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Abstract 

 

The deterioration of harvested sugarcane as a result of bacterial growth causes 

major losses of sucrose and a build-up of exopolysaccharides (EPS). 

Polysaccharides present during production increase the massecuite viscosity, which 

negatively influences evaporation and crystallisation. In this study 38 culturable EPS-

producing bacteria were isolated from milled sugarcane. Analysis of the EPS showed 

the ubiquitous presence of glucose, however, 14 polysaccharides also contained 

mannose, fructose or galactose. In vitro treatment using Chaetomium erraticum 

dextranase to evaluate is effectiveness indicated that 37 of the EPS were hydrolysed 

to some extent. There were 21 polysaccharides that were only partially digested. The 

capacity of the isolates to produce EPS on different sugars indicated a correlation 

between sucrose and polysaccharide formation in 37 isolates. The results indicate 

there are more species involved in EPS production than previously thought as well 

as the presence of non-dextran polysaccharides. 
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Opsomming 

 

Bakteriële groei veroorsaak ‘n afname in gehalte, sukrose en ‘n verhoging in die 

hoeveelheid van eksternepolisakkeriede (EPS). Die verhoogde konsentrasie van 

polysakkariede gedurende die verwerkingsprosses veroorsaak ‘n verhoging in 

“massecuite” viskositeit. Hierdie verskynsel het ‘n nadelige uitwerking op die 

verdamping en kristalvorming van die produk. In gemaalde skuikerriet was 38 

groeibare EPS-produserende bakterieë geisoleer. Die geanaliseerde EPS van 

hierdie bogenoemde bakterieë was daar in almal glukose teenwoordig. In 14 van 

hulle was mannose, fruktose en galaktose ook gevind. Die in vitro effektiwieteit van 

Chaetomium erraticum dekstranase op die EPS het gewys dat 37 het tot ‘n mate 

gehidroliseer maar 21 was net gedeeltelik verteer. As gevolg van die bo-genoemde 

resultate was daar gevind dat sukrose was ‘n noodsaaklike subtraat vir EPS 

produksie in die geisoleerde bakterieë. In hierdie studie was bevestig ‘n groter 

verskiedenheid EPS-produserende bakterieë gevind was en dat hulle assosiasie aan 

sukierriet prossering meer kompleks is as wat vooreen gedink was. 
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Chapter 1 

Literature Review 

 

1.1. Industry 

 

The production value of sugar derived from sugarcane was estimated at US$ 53 

billion in 2010 (FAOSTAT). Sugarcane is an important crop in many tropical and sub-

tropical regions of the world (Promraksa et al., 2009). It is traditionally harvested by 

hand by cutting it whole or chopped, burnt or trashed, and more recently by 

mechanical billeting (Lionnet, 1986; Singh and Solomon, 2003). The chopped cane 

is then transported to the sugar mill where it can be stored in the open for up to 5 

days before processing (Yusof et al., 2000; Solomon, 2009). The minimization of this 

storage period is critical to reduce the break down products produced by microbial 

deterioration and subsequent losses of extracted sugar.  

 

1.2. Production of sugar 

 

After harvesting the cut cane is processed in the sugar mill to extract the 

accumulated sucrose. The general scheme of sugar production can be seen in 

Figure 1. The harvested sugarcane is milled and pressed to release the sugarcane 

juice (Promraksa et al., 2009; Chauhan et al., 2011). To facilitate extraction of the 

juice through diffusion, the cane is imbibed with water with sprayers in the milling 

process. The juice is then clarified to remove impurities. Clarification uses various 

techniques such as defecation, sulphitation, carbonation or chromatography to 

remove polyphenols, solids and other impurities (Kulkarni, 1996; Cheesman, 2005). 

After clarification the juice contains between 83-85% water.  

 

To facilitate crystallization, the water content of the juice is reduced to 35-45% by 

evaporation (Kulkarni, 1996; Cheesman, 2005). The evaporation is done under 
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vacuum to reduce the energy input required to boil the juice and speed up the 

evaporation due to a lowered boiling temperature (Kulkarni, 1996). The resulting 

syrup after the first evaporation step is sometimes clarified to remove the 

concentrated impurities (Kulkarni, 1996; Cheesman, 2005). The clarified syrup is 

then processed to precipitate the sucrose to ~99.4% (Kulkarni, 1996)..After 

evaporation, contains ~15% non-sucrose matter (Kulkarni, 1996).  

 

 

 

Figure 1. Simplified diagram of sugarcane processing to sugar (adapted from 

Kulkarni, 1996; Chauhan et al., 2011) 
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The crystallization stage of sugar production can account for between 50-60% of 

total sucrose loss (Kulkarni, 1996). The syrup is evaporated and is used to grow 

seed nuclei in the crystallization process, once the sucrose in the molasses or 

massecuite is exhausted the heating stops and more syrup is added (Kulkarni, 1996; 

Cheesman, 2005).  This crystallization process is repeated three times to recover as 

much sucrose as possible (Cheesman, 2005). The massecuite with precipitated 

sucrose is then centrifuged to collect all the sucrose crystals of sufficient size and 

remove the molasses (Kulkarni, 1996; Promraksa et al., 2009; Solomon, 2009; 

Chauhan et al., 2011). The high viscosity of the molasses requires two centrifugation 

steps to separate out the sugar, finally the purified sugar is centrifuged with water to 

remove the brown coloration (Cheesman, 2005). The sugar is dried and separated 

into the different grades of sugar through filter screens (Kulkarni, 1996). 

 

1.3 Deterioration of harvested sugarcane 

 

Deterioration of the cane commences when the cane is cut, and continues until it is 

processed in the sugar mill (Promraksa et al., 2009). Cane juice contains up to 18% 

sucrose, 0.5% reducing sugars as well as adequate protein and mineral salts for 

microbial growth, the pH range of 5-5.5 makes it selective for the growth of 

acidophilic microorganisms such as yeast and lactic acid bacteria (LAB) (Solomon, 

2009). Sugarcane is stored at ambient temperature before being processed in the 

mill and this can increase deterioration at higher ambient temperatures (Yusof et al., 

2000). The rate of deterioration of sugarcane is influenced primarily by temperature 

and rainfall, and other factors such as humidity, cane variety and state of the stalk 

(whole/chopped, burnt/trashed) can exacerbate its effects (Lionnet, 1986; Singh and 

Solomon, 2003; Solomon, 2009).  

 

Cane deterioration is a result of two processes; the first is natural inversion of 

sucrose by endogenous enzymes, the second involves the infection of cane by 

microorganisms which secrete sucrose metabolizing enzymes and enter through the 

cut ends or damaged sites of the stalk (Lionnet, 1986; Solomon, 2009). The 
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contaminating bacteria in harvested sugarcane are introduced through soil, cutting 

blades and epiphytic flora of the plant (Solomon, 2009). Soil bacteria are only 

inoculated during cutting, Leuconostoc species, however, are known to enter 

physically damaged cane before harvesting (Solomon, 2009; Saxena et al., 2010).  

The spread of bacterial infection is rapid, up to 15 cm from the cut sites after 1 hour 

and 30 minutes (Solomon, 2009). The losses as a result of an extended ‘cut-to-

crush’ delay can be responsible for a loss of up to 30% of total extractable sucrose 

and increased concentrations of deterioration products (Morel du Boil, 1995; 

Eggleston, 2002; Solomon. 2009; Saxena et al., 2010). Up to 90% of the 

deterioration during storage is through the agency of spoilage bacteria, the 

remainder is the result of chemical inversion (Eggleston, 2002; Promraksa et al., 

2009; Solomon, 2009).  

 

The milling of poor quality (deteriorated) cane has a negative effect on profitability, to 

the extent that it results in processing problems up to and including factory shut 

down (Eggleston, 2002; Solomon, 2009). The process of sugarcane deterioration is 

separated into two distinct types that occur simultaneously after harvesting; sour 

cane and stale cane (Solomon, 2009). The flow rate of syrup during sugar 

processing varies and in the regions of stagnation and low speed, bacterial growth is 

accelerated (Solomon, 2009). Cane souring is of particular concern due to its 

association with Leuconostoc mesenteroides (Solomon, 2009), which was the first 

causative organism identified in sugarcane deterioration (Egan, 1965). Sugarcane 

contains an endophytic microbial flora, including Acetobacter, Enterobacter, 

Pseudomonas, Aeromonas, Vibrio, Bacillus species, and LAB which increase rapidly 

during staling and reduce juice quality (Solomon, 2009). Genera such as 

Leuconostoc, Xanthomonas, Aerobacter and yeast are usually present in the cut 

ends or damaged sites after harvesting, and are known to produce mucoid material 

(Solomon, 2009).�The ability to produce exopolysaccharides is widespread amongst 

LAB (Ruas-Madiedo and de los Reyes-Gavilán, 2005). Facultative anaerobic 

bacteria, such as Leuconostoc species, grow rapidly in mud coated cane, as well as 

cane stacked in large piles with poor ventilation (Solomon, 2009). Amongst all the 

bacteria involved in sugarcane deterioration, Leuconostoc infection is still considered 

as one of the main causes of factory processing difficulties (Egan, 1965; Soetaert et 
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al., 1995; Eggleston, 2002; Solomon, 2009). Leuconostoc mesenteroides is an 

ubiquitous soil bacterium and known to produce lactic acid as well as dextran 

(Solomon, 2009).  There is a significant increase of dextran and reducing sugars, 

with a concomitant decrease in pH and sucrose percentage, over the course of cane 

left to stale over several days (Morel du Boil, 1995; Singh and Solomon, 2003). 

