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Abstract
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Stellenbosch University,
Private Bag X1, Matieland 7602, South Africa.

Thesis: M.Sc. Computer Science

March 2013

The amount of information that users of social networks consume on a daily
basis is steadily increasing. The resulting information overload is usually
associated with a loss of control over the management of information sources,
leaving users feeling overwhelmed.

To address this problem, social networks have introduced tools with which
users can organise the people in their networks. However, these tools do not
integrate any automated processing. Twitter has lists that can be used to
organise people in the network into topic-based groups. This feature is a
powerful organisation tool that has two main obstacles to widespread user
adoption: the initial setup time and continual curation.

In this thesis, we investigate the problem of constructing topic-based Twitter
lists. We identify two subproblems, an unsupervised and supervised task,
that need to be considered when tackling this problem. These subproblems
correspond to a clustering and classification approach that we evaluate on
Twitter data sets.

The clustering approach is evaluated using multiple representation tech-
niques, similarity measures and clustering algorithms. We show that it is
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ABSTRACT iii

possible to incorporate a Twitter user’s social graph data into the clustering ap-
proach to find topic-based clusters. The classification approach is implemented,
from a statistical relational learning perspective, with kLog. We show that
kLog can use a user’s tweet content and social graph data to perform accurate
topic-based classification. We conclude that it is feasible to construct useful
topic-based Twitter lists with either approach.



Uittreksel

Die bou van onderwerp-gerigte Twitter lyste

(“Constructing Topic-based Twitter Lists”)

P.F. de Villiers

Afdeling Rekenaarwetenskap,
Departement van Wiskundige Wetenskappe,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: M.Sc. Rekenaarwetenskap

Maart 2013

Die stroom van inligting wat sosiale-netwerk gebruikers op ’n daaglikse basis
verwerk, is aan die groei. Vir baie gebruikers, skep hierdie oordosis inligting ’n
gevoel dat hulle beheer oor hul inligtingsbronne verloor.

As ’n oplossing, het sosiale-netwerke meganismes geïmplementeer waarmee
gebruikers die inligting in hul netwerk kan bestuur. Hierdie meganismes is
nie selfwerkend nie, maar kort toevoer van die gebruiker. Twitter het lyste
geïmplementeer waarmee gebruikers ander mense in hul sosiale-netwerk kan
groepeer. Lyste is ’n kragtige organiserings meganisme, maar tog vind groot-
skaal gebruik daarvan nie plaas nie. Gebruikers voel dat die opstelling te veel
tyd in beslag neem en die onderhoud daarvan te veel moeite is.

Hierdie tesis ondersoek die probleem om onderwerp-gerigte Twitter lyste te
skep. Ons identisifeer twee subprobleme wat aangepak word deur ’n nie-toesig
en ’n toesighoudende metode. Hierdie twee metodes hou verband met trosvor-
ming en klassifikasie onderskeidelik. Ons evalueer beide die trosvorming en
klassifikasie op twee Twitter datastelle. Die trosvorming metode word geëvalu-
eer deur te kyk na verskillende voorstellingstegnieke, eendersheid maatstawwe
en trosvorming algoritmes.
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Ons wys dat dit moontlik is om ’n gebruiker se Twitter netwerkdata in te
sluit om onderwerp-gerigte groeperinge te vind. Die klassifikasie benadering
word geïmplementeer met kLog, vanuit ’n statistiese relasionele leertoerie
perspektief. Ons wys dat akkurate onderwerp-gerigte klassifikasie resultate
verkry kan word met behulp van gebruikers se tweet-inhoud en sosiale-netwerk
data. In beide gevalle wys ons dat dit moontlik is om onderwerp-gerigte Twitter
lyste, met goeie resultate, te bou.
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Chapter

1
Introduction

The demands of users have changed since the advent of social networks. In
the beginning, users were satisfied with being instantly connected to friends,
family and colleagues. As the social circles of each user expanded, so did the
number of messages, images and links that each user consumed daily (Borgs
et al., 2010).

Social networks, such as Facebook, Twitter and Google+, have recently
introduced mechanisms to enable users to manage this vast flow of information.
For example, Twitter introduced lists, which allow a user to categorise users
and label them. However, initial setup cost and continual curation are common
problems for a user creating these lists; a user of any system with many
connections will find it tedious to sort through all his connections and organise
them according to topics. The whole process could be simplified if the user
could be provided with a good initial configuration.

1.1 Motivation

The rapid growth of social networks has introduced new problems, arguably the
most prominent of these being information overload (Borgs et al., 2010). There
is no single generally accepted definition of information overload. Bawden and
Robinson (2009) state that the term is used in referring to a state of affairs
where an individual’s efficiency in using information in their work is hampered
by the amount of relevant and useful information available to them.

1
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Information in a user’s network is typically presented as a time-line of
events. As a result, if a user has many information sources in his network,
not all the relevant information will be displayed. To alleviate this problem
of information overload, social networks provide tools with which users can
organise their information sources into manageable groups. The tools to create
these manageable groups are known as lists in Twitter, circles in Google+ and
smart lists in Facebook. At the time of writing, these tools are all manually
managed by the user, in other words each grouping action is performed by the
user. Two problems, initial setup costs and continual curation, are possible
factors that influence the adoption rate of these tools. A user of any system with
many connections will find it tedious to sort through all his/her connections
and organise them according to topics.

In the past, machine learning techniques have performed well in the task
of automatic data organisation (Witten and Frank, 2005). Therefore, we pose
the question: “Can machine learning techniques be used to automate group
creation procedures in social networks?” We focus our efforts on Twitter.

Twitter introduced lists in 2009, which allow a Twitter user to create curated
groups containing other users in the ecosystem. The manual list creation process
consists of identifying a set of related users based on a particular attribute,
and iteratively adding and removing users based on the defined attribute.

1.2 Objectives

This work’s principal objective is to provide a detailed investigation into the
problem of constructing topic-based Twitter lists. The principal objective can
be split into two subproblems (a) constructing lists for users who have not
created lists and (b) constructing lists for users who have created a limited
number of lists. As such, we investigate unsupervised and supervised list
construction approaches.

1.3 Contributions of this work

This thesis makes the following contributions:

• We introduce a clustering approach based on tweet content that can
construct topic-based Twitter lists (De Villiers et al., 2012).
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• For this clustering approach, we perform a comparative study of similarity
measures on short text documents.

• We evaluate two clustering algorithms, k-means (Tan et al., 2006) and
affinity propagation (Frey and Dueck, 2007), over a range of clusters sizes
on multiple short text document data sets.

• We show how a Twitter user’s social graph information can be used in a
clustering approach.

• We define a kLog model (Frasconi et al., 2012) that effectively incorporates
graph content from Twitter and achieves good classification results when
constructing topic-based lists.

• Using kLog, we perform a comparative study on different graph formula-
tions. This provides insight into how the shape of the graph affects the
classification results.



Chapter

2
Literature Review

This chapter presents related work to provide the necessary background for the
work in the rest of this thesis. We introduce two approaches that form a general
framework in which the two subproblems of constructing topic-based Twitter
lists can be solved. The two approaches, unsupervised and supervised, are
examined in the context of previous work. Finally, we review the studies that
examine critical aspects of the topic-based Twitter lists construction process.

2.1 Overview

In Chapter 1, we discussed the problem of information overload, and proposed
the automated construction of topic-based Twitter lists to alleviate it. To
adequately address this topic, it is necessary to consider two types of users:
those who have already used the lists tool to create lists, and those who have not
yet created any lists. Therefore, the available information consists of partially
labelled and unlabelled data. A natural solution to these two subproblems are
clustering and classification respectively.

The clustering process is an example of unsupervised classification (Xu
and Wunsch, 2005), and is applied to unlabelled data (Everitt et al., 2011;
Jain and Dubes, 1988). The goal of clustering is to find natural hidden
structure (Arbib, 2002) in data, which is used to separate the data set into
discrete partitions (Cherkassky and Mulier, 2007). Xu and Wunsch (2005)
describe the clustering approach as a 5-step process.

4
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The first step consists of gathering the data to cluster and, depending
on the domain, can be either an easy or a difficult task. The second step is
feature selection or extraction; feature selection involves choosing distinguishing
features from a set of candidates (Jain et al., 1999), while feature extraction
applies a transformation to generate useful features from those selected (Jain
et al., 2000). The third step consists of selecting a clustering algorithm, and
based on the clustering algorithm an appropriate proximity measure. Cluster
validation, the fourth step, is applied after the proposed clusters have been
found and usually involves any of three categories of testing criteria. These
three categories are referred to as external indices, internal indices and relative
indices (Xu and Wunsch, 2005). External indices evaluate the clustering result
on some pre-specified structure; internal indices evaluate the clustering structure
on the original data; and relative indices evaluate the comparison of different
clustering solutions (Gordon, 1999). The final step in the clustering process is
interpretation or visualisation of the results, providing users with meaningful
insights from the original data (Xu and Wunsch, 2005).

In contrast to the clustering approach, classification is a supervised task (Kot-
siantis et al., 2007). The goal of supervised classification is to learn a function
or set of rules from examples in a training set, thus creating a classifier that
can be used to label new examples (Dutton and Conroy, 1997; Nguyen and
Armitage, 2008). Kotsiantis et al. (2007) describe a 5-step process for applying
supervised machine learning to real-world problems.

The first step consists of three parts, namely identifying the problem,
gathering the required labelled data, and performing pre-processing. The data
can either be selectively gathered using only the attributes and features that are
most informative (Kotsiantis et al., 2007) or all available data can be captured.
In most cases, the data set contains noise and missing feature values, which can
require significant pre-processing (Zhang et al., 2003). The data pre-processing
task consists of removing noise (Hodge and Austin, 2004), feature selection (Liu
and Motoda, 1998) and feature transformation (Markovitch and Rosenstein,
2002). Applying noise removal and feature selection techniques reduce the
dimensionality of the data and allows for more efficient implementations of
supervised learning algorithms. The feature transformation step can possibly
improve the accuracy of the classifier by constructing new features from the
basic feature set (Markovitch and Rosenstein, 2002).
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The second step is the selection of a training set, and the corresponding
classifier evaluation techniques that influence it. To effectively evaluate the
performance of a classifier, careful consideration should be given to the selection
of a training and test set. Three popular approaches are two-thirds split, cross-
validation and leave-one-out validation. In the first case, two-thirds of the data
set is used for training and the rest for testing the classifier (Kotsiantis et al.,
2007). Cross-validation splits the data set into mutually exclusive subsets of
approximately equal size. Training is then conducted on the union of all these
subsets except one which is used for testing; this is repeated until each set has
been used for testing (Kohavi, 1995). Leave-one-out validation is a special case
of cross-validation where each subset consists of a single data point (Kohavi,
1995).

The third step of supervised learning is the selection of a learning algorithm,
which depends on the task under consideration. This is followed by the fourth
step, training and testing; training consists of executing the supervised learning
algorithm to obtain a classifier that is evaluated in the testing step. In the fifth
and final step, the results are interpreted with techniques that are effective in
representing and describing the different performance aspects of the classifier.

The description of the clustering and classification process corresponds to
the two subproblems, which we identified as (a) unlabelled and (b) partially
labelled data. In the rest of this chapter, we discuss additional background
related to the elements of each process.

2.2 Clustering

Clustering has been applied to a variety of problems (Markman, 2011; Kyri-
akopoulou and Kalamboukis, 2006; Millar et al., 2009) and data types (Jain
et al., 1999). In the document clustering domain, we see that most studies
evaluated clustering solutions on full-length text documents (Steinbach et al.,
2000; Huang, 2008). Only recently has the application of clustering to short
text documents been evaluated (Rangrej et al., 2011).

The studies on full-length text documents have all comprehensively evalu-
ated various aspects of the clustering approach: Zhang et al. (2011) evaluated
the document processing and feature representation step, Huang (2008) com-
pared the performance of different similarity measures, and Singh et al. (2011)
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compared different clustering algorithms. These studies provide valuable in-
sights into the selection of methods and techniques when clustering full-length
text documents. However, these insights are not always directly transferable
to short text documents (Perez-Tellez et al., 2011; Pinto et al., 2011). It is
therefore important to consider the different aspects of the clustering approach
for short text documents.

2.2.1 User representation

The main content produced by a Twitter user is the user’s tweets. Tweets thus
form important data from which a user’s topic-based expertise can be extracted.
A user’s topic-based expertise is the set of topics that the user tweets about.
Studies have shown that it is difficult to extract information from a single
tweet (Xu and Oard, 2011; Jin et al., 2011; Hong and Davison, 2010), and as a
result some authors have recommended techniques that augment tweets with
external information (Jin et al., 2011).

Hong and Davison (2010) followed a different approach to Jin et al. (2011):
instead of augmenting a user’s tweets with external information, they rather
aggregate a user’s tweets into a single document. This document is then used
to generate a feature vector. They found that a simple aggregation of user
tweets in a single document shows good performance in both the classification
and clustering tasks. Their evidence suggests that the length of the document
is the biggest contributing factor to the success of the feature representation
techniques discussed in this section.

2.2.2 Feature vector representation

Well-known feature vector representation techniques for short text documents
are term frequency-inverse document frequency (TF-IDF) (Salton and McGill,
1983) and latent Dirichlet allocation (LDA) (Blei et al., 2003). LDA is a topic
model related to the well-known probabilistic latent semantic analysis (Hofmann,
2001) technique with the addition of a dirichlet prior.

A number of studies have compared TF-IDF and LDA on different tasks,
such as predicting popular tweets (Hong and Davison, 2010), user recom-
mendations (Pennacchiotti and Gurumurthy, 2011) and tweet recommenda-
tions (Ramage et al., 2010). These studies found that LDA tends to outperform
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TF-IDF. However, this has not been verified for the clustering task on short
text documents.

2.2.3 Similarities

In Section 2.1, we reviewed the clustering process and noted the third step of
selecting a clustering algorithm and proximity/similarity measure. Lin (1998)
defines the similarity between two objects as the ratio of information contained
in the common features to the information contained in the total set of all
features between two objects. A number of studies (Huang, 2008; Sandhya
et al., 2008; Subhashini and Kumar, 2010) have evaluated different similarity
measures on full-length text documents. The measures compared in these
studies, were the Euclidean distance, cosine similarity, Pearson correlation
coefficient, Kullback-Leibler divergence and Jaccard coefficient. The studies
showed similar performance between these measures, except in some cases where
the Euclidean distance performed notably worse (Sandhya et al., 2008). In terms
of performance on short text documents, a comprehensive study has not been
performed. Rangrej et al. (2011) performed a preliminary study comparing
multiple clustering algorithms and two similarity measures, the Euclidean
distance and cosine similarity. The results indicate similar performance to
full-length text documents.

2.2.4 Clustering algorithms

Clustering algorithms can generally be considered to be of one of two types (Zhao
et al., 2005), namely hierarchical or partitional. Hierarchical clustering solu-
tions provide a view of data at different levels of abstraction, which is ideal
for interactive exploration and visualisation (Zhao et al., 2005). Partitional
clustering approaches separate data into different non-overlapping subsets (Frey
and Dueck, 2007).

Larsen and Aone (1999) claim that partitional clustering algorithms are
well suited for clustering large document data sets due to their relatively low
computational requirements. k-Means, a well-known partitional clustering
algorithm, has been successfully applied to tasks on both full-length (Amine
et al., 2010) and short text documents (Rangrej et al., 2011). The algorithm
performs well on both types of documents. Affinity propagation (AP) (Frey and
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Dueck, 2007), a new clustering algorithm that performs well in the document
clustering domain, has recently been introduced. AP is also a partitional
clustering algorithm, and a recent study (Rangrej et al., 2011) on short text
documents has shown that it outperforms k-means. Frey and Dueck (2007)
recommend AP for the clustering task when a large number of natural clusters
exist. However, in the case of relatively few clusters, k-means may be better.
An evaluation of k-means and AP over a range of cluster sizes on short text
documents has to the best of our knowledge not yet been performed.

