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 Summary 
Antagonism of antimicrobial action represents an alternative survival strategy for cohabiting 

soil organisms. Under competitive conditions, our group previously showed that surfactin 

(Srf) produced by Bacillus subtilis acts antagonistically toward gramicidin S (GS) from a 

cohabiting bacillus, Aneurinibacillus migulanus, causing the loss the antimicrobial activity 

of GS. This antagonism appeared to be caused by inactive complex formation. This study 

aimed to elucidate whether the previously observed antagonism of GS activity by Srf is a 

general resistance mechanism that also extends to related peptides such as the tyrocidines 

(Trcs) and linear gramicidins (Grcs) from Bacillus aneurinolyticus. Molecular interaction 

between the antagonistic peptide pairs was investigated using biophysical analytical methods 

such as electrospray mass spectrometry (ESMS), circular dichroism (CD), fluorescence 

spectroscopy (FS) and nuclear magnetic resonance (NMR). 

Results from this study corroborated the previous findings, namely that Srf antagonised the 

activity of GS towards Gram positive bacteria. However, for Micrococcus luteus synergism 

of GS action was observed at low Srf concentrations, while antagonism only occurred at Srf 

concentrations above the critical micelle concentration (CMC) of Srf when the bacteria were 

pre-incubated with Srf. This result and an ultra-performance liquid chromatography mass-

spectrometry (UPLC-MS) study indicated that Srf pre-absorbed to cells, as well as Srf 

micelles interacted with GS, preventing GS from reaching the membrane target. Antagonism 

of GS action by Srf was also observed towards the Srf producer B. subtilis ATCC21332 and 

B. subtilis OKB120, a non-producer. The Srf producer was less sensitive than the non-

producer towards GS, possibly due to Srf production. Pre-incubation of Srf at different 

concentrations caused a dose-dependent antagonism, from as low as 0.9 µM Srf of GS 

activity towards B. subtilis OKB120. This antagonism at the low Srf concentration may be 

related to the induction of more resistant biofilms by Srf in B. subtilis. It was also found that 

Srf significantly improved the survival of B. subtilis OKB120 above that of M luteus in a 



 iv

mixed culture. In addition, the Srf producer B. subtilis ATCC21332 grew in the inhibition 

zone of the GS producer A. migulanus ATCC9999 during co-culturing, while B. subtilis 

OKB120 growth was inhibited. 

Srf induced biofilm formation in B. subtilis may be important in protecting the bacteria in 

solution, but not on solid phase such as on or in agar plates. Also, the protection of various 

cell types (previous studies by our group) by Srf from GS indicated a directed antagonistic 

Srf mode of action. Srf formed complexes that are visible and stable under ESMS conditions 

with GS, with the peptide bonds in the Val-Orn-Leu-D-Phe moiety of GS and the Val-Asp-

D-Leu-Leu moiety of Srf protected from fragmentation. 1H-NMR titration studies strongly 

indicated that the molecular interaction of Srf and GS involved the re-orientation of the D-

Phe4,9 and Orn2,7 residues in GS. From CD spectra it was observed that Srf induced a 

concentration dependent decrease in the β-turn component and increase in β-sheet structures 

of the GS-Srf mixture. Diffusion orientated NMR (DOSY) indicated that Srf and GS formed 

homo-oligomers with the Srf-GS mixture having a slightly higher diffusion coefficient 

indicating the formation of smaller homo-oligomers or more compact hetero-oligomers. 

These hetero-oligomers involve intermolecular interaction at <5Å between the Orn2,7 residue 

of GS with Asp residue of Srf, as observed with ROESY-NMR. These results strongly 

indicate that inactive complex formation between Srf and GS is part of the antagonistic 

mechanism of action of Srf towards GS. 

Two high performance liquid chromatography (HPLC) methods was developed to purify 

peptides from the tyrothricin complex, namely the Trcs (contains one GS Val-Orn-Leu-D-

Phe-Pro moiety) and Grcs. These peptides were used to assess if Srf has an antagonistic 

activity beyond that of GS. Srf indeed showed antagonistic action against the antimicrobial 

activity of Trcs towards B. subtilis ATCC21332 and OKB120, with the tyrocidine C (TrcC) 

being more sensitive to antagonism than tyrocidine B (TrcB). Srf had an ambiguous effect 

on the linear gramicidin A (GA) that is co-produced with Trcs in tyrothricin. GA acted 
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synergistically with Srf at low GA concentrations, but slight antagonism was observed at 

high GA concentrations. In contrast, GA showed pronounced synergism with TrcB towards 

the M. luteus. However, Srf at 30 µM, antagonised the synergistic action of a lethal mixture 

of 25 µM GA and TrcB. The Srf producer was also able to withstand and grow in the 

presence of the tyrothricin producer B. aneurinolyticus ATCC10068, indicating that 

antagonism of peptide action may allow different organisms to cohabit. Basic NMR and 

ESMS studies failed to show complex formation between Srf and the Trcs. However, CD 

presented clear evidence of Srf induced changes in secondary structures and/or higher order 

self-assembled structures of the Trcs-Srf mixture. FS also provided evidence of the 

reorientation/exposure of the Trp6 residue of the Trcs in the presence of Srf. These results 

corroborated the previous findings that complexation between Srf and GS or peptides 

analogous to GS may be part of the mechanism of Srf antagonistic action. 

In conclusion, this study showed that the antagonism of GS activity by Srf, conferred in part 

by inactive complex formation, is a putative resistance mechanism that also extends to other 

peptides containing the Val-Orn-Leu-D-Phe-Pro moiety such as the Trcs from B. 

aneurinolyticus. 
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Opsomming 

Antagonisme van antimikrobiese aksie verteenwoordig ŉ alternatiewe oorlewingstrategie vir 

grondorganismes wat in dieselfde habitat gevestig is. Ons groep het gewys dat surfaktien 

(Srf), geproduseer deur Bacillus subtilis, antagonistiese werking teenoor gramisidien S (GS) 

vanaf die bacillus Aneurinibacillus migulanus, onder kompeterende kondisies, toon. Die 

antagonistiese werking, wat moontlik veroorsaak word deur vorming van onaktiewe 

komplekse, lei tot die verlies van die antimikrobiese aktiwiteit van GS. Hierdie studie se doel 

was die ontrafeling van die moontlikheid dat die antagonisme van GS aktiwiteit deur Srf, 

soos deur vorige studies uitgewys, ŉ algemene weerstandsmeganisme is wat moontlik ook 

verwante peptiede soos die tirosidiene (Trcs) en lineêre gramisidiene (Grcs), afkomstig vanaf 

Bacillus aneurinolyticus, insluit. In hierdie studie is die molekulêre interaksie tussen 

antagonistiese peptiedpare ondersoek met biofisiese analitiese metodes wat elektrosproei-

massaspektroskopie (ESMS), sirkulêre dichroïsme (SD), fluoressensie-spektroskopie (FS) en 

kernmagnetiese resonansspektroskopie (KMR) insluit. 

Die resultate wat tydens hierdie studie verkry is, het gewys dat Srf die werking van GS 

teenoor Gram-positiewe bakterie teenwerk, en het die vorige waarnemings ondersteun. Daar 

is egter sinergisme tussen Srf en GS werking by lae Srf-konsentrasies teenoor Micrococcus 

luteus waargeneem, terwyl antagonisme slegs waargeneem is by Srf-konsentrasies hoër as 

die kritiese miselêre Srf konsentrasie wanneer bakterieë vooraf met Srf met inkubeer is. 

Hierdie resultaat, tesame met ŉ ultra-hoë verrigting vloeistofchromatografie gekoppelde 

massaspektroskopie (UPLC-MS) studie, het daarop gedui dat Srf wat voorheen op selle 

geabsorbeer het, sowel as Srf-miselle in die media, met GS interaksie het en sodanig kan 

voorkom dat GS die membraanteiken bereik. Antagonisme deur Srf op die GS aktiwiteit is 

ook waargeneem teenoor die Srf-produseerder B. subtilis ATCC21332 en B. subtilis 

OKB120, ŉ nie-produseerder. Hierdie tipe antagonisme by ŉ lae konsentrasie van Srf mag 
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verwant wees aan die induksie van meer weerstandige biofilms deur Srf in B. subtilis. Dit is 

ook gevind dat Srf die oorlewing van B. subtilis OKB120 aansienlik verhoog teenoor dié van 

M luteus in ŉ gemengde kultuur. Daar is verder bevind dat die Srf-produseerder, B. subtilis 

ATCC21332, in die inhibisiesone van die GS-produseerder, A. migulanus ATCC9999, 

gegroei het tydens kokultivering, terwyl die groei van B. subtilis OKB120 geïnhibeer is. 

Srf induseer biofilm-vorming in B. subtilis wat moontlik belangrik kan wees om die 

bakterieë in suspensie te beskerm, maar nie op soliede fase soos byvoorbeeld agar plate nie. 

Verder dui die beskerming van ŉ verskeidenheid sel-tipes (vorige studies deur ons groep) 

deur Srf teen GS, ŉ direkte antagonistiese aksie van Srf. Sigbare en stabiele komplekse 

tussen Srf en GS is waargeneem onder ESMS kondisies, waar die peptiedbindings in die 

Val-Orn-Leu-D-Phe-Pro eenheid van GS en die Val-Asp-Leu-D-Leu eenheid van Srf 

beskerm is teen fragmentering in die komplese. 1H-KMR titrasiestudies het duidelik 

aangetoon dat die molekulêre interaksie van Srf en GS die D-Phe4,9 en Om2, 7 residue in GS 

heroriënteer. SD-spektra van GS-Srf mengsels het daarop gedui dat Srf ŉ konsentrasie-

afhanklike vermindering in die β-draai komponente van die mengsel veroorsaak, maar dat β-

plaat komponent van die mengsel vermeerder. Diffusie-georiënteerde KMR spektrometrie 

(DOSY) toon dat Srf en GS homo-oligomere vorm, maar ŉ hoër diffusie koeffisiënt vir die 

mengsel het aangedui dat die Srf-GS mengsel kleiner of meer kompakte hetero-oligomere. 

ROESY-KMR toon dat hierdie oligomere intermolekulêre interaksie(s) van <5Å tussen die 

Om2, 7 residue van GS en die Asp residu van Srf het. Die resultate gee ŉ sterk aanduiding dat 

die onaktiewe kompleks-vorming tussen Srf en GS deelneem in die antagonistiese werking 

van Srf teenoor GS. 

Twee hoë verrigting vloeistofchromatografie metodes is ontwikkel om peptiede uit die 

tirotrisienkompleks, naamlik die Trcs (bevat een GS Val-Om-Leu-D-Phe-Pro eenheid) en die 

gramisidiene (Grcs), te suiwer. Hierdie peptiede is gebruik om te bepaal of Srf antagonistiese 

aktiwiteit het wat verder strek as net dié van GS. Dit was inderdaad die geval en daar is 
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gevind dat Srf antagonisties is teenoor die antimikrobiese aktiwiteit van Trcs met B. subtilis 

ATCC21332 en OKB120 as teikens, met tirosidien C (TrcC) wat meer sensitief vir 

antagonistiese werking van Srf was as tyrosidien B (TrcB). Srf het ŉ gemengde effek getoon 

teenoor lineêre gramisidien A (GA) wat saam met die Trcs in tirotrisien gekoproduseer 

word. GA het sinergisties met Srf gewerk by lae GA konsentrasies, maar milde 

antagonistiese werking getoon by hoë GA konsentrasies. Daarteenoor het GA en TrcB 

uitgesproke sinergisme getoon teenoor M. luteus. In teenstelling het Srf by 30 µM die 

sinergistiese aksie van die dodelike mengsel van 25 µM GA en TrcB elk geantagoniseer. Die 

Srf produseerder was ook bestand en kon in die teenwoordigheid van die tirotrisien 

produseerder B. aneurinolyticus ATCC10068 groei wat aangedui het dat die antagonisme 

van antibiotiese peptiedaktiwiteit die kohabitasie van organismes toelaat. Basiese KMR en 

ESMS studies kon nie kompleksvorming tussen Srf en die Trcs aantoon nie, terwyl SD 

duidelike bewyse gelewer het dat Srf verandering geïnduseer het in die sekondêre strukture 

en/of hoër orde/self-geassosieerde strukture van die Trc-Srf mengsel. FS het ook bewyse 

gelewer van die reoriëntasie/blootstelling van die Trp6 residu in die Trcs in die 

teenwoordigheid van Srf. Hierdie resultate ondersteun die vorige bevindinge dat 

kompleksvorming tussen Srf en GS of GS-peptiedanaloë deel van die meganisme van Srf se 

antagonistiese aksie uitmaak.  

Samevattend het hierdie studie getoon dat die antagonisme van GS aktiwiteit deur Srf deels 

toegeken kan word aan onaktiewe kompleksvorming tussen die twee peptiede en dat die 

voorgestelde weerstandsmeganisme ook ander peptiede wat die Val-Orn-Leu-D-Phe-Pro 

eenheid, soos die Trcs van B. aneurinolyticus, insluit. 
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Preface 
Antimicrobial peptides (Amps) are the most abundant antimicrobial agent in the world since 

they are produced by all living organisms. They can play an important role as antibiotics in 

the pharmaceutical industry but also as bio-control agents in the agricultural industry. They 

are produced under nutritional stress conditions in order for the producing organism to 

survive by killing interfering organisms. However, many organisms producing Amps are 

able to cohabit possibly due to various resistance or defence mechanisms. These resistance 

mechanisms can include drug efflux, hydrolysis, modification, trapping, neutralization or 

binding, change in cell envelope, mutation/modification of protein targets and/or vital 

processes of the host cell, biofilm formation and sporulation.  

We have hypothesised that a putative resistance mechanism namely antagonism between 

bacterially produced Amps may affect the soil microbial ecosystems. This occurs between 

two peptides from cohabiting bacteria, namely GS from A. migulanus and Srf from B. 

subtilis. Investigations showed that this takes place via formation of strong solution phase 

complexes between GS and Srf. It has also been hypothesised that similar antagonistic 

behaviour may also occur among other peptides analogues to GS such as the Trcs and linear 

Grcs from B. aneurinolyticus. Therefore, this study aims to elucidate the influence among 

different peptides from the soil bacteria A. migulanus, B. aneurinolyticus and B. subtilis on 

the activity of one another and attempts to clarify its underlying molecular mechanism and 

specificity. 

This thesis describes how the hypothesis was explored in term of the microbiological and 

chemical nature of Srf derived antagonism. A short overview of the peptides in this study, 

namely GS, Srf and peptides from the tyrothricin complex (Trcs and Grcs) is given in 

Chapter 1. The following four chapters (Chapters 2-5) describe the experimental results 

obtained in this study. In the final chapter (Chapter 6) the results of this study are 

summarised and related to Srf antagonistic mechanism of action. To ease future publication, 

each of these chapters was written with an article format in mind and form, to a degree, 

independent units. Although some repetition is unavoidable, it has been kept to a minimum. 

The major goal of this PhD was to test the hypothesis: “Resistance of the cohabiting 

organisms, B. subtilis and A. migulanus toward each others antibiotic peptides are the 

consequence of antagonistic peptide action”.  To reach the research goal, the aims of this 

investigation were as follows:  



 xx

• Determine the influence of the B. subtilis peptide Srf on GS antibacterial activity using 

broth based dose-response assays and agar based antimicrobial assays (Chapter 2). 

• Elucidate the biophysical character of the antagonism of GS by Srf using biophysical 

analytical methods such as ESMS, CD, and advanced NMR (Chapter 3). 

• Develop HPLC purification protocols, purify and chemically characterise selected 

peptides from the tyrothricin complex (Chapter 4).  

• Determine the influence of GA and Srf on the activity of the purified Trcs to identify 

possible antagonistic/synergistic peptide pairs using broth based dose-response assays 

and agar based antimicrobial assays (Chapter 5).  

• Characterisation of the possible molecular interactions of the antagonistic/synergestic 

peptide pairs using biophysical analytical methods such as ESMS, CD, FS and basic 

NMR (Chapter 5). 

Although our research group and department have the facilities to achieve some of the most 

important goals of this study, partnerships and collaboration with researchers and groups 

elsewhere were crucial to meet the aims, in particular those concerned with biophysical 

analyses. 
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Chapter 1                                                         

Antimicrobial peptides from Bacillus species 

Introduction 

Soil bacteria such as plant-growth-promoting rhizobacteria (PGPR) live in symbiosis with 

plants with which they interact at the plant roots in the rhizosphere [1]. In this partisanship, 

the two organisms communicate with one another to meet each other’s needs. PGPR 

produce nutrients, enzymes, small antibiotics, peptides and other metabolites that are 

beneficial for the plant nutritionally as well as providing protection against pathogenic 

microorganisms and parasites [1]. The plant offers the optimal conditions for bacterium 

growth and development. One of the most well-studied PGPR groups is the Bacillus 

species [2-4].  

Bacillus bacteria are Gram-positive, aerobic or facultative anaerobic spore-forming soil-

borne bacteria. Because of their ability to produce enzymes, metabolites and antibiotics, in 

addition to their physiological properties, they found application in many processes, such as 

the medical, agricultural, pharmaceutical and food industries [5-7]. The ability to activate 

specific mechanisms enables Bacillus species to adapt for survival during starvation [3]. 

Bacillus subtilis, for example, uses complex motility and chemotaxis systems to search for 

nutrients in the environment [8-10]. The production of antibiotics, such as antimicrobial 

peptides (Amps) and degrading enzymes, are the most common adaptations following food 
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depravation of Bacillus species [3]. The synthesis of these stress induced compounds 

requires the activation of certain genes during the transition from exponential to stationary 

phase [3]. These genes include operons that encode for the synthesis of enzymes 

responsible for the non-ribosomal assembly of specific Amps in Bacillus species [3]. Amps 

act as the first defence, which not only helps the bacterium to kill competitor organisms but 

also prevents intrusion of unwanted microbes in the growth environment [7]. They 

generally operate as components of the innate immunity and are widely distributed in other 

species [11]. Prolonged nutritional stress also results in sporulation, which provides the 

bacterium with a way to survive extended harsh environmental conditions [8]. The 

production of lipopeptides allows certain B. subtilis strain to modify their outer surface 

which permits them to regroup together in a biofilm in order to proliferate and spread in the 

territory (review in [5]). Biofilm formation also contributes to the defence and resistance 

mechanism of B. subtilis species towards other peptide or antibiotic producing organisms 

[12, 13].  

The discussion in this chapter will be limited to the three groups of Amps, produced by 

selected Bacillus species used in our study: the linear gramicidins (Grcs), gramicidin S 

(GS) and the analogous tyrocidines (Trcs), and the surfactins (Srfs) produced by three 

different bacilli. Bacillus brevis reclassified as Bacillus aneurinolyticus [14], produces the 

tyrothricin peptide complex that contains the neutral linear Grc and the basic cyclic Trc 

fractions [15].  Aneurinibacillus migulanus (previously known as the Nagano strain of B. 

brevis [14, 16, 17]), produces GS which is also a basic cyclic peptide related to Trcs [18]. 

B. subtilis strains produce two groups of cyclic lipopeptides, Srfs and iturins  [19, 20].  
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Peptide structures 

Peptides from soil bacteria are cyclic or linear, cationic or non-charged peptides which 

contain two or more moieties derived from amino acids [21]. Their structures have an 

amphipathic character and they can form different types of β-sheet or helical structures 

reinforced by intramolecular hydrogen bonds. 

Linear gramicidins  

The gramicidin D (GD) fraction of the tyrothricin complex are all linear, neutral 

pentadecapeptides formylated on the N-terminus end, with an alkanolamide on the C-

terminus [18] and a sequence in which L- and D-amino acid residues alternate [22]. There 

are ten known Grcs which differ from each other in three different residues. The first amino 

acid residue at the N-terminus end can either be a valyl (Val) or an isoleucyl (Ile). This 

creates two groups of Grcs (Val-Grc and Ile-Grc) [18].  Within each group, gramicidin A 

(GA), gramicidin B (GB) and gramicidin C (GC) can be distinguished by the nature of the 

eleventh amino acid residue. This amino acid residue is tryptophanyl (Trp), phenylalanyl 

(Phe) or tyrosyl (Tyr), respectively in GA, GB and GC (Table 1.1) [18]. A third 

replacement occurs at the C-terminus end of Val-GA (VGA) and Ile-GA (IGA) where the 

ethanolamide (HN(CH2)2OH) group is replaced by a propanolamide (NH(CH2)3OH) group 

[23]. Tang et al. [18], proposed a variant at the C-terminus end of all three Ile-Grcs where 

the C2H4 moiety of ethanolamide is branched rather than linear, whilst, Orwa et al. [23], 

reported another two methionine (Met) variants of GA at position 4 and 10 (4-Met-VGA 

and 10-Met-VGA) (Table 1.1).  
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 Grcs can form dimers that exist as β-sheets like secondary structures, folded to form a 

helix [24]. The dimers self-associate in organic solvents of low dielectric constant and their 

assembly number increases inversely with the polarity of the solvent [22].  

Table 1.1. Summary of the different naturally occurring Grcs with native structure 
CHO-AA1-Gly2-Ala3-AA4-Ala5-Val6-Val7-Val8-Trp9-AA10-AA11-Leu12-
Trp13-Leu14-Trp15-Z, showing the different substitution at positions 1, 4, 10, 
11 and Z (Amino acids are denoted using the three-letter abbreviation). 

Grcs AA1 AA4 AA10 AA11 Z Mr References 

VGA  L-Val D-Leu D-Leu L-Trp NH(CH2)2OH 1881.1 [18] 

IGA  L-Ile D-Leu D-Leu L-Trp NH(CH2)2OH* 1895.1 [18] 

VGB  L-Val D-Leu D-Leu L-Phe NH(CH2)2OH 1842.1 [18] 

IGB  L-Ile D-Leu D-Leu L-Phe NH(CH2)2OH* 1856.1 [18] 

VGC  L-Val D-Leu D-Leu L-Tyr NH(CH2)2OH 1858.1 [18] 

IGC  L-Ile D-Leu D-Leu L-Tyr NH(CH2)2OH* 1872.1 [18] 

4-Met-VGA  L-Val Met D-Leu L-Trp NH(CH2)2OH 1899.1 [23] 

10-Met-VGA  L-Val D-Leu Met L-Trp NH(CH2)2OH 1875.1 [23] 

VGA-propanolamide  L-Val D-Leu D-Leu L-Trp NH(CH2)3OH 1895.1 [23] 

IGA-propanolamide  L-Ile D-Leu D-Leu L-Trp NH(CH2)3OH 1909.1 [23] 
*The -CH2 of the -NH(CH2)2OH groups can either be linear or branched isoform  [18]. 

In this project optimised HPLC methods for the analysis and purification of a number of 

Grcs were developed and utilised and their identity and primary structures were confirmed 

with electrospray mass spectrometry (reported in Chapter 4). 
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Normally, and depending on both the solvent and their amino acid sequences, Grcs are 

either monomers or double stranded dimers, and once integrated into the membrane lipid 

they adopt a single type of structure, namely a right-handed single-stranded β6.3-helical 

dimer [25-30]. This structural conformation only occurs in double-layer membranes or 

micelles, and has been proven to be insensitive to the lipid environment, in several 

experiments, using different lipid membranes [26, 28, 31]. However, Grcs have also been 

reported to form double-stranded β6.3-helical dimers in membranes containing unsaturated 

lipids [29, 32].  

According to tandem mass spectrometry result metal ions bind inside the Grc dimers 

causing them to weaken, [22]. This effect increases with increasing metal ion size [22]. 

Grcs can also form dimers in phospholipid membranes, in which the conformation has been 

proven to be an amino terminal-to-amino terminal helix [24]. The common sequence for 

VGA, as a dimer is shown in Figure 1.1 with the different possible substitutions at specific 

sites indicated. 

The low temperature crystal structure of the GD-RbCl complex has been determined at 14 

Å resolution [33]. The crystal unit is asymmetric with two right-handed antiparallel double 

stranded dimers formed by four different Grc molecules [33]. Each dimer forms a 

symmetric channel that contains seven distinct Rb binding domains [33]. The Grc channel 

is thus formed by the peptide backbone and three to five carbonyl groups through which 

Rb+ ions, coordinated by delocalized π-electrons, pass [33]. 
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Figure 1.1. Schematic representations of VGA dimer (A) and of its channel structure 
(B) [adapted from Townsley et al. [34]]. Substituted amino acid residues are 
indicated with blue (non-aromatic hydrophobic amino acids) and red 
(aromatic amino acids).The 3-letter abbreviations of the amino acid residues 
are also given. The structure was drawn using the Yasara® version 8.6.29 for 
Windows [35, 36]. 

Gramicidin S 

GS is a basic cyclic decapeptide consisting of a pentapeptide repeat of an  

L-valyl-L-ornityl-L-leucyl-D-phenylananyl-L-prolyl unit (L-Val1-L-Orn2-L-Leu3-D-Phe4- 

L-Pro5), which is also conserved in the analogous Trcs [18]. The ring structure is linked 

between Val and Pro, forming an antiparallel β-sheet terminated in two type II β-turns, 

defined by D-Phe-Pro residues [37]. It adopts this three-dimensional arrangement in various 

solutions of different polarity and in the crystalline form [37]. Apart from that, GS structure 

is reinforced by four hydrogen bonds: two between Leu3 and Val6 residues and two 



 
1-7

between Leu8 and Val1 (Figure 1.2) [38]. GS also adopts a geometrical arrangement, 

leading to an amphipathic structure that is ideal for interaction with biological membranes. 

The hydrophobic side chains on one side interacts with the non-polar lipid tails and the 

hydrophilic groups and cationic ornithines on the other side with the polar lipid/water 

interface [39]. According to NMR experiments, GS shows limited conformational 

flexibility because of its two rigid type II’ β-turns and its antiparallel β-sheet conformation 

[37, 39]. The antiparallel β-sheet conformation of GS is presented in Figure 1.2. 
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Figure 1.2. A structural model of GS depicting its proposed antiparallel β-sheet 
conformation (adapted from Kawai et al. [40]).  The two Orn and two Phe 
residues are oriented in one plane forming the hydrophilic side of the 
molecule. The hydrophobic side formed by the two Leu and two Val 
residues is directed to the opposite plane of the molecule [41]. The structure 
is reinforced by four hydrogen bonds: two between Val1 and Leu8 and two 
between Leu3 and Val6 [38]. The structure was drawn using 
ACD/ChemSketch software (ACDLABS 12.0 software, [42, 43]) 
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Tyrocidines 

The Trcs are basic cyclic decapeptide analogues of GS, since they share the same 

pentapeptide unit Val1-Orn2-Leu3-Phe4-Pro5
. However, the second pentapeptide unit of the 

Trcs and analogues have a variable sequence namely L-(Phe/Trp/Tyr)6- 

D-(Phe/Trp/Tyr)7-L-Asn8-L-Gln9-L-(Phe/Trp/Tyr)10 [18]. Tang et al. [18] identified 28 

Trcs which differ from one another in residue positions 1,  2, 6, 7 and 10, occupied by a 

combinations of Leu/Ile, Lys, Phe, Tyr or Trp. The substitutions occur only between amino 

acids belonging to the same groups: aliphatic for aliphatic, aromatic for aromatic (Table 1.2 

and Figure 1.3) [18].  There are also two groups of Trcs that differ in terms of the nature of 

the cationic residue, which can either be an Orn or a Lys. Each group A/A1, B/B1 and C/C1 

can be distinguished from each other by their dipeptide units: L-Phe-D-Phe,  

L-Trp-D-Phe and L-Trp-D-Trp at positions 6 and 7.  

Table 1.2. Summary of the most common Trcs in the tyrothricin complex with the 
native structure cyclo-(L-Val1-L-AA2-L-Leu3-D-Phe4-L-Pro5-L-AA6-D-AA7-
L-Asn8-L-Gln9-L-AA10) showing the different substitution at positions 2, 6 
and 7.  

Trcs/ 
Tryptocidines L-AA2 L-AA6 D-AA7 Mr 

TrcA  Orn Phe Phe 1279.7 

TrcA1  Lys Phe Phe 1283.7 

TrcB  Orn Phe Trp 1308.7 

TrcB1  Lys Phe Trp 1322.7 

TrcC  Orn Trp Trp 1347.7 

TrcC1  Lys Trp Trp 1361.7 
Amino acids are denoted using the three-letter abbreviation. This table was adapted from Tang et al. [18]. 



 
1-9

The tryptocidines (Tpcs) and phenycidines (Phcs) are Trc analogues also found in the 

tyrothricin peptide complex, with respectively a Trp and Phe residue at position 10 rather 

than a Tyr. It has been proposed that the Trcs, similar to GS, form a rigid antiparallel β-

plated sheet structure maintained by four intrastrand hydrogen bonds that are  not sensitive 

to side chain variation [44]. Figure 1.3 shows the structure of cyclic TrcA taken as model 

structure of the Trcs.  

 

 

 

 

 

 

 

Figure 1.3. A structural model of the proposed antiparallel β-pleated sheet structure of 
TrcA [18], adapted from Qin et al. [44]. The variable amino acids of the 
Trcs are indicated in red (aromatic residues) and green (cationic residue). 
The conserved hydrophobic residues are shown in grey and the polar amino 
acids are shown in black. The structure was drawn using ACD/ChemSketch 
software (ACDLABS 12.0, [42, 43]) 

In this project optimised HPLC methods for the analysis and purification of a number of 

Trcs and analogues were developed and utilised and their identity and primary structures 

were confirmed with electrospray mass spectrometry (reported in Chapter 4). 
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Surfactins 

The Srfs are acidic cyclic lipopeptides consisting of seven amino acids with the cyclic 

peptide sequence L-glutamyl-L-leucyl-D-leucyl-L-valyl-L-aspartyl-D-leucyl-L-leucyl  

(L-Glu1-L-Leu2-D-Leu3-L-(Val/Ala)4-L-Asp5-D-Leu6-L-(Leu/Val/Ile)7) interlinked with a 

long hydrophobic alkyl chain (fatty acid residue)  via a lactone bond (β-hydroxy fatty acid 

bond) between Leu7 and Glu1
 (Table 1.3 and Figure 1.4) [45].  

Table 1.3. Summary of the most common surfactins in the commercial peptide extract 
with native structure X-cyclo-(Glu1-Leu2-D-leu3-AA4-Asp5-D-leu6-AA7) 
showing the different substitution at positions X, 4 and 7 [45]. 

Srfs X AA4 AA7 Mr 

Srf1  C15 Ala Val 994.7 

Srf2 C13 Val Leu 1008.7 

Srf3 C14 Val Leu 1022.7 

Srf4 C15 Val Leu 1036.7 

Several Srf variants that coexist in the same extract, differing at either residues 4 and 7 or 

the fatty acid tail length (Table 1.3) [45]. The fatty acyl chain generally contains between 

13 and 15 carbon atoms in the n, iso and ante-iso configurations [45]. Srf also has an 

amphipathic character with a hydrophobic side composed of the fatty acyl tail and non-

polar non-hydrophilic amino acid residues located in positions 2, 3, 4 and 7, while Glu1 and 

Asp5 form the hydrophilic side of the molecule (Figure 1.4) [45].  

Srf has a limited aqueous solubility and forms aggregates in solution. Aggregation is the 

consequence of Srf’s very strong surface tension activity resulting from its tendency to 
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absorb at a hydrophilic/hydrophobic interface [46]. This strong interface absorption is 

dependent on the balance between its minor polar and major hydrophobic domains [47].  

The three-dimensional structure of Srf has been determined from two dimensional 1H-NMR 

in 2H6-dimethylsulfoxide by Bonmatin et al. [47]. Two possible conformations of Srf (S1 

and S2), characterised by a “horse saddle” ring atom on which the two polar Glu1 and Asp5 

are attached, are proposed [47] (Figure 1.4).  

 

 

 

 

 

 

 

Figure 1.4. Structural representation of the two models S1 (A) and S2 (B) of Srf3 
structure (adapted from Tsan et al. [48]). In both models, the two acidic 
amino acid residues Glu1 and Asp5 together with Val4 form the hydrophilic 
plane of the molecule, whereas the four hydrophobic Leu residues are 
oriented in the other side of the peptide forming the hydrophobic plane. The 
variable amino acids of the Srfs are indicated in red (including the fatty acid 
chain) and the acidic amino acid in green. ACD/ChemSketch software 
(ACDLABS 12.0, [42, 43]) was used to draw these structures. 
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Polar and hydrophobic side chains are directed in opposite directions in the two models 

[47]. However, the two models differ in terms of the hydrogen bonds; there is only one 

hydrogen bond between the NH of Asp5 and the C=O of Leu2 in the S1 model (Figure 1.4 

A), whereas in the S2 model there are three hydrogen bonds (Figure 1.4 B) [47]. The two 

acidic groups in the S1 model are close together on the same side and form a “claw”, which 

can interact with divalent ions such as Ca2+ [47]. Thus, the conformation of S2 might 

correspond to a calcium-bound Srf whereas S1 might correspond to the cation-free 

lipopeptide [49]. Gallet et al. [46] modelled Srf at the hydrophobic/hydrophilic interface 

and found that the S2 conformation was the one that gave the most consistent interfacial 

characteristic, compared to experimental data obtained by a Langmuir film balance with S1 

conformation. According to Deleu et al. [49] S1 and S2 interact differently with 

membranes. Whether the membrane is charged or not, both acidic residues in the S2 

structure are situated in the polar region of the membrane, while in the S1 structure the two 

polar groups appear in different locations [49]. Asp5 is found in charged membranes in 

aqueous solution whereas Glu1 appears in the hydrophobic core in uncharged membranes 

[49]. However, when Tsan et al. [48] modelled the structure of Srf in sodium dodecyl 

sulphate (SDS) micelles they only found a single family of low energy structures, whereas 

in organic solvent the two families (S1 and S2) of similar energy minima were found. They 

hypothesized that SDS might stabilize the structure of Srf by “solvating” it [48].  No match 

could be made between the structure of Srf in SDS with either of the S1 or S2 structures 

obtained in organic solvent [48]. Only the “saddle-shaped” conformation with the two polar 

residues on the same side of the molecule was conserved [48]. There were no qualitative 
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differences in the dynamic properties of Srf in negatively charged micelles (SDS) and in 

uncharged micelles (dodecylphosphocholine, DPC) [48]. 

Bioactivity and structure-activity relationships 

All the above peptides are membrane active and have a broad spectrum of activity against 

Gram-positive  and Gram-negative bacteria [50-52], as well as against fungi and yeast. 

However, they also have lytic effects against human red blood cells at low concentrations, 

limiting their medical application [53-55]. The activity of this class of antimicrobial 

peptides is mediated not only by their amphipathic character, but also by key side chain 

groups in their amino acid sequences. 

Linear gramicidins 

The linear Grcs are active against Gram-positive bacteria as a defence mechanism of its 

producer [56]. They have potential as antibiotics agents in topical ophthalmic preparations 

and antibiotic preparations used to treat patients with burns [52, 57]. Their antibiotic 

activity is mediated by an increase cation permeability in biological membranes of the 

competitor organisms through ion channel formation which causes membrane lysis and cell 

death [58, 59]. Chapter 5 describes the action of linear Grcs alone and in combination with 

selected Trcs and GS. 

Apart from their potent antibacterial activity, linear Grcs also have exceptional antiviral 

activity, indicating their potential activity as prophylactic agents against sexually 

transmitted diseases such as HIV and herpes simplex viruses (HSV) type 1 and 2 [60]. 
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Nanomole concentrations in the order of 10 ng/mL are required for complete and effective 

HIV inactivation under in vitro conditions (10 ρg/mL leads to 50% inhibition of HIV 

infection) [61]. According to Bourinbaiar et al. [61] Grcs have an IC50 of 0.3 µg/mL against 

the type 1 and 2 HSV isolates and their efficacy is comparable to the anti-HSV agent 

acyclovir. The Grcs also has a suppressive effect on the replication of acyclovir-resistant 

thymidine kinase and DNA polymerase HSV mutants at the same effective dosage than 

against acyclovir-sensitive strains. The linear antibiotics also have antagonistic actions on 

the inhibitory effects of Trc on RNA synthesis in B. brevis [62, 63]. Grc have been assessed 

to have potential as immunosuppressants for organ transplantation [64]. Grcs also have 

lytic activity on normal erythrocytes, with a high selectivity for erythrocytes infected with 

malaria [65-67]. The activity of linear Grcs towards one of the major human pathogens 

leading to malaria, Plasmodium falciparum, was observed [53, 65-67].  According to 

Gumila et al. [68], GD has a 50% inhibitory concentration of 0.035 ng/mL against P. 

falciparum in vitro. Divo et al. [65] reported the IC50 value of Grcs toward the malaria 

parasite to be <0.02 ng/mL. 

Linear Grcs generally interact with lipid membranes and affect the membrane stability by 

forming monovalent cation selective ion pores (see [69] for detailed review). Trp residues 

have been found to play a very important role in the ion channel forming property of Grcs. 

Jordan et al. [70], examined the effect of substituting Trp residues on GA structure and 

function. They synthesized Grc analogues with Trp at positions 9, 11, 13 and 15 substituted 

by Gly. Two-dimensional NMR and distance geometry-simulated annealing structure 

calculations were used to determine the three-dimensional structure of analogues and 
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correlated with subsequent functional changes [70]. The Gly for Trp substitutions had little 

effect on the β6.3-helical structure in the peptide channel, however, it caused large changes 

in channel function since it altered the ion-dipole interactions that modulate ion movement 

[70]. According to Seoh and Busath [71], replacement of the four Trp residues with Phe 

disturbs the stability of the ion channels formed by Grc since the Trp residues mediate 

channel stability.  The GA analogue, in which all four Trp residues were substituted with 

Phe, still undergoes a conformational change from β-helical monomer to stable double 

stranded dimer once inserted into the lipid membrane [72]. Only negligible effects were 

observed when the Trp at position 11 was replaced by Phe, compared to at the other 

positions [71]. Deletion or addition (Tyr or hexafluorovaline at position 1) of a single 

amino acid residue, in only one of the two subunits of the dimer channel near the point 

where the two Grc molecules meet in the membrane centre, caused a mismatch between the 

subunits and can lead to voltage-dependent Grc channels [29, 73]. Replacement of Trp11
 

with a Phe or Tyr as in GB and GC respectively, affects the binding enthalpies of 

monovalent cations to the Grc channel and the transport properties of Grc analogues.  