 

Dextran or dextran-like polysaccharides are the primary polysaccharide associated 

with sugarcane spoilage (Eggleston, 2002). Dextran is produced by the extracellular 

enzyme dextransucrase, which is secreted by Leuconostoc species (Eggleston and 

Monge, 2005; Saxena et al., 2010). Dextransucrase hydrolyses sucrose and 

polymerises the glucose portion to form dextran and releases fructose (Robyt, 1996; 

Robyt et al., 2008). 

Sucrose + � -(1,6)-D-glucosyln�  � -(1,6)-D-glucosyln+1 + D-fructose 

Dextransucrase is problematic for sugarcane processing because it does not require 

ATP or cofactors (Soetaert et al., 1995; Leathers et al., 1997).  Leuconostoc species 

are also known to be able to secrete more than one type of dextransucrase (Côté 

and Robyt, 1982; Zahnley and Smith, 1995; Robyt, 1996; Remaud-Simeon et al., 

2000). Dextran, an extracellular glucose homopolysaccharide, has been shown to 

interfere with downstream processing in sugar production and can result in 

significant losses in the recovery of sucrose (Lionnet, 1986; Monsan et al., 2001; 

Eggleston, 2002; Eggleston et al., 2004; Eggleston and Monge, 2005; Ravnö and 

Purchase, 2005; Eggleston and Harper, 2005; Eggleston et al., 2009; Jiménez, 

2009; Solomon, 2009; Vettori et al., 2012). 

 

1.4 Processing complications during sucrose production 

 

There are three processes in the sugar refinery that are crucial for processing; the 

first is the evaporation to concentrate the massecuite, the second is the transport of 

the syrup through the different processes and the third is the precipitation of sucrose 

from the supersaturated syrup (Kulkarni, 1996). The processing of sugar relies 
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heavily on evaporation to concentrate the massecuite and precipitate the sucrose. 

During normal processing the extracted juice is concentrated to syrup and then 

further concentrated for crystallization, this increases the viscosity significantly and 

makes movement from the crystallizers to the centrifuges a challenge (Kulkarni, 

1996; Eggleston et al., 2004). The decreasing water content has the compounding 

effect of increasing the concentration of contaminating secondary products 

accumulated during harvesting and storage before milling.  

 

The contamination of the juice with polysaccharides that increase the viscosity of the 

massecuite are of concern during refining (Morel du Boil, 1995; Eggleston, 2002; 

Ravnö and Purchase, 2005; Eggleston and Monge, 2005; Khaddour et al., 2012). 

The milling of severely deteriorated cane can result in the shutdown of factory 

operations due to inability to move the massecuite (Eggleston and Harper, 2005). 

Any increase in viscosity has a number of detrimental effects including the reduction 

of evaporation rates and slowing the rate of crystallization (Eggleston, 2002; 

Eggleston and Monge, 2005; Eggleston et al., 2004). Polysaccharides in the syrup 

can significantly retard crystal growth to the point where crystallization is inhibited 

(Abdel-Rahman et al., 2008; Solomon, 2009).  

 

During crystallization sucrose precipitates onto the surface of growing crystals, 

during this process impurities can become incorporated into the crystal lattice 

(Solomon, 2009; Kulkarni, 1996; Khaddour et al., 2012). The impurities in the 

supersaturated solution effect crystallization in two ways; any increase in viscosity 

retards the mass transfer of sucrose onto the crystals and the second is obstructing 

sucrose incorporation into the crystal (Kulkarni, 1996). This obstruction is primarily 

the effect of oligo- and polysaccharides present in the massecuite (Solomon, 2009; 

Abdel-Rahman et al., 2008; Eggleston and Monge, 2005). The presence of 

oligosaccharides during crystal growth has been shown to elongate the crystals by 

preferential absorption of dextran on the growing sugar crystal (Morel du Boil, 1991). 

The concentration of oligosaccharides required to negatively influence crystal 

formation is as low as < 4 mg/l (Morel du Boil, 1995). The crystals formed include 

platelets as the result of growth along only one axis and needle-like crystals 
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(Kulkarni, 1996). The detrimental impact of these viscosity-altering deterioration 

products requires management to minimize their influence. 

 

1.5 Value of the Dextran 

 

Commercial dextran can be produced either chemically or from bacteria grown on 

sucrose (Mehvar, 2000). The production of glucansucrase products is approximately 

10 g per liter of culture (Leemhuis et al., 2012). Expression of glucansucrases in 

heterologous organisms such as Escherichia coli or Bacillus species enables the 

high level production that can be used for enzyme immobilization (Swistowska  et  

al.,  2008; Biedendieck  et  al.,  2007; Gómez  de  Segura  et  al., 2004). The cost of 

sucrose is approximately ZAR 20 per kg which makes it an economical substrate for 

immobilized enzyme reactor systems for dextran production. 

 

Dextran is used widely in the medical and pharmaceutical industries due to its non-

toxicity and biocompatibility with humans (Kaewprapan et al., 2012). Clinical grade 

dextran is used as a blood flow enhancer or plasma volume expander (Mehvar, 

2000). The value of dextran has been expanded through the production of 

derivatives which have been shown to have a range of functions. These functions 

include; suitable nanoparticles for hydrophobic drug delivery (Kaewprapan et al., 

2012), anticancer drugs (Mehvar, 2000), sulfated dextrans have been shown to have 

anti-HIV properties (Nakashima et al., 1989; Neyts et al., 1995), as well as 

therapeutic protein conjugation (Mehvar, 2000). In addition to derivatization of 

dextran the enzyme itself has been used to glycosylate unnatural acceptors and 

enhance their physicochemical properties (Woo et al., 2012). These characteristics 

make these enzymes scientifically, medically, commercially and industrially useful. 

 

The � -glucans produced by dextransucrases has the added advantage of being 

indigestible by human digestive enzymes and are classified as fiber (Leemhuis et al., 

2012). This has been exploited using Weissella strains which are commonly used in 
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sourdough fermentations and produced dextran without major pH decreases (Katina 

et al., 2009). It has been shown that native sugarcane dextrans have similar 

physiochemical properties to commercial dextran used in controlled release tablets 

(Gil et al., 2008).   

 

The value of dextran depends on the average molecular weight range. The dextrans 

with a molecular weight of 1.5 – 2.8 MDa are commercially sold for ca. ZAR 19,000 

per kg. The value increase makes production of dextran from sucrose a valuable 

industry. The average molecular weight of dextrans produced by the dextransucrase 

from L. mesenteroides can be modified by alteration of substrate concentration, pH 

and temperature (Kim et al., 2003; Falconer et al., 2011). The sucrose to acceptor 

ratios can be used to control oligosaccharide molecular weights (Leemhuis et al., 

2012). The identification of novel dextransucrases which had more determined 

product sizes in terms of chain length of dextran would be highly commercially 

applicable. 

