Mitral valve prolapse complicated by acute cerebral embolism, arrhythmias and painless myocardial infarction

A case presentation and overview

J. Z. PRZYBOJEWSKI, J. G. TREDOUX, J. J. VAN DER WALT, F. A. C. TIEDT

Summary

A case of 'primary' mitral valve prolapse is documented. The patient was admitted with right-sided hemiplegia of sudden onset, probably caused by a cerebral embolus from the mitral valve. He also had a painless transmural inferior myocardial infarction (MI) of indeterminate age which was diagnosed electrocardiographically and on left ventricular cine angiography. Since selective coronary arteriography delineated the absence of fixed obstructive atherosclerotic disease, and since coronary vasospasm could not be provoked with the ergonovine (ergometrine) maleate test, it is further postulated that a coronary embolus from the abnormal mitral valve apparatus was responsible for the painless MI. A percutaneous right ventricular endomyocardial biopsy specimen displayed findings not indicative of a 'cardiomyopathy'.

Case presentation

The patient, a 34-year-old Coloured man, was perfectly well until 12 April 1982 when he suddenly collapsed while watching rugby. He did not lose consciousness but had a right-sided paralysis, difficulty with speech and an ensuing headache. There was no previous history of palpitations, presyncope, syncope or chest pain. His only complaint was of occasional frontal headaches. He smoked some 20 cigarettes daily and there was no family history of heart disease or sudden death. He was admitted to Tygerberg Hospital on 12 April. Clinical examination demonstrated marfanoid features in this young man, with a dense right-sided upper motor neuron paralysis accompanied by a right-sided upper motor neuron facial lesion. The cardiovascular system and the rest of the systems were normal. The urine, a full blood count, the erythrocyte sedimentation rate and serum biochemical values were all normal, as were radiographs of chest and skull. The cerebrospinal fluid was normal, with negative cultures and serological tests, as was an electroencephalogram.

On 14 April 1982 a resting ECG revealed a sinus rhythm of 80/min, numerous unifocal ventricular extrasystoles, a P-R interval of 0.16 second, a mean QRS axis of -76°, left anterior hemiblock and nonspecific changes in the inferior leads. A repeat tracing on the following day demonstrated a mean QRS axis of -87° (a superior axis), right atrial hypertrophy, possible right ventricular hypertrophy and a definite old transmural inferior myocardial infarction (MI) (Fig. 1). Because of the abnormal ECG the patient was referred to the Cardiac Clinic for an opinion. The abnormal features then present were a loud left ventricular fourth heart sound and an intermittent non-ejection mid-to-late systolic click, but there was no evidence of a mitral systolic murmur. A diagnosis of mitral valve prolapse (MVP) (Barlow's syndrome) was suggested. Furthermore, it was postulated that the patient had suffered a possible asymptomatic transmural inferior MI of unknown age secondary to a coronary embolus which probably originated from the myxomatous mitral valve apparatus. The acute cerebrovascular episode might have been due to an embolus from the same source. Daily serial serum enzyme values were within normal limits, while resting ECGs were unchanged from Fig. 1. A technetium-99m ('hot spot') scan failed to show evidence of acute MI. Further investigations, including collagen screening and serological testing, were all negative. A fasting lipogram was normal. Isotopic brain scans and flow studies on 15 and 28 April revealed a slightly increased uptake in the left parietal area and decreased flow to the left cerebral hemisphere, indicating a lesion in the middle cerebral artery distribution. Computed tomography of the brain (26 April) demonstrated an area of low density in the high left parietal region in keeping with a cerebral infarction (Fig. 2a). An M-mode echocardiogram failed to establish a diagnosis of MVP. Twenty-four-hour Holter monitoring revealed numerous unifocal ventricular extrasystoles, frequent periods of ventricular bigeminy and salvos, but no evidence of ventricular tachycardia or fibrillation.

