaluate a conceptual approach to a pulp 

mill biorefinery. About 60.2% xylan present in E. grandis wood chips can be extracted under 

suitable conditions. From pulp mill biorefinery perspective, the xylan extraction from South 

African grown E. grandis wood chips should be limited to less than 20% to maintain the pulp 

yield without reduction in viscosity after modified sodaAQ pulping process. The strength 

properties of the resulting pulps can be acceptable for paper production depending on the 

extent of xylan extracted. A potential increase of digester load by 12% was observed. Dilute 

H2SO4 extraction prior to kraft pulping was detrimental to pulp yield and quality.  
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Tables 

 

Table 1 Chemical composition of non-extracted E. grandis wood chips. 

Components are expressed as percentage of the original oven dry material (% ODM). 

Component % ODM* Analytical methods 

Ethanol/Cyclohexane 
soluble extractives 

2.2 ± 0.2 
Extractives 

Water soluble extractives 1.1 ± 0.4 
TAPPI T264 om-88 

Carbohydrates 
Glucan                                
Xylan                            
Arabinan 

47.2±4.2  
14.9±1.1    
0.5 

LAP 013 

Klason lignin (acid insoluble lignin) 26.8± 1.7 TAPPI T222 om-88 

Ash content  1.5 ± 0.5 TAPPI T211 om-85 
(*) Mean values and standard deviation of four measurements. 
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Table 2 The composition of liquid and solid fraction after sulphuric acid extraction of E. grandis under process variables defined by a 23 full factorial design. 

Pre-extraction conditions Liquid fraction d
Solid fraction 

e
EMB 

 
 
 
Run 

 
H2SO4 
%         
x1 

 
Temp   
°C        
x2 

 
Time   
min      
x3 

 

*
a
Xyl 

(%) 

 

b
Xyl % 

theoretical 

 
Xylo-
oligomer 
% 

c
Xylan 

recovery 
yield % 

 
 
*Glc 
% 

 
 
*ASL 
% 

 
 
Acetic 
acid g/L 

 
Furfural 
+ HMF 
g/L 

 
 
Glc 
% 

 
 
Xyl    
% 

 
 
*AIL 
% 

 
 
Glc     
(%) 

 
 
Xyl         
(%) 

 
 
Lignin 
(%) 

1 0.3 120 20 0.1 0.5 0.6 1.1 0.2 0.4 0.9  46.1 14.4 24.9 98.1 97.8 94.4 
2 0.3 120 30 0.1 0.5 1.4 1.9 0.3 0.7 2.1 0.31 45.3 13.7 25.2 96.7 93.8 96.6 
3 0.3 140 20 3.2 19.5 1.8 21.3 0.4 1.4 1.3 0.2 43.1 11.4 24.0 92.2 98.0 94.8 
4 0.3 140 30 4.5 30.3 9.2 39.5 0.5 1.9 2.9 0.18 43.9 8.4 25.3 94.0 95.9 101.5 
5 0.7 120 20 0.2 1.5 3.4 4.9 0.1 0.5 0.8  44.9 12.9 25.4 95.5 91.5 96.6 
6 0.7 120 30 0.5 3.4 3.1 6.5 0.2 0.7 0.7 0.03 46.4 13.3 24.6 98.7 95.8 94.4 
7 0.7 140 20 5.2 35.2 5.1 40.2 0.4 2.5 4 0.29 43.0 8.4 23.9 91.9 96.6 98.5 
8 0.7 140 30 7.1 47.4 12.8 60.2 0.7 2.7 5.7 0.88 43.2 5.2 25.8 93 95.0 106.3 
9-11 0.5 130 25 5.0 

± 
0.2 

33.6 
± 
1.7 

11.6 
± 
1.5 

45.2 
± 
1.4 

5.0 
± 
1.0 

1.7 
± 
0.1 

3.4 
± 
0.1 

0.02 42.6 
± 
0.2 

7.2 
± 
0.5 

23.9
± 
1.3 

91.2 93.2 94.8 

a
Xylose based on g/100g raw material

 

b
Analysis data are based on the oven dry mass of xylan in non-extracted E. grandis  

c
Obtained by addition of Xylose (% theoretical) and Xylo-oligomer (%) 

d
Analysis data are based on the oven dry mass of non-extracted E. grandis 

e
Extraction mass balance (EMB) was calculated for each component in the E. grandis as e.g. xylan in the liquid and solid fraction after Run 3 were 3.2% and 

11.4% respectively, and the raw E. grandis has 14.9% xylan before the extraction. The total extraction mass balance = [(3.2+11.4)/14.9]*100 = 98.0%.
 

*Xyl – Xylan; Glc – Glucan; ASL – Acid soluble lignin; AIL – Acid insoluble lignin 
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Table 3 Analysis of variance for the regression model of xylan solubilisation after dilute 

sulphuric acid extraction of E. grandis chips. 

Source Sum of squares 
Degree of 
freedom 

Mean square F-value Prob > F 

Model 3472.1 6 578.7 457.7 0.0002 
X1 223.9 1 223.9 177.1 0.0009 
X2 2627.0 1 2627.0 2077.9 <0.0001 
X3 309.7 1 309.7 244.9 0.0006 
X1X2 176.0 1 176.0 139.2 0.0013 
X1X3 0.07 1 0.07 0.06 0.8255 
X2X3 135.4 1 135.4 107.1 0.0019 
Curvature 1197.6 1 1197.6 947.3 <0.0001 
Lack of Fit 0.1 1 0.1 0.06 0.8354 
Pure Error 3.7 2 1.6   
Cor Total 4673.5 10    
Residual 3.8 3 1.3   
R2 0.998     
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Table 4 Kraft micro-scale pulping results according to the central composite design for run 3 (21.3%); run 4 (39.5%) and run 8 (60.2%) xylan extracted from 

E. grandis chips. 

 Kraft pulping process 

 Pulping Conditions Screened pulp yield (%) Kappa number Rejects (%) 

Run AA       
(%) 

Sulfidity 
(%) 

Time 
(min) Run 3 run 4 Run 8 non-

extraction Run 3 run 4 run 8 non-
extraction run 3 run 4 run 8 non-

extraction 

1 16 22 60 47.0 33.9 28.6 44.9 33.5 33.3 35.3 30.9 0.04 1.32 1.29 0.31 
2 16 22 30 52.8 34.2 32.4 46.5 34.4 33.8 33.7 30.3 0.06 1.14 0.43 0.10 
3 16 25 60 47.9 31.9 27.2 43.6 34.2 33.5 34.0 29.6 0.04 1.42 1.05 0.08 
4 16 25 30 45.3 37.5 28.8 45.1 34.7 32.9 34.9 30.2 1.06 0.92 0.57 0.56 
5 18 22 60 46.3 34.6 28.7 45.8 33.3 32.3 33.3 29.3 0.04 0.06 0.45 0.06 
6 18 22 30 45.6 32.2 29.8 47.9 34.9 32.7 33.8 29.7 0.71 0.19 0.24 0.20 
7 18 25 60 41.9 35.1 29.7 50.3 34.3 32.0 33.3 29.5 0.19 0.23 0.26 0.04 
8 18 25 30 43.3 31.9 29.4 39.3 33.8 32.9 33.4 30.6 0.29 0.20 0.23 0.17 
9 15.32 23.5 45 46.6 30.7 30.3 47.7 33.7 33.2 34.6 30.4 0.04 0.29 0.24 0.08 
10 18.68 23.5 45 43.5 34.1 32.4 58.3 33.6 33.2 33.9 27.8 0.08 0.16 0.10 0.10 
11 17 20.98 45 47.1 32.5 35.0 52.3 34.2 33.0 33.8 28.8 0.06 0.21 0.46 0.08 
12 17 26.02 45 44.0 37.8 43.2 56.3 33.2 32.8 33.1 28.1 0.13 0.15 0.12 0.06 
13 17 23.5 70 43.1 28.2 42.0 44.3 33.3 32.6 33.6 29.6 0.08 0.10 0.07 0.12 
14 17 23.5 20 43.2 30.9 43.6 43.7 35.3 33.9 34.2 30.7 0.00 0.61 0.85 0.00 
15-19 17 23.5 45 38.9±0.9 33.4±3.3 33.7±1.8 46.0±0.2 33.9±0.1 33.1±0.3 32.6±0.5 29.4±0.6 0.1±0 0.1±0 0.1±0.1 0.1±0.1 
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Table 5 SodaAQ micro-scale pulping results according to the central composite design for run 3 (21.3%) and  

run 4 (39.5%) xylan extracted from E. grandis chips. 

 SodaAQ pulping process 

 Pulping Conditions Screened pulp yield (%) Kappa number Rejects (%) 

Run AA 
(%) 

AQ     
(%) 

Time 
(min) run 3 run 4 non-

extraction run 3 run 4 non-
extraction run 3 run 4 non-

extraction 

1 16 0.10 60 45.6 29.2 46.8 37.8 40.1 31.9 10.6 11.89 0.44 
2 16 0.10 90 37.3 31.1 48.8 39.6 40.1 31.4 13.1 12.04 0.74 
3 16 0.2 60 42.0 29.7 44.2 37.8 40.0 32.3 6.7 12.08 0.62 
4 16 0.2 90 37.9 31.3 48.7 39.6 40.1 31.9 8.5 10.14 0.75 
5 18 0.10 60 41.5 35.7 52.0 36.9 36.6 31.9 2.9 5.57 1.98 
6 18 0.10 90 47.3 37.2 47.4 36.8 35.1 30.9 6.4 10.00 0.19 
7 18 0.2 60 45.3 36.4 46.3 37.8 38.2 31.1 5.4 6.01 0.30 
8 18 0.2 90 41.7 34.8 49.1 36.9 37.1 30.4 4.7 2.79 0.21 
9 15.32 0.15 75 36.6 30.2 45.7 38.9 40.0 32.2 14.9 15.00 1.30 
10 18.68 0.15 75 43.1 35.4 49.5 35.5 36.2 30.9 4.1 6.05 0.48 
11 17 0.07 75 42.6 34.0 52.4 37.4 40.0 31.5 6.8 10.66 0.50 
12 17 0.23 75 40.3 34.1 49.4 38.9 39.9 31.9 5.4 2.08 1.49 
13 17 0.15 50 50.5 35.9 49.9 36.7 39.8 33.0 4.2 11.06 1.24 
14 17 0.15 100 36.7 35.7 50.2 39.7 39.7 30.7 7.5 7.30 0.54 
15-19 17 0.15 75 41.2±1.5 33.3±0.6 48.9±1.2 37.6±0.4 39.9±0.1 31.9±0.4 7.4±2.9 9.8±0.2 0.3±0 
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Table 6 Analysis of variance (ANOVA) of the regression models of the pulp yield obtained after kraft pulping and kappa number obtained 

after sodaAQ pulping of dilute acid extracted E. grandis wood chips. 

Kraft pulping  SodaAQ pulping 

Source 
Sum of 
squares 

Degree of 
freedom 

Mean 
square 

F- 
value 

Prob > F  Source 
Sum of 
squares 

Degree of 
freedom 

Mean 
square 

F-
value 

Prob > F 

Model 163.92 6 27.32 5.59 0.0088  Model 8.97 6 1.49 10.46 0.0403 
x1 32.42 1 32.42 0.024 0.0243  X1 0.84 1 0.84 5.9 0.0933 
x2 25.46 1 25.46 5.21 0.0457  X2 0.11 1 0.11 0.79 0.4386 
x3 17.7 1 17.77 3.63 0.0858  X3 5.27 1 5.27 36.9 0.009 
x1

2 69.86 1 69.86 14.28 0.0036  X1X2 0.094 1 0.094 0.66 0.4773 
x2

2 79.64 1 79.64 16.28 0.0024  X1X3 2.53 1 2.53 17.74 0.0245 
x3

2 36.44 1 36.44 7.45 0.0212  X2X3 0.11 1 0.11 0.79 0.4386 
       Curvature 0.22 1 0.22 1.57 0.2984 
Residual 48.91 10 4.89    Residual 0.43 3 0.14   
Lack of Fit 47.28 8 5.91 7.24 0.127  Lack of Fit 0.094 1 0.094 0.56 0.5324 
Pure Error 1.63 2 0.82    Pure Error 0.33 2 0.17   
Cor Total 212.83 16     Cor Total 9.62 10    
R2 0.87      R2 0.96     
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Table 7 Kraft and sodaAQ large pulping conditions and pulp characteristics for non-extracted and 

dilute acid extracted E. grandis wood chips (21.3% dry mass xylan extracted with 0.3% v/v 

H2SO4 at 140°C for 20 min) 

 Pulping Process 

 Kraft  SodaAQ 

Cooking parameters 
non-
extracted 

0.3% v/v H2SO4, 
140˚C, 20 min 

 
Non-
extracted 

0.3% v/v 
H2SO4, 140˚C, 
20 min 

Pulping conditions 

Active alkali (%) 17 17  17 17 
Sulfidity (%) 22 22  - - 
Anthraquinone (%) - -  0.15 0.15 
Time at 170 ˚C (min) 90 90  120 120 
Chips/residue (OD, g) 1000 885.2  1000 882.9 

NaOH in chips/ residue (g) 170 150.4  170 150.1 

NaOH from Na2S (g) 24.1 21.4    

NaOH total in cook (g) 194.1 171.8    
NaSH charge (g) 39.6 35    

Pulp characteristics 

Screened pulp yield (%) 45.7±1.0 40.9±2.0  43.9±0.5 42.3±1.5 
Rejects (%) 1.7±0.5 5.2±0.3  4.4±1.1 4.1±0.8 
Kappa number 20.0±2.5 26.8±1.5  22.8±2.0 20.9±1.3 
Viscosity (cP) 7.2±1.2 5.2±1.1  6.3±1.2 6.7±2.1 

Carbohydrate composition of pulp according to LAP 013 

Glucan (%) 72.7 72.1  77.7 72.7 
Xylan (%) 22.3 18.1  21.8 20.7 

Black liquor characteristics 

Residual alkali (g/L) 7.4±2.0 2.9±1.4  3.8±1.5 3.2±1.3 

Handsheet properties 

Drainage rate (°SR) 44 45  40 43 

Burst index (kPa.m2/g) 5.3±1.1 4.2±1.5  4.7±1.0 3.9±0.8 

Tensile index (Nm/g) 51.9±1.9 44.3±2.2  45.9±1.5 41.9±2.0 
Breaking length (km) 5.9±0.5 4.5±0.5  4.7±0.8 4.3±1.2 

Tear index (mN.m2/g) 8.4±1.3 4.9±1.5  4.1±1.8 4.0±1.5 

Brightness (% ISO) 48.4±2.0 37.8±2.4  38.0±1.9 42.2±1.8 
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Figure captions 

Fig 1. Standardized Pareto chart to estimate the effects of concentration, temperature and 

extraction time on xylan solubilisation in the liquid fraction after dilute sulphuric acid extraction. 

Fig 2. Estimated response surface described by the model equation (1) for xylan yield 

obtained after sulphuric acid extraction showing the influence of temperature and sulphuric acid 

concentration for an extraction time of 25 minutes.  

Fig 3. Scanning electron microscope micrograph showing pseudo-lignin deposits on 

wood chip surface after dilute sulphuric acid extraction of E. grandis.  
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Fig 2 
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Fig 3 
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Abstract 

The alkaline extraction of hemicelluloses from hardwoods prior to pulping, for further 

conversion to value added products, seems to be a promising pathway for current paper mills to 

increase profit and improve sustainability. However, the amount of hemicellulose extracted will 

be limited by the requirement to maintain pulp quality and pulp yield in comparison to existing 

pulping processes. The effects of NaOH concentration, temperature and time on hemicellulose 

extraction of Eucalyptus grandis were studied, using a statistical experimental design. Extracted 

wood chips were subjected to kraft pulping to evaluate the effect of the extraction on cooking 

chemicals, pulp quality and handsheet paper strengths.  

The selective xylan recovery (12.4% dry mass) from E grandis combined with low cooking active 

alkali charge and less cooking time advantaged the xylan extraction and subsequent modified 

kraft pulping process under the studied conditions. Pulp viscosity, breaking strength and tensile 

index of handsheets were slightly improved.  

Keywords: biorefinery, xylan extraction, Eucalyptus grandis, kraft pulping, pulp quality, 

handsheet paper strength 
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1. Introduction  

The transition of the current pulp mills into the so called integrated forest biorefinery 

(IFBR) entails the incorporation of a hemicellulose extraction step for an efficient use of the raw 

material.[1-2] During kraft pulping hemicelluloses are degraded into low value hydroxyl acids and 

end up in the black liquor with degraded lignin and thus cannot be utilized directly in its 

polymeric form.[1] 

High molar mass hemicelluloses may be used in novel industrial applications such as 

biopolymers and barrier films, and could also, after hydrolysis, serve as a source of sugars for 

fermentation to biofuels or specialty chemicals.[3-4] Hemicelluloses can be alternatively applied as 

wet end additive in papermaking.[5] Hardwood xylan obtained by alkaline extraction, for instance, 

has been shown effective to improve fiber bonding and surface sizing in paper making.[6] 

Eucalyptus grandis is one of the main sources of hardwood in the Southern hemisphere 

and most widely used in both wood and paper industries in South Africa, Brazil and other 

southern or tropical countries.[7] The regions with the largest hardwood areas in South Africa are 

the provinces of KwaZulu-Natal and Mpumalanga South where 541 000 ha was planted with 

Eucalyptus species in 2003. E. grandis occupied an area of 311 000 ha, 58% of the total 

hardwood area.[8] Economical and technical reasons for the utilisation of eucalypts come from its 

low production cost due to high forest productivity and high pulping yield.[9] The high pulp yield 

obtained from E. grandis is explained by a high content of syringyl lignin, which is easier to pulp. 

Moreover, eucalyptus xylan is highly rich in methyl glucuronic acid (MeGlcA), which contributes 

to a high yield for eucalyptus paper pulps.[10] 

Eucalyptus wood contains about 13% 4-O-methylglucuronoxylans, which represents 18% 

of its carbohydrate fraction and 71% of its hemicellulose content.[11] Hemicellulose dissolved 

from E. grandis during kraft pulping may reach 62% of their original amount and around 10% of 

the cellulose is lost as well, this shows a significant impact on process yield.[12]  

Hemicelluloses can be extracted from hardwoods via various methods such as dilute acid, 

hot water and alkaline extraction.[4,13-15]  
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However, minimal interference with the subsequent pulping process is required since the 

production of high quality papermaking fibres at high yield will remain the main concern for pulp 

and paper mills.[2] Hemicelluloses extraction will affect the mill production in different ways, for 

example, the severe conditions in hot water and dilute acid extraction can have a negative impact 

on the fibres. The cellulosic fibres can possibly be damaged, resulting in a reduction in the degree 

of polymerization (DP) of cellulose, pulp yield loss and/or lower strength properties of paper.[4,7] 

In contrast, under alkaline conditions extraction of hemicelluloses has been proven technically 

viable to a sufficient extent.[13-15] Hemicelluloses showed high solubility under alkaline conditions 

and no pH adjustment or water washing is required for subsequent alkaline pulping. Moreover, 

alkali extractions generally require temperatures below 90°C, to minimize carbohydrate 

modification reactions. Alkaline extraction of hemicelluloses from aspen hardwood chips prior to 

kraft pulping using 1 - 2 M NaOH at 50 - 90°C afforded about 20 - 25% of hemicelluloses while 

the pulp yield was maintained, although the reduction in pulp viscosity was observed.[13] 

The world production of pulps for paper manufacturing from eucalyptus has attained 10 

million tons/year, which is near one-third of the total hardwood pulp produced.[16] The 

international eucalyptus quantities processed provide an excellent starting point to consider the 

biorefinery approach, i.e. to adapt the existing chemical pulp mills to produce new value added 

products while continuing to meet the growing demand for pulp and paper. Previous studies have 

demonstrated the feasibility of alkaline pre-extraction on hardwoods.[13-15] In this context, this 

study firstly investigates the alkaline yield of hemicelluloses extraction under various reaction 

conditions from E. grandis grown in South Africa, prior to alkaline pulping with minimal 

interference on cellulose content. In following the biorefinery approach, the second objective was 

to pulp the extracted wood chips showed minimal degradation of cellulose content in the residual 

cellulignin using kraft pulping method to determine the effect of hemicelluloses extraction on 

pulp and paper quality.  
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The chemical charge during kraft pulping was as well controlled to optimize the pulp yield. The 

best extraction method was regarded as the one in which a maximum amount of hemicelluloses 

was recovered while simultaneously the yield and quality of the pulp was maintained at 

industrially acceptable levels (50% screened pulp yield with a kappa number of 22 or less).[17-18] 

 

 

2. Materials and methods 

2.1. Materials 

E. grandis chips were supplied by Mondi Business Paper in KwaZulu-Natal, South 

Africa. The wood chips were screened and a 4 - 8 mm chip size fraction was selected for further 

experiments. The material was conditioned at 23°C and 55% relative humidity before use. 

Pullulan standards purchased from Polymer Standard Service (PSS) in Germany were used to 

estimate molecular weight of the isolated xylan fractions 

 

2.2. Chemical composition of E. grandis wood chips 

Ground particles of 40 mesh size were used for the determination of E. grandis chemical 

composition. Moisture content was determined by drying a representative sample using an oven at 

105 ± 2°C until a constant mass was achieved. Ash content, ethanol/cyclohexane and hot water 

soluble extractives were determined according to TAPPI standard methods, T211 om-85 and 

T264 om-85 respectively (Table 1).[19]  

Before analysis of the monosaccharide content in the extractive free E. grandis, a two 

step hydrolysis with 72% and 4% sulfuric acid, respectively, was performed to convert oligomeric 

into monomeric sugars by the standard procedure recommended by NREL.[19] At the end of the 

acid hydrolysis, the amount of acid insoluble lignin was determined gravimetrically by filtering 

the hydrolysate through the Gooche crucible. The extracted wood chips collected were washed 

with deionised water until the filtrate had a neutral pH. The amount of acid insoluble lignin 

collected was determined after drying the extracted wood chips to constant mass at 105ºC for 4 - 5 

h.  
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Then the hydrolysate was filtered through 0.22 µm membranes and the acid soluble lignin 

was determined by a UV at 205 nm. Subsequently, the hydrolysate was analysed for sugars by a 

Thermo separation product HPLC. The HPLC system comprised of a spectra system P2000 

pump, an auto-sampler (AS3000), a UV1000 detector, and a Shodex RI-101 refractive index 

detector. An Aminex HPX-87H Ion Exclusion Column, equipped with a Cation-H cartridge 

(Biorad, Johannesburg, RSA). Sugars were measured with an RI detector. The column was 

operated at 65°C with a mobile phase of 5 mM sulfuric acid and a flow rate of 0.6 mL min-1. 

