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Abstract 

This study investigated the use of antimicrobial peptides (AMPs) as possible source of 

resistance against a range of pathogens in grapevine. Whilst the ultimate aim would be to 

express AMPs in grapevine, the development of transgenic grapevine is time consuming and 

therefore pre-screening of potential AMPs is necessary. These small molecules, of less than 

50 amino acids in length, are expressed by almost all organisms as part of their non-specific 

defence system. In vitro pre-screening of AMP activity is valuable but is limited since the 

activity on artificial media may differ from the AMP activity in planta. These tests are also 

restricted to pathogens which can be cultured in vitro. These limitations can be overcome by 

using transient expression systems to determine the in planta activity of AMPs against 

pathogens of interest. In this study transient systems were used to express AMPs in developed 

plant tissue to test their efficacy against grapevine pathogens such as Agrobacterium vitis, 

Xylophilus ampelinus and aster yellows phytoplasma. Aster yellows phytoplasma, which was 

recently discovered in local vineyards, is known to cause extensive damage and therefore 

pose a great threat to the South African grapevine industry. 

To study the in planta effect of AMPs against the abovementioned pathogens, transient 

expression vectors were constructed expressing either of the AMPs D4E1 or Vv-AMP1. 

D4E1 is a synthetically designed AMP known to be active against bacteria and fungi, while 

Vv-AMP1, isolated from grapevine berries, has already shown activity against fungi. In a 

transient approach in grapevine, the expression of foreign genes from viral and non-viral 

vectors was confirmed by expression of the marker genes β-glucuronidase and Green 

Fluorescent Protein, while tissue-printing immunoassays confirmed viral replication and 

systemic spread in Nicotiana benthamiana. The viral vectors were based on the phloem-

limited virus grapevine virus A. Only Agrobacterium-mediated 35S transient expression 

vectors were used for AMP in planta activity screening since the viral-mediated expression in 

grapevine was insufficient for screening against A. vitis and X. ampelinus as it was restricted 

to phloem tissues after whole-leaf infiltration. No phytoplasma-infected material could be 

established and as a result AMP activity screening was only performed against the A. vitis and 

X. ampelinus. Quantification of the bacteria was performed by qPCR. Vv-AMP1 did not show 

activity against either of the two bacteria in planta while D4E1 was found to be active against 

both. The observed in planta activity of D4E1 correlated with the in vitro activity as measured 

in an AMP plate bioassay. In contrast to in vitro screenings, the in planta AMP activity 
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screening might give a more accurate representation of the potential antimicrobial activity of 

the peptide in a transgenic plant environment. 

This study proved that transient expression systems can be used as a pre-screening method of 

AMP activity in planta against grapevine pathogens, allowing the screening of various AMPs 

in a relatively short period of time before committing to transgenic grapevine development. 
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Opsomming 

Hierdie studie het die gebruik van antimikrobiese peptiede (AMPe) as 'n moontlik bron van 

weerstand teen 'n reeks van patogene in wingerd ondersoek. Alhoewel die uiteindelike doel 

sal wees om AMPe uit te druk in wingerd, is transgeniese wingerd ontwikkeling tydrowend en 

daarom is vooraf evaluering van potensiële AMPe nodig. Hierdie klein molekules, van minder 

as 50 aminosure in lengte, word uitgedruk deur amper alle organismes as deel van hul nie-

spesifieke verdedigingsisteem. In vitro vooraf evaluering van AMP aktiwiteit is van waarde, 

maar is beperk aangesien die aktiwiteit op kunsmatige media mag verskil van die AMP-

aktiwiteit in planta. Hierdie toetse is ook beperk tot patogene wat in vitro gekweek kan word. 

Hierdie beperkinge kan oorkom word deur gebruik te maak van tydelike uitdrukkingsisteme 

om die in planta aktiwiteit van AMPe te bepaal teen patogene van belang. In hierdie studie is 

tydelike uitdrukkingsisteme gebruik om AMPe uit te druk in ontwikkelde plantweefsel om hul 

effektiwiteite te toets teen wingerdpatogene soos Agrobacterium vitis, Xylophilus ampelinus 

en aster yellows fitoplasma. Aster yellows fitoplasmas, wat onlangs in plaaslike wingerde 

ontdek is, is bekend vir die uitgebreide skade wat hul aanrig en hou daarom 'n groot 

bedreiging in vir die Suid-Afrikaanse wingerd industrie. 

Om die in planta effek van AMPe teen die bogenoemde patogene te bestudeer is tydelike 

uitdrukkingsvektore ontwikkel wat die AMPe D4E1 of Vv-AMP1 uitdruk. D4E1 is 'n 

sinteties-ontwerpte AMP wat aktief is teen bakterieë en fungi, terwyl Vv-AMP1, wat uit 

druiwekorrels geïsoleer is, alreeds aktiwiteit teen fungi getoon het. In 'n tydelike 

uitdrukkingsbenadering in wingerd is die uitdrukking van transgene, vanaf virus of nie-virus 

gebaseerde vektore, bevestig deur die uitdrukking van die merker gene β-glukuronidase en die 

Groen Fluoresserende Proteïen, terwyl weefsel afdrukkings-immunotoetse virus replisering en 

sistemiese beweging in Nicotiana benthamiana bevestig het. Die virusvektore was gebaseer 

op die floëem-beperkte virus, wingerdvirus A. Slegs Agrobacterium-bemiddelde 35S tydelike 

uitdrukkingsvektore is gebruik om die AMP in planta aktiwiteit te bepaal aangesien die virus-

bemiddelde uitdrukking in wingerd onvoldoende was vir evaluering teen A. vitis en X. 

ampelinus weens die beperking tot die floëem weefsel na infiltrering van die totale blaar. 

Geen fitoplasma geïnfekteerde materiaal kon gevestig word nie, en daarom is AMP 

aktiwiteitsevaluering slegs teen A. vitis en X. ampelinus uitgevoer. Kwantifisering van die 

bakterieë is deur middel van qPCR uitgevoer. Vv-AMP1 het geen aktiwiteit getoon teen enige 

van die bakterieë in planta nie, terwyl D4E1 aktief was teen beide. Die waargenome in planta 

aktiwiteit van D4E1 het ooreengestem met die in vitro aktiwiteit soos bepaal deur 'n AMP 
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plaat bio-toets. In kontras tot in vitro evaluering kan die in planta AMP-aktiwiteit evaluering 

'n meer akkurate voorspelling bied van die potensiële antimikrobiese aktiwiteite van die 

peptied in 'n transgeniese plant omgewing. 

Hierdie studie het bewys dat tydelike uitdrukkingsisteme gebruik kan word as 'n voorafgaande 

evalueringsmetode vir AMP in planta aktiwiteit teen wingerdpatogene, wat die evaluering 

van 'n verskeidenheid AMPe in 'n relatiewe kort tydperk toelaat voor verbintenis tot die 

ontwikkeling van transgeniese wingerd. 
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Chapter 1  

Introduction 

1.1 Research background and motivation 

The importance of grapevine (Vitis vinifera) as an agricultural commodity can not be over 

emphasised. In South Africa the wine industry alone contributed R2.6 billion to the country‟s 

gross domestic product in 2008 (http://www.sawis.co.za). More than 275000 people are 

employed by the wine industry and more than 66000 by the table grape industry 

(http://www.satgi.co.za). Altogether more than 115000 hectares of agricultural land in South 

Africa are planted under grapevine. The many grapevine pathogens therefore play an 

important agricultural role as they can be, and have been in the past, held responsible for great 

economic losses (Purcell, 1997; Lee et al., 2000; Hadidi et al., 2003). No other single crop 

has as many intracellular pathogens as grapevine (Martelli and Boudon-Padieu, 2006). They 

are targeted by phytoplasmas, bacteria, fungi, viroids and more than 60 viruses. Despite their 

almost omnipresent nature, grapevine viruses are not the cause of the most devastating 

diseases in these plants. Bacterial and especially fungal infections have on countless occasions 

led to vastly destructive disease outbreaks (Yamamoto et al., 2000). Of all grapevine diseases 

powdery mildew, caused by the fungus Erysiphe necator, is considered to be economically 

the most important (Winterhagen et al., 2008). In Europe and Australia, phytoplasma alone 

have destroyed large regions of vineyards (Lee et al., 2000). This gave local farmers reason 

for alarm after the first report of phytoplasma infections in South Africa in 2006 (Burger, 

2008). It is therefore of high significance to find an approach to control these disastrous 

grapevine diseases before the further spread thereof. 

To combat plant pathogens, scientists are now employing short peptides, known as 

antimicrobial peptides (AMPs). These antimicrobial agents are usually produced by 

organisms as part of their natural defence system (Montesinos, 2007). They can, when 

expressed through genetic transformation in host plants, offer a form of tolerance against a 

range of pathogens. The development of transgenic grapevine is, however, a tedious and time 
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consuming process. It can take up to three years to develop a transgenic line before it can be 

tested for resistance against a pathogen. To prevent the development of transgenic grapevine 

lines that show no form of resistance, due to expression of a specific AMP, against pathogens, 

an efficient procedure for AMP activity pre-screening is desirable. In vitro pre-screening for 

the effect of candidate AMPs against pathogens may still lead to negative results as peptides 

may react differently in an artificial than in a plant environment (Florack et al., 1993). It 

would therefore be ideal to first screen the activity of AMPs in planta against pathogens 

before considering starting the process of developing transgenic plants expressing these 

peptides. 

In this study, transient systems, in which plants were inoculated with vectors expressing the 

AMP sequences, were developed. These plants were used to test the in planta activity of two 

AMPs against grapevine pathogens. The use of a transient expression system will not 

circumvent the subsequent production of transgenic plants, but can be a useful in planta pre-

selection system for AMP efficacy. It can be performed in a relative short time period for a 

large number of AMPs. 

1.2 Project proposal 

This study aimed to establish a transient expression system for the investigation of AMP 

efficacy against grapevine pathogens. The effect of AMPs would be tested against 

Agrobacterium vitis (A. vitis) and Xylophilus ampelinus (X. ampelinus) in vitro and in planta 

and against aster yellows phytoplasma in planta only. 

To achieve this goal it was necessary to reach the following objectives: 

o AMPs needed to be obtained from available sources and their efficacy tested in vitro 

against A. vitis and X. ampelinus. 

o Transient expression vectors, both virus-based and Agrobacterium-mediated, 

containing control genes, needed to be constructed and the expression of the foreign 

genes needed to be tested in Nicotiana benthamiana and grapevine. 

o Transient expression vectors, viral and Agrobacterium-mediated, containing AMP 

genes needed to be constructed and the infectivity of the viral vectors needed to be 

tested in Nicotiana benthamiana and grapevine. 

o Healthy grapevine plants needed to be Agrobacterium vacuum-infiltrated with the 

AMP expressing vectors and tested for their activity against A. vitis and X. ampelinus 

infection. 

o Phytoplasma-infected plants needed to be identified and established in vitro. 
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o Phytoplasma-infected plants needed to be Agrobacterium vacuum-infiltrated with the 

AMP expressing vectors. 

o The effects of the AMPs needed to be tested by measuring microbial titres and disease 

development.
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Chapter 2  

Literature review 

2.1 Introduction 

The grapevine industry makes a substantial contribution to the South African economy. This 

contribution is, however, threatened by the constant exposure of vineyards to potentially 

harmful pathogens. In general, combating these pathogens requires either the breeding of 

resistant cultivars or controlling the spread of the disease through vector control and sanitary 

measures. Vector control is costly and up until now the breeding of resistant cultivars, against 

bacterial and viral infections, has not been successful. Due to the presence of economically 

important pathogens in local vineyards it is important to establish an effective way of 

combating these pathogens. This chapter will give an overview of antimicrobial peptides, 

molecules used for inducing pathogen resistance in plants, as well as on transient expression 

systems. It will focus on what they are, how they function and what they are used for. A brief 

background will be provided on three grapevine pathogens, namely A. vitis and X. ampelinus 

and aster yellows phytoplasma, and also on the diseases they cause in their hosts. 

2.2 Antimicrobial peptides 

Plants, mammals, insects and fungi naturally produce short peptides, of less than 50 amino 

acids, known as antimicrobial peptides (Montesinos, 2007). These peptides often play an 

important role in an organism's non-specific defence systems. Organisms can produce AMPs 

in response to microbial infections or they can produce AMPs constitutively and store it in 

large quantities for later use when infection occurs (Rydlo et al., 2006). Their production is at 

low metabolic cost. Currently, several hundred AMPs have been identified from diverse 

origins (Fjell et al., 2007). Most AMPs, although not all, are cationic and amphipathic 

(Bowman, 2003; Yeaman and Yount, 2003), and based on their structural diversity, can be 

grouped into different classes (Montesinos, 2007). Due to their non-specificity they offer the 

host organism a broad spectrum of protection against a variety of microorganisms (Bals, 
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2000). This non-specificity also lessens the possibility of the development of resistance in 

microorganisms (Yeaman and Yount, 2003). 

2.2.1 AMPs originating from plants 

Similar to most other living organisms, plants express AMPs as part of their defence systems. 

Antimicrobial peptides expressed by plants can be divided into three main groups namely, the 

plant defensins (Terras et al., 1995), thionins (De Caleya et al., 1972) and lipid transfer 

proteins (LTP) (Kader et al., 1984). Other groups include the cyclotides, hevein- and knottin-

type of AMPs (Forrokhi et al., 2008). The mostly antifungal activity of plant AMPs point 

towards the critical role fungi play as plant pathogens. 

Plant defensins are small (45-54 amino acids in length), basic peptides that are rich in cysteine 

residues and have previously been classified as γ-thionins (Collila et al., 1990). Each peptide 

contains four disulfide bridges formed by eight cysteine residues (Thomma et al., 2002). 

Within the group the tertiary structure is conserved, while the amino acid homology is low 

(Castro and Fontes, 2005). Although different plant regions express defensins, they have 

largely been identified in the seeds (Lay and Anderson, 2005). They are thought to be 

expressed by all plant species. The first plant defensin isolated from Vitis vinifera (V. vinifera) 

was Vv-AMP1, and was shown to be expressed during berry ripening (De Beer and Vivier, 

2008). The exact mechanism of plant defensin in vivo action against pathogens still needs to 

be elucidated; they do however show a broad range of antimicrobial activity specific to either 

fungi or a certain bacterial group (Castro and Fontes, 2005). One group of plant defensins, 

that has no antifungal activity, has an α-amylase inhibiting reaction which provides protection 

against insects that might feed on the plants (Shade et al., 1994). Only a few plant defensins 

show any form of antibacterial activity (Thomma et al., 2002). An example of crop 

improvement through transgenic plant development is the expression of an oat defensin in rice 

resulting in better resistance to Burkholderia plantarii and Burkholderia glumaeby (Segura et 

al., 1998). An increase in resistance to Botrytis cinerea, Erwinia carotovora and 

Magnaporthe grisea was observed in transgenic potatoes and rice expressing a defensin 

isolated from wasabi (Lay and Anderson, 2005). 

Thionins are also small, basic peptides that are 45-47 amino acids in length (Forrokhi et al., 

2008). They consist of sulphur-containing amino acids such as arginine, cysteine and lysine, 

and other basic residues (Castro and Fontes, 2005). They possess a β-sheet with an 

antiparallel double α-helix centre (Oard et al., 2010). The secondary structure is held together 

by three or four disulfide bridges and is conserved amongst thionins. They have been isolated 
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from cereals such as wheat (Balls et al., 1942) and oat (Bekes and Lasztity, 1981), as well as 

from mistletoe (Samuelsson, 1973). Based on their amino acid sequences or disulfide-bond 

structure they can be divided into five or three groups respectively (Garcia-Olmedo et al., 

1998). Besides crambin, all thionins are known for their toxicity to a variety of different 

organisms as well as different cells, including mammalian and plant cells (Castro and Fontes, 

2005). They offer their hosts resistance to fungal (Bohlmann et al., 1988) as well as bacterial 

(Garcia-Olmedo et al., 1998) infections. 

Two subgroups of plant LTP exist, LTP1 and LTP2, which are 10 and 7 kDa in size, 

respectively (Carvalho and Gomes, 2007). Both families contain eight cysteine residues, 

connected by 4 disulfide bridges, at conserved regions of the primary structure. These 

peptides are able to move lipids from one membrane to another (Kader, 1996). As for most 

AMPs the method of pathogen inhibition still needs to be elucidated for LTPs. It has been 

suggested that they may cause membrane permeability due to the high value of their 

isoelectric point. However, not all LTPs play a role in plant defence reactions. Lipid transfer 

proteins with antimicrobial activity have been isolated from various regions of the plant, 

especially from leaves and seeds (Carvalho and Gomes, 2007), the most deadly being Ace-

AMP1 from onion seeds (Cammue et al., 1995). In general, fungi have been found to be more 

susceptible to LTPs than bacteria (Kader, 1996). Wheat and barley are two sources of LTPs 

and the genes isolated from these plants had been applied to the development of disease 

resistance in other plants (Jayaraj and Punja, 2007; Molina and Garcia-Olmedo, 1997). A 

pepper LTP, over-expressed in Arabidopsis, increased the plants‟ resistance to Pseudomonas 

syringae pv. tomato and Botrytis cinerea (Jung et al., 2005). A decrease in symptom 

development was observed as well as a 100-fold reduction in Pseudomonas syringae pv. 

tomato concentration. 

2.2.2 Mechanisms of action 

There are many proposed mechanisms of cell death induced by AMPs. Primarily, pathogen 

cell membranes are targeted, because of the peptide‟s high affinity for membranes, due to the 

fact that most AMPs are positively charged and have amphipathic qualities (Yeaman and 

Yount, 2003). The phospholipids, lipopolysaccharides and teichoic or teichuronic acids found 

in bacterial membranes give the membranes a net negative charge that attract cationic 

peptides. Most AMPs which come into contact with their target membranes take on 

amphipathic conformations, making them able to interact with both the inner and outer part of 

the microbial membranes. Approximately 50% of peptide residues are hydrophobic, allowing 

binding to the lipid bilayer. Lysine and arginine forms strong interactions with the lipid 
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bilayer phosphate groups (Mavri and Vogel, 1996). The bound AMPs affect the permeability 

of the target membrane and can form pores in it, resulting in leakage of metabolites and ions 

through these pores. The disruption of the membrane potential and depolarisation thereof in 

turn lead to cell death (Hancock and Chapple, 1999). Although, membrane permeability may 

lead to cell death, this mechanism on its own is not in all instances adequate to cause cell 

death, and often other target sites are required. In addition to cell membrane disruption, some 

AMPs have also been shown to target intracellular components of the invading pathogens 

(Park et al., 1998), while others may inhibit the synthesis of biopolymers (Chitnis and Prasad, 

1990). Figure 1 illustrates the two main mechanisms of AMP action, firstly, their interaction 

with the cell membrane and secondly, targeting intracellular molecules. When more than one 

mechanism is applied independently or in cooperation with others, and leads to cell death, it is 

described as a “multi-hit process” (Zhang et al., 2000). Some AMPs also interacts with others 

and the resulting heterologous peptide has been shown to be even more effective against 

microbes than the independent peptide alone (Westerhoff et al., 1995). 

 

 

Figure 1: Mechanisms of antimicrobial activity. A) AMP forming pores in the cell membrane. B) The 

targeting of intracellular molecules by AMPs (Gallo and Huttner, 1998). 

 

 

A 

B 
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2.2.3 Factors influencing AMP activity 

Despite the many structural and chemical characteristics of AMPs that play a role in the 

efficacy of a peptide against a certain pathogen, many external factors play an additional role 

in the overall activity of a specific peptide. Fassi Fehri et al. (2007) showed that the in vitro 

action of peptides is dependent on factors such as the concentration of the AMP, the time of 

exposure as well as the density of the bacteria. The effect of temperature has been proven to 

vary for different AMPs. Some AMPs become insoluble at lowered temperatures (Maisnier-

Patin and Forni, 1996) while others seem to have a more stable structure at these temperatures 

(Kaur et al., 2004). Other factors that have an effect on different AMPs activities are the pH 

as well as salt concentration (Rydlo et al., 2006). The cationic nature of the medium was also 

shown to have a strong influence on the antifungal activity of plant defensins (Osborn et al., 

1995). All these factors are important to keep in mind when working with AMPs, as they may 

vary between in vitro and in planta states, which may in turn lead to a difference in observed 

peptide efficacy. 

2.2.4 Target specificity 

All antimicrobial peptides show activity against a wide variety of microbes. They often, 

however, tend to have a selected target organism specificity, for example only antifungal but 

no antibacterial activity. The questions therefore arise; why are AMPs only active against 

specific targets and why are they selectively toxic and do not attack their host cells? Many 

theories exist and much research has been done in support of the different theories. These 

studies mainly focus on the differences in membrane composition between the organisms, 

especially between prokaryotic and eukaryotic cells, their different membrane structures, the 

differences in hydrophobicity and their differences in charge and membrane-potential. 

Another factor that plays a role is the specific structure that the peptide adapts to before and 

when binding to a membrane. For a more detailed discussion on target specificity the reader is 

referred to the review article of Yeaman and Yount (2003). 

2.2.5 Pathogen resistance against AMPs 

The growing number of bacteria resistant against antibiotics has shift the focus to using AMPs 

as a measure to overcome these resistances. Despite their mostly non-specific action and the 

fact that AMPs have been shown to be highly effective against microorganisms, some 

microbes have, however, managed to developed mechanisms of resistance against these 

attacks.  
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Figure 2 illustrates how microbes have developed parallel mechanisms to counter AMPs‟ 

mechanisms of attack. Salmonella typhimurium, for example, has developed a mechanism of 

losing the negative charge of its surface through the addition of aminoarabinose to the 4' 

phosphate of the lipid, a region of the lipopolysaccharide, preventing numerous AMPs to 

adhere to its outer membrane (Gunn et al., 1998). Other examples include Escherichia coli (E. 

coli) strains that have the ability to proteolytically cleave AMPs (Stumpe et al., 1998) and the 

ability of Yersinia enterocolitica to export AMPs from their cells via an energy-dependent 

pump (Bengoechea and Skurnik, 2000). Despite these microbial counter-strategies for 

resistance, there are still many AMPs to which resistance has not been developed yet. Caution 

has to be taken to prevent microbes from developing new resistant strains. Although these 

examples are based on pathogens of the animal kingdom, plant pathogens also have the 

potential of implementing these strategies to defend themselves against the activity of AMPs. 

Figure 2: Diagram showing the mechanisms of resistance that microorganism developed to overcome 

antimicrobial peptide activity. Active peptides (squares) are broken down or inactivated (light circles) 

and released from the cells. Key: OM, outer membrane; CW, cell wall; CM, cytoplasmic membrane; 

CY, cytoplasm; NA, nucleic acid; CMV, small colony variant (Yeaman and Yount, 2003). 
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2.2.6 Synthetic AMPs 

The development of synthetic AMPs has the potential to play an important role in improving 

naturally occurring AMPs and reducing the development of resistance to them. When 

designing new AMPs several strategies are followed. Some make use of naturally occurring 

peptides, shortening their sequences or hybridising fragments thereof (Montesinos and 

Bardaji, 2008). Examples of synthetic AMPs include the magainin analogues MSI-99 (De 

Gray et al., 2001) and Myp30 (Li et al., 2001). Myp30 has provided resistance in transgenic 

Nicotiana tabacum (N. tabacum) against bacterial and fungal infection. Two cecropin B 

analogues found to be active against a wide range of plant pathogens, fungal and bacterial, are 

D4E1 (De Lucca and Walsh, 1999) and MB39 (Owens and Heutte, 1997). As technology 

advances, it has also become possible to synthesise AMPs de novo. Newly designed peptides 

should agree to a few guidelines (Montesinos and Bardaji, 2008). They should be less toxic to 

plant and mammalian cells and have resistance to enzymatic proteases. They also have to 

comply with characteristics of natural peptides, such as amphipaticity, that results in binding 

and interacting with membranes. Though many peptides may be designed, the ones that show 

the least intrinsic toxicity and most activity against pathogens are chosen to be used in 

developing applications. Peptide length also plays an important role and shorter peptides are 

preferred. Numerous studies have focused on identifying structural or sequence characteristics 

that have an effect on either the antimicrobial activity or the toxicity to eukaryotic cells. 