Cardiac catheterization and selective coronary angiography on 3 May showed that all the intracardiac pressures and indices of cardiac contractility were normal. A left ventricular cine angiogram in the right anterior oblique projection delineated segmental inferior akinesia secondary to previous MI; the remainder of the ventricle was seen to contract normally (Fig. 3). Prolapse of the posterior leaflet of the mitral valve without accompanying mitral insufficiency was visualized. An aortic cine angiogram in the left anterior oblique projection delineated a normal aortic valve. Selective coronary angiography demonstrated that both the right coronary artery (RCA) (Fig. 4) and the left coronary artery (LCA) (Fig. 5) were normal. An ergonovine (ergometrine) maleate provocation test to exclude the possibility of underlying coronary vasospasm as a cause of the previous MI was carried out. A 12-lead ECG was set up and standard lead II and lead V2 were monitored on the oscilloscope, as was the aortic pressure. Ergonovine maleate was initially given as a bolus of 0.025 mg injected into the main pulmonary artery, and 12-lead ECGs were recorded every minute. Since there was no angina and no ECG...
Fig. 1. Resting 12-lead ECG — mean QRS axis -87°, possible right atrial and right ventricular hypertrophy, old transmural inferior MI (Q waves in leads II, III and aVF).

Fig. 2. a — computed tomogram of the brain; there is an area of low density (arrowed) in keeping with a high left parietal cerebral infarction. b — M-mode echocardiogram demonstrating prolapse of posterior mitral leaflet (arrowed) (RV = right ventricle; AML = anterior mitral leaflet).

features of myocardial ischaemia, a further bolus of 0,025 mg ergonovine was injected 4 minutes after the initial injection. The drug was then administered every 4 minutes at doses of 0,05 mg, 0,05 mg, 0,10 mg and 0,15 mg to a total dose of 0,40 mg. Again the ECG remained unchanged and the patient did not experience any angina. Repeat cine angiograms of the LCA and RCA failed to document any coronary vasospasm. An Olympus FB-2 Biop- tome was employed to take multiple right ventricular endomyocardial biopsy specimens. Cardiac catheterization was then completed without complication.

The right ventricular endomyocardial biopsy material showed slight focal interstitial fibrosis on light microscopy. Endocardium was not visualized. Transmission electron microscopy confirmed the interstitial fibrosis (Fig. 6). The other ultrastructural findings were nonspecific. There was an unequivocal mitochondriosis, but only some mitochondria were unquestionably abnormal with cristolysis, vacuolation and loss of the outer membrane (Fig. 7). No dystrophic or degenerate myocytes could be detected. There was possibly some intracellular oedema which could have led to the formation of subsarcolemmal blebs (Fig. 8). Occasional myocytes contained tiny lipid droplets. A diagnosis of a 'cardiomyopathy' could not be established.

Repeat M-mode echocardiography demonstrated the presence of mid-to-late systolic prolapse of the posterior mitral leaflet (Fig. 2b), but there were no features of a cardiac myxoma. It was therefore decided not to perform two-dimensional echocardiography. Frequent auscultation of the heart elicited an intermittent mid-to-late non-ejection systolic click without accompanying mitral insufficiency. Repeat 24-hour Holter monitoring only documented the occasional unifocal ventricular extrasystole. The patient's right-sided hemiplegia improved very slightly. It was decided to administer long-term treatment with warfarin and dipyridamole in order to prevent future emboli. The patient was discharged on 11 May 1982. He was seen on numerous occasions at the Cardiac Clinic as an outpatient; repeated resting ECGs remained unchanged and several 24-hour Holter monitoring sessions failed to demonstrate any significant supraventricular or ventricular arrhythmias. The patient has remained asymptomatic, apart from his severe neurological deficit.

Discussion

This case illustrates many important clinicopathophysiological points regarding MVP. The association of cerebral embolic phenomena with MVP has only really been fully appreciated recently, highlighting the controversy surrounding the role of prophylactic anticoagulant and antiplatelet drug therapy in this condition. Coronary emboli and cerebral emboli possibly originate from the redundant mitral valve apparatus. The inter-relationship between coronary emboli and painless MI is an interesting one. Cardiomyopathy is believed to be an accom- paniment of MVP, particularly if the patient complains of chest pain. Bizarre ECG patterns have for many years been known to occur as part of the clinical spectrum of MVP, cerebrovascular incidents and cardiomyopathy of various types. Arrhythmias have been well established as a complication of MVP, cerebrovascular incidents and painless MI. An understanding of these important aetiological and pathophysiological aspects helps to give direction to the acute and long-term management of the individual patient.
Fig. 3. Left ventricular cine angiograms in right anterior oblique projection delineating inferior akinesia secondary to MI (arrowed). Prolapse (P) of posterior mitral leaflet is seen (a — left ventricle in end-diastole; b — left ventricle in end-systole).