2.3. Xylan extraction of E grandis wood chips 

The mild alkaline extraction of xylan from E. grandis was performed as described 

elsewhere with some modifications.[13] The liquor-to-wood ratio was fixed at 4:1 L/Kg. The 100 g 

dry mass (DM) chips were mixed with NaOH (1 - 2 M) solution in Schott bottles and placed in a 

shaking, hot water bath and kept at the desired temperature (40 - 90°C) and time (120 - 240 min). 

At the end of the desired extraction time, the bottles were cooled in room temperature water. The 

extracted wood chips were collected by filtration on a 100 mesh screen, thoroughly washed with 

distilled water until the pH was neutral and air dried.  

A 23 full factorial experimental design created and evaluated in Statistica 7.1 (Statsoft 

Inc., Tulsa, USA) and Design Expert version 8 [21] was applied to determine the suitable 

combination of the extraction variables for the xylan extraction. Three assays were carried out at 

the center point to estimate the random error required for the analysis of variance (ANOVA). The 

statistical significance of the regression coefficient was determined by the multiple coefficient of 

determination, R2. 

2.4. Compositional analysis of the solid and liquid fractions obtained after xylan extraction of E. 

grandis wood chips 

The wood chips obtained after each extraction was milled to characterize for xylan, 

lignin, and glucan content of the extracted wood chips using the same methods as for raw wood 

analysis except for the extractives content determination. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 122 

The xylan rich filtrates containing a complex mixture of solubilised materials 

(oligosaccharides, lignin products, extracting chemicals, etc) were concentrated in a rotary 

evaporator at 40°C to approximately one-third of the original volume. Filtrates were then purified 

by dialysis against de-ionised water for 3 days using a dialysis cellulose acetate membrane with a 

12 kDa molecular weight cut off. An economical viable separation process could be developed.[22] 

The samples were conditioned in liquid nitrogen and freeze dried. The oven dry mass of the 

recovered xylan precipitates was determined.  

The hemicellulose recovery yield was estimated according to the following relations:[23] 

%Hemicellulose precipitate =  Oven dry mass of hemicellulose precipitate  x 100   (1) 
             Oven dry mass non-extracted E. grandis  
 

%Hemicellulose recovery =   %hemicellulose precipitate    x 100                           (2) 
            %Hemicellulose of E grandis 
 

The lignin fractions associated with the hemicelluloses were determined as described 

elsewhere.[24] 

 

2.5 Size exclusion chromatography 

The weight average molecular weight of the alkaline extracted xylan was determined 

using size exclusion chromatography (SEC). The isolated hemicellulose was dissolved in 

deionised water to obtain a final concentration of 1 g L-1. The solution was stirred continuously at 

room temperature for 2 hours and filtered through 0.2 µm membranes. The SEC system consisted 

of three SUPREMA aqueous columns (PSS, Germany), connected in series with the pore sizes 30 

Å, 3000 Å, 3000 Å respectively. Detection was conducted using a Dionex UltiMate 3000 HPLC 

system with a Varian 380-LC detector which is an Evaporative Light Scattering (ELS) detector. 

Solution of deionised water containing 0.05% sodium azide (NaN3) was used as eluent and the 

flow rate was maintained at 1 mL min-1. The column’s temperature was kept at 25°C. The 

detector output was analysed with the Chromeleon® Version 6.80 software package. 
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2.6. Spectroscopy analysis of xylan 

The FT-IR spectra were recorded in reflectance mode using the Smart Performer from 

Thermo equipped with ZnSe lenses. Prior to analysis, a sample of freeze dried xylan was 

conditioned in phosphorus pentoxide, and a small portion of the dried xylan was placed on the 

ZnSe horizontal ATR, and 16 scans with a resolution of 4 cm-1 were accumulated over the range 

of 4000 - 650 cm-1. The operating and data manipulating software was the basic OMNIC package. 

 

2.7. Micro pulping after xylan extraction of E. grandis wood chips  

E. grandis wood chips from alkaline extraction run 6 (Table 2) were directly subjected to 

kraft pulping without washing. Under these conditions the combination of high yield xylan 

(12.4%) recovered in the liquid fraction accompanied with high glucan content in the extracted 

wood chips was observed. Sodium sulfide concentration ranging from 31.4% to 40% was added 

in the extraction cooks. Sodium hydroxide was generated from the added sodium sulfide. 

Non-extracted E. grandis chips were also submitted to kraft pulping and the cooking 

conditions were selected according to the optimum conditions for kraft pulping South African 

eucalyptus species: 18.7% active alkali, 25% sulfidity, and pulping time was fixed at 30 min.[24] 

The maximum cooking temperature was kept constant at 170°C and the liqour-to-wood ratio was 

4:1 L/Kg for all pulping experiments. 

Pulping experiments were carried out in micro reactors (bombs) on dry wood chips 

containing 100 g oven dry material. Temperature and pulping time were monitored during the 

process. Pulping time was measured from the moment the system reached the maximum 

temperature.  

At the end of cooking, the fibres were separated from the black liquor and washed 

through a 10 mesh screen to separate the rejects (nondisintegrated wood retained by this screen) 

from the fibres; the accepted pulp was collected on a bottom 100 mesh screen. 

The pulp was then screened through a 0.15 mm screen to remove shives (nondisintegrated 

fibre bundles) and then spin dried to a consistency of approximately 30%. Screened pulp yield 

was calculated as a percentage of the initial oven dry mass of the material used using the formula: 
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Pulp yield (%) =          Oven dry mass of pulp       x 100 
                             Initial oven dry mass of wood chips            (3) 
 

The rejects and the shives collected were placed in an oven to dry at 105°C over night to 

establish the oven dry mass and weighed. The reject and shive content together were expressed as 

a percentage of original DM of E. grandis.  

Pulp kappa number (parameter related with residual lignin content in pulp) was 

determined by standard TAPPI method T236 cm-85.  

2.8. Large scale pulping after hemicelluloses extraction 

Wood chips yielding the best results in micro pulping were also pulped on a large scale in 

a 15 dm3 batch type digester. After the extraction of hemicelluloses from 1000 g DM chips, the 

extracted chips were directly subjected to pulping without washing. The cooking conditions were: 

35.7% sodium sulfide, 16% Active Alkali at 170°C for 30 min. Non-extracted wood chips were 

also pulped by exposing 1000 g DM chips to 18.7% Active alkali and 25% sulfidity for 45 min at 

170°C with the same liquor-to-wood ratio. At the end of the cooking process, the fibres were 

treated as explained above. The carbohydrate content of pulp fibres were determined by using 

NREL method as for raw wood analysis (section 2.2). 

Pulping black liquors were analysed for residual active alkali (RAA) according to TAPPI 

Standards T625 cm-85. 

 

2.9. Pulp evaluation and handsheet formation 

Pulp tests were performed according to the TAPPI standard methods [19] except for the 

viscosity. Total pulp yield and rejects were determined as a percentage of the original DM of the 

raw material. Pulp kappa number was determined by standard TAPPI method T236 cm-85. Pulp 

viscosity, parameter related with the degree of polymerization of pulp polysaccharides, was 

determined by dissolving pulp sample into cupricethylenediamine (CED) solution prepared 

according to TAPPI methods T230 om-89 but using a Brookefield viscometer instead of a 

capillary viscometer. The pulp solution was transferred to a Brookefield RVTD 382 viscometer 

and agitated at 100 rpm using a spindle number 21.  
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The temperature in the sample holder was maintained at 25ºC ± 1 with the aid of Haake 

thermostatic circulator (model D8-G). The pulp viscosity was measured in centipoises (cP). 

The development of handsheets strength i.e., tear, burst and breaking strength of the pulp 

fibres, was evaluated by beating, using a Valley beater according to TAPPI Standard T200 om-89. 

The pulp samples were beaten at different intervals and the drainage rate in degrees Schopper 

Riegler (˚SR) was measured according to TAPPI T227 om-99. Handsheets of about 60g/m2 were 

formed according to TAPPI T205 om-88 using British Standard handsheet making equipment. 

 

2.10. Testing of physical properties of the handsheets 

All handsheets were conditioned for 48 hours at 55% relative humidity and 23°C before 

being tested. The following strength properties were evaluated of each of ten handsheets 

according to TAPPI standard methods: Burst index, breaking length, and tear index were 

measured by TAPPI Standard no, T403 om-91, T404 om-87, and T414 om-88, respectively. The 

brightness was measured in ISO units using a reflectance photometer (Zeiss Elrepho 65843, 

Germany). 
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3. Results and discussion 

3.1. Raw material composition 

The chemical composition determined for E. grandis wood chips is listed in Table 1: 

4.2% extractives, 1.2% ash, 21.1% total lignin, 52.7% glucan and 15.8% hemicelluloses. The 

lignin content was lower than 28.9-29.6% reported for E. grandis in the literature probably due to 

the variation in growth conditions.[26-27] Low lignin content in practice showed the potential of the 

material to undergo easier delignification which makes the studied material attractive for pulp mill 

biorefinery.[10] Xylan content (15.3%) was generally higher than other values reported in literature 

(12.4%).[10] Xylan made the largest portion of hemicelluloses and was therefore considered 

throughout in this study.  

3.2. Effect of xylan extraction on E. grandis wood chips 

E. grandis chips were extracted under alkaline solutions to recover xylan prior to 

subsequent kraft pulping. The alkaline extraction conditions were varied to provide adequate 

conditions that could solubilise high xylan, but at the same time preserving cellulose (glucan) and 

enough xylan in the solid residue for paper pulp production. The extraction conditions, xylan 

recovery and the chemical composition of the washed extracted wood chips are listed in Table 2. 

All the results are based on original oven dry raw material. 

Mild alkaline conditions allowed solubilisation of wood components mainly xylan. The 

maximum recovery yield was 16% dry mass obtained under the severe condition (2M NaOH, 

90 C, 240 min). Increase in NaOH concentration, temperature and reaction time increased the 

xylan solubilisation from E. grandis and subsequent recovery. Separation and purification of 

xylan by using cellulose acetate membrane might have resulted in part of xylan being lost in the 

system. Ultrafiltration or nanofiltration separation and purification systems can improve the 

hemicellulose recovery.[13,22] 

Analysis of extracted wood chips showed that extraction of E. grandis with mild alkaline 

conditions released part of cellulose and removes lignin depending on the severity of the 

extraction conditions (Table 2). The reduction of 4.6 to 7.2% for glucan and 6.2 to 24.2% for 

lignin content under the studied conditions was observed.  
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This could be ascribed to the disruption of the bonds between lignin and carbohydrates.[22] Among 

the alkaline extraction conditions studied, the best compromise between xylan solubilisation and 

less degradation of cellulose from E. grandis wood chips was obtained at run 6 in Table 2. The 

recovered xylan was 12.4% dry mass and the glucan content retained in the extracted wood chips 

was 94.7% (49.9% vs 52.7% of the non-extracted E grandis), whilst the xylan and lignin content 

were 80.4% (12.3% vs 15.3%) and 75.8% (16.0% vs 21.1%) dry mass, respectively, which was 

suitable to be used for subsequent kraft pulp production.  

The statistical linear regression model (Eqn 4) of the data obtained for xylan 

solubilisation in the liquid fraction was tested for adequacy by analysis of variance (ANOVA.) 

The suitability of fit and statistical significance is presented in Table 3 after eliminating the terms 

found statistically insignificant. The mathematical model that describes the xylan solubilisation 

(y1) is described by the following equation:  

y1 = 8.3 + 6.2x1 + 2.6x2 + 4.3x3         (4)  

The equation showed that NaOH concentration (x1) was the factor that had the strongest influence 

on xylan solubilisation than extraction time (x3), while temperature (x2) showed the little effect, 

which agreed with the observations of other authors.[11] 

Further analysis of the experimental data through response surface plots revealed that an 

optimum xylan solubilisation can be obtained by increasing alkali charge and extraction time 

when the temperature was fixed at 65°C (Fig 1). However, the factors were limited to the selected 

values, to avoid excessively high extraction yields of xylan from wood chips prior to pulping, 

which might promote the degradation of cellulose through alkaline peeling, which leads to 

subsequent losses of kraft pulp viscosity and pulp strength.[12, 13]  

3.2.1. Characterization of mild alkaline extracted xylan 

Mild alkaline conditions could solubilise xylan from E. grandis in oligomer or polymeric 

form through the cleavage of ester bonds between polysaccharides and lignin.[22] The extracted 

xylan and their derivatives could be used as paper additives to improve the properties of pulp 

fibres in papermaking process.[5]  
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In this regard, the average molecular weight of xylan sample obtained under the alkaline 

extraction conditions run 6 (2 M NaOH; 40°C for 240 min) was estimated by size exclusion 

chromatography (SEC). These conditions were of interest since they resulted in high glucan 

content retained in the extracted wood chips and subsequently used for kraft pulping evaluation. 

The average molecular weight of the xylan sample obtained by SEC was approximately 53, 400 g 

mol-1, which was in the range of xylan extracted in similar manner from other feedstocks.[22,28] 

FT-IR spectroscopic analysis was used to determine the structural changes in the 

extracted xylan. Figure 2 shows the spectra of xylan obtained by conditions of run 6 compared 

with that of commercial birch wood xylan. The IR spectra of the two xylans were similar in the 

regions 1100 - 600 cm-1 and 3500 - 2500 cm-1. They contained an identical set of transmission 

bands differing only in intensity, indicating a similar structure of these xylans. 

The greatest difference was observed in the region 1800 - 1300 cm-1. A polymeric chain 

consisting of pure xylopyranose units should not have noticeable absorption at 1800 - 1500 cm-

1.[29] Therefore, the absorption in this region was due to vibrations of a different type of substituent 

in the main chain and (or) the xylan side chains. Furthermore, the FT-IR spectra of E. grandis 

xylan exhibited a band at 1574 cm-1 that was due mainly to stretching vibrations of C=C and C–H 

groups and skeletal vibrations of phenol rings confirming the presence of lignin residues.[30] Xylan 

containing phenolic groups can be used for the production of packaging films.[22] 

 

3.3. Properties of pulp and handsheets obtained from extracted E. grandis wood chips 

 

Wood chips from alkaline extraction run 6 (12.4% xylan extracted; 2 M NaOH at 40°C 

for 240 min) were directly subjected to kraft micro pulping under different sodium sulfide 

conditions to assess the effect of xylan extraction on cooking chemicals, pulp yield and properties. 

After the extraction step the wood chips absorbed NaOH which retained with the wood chips, and 

that was taken into consideration during the cooking process. Additional NaOH was generated 

from the sodium sulfide added to the cooking system.  
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The cooking conditions and properties of the pulps obtained from extracted and non-extracted E. 

grandis wood chips are summarized in Table 4. The total NaOH charge present in the system 

during cooking of the extracted wood chips was approximately 4.7 – 6.7% less compared to non 

extraction due to removal of xylan and other wood components. Modified kraft cooking of 

extracted wood chips under 35.7% sulfidity maintained the pulp yield at similar kappa number as 

non-extraction.  

Based on the aforementioned preliminary micro pulping experiments, kraft cooks under 

35.7% sulfidity for wood chips from which 12.4% xylan extracted were conducted on a large 

scale in a same manner as in micro pulping. The effect of scale up was evaluated in terms of 

pulping chemicals requirements, pulp yield and handsheet strength properties. The cooking 

conditions, pulp composition and handsheets strength properties are presented in Table 5 and 

Figure 3, respectively. 

The results showed that because of xylan extraction the wood chips mass was reduced 

from 1000 g to 961.0 g and that could increase the digester capacity.[31] Consequently a reduction 

in the total loading of NaOH charge (134.7 g vs 194.1 g) needed for delignification was possible. 

Furthermore, because of high concentration of sodium sulfide added in the liquor when cooking 

extracted wood chips, high concentration of sodium hydrosulfide (NaSH), which tends to make 

lignin more soluble, was generated. Therefore, the cooking time of extracted wood chips was 

reduced by 15 minutes to avoid severe degradation action which might have a negative effect on 

pulp yield. If the NaOH present in the liquid fraction after the extraction step can be recovered 

and reused for either extraction or pulping could make this process even more economical.[31-32] 

There were no significant changes in the overall pulp properties (pulp yield, rejects, kappa 

number and viscosity) when 12.4% xylan was extracted from E. grandis wood chips prior to 

pulping. Screened pulp yield recorded for both non-extracted and alkaline extracted wood chips 

was comparable (53.8±3.0 vs 51.1±1.0 respectively) at similar kappa number value of 20 (Table 

5). These values were considered appropriate within pulp yield specification of Mondi kraft pulp 

mill, Richards Bay in South Africa.[17]  
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It was apparent that the comparable overall pulp yield depends on the extent of xylan extraction 

from wood chips prior to pulping together with the utilisation of low alkali charge and cooking 

time.[13,32,33] The residual active alkali measured from pulping black liquors of alkaline extracted 

wood chips was within the required limit (6 - 8 g L-1 (Na2O) which otherwise might have resulted 

in lignin readsorption on the pulp fibres.[12] 

A rejection level of wood chips was below 1% for pulps produced from extracted wood 

chips. It can be speculated that good pulping response due to alkaline extraction was related to 

alteration and swelling of fibres under alkaline conditions during extraction step.[15] This resulted 

in softening of the chips and ease of fibre separation during subsequent pulping. Moreover, the 

extraction with alkali prior to delignification favored a more uniform cook, thereby shortening the 

cooking time. 

An additional advantage observed in this study was that alkaline extraction of E. grandis 

chips improved pulp viscosity by 13% compared to pulps produced from non-extracted wood 

chips, thus giving less evidence of severe cellulose degradation by extraction. Viscosity is related 

to degree of polymerization of cellulose, therefore it is an indirect measure of chemical damage of 

cellulosic fibre in laboratory cooking 9reduction in chain length).[19] The viscosity was measured 

with Brookefield viscometer, normally used to determined viscosity of coating for paperboard 

production. Although this viscometer provides lower viscosity values compared to capillary 

viscometer, its consideration is valuable in terms of comparison between the extracted and non-

extracted pulps evaluated in this study. An increase of cellulose degradation observed for 

extracted wood chips could be explained by the removal of the low molecular mass 

hemicelluloses since the viscosity averages the DP of the cellulose and hemicelluloses.[32] 

Additionally, low levels of alkali used to pulp extracted wood chips might have preserved the 

degradation of the fibres. Additionally, alkaline xylan extractions might have caused 

rearrangement in the cell wall structure leading to the formation of xylan-cellulose co-aggregates 

which were resistant to degradation.[34] At the same time transformation of eucalyptus xylan side 

chains (methylglucuronic acid) to hexenuronic acid under alkaline medium is well documented.[13]  
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This transformation renders xylan more stable towards alkaline degradation, consequently 

reducing the accessibility of cellulose microfibrils linked to the stable xylan and hence limiting its 

degradation.  

The carbohydrate composition of the pulp showed a reduction in glucan and xylan content 

retained in the pulp fibres produced from alkaline extracted wood chips by only 9.8 and 3.5 

percentage unit, respectively, compared to pulps produced from non-extracted wood chips (Table 

5). The percentage yield of individual polysaccharide retained in the pulp after kraft pulping 

might influence the strength properties of the pulp fibres.[5] For instance, lower fibre strength is 

often obtained by either lower cellulose content or higher fibre damage.[35] The correlation 

between fibre strength and cellulose content was found up to 70 - 80% cellulose content.[36] In 

addition, several studies reported the importance of preserving xylan during pulping because 

xylan-to-cellulose interaction improves tensile index or breaking strength property of the resultant 

pulp.[13, 37]  

In the present study, the retention of 73.9% glucan and 19.5% xylan content of the pulp 

produced from alkali extracted material appeared to have been sufficient for the maintenance of 

the strength properties of the pulp at the beating degree of 40 °SR. In fact, the tensile index (Fig 

3A) and breaking strength (Fig 3B) of handsheet produced from pulps obtained from alkaline 

extracted wood chips was increased by only 7% and 9.0% respectively. Similar benefit on tensile 

strength property by extraction of aspen chips with kraft white liquor prior to kraft pulping had 

been reported.[38] This finding could be attributed to the observed increase in viscosity since 

cellulose degradation governs the strength of the fibre to a certain degree.[35] Simultaneously, tear 

index (Fig 3 C) due to alkaline extraction was maximum at 20 ˚SR and improved by 6.3% and it 

declined slightly by 0.2% at 40 ˚SR and burst indexes (Fig 3D) were very similar in both 

scenarios. A decrease in tear index in pulp is common after the tear strength has passed the 

maximum due to reduction in fibre length, fibre strength and fibre-fibre bonding.[37] The burst 

indexes (Fig 3D) were reduced in both scenarios. 
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The comparison of these results with those from Al-Dajani et al. (2008) showed a 

disagreement in tensile strength although the method of extraction and pulping conditions were 

similar.[13] The authors reported ~10% decrease in tensile index due to alkaline extraction and 

regrettable no another strength properties were tested. This could be attributed to the extent of 

xylan extraction which was approximately double the amount of xylan extracted in the present 

study. Another aspect that might have resulted in this reduction in the referenced results was the 

reduction in viscosity due to alkaline extraction. In various pulp applications, either tensile index 

or tear is the important strength property. [18]  

The reverse development of tear and tensile strength of the pulps is shown in Figure 3E. 

A constant decrease in tear index after it reaches a certain critical value with the steady growth in 

tensile index is the expected result.[9] Tear index is certainly affected by fibre length as previously 

mentioned, which may have been reduced because of fibre cutting. Lower refining requirements 

would decrease fibre cutting and result in higher tear properties. Conversely, tensile strength 

correlates strongly with inter-fibre bonding capacity and suggest mild alkali pre-extraction has no 

negative effect on the fibre bonding.[39-40] High tensile and tear index observed for handsheets 

produced from alkaline extracted wood chips are favorable for the manufacture of wrapping and 

packaging paper.[9,18] The improvement in optical brightness (Fig 3F) of handsheets due to 

alkaline extraction was observed. Lighter pulps would require less bleaching chemical and this 

could reduce the economic demands in the IFBR process of the alkaline extracted E grandis wood 

chips.[15] 

The overall analysis of the results showed that the mass removal of hemicelluloses should 

be limited during extraction and pulping processes since their presence is desirable in pulps, 

because within a certain optimum range they are able to contribute towards pulp yield and hand 

sheets strength properties. [13, 39-40] 
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4. Conclusions 

This study provided strong evidence that it is technically feasible to extract approximately 12.4% 

xylan under mild alkali conditions from E. grandis, with a minimum effect on final kraft pulp 

yield and physical properties, as measured by handsheet testing. The alkaline extraction of 12.4% 

xylan prior to pulping in combination with low alkali concentration and less cooking time used 

for cooking extracted wood chips retained the pulp yield with similar kappa number as non 

extraction. The breaking length/tensile index and optical brightness of the handsheets measured 

were improved, at the same time both tear and burst index were not affected. The improvement in 

physico-chemical properties of the pulps depends on the extent of xylan extraction from wood 

chips, thus limiting the amount that could be extracted without negatively impacts on pulp yield 

and properties. 
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Table(s) 
 

 

Table 1. Chemical composition of non-extracted E. grandis.  