 

 

1.6 Enzymatic production of polysaccharides by bacteria  

 

Polysaccharides are widely distributed in nature and provide a means to store 

energy, provide protection, adhesion to surfaces, structural support and allow 

flexibility (Di Cango et al., 2006; Badel et al. 2011). The production of energy storage 

molecules, usually polysaccharides, when environmental conditions are favourable, 

is a typical survival mechanism for organisms (Fettke et al., 2006). Polysaccharides 

are divided into two major classes, homopolymers and heteropolymers (Sutherland, 

1979). Homopolymers (HoPS) are composed of a single monosaccharide, whereas 

heteropolymers (HePS) consist of different sugars (Leemhuis et al., 2012). The 

polysaccharides that are most relevant during sugarcane deterioration are EPS. The 

production of EPS is a characteristic found commonly in LAB and many other 

bacterial species (Ruas-Madiedo and de los Reyes-Gavilán, 2005). Microbial EPS 
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are divided into two main types; the capsular polysaccharides are anchored onto the 

cell wall itself, and the EPS which diffuse into the medium (Broadbent et al., 2001; 

Van Hijum et al., 2006; Ruas-Madiedo and de los Reyes-Gavilán, 2005; Tayuan et 

al., 2011). EPS produced by bacteria are not metabolised as a storage or energy 

source by the bacteria that produce them (Ruas-Madiedo and de los Reyes-Gavilán, 

2005). The production of EPS by microorganisms alters the physicochemical 

properties of its immediate environment, such as, suspension stabilization and 

viscosity (De Vuyst et al., 2001; Freitas et al., 2011; Donot et al., 2012). The 

alteration of the physicochemical properties of the extracted juice has detrimental 

effects on processing. The EPS produced by spoilage bacteria, such as dextran, are 

of particular concern to sugar processing. 

 

1.7 Enzymatic synthesis of polysaccharides 

 

Enzymes known as glycosyltransferases (GT) are able to transfer sugar moieties 

from a donor to an acceptor, and linking them via a glycosidic bond (Vogt and Jones, 

2000). Glycosyltransferases are a diverse enzyme family that are responsible for the 

biosynthesis of oligo- and polysaccharides (Taniguchi et al., 2002). The current 

number of GTs both known and putative is 12 000, which include proteins from both 

prokaryotes and eukaryotes (Taniguchi et al., 2002). GTs classification is based on 

the sugar which they transfer (Breton and Imberty, 1999). The most up to date online 

resource is CAZy (Carbohydrate Active Enzymes database; www.cazy.org) which 

currently contains 113 glycoside hydrolases, 91 glycosyltransferases, 19 

polysaccharide lyases, 15 carbohydrate esterases and 52 carbohydrate-binding 

module families (Cantarel et al., 2009). There is evidence that some GTs can contain 

glycosyl hydrolase-like folds (Hidaka et al., 2004; Lovering et al., 2007). 

Glycosyltransferases can be split into two main groups; Leloir (nucleotide sugar 

dependent) and non-Leloir (di- or oligosaccharide-dependent) GTs (Figure 2). 
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Figure 2. The two classes of glycosyltransferases (Weijers et al., 2008) 

 

1.8 Leloir Glycosyltransferases 

 

The Leloir GTs utilizes nucleotide sugars to build both complex oligo- and 

polysaccharides (Figure 2) (Weijers et al., 2008). Reactions derive their energy to 

drive the reactions from the bond between nucleotide and sugar. Leloir GTs has no 

sequence homology to one another, other than the sialyltransferases (Breton and 

Imberty, 1999). Leloir GTs are responsible for biosynthesis of glycoconjugates on the 

cell membranes in mammalian systems and plants, fungi and bacteria cell wall 

polysaccharides (Lim, 2005; Bowles et al., 2006; Weijers et al., 2008). 

Heteropolysaccharides and some homopolysaccharides are produced by Leloir GTs 

(Sutherland, 1979; De Vuyst et al., 2001; Freitas et al., 2011). Bacterial 

polysaccharides such as acetan, curdlan and xanthan are produced through the 

Leloir pathway (Griffin et al., 1994; Sutherland, 2001; Letisse et al., 2002; Jin et al., 

2008). The synthesis of HePS involves several biosynthetic steps and is linked to 

central carbon metabolism (Sutherland, 1979; Ramos et al., 2001; Freitas et al., 

2011). HePS are built in oligosaccharide subunits that are then polymerised and 
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exported. The general scheme of synthesis was described by Sutherland (1979) and 

Freitas et al. (2011) (Figure 3). The general synthesis of these polysaccharides uses 

activated sugars as donors, the monosaccharides are sequentially transferred to a 

lipid carrier, once the repeating oligosaccharide unit is complete it is cleaved and 

polymerised during secretion into the media (Sutherland, 1979; Freitas et al., 2011). 

 

 

 

Figure 3. Assembly of Leloir polysaccharides (adapted from Sutherland, 1979; 

Freitas et al., 2011) 

 

The major Leloir-type GTs have two different catalytic mechanisms of action, the 

retaining and inverting (Lairson and Withers, 2004). The mechanism of inverting GTs 

has been shown to be a single displacement with a base inactivation of the acceptor 
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leading to the formation of an ���  glycosidic linkage (Weijers et al., 2008; Lairson 

and Withers, 2004). The mechanism of retaining GTs is not well understood, but the 

proposed mechanism of action involves a double displacement reaction that allows 

formation of an ���  or ���  glycosidic bond (Davies, 2001; Persson et al., 2001; 

Tvaroška et al., 2003; Lairson and Withers, 2004; Faijes and Planas, 2007). The 

���  bond is common amongst the LAB homo- and heteropolysaccharides (Badel, 

2011). 

 

1.9 Non-Leloir Glycosyltransferases 

 

The transglycosidases are non-Leloir GTs that are capable of using non-activated  

di-, oligo- and polysaccharides for glycosyl donation (Monsan et al., 2001; Lloyd et 

al., 2004; Bresolin et al., 2006; Weijers et al., 2008). These transglucosidases do not 

require high energy substrates such as nucleotide or phosphorylated sugars or 

complex cofactors for activity (Soetaert et al., 1995; Monsan et al., 2010; Leathers et 

al., 1997). A special class of transglucosidases found amongst microorganisms and 

plants are the sucrases (Monsan et al., 2001; Seibel et al., 2006; Velázquez-

Hernández et al., 2008; Weijers et al., 2008). 

 

The sucrases use sucrose as a high energy donor for the synthesis of high 

molecular weight polysaccharides (Weijers et al., 2008). The � -(1-2) glycosidic bond 

of sucrose has been shown to contain -24.5 kJ.mol-1 (Tewari and Goldberg, 1989). 

Weijers et al. (2008) postulated that the hydrolysis of sucrose releases energy which 

can then be used for oligo- or polysaccharide formation. This enzymatic mechanism 

of dextran synthesis is important because it does not require organic cofactors 

(Soetaert et al., 1995; Leathers et al., 1997). The polysaccharides formed by 

sucrases are limited to glucans and fructans, and the enzymes synthesising them 

are known as glucansucrases and fructansucrases respectively (Monsan et al., 

2001; Van Hijum et al., 2006; Seibel et al., 2006; Weijers et al., 2008). Sucrases that 

produce � -linked glucans are restricted to LAB, whereas those producing fructan are 

spread amongst Gram-negative and Gram-positive bacteria (Van Hijum et al., 2006). 
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Glucan and fructan sucrases are classified as glycosyl hydrolase family 70 and 68 

respectively, according to the CAZy classification system (http://afmb.cnrs-

mrs.fr/CAZY/; Cantarel et al., 2008). In contrast to the Leloir GTs, glucansucrases 

display high levels of sequence identity which extends to sequence-function 

similarities, such as requiring a primer, activation by exogenous dextran, structure 

and size of products produced as well as affinity towards different acceptors 

(Remaud-Simeon et al., 2000; Monsan et al., 2010; Malik et al., 2009). There are 

approximately 150 glucan sucrases that are currently recorded on the CAZy 

database (Cantarel et al., 2009). Sugarcane deterioration is thought to be largely the 

result of dextransucrase which is a sucrase secreted by Leuconostoc species 

(Soetaert et al., 1995). 

 

1.9.1. Glucansucrases 

 

Glucansucrases can produce a number of different glucans such as dextran, 

amylose, reuteran, mutan as well as alternan (Remaud-Simeon et al., 2000; 

Notararigo et al., 2012; Monsan et al., 2010). The classification system is based on 

the carbon linkage that exists between the sugars (Morales et al., 2001; Van Hijum 

et al., 2006). Glucansucrases are extracellular enzymes that are typically between 

120 and 200 kDa in size (Van Hijum et al., 2006; Leemhuis et al., 2012).  The 

glycosidic bond of sucrose is used for catalysis of an � -1/2/3/4/6 glucosidic bond with 

retention of the anomeric carbons configuration (Remaud-Simeon et al., 2000; 

Monsan et al., 2001; Van Hijum et al., 2006; Suwannarangsee et al., 2007; Vettori et 

al., 2011). The glucansucrases cannot use sucrose as an acceptor for 

transglycosylation reactions, however, they can use sucrose hydrolysis products 

(Van Hijum et al., 2006).  