Fig. 4. Right coronary cine angiograms in the (a) left anterior oblique and (b) right anterior oblique views. The RCA is normal and dominant.

Fig. 5. Left coronary cine angiograms in the (a) left anterior oblique and (b) right anterior oblique views demonstrating normal vessels.
Cerebral embolic complications of MVP

The first suggestion of a transient cerebral ischaemic event associated with MVP was reported by Barlow and Bosman, who described the case of a woman with left-sided hemiparesis whose ECG revealed T-wave inversion in the inferolateral leads and who had documented 'aneurysmal protrusion of the posterior leaflet of the mitral valve' on left ventricular cine angiography. Subsequently Barnett briefly alluded to the occurrence of neurological disturbances in this condition. It was not until 1976 that Barnett et al. confidently proposed that there was a definite causal relationship between MVP and cerebral emboli; they based this on a series of 12 patients with angiographically proven MVP, 10 of whom had signs indicative of carotid artery ischaemia and the remaining 2 signs of vertebrobasilar involvement. Some had intermittent signs of bilateral cerebral hemisphere ischaemia. Nine had transient hemiparesis or major permanent stroke, other features being hemianopia, aphasia, dysarthria and vestibulocochlear signs. Three had proven paroxysmal atrial fibrillation which was possibly related to the cerebral emboli. Barnett et al. supported their proposal of a direct MVP-cerebral embolus link on the basis of the 'fibrinous endocarditis' noted by Pomerance in autopsy cases of MVP and the documentation by Silver of thrombus overlying the roughened endocardial surface of such a valve. Kostuk et al. (one of the co-authors being Barnett) later added more cases. However, Pomerance and Davies were doubtful whether, in the absence of underlying infective endocarditis, the thrombotic lesions noted by Kostuk et al. at the junction of the abnormal mitral leaflet and left atrial wall could give rise to large enough emboli, but accepted that these emboli could be incriminated in transient neurological symptoms and retinal artery obstruction.

Malcolm and co-workers reported on a series of 85 patients, 11 of whom suffered major neurological strokes. Hirsonowitz and Saffer documented 4 patients with MVP complicated by permanently disabling hemiplegia. These patients, aged 16 - 37 years, had no evidence of hypertension, coagulation abnormalities, vasculitis or cerebrovascular atherosclerosis. A further 8 patients were encountered by Hanson et al., some presenting with primarily neurological problems. Nevertheless, Saffro and Talano made the statement that 'it is distinctly unusual for neurological abnormalities to be the initial complaint of a patient with MVP', but suggested that platelet-inhibiting drugs be used because of the 'imminent embolization'. Exceptionally staggering statistics were provided by Barnett and co-workers, who documented 60 patients with definite prior transient ischaemic attacks; MVP was diagnosed in 24 of these. Surprisingly, there was a wide age range, arteriosclerosis making interpretation more difficult in the older age group. Nevertheless, Barnett et al. claimed that 'a growing body of circumstantial evidence links cerebral and retinal ischemic events, particularly in the young, to mitral-valve prolapse'. This opinion was further supported by the report of Caltrider et al. on 6 cases of MVP with varying forms of retinal artery occlusion, including the first case of atypical Eales' disease (retinal neovascularization) secondary to MVP. Other authors, such as Woldoff et al., Kimball and Hedges and Wilson et al., also documented patients with MVP complicated by retinal artery embolization. None of these patients had any evidence of other sources of retinal emboli. Despite this, Baker et al. emphasize that carotid artery atherosclerosis, especially in the older patient, can be a source of retinal artery emboli in the presence of MVP, and therefore recommend routine investigation to exclude these other possible sources.
Recently Walsh et al.,18 in a study involving 29 patients with documented MVP, found that all 9 patients who had had thrombo-embolic events (retinal, cerebral and deep venous) had proven platelet coagulant hyperactivity. Eight others complained of transient visual disturbance, 6 having platelet coagulant hyperactivity. The remaining 12 patients had no visual changes or thrombo-embolism, and only 38% displayed platelet coagulant hyperactivity. Therefore, overall, 76% of the patients with MVP exhibited platelet coagulant hyperactivity as against 6% of controls. Walsh et al.18 postulated that contact of the flowing blood with the abnormal mitral valve surface was directly responsible for the hyperactivity and increased number of circulating platelet aggregates, this leading in turn to the transient visual abnormalities and more severe cerebral thrombo-embolic complications. The further incrimination of platelets was strongly suggested by the work of Steele et al.,19 who reported on diminished platelet survival in these patients.