Components are expressed as percentage of the original oven dry material (% ODM). 

 Component % ODM* Analytical method 

Ethanol/Cyclohexane 
soluble extractives 

 
3.0 ± 1.0  

Extractives Water soluble 
extractives 

1.2 ± 0.5 

 
 
TAPPI T264 om-88 

Glucan 52.7 ± 2.0 
Xylan 15.3 ± 0.3 

 
Carbohydrates 

Arabinan 0.5 

 
LAP 013 

 Ash content 1.2 ± 0.2 TAPPI T222 om-85 

 Acid insoluble lignin 16.7± 2.0 

 
 

 
Acid soluble lignin 
 

4.4± 1.5 

 
LAP 013 
 
 

 
       (*) Mean values and standard deviation of four measurements. 
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Table 2. The yield of xylan and composition of wood chips after alkali extraction of E. grandis under process variables defined by a 23 full factorial design. 

 

Pre-extraction conditions Xylan pre-extraction efficiency b
Solid fraction after extraction 

cEMB (%) 

 
 
 
Run 

 
 
NaOH  
M 

 
 
Temperature 
(˚C) 

 
 
Time 
(min) 

 
Xylan 
precipitate 
yield % 

 

a
Xylan 

recovery 
yield % 

 
Lignin     
(% 
xylan) 

 
Lignin          
% dry raw 
E. grandis 

 
 
Glucan   
% 

 
 
Xylan     
% 

Acid 
insoluble 
lignin 
(%) 

 
 
 
Glucan 

 
 
 
Xylan 

 
 
 
Lignin 

1 1 40 120 0.6 3.9 4.9 1 51.1 13.9 18.6 94.6 94.8 92.9 
2 1 40 240 1.0 6.7 8 1.7 50.2 13.5 18.3 94.8 94.8 94.8 
3 1 90 120 0.5 3.5 6.1 1.3 50.3 13.8 17.8 99.7 93.5 90.5 
4 1 90 240 1.9 12.4 16.1 3.4 49.9 12.3 16.0 93.7 92.8 91.9 
5 2 40 120 0.7 4.8 2.4 0.5 50.4 13.4 19.8 94.4 92.2 96.2 
6 2 40 240 1.6 10.3 14.8 3.1 49.7 12.5 16.6 93.3 92.2 93.4 
7 2 90 120 1.3 8.5 6.9 1.5 49.9 12.9 18.4 93.3 92.8 94.3 
8 2 90 240 2.5 16.0 14.1 3 48.9 11.9 17.1 94.4 94.1 95.3 
9-11 1.5 65 180 1.0±0.04 6.5±0.3 9.0±0.8 1.9±0.1 50.3±0.3 13.6±0.5 18.6 93.4 94.5 97.2 
aAnalysis data are based on the oven dry xylan of non-extracted E. grandis  
bAnalysis data are based on the oven dry non-extracted E grandis  
CExtraction mass balance (EMB) was calculated for each component in the E. grandis as e.g. xylan in the liquid and solid fraction after Run 4 were 1.9% and 12.3% 
respectively, and the raw E grandis has 15.3% xylan before the extraction. The total extraction mass balance = [(1.9+12.3)/15.3]*100 = 92.8% 
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Table 3. Analysis of variance for the regression model of xylan solubilisation 

after alkaline extraction of E. grandis. 

 

Source Sum of squares DF Mean square F-value Prob>F 

Model 126.41 6 21.07 12.22 0.0325 

Residual 5.17 3 1.72   

Lack of fit 1.98 1 1.98 1.24 0.3811 

Pure error 3.19 2 1.68   

Cor Total 144.53 10    

R2 0,964     
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Table 4. Kraft micro-pulping results of 12.4% xylan extracted (2M NaOH, 40°C, 240 min) 

E. grandis wood chips. 

Parameters 
Non-
extracted 

Xylan extracted 
 (2M NaOH,40˚C, 240 min) 

Cooking conditions 

Active alkali (%) 18.7    
NaOH in wood chips 16.5 9.9 10.0 10.7 
Sulfidity (%) 25 31.4 35.7 40 
NaOH from Na2S (g) 3.0 2.9 3.9 4.1 
Total NaOH in cook (g) 19.5 12.8 13.9 14.8 
Maximum Temp (°C) 170 
Time at 170°C (min) 45 30 

Pulp properties* 

Screened pulp yield (%) 53.7±1.8 46.0±1.0 51.0±2.4 45.4±3.2 
Rejects (%) 1.8±0.1 2.5±0.4 1.0±0.6 0.8±0.7 
Kappa number 21.3±0.5 23.3±0.2 20.4±0.8 14.6±0.4 

*Mean values and standard deviation of four measurements. 
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Table 5. Large scale cooking conditions and properties of the pulps obtained 

from non-extracted and 12.4% xylan extracted E. grandis wood chips 

 

Parameters Non-extracted 
Xylan extracted                
2M NaOH, 40̊C,      
240 min 

Pulping conditions 

Active alkali (%) 18.7  
Sulfidity (%) 25 35.7 
Maximum Temp (°C) 170 
Time at 170 °C (min) 45 30 
Chips/residue (OD, g) 1000 961.0 
NaOH in chips/ residue (g) 165.4 99.2 
NaOH from Na2S (g) 30.2 35.5 
NaOH total in cook (g) 195.6 134.7 
NaSH charge (g) 42.2 49.6 

Pulp evaluation* 

Screened pulp yield (%) 53.8±3.0 51.1±2.0 
Screening rejects (%) 1.7±0.4 0.6±0.5 
Kappa number 20.0±2.5 20.8±1.8 
Viscosity (cP)** 8.1±0.5 9.4±0.7 

Carbohydrate composition of pulp according to LAP 013 

Glucan (%) 83.7 73.9 
Xylan (%) 22.3 19.5 

Black liquor characteristics 

Residual alkali (g L-1) 7.5±1.5 6.2±2.0 
           *Mean values and standard deviation of four measurements. 
            **Viscosity determined in a Brookefield viscometer with spindle 21 with Pulp CED solution. 
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Figures 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Response surface for xylan yield obtained after alkaline extraction of E. grandis wood 
chips showing the influence of NaOH concentration and extraction time at a fixed temperature of  

65°C.  
105x85mm (96 x 96 DPI) 
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Figure 2. FT-IR spectra of commercial birch wood xylan (A) and xylan fraction extracted from E. 
grandis wood chips (B) with 2M NaOH at 40°C for 240 minutes. 
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Figure 3. (A) handsheet tensile index; (B) breaking length; (C) tear index; (D) burst index; (E) tear-tensile relationship and (F) optical brightness as a  
     function of drainage in °SR of E. grandis after kraft pulping in large scale. 

209x111mm (96 x 96 DPI) 
 

A B C 

D 

E 
F 

Stellenbosch University  http://scholar.sun.ac.za



 146 

 

 

 

 

 

 

 

 

Paper III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stellenbosch University  http://scholar.sun.ac.za



 147 

Impact of hemicelluloses pre-extraction on pulp properties of sugarcane bagasse  

P.F. Vena1, M.P. García-Aparicio1, M. Brienzo1, J.F. Görgens1* and T. Rypstra2 

Departments of 1 Process Engineering and 2Forest and Wood Science, University of Stellenbosch, 

Private Bag Matieland X1, 7602, Stellenbosch, South Africa 

(*) corresponding author 

Phumla Faith, Vena: pfvena@sun.ac.za 

María del Prado, García-Aparicio: garcia@sun.ac.za;  

Michel, Brienzo: michelbrienzo@yahoo.com.br 

Johann F., Görgens: jgorgens@sun.ac.za; phone: +27 21 808 3503; fax: +27 21 808 2059 

Tim, Rypstra: tr@sun.ac.za 

 

Abstract 

The extraction of hemicelluloses that otherwise would be wasted in the black liquor, can 

be integrated with chemical pulping processes in a biorefinery approach that will generate a sugar 

rich feedstock for production of fuels and chemicals. Extractions of hemicelluloses from 

sugarcane bagasse with dilute sulphuric acid or mild alkaline conditions were performed using a 

central composite experimental design. Selected solid residues obtained after dilute acid, hot 

water (zero acid) or mild alkaline pre-extractions were subjected to soda or sodaAQ pulping, 

while kraft pulping of the dilute acid pre-extracted solid residue was also performed. The 

integration of hemicellulose pre-extraction by alkaline methods into a sodaAQ-based pulping 

process was preferred for sugarcane bagasse as feedstock, since it enabled xylan recovery of 

69.1%, while providing pulps with superior tear strength and brighter pulps.  

 
Keywords: biorefinery, xylan extraction, sugarcane bagasse, chemical pulping, pulp quality, 

handsheet strengths 
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1. Introduction 

Sugarcane bagasse (SCB) is the second most commonly used non wood fibre plant 

material for pulp and paper production in numerous parts of the world including South Africa, 

Central Asia, the Middle East and North America.1 The South African sugar industry produces 

approximately 6 million tonnes of sugarcane bagasse annually, from which about 70 000 tons of 

unbleached and 60 000 tons of bleached bagasse pulp grades are produced per annum.2,3 Besides 

its availability, SCB is characterised by high cellulose (40 - 50%) and hemicellulose content 

(xylan: 28 - 30%), but lower lignin content (19 - 21%) compared with other wood feedstocks such 

as Eucalyptus or pine, generally used for pulp and paper production.4,5 Because of lower lignin 

content, SCB is more easily delignified, requiring milder and shorter cooking conditions than 

wood sources. Another interesting feature of nonwood which is different from wood is the silica, 

a component of ash. While SCB is quite low in silica compared with other nonwood fibres, at 

0.5% it is at least twenty times higher than in eucalyptus and its removal is crucial during pulping 

processes.6 

Among the pulping processes, soda pulping (using NaOH only) is the preferred method 

for sulphur-free, chemical pulping of SCB in South Africa.7 The addition of pulping additives 

such as anthraquinone (AQ) in bagasse soda pulping improves pulp yield and delignification 

rates, while reducing carbohydrate degradation.8 However, SCB consists of pith which constitutes 

30-35% by weight of SCB. This material does not produce papermaking fibre but consume more 

chemicals in the pulping process and has high ash content than the fibrous parts of SCB rendering 

poor drainage of pulp and inhibits chemical recovery.9 Hence, effective depithing is an essential 

requirement to avoid wastage of chemicals and to minimise the ash/silica content.10 

A pulp mill generates substantial amounts of organic by-products in the form of black liquor, 

generated by the degradation of lignin and hemicelluloses.11 The black liquor streams are today 

mainly used as fuel source at the pulp mill to produce electricity and steam whilst cooking 

chemicals are regenerated.12  
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Compared with wood, chemical recovery in SCB and other nonwood soda pulping black liquor 

stream is the major problem due to high cost, high viscosity, low settling rate and silica inclusion 

in black liquor thus causing the sludge non-reusable after re-burning.13 Silica can be removed by 

precipitation from black liquor by reduction of pH with carbon dioxide from flue gasses or by 

addition of calcium oxide.6 The viable option to minimise capital costs for soda recovery is by 

using fluidised bed type furnace for combustion of black liquors as demonstrated at Sappi Stanger 

mill in South Africa.6 However the calorific value of the black liquor solids from soda pulping of 

nonwood is still inferior than that of kraft pulping of wood.13 

Considering that hemicelluloses degraded in the black liquor have a low heating value (13.6 MJ 

kg-1) compared to lignin (27.0 MJ kg-1), it could instead be processed to value added chemical 

products within a pulp mill biorefinery.11,14 Non-degraded (polymeric) hemicelluloses have 

valuable properties such as potential paper additives, biopolymers and speciality chemicals, while 

it can be used in monomeric form for bioethanol production.15,16 In addition, the extraction of 

hemicelluloses can favour the cooking liquor impregnation during subsequent pulping, thereby 

reducing the cooking time and lowering the required alkali charge.17 Another advantage of the 

application of pre-extraction is the reduction of ash/silica content in the pre-extracted residues, 

circumventing the associated problems with chemical recovery.18 

Various pre-treatment methods to extract hemicellulosic components from sugarcane 

bagasse have been reported. These include dilute acid pre-treatment, hot water extraction, ionic 

liquids, alkaline extraction and alkaline/peroxide treatment.17,19-20 Dilute acid hydrolysis mostly 

generates oligomeric and monomeric hemicelluloses-derived sugars, mainly xylose, that can be 

the platform for the production of chemicals such as ethanol, furfural and xylitol.4,15,21 On the 

other hand, alkaline treatment originates high molecular weight hemicelluloses-derived polymers 

in particular xylan, that might be used for the production of biopolymers.5,16 Moreover, extracted 

xylan can undergo modification and used as papermaking additive.16  
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However, in developing an appropriate hemicelluloses pre-extraction process, not only 

the yield and the composition of extracted hemicelluloses should be considered, but also the 

properties of pulp produced from the hemicelluloses pre-extracted, fibrous residue (cellulignin).14 

This is due to the fact that certain physical properties of pulp require the presence of 

hemicelluloses in the fibre matrix.22 Previously, handsheet paper strength properties such as burst 

index and tensile index were reduced when hot water or alkaline extraction was applied on SCB 

or rice straw prior to sodaAQ pulping.17,22 In this context, the present work compares different 

extraction treatments prior to pulping of SCB. The effect of reaction conditions of dilute sulphuric 

acid or mild alkaline treatments on hemicelluloses pre-extraction from SCB originated from South 

Africa was investigated by central composite design. Additionally, hot water treatment was 

applied for comparison. Those conditions under which significant hemicelluloses could be 

extracted, while ensuring minimal interference on cellulose content in the residual cellulignin, 

were selected for further soda, sodaAQ or kraft pulping. The impact of hemicelluloses pre-

extraction on pulp properties and paper quality using soda or sodaAQ pulping methods was 

evaluated.  

 
2. Material and methods.  

2.1. Materials 

Sugarcane bagasse (Saccharum officinarum) was provided by TSB sugar, located in 

Mpumalanga, South Africa. The sugarcane bagasse (SCB) was air dried, depithed and 

conditioned at 23°C and 55% relative humidity before use. Sodium hydroxide (NaOH) and 

sulphuric acid were purchased from Merck and BUSPERSE 2262 Anthraquinone (AQ) was 

donated by Buckman Laboratories, Hammarsdale, South Africa. Pullulan standards purchased 

from Polymer Standards Service (PSS) in Germany were used to estimate the molecular weight of 

the isolated xylan fractions. 
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2.2. Hemicelluloses pre-extraction of sugarcane bagasse 

Dilute sulphuric acid and mild alkali pre-extraction were carried out according to the 

central composite experimental design created and evaluated in Statistica 7.1 (Statsoft Inc., Tulsa, 

USA) and Design Expert version 8.23 The experimental range and the process parameters’ 

codification are given in Table 1. The sequences of dilute sulphuric acid and mild alkaline 

experiments are illustrated in Table 2 and Table 3, respectively. Three assays were carried out at 

the center points to estimate the random error required for the analysis of variance (ANOVA). 

Xylan content in the liquid was considered as the response of the experimental design. The 

statistical significance of the regression coefficient was determined by the coefficient of 

determination, R2. 

2.2.1. Dilute acid and hot water pre-extraction 

Samples of 40 g ODM, depithed SCB and sulphuric acid solutions (0.1 - 0.6%) were 

mixed in the desired portions and introduced into micro reactors (bombs) according to the central 

composite design (Table 2). The solid to liquor ratio was 1:6 g mL-1. Filled bombs were placed in 

a digester of 15 dm3 capacity enclosed by heating jackets. Selected reaction temperatures (86 - 

154°C) were monitored with thermocouples at different reaction times (6 - 74 min). Pre-extraction 

with hot water (run 9, Table 2) was part of the dilute sulphuric central composite experimental 

design and was similarly performed at 120°C for 40 min to evaluate the effect of xylan pre-

extraction at lower levels.  

2.2.2. Alkaline pre-extraction 

The mild alkaline extraction of hemicelluloses was performed as described elsewhere, 

without using the chlorination step.24 A similar treatment procedure was followed as in dilute 

sulphuric acid extractions. 40 g ODM SCB were mixed with the NaOH solution (0.7 - 2.34 M) in 

500 mL Schott bottles and placed in a shaking hot water bath at 23 - 90°C. Similarly, conditions 

at 107°C were performed in micro bombs placed in hot water pressurised digester. At the end of 

the treatments, the fibres were squeezed by hand to recover the hemicellulose.  
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2.3. Liquid fraction characterization 

2.3.1. Liquid fraction from dilute acid and hot water pre-extraction 

At the end of the dilute sulphuric acid and hot water pre-extraction, the bombs were 

cooled in room temperature water. The liquid and the solid fraction were separated by filtration on 

a 100 mesh screen. The xylan-rich hydrolyzate was collected and a sample was filtered through 

0.2 µm membranes and analysed for its content of sugars and by-products.  

To identify the presence of oligosaccharides, the fractions of the xylan-rich hydrolyzates 

were subjected to a dilute acid treatment at 121°C for 10 min to convert all oligosaccharides to 

monosaccharides, according to the NREL method.25 It was assumed that the difference in 

monomeric sugars between the samples was in oligomeric form. 

The sugars (glucose, xylose and arabinose), acetic acid and by-products 

(hydroxymethylfurfural and furfural) present in the liquid fraction were analysed by high pressure 

liquid chromatograph (HPLC) as described elsewhere.26  

2.3.2. Liquid fraction from mild alkali pre-extraction 

The xylan-rich filtrates containing a complex mixture of solubilised materials 

(oligosaccharides, lignins, extracting chemicals, etc.) were concentrated in a rotary evaporator at 

40°C to approximately one third of the original volume. Filtrates were then purified by dialysis 

against de-ionized water for 3 days using a dialysis cellulose membrane with a 12kDa molecular 

weight cut off. This membrane cut off had been chosen, since it was shown feasible for the 

separation and purification of hemicelluloses in the laboratory scale.24 The samples were 

conditioned in liquid nitrogen and freeze-dried. The ODM of the recovered hemicellulose 

precipitates was determined.  
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The hemicellulose recovery yield was estimated according to the following relations.27 

%Hemicellulose precipitate = Oven dry mass of hemicellulose precipitate  x 100   (1) 
     Oven dry mass non-extracted SCB  
 

%Hemicellulose recovery   =    %Hemicellulose precipitate  x 100 (2) 
    %Hemicellulose of SCB 
 

The lignin fractions associated with the hemicelluloses were determined as described 

elsewhere.19 

2.3.2.1. Size exclusion chromatography 

The molecular mass of the extracted hemicellulose was determined using size exclusion 

chromatography (SEC). The isolated hemicellulose was dissolved in deionised water to obtain a 

final concentration of 1 g L-1. The solution was stirred continuously at room temperature for 2 

hours and filtered through 0.2 µm membranes. The SEC system consisted of three SUPREMA 

aqueous columns (PSS, Germany), connected in series with the pore sizes 30 Å, 3000Å and 

3000Å, respectively. Detection was conducted using a Dionex UltiMate 3000 HPLC system with 

a Varian 380-LC detector, which is an Evaporative Light Scattering (ELS) detector. Solution of 

deionised water containing 0.05% sodium azide (NaN3) was used as eluent and the flow rate was 

kept at 1 mL/min. Column temperatures were kept at 25°C. The detector output was analysed 

with the Chromeleon® Version 6.80 software package. 

2.3.2.2. Spectroscopy analysis of hemicelluloses 

The FT-IR spectra were recorded in reflectance mode using the Smart Performer from 

Thermo equipped with ZnSe lenses. Prior to analysis, a sample of freeze dried xylan was further 

dried in phosphorus pentoxide, and a small portion of the dried hemicellulose was placed on the 

ZnSe horizontal ATR, and 16 scans with a resolution of 4 cm-1 were accumulated over the range 

of 4000 - 650 cm-1. The operating and data manipulating software was the basic OMNIC package. 
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2.4. Characterization of raw material and solid fractions 

2.4.1. Chemical composition 

The depithed SCB was ground into powder in a Retsch mill and a fraction of 40 mesh size 

was accepted for chemical analysis. Oven-dry mass (ODM) of the powder was obtained by 

heating at 105 ± 2°C until a constant mass was achieved. The ethanol/cyclohexane solubility 

(TAPPI method T264 om-88), water solubility (T264 om-88), ash (T211 om-85) and acid 

insoluble lignin (T222 om-88) of SCB was determined.28 All the experiments were carried out in 

four replicates and the experimental results were represented as the mean ± standard deviation of 

four identical conditions. 

The solid fractions obtained after dilute sulphuric acid or mild alkaline pre-extraction 

were rinsed with distilled water and air dried. Dried samples were milled prior to polysaccharides 

and residual lignin content determination, using the same standard methods as those used for the 

raw materials except for the extractives determination.28, 29 

The polysaccharides in extractive free SCB and solid residues were calculated based on glucose, 

xylose, and arabinose after a two step hydrolysis with 72% H2SO4 and 4% H2SO4 respectively, 

according to National Renewable Energy Laboratory (NREL) Analytical Procedure.29 The 

concentrations of these compounds were determined by high pressure liquid chromatograph.26The 

equation for the extraction mass balance was as follows.30 

Extraction mass balance = ∑CLi + ∑CSi                   (3) 

                                             ∑CRi 

Where Ci is the mass of each sugar component (glucose or xylose) as determined through HPLC, 

the subscripts L, S, and R refer to the extracted liquid, extracted solids and raw SCB, respectively. 
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2.4.2. Scanning electron microscope 

The portion of the SCB fibres from dilute sulphuric acid and alkaline pre-extractions were 

mounted onto metal stubs with double-coated carbon adhesive tape. The samples were sputtered 

with gold in a high vacuum S150A sputter coater. Finally, the samples were examined using a 

LEO1430VP scanning electron microscope (SEM). Similar analysis was performed on non-

extracted sugarcane bagasse for comparison. 