Factors that had no effect on the antimicrobial activity of AMPs, but increased the toxicity 

thereof, are an increase in helical or β-sheet structures as well as increasing amphipaticity and 

hydrophobicity (Kondejewski et al., 1999). It was also found that all-D-amino acid magainin 

peptides had the same activity as their all-L-amino acid counterparts, but are less toxic to 

eukaryotic cells (Bessalle et al., 1990). Researchers have designed and tested computational 

software for designing new AMPs based on existing knowledge of peptide groups (Juretic et 

al., 1009). These algorithms focused on improving the selectivity of the AMPs. This study 

was successful in developing a synthetic AMP, called Adaptin 1, that was highly selective and 

effective against E. coli and less than 50% identical to all other peptides. In a study by Hao et 

al. (2008) four cecropin analogues, based on the conserved sequence of this peptide family, 

were designed. These peptides were more active against Gram-positive than Gram-negative 

bacteria. ESF1 (Ali and Reddy, 2000) and PEP6 (Reed et al., 1997) are examples of 

completely synthetic AMPs. PEP6 is only 6 amino acids in length. 
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2.2.7 Application in science 

In an effort to decrease pesticide toxicity and harmful environmental impacts over the last few 

years, the potential of AMPs as protecting agents against plant pathogens, increased 

substantially. AMPs isolated from microorganisms tend to be phytotoxic, therefore their 

synthetic analogues have been produced (Montesinos, 2007). Numerous examples exist for 

the successful implementation of AMPs, natural and synthetic, in transgenic plants to induce 

pathogen resistance. Transgenic tobacco, expressing a magainin analogue, is an example 

displaying both bacterial and fungal resistance (De Gray et al., 2001). The peptide Shiva-1 

has been expressed in transgenic Paulownia, resulting in an improved resistance to Witches‟ 

Broom disease in these plants (Du et al., 2005). A patent held by Smith et al. (2001) describes 

the in planta activity of Magainin and PGL AMP classes against phytoplasma in transgenic 

poinsettia. The effect of different AMPs against other member of the Mollicute class (Béven 

et al., 2003; Borth et al., 2001) illustrates the potential use of AMPs to be active against 

phytoplasma. Amphipathic peptides are generally active against mollicutes (Béven and 

Wroblewski, 1997). 

The use of AMPs in important agricultural crops is of high value to induce pathogen 

resistance. The expression of DRR206, offering pathogen resistance in transgenic canola 

(Wang et al., 1999), is an example of such an application. A study has also shown increased 

resistance to powdery mildew and crown gall development in transgenic grapevine expressing 

the synthetic AMP, MSI-99 (Vida et al., 2006). This study was recently extended to include 

transgenic grapevine expressing the AMPs Cecropin B, Shiva-1 and EsF-12 (Rosenfield et al., 

2010). These plants showed different levels of resistance against Agrobacterium tumefaciens 

(A. tumefaciens) and A. vitis, as well as the fungus Botrytis cinerea, but not against Erysiphe 

necator. Transgenic rice expressing the AMP, Rs-AFP2, is yet another example of an 

important agricultural crop with an increased resistance to threatening fungi (Jha and Chattoo, 

2010). Although these are examples of AMPs expressed in planta most studies were only 

performed in vitro and only a few have been developed and tested in plant systems. Concerns 

are often raised against the development of genetically-modified plants. Studies have however 

indicated that some peptides are degraded during human or animal consumption (Osusky et 

al., 2004). 

2.3 Transient gene expression and viral expression vectors  

Technology has advanced in such a way that the breeding of disease resistant crops through 

selection and hybridisation of resistant plants may in the future be replaced by the 
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development of transgenic plants expressing foreign genes that enhances their ability to 

combat pathogen attacks. The development of transgenic plants is a labour intensive and time-

consuming process. Transgenic grapevine lines take months or even several years to establish 

before AMP efficacy screening can even be performed. One method of supporting this route 

is by pre-screening possible candidates by means of expression vectors used to transform 

plant cells to allow the transient expression of foreign genes. During Agrobacterium-mediated 

transient expression of foreign genes the transfer-DNA (T-DNA) containing the foreign gene 

is not incorporated into the plant host genome (Hellens et al., 2005), as is the case for stably 

transformed cells, and expression of the foreign gene occurs only for a limited time period 

(Voinnet et al., 2003). Transient expression systems have the advantage, amongst others, that 

they can be applied to fully differentiated plant tissue (Fischer et al., 1999). They are much 

faster and more flexible (Voinnet et al., 2003). 

Transient expression in plants can be achieved mainly through three different ways. Firstly, 

the introduction of “naked” DNA into the cells by way of particle bombardment can result in 

the transient expression thereof. This method has its limitations as the DNA reaches only a 

few cell nuclei (Christou, 1997). Secondly, recombinant Agrobacterium cells containing the 

foreign gene in the T-DNA region of a disarmed tumour-inducing plasmid (Ti-plasmid) or 

binary vector can be used to infiltrate the plant tissue in order to deliver the DNA to the plant 

nucleus. Lastly, recombinant viruses can be used to infect the plants, resulting in expression 

of the foreign gene(s) inserted in the viral genome. The latter two pathways will be described 

in more detail below. 

2.3.1 Agrobacterium-mediated transient expression systems 

The gene of interest can simply be brought under the control of a plant-functional promoter 

and inserting it into the T-DNA region of an A. tumefaciens disarmed Ti or binary plasmid 

(Kapila et al., 1997). Plants can then be inoculated with these recombinant bacteria which will 

lead to the expression of the gene of interest in specific plant tissues. An example of a widely 

used plant-functional promoter is the cauliflower mosaic virus (CaMV) 35S promoter. The 

transient expression, however, seems to decrease due to post-transcriptional gene silencing 

(PTGS), after about 3 to 4 days (Voinnet et al., 2003). This problem can be overcome by co-

infiltration of a vector expressing a viral RNA silencing suppressor gene. More plant cells are 

accessed by the Agrobacterium-mediated introduction of the foreign gene than by particle 

bombardment (Kapila et al., 1997). Transient expression of the transgene is found only in the 

region of infiltration (largely in all the cells) and is not of systemic nature, as is the case with 

viral vectors. Agrobacterium-mediated vectors are, however, more stable in comparison to 
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viral vectors when larger gene inserts are required (Porta et al., 1996). Another important 

aspect of this system is its ability to facilitate the expression of more than one transgene from 

the same cell (Rybicki, 2009). 

Many gene functional and pathogen resistance studies made use of Agrobacterium-mediated 

transient expression systems. In a study by Bendahmane et al. (2000) Agrobacterium-

mediated transient expression of candidate resistant genes were implemented to isolate the 

gene from potato involved in potato virus X (PVX) resistance. Based on similar principles, 

the same group screened various potato virus Y (PVY) genes in order to determine the viral 

protein that activates Ry-mediated resistance to this virus in potatoes (Mestre et al., 2000). By 

expressing antibodies in lettuce, Negrouk et al. (2005) illustrated that this system can be 

applied for fast protein production of pharmaceutical products in a plant system. 

Agrobacterium-mediated transient expression systems were also established in grapevine. 

Santos-Rosa et al. (2008) implemented such a transient expression system to examine the 

function of stilbenes in a grapevine leaf environment against the fungus, Plasmopara viticola 

(downy mildew) through over-expression of stilbene synthase. The defence role of glyoxal 

oxidase from Vitis pseudoreticulata (VpGLOX) against the grapevine pathogen powdery 

mildew, was also investigated in a recent study (Guan et al., 2010). This was achieved by 

applying Agrobacterium-mediated transient expression of VpGLOX in susceptible plants. 

2.3.2 Viral transient expression systems 

A form of transient expression, that also offers systemic expression of foreign genes, is by 

means of viral expression vectors. These viral vectors are becoming increasingly popular due 

to their more rapid expression, relative to those of transgenic plants, as well as their relatively 

high yield of foreign protein product (Gleba et al., 2004). Expression of proteins via a viral 

vector system reduce not only time and money spent on testing such proteins, but can also 

lead to a much higher throughput of protein screening. The development of successful virus 

expression vectors has not been without any difficulties. One of the problems which needed to 

be overcome was the instability of viral vectors (Gleba et al., 2007). First-generation viral 

vectors consisted of the entire viral genome. The first of these vectors proved to be highly 

unstable when large inserts were incorporated (Dawson, 1989). The development of second-

generation virus expression vectors has however overcome this problem. These vectors are 

designed to be deconstructed, incorporating only essential viral sequences, and are often a 

combination of different components from different viruses (Gleba et al., 2004). They showed 

improved stability leading to a desired higher expression level of the protein of interest in 

their host organisms. 

Stellenbosch University http://scholar.sun.ac.za



 14 

Expression vectors have been constructed from many different plant viruses of which tobacco 

mosaic virus (TMV) (Escobar et al., 2003) and PVX (Chapman et al., 1992) are two of the 

viruses most often exploited. Both these viruses have positive sense RNA genomes that are 

single stranded. Viral expression vectors have been developed for a wide variety of plants that 

include both dicotyledonous and monocotyledonous plants. In 2000, Choi et al. became the 

first to develop a viral expression vector that could not only express foreign genes in 

monocotyledonous plants, but also move systemically through these plants. Their vector was 

based on the wheat streak mosaic virus and was used to express foreign proteins in cereals. 

This study showed that vector stability is dependent both on the nature of the insert as well as 

the host plant species. In the above case, expression of an antibiotic resistance gene was still 

observed after 18-30 days post-inoculation, displaying the stability of the vector.  

The study of virus-induced gene silencing (VIGS), the production of proteins for biomedical 

purposes and gene functional analysis are amongst the applications utilising viral vectors. A 

previous study by Zhao and Hammon (2000) illustrated the use of viral vectors in disease 

resistance studies. They showed bacterial sensitivity to Snakin-1 and the defensin PTH1 by 

expressing these AMPs using a vector based on PVX. Today, viral expression vectors are 

already used in commercial applications. An example of their industrial use is the 

biotechnology company Large Scale Biology Co., in the United States of America, which 

uses viral vectors for the commercial production of proteins in plants (Gleba et al., 2005). 

Viral vectors have also been constructed from grapevine infecting viruses. The most 

successful grapevine-derived viral vectors presently available were constructed from 

grapevine virus A (GVA) (Galiakparov et al., 1999). Grapevine virus A, a single-stranded 

positive-sense RNA virus, belongs to the genus Vitivirus in the family Flexiviridae (Martelli 

et al., 1997) and its ~7.4 kb genome encodes for five major open reading frames (ORFs) 

(Galiakparov et al., 1999). In 2006, Haviv et al. described a viral vector based on the GVA 

genome that was able to infect Nicotiana benthamiana (N. benthamiana). This vector, pGVA-

118 (Figure 3), made use of an independent additional subgenomic RNA (sgRNA) to express 

foreign proteins in plants. Subgenomic RNA promoters are used to restrict gene expression to 

only occur as a result of viral replication. Expression can only occur once the viral RNA-

dependant RNA polymerase has been expressed. This vector was found to be far less efficient 

than the TMV viral vector of Shivprasad et al. (1999) and the PVX viral vector of Chapman 

et al. (1992). Another limitation of its applications is the fact that GVA is restricted to the 

phloem tissue of the plant. Muruganatham et al. (2009) modified pGVA-118 and placed the 

cDNA under control of a duplicated CaMV 35S promoter and 35S termination signal. This 
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cassette, when transferred into a binary vector, was used to effectively infect N. benthamiana 

and also in vitro cultured V. vinifera plants. 

 

Figure 3: Schematic representation of the GVA118 viral vector compiled from GR-5 and GRT1-3 

variants. The broad arrows indicate MP-subgenomic RNA promoters. Key: ORF, open reading frame; 

RS, restriction enzyme site; MP, movement protein; CP, coat protein (Haviv et al., 2006). 

 

2.4 Quantification of plant pathogens 

Monitoring disease resistance in plants mainly focus on symptom development in the plants 

after exposure to the pathogen of interest. To determine whether the resistance observed 

resulted from decreasing pathogens titres, techniques have been established to measure the 

pathogens titres in the plants. In the past, the colony forming units (cfu) for specific pathogens 

were determined for a dilution series of plant extracts (Morris et al., 1998; Tornero and 

Dangl, 2001). This method could only be implemented in the quantification of culturable 

microorganisms. To overcome this limitation and to extend the ability of quantification also to 

include unculturable plant pathogens such as viruses and phytoplasmas, competitive PCR 

analysis was developed (Berges et al., 2000). In this method the products of conventional 

endpoint PCRs for bacteria are compared to an internal control after gel electrophoresis. 

Competitive PCR analysis is however labour intensive and is not highly accurate. 

Quantitative real-time PCR (qPCR) analyses were developed for, amongst other applications, 

the highly sensitive detection and accurate quantification of plant pathogens (Dorak, 2006). 

This method is based on the same principle as conventional PCR, but differs in that it is able 

to quantify the amount of DNA in a reaction after each PCR cycle, enabling the monitoring of 

the increasing PCR product in real-time. During qPCR a fluorescence signal is measured 

which gives an indication of the amount of amplicons. This signal could either arise from a 

reporter molecule being bound to the amplicon or being released from it during the PCR 

cycle. Three different fluorescence-based systems will briefly be explained below. 
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TaqMan®-based qPCR analysis requires the used of a probe in addition to the normal primers 

for PCR amplification (Heid et al., 1996). The probe is an oligonucleotide that anneals to the 

target DNA in the region spanned by the primers. It contains a fluorescent dye (reporter) on 

its 5' end and a fluorescence quencher on its 3' end. The reporter and quencher molecule are in 

close proximity resulting in the fluorescence of the reporter molecule being quenched. During 

primer annealing, the probe binds to the target DNA. Taq DNA polymerase‟s 5' exonuclease 

activity results in the reporter molecule being removed from the quencher during DNA strand 

elongation. The separation of the two molecules enables the reporter to emit a fluorescent 

signal. Each cycle releases more fluorescent molecules leading to an increase in intensity with 

every cycle. 

Another qPCR detection system also implementing the use of a probe is the Molecular 

Beacon-based system (Tyagi and Kramer, 1996). It works in a way similar to the TaqMan® 

system. When unbound to the target DNA the probe forms a hairpin structure which brings 

the quencher and the reporter together in order to quench the signal before annealing. 

Annealing of the probe to the DNA results in the linearization thereof, with the quencher not 

close enough to the reporter in order to quench the fluorescent signal. This results in an 

increase in fluorescence during primer annealing of each cycle. 

Not all qPCR systems require the use of a probe, some systems only make use of fluorescent 

molecules like SYBR Green (Dorak, 2006). This molecule only emits a fluorescent signal 

when bound to double-stranded DNA. During qPCR it therefore binds to the double stranded 

product at the end of each elongation step. As the amount of product amplifies the amount of 

bound SYBR Green in the reaction increases, resulting in an increase in the total fluorescent 

signal detected. Despite the fact that the use of a probe may seem to bring about more 

specificity to the reaction, studies have found the SYBR Green-based system to be as specific 

as its TaqMan® counterpart (Andersen et al., 2006). 

Regardless of the qPCR system, all implement an increase in fluorescence which is observed 

after each cycle (Dorak, 2006). This increase in fluorescence could in turn be applied to 

quantify the amount of starting template in the reaction. During the first few cycles the 

amount of fluorescence in the reaction resulting from the template is shielded by the amount 

of background fluorescence. The threshold cycle (Ct) is the fractional cycle at which the 

fluorescence from the reaction rises above the background (Wilhelm et al., 2001). The more 

initial template there is in the reaction the smaller the Ct value will be (Gibson et al., 1996), 
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and based on this principle the concentration of the DNA source (the microorganism) can be 

deducted. 

Studies have used qPCR to quantify microorganisms in various environments. Ruppel et al. 

(2006) determined, by means of qPCR, the amount of the plant growth-promoting bacteria, 

Enterobacter radicincitans, in the leaves and roots of Brassica oleracea plants. Quantitative 

real-time PCR was also used to monitor the in planta growth of the oomycete Phytophthora 

infestans in potato plants (Llorente et al., 2010). An example of phytoplasma quantification 

using qPCR is the study performed by Christensen et al. (2004) where phytoplasma titres 

were measured in Catharanthus roseus (C. roseus) and Euphorbia pulcherrima plants. Plant 

18S ribosomal-DNA (rDNA) was used to normalise the qPCR data. The use of plant DNA as 

an internal control for normalisation improves the accuracy of the quantification (Llorente et 

al., 2010). As an example of viral quantification in plants Jarosova and Kundu (2010) 

illustrated the use of quantitative RT-PCR to quantify prune dwarf virus titres in stone fruit. 

As is clear from all these examples, qPCR can be implemented to determine the titres of 

different kinds of plant pathogens. 

2.5 Grapevine infecting pathogens 

2.5.1 Xylophilus ampelinus the casual agent for grapevine bacterial blight 

Xylophilus ampelinus is a bacterial pathogen which exclusively infects V. vinifera 

(Panagopous, 1969). It is the causative agent of bacterial blight in grapevine. They are Gram-

negative bacteria that belong to the Beta-proteobacteria family Comamonadaceae and infect 

primarily the xylem tissue of grapevines (Willems et al., 1987). Infection of grapevine with X. 

ampelinus results in canker development as well as bacterial necrosis. They can however 

persist for many years inside grapevines without showing any symptoms (Ridé and Marcelin, 

1983). 

Bacterial blight in grapevines, known as “vlam siekte” in South Africa, was first described by 

Panagopous in 1969 in Greece. He found that the disease causing bacteria was X. ampelinus, 

which was at that time known as Xanthomonas ampelina. Later studies found, based on DNA 

and RNA sequence analysis, that these bacteria belong to a separate phylogenetic branch and 

forms the new genus Xylophilus (Willems et al., 1987). The disease, bacterial blight, has the 

potential of causing severe losses in vineyards as it can lead to the decay of the complete 

plant. Symptoms are found on the canes, roots, leaves and flowers (OEPP/EPPO, 2009). 

During early spring, diseased plants show reddish-brown lines on the shoots which later turn 
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into cracks and cankers on the canes (Figure 4). Vines are stunted due to the fact that infected 

shoots are much shorter than uninfected shoots. Flowers turn black before they reach 

maturity. Symptoms are easily observed on the leaves, and vary from pointed, reddish-brown 

lesions (Figure 4) and discolorations of the whole leaf or tips, to light-yellow regions and 

necrosis of the leaf, complete or one-sided. These symptoms depend on the route of leaf 

penetration either through the veins, stomata or hydathodes. Monitoring infection is difficult 

as plants can be symptomless for years after infection. It has been shown that up to half of the 

seemingly uninfected vines in a single vineyard could be infected with X. ampelinus 

(Panagopous, 1987). The disease occurs in the Mediterranean region as well as in South 

Africa where it has caused great losses in the past (Du Plessis, 1940). The disease is still 

prominent in France (Manceau et al., 2005) and in South African table grape vineyards (Pers. 

Com. Y. Petersen, ARC Infruitech-Nietvoorbij, Stellenbosch). 

 

 

Figure 4: Xylophilus ampelinus infected grapevine showing (A) leaf lesions (Dreo et al., 2007); (B) 

canker development on the shoots (http://www.eppo.org/QUARANTINE/bacteria/Xylophilus_ 

ampelinus/XANTAM_images.htm). 

 

Currently there are no insect vectors associated with the spread of bacterial blight caused by 

X. ampelinus. Warm and moist conditions have been shown to favour disease spread, and the 

use of overhead sprinklers have to a great extent been discouraged (Ridé et al., 1977). During 

spring, X. ampelinus emerges from infected vines from where moisture is thought to spread 

the bacteria from one plant to another, infecting the healthy plants through wounds. 

Wounding aids infection but is however not absolutely necessary (Bradbury, 1991). 

B A 
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Propagating material as well as grafting and pruning can also lead to spread of the disease 

(Ridé et al., 1977). Within a vineyard it seems that infection extends along the rows. This 

might be as a result of pruning methods or due to moist spread between adjacent plants. Over 

long distances bacterial blight is spread through propagation material and the illegal 

importation of infected plant material. 

Detection of X. ampelinus is based on symptom recognition on infected plants. Techniques 

using bacterial isolation and selective culturing procedures are used to identify X. ampelinus. 

Other identification methods include examining their morphological aspects and also 

investigating the biological aspects of the bacteria through the use of standard bacteriological 

tests and serological techniques (Erasmus et al. 1974). The latter two techniques are not very 

sensitive (Manceau et al., 2000). The bacteria cells are rod-shaped (straight to somewhat bent) 

and have only one flagellum (Willems et al., 1987s). Xylophilus ampelinus growth is very 

slow on artificial media, forming colonies of only 0.4-0.8 mm in diameter after around 5 days. 

The colonies are smooth, round and non-mucoid. Their normally yellow colour may vary 

depending on the media on which they are grown. 

In recent years identification shifted more to a molecular approach using a nested-PCR assay 

for the detection of X. ampelinus in the stem sap of grapevine plants (Botha et al., 2001). 

These PCRs amplify part of the 16S-23S rDNA intergenic spacer region. Even more recently 

a real-time PCR protocol was introduced for the reliable detection of X. ampelinus in 

grapevines (Dreo et al., 2007). This method was developed to avoid inaccuracy surfacing 

from handling PCR products, such as cross-contamination between samples. 

No chemical treatment is available for the control of bacterial blight in grapevine. Infected 

vines are pulled out and removed immediately after disease detection. Preventative measures 

are currently the only form of control. Hot water treatment of canes is an efficient way of 

preventing spread by eliminating X. ampelinus from propagation material (Manceau, 2006). 

Plants are quarantined in areas where X. ampelinus infection occurs. 

2.5.2 Crown gall disease causing pathogen Agrobacterium vitis 

Crown gall disease is a severe grapevine infection found in many countries across the world 

including South Africa (Burr et al., 1998). In South Africa it is endemic and frequent 

outbreaks occur. This disease occurs primarily as a result of infection by A. vitis (Burr and 

Katz, 1984), previously known as Agrobacterium tumefaciens biovar or biotype 3 (Ophel and 

Kerr, 1990). Agrobacterium vitis (Figure 5) belong to the Alpha-proteobacteria, family 
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Rhizobiaceae. These Gram-negative bacteria are found systemically in grapevines (Burr and 

Katz, 1984). They are commonly spread through propagation material. 

 

 
 

Figure 5: Electron microscopy of an Agrobacterium vitis F2 ⁄ 5 cell (scale bar, 1 m) (Süle et al., 

2009). 

 

Survival of A. vitis can occur either in living vines or in grape tissue debris in the soil (Figure 

6) (Burr et al., 1998). It is thought that during winter A. vitis survives in the grapevine roots 

and that root pressure during spring pushes the bacteria up into the plant (Lehoczky, 1968). 

Here the cells are drawn to sites of wounding, leading to gall development. An uneven 

distribution of bacterial cells is found in infected plants, with the highest concentration in 

shoots and at sites of infection (near wounding sites) (Bauer et al., 1994). Vasculature 

development between the canes and the shoots determines the point in time at which shoots 

are infected (Lehoczky, 1989). It is not clear what all the sites of survival of A. vitis in 

grapevines are, but evidence exists for their presence in the area directly below the bark of 

vines, in the cortex (Jäger et al., 1990). However, most studies are centred round their 

continued existence in the xylem of the plants. No A. vitis strains have been found living in 

soil (Bouzar et al., 1993). They have however, as mentioned previously, been found in grape 

tissue debris where they can survive for years (Burr et al., 1995). Although these cells are still 

tumorigenic they are in a saprophytic phase. 
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Figure 6: Disease life cycle of Agrobacterium vitis. Propagation of seemingly healthy material leads 

to spread of the disease. This process is enhanced by freeze injuries. Galls develop at site of grafting 

and cane injuries. The bacteria survive in the xylem of the plants as well as in the plant debris left in 

the soil after uprooting of the infected vines (http://www.nysipm.cornell.edu/factsheets/grapes/ 

diseases/crown_gall.pdf). 