 

Dextransucrases (EC 2.4.1.5) has been shown to have a processive reaction 

(Monsan et al., 2001). Dextran has a predominance of � -(1,6) linkages (>50%) with 

random branches at the 2,3 and 4 position (Monchois et al., 1996; Robyt et al., 2008; 

Purama et al., 2009; Falconer et al., 2011). Dextrans can be divided into three major 
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classes: class one is an � -(1,6) backbone with branches at positions 2, 3 or 4; class 

two contains a non-consecutive � -(1,6) and � -(1,3) backbone with � -(1,3) branch 

linkages; and class three has an � -(1,3) backbone with � -(1,6) branch points 

(Naessens et al, 2005). Amylosucrase (EC 2.4.1.4) produces a glucan which is 

comprised of mainly � -(1,4) linkages, much like amylose found in starch (B� ttcher et 

al., 1997; Rolland-Sabaté et al., 2004). Amylosucrases are restricted to Neisseria 

spp. and Deinococcus radiodurans (B� ttcher et al., 1997; Rolland-Sabaté et al., 

2004; Pizzut-Serin et al., 2005). Alternansucrase (EC 2.4.1.140) has alternating � -

(1,6/3) linkages with � -1,3 branches (Monsan et al., 2001). Mutan (EC 2.4.1.5) is a 

glucan comprised of more than 50% � -(1,3) linkages, the remaining linkages are � -

(1,6) (Monsan et al., 2001; Shiroza et al., 1987). Reuteran (EC 2.4.1.5) has a 

predominance of � -(1,4) linkages in its structure (Kralj et al., 2004; Leemhuis et al., 

2012). Some strains contain more than one glucan-sucrase gene (Remaud-Simeon 

et al., 2000; Zahnley and Smith, 1995; Van Hijum et al., 2006; Shimamura et al., 

1994). Leuconostoc mesenteroides has been known to produce both dextran (with 

variable degrees of branching) and alternan (Kang et al., 2005). The general 

mechanism of glucan synthesis by glucansucrases can be seen below in Figure 4. 
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Figure 4. Three major reaction components of dextransucrase (Leemhuis et al., 

2012) 

 

In addition to the production of glucans, glucansucrases can produce low molecular 

weight oligosaccharides in the presence of acceptors like maltose in addition to 

sucrose (Koepsell et al., 1952). This acceptor molecule has been shown to vary 

significantly from just glycosyl moieties and can include phenol and aromatic 

alcohols (Mena-Arizmendi et al., 2011; Monsan et al., 2001). There are 

glucansucrases that are unable to utilize sucrose as an acceptor, these are then able 

to use the free glucose generated during hydrolysis of sucrose as an acceptor 

(Leemhuis et al., 2012; Van Hijum et al., 2006). 
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1.9.2 Fructansucrases 

 

The fructansucrases (E.C. 2.4.1.10) are able to produce levan and inulin from 

sucrose (Monsan et al., 2001; Van Hijum et al., 2006). Inulosucrase is found 

exclusively in LAB, whilst levan sucrase is distributed in both Gram-negative and 

positive bacteria (Van Hijum et al., 2006). Levan is comprised of � -(2-6) linked 

fructose containing � -(2-1) linked branches, while inulin has mainly � -(2-1) with � - (2-

6) branches (Van Hijum et al., 2006). 

 

Levan sucrases have been shown to catalyse three different reactions; the 

hydrolysis of sucrose, polymerisation of fructose and the hydrolysis of levan (Kang et 

al., 2005). The three reaction components of glucan- and fructansucrases are 

similar, but they share no sequence homology and have divergent products (Figure 

4) (Van Hijum et al., 2006). Leuconostoc and Streptococcus strains are known to 

produce � -fructans to some extent (Malik et al., 2009). Numerous Gram-positive 

bacteria such as Bacillus spp. produce levansucrases (Donot et al., 2012). 

Fructosyltransferases catalyse both sucrose hydrolysis and fructooligosaccharide 

synthesis (Ghazi et al., 2007). The ratio of these two processes influences the 

production efficiency of fructooligosaccharides: the sucrose concentration and the 

enzymes ability to bind the acceptor and the exclusion of water (Ballesteros et al., 

2006). These enzymes and polysaccharides are not described in current literature 

regarding the deterioration of sugarcane and/or sugar production processing 

difficulties. 

 

1.10 The aims and objectives of this study 

 

There is an association of Leuconostoc bacteria and dextran with the deterioration of 

sugarcane in sugarcane mills (Solomon, 2009). In conjunction there is a lack of 

knowledge concerning the bacterial species involved in cane deterioration, in 

addition to the polysaccharides produced during their growth. The products formed 
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during bacterial growth in the harvested cane are not fully elucidated, evidence of 

this is seen in the hard to boil massecuite phenomenon which is still not understood 

(Eggleston et al., 2011). The massecuite will not boil due to the action of an unknown 

component which is assumed to be produced during deterioration.  

 

This study aims to investigate the cultivatable EPS-producing bacteria isolated from 

milled sugarcane. The EPS produced by these bacteria are of primary importance 

and the monosaccharide composition was analyzed to determine if all the EPS are 

dextran-like or there is a component of non-dextran based polysaccharide present. 

The EPS produced by these bacteria were analyzed for its sensitivity to Chaetomium 

erraticum dextranase and to evaluate the potential efficacy of the treatment in vitro. 

The production of EPS on different sugars was also evaluated to determine the 

dependence on the presence of sucrose. The dependence of EPS production on 

sucrose and a glucose-based polysaccharide is anecdotal evidence for the presence 

of a dextransucrase enzyme being secreted.  

 

  



���
�

Chapter 2 

Paper for submission to Food Microbiology 

2.1. Title  

Diverse exopolysaccharide producing bacteria isolated from milled sugarcane: 

Implications for cane spoilage and sucrose yield 

Kyle Willard1, Charl Marais1, Inonge Mulako1, Rolene Bauer3, Karin Jacobs2, Jens 

Kossmann1, Gavin M George1# 

 

1 Institute for Plant Biotechnology, Genetics Department, Stellenbosch University, 

Private Bag X1, Matieland 7602, South Africa 

2 Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 

7602, South Africa 

3 Department of Biotechnology, University of the Western Cape, Bellville7535, South 

Africa 

 

#Corresponding author: Gavin M George 

e-mail Address:   ggeorge@sun.ac.za  



�
�
�

2.2. Abstract 

Bacterial deterioration of sugarcane during harvesting and processing is correlated 

with significant loss of sucrose yield and the accumulation of bacterial 

polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, 

has been cited as the primary polysaccharide associated with sugarcane 

deterioration. Polysaccharides raise the viscosity of the massecuite, inhibiting 

evaporation and crystallisation. A culture-based approach was used to isolate 

extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane 

stalks. 16S rRNA sequencing analysis grouped 38 isolates into 12 genera. This 

study implicates several bacterial genera not previously associated with EPS 

production in sugarcane deterioration. Sucrose dependent polysaccharide formation 

was demonstrated for 33 of the isolates.  Gas chromatography (GC) based 

monosaccharide analysis of purified polymers revealed 24 EPS consisting solely of 

glucose (homoglucans), while the remainder also contained galactose, mannose or 

fructose. The polysaccharides were treated in vitro with dextranase, full digestion 

was was achieved for only 15 extracts. Dextranase treatment does not fully address 

EPS build-up in deteriorated cane and, in addition, produces oligosaccharides which 

interfere with crystal formation.  

  

 

 

 

 

 

 

 

 

 



���
�

 

 

2.3. Introduction 

The estimated production of sucrose from sugarcane was valued at 53 billion dollars 

(FAOSTAT, 2010). During production, sucrose is precipitated from juice released 

from crushed sugarcane stalks (reviewed by Solomon, 2009). Cut sugarcane is 

stored at ambient temperature for an average of 3 - 5 days before processing 

(Solomon, 2009; Yusof et al., 2000). This ‘cut-to-crush delay’ allows for losses as 

high as 20-30 % of extractable sucrose and a concomitant accumulation of bacterial 

EPS (Saxena et al., 2010; Solomon. 2009; Eggleston, 2002; Morel du Boil, 1995). 

Cut sugarcane deterioration is influenced by several abiotic and biotic factors and is 

exacerbated by high ambient temperatures (Eggleston, 2002; Yusof et al., 2000; 

Lionette, 1986). Sucrose degradation is mainly due to bacterial metabolism and 

chemical inversion (Solomon, 2009). Indeed, Eggleston (2002) showed that 95% of 

the sucrose loss can be attributed to spoilage bacteria.  