Gramicidin S 

GS has applications as a broad spectrum antibiotic because of its antibacterial, antifungal 

and haemolytic activity. According to Kondejewski et al. [50], the minimum inhibitory 

concentration (MIC) of GS ranges between 3 and 12.5 µg/mL for Gram-negative bacteria 

and is 3 µg/mL for Gram-positive bacteria. GS has inhibitory actions on active transport of 

[3H]-alanine and [3H]-uridine in membrane vesicles isolated from B. brevis and B. subtilis 



 
1-16

at concentrations of 2 to 4 µmol/mg of membrane protein [74]. GS also exhibits activity 

against several pathogenic fungi [75, 76].  GS also has lytic activity on eukaryotic cells 

such as human red blood cells in vivo and in vitro and against malarial infected erythrocytes 

[75, 77]. According to Rautenbach et al. [54], GS is substantially less active than Trcs 

toward the growth of P. falciparum infected erythrocytes with an IC50 of about 1.3 µM. 

This antiplasmodial activity is the result of selective lysis of the more fragile infected 

erythrocytes. The investigations of the influence of Srf and GA on the B. subtilis, 

Micrococcus luteus and haemolytic activity of GS are reported in Chapters 2 and 5. 

The amphipathic balance of GS plays a crucial role in its antimicrobial and anti-fungal 

activity. Its amphipathicity is characterised by the existence of both a major hydrophobic 

side, composed of all its hydrophobic residues, and its minor polar side, composed of the 

two cationic Orn residues. These two Orn residues are important for ionic interactions of 

the peptide with the negatively charged phospholipids in membranes. Acylation of the 

amino groups in Orn residues was found to cause a drastic decrease in GS antibacterial 

activity (98% loss) and inhibition of active transport in membrane vesicles in vitro [74]. 

Nagamurthi and Rambhav [78] also investigated the importance of the two Orn groups of 

GS on the antimicrobial and haemolytic activity of this molecule by chemically modifying 

it through acetylation, formylation, carbamylation, deamination, trimethylation, 

succinylation and maleylation. More than 95% of the antimicrobial activity of the antibiotic 

was lost after these modifications, however, about 70-88% of the haemolytic activity of the 

drug was retained [78]. Modification or blockage of one of the two amino groups caused 
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only a 50% loss of the antimicrobial activity showing the equal contribution of the two Orn 

groups to GS activity [78]. 

The ring size of GS also plays a crucial role in its antimicrobial activity. Kirisci et al. [79], 

studied the effects of ring size analogues of GS, having 10, 12 and 14 amino acids in 

sequence (GS10, GS12 and GS14 respectively), on the thermotropic phase behaviour and 

permeability of a phospholipid model membrane, as well as on the growth of Acholeplasma 

laidlawii. A correlation was found between the relative potencies of GS and the ring-size 

with GS14 > GS10 > GS12 in terms of inhibition of A. laidlawii growth and membrane 

perturbation [79]. They also hypothesised that the primary target of gramicidin S is the 

bacteria bilayer membrane [79]. 

Tyrocidines 

As with GS, the analogous Trcs are membrane-active peptides that have a broad spectrum 

of activity towards a number of pathogens, including fungi, Gram-negative and Gram-

positive bacteria [52, 80].  According to Spathelf and Rautenbach [81], Trcs have lytic and 

growth inhibitory activity toward Gram-positive B. subtilis, M. luteus and Listeria 

monocytogenes and Gram-negative Escherichia  coli. The IC50 value of the Trc mixture 

was 3.9 ± 0.04 µg/mL against M. luteus [81]. The activity of cyclic Trcs towards B. subtilis 

and M. luteus and the influence by both Srf and GA on their activity is reported in 

Chapters 5. 

They also exhibit lytic activity against erythrocytes and malaria infected erythrocytes [54]. 

The IC50 values of Trcs were found to be in the nanomolar range with, TrcA, as the most 
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active, having an IC50 of 580 pM against in vitro P. falciparum [54]. The 50% lethal 

concentration (LC50) of the Trcs is ranged between 9 and 28 µM towards Hela and A549 

cells [54]. 

In B. aneurinolyticus, the Trcs regulate the RNA transcription during sporulation by 

forming a complex with the DNA [62, 63, 82]. This complexation with GC rich DNA 

sequences [63] induces conformational changes in the DNA structure [82] and results in an 

inhibition of RNA synthesis [62]. The presence of linear Grcs reverses the effect of Trcs on 

RNA synthesis since it weakens the Trc-DNA complex and causes its dissociation [63]. An 

increase in temperature also causes the dissociation of the Trc-DNA complex [63]. Trcs 

have been observed to inhibit active transport of [3H]alanine and [3H]uridine in membrane 

vesicles isolated from B. aneurinolyticus and B. subtilis at concentrations of about 2-4 

µg/mL [74].  

Several features are essential in the structure of Trcs to exert their function. The L-Phe6 

residue is important for bacterial activity and the ability of TrcA to inhibit both active 

transport in vitro and RNA synthesis [74]. The replacement of this amino acid with a Val 

residue reduces these effects in vitro [74]. The topology of Trc, with its hydrophobic region 

composed of all hydrophobic residues and its hydrophilic side consisting of the sequence 

Asn8-Gln9-Tyr10, also contributes to the antimicrobial action of the drug [83]. 

Consequently, replacing for example D-Phe7 with an D-Orn residue, to match the structure 

of its analogue GS, caused a large reduction in the antibacterial and inhibitory action of 

TrcA since it disturbs the hydrophobic-hydrophilic topology of the molecule [74, 83]. 
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However, replacing the Gln8 in TrcA with a cationic residue, such as Lys, increases the 

antibacterial activity [83]. 

Rautenbach et al. [54] investigated the structure-activity relationships of the naturally 

occurring Trcs on the growth of the malaria parasite in vitro. Activity against P. falciparum 

in vitro was closely related to the apparent hydrophobicity of the peptide, which increases 

with the Phe content, and inversely correlated to the side chain surface area of the major 

tyrocidines [54]. These correlations possibly explain why the antiplasmodial activity of 

TrcC1 was much lower than that of TrcA, the most potent Trc investigated in that study 

[54]. In general, the Orn analogues were also found to be more active than the Lys 

analogues in terms of their antiplasmodial activity. In addition to its importance in active 

transport and RNA inhibition [74], the Phe dipeptide unit is also an important determinant 

of antiplasmodial effects of Trcs [54]. Substituting these amino acids with two Trp, as is the 

case of the naturally occurring TrcC1, greatly reduced the selective activity of the Trc in 

vitro [54]. 

Spathelf and Rautenbach [81] found that the more polar TrcB/B1 and TrcC/C1 groups were 

substantially more active against Gram-positive bacteria than the TrcA/A1 group. However, 

several authors also investigated the effect of substituting other groups, which are not 

naturally alternated, on the antimicrobial and haemolytic action of Trcs. Qin et al. [44] 

synthesised TrcA analogues having a number of different amino acid residues at position 8 

(Gln) and tested their antibacterial and  haemolytic activity. They found that substituting 

Gln8 from the TrcA sequence with basic amino acids significantly reduces the undesired 

haemolytic activity of the peptide and simultaneously increases its potency toward 
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microorganisms [44]. This result, in addition to the activity differences between structural 

variants at the aromatic dipeptide unit (positions 6 and 7), constitutes that it is possible to 

develop novel synthetic analogues of the Trcs with improved activity, and reduced 

antimicrobial resistance and haemolytic activity [44]. 

Surfactins 

Srf has good antifungal activity and moderate antibacterial activity. It has been proposed 

that Srf can act synergistically with its analogue iturin A as bio-control agents to inhibit the 

growth of certain plant pathogenic fungi at low concentrations [84-86]. After they are 

excreted in extracellular medium, both iturin A and Srf can absorb to B. subtilis surface and 

induce changes in its hydrophobicity [87]. This is to allow the producer to adhere to plant 

and fruit surface which is essential for its survival and its biological control of plant 

diseases [87]. Vlok [88] has shown that Srf antagonises the antimicrobial activity of GS by 

forming stable complexes in the solution phase and possibly in the cell membrane. This 

was further investigated and is reported in Chapters 2 and 3. In Chapters 5 we report the 

effect of Srf on the activity of GS analogous Trcs. 

Srf also has antitumoral, antiviral [40] , as well as antimycoplasma activity [89, 90]. It 

disrupts the membranes of several viruses such as herpes viruses, retroviruses and other 

enveloped RNA and DNA viruses by interacting with the virus lipid membrane or envelope 

[91]. However, it also exhibits haemolytic properties that make it an unsuitable compound 

for medical applications [92]. Dufour et al. [55] found the IC50 of Srf against red blood 

cells to be 300 µM.  
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Srf also have activities not related to its lytic activity, for example some inhibitory effects 

on fibrin clot formation [93], cyclic adenosine monophosphate (cAMP) formation [93] and 

on platelet and spleen cytosolic phospholipase A2 [89]. The binding of Srf to bivalent 

cations such as calcium  ions explains its inhibitory action upon enzymes that need bivalent 

ions for their activity, such as cAMP phosphodiesterase and alkaline phosphatise [92, 94].  

Biosurfactants such as Srf must first adhere to their microbial target surface, which 

predominantly takes place through hydrophobic interactions, in order to exert activity [95]. 

Its membrane activity arises from the amphipathic three-dimensional topology of Srf, 

which comprises a hydrophobic face made up of all the hydrophobic amino acids and the 

fatty acid chain and a hydrophilic face with the two carboxylic groups of Glu1 and Asp5. 

The length of the lipid chain and the cyclic polar head of Srf promotes its insertion and 

penetration into the membrane layer, and the longer the lipid chain the deeper the 

penetration into the membrane lipid [95]. The activity of Srf is improved when its two 

acidic groups, protruding in the same side, are ionised and form a complex with a calcium 

ion [45]. Calcium ions induce changes in the binding of Srf to the membrane at the air-

water interface [45]. According to Gallet et al. [46], in the S2 structure the peptide ring of 

Srf adopts a flat orientation irrespectively to the fatty acid length, allowing similar 

interfacial areas of the folded and extended conformation of the peptide. 

Mode of action of the selected Bacillus antimicrobial peptides  

In order to study resistance or defence mechanisms toward antimicrobial peptides, the 

major goal of this project, it is necessary to have knowledge about their target(s) and mode 
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of action. Although the mode of action of some of these Amps has not yet been fully 

elucidated, studies have proven that they generally bind to the cell membranes of bacteria 

(or target cells) causing cell death by lysis. This lysis is possibly mediated by the formation 

of pores that induce ion leakage and general disruption of the membrane function and 

integrity [96]. Apart from the membrane target, these Amps under discussion also have 

several other targets which can be intracellular or nuclear [62, 82, 89, 94].  

Linear gramicidins 

The linear gramicidins have both membrane and intracellular targets. Because of their 

hydrophobicity linear Grcs generally interact with lipid membranes where they induce 

cation-selective ion channels/pores that allow the passive transport of ions (monovalent 

cations) across the membranes and cause an inhibition of cellular processes and cell death 

[97, 98].  The Grc channel occurs by dimerisation of transmembrane monomers through the 

formation of six hydrogen bonds [99, 100]. The formation of the Grc channel induces 

membrane deformation and is influenced by the membrane thickness [101]. Cholesterol 

increases the membrane thickness [102, 103] and therefore reduces the channel activity of 

Grc [104, 105]. 

Selectivity of the Grc channel for monovalent cations (such as K+, Na+, Li+, Ti+, NH4
+ and 

H+) and impermeability of multivalent cations and anions have been observed [98]. The 

binding of a cation to the Grc channel constitutes the first step in this free energy transport 

process. The order of Grc selectivity for monovalent cations is Cs+ > Rb+ > K+ > Na+ > Li+ 

[106, 107]. The ions inside the channel are coordinated by four alpha-carbonyl groups from 
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the four Trp residues in GA, and two water molecules that also contribute to the free energy 

barrier of the channel [108]. These Trp residues play a very important role in the ion 

channel forming property of GA [70, 71].  

Grcs have the ability to convert the micellar organisation of lysophosphosphatidylcholine to 

a bilayer type of organisation depending on the type of solvent [109, 110]. Additionally, 

hexagonal HII phases have been demonstrated to occur when Grcs are present in high 

concentrations in natural and bilayer-forming lipids [111, 112]. The thickness of the acyl 

chain of the membrane has an influence on the concentration of Grc required to induce HII 

phases [113, 114]. The latter is known to decrease with an increase in membrane thickness 

[113, 114]. The cyclic Trcs reverse the HII phase, induced by a high concentration of Grc, 

in dioleoylphosphatidylcholine model membranes [115]. 

It has been suggested that Grcs, together with Trcs, act as gene regulators (interaction with 

RNA-polymerase and DNA) in the producer B. aneurinolyticus [62, 63, 116]. Linear Grcs 

inhibit RNA polymerase in a nonspecific way by interfering with the formation of a stable 

initiation complex between RNA polymerase and DNA [116]. Depending on the presence 

of RNA polymerase from B. aneurinolyticus, linear Grcs also antagonise the Trc-DNA 

complex responsible for the inhibition of the RNA synthesis by dissociating the tyrocidine-

DNA complex [116] similar to the way in which it antagonises the effect of tyrocidine on 

membrane permeability in model membranes [115]. 

Otten-Kuipers et al. [66] studied the mechanism of the lytic action of Grc and tryptophan-

N-formylated Grc by looking at their ability to change the potassium and sodium 
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composition of normal human and malaria infected erythrocytes. Both peptides cause 

potassium efflux and sodium influx in erythrocytes with Grc being ten times more effective 

than its analogue [66, 67]. It was hypothesised that P. falciparum death is caused by 

potassium leakage from infected erythrocytes, induced by the peptide application [66, 67]. 

Even though more than 50% of the erythrocyte potassium content can be lost upon the 

treatment with Grcs and analogues, erythrocytes are still able to restore their normal ion 

content since Grcs do not cause irreversible damage to them [66]. 

Recent studies have shown that linear Grcs have effects on viral replication, such as HIV 

and HSV [60]. However, the mechanism of this action can only be inferred due to lack of 

experimental evidence. Viruses cause an increase in the cytosolic K+ content in order to 

force the host cell to produce their own proteins and multiply [60]. It has been proposed 

that linear Grcs may reverse this process by expelling K+ from the cell and re-establishing 

the normal cell polarity [60]. Depletion of the cytosolic K+ content is detrimental to the 

survival of the virus in the host system and will cause the virus to die. A perturbation of the 

ionic gradient across the cell membrane by the ionophore action of the Grcs may also be a 

possible way to inactivate viruses, for instance retroviruses [60].  

According to Hirano et al. [64] Grcs suppress the proliferation and differentiation of 

cytotoxic T cells or B cells by altering the membrane composition of blastomers, which 

results in the disturbance of membrane fluidity of target immune cells. A modulation of the 

intracellular Ca2+ levels by the action of Grcs may also account for the mechanism of 

lymphocyte suppression since increased intracellular Ca2+ concentrations are important for 

nitrogen stimulation of lymphocytes proliferation [64]. Hirano et al. [64] also showed that 
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linear Grcs suppress allograft rejection in vitro, in a manner similar to that of cyclosporine 

at 4-8 mg/kg/day, in a heterotopic heart transplantation rat model. 

Gramicidin S 

The antibiotic GS targets both the cell membrane and intracellular targets [20-27]. The 

mechanism by which GS kills bacterial cells and lyses erythrocytes appears to be through 

permeabilisation and disruption of the lipid bilayer of their biological membrane (outer 

membrane) [117, 118]. GS acts by changing the ion permeability of the lipid membrane 

because of its amphiphatic character and its rigid β-turns structure which it adopts in 

membrane environments [37, 39]. As shown by Jelokhani-Niaraki et al. [75], the first step 

in the mode of action of gramicidin S is its absorption into the membrane and its 

stabilization in a β-turn/sheet secondary structure. In the second step, the interaction of the 

peptide with membrane lipids and/or other GS molecules brings about changes in the 

morphology of the lipid bilayer, which causes a deterioration in the membrane structure 

[75]. According to Staudegger et al. [119], GS disrupts lipid membranes by increasing the 

negative curvature stress, causing the formation of bi-continuous inverted cubic phases at a 

lipid-to-membrane ratio of 25. This loss of the non-lamellar phase, essential for normal 

membrane function promotes the permeabilisation and/or disruption of the lipid bilayers 

[120]. Mihailescou and Smith [39] found that GS had little effect on the membrane 

potential and water permeability of the membrane. However, GS orders lipids which is not 

directly interacting with it and disorders neighbouring lipids, rendering certain areas of the 

membrane more crystalline and other more fluid [39].  
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The mechanism of GS action on bacterial and fungal targets has also been reported. It has 

been demonstrated that GS can absorb to the outer membrane of Gram-negative bacteria 

such as E. coli and disrupt its permeability barrier and/or stimulate the efflux of K+ ions 

through the outer membrane [117]. GS may compete with divalent cations such as Mg2+ 

and Ca2+ which help to stabilize the lipopolysaccharide moiety of the E. coli outer 

membrane [117].  GS also proved to be potent against mollicutes at a MIC of 2 to 50 nM 

[120]. These actions are most probably due to a change in the membrane potential of 

spiroplasmas, which is partly responsible for their motility and shape [120]. 

In erythrocytes, GS molecules embed in the lipid membrane from its hydrophobic side, 

with the two cationic Orn residues oriented in the hydrophilic interface preventing further 

penetration of the peptide deeper into the bilayer [77]. GS accumulation in the membrane 

leads to a deformation in the erythrocyte as the membrane structure becomes more and 

more unstable [121]. Instability is subsequently due to membrane phospholipids being 

released, which leads to an increase in permeability and lysis through small lesions [118, 

121]. Our group demonstrated multiple small associated vesicles that trails the GS affected 

erythrocyte, a result that substantiates the curvature stress hypotheses [122]. The 

susceptibility of prokaryotic, rather than eukaryotic organisms to GS is due the presence of 

cholesterol in eukaryotic membranes which attenuates but does not abolish the interactions 

of GS with phospholipids bilayer membranes [123].  

Apart from the primary membrane target GS also has several other possible targets, such as 

certain proteins embedded in the cytoplasmic membrane that are involved in ion transport 

and respiratory processes of the producer organism [74]. Since GS inhibits the active 
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transport of [3H]-alanine and [3H]-uridine across membranes, these effects are proposed to 

be mediated by hydrophobic and hydrophilic interactions with the cytoplasmic membrane 

[74]. GS was also determined to cause inhibition of the in vitro DNA transcription by 

forming a complex with A. migulanus DNA [16]. However, no inhibition was recorded 

during growth and sporulation of the producer by the antibiotic in vitro [16]. It was 

suggested that GS may not affect sporulation directly, but play an inhibitory role in DNA 

transcription during germination and outgrowth [16, 124, 125]. According to Bentzen and 

Demain [126], GS causes delay in germination outgrowth of its producer strain either by 

killing cells or decreasing their metabolism. 

Tyrocidines 

The mode of action of the Trcs upon membrane disruption has not yet been fully elucidated 

although they were one of the first membrane active agents discovered [127, 128]. 

However, they are known to act on both membranes and intracellular targets, with a more 

pronounced activity against Gram-positive targets [128]. Both lytic activity and an 

influence on intracellular processes, such as the inhibition of certain enzymes and  DNA 

transcription in its producer have been proposed [62, 63, 82]. Studies of the kinetics of 

TrcB on phospholipid bilayers have shown that the peptide absorbs into the bilayer prior to 

act through bimolecular transmembrane structures [129]. On the membrane, Trcs are 

proposed to act as ion-carriers for monovalent cations such as Na+ and K+ [130]. The ion 

kinetic rates of TrcB increase in the order K+<Na+<NH4
+ [131]. Studies by Spathelf  [132] 
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indicated the divalents ions, in particular Ca2+, may be an important mediator in the activity 

of the Trcs. 

Cyclic Trcs can interact with different lipid membrane systems since they have the ability 

to perturb the gel state of these membranes [115]. A lower gel to liquid-crystalline 

transition temperature was induced by interaction of the peptide with 

dielaidoylphosphatidylethanolamine model membranes, with a maximum decrease for 

phosphatidylcholines [115]. The interaction of the peptide was stronger with 

phosphatidylcholine acyl chains, showing a strong fluidizing effect on these chains [115]. 

Furthermore, cyclic tyrocidines were shown to reverse the HII phase transition promoted by 

linear gramicidins [115].  

The antibacterial and antifungal activities of Trcs have also been described. Trcs are active 

against Neurospora in vitro [133]. It has been reported that the peptide interacts primarily 

with the Neurospora cell membrane, causing membrane damage and ion release [133].  

Trcs also exhibit inhibitory effects not related to its lytic activity. According to Changeux et 

al. [134], the peptide inhibits acetylcholinesterase from the electroplax membrane causing 

the enzyme to form aggregates through interaction with it. The antibiotic-enzyme complex 

may cause structural modification of the enzyme, which could be responsible for the 

reduction of the accessibility of the enzymes catalytic site to its substrate [134]. Trcs were 

also found to inhibit yeast hexokinase activity responsible for the anaerobic fermentation 

and respiration of the organism at very low concentrations. Furthermore, an inhibition of 

anaerobic glycolysis of tumor slices in mice by the peptide (at high concentrations) was 
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also reported in the same study [135]. According to Rautenbach et al. [54], naturally 

occurring TrcA have a highly selective non-lytic activity on the erythrocytic stages P. 

falciparum, halting the parasite in the trophozoite stage. 

Results of several studies have also suggested the extension of the biological activity of 

Trcs to the producer organism, B. aneurinolyticus, as gene regulator during sporogenesis 

[62, 63, 82]. Trcs were determined to bind by interchelation onto the G+C rich region of 

DNA causing an inhibition of the transcription of the double-stranded DNA [63]. 

According to Bohg and Ristow [82], under conditions of saturation one Trc molecule 

interacts within ten base pairs, with a preference for G+C base pairs. At low Trc:DNA 

ratios, Trcs induce changes in the super-helical secondary structure of plasmids by reducing 

the number of their β-helical turns, which causes relaxation of plasmids [62]. Grcs weaken 

this complex by reducing the Trc:DNA dissociation energy [116].   

Surfactins 

The biosurfactant peptide Srf possesses both membrane targets and some non-membrane 

targets. The primary step in Srf’s mechanism of membrane disturbance is the insertion of 

the peptide into the lipid bilayers [136]. This action depends on the nature of the 

phospholipid bilayers since penetration is better in the case of phospholipids, such as 

myristoyl acyl containing phospholipids, with hydrocarbon chains of similar lengths as its 

fatty acid tail (which contains about 13 to 16 carbon atoms). Srf spontaneously interacts 

with the lipid membrane by means of hydrophobic interactions [137]. Electrostatic 

interactions and increased phospholipid acyl chain length reduce the penetration of Srf, 
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whereas the presence of bivalent ions such as Ca2+, which neutralize the charge of the 

peptide, leads to changes in the penetration process [137]. Srf aligns itself so that its fatty 

acid tail interacts with the phospholipids and faces toward the phospholipid acyl chains and 

its ring alongside the phospholipid head groups. Once inserted into the membrane, Srf 

molecules aggregate and cause the formation of pores that break down the underlying 

structure of the lipid bilayer [136]. According to Heerklotz et al. [138] Srf tilts the acyl 

chain of lipid membranes and causes the lipid head groups to re-orientate towards the 

membrane interior upon insertion of the peptide deep inside the hydrophobic-hydrophilic 

interface of the membrane. Because Srf forms an inverted cone-like structure, the Srf 

aggregates lead to a positive curvature in the membrane, which is responsible for the 

destabilisation of the lipid bilayer [138]. The incorporation of the peptide is accompanied 

by a strong dehydration of the phospholipid carbonyl groups, which is caused by a decrease 

in the hydrogen bonding of water to these group [139]. The decrease in hydrogen bonding 

with water reduces the water penetration into the polar head groups of the membrane and 

causes vesicle/membrane fusion [139]. These effects, combined with the interaction of 

surfactin with phospholipid acyl chains explain the destabilisation of lipid packing by the 

lipopeptide and the loss of vesicular content that is observed [139]. The prevalence of 

hydrophobic residues also facilitates the insertion of Srf into the membrane [138]. The Srf-

active properties of Srf increase with the length of the aliphatic chain of Srf, which is 

crucial in penetration ability [95]. Cholesterol and palmitoyloleylphosphatidylcholine 

(POPC)  modify the membrane curvature and thus reduce the effects of Srf, presumably by 

counteracting its inverted cone shape that is responsible for the introduction of curvature 

stress in the lipid bilayer [139].  
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Srf and iturin A, another co-produced lipopeptide in some B. subtilis strains, were shown to 

have synergistic antifungal and antibacterial activity [84-86]. Furthermore, it has been 

demonstrated that Srf and iturin A can absorb to the B. subtilis surface and modify its 

hydrophobicity [87]. Once secreted by its producer, Srf readily absorbs to the bacterium 

surface and may increase or decrease its hydrophobicity (depending to the B. subtilis 

strain). With hydrophobic strains the absorption will result in a decrease in hydrophobicity 

and with hydrophilic strains there will be an increase in hydrophobicity [87]. The increase 

in B. subtilis surface hydrophobicity by Srf has been determined to enhance the motility 

and chemotaxis system of the bacterium during nutritional depravation to search for 

nutrients [8, 10, 140]. Swarming motility is only possible in an undomesticated B. subtilis 

strain capable of producing Srf [10]. This can only occur with a minimum potassium ion 

concentration, since K+ stimulates Srf production [140]. Motility appears to be a crucial 

stage before the differentiation of bacteria into complex structures such as biofilm [141] 

and it has been shown that Srf encourage the formation of biofilm in B. subtilis strains [5, 

142].  

Srf also has antiviral activity, and several studies have been conducted to investigate the 

mechanism by which it inactivates enveloped viruses [91]. Interaction of the lipopeptide 

with a virus lipid membrane appears to be the mode of action by which Srf neutralise 

viruses [91]. Ion leakage occurs at high Srf concentrations (higher than 50 µM which is 

well above its critical micellular concentration of about 7 µM) by a complete disintegration 

of the envelope and the capsid of the virus particles, probably as a consequence of the 

detergent-like effect of Srf [91].  
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Biosynthesis 

All the antimicrobial peptides described here are secondary metabolites that are synthesised 

non-ribosomally on multifunctional enzyme complexes during periods of nutritional 

depletion or environmental stress [21, 143]. This synthesis is not sensitive to protein 

synthesis inhibitors, it can occur in particle-free RNAase-treated bacterial extracts [144] 

and is not restricted to the 20 natural occurring amino acids [145]. Unnatural amino acids 

(D-amino acids, L-α-amino butyric acid, hydroxy-amino acids and, D- and N-methylated 

amino acids) and other groups such as fatty acid moieties can also be included in these 

Amp structures [145].  

The synthesis of non-ribosomal peptides takes place on multiple-carrier thioesterase 

templates through a series of ordered and arranged processes facilitated by each module 

[145, 146]. Each peptide synthetase can contain four to six modules capable of recognizing, 

activating, modifying and adding a residue to the growing peptide chain [21, 147]. Each 

module has a specialised function in the non-ribosomal peptide synthetases (NRPSs) and is 

responsible for the incorporation of a single amino acid to the peptide chain [145, 148].  

Modules comprise enzymatic units, called domains, that catalyse amino acid activation, 

binds covalently to the activated amino acid substrate and facilitates peptide bond 

formation [145]. Related amino or carboxy acid substrate are activated to aminoacyl 

adenylate on the adenylation domain (A-domain) of NRPSs using ATP [145, 149]. A 

peptidyl carrier protein (PCP-domain) then transfers the activated substrate to the 

condensation domain, which helps in elongating the peptide chain by catalysing the 
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condensation of the thioester-bound intermediates [145, 149]. The termination of the 

synthesis is catalysed by the thioesterase-domain, the terminal enzyme of the last module 

which can achieve the incorporation of groups such as N-terminal β-hydroxy fatty acyls 

(Srf and iturins) or the formation of cyclic structures (Trcs and GS) to the peptide [145]. 

Secondary modifications such as acylation, glycosylation and methylation (to form linear 

Grcs) may follow this process [21].  

Linear gramicidins 

Grcs are produced by a nonribosomal multi-enzyme thiotemplate mechanism. Kessler et al. 

[149] studied and characterised the new reductase domain of the linear Grcs biosynthetic 

genes cluster through cloning, sequencing and biochemical analysis using a DNA locus of 

B. aneurinolyticus ATCC 8185. They identified four genes; lgrA, lgrB, lgrC and lgrD (with 

the respective molecular masses of 6.8 kbps, 15.5 kbps, 23.3 kbps and 15.3 kbps) coding 

for the NRPSs (LgrA, LgrB, LgrC and LgrD respectively) having two, four, six and four 

modules, respectively [149]. There are seven epimeration domains, which alternate in 

position within the 16 modules: a formylation domain linked to the first module LgrA and a 

reductase domain attached to the C-terminal module LgrD [149]. The 16 modules catalyse 

the biosynthesis of a 16 amino acid peptide, which comprises a C-terminal N-formylated 

glycine residue bound to PCP-domain of module 16 via a thioester bond to its carboxyl 

group [149, 150]. This glycine terminal attached to the PCP-domain is then reduced to the 

corresponding aldehyde intermediate by an adjacent reductase through a process that is 

dependent on NAD(P)H [149, 150]. A second reductase, the aldoreductase LgrE, catalyses 
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the NADPH-dependent reduction of the aldehyde intermediate to an alcohol releasing the 

N-formyl-pentadecapeptide-ethanolamine product [149, 150]. LgrE is an aldo/keto 

reductase family protein encoded by an open reading frame (ORF) of 1692 base pairs 

upstream of lgrA responsible of post-NRPS assembly steps of Grc synthesis [149, 150]. 

Gramicidin S 

The synthesis of GS is catalysed by two enzymes, gramicidin synthetase 1 (G1) and 

gramicidin synthetase 2 (G2) that form a multifunctional enzyme complex [4] (Figure 1.5]. 

The DNA sequence of the GS biosynthetic operon (grs) contains three ORFs corresponding 

to the genes grsA, grsB and grsT, organised in one transcriptional unit [151]. The grsA 

structural gene is located 3 kb from the 5’ end of grsB and both genes are transcribed in 

opposite directions [152]. The genes grsA and grsB encode for G1 (126.661 Da) and G2, 

each containing one and four modules respectively [152, 153].  

 G2, the C-terminal domain of each reaction centre, has an active serine involved in 

covalent binding to the substrate amino acids [153]. The peptide chain is formed via the 

multiple peripheral 4’-phosphopantetheine carrier attached to an active serine at the 

reaction centres in GS synthesis [153] . First, a Phe residue is activated and racemised to D-

Phe in G1, where after it is transferred to G2 which catalyses the elongation of the 

additional four amino acids (Pro, Val, Orn and Leu) forming a pentapeptide.  
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Figure 1.5. Schematic representation of the biosynthetic machinery, consisting of two 
NRPSs, G1 (module 1) and G2 (modules 2-5), responsible for the enzymatic 
assembly of GS. Abbreviations for the different domains: A, adenylation; 
PCP, peptidyl carrier protein; E, epimerisation; C, condensation; TE, 
thioesterase ([154]). 

Two assembled pentapeptides are dimerised on the thioesterase domain of G2 (TE domain) 

which subsequently catalyses the cyclisation of the decapeptide, resulting in the cyclic GS 

(Figure 1.5) [155]. A 4’-phosphopantetheine  moiety participates in the growing of the 
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peptide chain as a carrier in the enzyme complex [153]. In A. migulanus strains, the amino 

acid L-Orn is formed from arginine by a highly specific enzyme, namely arginase [17]. GS 

production is accelerated by an increase in L-Orn formation by arginase [17]. 

Tyrocidines 

The synthesis of the Trcs are similar to the GS synthesis [149, 154]. The entire Trc 

biosynthesis operon (39.5 kb) containing the genes tycA, tycB and tycC of the DNA locus 

of B. aneurinolyticus ATCC 8185, has been cloned and sequenced by Mootz et al. [148] 

(Figure 1.6). It encodes three multifunctional Trc synthetases TycA, TycB and TycC  (also 

called TY1, TY2 and TY3 by certain authors, [154]) that consist of one, three and six 

modules, respectively [148]. The first gene tycA encodes for only one module with a 

123kDa gene product, TycA. Downstream of this gene are two large ORFs that are 

transcribed in the same direction. The first ORF tycB (735 bp) encodes for 404. 6 kDa gene 

product, TycB consisting of three modules, each containing a putative condensation 

domain, an adenylation domain and a thiolation domain [148]. The C-terminal end of the 

last module of TycB contains the epimerization domain [148]. The second ORF, tycC 

(19461 bp) encodes for a 723.6 kDa gene product TycC containing six modules [148]. The 

C-terminal end of the sixth module contains a putative thioesterase domain [148]. It 

catalyses the incorporation six amino acids Asn, Gln, Tyr, Val, Orn and Leu into the 

peptide product, taking TrcA as the reference peptide of the Trc fraction of tyrothricin 

(Figure 1.6). 
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Figure 1.6. Schematic representation of the Trc biosynthetic machinery, consisting of 
two NRPSs, TycA (module 1), TycB (modules 2-4) and TycC (modules 5-
10), responsible for the enzymatic assembly of Trcs. The linear N-
acetylcysteamine (S-NAC) TrcA derivative in the box represents a synthetic 
precursor the can be cyclisized using TycC-TE. Abbreviations for the 
different domains: A, adenylation; PCP, peptidyl carrier protein; E, 
epimerisation; C, condensation; TE, thioesterase ([154]). 

The sequence comparison of the gene product of the Trc biosynthesis operon shows high 

sequence similarity between the modules of the Trc synthetases with each other (34% to 

60% identity) and the GS synthetases (adenylation domains of TycB and TycC with G2 

have between 63% to 68% identity) [148]. Since GS shares the sequence unit Val-Orn-Leu-

D-Phe-Pro with the Trc fraction of tyrothricin similarities in modules between GS and Trc 

synthetases also occur [148]. The Trc synthetase may have evolved by insertion of the five 

modules from the GS synthetases since the last two domains of TycB and the first three 
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domains of TycC correspond to G1 and G2 (consisting of five modules each) [148]. 

However, the tyc operon has a higher G+C content compared to the grs operon (45% 

compared 36%, respectively). 

Mootz and Marahiel [148] detected three additional ORFs, tycD, tycE and tycF, 

downstream of the tyc gene which encode for the gene products tycD, TycE and TycF (66 

kDa, 64 kDa and 28 kDa, respectively) [148]. TycD and TycE show good similarities to 

members of the ABC transporter family since they present six trans-membranes helices in 

their N-terminal part and the ATP-binding cassette at their C-terminal [148]. These 

transporters may be involved in conferring resistance against Trcs in its producer and the 

gene product TycF may be a putative thioesterase [148]. 

Surfactins 

The NRPS mechanism of Srf synthesis differs from that of the three described above in that  

all amino acids are activated by an ATP-Pi exchange reaction during the biosynthesis [4]. 

Four enzymes E1A, E1B, E2 and E3 form the Srf multi-enzyme template system. These 

enzymes are encoded in the srfA operon of B. subtilis and catalyse the incorporation of the 

substrate amino acids of the Srfs. The first and second ORFs of srfA, srfAA and srfAB 

encode for the NRPS E1A and E1B which are composed of three domains each [156]. E1A 

is responsible for the incorporation of the residues Glu1, Leu2 and D-Leu3 while E1B 

incorporates the residues Val4, Asp5 and D-Leu6. The third ORF of srfAC encodes for the 

NRPS E2, which is responsible for the incorporation of Leu7 into the peptide sequence 

[156]. Another ORF within the srfA operon, srfAD, encodes for an acyltransferase E3 



 
1-39

D-Leu6
L-Val4

L-Leu7
L-Asp5D-Leu3L-Leu2L-Glu1

which catalyses the binding and transfer of the β-hydroxy fatty acid substrate to E1A thus 

initiating the synthesis of the Srfs [156].  Figure 1.7 gives a schematic representation of the 

biosynthetic machinery of assembly line of Srf3 (also referred as SrfA [157]); E1A (SrfA-

A), E1B (SrfA-B) composed of three modules each and E2 (SrfA-C) composed of one 

module [157]. 

 

 

 

 

 

 

 

 

 

Figure 1.7. Schematic representation of the biosynthetic machinery of assembly line of 
Srf3 taken as the reference Srf from Bacillus subtilis ([157]). The building 
blocks incorporated by each module are indicated (three modules for both 
SrfA-A and SrfA-B; one for SrfA-C). Abbreviations for the different 
domains: A, adenylation; E, epimerisation; C, condensation; TE, 
thioesterase. Amino acids are denoted by the three letters abbreviation. 
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Vollenbroich et al. [156] proposed that the Srf synthesis takes place as follows: the 

acyltransferase E3 first transfers the hydroxy fatty acid moiety to E1A to form hydroxy 

fatty acylglutamate. Thus E3, which functions as a thioesterase/acyltransferase, initiates Srf 

formation by transferring the β-hydroxy fatty acid from β-hydroxymyristoyl-coenzyme A 

to E1A to form the β-hydroxymyristoyl-glutamate [158]. E1A then elongates the peptide to 

a lipotripeptide, which is transferred to E1B  [156]. E1B adds the three amino acids Val4, 

Asp5 and D-Leu6 to the lipotripeptide to form a lipohexapeptide that is transferred to E2 

[156]. E2 catalyses the incorporation of the last amino acid, Leu7, into the lipopeptide 

[156]. The mechanism of cyclisation of the lipopeptide chain by lactone bond formation 

between Leu7 and the hydroxyl group of the hydroxy fatty acid is unknown [156]. 

Antimicrobial resistance  

The first site of action of Amps including Bacillus peptides, to kill microbial targets, is to 

reach their cytoplasmic membranes [159, 160] generally through electrostatic interactions 

(reviewed in [161, 162]). Amps are able to distinguish between microbial targets and 

normal host cells because of the differences in their membrane composition, 

hydrophobicity, charge, asymmetry and affinity [161, 163]. Once reaching the cytoplasmic 

membrane, they generally act upon it (reviewed in [161]) or pass through to reach interior 

targets [164]. Although Amps have diverse structures and sizes, most Amps are small and 

share an amphiphilic membrane active character, they are more effective in killing and 

present little or no resistance as compared to classical antibiotics (reviewed in [162, 163]). 