2.3 Classification

Statistical learning is the study of inference, making predictions or constructing
models from data in a statistical framework (Bousquet et al., 2004). In contrast
to statistical learning is relational learning, which is the study of machine
learning and data mining where knowledge is represented in relational form or
first-order logic form (De Raedt, 2008). Statistical relational learning attempts
to incorporate elements of these two approaches to represent, reason, and learn
in domains with complex relational and rich probabilistic structure (Getoor
and Taskar, 2007).

Classification has been applied to a range of tasks in the document domain,
including recommendations (Chen et al., 2010) and topic-based expertise predic-
tions (Ghosh et al., 2012). Earlier classification studies on Twitter have mostly
consisted of analysing tweet content (Chen et al., 2010; Hong and Davison, 2010)
of a Twitter user to perform classification tasks as mentioned above. Recent
studies have started to incorporate the user’s social graph information (Ghosh
et al., 2012; Wagner et al., 2012), which can be used as a strong topic-based
expertise indicator for a user. However, incorporating this graph structure is
not a trivial task. The above studies that incorporate social graph information
do not explicitly model the connections between users, but use them to retrieve
label information that is combined with tweet content to represent a user.

As a result, by using only the label information and not explicitly modelling
the graph connections, important data that could be used to construct user
features are discarded. A possible solution to the above problem is the use
of graph-based classification (Ketkar et al., 2009). This approach models a
user according to his explicit social graph connections. A learning algorithm is
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then applied to each user’s individual graph. This learning algorithm builds
a classifier, which assigns each user to a category. Graph-based classification
techniques are good at modelling explicit graph structure, but to include the
contents of a user’s tweets in the process is not a trivial task (Ketkar et al.,
2009).

Recently, a statistical relational learning system, kLog (Frasconi et al.,
2012), has been introduced that can model explicit social graph structure and
incorporate content as properties for nodes in the graph model. It has been
shown that kLog can be applied to a wide variety of supervised classification
tasks (Verbeke et al., 2012a,b), and achieves good results in text-intensive
domains such as WebKB (Frasconi et al., 2012). We provide an in-depth
discussion of the kLog system in Chapter 4.

2.4 Twitter lists

The problem of user topic discovery (Wagner et al., 2012; Michelson and
Macskassy, 2010) and automatic list construction (Greene et al., 2011) has
gained popularity. Early approaches to topic discovery used a knowledge base
that defined topic categories, and used trigger words in tweets to perform topic
assignments (Bernstein et al., 2010; Michelson and Macskassy, 2010).

Wagner et al. (2012) evaluated which features of a Twitter user best encodes
that user’s topic-based expertise. They evaluated tweets, retweets, profile
information and user list memberships; the results indicated that list mem-
berships are the best indicator of a user’s topic-based expertise. Furthermore,
Ghosh et al. (2012) introduced techniques to extract metadata from user list
memberships, which they then used to infer a user’s topic-based expertise.
Both of these studies found evidence that list memberships are a good indicator
of a user’s topic-based expertise.

Related to the task of finding a user’s topic-based expertise is the automatic
construction of topic-based Twitter lists. This involves extracting the topic-
based expertise of users and combining those who share the same expertise
to form topic-based Twitter lists. This task has had limited coverage in the
literature. One of the first works (Greene et al., 2011) attempted to support
the curation process of Twitter lists by recommending users to add to a list.
A graph-based approach was used to model friendships, mentions, retweets
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and list memberships. The approach evaluated the graph edges to perform
recommendations and did not incorporate tweet content.

Greene et al. (2012) extended this work by constructing topic-based commu-
nities using list membership information. In the study, a community detection
algorithm that detects communities based on the overlap of list memberships
was used. Their communities are defined based on a stability measure of the
community. A user is assigned to a community based on the number of lists in
that community that the user is a member of. The results were evaluated over
18 categories of 499 users, using precision, recall and the F1-measure (Chap-
ter 5). They achieved mixed results: four categories showed good performance
with a F1 score greater than 0.8, while 6 categories achieved less than 0.5 for
the F1 score.

2.5 Conclusion

This chapter, presented the literature relevant to our work. We introduced
an unsupervised and supervised learning framework, followed by a discussion
of the clustering and classification approaches. Each important part of the
clustering approach was discussed based on the work in that area. For the
classification task we introduced kLog, a statistical relational learning system,
which allow us to model a user based on tweet content as well as social graph
information. We also discussed the literature related to topic-discovery and
list creation on Twitter, including the results of a recent study on topic-based
communities.



Chapter

3
Document clustering approach

This chapter introduces our clustering approach for application to data collected
from Twitter. We discuss the concept of short text documents as well as how
to use such documents collected from Twitter to represent a Twitter user.

Various important aspects of the clustering approach are considered, in-
cluding feature vector representation, and the choice of a similarity measure
and clustering algorithm. The feature vector representation discussion intro-
duces TF-IDF and LDA. Followed by a discussion of five document similarity
measures, before introducing the k-means and affinity propagation clustering
algorithms.

3.1 Document types

Clustering algorithms have mostly been applied to full-length text documents.
However, with the recently increased popularity of Twitter, there have been an
increasing number of applications to short text documents. A tweet1 consists
of a maximum of 140 characters and may contain mentions, hashtags and
hyperlinks. A mention occurs when user A refers to user B in a tweet by
including the username of B preceded by an “@”. Hashtags usually relate to
the topic of a tweet and consist of a term or concatenation of terms starting
with a “#”. A hashtag is used when users discuss an event or topic on Twitter.

1A short text document on Twitter is referred to as a tweet.

12
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It simplifies the process of finding tweets related to an event or topic, since one
can search Twitter for tweets containing a specific hashtag.

Figure 3.1: A screenshot of a tweet containing a hyperlink, mentions and hashtags.

Figure 3.1 shows a tweet containing both mentions (@grantimahari and
@scully313) as well as hashtags (#FireFly and #LEGO). Hong and Davison
(2010) showed that although a tweet is short in length, it may still convey
rich meanings. The same study showed that representing a user by a single
document consisting of a collection of tweets is a good representation for topic
discovery and clustering performance.

t1 t2 t3 . . . tk

User

Document

Figure 3.2: An illustration of how tweets are collected and combined to form a
text document representing a Twitter user.

Figure 3.2 shows the process used to represent a Twitter user as a single
document. Some number k of tweets are retrieved for a user, which are then
concatenated to form a single document. A document created for a Twitter
user in this way is referred to as a user document in this study.

A further possibility is to use this document creation approach using other
information from Twitter. Using the list memberships of a Twitter user, we
can retrieve the name or description of those Twitter lists and concatenate
the information to form a user document. The retrieved list membership
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information replaces the k tweets in Figure 3.2. We discuss this approach in
Section 6.6.

3.2 Representation

We now discuss the representation of a user document in terms of a document
corpus D = {d1, d2, . . . , dn}. Each di in the corpus is a Twitter user document
as described in Section 3.1.

3.2.1 Vector space model

A popular way to represent documents is the bag-of-words model (Salton and
McGill, 1983). In this approach, a document is represented by the terms
that appear in it, disregarding the order of appearance of these terms. The
terms in a document may occur multiple times throughout the document, and
thus the importance of each term can further be estimated by calculating
the term frequency. If T = {t1, t2, . . . , tm} is the set of distinct terms in the
corpus, a document d ∈ D will then be represented by an m-dimensional
vector td = (tf(d, t1), tf(d, t2), . . . , tf(d, tm)), where tf(d, t) is the number of
occurrences of t in document d.

Representing a document using term frequencies effectively reduces the
dimensionality of the document. This representation implicitly assumes that
terms that occur frequently are more important, which is not always the case.
For example, if the terms “a” and “the” frequently appear in a document they
will be considered important because of their high frequency count. The terms
“a” and “the” do not generally convey any discriminatory information about a
document, due to their frequent occurrence in other documents in the corpus.

To counteract this, the popular TF-IDF weighting scheme is used (Hong and
Davison, 2010; Rangrej et al., 2011; Huang, 2008). The TF-IDF scheme assumes
that terms which appear frequently in a small number of documents, but rela-
tively infrequently in others, tend to be much more relevant for discriminating
between documents in the corpus.

To calculate the TF-IDF score, the term frequency (TF) is adjusted based
on the inverse document frequency (IDF):

tfidf(d, t) = tf(d, t)× log

(
|D|

df(t)

)
. (3.2.1)
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Here df(t) is the number of documents in which term t appears. The inverse
document frequency, log

(
|D|
df(t)

)
, serves as a weighting factor applied to the

term frequency, tf(d, t). As a result, a term occurring in few documents in the
corpus but with a high frequency in those documents will have a higher relative
importance in the corpus.

In this study, we use the TF-IDF as one document representation.

3.2.2 Topic models

The other representation we use is a topic model. A topic model (Blei and
Lafferty, 2009) represents a document as a vector of topic proportions, with
each topic modelled as a distribution over terms. It is natural to assume that
a document collection exhibits a variety of topics, because a collection tends to
be heterogeneous with a number of central ideas and themes.

The set of topics derived from a set of documents D can be used to answer
questions about the similarity of terms and documents: two terms are similar to
the extent that they appear in the same topic, and two documents are similar
to the extent that the same topics appear in those documents.

Latent Dirichlet allocation (LDA) is a generative probabilistic model, which
represents documents as random mixtures over latent topics (Blei et al., 2003).
A topic is defined as a distribution over a fixed vocabulary of terms. Each
document in a collection then consists of different proportions of a set of Q
topics.

LDA is related to the well-known probabilistic latent semantic analy-
sis (pLSA) (Hofmann, 2001) technique with the addition of a Dirichlet prior.
Blei and Lafferty (2009) notes that pLSA is incomplete in that it provides no
probabilistic model at the level of documents. pLSA represents each document
as a list of numbers, the topic proportions, and there is no generative proba-
bilistic model for these numbers. In LDA, a document’s topic distribution is
assumed to have a Dirichlet prior.

The generative model for LDA is shown in Figure 3.3 using plate nota-
tion (Blei et al., 2003) for graphical models. Each topic q is represented by
a multinomial distribution with parameter vector βq over the terms in the
vocabulary. All these βq are governed by a Dirichlet prior with parameter η.
A document d is represented by a multinomial distribution, with parameter
vector, θd, over topics. These parameter vectors (θd) are governed by a Dirichlet
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α

θd

Zd,n

Wd,n

βq

η

N

D

Q

Figure 3.3: A graphical model representation of latent Dirichlet allocation (LDA).
Nodes denote random variables; edges denote dependence between random variables.
Shaded nodes are observed random variables; unshaded nodes denote latent random
variables. The rectangular boxes are “plate notation”, which denote replication.

prior with parameter α. Furthermore, each of the N terms in each document
is generated by sampling a latent topic, Zd,n, from the document’s multinomial
distribution (θd), and then the term Wd,n is drawn from topic’s multinomial
distribution (βZd,n

).
As stated previously, each document di is represented by the parameter

vector of a multinomial distribution over topics. We can view this representation
as a vector of topic proportions present in the document. The similarity between
documents di and dj can thus be calculated by using the topic proportions in
the documents.

In this thesis, we use the LDA library provided by Hoffman et al. (2010).
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3.3 Calculating document similarities

In this section, we highlight the similarity measures selected for this study
on the basis of previous work in the field. Let D = {d1, d2, . . . , dn} be the
document corpus and let V = {v1, v2, . . . , vm} be the vocabulary of D. Each
document di is represented by a vector of term scores (when processed with
TF-IDF) or topic proportions (when processed with LDA).

3.3.1 Euclidean distance

The Euclidean distance between documents di and dj is calculated as

δ(di, dj) =

√√√√ m∑
k=1

(dik − djk)2, (3.3.1)

where m is the length of the document vector. It has a lower bound of 0 and is
unbounded from above. The Euclidean distance has of course been used in a
wide variety of studies. Notable studies in the clustering domain that evaluate
the Euclidean distance as a document similarity measure are Huang (2008) and
Sandhya et al. (2008).

3.3.2 Cosine similarity

The cosine similarity has been applied to document clustering (Subhashini
and Kumar, 2010), short text clustering (Rangrej et al., 2011) and user rec-
ommendations (Pennacchiotti and Gurumurthy, 2011). The cosine similarity
represents the angle between two given vectors. If the value is 0, the two vectors
are orthogonal. If the value is 1, the two vectors have the same direction. It is
a bounded similarity measure with a lower bound of 0 and upper bound of 1.
The cosine similarity between document vectors di and dj is

cos (di, dj) =
〈di, dj〉
||di|| · ||dj||

. (3.3.2)

3.3.3 Pearson correlation coefficient

The Pearson correlation coefficient has been applied to a variety of domains,
including document recommendations (Zheng et al., 2011) and document
clustering (Torres et al., 2009). It measures the strength and direction of
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the linear relationship between two variables. The value is in the range of
-1 to 1, where 0 is no relation, 1 is the strongest positive correlation and -1
is the strongest negative correlation. The Pearson correlation coefficient for
documents di and dj is

r =
cov(di, dj)

σdi · σdj
. (3.3.3)

We calculate the Pearson correlation coefficient as

r =

∑m
k=1 dikdjk −

∑m
k=1 dik

∑m
k=1 djk

m√∑m
k=1 d

2
ik −

(
∑m

k=1 dik)
2

m

√∑m
k=1 d

2
jk −

(
∑m

k=1 djk)
2

m

. (3.3.4)

The Pearson’s distance (Fulekar, 2009) is defined as δ = 1−r, which bounds
this distance in the [0, 2] range. Huang (2008) extended this to

δ =

{
1− r if r ≥ 0

−r if r < 0,
(3.3.5)

which has a lower bound of 0 and a upper bound of 1. We use this formulation
because it performs well in the document clustering domain (Huang, 2008).

3.3.4 Averaged Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence is used to evaluate the difference between
two probability distributions. Given two discrete distributions P and Q, the
KL divergence from distribution P to distribution Q is defined as

δKL(P ||Q) =
∑

P (i) log
P (i)

Q(i)
. (3.3.6)

For LDA, the document vectors represent discrete distributions. For TF-IDF,
one can normalise the document vectors to obtain a distribution. One can then
write the divergence of one document from another as

δKL(di||dj) =
m∑
k=1

[
dik × log

dik
djk

]
, (3.3.7)

where dik and djk are the values of the k’th component in documents i and j
respectively. The KL divergence does not satisfy the symmetry requirement
of a true metric, since in general δKL(P ||Q) 6= δKL(Q||P ). The KL divergence
has mostly been used in its symmetric form for topic models (Landauer, 2007),
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and averaged form for document clustering (Huang, 2008). The averaged form
is

δAvgKL(di||dj) =
m∑
k=1

π1(k)×
(
dik × log

dik
wk

)
+

π2(k)×
(
djk × log

djk
wk

)
, (3.3.8)

where π1(k) = dik
dik+djk

, π2(k) =
djk

dik+djk
and wk = π1(k)dik + π2(k)djk. Further-

more, we let 0× log 0 = 0.
The Kullback-Leibler divergence from P to Q is finite when the support of

Q is contained in the support of P . For LDA, a document’s topic distribution
is governed by a Dirichlet prior and thus all topics are present with non-zero
proportions for both P and Q. However, TF-IDF vectors may not share the
same set of terms. Using the averaged form the contribution of those terms
present in one document but not the other to the calculated distance is 0.