 

Microorganisms utilise sucrose as a carbon source and for the synthesis of oligo- 

and polysaccharides. The impact of EPS on the production of sugar is an industrial 

concern due to raised viscosity of the massecuite, which inhibits evaporation and 

crystal formation (Lionnet, 1986; Ravnö and Purchase, 2005; Eggleston et al., 2004; 

Eggleston and Monge, 2005; Eggleston and Harper, 2005; Jiménez, 2009; Abdel-

Rahman et al., 2008; Promraksa et al., 2009). The impact of the polysaccharides on 

the production of sugar is, therefore, an industrial concern. 

 

Dextran, produced by Leuconostoc mesenteroides, has been cited as the primary 

EPS produced during sugarcane deterioration (Eggleston, 2002; Eggleston and 

Monge, 2005; Eggleston et al., 2009; Aquino and Franco, 2009; Solomon, 2009). 

Dextran is synthesized by an extracellular dextransucrase enzyme, using sucrose as 

the sole substrate. Bacterial dextran consists of �  (1� 6)-linked glucose polymers 

with �  (1� 3) or occasionally �  (1� 4)- or �  (1� 2)- branched linkages (Purama et al., 
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2009). Other EPS producing microorganisms such as Penicillium spp., 

Streptococcus spp., Lactobacillus spp. (Kulkarni and Kulkarni, 1987), Xanthomonas 

albilineans (Blanch et al., 2006) and Acetobacter diazotrophicus (Arrieta et al., 1996) 

were shown to be present at cut ends and damaged sites of the cane after 

harvesting.  

 

The growth of ubiquitous microorganisms during sugarcane processing is of primary 

concern to sugarcane mills. Several management and remediation strategies have 

been reviewed by Solomon (2009), where he stressed the importance of optimal 

cutting practises and the minimization of time between cutting and processing to 

reduce both bacterial spoilage as well as intrinsic invertase activity. Dextran has 

been shown to be the most problematic and abundant EPS produced during 

sugarcane deterioration (Solomon, 2009, Eggleston et al., 2008; Aquino and Franco, 

2009). Accumulation of the polysaccharide in sugarcane juice during processing can 

be controlled through good management practises and the use of the enzyme 

dextranase (Solomon, 2009; Eggleston and Monge, 2005). This enzyme hydrolyses 

�  (1� 6)-glucans to oligomers of between 2-10 glucose units which reduce the 

viscosity of massecuite (Eggleston et al., 2009). The presence of bacterial species 

producing EPS other than dextran is not addressed in current strategies for 

treatment of deteriorated sugarcane.  

 

This study investigates the culturable EPS-producing bacterial diversity associated 

with sugarcane after processing, the monosaccharide composition of the 

polysaccharides, the relative production of EPS on different sugars, as well as 

sensitivity to dextranase treatment are reported.  

 

2.4. Materials and Methods 

Preparation of milled sugarcane. Rain irrigated Sugarcane stalks were cut below 

ground level, the tops removed, and stalks stacked outside in bundles for 3 days at 

the South African Sugarcane Research Institute (SASRI) laboratory in Durban, South 
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Africa. Average temperature and humidity values (day/night) during storage were 

26oC/19oC and 94%/59%, respectively. Stalks were weighed, blended with double 

the volume of water and filtered through a mesh funnel. The milled filtrate was 

cooled to 20oC and passed through filter paper containing 3 g of celite.  

 

Selection of EPS producing isolates . A dilution series of the milled filtrate was was 

plated onto De Man, Rogosa and Sharpe (MRS) (Merck, Darmstadt, Germany) and 

Luria Bertani (LB) (Merck, Darmstadt, Germany) both supplemented with 2% 

sucrose, and incubated at 30oC for 48 hrs to allow for sufficient polysaccharide 

production. EPS production was confirmed with the string test (Fang et al., 2004) by 

touching a sterile inoculation loop to individual colonies. The formation of a string (>5 

mm) upon lifting of the loop was considered positive.  

 

16S rRNA gene sequence analysis. Genomic DNA was extracted according to 

Babalola et al. (2009) and used as a template for 16S rRNA amplification. Universal 

16s rRNA primers E9F (5’-GAGTTTGATCCTGGCTCAG-3’) and U529 (5’-

ACCGCGGCKGCTGGC-3’)  (McInnerty et al., 1995; Watanabe et al., 2001) were 

used to generate amplicons with the following protocol: 94oC for 5 min; followed by 

25 cycles consisting of 98oC for 20 s, 55oC for 20 s and 72oC for 1 min; and finally 

72oC for 10 min.  Amplicons were cloned by ligation into pJET 1.2™ (Fermentas, 

Burlington, Ontario, Canada) and sequenced using BigDye terminator V3.1. Post 

sequencing clean-up was done using Centri-sep columns prior to analysis on a Life 

Technologies 3730xl sequencer. Contigs were submitted to Genbank using BLAST 

(http://blast.ncbi.nlm.nih.gov) to identify the isolates.  A sequence database was set 

up using sequences published on GenBank for type strains of the closest BLAST hit.  

Alignments were done in ClustalX and manually adjusted in Se-Al (Rambaut, 2007). 

Nexus files were analysed in PAUP* v4.0b10 (Swofford, 2001) using the BioNJ 

option, with confidence levels in nodes determined using a bootstrap analysis of 

1000 replicates. 
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Purification of the EPS . EPS was isolated from cultures grown in semi-defined 

medium (SDM) supplemented with 5% sucrose (Bauer et al., 2009) at 22oC. EPS 

purification was performed according to Bauer et al. (2009) with slight modification. 

The cultures were placed in a boiling water bath for 10 min to facilitate EPS release 

and protein denaturation. Cultures were cooled and treated with pronase® (Roche, 

Basel, Switzerland) (0.5 mg/ml) at 37oC for 1 h. Proteins were precipitated by the 

addition of 5 ml 80% (m/v) trichloroacetic acid, followed by incubation on ice (30 min) 

and centrifugation (10000 g for 30 min at 4oC). EPS was precipitated from the 

supernatant by the addition of 3 volumes absolute ethanol (Frengova et al., 2000) 

and pelleted by centrifugation (10000 g for 30 min at 4oC). The pellet was 

resuspended in 5 ml MilliQ (MQ) water (Millipore, Bilerica, MA, USA) and dialysed 

overnight in SnakeSkin® dialysis tubing (MWCO 3500 kDa) (ThermoScientific, 

Rockford, IL, USA) against 20 l of MQ water. EPS samples were freeze-dried on a 

BenchtopK (VirTis, Warminster, PA, USA) for 24h and stored at -20oC. 

 

Hydrolysis and derivatisation of the EP S. Purified polysaccharide (2 mg) was 

hydrolysed at 120oC for 2 h in the presence of 300 µl of 2M Trifluoroacetic acid , the 

hydrolysate was washed twice with 500 µl of methanol. Derivatization was performed 

by adding 140 µl methyloxyamine in pyridine (20 mg/ml) and incubation at 37oC for 

30 min, followed by the addition of 70 µl of N-Methyl-N-(trimethylsilyl) 

trifluoroacetamide (MSTFA) and an incubation step of 2 h at 37oC. 

 

Gas chromatography-based analysis of the EPS monosa ccharide composition. 

Gas chromatography (GC) was used to determine monosaccharides present in the 

EPS hydrolysate. Glucose, galactose, mannose and fructose were used as 

standards. A combination of GC-flame ionization detector (GC-FID) and GC-mass 

spectrometry (GC-MS) was used. A Hewlett Packard 4550 GC-FID system fitted with 

an auto sampler and Rtx®-5MS (30 m by 0.25 mm by 0.25 µm film thickness) column 

was used. The GC operating conditions were as follows: injection port temperature, 

280oC; detector temperature, 250oC; initial oven temperature, 120oC; hold for 0 min; 

first ramp 10oC/min to 160oC; hold for 0 min; second ramp 1.5oC/min to 220oC; hold 

for 0 min; third ramp 20oC/min to 280oC; hold for 3 min; flow rate, helium column, ca. 
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1 ml/min; injection mode split less. GC-FID results were confirmed by selecting an 

EPS from each genera of isolates and analysing the sample using GC-MS.  

GC-MS. Samples were analysed with an Aligent Technologies (Agilent 

Technologies, Santa Clara, CA) 6890N Network GC system coupled to a 5975 inert 

Mass Selective Detector. Electron impact ionization was performed at 70 eV. GC-MS 

conditions were as follows: column, Rtx®-5MS (30 m by 0.25 mm by 0.25 µm film 

thickness); carrier gas, Helium; flow rate 1 ml/min; Split, 1:5; injector temperature, 

280oC; initial temperature, 70oC; hold for 0min; first ramp, 10oC/min to 76oC; hold for 

0 min; second ramp, 8oC/min to 310oC, hold for 4 min; and MS transfer 280oC. 