However, general mechanisms of resistance could be adapted to render resistance to Amps. 
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These resistance mechanisms can be regrouped into four general mechanisms; i) 

modification of the target; ii) protection or masking of target; iii) modification or 

destruction of Amp/antibiotic and iv) modification or transport of Amp/antibiotic. 

The first mode of antibiotic resistance includes target modification, namely cell surface 

modification to avoid  binding [159, 165, 166], use of alternative pathways to pass by the 

step inhibited by Amp or increase in target metabolite production [166], modification of 

Amps targets through ribosomal mutations [166]. Here the focus is more on the 

mechanisms that result in cell surface alteration, which could lead to Amp resistance. The 

peptidoglycan and teichoic acids in the outer membrane and the cytoplasmic membrane of 

several microorganisms have a net negative charge.  

Mutants of Staphylococcus aureus resist Amps defensin hNP-1, protegrin, thrombocidin 

and gallidermin by modifying their teichoic acid through esterification by adding D-alanine 

resulting in a decrease in negative charges of the cell wall [167].  D-alanisation of the 

teichoic acid is encoded by the dlt operon [168-170]. According to Shi et al. [171], Amp 

resistance in Salmonella is controlled by PhoP-PhoQ regulatory system that regulate the 

remodelling of the cell surface. This remodelling confer cell resistance to magainin 2 and 

polymycin B by modification of lipid A in the  lipopolysaccharide and adding more 

positive charges to the membrane [171-174]. The biosynthesis of lipid A is activated by the 

TmrA-PmrB also controlled by PhoP-PhoQ regulatory system [175] and at low Mg2+ 

concentrations [176].  
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Thedieck et al. [177], reported that resistance to β-defensin  in Listeria is modulated by lmo 

gene which encode for a membrane protein homologue to multi-peptide resistance factor 

(MprF). MprF causes membrane secretion of lysylphophatridylglycerol and lysinylation 

making the membrane more positive thus less susceptible to Amps cathelicidin LL-37 and 

defensin hNP-1 [177-179]. Starvation and stationary phase can also trigger resistance to 

polymyxin B by reducing membrane permeabilization [180]. This is due to independent 

pathways induced by rpoS and phoP genes in Salmonella typhimurin [180].  

A second mode of resistance is the shielding or masking the target such as the formation of 

protective biofilms. Genes such as rpoS are involved in stress response induced in biofilm 

formation [181]. The development of biofilms involve cell-to-cell signalling [182]. 

Biofilms are composed of aggregates of slow growing bacteria constituting a barrier that 

stops or limits Amp penetration [141, 183]. Biofilm formation has not only been proven to 

enhance the impact of B. subtilis as bio-control agent in the plant root [184], but also its 

resistance towards antimicrobial agents [12, 141, 185].   It has been shown that the 

secretion of Srf also encourages the formation of biofilm in B. subtilis strains [5, 142]. 

However, studies have also shown that Srf can inhibit biofilm formation of the wild type 

Salmonella enterica in vitro causing an inhibition of the swarming motility of the organism 

[186]. Srf and iturin A absorb to the B. subtilis surface and cause a change in 

hydrophobicity [87, 187] which can lead to cell attachment and aggregation. The absorbed 

Srf can also shield the membrane target of Amp and because of its own negative charge 

trap Amp, conferring resistance. This aspect of shielding and antagonistic action toward 

Amp activity will be addressed in this study (refer to Chapters 2, 3 and 5) 
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The third mode includes mechanisms that involve the destruction/deactivation of antibiotics 

through enzyme hydrolysis, group transfer or redox mechanism [188]. The most important 

mechanism of bacteria to resist β-lactam antibiotics such as penicillin and cephalosporin is 

the production of hydrolysing enzymes, the β-lactamases which is particularly prevalent in 

Gram-negative bacilli, (reviewed in [189]).  These enzymes deactivate β-lactam antibiotics 

through the hydrolysis of the β-lactam ring resulting in an opened ring (reviewed in [84, 

189]). Aminoglycosides are deactivated by aminoglycoside resistance enzymes that add a 

substituent onto the antibiotic and stop it from interacting with its RNA target (reviewed in 

[84]). There are several types of aminoglycoside resistance enzymes that can add groups 

such as AMP by adenylyl transferases, phosphate groups by phosphoryl transferase or 

acetyl amino acid groups by acetyl transferases (reviewed in [84]). Although this enzymatic 

modification or hydrolysis of antibiotics is the most prevalent resistance mechanism, no 

evidence of Amp resistance by direct modification or hydrolysis has been reported.  

The fourth mode of resistance relies on the modification of the transport of the antibiotic to 

its target. The chloroamphenicol resistance in Gram-negative bacteria, causing numerous 

resistant hospital infections, is due to the loss of porins through which chloroamphinicol 

gained entry, from the cell wall [190]. A prevalent transport-based resistance mechanism to 

small amphipathic antibiotics is the non-specific plasma membrane multi-drug resistance 

efflux pump (MDR-pumps) to expulse the antibiotic, including some Amps [159, 166, 191, 

192]. It has been reported that some Amps may have alternative intracellular targets [193] 

and therefore interrupted transport may lessen the effect of the Amp. A multidrug efflux 

mechanism composed of MtrC-MtrD-MtrE protein confer Amp resistance to polymyxin B, 
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cathelicin LL-37 and PG-1 in Menigococci [194]. MtrC-MtrD-MtrE protein is encoded by 

the mtrCDE operon [195]. According to Bengoechea [196], Yersinia resistance to 

polymyxin B is achieved by an efflux pumps/K+ antiport system composed of RosA and 

RosB proteins and activated by temperature shift and the presence of Amp. 

In certain B. subtilis strains, the exposure to various Amps can activate a stress response 

system involving three peptide sensing and detoxification (PSD) modules such as BceRS-

AB (PSD1), YxdJK-LM (PSD2) and PsdRS-AB (PSD3) [197]. Each PDS consist of a two 

components system (TCS) linked to an ABC transporter (TCS-ABC system). These TCS 

can detect the presence of undesired Amp and induce the expression of the ABC 

transporter, which in turn remove it from its site of action [197]. The first PSD, BceRS-AB, 

confers resistance to bactracin; YxdJK-LM determines resistance to human Amps such as 

LL-37 while PsdRS-AB gives resistance to cationic lantibiotics, namely, nisin, subtilin and 

gallidermin [197]. 

Problem identification 

Our research group have shown that antagonism between bacterially produced 

antimicrobial peptides similar to the antagonism of vacomycin by penicillin [198], may 

affect the soil microbial ecosystems. This occurred between two Amps from cohabiting 

bacteria, namely GS from A. migulanus and Srf from B. subtilis. Vlok [88] showed that GS 

and Srf antagonise each other’s activity, causing the loss of antimicrobial activity. This 

antagonism appeared to be target specific. With regard to non–producer Gram-positive 

targets, a degree of synergism was observed between the two peptides at low Srf 
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concentration, while antagonism only occurred above the “critical” Srf concentration [88].  

Electrospray mass spectrometry of a mixture of the two peptide indicated that Srf interacts 

with GS in a 1:1 and 2:1 ratio forming stable inactive complexes [88]. These complexes 

were not influenced by the presence of alkali or earth metal ions or organics solvent [88]. It 

has been hypothesised that similar antagonistic behaviour may also occur among other 

peptides from the B. aneurinolyticus such as the Trcs and linear Grcs. Therefore, this study 

aims to elucidate the influence of Srf from B. subtilis on different peptides from the soil 

bacteria, B. aneurinolyticus and A. migulanus to establish if Srf antagonism of Amp activity 

leads to improved survival and to clarify its underlying molecular mechanism and 

specificity. 
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Chapter 2  
 

A microbiological investigation of the antagonism 
between surfactin from Bacillus subtilis and 

gramicidin S from Aneurinibacillus migulanus 
Introduction 

Pathogenic microorganisms are responsible for major diseases or illnesses that affect 

animal, plant and human species. Several antimicrobial therapeutic drugs have been 

developed over the past century to combat most pathogens. These drugs generally act 

by inhibiting the pathogen’s metabolic pathways, interfering with the synthesis of its 

cell wall or by inhibiting its protein or nucleic acid synthesis [1]. Unfortunately, 

disease-causing microorganisms have also evolved in turn different resistance 

mechanisms and have become defiant to most classical antibiotics [2, 3]. This resistance 

has arisen in different ways and may differ in terms of either the type of antibiotic or the 

microorganism involved. Today, bacterial resistance has developed into a serious 

problem, which threatens human societies and urges for a global increase in the search 

for new antibiotics [4].  

There are at least five main resistance mechanisms that pathogens use to resist most 

antibiotics. The first resistance mechanism is used by Gram-negative bacteria and 

mycoplasma: they generally change their outer-membrane composition to prevent drug 

binding or entrance [5]. The second mechanism is used by a variety of microorganisms: 

they express non-specific multi-drug resistance efflux pumps in their plasma 

membranes to expulse drugs [3, 6-8]. The third mechanism is utilized by certain Gram-
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negative bacteria that chemically modify antibiotics by adding groups that render the 

drug inactive [9], or use trapping proteins that bind the drug to neutralise it (reviewed in 

[10]). In the fourth mechanism alternative pathways are utilised to avoid the step 

inhibited by the drug or the production of target metabolites is increased [4]. The fifth 

resistance mechanism arises from the ability of certain bacteria such as Mycobacterium 

tuberculosis to modify drug targets through ribosomal mutations [4].  

A sixth resistance mechanism, mainly biofilm formation, has also been described [11-

16]. It is developed by certain Gram-positive soil bacteria, such as Bacillus subtilis and 

it consists of sessile bacterial community close together in a glycocalyx matrix to resist 

drugs [16]. It has been demonstrated by Bais et al. [12] that biofilm formation was 

related to the production of the antibiotic peptide surfactin (Srf) in B. subtilis strains. 

However, the mechanism by which Srf encourages biofilm formation and hence confers 

resistance to B. subtilis is not well understood.  According to Vlok [17], Srf acts by 

antagonising the antimicrobial activity of other antibiotic peptides either via complex 

formation or an unknown mechanism.  

Antagonistic activity, a putative resistance mechanism, can occur between two 

antibiotics when they associate or cause a change in the target to neutralise the actions 

of one another. An example of this resistance mechanism was reported between 

vancomycin and penicillin [18]. Vlok [17] showed that the activity of the antimicrobial 

peptide gramicidin S (GS) from Aneurinibacillus migulanus  (previously known as the 

Nagano strain of B. brevis [19-21]) is antagonised by the B. subtilis peptide Srf [22, 23]. 

This antagonism was proposed to be due to inactive complexes that formed in solution 

phase between GS and Srf. It was  hypothesised that when these two soil organisms are 
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present together they produce peptides that antagonise the effects of one another as a 

mechanism of survival [17]. Similar antagonistic behaviour was also hypothesised to 

occur between different peptides from the Bacillus species. 

GS is a basic/cationic and amphipathic cyclic decapeptide consisting of two 

pentapeptide (Val-Orn-Leu-D-Phe-Pro) repeats in an antiparallel β-sheet structure 

(Table 2.1) [24]. The ring structure is linked between Val and Pro residues [25] and is 

reinforced by four hydrogen bond [26]. This conformation is adopted in various 

solutions of differing polarities, as well as in the crystalline form [25]. GS has a broad 

activity spectrum against Gram-negative and Gram-positive bacteria [27], erythrocytes 

and malarial infected erythrocytes [28, 29]. GS also has inhibitory actions on active 

transport [30] and on the DNA transcription in its producer during germination and 

outgrowth [20, 31, 32].  GS first absorbs into the membrane of the bacterium and then 

interacts with the lipid membrane or other GS molecules, causing changes in the 

morphology and leading to deterioration in the membrane structure [33]. According to 

Staudegger et al. [34], GS disrupts lipid membranes by increasing the negative 

curvature stress, causing the formation of bi-continuous inverted cubic phases. 

Table 2.1. Primary structures of the cyclic peptides used in this study.  

Peptides Abbreviation Peptide primary structure monoisotopic 
Mr Net charge (pH7) 

Gramicidin S GS Cyclo-(VOLfP)2  [24] 1140.68 +2 

Surfactin 1 Srf1 Cyclo-(ELlVDlV-C15) [35] 993.27 -2 

Surfactin 2 Srf2 Cyclo-(ELlVDlI-C13)  [35] 1007.30 -2 

Surfactin 3 Srf3 Cyclo-(ELlVDlL-C14) [35] 1021.33 -2 

Surfactin 4 Srf4 Cyclo-(ELlADlL-C15) [35] 1035.36 -2 
Standard one letter abbreviations are used for the amino acid residues, apart for O for Orn. D-amino acids 
are given in lower case. C13-C15 are the possible variants in the lipid moiety. 
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Srf is an acidic/anionic and amphipathic cyclic lipopeptide with seven amino acids 

interlinked with an alkyl chain via a lactone bond (Table 2.1) [35].  Srf has a limited 

solubility and aggregates in solution due to its very strong surface active character that 

results from its tendency to absorb at hydrophilic/hydrophobic interfaces [36]. Srf is an 

antifungal agent with moderate antibacterial activity [37]. Srf has also been shown to 

have antitumoral, antiviral as well as antimycoplasma activity [38-40]. However, it also 

exhibits haemolytic activity [41], that makes it an unsuitable compound for medical 

applications. The primary step in Srf’s mechanism of membrane disturbance is the 

insertion of the peptide into the lipid bilayers [42]. Srf spontaneously interacts with the 

lipid membrane by means of hydrophobic interactions [43]. Once inserted, Srf 

molecules aggregate and cause the formation of pores that break down the underlying 

structure of the lipid bilayers [42]. 

The present study was a continuation of the study by Vlok [17] on the antagonism 

between GS and Srf. Micrococcus luteus and two B. subtilis strains,  OKB120, which 

produces Srf only under certain culturing conditions, and the continuous Srf producer 

ATCC21332 [44-46], as well as erythrocytes were included as test organisms. We 

aimed to further elucidate the influence of Srf on the antibacterial and haemolytic 

activity of GS by using standard dose-response assays and to investigate the possible 

site of interaction using liquid chromatography mass spectrometry (LC-MS).  

Materials 

Gramicidin S from A. migulanus was purchased from Sigma-Aldrich (Steinheim, 

Germany). The lipopeptide Srf from B. Subtilis, was supplied by Fluka Chemie (St 

Louis, USA). 
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Micrococcus luteus (NCTC 8340), B. subtilis strains (ATCC21332 and OKB 120) were 

from the BIOPEP culture collection, while A. migulanus (ATCC9999) were supplied by 

ATCC. Reagents for TGYM media namely the skim milk powder was supplied by 

Clover (Roodepoort, SA). Romil Ltd (Cambridge, UK) supplied the acetonitrile 

(CH3CN, HPLC-grade, far UV cut-off) and the methanol (>99.9%).  The ethanol (GR 

grade) was supplied by United Scientific (Durban, RSA). D-glucose, the components 

for the Luria Bertani (LB); sodium chloride (NaCl), tryptone and yeast extract, the 

tryptone soy broth (TSB), the peptone, agar as well as NaH2PO4 and Na2HPO4 were 

supplied by Merck (Darmstadt, Germany). The trifluoroacetic acid (TFA, > 98%) was 

provided by Sigma-Aldrich (St. Louis, USA). Non sterile, standard non-treated 

polystyrene microtiter plates (96 well flat bottom) and culture dishes were supplied by 

Greiner bio-one (Frickenhausen, Germany) and Lasec (Cape Town, SA). A Millipore 

Milli Q® water system (Milford, USA) was used to prepare analytical quality water by 

filtering it from a reverse osmosis plant. 

Methods 

Antibacterial assays 

Cell preparation for antimicrobial assays 

Bacterial freezer stocks were cultured on LB agar (1% (w/v) tryptone, 0.5% (w/v) yeast 

extract, 1 % NaCl, 1.5% (w/v) agar)  for M. luteus NCTC 8340, or TGYM agar (0.5% 

(w/v) peptone, 0.25% (w/v) yeast extract, 0.1 % (w/v) glucose, 0.1% (w/v) skim milk 

powder, 1.5% (w/v) agar) for B. subtilis strains ATCC21332 and OKB120 and A. 

migulanus ATCC9999 and incubated at 37°C for 48 h. Selected colonies of M. luteus 
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and B. subtilis strains were grown overnight for 16 h in LB and TSB, respectively. The 

organisms were then sub-cultured in TSB (15 % (w/v) agar) at 37°C for 6 h to an optical 

density (OD) of 0.60 ± 0.01 at 620 nm. 

Micro-broth dilution assays 

Sub-cultured cells were diluted to an OD of 0.20 ± 0.01 before adding to the plates. 

Micro-broth dilution assays were performed with the diluted culture suspensions and 

growth was measured after 16 h incubation, at 620 nm on a Titertek Multiscan Plus Mk 

II (Flow Laboratories, USA) microtitre plate reader (adapted from Rautenbach et al. 

[47]). The microtiter plates were previously blocked with 0.5% casein in Dulbecco’s 

phosphate buffered saline (PBS) and sterilized under UV light before use. 

Gel diffusion assays 

Sub-cultured M. luteus and B. subtilis strains (1 mL cell culture; OD = 0.60) were 

mixed with 2% TGYM agar (10 mL; 45°C). A laboratory vortex was then used to mix 

the agar with the cells by dispersion for 10 s. The mixed cultured were poured into a 

culture dish and let to set for 30 minutes. Selected colonies of B. subtilis and A. 

migulanus were then spotted either on normal or on top of the M. luteus seeded gel at 

close proximity (< 1 mm) to allow interaction between the products of the two producer 

strains (adapted from the radial diffusion assay by Du Toit and Rautenbach [48]). 

Alternatively, A. migulanus was spotted on either B. subtilis ATCC21332 or OKB120 

seeded TGYM agar. Cell colonies on the culture dishes were processed and 

photographed after 2 days of incubation at 37oC using a Nikon SMZ 10A trinocular 

sterozoom microscope mounted with a Nikon Coolpix 990 camera.  
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Haemolysis assays 

Human A+ erythrocytes (2% hematocrit or 2.0 x 105 cells/mL) in RPMI-1640 medium 

supplemented with 0.65 mM hypoxanthine, 25 mM HEPES, 0.2% (w/v) NaHCO3, 

50 mM glucose, 0.048 mg/mL gentamicin and 0.5% (w/v) albumax II (serum 

substitute), was distributed in microtiter plates at 90 µL per well. Serial dilutions of test 

peptides and combinations were added at 10 µL to erythrocytes to a final volume of 

100 µL. Haemolytic activity of the peptides was determined after incubation for 48 h at 

37°C. Microtiter plates with assay mixtures were centrifuged at 200 x g for 3 minutes 

after incubation to sediment intact erythrocytes in wells. The haemoglobin content of a 

1:8 dilution of the supernatant in water was measured at 405 nm for each well. The 

addition of 200 µM GS to the control wells was used to determine the total haemolysis 

in the haemolysis assays. 

Supernatant cell assay 

M. luteus were first cultured in LB and sub-cultured in TSB to an OD of 0.60 at 630 nm. 

The cultures were centrifuged at 900 x g for 8 minutes and washed with a 0.9% NaCl 

solution. The cells were then re-suspended in 0.9% NaCl and diluted to an OD of 0.20 

and then distributed (180 µL) into the microtitre plates. After incubation for 30 minutes 

at 37ºC with the peptide combinations (20 µL), the plates with cultures centrifuged for 

8 minutes at 900 x g and the supernatants transferred into glass tubes (160 µL in 

triplicate) for LC-MS analysis. The remaining cell pellets were washed with TSB by 

centrifugation, and the cells re-suspended in TSB (160 µL) and left to incubate for 16 h 

at 37ºC and growth measured a before.  
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Liquid chromatography mass spectrometry  

LC-MS analysis of supernatants from the supernatant cells assay was analysed on a 

Waters Acquity autosampler attached to a Waters QTOF Ultima mass spectrometer. A 

Waters UPLC BEH C18 column (2.1 x 50 mm, 1.7 µm spherical particles) was used 

with a 0.1% TFA (solvent A) to CH3CN (solvent B) gradient to separate peptides 

contained in the samples. This was done as follows: 100% A for the first 30 seconds, 0 

to 30% B from 0.5 to 1 min, 70% to 40% A from 1 to 10 min, 60% to 100% B from 10 

to 11 min, then 0% to 100% A from 11.10 to 14 min, at a flow rate of 300 µL/min. The 

peak areas of all GS species (triplicate analyses), were integrated for analysis using a 

Lynex® software package. 

Data processing for the biological dose-response analysis 

The relative growth was calculated from the dose-response data obtained from the 

antimicrobial assays. This was done by dividing the light dispersion (after blank 

correction) per well by the mean light dispersion of the wells containing the growth 

medium, the bacterial culture and peptide solvent (considered as 100% growth). The 

percentage inhibition in all assays was calculated by subtracting the relative growth 

from 100. GraphPad Prism 4.0 (GraphPad Software Incorporated) was used to analyse 

all data for curve fits and statistical analyses. Sigmoidal dose response curves were 

fitted for all assay results. Only the mean was considered to fit the curve. The 50% 

inhibitory concentrations (IC50) towards M. luteus and B. subtilis, as well as the 50% 

haemolysis concentration (HC50) were calculated according to the method described by 

Rautenbach et al. [47]. 
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For the determination of antagonism, synergism or sum of activities for two active 

peptides the fractional haemolytic concentration (FHC) and FHC index were calculated 

for each of the two peptides in the assay using the following equations [49]:  

FHC(A) = HC50 (peptide [A] in A+B mixture)/ HC50 ( peptide A alone) (2.1) 

FHC(B) = HC50 (peptide [B] in A+B mixture)/ HC50 ( peptide B alone) (2.2) 

From the FHC values the FHC index is calculated according to equation 2.3; 

FHC index = FHC (A) + FHC (B) (2.3) 

with FHC index =1 indicating that the resultant HC50 is due to the sum of the activity of 

peptides A and B; FHC index >1 indicating that the resultant HC50 is due to antagonistic 

activity between peptides A and B;  FHC index <1 indicating that the resultant HC50 is 

due to synergistic activity between peptides A and B.  

Results 

Influence of surfactin on the antibacterial activity of gramicidin S 

The antagonism of GS by Srf was investigated towards both M. luteus (NCTC8340) and 

B. subtilis (ATCC21322 and OKB120) using dose-response assays. GS was found to be 

active against all tested organisms in the low µM range, whereas Srf did not show any 

activity towards the target organisms (Table 2.2). Srf was found to antagonise the 

activity of GS in a dose-dependent manner, regardless of the bacterial targets, as shown 

by the dose-response curves in Figure 2.1. In these dose-response curves four 

independent experiments, each in quadruplicate were used to obtain the results for the 

addition of 30 µM Srf plus GS and GS alone.  



 

 2-10

An IC50 of 7.8 µM of GS towards M. luteus was observed, similar to the results of Vlok 

[47]. Pre-incubation of the bacteria with 30 and 60 µM Srf caused the inhibition curve 

of GS against M. luteus to shift to the right (significant IC50 increase, P>0.001), 

meaning that more GS was required to cause the same level of inhibition (Figure 2.1). 

Srf had no inhibitory effects against the test organism at any concentration used. We 

also found, similar to the results of Vlok [17], that the sensitivity of M. luteus depended 

on the order of addition of the two peptides. Addition of GS to the target cells first 

without pre-incubation with 30 µM Srf leads to only slight antagonism at high Srf 

concentrations and synergism at low concentrations (results not shown). Pre-incubating 

of the target organism with 30 µM (or 60 µM) Srf 10 minutes before adding GS had a 

protective effect and the presence of Srf therefore antagonised GS activity (Figure 2.1A 

and Table 2.2).  

In order to verify whether this antagonism resulted from a true resistance mechanism, 

the “protection” experiments were repeated on two B. subtilis strains, namely B. subtilis 

OKB120 which does not produce Srf under experimental conditions and B. subtilis 

ATCC21332 which is a strict aerobic and anaerobic Srf producer [17]. The IC50 of GS 

towards B. subtilis OKB120 was significantly lower (P<0.05) than towards B. subtilis 

ATCC21332 and was determined as 1.9 µM and 3.5 µM respectively. In order to 

simulate conditions with a high Srf concentration, the bacterial cultures were pre-

incubated with 30 µM Srf. This protected the Srf producers against GS as evidenced by 

the increased IC50 towards B. subtilis ATCC21332 with a significant change (> 175%; 

P>0.001) to 10.7 µM as compared to the IC50 towards the non-producer B. subtilis 

OKB120 of 3.8 µM (>75%, P>0.05) (Figure 2.1B and C, Table 2.2). Pre-incubation of 

B. subtilis OKB120 with 60 µM Srf also significantly (P<0.001) increased the GS IC50 
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with >250% to 6.1 µM. Table 2.2 summarises the effect of Srf on the antimicrobial 

activity of GS against the three test organisms. 

Table 2.2. Influence of Srf on the antimicrobial activity of GS as measured by 
changes in IC50 of GS toward M. luteus NCTC8340 and B. subtilis 
ATCC21332 and OKB120 

 M. luteus 
NCTC8340 

B. subtilis 
ATCC21332 

B. subtilis 
 OKB120 

Peptides or 
combinations IC50 (µM) % ∆  

IC50 
IC50 (µM) % ∆ 

IC50 
IC50 (µM) % ∆ 

IC50 
Srf inactive - inactive - inactive - 
GS 7.8 ± 0.8 - 3.5  ± 0.7 - 1.9 ± 0.2 - 

30 µM Srf + GS 13.8 ± 1.1# 77 10.7 ± 3.7# 205 3.8 ± 0.1* 101 
60 µM Srf + GS 29.2 ± 0.1# 274 - - 6.2 ± 0.5# 226 

# P<0.001 and *P<0.05 as compared to GS 

Next, the dose-dependent antagonism of GS activity by Srf was investigated across a 

broader concentration range in order to assess the change in the IC50 and activity of GS 

towards the two Srf non-producers, M. luteus and B. subtillis OKB120, in response to 

Srf concentration (Figure 2.2). A direct linear trend was observed between the % change 

in GS IC50 and the concentration of Srf for the two Gram-positive target cells (Figure 

2.2). However, for M. luteus as target organism, synergism between Srf and GS was 

observed below 8 µM Srf, while B. subtilis OKB120 was protected over the whole 

concentration range. This indicated that a critical concentration, above the critical 

micelle concentration (CMC) of Srf (9.4 µM in 200 mM NaHCO3 at pH 8.7 [50]) is 

needed to protect organisms other than the Srf producer. Srf alone did not show any 

activity against its producer B. subtilis at any of the concentrations used and at 60 µM of 

pre-incubation of the bacteria with Srf, the IC50 of GS toward B. subtilis and M. luteus 

shifted with > 200%. 
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Figure 2.1 Representative results showing dose-response antagonism of the 
antimicrobial activity of GS toward A M. luteus, B B. subtilis OKB120 
and C B. subtilis ATCC21332 by Srf. Standard error of each data point 
(the average of at least 2 determinations) is shown with R2 > 0.99 for all 
curves. 
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Figure 2.2 Change in IC50 and activity of GS toward B. subtilis and M. luteus in 
response to Srf concentration. The X-axis is given in log2 scale in order 
to show more detail on the data points below 8 µM (see arrow in insert). 
The linear regression lines were fitted with R2>0.98 (see linear line fits in 
insert). The IC50 results were obtained from two independent dose 
response experiments, each done in quadruplicate. 

The influence of Srf, GS and combinations of GS and Srf on the growth rate of the non-

Srf producers, M. luteus and B. subtilis OKB120, was also recorded over 13 hours 

(Figure 2.3 A, C). It was again observed that Srf protected a number of the cells from 

lysis by GS, with better survival at about two fold IC50 of GS by the Srf producer, B. 

subtilis. However, there was a net decrease in the observed growth rate of both 

organisms in the presence of Srf (Figure 2.3 B, D) and we observed an unexpected 

increase in growth rate of the Srf non-producer, B. subtilis OKB120 in the presence of 

1.6 µM GS (Figure 2.3 D).  

In the case of M. luteus, Srf showed bacteriostatic activity over the first 8 hours, after 

which the culture recovered to normal growth rate and biomass (Figure 2.3 A, B). Srf 

together with 7.5 µM GS also led to recovery and survival of cells, showing similar 
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growth rate to that with Srf alone (Figure 2.3 B). However, Srf caused visible cell 

clumping, most probably by encouraging cell aggregation, which led to large variations 

in OD measurements.  

In the presence of Srf the biomass of the B. subtilis OKB120 culture in suspension (as 

measured at 600 nm), were lower in the stationary phase than without Srf (Figure 2.3C). 

The lower OD at 600 nm is due to biofilm formation, which was visible as films/flakes 

when the Srf-treated cultures were disturbed. It is known that Srf encourages biofilm 

formation by increasing the hydrophobicity of its producer [12, 51, 52]. Srf enabled B. 

subtilis to form biofilms by adhering to each other and to the surface of the wells, 

resulting in a decrease in suspended cells and lower OD at 600 nm. The GS (1.6 µM) + 

Srf treated cultures recovered within six hours (360 minutes) to the same suspended 

biomass than the cultures treated with Srf alone (Figure 2. 3 C). This result indicated the 

role of Srf-dependent biofilm formation [12, 51, 52] in resistance towards GS. Cell 

viability assays using Cell Titer BlueTM dye [53-55] showed that Srf did not cause any 

loss in viability of B. subtilis (results not shown). 

The low concentration GS (1.6 µM) caused a substantial increase in the growth rate of 

the surviving B. subtilis OKB120 from µ = 0.34 to 0.44 (Figure 2.3 B). This could be 

due to a stress condition caused by the presence of GS, which triggered cell 

proliferation. In the pre-incubated cultures, Srf protected B. subtilis OKB120 against 

complete killing by GS.  
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Figure 2.3 Average growth curves over 780 minutes of M. luteus (A) and B. subtilis 
OKB120 (C) cultures and the translated growth rate curves of M. luteus 
(B) and B. subtilis OKB120 (D) in the presence/absence of Srf, GS and 
combinations of GS and Srf. The error bars in A and C show the SEM of 
OD600 of at least 15 cultures from three independent experiments. The 
numbers in B and C are the calculated µ (growth rate in ∆lnOD600/hour). 
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At high GS concentration (3.1 µM) most of the cells were lysed before they had time to 

adapt, as in the OD600 decreased without visible biofilm formation.  However, in certain 

wells incubated with 3.1 µM GS, where no growth was expected, persistent cells were 

observed to survive. These particular experiments represented a 4/21 (±20%) survival 

(cultures with OD600 >0.20 indicating survival and growth) of B. subtilis cultures 

incubated with 3.1 µM GS (2×IC50) for 780 min, while cultures pre-incubated with 

30 µM Srf and 3.1 µM GS presented a 9/22 (±40%) survival. A similar survival pattern 

of >35% survival of B. subtilis ATCC21322 in the presence of 2×IC50 GS was found, 

but without the addition of Srf.  This survival pattern was not observed for M. luteus. 

LCMS investigation of M. luteus treated with gramicidin S and surfactin 

Our results strongly indicated that Srf dependent biofilm formation of B. subtilis plays a 

role in the observed GS resistance. However, Srf also protected other types of 

microorganisms, such as M. luteus, Penicillium cf. corylophilum [17] and Escherichia 

coli HB 101 against GS activity [17], therefore the role of Srf in GS antagonism may be 

broader than inducing biofilm formation. M. luteus was used as target cell to assess the 

role of solution phase complexation with GS and cell wall trapping of GS in the 

presence of Srf. Previously Vlok [17] observed complex formation in an 1:1 mixture of 

the Srf and GS under ESMS conditions. A more detailed biophysical characterisation of 

the GS and Srf complex and possible conformational changes in GS structure due to Srf 

presence is discussed in Chapter 3. The influence of Srf on the recovery of GS from a 

bacterial culture was investigated utilising ultra-performance liquid chromatography 

linked to electrospray mass spectrometry (UPLC-MS). The present chapter describes a 

study of the site of these interactions using the “supernatant cell” assay. M. luteus in 
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saline (0.9% NaCl) was incubated with the two peptides in a 1:1 combination for 30 

minutes. Cells and debris were then removed by centrifugation, and the supernatant 

analysed by LC-ESMS (Figures 2.4 and 2.5).   

 
 
 
 

 

 

 

 

 

 

Figure 2.4 Representative UPLC-MS chromatograms of the recovery of [M+2H]2+ 
(m/z 572) molecular ion of GS from different reaction mixtures after 30 
minute incubation: A 5.0 µM GS alone;  B 5.0 µM GS + 30 µM Srf; C. 
M. luteus + 5.0 µM GS; D. M. luteus + 5.0 µM GS + 30 µM Srf. The Y-
axis shows % signal intensity; the X-axis the run time in minutes; the top 
value with each peak denotes the retention time and the bottom value, the 
peak area. 

From the UPLC-MS analysis of the supernatants, the peak areas of all GS molecular 

species were recorded (Figure 2.4) and the percentage recovery of GS was calculated 

for the samples of GS alone (GS) and for samples of GS in combination with cells (GS 

+ cells), Srf (GS + Srf) and GS plus Srf plus cells (GS + Srf + cells) (Figure 2.5A). The 

results showed a similar percentage recovery of GS between samples of GS + cells, GS 
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+ Srf, and GS + Srf + cells (28-41%). There was a lower GS recovery when both Srf 

and cells were present (about 24%). Results indicated that Srf at 30 µM removed similar 

amounts of GS (related to detected peak area) than M. luteus (OD of 0.20 at 600 nm). 

Determination of M. luteus survival in the isolated bacterial pellets after 16 hours 

incubations again showed an improved cell survival in the presence of Srf (Figure 

2.5B). About 50% of cells survived after exposure to 5 µM GS over the incubation 

period. Srf caused the cells to aggregate and also led to lower growth due to 

bacteriostatic action, which may explain the fact that only 75% of the expected growth 

was observed in the presence of Srf. This may also be an underestimation due to the 

protocol (centrifugation and re-suspension) since the micro-broth assays have shown 

that at 5 µM GS and/or 30 µM Srf, more than 90% of cells survived. However, in the 

absence of Srf an inverse correlation was found between growth and the GS detected via 

UPLC-MS (Figure 2.5). This correlation was mimicked in the presence of Srf when no 

cells were present (Figure 2.5). 

The UPLC-MS results indicated that both the cell wall and solution phase are sites of 

GS antagonism by Srf which explains why Srf shifted the dose-response curves of GS 

toward antagonism with both B. subtilis and M. luteus as target cells. However, there 

was some selectivity between the two target cells with regard to the action of Srf 

towards GS. Below the “critical” Srf concentration (below the CMC of Srf) the 

combination with GS resulted in synergetic action. This may indicate the antagonistic 

role of micellar Srf, trapping GS (solution phase interaction) at higher concentrations. In 

B. subtilis Srf caused significant antagonism of the antimicrobial activity of GS over the 

entire concentration range used, indicating the role of cell wall associated Srf in 
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antagonism, albeit as an integral factor of biofilm formation or acting as a shield-like 

trapping agent of GS.  

 

 

 

 

 

 

Figure 2.5 Bar-graph representation of the A. LC-ESMS detection of GS ion species 
for samples of GS, GS and cells, GS and Srf) and the combination of GS,  
Srf  and cells) GS recovery differed significantly (P>0.001) between the 
GS control sample (first bar) and other three samples; SEM are shown 
for 6-12 determinations each. B. M. luteus growth after exposure to GS 
(GS + cells), Srf (Srf+Cells) and GS-Srf mixture (Srf + GS + cells). GS 
treated cell growth were significantly lower than cells alone (P<0.001) 
and cells pre-incubated with Srf (P<0.01). No significant difference 
between cells growth after treatment with Srf and treatment with Srf and 
GS. 

Surfactin assisted survival in mixed cultures 

The question remained if there is a real survival benefit for the Srf producer in mixed 

cultures challenged with GS. In mixed cultures of M. luteus and B. subtilis OKB120 the 

addition of 30 µM Srf caused an increase in B. subtilis OKB120 colony spreading on 

agar, but about 30% decrease of the M. luteus CFUs (results not shown).  B. subtilis 

colonies also out-competed nearby colonies of M. luteus, which was assisted by the Srf 

induced spreading. The 5 µM GS killed >90% of B. subtilis OKB120 and ±50% of M. 
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luteus. When the mixed cultures were challenged with 5 µM GS, in the presence of 30 

µM Srf, survival of B. subtilis increased dramatically to 80%, but only marginally to 

58% for M. luteus (results not shown).  

To further investigate if Srf protects its producers in mixed culture, the GS producer A. 

migulanus ATCC9999 was co-cultured on TGYM agar gel in close proximity with each 

of the two B. subtilis strains; the Srf producer B. Subtilis ATCC21332 and the Srf non-

producer B. subtilis OKB120 (Figure 2.6).   

 

 

 

 

 

 

 

Figure 2.6 Evidence of the co-survival between colonies of Bacillus strains grown 
in TGYM agar for 24h at 37°C. Each of the plates depicts a 15× enlarged 
image of an individual colony or two bacterial colonies placed in close 
proximity. A and B show the GS producer A. migulanus ATCC9999, C 
the Srf non-producer B. subtilis OKB120 and D the Srf producer B. 
subtilis ATCC21332. Close proximity colonies of the GS producer A. 
migulanus ATCC9999, with E the Srf non-producer B. subtilis OKB120 
and F the Srf producer B. subtilis ATCC21332, respectively.  

B. subtilis ATCC21332 grew and survived in the presence of A. migulanus ATCC9999, 

with the colonies of the GS producer actually being surrounded by the Srf producer in 
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the absence of inhibition zones (Figure 2.6 F). However, A. migulanus ATCC9999 out-

competed the non-Srf producer B. subtilis OKB120 causing a decrease in its colony 

growth showing an inhibition zone at the interphase between the colonies (Figure 2.6 

E). Colonies of the GS producer A. migulanus ATCC9999 and the Srf producer B. 

subtilis ATCC21332 were able to cohabit on solid media, while the growth of the Srf 

non-producer B. subtilis OKB120 was out-competed by A. migulanus ATCC9999. 