In the special case when two documents do not share any terms, the average
KL divergence evaluates to 0. In this case, we modify the average KL divergence
to set the distance to a large value. This large value indicates that the two
documents are dissimilar, since the average KL divergence has a lower bound
of 0 when two distributions are the same. The value is chosen as equal to the
largest distance, found with the average KL divergence, between documents in
the set.2

3.3.5 Extended Jaccard coefficient

The Jaccard coefficient measures the similarity of two sets by computing the
ratio of the number of shared elements of the two sets to the total number of
elements (Ye, 2004). Strehl et al. (2000) extended this definition to vectors
with real-valued components. The extended Jaccard coefficient is defined as

EJ(di, dj) =
〈di, dj〉

||di||2 + ||dj||2 − 〈di, dj〉
, (3.3.9)

2In retrospect, this choice of using the TF-IDF in combination with the average Kullback-
Leibler divergence is poor. Bigi (2003) proposes a model in which terms from a vocabulary
that do not appear in a document are given an epsilon probability. This assignment of
probabilities to terms present in the vocabulary, but not in the document, seems to be a
better way to deal with situations leading to infinite Kullback-Leibler divergence.
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which reduces to the Jaccard coefficient when sets are represented as binary
vectors. This similarity measure has a lower bound of 0 and an upper bound
of 1. It is 0 when the two document vectors are orthogonal, and 1 when they
are identical.

3.4 Clustering documents

This section describes two clustering algorithms we investigated, namely k-
means and affinity propagation. Both of these are partitional clustering algo-
rithms; objects are thus categorised into a number of non-overlapping subsets.
The categorisation occurs around cluster prototypes such that each object
is in some sense more similar to its cluster prototype than the other cluster
prototypes (Tan et al., 2006).

3.4.1 k-means

The k-means algorithm (Tan et al., 2006) is initialised with k user-selected
initial points. By assigning each data point to its nearest initial point, k clusters
are formed. For each of the k clusters, the centroid of the cluster points is
computed, which replaces the k user-selected initial points. In k-means, the
centroids are the cluster prototypes. The process of assigning each point to its
nearest centroid is repeated until the centroid of each clusters stays the same
for consecutive iterations or some maximum number of iterations is reached.

An important consideration for k-means is how the initial starting points are
selected. We opted for the k-means++ method (Arthur and Vassilvitskii, 2007),
which has been shown to perform much better than the random seeding of
k-means. In k-means++, the first centre is sampled uniformly at random from
the data points after which new centres are repeatedly chosen with probability
proportional to the distance from the nearest existing centre.

3.4.2 Affinity propagation

AP (Frey and Dueck, 2007) treats all data points as potential exemplars,
exchanging suitability messages until the most suitable exemplars are found



CHAPTER 3. DOCUMENT CLUSTERING APPROACH 21

and clusters are formed. The resulting exemplars are the medoids3 of the
generated clusters, and serve as cluster prototypes.

The AP procedure takes as input anN×N matrix S of document similarities
and exchanges two types of “messages” between data points: responsibilities and
availabilities. A responsibility, r(i, k), is sent from data point i to a candidate
exemplar k and reflects the evidence that k is suitable as an exemplar for data
point i. An availability, a(i, k), is sent from a candidate exemplar k to data
point i and is the evidence indicating how appropriate it is for data point i to
choose k as its exemplar.

The responsibilities are computed as

r(i, k)← Sik − max
k′ s.t. k′ 6=k

{a(i, k′) + Sik′}, (3.4.1)

where Sik is the similarity of data point i and j. The availabilities are calculated
as

a(i, k)← min
{

0, r(k, k) +
∑

i′ s.t. i′ /∈{i,k}

max{0, r(i′, k)}
}
, (3.4.2)

for i 6= k. The self-availability a(k, k) is calculated as

a(k, k)←
∑

i′ s.t. i′ 6=k

max{0, r(i′, k)}, (3.4.3)

and reflects the accumulated evidence that data point k is an exemplar. This
evidence is thus based on the positive responsibilities sent to candidate exemplar
k from other data points.

The responsibilities and availabilities can be combined in order to identify
the exemplars. The value of k that maximises a(i, k) + r(i, k) identifies the
data point that is the exemplar for point i.

AP allows us to set a self-preference value, pi, for each data point. A data
point with a higher self-preference value has a greater likelihood to be selected
as a cluster exemplar. If the self-preference value is set equal to the same value,
p, for all the data points, the number of clusters can be influenced by p. A
large p in relation to the magnitude of the similarities will lead to many clusters
while a smaller p will lead to fewer.

The algorithm described above can be terminated either after a fixed number
of iterations, when changes to the messages fall below a threshold, or if the

3The medoid of a group of points is a multi-dimension generalisation of the median.
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local decisions stay constant for some number of iterations. In order to avoid
numerical oscillations that can arise in some circumstances, each message can
be set to λ times its value from the previous iteration plus 1 − λ times its
prescribed update value (Frey and Dueck, 2007), as described in Equation 3.4.1
– 3.4.3. The damping factor λ is usually set between 0.5 and 1.

3.5 Conclusion

In this chapter, we introduced our document clustering approach, which consists
of creating a Twitter user document, converting to a vector representation and
applying clustering algorithms using an underlying similarity measure.

We represented Twitter users by defining a user document as a concatena-
tion of a Twitter user’s tweets. We discussed two representation techniques,
TF-IDF and LDA, which transform the user document to a suitable format
for use with various similarity measures. The measures used to calculate the
document similarities are Euclidean distance, cosine similarity, Pearson correla-
tion coefficient, averaged Kullback-Leibler divergence and extended Jaccard
coefficient. Finally, we introduced the k-means and AP clustering algorithms,
which will be applied to the document similarities.



Chapter

4
Document classification with
kLog

In Chapter 2, we discussed the different user content available on Twitter that
can be used to represent a Twitter user. We indicated that in the current
approaches it is simple to represent users by their tweet content, but difficult
to include their social graph structure in that representation. A solution to
this problem lies in statistical relational learning (SRL), where it is easier to
incorporate the explicit social graph structure and tweet content to represent
a user. This chapter introduces kLog (Frasconi et al., 2012), a supervised
learning system from the SRL field. kLog is a logical and relational language
for kernel-based learning, which we will later use to construct topic-based
Twitter lists.

This chapter is structured as follows: We discuss the importance of social
graph information in Section 4.1. In Section 4.2, we introduce each component
of the kLog system in context of a small example problem; the example problem
is that of predicting the category of a document. In Section 4.3, we discuss
the formulation of our interpretations, which is followed (Section 4.4) by a
discussion of the kLog models we will use to train a classifier for constructing
topic-based Twitter lists.

23
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4.1 Social graph

Chapter 3 sets out our approach to clustering user documents constructed
from only the users’ tweet content. Twitter provides a large amount of extra
information, such as friends, followers and list memberships. This extra infor-
mation details connections between users and can thus be used to construct a
social graph for each user. It is natural to ask whether we can extract features
from this social graph information to better differentiate users when forming
topic-based clusters or classifying users into topic-based lists.

A Twitter user’s social graph provides valuable information, but the process
of incorporating this information for use in a clustering or classification task
is non-trivial. We use the kLog system, which readily provides us with tools
to incorporate graph structure as well as tweet content to construct a feature
vector for each user. The next section introduces and discusses each component
of the kLog system.

4.2 kLog

An SRL system uses a model of some complex relational structure when
performing inference to obtain answers to questions posed to the system.
Frasconi et al. (2012) define such a SRL system, kLog, as a kernel-based
approach to learning that employs features derived from a grounded entity-
relationship (E-R) diagram.

Figure 4.1, shows the important parts of the kLog system. As input, the
kLog system receives a problem with a corresponding data set, which consists of
information with complex relational structure. This data set is described with
a set of signatures, which captures the logical and relation structure. These
signatures correspond to an E-R diagram that shows the entities and possible
relationships between those entities that exist in the data.

Next, the information in the data set is converted into a graph format in
a manner governed by signatures specified in the E-R diagram. kLog refers
to this step as graphicalisation. Features are extracted from the resulting
graphicalisations by defining a graph kernel. These features are then used as
input to a statistical learning algorithm, which trains a classifier that can be
used to answer the original query.
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Input
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Graphicalisation
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Statistical learner

Classifierg = f (x)

Figure 4.1: A graphical depiction of the important parts in the kLog system.
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A kLog program is written in the Prolog programming language. Prolog is
a logical programming language whose program logic is represented with rules
and facts that are defined by clauses. In Prolog, a rule clause is specified as
HEAD :- BODY. and states that HEAD is true if BODY is true. Furthermore, a
fact is a clause without a BODY.

Code Listing 4.1, shows a Prolog script that defines a fact on the first line
followed by a rule.

man(Tom).

human(X) :- man(X).

Code Listing 4.1: An example Prolog script that illustrates a rule and a fact.

If we load this script in Prolog, we can perform a query. For example, asking if
Tom is a human, with ?- human(Tom), will return a true result.

kLog extends Prolog with a domain declaration and set of keywords. The
domain declaration consists of the keywords begin_domain and end_domain

as well as one or more signature declarations. A signature consists of a header
followed by zero or more clauses.

For a concrete definition and specification of the kLog system as well as
possible extensions, we refer the reader to Frasconi et al. (2012). In the following
subsections, we discuss the important components of the kLog system in the
context of a document classification task. In this task, a document is an entity
that contains words, and is associated with one of several categories.

4.2.1 Relational model

The signatures that we briefly discussed in the previous section are similar
to the conceptual E-R data model. This is the highest level E-R model that
describes the data set with the least detail.

Chen (1976) describes an E-R diagram as consisting of three elements,
namely entities, relationships and properties. An entity is an object, which can
be distinctly identified. Furthermore, a relationship is an association between
entities. Properties are assigned to entities or relationships and represent the
information that all entities or relationships of the same type have in common.

kLog relaxes the definition of a relationship to a more general association
among entities and properties. This general association is referred to as a
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relation. kLog defines two types of relations, E-relations and R-relations:
E-relations are similar to entities while R-relations are similar to relationships.

To address the task of predicting the category to which a document belongs,
it is necessary to define the task as a logical and relational problem. In this
example task, we assume that there is a training data set of multiple documents.

The signatures and E-R diagram that describe the data model for this task
are shown in Code Listing 4.2 and Figure 4.2 respectively.

begin_domain

signature document(doc_id ::self ):: extensional.

signature category(doc_id ::document ,

cat:: property ):: extensional.

signature has(doc_id ::document ,

word:: property ):: extensional.

signature link(doc_id_one ::document ,

doc_id_two :: document ):: intensional.

link(D1, D2) :-

category(D1 , _C), category(D2 , _C), not(D1=D2).

end_domain

Code Listing 4.2: An example of extensional and intensional signatures that
models the toy data set.

The documents in the data set are each represented by a Document entity,
which is associated with a category and has relationship. A category rela-
tionship has a cat property, which is the name of the category. Furthermore,
the has relationship has a word property, which indicates the word in the
document that the property represents. In Code Listing 4.2 the link signature
is intensional, and uses Prolog rule clauses to define a link relationship
between two documents with similar categories. The extensional signatures
expect input in the form of kLog interpretations.

To describe an interpretation, it is necessary to introduce concepts from
first-order logic (Getoor and Taskar, 2007). In first-order logic a ground term
is a term that does not contain any free variables. Furthermore, a ground
atom is an atomic formula whose argument terms are all ground terms. An
interpretation is specified by a set of ground atoms that are true and all atoms
not in the interpretation are assumed to be false.

Frasconi et al. (2012) describe a kLog interpretation in database terminology
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Document

has word

categorycat

Figure 4.2: The E-R diagram that models the structure in the toy data set.

as corresponding to one instance of a relational database describing one possible
world. kLog learns from multiple interpretations.

Let us specify the data set, for our example task, as consisting of three
documents. These documents are shown in Table 4.1.

Identifier Category Words
doc1 music acoustic, piano, song
doc2 entertain sound, bass, song
doc3 music piano, show, disc

Table 4.1: The documents in the toy data set.

We define these three documents as part of the documents interpretation.
The resulting interpretation is shown in Code Listing 4.3. This interpretation
corresponds to the extensional signatures, which we defined in Code Listing 4.2.

interpretation(documents , document(doc1 )).

interpretation(documents , category(doc1 , music )).

interpretation(documents , has(doc1 , acoustic )).

interpretation(documents , has(doc1 , piano )).

interpretation(documents , has(doc1 , song )).

interpretation(documents , document(doc2 )).
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interpretation(documents , category(doc2 , entertain )).

interpretation(documents , has(doc2 , sound )).

interpretation(documents , has(doc2 , bass )).

interpretation(documents , has(doc2 , song )).

interpretation(documents , document(doc3 )).

interpretation(documents , category(doc3 , music )).

interpretation(documents , has(doc3 , piano )).

interpretation(documents , has(doc3 , show )).

interpretation(documents , has(doc3 , song )).

Code Listing 4.3: An interpretation defined for three documents in the example
data set.

In this subsection, we introduced the kLog relation model. We described
signatures, and how they relate to a conceptual E-R data model. Furthermore,
we described the logical and relational structure of an example data set with a
set of signatures and showed the corresponding E-R diagram. We discussed
interpretations in kLog, and defined a documents interpretation.

In the next subsection, we use the interpretation in Code Listing 4.3 and
the signatures in Code Listing 4.2 to perform graphicalisation.

4.2.2 Graphicalisation

Formally, the graphicalisation process proceeds as follows (Frasconi et al., 2012).
Given an interpretation z, construct a bipartite graph Gz([Vz, Fz], Ez) with
vertex set [Vz, Fz] and edge set Ez: each vertex in Vz corresponds to a ground
atom of an E-relation and each vertex in Fz corresponds to a ground atom of
a R-relation. Vertices are labelled by the name of the ground atom, followed
by the list of properties. The identifiers in a ground atom do not appear in the
label but they identify the vertices.

An edge between vertex u and v is in the edge set (uv ∈ Ez) if and only
if u ∈ Vz and v ∈ Fz, and ids(u) ⊂ ids(v). The ids(u) and ids(v) are the
identifiers in the E-relation represented by vertex u and R-relation represented
by vertex v respectively.

Figure 4.3 shows the graphicalisation of the interpretation in Code List-
ing 4.3. This graphicalisation consists of three documents, of which two are
connected by a pair of link vertices. These link vertices are created by the
intensional signature in Code Listing 4.2.
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document doc1

documentdoc2

document doc3

link link

has(acoustic) has(piano)has(song)

category(music)

has(sound) has(bass)has(song)

category(entertain)

has(piano)

has(show)

has(song)

category(music)

Figure 4.3: The graphicalisation of the example interpretation.
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4.2.3 Graph kernels

The previous section discussed graphicalisation, the mapping of an interpreta-
tion z into an undirected labelled graph Gz. In this section the application of
graph kernels to graphicalisations is discussed.

Features in kLog are generated by means of a graph kernel that calculates
the similarity between two graphicalised interpretations. kLog uses an extension
of the Neighbourhood Subgraph Pairwise Distance Kernel (NSPDK) (Costa and
De Grave, 2010). The NSPDK is a decomposition kernel, which decomposes a
graph into all pairs of neighbourhood subgraphs of small radii at increasing
distances from each other (Costa and De Grave, 2010).

Extraction of subgraphs from a graph G for comparison is governed by three
parameters: the set of kernel points, a radius (r) and a distance (d). Kernel
points are entities or relationships on which the subgraphs used for comparisons
are centered. They are also referred to as the root vertices of these subgraphs.
The radius r describes the size of the subgraphs, by specifying which entities
or relationships around a kernel point should be included in the subgraphs.
Finally, the distance d determines how far apart from each other the kernel
points are.

Let U be the set of kernel points in graph G. Furthermore, denote the
vertex set of G as V (G). Let Nu

r (G) be a neighbourhood subgraph in G,
rooted on vertex u ∈ U such that d?G(u, x) ≤ r where x ∈ V (G). The distance
d?G(u, x) is the length of the shortest path between u and x. We define the
neighbourhood-pair relation as Rr,d(G) = {(Nu

r (G), N v
r (G)) : d?G(u, v) = d}.

This relation identifies all pairs of r-radius neighbourhood subgraphs whose
roots u, v ∈ U are at distance d from each other in a given graph G.