 

The high temperature and humidity in some parts of South Africa is responsible for cane 

injuries locally, as are freeze injuries in other parts of the world (Burr et al., 1998). Crown 

galls often develop at grafting sites and at the bottom of rooted cuttings. Agrobacterium cells 

are attracted to injured cells through chemotaxis. Injured cells release compounds, including 

phenolics, which trigger the agrobacterial virulence genes starting a sequence of events 

leading to the transfer and incorporation of the T-DNA of the bacteria into the genome of the 

plant. This will in turn lead to the expression of genes responsible for inducing gall formation 

in grapevines (Figure 7). The infection of a plant with A. vitis occurs in a way similar to that 

of A. tumefaciens, although less information about the first process of infection is available. 
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Figure 7: Grapevine trunk showing crown gall development as a result of Agrobacterium vitis 

infection (http://www.nysipm.cornell.edu/factsheets/grapes/diseases/crown_gall.pdf). 

 

Strategies to detect A. vitis in grapevine have progressed over the years. Screening for A. vitis 

infection includes symptom identification and describing the morphology of bacterial colonies 

from candidate plant extracts. To confirm the nature of the disease causing agent, the first 

tests relied on enzyme-linked immunosorbent assays (ELISA); this was followed by PCR-

based screening methods of plants. Haas et al. (1995) designed primers based on the virD2 

gene sequence that could detect A. vitis, but could not unambiguous discriminate it from A. 

tumefaciens strains. More recently, a qPCR method was developed for A. vitis strain 

detection, as well as for differentiation between subgroups (Bini et al., 2008). Strains are 

grouped together on the basis of having the same arrangement of T-DNA oncogenes on their 

Ti-plasmids (Szegedi et al., 1988). Three types exist; those having the octopine, nopaline or 

vitopine-type opine genes on their Ti-plasmids, with the first two types grouping together 

according to the study by Bini et al. (2008). This qPCR method could distinguish A. vitis 

strains from A. tumefaciens. 

The strategies used to control A. vitis outbreaks are mostly focused on prevention rather than 

cure. Some grapevine cultivars are more susceptible to crown gall development than others. 

Highly susceptible cultivars grown in South Africa include Merlot, Cabernet Sauvignon, 

Riesling and Chardonnay (Burr et al., 1998). Planting resistant cultivars does not supply a 

solution for farmers who unfortunately need to grow the susceptible cultivar due to market 

demands. Other control strategies, described by Burr et al. (1998), include the production of 
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vines free of A. vitis, monitoring A. vitis infection in existing vineyards as well as methods of 

biological control by means of non-tumorigenic Agrobacterium strains. Disease-free 

grapevine production is possible through the use of hot water treatment, shoot tip propagation 

and application of efficient diagnostic methods. 

2.5.3 Aster yellows phytoplasma 

Phytoplasmas are plant pathogens responsible for causing the grapevine disease grapevine 

yellows. These phloem-limited organisms, previously known as mycoplasma-like organisms 

(MLOs) because of their resemblance to these pathogens that infect animals and humans, 

were first reported in 1967 (Doi et al., 1967). They were first identified in mulberry, aster, 

potato and paulownia plants showing yellows disease symptoms. They have a reduced 

genome (530-1350 kb) and are host dependent due to the lack of genes such as those involved 

in ATP-synthesis or sugar utilisation (Christensen et al., 2005). This host dependence makes 

them unsuitable for in vitro culturing. Due to their minimal genome, phytoplasmas have been 

described as “the simplest natural self-replicating organism” and to be on the “border of living 

cellular organisms and viruses” (Christensen et al., 2005). 

Diseases associated with phytoplasma infection were first described in the beginning of the 

1900‟s. In those days however, the diseases were thought to be caused by viruses as they were 

unable to culture the disease causing agent (Kunkel, 1926). The causative agent was later 

found to be MLOs living in the phloem of diseased plants (Doi et al., 1967). Since their 

discovery, these MLOs, now known as phytoplasmas, have been held responsible for causing 

yellows disease in more than 1000 different plant species (ICSBSTM, 1997). These plant 

species belong to 98 different families (Gasparich, 2009) and infections were reported to 

occur in more than 85 countries (McCoy et al., 1989). Different phytoplasmas have been 

shown to infect V. vinifera. They are proven to be destructive, leading to immense economical 

losses in the grapevine industry. In 2006, phytoplasma was first reported to be found in South 

African vineyards (Botti and Bertaccini, 2006). Later, the phytoplasma strain causing yellows 

disease in infected vines observed in these vineyards was found to be aster yellows 

phytoplasma (Engelbrecht et al., 2010). Aster yellows phytoplasma infects more than 200 

plant species around the world (Gundersen et al., 1996). To date, aster yellows infections 

have been observed in vineyards in the Waboomsrivier area near Rawsonville and in the 

Olifants River area in the Vredendal district of South Africa. Extensive damage has been 

caused to plants in these areas, affecting the grape yield negatively. Whole vineyards had to 

be removed and replace with healthy vines. 
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Classification of different phytoplasmas has been complicated due to the inability to culture 

them outside their host. The different phytoplasmas were once grouped according to their 

insect vectors, host range and the symptoms they induce in their hosts (Gasparich, 2009). 

Symptoms may vary between hosts and the same symptoms may be caused by different 

phytoplasmas. To solve these problems, focus has shifted to a molecular approach. 

Phytoplasmas are now classified and grouped into different subgroups according to the 

sequence of their 16S ribosomal-RNA (rRNA) genes (Seemüller et al., 1998). Aster yellows 

phytoplasma falls into the 16SrI group and along with other phytoplasmas belong to the order 

Acholeplasmatales in the class Mollicutes (Lee et al., 2000), genus “Candidatus 

Phytoplasma” (“Ca. Phytoplasma”) (IRPCM Phytoplasma/ Spiroplasma Working Team-

Phytoplasma Taxonomy Group, 2004). They are classified as “Candidatus” because they are 

still unculturable (Murray and Schleifer, 1994). They group together in a monophyletic clade 

(Lee et al., 2000). 

Phytoplasma has a dual host cycle (Figure 8). They can replicate in both their plant hosts and 

their insect vectors (Gasparich, 2009). They are known to spread from one plant to others by 

means of insect vectors that feed on the sap of these plants (Lee et al., 2000). These vectors 

include planthoppers but are primarily leafhoppers belonging to the Cicadellidea family. 

Some phytoplasmas can only be transmitted by one specific insect vector (Seemüller et al., 

2002), while others may have multiple vectors, as is the case for aster yellows phytoplasma, 

which is transmitted by more than 24 different leafhoppers (Lee et al., 2003). The leafhopper 

Mgenia fuscovaria has recently been identified as a possible vector for aster yellows 

phytoplasma in South African vineyards (Pers. Com. K. Kruger, Department of Zoology and 

Entomology, University of Pretoria). Phytoplasma can also spread between plants through 

vegetative propagation and grafting (Lee and Davis, 1992). 

Insects acquire phytoplasma when feeding on the sap of infected plants. Inside the insects the 

phytoplasmas are relocated to the hemolymph from where it spreads to different tissues 

(Gasparich, 2009). After multiplication it becomes part of the saliva via the saliva glands. 

Fifteen to twenty days after infection of the insect, the phytoplasma titres are high enough for 

plant infection to occur. Infected insects maintain their infectivity, even during winter. When 

feeding on plants, they then release the phytoplasmas, along with saliva, into the sieve 

elements of the plants (Christensen et al., 2005). Subsequently, they spread through the 

phloem. Systemic spread of the pathogen from the leaves to other organs is thought to occur 

via the assimilate flow. Multiplication occurs inside the phloem of the plant and symptoms 

develop when sufficient phytoplasma titres are reached. 
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Figure 8: Dual host life cycle of phytoplasma. Infected insects feeding on healthy grapevine infect 

these plants with phytoplasma. The titres accumulated in the phloem of the infected plants and healthy 

insects feeding on the infected plants acquire phytoplasma. When titres inside the insects become 

adequate they are able to infect plants when feeding on their phloem sap (Adapted from Christensen et 

al., 2005). 

 

Infected plants show a wide range of symptoms (Figure 9). In grapevines the symptoms can 

be observed on leaves, canes and bunches (Lee et al., 2000). The leaves curl downward and 

stunting of the vines can be observed. Bunches seem to dry out and auxiliary buds are 

inhibited. The exact interaction of the pathogen with the host plant is still unknown. However, 

the symptoms point to unbalanced hormone levels, dysfunctional phloem transport or changes 

in composition of the phloem sap. A recent study has identified a protein secreted by the aster 

yellows phytoplasma strain Witches‟-Broom that targets the host plant nuclei (Bai et al., 

2009). This may lead to a change in host plant cell physiology. 
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Figure 9: Phytoplasma associate symptoms in grapevine. A) Vine with delayed budding in variable 

parts of the plant (http://www.wynboer.co.za/recentarticles/200808aster.php3). B) Grapevine plant 

showing bunch abortion and no lignification of the canes (http://www.ars.usda.gov/pandp/people/ 

people.htm?personid =1289). 

 

Phytoplasma are small (diameter of 0.1-0.8 m) cell wall-less microorganisms (Doi et al., 

1967; Hoshi et al., 2007). They are either pleimorphic or filamentous in shape (Gasparich, 

2009). Previously, the observation of symptoms in plants and the use of ultra-thin sections of 

plants were used to detect phytoplasmas (Haggis and Sinha, 1978). As with most diagnostic 

procedures, the detection methods have shifted to molecular approaches, using antibodies in 

ELISA-based systems (Lin and Chen, 1985). Later PCRs followed by analysing restriction 

fragment length polymorphisms or highly sensitive nested-PCRs were used. The newest 

editions to detection methods are microarrays (Nicolaisen and Bertaccini, 2007) and real-time 

PCR methods (Christensen et al., 2004). Christensen et al. (2004) designed primers for the 

universal detection of the phytoplasma 16S rRNA region. Angelini et al. (2007) designed a 

qPCR assay specific to aster yellows phytoplasma also based on their 16S rRNA gene 

sequence. This real-time approach has proven to be as sensitive as a nested-PCR method 
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using the primers R16(I)F1/R1 (Lee et al., 1994) following the amplification with the primers 

R16F2n/R2 (Gundersen and Lee, 1996). 

In agricultural areas where phytoplasmas are found, plants are quarantined and the removal of 

plants is strictly regulated (Lee et al., 2000). There have also been reports of vines showing 

recovery after years of infection (Osler et al., 1993). Antibiotics such as tetracycline have 

shown efficacy against phytoplasma infection in in vitro cultured plants (Wongkaew and 

Fletcher, 2004). Symptoms reappeared, however, after plants were transferred to non-

selective media. The use of antibiotics will also be too expensive for practical implementation 

and holds a potential human health risk as it may lead to the development of resistant 

pathogens. A study by Ćurković (2008) used auxins to induce the in vitro recovery of 

Catharanthus roseus shoots from phytoplasma infection. In grapevines, hot water treatment 

has been used on scions (Tassart-Subirats et al., 2003). Partial uprooting and pulling of vines 

to induce a stress response also lead to recovery of grapevines from phytoplasma infection 

(Romanazzi and Murolo, 2008). The same research group evaluated commercially available 

elicitor products‟ potential as resistance inducers against grapevine infecting phytoplasma in a 

field study (Romanazzi et al., 2009). They demonstrated the efficacy of the elicitors to induce 

resistance against grapevine phytoplasma Bois noir. D‟Amelio et al. (2010) illustrated how 

systemic acquired resistance, by means of the commercially available plant resistance elicitor 

benzothiadiazole, reduced not only the development of symptoms in phytoplasma infected 

daisy plants but also the multiplication of these microbes in the plants. In recent years, genetic 

modification became an option for inducing disease resistance in host plants. Du et al. (2005) 

observed an increase in plant resistance against phytoplasma in greenhouse transgenic 

Paulownia plants expressing the antimicrobial peptide Shiva-1. Currently, no transgenic 

grapevine is available that show an increased resistance against aster yellows phytoplasma. 

Up until now, prevention has been more feasible than cure. These strategies include 

controlling the vector, producing disease-free plantlets, hot water treatment of propagation 

material, as well as uprooting of contaminated vines. 

2.6 Conclusion 

Antimicrobial peptides can offer plants protection against infecting agents. It has been proven 

effective against important grapevine pathogens (Rosenfield et al., 2010). This AMP-based 

defence system has little or no toxicity to plants and potential consumers (Yeaman and Yount, 

2003). Due to the non-specific action of AMPs, microorganisms are less likely to develop 

resistance to them. Transient expression systems are a reliable and time-effective method of 
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expressing foreign proteins in plants. These systems have been validated in important 

agricultural crops including grapevine (Santos-Rosa et al., 2008). They can be used for 

various purposes including gene functional analysis and plant pathogen resistance studies. 

The latter process is supported by the development of qPCR to facilitate the quantification of 

pathogen titres in planta. These applications can play an important role in the development of 

plant resistance to a range of pathogens to which the only form of control is currently 

preventative measures such as controlling the insect vector. 
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Chapter 3  

Experimental Procedures 

3.1 Transient expression vector construction and evaluation 

3.1.1 Plant samples 

Vitis vinifera cv. Sultana in vitro cultured plantlets were used for evaluation of gene expression 

from transient expression vectors in V. vinifera and for determining the in planta effect of the 

AMPs against X. ampelinus and A. vitis (see section 3.4). These plants were cultured in liquid 

Murashige and Skoog (MS) media containing perlite in tissue culture flasks, and kept in an 

incubation room under controlled conditions (Figure 10). 

 

 

Figure 10: Tissue culture Vitis vinifera cv. Sultana plants, cultured in MS containing perlite. 

 

3.1.2 Candidate antimicrobial peptides (AMPs) 

The nucleotide as well as amino acid sequences of two AMPs were available for screening the 

AMP activity against grapevine pathogens. The first was Vv-AMP1 (RTCESQSHRFKGTCVR 

QSNCAAVCQTEGFHGGNCRGFRRRCFCTKHC), an AMP characterised and isolated from V. 
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vinifera by the Institute of Wine Biotechnology at Stellenbosch University (De Beer and Vivier, 

2008). The second AMP was D4E1 (FKLRAKIKVRLRAKIKL), a synthetic peptide developed 

and kindly supplied by Professor J.M. Jaynes (AgroMed LLC., USA). Both AMPs were used in 

the construction of viral and Agrobacterium-mediated (or 35S) expression vectors. Only D4E1 

was used for in vitro plate screening against A. vitis and X. ampelinus. Vv-AMP1 was not 

available in peptide form since the source was not able to produce the peptide in an amount 

sufficient for in vitro screening before the conclusion of this study. 

3.1.3 Transformation of Escherichia coli cells 

The E. coli strain, DH5 , was used to prepare competent E. coli cells according to a protocol 

described by Hanahan (1985). These cells were transformed using a method described by 

Sambrook et al. (2001). 

3.1.4 AMP expression vector construction 

Vectors were designed and constructed to express AMPs by way of an existing grapevine viral 

vector and also by means of an existing 35S binary vector. Table 1 lists the primers used for 

construction of these, as well as control vectors. The primers were designed to contain the 

restriction enzyme recognition sequences required for the cloning of the fragments into the 

respective vectors. During the cloning steps, competent E. coli cells were used for transformation 

and regeneration of the cloned plasmids. After construction, vector-plasmids were transferred to 

A. tumefaciens as described in section 3.1.5. 

Table 1: List of primers used during expression vector construction and their sequences. The sequences 

of the restriction enzyme sites are underlined. 

Primer name Sequence 

Kpn2I_VvAMP1 _as ATCCGGATTAACAATGCTTAGTGC 

ApaI_VvAMP1 _as AGGGCCCTTAACAATGCTTAGTG 

HpaI_VvAMP1_s AGTTAACATGAGGACCTGTGAGAGTCA 

ApaI_GFP_as  AGGGCCCTTACTTGTACAGCTCGT 

HpaI_GFP_s AGTTAACATGGTGAGCAAGGGCG 

NotI_GUS_s AAGCGGCCGCATGTTACGTCCTGTA 

NotI_GUS_as AAGCGGCCGCTCATTGTTTGCCTCC 

HpaI_D4E1_F  AGTTAACATGTTTAAGTTGAGAGCTAAGATTAAGGTTAGATTG 

ApaI_D4E1_R  AGGGCCCTTACAACTTAATCTTAGCTCTCAATCTAACCTTAAT 

GVA118-6914-F CAGTGAAAGGAGAACTTTTGGTTACA 

SacI_35S_D4E1_s  AGAGCTCATCGATTAGGAGATATAACAATGTTTAAGTTGAGA 

BamHI_35S_D4E1_as   AGGATCCTTACAACTTAATCTTAGCTCTCA 

SacI_35S_VvAMP1_s   AGAGCTCATCGATTAGGAGATATAACAATGAGGACCTGTGAGAGT 

BamHI_35S_VvAMP1_as   AGGATCCTTAACAATGCTTAGTGCAGAAG 
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Construction of GVA118 viral vectors expressing AMPs 

Viral vectors expressing AMPs were constructed by making use of a GVA118 expression vector 

(Haviv et al., 2006; Du Preez, 2010). Four GVA118-based viral vectors were constructed. Two 

containing the AMP genes for D4E1 and Vv-AMP1, namely pBinSN-GVA118-D4E1 and 

pBinSN-GVA118-VvAMP1, respectively, and two containing either the control gene Green 

Fluorescent Protein (GFP) or the intron containing β-glucuronidase gene (GUSi) called pBinSN-

GVA118-GFP and pBinSN-GVA118-GUS respectively. 

In order to obtain the D4E1 fragment coding sequence, a PCR with overlapping-primers was 

performed using the primer pair HpaI_D4E1_F and ApaI_D4E1_R. The resulting 71 bp 

amplicon was cloned into the pGem®-T Easy (Promega) cloning vector, from where it was 

excised by the restriction enzymes Hpa I (Fermentas) and Apa I (Fermentas). It was then cloned 

into the multiple cloning site (MCS) between ORF 2 and 3 of GVA118 of the plasmid pSKM-

e35S-GVA118-pA (Du Preez, 2010) that was digested with the same enzymes. The GVA118 

construct containing the D4E1 gene was digested with Sna BI (Fermentas) and Sal I (Fermentas) 

and cloned into the binary vector pBinSN digested with Sna BI and Xho I (Fermentas). pBinSN 

is a pBin19 derivative (Bevan, 1984) kindly supplied by Professor E. Maiss (Institute of Plant 

Diseases and Plant Protection, Hannover University, Germany). The final plasmid that resulted 

from this last cloning step, pBinSN-GVA118-D4E1, was used to infiltrate plants. 

The construction of the GVA118 viral vectors containing the Vv-AMP1 and GFP genes were 

performed following a similar cloning strategy as mentioned above. The gene-containing 

fragments were, however, not obtained by primer-dimer formation, but rather by amplifying the 

genes from existing plasmids containing the respective sequences. In the case of Vv-AMP1 the 

primer pair HpaI_VvAMP1_s and ApaI_VvAMP1_as was used to amplify the AMP sequence, 

including the restriction enzyme recognition sequences, from pGEM-Vv-AMP1 (De Beer, 2008) 

which contained the Vv-AMP1 sequence. The primer pair HpaI_GFP_s and ApaI_GFP_as was 

used to amplify the enhanced Green Fluorescent Protein (EmGFP) sequence from a previously 

constructed vector, 35S:EmGFP (Ghazala et al., 2008). The PCR products were cloned into the 

pDrive (Qiagen) cloning vector from where the same strategy, as used for D4E1, was followed to 

clone the respective genes first into GVA118 and then into pBinSN to obtain the final vectors 

pBinSN-GVA118-VvAMP1 and pBinSN-GVA118-GFP. 

Vv-AMP1 was also cloned into a GVA (strain Gr5) viral vector from which ORF2 was removed, 

namely GR5-ΔORF2+sgMP-pA (Du Preez, 2010). The Vv-AMP1 gene was amplified with the 

primers HpaI_VvAMP1_s and Kpn2I_VvAMP1_as, using pGEM-Vv-AMP1 (De Beer, 2008) as 
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template. The amplicon was first cloned into pDrive from where it was excised with the enzymes 

Hpa I and Kpn 2I (Fermentas), and cloned into the Sna BI and Kpn 2I sites of GR5-

ORF2+sgMP-pA. The vector containing the Vv-AMP1 gene was then cloned into the pBinSN 

by excising it with Not I and Sal I and cloning it into the complementary Not I and Xho I sites of 

the binary vector to form the vector pBinSN-GR5- ORF2-VvAMP1. 

Cloning of the GUSi gene was performed by firstly amplifying the gene from an existing 

plasmid 35S:GUSi (Vaucheret et al., 1994; kindly supplied by P. Metre, University of Louis 

Pasteur Strasbourg, Colmar, France) with the primers NotI_GUS_s and NotI_GUS_as. The PCR 

fragment of 1957 bp was cloned into the pGem®-T Easy cloning vector from where it was 

introduced into a pBinSN vector already containing an infectious copy of GVA118. This was 

achieved by digesting both plasmids with Not I (Fermentas) and ligating the GUSi fragment into 

the GVA118 vector, resulting in the pBinSN-GVA118-GUS control vector. The primers 

GVA118-6914-F and NotI_GUS_s were used to confirm the insertion of the GUSi gene in the 

correct orientation into the GVA118 vector. The expected amplicon size was 2470 bp. 

Construction of 35S vectors expressing AMPs 

To construct a 35S expression vector for the expression of D4E1, the gene was amplified with 

SacI_35S_D4E1_s and BamHI_35S_D4E1_as using the D4E1 containing pGem®-T Easy 

plasmid, generated during the construction of the D4E1 viral vector, as template. The primers 

contained Sac I (Fermentas) and Bam HI (Fermentas) restriction enzyme sequences as well as a 

plant enhancer sequence (Lütcke et al., 1987) between the Sac I site and the D4E1 sequence. The 

generated PCR fragment were again cloned into pGem®-T Easy from where it was excised and 

cloned into the Sac I and Bam HI sites of the binary vector pBin61S (Silhavy et al., 2002), 

resulting in the vector pBin61S-D4E1. The same cloning strategy was followed to produce the 

35S-based expression vector, called pBin61S-VvAMP1. The primer pair SacI_35S_VvAMP1_s 

and BamHI_35S_VvAMP1_as was used, where the first-mentioned primer again contained the 

enhancer sequence between the Sac I site and the AMP gene sequence. Lütcke et al. (1987) 

illustrated that a adenine at the position -3 relative to sequence of the start codon resulted in the 

highest translation efficiency and that the nucleotide sequence AACAUGGC was conserved in 

plants. The control vector, 35S:GUSi (Vaucheret et al., 1994) was already constructed during a 

previous study, and was readily available. 

3.1.5 Transformation of Agrobacterium cells 

Electrocompetent A. tumefaciens cells (strain C58C1), containing the helper plasmid pCH32 

(Hamilton et al., 1996; kindly supplied by P. Mestre, University of Louis Pasteur Strasbourg, 
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Colmar, France), were prepared according to the protocol by Annamalai and Rao (2006). 

Competent cells were electroporated setting the electroporator to 25 µF, 200 , 1.5 kW. 

3.1.6 Agro-infiltration of plants 

Recombinant A. tumefaciens cells were grown on selective media (kanamycin/tetracycline). 

Overnight shaker cultures were pelleted by centrifugation for 5 min at 3200 g. The supernatant 

was discarded and the pellet resuspended in inoculation buffer (10 mM MgSO4, 10 mM MES, 

100 µM acetosyringone) (Stephan and Maiss, 2006). After incubating for 2-3 h at room 

temperature, the bacterial suspension was used for plant infiltration. 

