Pentastomiasis, also known as ‘tongue worm’ infestation or porocephalosis, is a parasitic zoonosis endemic to western and central Africa. In 1847, Pruner described the first human infection by a pentastomid in Cairo. The definitive hosts are snakes and other reptiles, while the intermediate hosts are carnivorous mammals and, rarely, humans. Most cases of human pentastomiasis are caused by two species of pentastomids, both of which have characteristics of arthropods and annelids, viz. Armillifer armillatus and Linguatula serrata. Adult pentastomids parasitise the upper respiratory tracts of snakes, lizards and other reptiles (definitive hosts). Humans become intermediate hosts by ingesting ova or larvae in contaminated food or water. Transmission may occur by handling or eating infected snakes (via respiratory discharges, saliva or faeces). A. armillatus infection is mostly asymptomatic in humans and is therefore an incidental finding either during surgery, at postmortem or by radiological investigation for unrelated pathology. A few cases of infected patients presenting with abdominal discomfort, a patient presenting with an acute abdominal emergency, two isolated cases of lethal infection, and infection of the human eye have been reported.

Case report

A 39-year-old Nigerian man, who emigrated to South Africa in 2001, presented with a 1-year history suggestive of hiatus hernia or gastro-oesophageal reflux disease (GORD). A barium meal examination was normal apart from the incidental finding of a number of calcifications in the liver, predominantly in the right upper quadrant, and a few in the mid-abdominal area. These were crescent-shaped, characteristic of the calcified cysts of A. armillatus (Fig. 1). The patient confirmed that snake had been a regular part of his diet while he was living in Nigeria. Typical preparation of the snake involved cutting it into sizeable pieces, then boiling the pieces in hot water before slicing them, adding spices and cooking over an open fire. Abdominal ultrasound revealed multiple small calcified granulomas in the right lobe of the liver (Figs 2a and b). The kidneys, spleen and pancreas were normal. Radiographs of the chest and thighs revealed no parasitic calcifications. A gastroscopy revealed early grade A reflux oesophagitis.
Armillifer parasites occupy the tracheae and bronchi of African rock pythons, puff adders and Mozambiquan spitting cobras. Several hours after the Armillifer ova reach the intestinal tract of the intermediate host, an embryo emerges to become a first-stage larva. These penetrate the intestinal walls and migrate along the peritoneum and pleura but cause little or no significant clinical reaction, although pneumonitis, bronchitis, pleuritis, pericarditis, hepatitis and peritonitis have been noted in patients with severe infection. They rarely produce extensive tissue damage or clinical symptoms, except in cases of heavy infestation when the migration of many live A. armillatus larvae beneath the peritoneum or pleura may cause sufficient irritation and pain to mimic an acute abdominal condition. The developing cysts can be harmful if they increase in size and volume and cause pressure on structures such as bile ducts or bronchi, leading to obstruction and infection. In Ibadan in Nigeria, pentastomiasis was found to be the third most common cause of hepatic fibrosis after tuberculosis and schistosomiasis. Calcified nymphs of Armillifer are easily recognised radiologically; they are crescent-, horseshoe- or comma-shaped, or coiled when seen face-on. They vary from 4 mm to 8 mm in size, are always multiple and are generally localised to the chest and upper abdomen (Figs 1 and 2a, b).

Armillifer calcifications are not found in muscle, which distinguishes them from the calcified cysts of cysticercosis. Armillifer calcifications may be confused with calcified mesenteric lymph nodes, or calculi, but the parasites are invariably multiple.

Pentastomiasis can only be treated by surgical removal of the parasites, which is performed only when it becomes a serious medical condition.

The authors thank Dr Alison Horsell for assistance with ultrasonography.


Discussion

Armillifer parasites occupy the tracheae and bronchi of African rock pythons, puff adders and Mozambiquan spitting cobras. Several hours after the Armillifer ova reach the intestinal tract of the intermediate host, an embryo emerges to become a first-stage larva. These penetrate the intestinal walls and migrate along the peritoneum and pleura but cause little or no significant clinical reaction, although pneumonitis, bronchitis, pleuritis, pericarditis, hepatitis and peritonitis have been noted in patients with severe infection. The larvae become encysted in various subperitoneal tissues such as the liver, spleen, mesentry and lungs. Usually they die and calcify within two years of infection of a human host. They rarely produce extensive tissue damage or clinical symptoms, except in cases of heavy infestation when the migration of many live A. armillatus larvae beneath the peritoneum or pleura may cause sufficient irritation and pain to mimic an acute abdominal condition. The developing cysts can be harmful if they increase in size and volume and cause pressure on structures such as bile ducts or bronchi, leading to obstruction and infection. In Ibadan in Nigeria, pentastomiasis was found to be the third most common cause of hepatic fibrosis after tuberculosis and schistosomiasis. Calcified nymphs of Armillifer are easily recognised radiologically; they are crescent-, horseshoe- or comma-shaped, or coiled when seen face-on. They vary from 4 mm to 8 mm in size, are always multiple and are generally localised to the chest and upper abdomen (Figs 1 and 2a, b).

Figs 2a and b. Ultrasound scan of the liver shows echogenic foci with posterior acoustic shadowing, caused by calcifications of parasitic nymphs concentrated in the right lobe.