Similar results were also found when the colonies were cultured in close proximity on 

TGYM agar gel seeded with M. luteus (results not shown). A. migulanus ATCC9999 

and B. subtilis ATCC21332 caused inhibition zones in M. luteus seeded gel around both 

the organisms, with a smaller zone for B. subtilis ATCC21332 which survived within 

the inhibition zone of A. migulanus ATCC9999.  A. migulanus ATCC9999 also caused 

a decrease in B. subtilis OKB120 colony size on TGYM agar gel seeded with M. luteus. 

B. subtilis OKB120 did not cause any M. luteus inhibition zones, indicating low or no 

Srf production.  

In an alternative mixed culture assay, the B. subtilis strains was seeded in TGYM agar 

and challenged when GS producing A. migulanus colonies were placed on the agar. 

After two days visible inhibition zones formed around the GS producer in the B. subtilis 

OKB120 seeded gel, which became larger, but more diffuse around the edges after eight 

days (result not shown).  A. migulanus showed no inhibition towards B. subtilis 

ATCC21332 after two or eight days and the two organisms seem to survive in the same 

culture.  No clear inhibition zone was noticeable in the B. subtilis ATCC21332 seeded 

gel around A. migulanus colonies, possibly because it produced Srf which protected it 

against GS from A. migulanus. These results indicate that direct antagonism of GS by 
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Srf is part of the B. subtilis resistance mechanism and that the presence of Srf can 

protect its producer.  

ESMS analyses of extracts from the producer cultures confirmed that both A. migulanus 

ATCC9999 and B. subtilis ATCC21332 were able to produce GS and Srf respectively 

(results not shown), while B. subtilis OKB120 do not produce Srf under our 

experimental conditions.  

Influence of surfactin on gramicidin S on erythrocytes 

In order to assess the role of the target cell and target cell membrane in the influence of 

Srf on GS we also investigated the activity of GS and Srf on erythrocytes as GS and Srf 

have known haemolytic activity [29, 41].  

The HC50 of GS was found to be 6.8 µM and 19.5 µM for Srf. The peptide mixture had 

an HC50 value of 6.3 µM each (Table 2.3). The fractional haemolytic concentration 

(FHC) for the haemolytic activity was 1.25. If the FHC index is >1 it is assumed that the 

combination is antagonistic while if FHC index is <1 it is assumed that the combination 

is synergistic [49]. The FHC of 1.25 indicate only slight antagonism of haemolytic 

activity by the combination of GS and Srf (Table 2.3).  This suggested that for normal 

erythrocytes the solution phase interaction of the two peptides may not lead to totally 

inactive complexes. 
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Table 2.3. Summary of the haemolytic activity parameters of GS and Srf. Values 
are the average of two determinations (each in quadruplicate) ± SEM. 

Peptides HC50 (µM) HC50 in 1:1 
combination (FHC) 

Srf 19.5 ± 1.0 6.3 ± 0.4 (0.32) 

GS 6.8 ± 0.7 6.3 ± 0.4 (0.93) 

FHC index - 1.25 

Discussion 

Results from this study corroborated the findings of Vlok [17], as we again observed 

that the activity of the amphipathic antimicrobial peptide GS was antagonised by the 

lipopeptide Srf. For M. luteus, antagonism of GS occurred at high Srf concentrations 

(above 8 µM which is above the CMC of Srf [50]) while synergism with GS was 

observed at low Srf concentrations, lowering the IC50 of GS toward M. luteus. The 

synergism may result from additive actions since both peptides have antimicrobial 

activities against Gram-positive bacteria [27, 37]. Srf has the potential to cause positive 

curvature stress in a biological membrane resulting in membrane fluidisation [56]. This 

fluidisation could facilitate GS action on a M. luteus membrane. However, GS 

antagonism took place at high Srf concentrations, above the CMC of Srf, when target 

cells were pre-incubated with Srf [50]. When the bacteria were pre-incubated with Srf, 

it is possible that the pre-absorbed Srf [50], as well as Srf micelles interacted with GS 

prevented it from reaching the membrane target. Our UPLC-MS determination of GS 

recovery from the GS-Srf mixtures and/or M. luteus mixtures indicated that both cell 

wall and solution phase interaction may be important in the GS antagonism by Srf.  It 

was previously found that the two peptides formed complexes in solution phase, as 
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revealed by ESMS [17]. These complexes may be inactive and result in the observed 

antagonism. A more detailed study on the molecular aspect of the GS-Srf complexes is 

described in Chapter 3.   

Srf was shown to also antagonise the antimicrobial activity of GS towards B. subtilis 

OKB120 and B. subtilis ATCC21332, with the latter strain being significantly less 

sensitive than the former towards GS. We demonstrated that B. subtilis OKB120 did not 

produce Srf under the culture conditions, hence the effects observed resulted only due to 

Srf addition, while B. subtilis ATCC21332 did produce Srf under our culture conditions. 

When B. subtilis OKB120 was pre-incubated with different concentrations of Srf, dose-

dependent antagonism of GS activity was observed even at the lowest concentration of 

0.9 µM Srf.  

It was also found that B. subtilis OKB120 had better survival in a mixed culture with M. 

luteus and the addition of Srf protected B. subtilis OKB120 cells against GS better than 

it protected M. luteus cells.  In a co-culture assay the Srf producer B. subtilis 

ATCC21332 grew in the inhibition zone of the colonies from the GS producer A. 

migulanus ATCC9999, while B. subtilis OKB120 growth was inhibited.  

A decrease in the overall observed growth rate of both M. luteus and B. subtilis 

OKB120 was observed when they were grown in the presence of Srf, which is probably 

due to cell clumping/bacteriostatic Srf activity and biofilm formation [12, 50, 51], 

respectively. Srf and iturin A have the potential to absorb to the B. subtilis surface and 

modify its hydrophobicity [50, 51]. Srf arranges itself so that its acidic groups interact 

with the membrane head groups while its fatty acid tail is exposed to the environment, 

making the membrane more hydrophobic, in hydrophilic B subtilis strains [50]. Srf may 

have enabled cells, in particular B. subtilis to adhere to each other and  the surface of the 
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microtiter plate wells forming biofilms [50] reducing the number of suspended cells. 

Cell viability assays showed that Srf did not cause significant growth inhibition of B. 

subtilis. The antagonism of GS activity may be the consequence of increased 

hydrophobicity caused by Srf on the surface of its producer and masking of cell wall 

targets of GS. The Srf induced formation of B. subtilis biofilms [12, 50, 51] will further 

protect the inner cells against GS. GS could also be trapped by complexation with 

membrane-absorbed Srf molecules [12, 50, 51], by micellar Srf or by direct 

complexation with Srf to form inactive complexes. Any or all of these interactions 

could result in antagonism of GS activity and protection of the target cell.  

The results from the haemolysis assays showed that the effect of the combination of GS 

with Srf on human erythrocytes was only slightly antagonistic. The complexation 

between GS and Srf may cause a shielding of the cationic hydrophilic side of GS which 

is important for its binding to the negative bacterial targets [27, 57], but not neutral 

eukaryotic cells. On normal erythrocytes these electrostatic interactions may not play 

such a crucial role in the lytic mode of action of GS and therefore little effect was 

observed. According to Ketsu et al. [28, 29], GS molecules embed in the lipid 

membrane of erythrocytes from its hydrophobic side with the two cationic Orn residues 

protruding into the hydrophilic interface. The accumulation of GS in the erythrocyte 

membrane leads to a deformation and release of phospholipids which leads to lysis 

through small lesions [28, 29]. This indicates that the antagonism of GS activity by Srf 

may be target membrane specific. 



 

 2-26

Conclusions 

This study showed that peptides from Bacillus species, such as Srf, may have an 

alternative protective function for improving the survival of its producer strains and 

allowing it to cohabit with other bacilli. This peptide may shield important groups of GS 

and/or GS targets that are essential for its membrane interaction and lytic action, as well 

as induce protective biofilm formation in B. subtilis and cell clumping in M. luteus. 

However, the group(s) in GS may not be absolutely essential for the lysis of normal 

erythrocyte membranes and therefore little change in effect was observed for the 

combination. Our results indicated that the antagonism is target membrane specific and 

that antagonism may take place both in the solution and on the cell wall.  

The antagonism of GS by Srf may be a unique phenomenon as previous studies by Vlok 

[17] indicated that complex formation between GS and Srf may lead to antagonism. In 

Chapter 3 we report a biophysical investigation of the influence of Srf and GS on each 

other’s structure. It is possible that similar antagonistic actions may also occur among 

and towards other B. aneurinolyticus peptides such as the linear Grcs and the Trcs. The 

pure peptides from the tyrothricin complex are not commercially available. Chapter 4 

describes the development and optimisation of two C18 reverse phase HPLC methods 

for the purification and analysis of the Trcs and Grcs from the tyrothricin complex of B. 

aneurinolyticus. Chapter 5 describes the testing of the purified Trcs and Grcs for 

antagonistic and synergistic actions with Srf and each other. 



 

 2-27

References 

1 Sande, A. M. and Mandell, L. G. (1985) Section XII: Chemotherapy of 
microbial diseases: Antimicrobial agents, general consideration, In: The 
pharmacological basis of therapeutics, 7th ed. Eds. A.G. Gilima, L. S. Goodman, 
T. W. Rall and F. Murad. Macmilan Publishing Company, New York, pp.1066-
1094 

2 Rice, L. (2001) Evolution and clinical importance of extended-spectrum β-
Lactamases. Chest. 19, 391-396 

3 Walsh, C. T. (2000) Molecular mechanisms that confer antibacterial drug 
resistance. Nature. 406, 775-781 

4 Alpuche, C., Garau, J. and Lim, V. (2007) Global and local variation in 
antimicrobial susceptibilities and resistance development in major respiratory 
pathogens. Int. J. Antimicrob. Agents. 30, 135-138 

5 Harris, M., Mora-Montes, H. M., Gow, N. A. R. and Coote, P. J. (2009) Loss of 
mannosylphosphate from Candida albicans cell wall proteins results in 
enhanced resistance to the inhibitory effect of a cationic antimicrobial peptide 
via reduced peptide binding to the cell surface. Microbiology. 155, 1058-1070 

6 Paulsen, I. T., Brown, M. H. and Skurray, R. A. (1996) Proton-dependant multi-
drug efflux systems. Antimicrob. Agents Chemoter. 60, 575-608 

7 Levy, S. B. (1992) Active efflux mechanisms for antimicrobial resistance. 
Antimicrob. Agents Chemoter. 36, 695-703 

8 Bengoechea, J. A. and Skurnik, M. (2000) Temperature-regulated efflux 
pump/potassium antiporter system mediates resistance to cationic antimicrobial 
peptides in Yersinia. Mol. Microbiol. 37, 67-80 

9 Davis, J. (1994) Inactivation of antibiotics and the desamination of resistant 
genes. Science. 264, 375-382 

10 Nezil, F. A. and Bloom, M. (1992) Combined influence of cholesterol and 
synthetic amphiphilic peptides upon bilayer thickness in model membranes. 
Biophys. J. 61, 1176-1182 

11 O'Connell, H. A., Koltkamp, G. S., Eppelbaum, J. L., Stubblefield, B. A., 
Gilbert, S. E. and Gilbert, E. S. (2006) Influence of biofilm structure and 
antibiotic resistance mechanisms on indirect pathogenicity in a model 
polymicrobial biofilm. Appl. Environ. Microbiol. 72, 5013-5019 

12 Bais, H. P., Fall, R. and Vivanco, J. M. (2004) Biocontrol of Bacillus subtilis 
against infection of arabidopsis roots by Pseudomonas syringae is facilitated by 
biofilm formation and surfactin production. Plant Physiol. 134, 307-319 



 

 2-28

13 Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. 
and Greenberg, E. P. (1998) The involvement of cell-to-cell signals in the 
development of a bacterial biofilm. Science. 280, 295-298 

14 Xu, K. D., McFeters, G. A. and Stewart, P. S. (2000) Biofilm resistance to 
antimicrobial agents. Microbiology. 146, 547-549 

15 Stewart, P. S. and Costerton, J. W. (2001) Antibiotic resistance of bacteria in 
biofilms. The Lancet. 358, 135-138 

16 Morikawa, M. (2006) Beneficial biofilm formation by industrial bacteria 
Bacillus subtilis and related species. J. Biosci. Bioeng. 101, 1-8 

17 Vlok, N. M. (2005) Investigation of complexation and antimicrobial activity of 
gramicidin S in the presence of lipopeptides from Bacillus subtlis. PhD thesis, 
University of Stellenbosch, Stellenbosch 

18 Forrer, C. B., Blahy, D. M., Mariatico, A. L., Campos, J. M. and Freeman, H. M. 
(1982) Comparison of vancomycin and penicillin for viral isolation. J. Clin. 
Microbiol. 16, 295-298 

19 Shida, O., Takagi, H., Kadowaki, K. and Komagata, K. (1996) Proposal for two 
new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. 
Bacteriol. 48, 939-946 

20 Frangou-Lazaridis, M. and Seddon, B. (1985) Effect of gramicidin S on the 
transcription system of the producer Bacillus brevis Nagano. J. Gen. Microbiol. 
131, 437-449 

21 Kanda, M., Ohgishi, K., Hanawa, T. and Saito, Y. (1997) Arginase of bacillus 
brevis nagano: purification, properties, and implication in gramicidin S 
biosynthesis. Arch. Biochem. Biophys. 344, 37-42 

22 Arima, K., Kakinuma, A. and Tamura, G. (1968) Surfactin, a crystalline peptide 
lipid surfactant produced by Bacillus subtilis: isolation, characterization and its 
inhibition of fibrin clot formation. Biochem. Biophys. Res. commun. 31, 488-
494 

23 Sandrin, C., Peypoux, F. and Michel, G. (1990) Coproduction of surfactin and 
iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus 
subtilis. Biotechnol. Appl. Biochem. 12, 370-375 

24 Mihailescou, D. and Smith, J. C. (2000) Atomic detail peptide-membrane 
interactions: Molecular dynamics simulation of gramicidin S in a DMPC bilayer. 
Biophys. J. 79, 1718-1730 

25 Mihailescou, D. and Smith, J. C. (1999) Molecular dynamics simulation of the 
cyclic decapeptide antiotic, gramicidin S, in dimetyl sulfoxide solution. J. Phys. 
Chem. B. 9, 1586-1594 



 

 2-29

26 Grotenbreg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., Van der 
Marel, G. A., Va Raaij, M. J., Overkleeft, H. S. and Overhand, M. (2004) An 
unusual reverse turn structure adopted by a furanoid sugar acid incorporated in 
gramicidin S. J. Am. Chem. Soc. 126, 3444-3446 

27 Kondejewski, L. H., Farmer, S. W., Wishart, D. S., Hancock, R. E. W. and 
Hodges, R. S. (1996) Gramicidin S is active against both Gram-positive and 
Gram-negative bacteria. Int. J. Pept. Protein Res. 47, 460-466 

28 Katsu, T., Kuroko, M., Morikawa, T., Sanchika, K., Fujita, Y., Yamamura, H. 
and Uda, M. (1989) Mechanism of membrane damage induced by the 
amphipatic peptides gramicidin S and melittin. Biochim. Biophys. Acta. 983, 
135-141 

29 Katsu, T., Ninomiya, C., Kuroko, M., Kobayashi, H., Hirota, T. and Fujita, Y. 
(1988) Action mechanism of amphipathic peptides gramicidin S and melittin on 
erythrocyte membrane. Biochim. Biophys. Acta. 939, 57-63 

30 Danders, W., Marahiel, A. M., Krause, M. I., Kosui, N., Kato, T., Izumiya, N. 
and Kleinkauf, H. (1982) Antibacterial action of gramicidin S and tyrocidines in 
relation to active transport, in vitro transcription, and spore outgrowth. 
Antimicrob. Agents Chemother. 22, 785-790 

31 Lazaridis, I., Frangou-Lazaridis, M., Maccuish, F., Nandi, S. and Seddon, B. 
(1980) Gramicidin S content and germination and outgrowth of Bacillus brevis 
Nagano spores. FEMS Microbiol. Lett. 7, 229-232 

32 Nandi, S. and Seddon, B. (1978) Evidence for gramicidin S functioning as a 
bacterial hormone specifically regulating spore outrowth in Bacillus brevis 
Nagano. Biochem. Soc. Trans. 6, 409-411 

33 Jelokhani-Niaraki, M., Kondejewski, L. H., Farmer, S. W., Hancock, R. E. W., 
Kay, C. M. and Hodges, R. S. (2000) Diasteroisomeric analogues of gramicidin 
S: Structure, biological activity and interaction with lipid bilayers. Biochem. J. 
349, 747-755 

34 Staudegger, E., Prenner, E., Kriechbaum, M., Degovics, G., Lewis, R. N. A. H., 
McElhaney, R. N. and Lohner, K. (2000) X-ray studies on the interaction of the 
antimicrobial peptide gramicidin S with microbial lipid extracts: evidence for 
cubic phase formation. Biochim. Biophys. Acta. 1468, 213-230 

35 Bonmatin, J. M., Laprevote, O. and Peypoux, F. (2003) Diversity among 
microbial cyclic lipopeptides: iturins and surfactins. Activity-structure 
relationships to design new bioactive agents. Comb. Chem. High Throughput 
Screening. 6, 541-556 

36 Gallet, X., Deleu, M., Razafindralambo, H., Jacques, P., Thomart, P., Paquot, M. 
and Brasseur, R. (1999) Computer simulation of surfactin conformation at a 
hydrophobic/hydrophilic interface. Langmuir. 15, 2409-2414 



 

 2-30

37 Rodrigues, L., Banat, I. M., Teixeira, J. and Oliveira, R. (2006) Biosurfactants: 
potential applications in medicine. J. Antimicro. Chemother. 57, 609-618 

38 Kim, K. (1998) Suppression of inflammatory responses by surfactin, a selective 
inhibitor of platelet cytosolic phospholipase A2. Biochem. Pharmacol. 55, 975-
985 

39 Vollenbroich, D. (1997) Antimycoplasma properties and applications in cell 
culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. 
Environ. Microbiol. 63, 44-49 

40 Vollenbroich, D., Ozel, M., Vater, J., Kamp, R. M. and Pauli, G. (1997) 
Mechanism of inactivation of enveloped viruses, by the biosurfactant surfactin 
from Bacillus subtilis. Biologicals. 25, 289-297 

41 Dufour, S., Deleu, M., Nott, K., Wathelet, B., Thonart, P. and Paquot, M. (2005) 
Hemolytic activity of new linear surfactin analogs in relation to their physico-
chemical properties. Biochim. Biophys. Acta. 1726, 87-95 

42 Liu, X., Huang, W. and Wang, E. (2005) An electrochimical study on the 
interaction of surfactin with a supported bilayer lipid on a glassy carbon 
electrode. J. Electroanal. Chem. 577, 349-354 

43 Maget-Dana, R. and Ptak, M. (1995) Interaction of surfactin with membrane 
models. Biophys. J. 68, 1937-1943 

44 Chen, H.-L. and Juang, R.-S. (2008) Recovery and separation of surfactin from 
pretreated fermentation broths by physical and chemical extraction. Biochem. 
Eng. J. . 38, 39-46 

45 Symmank, H., Franke, P., Saenger, W. and Bernhard, F. (2002) Modification of 
biologically active peptides: production of a novel lipohexapeptide after 
engineering of Bacillus subtilis surfactin synthetase. Prot. Eng. 15, 913-921 

46 Davis, D. A., Lynch, H. C. and J., V. (1999) The production of surfactin in batch 
culture by Bacillus subtilis ATCC21332 is strongly influenced by the conditions 
of nitrogen metabolism. Enz. Microb. Technol. 25, 322–329 

47 Rautenbach, M., Gerstner, G. D., Vlok, M., Kulenkampff, J. and Westerhoff, H. 
V. (2006) Analyses dose-response curves, to compare the antimicrobial activity 
of model cationic α-helical peptides, highlights the necessity for a minimum of 
two active parameters. Anal. Biochem. 350, 81-90 

48 Du Toit, E. A. and Rautenbach, M. ( 2000) A sensitive standardised micro-gel 
well diffusion assay for the determination of antimicrobial activity. J. Microbiol. 
Methods. 1, 159-165 

49 Hall, M. J., Middleton, R. F. and Westmacott, D. (1982) The fractional 
inhibitory concentration (FIC) index as a measure of synergy. J. Antimicro. 
Chemother. 11, 427-433 



 

 2-31

50 Ishigami, Y., Osman, M., Nakahara, H., Sano, Y., Ishiguro, R. and Matsumoto, 
M. (1995) Significance of β-sheet formation for micellization and surface 
absorption of surfactin. Coillois Surf., B. 4, 341-348 

51 Ahimou, F., Jacques, P. and Deleu, M. (2000) Surfactin and iturin A effects on 
B. subtilis hydrophobicity. Enzyme Microbiol. Technol. 27, 749-754 

52 Hamon, M. A. and Lazazzera, B. A. (2001) The sporulation transcription factor 
Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 
42, 1199-1209 

53 O'Brien, J., Wilson, I., Orton, T. and Pognan, F. (2000) Investigation of the 
Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell 
cytotoxicity. Eur. J. Biochem. 267, 5421-5426 

54 Anon. (2002) CellTiter-BlueTM cell viability assay,  PromegaTM technical 
bulletin. p. 317, Madison 

55 Niles, A. L., Moravec, R. A. and Riss, T. L. (2009) In vitro viability and 
cytotoxicity testing and same-well multi-parametric combinations for high 
throughput screening. Curr. Chem. Genomics. 3, 33-41 

56 Heerklotz, H., Wieprecht, T. and Seelig, J. (2004) Membrane pertubation by the 
lipopeptide surfactin and detergents as studied by deuterium NMR. J. Phys. 
Chem. 108, 4909-4015 

57 Nagamurthi, G. and Rambhav, S. (1985) Gramicidin-S: Structure-activity 
relationship. J. Biosci. 7, 323-329 

 
 
 



 

  3-1 

Chapter 3 

Biophysical characterisation of the intermolecular 
interaction between the antagonistic antimicrobial peptides, 

surfactin and gramicidin S 

Introduction  

Vlok [1] observed non-covalent complexes between the Bacillus subtilis peptide surfactin (Srf) 

and gramicidin S (GS) from Aneurinibacillus migulanus, by using electrospray mass 

spectrometry (ESMS).  If these complexes form in solution phase, this complexation is possibly 

related to the antagonism of the antimicrobial activity of GS by Srf toward Microccocus luteus 

and Bacillus subtilis strains (OKB120 and ATCC21332) discussed in Chapter 2. Complex 

formation between these two peptides may be a general defence mechanism, which also extends 

to other related peptides such as the cyclic tyrotricines (Trcs) and linear gramicidins (Grcs) from 

Bacillus aneurinolyticus (refer to Chapter 5). Therefore, characterising possible non-covalent 

complex formation and/or structural influence of GS by Srf would enhance our understanding of 

this protective and putative resistance mechanism.  

GS has two free amino groups (basic groups) from the two ornityl (Orn) residues [2] while Srf 

has two free acidic groups from both the Asp and Glu residues [3]. Non-specific complexation 

between GS and Srf could involve electrostatic interactions between these two basic groups of 

GS and the two acidic groups of Srf, but if there is specific recognition between the two peptides, 

hydrogen bonding would be important. The techniques used in this study, among the variety of 

physical and analytical techniques utilised for structural analysis and for probing non-covalent 
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interactions in molecules, were ESMS, circular dichroism (CD) and nuclear magnetic resonance 

spectroscopy (NMR). 

ESMS is a chemical analysis technique used, for example, to determine the mass and primary 

structure of peptides [4]. First, ionised peptides in solution are transferred to gas phase via the 

electrospray source where further ionisation can take place. Second, the ionised peptides pass 

through a mass analyser where they are detected according to their mass-to-charge ratio (m/z). 

Electrospray ionisation can generate either singly or multiple charged ions [5]. Ions are formed 

in solution either from complexation with metal ions ([M+Na]+, [M+K]+) or from an acid-base 

reaction ([M+H]+, [M-H]-). Since ionisation in ESMS is carried out in solution, it is regarded as a 

suitable technique for probing non-covalent interactions between molecules [4, 6-8]. Likewise, 

tandem mass spectrometry, also denoted as MS-MS [9, 10], allows the de novo sequence 

determination of a compound and can in theory be used to determine the site of interactions 

between molecules in a non-covalent complex. 

MS-MS makes use of collision induced dissociation (CID) to fragment peptides and is generally 

used to deduce information regarding their amino acid sequence. One of the prerequisites in the 

fragmentation of cyclic peptides is the controlled opening of the backbone ring. For GS, the ring 

opening mostly occurs at one of the Pro residues. However, for Srf the opening of the ring occurs 

at the lactone bond. This technique can be used to obtain information regarding the residues 

involved in the interaction of fragmented GS-Srf complexes as the peptide bonds of the residues 

involved in the interaction may be more protected from CID.  

CD is based on the interaction of optically active molecules with polarized light which gives 

information of chirality and organized hydrogen bonded structures. Biological molecules, such 
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as peptides, are able to absorb polarized light and will give a distinct characteristic UV-CD 

absorption spectrum based on their secondary structure, comprising for example of  α-helixes 

and β-sheets, with β-turn and/or random coil regions. In a CD spectrum the occurrence of two 

minima (negative Cotton effects) at 222 and 208 nm at a ratio of θ222/θ208 = 0.4 and a maximum 

(positive Cotton effect) at 192 nm is indicative of α-helical structures [11, 12]. In contrast, β-

sheets structure have a minimum around 217 nm and a maximum around 198 nm [11, 12]. β-

turns in peptides have been mapped to a minimum between 202 to 208 nm [13-16]. These 

peptide structures absorb in far-UV CD due to hydrogen bonding with/between peptide backbone 

amide bonds [15, 16] and the existence and changes in such ordered structures can therefore be 

studied using CD. However, in small peptides the far UV-CD spectral character is complicated 

when there are aromatic side chains in the peptide sequence [15, 16], such as is found in GS (and 

the Trcs).  

The CD spectra of GS and Srf have been determined by a number of investigators [15-20]. The 

CD spectrum of GS in Tris-buffer is characterised by a double minimum at 206 and 222 nm 

reminiscent of an α-helix [19]. However, the ratio of θ222/θ206 at 0.94 in Tris-buffer and a double 

minima at 207 and 215 nm in water [15] does not correlate with the spectra of α-helical peptides. 

The GS CD spectrum changes according to the type of solvent. In TFE, which stabilises the H-

bonds in solution, GS exhibits increased ellipticity [16, 19]. According to Ruotolo et al. [20] the 

β-sheet content of GS increases from a 50% in methanol/water solution to a 100% in TFE 

solution which indicate more structural stability. The GS structure has been shown to consist of a 

combination of a short β-sheet and two β-turn motifs [15, 16, 21, 22]. Srf is also regarded as a β-

sheet peptide with β-turn motifs [17], but has also shown uncharacteristic CD spectra. The 

structure of Srf is characterised by β-sheet and/or β-turn conformations in trifluoroethanol (TFE) 
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and in aqueous media and the presence of Ca2+ causes structural change in Srf structure [17, 18]. 

Therefore the CD spectra of the cyclic peptides, Srf and GS, with a mixture of L- and D-amino 

acids, as well as aromatic amino acids (only GS) cannot be fully assessed using only protein 

models of CD spectra. 

One of the most powerful techniques to elucidate secondary (and tertiary) structures and 

molecular interactions is NMR. These interactions can be indentified in three ways: 1) the 

change in chemical shift of residues which take part in the interaction between the peptides; 2) 

the observation through-space dipole coupling nuclear Overhauser effects (NOEs) between 

interacting residues and; 3) the change in the diffusion coefficient of single and mixture peptides 

with diffusion ordered 2D-NMR spectroscopy (DOSY). DOSY NMR facilitates the assessment 

of possible interaction and/or aggregation phenomena in a mixture [23].  

Previous NMR and X-ray study results show that the amide protons L-Val1, L-Orn2, L-Leu3 and 

D-Phe4 of GS are involved in intramolecular hydrogen bonding [24-27]. The backbone JHNHα 

coupling constants for L-Val1, L-Orn2 L-Leu3 and D-Phe4 that were observed are typical for the 

presence of β-turn/β-sheet structures [24, 27]. The 1H-NMR of Srf shows two distinct 

conformations for Srf (S1 and S2), characterized by a “horse saddle” ring atom and having one 

and three hydrogen bonds respectively [3]. In S1 the two acidic Glu1 and Asp5 are close together, 

whereas in S2 they are separated in space [3]. 

This chapter describes a comprehensive investigation of the cyclic peptide structures of both the 

acidic lipopeptide Srf and the cyclic cationic peptide GS to assess the structures in selected 

solvents. The determined baseline structural parameters of GS is compared with mixtures of GS 

and Srf to characterise the possible conformational changes of GS structure arising from binding 
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or influence of Srf to ultimately elucidate the molecular parameters of the antagonistic peptide 

interactions. 

Materials 

Purified GS from Aneurinibacillus migulanus was purchased from Sigma-Aldrich and Fluka 

(Steinheim, Germany). The Srf complex from B. subtilis was supplied by Fluka Chemie (St 

Louis, USA). Acetic anhydride (98.0%) was supplied by BDH Chemicals Ltd (Poole, England). 

Acetonitrile (CH3CN, HPLC grade, UV cut-off 190 nm) and methanol (CH3OH, HPLC grade, 

UV cut-off 205 nm) were supplied by Romil Ltd (Cambridge, UK). Ethanol (GR grade) and 

ninhydrin were purchased from Merck Chemicals (Darmstadt, Germany). The deuterated 

acetonitrile (CD3CN, deuteration degree >99% for NMR spectrometry) was supplied by Merck 

(Darmstadt, Germany). N,N-dimethylformamide (DMF) was supplied by Merck Chemicals (Pty) 

Ltd (Wadeville, RSA). N-ethyldiisopropylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) were 

supplied by Sigma Chemicals Co (St Louis, USA). A Milli Q® water purification system was 

used to filter water from a reverse osmosis plant to prepare analytical grade water.  

Methods 

Gramicidin S acetylation 

All glassware was prepared to facilitate an anhydrous environment. Freeze-dried GS (1.5 mg) 

was first dissolved in 43 µL dry distilled DIPEA and 50 µL freshly distilled amine and water free 

DMF, then diluted in 130 µL of the freshly distilled anhydrous acetic anhydride (acetic 

anhydride was distilled immediately before use in an anhydrous environment). The mixture in a 

tightly closed vessel was shaken on a mechanical shaker for one hour to allow the reaction to 

take place. After incubation, 5 µL of the mixture was spotted onto a thin layer chromatography 
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(TLC) plate and the plate was sprayed with a 2% ninhydrin solution in 95% ethanol (note that 

the plate was not developed). The absence of a purple or pink taint on the TLC spot, after five 

minutes incubation at 80ºC, indicated that the acetylation reaction was completed. The identity 

and purity of the acetylated GS was later confirmed with analytical HPLC and ESMS. 

Electrospray mass spectrometry 

The GS and Srf were prepared by dissolving 0.1 mM each in a CH3CN/water (1:1, v/v). A 

Waters Q-TOF Ultima mass spectrometer fitted with a Z-spray electrospray ionisation source 

was used to perform ESMS.  A sample solution (5 to 10 µL) was introduced into the 

spectrometer via a Waters Acquity UPLCTM. For titration, stock solutions of both Srf and GS 

(1.0 mM) were made in CH3CN/water (1:1, v/v). Peptides (10 µL) were then diluted to 50 µM in 

water and mixed at different molar ratios, before injection. The carrier solvent was CH3CN/water 

(1:1, v/v in 0.1% formic acid) and the flow rate was 300 µL/min. A capillary voltage of 3.5 kV 

and cone voltage of 35 V were applied. The source temperature was set at 100oC. Data 

acquisition was in the positive mode, scanning the second analyzer (MS2), through m/z = 

100−1999 (where the m/z is defined as the molecular mass to charge ratio).  A combination of 

the scans across the elution peak and subtraction of the background produced representative 

scans. 

CID of selected molecular ions was performed with argon gas at a gas pressure of 11 psi in MS2 

and the collision energy varying from 15 to 75 eV. The second analyzer was scanned from m/z = 

100 to 100 atomic mass units above the m/z value of the parent ions in order to detect daughter 

ions (fragment ions). 
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Circular dichroism spectropolarimetry 

Analytical stock solutions (2.0 mM) of Srf and GS were prepared in ethanol/water (1:2, v/v) for 

CD. Peptides (10 µL) were then diluted to 10 µM in water or TFE (final volume was 2.0 mL,  

<0.2% ethanol) before measurement. For titration a fixed volume (2.5 µL of 2.0 mM peptide) of 

the titrating peptide was added each time to the titrated peptide  (10.0 µM, 2 mL) until it reached 

1:1 molar ratio; then 10 µL was added for a 1:2 ratio (final volume added was 20 µL). For the 

premixing experiment different ratio of peptide mixtures were made at least 30 min before 

analysis. A high resolution Chirascan CD spectrometer was used to obtain circular scan with a 

1.00 cm quartz cuvette. CD and UV absorption spectra were collected simultaneously from 190 

to 250 nm in water and 200 to 250 nm in TFE with a 0.1 nm step in three to five scans.  

Nuclear magnetic resonance spectroscopy 

Peptides (1-2 mg) were prepared in CD3CN/water (1:1, v/v) solution for NMR experiments. A 

Varian Unity INOVA 600 MHz and a Bruker Avance 500 MHz NMR spectrometer, operating at 

variable temperatures and equipped with a 5mm IDPFG 1H [15N-31P] (Varian) or a 5 mm BBI 

(Bruker) indirect detection pulse field gradient probe, were used for the 1D and 2D NMR 

measurements. The water solvent signal was suppressed by pre-saturation using the transmitter 

(Varian) or Watergate-based suppression sequences (Bruker) and a total of 64 scans were used to 

obtain the 1H-NMR spectra. One dimensional data were processed and analysed using 

ACD/NMR processor academic edition (ACDLABS 12.0, software [28, 29]). Data acquisition 

was done using the VnmrJ software for the Varian spectrometer or the Topspin 2.1 software 

package for the Bruker spectrometer. All chemical shifts were referenced to the CD3CN peak 

(1.94 ppm at 25 °C). Diffusion orientated spectroscopy (DOSY), nuclear Overhauser effect 

spectroscopy (NOESY), rotating-frame Overhauser effect spectroscopy (ROESY) and total 
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correlation spectroscopy (TOCSY) spectra were collected at 298 K with mixing times of 150 ms 

for the NOESY/ROESY experiment. 

The 1H-NMR titration data were used to calculate the height fraction of the spin coupling of the 

different NH protons of GS (proton x) in GS alone or the GS+Srf mixture at different titrating 

temperatures (temp) (Equation 3.1 and 3.2) 

  (3.1) 

(3.2) 

The fraction of height was then determined from the ratio of the height in the GS-Srf mixture 

versus the height in GS alone according to equation 3.3. 

(3.3) 
 

Results and discussion 

The main aim of this study was to characterise the possible non-covalent complex(es) formed 

and/or structural influences of Srf on GS, which may be responsible for the antagonism of GS 

activity described in Chapter 2. This was done by first investigating the structures of GS and Srf 

and possible change in structures due to GS-Srf interaction utilising UV-CD (Part 1). Then, a 

more detailed structural analysis was attempted utilising ESMS and NMR (Parts 2 and 3 

respectively). 
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Results and discussion: Part 1 

UV-CD analysis of the influence of surfactin on gramicidin structure 

Far UV-CD analysis of peptide fractions 

The CD spectra of both GS and Srf complex were determined in water and TFE. The CD 

spectrum of GS in water exhibited characteristic negative ellipticity values with minima at 206 

and 216 nm (θ206 and θ216) which is related to its predominant antiparallel β-sheet structure with 

its two type II β-turns (Figure 3.1A) [30, 31]. However, there was a red shift of the ellipticity 

minimum from 206 nm to 208 nm and a significant increase in the negative ellipticity of GS in a 

less polar, but hydrogen-bond promoting solvent mixture containing 50% TFE (Figure 3.1 and 

Table 3.1).  

The ratio of the two molar ellipticity minima (216 nm and 208 or 206 nm in 50% TFE and water 

respectively) decreased in 50% TFE compared to that in water correlating with previous 

literature reports (Table 3.1) [26]. The increase in the ellipticity (and decrease in θ216/θ208) 

observed in 50% TFE were indicative of a more structured GS [32, 33]. This is caused by 

increased intermolecular hydrogen backbone bonds and thus increasing of the stability, rigidity 

and self-assembly states of GS [22, 31]. Water, more effectively than TFE, can form hydrogen 

bonds with the carbonyl groups of the peptide backbone, therefore GS in water will exhibit an 

overall lower negative molar ellipticity [22, 32, 33]. 

Srf exhibited much weaker CD spectra in water and in 50% TFE as compared to GS (Figure 

3.1B). In water Srf presented two weak minima (197 nm and 226 nm) and a maximum at 212 

nm. The spectrum has elements of β-turn and β-sheet structures [17], but also random structures. 
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The change in CD profile of Srf in a 50% TFE solution was predominantly characterised by the 

minimum between 195-200 nm that was inverted and blue shifted to a maximum at 193 nm.  

Table 3.1 CD spectra parameters of the GS and Srf in water and in 50% TFE (average molar 
ellipticities (θ) are given in deg.cm2.µM-1 x 101; the standard error of the mean 
(SEM) was calculated for three determinations). 

Gramicidin S (*θ208 for GS in 50% TFE) 
Solvents θ206

* θ216 θ216/θ206 
H2O -21.85 ± 0.20 -21.33 ± 0.10 0.98 ± 0.01 

50%TFE -31.85 ± 0.15 -30.39 ± 0.31 0.95 ± 0.01 

Surfactin 
Solvents θ220-230 θ210-215 θ190-200 θ220-230/θ190-200 

H2O -0.92 ± 0.01 -0.42 ± 0.06 -0.90 ± 0.06 1.02 
50% TFE -2.01 ± o.o3 -2.09 ± 0.10 40.50 ± 0.8 -0.05 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.1 CD absorbance spectra of A GS and B Srf in water and 50% TFE. The average of 
three determinations was used to fit a Lowess fit line (20 point smoothing 
windows). Mollar ellipticity is given in term of A GS or B Srf concentrations. 