Nicotiana benthamiana plants were agro-infiltrated with the expression vectors using a method 

by Llave et al. (2000). A 2 ml syringe with needle was used to aspirate an Agrobacterium 

suspensions (OD600 of 0.1-0.5), transformed with the vector, into the leaf of the plant. The needle 

was then removed and the syringe pressed against the lower surface of a leaf. The cell 

suspension was slowly injected into the leaf by applying constant, low pressure. 

Infiltration of V. vinifera plants was conducted by means of Agrobacterium vacuum-infiltration. 

This was performed by making several small cuts using a scalpel on the leaves of in vitro 

cultured V. vinifera plants. The plants were then immersed completely in a cell suspension of 

Agrobacterium, which had an OD600 of 0.1-0.5, and placed in a vacuum chamber. To achieve 

infiltration, two successive vacuums (-90 kPa) of 2 min each were applied in the chamber. The 

vacuum was quickly released between the two vacuum steps. After restoration of atmospheric 

pressure, the leaves were rinsed with distilled water and the plantlets transferred into a container 

with perlite and watered with autoclaved water. 

3.1.7 Testing of infectivity 

To determine whether the expression of the AMPs had an influence on viral replication, disease-

free N. benthamiana plants were agro-infiltrated with the viral vectors as described in section 

3.1.6. Viral replication was tested by tissue print immuno-assays (TPIAs) (adapted from Franco-

Lara et al., 1999) 6 days post-infiltration (dpi), as described below. An antibody specific to the 

coat protein of GVA was used as primary antibody. The expression of the GVA coat protein is 

an indication of viral replication. The coat protein will not be transcribed as part of the 35S 

transcript as it is transcribed from the viral sgRNA. 

Methanol was used to wet a Hybond PVDF membrane for 2 s. The membrane was then rinsed in 

excess water for 15 min, and equilibrated for 15 min in 1X TBS buffer (0.02 M Tris-base, 0.5 M 
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NaCl, pH 7.4). This step was followed by drying the membrane on filter paper. The lower 

epidermis of infiltrated leaf patches was removed with tweezers or petioles were cut with a 

scalpel. After pressing the plant tissue on the dried membrane for 2 seconds, the membrane was 

incubated on a shaker, in 4.5% milk powder dissolved in 1X TBS. The blocking solution was 

discarded after 1 h and the membrane washed 3 times in TBS-T (1X TBS, 0.05% Tween 20) for 

5 min. The TBS-T was removed and the membrane incubated on a shaker for 2 h in the first 

antibody solution [GVA-CP-antiserum diluted 1/400 in TBS-TPO (1X TBS, 2% PVP-40, 0.2% 

Bovine Serum Albumin Fraction V)]. After washing the membrane 3 times in TBS-T for 5 min, 

the TBS-T was discarded and the membrane incubated for 1 h on a shaker with the alkaline 

phosphatase-conjugated goat anti-rabbit secondary antibody in TBS-T (1/10 000 dilution). 

Incubation was again followed by washing of the membrane in TBS-T, 3 times for 5 min. The 

membrane was then incubated in the dark for 30 min in the AP-BCIP/NBT (5-bromo-4-chloro-3-

indolyl-phosphate / nitroblue tetrazolium) colouring solution (100 mM Tris, 100 mM NaCl; 5 

mM MgCl2, 167 µg/ml BCIP, 495 µg/ml NBT) without shaking, after which tap water was used 

to rinse the membrane. Filter paper was used to dry the membrane. Dark stained areas of leaf or 

petiole prints from agro-infiltrated plants in comparison to non-infiltrated plants indicated viral 

presence and therefore viral replication. Tissueprint results were captured with a Leica DFC 320 

digital camera attached to a Leica MZ 7.5 microscope (C. Janion, Centre for Invasion Biology, 

Department of Botany and Zoology, Stellenbosch University). 

3.1.8 Control expression of foreign protein 

The control GUSi constructs, viral (pBinSN-GVA118-GUS and pBinSN-GVA118-GFP) and 

35S (35S:GUSi), were used to determine the functionality of the vector constructs for gene 

expression. Six days after N. benthamiana and V. vinifera plants were infiltrated with the GFP-

construct, pBinSN-GVA118-GFP, plants were visualised under a microscope containing a UV 

light for GFP expression, while GUS assays (section 3.1.9) were performed on the GUSi-

construct infiltrated plants. 

3.1.9 GUS assay 

Small cuts were made on leaves after which they were placed in a clean small beaker. 

Approximately 6 ml of GUS substrate buffer (10 mM NaH2PO4, 0.5 mM K-Ferrocyamid, 0.5 

mM K-Ferricyamid, 0.1% Triton X100, 100 mM Na2EDTA), with freshly added X-Gluc (12.5 

µl/ 100 ml of buffer), were added to the beaker. The leaves were then vacuum-infiltrated (see 

section 3.1.6). Parafilm was used to cover the beaker while incubating overnight at 37°C, with 

gentle shaking. The leaves were then decoloured by rinsing them for an extended period of time 
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in 100% ethanol, replacing the ethanol regularly. Areas of GUS expression were visually 

assessed as blue areas on the leaves. 

3.1.10 Testing of systemic movement of virus and expression of foreign 

proteins 

Nicotiana benthamiana plants were agro-infiltrated with the viral vectors pBinSN-GVA118-

D4E1, pBinSN-GVA118-VvAMP1 and the control pBinSN-GVA118-GUS, as described in 

section 3.1.6. A TPIA (section 3.1.7) was performed at 17 dpi on the non-infiltrated petioles of 

plants infiltrated with the AMP vectors, while a GUS assay (section 3.1.9) was performed on 

non-infiltrated leaves of GUS vector-infiltrated plants, also at 17 dpi. Plant tissue of non-

infiltrated plants served as negative controls in both the assays.  

After a further 9 days (26 dpi) a one-tube RT-PCR was performed on systemic leaves showing 

symptoms of viral infection. Five millilitres of extraction buffer (0.5 M Tris-HCL, 137 mM 

NaCl, 2% PVP-40, 1% PEG 6000, 9.8 mM MgCl2·6H20, 0.05% Tween 20; pH 8.2) were added 

to 0.3 g of leaf material. After grinding with a mortar and pestle, 10 µl of material were added to 

100 µl of GES buffer (0.1 M Glycine-NaOH (pH 9), 50 mM NaCl, 1 mM EDTA). The samples 

were then incubated for 10 min at 95°C and immediately placed on ice for a minimum 

incubation time of 2 min. Of this crude RNA extract, 2 l were directly used as template in a 25 

µl RT-PCR reaction (1X KapaTaq buffer A, 0.625 µM forward and reverse primer, 0.2 µM 

dNTPs, 5 mM DTT, 2 U AMV, 1 U KapaTaq DNA polimerase). The PCR cycling conditions 

consisted of a 30 min incubation period at 48°C, followed by 35 cycles of 30 s at 95°C, 45 s at 

55°C and 2 min at 72°C. A final step of 7 min at 72°C was included and afterwards the amplified 

DNA was visualised on a 1% agarose gel. Negative control reactions were included which did 

not contain any AMV in the reaction mixture. The primer GVA118-6914-F, annealing to ORF2, 

was used along with ApaI_D4E1_R, ApaI_VvAMP1 _as or NotI_GUS_as for detection of the 

recombinant viruses GVA118-D4E1, GVA118-Vv-AMP1 and GVA118-GUS, respectively 

(Table 1). The expected amplicon lengths of the RT-PCR reactions were 206 bp, 296 bp and 

2070 bp, respectively. 

3.1.11 Peptide expression 

Protein extractions were performed on N. benthamiana plants infiltrated with the pBinSN-

GVA118-VvAMP at 6 dpi, in order to determine peptide expression. Plants infiltrated with 

pBinSN-GVA118-D4E1 served as negative control. Western blot analysis was then use to 

visualise the expressed peptide. The expected size of the Vv-AMP1 peptide was ~5.5 kDa. The 
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antibody for Vv-AMP1 detection was raised in mice against the Vv-AMP1 peptide (De Beer, 

2008). No antibody was available for D4E1, therefore no expression test could be performed on 

the D4E1 peptide. 

Protein extraction 

Using a mortar and pestle, 0.3 g of fresh plant material was ground in 750 l Berger buffer 

(Berger et al., 1989; 750 mM Tris-base (pH 8.8), 4% SDS, 4% 2-Mercaptoethanol, 40% 

Sucrose) which was pre-heated to 95°C. The mixture was pipetted into clean 2 ml reaction tubes 

with safe locks and incubated at 95°C. After 10 min of incubation, the samples were centrifuged 

for 15 min at 15700 g and the supernatant transferred into clean reaction tubes. These crude 

extracts were stored at -20°C until needed. 

Western blot 

Crude protein extracts were fractionated on polyacrylamide gels specific for small proteins. 

These gels were 8-16% Ready Gels® from Biorad. All runs were performed by Dr. G. George at 

the Institute for Plant Biotechnology, Stellenbosch University. 

3.2 Tagging of pathogens of interest 

3.2.1 Bacterial strains 

Agrobacterium vitis (strain A39) and X. ampelinus (strain VS9) cultures were provided by Dr. T. 

Goszczynska (ARC – Plant Protection Research Institute, Pretoria, South Africa). To confirm 

that colonies which were grown on mannitol media (54.89 mM mannitol, 2.87 mM K2HPO4, 

0.81 mM MgSO4·7H2O, 1.71 mM NaCl, 0.4 g/l Yeast extract) plates were indeed A. vitis, a 

single colony-PCR was performed, while a nested-PCR procedure was performed to confirm that 

colonies grown on Difco nutrient agar (NA; 8 g/l) plates were X. ampelinus. 

3.2.2 Diagnostic PCRs 

Agrobacterium vitis 

In order to detect A. vitis by means of PCR the primer set, A (ATG CCC GAT CGA GCT CAA 

GT) and E (CCT GAC CCA AAC ATC TCG GCT GCC CA) of Haas et al. (1995) was used. 

These primers produce a PCR fragment of 338 bp in samples positive for A. vitis. The PCRs 

were performed with cycling conditions of 1 min at 94°C, 40 cycles of 1 min at 94°C, 1 min at 

50°C and 1 min at 72°C, followed by a final elongation step of 5 min at 72°C. In the PCR 

reaction mix 0.1 mM dNTPs, 0.3 µM of each primer, 0.04 U/µl KapaTaq DNA polymerase, 1X 
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KapaTaq buffer A and 1X cresol was used. Diagnostic colony-PCRs were performed by picking 

one colony, dissolving it in 10 µl dH2O and boiling it for 5 min at 99°C. The suspension (2.5 µl) 

was used as template in the above-mentioned PCR. 

Xylophilus ampelinus 

A nested-PCR procedure was used for X. ampelinus detection. During the first PCR, a 742 bp 

fragment was amplified, using the primers A1 (AGT CGT AAC AAG GTA AGC CG) and B1 

(CYR YTG CCA AGC ATC CAC) (Barry et al., 1991). The cycling conditions for this PCR was 

3 min at 94°C, 25 cycles of 30 s at 94°C, 30 s at 52°C and 1 min at 72°C, followed by a final 

elongation step of 10 min at 72°C. A fifty times dilution of the first PCR product served as 

template for the nested reaction. This nested-PCR made use of the primers S3 (GGT GTT AGG 

CCG AG TAG TGA G) and S4 (GGT CTT TCA CCT GAC GCG TTA) (Botha et al., 2001), 

and amplified a 277 bp fragment. In this study the cycling conditions were 3 min at 94°C, 35 

cycles of 30 s at 94°C, 30 s at 55°C and 30 s at 72°C, followed by a final elongation step of 10 

min at 72°C. In both reactions, the PCR mixture contained 0.1 mM dNTPs, 0.3 µM of each 

primer, 0.05 U/µl KapaTaq DNA polymerase, 1X KapaTaq buffer A and 1X cresol. 

3.2.3 Determination of the tumorigenic nature of A. vitis strains  

Not all A. vitis strains are tumorigenic. To determine the tumorigenic nature of the A. vitis strain 

A39, small cuts were made with a scalpel on the side of an in vitro propagated V. vinifera cv. 

Sultana plant, and 5 l of A. vitis cells suspended in water (OD600 of 0.3) were dropped on the 

damaged tissue. The plant was then incubated for 8 weeks in a growth chamber with a 16 h light 

and 8 h dark photoperiod at 25°C and 20°C respectively, before the plants were inspected for 

gall development. Control plants that were inoculated with dH2O instead of bacterial suspension 

were included. 

3.2.4 Bacterial tagging with reporter genes 

To aid the visualisation and quantification of bacteria, two methods were applied in an effort to 

stably tag the two bacteria, A. vitis and X. ampelinus, either with GFP or with luciferase. The one 

method used electroporation for plasmid transfer, while the other made use of bacterial mating. 

To achieve stable transformation of the bacteria, an intron-based system was used. The plasmids 

used for tagging are listed in Table 2 and were all kindly supplied by S. Molin (BioCentrum-

DTU, Technical University of Denmark). Both pUT plasmids contained the transposase on the 

plasmid itself and could be used to transform the bacterial cells independently. The two mini-

Tn7 plasmids however relied on an additional plasmid (pUX-BF13), which contained the 
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transposase, for transformation. The plasmid pRK600 was used to mediate plasmid transfer, 

between bacteria, during transformation via bacterial mating. 

Table 2: List of plasmids used for tagging of bacteria, as well as their E. coli host strains and the 

antibiotic selection needed after transformation. 

Plasmid Strain Description Selection* 

pUTGm-PA1/04/03CDABE(lux)
1
 MV1190 Luciferase donor plasmid Gm 

pUTKmGfp
2
 MV1190 GFP donor plasmid Km 

pBK-miniTn7-gfp1 (AKN65)
3
 XL1 Blue GFP donor plasmid Gm 

miniTn7(Gm)PrmB1-gfp-a 
4
 MT102 GFP donor plasmid Km 

pUX-BF13
5
  SM10  pir Helper plasmid Tn7 Transposase  

pRK600
6
  HB101 Helper plasmid for mating  

*Selection of bacteria after successful transformation. Gentamicin (Gm) or Kanamycin (Km); 
1
Weitz et 

al., 2001;
 2

Tombolini et al., 1997; 
3
Koch et al., 2001; 

4
Lambertsen et al., 2003; 

5
Bao et al., 1991; 

6
Figurski and Helinski, 1979. 

 

Xylophilus ampelinus cells were made electro-competent using a protocol described by Grall and 

Manceau (2003). Three-day old shaker cultures were pelleted and the pellet dissolved in dH2O. 

The OD580 was adjusted to 1 and 2 ml of the suspension was added to a clean 2 ml reaction tube. 

After centrifugation, 13000 g for 10 min at 4°C, the supernatant was discarded and the pellet 

dissolved in 1 ml of dH2O. This step was repeated twice and the final pellet dissolved in 50 µl of 

dH2O. Two micro litres of plasmid DNA were gently mixed with 40 µl of cell suspension and 

cells were electroporated as described in section 3.1.5. Electroporated cells were shaken at 125 

rpm (25°C) and after 2 h plated onto selective NA plates with antibiotic selection as stated in 

Table 2. After 5 days of incubation at 25°C, plates were visually inspected for GFP expression 

using a UV lamp or for luminescence using the Ivis® Lumina Imaging System from 

Caliper/Xenogen. The Living Image® Software parameters were set to luminescent, auto 

exposure, field of view D and a subject height of 1 cm. 

Electro-competent A. vitis cells were prepared using the same protocol as described in section 

3.1.5. No antibiotic selection was used. The same electroporation conditions and steps were also 

used as in section 3.1.5 to transform the A. vitis cells. After shaking the electroporated cells for 4 

h at 28°C, 100 µl of cell suspension was plated on selective mannitol media plates and incubated 

at 28°C. After 3 days of incubation, plates were screened for positively transformed cells by 

visual inspection with an ultra violet (UV) lamp in the case of GFP and by making use of the Ivis 

system to visualise the luminating bacterial cells. 
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Plasmid concentrations of the tagging plasmid were very low when it was extracted from host 

strains listed in Table 2. To overcome these low concentrations used in the electroporation, 

rolling circle amplification (RCA) was applied. This method makes use of the isothermal DNA 

polymerase Phi29 to amplify circular DNA and results in linear concatamers of the original 

DNA molecule. Rolling circle amplification was performed on pUTKmGfp and pUTGm-

PA1/04/03CDABE(lux). In an RCA reaction, 4.5 µl of plasmid DNA was used as template and 

added to 5 µl of dNTPs (2.5 mM) and 0.5 µl of Exo-Resistant Random Primers (Fermentas). The 

mixture was filled up to a final volume of 10 µl with dH2O and incubated for 3 min at 95°C. The 

reaction tube was cooled on ice and 0.25 µl of Phi29 DNA polymerase, 2 µl of 10X Phi29 Buffer 

and dH2O were added to a final reaction volume of 20 µl. The mixture was then incubated for 18 

h at 30°C. This was followed by a 10 min step at 65°C after which the RCA product was purified 

using Sure Clean (Bioline). The pUTKmGfp RCA product was digested using Not I (Fermentas) 

while the pUTGm-PA1/04/03CDABE(lux) RCA product was digested using Eco RI (Fermentas). 

Each digestion generated two fragments. The larger fragment was treated with Shrimp Alkaline 

Phosphatase (SAP) followed by ligation to the smaller fragment to form the original plasmid 

again. These ligated products were then introduced into A. vitis via electroporation (section 

3.1.5). Electroporated cells were incubated on selective media and after 3 days of incubation at 

28°C screened for transformed colonies by visual inspection as before. 

Agrobacterium vitis chemical competent cells were made and chemically transformed. Briefly, 2 

ml of an overnight A. vitis culture was used to inoculate 50 ml of mannitol media. After shaking 

for 4 h at 28°C, until the OD600 reached between 0.5 and 0.6, cultures were incubated in 50 ml 

centrifuge tubes for 10 min on ice. This was followed by centrifugation for 10 min at 3000 g 

(4°C), discarding the supernatant and dissolving the pellet in 1 ml of ice cold CaCl2 (20 mM). 

Aliquots were made; flash frozen and stored at -80°C. For the transformation, 100-200 ng of 

plasmid DNA was added to a 100 µl aliquot of cells that were thawed by the heat of one‟s finger 

tips. One millilitre of mannitol medium was added and the cell suspension incubated for 4 h at 

28°C, shaking at 150 rpm. The cells were then pelleted by centrifugation for 30 s and 

resuspended in 100 µl of the supernatant, the rest were discarded. The cells were then plated on 

selective media, as listed in Table 2, and incubated for 3 days at 28°C. Colonies were visually 

inspected with a handheld UV lamp for GFP expression. 

Tagging of bacteria by means of bacterial mating requires antibiotics selecting for the recipient 

cells but eliminating the donor or helper cells, thus selecting for the desired transformed cells. A 

literature study did not yield any antibiotic used in selection of natural A. vitis or X. ampelinus 

strains. Therefore, readily available antibiotics were screened for their ability to select these 
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bacteria. All bacteria (donor, helper and recipient) were tested for growth against ampicillin, 

gentamicin, chloramphenicol and rifampicin. Agrobacterium vitis and all the donor and helper 

bacteria were tested for growth against different concentrations of rifampicin, kanamycin, 

chloramphenicol, tetracycline and streptomycin. When no suitable antibiotic was found, bacterial 

mating was performed without any selection specific to the recipient bacteria itself. Bacterial 

identity was then confirmed with colony-PCRs. 

Bacterial mating was performed in order to tag A. vitis cells. Agrobacterium vitis cells were 

streaked on mannitol agar media and incubated for 3 days at 28°C while plasmid-containing E. 

coli cells were streaked 2 days later on selective Luria Bertani agar media, and incubated 

overnight at 37°C. Liquid media were inoculated and shaken overnight, for A. vitis at 28°C 

shaking at 200 rpm and for the different E. coli strains at 37°C shaking at 180 rpm. Of each 

overnight culture, 2 ml were spun down for 2 min at 4500 g. The resulting pellet was 

resuspended in 1 ml of dH2O and the centrifugation repeated. This final pellet was then 

resuspended in 100 µl of dH2O whereafter 100 µl of A. vitis suspension was mixed with 50 µl of 

each of the respective E. coli suspensions as explained above. The mixture was pipetted onto in 

the middle of a Petri dish containing mannitol media without any antibiotics. After 5 days of 

incubation at 28°C the cells were dissolved in 200 µl of liquid mannitol medium and plated with 

antibiotic selection, as indicated in Table 2. The cells were then incubated for 3 days at 28°C 

after which colonies were visually inspected for GFP expression with a handheld UV lamp and 

for luminescence using the Ivis system (using the same settings as mentioned before in this 

section). To further refine the inspection, growth were also visualised under a microscope 

equipped with an UV light. 

3.3 In vitro AMP activity screening against Agrobacterium vitis 

and Xylophilus ampelinus  

3.3.1 Culturing of pathogen strains 

Throughout the experiment A. vitis (strain A39) was cultured on mannitol media for 3 days at 

28°C while X. ampelinus (strain VS9) cultures were grown for 5 days at 25°C on NA plates. 

Liquid cultures were prepared by inoculating 20 ml of the respective liquid media with 5-10 

colonies of the bacteria, and incubated it at the appropriate temperatures, at 180 rpm, overnight 

or for 3 days for A. vitis and X. ampelinus, respectively. 
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3.3.2 AMP plate testing 

Stock solutions of 1 mg/ml D4E1 (Mr = 2611.87 g/mol) were made fresh just before use and 

dilutions were made in liquid media of the respective bacteria. The peptide effect was first tested 

against the bacteria at peptide concentrations of 40, 20, 10, 4, 2, 1, 0.5 and 0 µg/ml. This was 

achieved by adding peptide solution to bacterial liquid cell cultures in a 1.5 ml reaction tube to a 

final volume of 1ml and at an OD600 (A. vitis) or OD580 (X. ampelinus, Grall and Manceau, 2003) 

of 0.1. Individual dilutions were performed in triplicate. After shaking the suspension for an hour 

at 180 rpm at the appropriate temperature, 100 µl of the suspension were plated on solid media. 

Three or five days after plating, for A. vitis and X. ampelinus respectively, bacterial cfu were 

counted and compared to bacterial cell cultures without D4E1 or cultures to which kanamycin 

(50 µg/ml) was added. To further refine the results the experiment was repeated with D4E1 

concentrations between 10-20 µg/ml in 2 µg/ml intervals. These were the two concentrations at 

which the bacteria showed the highest peptide sensitivity in the first round of experiments. 

For statistical analysis, in order to perform t-tests, it was assumed that the number of colonies on 

the plants showing more than 1000 colonies were only 1000 cfu (a conservative estimation). 

Poisson distribution was also assumed due to the nature of the data. The standard error for the 

cfu of 1000 was therefore calculated to be 31.62 (S.E. = 3/1000 ). The Welch two-sample t-

test was used to determine statistical differences between numbers of cfu at different D4E1 

concentrations. 

3.4 Screening the in planta activity of AMPs against the 

pathogens of interest 

The disease-free V. vinifera cv. Sultana plants were agro-infiltrated with the constructed vectors 

and used to test the in planta effect of the transiently expressed AMPs against A. vitis and X. 

ampelinus. In all experiments, 5 plants infiltrated with the AMP expression vector, serving as the 

treatment group, and 5 control plants infiltrated with Agrobacterium cells containing an empty 

binary vector, lacking the AMP gene, were used. 

3.4.1 Inoculation of V. vinifera plants with A. vitis and X. ampelinus 

Plants were inoculated with X. ampelinus, 3 days after A. tumefaciens-mediated infiltration of the 

AMP-expressing 35S vector. This was achieved by dipping the plants in a suspension of X. 

ampelinus in sterile water with an OD580 of 0.1. These plants were grown for 4 days at 25ºC in 

light for 18 h and at 20ºC in the dark for 6 h. Plants infiltrated with empty binary vectors served 
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as controls and were also infected with X. ampelinus. Following the 4-day incubation period, 

DNA extractions were performed on the leaves of all plants after rinsing them in dH2O, and the 

total extracted DNA (see section 3.4.2) subjected to qPCR (see section 3.4.6) for bacterial titre 

determination. Inoculated plantlets were also evaluated over a period of 21 days for symptom 

development. 