2.5. Micro pulping after hemicelluloses pre-extraction 

Non-extracted SCB and solid residues from hot water (run 9: water, 120°C and 40 min) 

and dilute sulphuric acid (run 15: 0.3% v/v H2SO, 120°C and 40min) pre-extractions were 

submitted to soda or sodaAQ micro pulping. Prior to pulping, the dilute sulphuric acid pre-

extracted solid residues were thoroughly washed with water to neutralize and air dried. The 

experiments were carried out according to the central composite design created and evaluated by 

Statistica 7.1 (Statsoft Inc., Tulsa, USA). The range of cooking conditions for soda pulping were: 

Active alkali (NaOH): 20 - 22% and reaction time: 25 - 37 min. SodaAQ pulping conditions 

ranges were: Active alkali (AA): 14 - 16%, anthraquinone (AQ): 0.05 - 0.1%, and reaction time: 

30 - 70 min. The conditions were selected in agreement with previous reports on the pulping of 

SCB.8, 17, 31 

Likewise, after the completion of the alkaline pre-extraction step, alkaline extracted 

residue run 15 (1.5 M NaOH, 65°C, 180 min) was directly subjected to pulping without washing. 

Only 0.1% AQ was added in the cooks.  

The maximum cooking temperature was kept constant at 170°C and the SCB-to-liquid 

ratio was fixed at 1:7 g mL-1 for all pulping experiments. Pulping was carried out in micro bombs 

that could accommodate 40g oven dry SCB. Temperature and reaction time were monitored 

during the process. Cooking time was measured from the moment the system reached the 

maximum temperature. At the end of cooking, the fibres were separated from the black liquor, 

washed through a 10 mesh screen to separate the rejects from the fibres, and the accepted pulp 

was collected on a 100 mesh screen. The pulp was then screened through a 0.15 mm screen, to 

remove shives and then spin dried to a consistency of approximately 30%.  
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Screened pulp yield was calculated as a percentage of the ODM of the pulps obtained in relation 

to the initial ODM of the raw material.  

Pulp yield (%)   =   Oven dry mass of pulp       x 100   (4) 
                               Initial oven dry mass SCB 
 

The rejects and the shives collected were placed in an oven to dry at 105°C overnight to 

establish the oven dry mass and weighed. The reject and shive content were together expressed as 

a percentage of original dry mass of SCB. Pulp kappa number was determined by standard TAPPI 

method T236 cm-85.  

2.6. Large scale pulping  

The best results obtained from micro pulping were repeated on a large scale. Solid residue from 

run 9 (hot water, 120°C and 40 min) and run 15 (1.5 M NaOH, 65°C and 180 min) were 

submitted to sodaAQ pulping process. Pulping of 500 g ODM pre-extracted was carried out in a 

15 dm3 batch type digester. SodaAQ pulping conditions for hot water were 14% AA and 0.1% 

AQ for 30 min at 170°C. In the case of mild alkaline pre-extracted residues, no additional NaOH 

and only 0.1% AQ was added to the SCB fibres. Alternatively, 500 g dry mass of the dilute acid 

pre-extracted run 15 (0.3% v/v H2SO4, 120°C and 40 min) was subjected to kraft pulping under 

the following conditions: 12% AA and 20% sulfidity.32 All SCB fibres were digested for 30 min 

at 170°C and the products of pulping treated as per section 2.5.  

All active alkali and sulfidity masses are expressed as equivalent mass of Na2O. 

2.6.1 Characterization of pulping black liquors  

Pulping black liquors were analysed for residual active alkali (RAA) according to TAPPI 

standard methods T625 cm-85. 
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2.7. Pulp evaluation and handsheet formation 

Pulp tests were performed according to TAPPI standard methods.28 Total pulp yield and 

rejects were determined as a percentage of the ODM of the raw material. Pulp kappa number was 

determined by standard TAPPI method T236. Pulp viscosity was determined by dissolving pulp 

sample into a cupricethylenediamine solution prepared according to TAPPI methods T230 om-89. 

The pulp solution was transferred to a Brookefield RVTD 382 viscometer and agitated at 100 rpm 

using a spindle number 21. The pulp viscosity was measured in centipoises (cP). 

The development of handsheets strength i.e. tear, burst and breaking strength of the pulp 

fibres, was evaluated by beating, using a Valley beater according to TAPPI Standard T200 om-89. 

The pulp samples were beaten at different intervals and the drainage rate, in Schopper Riegler 

(°SR), was measured according to TAPPI T227 om-92. Handsheets were formed according to 

TAPPI T205 om-88 using British Standard handsheet making equipment. 

2.8. Testing of physical properties of the handsheets 

All handsheets were conditioned for 48 hours at 55% relative humidity and 23°C before 

being tested. The following strength properties were evaluated of each of ten handsheets 

according to TAPPI standards. Burst index (hydrostatic pressure required to rupture the test 

specimen), breaking length (maximum load or weight that a strip of paper will support before 

pulling apart), and tear index were measured by TAPPI Standard no T403 om-91, T404 om-87 

and T414 om-84 respectively. The brightness was measured in ISO units using a reflectance 

photometer (Zeiss Elrepho 65843, Germany). 

 

 

 

 

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 158 

3. Results and discussion. 

3.1. Raw material composition 

The chemical composition of sugarcane bagasse (SCB) is listed in Table 4. SCB 

contained 1.7% ethanol/cyclohexane soluble extractives, 2.4% water soluble extractives and 2.6% 

ash content. The ash content was within the range (0.7 - 2.6%) reported in the literature for 

depithed SCB but higher than in wood (0.2 - 1.5%), probably due to the high silica contents of 

SCB and contamination with soil.5, 6, 8 

Nevertheless, SCB had higher proportion of hemicelluloses (28.0 %), mainly as xylan 

(25.9%) than wood.33 The Klason lignin content averaged 18.2% was lower than 26.8% reported 

for wood based materials.33 

SCB constitutes an alternative to the well-established wood sources of fibre. Its high 

holocellulose content together with lower lignin makes this feedstock a good candidate for the 

integration of increased hemicellulose pre-extraction prior to pulping and the production of high 

pulp yields when the material is well depithed.  

3.2 Effect of xylan pre-extraction on sugarcane bagasse 

3.2.1. Liquid fractions 

The effectiveness of dilute sulphuric acid and mild alkaline (NaOH) treatments for xylan 

extraction from SCB prior to pulping was investigated. The experimental results presented in 

Table 2 and Table 3 include data on the recovery of the reaction products such as sugars, 

oligomers, sugar degradation products furfural and hydroxymethylfurfural (HMF), acetic acid and 

acid soluble lignin (ASL) obtained after dilute sulphuric acid and mild alkaline pre-extraction, 

respectively. The major component considered in the analysis of the liquid fraction was the xylan 

yield, measured as the combined monomeric and oligomeric xylose content. The sugar 

degradation products, acetic acid and ASL were considered as by-products in the dilute sulphuric 

acid pre-extraction process that may inhibit possible subsequent biological conversion.34 ASL was 

also considered as an impurity for mild alkaline pre-extracted xylan.19 
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The results show that dilute sulphuric acid conditions can selectively solubilize xylan 

from SCB, originating liquid fractions rich with xylo-oligomers with up to 17.8% of the total 

xylose content (Central point, Table 2). The importance of adding an acid catalyst to improve 

xylan solubilisation from SCB structure was confirmed by the low xylose yields (11.9% DM) 

obtained when hot water extraction was performed at 120°C for 40 min. Xylan yields in the liquid 

fractions increased with the increase in reaction time, temperature and acid concentration. The 

maximum recovery of xylose of 73.1% (57.7% monomeric and 15.4% oligomeric) was obtained 

when pre-extraction of xylan was performed under 0.3% v/v H2SO4 at 120°C for 74 min. At the 

same time, the concentration of sugar degradation compounds and acetic acid derived from acetyl 

groups were below the reported levels of inhibition for subsequent fermentation processes, i.e. 0.5 

to 2 g L-1 for both HMF and furfural and 4 to 10 g L-1 for acetic acid.34 Under these conditions, 

less than 3% of the cellulose and lignin content of SCB was solubilised, indicating little or no 

degradation of these polymers.  

Alternatively, xylan can be quantitatively recovered from SCB with mild alkaline 

conditions (Table 3). Increase in NaOH concentration had a dominant influence on high xylan 

solubilisation and subsequent recovery in the liquid fraction. The maximum xylan recovery yield 

was 81.1% obtained using the highest NaOH concentration of 2.3 M at moderate temperature of 

65°C. Alkaline pre-extraction conditions also solubilised a noticeable amount of lignin (4.1 – 

24.3%) associated with the recovered xylan. 

Statistical significance of the experimental data was determined by ANOVA. The 

influence of process parameters could be described by quadratic models (Equations 4 and 5) 

whose suitability of fit and statistical significance after eliminating the insignificant terms are 

presented in Table 5. The mathematical model that describes the xylan solubilisation (y1) during 

dilute sulphuric acid pre-extraction under the conditions studied can be represented by the 

equation: 

y1 = 4.9 + 4.2x1 + 4.5x2 + 3.9x3 + 2.4x1x3 + 1.8x1x2             (4) 
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According to the equation (1), both acid concentration (x1) and temperature (x2) are the factors 

that influenced the xylan solubilisation the most followed by reaction time (x3). On the other 

hand, equation 2 represents the yield of xylan after alkaline pre-extraction (y2) as a function of 

NaOH concentration (x1) and temperature (x2). The negative sign indicates that an increase in 

temperature would eventually compromise the xylan yields as previously reported.27 

y2 = 19.1 + 5.2x1 + 3.9x2 – 3.7x22        (5) 

By fixing the reaction time at 40 min for dilute acid and 180 min for mild alkaline pre-

extractions the above model equations allowed the generation of the response surface plots shown 

in Figure 1. Although the model for dilute acid pre-extraction can only be used to predict the 

xylan yield within the studied range, an increase in temperature beyond the tested range (Figure 

1A) would promote degradation of xylan. This fact is supported by the formation of furfural at 

154°C and corroborated in other studies (Table 2, run 12).4 In the case of mild alkaline pre-

extraction (Figure 1B), the optimal xylan yield can be obtained when the NaOH concentration and 

temperature were fixed at star points (2.3 M and 65°C). In addition, the graph in Figure 1B 

indicates a decline in xylan yield when raising temperatures to values higher than 65°C. 

 

3.2.2. Characterization of mild alkaline pre-extracted xylan 

Alkaline conditions could generate oligomer or polymeric xylan fractions from SCB 

whose derivatives can be used to strengthen properties of sheets formed from old corrugated 

container pulp.16 This is based on the hydrolysis of the ester linkage between plant 

polysaccharides and lignin, which enhances the solubility of the hemicelluloses, without reducing 

their molecular mass.5  

On this basis, the average molecular mass of a xylan sample obtained under the alkaline 

pre-extraction conditions run 15 (1.5 M NaOH; 65°C for 180 min) was estimated by the size 

exclusion chromatography (SEC). The xylan pre-extraction carried out under these conditions 

resulted in a cellulose rich solid residue that was selected for subsequent soda or sodaAQ pulping 

evaluation and optimisation.  
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The average molecular mass of the xylan sample obtained by SEC was approximately 32,793 g 

mol-1, which was within the range of the structural characterization carried out by Sun et al 2004.5 

The high molecular weight xylan can be used in paper and corrugated board applications.7 

Further analysis of the xylan component obtained by conditions of run 15 was performed 

by FT-IR spectroscopy to determine the changes of the structure during alkaline pre-extraction. 

The FTIR spectra of xylan obtained was similar to that of commercial oat spelt xylan (Figure 2). 

However, in the pre-extracted xylan the intensity of 3288, 2918 and 1403 cm-1 bands were much 

lower than that of oat spelt xylan (3346, 2921 and 1412 cm-1), suggesting lower concentration of 

O-H, C-H and CH2 linkages, respectively. It was also noted that the band at 1034 cm-1, which was 

ascribed to C–O, C–C and C–OH linkages, appeared in both xylan samples. A sharp band at 897 

cm-1 indicated the presence of β-glucosidic linkage (C–O–C) between the sugar units in the 

hemicellulose.5 Obviously the appearance of bands (1243, 1558 and 1574 cm-1) corresponding to 

lignin were observed in alkaline pre-extracted xylan sample.5,35 The presence of lignin could limit 

the application of the xylan in various paper products as the lignin reduces the brightness of the 

xylan.36 The alkali soluble lignin can be minimised through delignification of the material prior to 

xylan extraction; however some of these processes might be detrimental to the cellulosic fibre.19 

Therefore this option was not considered in the present study.  

 

3.2.2. Solid fraction 

Xylan pre-extraction processes can change the amount and structure of other polymers. 

Ideally the amount of cellulose (glucan) retained in the solid residue should be high and reduced 

lignin content would be beneficial to retain potential as feedstock to the subsequent pulping 

processes. Moreover, some of the hemicelluloses are required in the cellulignin residues, as some 

are necessary to contribute to the quality of pulps obtained from these residues.37 The composition 

of the solid residues from dilute acid and mild alkaline pre-extractions, expressed as percentages 

(%) of original raw material (dry weight), is listed in Table 2 and Table 3, respectively. 
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Additionally, the effect of pre-extraction methodology on the SCB structure was evaluated by 

SEM (Fig 3). 

Dilute acid pre-extraction of xylan showed no impact on glucan and lignin content 

retained in the solid residue compared to the raw material (Table 2). However, the dilute acid 

treatment disrupted the fibres of SCB after pre-extraction of xylan as can be observed in Figure 

3B. Compared with glucan content in the original SCB (i.e., 46.3%), the glucan range after dilute 

acid extraction varied from 41.4 to 45.0%, the acid insoluble lignin ranged from 17.9 to 20.5% 

raw material, relative to 18.2% acid insoluble lignin content present in non-extracted SCB. On the 

other hand, hot water pre-extraction (zero acid) generated solid residue with 43.8% glucan and the 

acid insoluble lignin content was 18.3%.  

In comparison, mild alkaline pre-extractions led to solid residues formed mainly by high 

glucan content (43.2 to 46.2%) and low acid insoluble lignin (13.2 to 17.3%) as shown in Table 3. 

Considering lignin as a barrier during processing of cellulosic fibres, pre-extraction with alkaline 

would favour pulping processes. This was also supported by the interruption of fibres shown by 

SEM micrographs (Fig 3C) due to mild alkaline xylan pre-extraction. 

The amount of hemicellulose retained in the solid residue depended on the solubilisation 

yield during the pre-extraction step. The hemicellulose content of solid residues from dilute 

sulphuric acid pre-extraction varied from 6.7 to 23.8% ODM (Table 2), whilst lower values (3.4 

to 14.5% ODM, Table 3) were obtained for solid residues from mild alkaline pre-extractions.  

3.3. Properties of the pulps 

3.3.1 Pulp evaluation on micro scale  

In order to assess the efficiency of the xylan pre-extraction together with subsequent 

pulping in an integration approach, pre-screening micro pulping experiments of selected pre-

extracted solid residues were carried out, with non-extracted SCB used as control. The screening 

criteria were used to identify pulping conditions for SCB residues after xylan extraction that could 

provide similar or higher pulp yield, low kappa number and low reject levels, compared to pulps 

produced from similar pulping processes with non-extracted SCB.  
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Solid residues with maximum glucan content and some of the hemicelluloses and lignin 

were selected for soda or sodaAQ micro pulping. Solid residue obtained from dilute sulphuric 

acid pre-extraction run 15 (0.3% v/v H2SO4, 120°C for 40 min) was used, containing 45.0% 

glucan; 14.6% xylan and 18.4% lignin content. Hot water pre-extraction resulted in a solid residue 

with 43.8% glucan; 23.3% xylan and 18.3% lignin that was also investigated. On the other hand, 

mild alkaline pre-extracted from run 15 (1.5 M NaOH, 65°C, for 180 min) was preferred, with 

solid residues containing 43.2% glucan; 6.2% xylan and 13.2% lignin.  

The effect of pulping conditions on pulp yield, kappa number and percentage rejects for 

non-extracted SCB and dilute acid or hot water xylan pre-extracted solid residues are shown in 

Table 6. The results presented in Table 6 were obtained under extreme and intermediate 

conditions of soda or sodaAQ pulping. Likewise, the pulping results obtained after alkaline pre-

extraction are shown in Table 7.  

Among the pulping processes used, sodaAQ process gave the most favourable results 

regardless of the xylan pre-extraction process. AQ primarily has an effect on degradation of lignin 

and stabilization of carbohydrates in pulping process.22 As a result, pulp yield was higher, while 

the rejects and kappa numbers were reduced when AQ was added (0.08 - 0.1%). Moreover, the 

NaOH concentration required was lower (14 - 16%) relative to soda only pulping where high 

concentrations of NaOH were used (20 - 22%).  

Dilute acid pre-extraction disadvantaged the subsequent soda or sodaAQ pulping process. 

Low screened pulp yields (below 40%) and high percentage rejects, from 9 - 13%, were obtained. 

The high kappa number observed (35-39) revealed that, contrary to expected, dilute sulphuric acid 

reduced the delignification efficiency of the pre-extracted residues. This finding could be due to 

pseudolignin formation during dilute acid treatment that is known to be difficult to oxidize and 

solubilize during pulping.20, 38 Therefore, more alkali would be required to improve delignification 

of acid pre-extracted solid residue. On the contrary, sodaAQ pulping of hot water pre-extracted 

SCB under the best conditions (14%NaOH, 0.1% AQ for 30 min) improved the screened pulp 

yield up to 53.6% at lower kappa number (28.9) and reject level (0.5). 
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As expected, sodaAQ pulping of alkaline pre-extracted SCB significantly improved the 

solubilisation of lignin during the cooking process, resulting in reduced kappa number (15.8) at 

lower residence time (25 minutes). This process, however, should be optimised to prevent 

carbohydrates degradation according to requirements of the final product 

3.3.2. Pulp evaluation on large scale 

SodaAQ pulping of mild alkaline and hot water pre-extracted solid residues was repeated 

on the large scale in order to confirm the micro pulping results. Kraft pulping was applied on 

large scale for dilute acid pre-extracted residues since it is more efficient in delignification of high 

lignified wood chips.12 The cooking conditions and yields are presented in Table 8.  

The extraction of 69.1% of xylan under mild alkaline conditions improved screened pulp 

yield by 10.8% at lower kappa number (15.5), and less rejects levels compared to pulping of non-

extracted SCB. High pulping efficiency of alkaline pre-extracted solid residues observed in this 

study might be ascribed to the opening of the cell wall structure due to initial removal of lignin 

and xylan (Fig 4).17 Consequently, high concentration of alkali measured as residual active alkali 

(RAA) was recorded in pulping black liquors of alkaline pre-extracted SCB implying lower alkali 

consumption during cooking probably due to the removal of ash content (2.6% vs 0.6%) and 

extractives. Lower chemical consumption can be expected from the pulps with low kappa number 

during subsequent bleaching operations. Moreover, carbohydrate degradation measured in terms 

of viscosity was not observed during pulping, indicating better delignification and selectivity of 

the sodaAQ pulping used.8 Similar benefits on pulp properties have been proved in other 

herbaceous materials such as cereal straw by integration of alkali pre-extraction of hemicelluloses 

with sodaAQ pulping.27  

Alternatively, the combined process of hot water pre-extraction together with sodaAQ 

pulping of the solid residue showed similar screened pulp yield with comparable kappa number. 

However, a significant decrease in pulp viscosity by 24% was observed, indicating carbohydrate 

degradation. This could be prevented by applying lower cooking temperatures.17  
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The chemical composition of the sodaAQ pulps showed a reduction in xylan content due 

to pre-extraction which might affect the handsheet strength properties.22 Several studies 

emphasised the importance of xylan for the strength properties of pulp fibres.39, 40 

Compared with soda or sodaAQ pulping (Table 6), kraft pulping generated pulps with 

considerably reduced kappa number (6) and rejects levels (3.7%), resulting in low screened pulp 

yield (39.5%), which compared well with values obtained for kraft pulps of delignified SCB with 

Panus tigrinus strain.32 Although kraft pulp process was the best option to delignify dilute acid 

pre-extracted materials, milder pulping conditions may be recommended in order to prevent 

peeling reactions thereby increasing cellulose retention.12  

3.3.2. Hand sheets strength properties 

The importance of preserving hemicelluloses on pulp fibres to create more hydrogen 

bonding potential between fibres and therefore enhancing the strength properties has been 

reported.43 Thus, pre-extraction of xylan was expected to impact the bonding strength properties 

of the hand sheets produced from these pulps. The burst index, tear index, breaking length and 

ISO brightness properties of hand sheets produced from sodaAQ (Fig 4) or kraft (Fig 5) pulping 

of xylan pre-extracted SCB were compared with those produced from non-extracted SCB. The 

tensile-tear relationship of the sodaAQ pulps is given in Figure 6. All the pulps were beaten to 

enhance the fibre-fibre bonding, thereby improving hand sheets strength properties. Strength 

properties were found to increase with increase beating up to 40°SR for sodaAQ pulps, whereas 

45°SR was optimum for kraft pulps.  

Interestingly, alkaline conditions for hemicellulose extraction provided brighter sodaAQ 

pulps with superior tear index by 56%. The burst index and breaking length were similar to those 

of pulps produced from non-extracted SCB. While burst and breaking length correlate strongly 

with fibre bonding, tear index also depends strongly on fibre length.31 These results suggest that 

fibres were well bonded to one another and thus presented good conformability without fibre 

shortening. In several occasions, for evaluating tear strength, it is more essential to compare tear 

strength at a certain tensile level (Fig 6).  
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Although higher tear index was observed for pulps produced from extracted SCB there was a 

reduction in tensile index relative to pulps produced from non-extracted SCB. This may be due to 

xylan insufficiency in pulp samples produced from alkaline pre-extracted SCB as shown in Table 

8.41 The overall improvements in pulp yield and handsheets strength properties associated with 

alkaline pre-extraction of SCB together with the recovered xylan complement the proposed pulp 

mill biorefinery concept.11  

In line with this study, the strength properties of the sodaAQ pulps produced from alkaline pre-

extracted cereal straw remained at a very good level.27 The high strength values of pulps could be 

advantageous for pulps used for packaging papers but of secondary importance when used in 

printing and writing papers.31 

Regarding the physical strength properties of the sodaAQ pulps produced from hot water 

extracted residue, they were generally improved despite the reduction in viscosity. Tear and burst 

index was insignificantly increased by 6% and 5% respectively. The breaking length and tensile 

index was similar, whilst the optical brightness was reduced by 4%. Fibre weakening during 

sodaAQ pulping of hot water pre-extracted residue showed by the viscosity reduction was to some 

extent compensated by the improved bonding ability of fibres due to the preservation of 

hemicelluloses. Thus the bonding strength properties (tear and burst index) of pulps produced 

from hot water extracted pulps were still higher than those of pulps produced from non-extracted 

SCB. The strength values obtained in this study resembled those found when hot water pre-

extracted SCB was previously subjected to sodaAQ pulping.17 

The overall strength properties of Kraft pulps from acid pre-extracted residues were 

significantly reduced (Fig 5). Compared to non-extracted SCB pulp, there was a significant 

reduction in both tear and breaking length but the optical brightness of the pulps was similar. This 

could be attributed to the non selectivity and more complete removal of lignin under the selected 

kraft pulping conditions, leading to severe degradation of carbohydrates and therefore to inferior 

strength properties of fibres.42 These results showed that kraft pulping of acid pre-extracted 

residue had to be optimised to maintain strength properties at higher levels. 
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4. Conclusions 

Sugarcane bagasse has proven to be a feasible raw material for production of xylan rich liquid 

fractions by suitable dilute acid or alkaline pre-extraction conditions prior to chemical pulping 

processes that could be used as a substrate for further industrial practises. Although from the 

perspective of pulp production in the biorefinery concept, it has been shown that dilute acid pre-

extractions promoted a high xylose yield compared to hot water, it did not favour the subsequent 

soda/AQ or kraft pulping processes. Pre-extraction with hot water did not affect adversely the 

subsequent sodaAQ pulping, resulting in an increase in pulp yield and lower kappa number 

although the viscosity was compromised. The tear and burst index of these pulps were improved 

with a slight reduction in breaking length and optical brightness.  