Also, the negative ellipticity minimum between 220-230 nm increased. The maximum at 212 nm 

inverted and blue shifted to a minimum at 211 nm. The induced maximum at 193 and the higher 
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negative ellipticity at between 220-230 nm indicates an increase in β-sheet structures of Srf in 

the 50% TFE solution (Table 3.1 and Figure 3.1 B) [34]. The ratio of the ellipticity minimum of 

the longer wavelength to that of the shorter wavelength in depicted in Table 3.1 decreases from 

water to TFE. This result corroborates with results from Vass et al. [17] and points to the 

formation of sheet-like micelles of Srf. 

Far UV-CD characterisation of non-covalent peptide complexes 

The CD spectra of a freshly prepared 1:1 molar mixture of GS and Srf (10 µM) showed a 

predominance of the GS spectrum over the Srf spectrum which was almost absent (Figure 3.2). 

In water, there was a red shift in the CD spectrum of GS in presence of Srf, with the ellipticity 

minimum at 216 nm shifted to 220 nm. There was a decrease in the ellipticity minimum at 206 

nm which was also red shifted to 208 nm, similar to that in TFE (Figure 3.1A and Table 3.2). 

The ellipticity ratios of the longer wavelengths to that of the shorter wavelengths [(θ220/θ206), 

(θ220/θ216) and (θ216/θ206)] increased in presence of Srf (Table 3.2).  

The overall shape of the CD spectrum of GS in the presence of Srf in 50% TFE solution showed 

only a minor change in the ellipticity minimum at 206 nm (Figure 3.2B and Table 3.2). The ratio 

of the ellipticity θ216/θ206 ratio in the 1:1 GS-Srf in the membrane mimetic TFE were similar to 

that of GS alone in water (Table 3.2). Compared to the far UV-CD spectra of GS alone in water, 

the spectra of GS-Srf in water reflected some conformational changes in the structure of GS 

reminiscent of GS in TFE. These changes may result from GS associating with the negatively 

charged Srf [31]. Although, Srf may act as a surfactant and cause a decrease in the assembly and 

structural order of GS, new β-sheet structures may be induced in both peptides. According to 

Jelokhani-Niaraki et al [31], the association of GS with negatively charged phospholipid vesicles 
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caused similar change in the CD spectrum of GS. These conformational changes increase with 

increase phospholipids/lipid ratios and are caused by electrostatic interactions between GS and 

the phospholipids [31]. 

Table 3.2 Summary of CD parameters determined for GS and Srf and GS-Srf mixture in 
water and in 50% TFE (average molar ellipticities are given in deg.cm2.µM-1 x 
101 ± SEM of three determinations). 

Solvent 
Peptide 

or 
mixture 

θ206 θ216 θ220 θ220/θ206 θ220/θ216 θ216/θ206 

H2O GS -21.8 ± 0.2 -21.3 ± 0.1 -19.5 ± 0.0 0.89 ± 0.0 0.92 ± 0.01 0.95 ± 0.04
 GS-Srf -14.5 ± 0.2 -22.0 ± 0.2 -23.2 ± 0.9 1.60 ± 0.0 1.06 ± 0.01 1.54 ± 0.04

50% TFE GS -31.9 ± 0.2 -30.4 ± 0.3 na na na 0.93 ± 0.06
 GS-Srf -29.5 ± 0.6 -30.0 ± 0.2 na na na 0.99 ± 0.06

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
  

Figure 3.2 CD spectra of GS and the 1:1 molar mixture of GS-Srf in A H2O and B 50% TFE. 
The average of three determinations was used to represent each spectrum by a 
Lowess fit line (20 point smoothing window). The molar ellipticity is given in 
terms of the GS concentration. 
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Figure 3.3 CD spectra of the titration of A GS by Srf and B Srf by GS in water. An average of 
five determinations was used to represent each CD spectrum by a Lowess fit line 
(20 point smoothing window). The molar ellipticities are given in terms of the GS 
concentration for A and Srf for B. 

The change in the orientation of the positively charged Lys residue in GS analogues by chemical 

isomeration can also cause a decrease in the negative ellipticity values of GS [35]. Srf may 

interact or shield the positive Orn2 or the Phe4 side-chain groups of GS reducing their CD 

absorption. This may affect the structural stability, hydrophobicity and propensity for self-

assembly of GS in water (Figure 3.3) [35]. However, the addition of Srf caused only slight 

changes in the CD spectrum of GS in 50% TFE solution. This is possibly due to greater 

conformational stability of GS in the membrane mimetic media. This also suggested that the 

interaction between the two molecules may not occur in the membrane, however, it does not rule 

out interaction at the membrane interphase. The decrease in ellipticity of GS as function of Srf 

concentration was investigated by titrating GS with Srf and vice-versa. 
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Table 3.3 Summary of CD parameters determined during GS-Srf titration in water (average 
molar ellipticities (θ) are given in deg.cm2. µM-1 x 101 and SEM of five 
determinations are given). 

 Titration of  
10 µM GS by Srf 

Titration of  
10 µM Srf by GS 

Peptide ratio A230-210 θ216/θ206 A230-210 θ216/θ206 
1:0 0.15 ± 0.14 0.96 ± 0.01 0.07 ± 0.03 - 

1:0.25 0.18 ± 0.12 0.98 ± 0.01 0.15 ± 0.07 1.28 ± 0.02 
1:0.5 0.23 ± 0.13 1.02 ± 0.01 0.22 ± 0.10 1.13 ± 0.01 

1:0.75 0.28 ± 0.14 1.05 ± 0.01 0.28 ± 0.14 1.10 ± 0.01 
1:1 0.32 ± 0.15 1.08 ± 0.01 0.36 ± 0.17 1.08 ± 0.01 
1:2 0.48 ± 0.20 1.19 ± 0.02 0.55 ± 0.17 1.03 ± 0.01 

The CD spectra of the titration of GS by Srf and Srf by GS in water also showed a gradual 

decrease and red shift of the negative ellipticity minimum at 206 to 208 nm, as well as a gradual 

increase and red shift of the negative ellipticity minimum at 216 to 222 nm (Figure 3.3 and Table 

3.3). The ellipticity ratios (θ216/θ204) increased with increase in Srf concentrations and decreased 

with increase GS concentrations (Table 3.3 and Figures 3.3 and 3.4).  As expected, the average 

absorbance between 230 and 210 nm (A230-210) values of GS also increased with increased Srf 

and GS concentrations (results not shown).  

The titration of GS by the diluting solvent was compared to the titration of GS by Srf (Figure 

3.4A). The results show an exponential decrease of the ellipticity ratio (θ216/θ206) with increased 

GS concentrations, while it reciprocally increased with increased Srf concentrations.  However, 

this ratio did not change significantly when GS was titrated with the diluting solvent and vice 

versa. This data indicated that the change in the ellipticity ratios was Srf-dependent. Srf may 

decrease the high-order self-assembly homo-oligomeric structure of GS leading to the loss of GS 

activity as observed in Chapter 2 (also refer to discussion on DOSY NMR below). 
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Figure 3.4 Comparison of the change in the molar ellipticity ratios (θ216/θ206) as function of 
A GS titrated by Srf, Srf titrated by GS and GS-solvent (75% ethanol) titration in 
water, and B Srf titration of to 10 µM GS in different solvent systems, H2O and 
100% TFE. The average of five spectra (except for TFE where three spectra were 
recorded) and SEM is represented for each data point. 

A similar titration of GS by Srf was done in TFE as a membrane mimicking environment. Figure 

3.4B compares the change in the molar ellipticity ratios of GS as function of Srf:GS ratio 

between water and TFE. The ellipticity ratio in TFE did not show the same linear increase as in 

water with the increase in Srf, but decreased up to 1:1 molar ratio (sigmoidal trend). The trend 

observed in TFE may indicate a concentration dependent conformational change, different from 

that in water which is maximal from about 1:1 molar ratio for the two peptides. 

Because the titration process of the peptides may not allow the system to reach equilibrium, the 

CD experiments were repeated by premixing the peptides and allowing the solutions to incubate 

for at least 15 minutes. Srf showed a similar, but much more pronounced influence, on the 

spectra of GS (Figure 3.5). The average of the molar ellipticity was calculated from 204-208 nm 

(θ204-208) and from 216-222 nm (θ216-222) to probe the change in the secondary structure of the 

mixture of GS and Srf (Table 3.4). The change in the θ204-208 part of GS spectrum is more 

sensitive to modification in β-turn structure of GS [16] and Srf [34], which is related to the 
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observed red shift of the ellipticity minimum at 206 nm to 208 nm. Whereas, the red shift of the 

ellipticity minimum at 216 nm to 222 nm was related to the change in θ216-222 part of GS 

spectrum which is more sensitive to change in β-sheet structure of GS [16] and Srf (Figure 3.5 

and Table 3.4).  

Table 3.4 Summary of CD parameters determined analyzing premixed GS-Srf mixtures in 
water (average molar ellipticities (θ) are given in deg.cm2. µM-1 x 101 and SEM of 
three determinations are given). 

Peptide ratio 
Srf:GS 

θ216-222 θ204-218 θ216-222/ 
θ204-208 

0.00 -19.89 ± 0.05 -21.50 ± 0.14 0.93 ± 0.01 
0.25 -17.67 ± 0.04 -17.71 ± 0.01 0.99 ± 0.01 
0.50 -18.68 ± 0.05 -15.05 ± 0.13 1.24 ± 0.01 
0.60 -18.41  ± 0.09 -13.93 ± 0.07 1.32 ± 0.01 
0.70 -21.82 ± 0.04 -16.25 ± 0.15 1.34 ± 0.01 
0.75 -21.24 ± 0.13 -15.54 ± 0.14 1.37 ± 0.01 
0.90 -20.03 ± 0.07 -10.11 ± 0.15 1.98  ± 0.03 
1.00 -22.76 ± 0.09 -13.98 ± 0.15 1.63 ± 0.02 
2.00 -27.35 ± 0.16 -14.06 ± 0.17 1.95 ± 0.03 

 
A plot of the molar ellipticity changes (Figure 3.6) shows that addition of Srf caused a nonlinear 

decrease in the β-turn component at 204-208 nm which levels off at about 0.5:1 Srf:GS ratio 

(Table 3.4 and Figure 3.5). In the folded GS, Pro5,10 and D-Phe4,9 are part of the β-turn structure 

of GS [36, 37]. The decrease in β-turn structure of GS also points to a change in the 

orientation/exposure/location of the D-Phe4,9  residues of GS in presence of Srf. The increase of 

the β-sheet structure component of GS-Srf mixture [16, 31, 38] seem to follow a linear trend 

(R2=0.80) with the increase in Srf, although it may tend to level off according to the sigmoidal fit 

parameters (R2=0.89) (Figure 3.6), correlating with the spectral change in TFE (compare with 

Fig 3.4B). These results may indicate that the interaction of the two peptides cause an increase in 

the β-sheet structures of both GS and Srf. 
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Figure 3.5 CD spectrum of the titration of GS by Srf in water after pre-incubation of the two 
peptides. Each spectrum is a representation of a Srf;GS mixture (Srf:GS ratios are 
given in the legend). An average of three determinations was used to represent 
each CD spectrum by a Lowess fit line (20 point smoothing window). The molar 
ellipticity is given in terms of the GS concentration except that of Srf. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Change in the molar ellipticity minima between 204-208 nm and 216-222 nm of 
GS as function of Srf;GS molar ratio. Each data point represents spectrum and the 
line fits were done on the average of the triplicate data points.  
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Summary and conclusions: Part 1 

The far UV-CD results indicated that Srf causes a change in the secondary structure of GS in 

water and possibly visa versa. The decrease and red shift of the ellipticity minimum from  

206 nm to 208 nm indicates a decrease in the prominent β-turn structures of GS. Whereas, the 

increase and red shift of the negative ellipticity minimum at 216 nm to 222 nm of the CD spectra 

of the GS-Srf mixture is related to an increase in β-sheet structures. These changes were most 

probably due to interactions of the cationic GS with the negatively charged Srf, stabilizing or 

inducing hetero-oligomeric β-sheet structures, or structures resembling those in membranes. 

These interactions may have caused a change in the orientation/exposure/location of D-Phe4,9 or 

Orn2,7 residues of GS reducing the aggregation and/or self-assembly properties of GS in aqueous 

media. These complexes were further investigated with ESMS and NMR. 

Results and discussion: Part 2 

ESMS investigation of gramicidin S and surfactin mixture 

ESMS analysis of the commercial GS showed that the extract contained high purity GS. Results 

showed mono-isotopic molecular ions with m/z = 1141.7 and m/z = 571.3, correspond to the 

singly and doubly charged molecular ions of GS with expected m/z values of 1141.6 and 570.8 

respectively (Table 3.5 and Figure 3.7A). Other species with m/z of 1163.7 corresponding to the 

sodium adduct species of GS (m/z = 1163.7). 

The ESMS results of the commercial lipopeptide Srf extract showed four singly charged Srfs 

[M+H]+ ions with the m/z values of 994.87, 1008.89, 1022.68 and 1036.71 (Table 3.5). These 

ions corresponded to the Srf species with the molecular masses of 993.27, 1007.30, 1021.33 and 
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1035.36 respectively (Srf1-Srf4). Their respective Na+ adduct molecular ions and isotopes at m/z 

of 1016.65, 1030.66, 1044.67 and 1058.68, in this order, were also observed (Figure 3.7B). 

Table 3.5 Summary of the different ion species in the commercial GS and Srf complex and 
the synthesized acetylated-GS as detected by ESMS. 

Peptides Mr Abbr species 
Expected 

m/z 
Detected 

m/z 

GS 1140.6 GS [MGS+H]+ 1141.6 1141.7 

   [MGS+Na+H]+ 1163.6 1163.7 

   [MGS+2H]2+ 571.8 571.3 

Srf 993.7 Srf1 [MSrf1+H]+ 994.7 994.67 

 1007.7 Srf2 [MSrf2+H]+ 1008.7 1008.69 

 1021.6 Srf3 [MSrf3+H]+ 1022.7 1022.68 

 1035.7 Srf4 [MSrf4+H]+ 1036.7 1036.71 

Acetylated-GS 1224.9 ac-GS [Mac-GS+H]+ 1225.82 1225.7 
   [Mac-GS+Na+H]+ 1247.82 1247.7 
   [Mac-GS+2H]2+ 613.41 613.43 
   [Mac-GS+3H]3+ 409.60 409.21 

The 1:1 molar mixture of GS and Srf showed that the two peptides formed cationic complexes 

stable enough to be observed under ESMS conditions (Table 3.6). Apart from detection of the 

different singly and doubly charged ion species of the individual peptides in the GS-Srf mixture, 

ESMS detected both 1:1 and 1:2 doubly charged GS-Srf complexes (Table 3.6 and Figure 3.8). 

The titration study of Srf by GS in water (Figure 3.9) lead to a decrease in signal intensity of the 

Srf ions and the ion signals for GS and GS-Srf complexes increased, as expected.   However, 

consistently in repeated analysis (including different solvents), all three molecular ions 

unexpectedly reached a minimum at 1:1 molar ratio of the two peptides, indicating the formation 

of neutral complexes. 
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Figure 3.7 Positive mode ESMS spectra with A GS, GS ions denoted as MGS, and B Srf with 
its ions denoted as MSrf1-MSrf4. 
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The two positive charges of GS are possibly neutralized by the two negative charges of Srf in a 

stable 1:1 neutral complex.  However, at ratios higher than 2:1, the intensity of molecular ions of 

Srf and GS-Srf increased again (Figure 3.9). The signal intensity of the complexes was maximal 

at 4:1 GS:Srf ratio. This may indicate that larger complexes formed (GS>Srf in oligomeric 

complexes) and that these complexes dissociated into charged 1:1 complexes which was 

detected, explaining both the re-appearance of GS-Srf and Srf molecular ions. The increase in the 

GS molecular ion signal is expected as GS is the titrating peptide. 

Table 3.6 Summary of the different doubly charged 1:1 and 1:2 complex ion species in 
mixture between the commercial GS and Srf as detected by ESMS. 

GS-Srf (1:1) Mr Species 
calculated 

m/z 
observed 

m/z 
C1 2134.29 [MGS+MSrf1+2H]2+ 1068.145 - 
C2 2148.32 [MGS+MSrf2+2H]2+ 1075.16 1075.68 
C3 2162.34 [MGS+MSrf3+2H]2+ 1082.17 1082.68 
C4 2176.37 [MGS+MSrf4+2H]2+ 1089.185 1089.68 

GS-(Srf)2 
(1:2) Mr species calculated 

m/z 
observed 

m/z 
C5 3141.94 [MGS+MSrf1+MSrf2+2H]2+ 1571.97 - 
C6 3155.96 [MGS+MSrf1+MSrf3+2H]2+ 1578.98 - 
C7 3169.99 [MGS+MSrf1+MSrf4+2H]2+ 1585.95 1586.51 
C8 3169.99 [MGS+MSrf2+MSrf3+2H]2+ 1585.99 1586.51 
C9 3184.02 [MGS+MSrf2+MSrf4+2H]2+ 1593.01 1593.51 

C10 3198.04 [MGS+MSrf3+MSrf4+2H]2+ 1600.02 1600.52 

These complexes that formed between GS and Srf may result from electrostatic interactions 

between the two amino side chains of GS and the two acidic side chains of Srf. To investigate 

the role of these amino groups (two Orn residue side chains) of GS in formation of the 

complexes with Srf, GS’s Orn δ-amino groups were acetylated using acetic anhydride in 

pyridine. The acetylated GS was then mixed with Srf and analysed by ESMS. The expected 

molecular ions corresponding to the acetylated GS ([M+2H]2+, m/z = 613.43; [M+H]+, m/z = 
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1225.7) as well as the respective ion species of Srf ([M+H]+, m/z = 994.7, 1008.7, 1022.7, 

1036.7) were detected from the 1:1 molar mixture of the two peptides (Figure 3.10 and Table 

3.5). The acetylated GS, however, did not show any complexes with Srf and indicated that at 

least one of the amino groups of GS (one of the two δ-amino groups) is necessary for interaction 

with Srf or to form stable ESMS detectable complexes. Previous studies by Danders et al. [39] 

and Nagamurthi and Raubhan [40] also showed that more than 98% of GS activity is lost when 

these two Orn residues are blocked with different groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8   Positive mode ESMS spectrum of the GS-Srf mixture showing the different 1:1 
and 1:2 doubly charged complex ions. 
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Figure 3.9 A representative titration result showing the positive mode detection of ESMS 

stable GS-Srf ions, GS and Srf during the titration of Srf in water with GS. The 
data depicted in the graph represents the sum of the intensity of all the ion species 
for GS, Srf and GS-Srf complexes indicated in Table 3.6 and Figure 3.8. 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Positive mode ESMS spectrum of the acetylated GS-Srf mixture with the 
acetylated GS ion denoted as Mac-GS and Srf ions are denoted as MSrf1-MSrf4. No 
complexes were observed in the peptide mixture. 
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To further explore non-covalent interaction, the complex formation between GS and Srf were 

invesitigated with ESMS-MS-MS. According to CID performed on the GS (m/z = 1141.7) the 

major fragment ions found were from the b series and their analogous y-ions arising from the 

ring-opening acylium of GS at a Pro residue (Table 3.7). Product ions were detected at 197.2, 

311.4, 424.6, 571.8 668.9 and 882.2, corresponding to the fragments b2, b3, b4, b5, b6 and b8, in 

accordance with the Roepstorff and Fohlman nomenclature [41] as revised by Biemann [42].  

A CID analysis of the Srf (m/z = 1022.89) showed product ions with m/z = 227.17, 469.2, 681.5 

and 910.6 corresponding to fragments b1, b3, b5 and b7 of the ring opening acylium of Srf at C14. 

Ions with m/z = 328.2, 441.3 and 554.4, corresponding to fragments a2, a3 and a4 were also found 

(results not shown). The b’+ OH ions the b2 (m/z = 328.2), b5 (m/z = 663.3), b6 (m/z = 778.5), b7 

(m/z = 891.6) and b8 (m/z = 1004.7) product ions were also identified (Table 3.7). A fragment 

that may be a water adduct of y4 (m/z = 423.3) was also observed.  

A CID analysis of the doubly charged ion of the GS-Srf complex with molecular weight 2177.67 

(refer to Table 3.6) produced product ions with m/z 169.14, 197.14, 261.17, 311.21, 406.30, 

553.36, 572.39 and 666.47 (a to g), corresponding to fragments a2, b2, y2, b3, b4-OH,  

b5-OH, b5 and b6 of GS ([M+H]+ m/z = 1141.09) (Figure 3.11 and Table 3.7). Other fragment 

ions with m/z values of 227.14, 338.24, 356.25, 469.34, 582.43 and 684.49 (1 to 6), 

corresponding to fragments b1, b2-OH, b2, b3, b4 and b5 of Srf ([M+H]+ m/z = 1022.47) were also 

found (Figure 3.11). The absence of certain fragments indicates that the Srf sequence  

L-Val4−L-Asp5−D-Leu6−L-Leu7 may have some interaction with the L-Orn−L-Leu−D-Phe 

sequence of GS (Table 3.7). According to these results, one possible way in which these two 

peptides could interact was between Orn2,7 of GS and Asp5 of Srf. 
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Table 3.7 Summary of the b fragment ion series from the CID of Srf, GS and the 1:1 molar 
GS-Srf mixture. 

  Srf GS 
Frag-
ment 
ions 

Sequence cal 
m/z obs m/z 

GS-
Srf 
frag 

sequence cal 
m/z obs m/z 

GS-
Srf 
frag 

b1 H-C14 227.28 226.17 227.18 H-Pro1 98.05 - - 

b2 C14E 356.04 356.24 356.25 PV 197.5 197.13 197.14 

b3 C14EL 469.12 469.33 469.34 PVO 311.32 311.21 331.21 

b4 C14ELl 582.21 582.34 582.43 PVOL 424.48 424.3 424.3 

b5 C14ELlV 681.3 681.5  - PVOLf 571.54 571.38 572.39 

b6 C14ELlVD 796.3 -  - PVOLfP 668.68 667.46 666.47 

b7 C14ELLVDl 910.4 910.6  - PVOLfPV 765.3  -  - 

b8 C14ELlVDlL 1022.7 1022.47  -  PVOLfPVO 881.87 882.6  - 

b9         PVOLfPVOL 995.2 997.65  - 
b10         PVOLfPVOLf 1141.7 1141.46  -  

The fragments in italic font were observed at signal intensity <10%. Standard one letter abbreviations are used for 
the amino acid residues, except O =Orn. D-amino acids are given in lower case. 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.11 CID spectrum of the doubly charged product ion species of the GS-Srf complex 
with the molecular weight of 2177.64 ([M+2H]2+; m/z = 1082.7). Fragment ions 
of GS ([M+H]+; m/z = 1141.7) are denoted from a to g while the Srf fragment ions 
([M+H]+; m/z = 1022.43) are denoted from 1 to 6. 
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Summary and conclusion: Part 2. 

ESMS of the 1:1 GS:Srf mixture revealed the presence of non-covalent complexes which were 

not observed in the 1:1 mixture of the acetylated GS and Srf. This indicated that one or both of 

the two δ-amino groups of GS are probably essential for ESMS detection and formation of 

complexes between the two peptides. Fragments generated during CID of a GS-Srf complex 

indicated that the Srf sequence, L-Val4−L-Asp5−D-Leu6−L-Leu7, may have some interaction 

with the L-Orn−L-Leu−D-Phe sequence of GS. Srf may bind to the Orn side chain groups of GS 

with its acidic Asp groups via electrostatic interactions, while the hydrophobic side chains may 

stabilise this interaction in an aqueous environment. This interaction could result in inactive 

complexes and antagonism of the antimicrobial activity of GS as discussed in Chapter 2. An 

NMR investigation on the molecular interaction between GS and Srf is reported in Part 3. 

Results and discussion: Part 3 

NMR analysis of the influence of surfactin on gramicidin S structure 

NMR of gramicidin S and surfactin  

The 1H NMR of GS and Srf in CD3CN/H2O solvent mixture was assessed prior to investigating 

possible interaction between the two peptides. The signal assignments were done using  

sequence-specific resonance assignments based on 2D NMR TOCSY, NOESY and/or ROESY 

spectra of the peptides according to Wüthrich [43] and performed in collaboration with Dr 

Katalin Kövér (University of Debrecen, Hungary). For these assignments, the 1D experiment 

provided useful information on the chemical shift and spin-spin coupling for fine structures 

which were observed in the 2D NMR. The TOSCY provided the through-bond scalar spin-spin 

connectivities to indentify the different amino acid residues in each peptide by their unique spin 
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systems [43]. The through-space dipole spin-spin connectivities provided with ROESY and/or 

NOESY experiments together with data from TOSCY and the 1D NMR allowed the connection 

of these residues in sequence [43]. By matching the amino acid sequence obtained in the 2D 

NMR with the sequences determined by ES-MS-MS (refer to Table 3.7), the sequence specific 

assignment was then verified (Figure 3.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 1H-NMR of the NH-Hα region of the TOCSY-ROESY spectra of A GS and B Srf 
in CD3CN:H2O (5:8, v/v) at 270 K and 290 K, respectively. The sequential signal 
assignment of the peptides is shown by connecting arrows. The NOEs NH-Hα 

cross peak for each residues is labeled by the standard three letter abbreviations. 
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For these assignments, the optimal conditions where all the spin coupling of the NH protons are 

visible and separated from one another had to be found for each peptide. This was achieved by 

changing either the solvent composition and/or the temperature. The optimal conditions for the 

assignment of both GS and Srf were a CD3CN/H2O (5:8 v/v) mixture at 298K and 290K 

respectively (Table 3.8 and 3.9 and Figures 3.12 and 3.13). All the different amino acid residues 

of both GS and Srf were identified by their spin systems from TOSCY experiments combined 

with ROESY experiments. These led to the complete 1H assignment of GS and Srf (Tables 3.8 

and 3.9 and Figures 3.12 and 3.13). The region containing the NH-Hα of the overlay TOCSY-

ROESY data, used to obtain the sequential connectivity between amino acids of both GS and Srf, 

is shown in Figure 3.12.  

Table 3.8 1H chemical shifts of GS in CD3CN/H2O (5:8, v/v) at 298K 

Amino acid 
residue 

Chemical shift (ppm) 
NH αH ββ’H other 

L-Val1,6 7.49 4.03 2.13 0.79; 0.86 
L-Orn2,7 8.18 4.78 1.88 2.90; 1.62; 7.36 br (δNH) 
L-Leu3,8 8.63 4.55 1.44#; 1.52; 1.35; 0.80 
D-Phe4,9 8.56 4.46 3.00; 2.92 7.21(2.6); 7.29 (3,4,5) 
L-Pro5,10 -- 4.34 2.92 1.89; 2.00; 1.62; 1.54 

 
Table 3.9 1H chemical shifts of Srf in CD3CN/H2O (5:8, v/v) at 290K 

Amino acid 
residue 

Chemical shift (ppm) 
NH αH ββ’H other 

L-Glu1 8.05 4.26 1.80; 1.95 1.95 
L-leu2 7.92 4.21 1.55; 158 0.77 
D-Leu3 8.00 4.28 1.55 - 
L-Val4 7.88 4.01 2.05 0.76; 0.77 
L-Asp5 8.19 4.58 2.69; 2.80 - 
D-Leu6 7.66 4.31 1.45; 1.60 0.76; 0.77 
L-Leu7 7.97 4.21 1.58 0.77 
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Figure 3.13 1H-NMR spectra of A GS and B Srf in CD3CN/H2O (5:8, v/v) at 298 K and 290K, 
respectively. Amide protons are annotated with their respective chemical shift and 
amino acid residue assignment. 
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Backbone 3JHNHα coupling constants were also determined from the 1H-NMR spectra for the 

resonances with fine structure in both peptides (Table 3.10 and 3.11). For GS, these coupling 

constants were greater than 8.0 Hz for all amino acid residues except for D-Phe4,9 which gave a 

3JHNHα = 3.4 Hz. These, together with the NOE data indicates the presence of a β-sheet and β-turn 

in the GS structure [21, 27, 30] (Table 3.10), correlating with the CD data of GS in this study. 

Non-sequential NOEs recorded between Orn-γ and Phe-NH, Leu-NH and Val-NH, and between 

Leu-Hβ and Val-Hβ were in agreement with Staudegger et al. [44] and these intramolecular 

hydrogen bonds also suggest that GS adopted a β-sheet and β-turn conformation in this solvent 

system [26].  

Table 3.10 3JHNHα coupling constants for GS in CD3CN/H2O (5:8, v/v) at 298K. 

Amino acid residues 3JNHαH (Hz) 
L-Val1,6 8.5 
L-Orn2,7 9.8 
L-Leu3,8 9.1 
D-Phe4,9 3.7 

In contrast with GS, the 3JHNHα coupling constants for Srf were ranging from 4.4 to 8.2 Hz. These 

3JHNHα coupling constants  indicated, in accordance with the CD data, that Srf adopts a β-sheet 

and β-turn conformation (Table 3.11) [45].  

Table 3.11 3JHNHα coupling constants for Srf in 5:8 CD3CN /H2O (5:8, v/v) at 280K. 

Amino acid residues 3JNHαH (Hz) 
L-Glu1 7.6 
L-Leu2 4.4 
D-Leu3 5.5 
L-Val4 8.2 
L-Asp5 6.6 
D-Leu6 5.5 
L-Leu7 7.1 
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1H-NMR analysis of the solvent and temperature influence of the NH signals of gramicidin 
S and surfactin 
The one-dimensional plots of the HN region of GS in CD3CN/H2O (1:1, v/v) recorded from 286 

K to 315 K showed that the HN resonance signals for L-Orn2,7 and D-Phe4,9 were highly 

temperature dependent (Figure 3.14 and Table 3.12). The intensity of these signals decreased 

with increase in temperature with almost a complete disappearance of the D-Phe signal above 

300 K. This suggests that L-Orn2,7 and D-Phe4,9 residues of GS may be involved in some form of 

solvent and/or conformational exchange, which would also explain their lack of fine structure 

(Figure 3.14 and Table 3.12). The amide proton chemical shifts of L-Val1 and L-Leu3 were 

observed to be temperature insensitive suggesting possible solvent shielding or involvement in 

intramolecular hydrogen bonding [46]. The temperature dependence coefficients for the HN 

resonances of GS were determined for each amino acid residue from the slopes of the chemical 

shift change against temperature (Table 3.12). The temperature dependent coefficients of  Orn L-

Orn2,7 and D-Phe4,9 showed absolute values larger than −3 ppb/K. These indicate, in agreement 

with studies by Ono et al. [46], that these two amino acids are not participating in intramolecular 

hydrogen bonding in GS and they are involved in solvent exchange. The temperature dependent 

coefficient alone cannot be used to probe  the solvent exposure or sequestration of the NH group, 

particularly if multiple conformations exist [47]. However, in the light of the CD results and 

rigid backbone structure of GS,  these results may indeed indicate solvent exposure of Orn L-

Orn2,7 and D-Phe4,9 and are consistent with previous findings that only the amide bonds of L-

Val1 and L-Leu3 are involved in intramolecular hydrogen bonding [44] (Table 3.12). 
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Table 3.12 1H NMR amino acid NH chemical shifts at different temperatures (from 286 K to 
315 K) and amino acid temperature dependent coefficients of the NH chemical 
shift for GS in CD3CN/H2O (1:1, v/v). 

Amino acid 
residues 

 

       NH chemical shift                             Temp. 
      Temperatures (K)                       coefficient 

286.3 292.8 299.4 306.0 312.5 315.1 ppb/K 
L-Val1/6 7.53 7.5 7.49 7.48 7.46 7.46 -.2.3 
L-Orn2/7 8.19 8.17 8.13 8.1 8.07 8.06 -4.7 
L-Leu3/8 8.65 8.63 8.61 8.6 8.58 8.57 -2.7 

D-Phe4/9 8.61 8.57 8.52 8.47 8.42 8.41 -7.2 

 

 

 

 

 

 

 

 

 

Figure 3.14 Backbone amide protons NMR traces for the temperature titration of GS in 
CD3CN/H2O (1:1, v/v). The spectra showing the NH chemical shifts of GS were 
aquired at A 286.3 K; B 292.8 K; C 299.4 K; D 306.0 K; E 312.5 K and F 315.1 
K. 
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Lastly, increase in the water concentration of the solvent mixture (from 1:1 to 5:8, v/v 

CD3CN/H2O for example) improved the resolution, intensity and peak shape of the amide proton 

of L-Orn2,7 and D-Phe4,9 of GS at room temperature (results not shown). In a more aqueous 

environment GS may form aggregates that protect the NH proton of these residues from solvent 

exchange resulting in increased resolution and peak intensity. 

The one dimensional 1H NMR spectra of Srf recorded in CD3CN/H2O (1:1, v/v) at different 

temperatures also showed that the HN proton resonance signals of Srf were influenced by the 

temperature (Figure 3.15 and Table 3.13). Decreasing the temperature improved the resolution 

and peak broadening of Srf. It was found that increasing the water content of the solvent 

mixtures although affecting the solubility of Srf, improved the peak broadening of Srf (results 

not shown). Again, in an aqueous environment, Srf is forced to self-assemble/aggregate, 

protecting the NH groups from solvent exchange and therefore improving the peak resolution 

and intensity.  

Table 3.13 1H NMR amino acid NH chemical shift at different temperatures (from 286 K to 
315 K) and amino acid temperature dependent coefficients of the NH chemical 
shift for Srf in CD3CN/H2O (1:1, v/v). 

Amino acid 
residues 

 

                          NH chemical shift                             Temp.  
                           Temperatures (K)                        coefficient 

286.3 292.8 299.4 306.0 312.5 315.1 ppb/K 
L-Glu1 8.02 7.99 7.95 7.91 7.88 7.86 -5.6 
L-Leu2 7.93 7.90 7.87 7.84 7.81 7.80 -4.5 
D-Leu3 7.96 7.93 7.87 7.84 7.81 7.80 -5.7 
L-Val4 7.87 7.86 7.84 7.81 7.79 7.77 -3.5 
L-Asp5 8.14 8.11 8.07 8.04 8.01 7.99 -5.1 
D-Leu6 7.61 7.58 7.55 7.52 7.50 7.49 -4.2 
L-Leu7 7.90 7.88 7.84 7.81 7.79 7.77 -4.5 
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The temperature dependent coefficients of the HN proton chemical shift of Srf are given in Table 

3.13. The lower absolute value of the temperature coefficient for Leu2,6,7 and especially Val4 

indicates a possible involvement of these residues in intramolecular H-bonds, but this 

involvement  may be “diluted” in the bulk because of the two reported extreme conformations 

(S1 and S2) of Srf [49]. 

 

 

 

 

 

 

 

 

 

Figure 3.15 Backbone amide protons NMR traces of the temperature titration of Srf in 
CD3CN/H2O (1:1, v/v). The spectra showing the NH chemical shifts of Srf were 
aquired at A 286.3 K; B 292.8 K; C 299.4 K; D 306.0 K; E 312.5 K and F 315.1 
K. 

1H-NMR analysis of surfactin-gramicidin S mixtures 

For the 1H-NMR analysis of peptide mixtures, 1-2 mg of each peptide were mixed in equimolar 

concentration and diluted in CD3CN/H2O (1:1, v/v) solvent mixture. This solvent mixture was 
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used because both peptides are relatively soluble in it. At this concentration, the two peptides 

were expected to form small solution phase aggregate/higher order structures or micelles as CD 

studies indicated (also refer to the NMR-DOSY discussion below).  

The 1H-NMR spectra recorded at different temperatures of the GS-Srf mixture showed a 

consistent detection and high intensity of the amide proton signals of the D-Phe4,9 and L-Orn2,7 

residues of GS in the presence of Srf (Figure 3.16 and Table 3.14). These amide proton signals of 

GS were virtually absent for GS in a CD3CN/H2O (1:1, v/v) solution above 300 K, probably due 

to fast exchange with the solvent (refer to Figure 3.14). The addition of Srf caused these two 

proton signals to become shielded from solvent exchange and/or trapped in a Srf induced 

conformation, leading to sharper and more intense signals over a broad temperature range 

(Figure 3.16). Increasing the temperature did not significantly affect the signal enhancement 

effect caused by the addition of Srf. These results indicated that the amide proton of L-Orn2,7 and 

D-Phe4,9, may have been involved in exchanging with the solvent and/or formed part of a 

conformational exchange in the absence of Srf. There was >4% decrease in temperature 

dependent coefficient of the NH chemical shift of L-Orn2,7 and D-Phe4,9 in the GS-Srf mixture 

(Table 3.15).  

Table 3.14 NH amino acid chemical shift (ppm) of GS in the GS-Srf mixture in CD3CN/H2O 
(1:1, v/v) at different temperatures (K). 

Amino acid 
residues 

 

NH chemical shift 
Temperatures (K) 

286.3 292.8 299.4 306.0 312.5 315.1 
L-Val1/6 7.53 7.5 7.49 7.48 7.46 7.46 
L-Orn2/7 8.2 8.17 8.14 8.11 8.08 8.07 
L-Leu3/8 8.65 8.63 8.61 8.60 8.58 8.57 

D-Phe4/9 8.61 8.57 8.52 8.48 8.43 8.41 
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These changes, although small, indicated that these residues may be involved in some form of 

hydrogen bonding in the GS-Srf mixture [45, 46]. The result correlated well with the CD results 

showing a Srf induced increase in β-sheet structure, as well as with the CID results of the GS-Srf 

complex indicating that the L-Orn-L-Leu-D-Phe sequence may be protected from fragmentation 

(refer to Table 3.7). 

 

 

 

 

 

 

 

 

 

Figure 3.16 Backbone amide proton NMR traces for the temperature titration of the mixture of 
GS and Srf in CD3CN/H2O (1:1, v/v). The spectra showing the NH chemical shifts 
of the peptides mixture were aquired at A286.3 K; B 292.8 K; C 299.4 K; D 306.0 
K; E 312.5 K and F 315.1 K. 