In order to determine the in planta effect of the AMPs against A. vitis, plants were inoculated 

with the bacteria by vacuum infiltrating a suspension of bacteria with an OD600 of 0.01. The 

bacterial inoculation was performed 3 days after plants were vacuum-infiltrated with A. 

tumefaciens cells containing an AMP vector or empty binary vector. The plants infiltrated with 

Agrobacterium containing an empty binary vector again served as controls. In an effort to 

improve this method, the test was repeated but instead of using vacuum infiltration, the plants 

were dipped in an A. vitis suspension with an OD600 of 0.1. After 4 days of incubation, plant 

leaves were rinsed in dH2O, the DNA extracted and used as template for qPCR in order to 

determine bacterial titres. Further optimisation of this method of AMP efficacy screening against 

A. vitis was performed by reducing the bacterial concentration to an OD600 of 0.05 and 

elongating the period of incubation between infection of the plant with the bacteria and DNA 

extraction, to 7 days. 

3.4.2 DNA extraction procedures 

Total DNA extraction was performed according to a CTAB method described by Malan (2009). 

The concentration of the DNA was determined by means of a Nanodrop® ND-1000 

spectrophotometer and stored at -20°C. 

3.4.3 qPCR primers and PCR optimisation 

Bacterial titres were determined using qPCR and were compared between AMP-treated and the 

untreated control plants. Reference grapevine genes were used to normalise the data. The primers 

used for the relative quantification of the bacteria are listed in Table 3. Primers were first 

optimised using normal PCR to determine the specificity and efficiency of the primer set by 

screening them at different annealing temperatures and the reaction compositions, for example 

primer concentrations. The PCR fragments were cloned into pGem®-T Easy and sequenced to 

confirm that the amplified sequences were of the expected origin. 
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Table 3: List of primers used for quantitative real-time PCR. 

 

Primer name Organism Sequence 
Genomic 

region 

Tm 

(°C) 
Source 

Vv_Actin_F V. vinifera CTTGCATCCCTCAGCACCTT Actin 57.7 Reid et al., 2006 

Vv_Actin_R V. vinifera TCCTGTGGACAATGGATGGA Actin 55.9 Reid et al., 2006 

Vv_EF1a_F V. vinifera GAACTGGGTGCTTGATAGGC EF1-α 55.9 Reid et al., 2006 

Vv_EF1a_R V. vinifera AACCAAAATATCCGGAGTAAAAGA EF1-α 52.4 Reid et al., 2006 

VIRD62F23  A. vitis AACCATTCAGCAGGTTAT VirD2 48.5 Bini et al., 2008 

VIRD62R135  A. vitis TGGTAATTTGATCAGGCG VirD2 49.8 Bini et al., 2008 

Xamp_14F  X. ampelinus CCCGATGATAAATACCGAAAACTC 16S rRNA 53.7 Dreo et al., 2007 

Xamp_104R  X. ampelinus TGTCTTCTGGTTGTTTTGGTTTTAAT 16S rRNA 53.9 Dreo et al., 2007 

Xamp1.3A X. ampelinus GATGTAGCCGGACGTACCG 16S rRNA 57.6 Manceau et al., 2000 

Xamp1.3B X. ampelinus CGTTTTCCGTGGCATCGATG 16S rRNA 57.0 Manceau et al., 2000 

Xamp2.0A X. ampelinus GTGTGGCGATAATCGTGACG 16S rRNA 56.2 Manceau et al., 2000 

Xamp2.0B X. ampelinus TGAAAGAGCGCGGCGGCAGT 16S rRNA 65.1 Manceau et al., 2000 

S3 X. ampelinus GGTGTTAGGCCGAGTAGTGAG 16S rRNA 56.9 Botha et al., 2001 

S4 X. ampelinus GGTCTTTCACCTGACGCGTTA 16S rRNA 57.3 Botha et al., 2001 

AAY_F Phytoplasma TTGGGTTAAGTCCCGCAAC 16S rRNA 55.5 Angelini et al., 2007 

AAY_R Phytoplasma CCCACCTTCCTCCAATTTATCA 16S rRNA 54.6 Angelini et al., 2007 

AY_F Phytoplasma AAACCTCACCAGGTCTTG 16S rRNA 51.9 Present study 

AY_R Phytoplasma AAGTCCCCACCATTACGT 16S rRNA 53.4 Present study 

 

3.4.4 qPCR conditions 

After primer optimisation, a Rotor-Gene Q (Qiagen) thermal cycler was used to perform all 

qPCRs, and the Rotor-Gene Q Series Software 1.7 was used for run setup and analysis. The PCR 

conditions for all the runs were the same. The reaction volume was 25 µl and consisted of 

template DNA, 1X SensiMix No-ROX (Quantace), 0.2 µM forward and reverse primer and 

ddH2O. The SensiMix No-ROX kit is a SYBR Green-based system. Cycling conditions were as 

follows: 10 min at 95°C followed by 35 cycles of 15 s at 95°C and 60 s at 60°C. After each run 

melting curve analysis were performed to determine the specificity of the amplified products. 

3.4.5 Determination of qPCR efficiencies 

Standard curves were set up for each primer pair in order to determine the efficiencies of the 

respective qPCRs. The standard curve for X. ampelinus quantification was established by making 

a 5-fold dilution series of a DNA sample extracted from a grapevine tissue culture plant infected 

with the bacteria. The dilution series ranged from 24 ng to 0.0384 ng of total DNA per reaction. 

Primers S3 and S4 were used and reactions were performed in triplicate for each DNA 

concentration. The same reaction was performed to set up a standard curve for quantification of 

the reference gene, actin, using the primers Vv_Actin_F and Vv_Actin_R. The primer pair 

VirD62F23 and VIRD62R135 was used to establish the standard curve for A. vitis quantification. 

A 5-fold dilution series of a DNA sample extracted from a V. vinifera tissue culture plantlet 
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infected with the bacteria was made. The amount of DNA in the dilution series ranged from 60 

ng to 0.096 ng of total DNA per reaction. In theory the dilution series only has to span the 

concentration of the DNA which needs to be detected. 

3.4.6 Determination and comparison of bacterial titres 

Quantitative analysis of bacterial titres in V. vinifera was performed using qPCR in order to 

determine the in planta activity of the AMPs against the pathogens. The concentration of the 

bacteria in the AMP-treated group was compared relative to the concentration of the bacteria in 

the untreated control group. For this, qPCR amplifications were performed for each plant. 

Relative qPCRs were performed for the first experiment in triplicate for both the gene of interest 

(GOI) and the reference gene. The GOIs are situated within the bacterial genomes, while the 

reference gene is situated within the grapevine genome. From here on, reactions were only 

performed in duplicate. When amplification showed inconsistency between two reactions of the 

same sample, the qPCR was repeated for those samples. In each run one sample, for both the 

GOI and the reference gene, was included to serve as a calibrator. These samples were used to 

construct the respective standard curves and were included in the quantification run at a 

concentration used during the setup of each dilution series. 

To determine the Ct values for each sample, the Rotor-Gene Q Series Software 1.7 was used. 

The software imported the two standard curves, one for the GOI and one for the reference gene, 

and adjusted the curves according to the calibrator samples included in each run. The Ct values 

derived were then exported and incorporated into the Relative Expression Software Tool (REST) 

program. To determine the bacterial titres in the treated plants relative to those of the untreated 

plants, this programme carries out 10000 mathematical iterations and statistical analysis (Pfaffl 

et al., 2002). 

3.5 Aster yellows phytoplasma AMP activity screening 

3.5.1 Phytoplasma infected plant samples 

Cane material from phytoplasma infected V. vinifera cv. Chardonnay plants was collected from 

an infected vineyard in the Slanghoek area near Rawsonville in the Western Cape. These plants 

were potted and phytoplasma infection confirmed by means of a nested-PCR reaction (section 

3.5.2). The plants were kept in a greenhouse until needed. Infected cane material (V. vinifera cv. 

Shiraz) was also collected from a farm near Vredendal in the Olifants River region of the 

Western Cape. These canes were stored at 4°C for later used in tissue culture (section 3.5.4). 
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3.5.2 Aster yellows phytoplasma diagnostic PCR 

Aster yellows phytoplasma was detected by a nested-PCR procedure. Universal diagnostic 

primers, P1 (AAG AGT TTG ATC CTG GCT CAG GAT T) (Deng and Hiruki, 1991) and P7 

(CGT CCT TCA TCG GCT CTT) (Smart et al., 1996), were used for the first PCR. The reaction 

mixture contained 0.2 mM dNTPs, 0.5 µM of each primer, 0.05 U/µl KapaTaq DNA 

polymerase, 1X KapaTaq buffer A and 1X cresol, while the PCR cycling conditions were as 

follows: 5 min at 94°C, 35 cycles of 20 s at 94°C, 30 s at 59°C and 45 s at 72°C, followed by a 

final elongation step of 7 min at 72°C. The first PCR products were then, after diluting 30 times, 

used in nested-PCR reactions using the primers R16F2N (GAA ACG ACT GCT AAG ACT GG) 

and R16R2 (TGA CGG GCG GTG TGT ACA AAC CCC G) (Lee et al., 1993). The reaction 

mixture was the same as for the first PCR and the cycling conditions were as follows: 2 min at 

94°C, 35 cycles of 20 s at 94°C, 30 s at 60°C and 45 s at 72°C, followed by a final elongation 

step of 10 min at 72°C. Positive samples displayed an amplicon of 1860 bp (although not always 

visible) in agarose gel electrophoresis after the first PCR reaction and a 1245 bp amplicon after 

the nested-PCR reaction. 

3.5.3 Aster yellows phytoplasma qPCR 

Real-time PCR primers were designed for a SYBR Green-based assay from the primer of 

Hollingsworth et al. (2008) and the probe used in the TaqMan® assay of Angelini et al. (2007) 

for aster yellows phytoplasma. The sensitivity of the detection of aster yellows with qPCR using 

these primers, AY_F (AAA CCT CAC CAG GTC TTG) and AY_R (AA GTC CCC ACC ATT 

ACG T), were then compared to the sensitivity of detection by means of the nested-PCR 

described in section 3.5.2. Total DNA extracted from an aster yellows infected grapevine plant, 

was used to make a 10-fold dilution series ranging over 10 different concentrations (2.5 ng to 2.5 

x 10
-9 

ng). Real-time PCR and normal nested-PCR runs were then performed to compare 

detection of aster yellows phytoplasma at each of the different concentrations. Diagnostic runs 

were repeated to confirm the results. 

3.5.4 Establishing plant cultures infected with phytoplasma 

Infected V. vinifera cv. Shiraz material from the field was sterilised according to a protocol by 

Alplanta (Germany). Cane material stored at 4°C, was cut into pieces of 2-3 cm in length each 

containing one node. Sterilisation was performed by washing the cuttings with a brush in water 

containing a strong detergent and then rinsing it in water containing a mild detergent. The 

cuttings were then stirred for 2 min in 70% ethanol and then for 10 min in a solution of 10% 

CaClO2. After rinsing 4 times alternating in 0.25% CaCl and sterile water, the cuttings were 

Stellenbosch University http://scholar.sun.ac.za



 46 

planted in perlite with sterile water. They were then grown in an incubator with a 16 h light and 

8 h dark photoperiod at 25°C and 20°C respectively. 

3.5.5 In vitro grafting for phytoplasma transmission 

In vitro established V. vinifera cv. Shiraz scions infected with phytoplasma, were grafted onto 

uninfected in vitro cultured V. vinifera cv. Shiraz plants (protocol by Pathirana and McKenzie, 

2005). Explants, having one node with a leaf, were obtained from phytoplasma infected plantlets. 

Using a sharp scalpel blade the apex was cut to form a longitudinal cleft of 2-4 mm and 

positioned on media. The basal part of a scion stem with similar size also having a single node 

and leaf, was cut into a wedge and fixed in the recipient plantlet cleft. These grafted plants were 

used in an effort to propagate sterile tissue culture grapevine plants infected with phytoplasma. 

3.5.6 Transient expression in Catharanthus roseus (periwinkle) 

Recently it was also found that infected M. fuscovaria insects will feed on C. roseus and transfer 

the phytoplasma to these plants (Pers. Com. K. Kruger, Department of Zoology and Entomology, 

University of Pretoria). Phytoplasma are known to accumulate in high concentrations in C. 

roseus (Berges et al., 2000), making these plants ideal to be used in the study phytoplasma. 

Before testing the efficacy of AMPs against aster yellows phytoplasma in C. roseus, a transient 

expression system for foreign proteins first had to be evaluated. Leaf material of C. roseus plants 

were vacuum-infiltrated with an A. tumefaciens (strain C58C1) cell suspension containing the 

GUSi construct 35S:GUSi, as described in section 3.1.6. After 3 and 6 days a GUS assay 

(section 3.1.9) was performed to determine GUS expression. Nicotiana benthamiana plants 

served as positive control while uninfiltrated plants were used as negative control for the GUS 

assay. The assay was repeated adding a different A. tumefaciens strain (EHA105) containing the 

35S:GUSi construct to compare GUS expression of different A. tumefaciens strains. 

The C. roseus plant used in the first two GUS assays was more than a year old. A 6-week-old C. 

roseus plant was also vacuum-infiltrated with an A. tumefaciens (strain C58C1) cell suspension 

containing with the same constructs and under the same conditions. 
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Chapter 4  

Results 

4.1 Construction of transient expression vectors 

Viral vectors as well as 35S expression vectors containing the foreign genes were successfully 

constructed, in order to conduct AMP in planta activity screening. These constructs included 

vectors for the expression of the AMPs, D4E1 and Vv-AMP1, as well as control constructs for 

GFP and GUS expression. Sequencing results confirmed the integrity of the inserted foreign 

genes. The 35S expression vectors that were constructed are pBin61S-VvAMP1 and pBin61S-

D4E1 (Figure 11). The 35S:GUSi vector was previously designed and available for use. The 

GVA118-based viral vectors, pBinSN-GVA118-GFP, pBinSN-GVA118-GUS, pBinSN-

GVA118-VvAMP1 and pBinSN-GVA118-D4E1 are illustrated in Figure 12, along with the 

Gr5 ORF2-based viral vector pBinSNGr5 ORF2-VvAMP1. 
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Figure 11: Schematic representation of the region between the right and left border of the 35S expression 

vectors using the pBin61S binary vector backbone. The vectors pBin61S-VvAMP1 and pBin61S-D4E1 

are shown. 
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Figure 12: Schematic representation of the viral expression vector regions between the right and left 

border of the pBinSN binary vector. The vectors pBinSN-GVA118-GFP, pBinSN-GVA118-GUS, 

pBinSN-GVA118-VvAMP1 and pBinSN-GVA118-D4E1 are shown in (A) and the GR5- ORF2 

construct pBinSN-Gr5 ORF2-VvAMP1 is shown in (B). 
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4.1.1 Testing the infectivity of viral constructs 

Tissue print immuno-assays were performed in the model plant N. benthamiana to indicate 

successful viral replication that originated from the viral vectors. Local replication in the leaves 

inoculated with the viral vectors was determined by using the inoculated leaves in the TPIAs. 

Positive samples showed dark purple-like spots on the membrane after the BCIP/NPT colouring 

reaction (Figure 13). The negative control plant showed none of these dark spots, only green 

spots were observed as background resulting from the leaf tissue. Plants infiltrated with either 

pBinSN-GVA118-GFP, pBinSNGVA118-VvAMP1 or pBinSN-GVA118-D4E1 tested positive 

for GVA replication. 

 

 

Figure 13: Tissue print immuno-assay of Nicotiana benthamiana leaves showing GVA specific antibody 

binding to the coat protein of recombinant GVA viruses that originated form the viral expression vectors 

(A) GVA118-GFP; (B) GVA118-VvAMP1 and (C) GVA118-D4E1. Purple spots were indicative for 

viral replication. The negative controls for GVA118-GFP replication and GVA118-VvAMP1 replication 

(D) and for GVA118-D4E1 replication (E) were leaves of plants that were not infiltrated with any 

construct and did not show viral replication only leaf background. 

 

To determine whether the viruses were moving systemically in N. benthamiana plants, 

uninfiltrated leaves, of plants that were infiltrated with the viral constructs, were visually 

inspected for symptom development. These leaves developed symptoms associated with viral 

infection (yellowing of the veins), as shown in Figure 14. Viral infection in these leaves was 

confirmed by TPIA‟s which showed BCIP/NPT colouring reactions where GVA antibodies 

bound to areas of petiole prints of the plants infiltrated with pBinSN-GVA118-VvAMP1 and 

A B C D 

E 

Stellenbosch University http://scholar.sun.ac.za



 50 

pBinSN-GVA118-D4E1 (Figure 15). The TPIA of the negative control petiole print showed no 

BCIP/NPT colouring reactions. 

 

 

Figure 14: Nicotiana benthamiana plant showing systemic GVA associated symptoms on leaves after 

being infiltrated with (A) pBinSN-GVA118-VvAMP1; (B) pBinSN-GVA118-D4E1; (C) Uninfiltrated 

leaf showing no symptoms. 

 

 

Figure 15: Tissue print immuno-assay of Nicotiana benthamiana leaf petioles showing the systemic 

movement of the viruses in plants infiltrated with (A) pBinSN-GVA118-Vv-AMP1 and (B) pBinSN-

GVA118-D4E1 in comparison to an uninfiltrated control plant (C). Bars indicate 1 mm. 

 

In order to confirm that the viral vector-derived virus was not only replicating and spreading 

systemically through the N. benthamiana plants, but still contained the inserted foreign gene, 

RT-PCR reactions were performed to determine the presence of the recombinant viruses in leaf 

tissue acropetal to the infiltrated leaves. The region of amplification included the inserted foreign 

gene as well as a part of ORF2. The RT-PCR products were visualised on an agarose gel (Figure 

16) and the expected amplicons of about 200 bp for GVA118-D4E1 (lane 1) and 300 bp for 

GVA118-Vv-AMP1 (lane 3) could be detected. The plants infected with the control viral 

construct pBinSN-GVA118-GUS did not show the expected amplicon of 2070 bp (lane 5). None 

of the negative control reactions (even numbered lanes) yielded any products. 
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Figure 16: Agarose gel electrophoresis of RT-PCR products used to determine the systemic spread of 

viral vectors containing foreign gene inserts. Lane 1: GVA118-D4E1, lane 3: GVA118-Vv-AMP1, lane 

5: GVA118-GUS, lanes 2, 4, and 6: Water negative controls. 

 

4.1.2 Foreign protein expression by viral expression vectors  

Both grapevine and N. benthamiana plants were subjected to a GUS expression assay after 

infiltration with pBinSN-GVA118-GUS, using 35S:GUSi as positive control. This was done to 

verify that the inserted foreign gene did not disrupt the vector and to evaluate foreign gene 

expression in the respective leaf tissues. The blue colouration of GUS substrate in the leaves as a 

result of GUS expression, as it was observed in the plants, are shown in Figure 17. Plants 

infiltrated with 35S:GUSi showed GUS expression in almost 100% of the infiltrated tissue. The 

GUS expression was also observed on N. benthamiana leaves infiltrated with pBinSN-GVA118-

GUS. Only small spots of GUS-staining could be detected in grapevine leaves when infiltrated 

with pBinSN-GVA118-GUS. These spots were visualised under a microscope (Figure 17) and 

seemed to be only detectable at leaf veins. Leaves of the negative control plants, not infiltrated 

with either of the GUS expressing vectors, did not show any blue areas of GUS expression. Two 

to three leaves were infiltrated per construct and showed similar degrees of expression. 

 

    1        2         3       4          5         6 
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Figure 17: Photographs showing GUS expression in Nicotiana benthamiana (A-C) and Vitis vinifera (D-

F) leaves at 6 dpi. The negative control leaves (A and D) show no GUS expression. All the leaves 

infiltrated with either the 35S:GUSi (B and E) or pBinSN-GVA118-GUS (C and F) show GUS 

expression. Visualised under 100 x magnification: (G) Negative control V. vinifera leaf; (H) GUS 

expression in a V. vinifera leaf infiltrated with pBinSN-GVA118-GUS. 

 

Vitis vinifera and N. benthamiana were used to test the expression of GFP from the recombinant 

virus GVA118-GFP. Microscopic analysis of N. benthamiana leaves infiltrated with 

pBinSNGVA118-GFP was performed and showed single cells expressing GFP (Figure 18). No 

GFP expression was observed in leaves of V. vinifera plants infiltrated with this viral construct, 

nor in uninfiltrated plants which served as negative control. 
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Figure 18: GFP expression in Nicotiana benthamiana epidermis cells infiltrated with pBinSNGVA118-

GFP as seen under a microscope. Bar indicate 50 m. 

 

A GUS assay was performed on leaves acropetal to the leaves infiltrated with pBinSN-GVA118-

GUS in order to illustrate the systemic movement of the virus, and also whether it was still 

actively expressing the foreign protein. The presence of the recombinant virus could be detected 

by GUS expression 17 dpi in leaves acropetal to in infiltrated ones (Figure 19). The GUS 

expression was associated with the leaf veins, which confirmed systemic spread of GVA, 

containing a stably integrated and functional GUSi gene in its genome. 

 

 

Figure 19: Nicotiana benthamiana leaves that were used for determining systemic GUS expression from 

GVA118-GUS at 17 dpi. A) A leaf acropetal to pBinSN-GVA118-GUS infiltrated leaves, showing GUS 

expression associated with the vascular tissue. B) A leaf of an uninfiltrated negative control plant 

showing no GUS expression. 
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4.1.3 Testing of viral AMP expression 

Western blot analysis was performed on crude protein extracts from N. benthamiana leaves, 

infiltrated with pBinSN-GVA118-VvAMP1, to test for the expression of Vv-AMP1 at 6 dpi. 

Crude protein extracts of N. benthamiana leaves infiltrated with pBinSN-GVA118-D4E1, served 

as negative control. All samples, including the negative control, displayed the same pattern of 

antibody binding to the membrane (Figure 20). Four attempts were made to detect Vv-AMP1 in 

these plants, but all failed. Since no antibodies were available for D4E1, no blots to test its 

expression were performed. 

 

 

Figure 20: Western blot results for Vv-AMP1 expression in Nicotiana benthamiana plants infiltrated 

with pBinSN-GVA118-VvAMP1 and negative control plant infiltrated with pBinSN-GVA118-D4E1. 

 

4.2 Tagging of pathogens of interest 

The pathogens of interest needed to be tagged with a reporter gene in order to quantify them in 

planta. The tagging methods could only be applied to A. vitis and X. ampelinus as it is not 

possible to culture phytoplasmas in an artificial environment. 

4.2.1  Verification of A. vitis and X. ampelinus cultures 

To verify the identity of the bacteria, PCRs were performed on bacterial colonies growing on 

solid media. The amplicons were cloned and sequenced. The sequences were analysed with the 

Basic Local Alignment Search Tool. The A. vitis amplicon aligned to the virD2 gene of A. vitis 

(see Addendum). The X. ampelinus amplicon aligned to the 16S ribosomal RNA region of X. 

ampelinus (see Addendum). 

10 kDa 

Vv-AMP1 Control 
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4.2.2  Biotest to determine the tumorigenic nature of A. vitis strain A39  

To determine whether the A. vitis strain, later used for AMP activity screening, is tumorigenic 

and therefore of agricultural importance, its ability to induce tumours in grapevine was 

investigated. The V. vinifera cv. Sultana plantlet inoculated with an A. vitis suspension on a 

bruised stem developed a tumour 8 weeks after infection at the site of inoculation (Figure 21), 

while the control plant inoculated with dH2O did not develop any tumours. 

 

 

Figure 21: Vitis vinifera cv. Sultana plant showing crown gall development as a result of A. vitis 

inoculation at 56 dpi. 

 

4.2.3  Bacterial tagging with reporter genes 

Agrobacterium vitis and X. ampelinus cells were submitted to various transposon-based tagging 

methods in an attempt to label them with a reporter gene to facilitate quantification by the Ivis 

system. These results are summarised in Table 4. In most tagging attempts of A. vitis and X. 

ampelinus no colonies developed on selective plates after electroporation or chemical 

transformation. When colonies developed, no luminescence or GFP emission could be observed. 