The kernel κr,d(G,G′) between graphs G and G′ is then

κr,d(G,G
′) =

∑
(Au,Bv)∈Rr,d(G)

(A′
u′ ,B

′
v′ )∈Rr,d(G

′)

κ ((Au, Bv), (A
′
u′ , B

′
v′)) , (4.2.1)

where the general structure of κ is

κ ((Au, Bv), (A
′
u′ , B

′
v′)) = κroot ((Au, Bv), (A

′
u′ , B

′
v′))×

κsubgraph ((Au, Bv), (A
′
u′ , B

′
v′)) .

(4.2.2)

Here κroot ensures that only neighbourhood subgraphs centered on the same
type of vertex pairs will be compared. The second factor, κsubgraph, quantifies
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the similarity between two pairs of subgraphs. We discuss κsubgraph later in this
section in the context of our running example problem.

The comparison performed by κroot is

κroot ((Au, Bv), (A
′
u′ , B

′
v′)) = 1l(u)=l(u′)1l(v)=l(v′), (4.2.3)

where l(u) is the label of the root vertex of subgraph A and 1 denotes the
indicator function. The indicator function is defined as

1P =

{
1 P is true
0 otherwise.

(4.2.4)

If we assume that κsubgraph is a valid kernel, the NSPDK is defined as

Kr∗,d∗(G,G
′) =

r∗∑
r=0

d∗∑
d=0

κr,d(G,G
′), (4.2.5)

where r∗ and d∗ are user-specified upper bounds on the radius and distance
parameters respectively.

We now return to our example problem to discuss the application of the
NSPDK to graphicalisations. Figure 4.3 shows the graphicalisation of the
interpretation in Code Listing 4.3. To effectively illustrate the NSPDK, we
simplify this interpretation to consist of only one document. Furthermore, it is
necessary to create another interpretation because the kernel is applied to two
graphicalisations.

Figure 4.4 represents the result of graphicalising two interpretations, both
consisting of only a single document. The graphs, G and G′, each consists of a
single document entity, a category relation and multiple has relations. The
document entity in each graph is the kernel point. The task is to predict the
property of a category vertex. Therefore, these vertices are removed from the
graphicalisations. We indicate this in Figure 4.4 by representing those vertices
with dotted borders.

When examining the graphs in Figure 4.4, we see that the only sensible
radius r and distance d values are r ∈ {0, 1} and d = 0 respectively. A distance
d > 0 between entities will not exist, since each graph consists of only one
entity. Furthermore, there are no vertices at r > 1 from the kernel point of
each graph.

From Equation 4.2.5, we thus use r∗ = 1 and d∗ = 0 to obtain

Kr∗,d∗(G,G
′) = κ0,0(G,G

′) + κ1,0(G,G
′). (4.2.6)
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documentdoc1

has(piano) has(song)has(acoustic)

category(music)

G

document doc2

has(bass) has(song)has(sound)

category(entertain)

G′

Figure 4.4: Two graphicalisations generated from two interpretations, each con-
taining a single document.
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We will consider the terms in Equation 4.2.6 separately. To calculate κ0,0(G,G′)
and κ1,0(G,G′) from Equation 4.2.1, it is necessary to define the relations R0,0

and R1,0 for each graph interpretation.
The neighbourhood subgraph pairs for graph G and G′ are shown in Fig-

ure 4.5. An interesting result, which is due to d = 0, is that the two subgraphs
in a neighbourhood pair are identical. Figure 4.5 shows the neighbourhood
subgraph pairs for relations R0,0 and R1,0 with the grey shaded circles and the
grey shaded rectangles respectively.

Finally, with the relations defined for each combination of r and d, it is
possible to evaluate κsubgraph as used in Equation 4.2.2. One implementation of
κsubgraph, is testing for an exact match between the subgraphs. This is a graph
isomorphism problem, which can be formalised as

κsubgraph ((Au, Bv), (A
′
u′ , B

′
v′)) = 1Au

∼=A′
u′
1Bv

∼=B′
v′
, (4.2.7)

where ∼= indicates graph isomorphism.
Applying Equation 4.2.7 in our example, we see that κ0,0(G,G′) evaluates

to 1 since both graphs have a subgraph rooted on the document entity without
any connected vertices. Based on the vertex labels, it is clear for κ1,0(G,G′)
that the subgraphs in G and G′ are not isomorphic and as a result κ1,0(G,G′)
evaluates to 0. Substituting1 these values into Equation 4.2.5 yields

K1,0(G,G
′) = κ0,0(G,G

′) + κ1,0(G,G
′)

= 1 + 0

= 1. (4.2.8)

In some cases it is valuable to calculate the kernel between two graphs based
on partial rather than exact matches between the properties of vertex labels.
Recall that in Subsection 4.2.2 we discussed the labelling of a vertex. We
formalise this labelling as r(c1, c2, . . . , cm), where r is the name of the ground
atom/signature and ci for i = {1, . . . ,m} are the list of its properties.

The soft match for kernel κr,d(G,G′) is defined as

κsubgraph((Au, Bv), (A
′
u′ , B

′
v′)) =

∑
z∈V (Au)∪V (Bv)

z′∈V (A′
u′ )∪V (B′

v′ )

1l(z)=l(z′)κtuple(z, z
′), (4.2.9)

1We do not show κroot, because the set of kernel points consists of only one type of
vertex. Therefore, κroot will in this case always be true.
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documentdoc1

has(piano) has(song)has(acoustic)

G

document doc2

has(bass) has(song)has(sound)

G′

Figure 4.5: The graphicalisations of two interpretations, where the two subgraphs
are indicated by the shaded circle and shaded rectangle respectively.
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where l(z) returns the signature name for a vertex z. Now the problem is
defined by a soft match between vertex properties, such that

κtuple(z, z
′) =

{ ∑
d 1propd(z)=propd(z

′) if d > 0

1 otherwise,
(4.2.10)

where propd(v) returns the property value cd.
Intuitively this states that the soft match of two subgraphs is the total

number of matching properties of vertices with the same signature name. In
our example κtuple(z, z′) reduces to either 1 or 0 since each vertex z only has one
property. Using the soft match kernel, substituting in Equation 4.2.6, yields

K1,0(G,G
′) = κ0,0(G,G

′) + κ1,0(G,G
′)

= 1 + 2

= 3. (4.2.11)

For the κ0,0(G,G′) case, the result is the same as the hard match kernel due
to matching the two document vertices. For κ1,0(G,G′) there are 4 possible
matches: the vertices to compare are {document, has(acoustic), has(piano),
has(song)} in G and {document, has(sound), has(bass), has(song)} in G′.
We see that two matches exist, namely the document vertices and song property.

In the first case there is only one possible match and in the second there
are four, as a result the second case makes a larger contribution to the kernel.
To equally weight each case, the kernel κr,d is normalised as

κ̂r,d(G,G
′) =

κr,d(G,G
′)√

κr,d(G,G)κr,d(G′, G′)
. (4.2.12)

The normalised NSPDK is then

K̂1,0(G,G
′) = κ̂0,0(G,G

′) + κ̂1,0(G,G
′)

=
1√

1× 1
+

2√
4× 4

= 1.5. (4.2.13)

This example illustrated the application of the hard match discrete kernel,
and the soft match discrete kernel to graphicalisations. These kernels can only
be applied to relations with discrete properties. The soft match kernel can be
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extended to handle mixtures of discrete and real-valued properties. The soft
match kernel for mixed discrete and real tuples is

κtuple(z, z
′) =

{ ∑
d 1propd(z)=propd(z

′) +
∑

c propc(z) · propc(z′) if d > 0 or c > 0

1 otherwise,
(4.2.14)

where the index d is defined over all the discrete properties and the index c is
defined over all the continuous properties of vertex v.

In this section, we discussed the application of the NSPDK on two graphi-
calisations. Next, we discuss the feature extraction and statistical learning in
kLog.

4.2.4 Feature extraction and statistical learner

kLog uses the NSPDK discussed in the previous section to extract feature vectors
that are used as input to a statistical learning algorithm. An interpretation
z = (x, y) is mapped into a feature vector φ(z) = φ(x, y), which allows the
application of supervised learning algorithms in a feature space F . In context
of the NSPDK this φ(z) is defined implicitly via the kernel function such that
K(z, z′) = 〈φ(z), φ(z′)〉 (Frasconi et al., 2012).

Therefore, a feature vector φ(z) is used as input to a supervised learning
algorithm. Currently, kLog uses LibSVM (Chang and Lin, 2011) to train a
classifier on these feature vectors, which is used to make predictions.

4.3 Interpretations

We introduced kLog in the previous section, and showed how different for-
mulations of an interpretation affects the graphicalisations. For the task of
constructing topic-based Twitter lists, we consider two different formulations
of an interpretation.

4.3.1 Many formulation

A simple formulation of an interpretation is a single Twitter user. In this case
each interpretation consists of only one Twitter user. The graphicalisation of
such an interpretation leads to a special graph shape, referred to as a star 2.

2In graph theory a star Sk is a complete bipartite graph K1,k.
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A star limits the NSPDK to a radius r = 1 and distance d = 0. As a
result, we expect that the effectiveness of the NSPDK to extract features from
such a graph will be diminished. Furthermore, based on this formulation of
an interpretation it is not possible to model the explicit links between Twitter
users. As such, only a limited amount of the information available for a Twitter
user can be included in these models.

4.3.2 Five formulation

A different formulation of an interpretation to consider is the partitioning of a
data set into two or more partitions such that a number of Twitter users from
each category appear in a partition. Therefore, each partition can be used as
an interpretation.

One possible formulation of these new interpretations is a partition of
Twitter users into five groups, where each group represents an interpretation.
Each group contains a set of Twitter users from each category in a data set,
proportional to the number of Twitter users in that category. Even though the
interpretations are in a sense forced, it is still a reasonable formulation. For the
prediction task it is natural to have representatives of each category to train
on.

This formulation allows us to effectively use the information available about
Twitter users to model the explicit connections between them.

4.4 Representation

For the automatic construction of topic-based Twitter lists with kLog, it is
necessary to define kLog models of Twitter users and their connections. The
goal of these models is to represent users on Twitter such that a good classifier
for constructing topic-based Twitter lists can be trained from the models. In
the following subsections, we introduce a number of kLog models. Each model
represents a Twitter user as a document.

In the previous section, we described two formulations of an interpretation.
In the following models, we use the many interpretations formulation for those
models that consist of only one document entity and the five interpretations
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formulation for those that model the connections between multiple document
entities.

4.4.1 Words

The simplest kLog model that we consider models only the words in a Twitter
user’s tweets. Figure 4.6 shows the E-R diagram representing a Twitter user as
a Document entity associated with his/her tweet content.

Document

has word

categorycat

Figure 4.6: The E-R diagram for the words model.

An important aspect to consider is the specification of the relation properties.
We consider three options, namely

• multiple occurrences of a word leads to multiple has relations;

• multiple occurrences of a word leads to a single has relation; and

• including the word’s TF-IDF score as a property in the has relation3 .

The first two possibilities can affect the performance, since the soft match
kernel counts the frequency of vertices with the same label when generating

3It is possible to include the real-valued TF-IDF property, because kLog provides a soft
match kernel for discrete and real-valued properties (Equation 4.2.14).
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the feature vectors. As a result, words with multiple occurrences will have a
higher frequency compared to a word with only one occurrence.

The last option adds the information obtained from the calculated TF-
IDF to the system and may add valuable information to the generated feature
vectors. This extra property is added to the has relation as shown in Figure 4.7.

Document

has word

tf-idf

categorycat

Figure 4.7: The E-R diagram for the words model including the TF-IDF real-valued
property in the has relation.

We distinguish between these three variants of the words model by referring
to them as the multiple-word model, the one-word model and the tfidf-word
model respectively.

4.4.2 Topics

We can also define topic models that are similar to the previously defined
word models. We have already defined the process of extracting topics from a
document using LDA in Chapter 3.

Every document in a corpus exhibits the same set of topics, but with
different magnitudes. Therefore, we can define a has relation with a topic

and value property as shown in Figure 4.8. Furthermore, it is also possible to
define a simple has relation with only the topic property by only including



CHAPTER 4. DOCUMENT CLASSIFICATION WITH KLOG 41

the topics for a user document with magnitude greater than a pre-specified
threshold as shown in Figure 4.9. This threshold is set for each user document
as the mean of its topic proportions.

Document

has topic

topic-value

categorycat

Figure 4.8: The E-R diagram for the topics model using topic proportions as found
by LDA.

We refer to these two variants of the topics model as the lda-topic model
and the threshold-topic model.

4.4.3 Social graph information

So far, we introduced kLog models to represent the content of a user document
only. However, social networks contain a rich set of extra information that can
be used to characterise users according to their topic-based expertise. This
rich set of extra information includes the social graph information available for
each user.

We consider two sources for this social graph information, namely Twitter
user friendship and list membership information. We define a friendship on
Twitter when two users follow each other. The list membership information
comprises information on which Twitter lists users are members of, excluding
the lists we are trying to predict.
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Document

has topic

categorycat

Figure 4.9: The E-R diagram for the topics model.

Figure 4.10 shows the E-R diagram that represents the friendship and list
membership information respectively.

Documentcategory

cat

link_to

from to

Link

has_link

label

Figure 4.10: The E-R diagram for the social graph model, which introduces the
link_to and has_link relationships.

The E-R diagram illustrates the additions that can be made when infor-
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mation is incorporated that connects document entities. We introduce the
link_to and has_link relationship. The link_to relationship connects two
user documents based on their friendship or list memberships. The diagram
also contains a Link entity, which is an intensional relationship, created if there
exists a link_to between two user documents. This entity is shown in the
E-R diagram with a dashed rectangle to illustrate the has_link relationship.
Two document entities are thus connected by a Link entity if a corresponding
link_to extensional signature exists.

The label property of the has_link relation is the identifier of a user
document for friendships, and a list identifier for the list memberships. This is
the first model that we use with the five interpretations formulation, we refer
to these type of models as complex.

A different model, similar to the word and topic models, is shown in
Figure 4.11. This model removes the link_to relation and Link entity, and
connects the has_link relation directly to a document. This differs from
the previous model by not explicitly modelling the connections between user
documents. To differentiate from the model in Figure 4.10, we refer to these
type of models as simple.

Document

has_link label

categorycat

Figure 4.11: The E-R diagram for the social graph model that discards the link
structure and uses the labels as attributes.
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Based on the two information sources and two models, the four variants
of the social graph model are: the complex-friendship model, the complex-
membership model, the simple-friendship model and the simple-membership
model.

4.4.4 Words and social graph information

In Chapter 6, we evaluate the performance of the various models defined in
the previous subsections. The results show that in terms of tweet content the
multiple-word model performs the best. Furthermore, in terms of social graph
information the membership models outperform the friendship models.

In this subsection, we combine the multiple-word model with the complex-
membership model and simple-membership model respectively. The multiple-
word model is included in the complex-membership model, by adding the
has relation to the Document entity. The resulting E-R diagram is shown in
Figure 4.12.

Document

has

word

category

cat

link_to

from to

Link

has_link

label

Figure 4.12: The complex E-R diagram for the combined multiple-word model and
complex-membership model.
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We also include the multiple-word model in the simple-membership model,
resulting in the model shown in Figure 4.13.

Document

has_link label

has word

categorycat

Figure 4.13: The simple E-R diagram for the combined multiple-word model and
simple-membership model.

We refer to these two combined models as the complex-membership-word
model and simple-membership-word model respectively.

4.5 Conclusion

This chapter introduced kLog as an approach to solving the classification
task of constructing topic-based Twitter lists. We discussed the limitation of
only analysing the content of tweets for discriminating between topic-based
categories, and suggested that the information contained in the social graph of
Twitter users could be used to improve the classification and clustering result.
Based on these considerations, we presented various kLog interpretations and
models for constructing topic-based Twitter lists.
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5
Data sets and evaluation

This chapter introduces two Twitter data sets, and the measures used to evaluate
our clustering and classification approaches. To construct topic-based Twitter
lists, a data set of users and relevant user information is needed. We introduce
two data sets consisting of multiple Twitter lists, each in turn containing
multiple users. For each data set we discuss the collection and processing of
Twitter user information. We also highlight the different attributes of each
data set. We follow the data set discussion by a description of the different
evaluation measures.