The effect of Srf on the peak height of the spin coupling of the GS NH protons was also analysed 

by monitoring the change in the fraction of height (calculations explained in method section,  
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Figure 3.17). The fraction of the peak heights of Orn2,7 and Phe4,9 in GS alone versus the height 

of GS in the GS-Srf mixture significantly increased with increase in temperature, while it stayed 

constant or sightly decreased for the other amino acids. This result is evidential that both Orn2,7 

and Phe4,9  of GS in the GS-Srf mixture are protected from solvent/conformational exchange and 

supports the hypothesis that GS-Srf complexes form in solution. 

Table 3.15 Amino acid backbone temperature dependent coefficients of the NH chemical 
shift for GS alone and in an equimolar mixture with Srf (GS-Srf) in CD3CN/H2O 
(1:1, v/v). 

Amino acid 
residues 

Coefficient  
(ppb/K) 

 

 GS GS-Srf % Change 

L-Val1/6 -2.3 -2.3 0 

L-Orn2/7 -4.7 -4.5 -4.3 

L-Leu3/8 -2.7 -2.7 0 

D-Phe4/9 -7,2 -6.9 -4.2 
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Figure 3.17 Fractional height change of the spin coupling of the NH proton of GS in the GS-
Srf mixture over a temperature range from 286.3 K to 315.1 K. 

Analysis of the GS-Srf mixture showed that the NH region of Srf is also affected by GS addition 

(refer to Figure 3.16). The chemical shift change and temperature coefficient change between Srf 
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alone and in a mixture with GS, showed that all residues were affected, except for L-Leu7 (Table 

3.16). In particular, L-Leu2, D-Leu3 and L-Val4 showed the largest increase in temperature 

dependent coefficient (albeit modest) indicating increased solvent exposure. 

Table 3.16 1H NMR amino acid backbone temperature dependent coefficient of the NH 
chemical shift for Srf alone and Srf in GS-Srf mixture in CD3CN/H2O (1:1, v/v).   

 Coefficient  
(ppb/K) 

 

Amino acid 
residues Srf GS-Srf % Change 

L-Glu1 -5.6 -5.4 -3.8 
L-Leu2 -4.5 -4.8 6.0 
D-Leu3 -5.7 -6.2 7.1 
L-Val4 -3.5 -3.7 6.6 
L-Asp5 -5.1 -5.3 3.1 
D-Leu6 -4.2 -4.1 -1.5 
L-Leu7 -4.5 -4.5 0.00 

This correlated to the high propensity of CID fragmentation of the peptide bonds in the L-

Glu1−L-Leu2−D-Leu3−L-Val4 sequence during MS/MS analysis (refer to Table 3.7). The Asp5 

signal (peak shape) was the most improved by GS addition at high temperatures, although it only 

showed only small change in the temperature coefficient. In the Srf micelles, Asp5 would 

probably be located on the surface making it susceptible for interacting with other molecules 

[21]. Srf interaction with groups such as D-Phe4,9 and L-Orn2,7 of GS may cause a reorientation 

of the Srf molecule and protect Asp5  from solvent exchange. The interaction between GS and 

Srf were further probed using NOESY/ROESY NMR to analyse possible non-sequential NOE 

cross peaks.  
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ROESY-NMR analysis of gramicidin S-surfactin mixture 

The GS-Srf mixture was examined with NOESY/ROESY to find intermolecular NOEs between 

interacting residues, which may also provide data to determine the conformation of the GS-Srf 

complex. NOEs between two small molecules are difficult to observe because of weak signals 

and the interproton distance for NOE cross peak should be shorter than 5 Å [43]. In this study 

ROESY was used to partially overcome the problem of spin diffusion related to small molecules, 

such as peptides while demonstrating internuclear connectivities. 

As expected the ROESY spectra were complex and no overt cross peaks were immediately 

apparent (Figure 3.18). However, we did observe a weak intermolecular ROE cross peak 

between the one Hγ and two Hβ protons of Orn2,7 (1.58 ppm) and Asp5 (2.60 and 2.72 ppm, 

respectively) for GS and Srf respectively in the peptide mixture (Figure 3.18).These non-

sequential ROE cross peaks confirmed the above results and showed that the two peptides may 

interact through intermolecular bonds. As stated before, intermolecular cross peaks are generally 

difficult to observe and only interaction of <5 Å can readily be detected [43]. Therefore, the 

NOE cross peaks identified from NMR ROESY experiments indicated that in the intermolecular 

distance between certain protons in the side chains of GS Orn2,7 and Srf Asp5 is <5 Å.  

DOSY-NMR analysis of peptide influence  
The evidence of intermolecular interaction between GS and Srf is also supported by the change 

observed in the 1D NMR experiment together with the ESMS and CD results. Therefore, the 

mixture was further investigated with DOSY NMR in order to assess the size of the complex(es) 

by means of diffusion measurement. The diffusion constant of both GS and Srf were measured 
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separately and in a 1:1 mixture of GS and Srf. DMF was used as reference compound and 

diffusion of the peptides and mixture was measured under identical conditions (Table 3.17). 

 

Figure 3.18 Representation of the expansion of the ROESY NMR proton spectrum of the 1:1 
mixture of GS and Srf in CD3CN/H2O (1:1, v/v) at 298 K. The intermolecular 
ROESY peaks between GS and Srf are indicated by black boxes. The contour plot 
region were for w1 = 0.5-3.5 ppm; w2 = 0.5-4.0 ppm. 

 The diffusion values of GS and Srf were found to be 3.80 x10-10 m2.s-1 and 3.64 x10-10 m2.s-1. in 

CD3CN/H2O (1:1, v/v) . The diffusion of these peptides in the mixture increased to 3.92 x10-10 

m2.s-1. This increase in diffusion can only be related to decrease in size, as all NMR conditions 

were kept constant. Also, the measured diffusion may be underestimated due to the doubling of 

peptide concentration which may change both the viscosity and density of the medium. This 

result indicates that Srf and GS were rearranged in the GS-Srf mixture to form smaller homo-
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oligomers and/or more compact GS-Srf hetero-oligomers. (Figure 3.19 and Table 3.17). The 

formation of hetero-oligomers is in accordance with the 2D-NMR, ESMS and CD results.  

Table 3.17 Diffusion coefficient (D), of Srf and the GS-Srf mixture in CD3CN/H2O (1:1, v/v) 
at 25°C. 

Peptide or complex LogD D  (x10-10 m2.s-1) 
GS -9.42 3.80 
Srf -9.44 3.63 

GS-Srf -9.407 3.92 

 

 

 

 

 

 

 

 

 

Figure 3.19 A representative 2D DOSY NMR spectrum of the 1:1 mixture of GS and Srf in 
CD3CN/H2O (1:1, v/v) at 25°C. Dotted line represents the average diffusion 
coefficient of DMF which is added as an internal reference to the sample. 
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Summary and conclusion: Part 3 

Utilising advanced 2D NMR we were able to confirm the proton assignments of both GS and Srf 

in CD3CN/H2O. For both GS and Srf the NOEs measurements and proposed structures were in 

accordance with literature [21, 27, 30]. According to the 1H-NMR temperature titration of GS-

Srf mixture, Srf protected the amide protons of D-Phe4,9 and L-Orn2,7 in GS from exchanging 

with the solvent. This suggested that the two molecules may be involved in intermolecular 

interactions. The chemical shift change of Srf in the GS-Srf mixture was minimal, but there is 

some indication that L-Glu1−L-Leu2−D-Leu3−L-Val4 is more exposed to solvent exchange in the 

GS-Srf mixture, indicating a conformational change of Srf in the GS-Srf mixture.  The amide 

signal of Asp5 in Srf improved in the GS-Srf mixture, particularly at higher temperatures because 

of shielding of this group from solvent exchange in the mixture. The results indicated that the 

molecular interaction of Srf and GS possibly involves the residues D-Phe4,9 and Orn2,7 of GS and 

Asp5 of Srf. According to ROESY, intermolecular NOE cross peaks were observed between the 

Hβ of Asp from Srf and the Hγ of Orn from GS in the GS-Srf mixture. DOSY-NMR indicated 

that Srf and GS formed homo-oligomers. However, the addition of Srf to GS increased the 

diffusion coefficient of the GS-Srf mixtures indicating the formation of slightly smaller homo-

oligomers or more compact hetero-oligomers.  

General conclusions  

In this study, the conformational influence of Srf on GS structure was indicated with CD and 

NMR. CD showed that Srf affects the aggregation and/or high order self-assembly states of GS 

in solution by possibly influencing the exposure/orientation of the D-Phe and Orn residues. This 

result was substantiated by the increased diffusion coefficient of GS in the GS-Srf mixture 
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determined by DOSY, indicating the formation of slightly smaller homo-oligomers or more 

compact hetero-oligomers. Fragmentation of a GS-Srf complex in ESMS indicated the role of the 

Srf sequence L-Val4−L-Asp5−D-Leu6−L-Leu7 in the interaction with the L-Orn−L-Leu−D-Phe 

sequence of GS. The fragmentation results correlated well with ROESY NMR data showing 

intermolecular ROE cross peaks due to the <5Å interaction distance between Orn2,7 residues of 

GS and Asp5 residue of Srf in the complexes, 1H-NMR corroborated that D-Phe4,9 of GS are 

involved or affected in intermolecular interactions with Srf. Although the formation of a non-

covalent complex is not the only mode of Srf antagonism towards GS, this study showed that 

non-covalent complexes between GS and Srf may lead to significant changes in the GS and Srf 

structures. However, the role of inactive complex formation as part of a general resistance 

mechanism still needs to be further investigated. 
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Chapter 4   

Development of two C18 HPLC methods for the 
purification and analysis of the tyrocidines and 

gramicidins from Bacillus aneurinolyticus 
Introduction 

The Dubos strain of Bacillus brevis (reclassified as Bacillus aneurinolyticus [1]) is a Gram-

positive soil bacterium that produces various types of secondary metabolites, including the 

antimicrobial peptide complex tyrothricin [2, 3]. The tyrothricin peptide complex contains 

two groups of non-ribosomally produced peptides, namely the linear and neutral 

pentadecapeptide gramicidins (Grcs) and the cyclic and basic decapeptide tyrocidines (Trcs) 

(Table 4.1). Tyrothricin was one of the first antibiotics used for clinical applications and it is 

still used as a topical antibiotic [4]. These antibiotic peptides have potential as bio-control 

agents in the agricultural industry [5] and as potential antibiotics [4, 6-8]. The membrane 

active Grcs can potentially be used as antimalarial drugs [8] and as antibiotic treatment for 

sexually transmitted diseases [6, 7]. The Trcs have a broad spectrum antimicrobial activity [9, 

10], and recently in vitro  activity against Plasmodium falciparum was demonstrated [11].  

Only a few studies have been carried out on the purification and analysis of naturally 

produced peptides from the tyrothricin complex [12, 13]. The purification and 

characterisation of the different Grcs and Trcs from their commercially available extracts are 

challenging because there are only minor differences between the different Trcs and different 

Grcs, they have low solubility in water or pure organic solvents and tend to form aggregates 

and higher order structures in solutions containing water [14, 15].  

There are two known variants of each of the three Grcs (gramicidin A (GA), B (GB) and C 

(GC)) (Table 4.1, [12]). The two variants differ only at their N-terminal amino acid residue, 
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which is either a Val or Ile residue (Table 3.1) [12]. The three Grcs (GA, GB and GC) vary in 

the nature of their eleventh residue, which can be a Trp, Phe or Tyr residue, respectively 

(Table 1). The Trcs (A (TrcA), B (TrcB) and C (TrcC) groups) are all closely related basic 

peptides that differ from one another in their aromatic dipeptide unit (Phe-D-Phe, Trp-D-Phe, 

Phe-D-Trp or Trp-D-Trp, respectively) (see Table 4.1) [16]. In addition, each of the Trc 

groups contain two variants differing only in one residue, namely the basic residue which 

could either be an ornithyl (Orn) or Lys residue (see Table 4.1) [16].  

General techniques used for the purification of amphipathic peptides include gel permeation 

chromatography, ion-exchange chromatography, partition chromatography, absorption and 

reverse phase high performance liquid chromatography (RP-HPLC) [17-20]. The 

characterisation of peptides is generally done by HPLC and mass spectrometry (MS) 

techniques [18, 19]. Tang et al. [12] used C18 HPLC coupled to tandem electrospray mass 

spectrometry (ESMS) to study the cyclic Trc and linear Grc fractions contained in the 

tyrothricin peptide complex and identified 28 different Trcs or Trc analogues and nine 

different linear Grcs. Researchers have resolved the purification problem and developed 

methods to isolate >95% pure Grcs by RP-HPLC, thin layer chromatography and counter 

courant distribution methods using methanol (CH3OH) alone or mixtures of CH3OH with 

several other solvents [21-24]. Orwa et al. [24] described a separation method to selectively 

separate 10 linear Grcs on a C18 matrix with a CH3OH/H2O mobile phase. More recently, 

Thurbide and Zhang [25], achieved separation of microgram quantities of a Grc mixture on a 

polystyrene-divinyl-benzene column using a packed column supercritical fluid 

chromatography method with mobile phase modified with carbon dioxide.  

The major difficulty in purifying the peptides from tyrothricin, apart from their limited 

solubility in water, are their propensity to aggregate at concentrations as low as 30-50 µg/mL, 
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and strong interaction with the C18 matrix, possibly in a similar way that they will interact 

with their membrane target. No reports (other than from our own group) were found on the 

semi-preparative purification and characterisation of the Trc and Grc fractions by 

conventional C18-HPLC using a mobile phase compatible with freeze-drying. One of the aims 

of this study was to optimise two HPLC separation methods to purify the Trc and Grc 

fractions from B. aneurinolyticus using a C18 RP-HPLC column with acetonitrile (CH3CN) as 

mobile phase. The choice of CH3CN as organic modifier in the mobile phase was due to the 

fact that it freeze-dries easily and most of the tyrothricin peptides used have relatively good 

solubility in water-acetonitrile mixtures.  

Table 4.1 Primary structures of the major peptides extracted from the tyrothricin 
complex [12].   

Peptides Abbreviation Peptide primary structure Monoisotopic 
Mr 

Net charge 
(pH7) 

GA VGA/IGA X-(V/I)GAlAvVvWlWlWlW-Z 1880.1/1894.1 0 
GB VGB/IGA X-(V/I)GAlAvVvWlFlWlW-Z 1842.3/1856.1 0 
GC VGC/IGA X-(V/I)GAlAvVvWlYlWlW-Z 1859.1/1872.1 0 

TrcA/A1 TrcA/TrcA1 Cyclo-[V(O/K)LfPFfNQY] 1269.7/1283.7 +1 
TrcB/B1 TrcB/TrcB1 Cyclo-[V(O/K)LfPWfNQY] 1308.7/1322.7 +1 
TrcC/C1 TrcC/TrcC1 Cyclo-[V(O/K)LfPWwNQY] 1347.7/1361.7 +1 

Standard one letter abbreviations are used for the amino acid residues, apart for O for Orn. D-amino acids are 
given in lower case. X = CHO- (formyl); Z = -NHCH2CH2OH.  

The optimised HPLC methods will be used to analyse and purify selected peptides from 

commercial tyrothricin and gramicidin D (GD, is a mixture of all linear gramicidins) 

mixtures for use in biological activity assays and ESMS studies (see Chapter 5). Although 

linear GA and GC are commercially available these peptide preparations are expensive and 

contain VGA/IGA and VGC/IGC mixtures, respectively. It was thus decided to also isolate 

selected Grcs from the commercial GD. The basic Trcs were extracted from the commercial 

tyrothricin complex prior to their purification and analysis. This chapter describes the 

optimisation of two analytical HPLC methods on a C18 matrix with CH3CN as mobile phase 

and adaptation of the methods for semi-preparative separation of Trcs and Grcs.  
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Characterisation of the purified fractions was done with analytical HPLC, ESMS and ultra 

performance liquid chromatography linked to mass spectrometry (UPLC-MS). 

Materials 

The tyrothricin complex from B. aneurinolyticus and trifluoroacetic acid (TFA >98% and 

99.5%) were obtained from Sigma-Aldrich (St. Louis, USA). GA, GC and GD were obtained 

from Fluka (Steinheim, Germany). Crude synthetic TrcA was donated by Prof Samuel 

Gellman, University of Wisconsin (USA). Acetonitrile (HPLC grade, UV cut-off 190 nm) 

and methanol (99.9%) were supplied by Romil Ltd (Cambridge, UK). Ethanol (GR grade) 

was purchased from Merck Chemicals (Darmstadt, Germany). Saarchem (Krugerdorp, RSA) 

supplied the diethyl ether and acetone. Merck Chemical (Wadeville, Gauteng, RSA) supplied 

the N,N-dimethylformamide (DMF, 99.0% min). The 0.45 µ HVLP membrane filters, 

NovaPak® C18 HPLC analytical column (5 µm particle size, 60 Å pore size, 150 mm x 3.9 

mm), NovaPak HR C18 HPLC semi-preparative column (6 µm spherical particles, 300 mm x 

7.8 mm) and UPLC BEH C18 column (2.1 x 50 mm, 1.7 µm spherical particles) were 

obtained from Waters-Millipore (Milford, USA). A Milli Q® water purification system was 

used to filter water from a reverse osmosis plant to obtain analytical grade water. 

Methods 

Peptide extraction using organic solvents 

The Trcs were extracted from the commercial tyrothricin peptide complex, prior to 

purification, by washing 200 mg with 20 mL acetone/ether (1:1, v/v) [26]. The non-dissolved 

fraction containing the basic Trcs was collected by centrifugation, washed twice more with 

the acetone/ether mixture before drying under a flow of nitrogen gas, re-suspended in 
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CH3CN/H2O (1:1, v/v), and freeze-dried. The supernatant containing the neutral GD fraction 

was also dried under a nitrogen flow, suspended in CH3CN/H2O (1:1, v/v), and freeze-dried. 

Analytical and semi-preparative HPLC 

A C18 Nova-Pak® column (5 µm particle size, 60 Å pore size, and 150 mm x 3.9 mm), and 

different solvents and gradient programs were used to develop HPLC protocols to analyze the 

extracted Trcs and commercial GD (Table 4.2). The chromatographic system consisted of a 

Waters Model 440 detector, a WISP 702 autosampler, and two Waters 510 pumps. Different 

gradients (linear or non-linear, Waters gradient 5), using a flow rate of 1.0 mL/min were 

generated over different times with or without heating the column from 25ºC to 45ºC.  

The different solvents used to create the gradients were the following: eluent A (0.1% TFA in 

water) combined with either eluent B (10% eluent A and 90% CH3CN), eluant C (10% eluant 

A and 90% CH3OH) or eluant D (10% eluant A and 50/50 CH3CN/CH3OH). All solvent 

systems were prepared as v/v mixtures. The different gradient types are given in Table 4.2. 

Electrospray mass spectrometry 

A Waters Q-TOF Ultima mass spectrometer fitted with a Z-spray electrospray ionisation 

source was used to perform ESMS.  The sample solution (50 or 100 ng peptide in 

CH3CN/H2O 1:1, v/v) was introduced into the ESMS at a volume of 5 or 10 µL via Waters 

Acquity UPLCTM. CH3CN/H2O (1:1, v/v in 0.1% formic acid) was the carrier solvent 

delivered during each analysis at a flow rate of 300 µL/min. A capillary voltage of 3.5 kV 

and cone voltage of 35 V were applied with the source temperature set at 100oC. Data 

acquisition was in the positive mode, scanning the second analyser (MS2), through m/z = 

100−1999 (m/z is defined as the molecular mass to charge ratio).  Combination of the scans 

across the elution peak and subtraction of the background produced representative scans. 
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Table 4.2 Summary of the different HPLC gradient programs used, displaying the 
events, time laps and the compositions of the different eluent systems 
(percentages of different elution solvents) used.  

   Solvent composition  

Method Events Time (min) %A %B, or C Gradient 
type 

1 

1 0-0.5 50 50 Linear 
2 0.5-16 30 70 Linear 
3 16-17 0 100 Linear 
4 17-18 0 100 Linear 
5 18-22 50 50 Linear 
6 22-25 50 50 Linear 

2 

1 0-0.5 50 50 Linear 
2 0.5-16 20 80 Linear 
3 16-17 0 100 Linear 
4 17-18 0 100 Linear 
5 18-22 50 50 Linear 
6 22-25 50 50 Linear 

3 

1 0-0.5 50 50 Linear 
2 0.5-23 20 80 Linear 
3 23-24 0 100 Linear 
4 24-26 0 100 Linear 
5 26-30 50 50 Linear 
6 30-35 50 50 Linear 

4 

1 0-0.5 50 50 Linear 
2 0.5-23 20 80 Non-linear 
3 23-24 0 100 Linear 
4 24-26 0 100 Linear 
5 26-30 50 50 Linear 
6 30-35 50 50 Linear 

5 

1 0-0.5 50 50 Linear 
2 0.5-24 0 100 Non-linear 
3 24-26 0 100 linear 
4 26-30 50 50 Linear 
5 30-35 50 50 Linear 

6 

1 0-0.5 40 60 Linear 
2 0.5-24 0 100 Non-linear 
3 24-26 0 100 linear 
4 26-30 40 60 Linear 
5 30-35 40 60 Linear 

Waters gradient 6 was used for linear gradient while gradient 5 is non-linear. The flow rate was 1.0 mL per 
minute.  DMF was injected after every forth run in order to wash or regenerate the column as the Trcs and Grcs 
tend to stick to the column matrix. 

 

Ultra-performance liquid chromatography mass spectrometry 

The development of the UPLC methods and execution of the UPLC-MS runs of the GD and 

Trc extracts were done by Dr Marietjie Stander, Stellenbosch University, LC-MS Central 

Analytical Facility.  A Waters Acquity UPLC, attached to a Waters QTOF Ultima Mass 
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Spectrometer, was used in UPLC-MS analysis of the crude and purified Trcs and Grcs. A 

Waters UPLC BEH C18 column (2.1 x 50 mm, 1.7 µm spherical particles) was used. The 

following eluants were used to create a gradient for separation of peptides:  0.1% TFA in 

water (eluant I) for the Trcs, 0.1% formic acid in water for linear Grcs (eluant II), and 

CH3CN (eluant III).  

Separation of the Trcs was achieved using a gradient of eluant I to eluant III as follows: 

100% I for 30 seconds, 0 to 30% III from 30 to 60 seconds, 30 to 60% III from 1 to 10 

minutes and 60 to 80% III from 10 to 15 min, followed by re-equilibration of the column to 

initial conditions. The flow rate was 300 µL/min. 

Separation of Grcs was achieved using a gradient of eluant II to III, as follows: 0 to 60% III 

from 0 to 5 seconds, 60 to 72% III from 5 seconds to 5 min, and 72 to 0% III from 5 to 10 

min, following by the re-equilibration of the column to its initial conditions. The flow rate 

was 300 µL/min. 

Data analysis for the optimisation of peptide separation protocols 

A Graphpad Prism version 3.01 for Windows (Graphpad software, San Diego, California, 

USA) was used to draw all chromatograms originally processed through Maxima software. 

Selected HPLC parameters, calculated with the fundamental HPLC equations [27], were used 

to determine selected HPLC parameters utilised to compare the peak separations using 

different protocols. 

The capacity factor k’, as a measure of the solute retention, was calculated using equation 

4.1, where tn is the retention time of compound n and t0 is the elution time of an non-retained 

compound. 
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The selectivity α, as a measure of the separation ability of the column to separate two 

components n and n+1, was calculated using equation 4.2. 
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This use of resolution equation 4.3,  to compare the resolution (Rs) between two overlapping 

adjacent bands (0.4<Rs<1.3) as described by Sneyder et al. [27], is illustrated in Fig. 4.1. 

 

 

 

 

 

Figure 4.1 Standard resolution curves for the separation of two bands based on their 
resolution (Rs) and the relative band size (from [27]). At Rs of 1.25 only 0.6% 
of each peak lies beneath each other and each peak is 99.4% pure. 
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Results and discussion 

The main aim of this study was to utilise conventional C18 HPLC to purify the major Trcs and 

Grcs to homogeneity. RP-HPLC methods were developed and optimised to facilitate the 

purification and characterisation of the major peptides in the tyrothricin complex and GD. In 

order for the methods to be useful for semi-preparative purification the optimised protocols 

entailed short run times and eluants that are compatible with freeze-drying procedures, such 

as water and CH3CN. 

HPLC purification of peptides using a mobile phase and a solvent modifier, such as TFA has 

been used by other investigators [17, 28] and therefore, 0.1% TFA the was used in the 

aqueous eluant A in this study. CH3CN is the only organic solvent readily compatible with 

freeze-drying and C18 HPLC. The organic eluant B, composed of 90% CH3CN and 10% 

eluant A was therefore the organic solvent of choice, however, other organic eluants such as 

CH3OH and/or CH3OH combined with CH3CN were also tested.  

All the peptides in the tyrothricin complex are amphipathic and only soluble in selected 

organic solvents and aqueous/organic mixtures, such as 40-75% mixture (v/v) of water with 

CH3OH, ethanol or CH3CN. A rational choice of CH3CN for use in the C18 HPLC protocols 

was therefore 40% organic solvent, such as 40% CH3CN in water, for starting/conditioning 

eluant composition. The gradients from 40% to 70-90% organic solvent were then optimised 

over as short a run time as possible. The type of gradient (linear and non-linear) was also 

considered, as well as the column temperature. The aim was not only to optimise the 

resolution between the peptide components, but also the chromatographic run time. 
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The result of the optimization of the peptide purification protocols are discussed in two parts: 

first the optimization of the tyrocidine purification protocols (Part 1) and second the 

optimization of the linear gramicidin purification protocols (Part 2). 

Results and discussion: Part 1: Optimisation of the tyrocidine purification 
protocols 

UPLC-MS optimization of the tyrocidine purification 

The separation of the Trc extract from B. aneurinolyticus was first optimised with UPLC-MS 

in order to determine the elution profile of the different Trcs in the extract, since UPLC-MS 

is a more powerful and faster technique for peptide separation than HPLC. This elution 

profile was later used as a guide to optimise the HPLC separation of these peptides. The six 

major Trcs from the Trc extract were eluted between 7 and 10 min, and identified by their 

m/z values (see Figure 4.2). The identity of each Trc was confirmed in a parallel study by 

Spathelf [29]. 

HPLC optimisation of the tyrocidine purification 

An HPLC program, developed over 25 minutes on C18-HPLC and using CH3CN as the 

organic solvent, was modified (Figure 4.3A). It was found that the gradient developed over 

22.5 min was optimal, as shorter runs (gradient over 15.5 min) gave poor resolution (see 

Table 4.2, methods 1 and 2, Figure 4.3A). Increasing the run time to 35 min, during which 

solvent B slowly increased from 50% to 80% over 22.5 min (method 3 in Table 4.2), 

improved separation by improving the peak shape, retention (higher k’) and resolution of the 

six different Trc species (Table 4.3 and Figure 4.3B). The capacity factor increases with the 

peptide retention on the stationary phase [27], and this retention resulted in the improvement 

of the resolution of the Trcs. However, from the linear gradient to the non-linear gradient in 

the 35 min run the capacity factor decreased slightly between the Trc A and B species, but 
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good resolution was maintained (Table 4.3). Overall the average resolution (RS) improved by 

>100%, enabling separation of the six different Trcs. 

 

 

 

 

 

 

 

 

 

Figure 4.2 UPLC chromatogram of the Trc extract of the tyrothricin complex. The m/z 
values of singly [M+H]+ or doubly [M+2H]2+ charged molecular species of the 
major Trcs are given for each peak. Details on the primary structures of the 
different Trcs are given in Table 4.1. 

Of the two different gradients (linear and non-linear) that were evaluated for their potential to 

improve the separation of Trc components, it was found that use of a concave non-linear 

gradient (Waters® gradient 5, method 4) led to better resolution than was obtained with 

method 3 (Figure 4.3C) by an average of >10%. The non-linear gradient chromatography 

(Figure 4.3C and 4.3D) provided the best resolution, peak shapes and analyte recovery 

between the different Trc species (Table 4.3) 
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Table 4.3 Comparison of the separation of the peptides in the Trc complex using 
different RP-HPLC purification protocols.  

  Parameters TrcA1 TrcA TrcB1 TrcB TrcC1 TrcC 

Method 1 

Rt (min) 12.25 13.35 6.54 8.48 2.23 3.38 
k' 11.25 12.35 5.54 7.48 1.23 2.38 
α 1.1 1.35 1.93 
RS 1.12 0.95 0.64 

Method 2 

Rt (min) 11.1 12.57 8.58 9.38 4.41 5.24 
k' 10.1 11.57 7.58 8.38 3.41 4.24 
α 1.15 1.11 1.24 
RS 1.39 0.28 0.17 

Method 3 

Rt (min) 13.58 14.52 10.34 11.31 7.28 8.18 
k' 12.58 13.52 9.34 10.31 6.28 7.18 
α 1.07 1.1 1.14 
RS 0.77 0.75 0.53 

Method 4 

Rt (min) 11.19 12.12 9.13 9.48 7.37 8.04 
k' 10.19 11.12 8.13 8.48 6.37 7.04 
α 1.09 1.04 1.11 
RS 0.8 0.76 0.73 

Method 4, 
35oC 

Rt (min) 11.13 12.04 9.17 9.46 7.40 8.06 
k' 10.13 11.04 8.17 8.46 6.40 7.06 
α 1.09 1.04 1.1 
RS 1.43 0.89 1.0 

Parameters were calculated as described in the methodology section. Details of the different methods are given 
in Table 4.2 and methodology section.  
 
Finally, the effect of temperature on resolution was investigated. It was found that 35ºC was 

optimal for the separation of the TrcA and B species from the Trc peptide complex (Figure 

4.3F and table 4.3). Separation at a lower temperature (e.g. 25ºC) led to broader TrcA peaks 

(Figure 4.3C). At 35ºC, the retention time of the all the Trcs decreased, except that of TrcB. 

This improved the resolution between the different Trc species (Table 4.3 and Figures 4.3 C-

H). The separation between the Trc B and C species also improved with the late elution of 

TrcB since the volume separating the two group species increased (see Figures 4.3E and F). 
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Figure 4.3 Analytical C18 HPLC chromatograms showing the influence of gradient time 
(compare A, B); type of gradient (compare C, D) and temperature (compare 
D, E; F, G and H, I) on the separation and resolution of the peptides in the Trc 
extract. Chromatograms F, H and G, I shows the detail of the separations in E 
and F respectively. 10 µg peptides were injected in each run. 
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In addition, the resolution that was previously obtained depicted in Figure 4.3A between the 

TrcA species was regained (see Figures 4.3A, H and I). An increase of the temperature above 

the melting temperature of the hydrophobic groups of the matrix and the solute leads to an 

increase in the peptide solubility by increasing the average kinetic energy of the solvent 

molecules [30]. These factors probably caused a decrease in the capacity factor and a better 

resolution of the TrcA species. However, high temperature could also increase hydrophobic 

interactions of solutes with the stationary phase, such as a C18 matrix [30], which could be the 

reason for asymmetrical peak shapes of the Trcs. The higher temperature most probably 

caused the TrcA aggregation/self-assembly to decrease and the TrcA1 and A eluted earlier 

with better peak shapes (refer to the discussion on aggregation and analysis of pure Trcs). 

These results correlated with previous observations, in which the resolution of the Trc A and 

B species in the 35 min run was dependent on the reducing their retention on the C18 matrix. 

This optimised HPLC separation of the major Trcs also compared well with separation of the 

Trc extract obtained with UPLC (Figure 4.2). 

Purification and analysis of tyrocidine fractions 

Eight Trcs were purified to homogeneity (>95%) using semi-preparative HPLC. The isolated 

peptides were only considered pure if both the analytical HPLC and ESMS data indicated 

homogeneity (Tables 4.4).  Analytical HPLC and ESMS revealed that all the purified Trcs 

were of high purity and obtained in good yields (Table 4.4). Aggregation, in particular when 

the Trcs were of high purity presented a major problem during analysis. For example, the 

HPLC chromatogram of the purified cyclic TrcC presented fronting and tailing characteristic 

of peptide aggregation at high concentration (results not shown). This problem of aggregation 

was overcome by reducing the injection amount to 2-20 µg per injection (depending on the 

Trc), and better chromatographic profiles were obtained (Figure 4.4). Similar aggregation 
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problems were observed with TrcA (results from previous studies [29]), but were overcome 

by only injecting 2 µg from a 200 µg/mL solution (Figure 4.4 A). 

Table 4.4 Summary of the different Trcs purified under optimal conditions developed in 
this study* by other researchers in our group.  

ID HPLC Rt 
(min) 

Exp  
Mr 

Theor. 
Mr 

Purity 
(%) 

Yield 
(mg) 

Yield 
(%) 

TrcA** 11.49 1269.70 1269.7 >95 11.6 5.8 
TrcA1 11.20 1283.71 1283.7 >95 4.5 2.3 
TrcB* 9.29 1308.71 1308.7 >95 18.8 9.4 
TrcB’$ 9.41 1308.70 1308.7 >94 0.4 0.2 
TrcB1 9.14 1322.71 1322.7 >95 9.1 4.6 

TrcB1’$ 9.05 1322.70 1322.7 >95 0.7 0.4 
TrcC* 8.19 1347.71 1347.7 >95 27.1 13.6 
TrcC1 7.54 1361.75 1361.7 >95 12.2 6.1 

The Trcs were purified from 200 mg commercial tyrothricin (data courtesy BM Spahelf [29]). $ Dipeptide unit 
in TrcB’ and TrcB1’ is Phe-D-Trp * Similar Rt, purity and yields were obtained in this study. **Syn-TrcA was 
purified in this study to >95% and had a similar Rt and identical Mr as determined by ESMS. 

Summary and conclusions: Part 1 

An optimized HPLC method was developed for the purification and analysis of the Trc 

fraction from B. aneurinolyticus on a C18 column with CH3CN as mobile phase. With the 

initial development of the HPLC protocol it was found that the resolution of cyclic Trcs 

increased with an increase in their retention to the stationary phase. Although an increase in 

temperature led to a decrease in the retention of both the TrcA and TrcB species, it also 

improved the overall resolution of these groups of Trcs. The separation obtained with HPLC 

compared well with separation obtained with UPLC. The proposed new analytical HPLC 

method was easily adapted for semi-preparative HPLC and led to the successful purification 

of eight tyrocidines from the tyrocidine fraction of the tyrothricin complex (Table 4.4). This 

is the first study in which milligram amounts of eight natural tyrocidines were successfully 

purified to >95% from tyrothricin using conventional semi-preparative HPLC. The purified 

tyrocidines were used in two studies subsequently published by our group [29, 31].  
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Figure 4.4 Analytical HPLC chromatograms obtained with method 4 at 35oC of the 
purified Trcs obtained in this study: A Syn-TrcA; B TrcB and C TrcC. The 
ESMS analyses of TrcB and TrcC are given in Appendix 4.1. 

Results and Discussion: Part 2: Optimization of the gramicidin purification 
protocols 

UPLC-MS optimization of the gramicidin D extract 

The separation of GD extract from B. aneurinolyticus was also optimised with UPLC-MS in 

order to determine the elution profile of the different Grcs in the extract. This profile was 

then used as a guide to optimise the HPLC separation of these peptides. Nine Grcs were 

identified with UPLC-MS in the GD extract by their m/z values (see Figure 4.5).  The co-

elution of the GA analogues with IGA, VGA and IGC fractions was also observed. 

HPLC optimization of the gramicidin purification protocol 

The linear Grcs are the most hydrophobic fraction of the tyrothricin complex of B. 
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at 35oC, Table 4.5) was used as a starting point for the development of a HPLC protocol for 

separating the peptides in the neutral gramicidin fraction.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 UPLC chromatogram of the commercial GD complex. The m/z of singly 
charged molecular species  [M+H]+ of the major Grcs are given for each peak. 
Details on the structure of the different Grcs are tabulated in Table 4.1. 

This protocol gave some resolution between the different Grcs, but the peptides eluted in 

broad peaks only at the end of the gradient program (Figure 4.6A). With overlapping peaks, 
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the broader the peak, the higher is the percentage of cross-contamination between the 

different Grc species.  

For example, the peak widths of VGC, VGA and VGB were 1.46, 2.22 and 2.17 min, 

respectively (Figure 4.6 D).  In order to improve the resolution, reduce the peak width and 

decrease the Grc retention on the C18 matrix the CH3CN gradient was changed first from 

50→80% to 50→100% over 23.5 min (method 5 in Table 4.2),  then from 50→100% to 

60→100% over the same time (method 6 in Table 4.2). The latter gradient program led to an 

improvement in the resolution, retention, peak shape and intensity of all Grc species (Figure 

4.6C and Table 4.5). In particular, the peak widths of VGC, VGA and VGB were reduced to 

1.25, 1.59 and 1.28 min, respectively (see Figure 4.6 F). This peak width reduction is 

probably not only due to decrease in association with the C18 matrix, but also a decreased 

aggregation of the Grcs at a higher acetonitrile concentration. 

The gradient type was also re-evaluated as early results had shown that an isocratic and linear 

gradient at 80% CH3CN gave good resolution for the two GC species (results not shown). 

However, as for the Trcs, a concave non-linear gradient gave overall the best separation of 

the different Grcs (Figure 4.6). The effects of temperature on the separation of the linear 

gramicidins were also investigated in this study. It was found that a 10ºC increase to 45ºC 

increased the retention of all gramicidin species, but with extensive peak tailing (Figure 4.6 

B). The peak tailing may be due to an increase interaction with the C18 matrix, a result of the 

increased hydrophobic effect at higher temperatures. 

An attempt to further improve the separation by using CH3OH (90% CH3OH, 10% of 0.1% 

TFA in water) or a CH3OH/CH3CN mixture (90% CH3OH/CH3CN (v/v), 10% of 0.1% TFA 

in water) resulted in poor chromatographic separations, as was also found by other 

investigators [25] (results not shown). Alternative solvent modifiers such as formic acid and 
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triethylamine were also tested, as well as a C8 stationary phase, but none improved the 

resolution (results not shown).  

Table 4.5 Summary of the calculated parameters from the separation of the Grcs with the 
different RP-HPLC protocols.  