The antibiotics tested for selection during bacterial mating were not effective in discriminating 

between the donor and the recipient bacteria. When bacterial mating was however applied to A. 

vitis cells, without the initial use of antibiotic selection, colonies developed that showed GFP 

expression when visualised under a microscope (Figure 22). They were confirmed to be A. vitis 

by colony-PCR. The expressed GFP was only visible under a microscope, but not by a hand held 

UV lamp, and was therefore inadequate for quantification by means of the Ivis system. As a 

result of the limited expression of GFP in A. vitis and the failure to tag X. ampelinus, 

quantification was performed by means of qPCR. 
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Table 4: Results from bacterial tagging attempts. The methods used and the plasmids involved are shown 

for each bacteria. 

Bacteria Method Plasmids Result 

X. ampelinus Electroporation pUTGm-PA1/04/03CDABE(lux) Unsuccessful 

  pUTKmGfp Unsuccessful 

    

A. vitis Electroporation pUTGm-PA1/04/03CDABE(lux) Unsuccessful 

  pUTKmGfp Unsuccessful 

  pBK-miniTn7-gfp1; pUX-BF13 Unsuccessful 

  miniTn7(Gm)PrmB1-gfp-a; pUX-BF13 Unsuccessful 

    

 Electroporation after RCA pUTGm-PA1/04/03CDABE(lux) Unsuccessful 

  pUTKmGfp Unsuccessful 

    

 Chemical transformation pUTGm-PA1/04/03CDABE(lux) Unsuccessful 

  pUTKmGfp Unsuccessful 

  pBK-miniTn7-gfp1; pUX-BF13 Unsuccessful 

  miniTn7(Gm)PrmB1-gfp-a; pUX-BF13 Unsuccessful 

    

 Bacterial mating pUTGm-PA1/04/03CDABE(lux); pRK600 Unsuccessful 

  pUTKmGfp; pRK600 Successful* 

  pBK-miniTn7-gfp1; pUX-BF13; pRK600 Unsuccessful 

  miniTn7(Gm)PrmB1-gfp-a; pUX-BF13; pRK600 Successful* 

* GFP expression visible under a microscope 

 

 

 

Figure 22: Agrobacterium vitis cells showing GFP fluorescence when exposed to a UV light and 

visualised under a microscope. 
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4.3 Screening of the in vitro activity of D4E1 against the 

pathogens of interest 

To give an indication of the effect of the AMPs against the grapevine pathogens of interest, A. 

vitis and X. ampelinus were used to monitor the in vitro activity of D4E1. Vv-AMP1 peptide was 

not available in sufficient amounts, and was therefore excluded from these tests. A D4E1 

dilution series was screened in triplicate against the two pathogens, the cfu were counted and the 

average cfu for each D4E1 concentration calculated. Aster yellows phytoplasma could not be 

included in this assay due to its inability to be cultured in vitro. 

After a first round of in vitro peptide screening a reduction of cfu was observed for A. vitis and 

X. ampelinus when D4E1 concentrations from 10 to 20 μg/ml were used. To refine these results, 

D4E1 concentrations of 20, 18, 16, 14, 12 and 10 μg/ml were applied following the same 

procedure. For A. vitis, no cfu could be detected on any of the plates after treatment with either 

D4E1, at concentrations between 20-18 μg/ml, or with kanamycin (50 μg/ml). On the negative 

control plates, without D4E1 treatment, more than one thousand cfu were observed, while there 

was a reduction in average number of cfu for D4E1 concentration from 10 μg/ml to 16 μg/ml 

(Figure 23). 

Similar to A. vitis, a reduction of X. ampelinus cfu after D4E1 treatment was found. An average 

number of below 30 cfu per plate at D4E1 concentrations between 14 and 20 μg/ml were found. 

At D4E1 concentrations of 12 and 10 μg/ml, respectively, the average number of cfu observed 

was more than a thousand colonies per plate (Figure 23). The untreated controls showed more 

than a thousand cfu while on positive controls no cfu could be observed. D4E1 had no effect on 

X. ampelinus at peptide concentrations of 12 μg/ml and lower. 
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Figure 23: Bar graph showing the average number of cfu per 100 μl of Agrobacterium vitis or Xylophilus 

ampelinus liquid culture on solid media after treatment with D4E1, with concentrations from 10 μg/ml to 

20 μg/ml. Kanamycin treated liquid cultures served as positive control and untreated cultures (0 μg/ml) as 

negative control. Error bars indicate the standard error of means. 

 

The lowest concentration at which a complete inhibitory effect of D4E1 against A. vitis could be 

observed after one hour of exposure was 18 μg/ml (6.89 μM). A decrease in the average number, 

from 68 to 3 cfu, was observed for D4E1 treatment concentrations from 10 μg/ml to 16 μg/ml. 

This decrease in cfu was not statistically significant (p = 0.05414). Although a complete 

inhibition of X. ampelinus growth was not detected, the low number of cfu at D4E1 

concentrations between 20 and 14 μg/ml is indicative of an inhibitory effect, by visual 

inspection, at these concentrations. The decrease in cfu, observed at D4E1 concentrations 

between 12 and 14 μg/ml, points toward an inhibitory effect of D4E1 against X. ampelinus from 

concentrations of 14 μg/ml (5.36 μM) and higher. This decrease in X. ampelinus cfu between 12 

and 14 μg/ml was statistically significant (p = 5.237e
-6

). The same applied for the decrease in A. 

vitis cfu between 0 and 10 μg/ml (p = 5.659e
-6

). 

> 
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4.4 Screening of the in planta activity of AMPs against the 

pathogens of interest 

A 35S transient expression system was used to express the AMPs D4E1 and Vv-AMP1 in in 

vitro cultured V. vinifera plantlets to evaluate the efficiency of a transient expression system for 

in planta AMP activity screening. Bacterial titres in plants inoculated with either A. vitis or X. 

ampelinus were determined by qPCR to examine the inhibitory effect of the AMPs on these 

bacteria. The AMP expressing viral vectors were not used for these purposes as their foreign 

gene expression was found to be limited in V. vinifera to the leaf phloem tissue (see section 

4.1.2). The in planta effect of the AMPs was also not screened against aster yellows 

phytoplasma in this study as no suitable phytoplasma infected in vitro plant material could be 

established. 

4.4.1  Establishment of qPCR protocols for pathogen quantification 

Real-time PCR protocols were optimised for the detection and quantification of A. vitis, X. 

ampelinus and aster yellows phytoplasma. The optimisation involved the identification or design 

of primers specific to the pathogens or the host plant, optimisation of qPCR conditions and the 

construction of standard curves to determine the efficiency of the qPCR reaction. Since no 

phytoplasma infected plants were available for the transient AMP expression procedure, only the 

reaction efficiencies of the qPCR protocols for A. vitis, X. ampelinus and V. vinifera 

quantification could be determined. 

qPCR optimisation and efficiency determination for Vitis vinifera quantification 

Two candidate reference genes for V. vinifera DNA quantification were used, actin and EF1-α. 

The actin-specific primers amplified a DNA fragment of 166 bp, while the EF1-α specific 

primers amplified a DNA fragment of 163 bp. These amplicons were slightly larger than the 

original amplicons obtained by Reid et al. (2006), who used mRNA as template instead of DNA 

as used in this study. Sequence analysis indicated the presence of an intron in the region 

amplified by the actin-specific primers. During the optimisation of these primers no non-specific 

amplification was found, and the actin primer set was chosen for use as reference gene in the 

subsequent qPCRs. The PCR product could clearly be distinguished from a product resulting 

from RNA contamination. 

The efficiency of qPCR for quantification of grapevine DNA in a sample was determined by a 

standard curve established for the actin reference gene from a dilution series of total extracted 

DNA (Figure 24). The series ranged from 24 ng to 0.0384 ng of total DNA. When the Ct values 
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(obtained from the amplification profiles) were plotted against the logarithm of their relative 

concentrations, the efficiency (E) of the curve was 1.04 (E = 10
1/-M

-1). With a slope (M) of -

3.2372 and a relative regression correlation coefficient (R
2
) value of 0.9975, the reactions proved 

to be sufficient to be used in further quantifications as it was highly reproducible and the amount 

of DNA doubled with each subsequent cycle. 
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Figure 24: Standard curve for the relative quantification of the Vitis vinifera actin gene using the primers 

Vv_Actin_F and Vv_Actin_R. A) Amplification profile of the qPCR reactions of a dilution series of total 

DNA. B) The standard curve resulting from the threshold (Ct) values of each triplicate plotted against the 

logarithm of the relative concentration of the sample. 
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qPCR optimisation and efficiency determination for Xylophilus ampelinus quantification 

Different primers were analysed for their efficiency in a X. ampelinus qPCR-based quantification 

procedure. The pairs Xamp_14F/Xamp_104R, Xamp1.3A/Xamp1.3B and Xamp2.0/Xamp2.0B, 

all amplifying a region of the 16S rRNA gene of X. ampelinus, were first tested in conventional 

PCR. All three primer sets showed non-specific amplification when used in a SYBR Green-

based qPCR system. The amplification reactions could not be optimised by changes in annealing 

temperatures and reaction compositions and therefore these primer sets were excluded from 

further experiments. 

The primer pair S3 and S4 was optimised for X. ampelinus quantification. These primers did not 

show any non-specific amplification after optimisation. They amplified a 277 bp DNA product 

in positive samples, and because of their specificity they were used in further reactions for X. 

ampelinus quantification by means of qPCR. 

To determine the efficiency of the primers S3 and S4 in qPCR, a standard curve was established 

for X. ampelinus DNA amplification using a dilution series from 24 ng to 0.0384 ng of total 

extracted DNA, containing both grapevine and bacterial DNA. The Ct values were plotted on a 

graph against the logarithm of their relative concentrations (Figure 25). The PCR efficiency of 

the standard curve was 0.97, since the slope of the trendline was -3.387. The reaction efficiency 

of nearly 100% indicated a near doubling of DNA product with every cycle, as expected for a 

highly efficient PCR. The R
2
 value for the curve was 0.9984. 
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Figure 25: Standard curve for the real-time quantification of Xylophilus ampelinus titres in Vitis vinifera 

using the primers S3 and S4. A) Amplification profile of the qPCR reactions of a dilution series of total 

DNA. B) The standard curve resulting from the threshold (Ct) values of each triplicate plotted against the 

logarithm of the relative concentration of the sample. 

qPCR optimisation and efficiency determination for Agrobacterium vitis quantification 

For A. vitis DNA amplification, the primer pair VIRD62F23 and VIRD62R135 was optimised. 

These primers amplified a 113 bp product and showed no amplification product in any of the 

negative control samples. In order to determine the qPCR efficiency, a DNA dilution series from 

60 ng to 0.096 ng of total extracted DNA was used to set up a standard curve for A. vitis 

amplification. The standard curve had a slope of -3.18 which describes an approximate doubling 

of DNA after every amplification cycle (Figure 26). The efficiency was 1.06 and the R
2
 value for 
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the curve was 0.9956. Since these reactions were almost 100% reproducible, they were sufficient 

to use in A. vitis quantification. 

 

Standard Curve Amplification Profile

for A . vitis

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Cycle

F
lu

o
re

s
c

e
n

c
e

 

 

Standard Curve for A . vitis  Quantification

R2 = 0.9956

M = -3.1801

Efficiency = 1.06 

8

10

12

14

16

18

-1.5 -1 -0.5 0 0.5 1 1.5 2

Log Relative Concentration

C
t

 

Figure 26: Standard curve for the real-time quantification of Agrobacterium vitis titres in Vitis vinifera 

using the primers VIRD62F23 and VIRD62R135. A) Amplification profile of the qPCR reactions of a 

dilution series of total DNA. B) The standard curve resulting from the threshold (Ct) values of each 

triplicate plotted against the logarithm of the relative concentration of the sample. 

Aster yellows phytoplasma qPCR optimisation 

The first set of primers used for aster yellows phytoplasma qPCR optimisation was AAY_F and 

AAY_R. These primers were designed to produce an amplicon of 102 bp by means of a 

TaqMan®-based reaction, which relies on the additional use of a probe. The primers were used 
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in a SYBR Green-based system in this study. In the absence of the probe, PCRs using these 

primers produced non-specific amplicons of about of the same size in negative samples, and 

resulted in the elimination of these primers from aster yellows phytoplasma quantification in this 

study. 

The primers AY_F and AY_R that were subsequently designed for a SYBR Green-based 

quantification system, amplified a 172 bp region of the 16S rRNA gene sequence of AY 

phytoplasma. No non-specific amplification was observed and positive samples were confirmed 

by nested-PCR. To determine the detection threshold for these primers, in comparison to 

conventional nested-PCR, both methods were used to screen a dilution series of a phytoplasma 

positive sample. Results of this comparison are shown in Figure 27. 
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Figure 27: Comparison of the sensitivity of qPCR vs. standard nested-PCR to detect aster yellows 

phytoplasma in a dilution series. A) Real-time PCR amplification profiles and (B) agarose gel 

electrophoresis of nested-PCR products. Reaction 1) 10
0
 dilution; Reaction 2) 10

-1
 dilution; Reaction 3) 
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-2

 dilution; Reaction 4) 10
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 dilution; Reactions 5-10) 10
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The qPCRs were able to detect the aster yellows phytoplasma up to a dilution of 10
-3

 (reaction 

4). The nested-PCR reaction only detected the aster yellows phytoplasma in reactions 1 and 2, up 

to a dilution of 10
-1

.  

4.4.2 Screening of the in planta efficacy of D4E1 and Vv-AMP1 against X. 

ampelinus and A. vitis 

The in planta effect of the AMPs D4E1 and Vv-AMP1 was evaluated by comparing the bacterial 

titres in one treatment group relative to that of another. Each treatment group consisted of 5 

grapevine plants either infiltrated with an AMP 35S expression vector (pBin61S-D4E1 or 

pBin61S-VvAMP1) or by the empty binary vector, pBin61S (negative control). The bacterial 

titres were normalised to the amount of plant DNA in an individual sample and a relative group-

wise comparison was performed by REST. The bacterial DNA served as the gene of interest 

(GOI) and the V. vinifera actin gene as the reference gene. Since the AMP Vv-AMP1 was not 

available in a soluble peptide form to be used in the in vitro plate tests, the transient expression 

assay allowed for the first time during this study a screening of the effect of Vv-AMP1 against 

any of the grapevine pathogens. The results for the qPCR as well as the REST analysis are 

presented below. 

Screening of the efficacy of D4E1 against X. ampelinus 

Real-time PCR analysis for relative bacterial quantification was performed in 2 separate runs to 

determine the effect of D4E1 on X. ampelinus in grapevine. Sample 3 of the D4E1-treated 

samples was included in both runs to verify the reproducibility of the reactions. Figure 28A 

shows the amplification profiles (fluorescence against the cycle numbers) of samples 1-3 of the 

D4E1 treatment group (pBin61S-D4E1-infiltrated) and samples 4 and 5 of the control group 

(empty pBin61S infiltrated), amplified using the X. ampelinus-specific primers. The 

amplification profiles of samples 3-5 of the D4E1 treatment group and 1-3 of the control group 

are shown in Figure 28B. The control group is indicated in red and the D4E1-treated group in 

blue. 
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Figure 28: Amplification profiles, using the X. ampelinus-specific primers S3 and S4, on V. vinifera 

samples inoculated with X. ampelinus. Samples exposed to D4E1 after infiltration with pBin61S-D4E1 

and control samples infiltrated with the empty pBin61S vector are shown. A) First run which included 

plants 1-3 of the D4E1 treatment group and plants 4 and 5 of the control group. B) Second run which 

include plants 3-5 of the D4E1 treatment group and plants 1-3 of the control group. 

 

The amplification profiles for the X. ampelinus DNA (GOI) showed a clear distinction between 

the cycles at which the fluorescence of the control samples rose above the threshold (background 

fluorescence) and that of the treated samples. The data was normalised with the reference gene 

(actin) amplification to eliminate differences in total DNA in the reactions. Table 5 lists the Ct 

values of each of the samples for their GOI and their reference gene. These Ct values were then 

analysed by the REST programme, along with the efficiencies of their respective standard 

curves, to determine the X. ampelinus concentration in the D4E1 treated plants relative to those 

B 

A 

- Treated - Control 

 

- Control 

 

- Treated 

D4E1 vs. X. ampelinus Run 1 

D4E1 vs. X. ampelinus Run 2 
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in the untreated plants. For sample 3 of the treatment group the Ct values obtained in the second 

run was chosen because the ratio of the GOI to the reference gene Ct value of the two runs were 

almost the same. 

 

Table 5: Ct values obtained from qPCR profiles of Vitis vinifera plants infected with Xylophilus 

ampelinus that were treated with D4E1 (pBin61S-D4E1 infiltrated) and untreated (empty pBin61S 

infiltrated) control plants. The bacterial DNA is represented by the gene of interest and the DNA of the 

plant internal control by the reference gene. 

Sample GOI 
Reference 

Gene 

1 15.62 18.08 

2 15.06 18.00 

 3* 15.86 18.79 

4 17.02 18.37 

5 17.34 18.81 

Control 1 13.02 18.51 

Control 2 13.29 19.31 

Control 3 14.60 18.39 

Control 4 14.90 18.37 

Control 5 12.23 17.25 

*Ct value from the second run used 

 

When the Ct values were processed with the REST programme the average concentration of the 

GOI from X. ampelinus in the treatment group was found to be 82% lower than the average 

concentration of the control group. The reduction of detectable GOI indicated a 5.5 times 

reduction [p(H1) = 0.004] in X. ampelinus concentrations as a result of D4E1 exposure. This 

indicates an effect of D4E1 expressed by the 35S vector against X. ampelinus in grapevine tissue. 

No symptoms developed on any of the V. vinifera plantlets inoculated with X. ampelinus even at 

21 dpi. 

Screening of the efficacy of Vv-AMP1 against X. ampelinus 

The X. ampelinus qPCR amplification profiles of samples exposed to Vv-AMP1, after pBin61S-

VvAMP1 infiltration (indicated in blue), and control samples, infiltrated with an empty pBin61S 

vector (indicated in red) are shown in Figure 29. The profiles were consistent for the duplicates 

of each sample and all the amplifications were performed in a single run. 
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Figure 29: Amplification profiles, using the X. ampelinus-specific primers S3 and S4, on V. vinifera 

samples infected with X. ampelinus. Samples exposed to Vv-AMP1 after infiltration with pBin61S-

VvAMP1 and control samples infiltrated with the empty pBin61S vector are shown. 

 

The cycles in the X. ampelinus GOI amplification at which the control samples‟ fluorescence 

increased above the threshold could not be clearly distinguished from those of samples exposed 

to Vv-AMP1. The GOI Ct values were normalised with those of their respective reference genes 

when incorporated into the REST programme along with the efficiencies of the standard curves 

for X. ampelinus and actin. The Ct values obtained from the amplification run by means of the 

Rotor Gene software for each sample‟s GOI and reference gene are listed in Table 6. REST 

results showed that there was no significant difference between the average concentration of X. 

ampelinus in V. vinifera plants that were infiltrated with the Vv-AMP1 35S expression vector 

and that of the plants that were infiltrated with an empty 35S expression vector. Again, no 

symptom development was observed on any of the V. vinifera plantlets. 

 

 

 

- Treated - Control 

 

Vv-AMP1 vs. X. ampelinus 
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Table 6: Ct values obtained from qPCR profiles of Vitis vinifera plants infected with Xylophilus 

ampelinus that were treated with Vv-AMP1 (pBin61S-VvAMP1 infiltrated) and untreated (empty 

pBin61S infiltrated) control plants. The bacterial DNA is represented by the gene of interest and the DNA 

of the plant internal control by the reference gene. 

Sample GOI 
Reference 

Gene 

1 15.55 18.18 

2 15.88 18.79 

3 17.57 18.84 

4 14.89 17.95 

5 15.60 18.16 

Control 1 15.74 18.09 

Control 2 13.94 18.25 

Control 3 14.11 17.91 

Control 4 14.85 19.29 

Control 5 14.90 18.00 

 

Screening of the efficacy of D4E1 against A. vitis 

Part of optimising the AMP screening procedure was testing different methods of plant 

inoculation with A. vitis. This was achieved by comparing inoculation with A. vitis suspensions 

of different concentrations and varying the period after inoculation and before DNA extraction. 

Vacuum-infiltration of grapevine tissue culture plants with an A. vitis suspension with an OD600 

as low as 0.01 had such a damaging effect on the plant that they died 5 days after inoculation. 

Real-time PCR data showed no pattern of distinction between the D4E1 treated (pBin61S-D4E1 

infiltrated) and untreated (empty pBin61S infiltrated) samples at 5 dpi using an inoculum 

concentration of OD600 = 0.01. 

The effect of D4E1 treatment against A. vitis was screened in planta with two different A. vitis 

suspension concentrations and at two different time points. It was first screened in plants dipped 

in an A. vitis suspension with an OD600 of 0.1 and measuring the bacterial titres in planta after 4 

days. Three of the five untreated control plants developed dark necrotic lesions at the sites where 

leaves were previously cut with a scalpel (Figure 30). No difference in bacterial concentrations 

was observed using this method. 
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Figure 30: In vitro cultured Vitis vinifera cv. Sultana plants (4 dpi) inoculated with Agrobacterium vitis 

by dipping in an A. vitis suspension. A) Leaf showing dark necrotic lesions. B) Symptomless leaves. 

 

Decreasing the concentration of the A. vitis inoculum, to an OD600 of 0.05, increased the period 

of survival of the plants (up to 7 days). A qPCR run of samples of different infection periods 

showed an increase in A. vitis concentrations from 7 to 10 days, after plants were infected with 

the bacteria. The titres did not reach a plateau before day 7 of incubation. From day 7 onwards 

the health of the plants started decreasing rapidly. Using the optimised conditions qPCRs were 

performed, for A. vitis relative quantification, similar to that of X. ampelinus. The A. vitis qPCR 

amplification profiles of samples exposed to D4E1 (indicated in blue) and control samples that 

were not exposed to D4E1 (indicated in red) are shown in Figure 31. The amplification profiles 

were consistent for the duplicates of each sample and all the amplifications were performed in 

the same run. 

 

A B 
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Figure 31: Amplification profiles using the A. vitis specific primers, VIRD62F23 and VIRD62R135, on 

V. vinifera samples infected with A. vitis. Samples exposed to D4E1 after infiltration with pBin61S-D4E1 

and control samples infiltrated with an empty pBin61S vector are shown. 

 

Agrobacterium vitis amplification profiles showed a clear distinction between the cycles at 

which the control samples‟ fluorescence increased above the threshold and those of 3 out of the 5 

samples exposed to D4E1. The Ct values obtained from the amplification run by means of the 

Rotor Gene software, for each sample‟s GOI and reference gene, are listed in Table 7. The Ct 

values of all the samples were normalised with their respective reference gene Ct values by 

means of the REST programme. Between the D4E1 treatment group and control group, REST 

analysis indicated that there was no statistical difference in the average A. vitis concentrations, 

despite the fact that 3 of the 5 treated plants (samples 2, 4 and 5) showed definite lower A. vitis 

concentrations. REST indicated that the average bacterial concentration of these 3 plants were 

significantly lower than concentration of A. vitis in the control group. 
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Table 7: Ct values obtained from qPCR profiles of Vitis vinifera plants infected with Agrobacterium vitis 

that were treated with D4E1 (pBin61S-D4E1 infiltrated) and untreated (empty pBin61S infiltrated) 

control plants. The bacterial DNA is represented by the gene of interest and the DNA of the plant internal 

control by the reference gene. 