Mass-to-charge ratios (m/z values) were scanned from 40 to 550. 

 

Dextranase treatment.  Purified polysaccharide (10 mg) was resuspended in 1 ml of 

50 mM sodium phosphate buffer (pH 6) containing 5 % Dextranase (C. erraticum) 

and incubated at 55oC for 16 h. The dextranase-treated polysaccharide was 

concentrated using a GeneVac EZ2 bench top evaporator to a final concentration of 

0.1 mg/µl. The effect of the dextranase treatment was visualised using thin layer 

chromatography (TLC). The assay was optimized on Dextran T500 (GE Healthcare 

Bio-Sciences AB, Uppsala, Sweden). 

A total of 10 µg enzymatically-hydrolysed polysaccharide samples adjacent to non-

hydrolysed polysaccharide with glucose, maltose, maltotriose and dextrimaltose as 

standards spotted onto a silica gel 60 (F254) TLC plate (Merck, Darmstadt, Germany). 

The mobile phase was 2:5:1.5 (by volume) acetic acid:1-propanol:water modified 

from Kang et al. (2009). Plates were sprayed with sulphuric acid (5%) in ethanol and 

developed at 100oC for 10 min. 

 

Relative EPS production. Single colonies from each isolate were struck onto SDM 

(Bauer et al., 2009) supplemented with 2% (m/v) sucrose, glucose and fructose 

respectively.  The isolates were grouped according to their phylogenetic groups 

which were identified as part of a separate study (Figure 5).  EPS production was 

assessed after incubation for 16 h at 22oC (Figures 7-9). 



���
�

 

2.5. Results  

2.5.1 Identification and characterisation of exopol ysaccharide-producing 

bacteria  

 

In this study, 38 isolates were selected for EPS production when grown on sucrose. 

Each isolate was genotyped by sequencing of a 512 bp section of the 16S rRNA 

gene. Alignments of the ribosomal sequences to those published in GenBank 

revealed a diverse population of bacteria encompassing 12 genera (Figure 5).   

 

Isolates were grouped into five clades (Figure 5 ): Clade 1 includes Acinetobacter 

spp., Psychrobacter sp., Enhydrobacter aerosaccus; Clade 2 is comprised of 

Enterobacteriaceae spp. and Poryphorymonas sp.; Clade 3 includes Weissella sp., 

Leuconostoc spp. and Streptococcus spp.; Clade 4 is comprised of Bacillus spp.; 

and Clade 5 comprises of Microbacterium ginsengisoli, Micrococcus luteus and 

Propionibacterium acnes.  
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Figure 5. Condensed neighbour-joining phylogenetic tree of the isolates identified in 

milled sugarcane 
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Literature was scrutinized for close relatives with the ability to produce Capsular 

polysaccharide (CPS) or EPS (Table 1) the majority of which have been associated 

with the human epidermis, oral cavity or soil. 

 

Table 1. Polysaccharide production by species related to isolates implicated in 

sugarcane deterioration 

Isolate Nearest relative CPS EPS Isolation source R eferences 

SL19, SM7, SL25, 
SL10, SL29 

Bacillus licheniformis + 
Levan, Dextran, 
Mannan, HePS 

Soil, marine and fresh 
water, compost, rumen 

of cattle and bread 

Larpin et al., 2002; Singh et al.,2011; 
Yakimov et al., 1997; Ghaly et al., 
2007; Bergey and Boone, 2009; 
MacLean et al., 1990; Priest, 1989; 
Sikorski and Nevo, 2005; Schembri et 
al., 2004; Priest, 1989 

SM32, SL31, SM1, 
SL26, SL18, SL22, 

SM20 
Enterobacteriaceae sp. + Colanic acid, 

HePS 

Soil, water, milk powder, 
vegetation and 

alimentary canal 

Stevenson et al., 1996; Grant et al., 
1969; Blood and Curtis, 1995; 
Muytjens et al., 1988; Schembri et al., 
2004; Alves et al., 2010; Sutherland, 
2001 and 1994 

SM38, SL21 Leuconostoc citreum - Dextran, 
Alternan 

Human sources 

Solomon, 2009; Egan, 1965; Soetaert 
et al., 1995; Van der Meulan et al., 
2007; Maina et al., 2008; Bounaix et 
al., 2010; Bounaix et  al., 2009; 
Holland and Liu, 2011; Eggleston, 
2002; Eggleston and Monge, 2005; 
Eggleston et al., 2008; Aquino and 
Franco, 2009 

SM5, SL13, SM36 Leuconostoc 
pseudomesenteroides 

+ Dextran, Mutan, 
Alternan, Levan 

Plants, raw milk, 
cheeses and meat 

Egan, 1965; Soetaert et al., 1995; 
Solomon et al., 2009; Van der Meulen 
et al., 2007; Maina et al., 2008; 
Bounaix et al., 2010; Bounaix et al., 
2009; Holland and Liu, 2011; Leathers 
et al., 1997; Cote and Robyt, 1982; 
Eggleston, 2002; Eggleston and 
Monge, 2005; Eggleston et al., 2008; 
Aquino and Franco, 2009; Bevan and 
Bond, 1971 

SL4 Weisella confusa + 
Dextran, 

Alternan, Levan 

Sugarcane, human 
faeces, fermented food 

(chilli bo and Tapai), 
canine ear and human 

gall 

Katina et al., 2009; Wang et al., 2010; 
Ganzle and Schwab, 2009; Van der 
Meulen et al., 2007; Bjorkroth et al., 
2002; Tieking et al., 2003 SL16 Weisella cibaria + 

SM2 Microbacterium 
ginsengisoli 

No 
literature 

No literature Ginseng field soil Park et al., 2008 

SM31 Micrococcus luteus + None Mammalian skin, amber 
Deng et al., 2010; Hase et al., 1972; 
Young et al, 2010; Greenblatt et al., 
2004 

SL27, SL3, SL8, 
SM34, SM33, 

SM19 
Acinetobacter sp. + HePS 

Human skin flora, 
sewage, soil and water 

MacLean et al., 2009; Haseley et al., 
1994; Pirog et al, 2003; Pantophet, 
2008; Peleg et al., 2008 

SM26, SL20 Enhydrobacter 
aerosaccus 

No 
literature 

No literature Human skin Gao et al., 2007 

SM40 Psychrobacter sp. + No literature 

Brown seaweed, 
seawater, human skin, 

fish, guniea pigs, 
contaminated air 

samples 

Lee et al., 2006; Yoon et al., 2005; 
Hudson et al., 1987; Kondakova et al., 
2012; Juni and Heym, 1986 

SL2, SL9 
Porphyromonas sp. 

Oral taxon + None Oral cavity of animals 
Brunner et al., 2010; Dewhirst et al., 
2010; Paramonov et al., 2001; Fournier 
et al., 2001 

SM16, SM27, 
SM30 

Propionibacterium 
acnes 

+ None Human skin, oral cavity 
Br� ggemann et al., 2004; Holland et 
al., 2010; Dewhirst et al., 2010; Bek-
Thomsen et al., 2008 

SM39 Streptococcus spp. + Glucan Oral cavity Gibbons and Banghart, 1968; Rukke et 
al., 2011; Dewhirst et al., 2010 

SM10 Streptococcus equinus + Glucan Alimentary canal 
Coutinho and Henrissat, 1999; Takagi 
et al., 1994; Bergey and Boone, 2009; 
Aquino and Franco, 2009 

SM21 
Streptococcus 
parasanguinis + None Oral cavity 

Bergey and Boone, 2009; Garnett et 
al., 2012; Dewhirst et al., 2010 
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Monomer composition of exopolysaccharides produced on sucrose 

Purified EPS isolated from cultures grown in the presence of sucrose were 

hydrolysed and monosaccharide composition determined using GC-MS and GC-FID 

(Table 2). The bacterial isolates EPS monomer composition indicates that glucose-

based EPS were produced by 24 of the 38 isolates, the rest were comprised of 

glucose and galactose, mannose or fructose. Mannose was present in 10 of the 

EPSs purified. 
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Table 2. EPS monosaccharide composition, dextranase susceptibility and relative polysaccharide production 

of bacteria isolated from milled sugarcane. 