Regarding the mild alkali pre-extraction, it yielded significant amount of xylan (69.1%) prior 

to sodaAQ pulping without deterioration of the quality of the final pulp. In fact, higher pulp yields 

were produced at lower kappa number without reduction in viscosity. These conditions provided 

brighter pulps with superior tear index whilst breaking length and burst index was retained in the 

same level as those of pulps produced from non-extracted SCB. Alkali extraction combined with 

sodaAQ pulping was therefore the preferred option for SCB.  
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Tables 
 
Table 1. Variables and corresponding coded levels used in the central composite designs for 

diluted acid and mild alkali pre-extractions.  

 
Coded Levels Pre-extraction 

method 
Variables 

-1.68 -1 0 1 1.68 
Acid concentration (%, v/v) 0 0.1 0.3 0.5 0.6 
Temperature (ºC) 86 100 120 140 154 Diluted acid 
Reaction time (min) 6 20 40 60 74 
Alkali concentration (M) 0.7 1 1.5 2 2.34 
Temperature (ºC) 23 40 65 90 107 Mild alkali 
Reaction time (min) 79 120 180 240 281 
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Table 2. Composition of liquid fraction and solid residue resulting from dilute sulfuric acid pre-extraction of hemicelluloses from sugarcane bagasse 

Pre-extraction conditions Liquid fraction c
Solid fraction 

d
EMB 

Run 
H2SO4 
% 

Temp 
°C 

Time 
min 

Xyl   
% 

a
Xyl 

% 
theoretical 

Xylo-
oligomers 
% 

b
Xyl 

recovery 
yield % 

Glc 
% 

Acetic 
acid  
g/L 

Furfural 
+ HMF 
g/L 

Glucan 
% 

Xylan    
% 

AIL     
% 

Glc 
(%) 

Xylan    
(%) 

1 0.1 100 20 1.1 4.4 0.6 5.0 0.7 0.1 - 44.8 23.5 17.8 98.2 95.0 
2 0.1 100 60 1.8 7.0 3.4 10.4 0.7 0.2 - 44.2 22.2 18.7 97.2 92.8 
3 0.1 140 20 1.6 6.3 2.0 8.3 0.8 0.1 - 42.1 22.7 17.9 92.6 94.0 
4 0.1 140 60 4.9 18.9 10.3 29.2 1.2 0.4 0.05 43.2 19.7 19.0 96.4 91.1 
5 0.5 100 20 0.8 3.1 3.5 6.6 1.1 0.1 - 43.4 23.1 17.9 96.2 92.3 
6 0.5 100 60 6.6 25.5 5.3 30.8 0.4 0.2 - 43.4 17.6 20.5 97.6 93.4 
7 0.5 140 20 5.2 20.0 4.6 24.6 0.5 0.2 - 44.5 19.0 18.2 98.0 93.4 
8 0.5 140 60 13.1 50.5 0 41.1 2.0 0.2 0.28 44.9 12.2 18.5 99 97.6 

Star point acid concentration 

9 0 120 40 1.5 5.7 6.2 11.9 0.6 0.6 - 43.8 23.3 18.3 95.3 95.7 
10 0.6 120 40 7.3 28.1 12.7 40.8 0.5 0.1 - 43.5 15.3 19.2 96.6 94.9 

Star point temperature 

11 0.3 86 40 0.3 1.3 6.5 7.8 0.3 0.3 - 44.2 23.8 18.3 93.6 93.3 
12 0.3 154 40 10.2 39.3 0 36.1 1.7 0.1 0.3 43.0 14.5 19.3 98.2 95.3 

Star point reaction time 

13 0.3 120 6 1.2 4.6 3.6 8.2 0.4 0.7 - 43.8 22.7 17.4 95.5 92.3 
14 0.3 120 74 14.9 57.7 15.4 73.1 1.8 0.1 - 41.4 6.7 18.6 93.5 96.3 

Central points 

15-19 0.3 120 40 6.2±2.0 23.8±3.4 17.8±1.1 41.7 1.2 0.4 0.16 45.0±0.9 14.6±1.0 18.4±0.9 99.7 98.1 
aAnalysis data are based on the oven dry xylan of non-extracted SCB  
bObtained by addition of Xylose (% theoretical) and Xylo-oligomer (%) 
cAnalysis data are based on the oven dry non-extracted SCB  
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dExtraction mass balance (EMB) was calculated for each component in the SCB as e.g. xylan in the liquid and solid fraction after Run 9 were 1.5% and 23.3% respectively, 
and the raw SCB has 25.9% xylan before the extraction. The total extraction mass balance = [(1.5+23.3)/25.9]*100 = 93.3%. 

*Xyl – Xylan; Glc – Glucan; AIL – Acid insoluble lignin 
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Table 3. Results of the experiments according to a central composite design obtained after mild alkali pre-extraction of hemicelluloses from sugarcane 

bagasse in terms of xylan recovery and the composition of the solid fraction. 

Pre-extraction conditions Xylan pre-extraction efficiency b
Solid fraction after extraction 

c
EMB (%) 

Run 
NaOH  
(M) 

Temp 
(˚C) 

Time 
min 

Xylan 
precipitate 
yield % 

a
Xylan 

recovery 
yield % 

Lignin     
(% 
xylan) 

Lignin          
% dry raw   
SCB 

Glucan   
% 

Xylan     
% 

Acid 
insoluble 
lignin 
(%) 

Glucan Xylan 
Acid 
soluble 
lignin 

1 1 40 120 11.5 44.4 7.9 1.4 43.8 12.5 16.6 94.6 92.7 98.9 
2 1 40 240 11.5 44.4 9.4 1.7 43.9 12.4 16.3 94.8 92.3 98.9 
3 1 90 120 12.2 46.9 8.9 1.6 46.2 12.3 16.3 99.7 94.2 98.4 
4 1 90 240 12.4 47.9 9.9 1.8 43.4 12.0 16.2 93.7 94.0 98.9 
5 2 40 120 13.3 51.4 7.5 1.4 43.7 10.9 16.6 94.4 93.3 98.9 
6 2 40 240 15.9 61.4 16.2 2.9 43.2 7.6 15.0 93.3 90.6 98.4 
7 2 90 120 17.8 68.7 22.9 4.2 43.2 6.8 13.5 93.3 94.9 97.3 
8 2 90 240 21.0 81.1 24.3 4.4 43.7 2.7 13.1 94.4 91.4 96.2 

Star point NaOH concentration   

9 0.66 65 180 10.0 38.6 4.1 0.8 43.3 14.5 17.2 93.5 94.6 98.9 
10 2.34 65 180 20.8 80.3 21.7 4.0 43.5 3.4 13.7 94.0 93.3 97.3 

Star point temperature   

11 1.5 23 180 12.1 46.7 3.5 0.6 43.2 11.7 17.3 93.3 92.0 98.4 
12 1.5 107 180 18.9 73.0 17.4 3.2 43.3 5.7 14.5 93.5 95.1 97.3 

Star point reaction time   

13 1.5 65 92 17.9 69.1 15.8 2.9 43.8 5.7 14.8 94.6 90.9 97.3 
14 1.5 65 308 18.7 72.2 20.0 3.6 43.6 6.4 14.2 94.2 97.1 97.8 

Central point   

15-19 1.5 65 180 17.9±1.1 69.1 18.1±3.1 4.0 43.2±1.2 6.2± 0.1 13.2 ±0.5 93.2 92.5 94.5 

 
aAnalysis data are based on the oven dry xylan of non-extracted SCB  
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bAnalysis data are based on the oven dry non-extracted SCB 
CExtraction mass balance (EMB) is calculated as explained in Table 2 
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Table 4. Chemical composition of non-extracted sugarcane bagasse. 

Components are expressed as weight percentage of the original oven dry material (% ODM). 

Component SCB Analytical methods 

Ethanol/cyclohexane soluble 
extractives 

1.7 ± 0.5 

Water soluble extractives 2.4 ± 1.0 

TAPPI T264 om-88 

   
Glucan 46.3 ± 2.5 
Xylan 25.9 ± 2.1 
Arabinan 2.1 ± 1.0 
Acetyl group 2.6 ± 0.7 

LAP 013 

Acid insoluble lignin 18.2 ± 2.1 TAPPI T222 om-88 
Ash 2.6 ± 1.2 TAPPI T211 om-85 
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Table 5. Analysis of variance from the regression representing xylan yield after dilute sulfuric 

acid (y1) and mild alkaline (y2) pre-extraction of sugarcane bagasse 

 
 
 
 
 
 
 

Source Sum of squares 
Degree of 

freedom 
Mean square F-value Prob>F 

 y1 y2 y1 y2 Y1 y2 y1 y2 y1 y2 

Model 202.59 333.03 9 6 22.51 55.5 30.43 3.26 <0.00001 0.0482 

Residual 5.18 170.33 7 10 0.74 17.03     

Lack of fit 5 166.93 5 8 1 20.87 11.11 12.25 0.0847 0.0776 

Pure error 18 3.41 2 2 0.09 1.7     

Total error 207.77 503.36 16 16       

R2 0.97 0.82         
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Table 6. Soda and soda-AQ micro pulping conditions, pulp yield and properties for non-extracted, 5.7% (hot water, 120°C and 40 min) and 23.6% (0.3% v/v 

H2SO4, 120°C, and 40 min) xylo-oligomer extracted sugarcane bagasse residues. 

Soda 

 Cooking 
conditions 

  non extraction Hot water extraction  
(120°C, 40 min ) 

Acid extraction       
(0.3% v/v H2SO4, 120°C, 40 min) 

Run Active alkali     
(% DM) 

AQ          
(% DM) 

Time at 
170°C 
(min) 

Screened 
pulp yield 
(%) 

Rejects 
(%) 

Kappa 
 Number 

Screened 
pulp yield 
(%) 

Rejects 
(%) 

Kappa  
number 

Screened 
pulp yield 
(%) 

Rejects 
(%) 

Kappa 
number 

1 20 - 25 34.2 7.6 34.8 39.7 6.4 32.3 35.9 11.0 38.4 
2 20 - 35 32.4 6.0 34.0 35.1 7.8 33.2 35.4 12.7 38.3 
3 22 - 25 33.2 9.0 34.3 38.3 6.2 32.1 35.4 12.2 38.3 
4 22 - 35 33.2 9.3 34.6 39.4 5.8 32.7 36.8 10.9 36.9 
5 21 - 30 34.5 9.9 33.7 37.0 4.4 32.7 37.4 9.4 38.2 
6 21 - 37 34.2 9.7 33.5 35.4 8.0 32.0 36.7 10.9 38.1 

Soda-anthraquinone 

Run             
1 14 0.05 30 43.0 6.0 31.9 41.3 5.3 29.4 39.0 9.7 35.2 
2 14 0.1 30 46.2 4.9 31.5 53.6 0.5 28.9 39.9 9.0 35.0 
3 16 0.05 30 39.4 7.1 31.6 41.8 6.2 28.7 38.8 10.2 34.3 
4 16 0.10 30 36.4 9.3 31.9 49.9 3.8 28.8 39.4 9.9 34.0 
5 15 0.08 70 31.9 9.9 31.3 36.5 11.5 27.8 39.9 8.9 33.8 
6 15 0.08 45 40.0 8.7 31.9 43.0 5.8 28.6 38.3 13.1 33.2 

Stellenbosch University  http://scholar.sun.ac.za



 179 

Table 7. Soda-AQ micro pulping conditions, pulp yield and properties for non-extracted and 69.1% (1.5M NaOH, 65°C, and 180 min) xylan extracted 

sugarcane bagasse residues. 

    Non-extraction  1.5M NaOH, 65°C and 180 min 

Replicates 
NaOH in 
residue (g) 

AQ        
(% DM) 

Time at 170°C 
(min) 

Screened pulp 
yield (%) 

Rejects 
(%) 

Kappa 
number 

 
Screened pulp 
yield (%) 

Rejects    
(%) 

Kappa 
number 

4 8.3±0.6 0.1 25 - - -  40.3±1.6 2.0±0.1 15.8±0.3 
4 7 0.1 30 46.2±0.5 9.1±1.5 34.5±2.0  - - - 
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Table 8. Pulping conditions and pulp evaluation of non-extracted and pre-extracted sugarcane bagasse at large scale. 

Pulping process Soda-AQ Kraft 

 
Non  
extraction 

Hot water,           
120°C, 40 min 

1.5M NaOH,          
65˚C, 240 min 

Non  
Extraction 

0.3 v/v H2SO4, 
120°C, 40min 

Pulping conditions      
Active alkali as Na2O (%) 14.0 14.0  12.0 12.0 
Anthraquinone (%) 0.1 0.1 0.1   
Sulfidity as Na2O (%)    20.0 20.0 
Liquor-to-bagasse ratio 7:1 7:1 7:1 7:1 7:1 
Time at 170˚C (min) 30 30 30 30 30 
Pulp yield      
Screened yield (%) 40.1 41.3 45.0 41.3 39.5 
Rejects (%) 15.7 14.7 3.3 5.9 3.7 
Pulp evaluation      
Viscosity (cP) 7.2 5.5 7.1 3.5 2.5 
Kappa number 22.8 20.9 15.5 7.0 6.0 
Black liquor analysis      
Residual active alkali (g/L) 2.0 2.5 9.0   
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. (A) Estimated response surface for xylan yield obtained after sulphuric acid hydrolysis 

showing the influence of temperature and acid concentration for a residence time of 40 minutes. 

(B) Estimated response surface for xylan yield obtained after NaOH extraction showing the 

influence of temperature and NaOH concentration for a residence time of 180 minutes. 
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Figure 2. FT-IR spectra of (A) commercial oat spelt xylan and (B) xylan fraction (dialysed with 

12 kDa molecular weight cut off cellulose acetate membrane) extracted from sugarcane bagasse 

with 1.5 NaOH at 65°C for 180 minutes. 
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Figure 3. Scanning electron microscope micrographs of non-extracted (A), dilute sulphuric acid 

(B) and alkaline (C) pre-extracted sugarcane bagasse residues.  

Scale: Mag = 500x ; EHT = 7.0 kV; width = 15 mm 
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Figure 4. Handsheet properties as a function of drainage in °SR of sugarcane bagasse after 

sodaAQ pulping in large scale. 
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Figure 5. Handsheet properties as a function of drainage in °SR of sugarcane bagasse after kraft 

pulping in large scale. 
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Figure 6. Tensile-tear relationship of non-extracted, hot water and alkaline extracted sugarcane 

bagasse after soda-AQ pulping in large scale. 
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Abstract 

Hemicelluloses that would have been dissolved in black liquor during pulping were pre-

extracted from giant bamboo chips with sodium hydroxide prior to kraft and soda-AQ pulping. 

The effects of sodium hydroxide concentration, temperature and time on hemicelluloses 

extraction were studied using a statistical experimental design and further compared with acid 

pre-extraction followed by soda-AQ pulping. Results showed that sodium hydroxide 

concentration exerted the strongest influence, solubilising up to 20.4% dry mass of the available 

xylan with 2.0M NaOH at 90°C for 240 minutes. However, the extraction of 13.6% dry mass 

xylan with 1M NaOH at 90°C for 240 min provided kraft pulps with reduced reject levels, higher 

screened pulp yields (50.4%) without reduction in viscosity and slight improvement in burst index 

of the hand sheets. In the case of dilute acid pre-extraction prior to soda-AQ pulping, the amount 

of pre-extracted xylan to maintain the pulp yield was limited to 11.3% with an increment of the 

viscosity compared to non-extracted bamboo.  
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Among the two xylan pre-extraction and subsequent pulping integration processes, 

alkaline pre-extraction prior to kraft pulping resulted in slightly higher pulp quality for giant 

bamboo. Furthermore, the pulping capacity of the original pulp mill could be increased by 16%.  

Keywords: alkali and acid pre-extraction, biorefinery, giant bamboo, handsheet strengths, 

hemicelluloses, kraft pulping, pulp quality, , soda-AQ pulping. 
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1. Introduction 

Hemicelluloses, solubilised during kraft pulping of suitable lignocellulosic biomass, such 

as bamboo, are presently underutilised. In current pulp production processes they are incinerated 

in the recovery furnace together with the dissolved lignin (Ragauskas et al. 2006). The recovery 

and purification of the modified and degraded carbohydrates from the pulping effluents, to a 

sufficient extent for use as commodity chemicals, are challenging (Walton et al. 2010). Recovery 

of hemicelluloses prior to pulping and further conversion to value added products under the 

biorefinery concept offers an interesting economic opportunity for the paper mill (van Heiningen 

2006). The pre-extraction of hemicelluloses implies less alkali is requirements for cooking to a 

certain kappa level, increment in the rate of delignification and possible reduction of the bleaching 

chemicals consumption. At the same time pulp production capacity is enhanced by improving the 

overall alkaline pulping, for both kraft and soda-AQ processes (De Lopez et al. 1996; Al-Dajani 

and Tschirner 2008; Sixta and Schild 2009). Such integration of hemicelluloses pre-extraction 

with alkaline pulping lead to improvement in both pulp properties and production capacity 

without loss in yield, as already demonstrated in recovery furnace limited Kraft pulp mill (Al-

Dajani and Tschirner 2008; Huang et al. 2010).  

Bamboo, a naturally fast growing and potentially low cost lignocellulosic material, is 

most frequently used for the production of paper and as a reinforcing fiber (He et al. 2008). 

Especially in Asia where 50% of pulp production is harvested from wild forests (Scurlock et al. 

2000). When preparing chemical pulps from bamboo, Kraft pulping is generally preferred to soda 

pulping since it provides satisfactory delignification as well as high yield and viscosity (Vu et al. 

2004). This can be attributed to the fact that fiber dimensions and main chemical constituents of 

bamboo typically bear a close resemblance to those of woody materials. The glucan content of 

bamboo (40-52.6%) is comparable to the reported cellulose content of softwoods (40-52%) and 

hardwoods (38-56%) (Vena et al. 2010).  
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The main hemicelluloses present in bamboo is an O-acetyl-4-O-methylglucuronoxylan 

which accounts for approximately 25% of the cell wall material.  

The acetyl group content represents 6-7% of the total xylan, compared to the 8-17% acetyl group 

content in hardwood xylan. Bamboo lignins have a higher content of phenolic hydroxyl groups 

than wood lignins, resulting in a higher reactivity to pulping (Salmela et al. 2008). However, 

bamboo kraft lignin shows a higher degree of condensation compared to wood pulps, thereby 

being more resistant to bleaching like that of wood pulps (Salmela et al. 2008). For this reason, 

the large-scale delignification of bamboo is conventionally based on techniques similar to those 

generally applied to wood pulping. 

Pre-extraction of hemicelluloses from lignocellulosic material prior to pulping can be 

implemented with alkali, acid or hot water (De Lopez et al. 1996; Mendes et al. 2009; Rodriguez-

Lopez et al. 2012; Vena et al. 2010). For hardwoods, alkaline pre-extraction prior to kraft pulping 

has been shown as one of the most promising fractionation technologies as it allows the recovery 

of high molecular mass xylan without reducing the pulp properties and yield (Al-Dajani and 

Tschirner 2008; Al-Dajani and Tschirner 2010; Sixta and Schild 2009). The xylan polymers 

isolated can be used for the production of various chemicals including biopolymers (Sixta and 

Schild 2009). In contrast, dilute acid pretreatments provides extract with higher yield 

hemicelluloses of lower degree of polymerization, more suitable for other applications, i.e., 

bioethanol production by hydrolysis and fermentation. The combination of dilute acid pre-

extraction with soda-AQ pulping has been proven to improve pulp yield when compared to kraft 

pulping (Vena et al. 2010). 

 Although many literature reports address the pre-extraction of hemicelluloses from 

different lignocellulosic materials prior to kraft pulping, few have evaluated the potential of 

bamboo.  
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Therefore, taking into account the large fraction of hemicelluloses present in bamboo, a 

comparative study of an integrated xylan pre-extraction and Kraft pulping process for South 

African grown giant bamboo is of great importance in exploring and promoting the integral 

utilisation of this biomass. In this context, the objective of the present study was to evaluate the 

effects of alkali and acid pre-extractions on pulp and paper properties.  

Firstly, the reaction conditions under which hemicelluloses could be extracted with mild alkaline 

conditions from giant bamboo with minimal interference on the cellulose (glucan) content were 

investigated. In following the biorefinery approach, the selected solid residue was pulped using 

kraft pulping method to determine the effect of hemicelluloses pre-extraction on pulp and paper 

quality. Subsequently, a follow-up study of the previous work on the effects of hemicelluloses 

extraction with selected dilute sulphuric acid on soda-AQ pulps was also undertaken. 
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2. Materials and methods 

2.1. Materials 

The bamboo used in the study, Bambusa balcooa, was collected in the Western Cape 

province of South Africa. Giant bamboo stems were chipped using a Wigger pilot chipper. The 

chips were screened and a 4-8 mm chip size fraction comprised of nodes and internodes was 

selected for further experiments. The material was conditioned at 23°C and 55% relative humidity 

before use. Sodium hydroxide and sulfuric acid were purchased from Merck, and Busperse 2262 

anthraquinone (AQ) was donated by Buckman Laboratories, Hammarsdale, South Africa. 