Sample GOI 
Reference 

Gene 

1 13.22 19.22 

2 16.76 17.82 

3 14.24 18.91 

4 16.85 18.98 

5 17.53 17.88 

Control 1 12.22 18.33 

Control 2 14.83 18.94 

Control 3 12.84 18.02 

Control 4 11.83 17.93 

Control 5 13.94 19.51 

 

Screening of the efficacy of Vv-AMP1 against A. vitis 

The in planta activity of Vv-AMP1 was screened against A. vitis in the same way and at the 

same time D4E1 was screened against it, making the activity of the two peptides comparable 

using the data set. The same plants infiltrated with the empty pBin61S binary vector were used 

as negative controls, while plants infiltrated with pBin61S-VvAMP1 served as the experimental 

plants. The A. vitis qPCR amplification profiles of samples exposed to Vv-AMP1 (indicated in 

blue) and control samples that were not exposed to Vv-AMP1 (indicated in red) were consistent 

for the duplicates of each sample and all the amplifications could be perform in a single run. 

Figure 32 shows the A. vitis amplification profiles using the primers VIRD62F23 and 

VIRD62R135. 
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Figure 32: Amplification profiles using the A. vitis specific primers, VIRD62F23 and VIRD62R135, on 

V. vinifera samples infected with A. vitis. Samples exposed to Vv-AMP1 after infiltration with pBin61S-

VvAMP1 and control samples infiltrated with an empty pBin61S vector are shown. 

 

The amplification profiles showed no distinction between the Vv-AMP1 treatment group and 

control group regarding the bacterial titres. The Ct values obtained from both the A. vitis and the 

reference gene amplification profiles (listed in Table 8) were, along with the efficiencies of the 

two respective standard curves, incorporated into REST. REST analysis indicated that there was 

no difference between the concentration of A. vitis in the V. vinifera plants that were infiltrated 

with pBin61S-VvAMP1 and the A. vitis concentration in the untreated plants. 

Table 8: Ct values obtained from qPCR profiles of Vitis vinifera plants infected with Agrobacterium vitis 

that were treated with Vv-AMP1 (infiltrated with pBin61S-VvAMP1) and untreated (empty pBin61S 

infiltrated) control plants. The bacterial DNA is represented by the gene of interest and the DNA of the 

plant internal control by the reference gene. 

Sample GOI 
Reference 

Gene 

1 13.19 18.18 

2 13.13 19.14 

3 12.18 19.08 

4 12.13 18.13 

5 12.12 18.31 

Control 1 12.22 18.33 

Control 2 14.83 18.94 

Control 3 12.84 18.02 

Control 4 11.83 17.93 

Control 5 13.94 19.51 
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Comparison between the efficacy of D4E1 and Vv-AMP1 against A. vitis 

On account of the simultaneously activity screening of D4E1 along with the Vv-AMP1 activity 

screening against A. vitis in planta the difference in effect of the two peptides on A. vitis titres 

could also be compared. The qPCR amplification runs, for the two different AMP treated groups, 

are shown in Figure 33. The Vv-AMP1 treatment group is represented by the red curves while 

the D4E1 treatment group is represented by the blue curves. 
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Figure 33: Amplification profiles using the A. vitis specific primers, VIRD62F23 and VIRD62R135, on 

V. vinifera samples infected with A. vitis. Samples exposed to D4E1, after pBin61S-D4E1 infiltration, and 

samples that were exposed to Vv-AMP1, after pBin61S-VvAMP1 infiltration, are shown. 

 

A distinction could be made between the cycles in which the profiles of the D4E1 treated 

samples rose above the threshold and the cycle at which the Vv-AMP1 samples rose above the 

threshold for the GOI amplification run. These profiles could, however, only be compared after 

they were normalised by their respective reference gene amplification profiles to determine 

whether the actual bacterial titres in the plants differed and not only the amount of the bacterial 

DNA that was inserted into the qPCR reactions. The Ct values obtained for the different groups 

from their GOI and reference gene amplification profiles by the Rotor Gene software are listed in 

Table 9. These Ct values were analysed in the REST programme, incorporating the A. vitis and 

actin standard curve reaction efficiencies. 

- Vv-AMP1 treated 

 

- D4E1 treated 

D4E1 and Vv-AMP1 vs. A. vitis 
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Table 9: Ct values obtained from qPCR profiles of Vitis vinifera plants infected with Agrobacterium vitis 

that were treated with D4E1 (infiltrated with pBin61S-D4E1) and that has been treated with Vv-AMP1 

(infiltrated with pBin61S-VvAMP1). The bacterial DNA is represented by the gene of interest and the 

DNA of the plant internal control by the reference gene. 

Sample GOI 
Reference 

Gene 

D4E1 1 13.22 19.22 

D4E1 2 16.76 17.82 

D4E1 3 14.24 18.91 

D4E1 4 16.85 18.98 

D4E1 5 17.53 17.88 

Vv-AMP1 1 13.19 18.18 

Vv-AMP1 2 13.13 19.14 

Vv-AMP1 3 12.18 19.08 

Vv-AMP1 4 12.13 18.13 

Vv-AMP1 5 12.12 18.31 

 

REST analysis indicated that the average concentration of the A. vitis bacteria in the plants 

treated with D4E1 was found to be 9 times less [p(H1) = 0.01] than the average concentration of 

the A. vitis bacteria in the plants treated with Vv-AMP1. This showed the definite reduction in A. 

vitis concentrations as a result of D4E1 with comparison to the titres in plants exposed to Vv-

AMP1, further indicating that D4E1 but not VvAMP1 exhibits a reducing effect on A. vitis titres 

in grapevine. 

4.4.3  Screening of the in planta efficacy of D4E1 and Vv-AMP1 against aster 

yellows phytoplasma 

As phytoplasma can‟t be cultured in vitro, the only means of evaluating the activity of AMPs 

against phytoplasma would be to perform the testing in the host plant. Phytoplasma infected in 

vitro grapevine plantlets were intended for use in D4E1 and Vv-AMP1 activity screening. The 

transient expression system was also tested on another aster yellows phytoplasma host, 

periwinkle (C. roseus).  

Establishing plant cultures infected with phytoplasma from field material and in vitro 

grafting  

In vitro cultured V. vinifera plantlets are easily agro-infiltrated and has proven to be suitable for 

foreign gene expression by means of a transient expression vector system. For in planta AMP 

activity screening against aster yellows phytoplasma in grapevine it was necessary to establish 

such phytoplasma infected plantlets from infected field material. Sterilisation procedures were 
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therefore performed on cane material collected from phytoplasma infected vines. The sterilised 

canes (70) started to bud after two weeks of incubation. Shoot development was slow (Figure 34) 

and less than half of all incubated canes developed shoots. More than half of these canes 

developed fungal contamination, possible as a result of endophytic fungal infection of the 

grapevine material. When 15 of the uncontaminated shoots were transferred to low sugar MS 

media, fungal contamination developed after 3 days, subsequently leading to death of the shoot. 

 

 

Figure 34: Surface sterilised Vitis vinifera canes that has budded and are growing in perlite containing 

sterile water. A) Phytoplasma infected cane. B) Non-infected cane. 

 

Cuttings from the shoots on the above mentioned sterilised canes were micro-grafted onto sterile 

in vitro cultured V. vinifera plants. Fungal growth developed on these plants at the grafting site 

(Figure 35). Shortly after grafting, the plants died. Too little sterile material was available for 

further grafting experiments before the end of this study. 

 

 

Figure 35: A phytoplasma infected shoot, grafted onto a sterile in vitro cultured cane. Fungal 

contamination developed around the site of grafting. 
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Transient expression in Catharanthus roseus 

In an effort to develop an alternative AMP screening method against aster yellows phytoplasma, 

that did not require in vitro cultured plants infected with the pathogen, C. roseus was evaluated 

for its use to facilitate AMP expression. For that, C. roseus leaves were infiltrated with the 

35S:GUSi construct and evaluated for GUS expression at two time periods. The results for the 

first GUS expression assay performed on C. roseus at 3 (A-C) and 6 dpi (D-F) are shown in 

Figure 36. Uninfiltrated C. roseus leaves showing no GUS expression served as negative control. 

The 35S:GUSi infiltrated N. benthamiana leaves served as positive control and showed either an 

limited level of GUS expression (3 dpi), seen only in about 20% of the infiltrated area, or an 

elevated level of expression (6 dpi), covering the whole infiltrated area. GUS expression was 

only observed in C. roseus leaves at 6 dpi, and only at wounding sites made by a scalpel to allow 

infiltration in the vacuum-infiltration procedure. 

 

 

 

Figure 36: Results of the first GUS assay on C. roseus and N. benthamiana, 3 (A-C) and 6 dpi (D-F), to 

determine foreign gene expression in C. roseus. A) and D) C. roseus negative control, uninfiltrated leaves 

showing no GUS expression. B) and E) C. roseus leaves infiltrated with 35S:GUSi showing GUS 

expression (6 dpi). C) and F) N. benthamiana leaves infiltrated with 35S:GUSi, showing GUS expression. 

B C 

D E F 

C. roseus 3 dpi C. roseus 3 dpi N. benthamiana 3 dpi 

C. roseus 6 dpi C. roseus 6 dpi N. benthamiana 6 dpi 

A 
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The limited level of GUS expression, observed during the first GUS assay, was insufficient for 

AMP screening in C. roseus and further tests had to be performed to determine if another A. 

tumefaciens strain besides C58C1 (pCH32) will be more efficient in C. roseus. For this reason a 

second GUS expression assay was perform with A. tumefaciens strain EHA105. The results of 

the second GUS assay are illustrated in Figure 37. No GUS expression was observed in the 

negative uninfiltrated leaves. Catharanthus roseus leaves infiltrated with either C58C1 (pCH32 

+ 35S:GUSi) or EHA105 (35S:GUSi) showed only a limited level of GUS expression, seen only 

as small spots of expression mainly confined to areas cut by a scalpel to improve whole leaf 

inoculation. 

 

 

Figure 37: Results of the second GUS assay, to determine foreign gene expression in C. roseus. A) 

Leaves infiltrated with the 35S:GUSi containing A. tumefaciens strain C58C1 (pCH32). B) Leaves 

infiltrated with the 35S:GUSi containing A. tumefaciens strain EHA105. C) Negative control leaf, 

infiltrated with neither of the A. tumefaciens strains. 

 

The C. roseus leaves used in the first two assays were not young leaves. In order to determine 

whether the age of the leaves has a limiting influence, a third GUS assay was performed on 

leaves from 6 weeks old young plants (Figure 38). The area of detectable GUS expression in 

these younger leaves, which were not cut by a scalpel to facilitate easy infiltration, was as high 

as an estimated 20-30% of the whole leaf area (Figure 38A). Leaves that were cut before agro-

infiltration showed dark areas of GUS expression located around the wounding sites and also in 

unwounded tissue (Figure 38B). The leaf area showing GUS-expression on the plants was 

estimated 30-40% of the whole leaf area. The negative control showed no GUS expression 

(Figure 38C). 
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Figure 38: Results of the third GUS assay, to determine foreign gene expression in C. roseus. A) Leaves 

infiltrated with the 35S:GUSi containing A. tumefaciens strain C58C1 (pCH32) (uncut). B) Leaves 

infiltrated with the 35S:GUSi containing A. tumefaciens strain C58C1 (pCH32) (cut before agro-

infiltration). C) Negative control leaf, not infiltrated with 35S:GUSi expressing A. tumefaciens strains. 
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Chapter 5  

Discussion 

5.1 Construction of transient expression vectors 

The use of transient expression systems are a fast and effective way of expressing foreign genes 

in plants. These systems, both viral and non-viral, have been implemented in the past for, 

amongst others, RNA silencing in plants (Liu et al., 2002; Hellens et al., 2005; Naylor et al., 

2005; Bhaskar et al., 2009), the expression of proteins for disease resistance studies (Saitoh et 

al., 2001; Donini et al., 2005; Guan et al., 2010), gene functional analysis (Sawers et al., 2006) 

and vaccine production (Awram et al., 2002; Gleba et al., 2005). In this study transient 

expression systems were used for determining the in planta efficacy of AMPs against grapevine 

pathogens. To validate the systems, the effects of two AMPs, Vv-AMP1 and D4E1, were tested 

against A. vitis and X. ampelinus. For this purpose, four GVA118-based viral vectors, expressing 

GUS, GFP, Vv-AMP1 and D4E1 respectively, as well as two 35S expression vectors, expressing 

the peptides Vv-AMP1 and D4E1, were constructed.  

5.1.1 Testing the infectivity of viral constructs 

The infectivity of the viral vectors was confirmed by TPIAs of N. benthamiana leaf material 

infiltrated with the vectors. Symptom development in the leaves acropetal of the area of 

infiltration along with their leaf petiole-prints confirmed that the viruses were replicating and 

moving systematic. The systemic movement of the recombinant viruses is essential for studying 

the in planta effect of virus-expressed AMPs against grapevine phytoplasma. In grapevine, both 

GVA and phytoplasma are phloem-limited (Rosciglione et al., 1983; Minafra et al., 1997; Doi et 

al., 1967; Lee and Davis, 1992), and will therefore be in close proximity to each other leading to 

pathogen exposure to the viral expressed AMP. Phytoplasmas are mostly confined to the phloem 

sieve elements of their plant hosts (Christensen et al., 2004; Hogenhout et al., 2008), but have 

been found on rare occasions in the phloem parenchyma cells that are associated with the phloem 

sieve cells and vascular system (Sears and Klomparens, 1989; Sillers et al., 1987). GVA 

expresses its proteins in cells associated with the phloem (Minafra and Hadidi, 1994). The 
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bacterial pathogens A. vitis and X. ampelinus are however confined to the xylem cells of plants 

(Burr et al., 1998; Grall and Manceau, 2003) and are therefore spatially separated from AMPs 

expressed via a GVA-based vector.  

The fact that the viruses were replicating and spreading systemically through the plants did not 

imply that the foreign gene was still integrated in the virus genome. Some viral vectors become 

unstable and loose the inserted foreign gene (Gleba et al., 2007). The instability may result from 

insert size or the position of insertion (Dawson, 1989). The stable integration of the AMP genes 

into the recombinant virus genomes, in this study, was confirmed by RT-PCR. Although the RT-

PCR for the GVA-GUS recombinant virus failed, possibly due to the use of an inadequate 

primer, systemic GUS expression (see section 5.1.2) confirmed the stable integration of the GUS 

gene. The RT-PCR results along with the TPIA results illustrated that the inserted peptide gene 

sequences were stably integrated and did not disrupt the viral replication system at the 

integration sites used in this study. Infectious recombinant viruses therefore originated form the 

viral vectors. These results also correlated with previous studies that showed that the stable 

integration of the GUS gene into infectious GVA clones still allowed viral replication 

(Galiakparov et al., 2003; Haviv et al., 2006). 

5.1.2 Protein expression from control transient expression vectors 

Nicotiana benthamiana and V. vinifera plants were infiltrated with the viral vectors pBinSN-

GVA118-GUS and pBinSN-GVA118-GFP to confirm that expression of foreign genes by means 

of the GVA118 viral vector was possible. Successful expression was found for both control 

proteins in N. benthamiana. The expression levels and the sites of expression in V. vinifera, 

however, were limited. No GFP expression was observed and the GUS expression was only 

restricted to the veins of the infiltrated V. vinifera leaves. Although GVA naturally occurs in the 

grapevine phloem tissue, it was expected that all of the infiltrated tissue including the mesophyll 

cells would show GUS expression resulting from the recombinant virus, as was the case for the 

N. benthamiana leaves in this study as well as in previous studies (Galiakparov et al., 2003; 

Haviv et al., 2006). In a study on the phloem-limited beet mild yellowing virus infectious full-

length cDNA clone (BMYVfl), different plants that supported the local BMYVfl agro-infection, 

indicated the presence of the viral coat protein in the complete infiltrated mesophyll tissue of 

leaves (Stephan and Maiss, 2006). Various plants infiltrated with a viral expression vector, based 

on the phloem-limited tomato yellow leaf curl virus, also showed the expression of foreign genes 

in the mesophyll cells (Peretz et al., 2007). Taliansky et al. (2003) discussed the cell-to-cell 

movement properties of another phloem-limited virus, namely potato leafroll virus (PLRV). 

These viruses spread through the sieve elements and are able to occupy both the phloem 
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parenchyma and companion cells. They stated that the movement protein for this virus could 

only mediate viral movement between phloem cells. Although PLRV can replicate in the 

mesophyll cells of the plants (Taliansky et al., 2003), the systemic movement of movement 

protein mutated PLRV could not be accommodated in tomato plants but rather in the model plant 

N. benthamiana (Lee et al., 2002). This indicated the host-dependent method of viral movement 

between cells. It was suggested that these viruses not only lose their movement function in 

mesophyll cells, but also their ability to overcome RNA silencing. The host-dependent nature of 

viral vectors may therefore be responsible for the phloem-limited GUS expression observed in 

grapevine relative to that in N. benthamiana. The limited GUS expression in V. vinifera indicates 

that GVA does not replicate to detectable amounts outside the phloem tissue and therefore might 

be only of limited value for expression studies in grapevine when whole plant infiltrations are 

performed. 

Only single cells showed GFP fluorescence under a microscope in N. benthamiana leaves 

infiltrated with pBinSN-GVA118-GFP. These results correlated with the comparison between 

GUS and GFP expression in grapevine from 35S vectors in a previous study (Santos-Rosa et al., 

2008). The observation that GFP expression seems to be more limited than GUS expression may 

be deceptive. Santos-Rosa et al. (2008) stated that GUS assays are very sensitive, but could 

however give a misleading indication of the expression, as the substrate can diffuse within the 

tissue giving the impression of a wider distribution of GUS expression. The nature of GFP to be 

expressed only in single cells is therefore a better indication of the true expression of the foreign 

gene. They also stated that expression of the same low level as the GFP expression in their study 

by another transient expression system has shown to be sufficient for viral resistance studies. To 

overcome possible silencing effects of the foreign gene it can also be useful to co-infiltrate the 

plants with a virus silencing suppressor (Vionnet et al., 2003; Chiba et al., 2006). No silencing 

suppressors were used in this study as the testing of suppressors for grapevine is still on its way. 

Additionally, green plant material contains large amount of molecules that prevent UV light 

from reaching and exiting GFP molecules, while photosynthetic pigments have been shown to 

emit high levels of autofluorescence (Lang et al., 1991). These factors may reduce the amount of 

emitted GFP observed, and could explain the limited amount of GFP expression observed in this 

study. A recent study by Zhang et al. (2010) describes a method of enhancing the detection of 

GFP fluorescence in plants by eliminating chlorophyll and xanthophyll from transgenic tobacco 

leaves by means of virus-induced gene silencing of phytoene desaturase expression. This method 

circumvents the use of confocal laser scanning microscopy by making GFP visualisation 

possible by means of a stereomicroscope with GFP-specific filters. This method can in the future 
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also be applied to optimise the detection of GFP expression in plants through transient 

expression systems. 

The GUS expression in the veins of N. benthamiana leaves acropetal to the leaves infiltrated 

with pBinSN-GVA118-GUS, confirmed the systemic spread of the recombinant GVA118-GUS 

virus containing a stably integrated and functional GUSi gene in its genome. The viral 

association with the veins of uninfiltrated leaves was expected since the recombinant virus would 

spread through the vascular system of a plant. This was shown for another phloem-limited viral 

infectious clone, BMYVfl, which also showed the systemic movement of the virus to be 

associated with the vascular tissue of the plants (Stephan and Maiss, 2006). 

In N. benthamiana and V. vinifera plants infiltrated with the 35S:GUSi vector, GUS expression 

occurred across the complete infiltrated area of the leaves including the mesophyll cells. This 

was expected as it was previously shown using the same vector (Santos-Rosa et al., 2008). It was 

also shown that the degree of GUS expression differed with different V. vinifera cultivars and 

that it is dependant on the age of the infiltrated leaves. These factors are important to keep in 

consideration when performing AMP activity assays in grapevine as they may influence the 

outcome. The results obtained from the GUS expression assays via the 35S:GUSi vector 

confirmed that a 35S transient expression vector can be used to obtain sufficient amounts of 

foreign gene expression throughout the entire infiltrated leaf of V. vinifera plantlets. These 

vectors were consequently used for AMPs expression in order to determine their in planta 

activity against A. vitis and X. ampelinus. 

5.1.3 Testing of viral AMP expression 

In order to confirm the expression of Vv-AMP1 by the recombinant virus GVA118-VvAMP1, 

western blots were performed on crude protein extracts from N. benthamiana leaves. Expression 

was not tested in V. vinifera since the results from the viral vector-based expression showed 

insufficient GUS expression, excluding the viral vectors for further applications during this 

study. The antibody used was raised in mice against a GST-Vv-AMP1 fusion protein, and was 

shown to be specific to Vv-AMP1 by western blot analysis, using 2 µg of purified peptide (De 

Beer, 2008). The peptide was produced in and extracted from E. coli. Western blot analysis using 

the described antiserum failed to detect viral expressed Vv-AMP1 in the present study. A factor 

that complicated western blot analysis was the non-specific binding of the antibody against a N. 

benthamiana protein background (De Beer, 2008). For this reason, De Beer (2008) could not tie 

western blot results to the expression of Vv-AMP1 by Vv-AMP1 transgenic N. benthamiana, 

even after enriching for cationic peptides from crude leaf extracts. Since no enrichment was 

Stellenbosch University http://scholar.sun.ac.za



 84 

performed for peptides in this study, future studies should focus on more effective peptide 

enrichment and purification and maybe consider another model plant for determining peptide 

expression. Another problem discussed by De Beer (2008) is the possibility that the abundance 

of Vv-AMP1 may have increased the peptide‟s degradation in N. benthamiana. These plants 

express a peptide highly homologous to Vv-AMP1, resulting in the down regulation of both 

these peptides due to their combined over-expression. The concentration of Vv-AMP1 in the 

plants may therefore also have been too low for western blot detection. Due to these problems 

with the Vv-AMP1 western blots no attempts were made on N. benthamiana leaves infiltrated 

with pBin61S-VvAMP1. 

The small size of the peptide (~5.5 kDa) may also be problematic. Over the years studies have 

developed improved methods of addressing these problems. Peptides less than 10 kDa in size 

often bind to SDS as they are of a related size and charge (Lu et al., 2007). Schagger and Von 

Jagow (1987) adapted the sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) method and developed a protocol using Tricine-SDS-PAGE to separate peptides between 

1 and 100 kDa. Later, a glycine-SDS-PAGE (Sarfo et al., 2003) system was also developed, 

which could separate peptides between 1 and 3 kDa. Even more recently, Lu et al. (2007) 

developed a bis(2-ethylhexyl) sulfosuccinate-PAGE system that is able to separated peptides 

between 0.8 and 17 kDa. In this system the smaller peptides migrate through the gel slower than 

the larger peptides. This method did not only improve the resolution of previous systems but is 

also simpler and more cost effective to implement and could be included in future studies to 

detect in planta AMP expression. These systems can therefore be used to optimise the 

confirmation of Vv-AMP1 expression in the future. 

The amphipathic nature of D4E1 leads to the accumulation of the peptide and the inability to 

migrate through a SDS-PAGE gel. Furthermore, polyclonal antibodies raised against D4E1 were 

shown to generate a high intensity background (Rajasekaran et al., 2005). These reasons resulted 

in the exclusion of D4E1 from western blot analysis. Despite the lack of a sufficient assay to 

confirm the expression of the AMPs, the visual detection of expressed control genes confirmed 

the expression of foreign genes from the vector systems also used for AMP expression. 

5.2 Tagging of pathogens of interest 

5.2.1  Verification of A. vitis and X. ampelinus cultures 

Sequencing analysis that was performed confirmed the identity of the two bacterial cultures and 

found them to be A. vitis and X. ampelinus. The primers for A. vitis detection were used by Haas 
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et al. (1995) to detect different pathogenic Agrobacterium strains. These primers were designed 

based on the virD2 gene sequences of A. tumefaciens and A. rhizogenes. The sequence aligned 

best to the A. vitis sequence available on GenBank and the possibility of the bacteria being either 

A. tumefaciens or A. rhizogenes could be excluded. Little sequence data was available on 

Genbank for X. ampelinus. The sequence of the potential X. ampelinus strain did however align 

to that of a X. ampelinus sequence available, and the bacterial identity was therefore confirmed. 