Phylogenetic group Nearest type strain Isolate Selectiona 

Digested by 
Dextranase 

(Chaetomium 
erraticum)b 

Sucrose-based EPS 
monosaccharide composition 

Relative EPS 
production 

Glc Gal Fru Man Suc Glc Fru 
Moraxellaceae Acinetobacter spp. SM33 E ++               

 
SL3 E ++               

 SM34 E +               

 SL8 E +               

 
SL27 E +               

 
SM19 E +               

Psychrobacter sp. SM40 E +               
Enhydrobacter aerosaccus SL20 E ++               

 
SM26 E ++               

Enterobacteriaceae Enterobacteriaceae sp. SM20 E +               

 SL18 S  +               

 SM31 E ++               

 
SL22 S  -               

 
SM1 E +               

 SL26 E ++               

 SM32 E ++               
Porphryromonadaceae Porphyromonas sp. Oral taxon SL2 E ++               

 
SL9 S ++               

Leuconostocaceae Leuconostoc pseudomesenteroides SL13 E ++               

 SM5 E +               

 
SM36 E ++               

Leuconostoc citreum SL21 E +               

 SM38 E +               
Weisella cibaria SL16 E +               
Weisella confusa SL4 E ++               

Streptoccocaceae Streptococcus equinus SM10 E ++               
Streptococcus sp. SM39 E +               
Streptococcus parasanguinis SM21 E +               

Bacilliaceae Bacillus licheniformis SL29 E +               

 
SL10 E ++               

 SM7 E +               

 SL19 E +               

 
SL25 E +               

Microbacteriaceae Micrococcus luteus SM31 E ++               
Propionibacteriaceae Propionibacterium acnes SM16 E +               

 SM30 E +               

 
SM27 E ++               

Microbacteriaceae Microbacterium ginsengisoli SM2 E +               
a  Isolates selected for string test (S) or EPS production (E)     
b  Purified EPS digested overnight to evaluate the sensitivity to dextranase (- indicates no digestion; + indicates some digestion; ++ indicates full digestion) 
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2.5.4. Dextranase susceptibility.  

Considering that all purified EPS fractions contained glucose, samples were treated 

with dextranase to evaluate susceptibility to degradation by this enzyme (Table 2 

and Figure 6-8). Full digestion profiles were obtained for 14 of the 24 homoglucan 

EPS and two of the mannose containing fractions. All of the EPS shown to contain 

fructose were partially digested by dextranase. The EPS from isolate SL22, 

containing glucose and galactose was not digested by dextranase treatment (Figure 

4). 
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Figure 6. Thin layer chromatography of dextranase treated EPS from the Acinetobacter, Psychrobacter, Enhydrobacter and 
Enterobacteriaceae species with undigested control and glucose, maltose, maltotriose as well as dextrimaltose as standards 
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��Figure 7. Thin layer chromatography of dextranase treated EPS from the Enterobacteriaceae, Porphyromonas, Leuconostoc, 
Weisella and streptococcus species with undigested control and glucose, maltose, Maltotriose and Dextrimaltose as standards 

Glucose 

Maltose 

Maltotrios

Dextrimaltos

SL26 

SL26 

SM32 

SM32 

SL2 

SL2 D 

SL9 

SL

SL13 D 

SL1

SM5 

SM5 D 

SM3

SM36 

Glucose 

Maltose 

Maltotrios

Dextrimaltos

SL21 
SL21 

SM38 

SM38 

SL1

SL16 D 

SL4 

SL

SM10 

SM10 

SM39 

SM39 

SM2

SM21 

�� � ������������������� �



���
�

�

Figure 8. Thin layer chromatography of dextranase treated EPS from the Streptococcus, Bacillus, Micrococcus, Propionibacterium 
and Microbacterium species with undigested control and glucose, maltose, Maltotriose and Dextrimaltose as standards 
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2.5.5. Relative production of EPS on different suga rs 

 

The isolates cultured in this study were grown on SDM plates containing sucrose, 

glucose and fructose for 16 h. There is a bias towards production of EPS on sucrose 

in comparison to glucose and fructose. The isolates that produce EPS on sucrose 

and not glucose or fructose indicate an EPS operon that is induced by the presence 

of sucrose or the secretion of a sucrase type enzyme. 

 

 

Figure 9. Relative exopolysaccharide production of isolates on semi-defined media 

supplemented with glucose (2%) 
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Figure 10. Relative exopolysaccharide production of isolates on semi-defined media 

supplemented with fructose (2%) 

 

Figure 11. Relative exopolysaccharide production of isolates on semi-defined media 

supplemented with sucrose (2%) 
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2.6. Discussion 

Diverse exopolysaccharide (EPS) producing bacterial strains were isolated from 

milled sugarcane produced at the South African Sugarcane Research Institute 

(SASRI). Monosaccharide analysis of EPS suggests the production of 24 

homopolysaccharides consisting of glucose (i.e. glucans). The remainder are 

comprised of glucose and mannose, fructose as well as galactose (i.e. 

heteropolysaccharides) (Table 2). A number of species reported in this study such as 

Leuconostoc spp., Enterobacter spp., and Bacillus spp. have been previously 

associated with sugarcane (Eggleston, 2002; Solomon, 2009; Eggleston and Harper, 

2005), however, the production of EPS in sugar mills is mainly attributed to 

Leuconostoc and Weisella species (Solomon, 2009; Leathers and Bischoff, 2011). 

The nearest relative of all the isolates were investigated in literature to determine if 

they have been previously reported as producing EPS (Table 1). 

 

The large proportion of glucose based EPS was not surprising, considering the 

widespread association of dextran with sugarcane deterioration (Solomon, 2009; 

Egan, 1965; Soetaert et al., 1995; Katina et al., 2009; Eggleston, 2002). The 

presence of glucans that are partially susceptible to dextranase treatment may be 

the result of more than one type of dextran being produced. Dextran producing 

strains are known to produce more than one glucansucrase (Zahnley and Smith, 

1995; Remaud-Simeon et al., 2000; Robyt, 1996). Currently deterioration of 

harvested cane is routinely tested weekly for dextran after milling (Solomon, 2009).  

 

The fraction of EPS other than dextran has not yet been linked to processing 

complications. There was a significant proportion of mannose containing EPS, which 

accounted for a quarter of the polysaccharides isolated (Table 2). This type of 

polysaccharide is produced by Xanthomonas species, which have been isolated in 

other studies (Sutherland 2001, 1994; Solomon, 2009), however, this species was 

not isolated in this study. The isolates (SL16, SL19 and SM26) produced a glucose 

and fructose containing EPS (Table 2). The closest relatives to isolate SL16 and 

SL19 have been shown to produce levan in previous literature (Table 1). The closest 
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relatives to SL16 are known to produce glucose based EPS, whereas SL19 are not 

(Table 1). Enhydrobacter aerosaccus, closest relative to isolate SM26 has not been 

shown in previous literature to produce an EPS (Table 1). The polysaccharide 

containing only glucose and galactose produced by SL22 which was Escherichia sp. 

have been shown to produce glucogalactans, but not in association with sugarcane 

(Table 1). The diversity of EPS isolated in this study may indicate either an over or 

under estimation of polysaccharide concentrations during routine testing. 

 

The EPSs isolated in this study were tested for its in vitro susceptibility to 

dextranase. The glucans isolated showed that 16 of the 24 isolates in this study are 

dextranase susceptible the remainder are only partially susceptible (Table 2; Figures 

6-8). The glucans in this study where assumed to be dextran like, however the 

partially susceptible EPSs indicate that there is a population of dextranase resistant 

glucans. Chaetomium erraticum dextranase is an endo hydrolytic enzyme that 

hydrolyses � -(1,6) glycosidic linkages in dextran. The susceptibility of the EPS is 

indicated by mobile oligosaccharides in comparison to an undigested control, partial 

susceptibility was indicated by a large immobile spot at the origin in digested 

samples in addition to motile oligosaccharides, and EPS that were not susceptible 

did not migrate. 

 

The in vitro enzymatic hydrolysis of the heteropolysaccharides had an effect on 13 

out of 14 polysaccharides (Table 2). The mannose containing EPS showed 8 of the 

10 were only partially hydrolysed (Table 2; Figure 6-8). The EPS containing fructose 

may indicate the presence of both a dextran and fructan which would result in partial 

susceptibility to treatment (Table 1; Table 2; Figure 6-8). The glucose and galactose 

containing EPS showed complete resistance to dextranase treatment (Table 2; 

Figure 6).The sensitivity of the EPS containing other monosaccharides is associated 

with the presence of internal � -(1,6) glucosyl linkages within the polysaccharide 

structure. 
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Bacterial growth on the SDM supplemented with sucrose resulted in EPS formation 

in 37 of the 38 isolates (Figures 9-11). The isolates did not produce EPS comparably 

SM26, this may be the result of slower growth. The production of EPS on glucose 

and fructose was restricted to SL9, SL18 and SL22, these isolates were selected as 

string test positives (Table 2). Production of EPS on monosaccharides indicates the 

presence of a Leloir based polysaccharide production pathway (Freitas et al., 2011; 

Sutherland, 1979). The isolate SM2 produced an EPS on both sucrose and glucose, 

however, the polysaccharide accumulation on sucrose was significantly greater. The 

differences between the EPS produced on sucrose and glucose or fructose shows a 

distinct sucrose linked polysaccharide formation.  The incubation of these isolate for 

only 16 h is significantly less than the average storage time for the harvested cane. 