Pullulan standards purchased from Polymer Standards Service (PSS) in Germany were 

used to estimate the molecular weight of the isolated xylan fractions. 

2.2 Hemicellulose pre-extraction of giant bamboo 

Mild alkaline (NaOH) pre-extraction was carried out according to a central composite 

design (CCD) created and evaluated in Statistica 7.1 (Statsoft Inc., Tulsa, USA) and Design 

Expert version 8. Process conditions are illustrated in Table 1. Three assays were carried out at 

the center point to estimate the random error required for the analysis of variance (ANOVA). 

Xylan content of the liquid was taken as the response of the experimental design. The statistical 

significance of the regression coefficient was determined by the coefficient of determination, R2.  

The conditions applied for dilute acid extraction were 0.3% v/v H2SO4, 5/5/1 (mL g-1) 

pre-extraction liquor ratio to feed stock ratio at 120°C for 30 min and were selected from a 

previous work (Vena et al. 2010).  

Alternatively, the alkaline extraction of xylan from bamboo was performed as described 

elsewhere (Al-Dajani and Tschirner 2008). The pre-extraction liquor ratio to feed stock ratio was 

4:1 mL g-1. Samples of 100 g oven dry mass bamboo chips (4-8 mm thickness) and NaOH 

solution (0.7-2.34M) were mixed in the desired portions and introduced into Schott bottles. The 

bottles were placed in a shaking hot water bath at 23-90°C and kept at the desired time.  
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Similarly, conditions at 107°C were performed in micro bombs placed in hot water pressurised 

digester. At the end of the desired extraction time, the bottles and bombs were cooled in room 

temperature water.  

2.3. Characterisation of extraction liquors 

At the end of the alkaline pre-extraction, the liquid and the solid fraction were separated 

by filtration on a 100 mesh screen. The hemicelluloses rich filtrates containing a complex mixture 

of solubilised materials (poly- and oligosaccharides, lignins, extracting chemicals, etc.) were 

concentrated in a rotary evaporator at 40°C to approximately 1/3 of the original volume. Filtrates 

were then purified by dialysis against de-ionised water for 3 days using a dialysis cellulose 

membrane with a 12 kDa molecular weight cut off. The samples were conditioned in liquid 

nitrogen and freeze dried. The oven dry mass of the extracted xylan was determined.  

The hemicelluloses recovery yield was estimated according to the following relations (De 

Lopez et al. 1996). 

%Hemicellulose precipitate = Oven dry mass of hemicellulose precipitate x 100 (1) 
                 Oven dry mass non-extracted bamboo  
 

%Hemicellulose recovery   =    %Hemicellulose precipitate  x 100 (2) 
    %Hemicellulose of bamboo 
 

The lignin fractions associated with the hemicelluloses were determined as described 

elsewhere (Brienzo et al. 2009).  

 

2.3.1 Size exclusion chromatography 

The molecular mass of the alkaline extracted xylan was determined using size exclusion 

chromatography (SEC). The isolated xylan was dissolved in deionised water to obtain a final 

concentration of 1 g L-1. The solution was stirred continuously at room temperature for 2 hours 

and filtered through 0.2 µm membranes.  
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The SEC system consisted of three SUPREMA aqueous columns (PSS, Germany), 

connected in series with the pore sizes 30 Å, 3000 Å, 3000 Å respectively. Detection was 

conducted using a Dionex UltiMate 3000 HPLC system with a Varian 380-LC evaporative light 

scattering (ELS) detector. Solution of deionised water containing 0.05% sodium azide (NaN3) was 

used as eluent and the flow rate was maintained at 1 mL·min-1. The column’s temperature was 

kept at 25°C. The detector output was analysed with the Chromeleon® Version 6.80 software 

package. 

2.3.2. IR-spectroscopy analysis of hemicelluloses 

The FT-IR spectra were recorded in reflectance mode using the Smart Performer from 

Thermo equipped with ZnSe lenses. Prior to analysis, a sample of freeze dried xylan was further 

dried in phosphorus pentoxide, and a small portion of the dried hemicelluloses was placed on the 

ZnSe horizontal ATR, and 16 scans with a resolution of 4 cm-1 were accumulated over the range 

of 4000 - 650 cm-1. The operating and data manipulating software was the basic OMNIC package. 

2.4. Characterisation of raw material and solid fractions 

2.4.1 Chemical composition 

The fraction of the bamboo chips was sub-sampled and ground in a Retsch mill and a 

fraction of 40 mesh size was accepted for chemical analysis. Oven dry mass (ODM) of the 

powder was obtained by heating at 105±2°C until a constant mass was achieved. The 

ethanol/cyclohexane solubility (Tappi method T264 om-88), water solubility (T264 om-88), ash 

(T211 om-85) and acid insoluble lignin (T222 om-88) of bamboo was determined. All the 

experiments were carried out in four replicates and the experimental results were represented as 

the mean ± standard deviation of four identical conditions. 

The solid fractions obtained after alkaline pre-extraction were rinsed with distilled water 

and air dried. Dried samples were milled prior to polysaccharides and residual lignin content 

determination, using the same standard methods as those used for the raw materials except for the 

extractives determination. 
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The polysaccharides in extractive free giant bamboo and solid residues were calculated based on 

glucose, xylose, and arabinose after a two step hydrolysis with 72% H2SO4 and 4% H2SO4 

respectively, according to National Renewable Energy Laboratory (NREL) Analytical Procedure 

(Sluiter et al. 2008). The concentrations of these compounds were determined by high pressure 

liquid chromatograph as described elsewhere (García-Aparicio et al. 2011).  

The equation for the extraction mass balance was as follows (Won et al. 2012): 

Extraction mass balance = ∑CLi + ∑CSi                   (3) 
                                             ∑CRi 

Where Ci is the mass of each sugar component (glucose or xylose) as determined through HPLC 

chromatography, the subscripts L, S, and R refer to the extracted liquid, extracted solids and raw 

giant bamboo, respectively. 

2.4.2 Fiber length 

Bamboo chips were macerated as described elsewhere (Kigkr 1971; Vena et al. 2010). 

Fiber length of 100 fibers was measured with a digitiser.  

2.5 Pulping 

Non-extracted giant bamboo and solid residue from alkaline pre-extraction (run 4: 1M 

NaOH at 90°C for 240 min) were submitted to the kraft pulping process. After the completion of 

alkaline pre-extraction step of the hemicelluloses from 1000 g dry mass bamboo chips, the 

extracted bamboo chips were directly subjected to pulping without washing. Only 35.7% sodium 

sulphide was added in the cooks (Al-Dajani and Tschirner 2008). Non-extracted bamboo was also 

pulped by exposing 1000 g dry mass chips to 18.6% sodium hydroxide and 25% sulphidity.  

Soda-AQ pulps were prepared from dilute acid pre-extracted bamboo chips with 11.3% 

xylan extracted. Bamboo chips of 1000 g dry mass were subjected to 0.3% v/v H2SO4, 5.5:1 (mL 

g-1) pre-extraction liquor to feed stock ratio at 120°C, for 30 min. Prior to pulping, the acid pre-

extracted solid residues were thoroughly washed with water to neutralise the acid and air dried. 

Soda-AQ pulping conditions were: Active alkali – 16%, anthraquinone – 0.1%, and reaction time 

– 30 min. Soda-AQ pulps from non-extracted bamboo chips were also prepared under similar 

conditions.  
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The conditions were selected in agreement with previous work done on soda-AQ pulping 

of giant bamboo (Vena et al. 2010). All active alkali and sulphidity masses are expressed as 

equivalent mass of Na2O. 

Pulping was carried out in a 15 dm3 batch type digester. All the bamboo chips were 

digested for 30 min at maximum cooking temperature of 170°C. Heating time to maximum 

temperature was 120 min. The cooking time was measured from the moment that the system 

reached the maximum temperature. At the end of the cook, fibers were separated from the black 

liquor, washed through a 10 mesh screen to separate rejects (uncooked material) from the fibers, 

and the accepted pulp was collected on a 100 mesh screen. The pulp was then screened through a 

0.15 mm screen, to remove shives (uncooked fiber bundles) and then spin dried to a consistency 

of approximately 30%. Screened pulp yield was calculated as a percentage of the ODM of the 

pulps obtained in relation to the initial ODM of the raw material.  

Pulp yield (%)   =   Oven dry mass of pulp       x 100   (4) 
                               Initial oven dry mass bamboo 
 

The rejects and the shives collected were placed in an oven to dry at 105°C overnight to 

establish the oven dry mass and weighed. The reject and shive content were together expressed as 

a percentage of original dry mass of giant bamboo. Pulp kappa number (parameter related with 

residual lignin content in pulp) was determined by standard Tappi method T236 cm-85.  

Pulp viscosity was determined by dissolving pulp sample into a cupricethylenediamine 

solution prepared according to TAPPI methods T230 om-89. The pulp solution was transferred to 

a Brookefield RVTD 382 viscometer and agitated at 100 rpm using a spindle number 21. The 

temperature in the sample holder was maintained at 25ºC ± 1 with the aid of Haake thermostatic 

circulator (model D8-G). The pulp viscosity was measured in centipoises (cP). 
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2.6 Handsheets 

2.6.1 Formation 

The development of handsheets strength, i.e., tear, burst and breaking strength of the pulp 

fibres, was evaluated by beating, using a Valley beater according to TAPPI Standard T200 om-89. 

The pulp samples were beaten at different intervals and the drainage rate, in Schopper Riegler 

(°SR), was measured according to TAPPI T227 om-92. Handsheets were formed according to 

TAPPI T205 om-88 using British Standard handsheet making equipment. 

 

2.6.2 Testing of physical properties 

All handsheets were conditioned for 48 hours at 55% relative humidity and 23°C before 

being tested. The following strength properties were evaluated of each of ten handsheets 

according to Tappi standards. Burst index (hydrostatic pressure required to rupture the test 

specimen), breaking length (maximum load or weight that a strip of paper will support before 

pulling apart), and tear index were measured by Tappi standard no T403 om-91, T404 om-87 and 

T414 om-84 respectively. The brightness was measured in ISO units using a reflectance 

photometer (Zeiss Elrepho 65843, Germany). 
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3. Results and discussion 

3.1. Raw material composition and fiber length 

The average values of four replicates of the chemical components and fiber length 

measured for giant bamboo are given in Table 2. Giant bamboo showed the following 

composition (%ODM): 4.1% of ethanol/cyclohexane soluble extractives, 3.0% of water soluble 

extractives, 2.4% of ash, 54.6% of glucan, 21.6% of xylan, 1.1% of arabinan and 25.2% of Klason 

lignin. Xylan contributed the most to the hemicelluloses content and was therefore considered 

throughout this study. The average fiber length was 2.9 mm.  

The chemical composition and specific properties of giant bamboo will determine not 

only the response to hemicelluloses pre-extraction and subsequent pulping technologies but also 

the quality of the final product. The chemical composition is in agreement with reported values in 

literature for bamboo and comparable to that of wood (Vu et al. 2004; García-Aparicio et al. 

2011). The extractives content and fiber length were in the range of softwoods whereas the lignin 

and hemicelluloses contents were similar to hardwoods (Scurlock et al. 2000).  

 

3.2. Alkaline pre-extraction 

3.2.1 Xylan recovery and statistical analysis 

Table 3 summarises the yields of xylan recovered and the chemical composition of the 

solid residues generated under different alkaline pre-extractions conditions. The xylan recovery 

ranged from 1.2 to 4.4 g/100 g ODM (oven dry raw material), corresponding to 5.6 to 20.4% of 

the xylan content in untreated bamboo. The highest xylan yield of 20.4% was obtained with 2M 

NaOH at 90°C for 240 min (Run 8).  
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The determined values of xylan yield were used to evaluate the effects of the 

experimental variables, i.e., NaOH concentration, reaction time and temperature on xylan 

solubilisation. The effects and their significance of temperature, NaOH concentration and time on 

xylan yield can be visualised in the standardized Pareto chart (Fig 1). NaOH concentration exerted 

the strongest effect on xylan yield, followed by time and temperature at 95% of confidence level. 

Given that the curvature was also significant, a full central composite design with star points was 

used to evaluate whether a second order model could fit to the experimental data of the xylan 

recovery. The square of the correlation coefficient (R2) of 0.95 was obtained when considering 

only the significant variables, meaning that 95% of the experimental data for the xylan yield was 

attributed to the process variables studied. The lack of fit, which describes the variation of the 

data around the fitted models, was not significant implying good agreement between the predicted 

and experimental values at 95% of confidence level (Table 4). According to these results a second 

order model was accepted to describe the xylan recovery from bamboo under mild alkaline 

conditions. The mathematical model that describes the variation of the xylan solubilisation during 

alkaline pre-extraction under the studied conditions can be represented by the equation:  

Xylan (%) = 11.3 + 1.18X1
2 – 0.77X2

2 + 1.63X32 + 1.17X1 +1.58X2+ 3.24X3        (5) 

In the equation (5) X1, X2, X3 are the coded values of the operational variables 

temperature (°C), reaction time (min) and NaOH concentration (M), respectively. 

Figure 2 illustrates the response surface for Equation 5 where the xylan yield is plotted as 

function of temperature and reaction time considering NaOH concentration at higher level. The 

highest xylan yields were obtained after pre-extraction with 2.34M NaOH at 65°C reaching the 

value of 3.4 g of xylan per 100 g ODM which is about 15% of the theoretical xylan. Although 

higher concentrations of NaOH and temperature would have provided higher xylan yield (Figure 

2), these factors were limited to the selected values to prevent cellulose degradation through 

alkaline peeling, which in turn would have lead to reduction in pulp yield and pulp strength (Al-

Dajani and Tschirner 2008).  
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Similar xylan yields have been obtained for alkali pre-extraction of hardwoods such as 

aspen wood chips (Al-Dajani and Tschirner 2008) and Eucalyptus grandis chips (Vena et al. 

2013). However, other pre-extraction methods such as dilute acid have been proven to provide up 

to 83.4% of xylan yield form giant bamboo (Vena et al. 2010). The lower total xylan yield 

recovered under alkaline condition was expected since the solubilisation of xylan occurred 

without reduction in molecular mass (Helmerius et al. 2010). 

The pre-extraction conditions from run 4 (1M NaOH at 90°C for 240 min) were selected 

for subsequent kraft pulping evaluation and optimisation, since they resulted in significant yield 

of xylan while preserving most of glucan content in residue for pulping. 

 

3.2.2. Characterization of xylan  

Alkaline hemicelluloses pre-extraction is based on the hydrolysis of the ester linkage 

between plant polysaccharides and lignin, which increases the solubility of the hemicelluloses, 

without reducing their molecular mass (van Heiningen 2006). As a result, it generates oligomer or 

polymeric xylan fraction from giant bamboo that could be modified and used to improve the 

cellulosic fibers. The pre-extracted xylan was therefore characterised to evaluate its potential 

application. The molecular mass of the xylan pre-extracted under Run 4 was estimated by size 

exclusion chromatography (SEC). The average molecular mass of the xylan sample obtained by 

SEC was 42,500 g mol-1, which is within the range of the sequential extraction of bamboo 

performed by Shi et al. (2011). 

The FT-IR spectra of xylan component attained by condition of run 4 are illustrated in 

Figure 3B. The isolated xylan showed the same basic structure to that of commercial birchwood 

xylan (Fig 3). The FT-IR spectra presented a sharp band at 897 cm−1 indicating the presence of β-

glucosidic linkage (C–O–C) between the sugar units in the hemicelluloses (Shi et al. 2011). The 

bands 1120 cm−1 and 1037 cm−1 were typical of xylans. The bands between 1223 cm−1, 1329 cm−1 

and 1421 cm−1 are attributed to the stretching and bending vibrations of C–H, C–C and C–OH 

linkages (Wen et al. 2011; Sun et al. 2012).  
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The alkaline extraction removed not only the xylan but also the lignin due to the cleavage 

of ester bonds that join the lignin and/or hemicelluloses compounds causing their solubilisation in 

the liquid fraction as shown by lignin bands between 1461 cm−1 and 1595 cm−1 in the FT-IR 

spectra (Fig 3) (Wang et al. 2008). The band at 3353 is attributed to the stretching of the OH 

groups (Brienzo et al. 2009, Luo et al. 2012).  

Extraction of hemicelluloses combined with high dissolution of lignin and swelling of 

cellulose could improve the delignification rate for subsequent pulping (Sixta and Schild, 2009; 

Lyytikäinen et al. 2011). However, the presence of lignin limit possible applications of the 

extracted xylan to products such as corrugated board where colour is of less importance. 

3.2.3. Pre-extracted solid residues 

Chemical analysis of pre-extracted bamboo residues was performed to determine the total 

recoveries of glucan, xylan and lignin during the pre-extraction process (Table 3). The amount of 

glucan retained in the solid residue should be as high as possible to maintain a high pulp yield in 

the subsequent pulping processes. Likewise, certain amount of hemicelluloses is required in the 

extracted material to improve several physical properties of pulps (Silva et al. 2011).  

Alkali extraction conditions studied resulted in solid residues with high glucan content 

(46.9 to 52.8%) and low acid insoluble lignin (10.7 to 18.5%) relative to glucan content (52.6%) 

and acid insoluble lignin (25.2%) present in the ODM non-extracted material. The xylan content 

of solid residues from alkaline extracted material varied from 13.2 to 19.1% ODM. Alkaline pre-

extracted material could favour the subsequent pulping process due to reduction on the lignin 

content (Al-Dajani and Tschirner 2008; Lyytikäinen et al. 2011). 

Following the pulp mill biorefinery integration approach, the solid residue from Run 4 

(1M NaOH at 90°C for 240 min, 13.6% of xylan extracted) was selected for kraft pulping based 

on the larger glucan content (52.8% ODM) together with acceptable residual xylan for 

maintenance of pulp quality (17.0% ODM), both required to obtain high pulp yields. 
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3.3. Evaluation of pulp properties obtained from pre-extracted giant bamboo 

Bamboo chips from alkaline extraction run 4 (13.6% xylan extracted) were directly 

subjected to kraft pulping to assess the effect of xylan extraction on cooking chemicals, pulp yield 

and properties. Additionally, the solid residue from which 11.3% xylan was acid pre-extracted 

(0.3% v/v H2SO4, 5.5/1 pre-extraction liquor to feedstock ratio at 120°C, for 30 min) was 

subjected to soda-AQ pulping. The former pulping combination was selected on the basis of a 

previous work, where it was demonstrated its beneficial effect on pulp yield compared to 

subsequent kraft pulping (Vena et al. 2010).  

The cooking conditions, xylan yield, sugar composition and pulp properties of non-

extracted and pre-extracted pulps are presented in Table 5. It is worth to note that xylan pre-

extraction could reduce considerably the amount of chemicals required for subsequent pulping. 

For example, the total NaOH for cooking was reduced from 200.5 to 80.6 g for non-extracted and 

alkali pre-extracted bamboo, respectively. The results showed that less active alkali could be 

required in pulping to delignify the xylan extracted residues of bamboo (Table 5). Moreover, 

because of xylan extraction the wood chips mass was reduced from 1000 g to 840.0 g and 880.0 g 

after alkaline pre-extraction and acid pre-extraction, respectively. Therefore, more extracted 

bamboo chips could be loaded into the digester relative to the non-extracted bamboo.This could 

lead to an increase by 16% in the case of kraft pulping or 12% for soda-AQ pulping of the 

original pulp mill without additional investment in pulping digesters (Huang et al. 2010).  

More importantly, alkali pre-extraction of xylan improved the kraft pulp yield by 9.2% 

units while retaining pulp viscosity compared to non-extracted giant bamboo. This showed a more 

efficient fiber separation as one of the objective of alkaline pre-extraction is to improve pulping 

performance and swelling of the fibers (Ragauskas et al. 2006). This outcome was confirmed by 

the reduction in reject levels implying ease of fiber separation. However, to maintain the high 

pulp yield, it was necessary to delignify the extracted bamboo to higher kappa number (29.9 vs 

22.7) which is an economic disadvantage for bleaching (Kautto et al. 2010). 
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Alternatively, the combined process of xylan pre-extraction with dilute sulphuric acid and 

soda-AQ pulping provided similar pulp yield at slightly higher kappa number compared to non-

extracted bamboo. However, slight increase in viscosity (10 cP vs 7 cP) was observed for pulps 

from acid-extracted bamboo. This was unexpected, since it is known that under acidic conditions 

the degree of polymerisation (DP) of cellulose and hemicelluloses has a tendency to decrease, 

resulting in accelerated peeling reaction and yield loss under subsequent alkali pulping conditions 

(Mendes et al. 2009). Nevertheless, the decrease in the degree of branching of xylan during acid 

pre-extraction could have promoted a higher frequency of hydrogen bonds between xylan and the 

accessible fraction of cellulose, leading to the lower degradation of carbohydrates (Bose et al. 

2009). Moreover, AQ addition oxidises the reducing ends of carbohydrates favouring 

carbohydrate retention (Bose et al. 2009). The retention of the DP of cellulose could possibly 

improve the strength properties of pulps prepared from acid pre-extracted bamboo relative to 

pulps produced from non-extracted bamboo (Silva et al. 2011).  

 

3.3. Handsheet properties 

The burst index, tear index, breaking length and ISO brightness properties of handsheets 

produced from kraft and soda-AQ pulps from giant bamboo are shown in Table 5. All the pulps 

were beaten to enhance the fiber-fiber bonding thereby improving handsheet strength properties. 

Strength properties were found to be increased with increasing beating level up to 40°SR, except 

for tear index that was at a maximum at 25°SR. A decrease in tear index in pulp is common after 

the tear strength has passed the maximum due to reduction in fiber length, fiber strength and 

fiber-fiber bonding (Fardim and Duran 2004). 

The xylan deficiency in pulp samples produced from alkaline pre-extracted bamboo could 

lead to reduction in strength properties after kraft pulping. Compared to pulps produced from non-

extracted bamboo, pulps produced from alkaline pre-extracted bamboo showed a slight 

improvement in burst index by 3% whilst tensile index and breaking length were reduced by 

14.5% and 15% respectively.  
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On the other hand, the tear index of hand sheets prepared from alkaline extracted pulps 

was improved by 9% at 25°SR (data not shown) and declined by 5% at 40°SR. The handsheet 

brightness due to alkaline pre-extraction was reduced as indicated by high kappa number of the 

pulp. 

The alkaline pre-extraction of aspen hardwood chips also showed reduction of about 10% 

in tensile index due to alkaline extraction; although no other strength properties were reported 

(Al-Dajani and Tschirner, 2008).  

Interestingly, strength properties of soda-AQ pulps from which xylan was pre-extracted 

under acidic conditions were not significantly reduced at the maximum degree of beating. 