5.1 Data sets

5.1.1 Initial collection

To empirically train our clustering and classification approaches, we need data
sets consisting of multiple Twitter lists, with each list containing multiple users.
Using such data sets provides a standard to which the performance of the
various clustering and classification approaches can be compared.

Twitter provides new users with a number of categories, containing multiple
users who are experts on the category topic or are active in that field. We use
these categories and the users in them to collect a data set, which we shall call
the suggested lists data set.

Our second data set is constructed from Twitter lists. Twitter lists provide
a user with a means to group other users in the network. A list is managed
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by a single user, who decides which users should be included in or removed
from the list. A user may be a member of many lists, as well as the curator of
many lists. We use Listorious (Listorious, 2012) as a source of well-maintained
topic-based Twitter lists. Listorious is a Twitter search engine that keeps a
ranking of the most popular lists on Twitter based on the number of followers.
The top 140 of these lists are ranked on the Listorious website. To construct
the second data set, which we call the subscribed lists data set, we select 14
lists based on ranking and the topic definition. The goal is to select lists that
are not ambiguous in terms of their topic definition, and with minimal overlap
between users.

The suggested list data set is constructed using the Twitter API, which
provides endpoints1 for retrieving the categories and users in those categories.
Therefore, we retrieve each category profile, which consists of a name, a slug
and a size field. A slug is a unique identifier, which is used to retrieve the users
in that category. The category and all the users in the category are stored;
each user is represented by a user profile, containing a unique user identifier.

The subscribed list data set is constructed by saving the list identifiers
collected from Listorious. These list identifiers are used to retrieve list profiles,
and all the user profiles of the Twitter users who are members of these lists.

Next, the tweets of the users in each data set are retrieved. The number of
tweets retrieved for each user is limited to 100. Furthermore, for each user we
retrieve their first 100 list memberships.

In summary, each data set consists of a collection of categories or list
profiles. For each category/list, a profile of the Twitter users who are in that
category/list are stored. These user profiles store the user’s 100 latest tweets,
the people that the user follows and the user’s first 100 list memberships.

5.1.2 Processing

After retrieving the user data as described in Subsection 5.1.1, a number of
checks are performed. Users are removed from a data set if:

• they are part of multiple lists/categories;

• their account is protected;
1Endpoints are HTTP URLs provided for interacting with Twitter.
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• their account is not specified as English; or

• they have tweeted less than a hundred times.

A Twitter user is represented by a user document, which corresponds to a
concatenation of the user’s 100 latest tweets into a single document. To generate
the user document, we tokenize the 100 tweets into an array of word tokens. A
token is removed if it is part of the English stop words list (NLTK) (Bird et al.,
2009) or if its length is shorter than 3 characters. Furthermore, punctuation
characters are removed from each token in the word array, and the resulting
token is stemmed using the Porter stemmer2 (Porter, 2006).

Finally, the frequency of each token in the data set is calculated and the 2000
most frequent tokens are stored as that data set’s vocabulary. An intersection
of the vocabulary, stored for each data set, and each user’s word tokens are
taken with the resulting array stored as the user document.

Next, friendships are calculated for each user. A friendship is defined when
user A follows user B and vice versa. Furthermore, we remove a list membership
from a user’s profile if that list is one of those collected from Listorious.

5.1.3 Data set attributes

Table 5.1 shows information about the composition of each data set after
Subsection 5.1.2. The subscribed lists data set contains more users than the
suggested lists data set, but in fewer categories.

Suggested lists Subscribed lists
# Users 1737 2800
# Lists 26 14
Largest 184 834
Smallest 23 14
Average 66.8 200

Table 5.1: A summary of the attributes of the suggested lists and subscribed lists
data sets.

We also include a bar chart for each data set in Figure 5.1 and Figure 5.2.
By comparing these two charts, we see that users in the suggested lists data set
are distributed more evenly over its categories than those in the subscribed lists

2Stemming is the removal of morphological and inflexional endings from words.
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data set. We expect that this will impact the clustering result, since finding
clusters in data is more challenging when these clusters differ widely in shape,
size and density (Ertoz et al., 2003).

Furthermore, the two data sets differ in how the underlying data is generated.
The suggested lists data set consists of the Twitter-generated categories. Twitter
introduced these categories in a blog post (Elman, 2010), in which they stated
that algorithms are used to create them. In contrast, the lists in the subscribed
lists data set are all created by Twitter users. We discuss the impact of this on
our experiment results in Chapter 6.

5.2 Evaluation

This section presents the evaluation metrics used in this thesis.

5.2.1 Clustering

The measures used to evaluate the quality of a clustering are important since
every clustering algorithm will identify clusters in a data set even if that data
set has no natural clustering structure. In order to compare two clusterings,
we can build a contingency table that summarises the overlap between the
clusterings. This contingency table is used extensively in pair-counting-based
measures (Hubert and Arabie, 1985).

Let S be a set of N data points, where U = {U1, U2, . . . , UR} and V =

{V1, V2, . . . , VC} are clusterings of S, in other words partitions of S into disjoint
subsets. The overlap between U and V can then be summarised in an R× C
contingency table M = [nij]

i=1,...,R
j=1,...,C , where nij is the number of objects shared

between subsets Ui and Vj. Table 5.2 illustrates the contingency table, where
the clustering U represents the correct categorisation for the data set. The
clustering U is thus the target clustering and we refer to each category in the
data set as a class when discussing the evaluation techniques. The clustering
V would then typically be the result of the k-means or affinity propagation
algorithm.
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Figure 5.1: A chart of the number of users in each category of the suggested lists
data set.
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Figure 5.2: A chart of the number of users in each category of the subscribed lists
data set.

U/V V1 V2 . . . VC Sums
U1 n11 n12 . . . n1C a1
U2 n21 n22 . . . n2C a2
...

...
... . . . ...

...
UR nR1 nR2 . . . nRC aR

Sums b1 b2 . . . bc
∑

ij nij = N

Table 5.2: The structure of the contingency table. Here nij is the number of objects
shared between subsets Ui and Vj .
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5.2.1.1 Entropy and purity

Entropy and purity are classification-oriented measures for cluster validity and
are commonly used to evaluate the performance of classification models (Tan
et al., 2006; Zhao and Karypis, 2004). In terms of cluster evaluation, the degree
to which cluster labels correspond to class labels is measured.

The entropy measures the distribution of the various class labels in each
cluster (Zhao and Karypis, 2004). We calculate a normalised entropy for each
cluster Vj from the contingency table as

E(Vj) = − 1

logR

R∑
i=1

nij

bj
log

nij

bj
, (5.2.1)

where nij

bj
is the proportion of documents in cluster j (bj) belonging to class

i. The average entropy of a clustering is then defined as the weighted sum of
the entropies for each cluster, with weights based on the cluster sizes, and is
calculated as

E(V ) =
C∑

j=1

bj
N
E(Vj). (5.2.2)

The entropy takes on values in the range of [0, 1]. A entropy of 0 indicates
that all documents in a cluster belong to the same class. If the document class
distribution is uniform over the cluster, the entropy will be 1. Thus a smaller
entropy value is better for a clustering result.

The purity measures the extent to which a cluster contains documents of a
single class (Tan et al., 2006). We calculate the purity of each cluster Vj as

P (Vj) =
1

bj

R
max
i=1
{nij} . (5.2.3)

The overall purity of a clustering is

P (V ) =
C∑

j=1

bj
N
P (Vj), (5.2.4)

a weighted sum of the purity of the clusters in V . A purity of 1 indicates that
each cluster only contains documents of a single class.

5.2.1.2 Normalised information distance

The Mutual Information (MI) (Vinh et al., 2010) describes the amount of
statistical similarity between two clusterings U and V (Banerjee et al., 2006).
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We can calculate the MI from Table 5.2 as

I(U, V ) =
R∑
i=1

C∑
j=1

nij

N
log

nij/N

aibj/N2
. (5.2.5)

We can also define the entropy of clustering U and the conditional entropy of
clustering U relative to clustering V as

H(U) = −
R∑
i=1

ai
N

log
ai
N

(5.2.6)

and

H(U |V ) = −
R∑
i=1

C∑
j=1

nij

N
log

nij/N

bj/N
. (5.2.7)

The entropy H(U) measures the uncertainty of class allocation in U and
the conditional entropy H(U |V ) of cluster U given cluster V measures the
remaining uncertainty of class allocation in U given that the clustering V is
already known.

It is of interest to see how much knowledge of V reduces the uncertainty
in U . If V provides information that helps to reduce the uncertainty in U ,
then H(U |V ) will be smaller than H(U). The MI quantifies the reduction
in uncertainty: we have H(U) −H(U |V ) = I(U, V ), which also holds in the
reverse direction, H(V )−H(V |U) = I(U, V ).

Kraskov et al. (2005) noted that one can modify the mutual information to
obtain a metric. We calculate the Normalised Information Distance (NID) by
normalising the MI and converting it to a distance metric. The NID,

NID(U, V ) = 1− I(U, V )

max{H(U), H(V )}
, (5.2.8)

is in the range [0, 1].
Hubert and Arabie (1985) showed that similarity measures for cluster

evaluation should be corrected for chance. Their corrected-for-chance property
states that an index should have a constant baseline value. This means that the
expected value between pairs of independent clusterings, sampled independently
at random, should be a constant. Ideally this baseline value should be zero,
which indicates no similarity between the clusterings.
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To achieve this they propose an index adjustment of the form3

Adjusted_Index =
Index− Expected_Index

Max_Index− Expected_Index
. (5.2.9)

We thus use the Adjusted Mutual Information (AMI) as shown by Vinh et al.
(2010) to calculate the adjusted-for-chance NID (ANID). The ANID is

ANID(U, V ) = 1− AMI(U, V )

= 1− I(U, V )− E{I(U, V )}
max{H(U), H(V )} − E{I(U, V )}

,
(5.2.10)

where E{I(U, V )} is the expected MI (Vinh et al., 2010) between two clusterings
U and V . This expected MI is defined, from the contingency table (Table 5.2),
as

E{I(U, V )} =
R∑
i=1

C∑
j=1

min(ai,bj)∑
nij=max(ai+bj−N,0)

(
nij

N
log

(
N · nij

aibj

)
×

ai!bj!(N − ai)!(N − bj)!
N !nij!(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

)
. (5.2.11)

The ANID is zero when clusterings U and V are identical. We use the ANID
as our general evaluation metric, further analysing the best results using the
purity and entropy.

5.2.2 Classification

In our classification experiments, the task is multi-class classification. The
chosen evaluation technique consists of k-fold cross-validation with the precision,
recall and F1 -measure.

The precision and recall are defined in terms of the true positive(TP ), false
positive(FP ), false negative(FN) and true negative(TN) rates. We summarise
these four metrics for a class i in Table 5.3.

The precision and recall are defined as

Pi =
TPi

TPi + FPi

, (5.2.12)

3The adjusted measure can be a negative value if the result is worse than the random
allocation of data points to clusters.
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Class i Actual class
True False

Predicted class True TPi FPi

False FNi TNi

Table 5.3: An explanation of the true positive, false positive, false negative and
true negative rates.

and
Ri =

TPi

TPi + FNi

(5.2.13)

respectively. The precision score is 1 when all documents labelled as class i are
in class i, and the recall score is 1 when all documents in class i are labelled as
class i.

The precision and recall are combined to form the F1-measure, which is the
harmonic mean of the precision and recall. The F1-measure is

F1 = 2× Pi ·Ri

Pi +Ri

, (5.2.14)

and is in the [0, 1] range, where 1 is its best value and 0 its worst.
To calculate the precision, recall and F1-measure for our multi-class clas-

sification task these values need to be combined. We achieve this with two
techniques, namely using weighted scores and multi-class scores.

Let C = {c1, c2, . . . , cN} be the set of class sizes for N classes, where each ci
is the number of documents in class i. Let d =

∑N
j=1 cj be the sum of the class

sizes, in other words the number of documents in the data set. The weighted
scores are calculated by weighting each class i proportional to d. The weighted
precision and recall are

Pw =
N∑
i=1

ci
d
× TPi

TPi + FPi

, (5.2.15)

and

Rw =
N∑
i=1

ci
d
× TPi

TPi + TNi

(5.2.16)

respectively. The corresponding weighted F1-measure is

Fw
1 =

N∑
i=1

ci
d
× (2× Pi ·Ri

Pi +Ri

). (5.2.17)
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For the multi-class scores, each class is weighted equally. Therefore, the
multi-class precision and recall are

Pm =
1

N

N∑
i=1

TPi

TPi + FPi

, (5.2.18)

and

Rm =
1

N

N∑
i=1

TPi

TPi + TNi

(5.2.19)

respectively. The corresponding multi-class F1-measure is

Fm
1 =

1

N

N∑
i=1

2× Pi ·Ri

Pi +Ri

. (5.2.20)

5.3 Conclusion

This chapter introduced the suggested lists and subscribed lists data sets. We
discussed the retrieval and construction of these data sets as well as some
attributes that may affect our clustering and classification approach. We
also discussed the metrics used to evaluate the clustering and classification
approaches.
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6
Experiments

This chapter describes several experiments conducted to evaluate the perfor-
mance of clustering and classification approaches for constructing topic-based
Twitter lists. Overall, each experiment addresses the problem of constructing
topic-based Twitter lists, but also evaluates different aspects of the clustering
and/or classification approach.

This chapter is structured as follows: In Section 6.1, we evaluate the
clustering approach on a Twitter user’s tweet content represented as a document,
followed by performing classification using libSVM to achieve a baseline for
comparison in Section 6.2. In Section 6.3 and Section 6.4, we evaluate the
performance of different kLog models on our Twitter data sets. This is followed
by a clustering experiment using the feature vectors extracted from the best
kLog model in Section 6.5. Finally, the clustering experiment is repeated with
a set of graph data for each Twitter user in Section 6.6.

We present preliminary conclusions for each experiment in each results
section.

6.1 Clustering short text documents

6.1.1 Purpose

The document clustering approach, introduced in Chapter 3, is governed by
four procedures:

• selection of user document content;
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• feature vector representation;

• user document similarity calculations; and

• user document clustering.

This experiment evaluates each of the four procedures. In the first case, user
tweet content as topic indicator is evaluated. The next three cases are evaluated
in terms of best representation, similarity measure and clustering algorithm.

6.1.2 Experimental method

The suggested lists and subscribed lists data sets were detailed in Chapter 5.
We calculate the TF-IDF for each user document over the terms in the data
set vocabulary. We also train the LDA topic model on the user document set
for each data set, using the same vocabulary. The LDA topic model takes as
parameter the number of topics to train. We train each data set using 5, 15
and 30 topics.

At this stage, the subscribed lists and suggested lists data sets are each
represented in four different ways: the TF-IDF representation, LDA trained
on 5 topics, LDA trained on 15 topics, and LDA trained on 30 topics. In
our results we refer to these representations as TF-IDF, LDA5, LDA15, and
LDA30 respectively. The five similarity measures are then used to calculate
the similarities between user documents on the four representations. These
similarities are used as input to the k-means and AP clustering algorithms,
with varying numbers of clusters, namely 5, 10, 15, 20, 25 and 30. We repeat
the experiment for each combination of representation, similarity measure and
cluster size for k-means and AP.

To find the specified number of clusters for AP, an extra step is needed.
For each combination of representation, similarity measure and number of
clusters, the self-preference value p needs to be found that obtains the specified
number of clusters. This p is found by searching over a continuous range using
a bisection method (Frey and Dueck, 2007).