Painless MI

Tradition has always demanded the presence of the triad of constricting retrosternal pain, acute ECG changes and serum enzyme elevation before the making of a confident diagnosis of acute MI. This concept has been somewhat modified over the years, mainly because of more sophisticated diagnostic techniques. Perhaps what is less commonly appreciated by the practising clinician is the reality of completely pain-free acute MI, which must often invoke the consideration of ECG 'pseudomyocardial infarction patterns' in the differential diagnosis — our patient was just such an example. Many clinical symptoms may masquerade as an acute MI.20 Acute dyspnoea or persistent non-productive cough may be in the forefront, or there may be a variety of abdominal symptoms, including dyspepsia, nausea and vomiting. Syncope and other central nervous system manifestations such as hemiparesis, convulsions and varying mental aberrations may present themselves. The presence of simple fatigue, listlessness and lassitude may be all that is necessary to alert the astute clinician to the remote likelihood of an acute MI. These latter symptoms are usually included in the term 'pre-infarction syndrome'.

The incidence of completely painless MI has been variously estimated at between 0% and 60%,21 but most of these series were based on autopsy findings and retrospective analyses of ECG features in patients admitted for non-cardiac complaints. Perhaps one of the most significant reports was that of Margolis et al.,22 relating to an 18-year follow-up (the Framingham Study), in which the incidence of unrecognized MI among 5,127 men and women was established as being 23% on the basis of ECG criteria, with 53% being totally silent. A further important feature, substantiated by several other groups, was the fact that a history of complete fatigue, listlessness and lassitude may be all that is necessary to alert the astute clinician to the remote likelihood of an acute MI. These latter symptoms are usually included in the term 'pre-infarction syndrome'.

The incidence of completely painless MI has been variously estimated at between 0% and 60%,21 but most of these series were based on autopsy findings and retrospective analyses of ECG features in patients admitted for non-cardiac complaints. Perhaps one of the most significant reports was that of Margolis et al.,22 relating to an 18-year follow-up (the Framingham Study), in which the incidence of unrecognized MI among 5,127 men and women was established as being 23% on the basis of ECG criteria, with 53% being totally silent. A further important feature, substantiated by several other groups, was the fact that a history of complete fatigue, listlessness and lassitude may be all that is necessary to alert the astute clinician to the remote likelihood of an acute MI. These latter symptoms are usually included in the term 'pre-infarction syndrome'.

The concept of 'primary' and 'secondary' MVP has also been well documented in MVP.1,18 Most recently, Waller et al.,31 postulated that multiple intramural coronary artery obstruction within the inner half of the myocardium, as might occur with platelet-fibrin emboli arising from a myxomatous mitral valve apparatus, is unlikely to give rise to myocardial necrosis on account of the extensive intramyocardial blood supply. However, if these same emboli involve the outer half of the myocardial wall, one of the epicardial feeding coronary artery branches that arise at a 'right angle' may be thrombosed secondarily due to poor distal run-off. If this occurs then a major coronary artery branch may become occluded with subsequent MI.

The possible role of coronary artery spasm in our patient cannot be completely discounted. Cheshel et al.32 reported 4 cases of billowing mitral leaflet syndrome with acute MI and angiographically normal coronary arteries. They postulated that coronary vasospasm was responsible for the infarction since the initial ECGs revealed marked ST-segment elevation. However, they did not carry out the ergonovine (ergometrine) maleate provocation test. The fact that this was negative in our patient makes coronary artery spasm less likely. It has previously been suggested that some reflex is initiated by the billowing posterior leaflet which provokes coronary vasospasm, this resulting in angina, acute MI, arrhythmias and sudden death. MI in association with the billowing mitral leaflet syndrome has also been reported by others,33,34 but again coronary artery spasm could not be incriminated with certainty.