These two bacterial cultures could then be used for further analysis. 

5.2.2  Determination of A. vitis strain A39 tumorigenic nature 

Tumour development in a mechanically inoculated V. vinifera plantlet confirmed the pathogenic 

nature of the strain. Different strains of A. vitis have shown varying susceptibility to AMPs 

(Rosenfield et al., 2010). Antimicrobial peptide activity screening is therefore important to be 

performed on the same or closely related strain that will be targeted in the field. Since bacteria 

endangering the plant would be the primary target, tests were performed to determine the 

tumorigenic nature of the A. vitis strain A39. Virulent A. vitis strains differ from avirulent strains 

in that they hold a Ti-plasmid (Van Larebecke et al., 1974). The T-DNA region of the A. vitis Ti-

plasmid is inserted into the host genome, causing the host cells to grow undifferentiated, due to 

the over-expression of phytohormones, and develop tumours (Burr et al., 1998). The tumour 

development induced by A. vitis strain A39 in this study, is indicative of its pathogenicity in 

grapevine and as a result was used for in planta AMP activity screening. 

5.2.3 Bacterial tagging with reporter genes 

Agrobacterium vitis cells were successfully tagged with GFP during this study. The fluorescent 

emission from these cells could, however, only be detected under a microscope. This expression 

was insufficient for in planta determination of bacterial titres by the Ivis system, available for 

fluorescence quantification. The decreased fluorescence of GFP tagged A. vitis cells was also 

observed by other research groups (Pers. Com. Prof. T. Burr, Cornell University, Department of 

Plant Pathology and Plant-microbe Biology). It is possible that the cell structure of A. vitis may 

by obstructive for GFP or luciferase detection. In this study, tagging of X. ampelinus with either 

GFP or luciferase was not successful. A previous study was, however successful in tagging X. 

ampelinus with GFP and made use of a Tn5 transposon system, introduced by means of 

electroporation (Grall and Manceau, 2003). The fluorescence emitted by these cells could be 

implemented to characterise the bacteria in an in planta environment. Transposon systems have 

also been used in the past to tag various other plant pathogenic bacteria with a reporter gene for 

monitoring their in planta activity, using both electroporation (Tombolini et al., 1999; Gau et al., 
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2002; Tanaka et al., 2006) or tri-parental mating (Kobayashi et al., 2009) to introduce the intron-

containing plasmid to the recipient cell. Tagging of X. ampelinus by means bacterial mating is 

complicated by their slow growth on artificial media. Other bacteria will out compete their 

growth, especially since no antibiotic selection is available for X. ampelinus cells. The inability 

of this study to tag X. ampelinus by means of electroporation suggests that future studies should 

look into the development of a protocol to obtain chemical competent X. ampelinus cells for 

transformation. This method might be less damaging to the bacterial cell than electroporation 

and result in a higher rate of plasmid uptake. 

5.3 Screening of the in vitro activity of D4E1 against A. vitis 

and X. ampelinus 

The in vitro activity of D4E1 against A. vitis and X. ampelinus was investigated. A general trend 

of a decrease in cfu by increasing the D4E1 concentration could be observed for both pathogens. 

Nevertheless, experimental variation as measured by differences in counted cfu between 

repetitions did not allow for the assumption that specific peptide concentrations lead to a 

statistically significant reduction in cfu. For a confirmation of the clear trend in cfu reduction by 

increasing the peptide concentration the in vitro screening has to be repeated in the future to 

determine the D4E1 concentration that has the most significant effect on A. vitis and X. 

ampelinus. 

Previous studies found that bacteria were generally more sensitive to the in vitro antimicrobial 

activity of D4E1 than fungi (Rajasekaran et al., 2001). The minimum inhibition concentrations 

(MIC) of D4E1 at which the growth of two gram-negative bacteria, P. syringae pv. tabaci and X. 

campestris pv. malvacearum race 18, were completely inhibited were 2.25 µM and 1.25 µM, 

respectively, while the MICs for the fungi ranged from 4.67 to 25 µM. Another study has also 

tested D4E1 in vitro against fungi and showed MICs ranging from 12.5 µM to 25 µM (De Lucca 

et al., 1998). The results of the present study showed that D4E1 inhibits the growth of A. vitis 

and X. ampelinus at concentrations of 6.89 and 5.36 µM, respectively, suggesting that X. 

ampelinus is less sensitive to D4E1 than A. vitis. Differences in media composition could 

however have affected the activity of the peptide (Yeaman and Yount, 2003). Therefore, in 

planta tests first had to be performed to eliminate the potential effect of the artificial 

environment before further conclusions could be drawn. 
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5.4 Screening of the in planta activity of D4E1 and Vv-AMP1 

against the pathogens of interest 

One objective of this study was to illustrate the use of a transient expression system in grapevine 

to determine the in planta effect of AMPs against grapevine pathogens. This goal was achieved 

by using qPCR to determine the difference in bacterial concentrations in V. vinifera plants 

between two treatment groups, the one expressing an AMP via a 35S expression vector and the 

other infiltrated only with an empty 35S expression vector. As described earlier, the GVA viral 

vector-based expression was limited to the vascular tissue in V. vinifera after whole leaf 

infiltrations (see section 5.1.2). The method of plant inoculation applied for these two bacteria 

will have resulted in them being present also in the mesophyll tissue of the plants and expression 

by the GVA-based system at few spots in the vascular system was expected to be insufficient. 

Therefore, only the 35S AMP expression vectors were used for the in planta AMP activity 

screening against A. vitis and X. ampelinus. The viral vector system will be used in future studies 

for AMP activity screening against phytoplasma. The phytoplasma will only be present in the 

vascular tissue of the plant as it would either have been infected with insect transmission or 

grafting. Additionally, the viral-based system can still be used in further studies when N. 

benthamiana is used as a host plant in a transient expression assay. 

5.4.1 Establishment of qPCR protocols for pathogen quantification 

The use of qPCR offers a highly accurate method for the determination of bacterial titres in 

plants (Lie and Petropoulos, 1998; Martin et al., 2000 Schmittgen, 2001). This approach is more 

sensitive and provides more consistent results than previous methods of titre determination 

through cfu counting after in vitro culturing of bacterial extracts (Li et al., 2008). For the 

quantification of the bacteria in the present study, qPCR protocols were not only optimised for 

the pathogens itself, but also for the quantification of the V. vinifera DNA. The amount of 

pathogen DNA could be normalised against an internal control (reference gene), representative 

of the amount of plant DNA in the sample (Winton et al., 2002; Ruppel et al., 2006; Brunner et 

al., 2009; Llorente et al., 2010). The quantification of qPCR protocols requires the primers to be 

highly specific as any non-specific amplification would result in an increased fluorescence, 

influencing the results negatively. The primer should support high linearity and amplification 

efficient reactions (Heid et al., 1996; Van Guilder et al., 2008). 

During the qPCR optimisation for aster yellows phytoplasma and X. ampelinus quantification, 

one and three primer sets, respectively, were excluded from further use. The primers described 
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by Angelini et al., (2007) and Dreo et al. (2007) were designed to be used in a TaqMan®-based 

system which requires the additional use of a probe. In a SYBR Green-based system without a 

probe, as used in this study, these primer sets seemed to lose their specificity. The two primer 

sets of Manceau et al. (2000) were designed to serve as diagnostic primers in a traditional PCR 

protocol and showed non-specific amplification in the study presented here. The results show 

that primers are not always directly transferable between different PCR systems. SYBR Green 

binds to all the double-stranded DNA molecules in a reaction, including primer-dimers and any 

non-specific amplification (Zipper et al., 2003). The binding of the dye to these amplicons 

contributes to the total amount of fluorescence detected, giving a false indication of the amount 

of template. Primers therefore have to be carefully designed for SYBR Green assays to avoid any 

non-specific amplification. This problem does not apply to TaqMan® assays since the dye-

containing probe will only bind to the specific DNA. Previous studies have compared SYBR 

Green-based systems with TaqMan®-based systems, and have found them to be equally 

sensitive (Papin et al., 2004; Andersen et al., 2006; Gomes-Ruiz, 2006). 

Primers were newly designed for qPCR detection and quantification of phytoplasma. These 

primers amplified a region of the 16S rRNA gene of these pathogens. In order to test the 

sensitivity of the primers, the detection of aster yellows phytoplasma was compared to an already 

establish nested-PCR protocol (Engelbrecht et al., 2010). It was shown that the qPCR method for 

aster yellows phytoplasma detection was at least 100 times more sensitive than the nested-PCR 

reaction. According to Angelini et al., (2007) the TaqMan® assay described by them was as 

sensitive in the detection of aster yellows phytoplasma as the different nested-PCRs which they 

used for the detection of different phytoplasmas in grapevine and periwinkle. It could, for this 

reason, also be possible that the SYBR Green assay designed in this study is as sensitive or even 

more than the TaqMan® assay designed by Angelini et al. (2007). To confirm this proposal, 

these two qPCR screening methods have to be evaluated on the same samples, in future. The 

qPCR protocol designed during the current study proved to be highly sensitive and can in the 

future be applied in standard testing protocols. 

Once all the qPCR protocols were optimised for the different reactions, standard curves were set 

up for each reaction to determine the efficiency thereof as well as the linearity of the standard 

curves. This was performed for the qPCR reactions for A. vitis, X. ampelinus and V. vinifera 

DNA quantifications. All the standard curves showed high reaction efficiencies (E >0.97) and 

linearity (R
2 

>0.99). These reactions were sufficiently reproducible and could therefore be used 

for bacterial quantification. 
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5.4.2 Screening of the D4E1 and Vv-AMP1 in planta activity against X. 

ampelinus and A. vitis 

Four transient expression assays were performed to determine the in planta effect of D4E1 and 

Vv-AMP1 against X. ampelinus and A. vitis. The results for the transient expression assay of 

D4E1 against X. ampelinus clearly showed a reduction in X. ampelinus concentration in V. 

vinifera plants as a result of D4E1 activity. These results confirm the trends obtained in the in 

vitro screening of the effect of D4E1 against X. ampelinus. The mechanism of action of D4E1 

still has to be elucidated, but previous results have shown its in planta effect against Gram-

negative bacteria such as A. tumefaciens, Xanthomonas populi pv. populi (Mentag et al., 2003) 

and fungi such as Colletotrichum destructivum (Cary et al., 2000). These effects were however 

only shown in the form of a reduction in symptom development rather than as a reduction in 

pathogen concentration. Many studies on determining the in planta effect of AMPs against plant 

pathogens based their findings on symptom development only (Ali and Reddy, 2000; Ponti et al., 

2003; Jones et al., 2004; Vidal et al., 2006). A recent study stated however, that recording the 

development of symptoms was not a direct approach of determining pathogen resistance, and 

rather implemented qPCR to determine fungal resistance in wheat (Brunner et al., 2009). For this 

reason, and because no symptom development could be observed for X. ampelinus inoculated 

plants, even at 21 dpi, the use of qPCR was preferred in the current study. 

Different inoculation procedures of V. vinifera with A. vitis were investigated. It was assumed 

that the bacterial challenge by vacuum infiltration was too high and as a result the bacteria could 

overcome the effect of D4E1. This form of inoculation was also damaging to the plant cells 

which have already been exposed to vacuum infiltration when infiltrating either the pBin61S-

D4E1 or the empty pBin61S binary vector. Agrobacterium vitis infection does not only cause 

tumour development in grapevine (Burr et al., 1998), but also necrosis on the roots of the vines 

within 24 to 48 h after inoculation (Burr et al., 1988). The necrotic effect is a form of 

hypersensitive response in non-host plants such as N. tabacum, causing rapid cell death in 

inoculated leaves (Herlache et al., 2001). Extreme high concentrations of bacteria might 

therefore also increase the plant‟s hypersensitive response in grapevine. The approach of 

inoculation was shifted to dipping the plants into the bacterial suspension, the same procedure 

which was used for plant inoculation with X. ampelinus. This led to the survival of A. vitis 

inoculated plantlets for more than 4 days. Extending the period of incubation before titre 

determination and lowering the A. vitis inoculum concentration was even more effective. An in 

planta effect of D4E1 against A. vitis was shown in 3 out of the 5 treated plants. Repetition of 

experiments did not lead to an increase in plant numbers in which the effect was significant but 
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still indicated an effect of D4E1. Increasing the number of experimental plants might give a clear 

picture of significant differences. 

No effect was shown for the in planta activity of Vv-AMP1 against X. ampelinus or A. vitis. 

Certain AMP groups are selective in their action and therefore only show an effect against a 

restricted group of microorganisms (García-Olmedo et al., 1998; Yeaman and Yount, 2003; 

Montesinos, 2007). Since Vv-AMP1 has been classified as an antifungal defensin peptide by De 

Beer and Vivier (2008), the result obtained in this study could be explained by its possible 

inability to target bacterial membranes or other bacterial components. Vv-AMP1 was previously 

found to be active against the fungi Fusarium oxysporum, Fusarium solani, Verticillium dahliae 

and Botrytis cinerea, but not against Alternaria longipes (De Beer and Vivier, 2008). The 

complete target range of this peptide still has to be determined, and may still include bacteria 

since it is part of the subgroup B1 of plant defensins which shows activity both against bacteria 

and fungi (De Beer, 2008). Antimicrobial peptides that have shown only antifungal and no 

antibacterial activity are the sugarcane defensins Sd1, Sd3 and Sd5 (De-Paula et al., 2008) and 

synthetic peptides developed by De Samblanx et al. (1996). The AMP AFP isolated from 

Aspergillus giganteus has also been found to be selectively active against fungi but not bacteria 

(Lacadena et al. 1995; Vila et al., 2001; Moreno et al., 2003; Moreno et al. 2005). In the present 

study, Vv-AMP1 did neither decrease nor increase the bacterial concentration in the plants. Any 

beneficial effect of Vv-AMP1 on X. ampelinus or A. vitis growth in planta could therefore be 

excluded. Vv-AMP1 was not available in peptide form and these results could consequently not 

be confirmed by in vitro plate tests. 

When the in planta effect of D4E1 against A. vitis was compared to that of Vv-AMP1, the 

bacterial concentration was reduced significantly in the D4E1 treatment group in contrast to the 

Vv-AMP1 treatment group. Vv-AMP1 showed no beneficial effect on A. vitis growth and it can 

therefore be argued that the difference in bacterial titres between these two treatment groups was 

not due to Vv-AMP1 increasing the growth rate of A. vitis in planta, but rather as a result of 

D4E1 inhibiting the bacterial growth. D4E1 is therefore significantly reducing the titre of A. vitis 

in an in planta grapevine environment. 

Results indicated that A. vitis was less sensitive to D4E1 treatment than X. ampelinus and also 

more pathogenic on in vitro cultured grapevine plantlets, as measured by plant survival after 

infiltration. They have a more destructive effect on the V. vinifera plantlets which complicated 

the optimisation of the in planta assay. Future studies should consequently focus on optimising 

the inoculation system of these bacteria for such assays to be performed with even greater 
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success. With regards to the two AMPs, D4E1 and Vv-AMP1, it appears that transgenic V. 

vinifera plants expressing Vv-AMP1 will offer protection against neither X. ampelinus nor A. 

vitis. The synthetic peptide, D4E1, is a good candidate for transgenic plant development against 

both bacteria. This assumption is not only corroborated by the in vitro activity testing, but also 

by the in planta effect of D4E1 as demonstrated by qPCR analysis. 

5.4.3 Screening of the D4E1 and Vv-AMP1 in planta activity against aster 

yellows phytoplasma 

The application of in planta AMP activity screening is the only way of facilitating AMP activity 

screening against phytoplasmas. Plant transient AMP expression systems therefore offer an ideal 

approach of pre-screening AMP activity before the development of transgenic lines. A crucial 

part of establishing such a system to be implemented on phytoplasma is obtaining infected plant 

material that will support the expression of AMPs through a transient expression system. Vitis 

vinifera field-grown and potted material are not easy to successfully infiltrate via agro-

infiltration (Santos-Rosa et al., 2008; Muruganantham et al., 2009). Phytoplasma infected in 

vitro culture plants have to be established, which can be easily infiltrated, or an alternative host 

has to be found that would allow the transient expression approach. 

This study was not successful in establishing a sufficient number of phytoplasma infected in 

vitro cultured V. vinifera plants from infected field material. A common symptom of 

phytoplasma infection of grapevine is the effect of delayed budding (Pers. Com. R. Carstens, 

Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch). This could result in 

sterilised cane material not developing any shoots, as was seen in this study. The sterilisation 

technique applied in this study seems to be appropriate for removing the epiphytic pathogens but 

not the endophytic pathogens. A recent study has described the wide diverse range of endophytes 

that were identified in an entire single vine (West et al., 2010). Future studies should implement 

better sterilisation techniques or make use of different plant material. Younger canes may 

contain less fungal endophytes as well as canes collected from infected greenhouse plants. The 

technique of in vitro grafting was shown to facilitate the transmission of phytoplasma (Jarausch 

et al., 1999) and future studies may be able to implement grafting as a way to successfully 

transmit phytoplasma to in vitro cultured V. vinifera plants. 

The implementation of an alternative aster yellows phytoplasma host other than grapevine was 

additionally investigated during this study. Catharanthus roseus was identified as a possible 

candidate, firstly, because the aster yellows phytoplasma insect vector, in South African 

vineyards, has recently been identified and is able to transfer the pathogen to C. roseus (Pers. 
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Com. K. Kruger, Department of Zoology and Entomology, University of Pretoria). Secondly, C. 

roseus plants have been shown to allow foreign gene expression by way of a transient expression 

system (Di Fiore et al., 2004). Moreover, it was reported that phytoplasma could be successfully 

transferred from infected C. roseus plants to the model plant N. tabacum (Kamińska et al., 

2010). Nicotiana benthamiana plants infected with phytoplasma will assist the screening of 

AMP activity, as these plants are well supportive of transient expression systems, both by means 

of 35S and viral expression vectors. Ultimately, AMP activity still has to be screened in V. 

vinifera to show the in planta effect against aster yellows phytoplasma in the natural host 

environment. 

GUS expression assays using the 35S:GUSi construct were performed in C. roseus to establish a 

procedure of expressing foreign genes after Agrobacterium vacuum-infiltration. GUS expression 

was observed at 6 dpi around the cutting sites made for infiltration. In uncut leaves small patches 

of GUS expression could also be observed. Visual inspection of the leaves showed that younger 

leaves facilitate better GUS expression. The virulence factor that the A. tumefaciens strain 

contains, was shown to have an influence on transformation and foreign gene expression 

efficiency (Santos-Rosa et al., 2008). A different A. tumefaciens strain (EHA105) was tested, in 

order to increase the GUS expression, but did not seem to offer any improvement to the system. 

Di Fiore et al. (2004) succeeded in using Agrobacterium vacuum-infiltration to transiently 

transform the leaves of C. roseus plants and in doing so to express terpenoid indole alkaloid 

enzymes in these plants. This research also stated that the infection efficiency of the 

Agrobacterium strain along with the physiological condition of the plants and the stress as a 

result of infiltration may have an effect on the success of the transient assay. These are all factors 

that have to be considered when optimising transient expression systems for AMP activity 

screening in C. roseus. 
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Chapter 6  

Conclusion 

The high incidence of grapevine pathogens threatens the South African grapevine industry. New 

diseases are constantly emerging in local vineyards with little or no controlling strategies in 

place, except for preventing the spread thereof. The industry is therefore in need of disease 

resistant plants that can decrease the economical loss due to vector control and yield loss. 

Transgenic grapevine development is, however, a tedious and time consuming process which 

still may lead to plants not being able to combat specific pathogen attacks. Therefore, this study 

aimed to validate the use of transient expression systems which express antimicrobial peptides to 

study the in planta effect of these peptides against selected grapevine pathogens and compare 

these results to in vitro screenings. It focused on two AMPs, D4E1 and Vv-AMP1, and three 

grapevine pathogens namely Xylophilus ampelinus, Agrobacterium vitis and aster yellows 

phytoplasma. 

The results of the in vitro D4E1 activity assays against X. ampelinus and A. vitis pointed towards 

a total inhibition of bacterial growth at concentrations below 8 M for both the bacteria. These 

results were correlated with in planta assays to allow conclusions about the potential of the 

peptide to provide disease resistance to transgenic plants. Transient expression vectors were 

constructed based on viral- as well as 35S vectors. The viral vectors showed successful 

replicating recombinant viruses that could spread systemically in N. benthamiana. Control 

vectors expressing GUS, for both systems, showed significant GUS expression in N. 

benthamiana. However, the expression in grapevine by means of the viral expression vectors 

was limited to small areas associated with leaf veins. The 35S transient expression system 

showed expression in the whole infiltrated area of the grapevine leaves and was therefore used 

for determining in planta AMP activity. Quantitative real-time PCR assays were established and 

used for the relative quantification of bacterial titres in the inoculated plants. When the in planta 

effect of the AMPs were screened, Vv-AMP1 showed an effect against neither X. ampelinus nor 

A. vitis, while there was also only a significant difference in A. vitis titres between 3 of the 5 

D4E1 treated plants relative to the untreated control group. D4E1 in planta expression resulted in 

the reduction of X. ampelinus titres as well as a reduction in A. vitis titres in the D4E1 treatment 

Stellenbosch University http://scholar.sun.ac.za



 94 

group relative to the Vv-AMP1 treatment group. Both bacteria are therefore sensitive to D4E1 in 

a plant environment. These results illustrated the value of transient expression systems as a pre-

screening method of AMP activity in an environment that is more closely related to that in 

transgenic plants compared to in vitro plate assays. Future studies can implement this system to 

determine the in planta activity of a variety of different AMPs against grapevine pathogens in a 

relatively short period of time. These systems overcome the limitation of in vitro assays and can 

be applied also to unculturable pathogens. 

Although no phytoplasma infected material could be established in vitro during this study, the 

constructed viral vectors will be used in future for in planta AMP activity screening against aster 

yellows phytoplasma, once plant material is available. The lack of an outer membrane and cell 

wall makes phytoplasmas ideal targets for AMPs which do not specifically target these cellular 

components. Antimicrobial peptides can also be screened against grapevine pathogens that were 

not included in this study, for example, the fungi responsible for causing powdery and downy 

mildew. The system can even be implemented to screen the potential in planta AMP activity 

against grapevine infecting viruses or transferred to crop plants other than grapevine. Transient 

expression systems are flexible and vectors can easily be altered to express different foreign 

genes. The use of transient expression systems has the potential to play an important role in 

future disease resistance studies and improvement of economically important crops such as 

grapevine.
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Addendum 

Confirmation of pathogen identity 

 

Agrobacterium vitis (strain A39) 

Sequencing results: 

cctgacccaaacatctcggctgcccattcgcggcttgctgcatgagccgacgtaggatccgtacctggggggaagcttacgataatgt

gcgtggttaagtcctgttgcctttgctcgtccggcaggctctcgtcataatttccggtctccagaacccagctccgagcaaacctggtaat

ttgatcaggcggtagcggaatatcgaggtgccgggctgagagccggagctccaacttgcccttcctggagagatattcccactgatta

ataacctgctgaatggttttagttccgcccctaggcacaattcgaatgacaacttgagctcg 

Blast results: 

Aligned to GenBank Accession AM490795.1 

99% identity 

Agrobacterium vitis Ti-plasmid partial virD2 gene 

 

 

Xylophilus ampelinus (strain VS9) 

Sequencing results: 

gcgggktattmcaccaaagtggctttgcagaggcttctttgttgttgatcgatattgttcgatcaatcggctgttctttaaaaattcatagag

tcgaatcagcgttgctggtggaaagagggtcatacctcaccgtgccaccggcaatgtgaatttttgattgcgtcaaaacgaatattcaga

ctaggtctggaattcaagtatcgaagcgagagcttcatacggcataacgcgtcaggtgaaagacc 

Blast results: 

Aligned to GenBank Accession U76357.1 

99% identity 

Xylophilus ampelinus 16S ribosomal RNA gene 

 