 Parameters VGA IGA VGB IGB VGC IGC 

Method 4, 35oC 

Rt (min) 14.52 15.54 18.38 20.04 11.59 12.22 
k' 13.1 14.09 16.84 18.46 10.25 10.86 
α 1.09 1.07 0.95 
RS 0.43 0.27 0.64 

Method 5, 45oC 

Rt (min) 9.51 10.49 12.4 13.37 6.58 7.29 
k' 6.58 7.39 9.08 9.54 4.34 4.59 
α 1.12 1.05 1.06 
RS 0.42 0.47 0.45 

Method 6, 35oC 

Rt (min) 8.40 9.11 10.37 11.13 6.58 7.04 
k' 7.16 7.84 9.07 9.81 5.39 5.83 
α 1.08 0.91 0.92 
RS 0.48 0.26 0.64 

Orwa et al. [24] 
Spherisorb ODS column, 

50°C, CH3OH/H2O 

Rt (min) 22.08 26.25 42.51 52.08 15.42 17.51 
RS

’ 2 2.8 3.6 
RS 1.2 2 2.6 

Thurbide and Zhang [25] 
pFC column 

40°C, CH3OH 

Rt (min) 9.19 12.48 18.40 na 6.07  7.28 
RS’  na  na  na 
RS 0.67 na  0.87 

Rs calculated from equation 4.3; Rs’ – equations used unknown. 
 
Decreasing the peptide retention on the stationary phase therefore again improved the HPLC 

resolution between the analogous peptides. The chromatographic separation (elution profile) 

of the three groups of Grcs achieved here correlated well with results from previous studies 

[21-25], although the resolution was poorer due to peak broadening. Method 6 gave the best 

resolution between the GA peptides (see Figure 4.6 and Table 4.5) while method 5 gave the 

best resolution for the GB peptides. However, method 5 caused extensive peak broadening 

and tailing, especially for the GA peptides.  The best overall results were therefore obtained 

with method 6 at 35oC, with CH3CN as mobile phase and with 0.1% TFA as modifier (Table 

4.6). This method was selected and used throughout this study for the purification of linear 

Grcs from GD, A and C and the analysis of the purified peptides. 
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Figure 4.6 Analytical C18 HPLC chromatograms of the linear Grcs showing the influence 
of the temperature and solvent modifier, TFA (compare A, B and D, E) and 
changing the gradient (compare A, C and D, F) on the separation and 
resolution of the peptides in the Grc extract. Chromatograms D, E and F show 
the detail of the separations in A, B and C respectively. 10 µg peptides were 
injected in each run. 

Purification and characterisation of gramicidin fractions 

The optimised analytical protocol was easily adapted to semi-preparative HPLC for the 

purification of the GD mixture. Up to 400 µg Grc per run could be purified, without 

compromising the separation of the peptide components. The purification of the different 
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Grcs to >90% was only successful after two to three sequential purification runs, because of 

the co-elution of GA analogues (Table 4.6).  

Table 4.6 Summary of the different Grcs purified under optimal conditions developed in 
this study by other researchers in our group. *The results from peptides 
purified in this study is shown in brackets. 

ID Exp  
Mr 

Theor 
Mr 

Purity 
(%) 

Yield 
(mg) 

Yield 
(%) 

VGA* 1881.1 1881.07 >85 
(>95) 

0.25 
(2.2) 

6.2  
(11) 

IGA 1895.1 1895.06 >85 0.18 4.5 
VGB 1842.1 1842.04 >85 0.12 3.1 

VGC* 1858.1 1858.13 >85 
(>70) 

0.16 
(0.25) 

4.5 
(1.3) 

IGC 1872.1   1872.07 >85 0.14 4.0 
MVGA* 1899.1 1899.33 (>95) (0.23) (1.2) 

MVGA is 4-Met-VGA. The gramicidins VGA, IGA and VGC and were purified from 20 mg commercial 
gramicidin D, and VGC and IGC were purified from 10 mg commercial gramicidin C (Data courtesy J 
Esterhuizen). 
The first isolates of the five major Grcs were all contaminated with VGA or analogues. This 

was to be expected as UPLC showed co-eluting profiles (see Figure 4.5). Similar co-elution 

problems with RP-HPLC were also reported by Thurbide and Zhang [25] who noticed that 

small quantities of VGA co-eluted with GC components from a poly(styrene-divinylbenzene) 

column. This could be due to VGA association with other Grcs, such as the reported hetero-

oligomers of VGA and VGC [32]. Repeating the semi-preparative isolation procedure 

yielded high purity Grcs. The purified peptides were further analysed using analytical HPLC, 

ESMS and MSMS to confirm their identity and purity (refer to Appendix 4.2 for the analysis 

of VGA). As for the Trcs, the isolated Grcs were only considered pure if both the analytical 

HPLC and ESMS data indicated homogeneity (Table 4.6). 

The analytical HPLC and ESMS profiles of the three Grcs purified for this study showed that 

these fractions were of high purity, except for VGC, the purity of which was estimated to be 

> 70% (see Table 4.6 and Figure 4.8). VGC contained small amount of VGA, because VGA 
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is capable of forming different dimers with Grc analogues and the hetero-oligomers co-eluted 

in the same fraction. 

 

 

 

 

 

 

 

 

 

Figure 4.7 Analytical HPLC chromatograms obtained with method 6 at 35oC of the 
purified Grcs from this study: A VGC; B 4-Met-VGA and C VGA.  

In total, six linear Grcs, including the low abundance 4-Met VGA (Table 4.6), were purified 

from the commercial GD extract in this study and by our group, using the optimised program 

(Table 4.6).  

Summary and conclusions: Part 2 

In this second part an optimized HPLC method is presented for the purification and analysis 

of the linear gramicidin fractions from B. aneurinolyticus on a C18 column with CH3CN as 

mobile phase.  
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Because of their higher hydrophobicity, linear Grcs could only be separated on a non linear 

gradient at 35°C starting with a high organic solvent concentration (60%) in the mobile 

phase. Higher temperature and concentration of CH3CN caused a decrease in the retention of 

all Grcs on the stationary phase (early elution), but improved their resolution substantially. 

The improved Grc HPLC profile obtained with conventional analytical HPLC (method 6 at 

35oC) only compared fairly with the better resolved profile achieved with UPLC of the same 

fraction (compare Figure 4.5 with 4.6C). However, the optimised new analytical HPLC 

method was easily adaptable to semi-preparative HPLC for the successful purification of six 

Grcs from the GD extract. This is also the first study in which mg amounts of VGA and four 

other Grcs were purified with conventional semi-preparative HPLC.  

General conclusion 

The successful HPLC method optimization was an important step for further investigation as 

it allowed the purification of the different Trcs and Grcs used in this study. The following 

chapter (Chapter 5) describes the results of an investigation into the influence of GA and 

surfactin (Srf) on the antimicrobial activity of the purified Trcs. It also investigates the 

possible non-covalent complex formation and/or structural change caused by GA and Srf on 

the purified Trcs and analogues. 
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APPENDIX 4.1 ESMS analysis of the purified tyrocidine B 
 and tyrocidine C  

The positive mode ESMS spectrum of the Trc complex extracted from tyrothricin without 

further purification showed a complex mixture of Trcs in the range of m/z = 1250 to 1400 

(results not shown). Other signals arising from m/z = 600 to 720 correspond to the doubly 

charged species of the Trcs. ESMS analysis done on the individual purified peptide fractions 

showed that these peptides were of high purity. Singly and doubly charged molecular ions 

were detected for TrcB (m/z = 1309.63 singly charged and m/z = 655.34 doubly charged ions) 

and TrcC (m/z = 1348.68 singly charged and m/z = 674.84 doubly charged ions) with their 

respective isotopes (Table 4.7 and Figure 4.8). The respective Na+ adducts molecular ions 

and isotopes of the purified Trcs were also detected at m/z = 1331.66 and 1370.7. 

Table 4.7 Summary of the different ion species in the purified TrcB and TrcC fractions 
as detected by positive ESMS. 

Peptide  Mr Species Exp m/z Det m/z 

TrcB 1308.67 [MTrcB+H]+ 1309.67 1309.63 

  [MTrcB+Na+H]+ 1331.67 1331.66 

  [MTrcC+2H]2+ 655.33 655.34 

TrcC 1347.70 [MTrcC+H]+ 1348.70 1348.62 

  [MTrcC+Na+H]+ 1370.70 1371.69 

  [MTrcC+2H]2+ 674.85 674.84 
Abbreviation: tyrocidine A - Syn-TrcA; tyrocidine B - TrcB; tyrocidine C – TrcC 
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ESMS-MS analysis of the purified Trcs was done in order to verify the primary structure of 

these peptides and to assess of their purity [33]. According to collusion induced dissociation 

(CID) performed on the purified Trcs,  the major fragment ions found were from the b and y 

series occasionally accompanied by their a-ions. These ions arise from the ring-opening 

acylium of TrcB and TrcC fractions (m/z = 1308.7 and 1348.7)  between the D-Phe4 and Pro5 

residues (see Figure 4.9 and Table 4.8) [34].The entire b2-b8 ion series of the corresponding 

ring-opened acylium ions of the two peptides was found to be in accordance with the studies 

of Tang et al. [12]. Fragments with CO loss (a2), or water loss (exclusively b9) were also 

found in all spectra of the corresponding ring-opened acylium ions. 

Table 4.8 Summary of the b fragment ions series obtained from the MSMS 
fragmentation of the purified TrcB and TrcC fractions. 

 TrcB TrcC 
Fragment 

ions 
amino acid 
sequence cal m/z obs m/z amino acid 

sequence cal m/z obs m/z 

b1 H-Pro 98.5 na H-Pro 98.5 na 
b2 Trp 284.13 284.14 Trp 284.13 284.14 
b3 Phe 431.2 431.21 Trp 470.21 470.23 
b4 Asn 545.24 545.27 Asn 584.25 584.28 
b5 Gln 673.55 673.33 Gln 712.31 712.33 
b6 Tyr 836.3 836.39 Tyr 875.37 875.39 
b7 Val 935.43 935.48 Val 974.44 na 
b8 Orn 1049.63 1049.5 Orn 1088.64 1088.5 
b9 Leu-H2O 1144.79 1144.6 Leu-H2O 1183.8 1183.6 
b10 Phe 1309.86 1309.6 Phe 1348.87 13348.6 

Standard three letter abbreviations are used for the amino acid residues. Abbreviation: tyrocidine B - TrcB; 
tyrocidine C - TrcC; cal m/z – calculated m/z; obs m/z – observed m/z 
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Figure 4.8 Mass spectrum of the purified A TrcB and B TrcC fractions in the positive 
mode. 
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Figure 4.9 CID spectra of the purified tyrocidines with the molecular ions: m/z = 1309.7 
and 1348.7 corresponding to the ring opened acylium at the Pro residue of the 
purified A TrcB and B TrcC respectively. 
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APPENDIX 4.2 ESMS analysis of the purified valine- 
gramicidin A  

The ESMS spectrum of the purified Grc fractions showed that not more than one peptide was 

present. Singly charged molecular ions with m/z values of 1882.1 and 1905.1 corresponded 

to the VGA (molecular weight = 1881.1) and its sodium adduct, respectively (Figure 4.10). 

Other species with m/z values of 942.0, 953.0 and 964.04 were also found. These 

corresponded to the doubly charged molecular ion of VGA and its sodium and potassium 

adducts. Trace quantities of species with m/z = 248.14, 539.32, 638.39, 37.47 and 1032.0, 

which matched with fragments y1 and b6-b8 of VGA ([M+H]+ m/z = 1882.1), were evident.  

Table 4.9 Summary of the b fragment ions series from the CID of the singly charger ions 
of the purified VGA using ESMS-MS. 

Fragment 
ions amino acid sequence cal m/z obs m/z 

b0 HCO 29.00  - 
b1 HCO-Val1 128.07  - 
b2 HCO-VG 185.12  - 
b3 HCO-VGA 256.16  - 
b4 HCO-VGAL 369.32 369.21  
b5 HCO-VGALA 440.35  440.26 
b6 HCO-VGALAV 539.42  539.33 
b7 HCO-VGALAVV 638.49  638.4 
b8 HCO_VGALAVVV 737.56  737.47 
b9 HCO-VGALAVVVW 923.64  923.56 
b10 HCO-VGALAVVVWL 1036.80  1037.63 
b11 HCO-VGALAVVVWLW 1222.88  1223.7 
b12 HCO-VGALAVVVWLWL  1336.04  1336.8 
b13 HCO-VGALAVVVWLWLW 1522.12  1522.9 
b14 HCO-VGALAVVVWLWLWL 1635.28  -  
b15 HCO-VGALAVVVWLWLWLW 1821.36  - 

[M+H]+ HCO-VGALAVVVWLWLWLWNHCH2CH2OH 1882.10  - 
Standard three letter abbreviations are used for the amino acid residues. Abbreviation: cal m/z – calculated m/z; 
obs m/z – observed m/z 
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Figure 4.11 shows the CID fragmentation spectra of the singly charged ion ([M+H]+) of the 

purified VGA. The entire b4-b13 ion series of VGA was identified (Table 4.9). Other 

fragments with m/z of 248.41 and 847.48, corresponding to the y5 and y1 of the purified 

peptide, were also found (Figure 4.11). These results confirmed the purity of the purified 

VGA. 

 

 

 

 

 

 

 

 

 

Figure 4.10 Mass spectrum of the purified VGA fraction recorded in the positive mode. 
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Figure 4.11 CID spectrum of the [M + H]+ ion of the purified VGA (B) fractions recorded 
in the positive mode. 
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Chapter 5 

The influence of gramicidin A and surfactin on the cyclic tyrocidines 
from Bacillus aneurinolyticus 

Introduction 

The objective of this part of the study was to test the hypothesis that antagonistic peptide actions, 

similar to the antagonism of gramicidin S (GS) activity by surfactin (Srf) (described in Chapter 2) 

[1] also occur between Srf and peptides from the tyrothricin complex, namely the analogous 

tyrocidines (Trcs) and linear neutral gramicidins (Grcs) from Bacillus aneurinolyticus [2, 3]. In 

Chapter 3 it was demonstrated that the antagonism of GS activity by Srf is partially due to 

inactive complex formation between GS and Srf. These complexes involve non-covalent 

interaction between one of the cationic ornithyl (Orn) residues of GS and the anionic Asp residue 

of Srf, stabilized by the hydrophobic interaction between D-Phe from GS and a number of 

aliphatic amino acids in Srf. The cyclic and basic decapeptide Trcs share structural similarities 

with GS, in particular the Val-(Orn/Lys)-Leu-D-Phe-Pro pentapeptide moiety that possess one 

cationic residue (either Orn or Lys), but vary in the number of Phe residues in the variable neutral 

pentapeptide unit (Table 5.1) [3].  

The Trcs form a rigid antiparallel β-pleated sheet structure [4, 5] and have a broad spectrum of 

activity towards Gram-positive bacteria such as B. Subtilis (this study), M. luteus [6] and Listeria 

monocytogenes [6, 7]. However, the Trcs are less active against Gram-negative bacteria such as 

Escherichia coli [6]. They also exhibit lytic activity against erythrocytes and Plasmodium 
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falciparum infected erythrocytes [8]. Several studies have reported the association of cyclic Trcs 

in higher order structures. According to Williams et al. [9] Trcs can self-associate or aggregate to 

form either homo or heteropolymers. This association only takes place at higher peptide 

concentrations and has relatively large activation energy [9]. They can also form non-covalent 

complexes with the co-produced linear and neutral Grcs. Therefore, studying the influence of Srf 

on the structure and activity of Trcs would shed light on the role of a single GS pentapeptide 

(Val-Orn-Leu-D-Phe-Pro or VOLfP) moiety in antagonism, as well as the role of complex 

formation and/or self assembly/aggregation state of the Trcs in the possible interaction with Srf. 

The activities of two purified Trcs in the absence and presence of added Srf towards the two 

Bacillus subtilis strains were investigated, one strain which has a high level of basal Srf 

production, and one strain which does not produced Srf under the culture conditions. 

Table 5.1 Amino acid sequence comparison between the purified tyrocidines and the 
analogous gramicidin S [3] 

 Amino acid sequence 
Peptides 1 2 3 4 5 6 7 8 9 10 

GS Pro Val Orn Leu D-Phe Pro Val Orn Leu D-Phe 
TrcA Pro Phe D-Phe Asn Gln Tyr Val Orn Leu D-Phe 
TrcB Pro Trp D-Phe Asn Gln Tyr Val Orn Leu D-Phe 
TrcC Pro Trp D-Trp Asn Gln Tyr Val Orn Leu D-Phe 

The second group of peptides from the tyrothricin complex that was included in this study is the 

Grcs, linear and neutral pentadecapeptides. The Grcs contain several neutral (Leu, Val, Ile) and 

aromatic amino acids (Phe; Tyr and Trp) in its sequence with the N and C-termini blocked by a 

formyl and alkanolamide group, respectively [3]. It was observed that linear Grcs, in particular 

gramicidin A (GA), have antibacterial [10], antiviral [11, 12] as well as antiplasmodial and 

haemolytic activities [13]. The Grcs were shown to act antagonistically toward the activity of 

Trcs in the tyrothricin producer strain [14-17]. Grc’s association to Trc antagonises the Trc-DNA 
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complex responsible for the inhibition of RNA synthesis [16] in a similar way that it antagonises 

the effect of Trcs on membrane permeability in the producer strain [18]. Trc binding to Grcs non-

specifically reverse the HII phase induced by high concentrations of Grcs in a 

dioleoylphosphatidylcholine model membrane [18]. It was therefore decided to re-investigate the 

influence of GA from B. aneurinolyticus on the activity of the Trcs towards a model Gram-

positive organism, Micrococcus luteus.  Because the tyrothricin complex contains both the Trcs 

and Grcs, the influence of Srf on GA alone and on GA in combination with TrcB was also 

investigated.  

In the biophysical analysis a number of physical analytical techniques were utilised to investigate 

the structures of the Trcs and the possible structural influences caused by Srf  and GA, namely 

electrospray mass spectrometry (ESMS) [19, 20], circular dichroism (CD), fluorescence 

spectrometry (FS) and nuclear magnetic resonance (NMR). A brief introduction to ESMS, CD 

and NMR in the study of peptide structures has already been given in Chapter 3.  

According to ESMS and high performance liquid chromatography (HPLC) studies, there are 

more than 28 Trcs and 10 Grcs which differ from one another in particularly concerning the 

hydrophobic and aromatic residues [3]. The CD spectra of Trcs exhibit two characteristic minima 

at about 205 and 215 nm except for tyrocidine C (TrcC) which shows an additional shoulder at 

230 nm in water [21]. Linear Grcs exhibit different CD spectra in membrane and in solution [21-

25]. This is due to the conformational changes adopted by linear Grcs in these different 

environments [22, 23, 26]. The CD spectra is influenced by both the aromatic amino acid 

composition and the aggregation state of the peptides in particular solvent systems [21, 27]. 

According to NMR the cyclic Trcs form a β-turn type anti-parallel β-sheet structure which is 
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stabilized by three intramolecular hydrogen bonds [5], while GA has a β-helical structure and 

forms head to tail a dimer [3]. 

The other relevant biophysical analytical technique used for probing peptide structure was 

fluorescence spectroscopy (FS). FS utilizes the intrinsic fluorescence of aromatic amino acids 

Trp, Tyr and Phe to investigate the conformational state of a peptide and the changes that occur 

under different conditions [27-29]. Because of their high quantum yields (high fluorescence 

intensity), only the fluorescence signal of Trp and Tyr are generally used experimentally. 

Photoselective excitation at 295 nm can be used to obtain the emission from only Trp [28] 

whereas excitation at 280 nm will excite both Trp and Tyr. Since the fluorescence emission of 

Trp often obstructs the fluorescence of Tyr and Phe as a consequence of interferences by 

resonance energy transfer, 295 nm is therefore the preferred excitation frequency for the study of 

fluorescence of peptides. The cyclic Trcs have a 40% aromatic amino acid residue content and 

those that contain one or two Trp residues are expected to have fluorescence emission at 295 nm. 

The changes in self-assembly/aggregation state/folding of the Trp-containing Trcs, due to Srf 

addition, can be studied by monitoring the change in the quantum yield of Trp. This quantum 

yield or maximal fluorescence intensity is not only influenced by neighbouring amino acids but 

also by changes in environmental conditions. If fluorescence intensity decreases or shift to the 

higher wavelengths (red shift), the peptide is less folded or assembled with exposure of the 

aromatic residues to the polar solvent leading to quenching of the photo selective excitation at 

295 nm. However, if the fluorescence intensity increases or shifts to a lower wave length (blue 

shift), the peptides are in higher assembly/aggregation/folding state or embedded in a 

hydrophobic environment [30].  
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This chapter therefore describes an investigation into the influence of Srf and GA on the 

antimicrobial activity of purified Trcs (Part 1) and explores the possible molecular mode of these 

influences using biophysical techniques such as ESMS, CD, FS and basic one dimensional NMR 

(Part 2).  

Materials 

The tyrothricin peptide complex, the peptide mixture from which the Trcs and Val-GA were 

purified and analysed as described in Chapter 4, from B. aneurinolyticus was purchased from 

Sigma-Aldrich (Steinheim, Germany). The lipopeptide Srf from B. subtilis was purchased from 

Fluka Chemie (St Louis, USA). Commercial GA containing Val-GA and Ile-GA was obtained 

from Sigma-Aldrich (Steinheim, Germany). 

B. subtilis (ATCC21332 and OKB120), B. aneurynolyticus ATCC10068 and M. luteus 

NCTC8340 were from the BIOPEP culture collection and used as the bacterial targets in the 

antimicrobial activity experiments. Reagents for TGYM media namely the skim milk powder was 

supplied by Clover (Rootepoort, SA). Acetonitrile (CH3CN, HPLC-grade, far UV cut-off) was 

supplied Romil Ltd (Cambridge, UK).  United Scientific (Durban, RSA) supplied ethanol (GR 

grade). D-glucose, the components for the Luria Bertani (LB); sodium chloride (NaCl), tryptone 

and yeast extract, tryptone soy broth (TSB), peptone, agar, the NaH2PO4 and Na2HPO4 as well as 

deuterated acetonitrile (CD3CN, min 99% for NMR) were supplied by Merck (Darmstadt, 

Germany).  Non sterile, standard non-treated polystyrene microtiter plates (96 well flat bottom) 

were supplied by Greiner bio-one (Frickenhausen, Germany) and Lasec (Cape Town, SA) 
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provided the culture dishes. A Millipore Milli Q® water system (Milford, USA) was used to 

prepare analytical quality water by filtering it from a reverse osmosis plant. 

Methods 

Bacterial assays 

Freezer stocks of bacteria culture were cultured at 37 °C for 48 h on LB agar (1% (w/v) tryptone, 

0.5% (w/v) yeast extract, 1 % NaCl, 1.5% (w/v) agar) for M. luteus NCTC8340 or TGYM agar 

(0.5% (w/v) peptone, 0.25% (w/v) yeast extract, 0.1 % (w/v) glucose, 0.1% (w/v) skim milk 

powder, 1.5% (w/v) agar) for B. subtilis strains (ATCC21332 and OKB120) and B. 

aneurynolyticus ATCC10068. Selected colonies of B. subtilis strains and M. luteus were grown 

overnight for 16 h in TSB and LB respectively and then sub-cultured in TSB at 37 °C for 6 hours 

to an optical density (OD) of 0.600 at 620 nm. 

Microtiter broth dilution assays 

Sub-cultured B. subtilis was diluted to OD 0.200 ± 0.01 before 90 µL was dispensed into the 

microtitre plate wells. Ten µL of the serial dilutions of test peptides and/or combinations were 

added in the plate well (each well contained a final volume of 100 µL) in the broth micro-dilution 

assays (adapted from Rautenbach et al. [31]). The inhibition was measured 

spectrophotometrically, after 16 h incubation, at 620 nm on a Titertek Multiscan Plus Mk II 

microtitre plate reader. All microtitre plates were blocked with sterile 0.5% casein in Dulbecco’s 

phosphate buffered saline (PBS), dried and sterilized under UV light for at least 30 minutes prior 

to use in assays. 
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Mixed culture assay 

Subcultures of M. luteus or B. subtilis (1 mL; OD = 0.60) were aliquoted into TGYM agar gel (9 

mL; <45°C) and then mixed through dispersion for 10 s using a laboratory vortex, where after it 

was poured into a culture dish and allowed to set for 30 min (adapted from the radial diffusion 

assay by Du Toit and Rautenbach [32]). Selected colonies of B. subtilis and B. aneurinolyticus 

were then toothpick spotted on top of TGYM gel or M. luteus seeded TGYM gel in close 

proximity (< 1 mm) to allow interaction between the diffusible products of the two producer 

strains. Alternatively, B. aneurinolyticus was spotted on either B. subtilis ATCC21332 or 

OKB120 seeded TGYM agar. A Nikon SMZ 10A trinocular sterozoom microscope mounted with 

a Nikon Coolpix 990 camera was used to process and photograph cell colonies on the culture 

dishes after 2 days incubation at 37oC. 

Data processing for dose-response analysis 

The relative growth of B. subtilis strains (ATCC21332 and OKB120) was calculated on the dose-

response data obtained from antimicrobial assays by dividing the light dispersion per well by the 

mean light dispersion of the well containing the growth medium, the cells and peptide solvent 

(considered as 100% growth). The percentage inhibition was calculated by subtracting the 

relative growth from 100. Control wells with no peptides added were used to determine the total 

bacterial growth. Curve fits and statistical analyses were done using GraphPad Prism 3.0 

(GraphPad Software Incorporated). Sigmoidal dose response curves (variable slope) were fitted 

for all dose-response data. Only the mean of triplicate/quadruplicate data points was considered 

for curve fitting. The IC50 values of the inhibitory concentration of the B. subtilis strains was 

calculated according to Rautenbach et al. [31, 32].  
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For the determination of antagonism, synergism or sum of activities for two active peptides the 

fractional inhibition (FIC) and FIC index were calculated for each of the two peptides in the 

assay using the following equations [33]:  

FIC(A) = IC50 (peptide [A] in A+B mixture)/ IC50 ( peptide A alone) (5.1) 

FIC(B) = IC50 (peptide [B] in A+B mixture)/ IC50 ( peptide B alone) (5.2) 

From the FIC values the FIC index = FIC (A) + FIC (B) (5.3) 

with FIC index =1 indicating that the resultant IC50 is due to the sum of the activity of peptides A 

and B; FIC index >1 indicating that the resultant IC50 is due to antagonistic activity between 

peptides A and B;  FIC index <1 indicating that the resultant IC50 is due to synergistic activity 

between peptides A and B. 

Peptide purification 

Natural tyrocidine B (TrcB), tyrocidine C (TrcC) and Val- gramicidin A (VGA) were purified 

using the optimised semi-preparative HPLC methods described in Chapter 4.  

Electrospray mass spectrometry 

The peptide samples were prepared by dissolving the respective peptides (0.1-0.05 mM) in a 

CH3CN/H2O (1:1, v/v). A Waters Q-Tof Ultima mass spectrometer fitted with a Z-spray 

electrospray ionisation source was used to perform ESMS analyses.  A sample solution (3 to 10 

µL) was introduced into spectrometer via a Waters Acquity UPLCTM. The carrier solvent was 

CH3CN/H2O (1:1, v/v in 0.1% formic acid) and the flow rate was 300 µL/min. A capillary 

voltage of 3.5 kV and cone voltage of 35 V were applied. The source temperature was set at 
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100oC. Data acquisition was in the positive mode, scanning the second analyser (MS2), through 

m/z  100 to 1999 (where the m/z is defined as the molecular mass to charge ratio).  A combination 

of the scans across the elution peak and subtraction of the background produced representative 

scans. 

Circular dichroism and fluorescence experiments 

Analytical stock solutions (1.00 mM) of Srf and the purified Trcs and GA were prepared in 

ethanol/H2O (2:1, v/v) for CD and fluorescence studies. Peptides (20.0 µL) were then diluted to 

10.0 µM in analytical quality water (final volume was 2.00 mL, < 2% ethanol) before 

measurement. For the titration experiments a serial dilution of the Trc:Srf was made from 1:0.5 to 

1:2 ratios in water and pre-incubated for at least 15 minutes before measurements.  A Chirascan 

CD spectrometer was used to obtain CD spectra of the peptide solutions in a 1.00 cm quartz 

cuvette. CD and UV absorption spectra were collected simultaneously between 190 and 250 nm 

in water and 200 and 250 nm in TFE, with a 0.1 nm step in three to five.  

For the fluorescence experiments, a model RF-5301PC spectrofluorophotometer (Shimadzu, 

Japan) was utilised. To acquire the excitation at 295 nm, emission spectra were recorded between 

300 and 450 nm in 0.1 nm steps at 3nm slit width. 

Nuclear magnetic resonance experiments 

NMR analyses were done on a Bruker Avance 500 MHz NMR spectrometer equipped with a 5 

mm BBI indirect detection pulse field gradient probe which operated at 298K (25oC). Dried 

peptide stocks (1-2 mg) were made in CD3CN/H2O (1:1, v/v). 1H-NMR spectra were obtained 

with 64 scans using Watergate-based suppression sequences. The 2D NMR total correlation 
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spectroscopy (TOCSY) and rotating-frame Overhauser effect spectroscopy (ROESY) 

experiments were acquired with a total number 170 ms of mixing times. The 1H NMR data were 

analysed using the ACD/NMR processor software academic edition (ACDLABS 12.0 software, 

[34, 35]) while the 2D data were processed on the Topspin 2. 1 package.  

Results and discussion 

Results and discussion Part 1: Biological activity studies 

Influence of surfactin on the antimicrobial activity of the purified tyrocidines 

One of the objectives of this chapter was to investigate the biological influence of Srf on the 

antimicrobial activity of the HPLC purified Trcs, TrcB and TrcC (Table 5.2) to assess whether 

the antagonism of GS action described in Chapter 2 and 3 is a general resistance mechanism 

towards peptides with the VOLfP pentapeptide moiety.  

Table 5.2 The amino acid sequence, molecular weight (g.mol-1) and retention time (min) of 
the peptides used in this study. 

Peptides Amino acid sequence Mr Retention 
time (min) References

Srf cyclo-(ELlVGlL)- C14* 1021.7 15.50 [36, 37]. 
TrcB cyclo-(VOLfPWfNQY) 1308.7 9.29 [3] 
TrcC cyclo-(VOLfPWwNQY) 1346.7 8.19 [3] 

Amino acids are denoted using the standard one-letter abbreviations, with O = ornithine. D amino acids are 
represented with a lower case letter. *The C14 group in surfactin is linked via a lactone bond between L7and E1[37].  

The influence of Srf on the antimicrobial activity of the purified Trcs was analyzed using 

microtiter broth dilution dose-response assays (Figure 5.1 and Table 5.3) in order to identify 

possible antagonistic/synergistic pairs. For these, two B. subtilis strains were used: B. subtilis 

OKB120 which does not produce Srf under experimental conditions and B. subtilis ATCC 21332 

which is a strict aerobic and anaerobic Srf producer [38]. All the purified Trcs were active against 
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these two target organisms in the µM range (Table 5.3). However, Srf was not active against the 

two test organisms. 

In these assays, the IC50 values of TrcB and TrcC were found to be 5.2 µM and 3.6 µM against B. 

subtilis OKB120 and 15.6 µM and 12.7 µM against B. subtilis ATCC21332 respectively (Table 

5.3). Pre-incubation of cells with 30 µM Srf for 10 minutes caused an increase in the IC50 values 

of purified TrcB and TrcC towards both strains (Table 5.3 and Figure 5.1). The increase in the 

TrcC IC50 in the presence of Srf was significant towards the two B. subtilis strains and indicated 

that Srf was antagonistic towards TrcC activity (Figure 5.1). Although a consistent increase in 

TrcB IC50 in the presence of Srf was observed, there was no statistical difference between in the 

IC50 values of TrcB with and without Srf against B. subtilis OKB120. There was, however, a 

significant increase between the IC50 of TrcB in presence and in absence of Srf towards B. 

subtilis ATCC21332. As with GS, B. subtilis OKB120 was significantly (P<0.001) more 

sensitive towards the Trcs than the Srf producer B. subtilis ATCC21332. The change in the IC50 

values of purified Trcs in addition to Srf towards the two test organisms is shown in Figure 5.1 

and summarized in Table 5.3.  

Table 5.3 Summary of the activity parameters of TrcB alone and in the presence of Srf 
towards B. subtilis strains OKB 120 and ATCC 21332. IC50 ± standard errors of 
the mean (SEM) and % change in IC50 were compiled from n biological repeats, 
each in triplicate or quadruplicate technical repeats.  

 B. subtilis OKB120 B. subtilis ATCC21332 

Peptides +0 µM Srf +30 µM Srf  +0 µM Srf +30 µM Srf  
IC50 µM (n) IC50 µM (n) %∆ IC50 IC50 µM (n) IC50 µM (n) %∆ IC50 

TrcB 5.2 ± 0.7 (6) 6.4 ± 0.6 (6) 23 16 ± 3.1 (3) 23 ± 1.6 (3) 48 
TrcC 3.6 ± 0.4 (5) 7.4 ± 1.1 (5) 104 13 ± 2.5 (4) 17 ± 1.9 (4) 38 
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The result also showed that the extent of Srf antagonism may depend on the Trc identity, in 

particular the aromatic dipeptide unit, as well as the target organism. Srf showed similar 

protection against the Trc compared to GS (refer to Chapter 2). These results indicate that Srf 

may improve the survival of its producer toward other Bacillus species. The survival in mixed 

cultures was investigated to test the hypothesis that antagonism of antimicrobials is a survival 

strategy of to allow soil organisms to cohabit. 

 

 

 

 

 

 

 

Figure 5.1 Bar graph and statistical comparison of the IC50s of purified Trcs alone and in 
combination with Srf towards B. subtilis OKB120 and ATCC21332 (data from 
Table 5.3). The statistical analysis were done using Bonferroni’s multiple 
comparison test (One Way ANOVA) with *** P<0.001; **P<0.01; *P<0.05.  

Colonies of tyrothricin/Trc producer strain, B. aneurinolyticus ATCC10068 were cultured in 

close proximity with colonies of two B. subtilis strains, ATCC21332 which is a Srf producer, or 

the non-Srf producer OKB120 on TGYM agar gel (Figure 5.2). B. subtilis ATCC21332 and B. 

aneurinolyticus ATCC10068 were able to survive and grow together since no inhibition zones 
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D

developed around any of the two organisms (Figure 5.2D). However, the non-Srf producer B. 

subtilis OKB120 was out-competed by B. aneurinolyticus ATCC10068 causing a decrease in its 

colony size and spreading (Figure 5.2E).  

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Evidence of co-survival between Bacillus strains. Colonies (15× enlargement) of 
the mixed culture assay experiment after two days of incubation with A the Trc 
producer B. aneurinolyticus ATCC10068, B the Srf producer B. subtilis 
ATCC21332 and C the Srf non-producer B. subtilis OKB120. D and E represent 
the mixed cultures of the tyrothricin/Trc producer B. aneurinolyticus ATCC10068, 
with the Srf producer B. subtilis ATCC21332 and the Srf non-producer B. subtilis 
OKB120, respectively. 

Similar results were also observed when the colonies were cultured on TGYM agar gel seeded 

with M. luteus. Inhibition zones in the M. luteus seeded gel around both the organisms were 

observed for B. subtilis ATCC21332 and B. aneurinolyticus ATCC10068, with B. subtilis 

ATCC21332 surviving in the inhibition zone of B. aneurinolyticus ATCC10068 (Figure 5.3). The 
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asymmetric inhibition zone that formed when B. subtilis ATCC21332 and B. aneurinolyticus 

ATCC10068 was placed closed together may also indicate improved survival of M. luteus 

(Figure 5.3 C).  

 

 

 

 

 

 

Figure 5.3 Evidence of co-survival between Bacillus strains in the presence of M. luteus. 
Colonies (15× enlargement) in the mixed culture assay experiment after two days 
of incubation with A  the tyrothricin/Trc producer B. aneurinolyticus 
ATCC10068, B Srf producer B. subtilis ATCC21332 And C the tyrothricin/Trc 
and Srf producers at 1 mm distance. The gel contained micro-colonies of M. 
luteus. 

To summarize, this study demonstrated that Srf also antagonises the antimicrobial activity of Trcs 

towards Gram-positive targets. Srf protected B. subtilis OKB120 towards the Trcs in a similar 

way as against GS and the antagonism varies according to the type of Trc. The results clearly 

show that peptides from cohabiting organisms may act antagonistically towards each other’s 

antimicrobial peptides in order to survive in and share the same environment. Srf may improve 

the survival of its producer towards Bacillus species producing Trcs. However, although 

improved survival of a Srf producer in the presence of purified Trc or a Trc producer was 

observed, the latter also co-produces linear Grcs which may complicate the mode of survival. The 

second aim of this study was therefore to investigate the influence of GA alone and in 

combination with Srf and/or TrcB, against M. luteus as the model non-Srf producer. 
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Influence of gramicidin A on the antimicrobial activity of the tyrocidines and the 
antagonism by surfactin 

Results of an investigation into the influence of GA on the activity of cyclic purified Trcs showed 

that GA was synergistic towards the M. luteus activity of TrcB (Table 5.4, Figure 5.4).  In this 

assay, GA had an IC50 of 11.3 µM and the IC50 of TrcB was 6.2 µM towards M. luteus. The 

combination of GA and TrcB (1:1 molar ratio) shifted the IC50 to 1.6 µM each. The FIC index of 

0.40 and significant change in IC50 (P> 0.01) indicated that the co-produced peptide, TrcB and 

GA, exhibited synergistic activity towards the growth of a Srf non-producer, M. luteus (Table 5.4 

and Figure 5.4). This synergistic killing of other organisms will improve the survival ability of 

the producer strain. Therefore, the influence of Srf on this highly effective synergism between 

TrcB and GA was investigated.  

Table 5.4 Summary of the activity parameters of TrcB and GA alone and in combination of 
Srf towards M. luteus. The IC50 ± SEM, % change in IC50 and the FIC index were 
compiled from n biological repeats, each in triplicate or quadruplicate technical 
repeats. 

Peptides 
no GA added + GA (1:1)  

IC50 (µM) (n) IC50 (µM) (n) %∆ IC50 
(FIC) 

*FIC  
index 

GA 11.3 ± 0.9 (8) 1.6 ± 0.5 (4) -606 (0.14)  
0.40 TrcB 6.2 ± 0.7 (8) 1.6 ± 0.5 (4) -288 (0.26) 

*FIC index = IC50
TrcB in combination/ IC50

TrcB + IC50
GA in combination/ IC50

GA from equations 5.1, 5.2 and 5.3 

 

Srf had an ambiguous influence on the activity of GA towards M. luteus. Synergistic action was 

observed at low concentrations of GA (0.4-12.5 µM) (results not shown), but less inhibition than 

expected, although not significantly less, at high concentrations of GA (>12.5 µM) (Figure 5.5). 