The concept of 'primary' and 'secondary' MVP has also tended to cause confusion. Barlow et al.35 defined these diff-
ferences quite clearly, stating that the secondary form is usually due to associated coronary artery disease involving the posterior papillary muscle and thus causing dysfunction. Cheng\(^{36}\) has suggested that left ventricular cine angiography delineates a 'beak' appearance in primary MVP and a 'nipple' configuration in the secondary type. Although the patient under discussion had had a painless infarction at an unknown time and was therefore a candidate for papillary muscle dysfunction or actual infarction, the left ventricular cine angiographic appearance is quite typical of a primary MVP.

ECG in MVP and cerebrovascular accidents

Since MVP is a common cause of chest pain, albeit atypical, it is important to be aware of the associated ECG peculiarities. Our patient had no chest pain but a frankly abnormal ECG from the start. The most common abnormality is T-wave flattening or frank inversion in leads II, III and aVF,\(^{37}\) changes occasionally seen in the lateral precordial leads when they may be confused with acute non-transmural MI. However, prominent Q waves in the inferior leads with significant left axis deviation, as in our patient, are not generally documented. A confident diagnosis of transmural inferior MI could therefore be made before catheterization. False-positive stress ECGs occur in MVP, but recently normalization of the test result has been achieved by \(β\)-blocker administration, and this feature might be of some use in the differential diagnosis. A far less common ECG finding in MVP has been Q-T-interval prolongation, which may play an important role in sudden death in these patients.\(^{38}\)

ECG changes in cerebrovascular disorders were first documented in 1954 by Burch \et al.,\(^{40}\) who noted Q-T-interval prolongation and deeply inverted and wide T waves in the standard and chest leads. Prominent U waves are also commonly encountered,\(^{41}\) as are ST-segment elevation and depression which may be misinterpreted as myocardial ischaemia. These findings, comparable with those described in profound electrolyte disturbance, are seen in some 90% of patients during the first 3 days of observation. Yamour \et al.\(^{42}\) reported on the high frequency of these 'neurogenic T waves' in patients with anterior cerebral (frontal lobe) and brainstem lesions, stressing the importance of not misdiagnosing a 'primary myocardial event' such as an acute MI. Yamour \et al.\(^{42}\) noted that 10% of their patients presenting with temporoparietal haemorrhage had Q waves in leads II, III and aVF which were greater than 30 msec in width; these could have been mistaken for previous transmural MIs.

Hence the patient's ECG could have been caused by either the MVP or the cerebral embolus. Since the patient had no history of chest pain or any symptoms accepted as a 'MI equivalent', the true diagnosis would almost certainly have been missed without left ventricular cine angiography. This stresses the point that an ECG diagnosis of 'pseudo-MI' should not be made without complete investigation.

Arrhythmias in MVP and cerebrovascular accidents

Unifocal ventricular extrasystoles andventricular bigeminy were documented by Holter monitoring during the initial few days after our patient's admission, but they had disappeared by the time of discharge. No atrial arrhythmias could be demonstrated. The question therefore arises as to whether these arrhythmias were due to the acute cerebral embolism or part of the MVP, in which event they could have been partly responsible for initiating the cerebral embolus.

Swarz et al.\(^{43}\) reviewed the literature on arrhythmias in 589 cases of MVP; atrial extrasystoles and/or ventricular extrasystoles had occurred in 55%, pure ventricular extrasystoles in 45%, ventricular tachycardia in 6.3%, and supraventricular tachycardia in 6.1%. There have been many theories of the pathogenesis of these arrhythmias in MVP. 'Diastolic dumping' has been offered as a cause of the ventricular arrhythmias,\(^{44}\) whereas Wit \et al.\(^{45}\) suggested that stretching of the abnormal mitral valve leaflets stimulated spontaneous pacemaker activity in the valve tissue which propagated to the left atrium and thus caused the atrial arrhythmias (the most common being recurrent supraventricular tachycardia).\(^{46}\) Others, such as Gulotta \et al.\(^{47}\) and Scampordonis \et al.\(^{48}\) have claimed that a primary myocardial disorder ('cardiomyopathy') is responsible for the various ventricular contraction abnormalities which in turn initiate the arrhythmias.