Section 3.4.2 presented the damping factor as well as termination conditions
for the AP algorithm. We set the damping factor to λ = 0.9 throughout all
our experiments. Furthermore, we set the maximum number of iterations to
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1000 and set the termination condition for no update to the local result at 30

iterations. For k-means, we set the maximum number of iterations to 300.

6.1.3 Results

We include four tables, Tables 6.1 – 6.4, two of which can be viewed as
“expected best result” tables with the other two containing the best results
actually obtained. These tables present the ANID (see Section 5.2) for each
combination of representation, clustering algorithm and similarity measure.
For each row, in other words combination of representation and clustering
algorithm, the best performing similarity measure is shown in bold. The table
cell containing the table’s best result is highlighted in orange and the overall
best result for each data set is highlighted in blue.

The “expected best result” table for a data set corresponds to the situ-
ation where the number of clusters is set closest to the actual number of
lists/categories in the data set.

Adjusted Normalised Information Distance
Representation Euclidean Cosine Pearson Jaccard KL

k-means for 25 clusters
LDA5 0.6873 0.6808 0.6879 0.6868 0.7241
LDA15 0.6942 0.6392 0.7647 0.6146 0.7136
LDA30 0.7322 0.6295 0.7430 0.5967 0.6858
TF-IDF 0.9687 0.6424 0.7653 0.6543 0.9131

Affinity Propagation for 25 clusters
LDA5 0.6821 0.6729 0.8044 0.6738 0.8973
LDA15 0.5776 0.5652 0.9500 0.5695 0.9707
LDA30 0.5148 0.5046 0.9617 0.5062 0.9923
TF-IDF 0.8858 0.5168 0.8455 0.5372 0.9692

Table 6.1: Suggested lists: ANID results for 25 clusters.

The suggested lists data set contains 26 lists and thus we include the results
for 25 clusters in “expected best result” Table 6.1. The best clustering result on
this data set was obtained for 30 clusters, the results of which are in Table 6.2.
The subscribed lists data set contains 14 lists; we include the “expected best
result” for 15 clusters in Table 6.3 as well as the best results actually obtained
(using 10 clusters) in Table 6.4.
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Adjusted Normalised Information Distance
Representation Euclidean Cosine Pearson Jaccard KL

k-means for 30 clusters
LDA5 0.6985 0.6828 0.6993 0.6887 0.7199
LDA15 0.6833 0.6420 0.7402 0.6141 0.7059
LDA30 0.7556 0.6453 0.7516 0.6482 0.6969
TF-IDF 0.9700 0.6254 0.7694 0.6393 0.9216

Affinity Propagation for 30 clusters
LDA5 0.6914 0.6788 0.8238 0.6872 0.8958
LDA15 0.5783 0.5762 0.9533 0.5807 0.9706
LDA30 0.5282 0.5080 0.9738 0.5203 0.9912
TF-IDF 0.8697 0.4999 0.8375 0.5182 0.9701

Table 6.2: Suggested lists: ANID results for 30 clusters.

For the suggested lists data set, the best result obtained was with AP using
cosine similarity with the TF-IDF representation for 30 clusters. The second
best result was obtained with AP using cosine similarity with LDA30 for 30
clusters.

The results for the subscribed lists data set show that a combination of
cosine similarity, LDA15 and 10 clusters with AP achieves the best result. The
second best result is a combination of extended Jaccard coefficient, LDA30 and
15 clusters with AP.

Adjusted Normalised Information Distance
Representation Euclidean Cosine Pearson Jaccard KL

k-means for 15 clusters
LDA5 0.6880 0.6776 0.7165 0.6755 0.7148
LDA15 0.7151 0.7003 0.7566 0.6933 0.7357
LDA30 0.7496 0.7269 0.7547 0.7151 0.7530
TF-IDF 0.9097 0.7149 0.7900 0.7321 0.9620

Affinity Propagation for 15 clusters
LDA5 0.6879 0.6688 0.8321 0.6803 0.8840
LDA15 0.6558 0.6555 0.9427 0.6588 0.9618
LDA30 0.6543 0.6426 0.9418 0.6409 0.9878
TF-IDF 0.8724 0.6872 0.9331 0.6711 0.9767

Table 6.3: Subscribed lists: ANID results for 15 clusters.

For both data sets, the cosine similarity tends to perform the best. Fig-
ures 6.1 and 6.2 plot the ANID obtained by the cosine similarity against
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Adjusted Normalised Information Distance
Data set Euclidean Cosine Pearson Jaccard KL

k-means for 10 clusters
LDA5 0.6667 0.6338 0.7189 0.6431 0.7206
LDA15 0.7227 0.6763 0.7657 0.7015 0.7468
LDA30 0.7756 0.7130 0.7436 0.7104 0.7498
TF-IDF 0.9633 0.7371 0.8215 0.7396 0.9710

Affinity Propagation for 10 clusters
LDA5 0.6560 0.6420 0.8809 0.6417 0.8786
LDA15 0.6988 0.6117 0.9420 0.6538 0.9279
LDA30 0.7028 0.7217 0.9586 0.7308 0.9269
TF-IDF 0.9941 0.7918 0.9492 0.8070 0.9736

Table 6.4: Subscribed lists: ANID results for 10 clusters.

the number of clusters for each combination of representation and clustering
algorithm.
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LDA5 + AP LDA5 + k-means
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LDA30 + AP LDA30 + k-means
TF-IDF + AP TF-IDF + k-means

Figure 6.1: Suggested lists data set: ANID obtained using the cosine similarity
plotted against the number of clusters for each combination of representation and
clustering algorithm.

Figures 6.1 and 6.2 show that the results tend to be similar around the
cluster sizes further away from the best result. The difference in performance



CHAPTER 6. EXPERIMENTS 62

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

k Clusters

A
N
ID

LDA5 + AP LDA5 + k-means
LDA15 + AP LDA15 + k-means
LDA30 + AP LDA30 + k-means
TF-IDF + AP TF-IDF + k-means

Figure 6.2: Subscribed lists data set: ANID obtained using the cosine similarity
plotted against the number of clusters for each combination of representation and
clustering algorithm.

closer to the best result for a data set is greater than for the other number of
clusters. Figure 6.1 illustrates this tendency with a definite gap visible between
the results obtained with k-means and AP closer to the best result. However,
in Figure 6.2, this gap between k-means and AP do not exist. The results
in Figure 6.2 suggests that in this case the largest contributing factor is the
chosen representation technique.

The results indicate that our clustering approach is sensitive to the repre-
sentation if the number of clusters are close to the best result in each data set.
Next, we interpret our results in terms of the similarity measures, representation
and clustering algorithms used.

6.1.3.1 Similarity measures

The cosine similarity and extended Jaccard coefficient tend to perform better
than the other similarity measures with cosine similarity usually only slightly
outperforming the extended Jaccard coefficient. The ANIDs achieved for the
cosine similarity and extended Jaccard coefficient generally differ by less than
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0.05, with a maximum difference of 0.09.
The results of the Euclidean distance in combination with TF-IDF is poor,

while combined with LDA the performance is much improved. The poor
performance of the Euclidean distance can be attributed to the relatively small
number of overlapping features between two document TF-IDF vectors. The
LDA feature vectors have the same topics in common, and do not suffer from
the overlapping features problem.

An interesting result is the poor performance of the Pearson correlation
coefficient and Kullback-Leibler divergence for the AP clustering algorithm
even though their result for k-means is not much worse when compared to the
other measures.

If a similarity measure were able to clearly distinguish clusters in a group
of points, we would expect a histogram of pairwise similarity values for these
points to be multimodal. However, we see that the pairwise similarity values
of the Pearson correlation coefficient and Kullback-Leibler divergence on our
data sets are concentrated in a small range.

6.1.3.2 Representation

By comparing the document representation techniques, LDA tends to outper-
form TF-IDF if the number of topics is at least as great as the actual number
of lists in the data set. Note that the TF-IDF performs exceptionally well
for the suggested list data set, where only the performance of the LDA30 is
comparable. This is in contrast with the results for the subscribed lists data
set, where the TF-IDF is outperformed by most of the different topic sizes
for k-means and AP. The surprisingly good performance of TF-IDF on the
suggested list data set supports our hypothesis (Section 5.1.2) that the Twitter
categories are created with a representation similar to the TF-IDF.

6.1.3.3 Clustering algorithms

AP consistently achieves better results than k-means for the Euclidean distance,
cosine similarity and extended Jaccard coefficient. For the Pearson correlation
coefficient and Kullback-Leibler divergence, k-means tend to perform better
than AP. This evidence suggest that k-means performs better than AP when
the underlying clusters in the data are not well-defined by a similarity measure.
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6.1.3.4 Summary

We can conclude that AP in combination with the LDA topic model, using
either the cosine similarity or extended Jaccard coefficient achieves the best
result. Furthermore, using tweet content as a topic indicator and if care is
taken in selecting the number of clusters, one can find sensible clusters that
show significant improvement over random assignment.

6.2 Classification of short text documents

using libSVM

6.2.1 Purpose

The purpose of this experiment is to set a baseline to be used for comparison
with the kLog classification results. We select the well-known SVM library,
libSVM (Chang and Lin, 2011), to perform classification on the two Twitter
data sets. We apply the classification task to the TF-IDF, LDA5, LDA15 and
LDA30 data representations.

6.2.2 Experimental method

This experiment uses the representations of the suggested and subscribed lists
data sets to train a classifier. It is necessary to format the representation in
such a way that libSVM can be used to train a model. The data is written to
a text file where each line is a document and contains the document class and
features. We represent a single document for use with libSVM as a single line
of the form

<label> <index>:<value> <index>:<value> ... <index>:<value>

The class of a document is indicated with <label>, <index> is the feature
label and <value> is the corresponding value of the feature. These features are
the TF-IDF, LDA5, LDA15 and LDA30 representations, which we discussed in
the previous section.

Next we apply scaling to our data, which transforms the values to the [0, 1]

range. Scaling is performed with the svm-scale executable on each file setting
the lower bound to 0 and the upper bound to 1. Using the subset.py script
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provided by libSVM, we partition our data into a training and a holdout set.
The holdout set is found by performing stratified sampling (Witten and Frank,
2005) on the whole set.

Using the training set of each data set representation we perform a grid
search to find the best parameters for each set. We use the grid.py script, which
performs this search for C-SVM (Chang and Lin, 2011) using the radial basis
function (RBF) kernel (Witten and Frank, 2005). The script performs cross-
validation on each parameter combination to evaluate the accuracy achieved
with those parameters.

The goal of the grid search for the RBF kernel is to find the SVM hyperpa-
rameters C and γ that provide optimal classification performance for C-SVM.
The grid.py takes the C and γ range values as input on a log scale. We let
the C parameter range from [2, 1024] by setting the start to 2, end to 10 and
the step size to 1. The γ value ranges from [0.0625, 1] by setting the start to
−4, end to 0 and step size to 1.

We repeat the grid search for each of the data set representations and
store the resulting parameters. Using these parameters with the svm-train

executable we train a model for each data set representation. This model is
evaluated using the svm-predict executable, which reads in the model and
predicts the class of each document in the holdout set.

6.2.3 Results

Table 6.5 compares the performance of each data set representation in terms of
the weighted precision, recall and F1-measure. We highlight the best F1 score
for each data set in bold.

The results show that LDA30 provides the best performance for both data
sets. An interesting result is the poor performance of LDA5 on the suggested
lists data set. The evidence suggests that when the number of trained topics
are substantially less than the number of class labels, performance will be poor.
The performance decrease for LDA5 for the subscribed lists data set is smaller
than for the suggested lists data set. This indicates that the difference between
the number of trained topics and the number of class labels affects the extent
of the performance decrease.

Table 6.6 compares our previous clustering result to the libSVM classification
result using the entropy and purity measures.
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Precision Recall F1
Suggested lists

LDA5 0.2723 0.3288 0.2834
LDA15 0.6766 0.6788 0.6603
LDA30 0.6669 0.6981 0.6766
TF-IDF 0.7261 0.6481 0.6537

Subscribed lists
LDA5 0.6122 0.6558 0.6144
LDA15 0.7043 0.7333 0.7146
LDA30 0.7970 0.7988 0.7968
TF-IDF 0.7055 0.7152 0.6900

Table 6.5: The precision, recall and F1 values achieved for the suggested and
subscribed lists data sets with libSVM.

Entropy Purity
Suggested lists

Clustering 0.4406 0.5947
LibSVM 0.2614 0.7288

Subscribed lists
Clustering 0.4652 0.6162
LibSVM 0.2684 0.8012

Table 6.6: A comparison of our clustering result to the libSVM classification result
using the entropy and purity measures.

For both data sets, the classification result outperforms the clustering result.
This result is not unexpected, because it has been shown that SVM classifiers
perform well in the document domain (Chang and Lin, 2011). On our data
sets, we see that the SVM classifier is better at distinguishing between the
categories/lists than the clustering approach.

6.3 kLog: Separate models for content and

graph classification

6.3.1 Purpose

In this experiment, we use the kLog system to construct topic-based Twitter
lists using a classification approach. In Chapter 4, we introduced the different
kLog models that are used to represent Twitter users as documents. These
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models are constructed from different Twitter user content, namely

• words,

• topics, and

• social graph information.

In this experiment, variants of these models are each separately evaluated
and compared to the libSVM results. A notable difference to the previous
representations is the ability to include information from a Twitter user’s social
graph structure in some of these kLog models.

6.3.2 Experimental method

Table 6.7 summarises the models that we evaluate in this section. We evaluate
the performance of each model in the kLog system for the task of constructing
topic-based Twitter lists. As with our earlier investigations, we perform these ex-

Words Topics Social graph
one-word lda-topic simple-friendship

multiple-word threshold-topic complex-friendship
tfidf-word simple-membership

complex-membership

Table 6.7: A summary of the models, which we use in the kLog system to evaluate
the task of constructing topic-based Twitter lists.

periments using the suggested lists and subscribed lists data sets. Furthermore,
the two kLog topic models are evaluated with 30 topics.

The document entities are the kernel points, and features are generated by
the NSPDK. A classifier is trained on these features using the libSVM linear
kernel. For those models whose graphicalisation is a star, we set the maximum
distance d = 0 and the maximum radius r = 1. For the complex models these
parameters are set to d = 2 and r = 3.

We found the parameters for the complex models by evaluating the distance
and radius over a range of values. These ranges were {0, 1, 2, 3} for the distance
and {1, 2, 3, 4, 5} for the radius. The results showed that for r > 3 and d > 2

the performance of these models do not improve.
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For the libSVM linear kernel, we set the cost parameter C = 1000. This C
was found by evaluating the classification performance over a range of values.

6.3.3 Results

6.3.3.1 Words

Table 6.8 summarises the result for the word models for the suggested lists data
set. The best result was achieved for the multiple-word model, highlighted in
blue.

Precision Recall F1
one-word

multiclass avg 0.712 0.607 0.631
weighted avg 0.693 0.674 0.659

multiple-word
multiclass avg 0.725 0.655 0.673
weighted avg 0.713 0.699 0.693

tfidf-word
multiclass avg 0.732 0.635 0.659
weighted avg 0.714 0.691 0.681

Table 6.8: Performance summary of the word models for the suggested lists data
set.

Furthermore, for the tfidf-word model, the addition of the TF-IDF values
to the multiple-word model do not improve the result. The performance of the
TF-IDF may be explained by examining Equation 4.2.14. The equation shows
that a product of the TF-IDF values are calculated and added to a discrete
match count. The TF-IDF values are generally small, and as such a match
has a much smaller contribution to the kernel value than a discrete match.
Therefore, the result is still mostly influenced by the discrete match count.

We have previously shown that the TF-IDF performs fairly well in the
classification task with libSVM. Therefore, the evidence suggests that kLog
struggles to capture the contributions of real-valued components when features
are created from a graphicalisation.