Extraction of xylan could therefore be optimised to guarantee reasonable strength properties at 

adequate refining energy. At a beating degree of 40°SR, the breaking length and tensile index of 

handsheet prepared from acid pre-extracted bamboo was at a maximum, and increased by 21.9% 

and 26.7% respectively compared with that of the handsheets from non-extracted bamboo. In 

addition, handsheets prepared from both non-extracted and acid pre-extracted bamboo exhibited 

the same burst index at maximum beating degree. Retention of the hemicelluloses and lower 

degradation of cellulose apparently contributed to the retention of strengths (Fardim and Duran 

2004). On the other hand a reduction by 7.9% of the tear index was observed for handsheet 

produced from acid pre-extracted bamboo due to reduction in fiber length, fiber strength and 

fiber-fiber bonding. The decrease in strength properties observed for handsheets produced from 

non-extracted bamboo could be related to the reduction in viscosity of the pulp as it governs the 

strength properties to a certain degree (Gurnagul et al. 1992) 

These results are consistent with those reported on similar work done in the literature, 

which showed that the nature of the cellulosic fibers obtained after xylan extraction is governed 

by the amount of hemicelluloses extracted and the choice of the subsequent pulping method (Al-

Dajani and Tschirner 2008; Elmore and Falls 1984). Although some strength properties were 

slightly reduced, these results represent the key elements to realisation of a lignocellulose-based 

biorefinery.  
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According to the results, the extracted residue can be pulped with lower active alkali 

while maintaining the same production rate even with higher pulp yields specifically for alkaline 

xylan pre-extraction combined with kraft pulping which means lower production cost. Moreover, 

xylan can be removed before pulping without excessive degradation of cellulose and the extracted 

xylan represents a valuable product (van Heiningen 2006). If the NaOH present in the liquid 

fraction after the pre-extraction can be recovered and reused for either pre-extraction or pulping 

could make the process even more economical (Huang et al. 2010).  

 

5. Conclusions  

The fast growth and low cost of giant bamboo coupled with high glucan and 

hemicelluloses content make bamboo an interesting raw material for the co-production of paper 

and value-added products in a biorefinery pulp mill. This study confirms the feasibility of 

integration of hemicellulose extraction with subsequent pulping of lignocellulosic materials, 

depending on the extraction technology and quality and performance requirement of a particular 

paper. Among the two xylan pre-extraction studied for giant bamboo, the results showed that 

alkaline pre-extraction prior to kraft pulping was slightly of higher quality compared to acid pre-

extraction. The extraction of 13.6% dry mass xylan with mild alkali conditions favoured the 

subsequent kraft pulping leading to a reduction in rejects levels, improvement in pulp yields and a 

kappa number of pulp within the acceptable bleachable range. Moreover, there was no reduction 

in the pulp viscosity compared to the non-extracted bamboo. These conditions resulted in hand 

sheets with a slight reduction in breaking length, tensile and tear index and similar burst index at 

maximum beating degree. Furthermore, the combination of alkaline pre-extraction with kraft 

pulping could increase the pulping capacity by 16% without additional investment in pulping 

digesters.  
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Tables 

 

Table 1. Sequence of experiments according to a central composite design for alkaline pre-
extraction of hemicelluloses of giant bamboo.  

Run 
Temperature (°C) 

(X1) 

Reaction time (min) 
(X2) 

NaOH concentration (M) 
(X3) 

1 40 120 1 

2 40 240 1 

3 90 120 1 

5 90 240 1 

5 40 120 2 

6 40 240 2 

7 90 120 2 

8 90 240 2 

9 65 180 0.7 

10 65 180 2.3 

11 23 180 1.5 

12 107 180 1.5 

13 65 79 1.5 

14 65 281 1.5 

15 65 180 1.5 

16 65 180 1.5 

17 65 180 1.5 

18 65 180 1.5 

19 65 180 1.5 
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Table 2. Chemical composition and fiber length determined for giant bamboo (Bambusa 

balcooa). Components are expressed as percentage of the original oven dry material (% ODM). 

Component  % ODM* Analytical method 

Extractives 
Ethanol/cyclohexane soluble 

extractives 
4.1 ± 0.1 

 Water soluble extractives 3.0 ± 0.2 
TAPPI T264 om-88 

Carbohydrates Glucan 54.6 ± 2.0 

 Xylan 21.6 ± 1.5 

 Arabinan 1.1 ± 0.6 

LAP 013 

 Acid insoluble lignin 25.2 ± 3.2 TAPPI T222 om-88 

 Ash 2.4 ± 0.01 TAPPI T211 om-88 

Average fiber length (mm)  

Fiber characteristics Min Max Average 

Fiber length 2.1 4.0 2.9±1.3 

(*) Mean values and standard deviation of four measurements. 
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Table 3. Composition of xylan and solid fraction after alkali extraction of giant bamboo under process variables defined by CCD. 

Pre-extraction conditions Xylan pre-extraction efficiency bSolid fraction after extraction cEMB (%) 

Run 
NaOH  
(M) 

Temperature 
(˚C) 

Time 
min 

Xylan 
precipitate 
yield % 

aXylan 
recovery 
yield % 

Lignin associated 
with pre-

extracted xylan 
(%) 

Lignin in pre-
extracted xylan          

(% lignin in 
non-extracted 

bamboo 

Glucan   
% 

Xylan     
% 

Acid 
insoluble 

lignin 
(%) 

Glucan Xylan 
Acid 

soluble 
lignin 

1 1 40 120 1.5 6.9 15.4 5.7 50.4 19.1 18.5 92.4 94.9 95.9 
2 1 40 240 2.2 10.4 20.8 9.0 50.3 17.8 15.2 92.2 92.5 96.2 
3 1 90 120 2.3 10.8 21.0 5.9 52.1 18.4 18.3 95.5 95.7 96.1 
4 1 90 240 3.0 13.6 21.2 3.1 52.8 17.0 21.1 96.8 92.1 96.0 
5 2 40 120 3.5 16.0 14.3 12.2 46.0 16.8 12.0 84.4 93.4 96.1 
6 2 40 240 3.6 16.5 23.1 9.3 45.7 15.8 14.9 83.8 89.4 95.9 
7 2 90 120 3.8 17.7 30.8 12.4 51.7 15.1 12.1 94.8 87.6 97.4 
8 2 90 240 4.4 20.4 28.6 13.5 48.0 15.7 10.7 88.0 92.9 96.0 

Star point NaOH concentration   

9 0.66 65 180 2.5 11.7 33.3 7.6 49.5 18.6 15.8 90.8 97.6 92.9 
10 2.34 65 180 3.4 15.7 25.0 13.6 45.8 15.8 10.8 83.9 88.8 96.9 

Star point temperature   

11 1.5 23 180 1.2 5.6 8.3 9.7 45.3 17.0 14.5 83.1 84.2 96.2 
12 1.5 107 180 2.3 10.7 23.1 10.1 51.0 17.3 14.0 93.5 90.8 95.6 

Star point reaction time   

13 1.5 65 92 2.2 10.3 16.7 9.4 46.9 17.9 14.9 85.9 92.9 96.6 
14 1.5 65 308 4.3 19.7 25.0 12.2 49.7 13.2 12.0 91.0 80.6 96.1 

Central point   

15-19 1.5 65 180 2.1±0.5 9.7 22.3±0.1 5.8 47.8±1.0 
16.5± 
0.5 

17.9 
±0.2 

87.6 85.9 94.0 

aAnalysis data are based on the oven dry xylan of non-extracted giant bamboo 
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bAnalysis data are based on the oven dry non-extracted giant bamboo 
cExtraction mass balance (EMB) was calculated for each component in the giant bamboo as e.g. xylan in the liquid and solid fraction after Run 4 were 3.0% 
and 17.0% respectively, and the raw giant bamboo has 21.6% xylan before the extraction. The total extraction mass balance = [(3.0+17.0)/21.6]*100 = 92.1%. 
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Table 4. Analysis of variance of the linear (L) and quadratic (Q) models describing 

 the xylan yield during alkaline pre-extraction of giant bamboo. 

Factor Sum of squares Degrees of freedom Mean square P 
Model 258.45 6 43.08 0.0001 

Temperature (L) 18.67 1 18.67 0.0046 
Time (L) 34.19 1 34.19 0.0006 
NaOH (L) 143.60 1 143.60 0.0001 

Temperature (Q) 15.73 1 15.73 0.0076 
Time (Q) 6.76 1 6.76 0.0541 
NaOH (Q) 29.86 1 29.86 0.0010 
Lack of fit 14.01 8 14.01 0.0509 

Error 0.18 2 0.092  
Total 272.65 16   
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Table 5. Extraction conditions, xylan recovery yield, pulping conditions and pulp properties for 
non-extracted and extracted giant bamboo. 

Pulping process Kraft pulping sodaAQ pulping 

 Extraction condition 

 
non-

extracted 

Alkali 
extraction (1M 
NaOH, 90°C, 

240 min) 

non- 
extracted 

Acid extraction 
(0.3% v/v 

H2SO4, 120°C, 
30 min) 

Xylan yield 

g/100g OD                             
(% theoretical xylan) 

- 3.0 (13.6) - 2.5 (11.1) 

cooking conditions 

Active alkali (%) 18.7 - 16 16 
Sulfidity (%) 25 35.7 - - 

AQ (%) 
Cooking Temp (°C) 
Time to 170°C (min) 
Time at 170°C (min) 

- 
170 
120 
30 

- 
170 
120 
30 

0.1 
170 
120 
30 

0.1 
170 
120 
30 

Chips/residue (g) 1000 840 1000 880 
NaOH in chips/residue 

(g) 
169.6 59.3 164.4 144.7 

NaOH from Na2S (g) 30.9 21.3 - - 

Total NaOH in cook (g) 200.5 80.6 - - 
NaSH charge (g) 43.2 29.8 - - 

Carbohydrates content in pulps (LAP 013) 

Glucan (%) 75.4 84.1 73.3 77.6 
Xylan (%) 21.1 14.3 24.6 13.6 

Pulp properties 

Pulp yield (%) 41.2±2.0 50.4±1.5 43.1±1.2 40.6±2.0 
Rejects (%) 8.7±1.3 5.0±0.5 17.2±1.0 17.5±1.2 

kappa number 22.7±0.9 29.9±1.1 22.9±0.5 27.8±0.2 
Viscosity (cP) 10.2±2.0 10.2±1.2 7.0±2.5 10±1.0 

Handsheet strength properties 

Drainage rate (°SR) 40 40 40 40 
Tensile index (Nm g-1) 51.6±3.1 44.1±2.5 33.2±4.0 45.4±4.2 
Tear index (kPa.m2 g-1) 14.4±0.5 13.7±3.5 15.9±0.8 14.7±0.1 
Burst index (mN.m2 g-1) 7.1±0.4 7.3±0.2 5.5±0.6 5.5±0.8 
Breaking length (km) 5.3±0.6 4.5±0.6 3.4±0.5 4.3±0.5 

Brightness (ISO) 41.4±1.2 31.6±0.6 38.8±0. 31.6±1.3 
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Figures 
 

 
 
Fig. 1. Standardized Pareto chart representing the of NaOH concentration, reaction time and 
temperature on xylan yield after alkaline pre-extraction of giant bamboo. 
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Fig. 2. Response surface for xylan yield obtained after alkaline pre-extraction showing the 
influence of temperature (°C) and time (minutes) considering NaOH concentration at higher level. 
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Fig. 3. FT-IR spectra of commercial birchwood xylan and xylan fraction extracted from 
 giant bamboo with 1M NaOH at 90°C for 240 minutes. 
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HEMICELLULOSE EXTRACTION FROM BAMBOO PRIOR TO KRAFT AND 
SODA AQ PULPING TO PORDUCE PAPER PULPS, VALUE-ADDED 
BIOPOLYMERS AND BIO-ETHANOL 

 

P. F. VENA, J. F GÖRGENS and T. RYPSTRA 
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Process Engineering and 2Forest and Wood Science Departments 
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Hemicelluloses were pre-extracted from giant bamboo with dilute H2SO4 prior to Kraft and 

sodaAQ pulping. The reaction conditions were selected to convert most of the hemicelluloses into 

soluble monomeric sugars, leaving almost unaltered the cellulose and lignin in the residual solid 

phase. A Central Composite Design was used to study four pre-extraction variables: H2SO4 

concentration (0.1–0.5% v/v), solid/acid solution ratio (1/3.5–1/5.5 g/mL), temperature (80–140 

˚C) and time (10–50 min). Temperature had a dominant influence on the hydrolysis process. A 

maximum xylose yield of 83.4% (based on oven dry raw material mass) was obtained at a 0.4% 

v/v H2SO4 concentration, a solid/solution ratio of 1/4 (g/mL), at 140 °C and pre-extraction time of 

40 min. The bamboo from which 2.4% hemicellulose was pre-extracted, was subsequently pulped 

by both kraft and soda AQ pulping methods. Soda AQ pulping gave the best response in terms of 

pulp yield, viscosity and kappa number, compared to the non-extracted bamboo, pulped under 

similar conditions.  

 

Keywords: bio-refinery, hemicellulose extraction, giant bamboo, dilute acid hydrolysis, kraft 

pulping, sodaAQ pulping, pulp yield, kappa number, pulp viscosity 
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INTRODUCTION  

      Hemicelluloses, solubilized during kraft pulping of a suitable biomass, such as bamboo, are 

presently under-utilized in pulp production, where they are incinerated in the recovery furnace 

together with the dissolved lignin.1,2 However, within the bio-refinery concept, the extraction of 

hemicelluloses from suitable biomass prior to pulping, followed by fermentation of the 

monomeric sugars with genetically engineered yeast to produce bio-ethanol, could contribute to 

address the growing biofuel need. At the same time, the pulp production is enhanced by 

improving the overall alkaline pulping process, for both kraft and sodaAQ processes. Cooking 

times can be reduced and cooking liquor impregnation enhanced. Such integration of 

hemicellulose pre-extraction with alkaline pulping can yield to improved pulp properties and 

improved production capacity, as has been demonstrated for recovery furnace-limited Kraft pulp 

mills.1,3  

 

     As heteropolymers of neutral and modified pentoses and hexoses, hemicelluloses can 

constitute about 25–35% of the plant cell walls.4 Pre-extraction of hemicelluloses with dilute acid 

and further production of ethanol from the extracted sugars has been extensively studied.5,6 

Hemicelluloses can be also extracted from the biomass, using water and/or alkaline solutions, if 

oligomers and polymers of hemicelluloses are desired.1,7,8 

 

      Bamboo, a naturally growing and a low cost lignocellulosic material,9 is most frequently used 

for the production of paper, textiles, food and reinforcing fiber, as well as in constructions.10,11 

Bamboo fiber morphology and its chemical constituents are comparable to those of wood.12 The 

glucan content of giant bamboo (40–48%) is comparable to the reported13 cellulose content of 

softwoods (40-52%) and hardwoods (38–56%. The main hemicellulose present in bamboo is a 4-

O-methyl-D-glucuronoarabinoxylan linked by a β–(1→4) bond, which accounts for 

approximately 25% of the cell wall components.13,14  
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The acetyl group content is 6–7% of the total xylan, compared to the 8–17% acetyl group content 

of hardwood and non-acetylated softwoods. Bamboo lignins have a higher content of phenolic 

hydroxyl groups than wood lignins, resulting in a higher reactivity to pulping. However, during 

kraft pulping, bamboo kraft lignin shows a higher degree of condensation, thus it is more resistant 

to bleaching than that of wood pulps.15  

 

      Based on its high hemicelluloses content, bamboo can be considered as a very attractive raw 

material for combined ethanol and paper production. To obtain xylose-rich solutions from 

bamboo, treatments of the raw material that hydrolyze the sugars from the hemicellulosic fraction, 

but do not significantly affect cellulose and lignin, should be selected. Several treatments that can 

perform such fractionation have been reported, the most frequently studied one being hydrolysis 

with dilute acids.5,6,16 It consists17 of the hydrolysis of the hemicellulosic fraction with diluted acid 

concentrations, ranging between 0.1 and 1% v/v, performed at moderate temperatures, between 

100–150 ˚C. Under such moderate operational conditions, the acid medium hydrolyzes the 

hemicelluloses, with limited degradation of the cellulose fraction.6,18  

 

The liquid phase (hydrolysate) will be constituted of monomeric sugars, such as xylose, glucose, 

arabinose, as well as decomposition products of the hemicelluloses, such as oligomers and acetic 

acid, generated by the hydrolysis of the acetyl groups and/or decomposition products of 

monosaccharides, such as furfural, a product of the dehydration of pentoses, and 

hydroxymethylfurfural, a product of dehydration of hexoses.5,16 Hence, if ethanol is produced, 

neutralization of the liquid fraction prior to fermentation will be required. 
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       In this study, the reaction conditions under which hemicelluloses could be extracted with 

dilute sulphuric acid from hemicelluloses-rich, South African grown giant bamboo (Bambusa 

balcooa) prior to alkaline pulping, were investigated. The reaction conditions of this acid 

catalyzed hydrolysis were selected to convert most of the hemicelluloses fraction into soluble 

monomeric sugars and leave the cellulose and lignin fractions mostly unaltered in the residual 

solid phase. The effects of acid concentration, temperature and reaction time were assessed using 

a central composite experimental design. Yield of the recovered sugars (e.g. glucose, xylose and 

arabinose) and of other by-products, such as hydroxymethylfurfural, furfural and acetic acid, 

present in the hydrolysate, were determined by HPLC. The solid residue was pulped by kraft and 

soda anthraquinone (sodaAQ) pulping methods. Pulp yields, kappa number and viscosities of the 

pulps produced from pre-extracted and non-extracted bamboo were determined, to develop a 

combined process for the production of hemicellulose hydrolysate and pulp from giant bamboo. 
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EXPERIMENTAL 

Raw material 

      The bamboo used in the study, Bambusa balcooa, was collected in the Western Cape region 

of South Africa. Giant bamboo stems were chipped using a Wigger pilot chipper. Chips were 

screened and the chip size fraction between 4–8 mm was selected for further investigation. The 

material was conditioned at 23 °C and 55% relative humidity before use.  

      The composition of the raw material was determined19 by both standard methods of the 

Technical Association of the Pulp and Paper industry (TAPPI) (T264 om-88, T 211 om-85, T222 

om-88; T 223 cm-84) and by the standard Laboratory Analytical Procedures for biomass analysis 

provided by the National Renewable Energy Laboratory (NREL; Colorado, USA, 

http://www.nrel.gov/biomass/analytical_procedures.html). 

 

Determination of bamboo fiber length 

     Maceration was achieved by dissolving 10 g chromic acid in 190 mL of distilled water, and 15 

mL nitric acid was added, to form a Jeffrey’s solution.20 The chips were placed in a test tube, 

covered with the solution and kept in an oven at 40 °C for 48–72 hr. The solution was changed 

daily. The fibers were washed with distilled water, separated with a glass rod, stored in a safranin 

green solution for 5 min, after which the solution was drained. The fibers were then subjected to a 

70% ethanol solution for 2 min, and finally immersed in xylene for 5 min. The fibers were 

mounted on microscope slides using Entellan, and measured with a digitizer.  
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Experimental design and dilute acid pre-extraction of Giant Bamboo 

      Experiments on dilute acid pre-extraction were carried out21 according to a Central Composite 

Design (CCD), created and evaluated in STATISTICA 7.1 (Statsoft Inc., Tulsa, USA). Acid 

concentration, solid/solution ratio, temperature and reaction time were systematically varied 

(Table 1) from 0.1–0.5% v/v; 1/3.5–1/5.5 g/mL; 80–140 °C and 10–50 min at maximum 

temperature, respectively. The conditions were selected in agreement with previous works done 

on dilute acid pre-treatments of non wood materials.5,6,18 

 

      The bamboo chips and acid solution were mixed in the desired portions and introduced into 

the micro bombs. The filled bombs were placed in a digester of 15 dm3 capacity enclosed by 

heating jackets. The reaction temperatures selected were monitored with thermocouples. At the 

end of the acid treatment, the bombs were cooled in water. The hemicelluloses-rich hydrolysate 

was collected for further chemical analysis for sugars and by-products and the solid residues were 

recovered by filtration, washed with water and air dried. The percentage of solid recovery, based 

on oven dry mass of the (original) raw material, was determined. A fraction of the extracted 

residue was sub-sampled and prepared for chemical analysis using the same standard methods as 

those used for the raw materials. The solid residue was then stored in the conditioning room prior 

to further pulping experiments.  

 

Pulping processes 

         Run No.22 from dilute acid treatment was selected for kraft and sodaAQ pulping 

experiments. These conditions were selected because maximum glucose was observed in the solid 

residue after dilute acid treatment, as illustrated in Figure 1B. The studied pulping conditions 

applied in this work are comparable to those used by other researchers,11,12 with slightly less 

reaction time at maximum cooking temperature. Maximum cooking temperature was kept 

constant at 170 °C and the solid-to-liquid ratio was fixed at 1/5.5 (g/mL) for all pulping 

experiments.  
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The cooking liquor used in kraft pulping was prepared from commercial sodium hydroxide 

(Merck) and sodium sulphide (Merck). Sodium hydroxide and BUSPERSE 2262 Anthraquinone 

(Buckman laboratories, Hammarsdale, South Africa) were used for soda AQ pulping. Pulping 

experiments were carried out (as shown in Table 2) in micro bombs that could accommodate 80 g 

oven dry chips. Temperature and reaction time were monitored during the process. The cooking 

time was measured from the moment that the system reached the maximum temperature. In the 

end of cooking, the fibers were separated from the black liquor and washed through a 10 mesh 

screen, to separate the rejects from the fibers, and the accepted pulp was collected on a 100 mesh 

screen. The pulp was then screened in a Packer slotted laboratory screen. Total pulp yield and 

rejects were determined as a percentage of the original dry mass (DM) of the raw material. Pulp 

kappa number and viscosity were determined by standard TAPPI methods (T236 and T230, 

respectively). Pulp viscosities, determined as centipoise (cP), were converted to the degree of 

polymerization (DP) of the polysaccharides, according to the formula:22  

DP0.905 = 0.75[954 log (X)-325] 

 where X is viscosity in centipoises. 