The sucrose linked polysaccharide accumulation indicates the intrinsic problems that 

faced by the sugar industry. 

 

This study of the culturable EPS-producing bacteria isolated from blended sugarcane 

revealed an unexpectedly high diversity of microorganisms. The polysaccharides 

were isolated and monomer composition analysed revealing complexity that has not 

been previously reported. The analysis of these EPS and diversity of the EPS-

producing bacteria allows a greater understanding of sugarcane deterioration and 

the detrimental polysaccharide accumulation. The dextranase treatment showed that 

37 of the 38 isolates EPS was hydrolysed to some extent indicating that the 

treatment will have a beneficial effect on viscosity, however, there is an unaffected 

fraction. The value of this reduction in viscosity is offset by the production of 

oligosaccharides which negatively affect crystallisation of sucrose (Abdel-Rahman et 

al., 2008).  The most effective approach to significantly reduce EPS would be the 

use of good sanitation practises in combination with dextranase to minimize the 

build-up of problematic EPS, treat pre-formed dextran and reduce processing 

problems. 
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Chapter 3 

General discussion 

 

The post-harvest deterioration of sugarcane is problematic for the sugar industry and 

has attracted widespread attention in recent years (Solomon, 2009). There are a few 

strategies that have been developed to reduce the buildup of problematic 

deterioration products. The most effective remains the management of the cane 

during and after harvest. The current strategies for treatment of bacteria involved 

with deterioration requires approaches that influence all the species involved. The 

current strategy to minimize polysaccharide accumulation relies on the minimization 

of the “cut-to-crush’ delay to reduce the overall amount of deterioration during 

storage that can subsequently interfere with downstream processing (Saxena et al., 

2010; Yusof et al., 2000; Morel du Boil, 1995; Solomon, 2009). The time lag between 

harvesting and milling is therefore of critical importance to achieve maximum 

sucrose recovery (Solomon, 2009). Other factors, such as harvesting style or time of 

harvesting, influence the load of bacterial contamination and speed of deterioration 

(Singh and Solomon, 2003). Currently, management of harvesting and milling to 

reduce the time lag is reducing the amount of deterioration products to manageable 

parameters. 

 

Previous literature suggests that the minimization of dextran levels in the sugar 

factory can be done by control of microorganisms in cut cane (Abdel-Rahman et al., 

2008). Biocidal chemicals have been used to reduce bacterial load after 

harvesting/during milling, these include halogen compounds, ammonium biflouride, 

formaldehyde, quaternary ammonium compounds and thiocarbamates (Solomon, 

2009). Electrolyzed saline has been shown to be an effective anti-infective agent by 

denaturing proteins on bacterial cell walls though hypochlorus acid and free chlorine 

radicals (Solomon, 2009). The use of biocide has shown to have a significant effect 

in reducing any deterioration by slowing bacterial growth in harvested sugarcane 
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(Eggleston, 2002). These broad spectrum approaches to bacterial management 

have been effective but can also be highly detrimental to the environment. A greater 

understanding of the microorganisms that are the causative agent in the 

accumulation of harmful products will assist in the development of more targeted 

control mechanisms. This first look at the diversity of organisms involved in this 

process can lay the groundwork for future studies of this nature. 

 

With the analysis of the polysaccharides and the development of a culture based 

technique to isolate the EPS produced by the isolates, new methodology can be 

developed for testing deterioration. This technique is advantageous because it 

allows for the scalable production of polysaccharides from the bacteria for research 

as well as industrial applications. The monosaccharide composition of the 

polysaccharides isolated indicated that there is a little described abundance of EPS 

that is produced during sugarcane deterioration. The concentration of dextran in 

milled sugarcane juice is the routine measure of both quality and the level of 

deterioration (Eggleston, 2002). The determination of cane deterioration is based on 

the testing for products that are cost effective and correlate to dextran 

concentrations. The use of ethanol as a measure of deterioration was shown to be 

inaccurate and unsuitable (Eggleston, 2002). The haze test was developed to test for 

the amount of dextran in the cane juice with partial ethanol precipitation of high 

molecular weight polysaccharides with 50% ethanol (Clarke et al., 1987; Basedow 

and Ebert, 1979). The method is known to overestimate dextran concentrations due 

to absorption increases as a result of other soluble polysaccharides and inorganic 

components of sugarcane juice. The haze test was improved by removal of 

contaminating soluble polysaccharides with amylase to break down amylose which is 

partially soluble and contains � -(1,4) glucosyl linkages (Eggleston and Monge, 

2005). This technique is still used in sugar mills to determine dextran concentrations 

(Anon, 1994). In the context of this study the haze test will precipitate any high 

molecular weight polysaccharides in solution (Basedow and Ebert, 1979). The total 

EPS component is measured rather than only dextran and this technique is more 

accurate for determination of the total amount of EPS present in the sugarcane juice. 
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Treatment of dextran buildup has been used, although the practice is not universal 

(Promraksa et al., 2009). In vitro treatment of the EPSs with dextranase had an 

effect on 37 of the 38 isolates, however, there were 21 polysaccharides which were 

only partially digested. The partial digestion indicates that the treatment is only 

partially effective for remediation of the EPS produced during deterioration.  The use 

of dextranase has been shown to be an effective method of removing dextran that 

has already formed in the extracted juice (Abdel-Rahman et al., 2008; Morel du Boil 

and Wienese, 2002). These approaches are impracticable or proved to be 

uneconomical if the enzyme was not used optimally (Eggleston and Monge, 2005). 

The effective utilization of dextranase requires the juice to be heated to the enzymes 

optimal temperature of 50oC for at least 5 minutes (Eggleston and Monge, 2005). 

This requires an additional heated tank to be installed into current sugarcane 

factories and refineries. Dextranase treatment does reduce the effect of dextran 

based viscosity increases of the massecuite, however, there is a release of 

oligosaccharides which is problematic during crystal formation (Morel du Boil, 1991; 

Promraksa et al., 2009; Eggleston et al., 2011; Eggleston et al., 2009). The results in 

chapter 2 show the production of oligosaccharides from dextranase treatment, in 

addition to variable hydrolysis of the EPS. Dextranase treatment has been largely 

abandoned by the industry due to its usage being uneconomical. 

 

The isolates cultured in this study were also investigated for the production of EPS 

on different sugars and there was a clear correlation between polysaccharide 

production and the presence of sucrose (Figures 6-8). The EPS productions profile is 

anecdotal evidence that many of the strains contain a dextransucrase type enzyme. 

The isolates that are able to produce EPS on all of the sugars are likely produced via 

Leloir glycosyltransferases. These EPS are of interest due to their high viscosity 

(String test positive), the role of these types of polysaccharides on both the 

physiochemical properties of the massecuite and crystallisation. These species 

require further investigation as possible biofilm forming bacteria that serve as a 

reservoir for bacteria involved in deterioration during the harvesting season. 

 

Future work 
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There is an array of future studies that can be performed on the basis of the work 

presented here. The different bacteria isolated in this study can be utilised by the 

sugarcane industry in a range of studies to improve management strategies, reduce 

sucrose losses, and increase profitability. The isolates can also be used to test 

biocides to evaluate their effectiveness, more accurate measures of polysaccharide 

accumulation and develop treatments to specifically interfere with EPS production. 

The uses of non-EPS producing bacteria that inhibit the growth of isolates in this 

study are candidates for bio control that can be implemented to reduce 

polysaccharide accumulation in harvested cane. The variety of bacterial species 

involved in sugarcane deterioration suggests the analysis of the population dynamics 

during deterioration. The association of L. mesenteroides with deterioration may be 

the result of its ability to outcompete other species. 

 

Dextrans are a versatile and high value product which is utilised by the food and 

pharmaceutical industries. The majority of the bacteria which were isolated from this 

sucrose rich environment clearly produce dextran-like glucans which can be used for 

other applications. There is a range of commercial applications for dextrans of 

different molecular weights and I would recommend that each polysaccharide be 

fully characterised with regards to chain length, branching frequency and linkage 

distributions. Structural determinations can be achieved through methylation analysis 

and/or nuclear magnetic resonance.  
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