Table 6.9 summarises the result for word models for the subscribed lists
data set. Again, the multiple-word (highlighted in blue) model performs the
best.
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Precision Recall F1
one-word

multiclass avg 0.593 0.476 0.510
weighted avg 0.742 0.764 0.741

multiple-word
multiclass avg 0.727 0.617 0.657
weighted avg 0.790 0.793 0.788

tfidf-word
multiclass avg 0.724 0.558 0.595
weighted avg 0.772 0.781 0.768

Table 6.9: Performance summary of the word models for the subscribed lists data
set.

An interesting discrepancy between the subscribed lists and suggested lists
data set is the difference in the multiclass and weighted average: the suggested
lists results for the F1-measure indicate a difference of at most 3% between
the multiclass and weighted average, compared to the subscribed lists that has
a difference of more than 20%. In the subscribed lists data set, the 4 largest
classes achieve high precision and recall scores. However, the precision and
recall for a number of the small classes are low. As a result, when weighing the
precision, recall and F1 scores equally the average scores are much lower. The
difference in class sizes in the suggested lists data set is smaller than that of
the subscribed lists data set. Therefore, the impact of the poorly performing
smaller classes is not as large as for the subscribed lists data set.

We observe the previous result because libSVM attempts to achieve the
best average prediction across all classes. In both data sets, this leads to a bias
towards the larger classes (Batuwita and Palade, 2012).

Finally, when comparing these results to those achieved by libSVM in the
previous section, the results show similar performance. In particular, the best
libSVM result is comparable to the best kLog result. We can thus conclude
that the multiple-word model is an adequate representation, since it achieves
similar performance to the best libSVM result.

We expand on the best-performing results for each data set by including
the precision, recall and F1-measure for each class as shown in Tables 6.10 and
6.11. The worst-performing categories are highlighted in grey. In Table 6.10,
these categories are entertainment, staff_picks and funny. In Table 6.11,
these categories are social_media and marketing. In the next iterations of
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the kLog models, we will analyse the results to see if there are noticeable
improvements for these categories.

Precision Recall F1
art_design 0.830 0.638 0.721
books 0.706 0.800 0.750
business 0.512 0.447 0.477
charity 0.648 0.821 0.724
entertainment 0.111 0.036 0.055
faith_and_religion 0.859 0.775 0.815
family 0.875 0.538 0.667
fashion 0.898 0.786 0.838
food_drink 0.825 0.800 0.812
funny 0.400 0.051 0.091
government 0.818 0.391 0.529
health 0.956 0.915 0.935
music 0.688 0.835 0.754
mlb 0.912 0.768 0.834
news 0.518 0.604 0.558
nba 0.766 0.852 0.807
nhl 0.852 0.754 0.800
pga 0.916 0.923 0.920
science 0.923 0.735 0.818
sports 0.697 0.426 0.529
staff_picks 0.224 0.322 0.264
technology 0.591 0.531 0.559
television 0.526 0.837 0.646
travel 0.955 0.913 0.933
twitter 1.000 0.878 0.935
us_election_2012 0.838 0.646 0.729
multiclass avg 0.725 0.655 0.673
weighted avg 0.713 0.699 0.693

Table 6.10: Per-class results for the suggested lists data set using the multiple-word
model.

To summarise the results of our kLog word models, we saw comparable
performance to that of our originally proposed user document representation
techniques, namely TF-IDF and LDA.
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Precision Recall F1
all_winter_olympics 0.948 0.830 0.885
design 0.922 0.747 0.826
food 0.833 0.357 0.500
health 0.700 0.438 0.538
marketing 0.000 0.000 0.000
most_influential_in_tech 0.538 0.476 0.505
movies 0.857 0.735 0.791
non_profits 0.727 0.649 0.686
programmers 0.593 0.679 0.633
quotes 0.957 0.865 0.909
social_media 0.519 0.226 0.315
team 0.823 0.917 0.868
tech_news_brands 0.817 0.851 0.834
travel 0.945 0.876 0.909
multiclass avg 0.727 0.617 0.657
weighted avg 0.790 0.793 0.788

Table 6.11: Per-class results for the subscribed lists data set using the multiple-word
model.

Precision Recall F1
Suggested lists
threshold-topic

multiclass avg 0.312 0.311 0.308
weighted avg 0.345 0.366 0.351

lda-topic
multiclass avg 0.004 0.038 0.007
weighted avg 0.011 0.106 0.020

Subscribed lists
threshold-topic

multiclass avg 0.438 0.389 0.404
weighted avg 0.623 0.647 0.630

lda-topic
multiclass avg 0.021 0.071 0.032
weighted avg 0.083 0.289 0.129

Table 6.12: The performance of the threshold-topic model and lda-topic model on
both data sets.
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6.3.3.2 Topics

Table 6.12 summarises the results achieved for the threshold-topic model and
lda-topic model. Overall the results are poor, and in comparison to the multiple-
word model there is a large performance decrease. By comparing the two models,
we see that the threshold-topic model outperforms the lda-topic model.

In the results of the tfidf-word model, we concluded that the graph structure
is important to the performance of a kLog model. In the lda-topic model, each
graphicalisation of an interpretation consist of an entity node and 30 nodes that
correspond to 30 topics. By disregarding the topic values, these graphicalisations
are identical in structure. Therefore, only the topic values are a discriminating
factor between two graphicalisations. We have previously observed that kLog
struggles to effectively use these real-valued components, which contributes to
the poor performance of the lda-topic model.

The results achieved for the threshold-topic model are encouraging, but
limited by the number of topics larger than a threshold to provide discriminating
information for each user document.

The evidence suggests that what LDA captures cannot be used or that
kLog uses word information that is not captured by LDA. As a result the
available structure in a graphicalisation is less than that of the word models,
which can lead to a performance decrease. Therefore, the extra step of training
a topic model on documents is unnecessary because kLog captures adequate
information from the words in a document.

6.3.3.3 Social graph

Tables 6.13 and 6.14 show the results for the four social graph models on the
suggested lists and subscribed lists data sets respectively.

The results in Table 6.13 indicate that the membership models capture
better information to discriminate between user documents than the friendship
models. Comparing the F1 scores of the membership models to the friendship
models, we observe an increase of more than 10% for both the complex and
simple variant. By comparing both membership models to the previous best,
multiple-word model, we see an increase of 10% in the F1 score. Furthermore,
the complex-membership model and simple-membership model achieve similar
results on the suggested lists data set.
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Precision Recall F1
complex-friendship

multiclass avg 0.728 0.689 0.702
weighted avg 0.741 0.734 0.731

simple-friendship
multiclass avg 0.676 0.666 0.666
weighted avg 0.699 0.698 0.694

complex-membership
multiclass avg 0.871 0.823 0.837
weighted avg 0.872 0.863 0.862

simple-membership
multiclass avg 0.934 0.795 0.844
weighted avg 0.901 0.846 0.854

Table 6.13: The results of the four social graph information model variants on the
suggested lists data set.

Table 6.14 shows the results for the subscribed lists data set. Similarly to
the suggested lists data set, the two membership models outperform all the
previous kLog models in this section. Comparing the F1 scores of the two
membership models to the multiple-word model, we see an increase of more
than 10%. Furthermore, comparing the F1 score of the complex-membership
model to the simple-membership model, we observe an increase of 3% in the
multiclass average. Although this increase is small, it may indicate that the
complex-membership model is slightly better than the simple-membership
model in classifying user documents in the smaller classes.

Tables 6.15 and 6.16 show the results of the complex-membership model
for each class in the suggested lists data set and subscribed lists data set. By
comparing these tables to those of the multiple-word model (Tables 6.10 and
6.11), we can identify any improvements. Each table includes the word-F1
column, which contains the previous best multiple-word F1 score for the classes.
Furthermore, the classes that have previously performed poorly are highlighted
in orange and classes that still need improvement are shown in grey.

For the suggested lists data set (Table 6.15) each of the three classes,
entertainment, staff_picks and funny, show an improvement in perfor-
mance. Therefore, we can conclude that the complex-membership model is
useful for distinguishing between classes. For the government class (highlighted
in grey), we observe a small performance decrease. Based on the result, a
combination of the multiple-word model and complex-membership model may
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Precision Recall F1
complex-friendship

multiclass avg 0.785 0.685 0.723
weighted avg 0.846 0.842 0.840

simple-friendship
multiclass avg 0.749 0.696 0.717
weighted avg 0.836 0.830 0.832

complex-membership
multiclass avg 0.896 0.755 0.792
weighted avg 0.937 0.939 0.934

simple-membership
multiclass avg 0.909 0.710 0.762
weighted avg 0.952 0.948 0.943

Table 6.14: The results of the four social graph information model variants on the
subscribed lists data set.

improve its result.
Table 6.16 shows the corresponding results for the subscribed lists data set.

The results show a large increase in the F1 score of the social_media class, and
an 11% increase for the marketing class. Therefore, the complex-membership
model is better than the multiple-word model at distinguishing between user
documents for the classification task. The quotes class (highlighted in grey),
showed a slight performance decrease. Again, a combination of the two models
may improve the result.

In conclusion, using the list memberships social graph information to con-
struct a kLog model provides the best classification performance of the models
we considered, for both the suggested and subscribed lists data set.

6.4 kLog: A combined model for content and

graph classification

6.4.1 Purpose

In the previous section, we created separate kLog models for words, topics and
social graph information. The results showed that the membership models
performed the best, but the evidence suggests that there may be room for
improvement by including the information from the multiple-word model. This
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Precision Recall F1 word-F1
art_design 0.968 0.884 0.924 0.721
books 0.944 0.850 0.895 0.750
business 0.889 0.681 0.771 0.477
charity 0.912 0.929 0.920 0.724
entertainment 0.485 0.582 0.529 0.055
faith_and_religion 0.955 0.887 0.920 0.815
family 0.967 0.744 0.841 0.667
fashion 0.926 0.893 0.909 0.838
food_drink 0.965 0.846 0.902 0.812
funny 0.692 0.462 0.554 0.091
government 0.875 0.304 0.452 0.529
health 0.977 0.915 0.945 0.935
music 0.821 0.932 0.873 0.754
mlb 0.939 0.968 0.953 0.834
news 0.537 0.750 0.626 0.558
nba 0.925 0.982 0.953 0.807
nhl 0.984 1.000 0.992 0.800
pga 1.000 0.992 0.996 0.920
science 0.818 0.918 0.865 0.818
sports 0.881 0.685 0.771 0.529
staff_picks 0.774 0.747 0.760 0.264
technology 0.884 0.776 0.826 0.559
television 0.768 0.929 0.841 0.646
travel 0.978 0.978 0.978 0.933
twitter 1.000 0.878 0.935 0.935
us_election_2012 0.792 0.875 0.832 0.729
multiclass avg 0.871 0.823 0.837 0.673
weighted avg 0.872 0.863 0.862 0.693

Table 6.15: The results for the complex-membership model as calculated for each
individual class on the suggested lists data set.
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Precision Recall F1 word-F1
all_winter_olympics 1.000 0.977 0.989 0.885
design 0.989 0.947 0.968 0.826
food 1.000 0.429 0.600 0.500
health 1.000 0.375 0.545 0.538
marketing 0.500 0.062 0.111 0.000
most_influential_in_tech 0.769 0.825 0.796 0.505
movies 0.911 0.837 0.872 0.791
non_profits 0.941 0.865 0.901 0.686
programmers 0.952 0.994 0.973 0.633
quotes 0.849 0.865 0.857 0.909
social_media 0.784 0.468 0.586 0.315
team 0.987 0.992 0.989 0.868
tech_news_brands 0.895 0.948 0.921 0.834
travel 0.972 0.982 0.977 0.909
multiclass avg 0.896 0.755 0.792 0.657
weighted avg 0.937 0.939 0.934 0.788

Table 6.16: The results for the complex-membership model as calculated for each
individual class on the subscribed lists data set.

experiment evaluates such combined models.

6.4.2 Experimental method

Chapter 4 introduced the complex-membership-word model (Figure 4.12) and
the simple-membership-word model (Figure 4.13). As with our previous kLog
experiments, we use the NSPDK for generating features, and the libSVM linear
kernel to train a classifier on these features. For both models, we set the
libSVM cost parameter C = 1000.

The graphicalisation of the simple-membership-word model consists of only
one document entity. As a result, its graphicalisation is a star. Therefore, for
this model, the only sensible values for the distance and radius are 0 and 1
respectively.

The graphicalisation of the complex-membership-word model consists of
connections between multiple document entities. Therefore, as with our previous
complex models, we set the distance and radius equal to 2 and 3 respectively.
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6.4.3 Results

The results of the complex-membership-word model and simple-membership-
word model are summarised in Table 6.17. This table shows the performance
of each model on the suggested lists data set and subscribed lists data set.

Comparing the F1 scores of the complex model to that of the simple
model, we observe little difference in performance. Furthermore, the complex-
membership-word and simple-membership-word models achieve similar results
to those of the complex-membership and simple-membership models respec-
tively.

Precision Recall F1
Suggested lists

complex-membership-word
multiclass avg 0.871 0.823 0.837
weighted avg 0.872 0.863 0.862

simple-membership-word
multiclass avg 0.931 0.790 0.841
weighted avg 0.899 0.842 0.851

Subscribed lists
complex-membership-word

multiclass avg 0.894 0.752 0.789
weighted avg 0.935 0.938 0.933

simple-membership-word
multiclass avg 0.909 0.716 0.769
weighted avg 0.953 0.949 0.944

Table 6.17: A summary of the scores achieved by the complex-membership-word
and simple-membership-word models on both data sets.

Overall, the combined models do not show any appreciable improvement
over the membership models of Section 6.3. We thus conclude that the words
associated with each document do not contribute additional information, which
kLog can exploit, to improve the performance of the membership models for
the user document classification task.
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6.5 Clustering short text documents using

kLog features

6.5.1 Purpose

In Section 6.1, we discussed our clustering approach on short text documents
to construct topic-based Twitter lists. The results indicated that using tweet
content could provide a good initial configuration of Twitter users in topic-based
clusters. Next, we performed the same task with a classification approach.
kLog was selected as the classification system, due to its ability to incorpo-
rate graph structure in the feature construction process. The results showed
good performance for the classification task with tweet content, but the list
memberships graph information performed the best. This experiment uses the
extracted feature vectors from the complex-membership-word model as feature
vector when performing the clustering task.

6.5.2 Experimental method

As discussed in Chapter 4, kLog provides us with feature vectors that represent
user documents. These feature vectors can be used for our clustering task.
kLog is built for supervised classification tasks and as such the clustering task
uses data incorporating supervised information. Using supervised information
in the feature construction process would effectively invalidate the clustering
task. However, after the graphicalisation of an interpretation, the vertices
that correspond to the prediction task are removed. The features are then
constructed from these so-calledmutilated graphs. For the complex-membership-
model, the vertices in the graphicalisation that corresponds to the category
relation are removed. The resulting features are thus not dependent on the
category of each document. We verified this by generating features with
the category information and comparing it to the features generated when
random categories were assigned to each user document. The results showed
no differences between the two sets of features.

For the clustering task, we use the kLog features from the complex-
membership-word model for the suggested list data set and the subscribed list
data set. We use the NSPDK with d = 2 and r = 3, to construct the feature
vectors from the graphicalisations. Furthermore, we use two clauses from the
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kLog Prolog module to extract and save the features vectors to a text file. We
use the generate_all clause to generate features for each user document, and
save_as_libsvm_file to save these features.

The saved features are then used as input to our clustering approach. We use
the five similarity measures described in Chapter 3, to calculate the similarity
between user documents on the feature vectors. The resulting similarity matrices
are then used as input for the AP and k-means clustering algorithms. We
evaluate the clustering task for 5, 10, 15, 20, 25 and 30 clusters. Similarly to
the clustering approach in Section 6.1, we set the damping factor for AP to
λ = 0.9, the maximum number of iterations to 1000 and no update to the local
result at 30 iterations. For k-means, we set the maximum number of iterations
to 300.