Various arrhythmias may complicate the acute phase of a cerebrovascular accident, whether this be due to a cerebral embolus, cerebral infarction or subarachnoid haemorrhage,\(^{42}\) but the precise pathogenesis is not clear. The fact that the arrhythmias virtually disappeared a few days after the initial admission, as well as the fact that repeated Holter monitoring several months later failed to show anything apart from the occasional unifocal ventricular extrasystole, suggests that the cerebral embolus was responsible in our patient. Nevertheless, MVP cannot be excluded entirely in pathogenesis. Several publications have stressed that irrespective of the underlying cardiac disease, arrhythmias give rise to transient ischaemic attacks which are usually of a diffuse nature.\(^{49}\) Walter \et al.\(^{50}\) and Roed \et al.\(^{51}\) and McAllister and Marshall\(^{52}\) documented patients with generalized central nervous system ischaemia as represented by presyncope, syncope and generalized convulsions, but only rarely features of focal neurological ischaemia. Haemodynamic alterations secondary to intermittent cardiac arrhythmias usually lower cardiac output, although Kendall and Marshall\(^{53}\) strongly disputed the controversial role of hypotension in focal transient cerebral ischaemia. Our patient had no symptoms of transient ischaemic attacks before his acute severe hemiplegia, this suggesting that arrhythmia per se was not of significance in the pathogenesis of his stroke.

The 'cardiomyopathy' of MVP

Is there a true identifiable 'cardiomyopathy' in MVP which could explain all the abnormalities encountered clinically? Hancock and Cohn\(^{54}\) first suggested that a cardiomyopathy was responsible for MVP, and they were then soon succeeded by Engle,\(^{55}\) who described segmental left ventricular contraction abnormalities. Liedtke \et al.\(^{56}\) Groch \et al.\(^{57}\) and Grossman \et al.\(^{58}\) contributed further data in support of a primary myocardial disorder. Scampordonis \et al.\(^{59}\) documented the classic angiocardiographic pattern of the 'ballerina foot' or 'hour-glass' left ventricular deformities caused by excessive posteromedial or midventricular contraction in 86% of their cases, and Gulotta \et al.\(^{60}\) found similar changes on left ventricular cineangiography in 77% of their cases of MVP.

It was not until 1978 that subtle but distinctive histological suggestions of a cardiomyopathy were documented by Mason \et al.\(^{61}\) These researchers obtained endomyocardial biopsy material from the apical part of the right ventricular septum at cardiac catheterization, and studied 14 patients whose diagnosis of MVP had been established by auscultation, echocardiography or angiocardiography. Light microscopy revealed increased fibrosis in the endocardium as well as in the interstitium in 8 patients (57%), and focal myocyte hypertrophy in 5 patients (36%). Eleven of the patients underwent electron microscopy of the biopsy tissue and in all features of mitochondrial degeneration were seen. In 4 (36%) of these patients undoubted degeneration of myocytes was seen, while intracellular oedema and clumping of the nuclear chromatin was more noticeable. The authors postu-
lated that the 'mitochondrial dystrophy' was probably the ultrastructural precursor of endocardial and interstitial fibrosis, and accepted that these cardiomyopathic changes could account for the chest pain, arrhythmia and mild congestive cardiac failure. Since tricuspid valve prolapse can accompany MVP and give rise to tricuspid regurgitation, the authors concede that this haemodynamic state could have caused the histological features, although there were no signs of tricuspid regurgitation.

Compared with the biopsy findings reported by Mason et al., features of our biopsy specimens were slight and nonspecific and precluded us from being emphatic about an associated 'cardiomyopathy'.

Therapeutic implications

The complications which our patient has sustained as a result of his 'primary' MVP (billowing mitral leaflet syndrome or Barlow's syndrome) have been quite devastating. This is particularly true as regards the dense hemiplegia - this has necessitated premature retirement from a lucrative profession.

Barlow's syndrome) have been quite devastating. This is particularly true as regards the dense hemiplegia - this has necessitated premature retirement from a lucrative profession.

Barlow's syndrome) have been quite devastating. This is particularly true as regards the dense hemiplegia - this has necessitated premature retirement from a lucrative profession.

Barlow's syndrome) have been quite devastating. This is particularly true as regards the dense hemiplegia - this has necessitated premature retirement from a lucrative profession.

The complications which our patient has sustained as a result of his 'primary' MVP (billowing mitral leaflet syndrome or Barlow's syndrome) have been quite devastating. This is particularly true as regards the dense hemiplegia - this has necessitated premature retirement from a lucrative profession.

Barlow's syndrome) have been quite devastating. This is particularly true as regards the dense hemiplegia - this has necessitated premature retirement from a lucrative profession.