The effect of Srf on the synergism between TrcB and GA was further investigated at high 

concentrations, namely >2×IC50 of GA and >4×IC50 of TrcB, as these bactericidal concentrations 
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and lethal combination may have relevance in allowing the Srf-producer and the Trc-GA 

producer to cohabit. TrcB was chosen as representative in these experiments as it showed 

significant synergism with GA, but was not significantly antagonised by Srf. Also, we showed in 

our group that the B. aneurinolyticus co-produced TrcB and GA [39]. 

 

 

 

 

 

 

 

Figure 5.4 Representative dose-response curves showing the antimicrobial synergism 
between GA and TrcB towards M. luteus. SEM of each data point (average of 
n>15 determinations) is shown with R2 > 0.99 for all curves (average of at least 4 
biological repeats).  

It was again showed, this time against M. luteus, that Srf does not have a statistically significant 

antagonistic action towards TrcB (Figure 5.5). Similarly, although inhibition caused by 25 µM 

GA alone was higher than that by the combined 25 µM GA and 30 µM Srf, the difference was 

also not significant. However, the synergistic and lethal combination of TrcB and GA was 

significantly antagonised (P<0.001) by 30 µM Srf, leading to almost a 40% decrease in inhibition 
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(Figure 5.5). These results showed that 30 µM Srf significantly antagonise (P<0.001) the 

synergistic and lethal action of 25 µM GA combined with 25 µM TrcB. 

 

 

 

 

 

 

 

Figure 5.5 Bar graphs and statistical comparison of the influence of 25 µM Srf on the 
antagonistic action of 25 µM of Trcs alone or in combination with 25 µM GA 
towards M. luteus. Each bar graph represents the average of 8-12 determinations 
with the the error bar indicating the SEM. The statistical analysis were done using 
Bonferroni’s Multiple comparison test (One Way ANOVA) with a, b, d P<0.001; c 

P<0.01; e P<0.05.  

To summarise, the result of the influence of GA on the activity of TrcB demonstrated that GA 

and TrcB have synergistic activity towards the M. luteus. Srf addition (30 µM), antagonised the 

synergistic and lethal action of GA on TrcB. These results also confirm that Srf may improve the 

survival of its producer toward other Bacillus species producing a mixture of Grcs and Trcs. 
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Results and discussion Part 2: Biophysical studies 

The third objective of this chapter was to investigate possible non-covalent complex formation 

and/or structural influences among antagonistic/synergistic peptide pairs utilising biophysical 

methods.  

ESMS analysis of purified and mixed peptides 

The positive mode ESMS analysis done on the individual purified Trc fractions, as presented in 

Chapter 4 Appendix 4.1, showed that these peptides were of high purity. Singly and doubly 

charged mono-isotopic molecular ions were detected for TrcB ([M+H]+; m/z = 1309.63 and 

[M+2H]2+; m/z = 655.34 doubly charged) and TrcC ([M+H]+; m/z = 1348.68 and [M+2H]2+ ;m/z 

= 674.84) with their respective isotopes and sodium adducts (See  Appendix 4.1, Chapter 4). The 

ESMS analysis done on the purified VGA also showed that the peptide was of high purity (refer 

to Appendix 4.2, Chapter 4). The different molecular ions corresponding to singly and doubly 

charged mono-isotopic ions of VGA ([M+H]+, m/z = 1883.1 and [M+2H]2+, m/z = 942.0) were 

observed.  

In Chapter 3 it was demonstrated that at least one Orn residue of GS was important for ESMS 

stable complexes to form with Srf. Since cyclic Trcs, which are analogues to GS, have one free 

amino group carried by an Orn or Lys residue, it was expected that they would also form 

complexes with Srf (Table 5.2). However, for the 1:1 molar mixture of Trcs and Srf, no 

complexes were observed between Srf and the purified Trcs in both the positive and negative 

ESMS mode. If there is indeed molecular interaction between Srf and the Trcs, as suggested by 

the CD and fluorescence studies (see below), the absence of complexes in the ESMS may be due 

to the formation of neutral or ESMS unstable complexes. Although only one Orn residue 
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participated in ionic interaction between GS and Srf, the two Orn residues may be necessary for 

ESMS stable and visible (positively charged) complexes.   

Linear Grcs and cyclic Trcs are both found in the tyrothricin peptide complex [3] from B. 

aneurinolyticus [2] (previously known as the B. brevis [40]). Studies have shown that linear Grcs 

and cyclic Trcs have antagonistic action in one another’s activity in the producer strain [15-17]. 

Linear Grcs dissociate the Trc-DNA complex and, in a similar way antagonise the effect of Trc 

on membrane permeability [16]. However, to date, complex formation between Grcs and Trcs 

has not been found by other investigators. We failed to detect complexes in the 1:1 molar mixture 

of GA and the Trcs, as well as GA and Srf; in positive and negative mode ESMS (results not 

shown). However, the failure to detect ESMS stable or visible complexes does not exclude the 

possibility of complex formation, therefore these Trp-containing peptides were analysed with 

fluorescence spectroscopy and NMR. 

NMR analysis of surfactin influence on tyrocidine structures 

The 1H-NMR assignments of the Trcs confirmed the structure and conformation of these peptides 

in solution (refer to Appendix 5.1). The >7 Hz backbone coupling constants  (JNHHα) for all the 

residues, except D-Phe4 and Gln9, in both TrcB and TrcC indicated the role of eight of the amino 

acids in β-sheet and β-turn structures [4, 41], corroborating our CD results discussed below (refer 

to Appendix 5.1 for NMR data).  

The influence of Srf on the structure of Trcs was further investigated by basic 1H-NMR titration 

experiments. In contrast to the influence that was exerted by Srf on the GS NMR spectra (refer to 

Chapter 3), Srf caused only a minor chemical shift changes for specific amino acid residues in 

Trcs and no appreciable improvement on the peak shapes and intensity of the amide protons at 



 

 

5-20 

298 K (results not shown). The chemical shift changes at the highest Srf concentration, although 

small, were consistent (+/-0.1 to +/-0.02) for Orn2, D-Phe4, D-Trp7, L-Trp6 and Val1 with Srf 

addition. Although these basic NMR analyses failed to provide conclusive evidence for complex 

formation there is some correlation with the CD and fluorescence results discussed below. D-Trp7 

and L-Trp6 in TrcC and L-Trp6 in TrcB possibly re-orientate in the presence of Srf, as derived 

from their fluorescence spectra and the CD spectrum of TrcC. 

Fluorescence analysis of peptides and mixtures 

A change in the Trp fluorescence (enhancement, quenching or emission wavelength change) 

could indicate the influence and/or interaction between the antagonistic and synergistic peptide 

pairs. The application of this technique is widely used to probe the exposure and environment of 

Trp residues in proteins [28]. The fluorescence emission with excitation at 295 nm (λ 295) of the 

purified Trcs and GA exhibited maximum absorption between 340 and 360 nm which represents 

the fluorescence emission of Trp residue [28] (Table 5.5 and Figures 5.6 and 5.7). The 

fluorescence intensity of GA was particularly high as compared to Trcs since it contains four Trp 

residues in its sequence [3] (Figure 5.7). Srf alone did not present any appreciable fluorescence 

emission spectrum since it does not contain any aromatic residue in its sequence.  

Upon addition of Srf up to 2:1 molar ratio to the Trcs, the fluorescence emission of the TrcB and 

TrcC decreased and their fluorescence maxima blue-shifted from 355 and 356 nm to 338 and 342 

nm, respectively (Table 5.5 and Figure 5.6). Srf induced a decrease in the fluorescence intensity 

of TrcB at a 1:1 ratio of the two peptides, but it increased at a 1:2 TrcB:Srf molar ratio (Figure 

5.6A). This result may be the consequence of different distribution of micellular Srf, monomeric 

and other oligomeric Srf structures between 0.1 and 0.2 mM Srf. TrcB has L-Trp6 protruding on 
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the one side and the D-Phe7 protruding with the cationic Orn to the other side of the cyclic β-

sheet structure [6], which may cause it to interact differently with Srf at higher Srf 

concentrations. In contrast, there was a constant decrease and blue-shift of the fluorescence 

intensity and maximum emission of Trp for TrcC with Srf addition (Figure 5.6B). TrcC has L-

Trp6 protruding on the one side and the D-Trp7 protruding with Orn to the other side of the cyclic 

β-sheet structure [6]. Any one of the two Trp residues may be interacting with Srf or re-

orientating to be exposed to the solvent, leading to either the blue shift or decrease in 

fluorescence intensity. 

Table 5.5 Summary of the fluorescence parameters of TrcB and TrcC alone and in the presence 
of Srf (fluorescence values are given in arbitrary units from three independent 
determinations)  

 TrcB TrcC 

Trc:Srf λmax Fluorescence *% FS 
change λmax Fluorescence *% FS 

change
1:0 355 68.95 ± 1.23 - 356 115.5 ± 1.83 - 
1:1 339 43.39 ± 1.21 -37 345 85.36 ± 2.48 -26 
1:2 338 53.74 ± 1.49 -22 342 73.71 ± 2.54 -36 

 λmax is the wavelength at the maximum fluorescence intensity.*The % fluorescence change is the ratio of tryptophan 
maximum fluorescence intensity in the mixture with surfactin against the tryptophan maximum fluorescence 
intensity in the peptide alone times 100.  

These results, in particular the blue shift of the Trp emission maximum, indicated that Srf may 

interact with the Trcs causing a change in the location/exposure of the Trp residue(s). At least one 

of the aromatic residues, possibly D-Trp7 near the cationic Orn of TrcC may be involved in Srf 

interaction, while the other Trp may be more exposed to the solvent causing a decrease in the 

fluorescence emission. However, with increase Srf concentrations (1:2 molar ratio), Srf may 

interact differently with TrcB, possibly due to a shift in Srf oligomeric structures or a more 

pronounced surfactant action. This also indicated that TrcB may be very sensitive to Srf 
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concentration, possibly relating to the limited Srf antagonism we observed at 30 µM Srf towards 

B. subtilis OKB120 and M. luteus. The Trcs interaction with Srf is summarized in Table 5.5 and 

spectra are given in Figure 5.6. 

 

 

 

 

 

 

 

Figure 5.6 Fluorescence emission spectra of A TrcB and B TrcC in combination with Srf at 
different peptide ratios in water. Each fluorescence spectrum is represented by a 
line fit. 

The influence of GA on fluorescence spectra of TrcB and Srf (1:1) and vice-versa, was also 

investigated (Figure 5.7). It showed that the addition of TrcB to GA did not affect or cause a 

significant change in the fluorescence emission spectrum of GA. This corroborated our ESMS 

data and previous data [18], namely that these two peptides do not interact. However, the addition 

of Srf did cause a significant increase in the fluorescence spectrum of GA, which may be due to 

micellular Srf providing a membrane like hydrophobic environment which increases the self-

assembly state of GA or due to better solubility of GA in the surfactant environment (Figure 5.7). 
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This result may also explain the ambiguous activity modulation results we obtained with GA in 

the presence on Srf. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Fluorescence emission spectra of GA alone or in combination (1:1 molar ratio) 
with TrcB or Srf in water. 

Far UV-CD secondary structure analysis of tyrocidines and mixtures with surfactin 

The UV spectra of the Trcs were characteristic of peptides containing aromatic residues (Figure 

5.8A). The CD spectra of the purified Trcs in water exhibited characteristic double minima at 205 

nm and 216 nm with an additional shoulder at 230 nm for TrcC (Figure 5.8B) [5]. These minima 

are characteristic of antiparallel β-sheet and β-turn structure adopted by Trcs in aqueous solution 

[5]. The difference in the CD spectra of these two peptides is related to the difference in the side 

chain aromatic dipeptide units L-Trp6 D-Phe7 and L-Trp6-D-Trp7 of TrcB and TrcC, respectively 

(Table 5.6 and Figure 5.8B) [21]. The shoulder at 230 nm for TrcC is also related the additional 

Trp residue as compared to TrcB [21, 42]. Although the two minima are caused by backbone 
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conformations, the presence of the aromatic dipeptide units, as well as the other two aromatic 

amino acid residues in the sequence indirectly influence the spectra. It was therefore decided to 

also look at the ratio between 205 nm and 216 nm in order to obtain more information on the 

backbone changes. 

Table 5.6 Summary of the CD parameters for of TrcB and TrcC as determined from spectra 
recorded for aqueous solutions of these peptides. Averaged molar ellipticities (θ) 
are given in deg.cm2.µM-1 x 101 ± SEM of five determinations. The molar 
ellipticity is given in terms of the Trc concentrations. 

Peptide/ 
Peptide + Srf A210-230 θ216 θ205 θ216/ θ205 

TrcB 0.12 ± 0.01 -6.72 ± 0.12 -7.77 ± 0.14 0.87 ± 0.01 
TrcB + Srf (1:1) 0.21 ± 0.05 -6.50 ± 0.17 -7.12 ± 0.20 0.92 ± 0.04 
TrcB + Srf (1:2) 0.31 ± 0.01 -7.48 ± 0.14 -3.99 ± 0.35 1.89 ± 0.20 

TrcC 0.32 ± 0.06 -8.04 ± 0.18 -7.93 ± 0.14 1.01 ± 0.01 
TrcC + Srf (1:1) 0.54 ± 0.07 -7.25 ± 0.54 na na 
TrcC + Srf (1:2) 0.76 ± 0.09 -5.79 ± 2.47 3.00 ± 2.62 -1.03 ± 0.47 

 

The far UV-CD spectra of the 1:1 molar mixture of Srf and TrcB showed that the addition of Srf 

caused a minor decrease of the negative ellipticity minima at 205 and 216 nm in water up to 1:1 

ratio (Figure 5.8C). Only at a 1:2 molar ratio, the molar ellipticity at 205 nm decreased 

significantly and the ellipticity minimum at 216 nm red shifted to 220 nm. However, TrcC was 

much more sensitive to Srf with the 1:0.5 molar mixture of TrcC:Srf already causing the 

disappearance of the negative ellipticity minimum at 205 nm and 230, which inverted to a red 

shifted maximum at 235 nm (Figure 5.8D). There was also a slight decrease in the negative 

ellipticity at 216 nm (Figure 5.8D).  
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Figure 5.8 Spectrophotometric analyses of Trc and mixtures with Srf with A the UV 
absorption spectrum of Trc B and TrcC, B CD absorption spectra of B TrcB and 
TrcC in water; C TrcB and D TrcC titration with Srf in water. An average of three 
to ten determinations was used to represent each spectrum by a Lowess fit line (20 
point smoothing window). The molar ellipticity is given in terms of the Trc 
concentrations. 

The observed decrease in the negative molar ellipticity minima (decrease in absolute value of 

ellipticity) and the red shift of the CD profile of the Trcs may be related to decrease in the 
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aggregation/self assembly state of the Trcs in presence of Srf, indicating that Srf may be acting as 

a surfactant. However, the spectral changes of both TrcB and TrcC indicated the loss of β-turn 

structures (as found with GS) and an increase in β-sheet structure, which may be related to both 

the structures of the Trcs and Srf. These changes in the molar ellipticity of the Trcs may also be 

due to conformational changes resulting from modifying the orientation/exposure/location of the 

aromatic dipeptide units of the two Trcs in presence of Srf. These results corroborate well with 

the fluorescence quenching results as they show that changes in the environment of Trp may 

affect the aggregation of Trcs in solution. Srf may influence the exposure of the L-Trp6 in the two 

Trcs resulting in a change in their CD spectra as observed with the inversion and red shift of the 

shoulder at 230 nm. 

Conclusions 

This study indicates that the lipopeptide Srf also antagonizes the antimicrobial activity of Trcs 

towards Gram-positive targets, possibly with a similar mode of antagonistic action as with GS 

activity. The mixed culture experiments confirmed that peptides from cohabiting organisms may 

act antagonistically towards each other to allow their producing organisms to growth and share 

the same environment. A complicating factor in the argument that Srf antagonises only Trc 

activity is the co-production of Trcs and Grcs. We observed pronounced synergistic action 

between the linear GA and TrcB against M. luteus, while Srf had a limited effect on TrcB and 

GA alone, in particular at high concentrations. However, the lipopeptide Srf significantly 

antagonised the synergistic action of 1:1 molar mixture of GA:TrcB at a lethal concentration to 

M. luteus. These results indicate that Srf has a definite role to protect and improve the survival of 

its producer toward other Bacillus species producing peptide mixtures, such as the tyrothricin.  
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Although we did not observe Trc-Srf complexes with ESMS and basic NMR studies, 

spectrophotometric analysis indicated that Srf has an influence on the structures of TrcB and 

TrcC. Fluorescence quenching indicated that the Trp residue(s) in the two Trcs occur in a 

different environment when the peptides are in presence of Srf. This change in the environment 

of Trp coincides with a change in the secondary structure of Trcs resulting in a decrease in their 

aggregation/self-assembly properties as observed with the far UV-CD. This loss of structure may 

be due to both interaction with Srf and surfactant action of Srf. Apart from the role of inactive 

complex formation and previously discussed Srf induced biofilm formation, Srf may also protect 

sites that are targeted by the Trcs. Membranolytic activity has been demonstrated to be a 

“secondary” process in the mode of action of the cyclic Trcs and linear Grcs from tyrothricin 

[43]. The role played by the tyrothricin peptides as gene regulator in B. aneurinolyticus [14, 17] 

suggest that both Grcs and Trcs may also act in a similar manner against other Gram positive 

bacteria. These actions could include DNA, RNA and protein synthesis inhibition. Srf may 

inhibit the membrane entry and limit the access to these primary targets.  
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Appendix 5.1:  NMR analysis of the TrcB and TrcC  

The assignment of the Trcs was investigated in order to confirm the structure and conformation 

of these peptides in solution. This was done by sequence-specific resonance assignments of the 

1H resonance based on 2D NMR TOCSY and ROESY spectra of the peptides [44]. The different 

amino acid residues of the two Trcs were identified by their spin systems from combining 

TOCSY and ROESY spectra (Tables 5.7 and 5.8 Figures 5.9; 5.10 and 5.11) and ESMS-MS 

primary sequence data (see Appendix 4.1, Chapter 4). The backbone JNHHα coupling constants 

were also calculated for each amino acid. In general, all residues gave coupling constant of 

greater than 7 Hz except for residues D-Phe4 and Gln9 which showed smaller values. These 

features are characteristic of β-sheet and β-turn structure of these peptides [4, 41].  
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Table 5.7 1H chemical shifts (ppm) and JNH-Hα (Hz) coupling constants (in brackets) of TrcB 
I CD3CN/H2O (1:1, v/v) at 298K. 

Amino acid 
residues 

chemical shift (ppm) 
HN (JNH-Hα) Hα Hββ’ 

L-Val1 7.82 (8.8) 4.39 2.08 
L-Orn2 8.34 (8.5) 5.66 2.82 
L-Leu3 8.26 (9.5) 5.26 1.71, 1.91 
D-Phe4 8.61 (2.9) 4.26 2.98; 2.88 
L-Pro5 --    -- 4.12 0.93; 0.23 
L-Trp6 7.45 (8.8) 4.49 2.45; 2.61 
D-Phe7 8.23 (8.8) 5.5 1.34; 1.54 
L-Asn8 9.11 (7.3) 4.77 2.98; 3.21 
L-Gln9 8.56 (2.9) 4.21 3.94 
L-Tyr10 8.37 (10.25) 4.5 2.90, 3.10 

 
 

 

 

 

 

 

 

Figure 5.9 1H-NMR HN-Hα region of the TOCSY-ROESY spectra of TrcB in CD3CN/H2O 
(1:1, v/v) at 298 K. The sequential signal assignment of the peptide is shown by 
connecting arrows. The NOE HN-Hα cross peak for each residues is labelled by 
the standard three letter abbreviations of amino acids. 
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Table 5.8 1H chemical shifts (ppm) and JNH-Hα (Hz) constants (in brackets) of TrcC in  
CD3CN/H2O (1:1, v/v) at 298K. 

Amino acid 
residues 

Chemical shift (ppm) 
HN (J NH-Hα) Hα Hββ’ 

L-Val1 7.84 (8.6) 4.45 2.08 
L-Orn2 8.30 (8.6) 5.26 2.81 
L-Leu3 8.14 (9.4) 4.43 1.25, 1.37 
D-Phe4 8.62 (1.7) 4.34 4.21; 2.87 
L-Pro5 -    - 4.08 0.24, 0.91 
L-Trp6 7.39 (8.6) 4.38 1.88; 2.33 
D-Trp7 8.09 (9.4) 5.67 3.03; 3.16 
L-Asn8 9.21 (7.7) 4.82 2.94; 3.21 
L-Gln9 8.45 (2.6) 4.34 3.92 
L-Tyr10 8.39 (9.4) 4.48 2.91, 3.08 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 1H-NMR HN-Hα region of the TOCSY-ROESY spectra of TrcC inCD3CN/H2O 
(1:1, v/v) at 298 K. The sequential signal assignment of the peptide is shown by 
connecting arrows. The NOEs HN-Hα cross peak for each residues is labelled by 
the standard three letter abbreviations of the amino acids. 
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Figure 5.11 1H-NMR spectra of A TrcB and B TrcC in CD3CN/H2O (1:1, v/v) at 298K. Amide 
protons are annotated with their respective chemical shift and amino acid residue 
assignment. 
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Chapter 6  

Summary, general conclusions and future prospects 

In a natural environment soil bacteria such as the Bacillus species generate antimicrobial 

compounds, including antibiotic peptides responsible for their survival and protection of 

plants against other microorganisms [1]. Vlok [2] hypothesised that when two species of 

bacilli, producing peptide antibiotics, cohabit they are able to inactivate or shield the 

peptide antibiotics of the other as a survival strategy. Vlok [2] proposed that the observed 

antagonism between the peptide antibiotic surfactin (Srf) and gramicidin S (GS) involved 

the formation of inactive complexes between antimicrobial peptides [2]. 

The major goal of this study was to test the hypothesis: “Resistance of the cohabiting 

bacilli toward each other’s antibiotic peptides is the consequence of antagonistic peptide 

action”. In other words, the questions we attempted to answer were: Is antagonistic 

peptide action, similar to the antagonism of GS activity by Srf, a general resistance 

mechanism? Will Srf antagonize the activity of other Bacillus peptides, such as analogues 

of GS namely the cyclic tyrocidines (Trcs), as well as the co-produced linear gramicidins 

(Grcs) from Bacillus aneurinolyticus? To reach the study goal, the objectives were: 1) to 

investigate the biological influence of the B. subtilis peptide Srf on the antibacterial and 

haemolytic activity of GS, 2) to characterise possible intermolecular interactions between 

the antagonistic peptides GS and Srf 3) to investigate the influence of Srf  on the 

biological activity of peptides from B. aneurinolyticus (Trcs and gramicidin A (GA) and 

combinations of the Trcs and GA) in order to identify possible antagonistic/synergistic 

pairs and characterize them. An important objective, before testing the peptide pairs, was 
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the development of two reverse phase high performance liquid chromatography (HPLC) 

protocols to purify and characterize B. aneurinolyticus peptides. 

Results summary and conclusions 

The study, reported in Chapter 2, corroborates the results of Vlok [2], as it was also 

shown that Srf has a pronounced antagonistic effect against the antimicrobial activity of 

GS towards the Gram-positive Micrococcus luteus. This antagonistic influence of Srf on 

the GS bioactivity extended to two Gram-positive organisms, B. subtilis ATCC21332 and 

OKB120, with constant (general producer) and nutrient-induced (general non-producer) 

Srf production, respectively.  

For M. luteus, antagonism only occurs above a “critical” Srf concentration (> 8 µM, 

which is above the critical micelle concentration (CMC) of Srf [3]). Below that 

concentration the mixture of GS and Srf showed synergistic activity towards M. luteus. 

When the bacterium was pre-incubated with 30 µM Srf, the pre-absorbed Srf or Srf 

micelles interacted with GS preventing it to reach M. luteus membrane. GS recovery 

from Srf-treated M. luteus, using ultra performance liquid chromatography mass 

spectrometry (UPLC-MS) showed that both cell wall and solution phase were important 

in GS antagonism by Srf (Chapter 2).  

Antagonism of GS activity towards B. subtilis was also observed over a broad 

concentration range, after pre-incubation with 0.9-30 µM Srf. This antagonism may be 

related to the induction of more resistant biofilms by Srf in B. subtilis [4] at the low Srf 

concentrations. The Srf producer B. subtilis ATCC21332 was less sensitive to GS and 
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presented the highest antagonistic response compared to B. subtilis OKB120, possibly 

due to its natural Srf production. The antagonistic effect of GS activity on the more 

sensitive B. subtilis OKB120 resulted from Srf addition. In a mixed culture, pre-

incubation with Srf protected B. subtilis OKB120 considerably better than M. luteus.  

However, only the constant Srf producer, B. subtilis ATCC21332, grew in the inhibition 

zone of the colonies from the GS producer Aneurinibacillus migulanus ATCC9999, while 

growth of the non-producer, B. subtilis OKB120, was inhibited (Chapter 2).  

In order to determine the influence of the type of membrane on GS-Srf antagonism, the 

combination of GS and Srf on erythrocytes was assessed. Since the cationic hydrophilic 

side groups of GS are important for it binding to bacteria [5, 6], it was hypothesized that 

the antagonism of GS activity by Srf may be caused by an ionic shielding of the cationic 

side chain groups of the Orn residues in GS. Srf had little effect on GS activity toward the 

erythrocytic target membranes, probably because these groups are not as important for 

the binding of GS to the neutral cell membranes of eukaryotic cells, such as the 

erythrocyte membranes [7, 8]. This showed that the antagonism of GS activity by Srf was 

at least Gram-positive target membrane specific (see Chapter 2). 

Srf alone or in a mixture with GS caused a decrease in the detectable growth (light 

dispersion) of M. luteus and B. subtilis OKB120 in broth media possibly due to Srf-

induced cell clumping/bacteriostatic activity on M. luteus and visible biofilm formation 

by B. subtilis [3, 9, 10] ( Chapter 2). This indicated the role of biofilm formation in the 

resistance of B. subtilis towards antimicrobial peptides. Srf is known to induce biofilm 

formation [11-13] and this film may protect the cells in the inner layers from GS. 
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However, Vlok [2] also found that Srf antagonized the activity of GS against organisms 

that do not generally form biofilms such as plant fungi, indicating that Srf may directly 

interfere with the action of GS. The loss of GS activity in presence of Srf was most 

probably due to non-covalent inactive complexes forming among these peptides that 

affect the secondary structure aggregation/self-assembly of GS in solution (Chapter 3). 

According to circular dichroism (CD) Srf caused a decrease in the prominent β-turn 

structures of GS as observed by the decrease and red shift of the negative ellipticity 

minimum at 206 nm to 208 nm. The GS-Srf mixture also presented an increase in β-sheet 

structure as monitored by the increase and red shift of the negative ellipticity minimum at 

216 nm to 222 nm. These ellipticity changes can be explained by interaction of the 

negatively charged Srf with the cationic GS, causing a change in the 

orientation/exposure/location of D-Phe4,9 in the β-turns or Orn2,7 residues and changing 

the aggregation and/or self-assembly GS in aqueous media.  

ESMS of the 1:1 molar mixture of GS and Srf showed that GS forms stable complexes 

with Srf which corroborated the CD data and previous results [2] (Chapter 3). No 

complexes formed between Srf and the acetylated GS showing the importance of the two 

amino group side chains in the GS structure on the Srf-GS interaction. Results from 

collision-induced-dissociation (CID) on Srf-GS complex showed that the interaction 

between the two peptides involves at least one Orn residue of GS with either Asp or Glu 

residues of Srf, with the peptide bonds in the Val-Orn-Leu-D-Phe moiety of GS and the 

Val4-Asp5-D-Leu6-Leu7 moiety of Srf protected from fragmentation. The 1H-NMR 

temperature titration of GS-Srf mixture confirmed the CD and ESMS results as it showed 

that Srf protects the amide protons of D-Phe4,9 and L-Orn2,7 of GS from exchanging with 
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the solvent. There was also an increase/improvement in the Asp5 NH signal in the GS-Srf 

mixture indicating shielding or solvent exchange/protection. These results suggested that 

the two molecules may be implicated in intermolecular interactions involving the 

residues D-Phe4,9 and Orn2,7 of GS with Asp5 of Srf. These results were further confirmed 

with ROESY and DOSY NMR. There were non-sequential NOE cross peaks observed 

between the Hβ of Asp from Srf and the Hγ of Orn from GS in the ROESY spectrum of 

the GS-Srf mixture, indicating <5Å interaction distance. DOSY-NMR indicated that Srf 

and GS formed homo-oligomers. However, the addition of Srf to GS increased the 

diffusion coefficient of GS pointing to the formation of slightly smaller homo-oligomers 

possibly due to the surfactant effect of Srf or more compact hetero-oligomers.  

Next, to test the hypothesis that the antagonism of GS action by Srf is a general resistance 

mechanism, the influence of Srf on peptides and peptide combinations from the 

tyrothricin complex, namely GA, tyrocidine B (TrcB) and tyrocidine C (TrcC) was 

investigated. This required the extraction and purification of the individual Trcs and Grcs 

from B. aneurinolyticus since they are not commercially available in pure form (Chapter 

4). However, the purification and characterisation of these peptides have presented 

challenges because of minor differences that exist between the different Grcs and Trcs in 

the tyrothricin complex. Two reverse phase high HPLC methods were developed using a 

C18 column and acetonitrile (CH3CN) as mobile phase (Chapter 4). These optimized 

HPLC methods involved the use of a non-linear gradients developed over 22.5 min at 35 

°C. Cyclic Trcs separated well using a 50 to 80% non-linear CH3CN gradient developed 

over 22.5 min. Linear Grcs separated well over the same run time with a 60 to 100% non-

linear CH3CN gradient. These optimized analytical HPLC protocols methods adapted 
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well to semi-preparative HPLC and resulted in the purification (>90% purity) of ten Trcs 

and six linear Grcs and analogues from the tyrothricin extract and the commercial GD 

extract.  

The low µM antimicrobial activity of the purified Trcs (B and C) was confirmed with B. 

subtilis ATCC21332 and OKB120 as target cells (Chapter 5). It was found that Srf also 

antagonizes the antimicrobial activity of Trcs towards Gram-positive bacterial targets 

similar to the antagonism of GS activity. However, the extent of the antagonistic action 

varied depending on the type of Trc; for example TrcC was more sensitive to antagonism 

than TrcB. In a mixed culture study, we showed that the Srf producer B. subtilis 

ATCC21332 could grow in the presence of the tyrothricin/Trc producer B. 

aneurinolyticus ATCC10068, while the Srf non-producer B. subtilis OKB120 was 

outcompeted. This established that peptides from cohabiting organisms may act 

antagonistically towards one another in order to allow their producing organisms to share 

the same environment. Srf may improve the survival of its producer towards other 

Bacillus species producing Trcs. However, B. aneurinolyticus ATCC10068 co-produces 

Grcs, in particular GA with Trcs such as TrcB, which may complicate the protective role 

of Srf.  GA and TrcB have a pronounced synergistic activity towards the M. luteus, while 

Srf had a synergistic effect on GA at low GA concentrations towards the M. luteus. 

However, Srf at 30 µM antagonized the synergistic and lethal action of 25 µM GA on 25 

µM TrcB (Chapter 5), indicating that the protective role of Srf extend to synergistic 

peptide mixtures in the tyrothricin complex. 
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In contrast to the observed complexes between Srf and GS, no complexes were observed 

with ESMS between Srf and any of the purified Trcs, and basic 1D NMR studies did not 

show overt spectral changes when the Trcs were mixed with Srf (Chapter 5). However, 

fluorescence spectroscopy (FS) and CD presented clear evidence of Srf induced changes 

in secondary structures and/or higher order self-assembled structures of the Trcs. Srf 

induces a blue shift of the fluorescence emission of the TrcB and TrcC indicating that Srf 

may interact with the Trcs causing a change in the location/exposure of the Trp 

residue(s). At least one Trp in the Trc structure may be located in a more hydrophobic 

environment causing a blue-shift in the presence of Srf. However, the decrease in the 

fluorescence emission indicates that a larger concentration of the Trp residues in the Trcs 

may be exposed to the solvent upon Srf interaction, than without Srf. The observed 

decrease and red shift in the negative ellipticity minima of the CD spectra of the Trcs 

corroborate the FS results. It shows that Srf may act as a surfactant towards the Trcs 

causing a decrease in the aggregation/self assembly states in water related to the loss of 

β-turn structures (as found with GS) and increase in β-sheet structures. These changes in 

the molar ellipticity of the Trcs are mostly due to environmental changes in the 

orientation/exposure/location of the aromatic dipeptide units, Trp6-(DTrp7/D-Phe7) 

resulting from Srf interaction.  

No detectable stable complexes in the 1:1 molar mixture of GA and the Trcs in positive 

and negative ESMS mode were observed which indicates that GA does not interact with 

the Trcs.  This result also corroborates the FS results which showed that the addition of 

TrcB to GA did not affect the fluorescence emission spectrum of GA. The synergism of 

GA and TrcB is therefore not the consequence of formation of more active heteromeric 
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complexes. However, the addition of Srf did cause a significant increase in the 

fluorescence spectrum of GA possibly due to micellar Srf providing a membrane like 

hydrophobic environment for the Trp-residues or improving the solubility of GA via its 

surfactant activity (Chapter 5). The fact that both TrcB and GA possibly interact with Srf 

could explain the antagonistic effect that Srf had on the lethal synergism of GA-TrcB 

mixtures 

Although complexation between Srf and GS or peptide analogous to GS is not the only 

mode of Srf antagonistic action, these results substantiates that complex formation and/or 

structural changes play a major part in the mode of peptide antagonism and action. The 

antagonism of GS activity by Srf conferred in part by inactive complex formation is a 

resistance mechanism that also extends to other peptides containing the Val-Orn-Leu-D-

Phe-Pro moiety such as the Trcs from B. aneurinolyticus. Table 6.1 summarizes the 

microbiological and biophysical results of this study.  

Future studies 

The microbiological studies, given in Chapter 2 and 5, indicate that the antagonism was 

target membrane specific, as antagonism only occurred primarily against prokaryotic 

target cells. On eukaryotic cells, only slight antagonism on the activity of the peptides 

was observed. An area for future research would involve a more detailed investigation on 

the specificity of this type of antagonism (or putative resistance mechanism), i.e. whether 

the antagonism is exclusively dependent on target membrane composition and whether 

any other non-membrane targets or systems such as ABC transporters are involved.  
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Table 6.1. Summary of the different peptides in combination with Srf or/and GA 
showing the antagonism or synergism as well as the detected complex 
formation of structural changes 

 Combined with surfactin Combined with gramicidin A 
 Antagonism/ 

Synergism 
Detection of 

complex formation/ 
structural change 

Antagonism/ 
synergism 

Detection of  
complex formation/ 
structural change 

Peptides Target 
organism 

ESMS CD/
FS 

NMR Target 
organism 

ESMS CD FS 

GS Antagonism 
M. luteus 
B. subtilis 
OKB120/ 

ATCC21332 

yes yes/ 
na 

yes Antagonism* 
M. luteus 
Additive* 
B. subtilis 
OKB120 

yes nd nd 

GA Mixed results 
M. luteus 

no nd/ 
yes 

nd     

Trc B  Antagonism 
B. subtilis  

ATCC21332 

no yes/ 
yes 

no Synergism 
M. luteus 

no nd no 

TrcB+GA Antagonism 
M. luteus 

nd nd/ 
nd 

nd     

TrcC Antagonism 
B. subtilis 
OKB120/ 

ATCC21332 

no yes/ 
yes 

no nd 
 

no nd nd 

Abbreviations: nd – not determined;  na - not applicable; *preliminary results 
 
 
 
Most Bacillus peptides act by disturbing the permeability barrier of bacteria since they 

are able to interact with biological membranes. Potential antagonistic or peptide-shielding 

effects of Srf on the membrane interaction of GS and the Trcs can be studied using model 

membranes. The amount, time-dependent and dose-dependent release of a trapped 

fluorescent maker from liposomes using fluorescent spectrometry could be used as 

indicator for the membrane activity of the peptides and combinations. In order to further 

the biophysical investigation and better understand the molecular structure(s) of the 

antagonistic complex between GS and Srf, uniform isotopic enrichment NMR may be 

conducted. This technique has contributed in improving the analysis of interaction among 

complex molecules [14, 15]. 15N and/or 13C isotopic enrichment of GS or Srf can be used 
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to obtain additional information on the existing 1H-NMR data or can be combined in 

triple resonance NMR experiments [16]. The peptides may be labeled by growing the 

producer strain using enriched media as nitrogen (15NH4Cl, 15NH4SO4 or N15 labeled 

urea) or as carbon (13C6 glucose) source. Our research group has the facilities and 

recently optimised methodology to grow both the GS and Srf producer strains (A. 

migulanus ATCC9999 and B. subtilis ATCC21332), as well as isolate the peptide 

products from the media using optimized reverse-phase HPLC protocols. Data from these 

advanced NMR studies could provide the molecular detail to construct models of the GS-

Srf complex(es). 

Finally, in order to evaluate the hypothesis of the antagonism of Srf is a resistance 

mechanism of B. subtilis towards other bacilli producing peptides, the biological and 

biophysical influence of the Srf analogues, for example other lipopeptides such as the 

neural iturin A and anionic iturin C could be investigated. The lipopeptides Srf and iturin 

A/C, are co-produced in some B. subtilis strains and have been shown to have synergistic 

activity [17, 18]. 

Last word 

This study provided the first evidence that Srf acts as an “antimicrobial shield” through 

the antagonism of the antimicrobial activity of several antimicrobial peptides produced 

by Bacillus species. The broader study of this “antimicrobial peptide shield” hypothesis 

may contribute in future, explaining this putative resistance mechanism. This research 

may help solving the problem of competition among soil bacteria which generate the 

peptides responsible for the protection of the plant against other microorganisms in the 

agricultural industry. 
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