6.5.3 Results

Tables 6.18 and 6.19 presents some results for the suggested lists and subscribed
lists data sets respectively. For the suggested lists data set and subscribed lists
data sets the results are shown for {25, 30} and {10, 15} clusters respectively.
Furthermore, for those similarity measures that do not convergence for a fixed
number of clusters, the table cells are shown in grey. Overall, compared to the
results achieved in Section 6.1, the performance is poor.

Given results from Section 6.1 for comparison, an interesting result is that
for both data sets the average Kullback-Leibler divergence in combination with
k-means achieves the best result. This indicates that the properties of the kLog
feature vectors differ from the LDA and TF-IDF feature vectors. The results
indicate that the similarity measures do not adequately capture the similarity
between documents for our clustering approach. As a result, AP struggles to
partition the data points into a small number of clusters.

We conclude that features generated by kLog is not suitable for our clustering
approach.
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Adjusted Normalised Information Distance
Representation + clusters Euclidean Cosine Pearson Jaccard KL

k-means
kLog + 25 clusters 0.7957 0.7214 0.7801 0.7129 0.6713
kLog + 30 clusters 0.7594 0.6974 0.7563 0.7049 0.6633

Affinity Propagation
kLog + 25 clusters 0.7334 0.7012 0.7011 0.8413
kLog + 30 clusters 0.6857 0.6849 0.6889 0.8408

Table 6.18: A comparison of the ANID results, for the suggested lists kLog data
set, with 25 and 30 clusters.

Adjusted Normalised Information Distance
Representation + clusters Euclidean Cosine Pearson Jaccard KL

k-means
kLog + 10 clusters 0.7958 0.8140 0.7164 0.8141 0.6783
kLog + 15 clusters 0.8139 0.7957 0.7419 0.7843 0.6765

Affinity Propagation
kLog + 10 clusters 0.9536 0.7024
kLog + 15 clusters 0.9490 0.7211 0.9232

Table 6.19: A comparison of the ANID results, for the subscribed lists kLog data
set, with 10 and 15 clusters.

6.6 Clustering short text documents using

social graph information

6.6.1 Purpose

In Section 6.3, the simple-membership model (see Figure 4.11) performed on par
with the complex-membership model (see Figure 4.10). A difference between
these two models is the way in which the social graph information is included in
the graph structure. The complex-membership model effectively incorporates
the social graph information by creating links between user documents that
are members of the same Twitter list (list memberships). In contrast, the
simple-membership model only uses the list membership information to assign
a list name to a user document. We can use the simple-membership model as
basis for a clustering approach.
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6.6.2 Experimental method

We retrieve the first 100 list memberships for each user, in the suggested list
data set and subscribed list data set. These 100 list memberships exclude the
lists in which we are attempting to cluster users. We use the name of each list
to construct a word array of list names that represent each user. The TF-IDF
is calculated for each user on the user’s word array, followed by LDA for 5, 15
and 30 topics.

The similarities between these user list documents are calculated using the
five similarity measures of Chapter 3, yielding five similarity matrices, which
are then used as input to the k-means and AP clustering algorithms. This
experiment is repeated for 5, 10, 15, 20, 25, and 30 clusters.

Furthermore, for AP we set the damping factor to λ = 0.9, the maximum
number of iterations to 1000 and no update to the local result at 30 iterations.
For k-means, we set the maximum number of iterations to 300.

6.6.3 Results

Tables 6.20 and 6.21 show the best-performing results for the suggested lists
and subscribed lists data sets respectively. Furthermore, in Figures 6.3 and 6.4,
for the cosine similarity (the measure achieving the best result in each case),
we show a graph plotting the ANID score for all the cluster sizes.

Adjusted Normalised Information Distance
Representation Euclidean Cosine Pearson Jaccard KL

k-means + 25
LDA5 0.5453 0.5577 0.5685 0.5640 0.5392
LDA15 0.3008 0.2942 0.5559 0.2895 0.5546
LDA30 0.3498 0.2501 0.5653 0.2369 0.5356
TF-IDF 0.7959 0.2466 0.5907 0.3386 0.7303

Affinity Propagation + 25
LDA5 0.5361 0.5601 0.5993 0.5502 0.6332
LDA15 0.2818 0.2918 0.4885 0.2875 0.6701
LDA30 0.2321 0.2297 0.6081 0.2275 0.7457
TF-IDF 0.4273 0.2139 0.9834 0.2482 0.9211

Table 6.20: Suggested lists: ANID results for 25 clusters.
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Figure 6.3: Suggested lists data set: ANID obtained using the cosine similarity
plotted against the number of clusters for each combination of representation and
clustering algorithm.

Table 6.20 shows that the cosine similarity in combination with TF-IDF for
25 clusters, found with AP, performs the best. The plot of the cosine similarity,
in Figure 6.3, indicates that LDA5 + AP and LDA5 + k-means perform the
worst.

An interesting result is the performance of LDA15: for both clustering
algorithms the result improves from 5 to 15 clusters; however, from 20 to 30
clusters the result stays approximately the same. The same phenomenon is
observed for LDA30, reaching a minimum at 25 clusters for both k-means and
AP. These results support our earlier hypothesis that LDA performs better for
a clustering task, if the number of trained topics is equal or larger than the
actual number of classes.

For the subscribed lists data set, Table 6.21, the best result is achieved for
AP with 10 clusters in combination with cosine similarity and LDA30. The
best result in all cases, except TF-IDF + k-means, is achieved at 10 clusters.
Beyond 10 clusters, the ANID tends to decrease. Again, the performance of
LDA5 does not increase by the same magnitude as LDA30 and LDA15 around
10 clusters, which again suggests that LDA must be trained with a number of
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topics larger than or equal to the actual number of classes.

Adjusted Normalised Information Distance
Representation Euclidean Cosine Pearson Jaccard KL

k-means + 10
LDA5 0.4812 0.4501 0.5200 0.4507 0.5225
LDA15 0.4748 0.4138 0.6188 0.4114 0.5737
LDA30 0.4995 0.4394 0.5826 0.4651 0.5383
TF-IDF 0.9492 0.5631 0.6545 0.6086 0.5777

Affinity Propagation + 10
LDA5 0.4750 0.4433 0.6293 0.4450 0.0000
LDA15 0.4208 0.4138 0.7672 0.3924 0.8377
LDA30 0.4568 0.3853 0.7417 0.4469 0.8684
TF-IDF 0.7047 0.5037 0.0000 0.5329 0.9026

Table 6.21: Subscribed lists: ANID results for 10 clusters.
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Figure 6.4: Subscribed lists data set: ANID obtained using the cosine similarity
plotted against the number of clusters for each combination of representation and
clustering algorithm.

On our data sets AP tends to outperform k-means in general, although
in some cases the difference in performance is minor. The cosine similarity
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achieves the best result, for both data sets, but for each representation the
best similarity measures varies. However, this variation is usually small. As a
result, this does not impact the clusters found to a large extent.

6.6.3.1 Performance comparison

In Section 6.1, we evaluated the document clustering approach on a Twitter
user’s tweet content. In this experiment, we performed the same evaluation but
replaced the user’s tweet content with list membership information. Therefore,
each user was represented by the labels of each user’s list memberships. Overall,
the results indicate a large improvement in performance for both data sets.
Table 6.22 compares the results in Section 6.1 to those achieved in this section
in terms of the purity, entropy and ANID (see Chapter 3).

Purity Entropy ANID
Suggested lists

Tweet content 0.5947 0.4406 0.4999
List memberships 0.8064 0.1941 0.2139

Subscribed lists
Tweet content 0.6162 0.4652 0.6117
List memberships 0.7541 0.2654 0.3853

Table 6.22: A comparison of the purity, entropy and ANID for the best results
achieved using tweet content and list memberships, for both data sets.

This table shows an improvement of the ANID for the suggested lists data
set from 0.4999 to 0.2139, an improvement of 28%. Furthermore, the ANID for
the subscribed lists data set shows a 22% improvement from 0.6117 to 0.3853.
By examining the purity and entropy obtained for both data sets, we observe a
similar improvement to that of the ANID.

As a result, there is strong evidence that list memberships are a better
indicator than tweet content to construct topic-based Twitter lists.
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7
Conclusion

This thesis investigated the problem of constructing topic-based Twitter lists.
We introduced a clustering and classification approach to solve this problem,
which we evaluated by applying these approaches to data extracted from
Twitter. We employed two Twitter data sets consisting of Twitter’s suggested
categories and popular Twitter lists. We found that representing a Twitter
user by his/her list membership information achieved the best results for both
the classification and clustering task. This chapter concludes our work by
summarising our results, making recommendations on the best approach to use
if the data qualities are known, and suggesting future research in this area.

7.1 Investigation and results

We investigated automated procedures to simplify the task of constructing
topic-based Twitter lists. To address this task, we proposed clustering and
classification approaches.

The clustering approach provides a solution in the case where a user has not
created lists of people in his network. In contrast, the classification approach is
for the case where a user has created a number of lists with a subset of people
in his network.

The proposed clustering approach consists of four steps: using Twitter
data to represent a user, representation by a feature vector, document sim-
ilarity calculations and the application of clustering algorithms. We chose
to represent each user as a single document, called the user document. Two
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different representations of this user document were used; initially we encoded
the user’s tweet contents and later on the user’s list membership information.
The user document conversion to a feature vector was performed using term
frequency-inverse document frequency (TF-IDF) and latent Dirichlet alloca-
tion (LDA). We evaluated five similarity measures: cosine similarity, Euclidean
distance, extended Jaccard coefficient, average Kullback-Leibler divergence and
Pearson correlation coefficient. The clustering algorithms, k-means and affinity
propagation (AP), were used to find the topic-based clusters.

We found that LDA tends to outperform TF-IDF as long as the number of
trained topics were equal to or larger than the actual number of classes in the
data set. Furthermore, the cosine similarity usually achieved the best results
for our clustering experiments: comparing all the experimental combinations,
the results were dominated by the cosine similarity and extended Jaccard
coefficient. The performance of the average Kullback-Leibler divergence and
Pearson correlation coefficient are particularly poor for this clustering approach.
In terms of the clustering algorithms, AP outperformed k-means in most of
the clustering experiments. Finally, comparing the results for a user document
represented with tweets to the list memberships representation, we observe a
large improvement in the clustering result. We conclude that list membership
information are a better indicator than tweet content to which topic-based list
a user belongs.

The classification approach consisted of experiments using libSVM and
kLog. We used LibSVM, a library for support vector classification, on the
TF-IDF and LDA representations to find a classification baseline to which
kLog could be compared. We selected kLog, a logical and relational language
for kernel-based learning, for the classification task due to its ability to model
social graph connections between users. Therefore, we would be able to extend
the simple content-based approach, as used for clustering, to include links
between users from the graph data.

We evaluated different models with the kLog system. In particular, we con-
sidered modelling users in terms of words, topics and social graph information.
The results showed that the word models performed on par with the libSVM
baseline, showing that a simple kLog model achieves similar results to that of
TF-IDF and LDA in terms of tweet representation. However, we found that
the models of list membership information had the best performance overall.
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The results achieved for both the classification and clustering task indicate
that representing users by their list membership information performs best
when constructing topic-based Twitter lists. In other words it seems that
a Twitter user’s topic-based expertise is better represented by his/her list
membership information than his/her tweet content.

In the course of evaluating methods to construct topic-based Twitter lists,
we achieved a number of results related to our main objective. These secondary
results influenced the evolution of our clustering and classification approaches,
and are therefore important to consider.

We found that with careful consideration of the feature construction process,
it is possible to incorporate social graph data in the clustering process. In
particular, assigning the list membership information to each user in the
representation process effectively provides information about the connections
between users.

The clustering approach has also been applied using the feature vectors
extracted from the various kLog models. We found that these features yielded
poor performance for our clustering approach.

In terms of the kLog classification approach, we showed that the simple
multiple-word model performed on par with the TF-IDF and LDA representa-
tion in libSVM. We also evaluated kLog on two distinct social graph information
sets, the friendships and list memberships data. The list memberships were
found to perform the best, but the results achieved for friendship information
showed an improvement over the multiple-word model.

Furthermore, in terms of the structure of a graphicalisation, the results
showed that for Twitter data there are little to no differences between models
generating star graphs and those generating more complex graphs. The complex
graph refers to those with explicit links defined between user documents.

Finally, based on our earlier kLog results, we created a model combining
the multiple-word model and membership models. The results indicated that
the membership information is the major contributing factor to classification
performance, with the multiple-word model contributing little to no extra
information.
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7.2 Recommendations

In this section, we give two recommendations on the implementation of a
practical system for the automated construction of topic-based Twitter lists.

For the classification approach, the results showed that membership models
performed the best, followed by friendships and finally tweet content models.
Similarly, in the clustering approach we showed that using list membership
information outperformed tweet content. We did not evaluate the friendships
in the clustering approach, but a representation similar to the membership
models may provide good results.

Therefore, we recommend that in any system to extract the topic-based
expertise of a Twitter user, the user representation should be considered in
the following order. Firstly, a user should be represented by his/her list
memberships, failing that by his/her friendships and as a last resort the user’s
tweet content.

As expected, we see that classification performs better than clustering. The
necessary data for classification is not always available, and thus a combination
of clustering and classification should be used. The clustering approach should
be used when there are no list preference data available for a user. In the
case where partial list preference data are available, the classification approach
should be used.

7.3 Limitations

The results show that list memberships outperform tweets and friendships in
both the clustering and classification task. Furthermore, for the classification
task we saw friendships outperform tweets.

In the construction of the suggested lists and subscribed lists data sets,
we chose distinct lists/categories with minimal overlap between users. This
choice led to well-separated communities of Twitter users in each data set.
Therefore, using the list memberships and friendships from these well-separated
communities may have influenced the quality of the results. If we apply these
techniques to a single Twitter user’s social graph, we may find that users
are not well-separated in distinct communities. As such the effectiveness of
list memberships and friendships at finding topic-based Twitter lists may be
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diminished.
The choice of data sets was necessary to effectively evaluate the performance

of the chosen techniques. However, to comprehensively evaluate the impact of
connections between Twitter users, another data set representing the networks
of typical Twitter users would be needed.

7.4 Future work

Based on the above recommendations, a number of areas may be considered
for future work. Users may have different amounts of data available for list
memberships, friendships and tweets. A combination of those three data
attributes must therefore be considered to accurately represent these users. To
accurately represent a Twitter user with a combination of these attributes is
not a trivial task, and could provide significant improvements over the current
approaches.

Furthermore, the clustering task is unsupervised and thus the clusters are
not labelled. Extending the clustering approach to recommend labels for each
cluster can improve the system for an end user.

If we consider future work for the systems and techniques used, we see that
the selection of cluster size and the number of topics have a significant impact
on the performance of the clustering approach. The selection of these is of
paramount importance to the performance of any such system.

In terms of kLog, we discussed the extraction of feature vectors for the
clustering task. We gave a brief discussion on the feature vector construction
procedure and for future work the suitability of kLog for unsupervised learning
can be evaluated. Our clustering approach on kLog feature vectors showed
poor results; however kernel-based and other clustering techniques could still
be considered.

Furthermore, we found that it is difficult to effectively use real-valued
components in our kLog models. For future work, different kernels can be
considered that provides more weight to the real-valued components.

In this thesis, we mainly considered kLog for the classification task. However,
similar performance to kLog may be achieved with a suitable SVM. We leave
the evaluation of SVMs using list memberships and friendships for future work.
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Finally, our results showed little to no difference in the performance of a star
graph compared to a more complex graph. This result may only be consistent
with the characteristics of our data sets and further study is necessary to find
the factors affecting the result.

7.5 Summary

We initiated this research to investigate the automated construction of topic-
based Twitter lists. We identified two scenarios, which led to a clustering
and a classification approach. We evaluated these approaches and found that
with careful consideration of features, accurate results can be achieved when
automatically constructing topic-based Twitter lists.
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