 

Chemical analysis  

       The hydrolysate fraction obtained after dilute acid pre-extraction was filtered through 0.45 

µm membranes and analyzed for its content in monomeric sugars, soluble oligomers and by-

products. Oligosaccharide concentration was determined as the difference in monomers sugar 

concentration, before and after acid hydrolysis of oligosaccharides to monomeric sugars. The 

sugars (glucose, xylose and arabinose) and by-products (acetic acid, hydroxymethylfurfural and 

furfural) present in the liquid fraction were analyzed with an Aminex HPX-87H Ion Exclusion 

Column equipped with a Cation-H cartridge (Biorad, Johannesburg, RSA). Sugars were measured 

with a RI detector (Waters 2141, Microsep, Johannesburg, RSA), whereas the by-products were 

analyzed with an UV detector at 220–280 nm (Waters 2487, Microsep, Johannesburg, RSA).  
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The column was operated at 65 °C with a mobile phase of 5mM sulphuric acid and a flow rate of 

0.6 mL/min. Likewise, after completion of mild acid hydrolysis (4% [v/v] H2SO4, 121 ºC, 60 min) 

of the solid fraction obtained after each pre-extraction glucose, xylose and arabinose 

concentrations were measured by HPLC, as described above. 
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RESULTS AND DISCUSSION 

Raw material composition and fiber length 

        The chemical composition and fiber lengths of South African grown giant bamboo are 

shown in Table 3. A cellulose content of 44.4% and a pentosan component of 24.7% consisting of 

about 90% dry mass original material xylose and traces of arabinose were observed. The lignin 

content (22%) and average fiber length (2.9 mm) values agreed with those reported in the 

literature.11,12,23  

 

Dilute acid pre-extraction 

Yield of sugars in the liquid fraction 

        The composition of the hydrolysate fraction after dilute acid treatment of bamboo is 

illustrated in Figure 1A. To evaluate the efficiency of dilute acid as a fractionation method for 

hemicelluloses solubilisation, without cellulose and lignin degradation, the effect of acid 

concentration, temperature, reaction time and solid loading on the hydrolysis of the xylan and 

glucan from bamboo was determined by a statistically-experimental design. The effects and their 

significance are given in the standardized Pareto chart (Fig 2A). Both temperature and acid 

concentration influenced the xylose yield in the liquid fraction, but temperature showed the 

strongest effect. Solids loading and the reaction time had no significant effect on xylan hydrolysis 

within the selected pre-extraction conditions.  

 

       Spearman’s rho statistical tests were also used to assess the effect of different pre-extraction 

conditions.24 A significant correlation between xylan hydrolysis and temperature was noticed, as 

the p value was less than 0.01.  
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In the present study, the highest xylose amount recovered in the liquid fraction ranged between 

18.4 and 19.1 g/100 g of xylose in the raw material, achieved in Runs 20 (temperature 160 °C, 

0.3% acid concentration) and 14 (temperature 140 °C, 0.4% acid concentration), respectively 

(Fig. 1A). This represents approximately 80–83.4% of the xylose present in the original dry raw 

material. This effect has been reported25 on the other lignocellulosic material, where 79.6% of the 

total xylose of Eucalyptus grandis residues were obtained utilizing 0.65% of sulphuric acid 

concentration at 157 °C. Treatment of hardwoods with 0.8% sulphuric acid at 190 °C produced26 

87% xylose. 

 

       Glucose concentration in the liquid hydrolysate fraction was of 0.8–4.1 g/100 g original 

material, when bamboo was treated at temperatures between 140–160 °C, and the soluble lignin 

content was equivalent to 0.18% of the lignin present in the raw material, solubilized under the 

above-described conditions (Fig. 3). These results indicated minor degradation on cellulose and 

lignin. The highest concentration of HMF (1.36 g/100 g DM), furfural (0.41 g/100 g DM) and 

acetic acid (1.34 g/100 g DM) were obtained at a temperature of 160 °C and 0.3% acid 

concentration). A similar behavior during degradation of the cell wall components at high 

temperatures was previously reported.6,27 Literature data on the inhibiting effect of these 

compounds show that the acetic acid18 can be an inhibitor of microbial growth from 4 to 10 g/L, 

about (0.5–2 g/L) being reported28 for both HMF and furfural. The concentrations of inhibitors in 

the hydrolysate are therefore acceptable for the fermentation of the xylose, glucose and arabinose 

components. 
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Composition of the solid residue after dilute acid treatment 

       In the experiments, the total glucose in the solid fraction was 83.0–99.2 % dry mass of raw 

material (Fig. 1B). These results demonstrate that degradation of the cellulose fraction in the raw 

material was limited during dilute acid hydrolysis. However, temperatures between 140 and 160 

°C and an acid concentration above 0.3% resulted in the formation of HMF (Fig. 4), indicating 

degradation of the glucose portion. As shown in Figure 2B, temperature had a dominant influence 

on the glucose retained in the solid residue. The xylose retained in the solid fraction constituted 

between (0 and 94%) of the original dry material (Fig. 1B). At high temperature (160 °C), no 

xylose was detected in the solid fraction, and the formation of furfural was observed in the liquid 

fraction (Fig. 4). As indicated by statistical analysis, temperature is the main limiting factor of 

acid hydrolysis for maximum xylose removal. 

         After dilute acid fractionation, the acid insoluble lignin in the solid fraction varied from 

64.5-110.1% dry original material (Fig. 3). The high lignin content in the solid fraction might 

have resulted from the tendency of lignin to be depolymerized and then repolymerized in a 

different morphology during hemicellulose hydrolysis.29 When dilute acid extraction is performed 

in batch systems, both lignin dissolution and precipitation is promoted.30 Large fractions of lignin 

react to soluble products, which further react30 to form insoluble compounds, if left in the reactor. 

Moreover, coating of cellulosic fibers with these lignin-like material would restrict the substrate 

area availability for subsequent treatments.3 Dilute acid pre-extraction of bamboo support the idea 

of a possible optimization for removing sufficient hemicelluloses by dilute acid treatment, while 

not adversely affecting the celluloses and lignin fraction, which will therefore be favorable when 

temperature of 120 °C, acid concentration of ≤ 0.3% at shorter reaction time are used. 
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Pulping of hemicellulose extracted bamboo 

     After hemicellulose pre-extraction of bamboo with dilute acid, a solid residue from Run 22 

was selected for pulping. These conditions were preferred as a maximum glucose content was 

observed in the solid residue after dilute acid pre-extraction. The extracted solid residue was 

subjected to Kraft pulping under different cooking conditions (14–16% effective alkali, 15–35% 

sulfidity and keeping for 30–70 min at maximum temperature). Soda AQ pulping conditions: 14–

16% active alkali, 0.05–0.1% anthraquinone, keeping at maximum temperature for 30–70 min.  

Temperature and solid loading were kept constant at 170 °C and 5.5 mL/g, respectively, in all 

pulping experiments. The pulp properties of bamboo produced after kraft and sodaAQ pulping 

were determined. The non-extracted bamboo was also pulped under similar conditions and used 

for comparison purposes. 

Kraft pulping 

         Tables 4A and 4B list the comparative values of pulp yield, viscosity, kappa number and 

degree of polymerization of the pulps obtained from both pre-extracted and non–extracted 

bamboo chips. The pulping yields recorded for non-extracted bamboo were 45.5–55.1%, 

compared to 40.7–50.3%, recorded for the pre-extracted bamboo. Under similar pulping 

conditions, the kraft pulp yields obtained from bamboo are comparable to those given in 

literature,11,12 of 48.1–54.3% and 42.7–48.9%, respectively. Comparing the best pulping yields 

(Run 5 in Tables 4A and 4B), non-extracted bamboo produced 9% higher pulp yields than those 

of pre-extracted pulps. The yield loss during pulping, due to hemicelluloses pre-extractions with 

dilute acid and hot water was previously reported.32 Kraft pulp yields of 51.1% and kappa number 

of 17.1 for acid pre-extracted mixed hardwoods, compared to 53.2% pulp yield and kappa number 

of 16.7 from non-extracted yields were reported.33 
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        The kappa number was lower for pre-extracted pulps (4.4–12.8), compared to the non-

extracted ones (6.5–13.8). The results showed that an increase in active alkali from 14-16%, 

combined with an increase in sulfidity from 15–35% resulted in a decrease in kappa number for 

both pre-extracted and non-extracted pulps (Run 4 in Tables 4A and 4B). Reduction in kappa 

number is explained by the higher delignification rate induced by the presence of sodium 

hydrogen sulfide in the pulping liquor, resulting29 in lignin dissolution. A high sulfidity (35–45%) 

in lower effective alkali (14–16%) resulted11 in pulps with lower kappa numbers (11–15). 

 

          In this work, cellulose degradation during pulping was measured in terms of viscosity, 

values of 4.3–8.5 cP and 4.4–16 cP being obtained from pre-extracted and non-extracted pulps, 

respectively. The viscosity values here measured are comparable to the results obtained34 when 

Panus tigrinus delignification strains were used prior to kraft pulping of sugarcane bagasse (2.3–

6.8 cP). According to literature data, 35 in modern kraft pulp mills, viscosity ranges from 30 cP 

after kraft pulping of wood. Variation in pulp viscosity is associated with the hemicellulose 

content of pulps.36 Pulp with high hemicelluloses content is reported22 to undergo low cellulose 

degradation, resulting in high viscosity pulps. Decrease in the DP of cellulose beyond ~1600 post 

pulping and beyond ~700, respectively, after bleaching could reduce3 the paper sheet strength 

properties. According to the present study, hemicelluloses pre-extractions with dilute acid might 

have influenced the reduction of viscosity. Treatment with hydrochloric acid during vapour phase 

was reported to cause cellulose degradation.37 
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Soda anthraquinone (AQ) pulping 

     A comparison of pre-extracted and non-extracted Bamboo chips by sodaAQ pulping is 

presented in Tables 5A and 5B. Dilute acid pre-extraction resulted in higher pulp yields (41.36–

55.02%), compared to the values registered in the untreated material (40.36–48.85%), which 

could be explained by the decrease in the branching degree on xylan during dilute acid pre-

extraction. A higher frequency of hydrogen bounds between xylan chains, and between xylan and 

the accessible fraction of cellulose could be promoted, leading to a lower degradation of 

carbohydrates.2 Composition of the raw material and process modifications prior to pulping may 

affect the pulp yield.38 A study was conducted on dilute acid and alkaline pre-extraction of 

hemicellulose from Aspen, alfafa stems, switch grass and hybrid poplar and subsequently 

subjected the solid residue on kraft and SodaAQ pulping.32 The best preliminary results obtained 

gave a pulp yield of around 43%, obtained with poplar and switchgrass.  

 

It was explained that overall composition or the raw material could also affect pulp yield. Acid 

pre-extraction prior to sodaAQ of hardwood showed pulp yields of 52.7%, and a kappa number of 

15.9, compared to 53% pulp yield and kappa number of 16.6 for non-extracted pulps.39 

 

      The kappa numbers observed from pre-extracted pulps are lower (31.0–33.4), compared to 

those from the non-extracted ones (35.6–38.8). Although anthraquinone has been reported to have 

a maximum effect on lignin degradation, in the present study bamboo delignification was difficult 

to attain, as it can be inferred by the kappa number values obtained (over 30). Nonetheless, the 

addition of AQ to adjust pulping conditions could also result in a lower kappa number reduction, 

and higher pulping yield.12 Literature reports that the condensation reactions of lignin occur at 

higher rate during soda AQ pulping,40 which could be a disadvantage of sodaAQ pulps, because 

most of the condensed lignin structures are less reactive to conventional bleaching chemicals, 

compared to the uncondensed ones.40  
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      Out of the six pulping conditions shown in Table 5, the optimum one, based on viscosity, was 

in Run 5. Pre-extracted pulp showed a pulp yield of 41.36, kappa number -33.35 and pulp 

viscosity of 13.8 cP, compared to a pulp yield of 41.44, kappa number - 35.6 and pulp viscosity of 

17.33 cP. The advantage of pulps with high viscosity and low kappa number is that, if a lower 

kappa number is required, subsequent delignification through bleaching could be carried out with 

less bleaching chemicals, while retaining appropriate pulp strength values.41 

 

Comparative kraft and sodaAQ pulping behavior of pre-extracted bamboo 

       Generally, soda-AQ pulping of pre-extracted bamboo has a positive effect on pulp yield 

(41.36–55.02%) compared to Kraft pulping with (40.7–50.3%) pulp yields. Kraft pulps are well-

known for their low pulp yields, compared to soda-AQ pulps.2,12 

       A high delignification efficiency was shown for pre-extracted Kraft pulps compared to pre-

extracted soda-AQ pulps. Kappa number values of 4.4–12.8 were observed for pre-extracted Kraft 

pulps compared to 31.0–33.4 for pre-extracted soda pulps. However, although the kappa number 

is an important quality index of pulp and also a key parameter for pulping, a higher kappa number 

reduction in kraft pulps also caused higher reduction in pulp viscosity (4.3–8.5 cP), compared to 

sodaAQ pulps with highest viscosity (11.3–14.33 cP). This called for an economic balance 

between the environmental benefits and pulp degradation. Compared with the raw material, dilute 

acid pre-extracted residues with a constant kappa number, pulped by soda-AQ, will maximize 

product yield and pulp quality, while minimizing consumption of energy and chemicals (Fig. 5B). 
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Conclusions 

• About 80–83% of the xylose present in bamboo can be hydrolyzed with 0.3% (v/v) acid 

concentration at 160 °C, and 0.4% (v/v) at 140 °C, respectively. However, these 

conditions showed a slight degradation to cellulose and hemicelluloses, as indicated by 

the presence of 0.41g/100g DM furfural and 1.36 g/100 g DM HMF at 160 °C. The 

amount of acetic acid in the hydrolysate was 1.34 g/100 g DM. 

• Kraft pulping of pre-extracted solid residue resulted in a 9% yield reduction, compared to 

non-extracted bamboo, at best cooking results (Run 5, Table 4). Lower kappa number and 

very low viscosity were observed for pre-extracted pulps. 

• Increase in pulp yield by 7.4% was obtained from pre-extracted sodaAQ pulps compared 

to the non-extracted sodaAQ pulps generated under similar pulping conditions (Run 4, 

Table 5). Lower kappa numbers and high viscosity were observed.  

• When selecting the best pulping process for integration of dilute hemicelluloses pre-

extraction and pulping process, sodaAQ pulping is recommended. Although still busy 

with screening of experiments for optimum conditions, the present trial showed excellent 

promise for integrating hemicelluloses pre-extraction with dilute acid and utilisation of 

the solid residue for pulp production. 
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Table 1 

Sequence of experiments according to the Central Composite Design for dilute acid pre-extraction of hemicelluloses from bamboo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run Acid concentration 
( v/v %) 

Solid/Acid solution  
 (g/ml) 

Temperature 
(°C) 

Residence time 
(min) 

1 0.2 1/4 100 20 

2 0.2 1/4 100 40 

3 0.2 1/5 100 20 

4 0.2 1/5 100 40 

5 0.2 1/4 140 20 

6 0.2 1/4 140 40 

7 0.2 1/5 140 20 

8 0.2 1/5 140 40 

9 0.4 1/4 100 20 

10 0.4 1/4 100 40 

11 0.4 1/5 100 20 

12 0.4 1/5 100 40 

13 0.4 1/4 140 20 

 

Run Acid concentration 
( v/v %) 

Solid/Acid solution  
 (g/ml) 

Temperature 
(°C) 

Residence time 
(min) 

14 0.4 1/4 140 40 

15 0.4 1/5 140 20 

16 0.4 1/5 140 40 

17 0.1 1/4.5 120 30 

18 0.5 1/4.5 120 30 

19 0.3 1/4.5 80 30 

20 0.3 1/4.5 160 30 

21 0.3 1/3.5 120 30 

22 0.3 1/5.5 120 30 

23 0.3 1/4.5 120 10 

24 0.3 1/4.5 120 50 

25 0.3 1/4.5 120 30 

 

Run Acid concentration 
( v/v %) 

Solid/Acid solution  
 (g/ml) 

Temperature 
(°C) 

Residence time 
(min) 

1 0.2 1/4 100 20 

2 0.2 1/4 100 40 

3 0.2 1/5 100 20 

4 0.2 1/5 100 40 

5 0.2 1/4 140 20 

6 0.2 1/4 140 40 

7 0.2 1/5 140 20 

8 0.2 1/5 140 40 

9 0.4 1/4 100 20 

10 0.4 1/4 100 40 

11 0.4 1/5 100 20 

12 0.4 1/5 100 40 

13 0.4 1/4 140 20 

 

Run Acid concentration 
( v/v %) 

Solid/Acid solution  
 (g/ml) 

Temperature 
(°C) 

Residence time 
(min) 

14 0.4 1/4 140 40 

15 0.4 1/5 140 20 

16 0.4 1/5 140 40 

17 0.1 1/4.5 120 30 

18 0.5 1/4.5 120 30 

19 0.3 1/4.5 80 30 

20 0.3 1/4.5 160 30 

21 0.3 1/3.5 120 30 

22 0.3 1/5.5 120 30 

23 0.3 1/4.5 120 10 

24 0.3 1/4.5 120 50 

25 0.3 1/4.5 120 30 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 242 

 

Table 2 

Sequence of experiments for Kraft and sodaAQ pulping  

of hemicellulose pre-extracted bamboo 

 

Run 1 2 3 4 5 6 
Active alkali (%DM) 14 14 16 16 15 15 

Sulfidity (% DM) 15 35 15 35 25 25 

Anthraquinone (% DM)  0.05 0.05 0.05 0.05 0.117 0.075 

Time at 170°C (min) 30 30 30 30 70 45 
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Table 3 

Chemical composition expressed in percentage of oven dry mass original material and fiber length 

of giant bamboo before pre-extraction 

 

Component % Content 
(based on oven dry mass) 

Ethanol/cyclohexane soluble extractives 4.1 ± 0.1 

Water soluble extractives 3.0 ± 0.2 

Ash 2.4± 0.01 

Cellulose 44.4± 0.4 

Pentosan 24.7 ± 1.7 

Glucose 30.5 ± 2.0 

Xylose 22.9± 0.4 

Monosaccharides 

Arabinose 0.20 ± 0.01 

Klason lignin (acid insoluble) 22.0 ± 0.9 

Mean values and standard deviation of four measurements 

Fiber characteristics Min Max Average 
(mm) 

Fiber length 2.1 4.0 2.9 ± 1.3 
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Table 4 

Comparison of Kraft pulping results from non-extracted and 2.4% hemicelluloses pre-extracted 

giant bamboo (0.3% v/v, 1/5.5 solid/acid solution ratio, 120 °C for 30 min) 

 

Table 4A 

Kraft pulping conditions Pulp characteristics of the pre-extracted material 
Run Effective alkali 

(% DM) 

Sulfidity 
(% DM) 

Time at 
170°C 
(min) 

Screened 
pulp yield 

(%) 

Rejects 
(%) 

Kappa 
number 

Viscosit
y (cP) 

Pulp 
DP 

1 14 15 30 43.3 10.5 7.3 8.5±0.9 794 

2 14 35 30 40.7 7.3 8.8 7.3±1.1 696 

3 16 15 30 41.7 9.4 5.6 7.7±0.3 731 

4 16 35 30 41.9 7.4 4.4 8.5±0.9 794 

5 15 25 70 50.3 14.7 12.8 4.8±0.3 434 

6 15 25 45 46.7 13.1 11 4.3±2.5 367 

 

Table 4B 

Kraft pulping conditions Pulp characteristics of  non-extracted raw material 
Run Effective alkali 

(% DM) 
Sulfidity 
(% DM) 

Time at 
170°C 
(min) 

Screened 
pulp yield 

(%) 

Rejects 
(%) 

Kappa 
number 

Viscosity 
(cP) 

Pulp 
DP 

1 14 15 30 47.0 9.4 12.9 14.5±1 1147 

2 14 35 30 47.5 7.0 10.9 8.2±0.3 771 

3 16 15 30 48.2 5.5 10.1 6.3±0.4 603 

4 16 35 30 45.5 4.4 6.5 8.8±0.4 817 

5 15 25 70 55.1 15.3 13.8 16.0±5.6 1213 

6 15 25 45 49.9 14.5 12.2 4.4±2.7 381 
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Table 5 

Comparison of sodaAQ pulping results from non-extracted and 2.4% hemicelluloses pre-extracted 

bamboo (0.3% v/v, 1/5.5 solid/acid solution ratio, 120 °C for 30 min) 

 

Table 5A 

SodaAQ pulping conditions Pulp characteristics of pre-extracted material 
Run Active alkali 

 (% DM) 

Anthraquinon
e (% DM) 

Time at 
170°C 
(min) 

Screened 
pulp yield 
(%) 

Rejects 
(%) 

Kappa 
number 

Viscosity 
(cP) 

Pulp 
DP 

1 14 0.05 30 55.02 5.16 31.64 11.33±1.0 982 

2 14 0.1 30 49.73 11.81 32.49 12.33±0.3 1038 

3 16 0.05 30 46.61 12.71 32.49 12.17±0.3 1030 

4 16 0.1 30 52.23 13.22 33.23 14.33±0.6 1139 

5 15 0.075 70 41.36 12.48 33.35 13.83±0.3 1115 

6 15 0.075 45 51.2 7.54 31.0 12.5±0.9 1048 

 

Table 5B 

SodaAQ pulping conditions Pulp characteristics of non-extracted material 
Run Active alkali 

(% DM) 

Anthraquinone 
(% DM) 

Time at 
170°C 
(min) 

Screened 
pulp yield 

(%) 

Rejects 
(%) 

Kappa 
number 

Viscosity 
(cP) 

Pulp 
DP 

1 14 0.05 30 43.82 17.22 38.7 20.5±0.9 1381 

2 14 0.1 30 48.56 17.82 38.8 15.33 

±1.1 

1184 

3 16 0.05 30 40.36 10.81 37.6 12.17 

±0.3 

1030 

4 16 0.1 30 44.84 17.28 35.8 12.33 

±0. 

9 

1038 

5 15 0.075 70 41.44 13.47 35.6 17.33 

±0.3 

1267 

6 15 0.075 45 42.95 15.5 38.0 14.17 

±2.5 

1131 
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   Figure 1. Total xylose yield (A), expressed as g/ 100 g of raw material, and total 
glucose yield (B), expressed as g/100g of raw material  

(A) liquid (■) and solid (■) fractions under different pre-treatment conditions     
(B) liquid (■) and solid (■) fractions under different pre-treatment conditions 
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Figure 2. Standardized Pareto charts for (A) xylose solubilised in the liquid fraction and 

          for (B) glucose retained in the solid residue 
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Figure 3. Acid insoluble lignin (%) in the solid fraction and acid soluble lignin (%) in the liquid 
fraction from each pre-treatment conditions of the CCD 
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                           Figure 4. Degradation products in the liquid fraction 
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Figure 5A. Pulp properties of pre-extracted and non-extracted bamboo after Kraft pulping process. 
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Figure 5B. Pulp properties of pre-extracted and non-extracted bamboo after sodaAQ pulping process 
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